829b07f01ac3d92193ebf61ecfc92fd4de38723c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
424 Create the set of symtabs used by this TU, or if this TU is sharing
425 symtabs with another TU and the symtabs have already been created
426 then restore those symtabs in the line header.
427 We don't need the pc/line-number mapping for type units. */
428 void setup_type_unit_groups (struct die_info *die);
429
430 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
431 buildsym_compunit constructor. */
432 struct compunit_symtab *start_symtab (const char *name,
433 const char *comp_dir,
434 CORE_ADDR low_pc);
435
436 /* Reset the builder. */
437 void reset_builder () { m_builder.reset (); }
438
439 /* The header of the compilation unit. */
440 struct comp_unit_head header {};
441
442 /* Base address of this compilation unit. */
443 CORE_ADDR base_address = 0;
444
445 /* Non-zero if base_address has been set. */
446 int base_known = 0;
447
448 /* The language we are debugging. */
449 enum language language = language_unknown;
450 const struct language_defn *language_defn = nullptr;
451
452 const char *producer = nullptr;
453
454 private:
455 /* The symtab builder for this CU. This is only non-NULL when full
456 symbols are being read. */
457 std::unique_ptr<buildsym_compunit> m_builder;
458
459 public:
460 /* The generic symbol table building routines have separate lists for
461 file scope symbols and all all other scopes (local scopes). So
462 we need to select the right one to pass to add_symbol_to_list().
463 We do it by keeping a pointer to the correct list in list_in_scope.
464
465 FIXME: The original dwarf code just treated the file scope as the
466 first local scope, and all other local scopes as nested local
467 scopes, and worked fine. Check to see if we really need to
468 distinguish these in buildsym.c. */
469 struct pending **list_in_scope = nullptr;
470
471 /* Hash table holding all the loaded partial DIEs
472 with partial_die->offset.SECT_OFF as hash. */
473 htab_t partial_dies = nullptr;
474
475 /* Storage for things with the same lifetime as this read-in compilation
476 unit, including partial DIEs. */
477 auto_obstack comp_unit_obstack;
478
479 /* When multiple dwarf2_cu structures are living in memory, this field
480 chains them all together, so that they can be released efficiently.
481 We will probably also want a generation counter so that most-recently-used
482 compilation units are cached... */
483 struct dwarf2_per_cu_data *read_in_chain = nullptr;
484
485 /* Backlink to our per_cu entry. */
486 struct dwarf2_per_cu_data *per_cu;
487
488 /* How many compilation units ago was this CU last referenced? */
489 int last_used = 0;
490
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
494
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
497
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
502
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
511
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
515
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
518
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
527 is non-NULL). */
528 struct dwo_unit *dwo_unit = nullptr;
529
530 /* The DW_AT_addr_base attribute if present, zero otherwise
531 (zero is a valid value though).
532 Note this value comes from the Fission stub CU/TU's DIE. */
533 ULONGEST addr_base = 0;
534
535 /* The DW_AT_ranges_base attribute if present, zero otherwise
536 (zero is a valid value though).
537 Note this value comes from the Fission stub CU/TU's DIE.
538 Also note that the value is zero in the non-DWO case so this value can
539 be used without needing to know whether DWO files are in use or not.
540 N.B. This does not apply to DW_AT_ranges appearing in
541 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
542 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
543 DW_AT_ranges_base *would* have to be applied, and we'd have to care
544 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
545 ULONGEST ranges_base = 0;
546
547 /* When reading debug info generated by older versions of rustc, we
548 have to rewrite some union types to be struct types with a
549 variant part. This rewriting must be done after the CU is fully
550 read in, because otherwise at the point of rewriting some struct
551 type might not have been fully processed. So, we keep a list of
552 all such types here and process them after expansion. */
553 std::vector<struct type *> rust_unions;
554
555 /* Mark used when releasing cached dies. */
556 bool mark : 1;
557
558 /* This CU references .debug_loc. See the symtab->locations_valid field.
559 This test is imperfect as there may exist optimized debug code not using
560 any location list and still facing inlining issues if handled as
561 unoptimized code. For a future better test see GCC PR other/32998. */
562 bool has_loclist : 1;
563
564 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
565 if all the producer_is_* fields are valid. This information is cached
566 because profiling CU expansion showed excessive time spent in
567 producer_is_gxx_lt_4_6. */
568 bool checked_producer : 1;
569 bool producer_is_gxx_lt_4_6 : 1;
570 bool producer_is_gcc_lt_4_3 : 1;
571 bool producer_is_icc : 1;
572 bool producer_is_icc_lt_14 : 1;
573 bool producer_is_codewarrior : 1;
574
575 /* When true, the file that we're processing is known to have
576 debugging info for C++ namespaces. GCC 3.3.x did not produce
577 this information, but later versions do. */
578
579 bool processing_has_namespace_info : 1;
580
581 struct partial_die_info *find_partial_die (sect_offset sect_off);
582
583 /* If this CU was inherited by another CU (via specification,
584 abstract_origin, etc), this is the ancestor CU. */
585 dwarf2_cu *ancestor;
586
587 /* Get the buildsym_compunit for this CU. */
588 buildsym_compunit *get_builder ()
589 {
590 /* If this CU has a builder associated with it, use that. */
591 if (m_builder != nullptr)
592 return m_builder.get ();
593
594 /* Otherwise, search ancestors for a valid builder. */
595 if (ancestor != nullptr)
596 return ancestor->get_builder ();
597
598 return nullptr;
599 }
600 };
601
602 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
603 This includes type_unit_group and quick_file_names. */
604
605 struct stmt_list_hash
606 {
607 /* The DWO unit this table is from or NULL if there is none. */
608 struct dwo_unit *dwo_unit;
609
610 /* Offset in .debug_line or .debug_line.dwo. */
611 sect_offset line_sect_off;
612 };
613
614 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
615 an object of this type. */
616
617 struct type_unit_group
618 {
619 /* dwarf2read.c's main "handle" on a TU symtab.
620 To simplify things we create an artificial CU that "includes" all the
621 type units using this stmt_list so that the rest of the code still has
622 a "per_cu" handle on the symtab.
623 This PER_CU is recognized by having no section. */
624 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 VEC (sig_type_ptr) *tus;
631
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
636
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
639
640 /* The number of symtabs from the line header.
641 The value here must match line_header.num_file_names. */
642 unsigned int num_symtabs;
643
644 /* The symbol tables for this TU (obtained from the files listed in
645 DW_AT_stmt_list).
646 WARNING: The order of entries here must match the order of entries
647 in the line header. After the first TU using this type_unit_group, the
648 line header for the subsequent TUs is recreated from this. This is done
649 because we need to use the same symtabs for each TU using the same
650 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
651 there's no guarantee the line header doesn't have duplicate entries. */
652 struct symtab **symtabs;
653 };
654
655 /* These sections are what may appear in a (real or virtual) DWO file. */
656
657 struct dwo_sections
658 {
659 struct dwarf2_section_info abbrev;
660 struct dwarf2_section_info line;
661 struct dwarf2_section_info loc;
662 struct dwarf2_section_info loclists;
663 struct dwarf2_section_info macinfo;
664 struct dwarf2_section_info macro;
665 struct dwarf2_section_info str;
666 struct dwarf2_section_info str_offsets;
667 /* In the case of a virtual DWO file, these two are unused. */
668 struct dwarf2_section_info info;
669 VEC (dwarf2_section_info_def) *types;
670 };
671
672 /* CUs/TUs in DWP/DWO files. */
673
674 struct dwo_unit
675 {
676 /* Backlink to the containing struct dwo_file. */
677 struct dwo_file *dwo_file;
678
679 /* The "id" that distinguishes this CU/TU.
680 .debug_info calls this "dwo_id", .debug_types calls this "signature".
681 Since signatures came first, we stick with it for consistency. */
682 ULONGEST signature;
683
684 /* The section this CU/TU lives in, in the DWO file. */
685 struct dwarf2_section_info *section;
686
687 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
688 sect_offset sect_off;
689 unsigned int length;
690
691 /* For types, offset in the type's DIE of the type defined by this TU. */
692 cu_offset type_offset_in_tu;
693 };
694
695 /* include/dwarf2.h defines the DWP section codes.
696 It defines a max value but it doesn't define a min value, which we
697 use for error checking, so provide one. */
698
699 enum dwp_v2_section_ids
700 {
701 DW_SECT_MIN = 1
702 };
703
704 /* Data for one DWO file.
705
706 This includes virtual DWO files (a virtual DWO file is a DWO file as it
707 appears in a DWP file). DWP files don't really have DWO files per se -
708 comdat folding of types "loses" the DWO file they came from, and from
709 a high level view DWP files appear to contain a mass of random types.
710 However, to maintain consistency with the non-DWP case we pretend DWP
711 files contain virtual DWO files, and we assign each TU with one virtual
712 DWO file (generally based on the line and abbrev section offsets -
713 a heuristic that seems to work in practice). */
714
715 struct dwo_file
716 {
717 /* The DW_AT_GNU_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 bfd *dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections;
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_t cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_t tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by both DWP version 1 and 2. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 there is at most one copy of all these sections, each
759 section being (effectively) comprised of the concatenation of all of the
760 individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info macinfo;
768 struct dwarf2_section_info macro;
769 struct dwarf2_section_info str_offsets;
770 struct dwarf2_section_info types;
771 };
772
773 /* These sections are what may appear in a virtual DWO file in DWP version 1.
774 A virtual DWO file is a DWO file as it appears in a DWP file. */
775
776 struct virtual_v1_dwo_sections
777 {
778 struct dwarf2_section_info abbrev;
779 struct dwarf2_section_info line;
780 struct dwarf2_section_info loc;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str_offsets;
784 /* Each DWP hash table entry records one CU or one TU.
785 That is recorded here, and copied to dwo_unit.section. */
786 struct dwarf2_section_info info_or_types;
787 };
788
789 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
790 In version 2, the sections of the DWO files are concatenated together
791 and stored in one section of that name. Thus each ELF section contains
792 several "virtual" sections. */
793
794 struct virtual_v2_dwo_sections
795 {
796 bfd_size_type abbrev_offset;
797 bfd_size_type abbrev_size;
798
799 bfd_size_type line_offset;
800 bfd_size_type line_size;
801
802 bfd_size_type loc_offset;
803 bfd_size_type loc_size;
804
805 bfd_size_type macinfo_offset;
806 bfd_size_type macinfo_size;
807
808 bfd_size_type macro_offset;
809 bfd_size_type macro_size;
810
811 bfd_size_type str_offsets_offset;
812 bfd_size_type str_offsets_size;
813
814 /* Each DWP hash table entry records one CU or one TU.
815 That is recorded here, and copied to dwo_unit.section. */
816 bfd_size_type info_or_types_offset;
817 bfd_size_type info_or_types_size;
818 };
819
820 /* Contents of DWP hash tables. */
821
822 struct dwp_hash_table
823 {
824 uint32_t version, nr_columns;
825 uint32_t nr_units, nr_slots;
826 const gdb_byte *hash_table, *unit_table;
827 union
828 {
829 struct
830 {
831 const gdb_byte *indices;
832 } v1;
833 struct
834 {
835 /* This is indexed by column number and gives the id of the section
836 in that column. */
837 #define MAX_NR_V2_DWO_SECTIONS \
838 (1 /* .debug_info or .debug_types */ \
839 + 1 /* .debug_abbrev */ \
840 + 1 /* .debug_line */ \
841 + 1 /* .debug_loc */ \
842 + 1 /* .debug_str_offsets */ \
843 + 1 /* .debug_macro or .debug_macinfo */)
844 int section_ids[MAX_NR_V2_DWO_SECTIONS];
845 const gdb_byte *offsets;
846 const gdb_byte *sizes;
847 } v2;
848 } section_pool;
849 };
850
851 /* Data for one DWP file. */
852
853 struct dwp_file
854 {
855 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
856 : name (name_),
857 dbfd (std::move (abfd))
858 {
859 }
860
861 /* Name of the file. */
862 const char *name;
863
864 /* File format version. */
865 int version = 0;
866
867 /* The bfd. */
868 gdb_bfd_ref_ptr dbfd;
869
870 /* Section info for this file. */
871 struct dwp_sections sections {};
872
873 /* Table of CUs in the file. */
874 const struct dwp_hash_table *cus = nullptr;
875
876 /* Table of TUs in the file. */
877 const struct dwp_hash_table *tus = nullptr;
878
879 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
880 htab_t loaded_cus {};
881 htab_t loaded_tus {};
882
883 /* Table to map ELF section numbers to their sections.
884 This is only needed for the DWP V1 file format. */
885 unsigned int num_sections = 0;
886 asection **elf_sections = nullptr;
887 };
888
889 /* This represents a '.dwz' file. */
890
891 struct dwz_file
892 {
893 dwz_file (gdb_bfd_ref_ptr &&bfd)
894 : dwz_bfd (std::move (bfd))
895 {
896 }
897
898 /* A dwz file can only contain a few sections. */
899 struct dwarf2_section_info abbrev {};
900 struct dwarf2_section_info info {};
901 struct dwarf2_section_info str {};
902 struct dwarf2_section_info line {};
903 struct dwarf2_section_info macro {};
904 struct dwarf2_section_info gdb_index {};
905 struct dwarf2_section_info debug_names {};
906
907 /* The dwz's BFD. */
908 gdb_bfd_ref_ptr dwz_bfd;
909
910 /* If we loaded the index from an external file, this contains the
911 resources associated to the open file, memory mapping, etc. */
912 std::unique_ptr<index_cache_resource> index_cache_res;
913 };
914
915 /* Struct used to pass misc. parameters to read_die_and_children, et
916 al. which are used for both .debug_info and .debug_types dies.
917 All parameters here are unchanging for the life of the call. This
918 struct exists to abstract away the constant parameters of die reading. */
919
920 struct die_reader_specs
921 {
922 /* The bfd of die_section. */
923 bfd* abfd;
924
925 /* The CU of the DIE we are parsing. */
926 struct dwarf2_cu *cu;
927
928 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
929 struct dwo_file *dwo_file;
930
931 /* The section the die comes from.
932 This is either .debug_info or .debug_types, or the .dwo variants. */
933 struct dwarf2_section_info *die_section;
934
935 /* die_section->buffer. */
936 const gdb_byte *buffer;
937
938 /* The end of the buffer. */
939 const gdb_byte *buffer_end;
940
941 /* The value of the DW_AT_comp_dir attribute. */
942 const char *comp_dir;
943
944 /* The abbreviation table to use when reading the DIEs. */
945 struct abbrev_table *abbrev_table;
946 };
947
948 /* Type of function passed to init_cutu_and_read_dies, et.al. */
949 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
950 const gdb_byte *info_ptr,
951 struct die_info *comp_unit_die,
952 int has_children,
953 void *data);
954
955 /* A 1-based directory index. This is a strong typedef to prevent
956 accidentally using a directory index as a 0-based index into an
957 array/vector. */
958 enum class dir_index : unsigned int {};
959
960 /* Likewise, a 1-based file name index. */
961 enum class file_name_index : unsigned int {};
962
963 struct file_entry
964 {
965 file_entry () = default;
966
967 file_entry (const char *name_, dir_index d_index_,
968 unsigned int mod_time_, unsigned int length_)
969 : name (name_),
970 d_index (d_index_),
971 mod_time (mod_time_),
972 length (length_)
973 {}
974
975 /* Return the include directory at D_INDEX stored in LH. Returns
976 NULL if D_INDEX is out of bounds. */
977 const char *include_dir (const line_header *lh) const;
978
979 /* The file name. Note this is an observing pointer. The memory is
980 owned by debug_line_buffer. */
981 const char *name {};
982
983 /* The directory index (1-based). */
984 dir_index d_index {};
985
986 unsigned int mod_time {};
987
988 unsigned int length {};
989
990 /* True if referenced by the Line Number Program. */
991 bool included_p {};
992
993 /* The associated symbol table, if any. */
994 struct symtab *symtab {};
995 };
996
997 /* The line number information for a compilation unit (found in the
998 .debug_line section) begins with a "statement program header",
999 which contains the following information. */
1000 struct line_header
1001 {
1002 line_header ()
1003 : offset_in_dwz {}
1004 {}
1005
1006 /* Add an entry to the include directory table. */
1007 void add_include_dir (const char *include_dir);
1008
1009 /* Add an entry to the file name table. */
1010 void add_file_name (const char *name, dir_index d_index,
1011 unsigned int mod_time, unsigned int length);
1012
1013 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1014 is out of bounds. */
1015 const char *include_dir_at (dir_index index) const
1016 {
1017 /* Convert directory index number (1-based) to vector index
1018 (0-based). */
1019 size_t vec_index = to_underlying (index) - 1;
1020
1021 if (vec_index >= include_dirs.size ())
1022 return NULL;
1023 return include_dirs[vec_index];
1024 }
1025
1026 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1027 is out of bounds. */
1028 file_entry *file_name_at (file_name_index index)
1029 {
1030 /* Convert file name index number (1-based) to vector index
1031 (0-based). */
1032 size_t vec_index = to_underlying (index) - 1;
1033
1034 if (vec_index >= file_names.size ())
1035 return NULL;
1036 return &file_names[vec_index];
1037 }
1038
1039 /* Const version of the above. */
1040 const file_entry *file_name_at (unsigned int index) const
1041 {
1042 if (index >= file_names.size ())
1043 return NULL;
1044 return &file_names[index];
1045 }
1046
1047 /* Offset of line number information in .debug_line section. */
1048 sect_offset sect_off {};
1049
1050 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1051 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1052
1053 unsigned int total_length {};
1054 unsigned short version {};
1055 unsigned int header_length {};
1056 unsigned char minimum_instruction_length {};
1057 unsigned char maximum_ops_per_instruction {};
1058 unsigned char default_is_stmt {};
1059 int line_base {};
1060 unsigned char line_range {};
1061 unsigned char opcode_base {};
1062
1063 /* standard_opcode_lengths[i] is the number of operands for the
1064 standard opcode whose value is i. This means that
1065 standard_opcode_lengths[0] is unused, and the last meaningful
1066 element is standard_opcode_lengths[opcode_base - 1]. */
1067 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1068
1069 /* The include_directories table. Note these are observing
1070 pointers. The memory is owned by debug_line_buffer. */
1071 std::vector<const char *> include_dirs;
1072
1073 /* The file_names table. */
1074 std::vector<file_entry> file_names;
1075
1076 /* The start and end of the statement program following this
1077 header. These point into dwarf2_per_objfile->line_buffer. */
1078 const gdb_byte *statement_program_start {}, *statement_program_end {};
1079 };
1080
1081 typedef std::unique_ptr<line_header> line_header_up;
1082
1083 const char *
1084 file_entry::include_dir (const line_header *lh) const
1085 {
1086 return lh->include_dir_at (d_index);
1087 }
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info : public allocate_on_obstack
1092 {
1093 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1094
1095 /* Disable assign but still keep copy ctor, which is needed
1096 load_partial_dies. */
1097 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1098
1099 /* Adjust the partial die before generating a symbol for it. This
1100 function may set the is_external flag or change the DIE's
1101 name. */
1102 void fixup (struct dwarf2_cu *cu);
1103
1104 /* Read a minimal amount of information into the minimal die
1105 structure. */
1106 const gdb_byte *read (const struct die_reader_specs *reader,
1107 const struct abbrev_info &abbrev,
1108 const gdb_byte *info_ptr);
1109
1110 /* Offset of this DIE. */
1111 const sect_offset sect_off;
1112
1113 /* DWARF-2 tag for this DIE. */
1114 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1115
1116 /* Assorted flags describing the data found in this DIE. */
1117 const unsigned int has_children : 1;
1118
1119 unsigned int is_external : 1;
1120 unsigned int is_declaration : 1;
1121 unsigned int has_type : 1;
1122 unsigned int has_specification : 1;
1123 unsigned int has_pc_info : 1;
1124 unsigned int may_be_inlined : 1;
1125
1126 /* This DIE has been marked DW_AT_main_subprogram. */
1127 unsigned int main_subprogram : 1;
1128
1129 /* Flag set if the SCOPE field of this structure has been
1130 computed. */
1131 unsigned int scope_set : 1;
1132
1133 /* Flag set if the DIE has a byte_size attribute. */
1134 unsigned int has_byte_size : 1;
1135
1136 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1137 unsigned int has_const_value : 1;
1138
1139 /* Flag set if any of the DIE's children are template arguments. */
1140 unsigned int has_template_arguments : 1;
1141
1142 /* Flag set if fixup has been called on this die. */
1143 unsigned int fixup_called : 1;
1144
1145 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1146 unsigned int is_dwz : 1;
1147
1148 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1149 unsigned int spec_is_dwz : 1;
1150
1151 /* The name of this DIE. Normally the value of DW_AT_name, but
1152 sometimes a default name for unnamed DIEs. */
1153 const char *name = nullptr;
1154
1155 /* The linkage name, if present. */
1156 const char *linkage_name = nullptr;
1157
1158 /* The scope to prepend to our children. This is generally
1159 allocated on the comp_unit_obstack, so will disappear
1160 when this compilation unit leaves the cache. */
1161 const char *scope = nullptr;
1162
1163 /* Some data associated with the partial DIE. The tag determines
1164 which field is live. */
1165 union
1166 {
1167 /* The location description associated with this DIE, if any. */
1168 struct dwarf_block *locdesc;
1169 /* The offset of an import, for DW_TAG_imported_unit. */
1170 sect_offset sect_off;
1171 } d {};
1172
1173 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1174 CORE_ADDR lowpc = 0;
1175 CORE_ADDR highpc = 0;
1176
1177 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1178 DW_AT_sibling, if any. */
1179 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1180 could return DW_AT_sibling values to its caller load_partial_dies. */
1181 const gdb_byte *sibling = nullptr;
1182
1183 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1184 DW_AT_specification (or DW_AT_abstract_origin or
1185 DW_AT_extension). */
1186 sect_offset spec_offset {};
1187
1188 /* Pointers to this DIE's parent, first child, and next sibling,
1189 if any. */
1190 struct partial_die_info *die_parent = nullptr;
1191 struct partial_die_info *die_child = nullptr;
1192 struct partial_die_info *die_sibling = nullptr;
1193
1194 friend struct partial_die_info *
1195 dwarf2_cu::find_partial_die (sect_offset sect_off);
1196
1197 private:
1198 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1199 partial_die_info (sect_offset sect_off)
1200 : partial_die_info (sect_off, DW_TAG_padding, 0)
1201 {
1202 }
1203
1204 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1205 int has_children_)
1206 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1207 {
1208 is_external = 0;
1209 is_declaration = 0;
1210 has_type = 0;
1211 has_specification = 0;
1212 has_pc_info = 0;
1213 may_be_inlined = 0;
1214 main_subprogram = 0;
1215 scope_set = 0;
1216 has_byte_size = 0;
1217 has_const_value = 0;
1218 has_template_arguments = 0;
1219 fixup_called = 0;
1220 is_dwz = 0;
1221 spec_is_dwz = 0;
1222 }
1223 };
1224
1225 /* This data structure holds the information of an abbrev. */
1226 struct abbrev_info
1227 {
1228 unsigned int number; /* number identifying abbrev */
1229 enum dwarf_tag tag; /* dwarf tag */
1230 unsigned short has_children; /* boolean */
1231 unsigned short num_attrs; /* number of attributes */
1232 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1233 struct abbrev_info *next; /* next in chain */
1234 };
1235
1236 struct attr_abbrev
1237 {
1238 ENUM_BITFIELD(dwarf_attribute) name : 16;
1239 ENUM_BITFIELD(dwarf_form) form : 16;
1240
1241 /* It is valid only if FORM is DW_FORM_implicit_const. */
1242 LONGEST implicit_const;
1243 };
1244
1245 /* Size of abbrev_table.abbrev_hash_table. */
1246 #define ABBREV_HASH_SIZE 121
1247
1248 /* Top level data structure to contain an abbreviation table. */
1249
1250 struct abbrev_table
1251 {
1252 explicit abbrev_table (sect_offset off)
1253 : sect_off (off)
1254 {
1255 m_abbrevs =
1256 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1257 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1258 }
1259
1260 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1261
1262 /* Allocate space for a struct abbrev_info object in
1263 ABBREV_TABLE. */
1264 struct abbrev_info *alloc_abbrev ();
1265
1266 /* Add an abbreviation to the table. */
1267 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1268
1269 /* Look up an abbrev in the table.
1270 Returns NULL if the abbrev is not found. */
1271
1272 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1273
1274
1275 /* Where the abbrev table came from.
1276 This is used as a sanity check when the table is used. */
1277 const sect_offset sect_off;
1278
1279 /* Storage for the abbrev table. */
1280 auto_obstack abbrev_obstack;
1281
1282 private:
1283
1284 /* Hash table of abbrevs.
1285 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1286 It could be statically allocated, but the previous code didn't so we
1287 don't either. */
1288 struct abbrev_info **m_abbrevs;
1289 };
1290
1291 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1292
1293 /* Attributes have a name and a value. */
1294 struct attribute
1295 {
1296 ENUM_BITFIELD(dwarf_attribute) name : 16;
1297 ENUM_BITFIELD(dwarf_form) form : 15;
1298
1299 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1300 field should be in u.str (existing only for DW_STRING) but it is kept
1301 here for better struct attribute alignment. */
1302 unsigned int string_is_canonical : 1;
1303
1304 union
1305 {
1306 const char *str;
1307 struct dwarf_block *blk;
1308 ULONGEST unsnd;
1309 LONGEST snd;
1310 CORE_ADDR addr;
1311 ULONGEST signature;
1312 }
1313 u;
1314 };
1315
1316 /* This data structure holds a complete die structure. */
1317 struct die_info
1318 {
1319 /* DWARF-2 tag for this DIE. */
1320 ENUM_BITFIELD(dwarf_tag) tag : 16;
1321
1322 /* Number of attributes */
1323 unsigned char num_attrs;
1324
1325 /* True if we're presently building the full type name for the
1326 type derived from this DIE. */
1327 unsigned char building_fullname : 1;
1328
1329 /* True if this die is in process. PR 16581. */
1330 unsigned char in_process : 1;
1331
1332 /* Abbrev number */
1333 unsigned int abbrev;
1334
1335 /* Offset in .debug_info or .debug_types section. */
1336 sect_offset sect_off;
1337
1338 /* The dies in a compilation unit form an n-ary tree. PARENT
1339 points to this die's parent; CHILD points to the first child of
1340 this node; and all the children of a given node are chained
1341 together via their SIBLING fields. */
1342 struct die_info *child; /* Its first child, if any. */
1343 struct die_info *sibling; /* Its next sibling, if any. */
1344 struct die_info *parent; /* Its parent, if any. */
1345
1346 /* An array of attributes, with NUM_ATTRS elements. There may be
1347 zero, but it's not common and zero-sized arrays are not
1348 sufficiently portable C. */
1349 struct attribute attrs[1];
1350 };
1351
1352 /* Get at parts of an attribute structure. */
1353
1354 #define DW_STRING(attr) ((attr)->u.str)
1355 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1356 #define DW_UNSND(attr) ((attr)->u.unsnd)
1357 #define DW_BLOCK(attr) ((attr)->u.blk)
1358 #define DW_SND(attr) ((attr)->u.snd)
1359 #define DW_ADDR(attr) ((attr)->u.addr)
1360 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1361
1362 /* Blocks are a bunch of untyped bytes. */
1363 struct dwarf_block
1364 {
1365 size_t size;
1366
1367 /* Valid only if SIZE is not zero. */
1368 const gdb_byte *data;
1369 };
1370
1371 #ifndef ATTR_ALLOC_CHUNK
1372 #define ATTR_ALLOC_CHUNK 4
1373 #endif
1374
1375 /* Allocate fields for structs, unions and enums in this size. */
1376 #ifndef DW_FIELD_ALLOC_CHUNK
1377 #define DW_FIELD_ALLOC_CHUNK 4
1378 #endif
1379
1380 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1381 but this would require a corresponding change in unpack_field_as_long
1382 and friends. */
1383 static int bits_per_byte = 8;
1384
1385 /* When reading a variant or variant part, we track a bit more
1386 information about the field, and store it in an object of this
1387 type. */
1388
1389 struct variant_field
1390 {
1391 /* If we see a DW_TAG_variant, then this will be the discriminant
1392 value. */
1393 ULONGEST discriminant_value;
1394 /* If we see a DW_TAG_variant, then this will be set if this is the
1395 default branch. */
1396 bool default_branch;
1397 /* While reading a DW_TAG_variant_part, this will be set if this
1398 field is the discriminant. */
1399 bool is_discriminant;
1400 };
1401
1402 struct nextfield
1403 {
1404 int accessibility = 0;
1405 int virtuality = 0;
1406 /* Extra information to describe a variant or variant part. */
1407 struct variant_field variant {};
1408 struct field field {};
1409 };
1410
1411 struct fnfieldlist
1412 {
1413 const char *name = nullptr;
1414 std::vector<struct fn_field> fnfields;
1415 };
1416
1417 /* The routines that read and process dies for a C struct or C++ class
1418 pass lists of data member fields and lists of member function fields
1419 in an instance of a field_info structure, as defined below. */
1420 struct field_info
1421 {
1422 /* List of data member and baseclasses fields. */
1423 std::vector<struct nextfield> fields;
1424 std::vector<struct nextfield> baseclasses;
1425
1426 /* Number of fields (including baseclasses). */
1427 int nfields = 0;
1428
1429 /* Set if the accesibility of one of the fields is not public. */
1430 int non_public_fields = 0;
1431
1432 /* Member function fieldlist array, contains name of possibly overloaded
1433 member function, number of overloaded member functions and a pointer
1434 to the head of the member function field chain. */
1435 std::vector<struct fnfieldlist> fnfieldlists;
1436
1437 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1438 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1439 std::vector<struct decl_field> typedef_field_list;
1440
1441 /* Nested types defined by this class and the number of elements in this
1442 list. */
1443 std::vector<struct decl_field> nested_types_list;
1444 };
1445
1446 /* One item on the queue of compilation units to read in full symbols
1447 for. */
1448 struct dwarf2_queue_item
1449 {
1450 struct dwarf2_per_cu_data *per_cu;
1451 enum language pretend_language;
1452 struct dwarf2_queue_item *next;
1453 };
1454
1455 /* The current queue. */
1456 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1457
1458 /* Loaded secondary compilation units are kept in memory until they
1459 have not been referenced for the processing of this many
1460 compilation units. Set this to zero to disable caching. Cache
1461 sizes of up to at least twenty will improve startup time for
1462 typical inter-CU-reference binaries, at an obvious memory cost. */
1463 static int dwarf_max_cache_age = 5;
1464 static void
1465 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1466 struct cmd_list_element *c, const char *value)
1467 {
1468 fprintf_filtered (file, _("The upper bound on the age of cached "
1469 "DWARF compilation units is %s.\n"),
1470 value);
1471 }
1472 \f
1473 /* local function prototypes */
1474
1475 static const char *get_section_name (const struct dwarf2_section_info *);
1476
1477 static const char *get_section_file_name (const struct dwarf2_section_info *);
1478
1479 static void dwarf2_find_base_address (struct die_info *die,
1480 struct dwarf2_cu *cu);
1481
1482 static struct partial_symtab *create_partial_symtab
1483 (struct dwarf2_per_cu_data *per_cu, const char *name);
1484
1485 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1486 const gdb_byte *info_ptr,
1487 struct die_info *type_unit_die,
1488 int has_children, void *data);
1489
1490 static void dwarf2_build_psymtabs_hard
1491 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1492
1493 static void scan_partial_symbols (struct partial_die_info *,
1494 CORE_ADDR *, CORE_ADDR *,
1495 int, struct dwarf2_cu *);
1496
1497 static void add_partial_symbol (struct partial_die_info *,
1498 struct dwarf2_cu *);
1499
1500 static void add_partial_namespace (struct partial_die_info *pdi,
1501 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1502 int set_addrmap, struct dwarf2_cu *cu);
1503
1504 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1505 CORE_ADDR *highpc, int set_addrmap,
1506 struct dwarf2_cu *cu);
1507
1508 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1509 struct dwarf2_cu *cu);
1510
1511 static void add_partial_subprogram (struct partial_die_info *pdi,
1512 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1513 int need_pc, struct dwarf2_cu *cu);
1514
1515 static void dwarf2_read_symtab (struct partial_symtab *,
1516 struct objfile *);
1517
1518 static void psymtab_to_symtab_1 (struct partial_symtab *);
1519
1520 static abbrev_table_up abbrev_table_read_table
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1522 sect_offset);
1523
1524 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1525
1526 static struct partial_die_info *load_partial_dies
1527 (const struct die_reader_specs *, const gdb_byte *, int);
1528
1529 static struct partial_die_info *find_partial_die (sect_offset, int,
1530 struct dwarf2_cu *);
1531
1532 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1533 struct attribute *, struct attr_abbrev *,
1534 const gdb_byte *);
1535
1536 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1537
1538 static int read_1_signed_byte (bfd *, const gdb_byte *);
1539
1540 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1541
1542 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1543
1544 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1545
1546 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1547 unsigned int *);
1548
1549 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static LONGEST read_checked_initial_length_and_offset
1552 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1553 unsigned int *, unsigned int *);
1554
1555 static LONGEST read_offset (bfd *, const gdb_byte *,
1556 const struct comp_unit_head *,
1557 unsigned int *);
1558
1559 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1560
1561 static sect_offset read_abbrev_offset
1562 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1563 struct dwarf2_section_info *, sect_offset);
1564
1565 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1566
1567 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1568
1569 static const char *read_indirect_string
1570 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1571 const struct comp_unit_head *, unsigned int *);
1572
1573 static const char *read_indirect_line_string
1574 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1575 const struct comp_unit_head *, unsigned int *);
1576
1577 static const char *read_indirect_string_at_offset
1578 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1579 LONGEST str_offset);
1580
1581 static const char *read_indirect_string_from_dwz
1582 (struct objfile *objfile, struct dwz_file *, LONGEST);
1583
1584 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1585
1586 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1587 const gdb_byte *,
1588 unsigned int *);
1589
1590 static const char *read_str_index (const struct die_reader_specs *reader,
1591 ULONGEST str_index);
1592
1593 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1594
1595 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1596 struct dwarf2_cu *);
1597
1598 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1599 unsigned int);
1600
1601 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1602 struct dwarf2_cu *cu);
1603
1604 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1605 struct dwarf2_cu *cu);
1606
1607 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1608
1609 static struct die_info *die_specification (struct die_info *die,
1610 struct dwarf2_cu **);
1611
1612 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1613 struct dwarf2_cu *cu);
1614
1615 static void dwarf_decode_lines (struct line_header *, const char *,
1616 struct dwarf2_cu *, struct partial_symtab *,
1617 CORE_ADDR, int decode_mapping);
1618
1619 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1620 const char *);
1621
1622 static struct symbol *new_symbol (struct die_info *, struct type *,
1623 struct dwarf2_cu *, struct symbol * = NULL);
1624
1625 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1626 struct dwarf2_cu *);
1627
1628 static void dwarf2_const_value_attr (const struct attribute *attr,
1629 struct type *type,
1630 const char *name,
1631 struct obstack *obstack,
1632 struct dwarf2_cu *cu, LONGEST *value,
1633 const gdb_byte **bytes,
1634 struct dwarf2_locexpr_baton **baton);
1635
1636 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1637
1638 static int need_gnat_info (struct dwarf2_cu *);
1639
1640 static struct type *die_descriptive_type (struct die_info *,
1641 struct dwarf2_cu *);
1642
1643 static void set_descriptive_type (struct type *, struct die_info *,
1644 struct dwarf2_cu *);
1645
1646 static struct type *die_containing_type (struct die_info *,
1647 struct dwarf2_cu *);
1648
1649 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1650 struct dwarf2_cu *);
1651
1652 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1653
1654 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1655
1656 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1657
1658 static char *typename_concat (struct obstack *obs, const char *prefix,
1659 const char *suffix, int physname,
1660 struct dwarf2_cu *cu);
1661
1662 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1663
1664 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1665
1666 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1667
1668 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1669
1670 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1671
1672 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1673
1674 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *, struct partial_symtab *);
1676
1677 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1678 values. Keep the items ordered with increasing constraints compliance. */
1679 enum pc_bounds_kind
1680 {
1681 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1682 PC_BOUNDS_NOT_PRESENT,
1683
1684 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1685 were present but they do not form a valid range of PC addresses. */
1686 PC_BOUNDS_INVALID,
1687
1688 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1689 PC_BOUNDS_RANGES,
1690
1691 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1692 PC_BOUNDS_HIGH_LOW,
1693 };
1694
1695 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1696 CORE_ADDR *, CORE_ADDR *,
1697 struct dwarf2_cu *,
1698 struct partial_symtab *);
1699
1700 static void get_scope_pc_bounds (struct die_info *,
1701 CORE_ADDR *, CORE_ADDR *,
1702 struct dwarf2_cu *);
1703
1704 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1705 CORE_ADDR, struct dwarf2_cu *);
1706
1707 static void dwarf2_add_field (struct field_info *, struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static void dwarf2_attach_fields_to_type (struct field_info *,
1711 struct type *, struct dwarf2_cu *);
1712
1713 static void dwarf2_add_member_fn (struct field_info *,
1714 struct die_info *, struct type *,
1715 struct dwarf2_cu *);
1716
1717 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1718 struct type *,
1719 struct dwarf2_cu *);
1720
1721 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1722
1723 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1724
1725 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1726
1727 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1728
1729 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1730
1731 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1732
1733 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1734
1735 static struct type *read_module_type (struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *namespace_name (struct die_info *die,
1739 int *is_anonymous, struct dwarf2_cu *);
1740
1741 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1742
1743 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1744
1745 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1746 struct dwarf2_cu *);
1747
1748 static struct die_info *read_die_and_siblings_1
1749 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1750 struct die_info *);
1751
1752 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1753 const gdb_byte *info_ptr,
1754 const gdb_byte **new_info_ptr,
1755 struct die_info *parent);
1756
1757 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1758 struct die_info **, const gdb_byte *,
1759 int *, int);
1760
1761 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1762 struct die_info **, const gdb_byte *,
1763 int *);
1764
1765 static void process_die (struct die_info *, struct dwarf2_cu *);
1766
1767 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1768 struct obstack *);
1769
1770 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1771
1772 static const char *dwarf2_full_name (const char *name,
1773 struct die_info *die,
1774 struct dwarf2_cu *cu);
1775
1776 static const char *dwarf2_physname (const char *name, struct die_info *die,
1777 struct dwarf2_cu *cu);
1778
1779 static struct die_info *dwarf2_extension (struct die_info *die,
1780 struct dwarf2_cu **);
1781
1782 static const char *dwarf_tag_name (unsigned int);
1783
1784 static const char *dwarf_attr_name (unsigned int);
1785
1786 static const char *dwarf_form_name (unsigned int);
1787
1788 static const char *dwarf_bool_name (unsigned int);
1789
1790 static const char *dwarf_type_encoding_name (unsigned int);
1791
1792 static struct die_info *sibling_die (struct die_info *);
1793
1794 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1795
1796 static void dump_die_for_error (struct die_info *);
1797
1798 static void dump_die_1 (struct ui_file *, int level, int max_level,
1799 struct die_info *);
1800
1801 /*static*/ void dump_die (struct die_info *, int max_level);
1802
1803 static void store_in_ref_table (struct die_info *,
1804 struct dwarf2_cu *);
1805
1806 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1807
1808 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1809
1810 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1811 const struct attribute *,
1812 struct dwarf2_cu **);
1813
1814 static struct die_info *follow_die_ref (struct die_info *,
1815 const struct attribute *,
1816 struct dwarf2_cu **);
1817
1818 static struct die_info *follow_die_sig (struct die_info *,
1819 const struct attribute *,
1820 struct dwarf2_cu **);
1821
1822 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1823 struct dwarf2_cu *);
1824
1825 static struct type *get_DW_AT_signature_type (struct die_info *,
1826 const struct attribute *,
1827 struct dwarf2_cu *);
1828
1829 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1830
1831 static void read_signatured_type (struct signatured_type *);
1832
1833 static int attr_to_dynamic_prop (const struct attribute *attr,
1834 struct die_info *die, struct dwarf2_cu *cu,
1835 struct dynamic_prop *prop);
1836
1837 /* memory allocation interface */
1838
1839 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1840
1841 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1842
1843 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1844
1845 static int attr_form_is_block (const struct attribute *);
1846
1847 static int attr_form_is_section_offset (const struct attribute *);
1848
1849 static int attr_form_is_constant (const struct attribute *);
1850
1851 static int attr_form_is_ref (const struct attribute *);
1852
1853 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1854 struct dwarf2_loclist_baton *baton,
1855 const struct attribute *attr);
1856
1857 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1858 struct symbol *sym,
1859 struct dwarf2_cu *cu,
1860 int is_block);
1861
1862 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1863 const gdb_byte *info_ptr,
1864 struct abbrev_info *abbrev);
1865
1866 static hashval_t partial_die_hash (const void *item);
1867
1868 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1869
1870 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1871 (sect_offset sect_off, unsigned int offset_in_dwz,
1872 struct dwarf2_per_objfile *dwarf2_per_objfile);
1873
1874 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1875 struct die_info *comp_unit_die,
1876 enum language pretend_language);
1877
1878 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1879
1880 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1881
1882 static struct type *set_die_type (struct die_info *, struct type *,
1883 struct dwarf2_cu *);
1884
1885 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1886
1887 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1888
1889 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1890 enum language);
1891
1892 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1893 enum language);
1894
1895 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1896 enum language);
1897
1898 static void dwarf2_add_dependence (struct dwarf2_cu *,
1899 struct dwarf2_per_cu_data *);
1900
1901 static void dwarf2_mark (struct dwarf2_cu *);
1902
1903 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1904
1905 static struct type *get_die_type_at_offset (sect_offset,
1906 struct dwarf2_per_cu_data *);
1907
1908 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1909
1910 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1911 enum language pretend_language);
1912
1913 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1914
1915 /* Class, the destructor of which frees all allocated queue entries. This
1916 will only have work to do if an error was thrown while processing the
1917 dwarf. If no error was thrown then the queue entries should have all
1918 been processed, and freed, as we went along. */
1919
1920 class dwarf2_queue_guard
1921 {
1922 public:
1923 dwarf2_queue_guard () = default;
1924
1925 /* Free any entries remaining on the queue. There should only be
1926 entries left if we hit an error while processing the dwarf. */
1927 ~dwarf2_queue_guard ()
1928 {
1929 struct dwarf2_queue_item *item, *last;
1930
1931 item = dwarf2_queue;
1932 while (item)
1933 {
1934 /* Anything still marked queued is likely to be in an
1935 inconsistent state, so discard it. */
1936 if (item->per_cu->queued)
1937 {
1938 if (item->per_cu->cu != NULL)
1939 free_one_cached_comp_unit (item->per_cu);
1940 item->per_cu->queued = 0;
1941 }
1942
1943 last = item;
1944 item = item->next;
1945 xfree (last);
1946 }
1947
1948 dwarf2_queue = dwarf2_queue_tail = NULL;
1949 }
1950 };
1951
1952 /* The return type of find_file_and_directory. Note, the enclosed
1953 string pointers are only valid while this object is valid. */
1954
1955 struct file_and_directory
1956 {
1957 /* The filename. This is never NULL. */
1958 const char *name;
1959
1960 /* The compilation directory. NULL if not known. If we needed to
1961 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1962 points directly to the DW_AT_comp_dir string attribute owned by
1963 the obstack that owns the DIE. */
1964 const char *comp_dir;
1965
1966 /* If we needed to build a new string for comp_dir, this is what
1967 owns the storage. */
1968 std::string comp_dir_storage;
1969 };
1970
1971 static file_and_directory find_file_and_directory (struct die_info *die,
1972 struct dwarf2_cu *cu);
1973
1974 static char *file_full_name (int file, struct line_header *lh,
1975 const char *comp_dir);
1976
1977 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1978 enum class rcuh_kind { COMPILE, TYPE };
1979
1980 static const gdb_byte *read_and_check_comp_unit_head
1981 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1982 struct comp_unit_head *header,
1983 struct dwarf2_section_info *section,
1984 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1985 rcuh_kind section_kind);
1986
1987 static void init_cutu_and_read_dies
1988 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1989 int use_existing_cu, int keep, bool skip_partial,
1990 die_reader_func_ftype *die_reader_func, void *data);
1991
1992 static void init_cutu_and_read_dies_simple
1993 (struct dwarf2_per_cu_data *this_cu,
1994 die_reader_func_ftype *die_reader_func, void *data);
1995
1996 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1997
1998 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1999
2000 static struct dwo_unit *lookup_dwo_unit_in_dwp
2001 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2002 struct dwp_file *dwp_file, const char *comp_dir,
2003 ULONGEST signature, int is_debug_types);
2004
2005 static struct dwp_file *get_dwp_file
2006 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2007
2008 static struct dwo_unit *lookup_dwo_comp_unit
2009 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2010
2011 static struct dwo_unit *lookup_dwo_type_unit
2012 (struct signatured_type *, const char *, const char *);
2013
2014 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2015
2016 static void free_dwo_file (struct dwo_file *);
2017
2018 /* A unique_ptr helper to free a dwo_file. */
2019
2020 struct dwo_file_deleter
2021 {
2022 void operator() (struct dwo_file *df) const
2023 {
2024 free_dwo_file (df);
2025 }
2026 };
2027
2028 /* A unique pointer to a dwo_file. */
2029
2030 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2031
2032 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2033
2034 static void check_producer (struct dwarf2_cu *cu);
2035
2036 static void free_line_header_voidp (void *arg);
2037 \f
2038 /* Various complaints about symbol reading that don't abort the process. */
2039
2040 static void
2041 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2042 {
2043 complaint (_("statement list doesn't fit in .debug_line section"));
2044 }
2045
2046 static void
2047 dwarf2_debug_line_missing_file_complaint (void)
2048 {
2049 complaint (_(".debug_line section has line data without a file"));
2050 }
2051
2052 static void
2053 dwarf2_debug_line_missing_end_sequence_complaint (void)
2054 {
2055 complaint (_(".debug_line section has line "
2056 "program sequence without an end"));
2057 }
2058
2059 static void
2060 dwarf2_complex_location_expr_complaint (void)
2061 {
2062 complaint (_("location expression too complex"));
2063 }
2064
2065 static void
2066 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2067 int arg3)
2068 {
2069 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2070 arg1, arg2, arg3);
2071 }
2072
2073 static void
2074 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2075 {
2076 complaint (_("debug info runs off end of %s section"
2077 " [in module %s]"),
2078 get_section_name (section),
2079 get_section_file_name (section));
2080 }
2081
2082 static void
2083 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2084 {
2085 complaint (_("macro debug info contains a "
2086 "malformed macro definition:\n`%s'"),
2087 arg1);
2088 }
2089
2090 static void
2091 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2092 {
2093 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2094 arg1, arg2);
2095 }
2096
2097 /* Hash function for line_header_hash. */
2098
2099 static hashval_t
2100 line_header_hash (const struct line_header *ofs)
2101 {
2102 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2103 }
2104
2105 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2106
2107 static hashval_t
2108 line_header_hash_voidp (const void *item)
2109 {
2110 const struct line_header *ofs = (const struct line_header *) item;
2111
2112 return line_header_hash (ofs);
2113 }
2114
2115 /* Equality function for line_header_hash. */
2116
2117 static int
2118 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2119 {
2120 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2121 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2122
2123 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2124 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2125 }
2126
2127 \f
2128
2129 /* Read the given attribute value as an address, taking the attribute's
2130 form into account. */
2131
2132 static CORE_ADDR
2133 attr_value_as_address (struct attribute *attr)
2134 {
2135 CORE_ADDR addr;
2136
2137 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2138 && attr->form != DW_FORM_GNU_addr_index)
2139 {
2140 /* Aside from a few clearly defined exceptions, attributes that
2141 contain an address must always be in DW_FORM_addr form.
2142 Unfortunately, some compilers happen to be violating this
2143 requirement by encoding addresses using other forms, such
2144 as DW_FORM_data4 for example. For those broken compilers,
2145 we try to do our best, without any guarantee of success,
2146 to interpret the address correctly. It would also be nice
2147 to generate a complaint, but that would require us to maintain
2148 a list of legitimate cases where a non-address form is allowed,
2149 as well as update callers to pass in at least the CU's DWARF
2150 version. This is more overhead than what we're willing to
2151 expand for a pretty rare case. */
2152 addr = DW_UNSND (attr);
2153 }
2154 else
2155 addr = DW_ADDR (attr);
2156
2157 return addr;
2158 }
2159
2160 /* See declaration. */
2161
2162 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2163 const dwarf2_debug_sections *names)
2164 : objfile (objfile_)
2165 {
2166 if (names == NULL)
2167 names = &dwarf2_elf_names;
2168
2169 bfd *obfd = objfile->obfd;
2170
2171 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2172 locate_sections (obfd, sec, *names);
2173 }
2174
2175 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2176
2177 dwarf2_per_objfile::~dwarf2_per_objfile ()
2178 {
2179 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2180 free_cached_comp_units ();
2181
2182 if (quick_file_names_table)
2183 htab_delete (quick_file_names_table);
2184
2185 if (line_header_hash)
2186 htab_delete (line_header_hash);
2187
2188 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2189 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2190
2191 for (signatured_type *sig_type : all_type_units)
2192 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2193
2194 VEC_free (dwarf2_section_info_def, types);
2195
2196 if (dwo_files != NULL)
2197 free_dwo_files (dwo_files, objfile);
2198
2199 /* Everything else should be on the objfile obstack. */
2200 }
2201
2202 /* See declaration. */
2203
2204 void
2205 dwarf2_per_objfile::free_cached_comp_units ()
2206 {
2207 dwarf2_per_cu_data *per_cu = read_in_chain;
2208 dwarf2_per_cu_data **last_chain = &read_in_chain;
2209 while (per_cu != NULL)
2210 {
2211 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2212
2213 delete per_cu->cu;
2214 *last_chain = next_cu;
2215 per_cu = next_cu;
2216 }
2217 }
2218
2219 /* A helper class that calls free_cached_comp_units on
2220 destruction. */
2221
2222 class free_cached_comp_units
2223 {
2224 public:
2225
2226 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2227 : m_per_objfile (per_objfile)
2228 {
2229 }
2230
2231 ~free_cached_comp_units ()
2232 {
2233 m_per_objfile->free_cached_comp_units ();
2234 }
2235
2236 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2237
2238 private:
2239
2240 dwarf2_per_objfile *m_per_objfile;
2241 };
2242
2243 /* Try to locate the sections we need for DWARF 2 debugging
2244 information and return true if we have enough to do something.
2245 NAMES points to the dwarf2 section names, or is NULL if the standard
2246 ELF names are used. */
2247
2248 int
2249 dwarf2_has_info (struct objfile *objfile,
2250 const struct dwarf2_debug_sections *names)
2251 {
2252 if (objfile->flags & OBJF_READNEVER)
2253 return 0;
2254
2255 struct dwarf2_per_objfile *dwarf2_per_objfile
2256 = get_dwarf2_per_objfile (objfile);
2257
2258 if (dwarf2_per_objfile == NULL)
2259 {
2260 /* Initialize per-objfile state. */
2261 dwarf2_per_objfile
2262 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2263 names);
2264 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2265 }
2266 return (!dwarf2_per_objfile->info.is_virtual
2267 && dwarf2_per_objfile->info.s.section != NULL
2268 && !dwarf2_per_objfile->abbrev.is_virtual
2269 && dwarf2_per_objfile->abbrev.s.section != NULL);
2270 }
2271
2272 /* Return the containing section of virtual section SECTION. */
2273
2274 static struct dwarf2_section_info *
2275 get_containing_section (const struct dwarf2_section_info *section)
2276 {
2277 gdb_assert (section->is_virtual);
2278 return section->s.containing_section;
2279 }
2280
2281 /* Return the bfd owner of SECTION. */
2282
2283 static struct bfd *
2284 get_section_bfd_owner (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 {
2288 section = get_containing_section (section);
2289 gdb_assert (!section->is_virtual);
2290 }
2291 return section->s.section->owner;
2292 }
2293
2294 /* Return the bfd section of SECTION.
2295 Returns NULL if the section is not present. */
2296
2297 static asection *
2298 get_section_bfd_section (const struct dwarf2_section_info *section)
2299 {
2300 if (section->is_virtual)
2301 {
2302 section = get_containing_section (section);
2303 gdb_assert (!section->is_virtual);
2304 }
2305 return section->s.section;
2306 }
2307
2308 /* Return the name of SECTION. */
2309
2310 static const char *
2311 get_section_name (const struct dwarf2_section_info *section)
2312 {
2313 asection *sectp = get_section_bfd_section (section);
2314
2315 gdb_assert (sectp != NULL);
2316 return bfd_section_name (get_section_bfd_owner (section), sectp);
2317 }
2318
2319 /* Return the name of the file SECTION is in. */
2320
2321 static const char *
2322 get_section_file_name (const struct dwarf2_section_info *section)
2323 {
2324 bfd *abfd = get_section_bfd_owner (section);
2325
2326 return bfd_get_filename (abfd);
2327 }
2328
2329 /* Return the id of SECTION.
2330 Returns 0 if SECTION doesn't exist. */
2331
2332 static int
2333 get_section_id (const struct dwarf2_section_info *section)
2334 {
2335 asection *sectp = get_section_bfd_section (section);
2336
2337 if (sectp == NULL)
2338 return 0;
2339 return sectp->id;
2340 }
2341
2342 /* Return the flags of SECTION.
2343 SECTION (or containing section if this is a virtual section) must exist. */
2344
2345 static int
2346 get_section_flags (const struct dwarf2_section_info *section)
2347 {
2348 asection *sectp = get_section_bfd_section (section);
2349
2350 gdb_assert (sectp != NULL);
2351 return bfd_get_section_flags (sectp->owner, sectp);
2352 }
2353
2354 /* When loading sections, we look either for uncompressed section or for
2355 compressed section names. */
2356
2357 static int
2358 section_is_p (const char *section_name,
2359 const struct dwarf2_section_names *names)
2360 {
2361 if (names->normal != NULL
2362 && strcmp (section_name, names->normal) == 0)
2363 return 1;
2364 if (names->compressed != NULL
2365 && strcmp (section_name, names->compressed) == 0)
2366 return 1;
2367 return 0;
2368 }
2369
2370 /* See declaration. */
2371
2372 void
2373 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2374 const dwarf2_debug_sections &names)
2375 {
2376 flagword aflag = bfd_get_section_flags (abfd, sectp);
2377
2378 if ((aflag & SEC_HAS_CONTENTS) == 0)
2379 {
2380 }
2381 else if (section_is_p (sectp->name, &names.info))
2382 {
2383 this->info.s.section = sectp;
2384 this->info.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.abbrev))
2387 {
2388 this->abbrev.s.section = sectp;
2389 this->abbrev.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.line))
2392 {
2393 this->line.s.section = sectp;
2394 this->line.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.loc))
2397 {
2398 this->loc.s.section = sectp;
2399 this->loc.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.loclists))
2402 {
2403 this->loclists.s.section = sectp;
2404 this->loclists.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.macinfo))
2407 {
2408 this->macinfo.s.section = sectp;
2409 this->macinfo.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.macro))
2412 {
2413 this->macro.s.section = sectp;
2414 this->macro.size = bfd_get_section_size (sectp);
2415 }
2416 else if (section_is_p (sectp->name, &names.str))
2417 {
2418 this->str.s.section = sectp;
2419 this->str.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.line_str))
2422 {
2423 this->line_str.s.section = sectp;
2424 this->line_str.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.addr))
2427 {
2428 this->addr.s.section = sectp;
2429 this->addr.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &names.frame))
2432 {
2433 this->frame.s.section = sectp;
2434 this->frame.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &names.eh_frame))
2437 {
2438 this->eh_frame.s.section = sectp;
2439 this->eh_frame.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &names.ranges))
2442 {
2443 this->ranges.s.section = sectp;
2444 this->ranges.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &names.rnglists))
2447 {
2448 this->rnglists.s.section = sectp;
2449 this->rnglists.size = bfd_get_section_size (sectp);
2450 }
2451 else if (section_is_p (sectp->name, &names.types))
2452 {
2453 struct dwarf2_section_info type_section;
2454
2455 memset (&type_section, 0, sizeof (type_section));
2456 type_section.s.section = sectp;
2457 type_section.size = bfd_get_section_size (sectp);
2458
2459 VEC_safe_push (dwarf2_section_info_def, this->types,
2460 &type_section);
2461 }
2462 else if (section_is_p (sectp->name, &names.gdb_index))
2463 {
2464 this->gdb_index.s.section = sectp;
2465 this->gdb_index.size = bfd_get_section_size (sectp);
2466 }
2467 else if (section_is_p (sectp->name, &names.debug_names))
2468 {
2469 this->debug_names.s.section = sectp;
2470 this->debug_names.size = bfd_get_section_size (sectp);
2471 }
2472 else if (section_is_p (sectp->name, &names.debug_aranges))
2473 {
2474 this->debug_aranges.s.section = sectp;
2475 this->debug_aranges.size = bfd_get_section_size (sectp);
2476 }
2477
2478 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2479 && bfd_section_vma (abfd, sectp) == 0)
2480 this->has_section_at_zero = true;
2481 }
2482
2483 /* A helper function that decides whether a section is empty,
2484 or not present. */
2485
2486 static int
2487 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2488 {
2489 if (section->is_virtual)
2490 return section->size == 0;
2491 return section->s.section == NULL || section->size == 0;
2492 }
2493
2494 /* See dwarf2read.h. */
2495
2496 void
2497 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2498 {
2499 asection *sectp;
2500 bfd *abfd;
2501 gdb_byte *buf, *retbuf;
2502
2503 if (info->readin)
2504 return;
2505 info->buffer = NULL;
2506 info->readin = 1;
2507
2508 if (dwarf2_section_empty_p (info))
2509 return;
2510
2511 sectp = get_section_bfd_section (info);
2512
2513 /* If this is a virtual section we need to read in the real one first. */
2514 if (info->is_virtual)
2515 {
2516 struct dwarf2_section_info *containing_section =
2517 get_containing_section (info);
2518
2519 gdb_assert (sectp != NULL);
2520 if ((sectp->flags & SEC_RELOC) != 0)
2521 {
2522 error (_("Dwarf Error: DWP format V2 with relocations is not"
2523 " supported in section %s [in module %s]"),
2524 get_section_name (info), get_section_file_name (info));
2525 }
2526 dwarf2_read_section (objfile, containing_section);
2527 /* Other code should have already caught virtual sections that don't
2528 fit. */
2529 gdb_assert (info->virtual_offset + info->size
2530 <= containing_section->size);
2531 /* If the real section is empty or there was a problem reading the
2532 section we shouldn't get here. */
2533 gdb_assert (containing_section->buffer != NULL);
2534 info->buffer = containing_section->buffer + info->virtual_offset;
2535 return;
2536 }
2537
2538 /* If the section has relocations, we must read it ourselves.
2539 Otherwise we attach it to the BFD. */
2540 if ((sectp->flags & SEC_RELOC) == 0)
2541 {
2542 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2543 return;
2544 }
2545
2546 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2547 info->buffer = buf;
2548
2549 /* When debugging .o files, we may need to apply relocations; see
2550 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2551 We never compress sections in .o files, so we only need to
2552 try this when the section is not compressed. */
2553 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2554 if (retbuf != NULL)
2555 {
2556 info->buffer = retbuf;
2557 return;
2558 }
2559
2560 abfd = get_section_bfd_owner (info);
2561 gdb_assert (abfd != NULL);
2562
2563 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2564 || bfd_bread (buf, info->size, abfd) != info->size)
2565 {
2566 error (_("Dwarf Error: Can't read DWARF data"
2567 " in section %s [in module %s]"),
2568 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2569 }
2570 }
2571
2572 /* A helper function that returns the size of a section in a safe way.
2573 If you are positive that the section has been read before using the
2574 size, then it is safe to refer to the dwarf2_section_info object's
2575 "size" field directly. In other cases, you must call this
2576 function, because for compressed sections the size field is not set
2577 correctly until the section has been read. */
2578
2579 static bfd_size_type
2580 dwarf2_section_size (struct objfile *objfile,
2581 struct dwarf2_section_info *info)
2582 {
2583 if (!info->readin)
2584 dwarf2_read_section (objfile, info);
2585 return info->size;
2586 }
2587
2588 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2589 SECTION_NAME. */
2590
2591 void
2592 dwarf2_get_section_info (struct objfile *objfile,
2593 enum dwarf2_section_enum sect,
2594 asection **sectp, const gdb_byte **bufp,
2595 bfd_size_type *sizep)
2596 {
2597 struct dwarf2_per_objfile *data
2598 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2599 dwarf2_objfile_data_key);
2600 struct dwarf2_section_info *info;
2601
2602 /* We may see an objfile without any DWARF, in which case we just
2603 return nothing. */
2604 if (data == NULL)
2605 {
2606 *sectp = NULL;
2607 *bufp = NULL;
2608 *sizep = 0;
2609 return;
2610 }
2611 switch (sect)
2612 {
2613 case DWARF2_DEBUG_FRAME:
2614 info = &data->frame;
2615 break;
2616 case DWARF2_EH_FRAME:
2617 info = &data->eh_frame;
2618 break;
2619 default:
2620 gdb_assert_not_reached ("unexpected section");
2621 }
2622
2623 dwarf2_read_section (objfile, info);
2624
2625 *sectp = get_section_bfd_section (info);
2626 *bufp = info->buffer;
2627 *sizep = info->size;
2628 }
2629
2630 /* A helper function to find the sections for a .dwz file. */
2631
2632 static void
2633 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2634 {
2635 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2636
2637 /* Note that we only support the standard ELF names, because .dwz
2638 is ELF-only (at the time of writing). */
2639 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2640 {
2641 dwz_file->abbrev.s.section = sectp;
2642 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2645 {
2646 dwz_file->info.s.section = sectp;
2647 dwz_file->info.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2650 {
2651 dwz_file->str.s.section = sectp;
2652 dwz_file->str.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2655 {
2656 dwz_file->line.s.section = sectp;
2657 dwz_file->line.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2660 {
2661 dwz_file->macro.s.section = sectp;
2662 dwz_file->macro.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2665 {
2666 dwz_file->gdb_index.s.section = sectp;
2667 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2668 }
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2670 {
2671 dwz_file->debug_names.s.section = sectp;
2672 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2673 }
2674 }
2675
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2679
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2682 {
2683 const char *filename;
2684 bfd_size_type buildid_len_arg;
2685 size_t buildid_len;
2686 bfd_byte *buildid;
2687
2688 if (dwarf2_per_objfile->dwz_file != NULL)
2689 return dwarf2_per_objfile->dwz_file.get ();
2690
2691 bfd_set_error (bfd_error_no_error);
2692 gdb::unique_xmalloc_ptr<char> data
2693 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2694 &buildid_len_arg, &buildid));
2695 if (data == NULL)
2696 {
2697 if (bfd_get_error () == bfd_error_no_error)
2698 return NULL;
2699 error (_("could not read '.gnu_debugaltlink' section: %s"),
2700 bfd_errmsg (bfd_get_error ()));
2701 }
2702
2703 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2704
2705 buildid_len = (size_t) buildid_len_arg;
2706
2707 filename = data.get ();
2708
2709 std::string abs_storage;
2710 if (!IS_ABSOLUTE_PATH (filename))
2711 {
2712 gdb::unique_xmalloc_ptr<char> abs
2713 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2714
2715 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2716 filename = abs_storage.c_str ();
2717 }
2718
2719 /* First try the file name given in the section. If that doesn't
2720 work, try to use the build-id instead. */
2721 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2722 if (dwz_bfd != NULL)
2723 {
2724 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2725 dwz_bfd.reset (nullptr);
2726 }
2727
2728 if (dwz_bfd == NULL)
2729 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2730
2731 if (dwz_bfd == NULL)
2732 error (_("could not find '.gnu_debugaltlink' file for %s"),
2733 objfile_name (dwarf2_per_objfile->objfile));
2734
2735 std::unique_ptr<struct dwz_file> result
2736 (new struct dwz_file (std::move (dwz_bfd)));
2737
2738 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2739 result.get ());
2740
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2742 result->dwz_bfd.get ());
2743 dwarf2_per_objfile->dwz_file = std::move (result);
2744 return dwarf2_per_objfile->dwz_file.get ();
2745 }
2746 \f
2747 /* DWARF quick_symbols_functions support. */
2748
2749 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2750 unique line tables, so we maintain a separate table of all .debug_line
2751 derived entries to support the sharing.
2752 All the quick functions need is the list of file names. We discard the
2753 line_header when we're done and don't need to record it here. */
2754 struct quick_file_names
2755 {
2756 /* The data used to construct the hash key. */
2757 struct stmt_list_hash hash;
2758
2759 /* The number of entries in file_names, real_names. */
2760 unsigned int num_file_names;
2761
2762 /* The file names from the line table, after being run through
2763 file_full_name. */
2764 const char **file_names;
2765
2766 /* The file names from the line table after being run through
2767 gdb_realpath. These are computed lazily. */
2768 const char **real_names;
2769 };
2770
2771 /* When using the index (and thus not using psymtabs), each CU has an
2772 object of this type. This is used to hold information needed by
2773 the various "quick" methods. */
2774 struct dwarf2_per_cu_quick_data
2775 {
2776 /* The file table. This can be NULL if there was no file table
2777 or it's currently not read in.
2778 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2779 struct quick_file_names *file_names;
2780
2781 /* The corresponding symbol table. This is NULL if symbols for this
2782 CU have not yet been read. */
2783 struct compunit_symtab *compunit_symtab;
2784
2785 /* A temporary mark bit used when iterating over all CUs in
2786 expand_symtabs_matching. */
2787 unsigned int mark : 1;
2788
2789 /* True if we've tried to read the file table and found there isn't one.
2790 There will be no point in trying to read it again next time. */
2791 unsigned int no_file_data : 1;
2792 };
2793
2794 /* Utility hash function for a stmt_list_hash. */
2795
2796 static hashval_t
2797 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2798 {
2799 hashval_t v = 0;
2800
2801 if (stmt_list_hash->dwo_unit != NULL)
2802 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2803 v += to_underlying (stmt_list_hash->line_sect_off);
2804 return v;
2805 }
2806
2807 /* Utility equality function for a stmt_list_hash. */
2808
2809 static int
2810 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2811 const struct stmt_list_hash *rhs)
2812 {
2813 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2814 return 0;
2815 if (lhs->dwo_unit != NULL
2816 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2817 return 0;
2818
2819 return lhs->line_sect_off == rhs->line_sect_off;
2820 }
2821
2822 /* Hash function for a quick_file_names. */
2823
2824 static hashval_t
2825 hash_file_name_entry (const void *e)
2826 {
2827 const struct quick_file_names *file_data
2828 = (const struct quick_file_names *) e;
2829
2830 return hash_stmt_list_entry (&file_data->hash);
2831 }
2832
2833 /* Equality function for a quick_file_names. */
2834
2835 static int
2836 eq_file_name_entry (const void *a, const void *b)
2837 {
2838 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2839 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2840
2841 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2842 }
2843
2844 /* Delete function for a quick_file_names. */
2845
2846 static void
2847 delete_file_name_entry (void *e)
2848 {
2849 struct quick_file_names *file_data = (struct quick_file_names *) e;
2850 int i;
2851
2852 for (i = 0; i < file_data->num_file_names; ++i)
2853 {
2854 xfree ((void*) file_data->file_names[i]);
2855 if (file_data->real_names)
2856 xfree ((void*) file_data->real_names[i]);
2857 }
2858
2859 /* The space for the struct itself lives on objfile_obstack,
2860 so we don't free it here. */
2861 }
2862
2863 /* Create a quick_file_names hash table. */
2864
2865 static htab_t
2866 create_quick_file_names_table (unsigned int nr_initial_entries)
2867 {
2868 return htab_create_alloc (nr_initial_entries,
2869 hash_file_name_entry, eq_file_name_entry,
2870 delete_file_name_entry, xcalloc, xfree);
2871 }
2872
2873 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2874 have to be created afterwards. You should call age_cached_comp_units after
2875 processing PER_CU->CU. dw2_setup must have been already called. */
2876
2877 static void
2878 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2879 {
2880 if (per_cu->is_debug_types)
2881 load_full_type_unit (per_cu);
2882 else
2883 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2884
2885 if (per_cu->cu == NULL)
2886 return; /* Dummy CU. */
2887
2888 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2889 }
2890
2891 /* Read in the symbols for PER_CU. */
2892
2893 static void
2894 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 /* Skip type_unit_groups, reading the type units they contain
2899 is handled elsewhere. */
2900 if (IS_TYPE_UNIT_GROUP (per_cu))
2901 return;
2902
2903 /* The destructor of dwarf2_queue_guard frees any entries left on
2904 the queue. After this point we're guaranteed to leave this function
2905 with the dwarf queue empty. */
2906 dwarf2_queue_guard q_guard;
2907
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu, skip_partial);
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file (dwarf2_per_objfile) == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2926 }
2927
2928 process_queue (dwarf2_per_objfile);
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units (dwarf2_per_objfile);
2933 }
2934
2935 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2936 the objfile from which this CU came. Returns the resulting symbol
2937 table. */
2938
2939 static struct compunit_symtab *
2940 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2941 {
2942 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2943
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2946 {
2947 free_cached_comp_units freer (dwarf2_per_objfile);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu, skip_partial);
2950 process_cu_includes (dwarf2_per_objfile);
2951 }
2952
2953 return per_cu->v.quick->compunit_symtab;
2954 }
2955
2956 /* See declaration. */
2957
2958 dwarf2_per_cu_data *
2959 dwarf2_per_objfile::get_cutu (int index)
2960 {
2961 if (index >= this->all_comp_units.size ())
2962 {
2963 index -= this->all_comp_units.size ();
2964 gdb_assert (index < this->all_type_units.size ());
2965 return &this->all_type_units[index]->per_cu;
2966 }
2967
2968 return this->all_comp_units[index];
2969 }
2970
2971 /* See declaration. */
2972
2973 dwarf2_per_cu_data *
2974 dwarf2_per_objfile::get_cu (int index)
2975 {
2976 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2977
2978 return this->all_comp_units[index];
2979 }
2980
2981 /* See declaration. */
2982
2983 signatured_type *
2984 dwarf2_per_objfile::get_tu (int index)
2985 {
2986 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2987
2988 return this->all_type_units[index];
2989 }
2990
2991 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2992 objfile_obstack, and constructed with the specified field
2993 values. */
2994
2995 static dwarf2_per_cu_data *
2996 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 struct dwarf2_section_info *section,
2998 int is_dwz,
2999 sect_offset sect_off, ULONGEST length)
3000 {
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 dwarf2_per_cu_data *the_cu
3003 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3004 struct dwarf2_per_cu_data);
3005 the_cu->sect_off = sect_off;
3006 the_cu->length = length;
3007 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3008 the_cu->section = section;
3009 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3010 struct dwarf2_per_cu_quick_data);
3011 the_cu->is_dwz = is_dwz;
3012 return the_cu;
3013 }
3014
3015 /* A helper for create_cus_from_index that handles a given list of
3016 CUs. */
3017
3018 static void
3019 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3020 const gdb_byte *cu_list, offset_type n_elements,
3021 struct dwarf2_section_info *section,
3022 int is_dwz)
3023 {
3024 for (offset_type i = 0; i < n_elements; i += 2)
3025 {
3026 gdb_static_assert (sizeof (ULONGEST) >= 8);
3027
3028 sect_offset sect_off
3029 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3030 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3031 cu_list += 2 * 8;
3032
3033 dwarf2_per_cu_data *per_cu
3034 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3035 sect_off, length);
3036 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3037 }
3038 }
3039
3040 /* Read the CU list from the mapped index, and use it to create all
3041 the CU objects for this objfile. */
3042
3043 static void
3044 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3045 const gdb_byte *cu_list, offset_type cu_list_elements,
3046 const gdb_byte *dwz_list, offset_type dwz_elements)
3047 {
3048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3049 dwarf2_per_objfile->all_comp_units.reserve
3050 ((cu_list_elements + dwz_elements) / 2);
3051
3052 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0);
3054
3055 if (dwz_elements == 0)
3056 return;
3057
3058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3059 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3060 &dwz->info, 1);
3061 }
3062
3063 /* Create the signatured type hash table from the index. */
3064
3065 static void
3066 create_signatured_type_table_from_index
3067 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3068 struct dwarf2_section_info *section,
3069 const gdb_byte *bytes,
3070 offset_type elements)
3071 {
3072 struct objfile *objfile = dwarf2_per_objfile->objfile;
3073
3074 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3075 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3076
3077 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3078
3079 for (offset_type i = 0; i < elements; i += 3)
3080 {
3081 struct signatured_type *sig_type;
3082 ULONGEST signature;
3083 void **slot;
3084 cu_offset type_offset_in_tu;
3085
3086 gdb_static_assert (sizeof (ULONGEST) >= 8);
3087 sect_offset sect_off
3088 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3089 type_offset_in_tu
3090 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3091 BFD_ENDIAN_LITTLE);
3092 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3093 bytes += 3 * 8;
3094
3095 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3096 struct signatured_type);
3097 sig_type->signature = signature;
3098 sig_type->type_offset_in_tu = type_offset_in_tu;
3099 sig_type->per_cu.is_debug_types = 1;
3100 sig_type->per_cu.section = section;
3101 sig_type->per_cu.sect_off = sect_off;
3102 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3103 sig_type->per_cu.v.quick
3104 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3105 struct dwarf2_per_cu_quick_data);
3106
3107 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3108 *slot = sig_type;
3109
3110 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3111 }
3112
3113 dwarf2_per_objfile->signatured_types = sig_types_hash;
3114 }
3115
3116 /* Create the signatured type hash table from .debug_names. */
3117
3118 static void
3119 create_signatured_type_table_from_debug_names
3120 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3121 const mapped_debug_names &map,
3122 struct dwarf2_section_info *section,
3123 struct dwarf2_section_info *abbrev_section)
3124 {
3125 struct objfile *objfile = dwarf2_per_objfile->objfile;
3126
3127 dwarf2_read_section (objfile, section);
3128 dwarf2_read_section (objfile, abbrev_section);
3129
3130 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3131 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3132
3133 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3134
3135 for (uint32_t i = 0; i < map.tu_count; ++i)
3136 {
3137 struct signatured_type *sig_type;
3138 void **slot;
3139
3140 sect_offset sect_off
3141 = (sect_offset) (extract_unsigned_integer
3142 (map.tu_table_reordered + i * map.offset_size,
3143 map.offset_size,
3144 map.dwarf5_byte_order));
3145
3146 comp_unit_head cu_header;
3147 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3148 abbrev_section,
3149 section->buffer + to_underlying (sect_off),
3150 rcuh_kind::TYPE);
3151
3152 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3153 struct signatured_type);
3154 sig_type->signature = cu_header.signature;
3155 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3156 sig_type->per_cu.is_debug_types = 1;
3157 sig_type->per_cu.section = section;
3158 sig_type->per_cu.sect_off = sect_off;
3159 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3160 sig_type->per_cu.v.quick
3161 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3162 struct dwarf2_per_cu_quick_data);
3163
3164 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3165 *slot = sig_type;
3166
3167 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3168 }
3169
3170 dwarf2_per_objfile->signatured_types = sig_types_hash;
3171 }
3172
3173 /* Read the address map data from the mapped index, and use it to
3174 populate the objfile's psymtabs_addrmap. */
3175
3176 static void
3177 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3178 struct mapped_index *index)
3179 {
3180 struct objfile *objfile = dwarf2_per_objfile->objfile;
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const gdb_byte *iter, *end;
3183 struct addrmap *mutable_map;
3184 CORE_ADDR baseaddr;
3185
3186 auto_obstack temp_obstack;
3187
3188 mutable_map = addrmap_create_mutable (&temp_obstack);
3189
3190 iter = index->address_table.data ();
3191 end = iter + index->address_table.size ();
3192
3193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3194
3195 while (iter < end)
3196 {
3197 ULONGEST hi, lo, cu_index;
3198 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3199 iter += 8;
3200 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3201 iter += 8;
3202 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3203 iter += 4;
3204
3205 if (lo > hi)
3206 {
3207 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3208 hex_string (lo), hex_string (hi));
3209 continue;
3210 }
3211
3212 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3213 {
3214 complaint (_(".gdb_index address table has invalid CU number %u"),
3215 (unsigned) cu_index);
3216 continue;
3217 }
3218
3219 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3220 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3221 addrmap_set_empty (mutable_map, lo, hi - 1,
3222 dwarf2_per_objfile->get_cu (cu_index));
3223 }
3224
3225 objfile->partial_symtabs->psymtabs_addrmap
3226 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3227 }
3228
3229 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3230 populate the objfile's psymtabs_addrmap. */
3231
3232 static void
3233 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3234 struct dwarf2_section_info *section)
3235 {
3236 struct objfile *objfile = dwarf2_per_objfile->objfile;
3237 bfd *abfd = objfile->obfd;
3238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3239 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3240 SECT_OFF_TEXT (objfile));
3241
3242 auto_obstack temp_obstack;
3243 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3244
3245 std::unordered_map<sect_offset,
3246 dwarf2_per_cu_data *,
3247 gdb::hash_enum<sect_offset>>
3248 debug_info_offset_to_per_cu;
3249 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3250 {
3251 const auto insertpair
3252 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3253 if (!insertpair.second)
3254 {
3255 warning (_("Section .debug_aranges in %s has duplicate "
3256 "debug_info_offset %s, ignoring .debug_aranges."),
3257 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3258 return;
3259 }
3260 }
3261
3262 dwarf2_read_section (objfile, section);
3263
3264 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3265
3266 const gdb_byte *addr = section->buffer;
3267
3268 while (addr < section->buffer + section->size)
3269 {
3270 const gdb_byte *const entry_addr = addr;
3271 unsigned int bytes_read;
3272
3273 const LONGEST entry_length = read_initial_length (abfd, addr,
3274 &bytes_read);
3275 addr += bytes_read;
3276
3277 const gdb_byte *const entry_end = addr + entry_length;
3278 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3279 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3280 if (addr + entry_length > section->buffer + section->size)
3281 {
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "length %s exceeds section length %s, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 plongest (bytes_read + entry_length),
3287 pulongest (section->size));
3288 return;
3289 }
3290
3291 /* The version number. */
3292 const uint16_t version = read_2_bytes (abfd, addr);
3293 addr += 2;
3294 if (version != 2)
3295 {
3296 warning (_("Section .debug_aranges in %s entry at offset %zu "
3297 "has unsupported version %d, ignoring .debug_aranges."),
3298 objfile_name (objfile), entry_addr - section->buffer,
3299 version);
3300 return;
3301 }
3302
3303 const uint64_t debug_info_offset
3304 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3305 addr += offset_size;
3306 const auto per_cu_it
3307 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3308 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "debug_info_offset %s does not exists, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 pulongest (debug_info_offset));
3315 return;
3316 }
3317 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3318
3319 const uint8_t address_size = *addr++;
3320 if (address_size < 1 || address_size > 8)
3321 {
3322 warning (_("Section .debug_aranges in %s entry at offset %zu "
3323 "address_size %u is invalid, ignoring .debug_aranges."),
3324 objfile_name (objfile), entry_addr - section->buffer,
3325 address_size);
3326 return;
3327 }
3328
3329 const uint8_t segment_selector_size = *addr++;
3330 if (segment_selector_size != 0)
3331 {
3332 warning (_("Section .debug_aranges in %s entry at offset %zu "
3333 "segment_selector_size %u is not supported, "
3334 "ignoring .debug_aranges."),
3335 objfile_name (objfile), entry_addr - section->buffer,
3336 segment_selector_size);
3337 return;
3338 }
3339
3340 /* Must pad to an alignment boundary that is twice the address
3341 size. It is undocumented by the DWARF standard but GCC does
3342 use it. */
3343 for (size_t padding = ((-(addr - section->buffer))
3344 & (2 * address_size - 1));
3345 padding > 0; padding--)
3346 if (*addr++ != 0)
3347 {
3348 warning (_("Section .debug_aranges in %s entry at offset %zu "
3349 "padding is not zero, ignoring .debug_aranges."),
3350 objfile_name (objfile), entry_addr - section->buffer);
3351 return;
3352 }
3353
3354 for (;;)
3355 {
3356 if (addr + 2 * address_size > entry_end)
3357 {
3358 warning (_("Section .debug_aranges in %s entry at offset %zu "
3359 "address list is not properly terminated, "
3360 "ignoring .debug_aranges."),
3361 objfile_name (objfile), entry_addr - section->buffer);
3362 return;
3363 }
3364 ULONGEST start = extract_unsigned_integer (addr, address_size,
3365 dwarf5_byte_order);
3366 addr += address_size;
3367 ULONGEST length = extract_unsigned_integer (addr, address_size,
3368 dwarf5_byte_order);
3369 addr += address_size;
3370 if (start == 0 && length == 0)
3371 break;
3372 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3373 {
3374 /* Symbol was eliminated due to a COMDAT group. */
3375 continue;
3376 }
3377 ULONGEST end = start + length;
3378 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3379 - baseaddr);
3380 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3381 - baseaddr);
3382 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3383 }
3384 }
3385
3386 objfile->partial_symtabs->psymtabs_addrmap
3387 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3388 }
3389
3390 /* Find a slot in the mapped index INDEX for the object named NAME.
3391 If NAME is found, set *VEC_OUT to point to the CU vector in the
3392 constant pool and return true. If NAME cannot be found, return
3393 false. */
3394
3395 static bool
3396 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3397 offset_type **vec_out)
3398 {
3399 offset_type hash;
3400 offset_type slot, step;
3401 int (*cmp) (const char *, const char *);
3402
3403 gdb::unique_xmalloc_ptr<char> without_params;
3404 if (current_language->la_language == language_cplus
3405 || current_language->la_language == language_fortran
3406 || current_language->la_language == language_d)
3407 {
3408 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3409 not contain any. */
3410
3411 if (strchr (name, '(') != NULL)
3412 {
3413 without_params = cp_remove_params (name);
3414
3415 if (without_params != NULL)
3416 name = without_params.get ();
3417 }
3418 }
3419
3420 /* Index version 4 did not support case insensitive searches. But the
3421 indices for case insensitive languages are built in lowercase, therefore
3422 simulate our NAME being searched is also lowercased. */
3423 hash = mapped_index_string_hash ((index->version == 4
3424 && case_sensitivity == case_sensitive_off
3425 ? 5 : index->version),
3426 name);
3427
3428 slot = hash & (index->symbol_table.size () - 1);
3429 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3430 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3431
3432 for (;;)
3433 {
3434 const char *str;
3435
3436 const auto &bucket = index->symbol_table[slot];
3437 if (bucket.name == 0 && bucket.vec == 0)
3438 return false;
3439
3440 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3441 if (!cmp (name, str))
3442 {
3443 *vec_out = (offset_type *) (index->constant_pool
3444 + MAYBE_SWAP (bucket.vec));
3445 return true;
3446 }
3447
3448 slot = (slot + step) & (index->symbol_table.size () - 1);
3449 }
3450 }
3451
3452 /* A helper function that reads the .gdb_index from BUFFER and fills
3453 in MAP. FILENAME is the name of the file containing the data;
3454 it is used for error reporting. DEPRECATED_OK is true if it is
3455 ok to use deprecated sections.
3456
3457 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3458 out parameters that are filled in with information about the CU and
3459 TU lists in the section.
3460
3461 Returns true if all went well, false otherwise. */
3462
3463 static bool
3464 read_gdb_index_from_buffer (struct objfile *objfile,
3465 const char *filename,
3466 bool deprecated_ok,
3467 gdb::array_view<const gdb_byte> buffer,
3468 struct mapped_index *map,
3469 const gdb_byte **cu_list,
3470 offset_type *cu_list_elements,
3471 const gdb_byte **types_list,
3472 offset_type *types_list_elements)
3473 {
3474 const gdb_byte *addr = &buffer[0];
3475
3476 /* Version check. */
3477 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3481 indices. */
3482 if (version < 4)
3483 {
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3486 {
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3488 filename);
3489 warning_printed = 1;
3490 }
3491 return 0;
3492 }
3493 /* Index version 4 uses a different hash function than index version
3494 5 and later.
3495
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3502 {
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3505 {
3506 warning (_("\
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3510 filename);
3511 warning_printed = 1;
3512 }
3513 return 0;
3514 }
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3522
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3525 if (version > 8)
3526 return 0;
3527
3528 map->version = version;
3529
3530 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3531
3532 int i = 0;
3533 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3534 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3535 / 8);
3536 ++i;
3537
3538 *types_list = addr + MAYBE_SWAP (metadata[i]);
3539 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3540 - MAYBE_SWAP (metadata[i]))
3541 / 8);
3542 ++i;
3543
3544 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3546 map->address_table
3547 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3548 ++i;
3549
3550 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3551 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3552 map->symbol_table
3553 = gdb::array_view<mapped_index::symbol_table_slot>
3554 ((mapped_index::symbol_table_slot *) symbol_table,
3555 (mapped_index::symbol_table_slot *) symbol_table_end);
3556
3557 ++i;
3558 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3559
3560 return 1;
3561 }
3562
3563 /* Callback types for dwarf2_read_gdb_index. */
3564
3565 typedef gdb::function_view
3566 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3567 get_gdb_index_contents_ftype;
3568 typedef gdb::function_view
3569 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3570 get_gdb_index_contents_dwz_ftype;
3571
3572 /* Read .gdb_index. If everything went ok, initialize the "quick"
3573 elements of all the CUs and return 1. Otherwise, return 0. */
3574
3575 static int
3576 dwarf2_read_gdb_index
3577 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3578 get_gdb_index_contents_ftype get_gdb_index_contents,
3579 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3580 {
3581 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3582 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3583 struct dwz_file *dwz;
3584 struct objfile *objfile = dwarf2_per_objfile->objfile;
3585
3586 gdb::array_view<const gdb_byte> main_index_contents
3587 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3588
3589 if (main_index_contents.empty ())
3590 return 0;
3591
3592 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3593 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3594 use_deprecated_index_sections,
3595 main_index_contents, map.get (), &cu_list,
3596 &cu_list_elements, &types_list,
3597 &types_list_elements))
3598 return 0;
3599
3600 /* Don't use the index if it's empty. */
3601 if (map->symbol_table.empty ())
3602 return 0;
3603
3604 /* If there is a .dwz file, read it so we can get its CU list as
3605 well. */
3606 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3607 if (dwz != NULL)
3608 {
3609 struct mapped_index dwz_map;
3610 const gdb_byte *dwz_types_ignore;
3611 offset_type dwz_types_elements_ignore;
3612
3613 gdb::array_view<const gdb_byte> dwz_index_content
3614 = get_gdb_index_contents_dwz (objfile, dwz);
3615
3616 if (dwz_index_content.empty ())
3617 return 0;
3618
3619 if (!read_gdb_index_from_buffer (objfile,
3620 bfd_get_filename (dwz->dwz_bfd), 1,
3621 dwz_index_content, &dwz_map,
3622 &dwz_list, &dwz_list_elements,
3623 &dwz_types_ignore,
3624 &dwz_types_elements_ignore))
3625 {
3626 warning (_("could not read '.gdb_index' section from %s; skipping"),
3627 bfd_get_filename (dwz->dwz_bfd));
3628 return 0;
3629 }
3630 }
3631
3632 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3633 dwz_list, dwz_list_elements);
3634
3635 if (types_list_elements)
3636 {
3637 struct dwarf2_section_info *section;
3638
3639 /* We can only handle a single .debug_types when we have an
3640 index. */
3641 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3642 return 0;
3643
3644 section = VEC_index (dwarf2_section_info_def,
3645 dwarf2_per_objfile->types, 0);
3646
3647 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3648 types_list, types_list_elements);
3649 }
3650
3651 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3652
3653 dwarf2_per_objfile->index_table = std::move (map);
3654 dwarf2_per_objfile->using_index = 1;
3655 dwarf2_per_objfile->quick_file_names_table =
3656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3657
3658 return 1;
3659 }
3660
3661 /* die_reader_func for dw2_get_file_names. */
3662
3663 static void
3664 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3665 const gdb_byte *info_ptr,
3666 struct die_info *comp_unit_die,
3667 int has_children,
3668 void *data)
3669 {
3670 struct dwarf2_cu *cu = reader->cu;
3671 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = cu->per_cu->dwarf2_per_objfile;
3674 struct objfile *objfile = dwarf2_per_objfile->objfile;
3675 struct dwarf2_per_cu_data *lh_cu;
3676 struct attribute *attr;
3677 int i;
3678 void **slot;
3679 struct quick_file_names *qfn;
3680
3681 gdb_assert (! this_cu->is_debug_types);
3682
3683 /* Our callers never want to match partial units -- instead they
3684 will match the enclosing full CU. */
3685 if (comp_unit_die->tag == DW_TAG_partial_unit)
3686 {
3687 this_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 lh_cu = this_cu;
3692 slot = NULL;
3693
3694 line_header_up lh;
3695 sect_offset line_offset {};
3696
3697 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3698 if (attr)
3699 {
3700 struct quick_file_names find_entry;
3701
3702 line_offset = (sect_offset) DW_UNSND (attr);
3703
3704 /* We may have already read in this line header (TU line header sharing).
3705 If we have we're done. */
3706 find_entry.hash.dwo_unit = cu->dwo_unit;
3707 find_entry.hash.line_sect_off = line_offset;
3708 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3709 &find_entry, INSERT);
3710 if (*slot != NULL)
3711 {
3712 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3713 return;
3714 }
3715
3716 lh = dwarf_decode_line_header (line_offset, cu);
3717 }
3718 if (lh == NULL)
3719 {
3720 lh_cu->v.quick->no_file_data = 1;
3721 return;
3722 }
3723
3724 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3725 qfn->hash.dwo_unit = cu->dwo_unit;
3726 qfn->hash.line_sect_off = line_offset;
3727 gdb_assert (slot != NULL);
3728 *slot = qfn;
3729
3730 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3731
3732 qfn->num_file_names = lh->file_names.size ();
3733 qfn->file_names =
3734 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3735 for (i = 0; i < lh->file_names.size (); ++i)
3736 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3737 qfn->real_names = NULL;
3738
3739 lh_cu->v.quick->file_names = qfn;
3740 }
3741
3742 /* A helper for the "quick" functions which attempts to read the line
3743 table for THIS_CU. */
3744
3745 static struct quick_file_names *
3746 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3747 {
3748 /* This should never be called for TUs. */
3749 gdb_assert (! this_cu->is_debug_types);
3750 /* Nor type unit groups. */
3751 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3752
3753 if (this_cu->v.quick->file_names != NULL)
3754 return this_cu->v.quick->file_names;
3755 /* If we know there is no line data, no point in looking again. */
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758
3759 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3760
3761 if (this_cu->v.quick->no_file_data)
3762 return NULL;
3763 return this_cu->v.quick->file_names;
3764 }
3765
3766 /* A helper for the "quick" functions which computes and caches the
3767 real path for a given file name from the line table. */
3768
3769 static const char *
3770 dw2_get_real_path (struct objfile *objfile,
3771 struct quick_file_names *qfn, int index)
3772 {
3773 if (qfn->real_names == NULL)
3774 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3775 qfn->num_file_names, const char *);
3776
3777 if (qfn->real_names[index] == NULL)
3778 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3779
3780 return qfn->real_names[index];
3781 }
3782
3783 static struct symtab *
3784 dw2_find_last_source_symtab (struct objfile *objfile)
3785 {
3786 struct dwarf2_per_objfile *dwarf2_per_objfile
3787 = get_dwarf2_per_objfile (objfile);
3788 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3789 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3790
3791 if (cust == NULL)
3792 return NULL;
3793
3794 return compunit_primary_filetab (cust);
3795 }
3796
3797 /* Traversal function for dw2_forget_cached_source_info. */
3798
3799 static int
3800 dw2_free_cached_file_names (void **slot, void *info)
3801 {
3802 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3803
3804 if (file_data->real_names)
3805 {
3806 int i;
3807
3808 for (i = 0; i < file_data->num_file_names; ++i)
3809 {
3810 xfree ((void*) file_data->real_names[i]);
3811 file_data->real_names[i] = NULL;
3812 }
3813 }
3814
3815 return 1;
3816 }
3817
3818 static void
3819 dw2_forget_cached_source_info (struct objfile *objfile)
3820 {
3821 struct dwarf2_per_objfile *dwarf2_per_objfile
3822 = get_dwarf2_per_objfile (objfile);
3823
3824 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3825 dw2_free_cached_file_names, NULL);
3826 }
3827
3828 /* Helper function for dw2_map_symtabs_matching_filename that expands
3829 the symtabs and calls the iterator. */
3830
3831 static int
3832 dw2_map_expand_apply (struct objfile *objfile,
3833 struct dwarf2_per_cu_data *per_cu,
3834 const char *name, const char *real_path,
3835 gdb::function_view<bool (symtab *)> callback)
3836 {
3837 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3838
3839 /* Don't visit already-expanded CUs. */
3840 if (per_cu->v.quick->compunit_symtab)
3841 return 0;
3842
3843 /* This may expand more than one symtab, and we want to iterate over
3844 all of them. */
3845 dw2_instantiate_symtab (per_cu, false);
3846
3847 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3848 last_made, callback);
3849 }
3850
3851 /* Implementation of the map_symtabs_matching_filename method. */
3852
3853 static bool
3854 dw2_map_symtabs_matching_filename
3855 (struct objfile *objfile, const char *name, const char *real_path,
3856 gdb::function_view<bool (symtab *)> callback)
3857 {
3858 const char *name_basename = lbasename (name);
3859 struct dwarf2_per_objfile *dwarf2_per_objfile
3860 = get_dwarf2_per_objfile (objfile);
3861
3862 /* The rule is CUs specify all the files, including those used by
3863 any TU, so there's no need to scan TUs here. */
3864
3865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3866 {
3867 /* We only need to look at symtabs not already expanded. */
3868 if (per_cu->v.quick->compunit_symtab)
3869 continue;
3870
3871 quick_file_names *file_data = dw2_get_file_names (per_cu);
3872 if (file_data == NULL)
3873 continue;
3874
3875 for (int j = 0; j < file_data->num_file_names; ++j)
3876 {
3877 const char *this_name = file_data->file_names[j];
3878 const char *this_real_name;
3879
3880 if (compare_filenames_for_search (this_name, name))
3881 {
3882 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3883 callback))
3884 return true;
3885 continue;
3886 }
3887
3888 /* Before we invoke realpath, which can get expensive when many
3889 files are involved, do a quick comparison of the basenames. */
3890 if (! basenames_may_differ
3891 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3892 continue;
3893
3894 this_real_name = dw2_get_real_path (objfile, file_data, j);
3895 if (compare_filenames_for_search (this_real_name, name))
3896 {
3897 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3898 callback))
3899 return true;
3900 continue;
3901 }
3902
3903 if (real_path != NULL)
3904 {
3905 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3906 gdb_assert (IS_ABSOLUTE_PATH (name));
3907 if (this_real_name != NULL
3908 && FILENAME_CMP (real_path, this_real_name) == 0)
3909 {
3910 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3911 callback))
3912 return true;
3913 continue;
3914 }
3915 }
3916 }
3917 }
3918
3919 return false;
3920 }
3921
3922 /* Struct used to manage iterating over all CUs looking for a symbol. */
3923
3924 struct dw2_symtab_iterator
3925 {
3926 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3927 struct dwarf2_per_objfile *dwarf2_per_objfile;
3928 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3929 int want_specific_block;
3930 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3931 Unused if !WANT_SPECIFIC_BLOCK. */
3932 int block_index;
3933 /* The kind of symbol we're looking for. */
3934 domain_enum domain;
3935 /* The list of CUs from the index entry of the symbol,
3936 or NULL if not found. */
3937 offset_type *vec;
3938 /* The next element in VEC to look at. */
3939 int next;
3940 /* The number of elements in VEC, or zero if there is no match. */
3941 int length;
3942 /* Have we seen a global version of the symbol?
3943 If so we can ignore all further global instances.
3944 This is to work around gold/15646, inefficient gold-generated
3945 indices. */
3946 int global_seen;
3947 };
3948
3949 /* Initialize the index symtab iterator ITER.
3950 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3951 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3952
3953 static void
3954 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3955 struct dwarf2_per_objfile *dwarf2_per_objfile,
3956 int want_specific_block,
3957 int block_index,
3958 domain_enum domain,
3959 const char *name)
3960 {
3961 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3962 iter->want_specific_block = want_specific_block;
3963 iter->block_index = block_index;
3964 iter->domain = domain;
3965 iter->next = 0;
3966 iter->global_seen = 0;
3967
3968 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3969
3970 /* index is NULL if OBJF_READNOW. */
3971 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3972 iter->length = MAYBE_SWAP (*iter->vec);
3973 else
3974 {
3975 iter->vec = NULL;
3976 iter->length = 0;
3977 }
3978 }
3979
3980 /* Return the next matching CU or NULL if there are no more. */
3981
3982 static struct dwarf2_per_cu_data *
3983 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3984 {
3985 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3986
3987 for ( ; iter->next < iter->length; ++iter->next)
3988 {
3989 offset_type cu_index_and_attrs =
3990 MAYBE_SWAP (iter->vec[iter->next + 1]);
3991 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3992 int want_static = iter->block_index != GLOBAL_BLOCK;
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4001 int attrs_valid =
4002 (dwarf2_per_objfile->index_table->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4004
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4007 + dwarf2_per_objfile->all_type_units.size ()))
4008 {
4009 complaint (_(".gdb_index entry has bad CU index"
4010 " [in module %s]"),
4011 objfile_name (dwarf2_per_objfile->objfile));
4012 continue;
4013 }
4014
4015 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4016
4017 /* Skip if already read in. */
4018 if (per_cu->v.quick->compunit_symtab)
4019 continue;
4020
4021 /* Check static vs global. */
4022 if (attrs_valid)
4023 {
4024 if (iter->want_specific_block
4025 && want_static != is_static)
4026 continue;
4027 /* Work around gold/15646. */
4028 if (!is_static && iter->global_seen)
4029 continue;
4030 if (!is_static)
4031 iter->global_seen = 1;
4032 }
4033
4034 /* Only check the symbol's kind if it has one. */
4035 if (attrs_valid)
4036 {
4037 switch (iter->domain)
4038 {
4039 case VAR_DOMAIN:
4040 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4042 /* Some types are also in VAR_DOMAIN. */
4043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4044 continue;
4045 break;
4046 case STRUCT_DOMAIN:
4047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4048 continue;
4049 break;
4050 case LABEL_DOMAIN:
4051 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4052 continue;
4053 break;
4054 default:
4055 break;
4056 }
4057 }
4058
4059 ++iter->next;
4060 return per_cu;
4061 }
4062
4063 return NULL;
4064 }
4065
4066 static struct compunit_symtab *
4067 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4068 const char *name, domain_enum domain)
4069 {
4070 struct compunit_symtab *stab_best = NULL;
4071 struct dwarf2_per_objfile *dwarf2_per_objfile
4072 = get_dwarf2_per_objfile (objfile);
4073
4074 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4075
4076 struct dw2_symtab_iterator iter;
4077 struct dwarf2_per_cu_data *per_cu;
4078
4079 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4080
4081 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4082 {
4083 struct symbol *sym, *with_opaque = NULL;
4084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4086 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4087
4088 sym = block_find_symbol (block, name, domain,
4089 block_find_non_opaque_type_preferred,
4090 &with_opaque);
4091
4092 /* Some caution must be observed with overloaded functions
4093 and methods, since the index will not contain any overload
4094 information (but NAME might contain it). */
4095
4096 if (sym != NULL
4097 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4098 return stab;
4099 if (with_opaque != NULL
4100 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4101 stab_best = stab;
4102
4103 /* Keep looking through other CUs. */
4104 }
4105
4106 return stab_best;
4107 }
4108
4109 static void
4110 dw2_print_stats (struct objfile *objfile)
4111 {
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114 int total = (dwarf2_per_objfile->all_comp_units.size ()
4115 + dwarf2_per_objfile->all_type_units.size ());
4116 int count = 0;
4117
4118 for (int i = 0; i < total; ++i)
4119 {
4120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4121
4122 if (!per_cu->v.quick->compunit_symtab)
4123 ++count;
4124 }
4125 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4126 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4127 }
4128
4129 /* This dumps minimal information about the index.
4130 It is called via "mt print objfiles".
4131 One use is to verify .gdb_index has been loaded by the
4132 gdb.dwarf2/gdb-index.exp testcase. */
4133
4134 static void
4135 dw2_dump (struct objfile *objfile)
4136 {
4137 struct dwarf2_per_objfile *dwarf2_per_objfile
4138 = get_dwarf2_per_objfile (objfile);
4139
4140 gdb_assert (dwarf2_per_objfile->using_index);
4141 printf_filtered (".gdb_index:");
4142 if (dwarf2_per_objfile->index_table != NULL)
4143 {
4144 printf_filtered (" version %d\n",
4145 dwarf2_per_objfile->index_table->version);
4146 }
4147 else
4148 printf_filtered (" faked for \"readnow\"\n");
4149 printf_filtered ("\n");
4150 }
4151
4152 static void
4153 dw2_expand_symtabs_for_function (struct objfile *objfile,
4154 const char *func_name)
4155 {
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4158
4159 struct dw2_symtab_iterator iter;
4160 struct dwarf2_per_cu_data *per_cu;
4161
4162 /* Note: It doesn't matter what we pass for block_index here. */
4163 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4164 func_name);
4165
4166 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4167 dw2_instantiate_symtab (per_cu, false);
4168
4169 }
4170
4171 static void
4172 dw2_expand_all_symtabs (struct objfile *objfile)
4173 {
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4176 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4177 + dwarf2_per_objfile->all_type_units.size ());
4178
4179 for (int i = 0; i < total_units; ++i)
4180 {
4181 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4182
4183 /* We don't want to directly expand a partial CU, because if we
4184 read it with the wrong language, then assertion failures can
4185 be triggered later on. See PR symtab/23010. So, tell
4186 dw2_instantiate_symtab to skip partial CUs -- any important
4187 partial CU will be read via DW_TAG_imported_unit anyway. */
4188 dw2_instantiate_symtab (per_cu, true);
4189 }
4190 }
4191
4192 static void
4193 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4194 const char *fullname)
4195 {
4196 struct dwarf2_per_objfile *dwarf2_per_objfile
4197 = get_dwarf2_per_objfile (objfile);
4198
4199 /* We don't need to consider type units here.
4200 This is only called for examining code, e.g. expand_line_sal.
4201 There can be an order of magnitude (or more) more type units
4202 than comp units, and we avoid them if we can. */
4203
4204 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4205 {
4206 /* We only need to look at symtabs not already expanded. */
4207 if (per_cu->v.quick->compunit_symtab)
4208 continue;
4209
4210 quick_file_names *file_data = dw2_get_file_names (per_cu);
4211 if (file_data == NULL)
4212 continue;
4213
4214 for (int j = 0; j < file_data->num_file_names; ++j)
4215 {
4216 const char *this_fullname = file_data->file_names[j];
4217
4218 if (filename_cmp (this_fullname, fullname) == 0)
4219 {
4220 dw2_instantiate_symtab (per_cu, false);
4221 break;
4222 }
4223 }
4224 }
4225 }
4226
4227 static void
4228 dw2_map_matching_symbols (struct objfile *objfile,
4229 const char * name, domain_enum domain,
4230 int global,
4231 int (*callback) (const struct block *,
4232 struct symbol *, void *),
4233 void *data, symbol_name_match_type match,
4234 symbol_compare_ftype *ordered_compare)
4235 {
4236 /* Currently unimplemented; used for Ada. The function can be called if the
4237 current language is Ada for a non-Ada objfile using GNU index. As Ada
4238 does not look for non-Ada symbols this function should just return. */
4239 }
4240
4241 /* Symbol name matcher for .gdb_index names.
4242
4243 Symbol names in .gdb_index have a few particularities:
4244
4245 - There's no indication of which is the language of each symbol.
4246
4247 Since each language has its own symbol name matching algorithm,
4248 and we don't know which language is the right one, we must match
4249 each symbol against all languages. This would be a potential
4250 performance problem if it were not mitigated by the
4251 mapped_index::name_components lookup table, which significantly
4252 reduces the number of times we need to call into this matcher,
4253 making it a non-issue.
4254
4255 - Symbol names in the index have no overload (parameter)
4256 information. I.e., in C++, "foo(int)" and "foo(long)" both
4257 appear as "foo" in the index, for example.
4258
4259 This means that the lookup names passed to the symbol name
4260 matcher functions must have no parameter information either
4261 because (e.g.) symbol search name "foo" does not match
4262 lookup-name "foo(int)" [while swapping search name for lookup
4263 name would match].
4264 */
4265 class gdb_index_symbol_name_matcher
4266 {
4267 public:
4268 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4269 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4270
4271 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4272 Returns true if any matcher matches. */
4273 bool matches (const char *symbol_name);
4274
4275 private:
4276 /* A reference to the lookup name we're matching against. */
4277 const lookup_name_info &m_lookup_name;
4278
4279 /* A vector holding all the different symbol name matchers, for all
4280 languages. */
4281 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4282 };
4283
4284 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4285 (const lookup_name_info &lookup_name)
4286 : m_lookup_name (lookup_name)
4287 {
4288 /* Prepare the vector of comparison functions upfront, to avoid
4289 doing the same work for each symbol. Care is taken to avoid
4290 matching with the same matcher more than once if/when multiple
4291 languages use the same matcher function. */
4292 auto &matchers = m_symbol_name_matcher_funcs;
4293 matchers.reserve (nr_languages);
4294
4295 matchers.push_back (default_symbol_name_matcher);
4296
4297 for (int i = 0; i < nr_languages; i++)
4298 {
4299 const language_defn *lang = language_def ((enum language) i);
4300 symbol_name_matcher_ftype *name_matcher
4301 = get_symbol_name_matcher (lang, m_lookup_name);
4302
4303 /* Don't insert the same comparison routine more than once.
4304 Note that we do this linear walk instead of a seemingly
4305 cheaper sorted insert, or use a std::set or something like
4306 that, because relative order of function addresses is not
4307 stable. This is not a problem in practice because the number
4308 of supported languages is low, and the cost here is tiny
4309 compared to the number of searches we'll do afterwards using
4310 this object. */
4311 if (name_matcher != default_symbol_name_matcher
4312 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4313 == matchers.end ()))
4314 matchers.push_back (name_matcher);
4315 }
4316 }
4317
4318 bool
4319 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4320 {
4321 for (auto matches_name : m_symbol_name_matcher_funcs)
4322 if (matches_name (symbol_name, m_lookup_name, NULL))
4323 return true;
4324
4325 return false;
4326 }
4327
4328 /* Starting from a search name, return the string that finds the upper
4329 bound of all strings that start with SEARCH_NAME in a sorted name
4330 list. Returns the empty string to indicate that the upper bound is
4331 the end of the list. */
4332
4333 static std::string
4334 make_sort_after_prefix_name (const char *search_name)
4335 {
4336 /* When looking to complete "func", we find the upper bound of all
4337 symbols that start with "func" by looking for where we'd insert
4338 the closest string that would follow "func" in lexicographical
4339 order. Usually, that's "func"-with-last-character-incremented,
4340 i.e. "fund". Mind non-ASCII characters, though. Usually those
4341 will be UTF-8 multi-byte sequences, but we can't be certain.
4342 Especially mind the 0xff character, which is a valid character in
4343 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4344 rule out compilers allowing it in identifiers. Note that
4345 conveniently, strcmp/strcasecmp are specified to compare
4346 characters interpreted as unsigned char. So what we do is treat
4347 the whole string as a base 256 number composed of a sequence of
4348 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4349 to 0, and carries 1 to the following more-significant position.
4350 If the very first character in SEARCH_NAME ends up incremented
4351 and carries/overflows, then the upper bound is the end of the
4352 list. The string after the empty string is also the empty
4353 string.
4354
4355 Some examples of this operation:
4356
4357 SEARCH_NAME => "+1" RESULT
4358
4359 "abc" => "abd"
4360 "ab\xff" => "ac"
4361 "\xff" "a" "\xff" => "\xff" "b"
4362 "\xff" => ""
4363 "\xff\xff" => ""
4364 "" => ""
4365
4366 Then, with these symbols for example:
4367
4368 func
4369 func1
4370 fund
4371
4372 completing "func" looks for symbols between "func" and
4373 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4374 which finds "func" and "func1", but not "fund".
4375
4376 And with:
4377
4378 funcÿ (Latin1 'ÿ' [0xff])
4379 funcÿ1
4380 fund
4381
4382 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4383 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4384
4385 And with:
4386
4387 ÿÿ (Latin1 'ÿ' [0xff])
4388 ÿÿ1
4389
4390 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4391 the end of the list.
4392 */
4393 std::string after = search_name;
4394 while (!after.empty () && (unsigned char) after.back () == 0xff)
4395 after.pop_back ();
4396 if (!after.empty ())
4397 after.back () = (unsigned char) after.back () + 1;
4398 return after;
4399 }
4400
4401 /* See declaration. */
4402
4403 std::pair<std::vector<name_component>::const_iterator,
4404 std::vector<name_component>::const_iterator>
4405 mapped_index_base::find_name_components_bounds
4406 (const lookup_name_info &lookup_name_without_params) const
4407 {
4408 auto *name_cmp
4409 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4410
4411 const char *cplus
4412 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4413
4414 /* Comparison function object for lower_bound that matches against a
4415 given symbol name. */
4416 auto lookup_compare_lower = [&] (const name_component &elem,
4417 const char *name)
4418 {
4419 const char *elem_qualified = this->symbol_name_at (elem.idx);
4420 const char *elem_name = elem_qualified + elem.name_offset;
4421 return name_cmp (elem_name, name) < 0;
4422 };
4423
4424 /* Comparison function object for upper_bound that matches against a
4425 given symbol name. */
4426 auto lookup_compare_upper = [&] (const char *name,
4427 const name_component &elem)
4428 {
4429 const char *elem_qualified = this->symbol_name_at (elem.idx);
4430 const char *elem_name = elem_qualified + elem.name_offset;
4431 return name_cmp (name, elem_name) < 0;
4432 };
4433
4434 auto begin = this->name_components.begin ();
4435 auto end = this->name_components.end ();
4436
4437 /* Find the lower bound. */
4438 auto lower = [&] ()
4439 {
4440 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4441 return begin;
4442 else
4443 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4444 } ();
4445
4446 /* Find the upper bound. */
4447 auto upper = [&] ()
4448 {
4449 if (lookup_name_without_params.completion_mode ())
4450 {
4451 /* In completion mode, we want UPPER to point past all
4452 symbols names that have the same prefix. I.e., with
4453 these symbols, and completing "func":
4454
4455 function << lower bound
4456 function1
4457 other_function << upper bound
4458
4459 We find the upper bound by looking for the insertion
4460 point of "func"-with-last-character-incremented,
4461 i.e. "fund". */
4462 std::string after = make_sort_after_prefix_name (cplus);
4463 if (after.empty ())
4464 return end;
4465 return std::lower_bound (lower, end, after.c_str (),
4466 lookup_compare_lower);
4467 }
4468 else
4469 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4470 } ();
4471
4472 return {lower, upper};
4473 }
4474
4475 /* See declaration. */
4476
4477 void
4478 mapped_index_base::build_name_components ()
4479 {
4480 if (!this->name_components.empty ())
4481 return;
4482
4483 this->name_components_casing = case_sensitivity;
4484 auto *name_cmp
4485 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4486
4487 /* The code below only knows how to break apart components of C++
4488 symbol names (and other languages that use '::' as
4489 namespace/module separator). If we add support for wild matching
4490 to some language that uses some other operator (E.g., Ada, Go and
4491 D use '.'), then we'll need to try splitting the symbol name
4492 according to that language too. Note that Ada does support wild
4493 matching, but doesn't currently support .gdb_index. */
4494 auto count = this->symbol_name_count ();
4495 for (offset_type idx = 0; idx < count; idx++)
4496 {
4497 if (this->symbol_name_slot_invalid (idx))
4498 continue;
4499
4500 const char *name = this->symbol_name_at (idx);
4501
4502 /* Add each name component to the name component table. */
4503 unsigned int previous_len = 0;
4504 for (unsigned int current_len = cp_find_first_component (name);
4505 name[current_len] != '\0';
4506 current_len += cp_find_first_component (name + current_len))
4507 {
4508 gdb_assert (name[current_len] == ':');
4509 this->name_components.push_back ({previous_len, idx});
4510 /* Skip the '::'. */
4511 current_len += 2;
4512 previous_len = current_len;
4513 }
4514 this->name_components.push_back ({previous_len, idx});
4515 }
4516
4517 /* Sort name_components elements by name. */
4518 auto name_comp_compare = [&] (const name_component &left,
4519 const name_component &right)
4520 {
4521 const char *left_qualified = this->symbol_name_at (left.idx);
4522 const char *right_qualified = this->symbol_name_at (right.idx);
4523
4524 const char *left_name = left_qualified + left.name_offset;
4525 const char *right_name = right_qualified + right.name_offset;
4526
4527 return name_cmp (left_name, right_name) < 0;
4528 };
4529
4530 std::sort (this->name_components.begin (),
4531 this->name_components.end (),
4532 name_comp_compare);
4533 }
4534
4535 /* Helper for dw2_expand_symtabs_matching that works with a
4536 mapped_index_base instead of the containing objfile. This is split
4537 to a separate function in order to be able to unit test the
4538 name_components matching using a mock mapped_index_base. For each
4539 symbol name that matches, calls MATCH_CALLBACK, passing it the
4540 symbol's index in the mapped_index_base symbol table. */
4541
4542 static void
4543 dw2_expand_symtabs_matching_symbol
4544 (mapped_index_base &index,
4545 const lookup_name_info &lookup_name_in,
4546 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4547 enum search_domain kind,
4548 gdb::function_view<void (offset_type)> match_callback)
4549 {
4550 lookup_name_info lookup_name_without_params
4551 = lookup_name_in.make_ignore_params ();
4552 gdb_index_symbol_name_matcher lookup_name_matcher
4553 (lookup_name_without_params);
4554
4555 /* Build the symbol name component sorted vector, if we haven't
4556 yet. */
4557 index.build_name_components ();
4558
4559 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4560
4561 /* Now for each symbol name in range, check to see if we have a name
4562 match, and if so, call the MATCH_CALLBACK callback. */
4563
4564 /* The same symbol may appear more than once in the range though.
4565 E.g., if we're looking for symbols that complete "w", and we have
4566 a symbol named "w1::w2", we'll find the two name components for
4567 that same symbol in the range. To be sure we only call the
4568 callback once per symbol, we first collect the symbol name
4569 indexes that matched in a temporary vector and ignore
4570 duplicates. */
4571 std::vector<offset_type> matches;
4572 matches.reserve (std::distance (bounds.first, bounds.second));
4573
4574 for (; bounds.first != bounds.second; ++bounds.first)
4575 {
4576 const char *qualified = index.symbol_name_at (bounds.first->idx);
4577
4578 if (!lookup_name_matcher.matches (qualified)
4579 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4580 continue;
4581
4582 matches.push_back (bounds.first->idx);
4583 }
4584
4585 std::sort (matches.begin (), matches.end ());
4586
4587 /* Finally call the callback, once per match. */
4588 ULONGEST prev = -1;
4589 for (offset_type idx : matches)
4590 {
4591 if (prev != idx)
4592 {
4593 match_callback (idx);
4594 prev = idx;
4595 }
4596 }
4597
4598 /* Above we use a type wider than idx's for 'prev', since 0 and
4599 (offset_type)-1 are both possible values. */
4600 static_assert (sizeof (prev) > sizeof (offset_type), "");
4601 }
4602
4603 #if GDB_SELF_TEST
4604
4605 namespace selftests { namespace dw2_expand_symtabs_matching {
4606
4607 /* A mock .gdb_index/.debug_names-like name index table, enough to
4608 exercise dw2_expand_symtabs_matching_symbol, which works with the
4609 mapped_index_base interface. Builds an index from the symbol list
4610 passed as parameter to the constructor. */
4611 class mock_mapped_index : public mapped_index_base
4612 {
4613 public:
4614 mock_mapped_index (gdb::array_view<const char *> symbols)
4615 : m_symbol_table (symbols)
4616 {}
4617
4618 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4619
4620 /* Return the number of names in the symbol table. */
4621 size_t symbol_name_count () const override
4622 {
4623 return m_symbol_table.size ();
4624 }
4625
4626 /* Get the name of the symbol at IDX in the symbol table. */
4627 const char *symbol_name_at (offset_type idx) const override
4628 {
4629 return m_symbol_table[idx];
4630 }
4631
4632 private:
4633 gdb::array_view<const char *> m_symbol_table;
4634 };
4635
4636 /* Convenience function that converts a NULL pointer to a "<null>"
4637 string, to pass to print routines. */
4638
4639 static const char *
4640 string_or_null (const char *str)
4641 {
4642 return str != NULL ? str : "<null>";
4643 }
4644
4645 /* Check if a lookup_name_info built from
4646 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4647 index. EXPECTED_LIST is the list of expected matches, in expected
4648 matching order. If no match expected, then an empty list is
4649 specified. Returns true on success. On failure prints a warning
4650 indicating the file:line that failed, and returns false. */
4651
4652 static bool
4653 check_match (const char *file, int line,
4654 mock_mapped_index &mock_index,
4655 const char *name, symbol_name_match_type match_type,
4656 bool completion_mode,
4657 std::initializer_list<const char *> expected_list)
4658 {
4659 lookup_name_info lookup_name (name, match_type, completion_mode);
4660
4661 bool matched = true;
4662
4663 auto mismatch = [&] (const char *expected_str,
4664 const char *got)
4665 {
4666 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4667 "expected=\"%s\", got=\"%s\"\n"),
4668 file, line,
4669 (match_type == symbol_name_match_type::FULL
4670 ? "FULL" : "WILD"),
4671 name, string_or_null (expected_str), string_or_null (got));
4672 matched = false;
4673 };
4674
4675 auto expected_it = expected_list.begin ();
4676 auto expected_end = expected_list.end ();
4677
4678 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4679 NULL, ALL_DOMAIN,
4680 [&] (offset_type idx)
4681 {
4682 const char *matched_name = mock_index.symbol_name_at (idx);
4683 const char *expected_str
4684 = expected_it == expected_end ? NULL : *expected_it++;
4685
4686 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4687 mismatch (expected_str, matched_name);
4688 });
4689
4690 const char *expected_str
4691 = expected_it == expected_end ? NULL : *expected_it++;
4692 if (expected_str != NULL)
4693 mismatch (expected_str, NULL);
4694
4695 return matched;
4696 }
4697
4698 /* The symbols added to the mock mapped_index for testing (in
4699 canonical form). */
4700 static const char *test_symbols[] = {
4701 "function",
4702 "std::bar",
4703 "std::zfunction",
4704 "std::zfunction2",
4705 "w1::w2",
4706 "ns::foo<char*>",
4707 "ns::foo<int>",
4708 "ns::foo<long>",
4709 "ns2::tmpl<int>::foo2",
4710 "(anonymous namespace)::A::B::C",
4711
4712 /* These are used to check that the increment-last-char in the
4713 matching algorithm for completion doesn't match "t1_fund" when
4714 completing "t1_func". */
4715 "t1_func",
4716 "t1_func1",
4717 "t1_fund",
4718 "t1_fund1",
4719
4720 /* A UTF-8 name with multi-byte sequences to make sure that
4721 cp-name-parser understands this as a single identifier ("função"
4722 is "function" in PT). */
4723 u8"u8função",
4724
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4726 "yfunc\377",
4727
4728 /* \377 (0xff) is Latin1 'ÿ'. */
4729 "\377",
4730 "\377\377123",
4731
4732 /* A name with all sorts of complications. Starts with "z" to make
4733 it easier for the completion tests below. */
4734 #define Z_SYM_NAME \
4735 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4736 "::tuple<(anonymous namespace)::ui*, " \
4737 "std::default_delete<(anonymous namespace)::ui>, void>"
4738
4739 Z_SYM_NAME
4740 };
4741
4742 /* Returns true if the mapped_index_base::find_name_component_bounds
4743 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4744 in completion mode. */
4745
4746 static bool
4747 check_find_bounds_finds (mapped_index_base &index,
4748 const char *search_name,
4749 gdb::array_view<const char *> expected_syms)
4750 {
4751 lookup_name_info lookup_name (search_name,
4752 symbol_name_match_type::FULL, true);
4753
4754 auto bounds = index.find_name_components_bounds (lookup_name);
4755
4756 size_t distance = std::distance (bounds.first, bounds.second);
4757 if (distance != expected_syms.size ())
4758 return false;
4759
4760 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4761 {
4762 auto nc_elem = bounds.first + exp_elem;
4763 const char *qualified = index.symbol_name_at (nc_elem->idx);
4764 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4765 return false;
4766 }
4767
4768 return true;
4769 }
4770
4771 /* Test the lower-level mapped_index::find_name_component_bounds
4772 method. */
4773
4774 static void
4775 test_mapped_index_find_name_component_bounds ()
4776 {
4777 mock_mapped_index mock_index (test_symbols);
4778
4779 mock_index.build_name_components ();
4780
4781 /* Test the lower-level mapped_index::find_name_component_bounds
4782 method in completion mode. */
4783 {
4784 static const char *expected_syms[] = {
4785 "t1_func",
4786 "t1_func1",
4787 };
4788
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "t1_func", expected_syms));
4791 }
4792
4793 /* Check that the increment-last-char in the name matching algorithm
4794 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4795 {
4796 static const char *expected_syms1[] = {
4797 "\377",
4798 "\377\377123",
4799 };
4800 SELF_CHECK (check_find_bounds_finds (mock_index,
4801 "\377", expected_syms1));
4802
4803 static const char *expected_syms2[] = {
4804 "\377\377123",
4805 };
4806 SELF_CHECK (check_find_bounds_finds (mock_index,
4807 "\377\377", expected_syms2));
4808 }
4809 }
4810
4811 /* Test dw2_expand_symtabs_matching_symbol. */
4812
4813 static void
4814 test_dw2_expand_symtabs_matching_symbol ()
4815 {
4816 mock_mapped_index mock_index (test_symbols);
4817
4818 /* We let all tests run until the end even if some fails, for debug
4819 convenience. */
4820 bool any_mismatch = false;
4821
4822 /* Create the expected symbols list (an initializer_list). Needed
4823 because lists have commas, and we need to pass them to CHECK,
4824 which is a macro. */
4825 #define EXPECT(...) { __VA_ARGS__ }
4826
4827 /* Wrapper for check_match that passes down the current
4828 __FILE__/__LINE__. */
4829 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4830 any_mismatch |= !check_match (__FILE__, __LINE__, \
4831 mock_index, \
4832 NAME, MATCH_TYPE, COMPLETION_MODE, \
4833 EXPECTED_LIST)
4834
4835 /* Identity checks. */
4836 for (const char *sym : test_symbols)
4837 {
4838 /* Should be able to match all existing symbols. */
4839 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4840 EXPECT (sym));
4841
4842 /* Should be able to match all existing symbols with
4843 parameters. */
4844 std::string with_params = std::string (sym) + "(int)";
4845 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4846 EXPECT (sym));
4847
4848 /* Should be able to match all existing symbols with
4849 parameters and qualifiers. */
4850 with_params = std::string (sym) + " ( int ) const";
4851 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4852 EXPECT (sym));
4853
4854 /* This should really find sym, but cp-name-parser.y doesn't
4855 know about lvalue/rvalue qualifiers yet. */
4856 with_params = std::string (sym) + " ( int ) &&";
4857 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4858 {});
4859 }
4860
4861 /* Check that the name matching algorithm for completion doesn't get
4862 confused with Latin1 'ÿ' / 0xff. */
4863 {
4864 static const char str[] = "\377";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("\377", "\377\377123"));
4867 }
4868
4869 /* Check that the increment-last-char in the matching algorithm for
4870 completion doesn't match "t1_fund" when completing "t1_func". */
4871 {
4872 static const char str[] = "t1_func";
4873 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4874 EXPECT ("t1_func", "t1_func1"));
4875 }
4876
4877 /* Check that completion mode works at each prefix of the expected
4878 symbol name. */
4879 {
4880 static const char str[] = "function(int)";
4881 size_t len = strlen (str);
4882 std::string lookup;
4883
4884 for (size_t i = 1; i < len; i++)
4885 {
4886 lookup.assign (str, i);
4887 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4888 EXPECT ("function"));
4889 }
4890 }
4891
4892 /* While "w" is a prefix of both components, the match function
4893 should still only be called once. */
4894 {
4895 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4896 EXPECT ("w1::w2"));
4897 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4898 EXPECT ("w1::w2"));
4899 }
4900
4901 /* Same, with a "complicated" symbol. */
4902 {
4903 static const char str[] = Z_SYM_NAME;
4904 size_t len = strlen (str);
4905 std::string lookup;
4906
4907 for (size_t i = 1; i < len; i++)
4908 {
4909 lookup.assign (str, i);
4910 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4911 EXPECT (Z_SYM_NAME));
4912 }
4913 }
4914
4915 /* In FULL mode, an incomplete symbol doesn't match. */
4916 {
4917 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4918 {});
4919 }
4920
4921 /* A complete symbol with parameters matches any overload, since the
4922 index has no overload info. */
4923 {
4924 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4925 EXPECT ("std::zfunction", "std::zfunction2"));
4926 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4927 EXPECT ("std::zfunction", "std::zfunction2"));
4928 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4929 EXPECT ("std::zfunction", "std::zfunction2"));
4930 }
4931
4932 /* Check that whitespace is ignored appropriately. A symbol with a
4933 template argument list. */
4934 {
4935 static const char expected[] = "ns::foo<int>";
4936 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4937 EXPECT (expected));
4938 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4939 EXPECT (expected));
4940 }
4941
4942 /* Check that whitespace is ignored appropriately. A symbol with a
4943 template argument list that includes a pointer. */
4944 {
4945 static const char expected[] = "ns::foo<char*>";
4946 /* Try both completion and non-completion modes. */
4947 static const bool completion_mode[2] = {false, true};
4948 for (size_t i = 0; i < 2; i++)
4949 {
4950 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954
4955 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4956 completion_mode[i], EXPECT (expected));
4957 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4958 completion_mode[i], EXPECT (expected));
4959 }
4960 }
4961
4962 {
4963 /* Check method qualifiers are ignored. */
4964 static const char expected[] = "ns::foo<char*>";
4965 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4966 symbol_name_match_type::FULL, true, EXPECT (expected));
4967 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4968 symbol_name_match_type::FULL, true, EXPECT (expected));
4969 CHECK_MATCH ("foo < char * > ( int ) const",
4970 symbol_name_match_type::WILD, true, EXPECT (expected));
4971 CHECK_MATCH ("foo < char * > ( int ) &&",
4972 symbol_name_match_type::WILD, true, EXPECT (expected));
4973 }
4974
4975 /* Test lookup names that don't match anything. */
4976 {
4977 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4978 {});
4979
4980 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4981 {});
4982 }
4983
4984 /* Some wild matching tests, exercising "(anonymous namespace)",
4985 which should not be confused with a parameter list. */
4986 {
4987 static const char *syms[] = {
4988 "A::B::C",
4989 "B::C",
4990 "C",
4991 "A :: B :: C ( int )",
4992 "B :: C ( int )",
4993 "C ( int )",
4994 };
4995
4996 for (const char *s : syms)
4997 {
4998 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4999 EXPECT ("(anonymous namespace)::A::B::C"));
5000 }
5001 }
5002
5003 {
5004 static const char expected[] = "ns2::tmpl<int>::foo2";
5005 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5006 EXPECT (expected));
5007 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5008 EXPECT (expected));
5009 }
5010
5011 SELF_CHECK (!any_mismatch);
5012
5013 #undef EXPECT
5014 #undef CHECK_MATCH
5015 }
5016
5017 static void
5018 run_test ()
5019 {
5020 test_mapped_index_find_name_component_bounds ();
5021 test_dw2_expand_symtabs_matching_symbol ();
5022 }
5023
5024 }} // namespace selftests::dw2_expand_symtabs_matching
5025
5026 #endif /* GDB_SELF_TEST */
5027
5028 /* If FILE_MATCHER is NULL or if PER_CU has
5029 dwarf2_per_cu_quick_data::MARK set (see
5030 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5031 EXPANSION_NOTIFY on it. */
5032
5033 static void
5034 dw2_expand_symtabs_matching_one
5035 (struct dwarf2_per_cu_data *per_cu,
5036 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5037 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5038 {
5039 if (file_matcher == NULL || per_cu->v.quick->mark)
5040 {
5041 bool symtab_was_null
5042 = (per_cu->v.quick->compunit_symtab == NULL);
5043
5044 dw2_instantiate_symtab (per_cu, false);
5045
5046 if (expansion_notify != NULL
5047 && symtab_was_null
5048 && per_cu->v.quick->compunit_symtab != NULL)
5049 expansion_notify (per_cu->v.quick->compunit_symtab);
5050 }
5051 }
5052
5053 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5054 matched, to expand corresponding CUs that were marked. IDX is the
5055 index of the symbol name that matched. */
5056
5057 static void
5058 dw2_expand_marked_cus
5059 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5060 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5061 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5062 search_domain kind)
5063 {
5064 offset_type *vec, vec_len, vec_idx;
5065 bool global_seen = false;
5066 mapped_index &index = *dwarf2_per_objfile->index_table;
5067
5068 vec = (offset_type *) (index.constant_pool
5069 + MAYBE_SWAP (index.symbol_table[idx].vec));
5070 vec_len = MAYBE_SWAP (vec[0]);
5071 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5072 {
5073 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5074 /* This value is only valid for index versions >= 7. */
5075 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5076 gdb_index_symbol_kind symbol_kind =
5077 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5078 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5079 /* Only check the symbol attributes if they're present.
5080 Indices prior to version 7 don't record them,
5081 and indices >= 7 may elide them for certain symbols
5082 (gold does this). */
5083 int attrs_valid =
5084 (index.version >= 7
5085 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5086
5087 /* Work around gold/15646. */
5088 if (attrs_valid)
5089 {
5090 if (!is_static && global_seen)
5091 continue;
5092 if (!is_static)
5093 global_seen = true;
5094 }
5095
5096 /* Only check the symbol's kind if it has one. */
5097 if (attrs_valid)
5098 {
5099 switch (kind)
5100 {
5101 case VARIABLES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5103 continue;
5104 break;
5105 case FUNCTIONS_DOMAIN:
5106 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5107 continue;
5108 break;
5109 case TYPES_DOMAIN:
5110 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5111 continue;
5112 break;
5113 default:
5114 break;
5115 }
5116 }
5117
5118 /* Don't crash on bad data. */
5119 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5120 + dwarf2_per_objfile->all_type_units.size ()))
5121 {
5122 complaint (_(".gdb_index entry has bad CU index"
5123 " [in module %s]"),
5124 objfile_name (dwarf2_per_objfile->objfile));
5125 continue;
5126 }
5127
5128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5130 expansion_notify);
5131 }
5132 }
5133
5134 /* If FILE_MATCHER is non-NULL, set all the
5135 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5136 that match FILE_MATCHER. */
5137
5138 static void
5139 dw_expand_symtabs_matching_file_matcher
5140 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5142 {
5143 if (file_matcher == NULL)
5144 return;
5145
5146 objfile *const objfile = dwarf2_per_objfile->objfile;
5147
5148 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5149 htab_eq_pointer,
5150 NULL, xcalloc, xfree));
5151 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5152 htab_eq_pointer,
5153 NULL, xcalloc, xfree));
5154
5155 /* The rule is CUs specify all the files, including those used by
5156 any TU, so there's no need to scan TUs here. */
5157
5158 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5159 {
5160 QUIT;
5161
5162 per_cu->v.quick->mark = 0;
5163
5164 /* We only need to look at symtabs not already expanded. */
5165 if (per_cu->v.quick->compunit_symtab)
5166 continue;
5167
5168 quick_file_names *file_data = dw2_get_file_names (per_cu);
5169 if (file_data == NULL)
5170 continue;
5171
5172 if (htab_find (visited_not_found.get (), file_data) != NULL)
5173 continue;
5174 else if (htab_find (visited_found.get (), file_data) != NULL)
5175 {
5176 per_cu->v.quick->mark = 1;
5177 continue;
5178 }
5179
5180 for (int j = 0; j < file_data->num_file_names; ++j)
5181 {
5182 const char *this_real_name;
5183
5184 if (file_matcher (file_data->file_names[j], false))
5185 {
5186 per_cu->v.quick->mark = 1;
5187 break;
5188 }
5189
5190 /* Before we invoke realpath, which can get expensive when many
5191 files are involved, do a quick comparison of the basenames. */
5192 if (!basenames_may_differ
5193 && !file_matcher (lbasename (file_data->file_names[j]),
5194 true))
5195 continue;
5196
5197 this_real_name = dw2_get_real_path (objfile, file_data, j);
5198 if (file_matcher (this_real_name, false))
5199 {
5200 per_cu->v.quick->mark = 1;
5201 break;
5202 }
5203 }
5204
5205 void **slot = htab_find_slot (per_cu->v.quick->mark
5206 ? visited_found.get ()
5207 : visited_not_found.get (),
5208 file_data, INSERT);
5209 *slot = file_data;
5210 }
5211 }
5212
5213 static void
5214 dw2_expand_symtabs_matching
5215 (struct objfile *objfile,
5216 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5217 const lookup_name_info &lookup_name,
5218 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5219 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5220 enum search_domain kind)
5221 {
5222 struct dwarf2_per_objfile *dwarf2_per_objfile
5223 = get_dwarf2_per_objfile (objfile);
5224
5225 /* index_table is NULL if OBJF_READNOW. */
5226 if (!dwarf2_per_objfile->index_table)
5227 return;
5228
5229 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5230
5231 mapped_index &index = *dwarf2_per_objfile->index_table;
5232
5233 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5234 symbol_matcher,
5235 kind, [&] (offset_type idx)
5236 {
5237 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5238 expansion_notify, kind);
5239 });
5240 }
5241
5242 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5243 symtab. */
5244
5245 static struct compunit_symtab *
5246 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5247 CORE_ADDR pc)
5248 {
5249 int i;
5250
5251 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5252 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5253 return cust;
5254
5255 if (cust->includes == NULL)
5256 return NULL;
5257
5258 for (i = 0; cust->includes[i]; ++i)
5259 {
5260 struct compunit_symtab *s = cust->includes[i];
5261
5262 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5263 if (s != NULL)
5264 return s;
5265 }
5266
5267 return NULL;
5268 }
5269
5270 static struct compunit_symtab *
5271 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5272 struct bound_minimal_symbol msymbol,
5273 CORE_ADDR pc,
5274 struct obj_section *section,
5275 int warn_if_readin)
5276 {
5277 struct dwarf2_per_cu_data *data;
5278 struct compunit_symtab *result;
5279
5280 if (!objfile->partial_symtabs->psymtabs_addrmap)
5281 return NULL;
5282
5283 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5284 SECT_OFF_TEXT (objfile));
5285 data = (struct dwarf2_per_cu_data *) addrmap_find
5286 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5287 if (!data)
5288 return NULL;
5289
5290 if (warn_if_readin && data->v.quick->compunit_symtab)
5291 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5292 paddress (get_objfile_arch (objfile), pc));
5293
5294 result
5295 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5296 false),
5297 pc);
5298 gdb_assert (result != NULL);
5299 return result;
5300 }
5301
5302 static void
5303 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5304 void *data, int need_fullname)
5305 {
5306 struct dwarf2_per_objfile *dwarf2_per_objfile
5307 = get_dwarf2_per_objfile (objfile);
5308
5309 if (!dwarf2_per_objfile->filenames_cache)
5310 {
5311 dwarf2_per_objfile->filenames_cache.emplace ();
5312
5313 htab_up visited (htab_create_alloc (10,
5314 htab_hash_pointer, htab_eq_pointer,
5315 NULL, xcalloc, xfree));
5316
5317 /* The rule is CUs specify all the files, including those used
5318 by any TU, so there's no need to scan TUs here. We can
5319 ignore file names coming from already-expanded CUs. */
5320
5321 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5322 {
5323 if (per_cu->v.quick->compunit_symtab)
5324 {
5325 void **slot = htab_find_slot (visited.get (),
5326 per_cu->v.quick->file_names,
5327 INSERT);
5328
5329 *slot = per_cu->v.quick->file_names;
5330 }
5331 }
5332
5333 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5334 {
5335 /* We only need to look at symtabs not already expanded. */
5336 if (per_cu->v.quick->compunit_symtab)
5337 continue;
5338
5339 quick_file_names *file_data = dw2_get_file_names (per_cu);
5340 if (file_data == NULL)
5341 continue;
5342
5343 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5344 if (*slot)
5345 {
5346 /* Already visited. */
5347 continue;
5348 }
5349 *slot = file_data;
5350
5351 for (int j = 0; j < file_data->num_file_names; ++j)
5352 {
5353 const char *filename = file_data->file_names[j];
5354 dwarf2_per_objfile->filenames_cache->seen (filename);
5355 }
5356 }
5357 }
5358
5359 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5360 {
5361 gdb::unique_xmalloc_ptr<char> this_real_name;
5362
5363 if (need_fullname)
5364 this_real_name = gdb_realpath (filename);
5365 (*fun) (filename, this_real_name.get (), data);
5366 });
5367 }
5368
5369 static int
5370 dw2_has_symbols (struct objfile *objfile)
5371 {
5372 return 1;
5373 }
5374
5375 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5376 {
5377 dw2_has_symbols,
5378 dw2_find_last_source_symtab,
5379 dw2_forget_cached_source_info,
5380 dw2_map_symtabs_matching_filename,
5381 dw2_lookup_symbol,
5382 dw2_print_stats,
5383 dw2_dump,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5390 NULL,
5391 dw2_map_symbol_filenames
5392 };
5393
5394 /* DWARF-5 debug_names reader. */
5395
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5398
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5402
5403 Returns true if all went well, false otherwise. */
5404
5405 static bool
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5410 {
5411 if (dwarf2_section_empty_p (section))
5412 return false;
5413
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5417 return false;
5418
5419 dwarf2_read_section (objfile, section);
5420
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5422
5423 const gdb_byte *addr = section->buffer;
5424
5425 bfd *const abfd = get_section_bfd_owner (section);
5426
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5429 addr += bytes_read;
5430
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5434 {
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5440 return false;
5441 }
5442
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5445 addr += 2;
5446 if (version != 5)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5450 filename, version);
5451 return false;
5452 }
5453
5454 /* Padding. */
5455 uint16_t padding = read_2_bytes (abfd, addr);
5456 addr += 2;
5457 if (padding != 0)
5458 {
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5461 filename, padding);
5462 return false;
5463 }
5464
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* local_type_unit_count - The number of TUs in the local TU
5470 list. */
5471 map.tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5475 list. */
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5477 addr += 4;
5478 if (foreign_tu_count != 0)
5479 {
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5483 return false;
5484 }
5485
5486 /* bucket_count - The number of hash buckets in the hash lookup
5487 table. */
5488 map.bucket_count = read_4_bytes (abfd, addr);
5489 addr += 4;
5490
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5496 table. */
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5503 addr += 4;
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5510
5511 /* List of CUs */
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5514
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5518
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5524
5525 /* Name Table */
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5530
5531 const gdb_byte *abbrev_table_start = addr;
5532 for (;;)
5533 {
5534 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5535 addr += bytes_read;
5536 if (index_num == 0)
5537 break;
5538
5539 const auto insertpair
5540 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5541 if (!insertpair.second)
5542 {
5543 warning (_("Section .debug_names in %s has duplicate index %s, "
5544 "ignoring .debug_names."),
5545 filename, pulongest (index_num));
5546 return false;
5547 }
5548 mapped_debug_names::index_val &indexval = insertpair.first->second;
5549 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5550 addr += bytes_read;
5551
5552 for (;;)
5553 {
5554 mapped_debug_names::index_val::attr attr;
5555 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5556 addr += bytes_read;
5557 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5558 addr += bytes_read;
5559 if (attr.form == DW_FORM_implicit_const)
5560 {
5561 attr.implicit_const = read_signed_leb128 (abfd, addr,
5562 &bytes_read);
5563 addr += bytes_read;
5564 }
5565 if (attr.dw_idx == 0 && attr.form == 0)
5566 break;
5567 indexval.attr_vec.push_back (std::move (attr));
5568 }
5569 }
5570 if (addr != abbrev_table_start + abbrev_table_size)
5571 {
5572 warning (_("Section .debug_names in %s has abbreviation_table "
5573 "of size %zu vs. written as %u, ignoring .debug_names."),
5574 filename, addr - abbrev_table_start, abbrev_table_size);
5575 return false;
5576 }
5577 map.entry_pool = addr;
5578
5579 return true;
5580 }
5581
5582 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5583 list. */
5584
5585 static void
5586 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 dwarf2_section_info &section,
5589 bool is_dwz)
5590 {
5591 sect_offset sect_off_prev;
5592 for (uint32_t i = 0; i <= map.cu_count; ++i)
5593 {
5594 sect_offset sect_off_next;
5595 if (i < map.cu_count)
5596 {
5597 sect_off_next
5598 = (sect_offset) (extract_unsigned_integer
5599 (map.cu_table_reordered + i * map.offset_size,
5600 map.offset_size,
5601 map.dwarf5_byte_order));
5602 }
5603 else
5604 sect_off_next = (sect_offset) section.size;
5605 if (i >= 1)
5606 {
5607 const ULONGEST length = sect_off_next - sect_off_prev;
5608 dwarf2_per_cu_data *per_cu
5609 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5610 sect_off_prev, length);
5611 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5612 }
5613 sect_off_prev = sect_off_next;
5614 }
5615 }
5616
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5619
5620 static void
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5624 {
5625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5626 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5627
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5629 dwarf2_per_objfile->info,
5630 false /* is_dwz */);
5631
5632 if (dwz_map.cu_count == 0)
5633 return;
5634
5635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5636 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5637 true /* is_dwz */);
5638 }
5639
5640 /* Read .debug_names. If everything went ok, initialize the "quick"
5641 elements of all the CUs and return true. Otherwise, return false. */
5642
5643 static bool
5644 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5645 {
5646 std::unique_ptr<mapped_debug_names> map
5647 (new mapped_debug_names (dwarf2_per_objfile));
5648 mapped_debug_names dwz_map (dwarf2_per_objfile);
5649 struct objfile *objfile = dwarf2_per_objfile->objfile;
5650
5651 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5652 &dwarf2_per_objfile->debug_names,
5653 *map))
5654 return false;
5655
5656 /* Don't use the index if it's empty. */
5657 if (map->name_count == 0)
5658 return false;
5659
5660 /* If there is a .dwz file, read it so we can get its CU list as
5661 well. */
5662 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5663 if (dwz != NULL)
5664 {
5665 if (!read_debug_names_from_section (objfile,
5666 bfd_get_filename (dwz->dwz_bfd),
5667 &dwz->debug_names, dwz_map))
5668 {
5669 warning (_("could not read '.debug_names' section from %s; skipping"),
5670 bfd_get_filename (dwz->dwz_bfd));
5671 return false;
5672 }
5673 }
5674
5675 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5676
5677 if (map->tu_count != 0)
5678 {
5679 /* We can only handle a single .debug_types when we have an
5680 index. */
5681 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5682 return false;
5683
5684 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5685 dwarf2_per_objfile->types, 0);
5686
5687 create_signatured_type_table_from_debug_names
5688 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5689 }
5690
5691 create_addrmap_from_aranges (dwarf2_per_objfile,
5692 &dwarf2_per_objfile->debug_aranges);
5693
5694 dwarf2_per_objfile->debug_names_table = std::move (map);
5695 dwarf2_per_objfile->using_index = 1;
5696 dwarf2_per_objfile->quick_file_names_table =
5697 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5698
5699 return true;
5700 }
5701
5702 /* Type used to manage iterating over all CUs looking for a symbol for
5703 .debug_names. */
5704
5705 class dw2_debug_names_iterator
5706 {
5707 public:
5708 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5709 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5710 dw2_debug_names_iterator (const mapped_debug_names &map,
5711 bool want_specific_block,
5712 block_enum block_index, domain_enum domain,
5713 const char *name)
5714 : m_map (map), m_want_specific_block (want_specific_block),
5715 m_block_index (block_index), m_domain (domain),
5716 m_addr (find_vec_in_debug_names (map, name))
5717 {}
5718
5719 dw2_debug_names_iterator (const mapped_debug_names &map,
5720 search_domain search, uint32_t namei)
5721 : m_map (map),
5722 m_search (search),
5723 m_addr (find_vec_in_debug_names (map, namei))
5724 {}
5725
5726 /* Return the next matching CU or NULL if there are no more. */
5727 dwarf2_per_cu_data *next ();
5728
5729 private:
5730 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5731 const char *name);
5732 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5733 uint32_t namei);
5734
5735 /* The internalized form of .debug_names. */
5736 const mapped_debug_names &m_map;
5737
5738 /* If true, only look for symbols that match BLOCK_INDEX. */
5739 const bool m_want_specific_block = false;
5740
5741 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5742 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5743 value. */
5744 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5745
5746 /* The kind of symbol we're looking for. */
5747 const domain_enum m_domain = UNDEF_DOMAIN;
5748 const search_domain m_search = ALL_DOMAIN;
5749
5750 /* The list of CUs from the index entry of the symbol, or NULL if
5751 not found. */
5752 const gdb_byte *m_addr;
5753 };
5754
5755 const char *
5756 mapped_debug_names::namei_to_name (uint32_t namei) const
5757 {
5758 const ULONGEST namei_string_offs
5759 = extract_unsigned_integer ((name_table_string_offs_reordered
5760 + namei * offset_size),
5761 offset_size,
5762 dwarf5_byte_order);
5763 return read_indirect_string_at_offset
5764 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5765 }
5766
5767 /* Find a slot in .debug_names for the object named NAME. If NAME is
5768 found, return pointer to its pool data. If NAME cannot be found,
5769 return NULL. */
5770
5771 const gdb_byte *
5772 dw2_debug_names_iterator::find_vec_in_debug_names
5773 (const mapped_debug_names &map, const char *name)
5774 {
5775 int (*cmp) (const char *, const char *);
5776
5777 if (current_language->la_language == language_cplus
5778 || current_language->la_language == language_fortran
5779 || current_language->la_language == language_d)
5780 {
5781 /* NAME is already canonical. Drop any qualifiers as
5782 .debug_names does not contain any. */
5783
5784 if (strchr (name, '(') != NULL)
5785 {
5786 gdb::unique_xmalloc_ptr<char> without_params
5787 = cp_remove_params (name);
5788
5789 if (without_params != NULL)
5790 {
5791 name = without_params.get();
5792 }
5793 }
5794 }
5795
5796 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5797
5798 const uint32_t full_hash = dwarf5_djb_hash (name);
5799 uint32_t namei
5800 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5801 (map.bucket_table_reordered
5802 + (full_hash % map.bucket_count)), 4,
5803 map.dwarf5_byte_order);
5804 if (namei == 0)
5805 return NULL;
5806 --namei;
5807 if (namei >= map.name_count)
5808 {
5809 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5810 "[in module %s]"),
5811 namei, map.name_count,
5812 objfile_name (map.dwarf2_per_objfile->objfile));
5813 return NULL;
5814 }
5815
5816 for (;;)
5817 {
5818 const uint32_t namei_full_hash
5819 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5820 (map.hash_table_reordered + namei), 4,
5821 map.dwarf5_byte_order);
5822 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5823 return NULL;
5824
5825 if (full_hash == namei_full_hash)
5826 {
5827 const char *const namei_string = map.namei_to_name (namei);
5828
5829 #if 0 /* An expensive sanity check. */
5830 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5831 {
5832 complaint (_("Wrong .debug_names hash for string at index %u "
5833 "[in module %s]"),
5834 namei, objfile_name (dwarf2_per_objfile->objfile));
5835 return NULL;
5836 }
5837 #endif
5838
5839 if (cmp (namei_string, name) == 0)
5840 {
5841 const ULONGEST namei_entry_offs
5842 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5843 + namei * map.offset_size),
5844 map.offset_size, map.dwarf5_byte_order);
5845 return map.entry_pool + namei_entry_offs;
5846 }
5847 }
5848
5849 ++namei;
5850 if (namei >= map.name_count)
5851 return NULL;
5852 }
5853 }
5854
5855 const gdb_byte *
5856 dw2_debug_names_iterator::find_vec_in_debug_names
5857 (const mapped_debug_names &map, uint32_t namei)
5858 {
5859 if (namei >= map.name_count)
5860 {
5861 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5862 "[in module %s]"),
5863 namei, map.name_count,
5864 objfile_name (map.dwarf2_per_objfile->objfile));
5865 return NULL;
5866 }
5867
5868 const ULONGEST namei_entry_offs
5869 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5870 + namei * map.offset_size),
5871 map.offset_size, map.dwarf5_byte_order);
5872 return map.entry_pool + namei_entry_offs;
5873 }
5874
5875 /* See dw2_debug_names_iterator. */
5876
5877 dwarf2_per_cu_data *
5878 dw2_debug_names_iterator::next ()
5879 {
5880 if (m_addr == NULL)
5881 return NULL;
5882
5883 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5884 struct objfile *objfile = dwarf2_per_objfile->objfile;
5885 bfd *const abfd = objfile->obfd;
5886
5887 again:
5888
5889 unsigned int bytes_read;
5890 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5891 m_addr += bytes_read;
5892 if (abbrev == 0)
5893 return NULL;
5894
5895 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5896 if (indexval_it == m_map.abbrev_map.cend ())
5897 {
5898 complaint (_("Wrong .debug_names undefined abbrev code %s "
5899 "[in module %s]"),
5900 pulongest (abbrev), objfile_name (objfile));
5901 return NULL;
5902 }
5903 const mapped_debug_names::index_val &indexval = indexval_it->second;
5904 bool have_is_static = false;
5905 bool is_static;
5906 dwarf2_per_cu_data *per_cu = NULL;
5907 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5908 {
5909 ULONGEST ull;
5910 switch (attr.form)
5911 {
5912 case DW_FORM_implicit_const:
5913 ull = attr.implicit_const;
5914 break;
5915 case DW_FORM_flag_present:
5916 ull = 1;
5917 break;
5918 case DW_FORM_udata:
5919 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5920 m_addr += bytes_read;
5921 break;
5922 default:
5923 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5924 dwarf_form_name (attr.form),
5925 objfile_name (objfile));
5926 return NULL;
5927 }
5928 switch (attr.dw_idx)
5929 {
5930 case DW_IDX_compile_unit:
5931 /* Don't crash on bad data. */
5932 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5933 {
5934 complaint (_(".debug_names entry has bad CU index %s"
5935 " [in module %s]"),
5936 pulongest (ull),
5937 objfile_name (dwarf2_per_objfile->objfile));
5938 continue;
5939 }
5940 per_cu = dwarf2_per_objfile->get_cutu (ull);
5941 break;
5942 case DW_IDX_type_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5945 {
5946 complaint (_(".debug_names entry has bad TU index %s"
5947 " [in module %s]"),
5948 pulongest (ull),
5949 objfile_name (dwarf2_per_objfile->objfile));
5950 continue;
5951 }
5952 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5953 break;
5954 case DW_IDX_GNU_internal:
5955 if (!m_map.augmentation_is_gdb)
5956 break;
5957 have_is_static = true;
5958 is_static = true;
5959 break;
5960 case DW_IDX_GNU_external:
5961 if (!m_map.augmentation_is_gdb)
5962 break;
5963 have_is_static = true;
5964 is_static = false;
5965 break;
5966 }
5967 }
5968
5969 /* Skip if already read in. */
5970 if (per_cu->v.quick->compunit_symtab)
5971 goto again;
5972
5973 /* Check static vs global. */
5974 if (have_is_static)
5975 {
5976 const bool want_static = m_block_index != GLOBAL_BLOCK;
5977 if (m_want_specific_block && want_static != is_static)
5978 goto again;
5979 }
5980
5981 /* Match dw2_symtab_iter_next, symbol_kind
5982 and debug_names::psymbol_tag. */
5983 switch (m_domain)
5984 {
5985 case VAR_DOMAIN:
5986 switch (indexval.dwarf_tag)
5987 {
5988 case DW_TAG_variable:
5989 case DW_TAG_subprogram:
5990 /* Some types are also in VAR_DOMAIN. */
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5993 break;
5994 default:
5995 goto again;
5996 }
5997 break;
5998 case STRUCT_DOMAIN:
5999 switch (indexval.dwarf_tag)
6000 {
6001 case DW_TAG_typedef:
6002 case DW_TAG_structure_type:
6003 break;
6004 default:
6005 goto again;
6006 }
6007 break;
6008 case LABEL_DOMAIN:
6009 switch (indexval.dwarf_tag)
6010 {
6011 case 0:
6012 case DW_TAG_variable:
6013 break;
6014 default:
6015 goto again;
6016 }
6017 break;
6018 default:
6019 break;
6020 }
6021
6022 /* Match dw2_expand_symtabs_matching, symbol_kind and
6023 debug_names::psymbol_tag. */
6024 switch (m_search)
6025 {
6026 case VARIABLES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6028 {
6029 case DW_TAG_variable:
6030 break;
6031 default:
6032 goto again;
6033 }
6034 break;
6035 case FUNCTIONS_DOMAIN:
6036 switch (indexval.dwarf_tag)
6037 {
6038 case DW_TAG_subprogram:
6039 break;
6040 default:
6041 goto again;
6042 }
6043 break;
6044 case TYPES_DOMAIN:
6045 switch (indexval.dwarf_tag)
6046 {
6047 case DW_TAG_typedef:
6048 case DW_TAG_structure_type:
6049 break;
6050 default:
6051 goto again;
6052 }
6053 break;
6054 default:
6055 break;
6056 }
6057
6058 return per_cu;
6059 }
6060
6061 static struct compunit_symtab *
6062 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6063 const char *name, domain_enum domain)
6064 {
6065 const block_enum block_index = static_cast<block_enum> (block_index_int);
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6068
6069 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6070 if (!mapp)
6071 {
6072 /* index is NULL if OBJF_READNOW. */
6073 return NULL;
6074 }
6075 const auto &map = *mapp;
6076
6077 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6078 block_index, domain, name);
6079
6080 struct compunit_symtab *stab_best = NULL;
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6083 {
6084 struct symbol *sym, *with_opaque = NULL;
6085 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6087 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6088
6089 sym = block_find_symbol (block, name, domain,
6090 block_find_non_opaque_type_preferred,
6091 &with_opaque);
6092
6093 /* Some caution must be observed with overloaded functions and
6094 methods, since the index will not contain any overload
6095 information (but NAME might contain it). */
6096
6097 if (sym != NULL
6098 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6099 return stab;
6100 if (with_opaque != NULL
6101 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6102 stab_best = stab;
6103
6104 /* Keep looking through other CUs. */
6105 }
6106
6107 return stab_best;
6108 }
6109
6110 /* This dumps minimal information about .debug_names. It is called
6111 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6112 uses this to verify that .debug_names has been loaded. */
6113
6114 static void
6115 dw2_debug_names_dump (struct objfile *objfile)
6116 {
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6119
6120 gdb_assert (dwarf2_per_objfile->using_index);
6121 printf_filtered (".debug_names:");
6122 if (dwarf2_per_objfile->debug_names_table)
6123 printf_filtered (" exists\n");
6124 else
6125 printf_filtered (" faked for \"readnow\"\n");
6126 printf_filtered ("\n");
6127 }
6128
6129 static void
6130 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6131 const char *func_name)
6132 {
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6135
6136 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6137 if (dwarf2_per_objfile->debug_names_table)
6138 {
6139 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6140
6141 /* Note: It doesn't matter what we pass for block_index here. */
6142 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6143 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6144
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_instantiate_symtab (per_cu, false);
6148 }
6149 }
6150
6151 static void
6152 dw2_debug_names_expand_symtabs_matching
6153 (struct objfile *objfile,
6154 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6155 const lookup_name_info &lookup_name,
6156 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6157 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6158 enum search_domain kind)
6159 {
6160 struct dwarf2_per_objfile *dwarf2_per_objfile
6161 = get_dwarf2_per_objfile (objfile);
6162
6163 /* debug_names_table is NULL if OBJF_READNOW. */
6164 if (!dwarf2_per_objfile->debug_names_table)
6165 return;
6166
6167 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6168
6169 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6170
6171 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6172 symbol_matcher,
6173 kind, [&] (offset_type namei)
6174 {
6175 /* The name was matched, now expand corresponding CUs that were
6176 marked. */
6177 dw2_debug_names_iterator iter (map, kind, namei);
6178
6179 struct dwarf2_per_cu_data *per_cu;
6180 while ((per_cu = iter.next ()) != NULL)
6181 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6182 expansion_notify);
6183 });
6184 }
6185
6186 const struct quick_symbol_functions dwarf2_debug_names_functions =
6187 {
6188 dw2_has_symbols,
6189 dw2_find_last_source_symtab,
6190 dw2_forget_cached_source_info,
6191 dw2_map_symtabs_matching_filename,
6192 dw2_debug_names_lookup_symbol,
6193 dw2_print_stats,
6194 dw2_debug_names_dump,
6195 dw2_debug_names_expand_symtabs_for_function,
6196 dw2_expand_all_symtabs,
6197 dw2_expand_symtabs_with_fullname,
6198 dw2_map_matching_symbols,
6199 dw2_debug_names_expand_symtabs_matching,
6200 dw2_find_pc_sect_compunit_symtab,
6201 NULL,
6202 dw2_map_symbol_filenames
6203 };
6204
6205 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6206 to either a dwarf2_per_objfile or dwz_file object. */
6207
6208 template <typename T>
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6211 {
6212 dwarf2_section_info *section = &section_owner->gdb_index;
6213
6214 if (dwarf2_section_empty_p (section))
6215 return {};
6216
6217 /* Older elfutils strip versions could keep the section in the main
6218 executable while splitting it for the separate debug info file. */
6219 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6220 return {};
6221
6222 dwarf2_read_section (obj, section);
6223
6224 /* dwarf2_section_info::size is a bfd_size_type, while
6225 gdb::array_view works with size_t. On 32-bit hosts, with
6226 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6227 is 32-bit. So we need an explicit narrowing conversion here.
6228 This is fine, because it's impossible to allocate or mmap an
6229 array/buffer larger than what size_t can represent. */
6230 return gdb::make_array_view (section->buffer, section->size);
6231 }
6232
6233 /* Lookup the index cache for the contents of the index associated to
6234 DWARF2_OBJ. */
6235
6236 static gdb::array_view<const gdb_byte>
6237 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6238 {
6239 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6240 if (build_id == nullptr)
6241 return {};
6242
6243 return global_index_cache.lookup_gdb_index (build_id,
6244 &dwarf2_obj->index_cache_res);
6245 }
6246
6247 /* Same as the above, but for DWZ. */
6248
6249 static gdb::array_view<const gdb_byte>
6250 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6251 {
6252 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6253 if (build_id == nullptr)
6254 return {};
6255
6256 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6257 }
6258
6259 /* See symfile.h. */
6260
6261 bool
6262 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6263 {
6264 struct dwarf2_per_objfile *dwarf2_per_objfile
6265 = get_dwarf2_per_objfile (objfile);
6266
6267 /* If we're about to read full symbols, don't bother with the
6268 indices. In this case we also don't care if some other debug
6269 format is making psymtabs, because they are all about to be
6270 expanded anyway. */
6271 if ((objfile->flags & OBJF_READNOW))
6272 {
6273 dwarf2_per_objfile->using_index = 1;
6274 create_all_comp_units (dwarf2_per_objfile);
6275 create_all_type_units (dwarf2_per_objfile);
6276 dwarf2_per_objfile->quick_file_names_table
6277 = create_quick_file_names_table
6278 (dwarf2_per_objfile->all_comp_units.size ());
6279
6280 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6281 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6282 {
6283 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6284
6285 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6286 struct dwarf2_per_cu_quick_data);
6287 }
6288
6289 /* Return 1 so that gdb sees the "quick" functions. However,
6290 these functions will be no-ops because we will have expanded
6291 all symtabs. */
6292 *index_kind = dw_index_kind::GDB_INDEX;
6293 return true;
6294 }
6295
6296 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6297 {
6298 *index_kind = dw_index_kind::DEBUG_NAMES;
6299 return true;
6300 }
6301
6302 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6303 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6304 get_gdb_index_contents_from_section<dwz_file>))
6305 {
6306 *index_kind = dw_index_kind::GDB_INDEX;
6307 return true;
6308 }
6309
6310 /* ... otherwise, try to find the index in the index cache. */
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_cache,
6313 get_gdb_index_contents_from_cache_dwz))
6314 {
6315 global_index_cache.hit ();
6316 *index_kind = dw_index_kind::GDB_INDEX;
6317 return true;
6318 }
6319
6320 global_index_cache.miss ();
6321 return false;
6322 }
6323
6324 \f
6325
6326 /* Build a partial symbol table. */
6327
6328 void
6329 dwarf2_build_psymtabs (struct objfile *objfile)
6330 {
6331 struct dwarf2_per_objfile *dwarf2_per_objfile
6332 = get_dwarf2_per_objfile (objfile);
6333
6334 init_psymbol_list (objfile, 1024);
6335
6336 try
6337 {
6338 /* This isn't really ideal: all the data we allocate on the
6339 objfile's obstack is still uselessly kept around. However,
6340 freeing it seems unsafe. */
6341 psymtab_discarder psymtabs (objfile);
6342 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6343 psymtabs.keep ();
6344
6345 /* (maybe) store an index in the cache. */
6346 global_index_cache.store (dwarf2_per_objfile);
6347 }
6348 catch (const gdb_exception_error &except)
6349 {
6350 exception_print (gdb_stderr, except);
6351 }
6352 }
6353
6354 /* Return the total length of the CU described by HEADER. */
6355
6356 static unsigned int
6357 get_cu_length (const struct comp_unit_head *header)
6358 {
6359 return header->initial_length_size + header->length;
6360 }
6361
6362 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6363
6364 static inline bool
6365 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6366 {
6367 sect_offset bottom = cu_header->sect_off;
6368 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6369
6370 return sect_off >= bottom && sect_off < top;
6371 }
6372
6373 /* Find the base address of the compilation unit for range lists and
6374 location lists. It will normally be specified by DW_AT_low_pc.
6375 In DWARF-3 draft 4, the base address could be overridden by
6376 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6377 compilation units with discontinuous ranges. */
6378
6379 static void
6380 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6381 {
6382 struct attribute *attr;
6383
6384 cu->base_known = 0;
6385 cu->base_address = 0;
6386
6387 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6388 if (attr)
6389 {
6390 cu->base_address = attr_value_as_address (attr);
6391 cu->base_known = 1;
6392 }
6393 else
6394 {
6395 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6396 if (attr)
6397 {
6398 cu->base_address = attr_value_as_address (attr);
6399 cu->base_known = 1;
6400 }
6401 }
6402 }
6403
6404 /* Read in the comp unit header information from the debug_info at info_ptr.
6405 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6406 NOTE: This leaves members offset, first_die_offset to be filled in
6407 by the caller. */
6408
6409 static const gdb_byte *
6410 read_comp_unit_head (struct comp_unit_head *cu_header,
6411 const gdb_byte *info_ptr,
6412 struct dwarf2_section_info *section,
6413 rcuh_kind section_kind)
6414 {
6415 int signed_addr;
6416 unsigned int bytes_read;
6417 const char *filename = get_section_file_name (section);
6418 bfd *abfd = get_section_bfd_owner (section);
6419
6420 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6421 cu_header->initial_length_size = bytes_read;
6422 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6423 info_ptr += bytes_read;
6424 cu_header->version = read_2_bytes (abfd, info_ptr);
6425 if (cu_header->version < 2 || cu_header->version > 5)
6426 error (_("Dwarf Error: wrong version in compilation unit header "
6427 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6428 cu_header->version, filename);
6429 info_ptr += 2;
6430 if (cu_header->version < 5)
6431 switch (section_kind)
6432 {
6433 case rcuh_kind::COMPILE:
6434 cu_header->unit_type = DW_UT_compile;
6435 break;
6436 case rcuh_kind::TYPE:
6437 cu_header->unit_type = DW_UT_type;
6438 break;
6439 default:
6440 internal_error (__FILE__, __LINE__,
6441 _("read_comp_unit_head: invalid section_kind"));
6442 }
6443 else
6444 {
6445 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6446 (read_1_byte (abfd, info_ptr));
6447 info_ptr += 1;
6448 switch (cu_header->unit_type)
6449 {
6450 case DW_UT_compile:
6451 if (section_kind != rcuh_kind::COMPILE)
6452 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6453 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6454 filename);
6455 break;
6456 case DW_UT_type:
6457 section_kind = rcuh_kind::TYPE;
6458 break;
6459 default:
6460 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6461 "(is %d, should be %d or %d) [in module %s]"),
6462 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6463 }
6464
6465 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6466 info_ptr += 1;
6467 }
6468 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6469 cu_header,
6470 &bytes_read);
6471 info_ptr += bytes_read;
6472 if (cu_header->version < 5)
6473 {
6474 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6475 info_ptr += 1;
6476 }
6477 signed_addr = bfd_get_sign_extend_vma (abfd);
6478 if (signed_addr < 0)
6479 internal_error (__FILE__, __LINE__,
6480 _("read_comp_unit_head: dwarf from non elf file"));
6481 cu_header->signed_addr_p = signed_addr;
6482
6483 if (section_kind == rcuh_kind::TYPE)
6484 {
6485 LONGEST type_offset;
6486
6487 cu_header->signature = read_8_bytes (abfd, info_ptr);
6488 info_ptr += 8;
6489
6490 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6491 info_ptr += bytes_read;
6492 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6493 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6494 error (_("Dwarf Error: Too big type_offset in compilation unit "
6495 "header (is %s) [in module %s]"), plongest (type_offset),
6496 filename);
6497 }
6498
6499 return info_ptr;
6500 }
6501
6502 /* Helper function that returns the proper abbrev section for
6503 THIS_CU. */
6504
6505 static struct dwarf2_section_info *
6506 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6507 {
6508 struct dwarf2_section_info *abbrev;
6509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6510
6511 if (this_cu->is_dwz)
6512 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6513 else
6514 abbrev = &dwarf2_per_objfile->abbrev;
6515
6516 return abbrev;
6517 }
6518
6519 /* Subroutine of read_and_check_comp_unit_head and
6520 read_and_check_type_unit_head to simplify them.
6521 Perform various error checking on the header. */
6522
6523 static void
6524 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6525 struct comp_unit_head *header,
6526 struct dwarf2_section_info *section,
6527 struct dwarf2_section_info *abbrev_section)
6528 {
6529 const char *filename = get_section_file_name (section);
6530
6531 if (to_underlying (header->abbrev_sect_off)
6532 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6533 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6534 "(offset %s + 6) [in module %s]"),
6535 sect_offset_str (header->abbrev_sect_off),
6536 sect_offset_str (header->sect_off),
6537 filename);
6538
6539 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6540 avoid potential 32-bit overflow. */
6541 if (((ULONGEST) header->sect_off + get_cu_length (header))
6542 > section->size)
6543 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6544 "(offset %s + 0) [in module %s]"),
6545 header->length, sect_offset_str (header->sect_off),
6546 filename);
6547 }
6548
6549 /* Read in a CU/TU header and perform some basic error checking.
6550 The contents of the header are stored in HEADER.
6551 The result is a pointer to the start of the first DIE. */
6552
6553 static const gdb_byte *
6554 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6555 struct comp_unit_head *header,
6556 struct dwarf2_section_info *section,
6557 struct dwarf2_section_info *abbrev_section,
6558 const gdb_byte *info_ptr,
6559 rcuh_kind section_kind)
6560 {
6561 const gdb_byte *beg_of_comp_unit = info_ptr;
6562
6563 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6564
6565 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6566
6567 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6568
6569 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6570 abbrev_section);
6571
6572 return info_ptr;
6573 }
6574
6575 /* Fetch the abbreviation table offset from a comp or type unit header. */
6576
6577 static sect_offset
6578 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6579 struct dwarf2_section_info *section,
6580 sect_offset sect_off)
6581 {
6582 bfd *abfd = get_section_bfd_owner (section);
6583 const gdb_byte *info_ptr;
6584 unsigned int initial_length_size, offset_size;
6585 uint16_t version;
6586
6587 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6588 info_ptr = section->buffer + to_underlying (sect_off);
6589 read_initial_length (abfd, info_ptr, &initial_length_size);
6590 offset_size = initial_length_size == 4 ? 4 : 8;
6591 info_ptr += initial_length_size;
6592
6593 version = read_2_bytes (abfd, info_ptr);
6594 info_ptr += 2;
6595 if (version >= 5)
6596 {
6597 /* Skip unit type and address size. */
6598 info_ptr += 2;
6599 }
6600
6601 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6602 }
6603
6604 /* Allocate a new partial symtab for file named NAME and mark this new
6605 partial symtab as being an include of PST. */
6606
6607 static void
6608 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6609 struct objfile *objfile)
6610 {
6611 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6612
6613 if (!IS_ABSOLUTE_PATH (subpst->filename))
6614 {
6615 /* It shares objfile->objfile_obstack. */
6616 subpst->dirname = pst->dirname;
6617 }
6618
6619 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6620 subpst->dependencies[0] = pst;
6621 subpst->number_of_dependencies = 1;
6622
6623 subpst->read_symtab = pst->read_symtab;
6624
6625 /* No private part is necessary for include psymtabs. This property
6626 can be used to differentiate between such include psymtabs and
6627 the regular ones. */
6628 subpst->read_symtab_private = NULL;
6629 }
6630
6631 /* Read the Line Number Program data and extract the list of files
6632 included by the source file represented by PST. Build an include
6633 partial symtab for each of these included files. */
6634
6635 static void
6636 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6637 struct die_info *die,
6638 struct partial_symtab *pst)
6639 {
6640 line_header_up lh;
6641 struct attribute *attr;
6642
6643 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6644 if (attr)
6645 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6646 if (lh == NULL)
6647 return; /* No linetable, so no includes. */
6648
6649 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6650 that we pass in the raw text_low here; that is ok because we're
6651 only decoding the line table to make include partial symtabs, and
6652 so the addresses aren't really used. */
6653 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6654 pst->raw_text_low (), 1);
6655 }
6656
6657 static hashval_t
6658 hash_signatured_type (const void *item)
6659 {
6660 const struct signatured_type *sig_type
6661 = (const struct signatured_type *) item;
6662
6663 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6664 return sig_type->signature;
6665 }
6666
6667 static int
6668 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6669 {
6670 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6671 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6672
6673 return lhs->signature == rhs->signature;
6674 }
6675
6676 /* Allocate a hash table for signatured types. */
6677
6678 static htab_t
6679 allocate_signatured_type_table (struct objfile *objfile)
6680 {
6681 return htab_create_alloc_ex (41,
6682 hash_signatured_type,
6683 eq_signatured_type,
6684 NULL,
6685 &objfile->objfile_obstack,
6686 hashtab_obstack_allocate,
6687 dummy_obstack_deallocate);
6688 }
6689
6690 /* A helper function to add a signatured type CU to a table. */
6691
6692 static int
6693 add_signatured_type_cu_to_table (void **slot, void *datum)
6694 {
6695 struct signatured_type *sigt = (struct signatured_type *) *slot;
6696 std::vector<signatured_type *> *all_type_units
6697 = (std::vector<signatured_type *> *) datum;
6698
6699 all_type_units->push_back (sigt);
6700
6701 return 1;
6702 }
6703
6704 /* A helper for create_debug_types_hash_table. Read types from SECTION
6705 and fill them into TYPES_HTAB. It will process only type units,
6706 therefore DW_UT_type. */
6707
6708 static void
6709 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6710 struct dwo_file *dwo_file,
6711 dwarf2_section_info *section, htab_t &types_htab,
6712 rcuh_kind section_kind)
6713 {
6714 struct objfile *objfile = dwarf2_per_objfile->objfile;
6715 struct dwarf2_section_info *abbrev_section;
6716 bfd *abfd;
6717 const gdb_byte *info_ptr, *end_ptr;
6718
6719 abbrev_section = (dwo_file != NULL
6720 ? &dwo_file->sections.abbrev
6721 : &dwarf2_per_objfile->abbrev);
6722
6723 if (dwarf_read_debug)
6724 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6725 get_section_name (section),
6726 get_section_file_name (abbrev_section));
6727
6728 dwarf2_read_section (objfile, section);
6729 info_ptr = section->buffer;
6730
6731 if (info_ptr == NULL)
6732 return;
6733
6734 /* We can't set abfd until now because the section may be empty or
6735 not present, in which case the bfd is unknown. */
6736 abfd = get_section_bfd_owner (section);
6737
6738 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6739 because we don't need to read any dies: the signature is in the
6740 header. */
6741
6742 end_ptr = info_ptr + section->size;
6743 while (info_ptr < end_ptr)
6744 {
6745 struct signatured_type *sig_type;
6746 struct dwo_unit *dwo_tu;
6747 void **slot;
6748 const gdb_byte *ptr = info_ptr;
6749 struct comp_unit_head header;
6750 unsigned int length;
6751
6752 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6753
6754 /* Initialize it due to a false compiler warning. */
6755 header.signature = -1;
6756 header.type_cu_offset_in_tu = (cu_offset) -1;
6757
6758 /* We need to read the type's signature in order to build the hash
6759 table, but we don't need anything else just yet. */
6760
6761 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6762 abbrev_section, ptr, section_kind);
6763
6764 length = get_cu_length (&header);
6765
6766 /* Skip dummy type units. */
6767 if (ptr >= info_ptr + length
6768 || peek_abbrev_code (abfd, ptr) == 0
6769 || header.unit_type != DW_UT_type)
6770 {
6771 info_ptr += length;
6772 continue;
6773 }
6774
6775 if (types_htab == NULL)
6776 {
6777 if (dwo_file)
6778 types_htab = allocate_dwo_unit_table (objfile);
6779 else
6780 types_htab = allocate_signatured_type_table (objfile);
6781 }
6782
6783 if (dwo_file)
6784 {
6785 sig_type = NULL;
6786 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6787 struct dwo_unit);
6788 dwo_tu->dwo_file = dwo_file;
6789 dwo_tu->signature = header.signature;
6790 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6791 dwo_tu->section = section;
6792 dwo_tu->sect_off = sect_off;
6793 dwo_tu->length = length;
6794 }
6795 else
6796 {
6797 /* N.B.: type_offset is not usable if this type uses a DWO file.
6798 The real type_offset is in the DWO file. */
6799 dwo_tu = NULL;
6800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6801 struct signatured_type);
6802 sig_type->signature = header.signature;
6803 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6804 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6805 sig_type->per_cu.is_debug_types = 1;
6806 sig_type->per_cu.section = section;
6807 sig_type->per_cu.sect_off = sect_off;
6808 sig_type->per_cu.length = length;
6809 }
6810
6811 slot = htab_find_slot (types_htab,
6812 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6813 INSERT);
6814 gdb_assert (slot != NULL);
6815 if (*slot != NULL)
6816 {
6817 sect_offset dup_sect_off;
6818
6819 if (dwo_file)
6820 {
6821 const struct dwo_unit *dup_tu
6822 = (const struct dwo_unit *) *slot;
6823
6824 dup_sect_off = dup_tu->sect_off;
6825 }
6826 else
6827 {
6828 const struct signatured_type *dup_tu
6829 = (const struct signatured_type *) *slot;
6830
6831 dup_sect_off = dup_tu->per_cu.sect_off;
6832 }
6833
6834 complaint (_("debug type entry at offset %s is duplicate to"
6835 " the entry at offset %s, signature %s"),
6836 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6837 hex_string (header.signature));
6838 }
6839 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6840
6841 if (dwarf_read_debug > 1)
6842 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6843 sect_offset_str (sect_off),
6844 hex_string (header.signature));
6845
6846 info_ptr += length;
6847 }
6848 }
6849
6850 /* Create the hash table of all entries in the .debug_types
6851 (or .debug_types.dwo) section(s).
6852 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6853 otherwise it is NULL.
6854
6855 The result is a pointer to the hash table or NULL if there are no types.
6856
6857 Note: This function processes DWO files only, not DWP files. */
6858
6859 static void
6860 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6861 struct dwo_file *dwo_file,
6862 VEC (dwarf2_section_info_def) *types,
6863 htab_t &types_htab)
6864 {
6865 int ix;
6866 struct dwarf2_section_info *section;
6867
6868 if (VEC_empty (dwarf2_section_info_def, types))
6869 return;
6870
6871 for (ix = 0;
6872 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6873 ++ix)
6874 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6875 types_htab, rcuh_kind::TYPE);
6876 }
6877
6878 /* Create the hash table of all entries in the .debug_types section,
6879 and initialize all_type_units.
6880 The result is zero if there is an error (e.g. missing .debug_types section),
6881 otherwise non-zero. */
6882
6883 static int
6884 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6885 {
6886 htab_t types_htab = NULL;
6887
6888 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6889 &dwarf2_per_objfile->info, types_htab,
6890 rcuh_kind::COMPILE);
6891 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6892 dwarf2_per_objfile->types, types_htab);
6893 if (types_htab == NULL)
6894 {
6895 dwarf2_per_objfile->signatured_types = NULL;
6896 return 0;
6897 }
6898
6899 dwarf2_per_objfile->signatured_types = types_htab;
6900
6901 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6902 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6903
6904 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6905 &dwarf2_per_objfile->all_type_units);
6906
6907 return 1;
6908 }
6909
6910 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6911 If SLOT is non-NULL, it is the entry to use in the hash table.
6912 Otherwise we find one. */
6913
6914 static struct signatured_type *
6915 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6916 void **slot)
6917 {
6918 struct objfile *objfile = dwarf2_per_objfile->objfile;
6919
6920 if (dwarf2_per_objfile->all_type_units.size ()
6921 == dwarf2_per_objfile->all_type_units.capacity ())
6922 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6923
6924 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6925 struct signatured_type);
6926
6927 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6928 sig_type->signature = sig;
6929 sig_type->per_cu.is_debug_types = 1;
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 sig_type->per_cu.v.quick =
6933 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6934 struct dwarf2_per_cu_quick_data);
6935 }
6936
6937 if (slot == NULL)
6938 {
6939 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6940 sig_type, INSERT);
6941 }
6942 gdb_assert (*slot == NULL);
6943 *slot = sig_type;
6944 /* The rest of sig_type must be filled in by the caller. */
6945 return sig_type;
6946 }
6947
6948 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6949 Fill in SIG_ENTRY with DWO_ENTRY. */
6950
6951 static void
6952 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6953 struct signatured_type *sig_entry,
6954 struct dwo_unit *dwo_entry)
6955 {
6956 /* Make sure we're not clobbering something we don't expect to. */
6957 gdb_assert (! sig_entry->per_cu.queued);
6958 gdb_assert (sig_entry->per_cu.cu == NULL);
6959 if (dwarf2_per_objfile->using_index)
6960 {
6961 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6962 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6963 }
6964 else
6965 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6966 gdb_assert (sig_entry->signature == dwo_entry->signature);
6967 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6968 gdb_assert (sig_entry->type_unit_group == NULL);
6969 gdb_assert (sig_entry->dwo_unit == NULL);
6970
6971 sig_entry->per_cu.section = dwo_entry->section;
6972 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6973 sig_entry->per_cu.length = dwo_entry->length;
6974 sig_entry->per_cu.reading_dwo_directly = 1;
6975 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6976 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6977 sig_entry->dwo_unit = dwo_entry;
6978 }
6979
6980 /* Subroutine of lookup_signatured_type.
6981 If we haven't read the TU yet, create the signatured_type data structure
6982 for a TU to be read in directly from a DWO file, bypassing the stub.
6983 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6984 using .gdb_index, then when reading a CU we want to stay in the DWO file
6985 containing that CU. Otherwise we could end up reading several other DWO
6986 files (due to comdat folding) to process the transitive closure of all the
6987 mentioned TUs, and that can be slow. The current DWO file will have every
6988 type signature that it needs.
6989 We only do this for .gdb_index because in the psymtab case we already have
6990 to read all the DWOs to build the type unit groups. */
6991
6992 static struct signatured_type *
6993 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6994 {
6995 struct dwarf2_per_objfile *dwarf2_per_objfile
6996 = cu->per_cu->dwarf2_per_objfile;
6997 struct objfile *objfile = dwarf2_per_objfile->objfile;
6998 struct dwo_file *dwo_file;
6999 struct dwo_unit find_dwo_entry, *dwo_entry;
7000 struct signatured_type find_sig_entry, *sig_entry;
7001 void **slot;
7002
7003 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7004
7005 /* If TU skeletons have been removed then we may not have read in any
7006 TUs yet. */
7007 if (dwarf2_per_objfile->signatured_types == NULL)
7008 {
7009 dwarf2_per_objfile->signatured_types
7010 = allocate_signatured_type_table (objfile);
7011 }
7012
7013 /* We only ever need to read in one copy of a signatured type.
7014 Use the global signatured_types array to do our own comdat-folding
7015 of types. If this is the first time we're reading this TU, and
7016 the TU has an entry in .gdb_index, replace the recorded data from
7017 .gdb_index with this TU. */
7018
7019 find_sig_entry.signature = sig;
7020 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7021 &find_sig_entry, INSERT);
7022 sig_entry = (struct signatured_type *) *slot;
7023
7024 /* We can get here with the TU already read, *or* in the process of being
7025 read. Don't reassign the global entry to point to this DWO if that's
7026 the case. Also note that if the TU is already being read, it may not
7027 have come from a DWO, the program may be a mix of Fission-compiled
7028 code and non-Fission-compiled code. */
7029
7030 /* Have we already tried to read this TU?
7031 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7032 needn't exist in the global table yet). */
7033 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7034 return sig_entry;
7035
7036 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7037 dwo_unit of the TU itself. */
7038 dwo_file = cu->dwo_unit->dwo_file;
7039
7040 /* Ok, this is the first time we're reading this TU. */
7041 if (dwo_file->tus == NULL)
7042 return NULL;
7043 find_dwo_entry.signature = sig;
7044 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7045 if (dwo_entry == NULL)
7046 return NULL;
7047
7048 /* If the global table doesn't have an entry for this TU, add one. */
7049 if (sig_entry == NULL)
7050 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7051
7052 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7053 sig_entry->per_cu.tu_read = 1;
7054 return sig_entry;
7055 }
7056
7057 /* Subroutine of lookup_signatured_type.
7058 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7059 then try the DWP file. If the TU stub (skeleton) has been removed then
7060 it won't be in .gdb_index. */
7061
7062 static struct signatured_type *
7063 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7064 {
7065 struct dwarf2_per_objfile *dwarf2_per_objfile
7066 = cu->per_cu->dwarf2_per_objfile;
7067 struct objfile *objfile = dwarf2_per_objfile->objfile;
7068 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7069 struct dwo_unit *dwo_entry;
7070 struct signatured_type find_sig_entry, *sig_entry;
7071 void **slot;
7072
7073 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7074 gdb_assert (dwp_file != NULL);
7075
7076 /* If TU skeletons have been removed then we may not have read in any
7077 TUs yet. */
7078 if (dwarf2_per_objfile->signatured_types == NULL)
7079 {
7080 dwarf2_per_objfile->signatured_types
7081 = allocate_signatured_type_table (objfile);
7082 }
7083
7084 find_sig_entry.signature = sig;
7085 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7086 &find_sig_entry, INSERT);
7087 sig_entry = (struct signatured_type *) *slot;
7088
7089 /* Have we already tried to read this TU?
7090 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7091 needn't exist in the global table yet). */
7092 if (sig_entry != NULL)
7093 return sig_entry;
7094
7095 if (dwp_file->tus == NULL)
7096 return NULL;
7097 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7098 sig, 1 /* is_debug_types */);
7099 if (dwo_entry == NULL)
7100 return NULL;
7101
7102 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7103 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7104
7105 return sig_entry;
7106 }
7107
7108 /* Lookup a signature based type for DW_FORM_ref_sig8.
7109 Returns NULL if signature SIG is not present in the table.
7110 It is up to the caller to complain about this. */
7111
7112 static struct signatured_type *
7113 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7114 {
7115 struct dwarf2_per_objfile *dwarf2_per_objfile
7116 = cu->per_cu->dwarf2_per_objfile;
7117
7118 if (cu->dwo_unit
7119 && dwarf2_per_objfile->using_index)
7120 {
7121 /* We're in a DWO/DWP file, and we're using .gdb_index.
7122 These cases require special processing. */
7123 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7124 return lookup_dwo_signatured_type (cu, sig);
7125 else
7126 return lookup_dwp_signatured_type (cu, sig);
7127 }
7128 else
7129 {
7130 struct signatured_type find_entry, *entry;
7131
7132 if (dwarf2_per_objfile->signatured_types == NULL)
7133 return NULL;
7134 find_entry.signature = sig;
7135 entry = ((struct signatured_type *)
7136 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7137 return entry;
7138 }
7139 }
7140 \f
7141 /* Low level DIE reading support. */
7142
7143 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7144
7145 static void
7146 init_cu_die_reader (struct die_reader_specs *reader,
7147 struct dwarf2_cu *cu,
7148 struct dwarf2_section_info *section,
7149 struct dwo_file *dwo_file,
7150 struct abbrev_table *abbrev_table)
7151 {
7152 gdb_assert (section->readin && section->buffer != NULL);
7153 reader->abfd = get_section_bfd_owner (section);
7154 reader->cu = cu;
7155 reader->dwo_file = dwo_file;
7156 reader->die_section = section;
7157 reader->buffer = section->buffer;
7158 reader->buffer_end = section->buffer + section->size;
7159 reader->comp_dir = NULL;
7160 reader->abbrev_table = abbrev_table;
7161 }
7162
7163 /* Subroutine of init_cutu_and_read_dies to simplify it.
7164 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7165 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7166 already.
7167
7168 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7169 from it to the DIE in the DWO. If NULL we are skipping the stub.
7170 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7171 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7172 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7173 STUB_COMP_DIR may be non-NULL.
7174 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7175 are filled in with the info of the DIE from the DWO file.
7176 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7177 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7178 kept around for at least as long as *RESULT_READER.
7179
7180 The result is non-zero if a valid (non-dummy) DIE was found. */
7181
7182 static int
7183 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7184 struct dwo_unit *dwo_unit,
7185 struct die_info *stub_comp_unit_die,
7186 const char *stub_comp_dir,
7187 struct die_reader_specs *result_reader,
7188 const gdb_byte **result_info_ptr,
7189 struct die_info **result_comp_unit_die,
7190 int *result_has_children,
7191 abbrev_table_up *result_dwo_abbrev_table)
7192 {
7193 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7194 struct objfile *objfile = dwarf2_per_objfile->objfile;
7195 struct dwarf2_cu *cu = this_cu->cu;
7196 bfd *abfd;
7197 const gdb_byte *begin_info_ptr, *info_ptr;
7198 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7199 int i,num_extra_attrs;
7200 struct dwarf2_section_info *dwo_abbrev_section;
7201 struct attribute *attr;
7202 struct die_info *comp_unit_die;
7203
7204 /* At most one of these may be provided. */
7205 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7206
7207 /* These attributes aren't processed until later:
7208 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7209 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7210 referenced later. However, these attributes are found in the stub
7211 which we won't have later. In order to not impose this complication
7212 on the rest of the code, we read them here and copy them to the
7213 DWO CU/TU die. */
7214
7215 stmt_list = NULL;
7216 low_pc = NULL;
7217 high_pc = NULL;
7218 ranges = NULL;
7219 comp_dir = NULL;
7220
7221 if (stub_comp_unit_die != NULL)
7222 {
7223 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7224 DWO file. */
7225 if (! this_cu->is_debug_types)
7226 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7227 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7228 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7229 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7230 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7231
7232 /* There should be a DW_AT_addr_base attribute here (if needed).
7233 We need the value before we can process DW_FORM_GNU_addr_index
7234 or DW_FORM_addrx. */
7235 cu->addr_base = 0;
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7237 if (attr)
7238 cu->addr_base = DW_UNSND (attr);
7239
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7244 if (attr)
7245 cu->ranges_base = DW_UNSND (attr);
7246 }
7247 else if (stub_comp_dir != NULL)
7248 {
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7255 }
7256
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
7259 dwarf2_section_info *section = dwo_unit->section;
7260 dwarf2_read_section (objfile, section);
7261 abfd = get_section_bfd_owner (section);
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7265
7266 if (this_cu->is_debug_types)
7267 {
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7269
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
7272 dwo_abbrev_section,
7273 info_ptr, rcuh_kind::TYPE);
7274 /* This is not an assert because it can be caused by bad debug info. */
7275 if (sig_type->signature != cu->header.signature)
7276 {
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7278 " TU at offset %s [in module %s]"),
7279 hex_string (sig_type->signature),
7280 hex_string (cu->header.signature),
7281 sect_offset_str (dwo_unit->sect_off),
7282 bfd_get_filename (abfd));
7283 }
7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7289
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7294 }
7295 else
7296 {
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
7299 dwo_abbrev_section,
7300 info_ptr, rcuh_kind::COMPILE);
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7303 until now. */
7304 dwo_unit->length = get_cu_length (&cu->header);
7305 }
7306
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
7312
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7318 + (low_pc != NULL)
7319 + (high_pc != NULL)
7320 + (ranges != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7324
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7330 if (low_pc != NULL)
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7334 if (ranges != NULL)
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7339
7340 if (dwarf_die_debug)
7341 {
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
7344 get_section_name (section),
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
7347 dump_die (comp_unit_die, dwarf_die_debug);
7348 }
7349
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7356
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7360 return 0;
7361
7362 *result_info_ptr = info_ptr;
7363 return 1;
7364 }
7365
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7368 Returns NULL if the specified DWO unit cannot be found. */
7369
7370 static struct dwo_unit *
7371 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7372 struct die_info *comp_unit_die)
7373 {
7374 struct dwarf2_cu *cu = this_cu->cu;
7375 ULONGEST signature;
7376 struct dwo_unit *dwo_unit;
7377 const char *comp_dir, *dwo_name;
7378
7379 gdb_assert (cu != NULL);
7380
7381 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7382 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7383 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7384
7385 if (this_cu->is_debug_types)
7386 {
7387 struct signatured_type *sig_type;
7388
7389 /* Since this_cu is the first member of struct signatured_type,
7390 we can go from a pointer to one to a pointer to the other. */
7391 sig_type = (struct signatured_type *) this_cu;
7392 signature = sig_type->signature;
7393 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7394 }
7395 else
7396 {
7397 struct attribute *attr;
7398
7399 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7400 if (! attr)
7401 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7402 " [in module %s]"),
7403 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7404 signature = DW_UNSND (attr);
7405 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7406 signature);
7407 }
7408
7409 return dwo_unit;
7410 }
7411
7412 /* Subroutine of init_cutu_and_read_dies to simplify it.
7413 See it for a description of the parameters.
7414 Read a TU directly from a DWO file, bypassing the stub. */
7415
7416 static void
7417 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7418 int use_existing_cu, int keep,
7419 die_reader_func_ftype *die_reader_func,
7420 void *data)
7421 {
7422 std::unique_ptr<dwarf2_cu> new_cu;
7423 struct signatured_type *sig_type;
7424 struct die_reader_specs reader;
7425 const gdb_byte *info_ptr;
7426 struct die_info *comp_unit_die;
7427 int has_children;
7428 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7429
7430 /* Verify we can do the following downcast, and that we have the
7431 data we need. */
7432 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7433 sig_type = (struct signatured_type *) this_cu;
7434 gdb_assert (sig_type->dwo_unit != NULL);
7435
7436 if (use_existing_cu && this_cu->cu != NULL)
7437 {
7438 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7439 /* There's no need to do the rereading_dwo_cu handling that
7440 init_cutu_and_read_dies does since we don't read the stub. */
7441 }
7442 else
7443 {
7444 /* If !use_existing_cu, this_cu->cu must be NULL. */
7445 gdb_assert (this_cu->cu == NULL);
7446 new_cu.reset (new dwarf2_cu (this_cu));
7447 }
7448
7449 /* A future optimization, if needed, would be to use an existing
7450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7451 could share abbrev tables. */
7452
7453 /* The abbreviation table used by READER, this must live at least as long as
7454 READER. */
7455 abbrev_table_up dwo_abbrev_table;
7456
7457 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7458 NULL /* stub_comp_unit_die */,
7459 sig_type->dwo_unit->dwo_file->comp_dir,
7460 &reader, &info_ptr,
7461 &comp_unit_die, &has_children,
7462 &dwo_abbrev_table) == 0)
7463 {
7464 /* Dummy die. */
7465 return;
7466 }
7467
7468 /* All the "real" work is done here. */
7469 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7470
7471 /* This duplicates the code in init_cutu_and_read_dies,
7472 but the alternative is making the latter more complex.
7473 This function is only for the special case of using DWO files directly:
7474 no point in overly complicating the general case just to handle this. */
7475 if (new_cu != NULL && keep)
7476 {
7477 /* Link this CU into read_in_chain. */
7478 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7479 dwarf2_per_objfile->read_in_chain = this_cu;
7480 /* The chain owns it now. */
7481 new_cu.release ();
7482 }
7483 }
7484
7485 /* Initialize a CU (or TU) and read its DIEs.
7486 If the CU defers to a DWO file, read the DWO file as well.
7487
7488 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7489 Otherwise the table specified in the comp unit header is read in and used.
7490 This is an optimization for when we already have the abbrev table.
7491
7492 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7493 Otherwise, a new CU is allocated with xmalloc.
7494
7495 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7496 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7497
7498 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7499 linker) then DIE_READER_FUNC will not get called. */
7500
7501 static void
7502 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7503 struct abbrev_table *abbrev_table,
7504 int use_existing_cu, int keep,
7505 bool skip_partial,
7506 die_reader_func_ftype *die_reader_func,
7507 void *data)
7508 {
7509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7510 struct objfile *objfile = dwarf2_per_objfile->objfile;
7511 struct dwarf2_section_info *section = this_cu->section;
7512 bfd *abfd = get_section_bfd_owner (section);
7513 struct dwarf2_cu *cu;
7514 const gdb_byte *begin_info_ptr, *info_ptr;
7515 struct die_reader_specs reader;
7516 struct die_info *comp_unit_die;
7517 int has_children;
7518 struct attribute *attr;
7519 struct signatured_type *sig_type = NULL;
7520 struct dwarf2_section_info *abbrev_section;
7521 /* Non-zero if CU currently points to a DWO file and we need to
7522 reread it. When this happens we need to reread the skeleton die
7523 before we can reread the DWO file (this only applies to CUs, not TUs). */
7524 int rereading_dwo_cu = 0;
7525
7526 if (dwarf_die_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7528 this_cu->is_debug_types ? "type" : "comp",
7529 sect_offset_str (this_cu->sect_off));
7530
7531 if (use_existing_cu)
7532 gdb_assert (keep);
7533
7534 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7535 file (instead of going through the stub), short-circuit all of this. */
7536 if (this_cu->reading_dwo_directly)
7537 {
7538 /* Narrow down the scope of possibilities to have to understand. */
7539 gdb_assert (this_cu->is_debug_types);
7540 gdb_assert (abbrev_table == NULL);
7541 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7542 die_reader_func, data);
7543 return;
7544 }
7545
7546 /* This is cheap if the section is already read in. */
7547 dwarf2_read_section (objfile, section);
7548
7549 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7550
7551 abbrev_section = get_abbrev_section_for_cu (this_cu);
7552
7553 std::unique_ptr<dwarf2_cu> new_cu;
7554 if (use_existing_cu && this_cu->cu != NULL)
7555 {
7556 cu = this_cu->cu;
7557 /* If this CU is from a DWO file we need to start over, we need to
7558 refetch the attributes from the skeleton CU.
7559 This could be optimized by retrieving those attributes from when we
7560 were here the first time: the previous comp_unit_die was stored in
7561 comp_unit_obstack. But there's no data yet that we need this
7562 optimization. */
7563 if (cu->dwo_unit != NULL)
7564 rereading_dwo_cu = 1;
7565 }
7566 else
7567 {
7568 /* If !use_existing_cu, this_cu->cu must be NULL. */
7569 gdb_assert (this_cu->cu == NULL);
7570 new_cu.reset (new dwarf2_cu (this_cu));
7571 cu = new_cu.get ();
7572 }
7573
7574 /* Get the header. */
7575 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7576 {
7577 /* We already have the header, there's no need to read it in again. */
7578 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7579 }
7580 else
7581 {
7582 if (this_cu->is_debug_types)
7583 {
7584 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7585 &cu->header, section,
7586 abbrev_section, info_ptr,
7587 rcuh_kind::TYPE);
7588
7589 /* Since per_cu is the first member of struct signatured_type,
7590 we can go from a pointer to one to a pointer to the other. */
7591 sig_type = (struct signatured_type *) this_cu;
7592 gdb_assert (sig_type->signature == cu->header.signature);
7593 gdb_assert (sig_type->type_offset_in_tu
7594 == cu->header.type_cu_offset_in_tu);
7595 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7596
7597 /* LENGTH has not been set yet for type units if we're
7598 using .gdb_index. */
7599 this_cu->length = get_cu_length (&cu->header);
7600
7601 /* Establish the type offset that can be used to lookup the type. */
7602 sig_type->type_offset_in_section =
7603 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7604
7605 this_cu->dwarf_version = cu->header.version;
7606 }
7607 else
7608 {
7609 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7610 &cu->header, section,
7611 abbrev_section,
7612 info_ptr,
7613 rcuh_kind::COMPILE);
7614
7615 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7616 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7617 this_cu->dwarf_version = cu->header.version;
7618 }
7619 }
7620
7621 /* Skip dummy compilation units. */
7622 if (info_ptr >= begin_info_ptr + this_cu->length
7623 || peek_abbrev_code (abfd, info_ptr) == 0)
7624 return;
7625
7626 /* If we don't have them yet, read the abbrevs for this compilation unit.
7627 And if we need to read them now, make sure they're freed when we're
7628 done (own the table through ABBREV_TABLE_HOLDER). */
7629 abbrev_table_up abbrev_table_holder;
7630 if (abbrev_table != NULL)
7631 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7632 else
7633 {
7634 abbrev_table_holder
7635 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7636 cu->header.abbrev_sect_off);
7637 abbrev_table = abbrev_table_holder.get ();
7638 }
7639
7640 /* Read the top level CU/TU die. */
7641 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7642 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7643
7644 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7645 return;
7646
7647 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7648 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7649 table from the DWO file and pass the ownership over to us. It will be
7650 referenced from READER, so we must make sure to free it after we're done
7651 with READER.
7652
7653 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7654 DWO CU, that this test will fail (the attribute will not be present). */
7655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7656 abbrev_table_up dwo_abbrev_table;
7657 if (attr)
7658 {
7659 struct dwo_unit *dwo_unit;
7660 struct die_info *dwo_comp_unit_die;
7661
7662 if (has_children)
7663 {
7664 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7665 " has children (offset %s) [in module %s]"),
7666 sect_offset_str (this_cu->sect_off),
7667 bfd_get_filename (abfd));
7668 }
7669 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7670 if (dwo_unit != NULL)
7671 {
7672 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7673 comp_unit_die, NULL,
7674 &reader, &info_ptr,
7675 &dwo_comp_unit_die, &has_children,
7676 &dwo_abbrev_table) == 0)
7677 {
7678 /* Dummy die. */
7679 return;
7680 }
7681 comp_unit_die = dwo_comp_unit_die;
7682 }
7683 else
7684 {
7685 /* Yikes, we couldn't find the rest of the DIE, we only have
7686 the stub. A complaint has already been logged. There's
7687 not much more we can do except pass on the stub DIE to
7688 die_reader_func. We don't want to throw an error on bad
7689 debug info. */
7690 }
7691 }
7692
7693 /* All of the above is setup for this call. Yikes. */
7694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7695
7696 /* Done, clean up. */
7697 if (new_cu != NULL && keep)
7698 {
7699 /* Link this CU into read_in_chain. */
7700 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7701 dwarf2_per_objfile->read_in_chain = this_cu;
7702 /* The chain owns it now. */
7703 new_cu.release ();
7704 }
7705 }
7706
7707 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7708 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7709 to have already done the lookup to find the DWO file).
7710
7711 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7712 THIS_CU->is_debug_types, but nothing else.
7713
7714 We fill in THIS_CU->length.
7715
7716 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7717 linker) then DIE_READER_FUNC will not get called.
7718
7719 THIS_CU->cu is always freed when done.
7720 This is done in order to not leave THIS_CU->cu in a state where we have
7721 to care whether it refers to the "main" CU or the DWO CU. */
7722
7723 static void
7724 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7725 struct dwo_file *dwo_file,
7726 die_reader_func_ftype *die_reader_func,
7727 void *data)
7728 {
7729 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7730 struct objfile *objfile = dwarf2_per_objfile->objfile;
7731 struct dwarf2_section_info *section = this_cu->section;
7732 bfd *abfd = get_section_bfd_owner (section);
7733 struct dwarf2_section_info *abbrev_section;
7734 const gdb_byte *begin_info_ptr, *info_ptr;
7735 struct die_reader_specs reader;
7736 struct die_info *comp_unit_die;
7737 int has_children;
7738
7739 if (dwarf_die_debug)
7740 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7741 this_cu->is_debug_types ? "type" : "comp",
7742 sect_offset_str (this_cu->sect_off));
7743
7744 gdb_assert (this_cu->cu == NULL);
7745
7746 abbrev_section = (dwo_file != NULL
7747 ? &dwo_file->sections.abbrev
7748 : get_abbrev_section_for_cu (this_cu));
7749
7750 /* This is cheap if the section is already read in. */
7751 dwarf2_read_section (objfile, section);
7752
7753 struct dwarf2_cu cu (this_cu);
7754
7755 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7756 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7757 &cu.header, section,
7758 abbrev_section, info_ptr,
7759 (this_cu->is_debug_types
7760 ? rcuh_kind::TYPE
7761 : rcuh_kind::COMPILE));
7762
7763 this_cu->length = get_cu_length (&cu.header);
7764
7765 /* Skip dummy compilation units. */
7766 if (info_ptr >= begin_info_ptr + this_cu->length
7767 || peek_abbrev_code (abfd, info_ptr) == 0)
7768 return;
7769
7770 abbrev_table_up abbrev_table
7771 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7772 cu.header.abbrev_sect_off);
7773
7774 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7775 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7776
7777 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7778 }
7779
7780 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7781 does not lookup the specified DWO file.
7782 This cannot be used to read DWO files.
7783
7784 THIS_CU->cu is always freed when done.
7785 This is done in order to not leave THIS_CU->cu in a state where we have
7786 to care whether it refers to the "main" CU or the DWO CU.
7787 We can revisit this if the data shows there's a performance issue. */
7788
7789 static void
7790 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7791 die_reader_func_ftype *die_reader_func,
7792 void *data)
7793 {
7794 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7795 }
7796 \f
7797 /* Type Unit Groups.
7798
7799 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7800 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7801 so that all types coming from the same compilation (.o file) are grouped
7802 together. A future step could be to put the types in the same symtab as
7803 the CU the types ultimately came from. */
7804
7805 static hashval_t
7806 hash_type_unit_group (const void *item)
7807 {
7808 const struct type_unit_group *tu_group
7809 = (const struct type_unit_group *) item;
7810
7811 return hash_stmt_list_entry (&tu_group->hash);
7812 }
7813
7814 static int
7815 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7816 {
7817 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7818 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7819
7820 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7821 }
7822
7823 /* Allocate a hash table for type unit groups. */
7824
7825 static htab_t
7826 allocate_type_unit_groups_table (struct objfile *objfile)
7827 {
7828 return htab_create_alloc_ex (3,
7829 hash_type_unit_group,
7830 eq_type_unit_group,
7831 NULL,
7832 &objfile->objfile_obstack,
7833 hashtab_obstack_allocate,
7834 dummy_obstack_deallocate);
7835 }
7836
7837 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7838 partial symtabs. We combine several TUs per psymtab to not let the size
7839 of any one psymtab grow too big. */
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7841 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7842
7843 /* Helper routine for get_type_unit_group.
7844 Create the type_unit_group object used to hold one or more TUs. */
7845
7846 static struct type_unit_group *
7847 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7848 {
7849 struct dwarf2_per_objfile *dwarf2_per_objfile
7850 = cu->per_cu->dwarf2_per_objfile;
7851 struct objfile *objfile = dwarf2_per_objfile->objfile;
7852 struct dwarf2_per_cu_data *per_cu;
7853 struct type_unit_group *tu_group;
7854
7855 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7856 struct type_unit_group);
7857 per_cu = &tu_group->per_cu;
7858 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7859
7860 if (dwarf2_per_objfile->using_index)
7861 {
7862 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7863 struct dwarf2_per_cu_quick_data);
7864 }
7865 else
7866 {
7867 unsigned int line_offset = to_underlying (line_offset_struct);
7868 struct partial_symtab *pst;
7869 std::string name;
7870
7871 /* Give the symtab a useful name for debug purposes. */
7872 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7873 name = string_printf ("<type_units_%d>",
7874 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7875 else
7876 name = string_printf ("<type_units_at_0x%x>", line_offset);
7877
7878 pst = create_partial_symtab (per_cu, name.c_str ());
7879 pst->anonymous = 1;
7880 }
7881
7882 tu_group->hash.dwo_unit = cu->dwo_unit;
7883 tu_group->hash.line_sect_off = line_offset_struct;
7884
7885 return tu_group;
7886 }
7887
7888 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7889 STMT_LIST is a DW_AT_stmt_list attribute. */
7890
7891 static struct type_unit_group *
7892 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7893 {
7894 struct dwarf2_per_objfile *dwarf2_per_objfile
7895 = cu->per_cu->dwarf2_per_objfile;
7896 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7897 struct type_unit_group *tu_group;
7898 void **slot;
7899 unsigned int line_offset;
7900 struct type_unit_group type_unit_group_for_lookup;
7901
7902 if (dwarf2_per_objfile->type_unit_groups == NULL)
7903 {
7904 dwarf2_per_objfile->type_unit_groups =
7905 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7906 }
7907
7908 /* Do we need to create a new group, or can we use an existing one? */
7909
7910 if (stmt_list)
7911 {
7912 line_offset = DW_UNSND (stmt_list);
7913 ++tu_stats->nr_symtab_sharers;
7914 }
7915 else
7916 {
7917 /* Ugh, no stmt_list. Rare, but we have to handle it.
7918 We can do various things here like create one group per TU or
7919 spread them over multiple groups to split up the expansion work.
7920 To avoid worst case scenarios (too many groups or too large groups)
7921 we, umm, group them in bunches. */
7922 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7923 | (tu_stats->nr_stmt_less_type_units
7924 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7925 ++tu_stats->nr_stmt_less_type_units;
7926 }
7927
7928 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7929 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7930 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7931 &type_unit_group_for_lookup, INSERT);
7932 if (*slot != NULL)
7933 {
7934 tu_group = (struct type_unit_group *) *slot;
7935 gdb_assert (tu_group != NULL);
7936 }
7937 else
7938 {
7939 sect_offset line_offset_struct = (sect_offset) line_offset;
7940 tu_group = create_type_unit_group (cu, line_offset_struct);
7941 *slot = tu_group;
7942 ++tu_stats->nr_symtabs;
7943 }
7944
7945 return tu_group;
7946 }
7947 \f
7948 /* Partial symbol tables. */
7949
7950 /* Create a psymtab named NAME and assign it to PER_CU.
7951
7952 The caller must fill in the following details:
7953 dirname, textlow, texthigh. */
7954
7955 static struct partial_symtab *
7956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7957 {
7958 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7959 struct partial_symtab *pst;
7960
7961 pst = start_psymtab_common (objfile, name, 0);
7962
7963 pst->psymtabs_addrmap_supported = 1;
7964
7965 /* This is the glue that links PST into GDB's symbol API. */
7966 pst->read_symtab_private = per_cu;
7967 pst->read_symtab = dwarf2_read_symtab;
7968 per_cu->v.psymtab = pst;
7969
7970 return pst;
7971 }
7972
7973 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7974 type. */
7975
7976 struct process_psymtab_comp_unit_data
7977 {
7978 /* True if we are reading a DW_TAG_partial_unit. */
7979
7980 int want_partial_unit;
7981
7982 /* The "pretend" language that is used if the CU doesn't declare a
7983 language. */
7984
7985 enum language pretend_language;
7986 };
7987
7988 /* die_reader_func for process_psymtab_comp_unit. */
7989
7990 static void
7991 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7992 const gdb_byte *info_ptr,
7993 struct die_info *comp_unit_die,
7994 int has_children,
7995 void *data)
7996 {
7997 struct dwarf2_cu *cu = reader->cu;
7998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8001 CORE_ADDR baseaddr;
8002 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8003 struct partial_symtab *pst;
8004 enum pc_bounds_kind cu_bounds_kind;
8005 const char *filename;
8006 struct process_psymtab_comp_unit_data *info
8007 = (struct process_psymtab_comp_unit_data *) data;
8008
8009 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8010 return;
8011
8012 gdb_assert (! per_cu->is_debug_types);
8013
8014 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8015
8016 /* Allocate a new partial symbol table structure. */
8017 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8018 if (filename == NULL)
8019 filename = "";
8020
8021 pst = create_partial_symtab (per_cu, filename);
8022
8023 /* This must be done before calling dwarf2_build_include_psymtabs. */
8024 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8025
8026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8027
8028 dwarf2_find_base_address (comp_unit_die, cu);
8029
8030 /* Possibly set the default values of LOWPC and HIGHPC from
8031 `DW_AT_ranges'. */
8032 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8033 &best_highpc, cu, pst);
8034 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8035 {
8036 CORE_ADDR low
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8038 - baseaddr);
8039 CORE_ADDR high
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8041 - baseaddr - 1);
8042 /* Store the contiguous range if it is not empty; it can be
8043 empty for CUs with no code. */
8044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8045 low, high, pst);
8046 }
8047
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8051 if (has_children)
8052 {
8053 struct partial_die_info *first_die;
8054 CORE_ADDR lowpc, highpc;
8055
8056 lowpc = ((CORE_ADDR) -1);
8057 highpc = ((CORE_ADDR) 0);
8058
8059 first_die = load_partial_dies (reader, info_ptr, 1);
8060
8061 scan_partial_symbols (first_die, &lowpc, &highpc,
8062 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8063
8064 /* If we didn't find a lowpc, set it to highpc to avoid
8065 complaints from `maint check'. */
8066 if (lowpc == ((CORE_ADDR) -1))
8067 lowpc = highpc;
8068
8069 /* If the compilation unit didn't have an explicit address range,
8070 then use the information extracted from its child dies. */
8071 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8072 {
8073 best_lowpc = lowpc;
8074 best_highpc = highpc;
8075 }
8076 }
8077 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_lowpc + baseaddr)
8079 - baseaddr);
8080 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_highpc + baseaddr)
8082 - baseaddr);
8083
8084 end_psymtab_common (objfile, pst);
8085
8086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8087 {
8088 int i;
8089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8090 struct dwarf2_per_cu_data *iter;
8091
8092 /* Fill in 'dependencies' here; we fill in 'users' in a
8093 post-pass. */
8094 pst->number_of_dependencies = len;
8095 pst->dependencies
8096 = objfile->partial_symtabs->allocate_dependencies (len);
8097 for (i = 0;
8098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8099 i, iter);
8100 ++i)
8101 pst->dependencies[i] = iter->v.psymtab;
8102
8103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8104 }
8105
8106 /* Get the list of files included in the current compilation unit,
8107 and build a psymtab for each of them. */
8108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8109
8110 if (dwarf_read_debug)
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Psymtab for %s unit @%s: %s - %s"
8113 ", %d global, %d static syms\n",
8114 per_cu->is_debug_types ? "type" : "comp",
8115 sect_offset_str (per_cu->sect_off),
8116 paddress (gdbarch, pst->text_low (objfile)),
8117 paddress (gdbarch, pst->text_high (objfile)),
8118 pst->n_global_syms, pst->n_static_syms);
8119 }
8120
8121 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8122 Process compilation unit THIS_CU for a psymtab. */
8123
8124 static void
8125 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8126 int want_partial_unit,
8127 enum language pretend_language)
8128 {
8129 /* If this compilation unit was already read in, free the
8130 cached copy in order to read it in again. This is
8131 necessary because we skipped some symbols when we first
8132 read in the compilation unit (see load_partial_dies).
8133 This problem could be avoided, but the benefit is unclear. */
8134 if (this_cu->cu != NULL)
8135 free_one_cached_comp_unit (this_cu);
8136
8137 if (this_cu->is_debug_types)
8138 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8139 build_type_psymtabs_reader, NULL);
8140 else
8141 {
8142 process_psymtab_comp_unit_data info;
8143 info.want_partial_unit = want_partial_unit;
8144 info.pretend_language = pretend_language;
8145 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8146 process_psymtab_comp_unit_reader, &info);
8147 }
8148
8149 /* Age out any secondary CUs. */
8150 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8151 }
8152
8153 /* Reader function for build_type_psymtabs. */
8154
8155 static void
8156 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8157 const gdb_byte *info_ptr,
8158 struct die_info *type_unit_die,
8159 int has_children,
8160 void *data)
8161 {
8162 struct dwarf2_per_objfile *dwarf2_per_objfile
8163 = reader->cu->per_cu->dwarf2_per_objfile;
8164 struct objfile *objfile = dwarf2_per_objfile->objfile;
8165 struct dwarf2_cu *cu = reader->cu;
8166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8167 struct signatured_type *sig_type;
8168 struct type_unit_group *tu_group;
8169 struct attribute *attr;
8170 struct partial_die_info *first_die;
8171 CORE_ADDR lowpc, highpc;
8172 struct partial_symtab *pst;
8173
8174 gdb_assert (data == NULL);
8175 gdb_assert (per_cu->is_debug_types);
8176 sig_type = (struct signatured_type *) per_cu;
8177
8178 if (! has_children)
8179 return;
8180
8181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8182 tu_group = get_type_unit_group (cu, attr);
8183
8184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8185
8186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8187 pst = create_partial_symtab (per_cu, "");
8188 pst->anonymous = 1;
8189
8190 first_die = load_partial_dies (reader, info_ptr, 1);
8191
8192 lowpc = (CORE_ADDR) -1;
8193 highpc = (CORE_ADDR) 0;
8194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8195
8196 end_psymtab_common (objfile, pst);
8197 }
8198
8199 /* Struct used to sort TUs by their abbreviation table offset. */
8200
8201 struct tu_abbrev_offset
8202 {
8203 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8204 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8205 {}
8206
8207 signatured_type *sig_type;
8208 sect_offset abbrev_offset;
8209 };
8210
8211 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8212
8213 static bool
8214 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8215 const struct tu_abbrev_offset &b)
8216 {
8217 return a.abbrev_offset < b.abbrev_offset;
8218 }
8219
8220 /* Efficiently read all the type units.
8221 This does the bulk of the work for build_type_psymtabs.
8222
8223 The efficiency is because we sort TUs by the abbrev table they use and
8224 only read each abbrev table once. In one program there are 200K TUs
8225 sharing 8K abbrev tables.
8226
8227 The main purpose of this function is to support building the
8228 dwarf2_per_objfile->type_unit_groups table.
8229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8230 can collapse the search space by grouping them by stmt_list.
8231 The savings can be significant, in the same program from above the 200K TUs
8232 share 8K stmt_list tables.
8233
8234 FUNC is expected to call get_type_unit_group, which will create the
8235 struct type_unit_group if necessary and add it to
8236 dwarf2_per_objfile->type_unit_groups. */
8237
8238 static void
8239 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8240 {
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242 abbrev_table_up abbrev_table;
8243 sect_offset abbrev_offset;
8244
8245 /* It's up to the caller to not call us multiple times. */
8246 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8247
8248 if (dwarf2_per_objfile->all_type_units.empty ())
8249 return;
8250
8251 /* TUs typically share abbrev tables, and there can be way more TUs than
8252 abbrev tables. Sort by abbrev table to reduce the number of times we
8253 read each abbrev table in.
8254 Alternatives are to punt or to maintain a cache of abbrev tables.
8255 This is simpler and efficient enough for now.
8256
8257 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8258 symtab to use). Typically TUs with the same abbrev offset have the same
8259 stmt_list value too so in practice this should work well.
8260
8261 The basic algorithm here is:
8262
8263 sort TUs by abbrev table
8264 for each TU with same abbrev table:
8265 read abbrev table if first user
8266 read TU top level DIE
8267 [IWBN if DWO skeletons had DW_AT_stmt_list]
8268 call FUNC */
8269
8270 if (dwarf_read_debug)
8271 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8272
8273 /* Sort in a separate table to maintain the order of all_type_units
8274 for .gdb_index: TU indices directly index all_type_units. */
8275 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8276 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8277
8278 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8279 sorted_by_abbrev.emplace_back
8280 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8281 sig_type->per_cu.section,
8282 sig_type->per_cu.sect_off));
8283
8284 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8285 sort_tu_by_abbrev_offset);
8286
8287 abbrev_offset = (sect_offset) ~(unsigned) 0;
8288
8289 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8290 {
8291 /* Switch to the next abbrev table if necessary. */
8292 if (abbrev_table == NULL
8293 || tu.abbrev_offset != abbrev_offset)
8294 {
8295 abbrev_offset = tu.abbrev_offset;
8296 abbrev_table =
8297 abbrev_table_read_table (dwarf2_per_objfile,
8298 &dwarf2_per_objfile->abbrev,
8299 abbrev_offset);
8300 ++tu_stats->nr_uniq_abbrev_tables;
8301 }
8302
8303 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8304 0, 0, false, build_type_psymtabs_reader, NULL);
8305 }
8306 }
8307
8308 /* Print collected type unit statistics. */
8309
8310 static void
8311 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8312 {
8313 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8314
8315 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8316 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8317 dwarf2_per_objfile->all_type_units.size ());
8318 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8319 tu_stats->nr_uniq_abbrev_tables);
8320 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8321 tu_stats->nr_symtabs);
8322 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8323 tu_stats->nr_symtab_sharers);
8324 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8325 tu_stats->nr_stmt_less_type_units);
8326 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8327 tu_stats->nr_all_type_units_reallocs);
8328 }
8329
8330 /* Traversal function for build_type_psymtabs. */
8331
8332 static int
8333 build_type_psymtab_dependencies (void **slot, void *info)
8334 {
8335 struct dwarf2_per_objfile *dwarf2_per_objfile
8336 = (struct dwarf2_per_objfile *) info;
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8339 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 int len = VEC_length (sig_type_ptr, tu_group->tus);
8342 struct signatured_type *iter;
8343 int i;
8344
8345 gdb_assert (len > 0);
8346 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8347
8348 pst->number_of_dependencies = len;
8349 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8350 for (i = 0;
8351 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8352 ++i)
8353 {
8354 gdb_assert (iter->per_cu.is_debug_types);
8355 pst->dependencies[i] = iter->per_cu.v.psymtab;
8356 iter->type_unit_group = tu_group;
8357 }
8358
8359 VEC_free (sig_type_ptr, tu_group->tus);
8360
8361 return 1;
8362 }
8363
8364 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8365 Build partial symbol tables for the .debug_types comp-units. */
8366
8367 static void
8368 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8369 {
8370 if (! create_all_type_units (dwarf2_per_objfile))
8371 return;
8372
8373 build_type_psymtabs_1 (dwarf2_per_objfile);
8374 }
8375
8376 /* Traversal function for process_skeletonless_type_unit.
8377 Read a TU in a DWO file and build partial symbols for it. */
8378
8379 static int
8380 process_skeletonless_type_unit (void **slot, void *info)
8381 {
8382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8383 struct dwarf2_per_objfile *dwarf2_per_objfile
8384 = (struct dwarf2_per_objfile *) info;
8385 struct signatured_type find_entry, *entry;
8386
8387 /* If this TU doesn't exist in the global table, add it and read it in. */
8388
8389 if (dwarf2_per_objfile->signatured_types == NULL)
8390 {
8391 dwarf2_per_objfile->signatured_types
8392 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8393 }
8394
8395 find_entry.signature = dwo_unit->signature;
8396 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8397 INSERT);
8398 /* If we've already seen this type there's nothing to do. What's happening
8399 is we're doing our own version of comdat-folding here. */
8400 if (*slot != NULL)
8401 return 1;
8402
8403 /* This does the job that create_all_type_units would have done for
8404 this TU. */
8405 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8406 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8407 *slot = entry;
8408
8409 /* This does the job that build_type_psymtabs_1 would have done. */
8410 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8411 build_type_psymtabs_reader, NULL);
8412
8413 return 1;
8414 }
8415
8416 /* Traversal function for process_skeletonless_type_units. */
8417
8418 static int
8419 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8420 {
8421 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8422
8423 if (dwo_file->tus != NULL)
8424 {
8425 htab_traverse_noresize (dwo_file->tus,
8426 process_skeletonless_type_unit, info);
8427 }
8428
8429 return 1;
8430 }
8431
8432 /* Scan all TUs of DWO files, verifying we've processed them.
8433 This is needed in case a TU was emitted without its skeleton.
8434 Note: This can't be done until we know what all the DWO files are. */
8435
8436 static void
8437 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8438 {
8439 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8440 if (get_dwp_file (dwarf2_per_objfile) == NULL
8441 && dwarf2_per_objfile->dwo_files != NULL)
8442 {
8443 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8444 process_dwo_file_for_skeletonless_type_units,
8445 dwarf2_per_objfile);
8446 }
8447 }
8448
8449 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8450
8451 static void
8452 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8453 {
8454 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8455 {
8456 struct partial_symtab *pst = per_cu->v.psymtab;
8457
8458 if (pst == NULL)
8459 continue;
8460
8461 for (int j = 0; j < pst->number_of_dependencies; ++j)
8462 {
8463 /* Set the 'user' field only if it is not already set. */
8464 if (pst->dependencies[j]->user == NULL)
8465 pst->dependencies[j]->user = pst;
8466 }
8467 }
8468 }
8469
8470 /* Build the partial symbol table by doing a quick pass through the
8471 .debug_info and .debug_abbrev sections. */
8472
8473 static void
8474 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8475 {
8476 struct objfile *objfile = dwarf2_per_objfile->objfile;
8477
8478 if (dwarf_read_debug)
8479 {
8480 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8481 objfile_name (objfile));
8482 }
8483
8484 dwarf2_per_objfile->reading_partial_symbols = 1;
8485
8486 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8487
8488 /* Any cached compilation units will be linked by the per-objfile
8489 read_in_chain. Make sure to free them when we're done. */
8490 free_cached_comp_units freer (dwarf2_per_objfile);
8491
8492 build_type_psymtabs (dwarf2_per_objfile);
8493
8494 create_all_comp_units (dwarf2_per_objfile);
8495
8496 /* Create a temporary address map on a temporary obstack. We later
8497 copy this to the final obstack. */
8498 auto_obstack temp_obstack;
8499
8500 scoped_restore save_psymtabs_addrmap
8501 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8502 addrmap_create_mutable (&temp_obstack));
8503
8504 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8505 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8506
8507 /* This has to wait until we read the CUs, we need the list of DWOs. */
8508 process_skeletonless_type_units (dwarf2_per_objfile);
8509
8510 /* Now that all TUs have been processed we can fill in the dependencies. */
8511 if (dwarf2_per_objfile->type_unit_groups != NULL)
8512 {
8513 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8514 build_type_psymtab_dependencies, dwarf2_per_objfile);
8515 }
8516
8517 if (dwarf_read_debug)
8518 print_tu_stats (dwarf2_per_objfile);
8519
8520 set_partial_user (dwarf2_per_objfile);
8521
8522 objfile->partial_symtabs->psymtabs_addrmap
8523 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8524 objfile->partial_symtabs->obstack ());
8525 /* At this point we want to keep the address map. */
8526 save_psymtabs_addrmap.release ();
8527
8528 if (dwarf_read_debug)
8529 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8530 objfile_name (objfile));
8531 }
8532
8533 /* die_reader_func for load_partial_comp_unit. */
8534
8535 static void
8536 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8537 const gdb_byte *info_ptr,
8538 struct die_info *comp_unit_die,
8539 int has_children,
8540 void *data)
8541 {
8542 struct dwarf2_cu *cu = reader->cu;
8543
8544 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8545
8546 /* Check if comp unit has_children.
8547 If so, read the rest of the partial symbols from this comp unit.
8548 If not, there's no more debug_info for this comp unit. */
8549 if (has_children)
8550 load_partial_dies (reader, info_ptr, 0);
8551 }
8552
8553 /* Load the partial DIEs for a secondary CU into memory.
8554 This is also used when rereading a primary CU with load_all_dies. */
8555
8556 static void
8557 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8558 {
8559 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8560 load_partial_comp_unit_reader, NULL);
8561 }
8562
8563 static void
8564 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8565 struct dwarf2_section_info *section,
8566 struct dwarf2_section_info *abbrev_section,
8567 unsigned int is_dwz)
8568 {
8569 const gdb_byte *info_ptr;
8570 struct objfile *objfile = dwarf2_per_objfile->objfile;
8571
8572 if (dwarf_read_debug)
8573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8574 get_section_name (section),
8575 get_section_file_name (section));
8576
8577 dwarf2_read_section (objfile, section);
8578
8579 info_ptr = section->buffer;
8580
8581 while (info_ptr < section->buffer + section->size)
8582 {
8583 struct dwarf2_per_cu_data *this_cu;
8584
8585 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8586
8587 comp_unit_head cu_header;
8588 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8589 abbrev_section, info_ptr,
8590 rcuh_kind::COMPILE);
8591
8592 /* Save the compilation unit for later lookup. */
8593 if (cu_header.unit_type != DW_UT_type)
8594 {
8595 this_cu = XOBNEW (&objfile->objfile_obstack,
8596 struct dwarf2_per_cu_data);
8597 memset (this_cu, 0, sizeof (*this_cu));
8598 }
8599 else
8600 {
8601 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8602 struct signatured_type);
8603 memset (sig_type, 0, sizeof (*sig_type));
8604 sig_type->signature = cu_header.signature;
8605 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8606 this_cu = &sig_type->per_cu;
8607 }
8608 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8609 this_cu->sect_off = sect_off;
8610 this_cu->length = cu_header.length + cu_header.initial_length_size;
8611 this_cu->is_dwz = is_dwz;
8612 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8613 this_cu->section = section;
8614
8615 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8616
8617 info_ptr = info_ptr + this_cu->length;
8618 }
8619 }
8620
8621 /* Create a list of all compilation units in OBJFILE.
8622 This is only done for -readnow and building partial symtabs. */
8623
8624 static void
8625 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8626 {
8627 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8629 &dwarf2_per_objfile->abbrev, 0);
8630
8631 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8632 if (dwz != NULL)
8633 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8634 1);
8635 }
8636
8637 /* Process all loaded DIEs for compilation unit CU, starting at
8638 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8639 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8640 DW_AT_ranges). See the comments of add_partial_subprogram on how
8641 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8642
8643 static void
8644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8645 CORE_ADDR *highpc, int set_addrmap,
8646 struct dwarf2_cu *cu)
8647 {
8648 struct partial_die_info *pdi;
8649
8650 /* Now, march along the PDI's, descending into ones which have
8651 interesting children but skipping the children of the other ones,
8652 until we reach the end of the compilation unit. */
8653
8654 pdi = first_die;
8655
8656 while (pdi != NULL)
8657 {
8658 pdi->fixup (cu);
8659
8660 /* Anonymous namespaces or modules have no name but have interesting
8661 children, so we need to look at them. Ditto for anonymous
8662 enums. */
8663
8664 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8665 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8666 || pdi->tag == DW_TAG_imported_unit
8667 || pdi->tag == DW_TAG_inlined_subroutine)
8668 {
8669 switch (pdi->tag)
8670 {
8671 case DW_TAG_subprogram:
8672 case DW_TAG_inlined_subroutine:
8673 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8674 break;
8675 case DW_TAG_constant:
8676 case DW_TAG_variable:
8677 case DW_TAG_typedef:
8678 case DW_TAG_union_type:
8679 if (!pdi->is_declaration)
8680 {
8681 add_partial_symbol (pdi, cu);
8682 }
8683 break;
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 if (!pdi->is_declaration)
8688 {
8689 add_partial_symbol (pdi, cu);
8690 }
8691 if ((cu->language == language_rust
8692 || cu->language == language_cplus) && pdi->has_children)
8693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8694 set_addrmap, cu);
8695 break;
8696 case DW_TAG_enumeration_type:
8697 if (!pdi->is_declaration)
8698 add_partial_enumeration (pdi, cu);
8699 break;
8700 case DW_TAG_base_type:
8701 case DW_TAG_subrange_type:
8702 /* File scope base type definitions are added to the partial
8703 symbol table. */
8704 add_partial_symbol (pdi, cu);
8705 break;
8706 case DW_TAG_namespace:
8707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8708 break;
8709 case DW_TAG_module:
8710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8711 break;
8712 case DW_TAG_imported_unit:
8713 {
8714 struct dwarf2_per_cu_data *per_cu;
8715
8716 /* For now we don't handle imported units in type units. */
8717 if (cu->per_cu->is_debug_types)
8718 {
8719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8720 " supported in type units [in module %s]"),
8721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8722 }
8723
8724 per_cu = dwarf2_find_containing_comp_unit
8725 (pdi->d.sect_off, pdi->is_dwz,
8726 cu->per_cu->dwarf2_per_objfile);
8727
8728 /* Go read the partial unit, if needed. */
8729 if (per_cu->v.psymtab == NULL)
8730 process_psymtab_comp_unit (per_cu, 1, cu->language);
8731
8732 VEC_safe_push (dwarf2_per_cu_ptr,
8733 cu->per_cu->imported_symtabs, per_cu);
8734 }
8735 break;
8736 case DW_TAG_imported_declaration:
8737 add_partial_symbol (pdi, cu);
8738 break;
8739 default:
8740 break;
8741 }
8742 }
8743
8744 /* If the die has a sibling, skip to the sibling. */
8745
8746 pdi = pdi->die_sibling;
8747 }
8748 }
8749
8750 /* Functions used to compute the fully scoped name of a partial DIE.
8751
8752 Normally, this is simple. For C++, the parent DIE's fully scoped
8753 name is concatenated with "::" and the partial DIE's name.
8754 Enumerators are an exception; they use the scope of their parent
8755 enumeration type, i.e. the name of the enumeration type is not
8756 prepended to the enumerator.
8757
8758 There are two complexities. One is DW_AT_specification; in this
8759 case "parent" means the parent of the target of the specification,
8760 instead of the direct parent of the DIE. The other is compilers
8761 which do not emit DW_TAG_namespace; in this case we try to guess
8762 the fully qualified name of structure types from their members'
8763 linkage names. This must be done using the DIE's children rather
8764 than the children of any DW_AT_specification target. We only need
8765 to do this for structures at the top level, i.e. if the target of
8766 any DW_AT_specification (if any; otherwise the DIE itself) does not
8767 have a parent. */
8768
8769 /* Compute the scope prefix associated with PDI's parent, in
8770 compilation unit CU. The result will be allocated on CU's
8771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8772 field. NULL is returned if no prefix is necessary. */
8773 static const char *
8774 partial_die_parent_scope (struct partial_die_info *pdi,
8775 struct dwarf2_cu *cu)
8776 {
8777 const char *grandparent_scope;
8778 struct partial_die_info *parent, *real_pdi;
8779
8780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8781 then this means the parent of the specification DIE. */
8782
8783 real_pdi = pdi;
8784 while (real_pdi->has_specification)
8785 real_pdi = find_partial_die (real_pdi->spec_offset,
8786 real_pdi->spec_is_dwz, cu);
8787
8788 parent = real_pdi->die_parent;
8789 if (parent == NULL)
8790 return NULL;
8791
8792 if (parent->scope_set)
8793 return parent->scope;
8794
8795 parent->fixup (cu);
8796
8797 grandparent_scope = partial_die_parent_scope (parent, cu);
8798
8799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8801 Work around this problem here. */
8802 if (cu->language == language_cplus
8803 && parent->tag == DW_TAG_namespace
8804 && strcmp (parent->name, "::") == 0
8805 && grandparent_scope == NULL)
8806 {
8807 parent->scope = NULL;
8808 parent->scope_set = 1;
8809 return NULL;
8810 }
8811
8812 if (pdi->tag == DW_TAG_enumerator)
8813 /* Enumerators should not get the name of the enumeration as a prefix. */
8814 parent->scope = grandparent_scope;
8815 else if (parent->tag == DW_TAG_namespace
8816 || parent->tag == DW_TAG_module
8817 || parent->tag == DW_TAG_structure_type
8818 || parent->tag == DW_TAG_class_type
8819 || parent->tag == DW_TAG_interface_type
8820 || parent->tag == DW_TAG_union_type
8821 || parent->tag == DW_TAG_enumeration_type)
8822 {
8823 if (grandparent_scope == NULL)
8824 parent->scope = parent->name;
8825 else
8826 parent->scope = typename_concat (&cu->comp_unit_obstack,
8827 grandparent_scope,
8828 parent->name, 0, cu);
8829 }
8830 else
8831 {
8832 /* FIXME drow/2004-04-01: What should we be doing with
8833 function-local names? For partial symbols, we should probably be
8834 ignoring them. */
8835 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8836 parent->tag, sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8838 }
8839
8840 parent->scope_set = 1;
8841 return parent->scope;
8842 }
8843
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8846
8847 static char *
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8850 {
8851 const char *parent_scope;
8852
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8858 {
8859 pdi->fixup (cu);
8860
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8862 {
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8866
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8872
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8874 }
8875 }
8876
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8879 return NULL;
8880 else
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8882 }
8883
8884 static void
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8886 {
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8891 CORE_ADDR addr = 0;
8892 const char *actual_name = NULL;
8893 CORE_ADDR baseaddr;
8894 char *built_actual_name;
8895
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8897
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8901
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8904
8905 switch (pdi->tag)
8906 {
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8910 - baseaddr);
8911 if (pdi->is_external || cu->language == language_ada)
8912 {
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8922 addr,
8923 cu->language, objfile);
8924 }
8925 else
8926 {
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8933 }
8934
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8937 break;
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_variable:
8947 if (pdi->d.locdesc)
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8949
8950 if (pdi->d.locdesc
8951 && addr == 0
8952 && !dwarf2_per_objfile->has_section_at_zero)
8953 {
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8958 }
8959 else if (pdi->is_external)
8960 {
8961 /* Global Variable.
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8969 is referenced.
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8972 table building. */
8973
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8981 }
8982 else
8983 {
8984 int has_loc = pdi->d.locdesc != NULL;
8985
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8989 {
8990 xfree (built_actual_name);
8991 return;
8992 }
8993
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 has_loc ? addr : 0,
9000 cu->language, objfile);
9001 }
9002 break;
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9019 break;
9020 case DW_TAG_module:
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9026 break;
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9038 {
9039 xfree (built_actual_name);
9040 return;
9041 }
9042
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9052
9053 break;
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9062 break;
9063 default:
9064 break;
9065 }
9066
9067 xfree (built_actual_name);
9068 }
9069
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9073
9074 static void
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9078 {
9079 /* Add a symbol for the namespace. */
9080
9081 add_partial_symbol (pdi, cu);
9082
9083 /* Now scan partial symbols in that namespace. */
9084
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9087 }
9088
9089 /* Read a partial die corresponding to a Fortran module. */
9090
9091 static void
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9094 {
9095 /* Add a symbol for the namespace. */
9096
9097 add_partial_symbol (pdi, cu);
9098
9099 /* Now scan partial symbols in that module. */
9100
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9103 }
9104
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9111
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9116
9117 static void
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9121 {
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9123 {
9124 if (pdi->has_pc_info)
9125 {
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9130 if (set_addrmap)
9131 {
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9134 CORE_ADDR baseaddr;
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9137
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9140 this_lowpc
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9143 - baseaddr);
9144 this_highpc
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9147 - baseaddr);
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9151 }
9152 }
9153
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9155 {
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9160 if (pdi->name)
9161 add_partial_symbol (pdi, cu);
9162 }
9163 }
9164
9165 if (! pdi->has_children)
9166 return;
9167
9168 if (cu->language == language_ada)
9169 {
9170 pdi = pdi->die_child;
9171 while (pdi != NULL)
9172 {
9173 pdi->fixup (cu);
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181 }
9182
9183 /* Read a partial die corresponding to an enumeration type. */
9184
9185 static void
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9188 {
9189 struct partial_die_info *pdi;
9190
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9193
9194 pdi = enum_pdi->die_child;
9195 while (pdi)
9196 {
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9199 else
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9202 }
9203 }
9204
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9206
9207 static unsigned int
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9209 {
9210 unsigned int bytes_read;
9211
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9213 }
9214
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9217
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9221
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9225 {
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9230
9231 if (abbrev_number == 0)
9232 return NULL;
9233
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9235 if (!abbrev)
9236 {
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9241 }
9242
9243 return abbrev;
9244 }
9245
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9249
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9252 {
9253 while (1)
9254 {
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9257
9258 if (abbrev == NULL)
9259 return info_ptr + bytes_read;
9260 else
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9262 }
9263 }
9264
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9269 children. */
9270
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9274 {
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9282
9283 for (i = 0; i < abbrev->num_attrs; i++)
9284 {
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9287 {
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9291 else
9292 {
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9295
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9300 else
9301 return sibling_ptr;
9302 }
9303 }
9304
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9307 skip_attribute:
9308 switch (form)
9309 {
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9315 else
9316 info_ptr += cu->header.offset_size;
9317 break;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9320 break;
9321 case DW_FORM_addr:
9322 info_ptr += cu->header.addr_size;
9323 break;
9324 case DW_FORM_data1:
9325 case DW_FORM_ref1:
9326 case DW_FORM_flag:
9327 info_ptr += 1;
9328 break;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9331 break;
9332 case DW_FORM_data2:
9333 case DW_FORM_ref2:
9334 info_ptr += 2;
9335 break;
9336 case DW_FORM_data4:
9337 case DW_FORM_ref4:
9338 info_ptr += 4;
9339 break;
9340 case DW_FORM_data8:
9341 case DW_FORM_ref8:
9342 case DW_FORM_ref_sig8:
9343 info_ptr += 8;
9344 break;
9345 case DW_FORM_data16:
9346 info_ptr += 16;
9347 break;
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9351 break;
9352 case DW_FORM_sec_offset:
9353 case DW_FORM_strp:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9356 break;
9357 case DW_FORM_exprloc:
9358 case DW_FORM_block:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 break;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9364 break;
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9367 break;
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9370 break;
9371 case DW_FORM_addrx:
9372 case DW_FORM_sdata:
9373 case DW_FORM_udata:
9374 case DW_FORM_ref_udata:
9375 case DW_FORM_GNU_addr_index:
9376 case DW_FORM_GNU_str_index:
9377 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9378 break;
9379 case DW_FORM_indirect:
9380 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9381 info_ptr += bytes_read;
9382 /* We need to continue parsing from here, so just go back to
9383 the top. */
9384 goto skip_attribute;
9385
9386 default:
9387 error (_("Dwarf Error: Cannot handle %s "
9388 "in DWARF reader [in module %s]"),
9389 dwarf_form_name (form),
9390 bfd_get_filename (abfd));
9391 }
9392 }
9393
9394 if (abbrev->has_children)
9395 return skip_children (reader, info_ptr);
9396 else
9397 return info_ptr;
9398 }
9399
9400 /* Locate ORIG_PDI's sibling.
9401 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9402
9403 static const gdb_byte *
9404 locate_pdi_sibling (const struct die_reader_specs *reader,
9405 struct partial_die_info *orig_pdi,
9406 const gdb_byte *info_ptr)
9407 {
9408 /* Do we know the sibling already? */
9409
9410 if (orig_pdi->sibling)
9411 return orig_pdi->sibling;
9412
9413 /* Are there any children to deal with? */
9414
9415 if (!orig_pdi->has_children)
9416 return info_ptr;
9417
9418 /* Skip the children the long way. */
9419
9420 return skip_children (reader, info_ptr);
9421 }
9422
9423 /* Expand this partial symbol table into a full symbol table. SELF is
9424 not NULL. */
9425
9426 static void
9427 dwarf2_read_symtab (struct partial_symtab *self,
9428 struct objfile *objfile)
9429 {
9430 struct dwarf2_per_objfile *dwarf2_per_objfile
9431 = get_dwarf2_per_objfile (objfile);
9432
9433 if (self->readin)
9434 {
9435 warning (_("bug: psymtab for %s is already read in."),
9436 self->filename);
9437 }
9438 else
9439 {
9440 if (info_verbose)
9441 {
9442 printf_filtered (_("Reading in symbols for %s..."),
9443 self->filename);
9444 gdb_flush (gdb_stdout);
9445 }
9446
9447 /* If this psymtab is constructed from a debug-only objfile, the
9448 has_section_at_zero flag will not necessarily be correct. We
9449 can get the correct value for this flag by looking at the data
9450 associated with the (presumably stripped) associated objfile. */
9451 if (objfile->separate_debug_objfile_backlink)
9452 {
9453 struct dwarf2_per_objfile *dpo_backlink
9454 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9455
9456 dwarf2_per_objfile->has_section_at_zero
9457 = dpo_backlink->has_section_at_zero;
9458 }
9459
9460 dwarf2_per_objfile->reading_partial_symbols = 0;
9461
9462 psymtab_to_symtab_1 (self);
9463
9464 /* Finish up the debug error message. */
9465 if (info_verbose)
9466 printf_filtered (_("done.\n"));
9467 }
9468
9469 process_cu_includes (dwarf2_per_objfile);
9470 }
9471 \f
9472 /* Reading in full CUs. */
9473
9474 /* Add PER_CU to the queue. */
9475
9476 static void
9477 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9478 enum language pretend_language)
9479 {
9480 struct dwarf2_queue_item *item;
9481
9482 per_cu->queued = 1;
9483 item = XNEW (struct dwarf2_queue_item);
9484 item->per_cu = per_cu;
9485 item->pretend_language = pretend_language;
9486 item->next = NULL;
9487
9488 if (dwarf2_queue == NULL)
9489 dwarf2_queue = item;
9490 else
9491 dwarf2_queue_tail->next = item;
9492
9493 dwarf2_queue_tail = item;
9494 }
9495
9496 /* If PER_CU is not yet queued, add it to the queue.
9497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9498 dependency.
9499 The result is non-zero if PER_CU was queued, otherwise the result is zero
9500 meaning either PER_CU is already queued or it is already loaded.
9501
9502 N.B. There is an invariant here that if a CU is queued then it is loaded.
9503 The caller is required to load PER_CU if we return non-zero. */
9504
9505 static int
9506 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9507 struct dwarf2_per_cu_data *per_cu,
9508 enum language pretend_language)
9509 {
9510 /* We may arrive here during partial symbol reading, if we need full
9511 DIEs to process an unusual case (e.g. template arguments). Do
9512 not queue PER_CU, just tell our caller to load its DIEs. */
9513 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9514 {
9515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9516 return 1;
9517 return 0;
9518 }
9519
9520 /* Mark the dependence relation so that we don't flush PER_CU
9521 too early. */
9522 if (dependent_cu != NULL)
9523 dwarf2_add_dependence (dependent_cu, per_cu);
9524
9525 /* If it's already on the queue, we have nothing to do. */
9526 if (per_cu->queued)
9527 return 0;
9528
9529 /* If the compilation unit is already loaded, just mark it as
9530 used. */
9531 if (per_cu->cu != NULL)
9532 {
9533 per_cu->cu->last_used = 0;
9534 return 0;
9535 }
9536
9537 /* Add it to the queue. */
9538 queue_comp_unit (per_cu, pretend_language);
9539
9540 return 1;
9541 }
9542
9543 /* Process the queue. */
9544
9545 static void
9546 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9547 {
9548 struct dwarf2_queue_item *item, *next_item;
9549
9550 if (dwarf_read_debug)
9551 {
9552 fprintf_unfiltered (gdb_stdlog,
9553 "Expanding one or more symtabs of objfile %s ...\n",
9554 objfile_name (dwarf2_per_objfile->objfile));
9555 }
9556
9557 /* The queue starts out with one item, but following a DIE reference
9558 may load a new CU, adding it to the end of the queue. */
9559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9560 {
9561 if ((dwarf2_per_objfile->using_index
9562 ? !item->per_cu->v.quick->compunit_symtab
9563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9564 /* Skip dummy CUs. */
9565 && item->per_cu->cu != NULL)
9566 {
9567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9568 unsigned int debug_print_threshold;
9569 char buf[100];
9570
9571 if (per_cu->is_debug_types)
9572 {
9573 struct signatured_type *sig_type =
9574 (struct signatured_type *) per_cu;
9575
9576 sprintf (buf, "TU %s at offset %s",
9577 hex_string (sig_type->signature),
9578 sect_offset_str (per_cu->sect_off));
9579 /* There can be 100s of TUs.
9580 Only print them in verbose mode. */
9581 debug_print_threshold = 2;
9582 }
9583 else
9584 {
9585 sprintf (buf, "CU at offset %s",
9586 sect_offset_str (per_cu->sect_off));
9587 debug_print_threshold = 1;
9588 }
9589
9590 if (dwarf_read_debug >= debug_print_threshold)
9591 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9592
9593 if (per_cu->is_debug_types)
9594 process_full_type_unit (per_cu, item->pretend_language);
9595 else
9596 process_full_comp_unit (per_cu, item->pretend_language);
9597
9598 if (dwarf_read_debug >= debug_print_threshold)
9599 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9600 }
9601
9602 item->per_cu->queued = 0;
9603 next_item = item->next;
9604 xfree (item);
9605 }
9606
9607 dwarf2_queue_tail = NULL;
9608
9609 if (dwarf_read_debug)
9610 {
9611 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9612 objfile_name (dwarf2_per_objfile->objfile));
9613 }
9614 }
9615
9616 /* Read in full symbols for PST, and anything it depends on. */
9617
9618 static void
9619 psymtab_to_symtab_1 (struct partial_symtab *pst)
9620 {
9621 struct dwarf2_per_cu_data *per_cu;
9622 int i;
9623
9624 if (pst->readin)
9625 return;
9626
9627 for (i = 0; i < pst->number_of_dependencies; i++)
9628 if (!pst->dependencies[i]->readin
9629 && pst->dependencies[i]->user == NULL)
9630 {
9631 /* Inform about additional files that need to be read in. */
9632 if (info_verbose)
9633 {
9634 /* FIXME: i18n: Need to make this a single string. */
9635 fputs_filtered (" ", gdb_stdout);
9636 wrap_here ("");
9637 fputs_filtered ("and ", gdb_stdout);
9638 wrap_here ("");
9639 printf_filtered ("%s...", pst->dependencies[i]->filename);
9640 wrap_here (""); /* Flush output. */
9641 gdb_flush (gdb_stdout);
9642 }
9643 psymtab_to_symtab_1 (pst->dependencies[i]);
9644 }
9645
9646 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9647
9648 if (per_cu == NULL)
9649 {
9650 /* It's an include file, no symbols to read for it.
9651 Everything is in the parent symtab. */
9652 pst->readin = 1;
9653 return;
9654 }
9655
9656 dw2_do_instantiate_symtab (per_cu, false);
9657 }
9658
9659 /* Trivial hash function for die_info: the hash value of a DIE
9660 is its offset in .debug_info for this objfile. */
9661
9662 static hashval_t
9663 die_hash (const void *item)
9664 {
9665 const struct die_info *die = (const struct die_info *) item;
9666
9667 return to_underlying (die->sect_off);
9668 }
9669
9670 /* Trivial comparison function for die_info structures: two DIEs
9671 are equal if they have the same offset. */
9672
9673 static int
9674 die_eq (const void *item_lhs, const void *item_rhs)
9675 {
9676 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9677 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9678
9679 return die_lhs->sect_off == die_rhs->sect_off;
9680 }
9681
9682 /* die_reader_func for load_full_comp_unit.
9683 This is identical to read_signatured_type_reader,
9684 but is kept separate for now. */
9685
9686 static void
9687 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9688 const gdb_byte *info_ptr,
9689 struct die_info *comp_unit_die,
9690 int has_children,
9691 void *data)
9692 {
9693 struct dwarf2_cu *cu = reader->cu;
9694 enum language *language_ptr = (enum language *) data;
9695
9696 gdb_assert (cu->die_hash == NULL);
9697 cu->die_hash =
9698 htab_create_alloc_ex (cu->header.length / 12,
9699 die_hash,
9700 die_eq,
9701 NULL,
9702 &cu->comp_unit_obstack,
9703 hashtab_obstack_allocate,
9704 dummy_obstack_deallocate);
9705
9706 if (has_children)
9707 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9708 &info_ptr, comp_unit_die);
9709 cu->dies = comp_unit_die;
9710 /* comp_unit_die is not stored in die_hash, no need. */
9711
9712 /* We try not to read any attributes in this function, because not
9713 all CUs needed for references have been loaded yet, and symbol
9714 table processing isn't initialized. But we have to set the CU language,
9715 or we won't be able to build types correctly.
9716 Similarly, if we do not read the producer, we can not apply
9717 producer-specific interpretation. */
9718 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9719 }
9720
9721 /* Load the DIEs associated with PER_CU into memory. */
9722
9723 static void
9724 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9725 bool skip_partial,
9726 enum language pretend_language)
9727 {
9728 gdb_assert (! this_cu->is_debug_types);
9729
9730 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9731 load_full_comp_unit_reader, &pretend_language);
9732 }
9733
9734 /* Add a DIE to the delayed physname list. */
9735
9736 static void
9737 add_to_method_list (struct type *type, int fnfield_index, int index,
9738 const char *name, struct die_info *die,
9739 struct dwarf2_cu *cu)
9740 {
9741 struct delayed_method_info mi;
9742 mi.type = type;
9743 mi.fnfield_index = fnfield_index;
9744 mi.index = index;
9745 mi.name = name;
9746 mi.die = die;
9747 cu->method_list.push_back (mi);
9748 }
9749
9750 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9751 "const" / "volatile". If so, decrements LEN by the length of the
9752 modifier and return true. Otherwise return false. */
9753
9754 template<size_t N>
9755 static bool
9756 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9757 {
9758 size_t mod_len = sizeof (mod) - 1;
9759 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9760 {
9761 len -= mod_len;
9762 return true;
9763 }
9764 return false;
9765 }
9766
9767 /* Compute the physnames of any methods on the CU's method list.
9768
9769 The computation of method physnames is delayed in order to avoid the
9770 (bad) condition that one of the method's formal parameters is of an as yet
9771 incomplete type. */
9772
9773 static void
9774 compute_delayed_physnames (struct dwarf2_cu *cu)
9775 {
9776 /* Only C++ delays computing physnames. */
9777 if (cu->method_list.empty ())
9778 return;
9779 gdb_assert (cu->language == language_cplus);
9780
9781 for (const delayed_method_info &mi : cu->method_list)
9782 {
9783 const char *physname;
9784 struct fn_fieldlist *fn_flp
9785 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9786 physname = dwarf2_physname (mi.name, mi.die, cu);
9787 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9788 = physname ? physname : "";
9789
9790 /* Since there's no tag to indicate whether a method is a
9791 const/volatile overload, extract that information out of the
9792 demangled name. */
9793 if (physname != NULL)
9794 {
9795 size_t len = strlen (physname);
9796
9797 while (1)
9798 {
9799 if (physname[len] == ')') /* shortcut */
9800 break;
9801 else if (check_modifier (physname, len, " const"))
9802 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9803 else if (check_modifier (physname, len, " volatile"))
9804 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9805 else
9806 break;
9807 }
9808 }
9809 }
9810
9811 /* The list is no longer needed. */
9812 cu->method_list.clear ();
9813 }
9814
9815 /* Go objects should be embedded in a DW_TAG_module DIE,
9816 and it's not clear if/how imported objects will appear.
9817 To keep Go support simple until that's worked out,
9818 go back through what we've read and create something usable.
9819 We could do this while processing each DIE, and feels kinda cleaner,
9820 but that way is more invasive.
9821 This is to, for example, allow the user to type "p var" or "b main"
9822 without having to specify the package name, and allow lookups
9823 of module.object to work in contexts that use the expression
9824 parser. */
9825
9826 static void
9827 fixup_go_packaging (struct dwarf2_cu *cu)
9828 {
9829 char *package_name = NULL;
9830 struct pending *list;
9831 int i;
9832
9833 for (list = *cu->get_builder ()->get_global_symbols ();
9834 list != NULL;
9835 list = list->next)
9836 {
9837 for (i = 0; i < list->nsyms; ++i)
9838 {
9839 struct symbol *sym = list->symbol[i];
9840
9841 if (SYMBOL_LANGUAGE (sym) == language_go
9842 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9843 {
9844 char *this_package_name = go_symbol_package_name (sym);
9845
9846 if (this_package_name == NULL)
9847 continue;
9848 if (package_name == NULL)
9849 package_name = this_package_name;
9850 else
9851 {
9852 struct objfile *objfile
9853 = cu->per_cu->dwarf2_per_objfile->objfile;
9854 if (strcmp (package_name, this_package_name) != 0)
9855 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9856 (symbol_symtab (sym) != NULL
9857 ? symtab_to_filename_for_display
9858 (symbol_symtab (sym))
9859 : objfile_name (objfile)),
9860 this_package_name, package_name);
9861 xfree (this_package_name);
9862 }
9863 }
9864 }
9865 }
9866
9867 if (package_name != NULL)
9868 {
9869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9870 const char *saved_package_name
9871 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9872 package_name,
9873 strlen (package_name));
9874 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9875 saved_package_name);
9876 struct symbol *sym;
9877
9878 sym = allocate_symbol (objfile);
9879 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9880 SYMBOL_SET_NAMES (sym, saved_package_name,
9881 strlen (saved_package_name), 0, objfile);
9882 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9883 e.g., "main" finds the "main" module and not C's main(). */
9884 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9885 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9886 SYMBOL_TYPE (sym) = type;
9887
9888 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9889
9890 xfree (package_name);
9891 }
9892 }
9893
9894 /* Allocate a fully-qualified name consisting of the two parts on the
9895 obstack. */
9896
9897 static const char *
9898 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9899 {
9900 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9901 }
9902
9903 /* A helper that allocates a struct discriminant_info to attach to a
9904 union type. */
9905
9906 static struct discriminant_info *
9907 alloc_discriminant_info (struct type *type, int discriminant_index,
9908 int default_index)
9909 {
9910 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9911 gdb_assert (discriminant_index == -1
9912 || (discriminant_index >= 0
9913 && discriminant_index < TYPE_NFIELDS (type)));
9914 gdb_assert (default_index == -1
9915 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9916
9917 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9918
9919 struct discriminant_info *disc
9920 = ((struct discriminant_info *)
9921 TYPE_ZALLOC (type,
9922 offsetof (struct discriminant_info, discriminants)
9923 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9924 disc->default_index = default_index;
9925 disc->discriminant_index = discriminant_index;
9926
9927 struct dynamic_prop prop;
9928 prop.kind = PROP_UNDEFINED;
9929 prop.data.baton = disc;
9930
9931 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9932
9933 return disc;
9934 }
9935
9936 /* Some versions of rustc emitted enums in an unusual way.
9937
9938 Ordinary enums were emitted as unions. The first element of each
9939 structure in the union was named "RUST$ENUM$DISR". This element
9940 held the discriminant.
9941
9942 These versions of Rust also implemented the "non-zero"
9943 optimization. When the enum had two values, and one is empty and
9944 the other holds a pointer that cannot be zero, the pointer is used
9945 as the discriminant, with a zero value meaning the empty variant.
9946 Here, the union's first member is of the form
9947 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9948 where the fieldnos are the indices of the fields that should be
9949 traversed in order to find the field (which may be several fields deep)
9950 and the variantname is the name of the variant of the case when the
9951 field is zero.
9952
9953 This function recognizes whether TYPE is of one of these forms,
9954 and, if so, smashes it to be a variant type. */
9955
9956 static void
9957 quirk_rust_enum (struct type *type, struct objfile *objfile)
9958 {
9959 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9960
9961 /* We don't need to deal with empty enums. */
9962 if (TYPE_NFIELDS (type) == 0)
9963 return;
9964
9965 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9966 if (TYPE_NFIELDS (type) == 1
9967 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9968 {
9969 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9970
9971 /* Decode the field name to find the offset of the
9972 discriminant. */
9973 ULONGEST bit_offset = 0;
9974 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9975 while (name[0] >= '0' && name[0] <= '9')
9976 {
9977 char *tail;
9978 unsigned long index = strtoul (name, &tail, 10);
9979 name = tail;
9980 if (*name != '$'
9981 || index >= TYPE_NFIELDS (field_type)
9982 || (TYPE_FIELD_LOC_KIND (field_type, index)
9983 != FIELD_LOC_KIND_BITPOS))
9984 {
9985 complaint (_("Could not parse Rust enum encoding string \"%s\""
9986 "[in module %s]"),
9987 TYPE_FIELD_NAME (type, 0),
9988 objfile_name (objfile));
9989 return;
9990 }
9991 ++name;
9992
9993 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9994 field_type = TYPE_FIELD_TYPE (field_type, index);
9995 }
9996
9997 /* Make a union to hold the variants. */
9998 struct type *union_type = alloc_type (objfile);
9999 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10000 TYPE_NFIELDS (union_type) = 3;
10001 TYPE_FIELDS (union_type)
10002 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10003 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10004 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10005
10006 /* Put the discriminant must at index 0. */
10007 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10008 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10009 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10010 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10011
10012 /* The order of fields doesn't really matter, so put the real
10013 field at index 1 and the data-less field at index 2. */
10014 struct discriminant_info *disc
10015 = alloc_discriminant_info (union_type, 0, 1);
10016 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10017 TYPE_FIELD_NAME (union_type, 1)
10018 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10019 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10020 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10021 TYPE_FIELD_NAME (union_type, 1));
10022
10023 const char *dataless_name
10024 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10025 name);
10026 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10027 dataless_name);
10028 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10029 /* NAME points into the original discriminant name, which
10030 already has the correct lifetime. */
10031 TYPE_FIELD_NAME (union_type, 2) = name;
10032 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10033 disc->discriminants[2] = 0;
10034
10035 /* Smash this type to be a structure type. We have to do this
10036 because the type has already been recorded. */
10037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10038 TYPE_NFIELDS (type) = 1;
10039 TYPE_FIELDS (type)
10040 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10041
10042 /* Install the variant part. */
10043 TYPE_FIELD_TYPE (type, 0) = union_type;
10044 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10045 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10046 }
10047 else if (TYPE_NFIELDS (type) == 1)
10048 {
10049 /* We assume that a union with a single field is a univariant
10050 enum. */
10051 /* Smash this type to be a structure type. We have to do this
10052 because the type has already been recorded. */
10053 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10054
10055 /* Make a union to hold the variants. */
10056 struct type *union_type = alloc_type (objfile);
10057 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10058 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10059 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10060 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10061 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10062
10063 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10064 const char *variant_name
10065 = rust_last_path_segment (TYPE_NAME (field_type));
10066 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10067 TYPE_NAME (field_type)
10068 = rust_fully_qualify (&objfile->objfile_obstack,
10069 TYPE_NAME (type), variant_name);
10070
10071 /* Install the union in the outer struct type. */
10072 TYPE_NFIELDS (type) = 1;
10073 TYPE_FIELDS (type)
10074 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10075 TYPE_FIELD_TYPE (type, 0) = union_type;
10076 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10077 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10078
10079 alloc_discriminant_info (union_type, -1, 0);
10080 }
10081 else
10082 {
10083 struct type *disr_type = nullptr;
10084 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10085 {
10086 disr_type = TYPE_FIELD_TYPE (type, i);
10087
10088 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10089 {
10090 /* All fields of a true enum will be structs. */
10091 return;
10092 }
10093 else if (TYPE_NFIELDS (disr_type) == 0)
10094 {
10095 /* Could be data-less variant, so keep going. */
10096 disr_type = nullptr;
10097 }
10098 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10099 "RUST$ENUM$DISR") != 0)
10100 {
10101 /* Not a Rust enum. */
10102 return;
10103 }
10104 else
10105 {
10106 /* Found one. */
10107 break;
10108 }
10109 }
10110
10111 /* If we got here without a discriminant, then it's probably
10112 just a union. */
10113 if (disr_type == nullptr)
10114 return;
10115
10116 /* Smash this type to be a structure type. We have to do this
10117 because the type has already been recorded. */
10118 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10119
10120 /* Make a union to hold the variants. */
10121 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10122 struct type *union_type = alloc_type (objfile);
10123 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10124 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10125 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10126 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10127 TYPE_FIELDS (union_type)
10128 = (struct field *) TYPE_ZALLOC (union_type,
10129 (TYPE_NFIELDS (union_type)
10130 * sizeof (struct field)));
10131
10132 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10133 TYPE_NFIELDS (type) * sizeof (struct field));
10134
10135 /* Install the discriminant at index 0 in the union. */
10136 TYPE_FIELD (union_type, 0) = *disr_field;
10137 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10138 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10139
10140 /* Install the union in the outer struct type. */
10141 TYPE_FIELD_TYPE (type, 0) = union_type;
10142 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10143 TYPE_NFIELDS (type) = 1;
10144
10145 /* Set the size and offset of the union type. */
10146 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10147
10148 /* We need a way to find the correct discriminant given a
10149 variant name. For convenience we build a map here. */
10150 struct type *enum_type = FIELD_TYPE (*disr_field);
10151 std::unordered_map<std::string, ULONGEST> discriminant_map;
10152 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10153 {
10154 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10155 {
10156 const char *name
10157 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10158 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10159 }
10160 }
10161
10162 int n_fields = TYPE_NFIELDS (union_type);
10163 struct discriminant_info *disc
10164 = alloc_discriminant_info (union_type, 0, -1);
10165 /* Skip the discriminant here. */
10166 for (int i = 1; i < n_fields; ++i)
10167 {
10168 /* Find the final word in the name of this variant's type.
10169 That name can be used to look up the correct
10170 discriminant. */
10171 const char *variant_name
10172 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10173 i)));
10174
10175 auto iter = discriminant_map.find (variant_name);
10176 if (iter != discriminant_map.end ())
10177 disc->discriminants[i] = iter->second;
10178
10179 /* Remove the discriminant field, if it exists. */
10180 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10181 if (TYPE_NFIELDS (sub_type) > 0)
10182 {
10183 --TYPE_NFIELDS (sub_type);
10184 ++TYPE_FIELDS (sub_type);
10185 }
10186 TYPE_FIELD_NAME (union_type, i) = variant_name;
10187 TYPE_NAME (sub_type)
10188 = rust_fully_qualify (&objfile->objfile_obstack,
10189 TYPE_NAME (type), variant_name);
10190 }
10191 }
10192 }
10193
10194 /* Rewrite some Rust unions to be structures with variants parts. */
10195
10196 static void
10197 rust_union_quirks (struct dwarf2_cu *cu)
10198 {
10199 gdb_assert (cu->language == language_rust);
10200 for (type *type_ : cu->rust_unions)
10201 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10202 /* We don't need this any more. */
10203 cu->rust_unions.clear ();
10204 }
10205
10206 /* Return the symtab for PER_CU. This works properly regardless of
10207 whether we're using the index or psymtabs. */
10208
10209 static struct compunit_symtab *
10210 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10211 {
10212 return (per_cu->dwarf2_per_objfile->using_index
10213 ? per_cu->v.quick->compunit_symtab
10214 : per_cu->v.psymtab->compunit_symtab);
10215 }
10216
10217 /* A helper function for computing the list of all symbol tables
10218 included by PER_CU. */
10219
10220 static void
10221 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10222 htab_t all_children, htab_t all_type_symtabs,
10223 struct dwarf2_per_cu_data *per_cu,
10224 struct compunit_symtab *immediate_parent)
10225 {
10226 void **slot;
10227 int ix;
10228 struct compunit_symtab *cust;
10229 struct dwarf2_per_cu_data *iter;
10230
10231 slot = htab_find_slot (all_children, per_cu, INSERT);
10232 if (*slot != NULL)
10233 {
10234 /* This inclusion and its children have been processed. */
10235 return;
10236 }
10237
10238 *slot = per_cu;
10239 /* Only add a CU if it has a symbol table. */
10240 cust = get_compunit_symtab (per_cu);
10241 if (cust != NULL)
10242 {
10243 /* If this is a type unit only add its symbol table if we haven't
10244 seen it yet (type unit per_cu's can share symtabs). */
10245 if (per_cu->is_debug_types)
10246 {
10247 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10248 if (*slot == NULL)
10249 {
10250 *slot = cust;
10251 result->push_back (cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10254 }
10255 }
10256 else
10257 {
10258 result->push_back (cust);
10259 if (cust->user == NULL)
10260 cust->user = immediate_parent;
10261 }
10262 }
10263
10264 for (ix = 0;
10265 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10266 ++ix)
10267 {
10268 recursively_compute_inclusions (result, all_children,
10269 all_type_symtabs, iter, cust);
10270 }
10271 }
10272
10273 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10274 PER_CU. */
10275
10276 static void
10277 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10278 {
10279 gdb_assert (! per_cu->is_debug_types);
10280
10281 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10282 {
10283 int ix, len;
10284 struct dwarf2_per_cu_data *per_cu_iter;
10285 std::vector<compunit_symtab *> result_symtabs;
10286 htab_t all_children, all_type_symtabs;
10287 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10288
10289 /* If we don't have a symtab, we can just skip this case. */
10290 if (cust == NULL)
10291 return;
10292
10293 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10294 NULL, xcalloc, xfree);
10295 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10296 NULL, xcalloc, xfree);
10297
10298 for (ix = 0;
10299 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10300 ix, per_cu_iter);
10301 ++ix)
10302 {
10303 recursively_compute_inclusions (&result_symtabs, all_children,
10304 all_type_symtabs, per_cu_iter,
10305 cust);
10306 }
10307
10308 /* Now we have a transitive closure of all the included symtabs. */
10309 len = result_symtabs.size ();
10310 cust->includes
10311 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10312 struct compunit_symtab *, len + 1);
10313 memcpy (cust->includes, result_symtabs.data (),
10314 len * sizeof (compunit_symtab *));
10315 cust->includes[len] = NULL;
10316
10317 htab_delete (all_children);
10318 htab_delete (all_type_symtabs);
10319 }
10320 }
10321
10322 /* Compute the 'includes' field for the symtabs of all the CUs we just
10323 read. */
10324
10325 static void
10326 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10327 {
10328 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10329 {
10330 if (! iter->is_debug_types)
10331 compute_compunit_symtab_includes (iter);
10332 }
10333
10334 dwarf2_per_objfile->just_read_cus.clear ();
10335 }
10336
10337 /* Generate full symbol information for PER_CU, whose DIEs have
10338 already been loaded into memory. */
10339
10340 static void
10341 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10342 enum language pretend_language)
10343 {
10344 struct dwarf2_cu *cu = per_cu->cu;
10345 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10346 struct objfile *objfile = dwarf2_per_objfile->objfile;
10347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10348 CORE_ADDR lowpc, highpc;
10349 struct compunit_symtab *cust;
10350 CORE_ADDR baseaddr;
10351 struct block *static_block;
10352 CORE_ADDR addr;
10353
10354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10355
10356 /* Clear the list here in case something was left over. */
10357 cu->method_list.clear ();
10358
10359 cu->language = pretend_language;
10360 cu->language_defn = language_def (cu->language);
10361
10362 /* Do line number decoding in read_file_scope () */
10363 process_die (cu->dies, cu);
10364
10365 /* For now fudge the Go package. */
10366 if (cu->language == language_go)
10367 fixup_go_packaging (cu);
10368
10369 /* Now that we have processed all the DIEs in the CU, all the types
10370 should be complete, and it should now be safe to compute all of the
10371 physnames. */
10372 compute_delayed_physnames (cu);
10373
10374 if (cu->language == language_rust)
10375 rust_union_quirks (cu);
10376
10377 /* Some compilers don't define a DW_AT_high_pc attribute for the
10378 compilation unit. If the DW_AT_high_pc is missing, synthesize
10379 it, by scanning the DIE's below the compilation unit. */
10380 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10381
10382 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10383 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10384
10385 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10386 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10387 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10388 addrmap to help ensure it has an accurate map of pc values belonging to
10389 this comp unit. */
10390 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10391
10392 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10393 SECT_OFF_TEXT (objfile),
10394 0);
10395
10396 if (cust != NULL)
10397 {
10398 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10399
10400 /* Set symtab language to language from DW_AT_language. If the
10401 compilation is from a C file generated by language preprocessors, do
10402 not set the language if it was already deduced by start_subfile. */
10403 if (!(cu->language == language_c
10404 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10405 COMPUNIT_FILETABS (cust)->language = cu->language;
10406
10407 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10408 produce DW_AT_location with location lists but it can be possibly
10409 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10410 there were bugs in prologue debug info, fixed later in GCC-4.5
10411 by "unwind info for epilogues" patch (which is not directly related).
10412
10413 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10414 needed, it would be wrong due to missing DW_AT_producer there.
10415
10416 Still one can confuse GDB by using non-standard GCC compilation
10417 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10418 */
10419 if (cu->has_loclist && gcc_4_minor >= 5)
10420 cust->locations_valid = 1;
10421
10422 if (gcc_4_minor >= 5)
10423 cust->epilogue_unwind_valid = 1;
10424
10425 cust->call_site_htab = cu->call_site_htab;
10426 }
10427
10428 if (dwarf2_per_objfile->using_index)
10429 per_cu->v.quick->compunit_symtab = cust;
10430 else
10431 {
10432 struct partial_symtab *pst = per_cu->v.psymtab;
10433 pst->compunit_symtab = cust;
10434 pst->readin = 1;
10435 }
10436
10437 /* Push it for inclusion processing later. */
10438 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10439
10440 /* Not needed any more. */
10441 cu->reset_builder ();
10442 }
10443
10444 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10445 already been loaded into memory. */
10446
10447 static void
10448 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10449 enum language pretend_language)
10450 {
10451 struct dwarf2_cu *cu = per_cu->cu;
10452 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10453 struct objfile *objfile = dwarf2_per_objfile->objfile;
10454 struct compunit_symtab *cust;
10455 struct signatured_type *sig_type;
10456
10457 gdb_assert (per_cu->is_debug_types);
10458 sig_type = (struct signatured_type *) per_cu;
10459
10460 /* Clear the list here in case something was left over. */
10461 cu->method_list.clear ();
10462
10463 cu->language = pretend_language;
10464 cu->language_defn = language_def (cu->language);
10465
10466 /* The symbol tables are set up in read_type_unit_scope. */
10467 process_die (cu->dies, cu);
10468
10469 /* For now fudge the Go package. */
10470 if (cu->language == language_go)
10471 fixup_go_packaging (cu);
10472
10473 /* Now that we have processed all the DIEs in the CU, all the types
10474 should be complete, and it should now be safe to compute all of the
10475 physnames. */
10476 compute_delayed_physnames (cu);
10477
10478 if (cu->language == language_rust)
10479 rust_union_quirks (cu);
10480
10481 /* TUs share symbol tables.
10482 If this is the first TU to use this symtab, complete the construction
10483 of it with end_expandable_symtab. Otherwise, complete the addition of
10484 this TU's symbols to the existing symtab. */
10485 if (sig_type->type_unit_group->compunit_symtab == NULL)
10486 {
10487 buildsym_compunit *builder = cu->get_builder ();
10488 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10489 sig_type->type_unit_group->compunit_symtab = cust;
10490
10491 if (cust != NULL)
10492 {
10493 /* Set symtab language to language from DW_AT_language. If the
10494 compilation is from a C file generated by language preprocessors,
10495 do not set the language if it was already deduced by
10496 start_subfile. */
10497 if (!(cu->language == language_c
10498 && COMPUNIT_FILETABS (cust)->language != language_c))
10499 COMPUNIT_FILETABS (cust)->language = cu->language;
10500 }
10501 }
10502 else
10503 {
10504 cu->get_builder ()->augment_type_symtab ();
10505 cust = sig_type->type_unit_group->compunit_symtab;
10506 }
10507
10508 if (dwarf2_per_objfile->using_index)
10509 per_cu->v.quick->compunit_symtab = cust;
10510 else
10511 {
10512 struct partial_symtab *pst = per_cu->v.psymtab;
10513 pst->compunit_symtab = cust;
10514 pst->readin = 1;
10515 }
10516
10517 /* Not needed any more. */
10518 cu->reset_builder ();
10519 }
10520
10521 /* Process an imported unit DIE. */
10522
10523 static void
10524 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10525 {
10526 struct attribute *attr;
10527
10528 /* For now we don't handle imported units in type units. */
10529 if (cu->per_cu->is_debug_types)
10530 {
10531 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10532 " supported in type units [in module %s]"),
10533 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10534 }
10535
10536 attr = dwarf2_attr (die, DW_AT_import, cu);
10537 if (attr != NULL)
10538 {
10539 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10540 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10541 dwarf2_per_cu_data *per_cu
10542 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10543 cu->per_cu->dwarf2_per_objfile);
10544
10545 /* If necessary, add it to the queue and load its DIEs. */
10546 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10547 load_full_comp_unit (per_cu, false, cu->language);
10548
10549 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10550 per_cu);
10551 }
10552 }
10553
10554 /* RAII object that represents a process_die scope: i.e.,
10555 starts/finishes processing a DIE. */
10556 class process_die_scope
10557 {
10558 public:
10559 process_die_scope (die_info *die, dwarf2_cu *cu)
10560 : m_die (die), m_cu (cu)
10561 {
10562 /* We should only be processing DIEs not already in process. */
10563 gdb_assert (!m_die->in_process);
10564 m_die->in_process = true;
10565 }
10566
10567 ~process_die_scope ()
10568 {
10569 m_die->in_process = false;
10570
10571 /* If we're done processing the DIE for the CU that owns the line
10572 header, we don't need the line header anymore. */
10573 if (m_cu->line_header_die_owner == m_die)
10574 {
10575 delete m_cu->line_header;
10576 m_cu->line_header = NULL;
10577 m_cu->line_header_die_owner = NULL;
10578 }
10579 }
10580
10581 private:
10582 die_info *m_die;
10583 dwarf2_cu *m_cu;
10584 };
10585
10586 /* Process a die and its children. */
10587
10588 static void
10589 process_die (struct die_info *die, struct dwarf2_cu *cu)
10590 {
10591 process_die_scope scope (die, cu);
10592
10593 switch (die->tag)
10594 {
10595 case DW_TAG_padding:
10596 break;
10597 case DW_TAG_compile_unit:
10598 case DW_TAG_partial_unit:
10599 read_file_scope (die, cu);
10600 break;
10601 case DW_TAG_type_unit:
10602 read_type_unit_scope (die, cu);
10603 break;
10604 case DW_TAG_subprogram:
10605 case DW_TAG_inlined_subroutine:
10606 read_func_scope (die, cu);
10607 break;
10608 case DW_TAG_lexical_block:
10609 case DW_TAG_try_block:
10610 case DW_TAG_catch_block:
10611 read_lexical_block_scope (die, cu);
10612 break;
10613 case DW_TAG_call_site:
10614 case DW_TAG_GNU_call_site:
10615 read_call_site_scope (die, cu);
10616 break;
10617 case DW_TAG_class_type:
10618 case DW_TAG_interface_type:
10619 case DW_TAG_structure_type:
10620 case DW_TAG_union_type:
10621 process_structure_scope (die, cu);
10622 break;
10623 case DW_TAG_enumeration_type:
10624 process_enumeration_scope (die, cu);
10625 break;
10626
10627 /* These dies have a type, but processing them does not create
10628 a symbol or recurse to process the children. Therefore we can
10629 read them on-demand through read_type_die. */
10630 case DW_TAG_subroutine_type:
10631 case DW_TAG_set_type:
10632 case DW_TAG_array_type:
10633 case DW_TAG_pointer_type:
10634 case DW_TAG_ptr_to_member_type:
10635 case DW_TAG_reference_type:
10636 case DW_TAG_rvalue_reference_type:
10637 case DW_TAG_string_type:
10638 break;
10639
10640 case DW_TAG_base_type:
10641 case DW_TAG_subrange_type:
10642 case DW_TAG_typedef:
10643 /* Add a typedef symbol for the type definition, if it has a
10644 DW_AT_name. */
10645 new_symbol (die, read_type_die (die, cu), cu);
10646 break;
10647 case DW_TAG_common_block:
10648 read_common_block (die, cu);
10649 break;
10650 case DW_TAG_common_inclusion:
10651 break;
10652 case DW_TAG_namespace:
10653 cu->processing_has_namespace_info = true;
10654 read_namespace (die, cu);
10655 break;
10656 case DW_TAG_module:
10657 cu->processing_has_namespace_info = true;
10658 read_module (die, cu);
10659 break;
10660 case DW_TAG_imported_declaration:
10661 cu->processing_has_namespace_info = true;
10662 if (read_namespace_alias (die, cu))
10663 break;
10664 /* The declaration is not a global namespace alias. */
10665 /* Fall through. */
10666 case DW_TAG_imported_module:
10667 cu->processing_has_namespace_info = true;
10668 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10669 || cu->language != language_fortran))
10670 complaint (_("Tag '%s' has unexpected children"),
10671 dwarf_tag_name (die->tag));
10672 read_import_statement (die, cu);
10673 break;
10674
10675 case DW_TAG_imported_unit:
10676 process_imported_unit_die (die, cu);
10677 break;
10678
10679 case DW_TAG_variable:
10680 read_variable (die, cu);
10681 break;
10682
10683 default:
10684 new_symbol (die, NULL, cu);
10685 break;
10686 }
10687 }
10688 \f
10689 /* DWARF name computation. */
10690
10691 /* A helper function for dwarf2_compute_name which determines whether DIE
10692 needs to have the name of the scope prepended to the name listed in the
10693 die. */
10694
10695 static int
10696 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10697 {
10698 struct attribute *attr;
10699
10700 switch (die->tag)
10701 {
10702 case DW_TAG_namespace:
10703 case DW_TAG_typedef:
10704 case DW_TAG_class_type:
10705 case DW_TAG_interface_type:
10706 case DW_TAG_structure_type:
10707 case DW_TAG_union_type:
10708 case DW_TAG_enumeration_type:
10709 case DW_TAG_enumerator:
10710 case DW_TAG_subprogram:
10711 case DW_TAG_inlined_subroutine:
10712 case DW_TAG_member:
10713 case DW_TAG_imported_declaration:
10714 return 1;
10715
10716 case DW_TAG_variable:
10717 case DW_TAG_constant:
10718 /* We only need to prefix "globally" visible variables. These include
10719 any variable marked with DW_AT_external or any variable that
10720 lives in a namespace. [Variables in anonymous namespaces
10721 require prefixing, but they are not DW_AT_external.] */
10722
10723 if (dwarf2_attr (die, DW_AT_specification, cu))
10724 {
10725 struct dwarf2_cu *spec_cu = cu;
10726
10727 return die_needs_namespace (die_specification (die, &spec_cu),
10728 spec_cu);
10729 }
10730
10731 attr = dwarf2_attr (die, DW_AT_external, cu);
10732 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10733 && die->parent->tag != DW_TAG_module)
10734 return 0;
10735 /* A variable in a lexical block of some kind does not need a
10736 namespace, even though in C++ such variables may be external
10737 and have a mangled name. */
10738 if (die->parent->tag == DW_TAG_lexical_block
10739 || die->parent->tag == DW_TAG_try_block
10740 || die->parent->tag == DW_TAG_catch_block
10741 || die->parent->tag == DW_TAG_subprogram)
10742 return 0;
10743 return 1;
10744
10745 default:
10746 return 0;
10747 }
10748 }
10749
10750 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10751 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10752 defined for the given DIE. */
10753
10754 static struct attribute *
10755 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10756 {
10757 struct attribute *attr;
10758
10759 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10760 if (attr == NULL)
10761 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10762
10763 return attr;
10764 }
10765
10766 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10767 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10768 defined for the given DIE. */
10769
10770 static const char *
10771 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10772 {
10773 const char *linkage_name;
10774
10775 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10776 if (linkage_name == NULL)
10777 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10778
10779 return linkage_name;
10780 }
10781
10782 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10783 compute the physname for the object, which include a method's:
10784 - formal parameters (C++),
10785 - receiver type (Go),
10786
10787 The term "physname" is a bit confusing.
10788 For C++, for example, it is the demangled name.
10789 For Go, for example, it's the mangled name.
10790
10791 For Ada, return the DIE's linkage name rather than the fully qualified
10792 name. PHYSNAME is ignored..
10793
10794 The result is allocated on the objfile_obstack and canonicalized. */
10795
10796 static const char *
10797 dwarf2_compute_name (const char *name,
10798 struct die_info *die, struct dwarf2_cu *cu,
10799 int physname)
10800 {
10801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10802
10803 if (name == NULL)
10804 name = dwarf2_name (die, cu);
10805
10806 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10807 but otherwise compute it by typename_concat inside GDB.
10808 FIXME: Actually this is not really true, or at least not always true.
10809 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10810 Fortran names because there is no mangling standard. So new_symbol
10811 will set the demangled name to the result of dwarf2_full_name, and it is
10812 the demangled name that GDB uses if it exists. */
10813 if (cu->language == language_ada
10814 || (cu->language == language_fortran && physname))
10815 {
10816 /* For Ada unit, we prefer the linkage name over the name, as
10817 the former contains the exported name, which the user expects
10818 to be able to reference. Ideally, we want the user to be able
10819 to reference this entity using either natural or linkage name,
10820 but we haven't started looking at this enhancement yet. */
10821 const char *linkage_name = dw2_linkage_name (die, cu);
10822
10823 if (linkage_name != NULL)
10824 return linkage_name;
10825 }
10826
10827 /* These are the only languages we know how to qualify names in. */
10828 if (name != NULL
10829 && (cu->language == language_cplus
10830 || cu->language == language_fortran || cu->language == language_d
10831 || cu->language == language_rust))
10832 {
10833 if (die_needs_namespace (die, cu))
10834 {
10835 const char *prefix;
10836 const char *canonical_name = NULL;
10837
10838 string_file buf;
10839
10840 prefix = determine_prefix (die, cu);
10841 if (*prefix != '\0')
10842 {
10843 char *prefixed_name = typename_concat (NULL, prefix, name,
10844 physname, cu);
10845
10846 buf.puts (prefixed_name);
10847 xfree (prefixed_name);
10848 }
10849 else
10850 buf.puts (name);
10851
10852 /* Template parameters may be specified in the DIE's DW_AT_name, or
10853 as children with DW_TAG_template_type_param or
10854 DW_TAG_value_type_param. If the latter, add them to the name
10855 here. If the name already has template parameters, then
10856 skip this step; some versions of GCC emit both, and
10857 it is more efficient to use the pre-computed name.
10858
10859 Something to keep in mind about this process: it is very
10860 unlikely, or in some cases downright impossible, to produce
10861 something that will match the mangled name of a function.
10862 If the definition of the function has the same debug info,
10863 we should be able to match up with it anyway. But fallbacks
10864 using the minimal symbol, for instance to find a method
10865 implemented in a stripped copy of libstdc++, will not work.
10866 If we do not have debug info for the definition, we will have to
10867 match them up some other way.
10868
10869 When we do name matching there is a related problem with function
10870 templates; two instantiated function templates are allowed to
10871 differ only by their return types, which we do not add here. */
10872
10873 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10874 {
10875 struct attribute *attr;
10876 struct die_info *child;
10877 int first = 1;
10878
10879 die->building_fullname = 1;
10880
10881 for (child = die->child; child != NULL; child = child->sibling)
10882 {
10883 struct type *type;
10884 LONGEST value;
10885 const gdb_byte *bytes;
10886 struct dwarf2_locexpr_baton *baton;
10887 struct value *v;
10888
10889 if (child->tag != DW_TAG_template_type_param
10890 && child->tag != DW_TAG_template_value_param)
10891 continue;
10892
10893 if (first)
10894 {
10895 buf.puts ("<");
10896 first = 0;
10897 }
10898 else
10899 buf.puts (", ");
10900
10901 attr = dwarf2_attr (child, DW_AT_type, cu);
10902 if (attr == NULL)
10903 {
10904 complaint (_("template parameter missing DW_AT_type"));
10905 buf.puts ("UNKNOWN_TYPE");
10906 continue;
10907 }
10908 type = die_type (child, cu);
10909
10910 if (child->tag == DW_TAG_template_type_param)
10911 {
10912 c_print_type (type, "", &buf, -1, 0, cu->language,
10913 &type_print_raw_options);
10914 continue;
10915 }
10916
10917 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10918 if (attr == NULL)
10919 {
10920 complaint (_("template parameter missing "
10921 "DW_AT_const_value"));
10922 buf.puts ("UNKNOWN_VALUE");
10923 continue;
10924 }
10925
10926 dwarf2_const_value_attr (attr, type, name,
10927 &cu->comp_unit_obstack, cu,
10928 &value, &bytes, &baton);
10929
10930 if (TYPE_NOSIGN (type))
10931 /* GDB prints characters as NUMBER 'CHAR'. If that's
10932 changed, this can use value_print instead. */
10933 c_printchar (value, type, &buf);
10934 else
10935 {
10936 struct value_print_options opts;
10937
10938 if (baton != NULL)
10939 v = dwarf2_evaluate_loc_desc (type, NULL,
10940 baton->data,
10941 baton->size,
10942 baton->per_cu);
10943 else if (bytes != NULL)
10944 {
10945 v = allocate_value (type);
10946 memcpy (value_contents_writeable (v), bytes,
10947 TYPE_LENGTH (type));
10948 }
10949 else
10950 v = value_from_longest (type, value);
10951
10952 /* Specify decimal so that we do not depend on
10953 the radix. */
10954 get_formatted_print_options (&opts, 'd');
10955 opts.raw = 1;
10956 value_print (v, &buf, &opts);
10957 release_value (v);
10958 }
10959 }
10960
10961 die->building_fullname = 0;
10962
10963 if (!first)
10964 {
10965 /* Close the argument list, with a space if necessary
10966 (nested templates). */
10967 if (!buf.empty () && buf.string ().back () == '>')
10968 buf.puts (" >");
10969 else
10970 buf.puts (">");
10971 }
10972 }
10973
10974 /* For C++ methods, append formal parameter type
10975 information, if PHYSNAME. */
10976
10977 if (physname && die->tag == DW_TAG_subprogram
10978 && cu->language == language_cplus)
10979 {
10980 struct type *type = read_type_die (die, cu);
10981
10982 c_type_print_args (type, &buf, 1, cu->language,
10983 &type_print_raw_options);
10984
10985 if (cu->language == language_cplus)
10986 {
10987 /* Assume that an artificial first parameter is
10988 "this", but do not crash if it is not. RealView
10989 marks unnamed (and thus unused) parameters as
10990 artificial; there is no way to differentiate
10991 the two cases. */
10992 if (TYPE_NFIELDS (type) > 0
10993 && TYPE_FIELD_ARTIFICIAL (type, 0)
10994 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10995 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10996 0))))
10997 buf.puts (" const");
10998 }
10999 }
11000
11001 const std::string &intermediate_name = buf.string ();
11002
11003 if (cu->language == language_cplus)
11004 canonical_name
11005 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11006 &objfile->per_bfd->storage_obstack);
11007
11008 /* If we only computed INTERMEDIATE_NAME, or if
11009 INTERMEDIATE_NAME is already canonical, then we need to
11010 copy it to the appropriate obstack. */
11011 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11012 name = ((const char *)
11013 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11014 intermediate_name.c_str (),
11015 intermediate_name.length ()));
11016 else
11017 name = canonical_name;
11018 }
11019 }
11020
11021 return name;
11022 }
11023
11024 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11025 If scope qualifiers are appropriate they will be added. The result
11026 will be allocated on the storage_obstack, or NULL if the DIE does
11027 not have a name. NAME may either be from a previous call to
11028 dwarf2_name or NULL.
11029
11030 The output string will be canonicalized (if C++). */
11031
11032 static const char *
11033 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11034 {
11035 return dwarf2_compute_name (name, die, cu, 0);
11036 }
11037
11038 /* Construct a physname for the given DIE in CU. NAME may either be
11039 from a previous call to dwarf2_name or NULL. The result will be
11040 allocated on the objfile_objstack or NULL if the DIE does not have a
11041 name.
11042
11043 The output string will be canonicalized (if C++). */
11044
11045 static const char *
11046 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11047 {
11048 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11049 const char *retval, *mangled = NULL, *canon = NULL;
11050 int need_copy = 1;
11051
11052 /* In this case dwarf2_compute_name is just a shortcut not building anything
11053 on its own. */
11054 if (!die_needs_namespace (die, cu))
11055 return dwarf2_compute_name (name, die, cu, 1);
11056
11057 mangled = dw2_linkage_name (die, cu);
11058
11059 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11060 See https://github.com/rust-lang/rust/issues/32925. */
11061 if (cu->language == language_rust && mangled != NULL
11062 && strchr (mangled, '{') != NULL)
11063 mangled = NULL;
11064
11065 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11066 has computed. */
11067 gdb::unique_xmalloc_ptr<char> demangled;
11068 if (mangled != NULL)
11069 {
11070
11071 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11072 {
11073 /* Do nothing (do not demangle the symbol name). */
11074 }
11075 else if (cu->language == language_go)
11076 {
11077 /* This is a lie, but we already lie to the caller new_symbol.
11078 new_symbol assumes we return the mangled name.
11079 This just undoes that lie until things are cleaned up. */
11080 }
11081 else
11082 {
11083 /* Use DMGL_RET_DROP for C++ template functions to suppress
11084 their return type. It is easier for GDB users to search
11085 for such functions as `name(params)' than `long name(params)'.
11086 In such case the minimal symbol names do not match the full
11087 symbol names but for template functions there is never a need
11088 to look up their definition from their declaration so
11089 the only disadvantage remains the minimal symbol variant
11090 `long name(params)' does not have the proper inferior type. */
11091 demangled.reset (gdb_demangle (mangled,
11092 (DMGL_PARAMS | DMGL_ANSI
11093 | DMGL_RET_DROP)));
11094 }
11095 if (demangled)
11096 canon = demangled.get ();
11097 else
11098 {
11099 canon = mangled;
11100 need_copy = 0;
11101 }
11102 }
11103
11104 if (canon == NULL || check_physname)
11105 {
11106 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11107
11108 if (canon != NULL && strcmp (physname, canon) != 0)
11109 {
11110 /* It may not mean a bug in GDB. The compiler could also
11111 compute DW_AT_linkage_name incorrectly. But in such case
11112 GDB would need to be bug-to-bug compatible. */
11113
11114 complaint (_("Computed physname <%s> does not match demangled <%s> "
11115 "(from linkage <%s>) - DIE at %s [in module %s]"),
11116 physname, canon, mangled, sect_offset_str (die->sect_off),
11117 objfile_name (objfile));
11118
11119 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11120 is available here - over computed PHYSNAME. It is safer
11121 against both buggy GDB and buggy compilers. */
11122
11123 retval = canon;
11124 }
11125 else
11126 {
11127 retval = physname;
11128 need_copy = 0;
11129 }
11130 }
11131 else
11132 retval = canon;
11133
11134 if (need_copy)
11135 retval = ((const char *)
11136 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11137 retval, strlen (retval)));
11138
11139 return retval;
11140 }
11141
11142 /* Inspect DIE in CU for a namespace alias. If one exists, record
11143 a new symbol for it.
11144
11145 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11146
11147 static int
11148 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11149 {
11150 struct attribute *attr;
11151
11152 /* If the die does not have a name, this is not a namespace
11153 alias. */
11154 attr = dwarf2_attr (die, DW_AT_name, cu);
11155 if (attr != NULL)
11156 {
11157 int num;
11158 struct die_info *d = die;
11159 struct dwarf2_cu *imported_cu = cu;
11160
11161 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11162 keep inspecting DIEs until we hit the underlying import. */
11163 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11164 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11165 {
11166 attr = dwarf2_attr (d, DW_AT_import, cu);
11167 if (attr == NULL)
11168 break;
11169
11170 d = follow_die_ref (d, attr, &imported_cu);
11171 if (d->tag != DW_TAG_imported_declaration)
11172 break;
11173 }
11174
11175 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11176 {
11177 complaint (_("DIE at %s has too many recursively imported "
11178 "declarations"), sect_offset_str (d->sect_off));
11179 return 0;
11180 }
11181
11182 if (attr != NULL)
11183 {
11184 struct type *type;
11185 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11186
11187 type = get_die_type_at_offset (sect_off, cu->per_cu);
11188 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11189 {
11190 /* This declaration is a global namespace alias. Add
11191 a symbol for it whose type is the aliased namespace. */
11192 new_symbol (die, type, cu);
11193 return 1;
11194 }
11195 }
11196 }
11197
11198 return 0;
11199 }
11200
11201 /* Return the using directives repository (global or local?) to use in the
11202 current context for CU.
11203
11204 For Ada, imported declarations can materialize renamings, which *may* be
11205 global. However it is impossible (for now?) in DWARF to distinguish
11206 "external" imported declarations and "static" ones. As all imported
11207 declarations seem to be static in all other languages, make them all CU-wide
11208 global only in Ada. */
11209
11210 static struct using_direct **
11211 using_directives (struct dwarf2_cu *cu)
11212 {
11213 if (cu->language == language_ada
11214 && cu->get_builder ()->outermost_context_p ())
11215 return cu->get_builder ()->get_global_using_directives ();
11216 else
11217 return cu->get_builder ()->get_local_using_directives ();
11218 }
11219
11220 /* Read the import statement specified by the given die and record it. */
11221
11222 static void
11223 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11224 {
11225 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11226 struct attribute *import_attr;
11227 struct die_info *imported_die, *child_die;
11228 struct dwarf2_cu *imported_cu;
11229 const char *imported_name;
11230 const char *imported_name_prefix;
11231 const char *canonical_name;
11232 const char *import_alias;
11233 const char *imported_declaration = NULL;
11234 const char *import_prefix;
11235 std::vector<const char *> excludes;
11236
11237 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11238 if (import_attr == NULL)
11239 {
11240 complaint (_("Tag '%s' has no DW_AT_import"),
11241 dwarf_tag_name (die->tag));
11242 return;
11243 }
11244
11245 imported_cu = cu;
11246 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11247 imported_name = dwarf2_name (imported_die, imported_cu);
11248 if (imported_name == NULL)
11249 {
11250 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11251
11252 The import in the following code:
11253 namespace A
11254 {
11255 typedef int B;
11256 }
11257
11258 int main ()
11259 {
11260 using A::B;
11261 B b;
11262 return b;
11263 }
11264
11265 ...
11266 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11267 <52> DW_AT_decl_file : 1
11268 <53> DW_AT_decl_line : 6
11269 <54> DW_AT_import : <0x75>
11270 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11271 <59> DW_AT_name : B
11272 <5b> DW_AT_decl_file : 1
11273 <5c> DW_AT_decl_line : 2
11274 <5d> DW_AT_type : <0x6e>
11275 ...
11276 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11277 <76> DW_AT_byte_size : 4
11278 <77> DW_AT_encoding : 5 (signed)
11279
11280 imports the wrong die ( 0x75 instead of 0x58 ).
11281 This case will be ignored until the gcc bug is fixed. */
11282 return;
11283 }
11284
11285 /* Figure out the local name after import. */
11286 import_alias = dwarf2_name (die, cu);
11287
11288 /* Figure out where the statement is being imported to. */
11289 import_prefix = determine_prefix (die, cu);
11290
11291 /* Figure out what the scope of the imported die is and prepend it
11292 to the name of the imported die. */
11293 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11294
11295 if (imported_die->tag != DW_TAG_namespace
11296 && imported_die->tag != DW_TAG_module)
11297 {
11298 imported_declaration = imported_name;
11299 canonical_name = imported_name_prefix;
11300 }
11301 else if (strlen (imported_name_prefix) > 0)
11302 canonical_name = obconcat (&objfile->objfile_obstack,
11303 imported_name_prefix,
11304 (cu->language == language_d ? "." : "::"),
11305 imported_name, (char *) NULL);
11306 else
11307 canonical_name = imported_name;
11308
11309 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11310 for (child_die = die->child; child_die && child_die->tag;
11311 child_die = sibling_die (child_die))
11312 {
11313 /* DWARF-4: A Fortran use statement with a “rename list” may be
11314 represented by an imported module entry with an import attribute
11315 referring to the module and owned entries corresponding to those
11316 entities that are renamed as part of being imported. */
11317
11318 if (child_die->tag != DW_TAG_imported_declaration)
11319 {
11320 complaint (_("child DW_TAG_imported_declaration expected "
11321 "- DIE at %s [in module %s]"),
11322 sect_offset_str (child_die->sect_off),
11323 objfile_name (objfile));
11324 continue;
11325 }
11326
11327 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11328 if (import_attr == NULL)
11329 {
11330 complaint (_("Tag '%s' has no DW_AT_import"),
11331 dwarf_tag_name (child_die->tag));
11332 continue;
11333 }
11334
11335 imported_cu = cu;
11336 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11337 &imported_cu);
11338 imported_name = dwarf2_name (imported_die, imported_cu);
11339 if (imported_name == NULL)
11340 {
11341 complaint (_("child DW_TAG_imported_declaration has unknown "
11342 "imported name - DIE at %s [in module %s]"),
11343 sect_offset_str (child_die->sect_off),
11344 objfile_name (objfile));
11345 continue;
11346 }
11347
11348 excludes.push_back (imported_name);
11349
11350 process_die (child_die, cu);
11351 }
11352
11353 add_using_directive (using_directives (cu),
11354 import_prefix,
11355 canonical_name,
11356 import_alias,
11357 imported_declaration,
11358 excludes,
11359 0,
11360 &objfile->objfile_obstack);
11361 }
11362
11363 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11364 types, but gives them a size of zero. Starting with version 14,
11365 ICC is compatible with GCC. */
11366
11367 static bool
11368 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11369 {
11370 if (!cu->checked_producer)
11371 check_producer (cu);
11372
11373 return cu->producer_is_icc_lt_14;
11374 }
11375
11376 /* ICC generates a DW_AT_type for C void functions. This was observed on
11377 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11378 which says that void functions should not have a DW_AT_type. */
11379
11380 static bool
11381 producer_is_icc (struct dwarf2_cu *cu)
11382 {
11383 if (!cu->checked_producer)
11384 check_producer (cu);
11385
11386 return cu->producer_is_icc;
11387 }
11388
11389 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11390 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11391 this, it was first present in GCC release 4.3.0. */
11392
11393 static bool
11394 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11395 {
11396 if (!cu->checked_producer)
11397 check_producer (cu);
11398
11399 return cu->producer_is_gcc_lt_4_3;
11400 }
11401
11402 static file_and_directory
11403 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11404 {
11405 file_and_directory res;
11406
11407 /* Find the filename. Do not use dwarf2_name here, since the filename
11408 is not a source language identifier. */
11409 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11410 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11411
11412 if (res.comp_dir == NULL
11413 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11414 && IS_ABSOLUTE_PATH (res.name))
11415 {
11416 res.comp_dir_storage = ldirname (res.name);
11417 if (!res.comp_dir_storage.empty ())
11418 res.comp_dir = res.comp_dir_storage.c_str ();
11419 }
11420 if (res.comp_dir != NULL)
11421 {
11422 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11423 directory, get rid of it. */
11424 const char *cp = strchr (res.comp_dir, ':');
11425
11426 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11427 res.comp_dir = cp + 1;
11428 }
11429
11430 if (res.name == NULL)
11431 res.name = "<unknown>";
11432
11433 return res;
11434 }
11435
11436 /* Handle DW_AT_stmt_list for a compilation unit.
11437 DIE is the DW_TAG_compile_unit die for CU.
11438 COMP_DIR is the compilation directory. LOWPC is passed to
11439 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11440
11441 static void
11442 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11443 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11444 {
11445 struct dwarf2_per_objfile *dwarf2_per_objfile
11446 = cu->per_cu->dwarf2_per_objfile;
11447 struct objfile *objfile = dwarf2_per_objfile->objfile;
11448 struct attribute *attr;
11449 struct line_header line_header_local;
11450 hashval_t line_header_local_hash;
11451 void **slot;
11452 int decode_mapping;
11453
11454 gdb_assert (! cu->per_cu->is_debug_types);
11455
11456 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11457 if (attr == NULL)
11458 return;
11459
11460 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11461
11462 /* The line header hash table is only created if needed (it exists to
11463 prevent redundant reading of the line table for partial_units).
11464 If we're given a partial_unit, we'll need it. If we're given a
11465 compile_unit, then use the line header hash table if it's already
11466 created, but don't create one just yet. */
11467
11468 if (dwarf2_per_objfile->line_header_hash == NULL
11469 && die->tag == DW_TAG_partial_unit)
11470 {
11471 dwarf2_per_objfile->line_header_hash
11472 = htab_create_alloc_ex (127, line_header_hash_voidp,
11473 line_header_eq_voidp,
11474 free_line_header_voidp,
11475 &objfile->objfile_obstack,
11476 hashtab_obstack_allocate,
11477 dummy_obstack_deallocate);
11478 }
11479
11480 line_header_local.sect_off = line_offset;
11481 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11482 line_header_local_hash = line_header_hash (&line_header_local);
11483 if (dwarf2_per_objfile->line_header_hash != NULL)
11484 {
11485 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11486 &line_header_local,
11487 line_header_local_hash, NO_INSERT);
11488
11489 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11490 is not present in *SLOT (since if there is something in *SLOT then
11491 it will be for a partial_unit). */
11492 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11493 {
11494 gdb_assert (*slot != NULL);
11495 cu->line_header = (struct line_header *) *slot;
11496 return;
11497 }
11498 }
11499
11500 /* dwarf_decode_line_header does not yet provide sufficient information.
11501 We always have to call also dwarf_decode_lines for it. */
11502 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11503 if (lh == NULL)
11504 return;
11505
11506 cu->line_header = lh.release ();
11507 cu->line_header_die_owner = die;
11508
11509 if (dwarf2_per_objfile->line_header_hash == NULL)
11510 slot = NULL;
11511 else
11512 {
11513 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11514 &line_header_local,
11515 line_header_local_hash, INSERT);
11516 gdb_assert (slot != NULL);
11517 }
11518 if (slot != NULL && *slot == NULL)
11519 {
11520 /* This newly decoded line number information unit will be owned
11521 by line_header_hash hash table. */
11522 *slot = cu->line_header;
11523 cu->line_header_die_owner = NULL;
11524 }
11525 else
11526 {
11527 /* We cannot free any current entry in (*slot) as that struct line_header
11528 may be already used by multiple CUs. Create only temporary decoded
11529 line_header for this CU - it may happen at most once for each line
11530 number information unit. And if we're not using line_header_hash
11531 then this is what we want as well. */
11532 gdb_assert (die->tag != DW_TAG_partial_unit);
11533 }
11534 decode_mapping = (die->tag != DW_TAG_partial_unit);
11535 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11536 decode_mapping);
11537
11538 }
11539
11540 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11541
11542 static void
11543 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11544 {
11545 struct dwarf2_per_objfile *dwarf2_per_objfile
11546 = cu->per_cu->dwarf2_per_objfile;
11547 struct objfile *objfile = dwarf2_per_objfile->objfile;
11548 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11549 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11550 CORE_ADDR highpc = ((CORE_ADDR) 0);
11551 struct attribute *attr;
11552 struct die_info *child_die;
11553 CORE_ADDR baseaddr;
11554
11555 prepare_one_comp_unit (cu, die, cu->language);
11556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11557
11558 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11559
11560 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11561 from finish_block. */
11562 if (lowpc == ((CORE_ADDR) -1))
11563 lowpc = highpc;
11564 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11565
11566 file_and_directory fnd = find_file_and_directory (die, cu);
11567
11568 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11569 standardised yet. As a workaround for the language detection we fall
11570 back to the DW_AT_producer string. */
11571 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11572 cu->language = language_opencl;
11573
11574 /* Similar hack for Go. */
11575 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11576 set_cu_language (DW_LANG_Go, cu);
11577
11578 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11579
11580 /* Decode line number information if present. We do this before
11581 processing child DIEs, so that the line header table is available
11582 for DW_AT_decl_file. */
11583 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11584
11585 /* Process all dies in compilation unit. */
11586 if (die->child != NULL)
11587 {
11588 child_die = die->child;
11589 while (child_die && child_die->tag)
11590 {
11591 process_die (child_die, cu);
11592 child_die = sibling_die (child_die);
11593 }
11594 }
11595
11596 /* Decode macro information, if present. Dwarf 2 macro information
11597 refers to information in the line number info statement program
11598 header, so we can only read it if we've read the header
11599 successfully. */
11600 attr = dwarf2_attr (die, DW_AT_macros, cu);
11601 if (attr == NULL)
11602 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11603 if (attr && cu->line_header)
11604 {
11605 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11606 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11607
11608 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11609 }
11610 else
11611 {
11612 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11613 if (attr && cu->line_header)
11614 {
11615 unsigned int macro_offset = DW_UNSND (attr);
11616
11617 dwarf_decode_macros (cu, macro_offset, 0);
11618 }
11619 }
11620 }
11621
11622 void
11623 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11624 {
11625 struct type_unit_group *tu_group;
11626 int first_time;
11627 struct attribute *attr;
11628 unsigned int i;
11629 struct signatured_type *sig_type;
11630
11631 gdb_assert (per_cu->is_debug_types);
11632 sig_type = (struct signatured_type *) per_cu;
11633
11634 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11635
11636 /* If we're using .gdb_index (includes -readnow) then
11637 per_cu->type_unit_group may not have been set up yet. */
11638 if (sig_type->type_unit_group == NULL)
11639 sig_type->type_unit_group = get_type_unit_group (this, attr);
11640 tu_group = sig_type->type_unit_group;
11641
11642 /* If we've already processed this stmt_list there's no real need to
11643 do it again, we could fake it and just recreate the part we need
11644 (file name,index -> symtab mapping). If data shows this optimization
11645 is useful we can do it then. */
11646 first_time = tu_group->compunit_symtab == NULL;
11647
11648 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11649 debug info. */
11650 line_header_up lh;
11651 if (attr != NULL)
11652 {
11653 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11654 lh = dwarf_decode_line_header (line_offset, this);
11655 }
11656 if (lh == NULL)
11657 {
11658 if (first_time)
11659 start_symtab ("", NULL, 0);
11660 else
11661 {
11662 gdb_assert (tu_group->symtabs == NULL);
11663 gdb_assert (m_builder == nullptr);
11664 struct compunit_symtab *cust = tu_group->compunit_symtab;
11665 m_builder.reset (new struct buildsym_compunit
11666 (COMPUNIT_OBJFILE (cust), "",
11667 COMPUNIT_DIRNAME (cust),
11668 compunit_language (cust),
11669 0, cust));
11670 }
11671 return;
11672 }
11673
11674 line_header = lh.release ();
11675 line_header_die_owner = die;
11676
11677 if (first_time)
11678 {
11679 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11680
11681 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11682 still initializing it, and our caller (a few levels up)
11683 process_full_type_unit still needs to know if this is the first
11684 time. */
11685
11686 tu_group->num_symtabs = line_header->file_names.size ();
11687 tu_group->symtabs = XNEWVEC (struct symtab *,
11688 line_header->file_names.size ());
11689
11690 for (i = 0; i < line_header->file_names.size (); ++i)
11691 {
11692 file_entry &fe = line_header->file_names[i];
11693
11694 dwarf2_start_subfile (this, fe.name,
11695 fe.include_dir (line_header));
11696 buildsym_compunit *b = get_builder ();
11697 if (b->get_current_subfile ()->symtab == NULL)
11698 {
11699 /* NOTE: start_subfile will recognize when it's been
11700 passed a file it has already seen. So we can't
11701 assume there's a simple mapping from
11702 cu->line_header->file_names to subfiles, plus
11703 cu->line_header->file_names may contain dups. */
11704 b->get_current_subfile ()->symtab
11705 = allocate_symtab (cust, b->get_current_subfile ()->name);
11706 }
11707
11708 fe.symtab = b->get_current_subfile ()->symtab;
11709 tu_group->symtabs[i] = fe.symtab;
11710 }
11711 }
11712 else
11713 {
11714 gdb_assert (m_builder == nullptr);
11715 struct compunit_symtab *cust = tu_group->compunit_symtab;
11716 m_builder.reset (new struct buildsym_compunit
11717 (COMPUNIT_OBJFILE (cust), "",
11718 COMPUNIT_DIRNAME (cust),
11719 compunit_language (cust),
11720 0, cust));
11721
11722 for (i = 0; i < line_header->file_names.size (); ++i)
11723 {
11724 file_entry &fe = line_header->file_names[i];
11725
11726 fe.symtab = tu_group->symtabs[i];
11727 }
11728 }
11729
11730 /* The main symtab is allocated last. Type units don't have DW_AT_name
11731 so they don't have a "real" (so to speak) symtab anyway.
11732 There is later code that will assign the main symtab to all symbols
11733 that don't have one. We need to handle the case of a symbol with a
11734 missing symtab (DW_AT_decl_file) anyway. */
11735 }
11736
11737 /* Process DW_TAG_type_unit.
11738 For TUs we want to skip the first top level sibling if it's not the
11739 actual type being defined by this TU. In this case the first top
11740 level sibling is there to provide context only. */
11741
11742 static void
11743 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11744 {
11745 struct die_info *child_die;
11746
11747 prepare_one_comp_unit (cu, die, language_minimal);
11748
11749 /* Initialize (or reinitialize) the machinery for building symtabs.
11750 We do this before processing child DIEs, so that the line header table
11751 is available for DW_AT_decl_file. */
11752 cu->setup_type_unit_groups (die);
11753
11754 if (die->child != NULL)
11755 {
11756 child_die = die->child;
11757 while (child_die && child_die->tag)
11758 {
11759 process_die (child_die, cu);
11760 child_die = sibling_die (child_die);
11761 }
11762 }
11763 }
11764 \f
11765 /* DWO/DWP files.
11766
11767 http://gcc.gnu.org/wiki/DebugFission
11768 http://gcc.gnu.org/wiki/DebugFissionDWP
11769
11770 To simplify handling of both DWO files ("object" files with the DWARF info)
11771 and DWP files (a file with the DWOs packaged up into one file), we treat
11772 DWP files as having a collection of virtual DWO files. */
11773
11774 static hashval_t
11775 hash_dwo_file (const void *item)
11776 {
11777 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11778 hashval_t hash;
11779
11780 hash = htab_hash_string (dwo_file->dwo_name);
11781 if (dwo_file->comp_dir != NULL)
11782 hash += htab_hash_string (dwo_file->comp_dir);
11783 return hash;
11784 }
11785
11786 static int
11787 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11788 {
11789 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11790 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11791
11792 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11793 return 0;
11794 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11795 return lhs->comp_dir == rhs->comp_dir;
11796 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11797 }
11798
11799 /* Allocate a hash table for DWO files. */
11800
11801 static htab_t
11802 allocate_dwo_file_hash_table (struct objfile *objfile)
11803 {
11804 return htab_create_alloc_ex (41,
11805 hash_dwo_file,
11806 eq_dwo_file,
11807 NULL,
11808 &objfile->objfile_obstack,
11809 hashtab_obstack_allocate,
11810 dummy_obstack_deallocate);
11811 }
11812
11813 /* Lookup DWO file DWO_NAME. */
11814
11815 static void **
11816 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11817 const char *dwo_name,
11818 const char *comp_dir)
11819 {
11820 struct dwo_file find_entry;
11821 void **slot;
11822
11823 if (dwarf2_per_objfile->dwo_files == NULL)
11824 dwarf2_per_objfile->dwo_files
11825 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11826
11827 memset (&find_entry, 0, sizeof (find_entry));
11828 find_entry.dwo_name = dwo_name;
11829 find_entry.comp_dir = comp_dir;
11830 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11831
11832 return slot;
11833 }
11834
11835 static hashval_t
11836 hash_dwo_unit (const void *item)
11837 {
11838 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11839
11840 /* This drops the top 32 bits of the id, but is ok for a hash. */
11841 return dwo_unit->signature;
11842 }
11843
11844 static int
11845 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11846 {
11847 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11848 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11849
11850 /* The signature is assumed to be unique within the DWO file.
11851 So while object file CU dwo_id's always have the value zero,
11852 that's OK, assuming each object file DWO file has only one CU,
11853 and that's the rule for now. */
11854 return lhs->signature == rhs->signature;
11855 }
11856
11857 /* Allocate a hash table for DWO CUs,TUs.
11858 There is one of these tables for each of CUs,TUs for each DWO file. */
11859
11860 static htab_t
11861 allocate_dwo_unit_table (struct objfile *objfile)
11862 {
11863 /* Start out with a pretty small number.
11864 Generally DWO files contain only one CU and maybe some TUs. */
11865 return htab_create_alloc_ex (3,
11866 hash_dwo_unit,
11867 eq_dwo_unit,
11868 NULL,
11869 &objfile->objfile_obstack,
11870 hashtab_obstack_allocate,
11871 dummy_obstack_deallocate);
11872 }
11873
11874 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11875
11876 struct create_dwo_cu_data
11877 {
11878 struct dwo_file *dwo_file;
11879 struct dwo_unit dwo_unit;
11880 };
11881
11882 /* die_reader_func for create_dwo_cu. */
11883
11884 static void
11885 create_dwo_cu_reader (const struct die_reader_specs *reader,
11886 const gdb_byte *info_ptr,
11887 struct die_info *comp_unit_die,
11888 int has_children,
11889 void *datap)
11890 {
11891 struct dwarf2_cu *cu = reader->cu;
11892 sect_offset sect_off = cu->per_cu->sect_off;
11893 struct dwarf2_section_info *section = cu->per_cu->section;
11894 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11895 struct dwo_file *dwo_file = data->dwo_file;
11896 struct dwo_unit *dwo_unit = &data->dwo_unit;
11897 struct attribute *attr;
11898
11899 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11900 if (attr == NULL)
11901 {
11902 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11903 " its dwo_id [in module %s]"),
11904 sect_offset_str (sect_off), dwo_file->dwo_name);
11905 return;
11906 }
11907
11908 dwo_unit->dwo_file = dwo_file;
11909 dwo_unit->signature = DW_UNSND (attr);
11910 dwo_unit->section = section;
11911 dwo_unit->sect_off = sect_off;
11912 dwo_unit->length = cu->per_cu->length;
11913
11914 if (dwarf_read_debug)
11915 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11916 sect_offset_str (sect_off),
11917 hex_string (dwo_unit->signature));
11918 }
11919
11920 /* Create the dwo_units for the CUs in a DWO_FILE.
11921 Note: This function processes DWO files only, not DWP files. */
11922
11923 static void
11924 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11925 struct dwo_file &dwo_file, dwarf2_section_info &section,
11926 htab_t &cus_htab)
11927 {
11928 struct objfile *objfile = dwarf2_per_objfile->objfile;
11929 const gdb_byte *info_ptr, *end_ptr;
11930
11931 dwarf2_read_section (objfile, &section);
11932 info_ptr = section.buffer;
11933
11934 if (info_ptr == NULL)
11935 return;
11936
11937 if (dwarf_read_debug)
11938 {
11939 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11940 get_section_name (&section),
11941 get_section_file_name (&section));
11942 }
11943
11944 end_ptr = info_ptr + section.size;
11945 while (info_ptr < end_ptr)
11946 {
11947 struct dwarf2_per_cu_data per_cu;
11948 struct create_dwo_cu_data create_dwo_cu_data;
11949 struct dwo_unit *dwo_unit;
11950 void **slot;
11951 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11952
11953 memset (&create_dwo_cu_data.dwo_unit, 0,
11954 sizeof (create_dwo_cu_data.dwo_unit));
11955 memset (&per_cu, 0, sizeof (per_cu));
11956 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11957 per_cu.is_debug_types = 0;
11958 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11959 per_cu.section = &section;
11960 create_dwo_cu_data.dwo_file = &dwo_file;
11961
11962 init_cutu_and_read_dies_no_follow (
11963 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11964 info_ptr += per_cu.length;
11965
11966 // If the unit could not be parsed, skip it.
11967 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11968 continue;
11969
11970 if (cus_htab == NULL)
11971 cus_htab = allocate_dwo_unit_table (objfile);
11972
11973 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11974 *dwo_unit = create_dwo_cu_data.dwo_unit;
11975 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11976 gdb_assert (slot != NULL);
11977 if (*slot != NULL)
11978 {
11979 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11980 sect_offset dup_sect_off = dup_cu->sect_off;
11981
11982 complaint (_("debug cu entry at offset %s is duplicate to"
11983 " the entry at offset %s, signature %s"),
11984 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11985 hex_string (dwo_unit->signature));
11986 }
11987 *slot = (void *)dwo_unit;
11988 }
11989 }
11990
11991 /* DWP file .debug_{cu,tu}_index section format:
11992 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11993
11994 DWP Version 1:
11995
11996 Both index sections have the same format, and serve to map a 64-bit
11997 signature to a set of section numbers. Each section begins with a header,
11998 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11999 indexes, and a pool of 32-bit section numbers. The index sections will be
12000 aligned at 8-byte boundaries in the file.
12001
12002 The index section header consists of:
12003
12004 V, 32 bit version number
12005 -, 32 bits unused
12006 N, 32 bit number of compilation units or type units in the index
12007 M, 32 bit number of slots in the hash table
12008
12009 Numbers are recorded using the byte order of the application binary.
12010
12011 The hash table begins at offset 16 in the section, and consists of an array
12012 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12013 order of the application binary). Unused slots in the hash table are 0.
12014 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12015
12016 The parallel table begins immediately after the hash table
12017 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12018 array of 32-bit indexes (using the byte order of the application binary),
12019 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12020 table contains a 32-bit index into the pool of section numbers. For unused
12021 hash table slots, the corresponding entry in the parallel table will be 0.
12022
12023 The pool of section numbers begins immediately following the hash table
12024 (at offset 16 + 12 * M from the beginning of the section). The pool of
12025 section numbers consists of an array of 32-bit words (using the byte order
12026 of the application binary). Each item in the array is indexed starting
12027 from 0. The hash table entry provides the index of the first section
12028 number in the set. Additional section numbers in the set follow, and the
12029 set is terminated by a 0 entry (section number 0 is not used in ELF).
12030
12031 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12032 section must be the first entry in the set, and the .debug_abbrev.dwo must
12033 be the second entry. Other members of the set may follow in any order.
12034
12035 ---
12036
12037 DWP Version 2:
12038
12039 DWP Version 2 combines all the .debug_info, etc. sections into one,
12040 and the entries in the index tables are now offsets into these sections.
12041 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12042 section.
12043
12044 Index Section Contents:
12045 Header
12046 Hash Table of Signatures dwp_hash_table.hash_table
12047 Parallel Table of Indices dwp_hash_table.unit_table
12048 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12049 Table of Section Sizes dwp_hash_table.v2.sizes
12050
12051 The index section header consists of:
12052
12053 V, 32 bit version number
12054 L, 32 bit number of columns in the table of section offsets
12055 N, 32 bit number of compilation units or type units in the index
12056 M, 32 bit number of slots in the hash table
12057
12058 Numbers are recorded using the byte order of the application binary.
12059
12060 The hash table has the same format as version 1.
12061 The parallel table of indices has the same format as version 1,
12062 except that the entries are origin-1 indices into the table of sections
12063 offsets and the table of section sizes.
12064
12065 The table of offsets begins immediately following the parallel table
12066 (at offset 16 + 12 * M from the beginning of the section). The table is
12067 a two-dimensional array of 32-bit words (using the byte order of the
12068 application binary), with L columns and N+1 rows, in row-major order.
12069 Each row in the array is indexed starting from 0. The first row provides
12070 a key to the remaining rows: each column in this row provides an identifier
12071 for a debug section, and the offsets in the same column of subsequent rows
12072 refer to that section. The section identifiers are:
12073
12074 DW_SECT_INFO 1 .debug_info.dwo
12075 DW_SECT_TYPES 2 .debug_types.dwo
12076 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12077 DW_SECT_LINE 4 .debug_line.dwo
12078 DW_SECT_LOC 5 .debug_loc.dwo
12079 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12080 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12081 DW_SECT_MACRO 8 .debug_macro.dwo
12082
12083 The offsets provided by the CU and TU index sections are the base offsets
12084 for the contributions made by each CU or TU to the corresponding section
12085 in the package file. Each CU and TU header contains an abbrev_offset
12086 field, used to find the abbreviations table for that CU or TU within the
12087 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12088 be interpreted as relative to the base offset given in the index section.
12089 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12090 should be interpreted as relative to the base offset for .debug_line.dwo,
12091 and offsets into other debug sections obtained from DWARF attributes should
12092 also be interpreted as relative to the corresponding base offset.
12093
12094 The table of sizes begins immediately following the table of offsets.
12095 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12096 with L columns and N rows, in row-major order. Each row in the array is
12097 indexed starting from 1 (row 0 is shared by the two tables).
12098
12099 ---
12100
12101 Hash table lookup is handled the same in version 1 and 2:
12102
12103 We assume that N and M will not exceed 2^32 - 1.
12104 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12105
12106 Given a 64-bit compilation unit signature or a type signature S, an entry
12107 in the hash table is located as follows:
12108
12109 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12110 the low-order k bits all set to 1.
12111
12112 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12113
12114 3) If the hash table entry at index H matches the signature, use that
12115 entry. If the hash table entry at index H is unused (all zeroes),
12116 terminate the search: the signature is not present in the table.
12117
12118 4) Let H = (H + H') modulo M. Repeat at Step 3.
12119
12120 Because M > N and H' and M are relatively prime, the search is guaranteed
12121 to stop at an unused slot or find the match. */
12122
12123 /* Create a hash table to map DWO IDs to their CU/TU entry in
12124 .debug_{info,types}.dwo in DWP_FILE.
12125 Returns NULL if there isn't one.
12126 Note: This function processes DWP files only, not DWO files. */
12127
12128 static struct dwp_hash_table *
12129 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12130 struct dwp_file *dwp_file, int is_debug_types)
12131 {
12132 struct objfile *objfile = dwarf2_per_objfile->objfile;
12133 bfd *dbfd = dwp_file->dbfd.get ();
12134 const gdb_byte *index_ptr, *index_end;
12135 struct dwarf2_section_info *index;
12136 uint32_t version, nr_columns, nr_units, nr_slots;
12137 struct dwp_hash_table *htab;
12138
12139 if (is_debug_types)
12140 index = &dwp_file->sections.tu_index;
12141 else
12142 index = &dwp_file->sections.cu_index;
12143
12144 if (dwarf2_section_empty_p (index))
12145 return NULL;
12146 dwarf2_read_section (objfile, index);
12147
12148 index_ptr = index->buffer;
12149 index_end = index_ptr + index->size;
12150
12151 version = read_4_bytes (dbfd, index_ptr);
12152 index_ptr += 4;
12153 if (version == 2)
12154 nr_columns = read_4_bytes (dbfd, index_ptr);
12155 else
12156 nr_columns = 0;
12157 index_ptr += 4;
12158 nr_units = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160 nr_slots = read_4_bytes (dbfd, index_ptr);
12161 index_ptr += 4;
12162
12163 if (version != 1 && version != 2)
12164 {
12165 error (_("Dwarf Error: unsupported DWP file version (%s)"
12166 " [in module %s]"),
12167 pulongest (version), dwp_file->name);
12168 }
12169 if (nr_slots != (nr_slots & -nr_slots))
12170 {
12171 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12172 " is not power of 2 [in module %s]"),
12173 pulongest (nr_slots), dwp_file->name);
12174 }
12175
12176 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12177 htab->version = version;
12178 htab->nr_columns = nr_columns;
12179 htab->nr_units = nr_units;
12180 htab->nr_slots = nr_slots;
12181 htab->hash_table = index_ptr;
12182 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12183
12184 /* Exit early if the table is empty. */
12185 if (nr_slots == 0 || nr_units == 0
12186 || (version == 2 && nr_columns == 0))
12187 {
12188 /* All must be zero. */
12189 if (nr_slots != 0 || nr_units != 0
12190 || (version == 2 && nr_columns != 0))
12191 {
12192 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12193 " all zero [in modules %s]"),
12194 dwp_file->name);
12195 }
12196 return htab;
12197 }
12198
12199 if (version == 1)
12200 {
12201 htab->section_pool.v1.indices =
12202 htab->unit_table + sizeof (uint32_t) * nr_slots;
12203 /* It's harder to decide whether the section is too small in v1.
12204 V1 is deprecated anyway so we punt. */
12205 }
12206 else
12207 {
12208 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12209 int *ids = htab->section_pool.v2.section_ids;
12210 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12211 /* Reverse map for error checking. */
12212 int ids_seen[DW_SECT_MAX + 1];
12213 int i;
12214
12215 if (nr_columns < 2)
12216 {
12217 error (_("Dwarf Error: bad DWP hash table, too few columns"
12218 " in section table [in module %s]"),
12219 dwp_file->name);
12220 }
12221 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12222 {
12223 error (_("Dwarf Error: bad DWP hash table, too many columns"
12224 " in section table [in module %s]"),
12225 dwp_file->name);
12226 }
12227 memset (ids, 255, sizeof_ids);
12228 memset (ids_seen, 255, sizeof (ids_seen));
12229 for (i = 0; i < nr_columns; ++i)
12230 {
12231 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12232
12233 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12234 {
12235 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12236 " in section table [in module %s]"),
12237 id, dwp_file->name);
12238 }
12239 if (ids_seen[id] != -1)
12240 {
12241 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12242 " id %d in section table [in module %s]"),
12243 id, dwp_file->name);
12244 }
12245 ids_seen[id] = i;
12246 ids[i] = id;
12247 }
12248 /* Must have exactly one info or types section. */
12249 if (((ids_seen[DW_SECT_INFO] != -1)
12250 + (ids_seen[DW_SECT_TYPES] != -1))
12251 != 1)
12252 {
12253 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12254 " DWO info/types section [in module %s]"),
12255 dwp_file->name);
12256 }
12257 /* Must have an abbrev section. */
12258 if (ids_seen[DW_SECT_ABBREV] == -1)
12259 {
12260 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12261 " section [in module %s]"),
12262 dwp_file->name);
12263 }
12264 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12265 htab->section_pool.v2.sizes =
12266 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12267 * nr_units * nr_columns);
12268 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12269 * nr_units * nr_columns))
12270 > index_end)
12271 {
12272 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12273 " [in module %s]"),
12274 dwp_file->name);
12275 }
12276 }
12277
12278 return htab;
12279 }
12280
12281 /* Update SECTIONS with the data from SECTP.
12282
12283 This function is like the other "locate" section routines that are
12284 passed to bfd_map_over_sections, but in this context the sections to
12285 read comes from the DWP V1 hash table, not the full ELF section table.
12286
12287 The result is non-zero for success, or zero if an error was found. */
12288
12289 static int
12290 locate_v1_virtual_dwo_sections (asection *sectp,
12291 struct virtual_v1_dwo_sections *sections)
12292 {
12293 const struct dwop_section_names *names = &dwop_section_names;
12294
12295 if (section_is_p (sectp->name, &names->abbrev_dwo))
12296 {
12297 /* There can be only one. */
12298 if (sections->abbrev.s.section != NULL)
12299 return 0;
12300 sections->abbrev.s.section = sectp;
12301 sections->abbrev.size = bfd_get_section_size (sectp);
12302 }
12303 else if (section_is_p (sectp->name, &names->info_dwo)
12304 || section_is_p (sectp->name, &names->types_dwo))
12305 {
12306 /* There can be only one. */
12307 if (sections->info_or_types.s.section != NULL)
12308 return 0;
12309 sections->info_or_types.s.section = sectp;
12310 sections->info_or_types.size = bfd_get_section_size (sectp);
12311 }
12312 else if (section_is_p (sectp->name, &names->line_dwo))
12313 {
12314 /* There can be only one. */
12315 if (sections->line.s.section != NULL)
12316 return 0;
12317 sections->line.s.section = sectp;
12318 sections->line.size = bfd_get_section_size (sectp);
12319 }
12320 else if (section_is_p (sectp->name, &names->loc_dwo))
12321 {
12322 /* There can be only one. */
12323 if (sections->loc.s.section != NULL)
12324 return 0;
12325 sections->loc.s.section = sectp;
12326 sections->loc.size = bfd_get_section_size (sectp);
12327 }
12328 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12329 {
12330 /* There can be only one. */
12331 if (sections->macinfo.s.section != NULL)
12332 return 0;
12333 sections->macinfo.s.section = sectp;
12334 sections->macinfo.size = bfd_get_section_size (sectp);
12335 }
12336 else if (section_is_p (sectp->name, &names->macro_dwo))
12337 {
12338 /* There can be only one. */
12339 if (sections->macro.s.section != NULL)
12340 return 0;
12341 sections->macro.s.section = sectp;
12342 sections->macro.size = bfd_get_section_size (sectp);
12343 }
12344 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12345 {
12346 /* There can be only one. */
12347 if (sections->str_offsets.s.section != NULL)
12348 return 0;
12349 sections->str_offsets.s.section = sectp;
12350 sections->str_offsets.size = bfd_get_section_size (sectp);
12351 }
12352 else
12353 {
12354 /* No other kind of section is valid. */
12355 return 0;
12356 }
12357
12358 return 1;
12359 }
12360
12361 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12362 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12363 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12364 This is for DWP version 1 files. */
12365
12366 static struct dwo_unit *
12367 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12368 struct dwp_file *dwp_file,
12369 uint32_t unit_index,
12370 const char *comp_dir,
12371 ULONGEST signature, int is_debug_types)
12372 {
12373 struct objfile *objfile = dwarf2_per_objfile->objfile;
12374 const struct dwp_hash_table *dwp_htab =
12375 is_debug_types ? dwp_file->tus : dwp_file->cus;
12376 bfd *dbfd = dwp_file->dbfd.get ();
12377 const char *kind = is_debug_types ? "TU" : "CU";
12378 struct dwo_file *dwo_file;
12379 struct dwo_unit *dwo_unit;
12380 struct virtual_v1_dwo_sections sections;
12381 void **dwo_file_slot;
12382 int i;
12383
12384 gdb_assert (dwp_file->version == 1);
12385
12386 if (dwarf_read_debug)
12387 {
12388 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12389 kind,
12390 pulongest (unit_index), hex_string (signature),
12391 dwp_file->name);
12392 }
12393
12394 /* Fetch the sections of this DWO unit.
12395 Put a limit on the number of sections we look for so that bad data
12396 doesn't cause us to loop forever. */
12397
12398 #define MAX_NR_V1_DWO_SECTIONS \
12399 (1 /* .debug_info or .debug_types */ \
12400 + 1 /* .debug_abbrev */ \
12401 + 1 /* .debug_line */ \
12402 + 1 /* .debug_loc */ \
12403 + 1 /* .debug_str_offsets */ \
12404 + 1 /* .debug_macro or .debug_macinfo */ \
12405 + 1 /* trailing zero */)
12406
12407 memset (&sections, 0, sizeof (sections));
12408
12409 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12410 {
12411 asection *sectp;
12412 uint32_t section_nr =
12413 read_4_bytes (dbfd,
12414 dwp_htab->section_pool.v1.indices
12415 + (unit_index + i) * sizeof (uint32_t));
12416
12417 if (section_nr == 0)
12418 break;
12419 if (section_nr >= dwp_file->num_sections)
12420 {
12421 error (_("Dwarf Error: bad DWP hash table, section number too large"
12422 " [in module %s]"),
12423 dwp_file->name);
12424 }
12425
12426 sectp = dwp_file->elf_sections[section_nr];
12427 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12428 {
12429 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12430 " [in module %s]"),
12431 dwp_file->name);
12432 }
12433 }
12434
12435 if (i < 2
12436 || dwarf2_section_empty_p (&sections.info_or_types)
12437 || dwarf2_section_empty_p (&sections.abbrev))
12438 {
12439 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12440 " [in module %s]"),
12441 dwp_file->name);
12442 }
12443 if (i == MAX_NR_V1_DWO_SECTIONS)
12444 {
12445 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12446 " [in module %s]"),
12447 dwp_file->name);
12448 }
12449
12450 /* It's easier for the rest of the code if we fake a struct dwo_file and
12451 have dwo_unit "live" in that. At least for now.
12452
12453 The DWP file can be made up of a random collection of CUs and TUs.
12454 However, for each CU + set of TUs that came from the same original DWO
12455 file, we can combine them back into a virtual DWO file to save space
12456 (fewer struct dwo_file objects to allocate). Remember that for really
12457 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12458
12459 std::string virtual_dwo_name =
12460 string_printf ("virtual-dwo/%d-%d-%d-%d",
12461 get_section_id (&sections.abbrev),
12462 get_section_id (&sections.line),
12463 get_section_id (&sections.loc),
12464 get_section_id (&sections.str_offsets));
12465 /* Can we use an existing virtual DWO file? */
12466 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12467 virtual_dwo_name.c_str (),
12468 comp_dir);
12469 /* Create one if necessary. */
12470 if (*dwo_file_slot == NULL)
12471 {
12472 if (dwarf_read_debug)
12473 {
12474 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12475 virtual_dwo_name.c_str ());
12476 }
12477 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12478 dwo_file->dwo_name
12479 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12480 virtual_dwo_name.c_str (),
12481 virtual_dwo_name.size ());
12482 dwo_file->comp_dir = comp_dir;
12483 dwo_file->sections.abbrev = sections.abbrev;
12484 dwo_file->sections.line = sections.line;
12485 dwo_file->sections.loc = sections.loc;
12486 dwo_file->sections.macinfo = sections.macinfo;
12487 dwo_file->sections.macro = sections.macro;
12488 dwo_file->sections.str_offsets = sections.str_offsets;
12489 /* The "str" section is global to the entire DWP file. */
12490 dwo_file->sections.str = dwp_file->sections.str;
12491 /* The info or types section is assigned below to dwo_unit,
12492 there's no need to record it in dwo_file.
12493 Also, we can't simply record type sections in dwo_file because
12494 we record a pointer into the vector in dwo_unit. As we collect more
12495 types we'll grow the vector and eventually have to reallocate space
12496 for it, invalidating all copies of pointers into the previous
12497 contents. */
12498 *dwo_file_slot = dwo_file;
12499 }
12500 else
12501 {
12502 if (dwarf_read_debug)
12503 {
12504 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12505 virtual_dwo_name.c_str ());
12506 }
12507 dwo_file = (struct dwo_file *) *dwo_file_slot;
12508 }
12509
12510 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12511 dwo_unit->dwo_file = dwo_file;
12512 dwo_unit->signature = signature;
12513 dwo_unit->section =
12514 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12515 *dwo_unit->section = sections.info_or_types;
12516 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12517
12518 return dwo_unit;
12519 }
12520
12521 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12522 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12523 piece within that section used by a TU/CU, return a virtual section
12524 of just that piece. */
12525
12526 static struct dwarf2_section_info
12527 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12528 struct dwarf2_section_info *section,
12529 bfd_size_type offset, bfd_size_type size)
12530 {
12531 struct dwarf2_section_info result;
12532 asection *sectp;
12533
12534 gdb_assert (section != NULL);
12535 gdb_assert (!section->is_virtual);
12536
12537 memset (&result, 0, sizeof (result));
12538 result.s.containing_section = section;
12539 result.is_virtual = 1;
12540
12541 if (size == 0)
12542 return result;
12543
12544 sectp = get_section_bfd_section (section);
12545
12546 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12547 bounds of the real section. This is a pretty-rare event, so just
12548 flag an error (easier) instead of a warning and trying to cope. */
12549 if (sectp == NULL
12550 || offset + size > bfd_get_section_size (sectp))
12551 {
12552 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12553 " in section %s [in module %s]"),
12554 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12555 objfile_name (dwarf2_per_objfile->objfile));
12556 }
12557
12558 result.virtual_offset = offset;
12559 result.size = size;
12560 return result;
12561 }
12562
12563 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12564 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12565 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12566 This is for DWP version 2 files. */
12567
12568 static struct dwo_unit *
12569 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12570 struct dwp_file *dwp_file,
12571 uint32_t unit_index,
12572 const char *comp_dir,
12573 ULONGEST signature, int is_debug_types)
12574 {
12575 struct objfile *objfile = dwarf2_per_objfile->objfile;
12576 const struct dwp_hash_table *dwp_htab =
12577 is_debug_types ? dwp_file->tus : dwp_file->cus;
12578 bfd *dbfd = dwp_file->dbfd.get ();
12579 const char *kind = is_debug_types ? "TU" : "CU";
12580 struct dwo_file *dwo_file;
12581 struct dwo_unit *dwo_unit;
12582 struct virtual_v2_dwo_sections sections;
12583 void **dwo_file_slot;
12584 int i;
12585
12586 gdb_assert (dwp_file->version == 2);
12587
12588 if (dwarf_read_debug)
12589 {
12590 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12591 kind,
12592 pulongest (unit_index), hex_string (signature),
12593 dwp_file->name);
12594 }
12595
12596 /* Fetch the section offsets of this DWO unit. */
12597
12598 memset (&sections, 0, sizeof (sections));
12599
12600 for (i = 0; i < dwp_htab->nr_columns; ++i)
12601 {
12602 uint32_t offset = read_4_bytes (dbfd,
12603 dwp_htab->section_pool.v2.offsets
12604 + (((unit_index - 1) * dwp_htab->nr_columns
12605 + i)
12606 * sizeof (uint32_t)));
12607 uint32_t size = read_4_bytes (dbfd,
12608 dwp_htab->section_pool.v2.sizes
12609 + (((unit_index - 1) * dwp_htab->nr_columns
12610 + i)
12611 * sizeof (uint32_t)));
12612
12613 switch (dwp_htab->section_pool.v2.section_ids[i])
12614 {
12615 case DW_SECT_INFO:
12616 case DW_SECT_TYPES:
12617 sections.info_or_types_offset = offset;
12618 sections.info_or_types_size = size;
12619 break;
12620 case DW_SECT_ABBREV:
12621 sections.abbrev_offset = offset;
12622 sections.abbrev_size = size;
12623 break;
12624 case DW_SECT_LINE:
12625 sections.line_offset = offset;
12626 sections.line_size = size;
12627 break;
12628 case DW_SECT_LOC:
12629 sections.loc_offset = offset;
12630 sections.loc_size = size;
12631 break;
12632 case DW_SECT_STR_OFFSETS:
12633 sections.str_offsets_offset = offset;
12634 sections.str_offsets_size = size;
12635 break;
12636 case DW_SECT_MACINFO:
12637 sections.macinfo_offset = offset;
12638 sections.macinfo_size = size;
12639 break;
12640 case DW_SECT_MACRO:
12641 sections.macro_offset = offset;
12642 sections.macro_size = size;
12643 break;
12644 }
12645 }
12646
12647 /* It's easier for the rest of the code if we fake a struct dwo_file and
12648 have dwo_unit "live" in that. At least for now.
12649
12650 The DWP file can be made up of a random collection of CUs and TUs.
12651 However, for each CU + set of TUs that came from the same original DWO
12652 file, we can combine them back into a virtual DWO file to save space
12653 (fewer struct dwo_file objects to allocate). Remember that for really
12654 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12655
12656 std::string virtual_dwo_name =
12657 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12658 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12659 (long) (sections.line_size ? sections.line_offset : 0),
12660 (long) (sections.loc_size ? sections.loc_offset : 0),
12661 (long) (sections.str_offsets_size
12662 ? sections.str_offsets_offset : 0));
12663 /* Can we use an existing virtual DWO file? */
12664 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12665 virtual_dwo_name.c_str (),
12666 comp_dir);
12667 /* Create one if necessary. */
12668 if (*dwo_file_slot == NULL)
12669 {
12670 if (dwarf_read_debug)
12671 {
12672 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12673 virtual_dwo_name.c_str ());
12674 }
12675 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12676 dwo_file->dwo_name
12677 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12678 virtual_dwo_name.c_str (),
12679 virtual_dwo_name.size ());
12680 dwo_file->comp_dir = comp_dir;
12681 dwo_file->sections.abbrev =
12682 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12683 sections.abbrev_offset, sections.abbrev_size);
12684 dwo_file->sections.line =
12685 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12686 sections.line_offset, sections.line_size);
12687 dwo_file->sections.loc =
12688 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12689 sections.loc_offset, sections.loc_size);
12690 dwo_file->sections.macinfo =
12691 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12692 sections.macinfo_offset, sections.macinfo_size);
12693 dwo_file->sections.macro =
12694 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12695 sections.macro_offset, sections.macro_size);
12696 dwo_file->sections.str_offsets =
12697 create_dwp_v2_section (dwarf2_per_objfile,
12698 &dwp_file->sections.str_offsets,
12699 sections.str_offsets_offset,
12700 sections.str_offsets_size);
12701 /* The "str" section is global to the entire DWP file. */
12702 dwo_file->sections.str = dwp_file->sections.str;
12703 /* The info or types section is assigned below to dwo_unit,
12704 there's no need to record it in dwo_file.
12705 Also, we can't simply record type sections in dwo_file because
12706 we record a pointer into the vector in dwo_unit. As we collect more
12707 types we'll grow the vector and eventually have to reallocate space
12708 for it, invalidating all copies of pointers into the previous
12709 contents. */
12710 *dwo_file_slot = dwo_file;
12711 }
12712 else
12713 {
12714 if (dwarf_read_debug)
12715 {
12716 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12717 virtual_dwo_name.c_str ());
12718 }
12719 dwo_file = (struct dwo_file *) *dwo_file_slot;
12720 }
12721
12722 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12723 dwo_unit->dwo_file = dwo_file;
12724 dwo_unit->signature = signature;
12725 dwo_unit->section =
12726 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12727 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12728 is_debug_types
12729 ? &dwp_file->sections.types
12730 : &dwp_file->sections.info,
12731 sections.info_or_types_offset,
12732 sections.info_or_types_size);
12733 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12734
12735 return dwo_unit;
12736 }
12737
12738 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12739 Returns NULL if the signature isn't found. */
12740
12741 static struct dwo_unit *
12742 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12743 struct dwp_file *dwp_file, const char *comp_dir,
12744 ULONGEST signature, int is_debug_types)
12745 {
12746 const struct dwp_hash_table *dwp_htab =
12747 is_debug_types ? dwp_file->tus : dwp_file->cus;
12748 bfd *dbfd = dwp_file->dbfd.get ();
12749 uint32_t mask = dwp_htab->nr_slots - 1;
12750 uint32_t hash = signature & mask;
12751 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12752 unsigned int i;
12753 void **slot;
12754 struct dwo_unit find_dwo_cu;
12755
12756 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12757 find_dwo_cu.signature = signature;
12758 slot = htab_find_slot (is_debug_types
12759 ? dwp_file->loaded_tus
12760 : dwp_file->loaded_cus,
12761 &find_dwo_cu, INSERT);
12762
12763 if (*slot != NULL)
12764 return (struct dwo_unit *) *slot;
12765
12766 /* Use a for loop so that we don't loop forever on bad debug info. */
12767 for (i = 0; i < dwp_htab->nr_slots; ++i)
12768 {
12769 ULONGEST signature_in_table;
12770
12771 signature_in_table =
12772 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12773 if (signature_in_table == signature)
12774 {
12775 uint32_t unit_index =
12776 read_4_bytes (dbfd,
12777 dwp_htab->unit_table + hash * sizeof (uint32_t));
12778
12779 if (dwp_file->version == 1)
12780 {
12781 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12782 dwp_file, unit_index,
12783 comp_dir, signature,
12784 is_debug_types);
12785 }
12786 else
12787 {
12788 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12789 dwp_file, unit_index,
12790 comp_dir, signature,
12791 is_debug_types);
12792 }
12793 return (struct dwo_unit *) *slot;
12794 }
12795 if (signature_in_table == 0)
12796 return NULL;
12797 hash = (hash + hash2) & mask;
12798 }
12799
12800 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12801 " [in module %s]"),
12802 dwp_file->name);
12803 }
12804
12805 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12806 Open the file specified by FILE_NAME and hand it off to BFD for
12807 preliminary analysis. Return a newly initialized bfd *, which
12808 includes a canonicalized copy of FILE_NAME.
12809 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12810 SEARCH_CWD is true if the current directory is to be searched.
12811 It will be searched before debug-file-directory.
12812 If successful, the file is added to the bfd include table of the
12813 objfile's bfd (see gdb_bfd_record_inclusion).
12814 If unable to find/open the file, return NULL.
12815 NOTE: This function is derived from symfile_bfd_open. */
12816
12817 static gdb_bfd_ref_ptr
12818 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12819 const char *file_name, int is_dwp, int search_cwd)
12820 {
12821 int desc;
12822 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12823 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12824 to debug_file_directory. */
12825 const char *search_path;
12826 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12827
12828 gdb::unique_xmalloc_ptr<char> search_path_holder;
12829 if (search_cwd)
12830 {
12831 if (*debug_file_directory != '\0')
12832 {
12833 search_path_holder.reset (concat (".", dirname_separator_string,
12834 debug_file_directory,
12835 (char *) NULL));
12836 search_path = search_path_holder.get ();
12837 }
12838 else
12839 search_path = ".";
12840 }
12841 else
12842 search_path = debug_file_directory;
12843
12844 openp_flags flags = OPF_RETURN_REALPATH;
12845 if (is_dwp)
12846 flags |= OPF_SEARCH_IN_PATH;
12847
12848 gdb::unique_xmalloc_ptr<char> absolute_name;
12849 desc = openp (search_path, flags, file_name,
12850 O_RDONLY | O_BINARY, &absolute_name);
12851 if (desc < 0)
12852 return NULL;
12853
12854 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12855 gnutarget, desc));
12856 if (sym_bfd == NULL)
12857 return NULL;
12858 bfd_set_cacheable (sym_bfd.get (), 1);
12859
12860 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12861 return NULL;
12862
12863 /* Success. Record the bfd as having been included by the objfile's bfd.
12864 This is important because things like demangled_names_hash lives in the
12865 objfile's per_bfd space and may have references to things like symbol
12866 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12867 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12868
12869 return sym_bfd;
12870 }
12871
12872 /* Try to open DWO file FILE_NAME.
12873 COMP_DIR is the DW_AT_comp_dir attribute.
12874 The result is the bfd handle of the file.
12875 If there is a problem finding or opening the file, return NULL.
12876 Upon success, the canonicalized path of the file is stored in the bfd,
12877 same as symfile_bfd_open. */
12878
12879 static gdb_bfd_ref_ptr
12880 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12881 const char *file_name, const char *comp_dir)
12882 {
12883 if (IS_ABSOLUTE_PATH (file_name))
12884 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12885 0 /*is_dwp*/, 0 /*search_cwd*/);
12886
12887 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12888
12889 if (comp_dir != NULL)
12890 {
12891 char *path_to_try = concat (comp_dir, SLASH_STRING,
12892 file_name, (char *) NULL);
12893
12894 /* NOTE: If comp_dir is a relative path, this will also try the
12895 search path, which seems useful. */
12896 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12897 path_to_try,
12898 0 /*is_dwp*/,
12899 1 /*search_cwd*/));
12900 xfree (path_to_try);
12901 if (abfd != NULL)
12902 return abfd;
12903 }
12904
12905 /* That didn't work, try debug-file-directory, which, despite its name,
12906 is a list of paths. */
12907
12908 if (*debug_file_directory == '\0')
12909 return NULL;
12910
12911 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12912 0 /*is_dwp*/, 1 /*search_cwd*/);
12913 }
12914
12915 /* This function is mapped across the sections and remembers the offset and
12916 size of each of the DWO debugging sections we are interested in. */
12917
12918 static void
12919 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12920 {
12921 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12922 const struct dwop_section_names *names = &dwop_section_names;
12923
12924 if (section_is_p (sectp->name, &names->abbrev_dwo))
12925 {
12926 dwo_sections->abbrev.s.section = sectp;
12927 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12928 }
12929 else if (section_is_p (sectp->name, &names->info_dwo))
12930 {
12931 dwo_sections->info.s.section = sectp;
12932 dwo_sections->info.size = bfd_get_section_size (sectp);
12933 }
12934 else if (section_is_p (sectp->name, &names->line_dwo))
12935 {
12936 dwo_sections->line.s.section = sectp;
12937 dwo_sections->line.size = bfd_get_section_size (sectp);
12938 }
12939 else if (section_is_p (sectp->name, &names->loc_dwo))
12940 {
12941 dwo_sections->loc.s.section = sectp;
12942 dwo_sections->loc.size = bfd_get_section_size (sectp);
12943 }
12944 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12945 {
12946 dwo_sections->macinfo.s.section = sectp;
12947 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->macro_dwo))
12950 {
12951 dwo_sections->macro.s.section = sectp;
12952 dwo_sections->macro.size = bfd_get_section_size (sectp);
12953 }
12954 else if (section_is_p (sectp->name, &names->str_dwo))
12955 {
12956 dwo_sections->str.s.section = sectp;
12957 dwo_sections->str.size = bfd_get_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12960 {
12961 dwo_sections->str_offsets.s.section = sectp;
12962 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->types_dwo))
12965 {
12966 struct dwarf2_section_info type_section;
12967
12968 memset (&type_section, 0, sizeof (type_section));
12969 type_section.s.section = sectp;
12970 type_section.size = bfd_get_section_size (sectp);
12971 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12972 &type_section);
12973 }
12974 }
12975
12976 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12977 by PER_CU. This is for the non-DWP case.
12978 The result is NULL if DWO_NAME can't be found. */
12979
12980 static struct dwo_file *
12981 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12982 const char *dwo_name, const char *comp_dir)
12983 {
12984 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12985 struct objfile *objfile = dwarf2_per_objfile->objfile;
12986
12987 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12988 if (dbfd == NULL)
12989 {
12990 if (dwarf_read_debug)
12991 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12992 return NULL;
12993 }
12994
12995 /* We use a unique pointer here, despite the obstack allocation,
12996 because a dwo_file needs some cleanup if it is abandoned. */
12997 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12998 struct dwo_file));
12999 dwo_file->dwo_name = dwo_name;
13000 dwo_file->comp_dir = comp_dir;
13001 dwo_file->dbfd = dbfd.release ();
13002
13003 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13004 &dwo_file->sections);
13005
13006 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13007 dwo_file->cus);
13008
13009 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13010 dwo_file->sections.types, dwo_file->tus);
13011
13012 if (dwarf_read_debug)
13013 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13014
13015 return dwo_file.release ();
13016 }
13017
13018 /* This function is mapped across the sections and remembers the offset and
13019 size of each of the DWP debugging sections common to version 1 and 2 that
13020 we are interested in. */
13021
13022 static void
13023 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13024 void *dwp_file_ptr)
13025 {
13026 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13027 const struct dwop_section_names *names = &dwop_section_names;
13028 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13029
13030 /* Record the ELF section number for later lookup: this is what the
13031 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13032 gdb_assert (elf_section_nr < dwp_file->num_sections);
13033 dwp_file->elf_sections[elf_section_nr] = sectp;
13034
13035 /* Look for specific sections that we need. */
13036 if (section_is_p (sectp->name, &names->str_dwo))
13037 {
13038 dwp_file->sections.str.s.section = sectp;
13039 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13040 }
13041 else if (section_is_p (sectp->name, &names->cu_index))
13042 {
13043 dwp_file->sections.cu_index.s.section = sectp;
13044 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13045 }
13046 else if (section_is_p (sectp->name, &names->tu_index))
13047 {
13048 dwp_file->sections.tu_index.s.section = sectp;
13049 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13050 }
13051 }
13052
13053 /* This function is mapped across the sections and remembers the offset and
13054 size of each of the DWP version 2 debugging sections that we are interested
13055 in. This is split into a separate function because we don't know if we
13056 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13057
13058 static void
13059 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13060 {
13061 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13062 const struct dwop_section_names *names = &dwop_section_names;
13063 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13064
13065 /* Record the ELF section number for later lookup: this is what the
13066 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13067 gdb_assert (elf_section_nr < dwp_file->num_sections);
13068 dwp_file->elf_sections[elf_section_nr] = sectp;
13069
13070 /* Look for specific sections that we need. */
13071 if (section_is_p (sectp->name, &names->abbrev_dwo))
13072 {
13073 dwp_file->sections.abbrev.s.section = sectp;
13074 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13075 }
13076 else if (section_is_p (sectp->name, &names->info_dwo))
13077 {
13078 dwp_file->sections.info.s.section = sectp;
13079 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13080 }
13081 else if (section_is_p (sectp->name, &names->line_dwo))
13082 {
13083 dwp_file->sections.line.s.section = sectp;
13084 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13085 }
13086 else if (section_is_p (sectp->name, &names->loc_dwo))
13087 {
13088 dwp_file->sections.loc.s.section = sectp;
13089 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13090 }
13091 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13092 {
13093 dwp_file->sections.macinfo.s.section = sectp;
13094 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13095 }
13096 else if (section_is_p (sectp->name, &names->macro_dwo))
13097 {
13098 dwp_file->sections.macro.s.section = sectp;
13099 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13100 }
13101 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13102 {
13103 dwp_file->sections.str_offsets.s.section = sectp;
13104 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13105 }
13106 else if (section_is_p (sectp->name, &names->types_dwo))
13107 {
13108 dwp_file->sections.types.s.section = sectp;
13109 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13110 }
13111 }
13112
13113 /* Hash function for dwp_file loaded CUs/TUs. */
13114
13115 static hashval_t
13116 hash_dwp_loaded_cutus (const void *item)
13117 {
13118 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13119
13120 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13121 return dwo_unit->signature;
13122 }
13123
13124 /* Equality function for dwp_file loaded CUs/TUs. */
13125
13126 static int
13127 eq_dwp_loaded_cutus (const void *a, const void *b)
13128 {
13129 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13130 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13131
13132 return dua->signature == dub->signature;
13133 }
13134
13135 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13136
13137 static htab_t
13138 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13139 {
13140 return htab_create_alloc_ex (3,
13141 hash_dwp_loaded_cutus,
13142 eq_dwp_loaded_cutus,
13143 NULL,
13144 &objfile->objfile_obstack,
13145 hashtab_obstack_allocate,
13146 dummy_obstack_deallocate);
13147 }
13148
13149 /* Try to open DWP file FILE_NAME.
13150 The result is the bfd handle of the file.
13151 If there is a problem finding or opening the file, return NULL.
13152 Upon success, the canonicalized path of the file is stored in the bfd,
13153 same as symfile_bfd_open. */
13154
13155 static gdb_bfd_ref_ptr
13156 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13157 const char *file_name)
13158 {
13159 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13160 1 /*is_dwp*/,
13161 1 /*search_cwd*/));
13162 if (abfd != NULL)
13163 return abfd;
13164
13165 /* Work around upstream bug 15652.
13166 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13167 [Whether that's a "bug" is debatable, but it is getting in our way.]
13168 We have no real idea where the dwp file is, because gdb's realpath-ing
13169 of the executable's path may have discarded the needed info.
13170 [IWBN if the dwp file name was recorded in the executable, akin to
13171 .gnu_debuglink, but that doesn't exist yet.]
13172 Strip the directory from FILE_NAME and search again. */
13173 if (*debug_file_directory != '\0')
13174 {
13175 /* Don't implicitly search the current directory here.
13176 If the user wants to search "." to handle this case,
13177 it must be added to debug-file-directory. */
13178 return try_open_dwop_file (dwarf2_per_objfile,
13179 lbasename (file_name), 1 /*is_dwp*/,
13180 0 /*search_cwd*/);
13181 }
13182
13183 return NULL;
13184 }
13185
13186 /* Initialize the use of the DWP file for the current objfile.
13187 By convention the name of the DWP file is ${objfile}.dwp.
13188 The result is NULL if it can't be found. */
13189
13190 static std::unique_ptr<struct dwp_file>
13191 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13192 {
13193 struct objfile *objfile = dwarf2_per_objfile->objfile;
13194
13195 /* Try to find first .dwp for the binary file before any symbolic links
13196 resolving. */
13197
13198 /* If the objfile is a debug file, find the name of the real binary
13199 file and get the name of dwp file from there. */
13200 std::string dwp_name;
13201 if (objfile->separate_debug_objfile_backlink != NULL)
13202 {
13203 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13204 const char *backlink_basename = lbasename (backlink->original_name);
13205
13206 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13207 }
13208 else
13209 dwp_name = objfile->original_name;
13210
13211 dwp_name += ".dwp";
13212
13213 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13214 if (dbfd == NULL
13215 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13216 {
13217 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13218 dwp_name = objfile_name (objfile);
13219 dwp_name += ".dwp";
13220 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13221 }
13222
13223 if (dbfd == NULL)
13224 {
13225 if (dwarf_read_debug)
13226 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13227 return std::unique_ptr<dwp_file> ();
13228 }
13229
13230 const char *name = bfd_get_filename (dbfd.get ());
13231 std::unique_ptr<struct dwp_file> dwp_file
13232 (new struct dwp_file (name, std::move (dbfd)));
13233
13234 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13235 dwp_file->elf_sections =
13236 OBSTACK_CALLOC (&objfile->objfile_obstack,
13237 dwp_file->num_sections, asection *);
13238
13239 bfd_map_over_sections (dwp_file->dbfd.get (),
13240 dwarf2_locate_common_dwp_sections,
13241 dwp_file.get ());
13242
13243 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13244 0);
13245
13246 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13247 1);
13248
13249 /* The DWP file version is stored in the hash table. Oh well. */
13250 if (dwp_file->cus && dwp_file->tus
13251 && dwp_file->cus->version != dwp_file->tus->version)
13252 {
13253 /* Technically speaking, we should try to limp along, but this is
13254 pretty bizarre. We use pulongest here because that's the established
13255 portability solution (e.g, we cannot use %u for uint32_t). */
13256 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13257 " TU version %s [in DWP file %s]"),
13258 pulongest (dwp_file->cus->version),
13259 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13260 }
13261
13262 if (dwp_file->cus)
13263 dwp_file->version = dwp_file->cus->version;
13264 else if (dwp_file->tus)
13265 dwp_file->version = dwp_file->tus->version;
13266 else
13267 dwp_file->version = 2;
13268
13269 if (dwp_file->version == 2)
13270 bfd_map_over_sections (dwp_file->dbfd.get (),
13271 dwarf2_locate_v2_dwp_sections,
13272 dwp_file.get ());
13273
13274 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13275 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13276
13277 if (dwarf_read_debug)
13278 {
13279 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13280 fprintf_unfiltered (gdb_stdlog,
13281 " %s CUs, %s TUs\n",
13282 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13283 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13284 }
13285
13286 return dwp_file;
13287 }
13288
13289 /* Wrapper around open_and_init_dwp_file, only open it once. */
13290
13291 static struct dwp_file *
13292 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13293 {
13294 if (! dwarf2_per_objfile->dwp_checked)
13295 {
13296 dwarf2_per_objfile->dwp_file
13297 = open_and_init_dwp_file (dwarf2_per_objfile);
13298 dwarf2_per_objfile->dwp_checked = 1;
13299 }
13300 return dwarf2_per_objfile->dwp_file.get ();
13301 }
13302
13303 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13304 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13305 or in the DWP file for the objfile, referenced by THIS_UNIT.
13306 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13307 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13308
13309 This is called, for example, when wanting to read a variable with a
13310 complex location. Therefore we don't want to do file i/o for every call.
13311 Therefore we don't want to look for a DWO file on every call.
13312 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13313 then we check if we've already seen DWO_NAME, and only THEN do we check
13314 for a DWO file.
13315
13316 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13317 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13318
13319 static struct dwo_unit *
13320 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature, int is_debug_types)
13323 {
13324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13325 struct objfile *objfile = dwarf2_per_objfile->objfile;
13326 const char *kind = is_debug_types ? "TU" : "CU";
13327 void **dwo_file_slot;
13328 struct dwo_file *dwo_file;
13329 struct dwp_file *dwp_file;
13330
13331 /* First see if there's a DWP file.
13332 If we have a DWP file but didn't find the DWO inside it, don't
13333 look for the original DWO file. It makes gdb behave differently
13334 depending on whether one is debugging in the build tree. */
13335
13336 dwp_file = get_dwp_file (dwarf2_per_objfile);
13337 if (dwp_file != NULL)
13338 {
13339 const struct dwp_hash_table *dwp_htab =
13340 is_debug_types ? dwp_file->tus : dwp_file->cus;
13341
13342 if (dwp_htab != NULL)
13343 {
13344 struct dwo_unit *dwo_cutu =
13345 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13346 signature, is_debug_types);
13347
13348 if (dwo_cutu != NULL)
13349 {
13350 if (dwarf_read_debug)
13351 {
13352 fprintf_unfiltered (gdb_stdlog,
13353 "Virtual DWO %s %s found: @%s\n",
13354 kind, hex_string (signature),
13355 host_address_to_string (dwo_cutu));
13356 }
13357 return dwo_cutu;
13358 }
13359 }
13360 }
13361 else
13362 {
13363 /* No DWP file, look for the DWO file. */
13364
13365 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13366 dwo_name, comp_dir);
13367 if (*dwo_file_slot == NULL)
13368 {
13369 /* Read in the file and build a table of the CUs/TUs it contains. */
13370 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13371 }
13372 /* NOTE: This will be NULL if unable to open the file. */
13373 dwo_file = (struct dwo_file *) *dwo_file_slot;
13374
13375 if (dwo_file != NULL)
13376 {
13377 struct dwo_unit *dwo_cutu = NULL;
13378
13379 if (is_debug_types && dwo_file->tus)
13380 {
13381 struct dwo_unit find_dwo_cutu;
13382
13383 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13384 find_dwo_cutu.signature = signature;
13385 dwo_cutu
13386 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13387 }
13388 else if (!is_debug_types && dwo_file->cus)
13389 {
13390 struct dwo_unit find_dwo_cutu;
13391
13392 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13393 find_dwo_cutu.signature = signature;
13394 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13395 &find_dwo_cutu);
13396 }
13397
13398 if (dwo_cutu != NULL)
13399 {
13400 if (dwarf_read_debug)
13401 {
13402 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13403 kind, dwo_name, hex_string (signature),
13404 host_address_to_string (dwo_cutu));
13405 }
13406 return dwo_cutu;
13407 }
13408 }
13409 }
13410
13411 /* We didn't find it. This could mean a dwo_id mismatch, or
13412 someone deleted the DWO/DWP file, or the search path isn't set up
13413 correctly to find the file. */
13414
13415 if (dwarf_read_debug)
13416 {
13417 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13418 kind, dwo_name, hex_string (signature));
13419 }
13420
13421 /* This is a warning and not a complaint because it can be caused by
13422 pilot error (e.g., user accidentally deleting the DWO). */
13423 {
13424 /* Print the name of the DWP file if we looked there, helps the user
13425 better diagnose the problem. */
13426 std::string dwp_text;
13427
13428 if (dwp_file != NULL)
13429 dwp_text = string_printf (" [in DWP file %s]",
13430 lbasename (dwp_file->name));
13431
13432 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13433 " [in module %s]"),
13434 kind, dwo_name, hex_string (signature),
13435 dwp_text.c_str (),
13436 this_unit->is_debug_types ? "TU" : "CU",
13437 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13438 }
13439 return NULL;
13440 }
13441
13442 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13443 See lookup_dwo_cutu_unit for details. */
13444
13445 static struct dwo_unit *
13446 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13447 const char *dwo_name, const char *comp_dir,
13448 ULONGEST signature)
13449 {
13450 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13451 }
13452
13453 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13454 See lookup_dwo_cutu_unit for details. */
13455
13456 static struct dwo_unit *
13457 lookup_dwo_type_unit (struct signatured_type *this_tu,
13458 const char *dwo_name, const char *comp_dir)
13459 {
13460 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13461 }
13462
13463 /* Traversal function for queue_and_load_all_dwo_tus. */
13464
13465 static int
13466 queue_and_load_dwo_tu (void **slot, void *info)
13467 {
13468 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13469 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13470 ULONGEST signature = dwo_unit->signature;
13471 struct signatured_type *sig_type =
13472 lookup_dwo_signatured_type (per_cu->cu, signature);
13473
13474 if (sig_type != NULL)
13475 {
13476 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13477
13478 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13479 a real dependency of PER_CU on SIG_TYPE. That is detected later
13480 while processing PER_CU. */
13481 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13482 load_full_type_unit (sig_cu);
13483 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13484 }
13485
13486 return 1;
13487 }
13488
13489 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13490 The DWO may have the only definition of the type, though it may not be
13491 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13492 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13493
13494 static void
13495 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13496 {
13497 struct dwo_unit *dwo_unit;
13498 struct dwo_file *dwo_file;
13499
13500 gdb_assert (!per_cu->is_debug_types);
13501 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13502 gdb_assert (per_cu->cu != NULL);
13503
13504 dwo_unit = per_cu->cu->dwo_unit;
13505 gdb_assert (dwo_unit != NULL);
13506
13507 dwo_file = dwo_unit->dwo_file;
13508 if (dwo_file->tus != NULL)
13509 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13510 }
13511
13512 /* Free all resources associated with DWO_FILE.
13513 Close the DWO file and munmap the sections. */
13514
13515 static void
13516 free_dwo_file (struct dwo_file *dwo_file)
13517 {
13518 /* Note: dbfd is NULL for virtual DWO files. */
13519 gdb_bfd_unref (dwo_file->dbfd);
13520
13521 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13522 }
13523
13524 /* Traversal function for free_dwo_files. */
13525
13526 static int
13527 free_dwo_file_from_slot (void **slot, void *info)
13528 {
13529 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13530
13531 free_dwo_file (dwo_file);
13532
13533 return 1;
13534 }
13535
13536 /* Free all resources associated with DWO_FILES. */
13537
13538 static void
13539 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13540 {
13541 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13542 }
13543 \f
13544 /* Read in various DIEs. */
13545
13546 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13547 Inherit only the children of the DW_AT_abstract_origin DIE not being
13548 already referenced by DW_AT_abstract_origin from the children of the
13549 current DIE. */
13550
13551 static void
13552 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13553 {
13554 struct die_info *child_die;
13555 sect_offset *offsetp;
13556 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13557 struct die_info *origin_die;
13558 /* Iterator of the ORIGIN_DIE children. */
13559 struct die_info *origin_child_die;
13560 struct attribute *attr;
13561 struct dwarf2_cu *origin_cu;
13562 struct pending **origin_previous_list_in_scope;
13563
13564 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13565 if (!attr)
13566 return;
13567
13568 /* Note that following die references may follow to a die in a
13569 different cu. */
13570
13571 origin_cu = cu;
13572 origin_die = follow_die_ref (die, attr, &origin_cu);
13573
13574 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13575 symbols in. */
13576 origin_previous_list_in_scope = origin_cu->list_in_scope;
13577 origin_cu->list_in_scope = cu->list_in_scope;
13578
13579 if (die->tag != origin_die->tag
13580 && !(die->tag == DW_TAG_inlined_subroutine
13581 && origin_die->tag == DW_TAG_subprogram))
13582 complaint (_("DIE %s and its abstract origin %s have different tags"),
13583 sect_offset_str (die->sect_off),
13584 sect_offset_str (origin_die->sect_off));
13585
13586 std::vector<sect_offset> offsets;
13587
13588 for (child_die = die->child;
13589 child_die && child_die->tag;
13590 child_die = sibling_die (child_die))
13591 {
13592 struct die_info *child_origin_die;
13593 struct dwarf2_cu *child_origin_cu;
13594
13595 /* We are trying to process concrete instance entries:
13596 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13597 it's not relevant to our analysis here. i.e. detecting DIEs that are
13598 present in the abstract instance but not referenced in the concrete
13599 one. */
13600 if (child_die->tag == DW_TAG_call_site
13601 || child_die->tag == DW_TAG_GNU_call_site)
13602 continue;
13603
13604 /* For each CHILD_DIE, find the corresponding child of
13605 ORIGIN_DIE. If there is more than one layer of
13606 DW_AT_abstract_origin, follow them all; there shouldn't be,
13607 but GCC versions at least through 4.4 generate this (GCC PR
13608 40573). */
13609 child_origin_die = child_die;
13610 child_origin_cu = cu;
13611 while (1)
13612 {
13613 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13614 child_origin_cu);
13615 if (attr == NULL)
13616 break;
13617 child_origin_die = follow_die_ref (child_origin_die, attr,
13618 &child_origin_cu);
13619 }
13620
13621 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13622 counterpart may exist. */
13623 if (child_origin_die != child_die)
13624 {
13625 if (child_die->tag != child_origin_die->tag
13626 && !(child_die->tag == DW_TAG_inlined_subroutine
13627 && child_origin_die->tag == DW_TAG_subprogram))
13628 complaint (_("Child DIE %s and its abstract origin %s have "
13629 "different tags"),
13630 sect_offset_str (child_die->sect_off),
13631 sect_offset_str (child_origin_die->sect_off));
13632 if (child_origin_die->parent != origin_die)
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different parents"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 else
13638 offsets.push_back (child_origin_die->sect_off);
13639 }
13640 }
13641 std::sort (offsets.begin (), offsets.end ());
13642 sect_offset *offsets_end = offsets.data () + offsets.size ();
13643 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13644 if (offsetp[-1] == *offsetp)
13645 complaint (_("Multiple children of DIE %s refer "
13646 "to DIE %s as their abstract origin"),
13647 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13648
13649 offsetp = offsets.data ();
13650 origin_child_die = origin_die->child;
13651 while (origin_child_die && origin_child_die->tag)
13652 {
13653 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13654 while (offsetp < offsets_end
13655 && *offsetp < origin_child_die->sect_off)
13656 offsetp++;
13657 if (offsetp >= offsets_end
13658 || *offsetp > origin_child_die->sect_off)
13659 {
13660 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13661 Check whether we're already processing ORIGIN_CHILD_DIE.
13662 This can happen with mutually referenced abstract_origins.
13663 PR 16581. */
13664 if (!origin_child_die->in_process)
13665 process_die (origin_child_die, origin_cu);
13666 }
13667 origin_child_die = sibling_die (origin_child_die);
13668 }
13669 origin_cu->list_in_scope = origin_previous_list_in_scope;
13670 }
13671
13672 static void
13673 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13674 {
13675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13676 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13677 struct context_stack *newobj;
13678 CORE_ADDR lowpc;
13679 CORE_ADDR highpc;
13680 struct die_info *child_die;
13681 struct attribute *attr, *call_line, *call_file;
13682 const char *name;
13683 CORE_ADDR baseaddr;
13684 struct block *block;
13685 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13686 std::vector<struct symbol *> template_args;
13687 struct template_symbol *templ_func = NULL;
13688
13689 if (inlined_func)
13690 {
13691 /* If we do not have call site information, we can't show the
13692 caller of this inlined function. That's too confusing, so
13693 only use the scope for local variables. */
13694 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13695 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13696 if (call_line == NULL || call_file == NULL)
13697 {
13698 read_lexical_block_scope (die, cu);
13699 return;
13700 }
13701 }
13702
13703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13704
13705 name = dwarf2_name (die, cu);
13706
13707 /* Ignore functions with missing or empty names. These are actually
13708 illegal according to the DWARF standard. */
13709 if (name == NULL)
13710 {
13711 complaint (_("missing name for subprogram DIE at %s"),
13712 sect_offset_str (die->sect_off));
13713 return;
13714 }
13715
13716 /* Ignore functions with missing or invalid low and high pc attributes. */
13717 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13718 <= PC_BOUNDS_INVALID)
13719 {
13720 attr = dwarf2_attr (die, DW_AT_external, cu);
13721 if (!attr || !DW_UNSND (attr))
13722 complaint (_("cannot get low and high bounds "
13723 "for subprogram DIE at %s"),
13724 sect_offset_str (die->sect_off));
13725 return;
13726 }
13727
13728 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13729 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13730
13731 /* If we have any template arguments, then we must allocate a
13732 different sort of symbol. */
13733 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13734 {
13735 if (child_die->tag == DW_TAG_template_type_param
13736 || child_die->tag == DW_TAG_template_value_param)
13737 {
13738 templ_func = allocate_template_symbol (objfile);
13739 templ_func->subclass = SYMBOL_TEMPLATE;
13740 break;
13741 }
13742 }
13743
13744 newobj = cu->get_builder ()->push_context (0, lowpc);
13745 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13746 (struct symbol *) templ_func);
13747
13748 /* If there is a location expression for DW_AT_frame_base, record
13749 it. */
13750 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13751 if (attr)
13752 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13753
13754 /* If there is a location for the static link, record it. */
13755 newobj->static_link = NULL;
13756 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13757 if (attr)
13758 {
13759 newobj->static_link
13760 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13761 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13762 }
13763
13764 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13765
13766 if (die->child != NULL)
13767 {
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13770 {
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13773 {
13774 struct symbol *arg = new_symbol (child_die, NULL, cu);
13775
13776 if (arg != NULL)
13777 template_args.push_back (arg);
13778 }
13779 else
13780 process_die (child_die, cu);
13781 child_die = sibling_die (child_die);
13782 }
13783 }
13784
13785 inherit_abstract_dies (die, cu);
13786
13787 /* If we have a DW_AT_specification, we might need to import using
13788 directives from the context of the specification DIE. See the
13789 comment in determine_prefix. */
13790 if (cu->language == language_cplus
13791 && dwarf2_attr (die, DW_AT_specification, cu))
13792 {
13793 struct dwarf2_cu *spec_cu = cu;
13794 struct die_info *spec_die = die_specification (die, &spec_cu);
13795
13796 while (spec_die)
13797 {
13798 child_die = spec_die->child;
13799 while (child_die && child_die->tag)
13800 {
13801 if (child_die->tag == DW_TAG_imported_module)
13802 process_die (child_die, spec_cu);
13803 child_die = sibling_die (child_die);
13804 }
13805
13806 /* In some cases, GCC generates specification DIEs that
13807 themselves contain DW_AT_specification attributes. */
13808 spec_die = die_specification (spec_die, &spec_cu);
13809 }
13810 }
13811
13812 struct context_stack cstk = cu->get_builder ()->pop_context ();
13813 /* Make a block for the local symbols within. */
13814 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13815 cstk.static_link, lowpc, highpc);
13816
13817 /* For C++, set the block's scope. */
13818 if ((cu->language == language_cplus
13819 || cu->language == language_fortran
13820 || cu->language == language_d
13821 || cu->language == language_rust)
13822 && cu->processing_has_namespace_info)
13823 block_set_scope (block, determine_prefix (die, cu),
13824 &objfile->objfile_obstack);
13825
13826 /* If we have address ranges, record them. */
13827 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13828
13829 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13830
13831 /* Attach template arguments to function. */
13832 if (!template_args.empty ())
13833 {
13834 gdb_assert (templ_func != NULL);
13835
13836 templ_func->n_template_arguments = template_args.size ();
13837 templ_func->template_arguments
13838 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13839 templ_func->n_template_arguments);
13840 memcpy (templ_func->template_arguments,
13841 template_args.data (),
13842 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13843
13844 /* Make sure that the symtab is set on the new symbols. Even
13845 though they don't appear in this symtab directly, other parts
13846 of gdb assume that symbols do, and this is reasonably
13847 true. */
13848 for (symbol *sym : template_args)
13849 symbol_set_symtab (sym, symbol_symtab (templ_func));
13850 }
13851
13852 /* In C++, we can have functions nested inside functions (e.g., when
13853 a function declares a class that has methods). This means that
13854 when we finish processing a function scope, we may need to go
13855 back to building a containing block's symbol lists. */
13856 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13857 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13858
13859 /* If we've finished processing a top-level function, subsequent
13860 symbols go in the file symbol list. */
13861 if (cu->get_builder ()->outermost_context_p ())
13862 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13863 }
13864
13865 /* Process all the DIES contained within a lexical block scope. Start
13866 a new scope, process the dies, and then close the scope. */
13867
13868 static void
13869 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13870 {
13871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13873 CORE_ADDR lowpc, highpc;
13874 struct die_info *child_die;
13875 CORE_ADDR baseaddr;
13876
13877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13878
13879 /* Ignore blocks with missing or invalid low and high pc attributes. */
13880 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13881 as multiple lexical blocks? Handling children in a sane way would
13882 be nasty. Might be easier to properly extend generic blocks to
13883 describe ranges. */
13884 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13885 {
13886 case PC_BOUNDS_NOT_PRESENT:
13887 /* DW_TAG_lexical_block has no attributes, process its children as if
13888 there was no wrapping by that DW_TAG_lexical_block.
13889 GCC does no longer produces such DWARF since GCC r224161. */
13890 for (child_die = die->child;
13891 child_die != NULL && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 process_die (child_die, cu);
13894 return;
13895 case PC_BOUNDS_INVALID:
13896 return;
13897 }
13898 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13899 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13900
13901 cu->get_builder ()->push_context (0, lowpc);
13902 if (die->child != NULL)
13903 {
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13906 {
13907 process_die (child_die, cu);
13908 child_die = sibling_die (child_die);
13909 }
13910 }
13911 inherit_abstract_dies (die, cu);
13912 struct context_stack cstk = cu->get_builder ()->pop_context ();
13913
13914 if (*cu->get_builder ()->get_local_symbols () != NULL
13915 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13916 {
13917 struct block *block
13918 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13919 cstk.start_addr, highpc);
13920
13921 /* Note that recording ranges after traversing children, as we
13922 do here, means that recording a parent's ranges entails
13923 walking across all its children's ranges as they appear in
13924 the address map, which is quadratic behavior.
13925
13926 It would be nicer to record the parent's ranges before
13927 traversing its children, simply overriding whatever you find
13928 there. But since we don't even decide whether to create a
13929 block until after we've traversed its children, that's hard
13930 to do. */
13931 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13932 }
13933 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13934 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13935 }
13936
13937 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13938
13939 static void
13940 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13941 {
13942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13944 CORE_ADDR pc, baseaddr;
13945 struct attribute *attr;
13946 struct call_site *call_site, call_site_local;
13947 void **slot;
13948 int nparams;
13949 struct die_info *child_die;
13950
13951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13952
13953 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13954 if (attr == NULL)
13955 {
13956 /* This was a pre-DWARF-5 GNU extension alias
13957 for DW_AT_call_return_pc. */
13958 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13959 }
13960 if (!attr)
13961 {
13962 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 sect_offset_str (die->sect_off), objfile_name (objfile));
13965 return;
13966 }
13967 pc = attr_value_as_address (attr) + baseaddr;
13968 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13969
13970 if (cu->call_site_htab == NULL)
13971 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13972 NULL, &objfile->objfile_obstack,
13973 hashtab_obstack_allocate, NULL);
13974 call_site_local.pc = pc;
13975 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13976 if (*slot != NULL)
13977 {
13978 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13979 "DIE %s [in module %s]"),
13980 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13981 objfile_name (objfile));
13982 return;
13983 }
13984
13985 /* Count parameters at the caller. */
13986
13987 nparams = 0;
13988 for (child_die = die->child; child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13990 {
13991 if (child_die->tag != DW_TAG_call_site_parameter
13992 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13993 {
13994 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13995 "DW_TAG_call_site child DIE %s [in module %s]"),
13996 child_die->tag, sect_offset_str (child_die->sect_off),
13997 objfile_name (objfile));
13998 continue;
13999 }
14000
14001 nparams++;
14002 }
14003
14004 call_site
14005 = ((struct call_site *)
14006 obstack_alloc (&objfile->objfile_obstack,
14007 sizeof (*call_site)
14008 + (sizeof (*call_site->parameter) * (nparams - 1))));
14009 *slot = call_site;
14010 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14011 call_site->pc = pc;
14012
14013 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14014 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14015 {
14016 struct die_info *func_die;
14017
14018 /* Skip also over DW_TAG_inlined_subroutine. */
14019 for (func_die = die->parent;
14020 func_die && func_die->tag != DW_TAG_subprogram
14021 && func_die->tag != DW_TAG_subroutine_type;
14022 func_die = func_die->parent);
14023
14024 /* DW_AT_call_all_calls is a superset
14025 of DW_AT_call_all_tail_calls. */
14026 if (func_die
14027 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14030 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14031 {
14032 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14033 not complete. But keep CALL_SITE for look ups via call_site_htab,
14034 both the initial caller containing the real return address PC and
14035 the final callee containing the current PC of a chain of tail
14036 calls do not need to have the tail call list complete. But any
14037 function candidate for a virtual tail call frame searched via
14038 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14039 determined unambiguously. */
14040 }
14041 else
14042 {
14043 struct type *func_type = NULL;
14044
14045 if (func_die)
14046 func_type = get_die_type (func_die, cu);
14047 if (func_type != NULL)
14048 {
14049 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14050
14051 /* Enlist this call site to the function. */
14052 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14053 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14054 }
14055 else
14056 complaint (_("Cannot find function owning DW_TAG_call_site "
14057 "DIE %s [in module %s]"),
14058 sect_offset_str (die->sect_off), objfile_name (objfile));
14059 }
14060 }
14061
14062 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14063 if (attr == NULL)
14064 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14065 if (attr == NULL)
14066 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14067 if (attr == NULL)
14068 {
14069 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14070 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14071 }
14072 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14073 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14074 /* Keep NULL DWARF_BLOCK. */;
14075 else if (attr_form_is_block (attr))
14076 {
14077 struct dwarf2_locexpr_baton *dlbaton;
14078
14079 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14080 dlbaton->data = DW_BLOCK (attr)->data;
14081 dlbaton->size = DW_BLOCK (attr)->size;
14082 dlbaton->per_cu = cu->per_cu;
14083
14084 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14085 }
14086 else if (attr_form_is_ref (attr))
14087 {
14088 struct dwarf2_cu *target_cu = cu;
14089 struct die_info *target_die;
14090
14091 target_die = follow_die_ref (die, attr, &target_cu);
14092 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14093 if (die_is_declaration (target_die, target_cu))
14094 {
14095 const char *target_physname;
14096
14097 /* Prefer the mangled name; otherwise compute the demangled one. */
14098 target_physname = dw2_linkage_name (target_die, target_cu);
14099 if (target_physname == NULL)
14100 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14101 if (target_physname == NULL)
14102 complaint (_("DW_AT_call_target target DIE has invalid "
14103 "physname, for referencing DIE %s [in module %s]"),
14104 sect_offset_str (die->sect_off), objfile_name (objfile));
14105 else
14106 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14107 }
14108 else
14109 {
14110 CORE_ADDR lowpc;
14111
14112 /* DW_AT_entry_pc should be preferred. */
14113 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14114 <= PC_BOUNDS_INVALID)
14115 complaint (_("DW_AT_call_target target DIE has invalid "
14116 "low pc, for referencing DIE %s [in module %s]"),
14117 sect_offset_str (die->sect_off), objfile_name (objfile));
14118 else
14119 {
14120 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14121 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14122 }
14123 }
14124 }
14125 else
14126 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14127 "block nor reference, for DIE %s [in module %s]"),
14128 sect_offset_str (die->sect_off), objfile_name (objfile));
14129
14130 call_site->per_cu = cu->per_cu;
14131
14132 for (child_die = die->child;
14133 child_die && child_die->tag;
14134 child_die = sibling_die (child_die))
14135 {
14136 struct call_site_parameter *parameter;
14137 struct attribute *loc, *origin;
14138
14139 if (child_die->tag != DW_TAG_call_site_parameter
14140 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14141 {
14142 /* Already printed the complaint above. */
14143 continue;
14144 }
14145
14146 gdb_assert (call_site->parameter_count < nparams);
14147 parameter = &call_site->parameter[call_site->parameter_count];
14148
14149 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14150 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14151 register is contained in DW_AT_call_value. */
14152
14153 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14154 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14155 if (origin == NULL)
14156 {
14157 /* This was a pre-DWARF-5 GNU extension alias
14158 for DW_AT_call_parameter. */
14159 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14160 }
14161 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14162 {
14163 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14164
14165 sect_offset sect_off
14166 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14167 if (!offset_in_cu_p (&cu->header, sect_off))
14168 {
14169 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14170 binding can be done only inside one CU. Such referenced DIE
14171 therefore cannot be even moved to DW_TAG_partial_unit. */
14172 complaint (_("DW_AT_call_parameter offset is not in CU for "
14173 "DW_TAG_call_site child DIE %s [in module %s]"),
14174 sect_offset_str (child_die->sect_off),
14175 objfile_name (objfile));
14176 continue;
14177 }
14178 parameter->u.param_cu_off
14179 = (cu_offset) (sect_off - cu->header.sect_off);
14180 }
14181 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14182 {
14183 complaint (_("No DW_FORM_block* DW_AT_location for "
14184 "DW_TAG_call_site child DIE %s [in module %s]"),
14185 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14186 continue;
14187 }
14188 else
14189 {
14190 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14191 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14192 if (parameter->u.dwarf_reg != -1)
14193 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14194 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14195 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14196 &parameter->u.fb_offset))
14197 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14198 else
14199 {
14200 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14201 "for DW_FORM_block* DW_AT_location is supported for "
14202 "DW_TAG_call_site child DIE %s "
14203 "[in module %s]"),
14204 sect_offset_str (child_die->sect_off),
14205 objfile_name (objfile));
14206 continue;
14207 }
14208 }
14209
14210 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14211 if (attr == NULL)
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14213 if (!attr_form_is_block (attr))
14214 {
14215 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14216 "DW_TAG_call_site child DIE %s [in module %s]"),
14217 sect_offset_str (child_die->sect_off),
14218 objfile_name (objfile));
14219 continue;
14220 }
14221 parameter->value = DW_BLOCK (attr)->data;
14222 parameter->value_size = DW_BLOCK (attr)->size;
14223
14224 /* Parameters are not pre-cleared by memset above. */
14225 parameter->data_value = NULL;
14226 parameter->data_value_size = 0;
14227 call_site->parameter_count++;
14228
14229 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14230 if (attr == NULL)
14231 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14232 if (attr)
14233 {
14234 if (!attr_form_is_block (attr))
14235 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14236 "DW_TAG_call_site child DIE %s [in module %s]"),
14237 sect_offset_str (child_die->sect_off),
14238 objfile_name (objfile));
14239 else
14240 {
14241 parameter->data_value = DW_BLOCK (attr)->data;
14242 parameter->data_value_size = DW_BLOCK (attr)->size;
14243 }
14244 }
14245 }
14246 }
14247
14248 /* Helper function for read_variable. If DIE represents a virtual
14249 table, then return the type of the concrete object that is
14250 associated with the virtual table. Otherwise, return NULL. */
14251
14252 static struct type *
14253 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14254 {
14255 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14256 if (attr == NULL)
14257 return NULL;
14258
14259 /* Find the type DIE. */
14260 struct die_info *type_die = NULL;
14261 struct dwarf2_cu *type_cu = cu;
14262
14263 if (attr_form_is_ref (attr))
14264 type_die = follow_die_ref (die, attr, &type_cu);
14265 if (type_die == NULL)
14266 return NULL;
14267
14268 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14269 return NULL;
14270 return die_containing_type (type_die, type_cu);
14271 }
14272
14273 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14274
14275 static void
14276 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14277 {
14278 struct rust_vtable_symbol *storage = NULL;
14279
14280 if (cu->language == language_rust)
14281 {
14282 struct type *containing_type = rust_containing_type (die, cu);
14283
14284 if (containing_type != NULL)
14285 {
14286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14287
14288 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14289 struct rust_vtable_symbol);
14290 initialize_objfile_symbol (storage);
14291 storage->concrete_type = containing_type;
14292 storage->subclass = SYMBOL_RUST_VTABLE;
14293 }
14294 }
14295
14296 struct symbol *res = new_symbol (die, NULL, cu, storage);
14297 struct attribute *abstract_origin
14298 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14299 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14300 if (res == NULL && loc && abstract_origin)
14301 {
14302 /* We have a variable without a name, but with a location and an abstract
14303 origin. This may be a concrete instance of an abstract variable
14304 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14305 later. */
14306 struct dwarf2_cu *origin_cu = cu;
14307 struct die_info *origin_die
14308 = follow_die_ref (die, abstract_origin, &origin_cu);
14309 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14310 dpo->abstract_to_concrete[origin_die].push_back (die);
14311 }
14312 }
14313
14314 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14315 reading .debug_rnglists.
14316 Callback's type should be:
14317 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14318 Return true if the attributes are present and valid, otherwise,
14319 return false. */
14320
14321 template <typename Callback>
14322 static bool
14323 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14324 Callback &&callback)
14325 {
14326 struct dwarf2_per_objfile *dwarf2_per_objfile
14327 = cu->per_cu->dwarf2_per_objfile;
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 bfd *obfd = objfile->obfd;
14330 /* Base address selection entry. */
14331 CORE_ADDR base;
14332 int found_base;
14333 const gdb_byte *buffer;
14334 CORE_ADDR baseaddr;
14335 bool overflow = false;
14336
14337 found_base = cu->base_known;
14338 base = cu->base_address;
14339
14340 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14341 if (offset >= dwarf2_per_objfile->rnglists.size)
14342 {
14343 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14344 offset);
14345 return false;
14346 }
14347 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14348
14349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14350
14351 while (1)
14352 {
14353 /* Initialize it due to a false compiler warning. */
14354 CORE_ADDR range_beginning = 0, range_end = 0;
14355 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14356 + dwarf2_per_objfile->rnglists.size);
14357 unsigned int bytes_read;
14358
14359 if (buffer == buf_end)
14360 {
14361 overflow = true;
14362 break;
14363 }
14364 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14365 switch (rlet)
14366 {
14367 case DW_RLE_end_of_list:
14368 break;
14369 case DW_RLE_base_address:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 base = read_address (obfd, buffer, cu, &bytes_read);
14376 found_base = 1;
14377 buffer += bytes_read;
14378 break;
14379 case DW_RLE_start_length:
14380 if (buffer + cu->header.addr_size > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14387 range_end = (range_beginning
14388 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14391 {
14392 overflow = true;
14393 break;
14394 }
14395 break;
14396 case DW_RLE_offset_pair:
14397 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14405 buffer += bytes_read;
14406 if (buffer > buf_end)
14407 {
14408 overflow = true;
14409 break;
14410 }
14411 break;
14412 case DW_RLE_start_end:
14413 if (buffer + 2 * cu->header.addr_size > buf_end)
14414 {
14415 overflow = true;
14416 break;
14417 }
14418 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 range_end = read_address (obfd, buffer, cu, &bytes_read);
14421 buffer += bytes_read;
14422 break;
14423 default:
14424 complaint (_("Invalid .debug_rnglists data (no base address)"));
14425 return false;
14426 }
14427 if (rlet == DW_RLE_end_of_list || overflow)
14428 break;
14429 if (rlet == DW_RLE_base_address)
14430 continue;
14431
14432 if (!found_base)
14433 {
14434 /* We have no valid base address for the ranges
14435 data. */
14436 complaint (_("Invalid .debug_rnglists data (no base address)"));
14437 return false;
14438 }
14439
14440 if (range_beginning > range_end)
14441 {
14442 /* Inverted range entries are invalid. */
14443 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14444 return false;
14445 }
14446
14447 /* Empty range entries have no effect. */
14448 if (range_beginning == range_end)
14449 continue;
14450
14451 range_beginning += base;
14452 range_end += base;
14453
14454 /* A not-uncommon case of bad debug info.
14455 Don't pollute the addrmap with bad data. */
14456 if (range_beginning + baseaddr == 0
14457 && !dwarf2_per_objfile->has_section_at_zero)
14458 {
14459 complaint (_(".debug_rnglists entry has start address of zero"
14460 " [in module %s]"), objfile_name (objfile));
14461 continue;
14462 }
14463
14464 callback (range_beginning, range_end);
14465 }
14466
14467 if (overflow)
14468 {
14469 complaint (_("Offset %d is not terminated "
14470 "for DW_AT_ranges attribute"),
14471 offset);
14472 return false;
14473 }
14474
14475 return true;
14476 }
14477
14478 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14479 Callback's type should be:
14480 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14481 Return 1 if the attributes are present and valid, otherwise, return 0. */
14482
14483 template <typename Callback>
14484 static int
14485 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14486 Callback &&callback)
14487 {
14488 struct dwarf2_per_objfile *dwarf2_per_objfile
14489 = cu->per_cu->dwarf2_per_objfile;
14490 struct objfile *objfile = dwarf2_per_objfile->objfile;
14491 struct comp_unit_head *cu_header = &cu->header;
14492 bfd *obfd = objfile->obfd;
14493 unsigned int addr_size = cu_header->addr_size;
14494 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14495 /* Base address selection entry. */
14496 CORE_ADDR base;
14497 int found_base;
14498 unsigned int dummy;
14499 const gdb_byte *buffer;
14500 CORE_ADDR baseaddr;
14501
14502 if (cu_header->version >= 5)
14503 return dwarf2_rnglists_process (offset, cu, callback);
14504
14505 found_base = cu->base_known;
14506 base = cu->base_address;
14507
14508 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14509 if (offset >= dwarf2_per_objfile->ranges.size)
14510 {
14511 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14512 offset);
14513 return 0;
14514 }
14515 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14516
14517 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14518
14519 while (1)
14520 {
14521 CORE_ADDR range_beginning, range_end;
14522
14523 range_beginning = read_address (obfd, buffer, cu, &dummy);
14524 buffer += addr_size;
14525 range_end = read_address (obfd, buffer, cu, &dummy);
14526 buffer += addr_size;
14527 offset += 2 * addr_size;
14528
14529 /* An end of list marker is a pair of zero addresses. */
14530 if (range_beginning == 0 && range_end == 0)
14531 /* Found the end of list entry. */
14532 break;
14533
14534 /* Each base address selection entry is a pair of 2 values.
14535 The first is the largest possible address, the second is
14536 the base address. Check for a base address here. */
14537 if ((range_beginning & mask) == mask)
14538 {
14539 /* If we found the largest possible address, then we already
14540 have the base address in range_end. */
14541 base = range_end;
14542 found_base = 1;
14543 continue;
14544 }
14545
14546 if (!found_base)
14547 {
14548 /* We have no valid base address for the ranges
14549 data. */
14550 complaint (_("Invalid .debug_ranges data (no base address)"));
14551 return 0;
14552 }
14553
14554 if (range_beginning > range_end)
14555 {
14556 /* Inverted range entries are invalid. */
14557 complaint (_("Invalid .debug_ranges data (inverted range)"));
14558 return 0;
14559 }
14560
14561 /* Empty range entries have no effect. */
14562 if (range_beginning == range_end)
14563 continue;
14564
14565 range_beginning += base;
14566 range_end += base;
14567
14568 /* A not-uncommon case of bad debug info.
14569 Don't pollute the addrmap with bad data. */
14570 if (range_beginning + baseaddr == 0
14571 && !dwarf2_per_objfile->has_section_at_zero)
14572 {
14573 complaint (_(".debug_ranges entry has start address of zero"
14574 " [in module %s]"), objfile_name (objfile));
14575 continue;
14576 }
14577
14578 callback (range_beginning, range_end);
14579 }
14580
14581 return 1;
14582 }
14583
14584 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14585 Return 1 if the attributes are present and valid, otherwise, return 0.
14586 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14587
14588 static int
14589 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14590 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14591 struct partial_symtab *ranges_pst)
14592 {
14593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14595 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14596 SECT_OFF_TEXT (objfile));
14597 int low_set = 0;
14598 CORE_ADDR low = 0;
14599 CORE_ADDR high = 0;
14600 int retval;
14601
14602 retval = dwarf2_ranges_process (offset, cu,
14603 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14604 {
14605 if (ranges_pst != NULL)
14606 {
14607 CORE_ADDR lowpc;
14608 CORE_ADDR highpc;
14609
14610 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14611 range_beginning + baseaddr)
14612 - baseaddr);
14613 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14614 range_end + baseaddr)
14615 - baseaddr);
14616 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14617 lowpc, highpc - 1, ranges_pst);
14618 }
14619
14620 /* FIXME: This is recording everything as a low-high
14621 segment of consecutive addresses. We should have a
14622 data structure for discontiguous block ranges
14623 instead. */
14624 if (! low_set)
14625 {
14626 low = range_beginning;
14627 high = range_end;
14628 low_set = 1;
14629 }
14630 else
14631 {
14632 if (range_beginning < low)
14633 low = range_beginning;
14634 if (range_end > high)
14635 high = range_end;
14636 }
14637 });
14638 if (!retval)
14639 return 0;
14640
14641 if (! low_set)
14642 /* If the first entry is an end-of-list marker, the range
14643 describes an empty scope, i.e. no instructions. */
14644 return 0;
14645
14646 if (low_return)
14647 *low_return = low;
14648 if (high_return)
14649 *high_return = high;
14650 return 1;
14651 }
14652
14653 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14654 definition for the return value. *LOWPC and *HIGHPC are set iff
14655 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14656
14657 static enum pc_bounds_kind
14658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14660 struct partial_symtab *pst)
14661 {
14662 struct dwarf2_per_objfile *dwarf2_per_objfile
14663 = cu->per_cu->dwarf2_per_objfile;
14664 struct attribute *attr;
14665 struct attribute *attr_high;
14666 CORE_ADDR low = 0;
14667 CORE_ADDR high = 0;
14668 enum pc_bounds_kind ret;
14669
14670 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14671 if (attr_high)
14672 {
14673 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14674 if (attr)
14675 {
14676 low = attr_value_as_address (attr);
14677 high = attr_value_as_address (attr_high);
14678 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14679 high += low;
14680 }
14681 else
14682 /* Found high w/o low attribute. */
14683 return PC_BOUNDS_INVALID;
14684
14685 /* Found consecutive range of addresses. */
14686 ret = PC_BOUNDS_HIGH_LOW;
14687 }
14688 else
14689 {
14690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14691 if (attr != NULL)
14692 {
14693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14694 We take advantage of the fact that DW_AT_ranges does not appear
14695 in DW_TAG_compile_unit of DWO files. */
14696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14697 unsigned int ranges_offset = (DW_UNSND (attr)
14698 + (need_ranges_base
14699 ? cu->ranges_base
14700 : 0));
14701
14702 /* Value of the DW_AT_ranges attribute is the offset in the
14703 .debug_ranges section. */
14704 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14705 return PC_BOUNDS_INVALID;
14706 /* Found discontinuous range of addresses. */
14707 ret = PC_BOUNDS_RANGES;
14708 }
14709 else
14710 return PC_BOUNDS_NOT_PRESENT;
14711 }
14712
14713 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14714 if (high <= low)
14715 return PC_BOUNDS_INVALID;
14716
14717 /* When using the GNU linker, .gnu.linkonce. sections are used to
14718 eliminate duplicate copies of functions and vtables and such.
14719 The linker will arbitrarily choose one and discard the others.
14720 The AT_*_pc values for such functions refer to local labels in
14721 these sections. If the section from that file was discarded, the
14722 labels are not in the output, so the relocs get a value of 0.
14723 If this is a discarded function, mark the pc bounds as invalid,
14724 so that GDB will ignore it. */
14725 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14726 return PC_BOUNDS_INVALID;
14727
14728 *lowpc = low;
14729 if (highpc)
14730 *highpc = high;
14731 return ret;
14732 }
14733
14734 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14735 its low and high PC addresses. Do nothing if these addresses could not
14736 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14737 and HIGHPC to the high address if greater than HIGHPC. */
14738
14739 static void
14740 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14741 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14742 struct dwarf2_cu *cu)
14743 {
14744 CORE_ADDR low, high;
14745 struct die_info *child = die->child;
14746
14747 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14748 {
14749 *lowpc = std::min (*lowpc, low);
14750 *highpc = std::max (*highpc, high);
14751 }
14752
14753 /* If the language does not allow nested subprograms (either inside
14754 subprograms or lexical blocks), we're done. */
14755 if (cu->language != language_ada)
14756 return;
14757
14758 /* Check all the children of the given DIE. If it contains nested
14759 subprograms, then check their pc bounds. Likewise, we need to
14760 check lexical blocks as well, as they may also contain subprogram
14761 definitions. */
14762 while (child && child->tag)
14763 {
14764 if (child->tag == DW_TAG_subprogram
14765 || child->tag == DW_TAG_lexical_block)
14766 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14767 child = sibling_die (child);
14768 }
14769 }
14770
14771 /* Get the low and high pc's represented by the scope DIE, and store
14772 them in *LOWPC and *HIGHPC. If the correct values can't be
14773 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14774
14775 static void
14776 get_scope_pc_bounds (struct die_info *die,
14777 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14778 struct dwarf2_cu *cu)
14779 {
14780 CORE_ADDR best_low = (CORE_ADDR) -1;
14781 CORE_ADDR best_high = (CORE_ADDR) 0;
14782 CORE_ADDR current_low, current_high;
14783
14784 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14785 >= PC_BOUNDS_RANGES)
14786 {
14787 best_low = current_low;
14788 best_high = current_high;
14789 }
14790 else
14791 {
14792 struct die_info *child = die->child;
14793
14794 while (child && child->tag)
14795 {
14796 switch (child->tag) {
14797 case DW_TAG_subprogram:
14798 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14799 break;
14800 case DW_TAG_namespace:
14801 case DW_TAG_module:
14802 /* FIXME: carlton/2004-01-16: Should we do this for
14803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14804 that current GCC's always emit the DIEs corresponding
14805 to definitions of methods of classes as children of a
14806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14807 the DIEs giving the declarations, which could be
14808 anywhere). But I don't see any reason why the
14809 standards says that they have to be there. */
14810 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14811
14812 if (current_low != ((CORE_ADDR) -1))
14813 {
14814 best_low = std::min (best_low, current_low);
14815 best_high = std::max (best_high, current_high);
14816 }
14817 break;
14818 default:
14819 /* Ignore. */
14820 break;
14821 }
14822
14823 child = sibling_die (child);
14824 }
14825 }
14826
14827 *lowpc = best_low;
14828 *highpc = best_high;
14829 }
14830
14831 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14832 in DIE. */
14833
14834 static void
14835 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14836 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14837 {
14838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14840 struct attribute *attr;
14841 struct attribute *attr_high;
14842
14843 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14844 if (attr_high)
14845 {
14846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14847 if (attr)
14848 {
14849 CORE_ADDR low = attr_value_as_address (attr);
14850 CORE_ADDR high = attr_value_as_address (attr_high);
14851
14852 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14853 high += low;
14854
14855 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14856 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14857 cu->get_builder ()->record_block_range (block, low, high - 1);
14858 }
14859 }
14860
14861 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14862 if (attr)
14863 {
14864 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14865 We take advantage of the fact that DW_AT_ranges does not appear
14866 in DW_TAG_compile_unit of DWO files. */
14867 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14868
14869 /* The value of the DW_AT_ranges attribute is the offset of the
14870 address range list in the .debug_ranges section. */
14871 unsigned long offset = (DW_UNSND (attr)
14872 + (need_ranges_base ? cu->ranges_base : 0));
14873
14874 std::vector<blockrange> blockvec;
14875 dwarf2_ranges_process (offset, cu,
14876 [&] (CORE_ADDR start, CORE_ADDR end)
14877 {
14878 start += baseaddr;
14879 end += baseaddr;
14880 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14881 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14882 cu->get_builder ()->record_block_range (block, start, end - 1);
14883 blockvec.emplace_back (start, end);
14884 });
14885
14886 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14887 }
14888 }
14889
14890 /* Check whether the producer field indicates either of GCC < 4.6, or the
14891 Intel C/C++ compiler, and cache the result in CU. */
14892
14893 static void
14894 check_producer (struct dwarf2_cu *cu)
14895 {
14896 int major, minor;
14897
14898 if (cu->producer == NULL)
14899 {
14900 /* For unknown compilers expect their behavior is DWARF version
14901 compliant.
14902
14903 GCC started to support .debug_types sections by -gdwarf-4 since
14904 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14905 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14906 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14907 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14908 }
14909 else if (producer_is_gcc (cu->producer, &major, &minor))
14910 {
14911 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14912 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14913 }
14914 else if (producer_is_icc (cu->producer, &major, &minor))
14915 {
14916 cu->producer_is_icc = true;
14917 cu->producer_is_icc_lt_14 = major < 14;
14918 }
14919 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14920 cu->producer_is_codewarrior = true;
14921 else
14922 {
14923 /* For other non-GCC compilers, expect their behavior is DWARF version
14924 compliant. */
14925 }
14926
14927 cu->checked_producer = true;
14928 }
14929
14930 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14931 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14932 during 4.6.0 experimental. */
14933
14934 static bool
14935 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14936 {
14937 if (!cu->checked_producer)
14938 check_producer (cu);
14939
14940 return cu->producer_is_gxx_lt_4_6;
14941 }
14942
14943
14944 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14945 with incorrect is_stmt attributes. */
14946
14947 static bool
14948 producer_is_codewarrior (struct dwarf2_cu *cu)
14949 {
14950 if (!cu->checked_producer)
14951 check_producer (cu);
14952
14953 return cu->producer_is_codewarrior;
14954 }
14955
14956 /* Return the default accessibility type if it is not overriden by
14957 DW_AT_accessibility. */
14958
14959 static enum dwarf_access_attribute
14960 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14961 {
14962 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14963 {
14964 /* The default DWARF 2 accessibility for members is public, the default
14965 accessibility for inheritance is private. */
14966
14967 if (die->tag != DW_TAG_inheritance)
14968 return DW_ACCESS_public;
14969 else
14970 return DW_ACCESS_private;
14971 }
14972 else
14973 {
14974 /* DWARF 3+ defines the default accessibility a different way. The same
14975 rules apply now for DW_TAG_inheritance as for the members and it only
14976 depends on the container kind. */
14977
14978 if (die->parent->tag == DW_TAG_class_type)
14979 return DW_ACCESS_private;
14980 else
14981 return DW_ACCESS_public;
14982 }
14983 }
14984
14985 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14986 offset. If the attribute was not found return 0, otherwise return
14987 1. If it was found but could not properly be handled, set *OFFSET
14988 to 0. */
14989
14990 static int
14991 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14992 LONGEST *offset)
14993 {
14994 struct attribute *attr;
14995
14996 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14997 if (attr != NULL)
14998 {
14999 *offset = 0;
15000
15001 /* Note that we do not check for a section offset first here.
15002 This is because DW_AT_data_member_location is new in DWARF 4,
15003 so if we see it, we can assume that a constant form is really
15004 a constant and not a section offset. */
15005 if (attr_form_is_constant (attr))
15006 *offset = dwarf2_get_attr_constant_value (attr, 0);
15007 else if (attr_form_is_section_offset (attr))
15008 dwarf2_complex_location_expr_complaint ();
15009 else if (attr_form_is_block (attr))
15010 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15011 else
15012 dwarf2_complex_location_expr_complaint ();
15013
15014 return 1;
15015 }
15016
15017 return 0;
15018 }
15019
15020 /* Add an aggregate field to the field list. */
15021
15022 static void
15023 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15024 struct dwarf2_cu *cu)
15025 {
15026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15028 struct nextfield *new_field;
15029 struct attribute *attr;
15030 struct field *fp;
15031 const char *fieldname = "";
15032
15033 if (die->tag == DW_TAG_inheritance)
15034 {
15035 fip->baseclasses.emplace_back ();
15036 new_field = &fip->baseclasses.back ();
15037 }
15038 else
15039 {
15040 fip->fields.emplace_back ();
15041 new_field = &fip->fields.back ();
15042 }
15043
15044 fip->nfields++;
15045
15046 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15047 if (attr)
15048 new_field->accessibility = DW_UNSND (attr);
15049 else
15050 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15051 if (new_field->accessibility != DW_ACCESS_public)
15052 fip->non_public_fields = 1;
15053
15054 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15055 if (attr)
15056 new_field->virtuality = DW_UNSND (attr);
15057 else
15058 new_field->virtuality = DW_VIRTUALITY_none;
15059
15060 fp = &new_field->field;
15061
15062 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15063 {
15064 LONGEST offset;
15065
15066 /* Data member other than a C++ static data member. */
15067
15068 /* Get type of field. */
15069 fp->type = die_type (die, cu);
15070
15071 SET_FIELD_BITPOS (*fp, 0);
15072
15073 /* Get bit size of field (zero if none). */
15074 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15075 if (attr)
15076 {
15077 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15078 }
15079 else
15080 {
15081 FIELD_BITSIZE (*fp) = 0;
15082 }
15083
15084 /* Get bit offset of field. */
15085 if (handle_data_member_location (die, cu, &offset))
15086 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15087 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15088 if (attr)
15089 {
15090 if (gdbarch_bits_big_endian (gdbarch))
15091 {
15092 /* For big endian bits, the DW_AT_bit_offset gives the
15093 additional bit offset from the MSB of the containing
15094 anonymous object to the MSB of the field. We don't
15095 have to do anything special since we don't need to
15096 know the size of the anonymous object. */
15097 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15098 }
15099 else
15100 {
15101 /* For little endian bits, compute the bit offset to the
15102 MSB of the anonymous object, subtract off the number of
15103 bits from the MSB of the field to the MSB of the
15104 object, and then subtract off the number of bits of
15105 the field itself. The result is the bit offset of
15106 the LSB of the field. */
15107 int anonymous_size;
15108 int bit_offset = DW_UNSND (attr);
15109
15110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15111 if (attr)
15112 {
15113 /* The size of the anonymous object containing
15114 the bit field is explicit, so use the
15115 indicated size (in bytes). */
15116 anonymous_size = DW_UNSND (attr);
15117 }
15118 else
15119 {
15120 /* The size of the anonymous object containing
15121 the bit field must be inferred from the type
15122 attribute of the data member containing the
15123 bit field. */
15124 anonymous_size = TYPE_LENGTH (fp->type);
15125 }
15126 SET_FIELD_BITPOS (*fp,
15127 (FIELD_BITPOS (*fp)
15128 + anonymous_size * bits_per_byte
15129 - bit_offset - FIELD_BITSIZE (*fp)));
15130 }
15131 }
15132 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15133 if (attr != NULL)
15134 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15135 + dwarf2_get_attr_constant_value (attr, 0)));
15136
15137 /* Get name of field. */
15138 fieldname = dwarf2_name (die, cu);
15139 if (fieldname == NULL)
15140 fieldname = "";
15141
15142 /* The name is already allocated along with this objfile, so we don't
15143 need to duplicate it for the type. */
15144 fp->name = fieldname;
15145
15146 /* Change accessibility for artificial fields (e.g. virtual table
15147 pointer or virtual base class pointer) to private. */
15148 if (dwarf2_attr (die, DW_AT_artificial, cu))
15149 {
15150 FIELD_ARTIFICIAL (*fp) = 1;
15151 new_field->accessibility = DW_ACCESS_private;
15152 fip->non_public_fields = 1;
15153 }
15154 }
15155 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15156 {
15157 /* C++ static member. */
15158
15159 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15160 is a declaration, but all versions of G++ as of this writing
15161 (so through at least 3.2.1) incorrectly generate
15162 DW_TAG_variable tags. */
15163
15164 const char *physname;
15165
15166 /* Get name of field. */
15167 fieldname = dwarf2_name (die, cu);
15168 if (fieldname == NULL)
15169 return;
15170
15171 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15172 if (attr
15173 /* Only create a symbol if this is an external value.
15174 new_symbol checks this and puts the value in the global symbol
15175 table, which we want. If it is not external, new_symbol
15176 will try to put the value in cu->list_in_scope which is wrong. */
15177 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15178 {
15179 /* A static const member, not much different than an enum as far as
15180 we're concerned, except that we can support more types. */
15181 new_symbol (die, NULL, cu);
15182 }
15183
15184 /* Get physical name. */
15185 physname = dwarf2_physname (fieldname, die, cu);
15186
15187 /* The name is already allocated along with this objfile, so we don't
15188 need to duplicate it for the type. */
15189 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15190 FIELD_TYPE (*fp) = die_type (die, cu);
15191 FIELD_NAME (*fp) = fieldname;
15192 }
15193 else if (die->tag == DW_TAG_inheritance)
15194 {
15195 LONGEST offset;
15196
15197 /* C++ base class field. */
15198 if (handle_data_member_location (die, cu, &offset))
15199 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15200 FIELD_BITSIZE (*fp) = 0;
15201 FIELD_TYPE (*fp) = die_type (die, cu);
15202 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15203 }
15204 else if (die->tag == DW_TAG_variant_part)
15205 {
15206 /* process_structure_scope will treat this DIE as a union. */
15207 process_structure_scope (die, cu);
15208
15209 /* The variant part is relative to the start of the enclosing
15210 structure. */
15211 SET_FIELD_BITPOS (*fp, 0);
15212 fp->type = get_die_type (die, cu);
15213 fp->artificial = 1;
15214 fp->name = "<<variant>>";
15215
15216 /* Normally a DW_TAG_variant_part won't have a size, but our
15217 representation requires one, so set it to the maximum of the
15218 child sizes. */
15219 if (TYPE_LENGTH (fp->type) == 0)
15220 {
15221 unsigned max = 0;
15222 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15223 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15224 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15225 TYPE_LENGTH (fp->type) = max;
15226 }
15227 }
15228 else
15229 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15230 }
15231
15232 /* Can the type given by DIE define another type? */
15233
15234 static bool
15235 type_can_define_types (const struct die_info *die)
15236 {
15237 switch (die->tag)
15238 {
15239 case DW_TAG_typedef:
15240 case DW_TAG_class_type:
15241 case DW_TAG_structure_type:
15242 case DW_TAG_union_type:
15243 case DW_TAG_enumeration_type:
15244 return true;
15245
15246 default:
15247 return false;
15248 }
15249 }
15250
15251 /* Add a type definition defined in the scope of the FIP's class. */
15252
15253 static void
15254 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15255 struct dwarf2_cu *cu)
15256 {
15257 struct decl_field fp;
15258 memset (&fp, 0, sizeof (fp));
15259
15260 gdb_assert (type_can_define_types (die));
15261
15262 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15263 fp.name = dwarf2_name (die, cu);
15264 fp.type = read_type_die (die, cu);
15265
15266 /* Save accessibility. */
15267 enum dwarf_access_attribute accessibility;
15268 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15269 if (attr != NULL)
15270 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15271 else
15272 accessibility = dwarf2_default_access_attribute (die, cu);
15273 switch (accessibility)
15274 {
15275 case DW_ACCESS_public:
15276 /* The assumed value if neither private nor protected. */
15277 break;
15278 case DW_ACCESS_private:
15279 fp.is_private = 1;
15280 break;
15281 case DW_ACCESS_protected:
15282 fp.is_protected = 1;
15283 break;
15284 default:
15285 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15286 }
15287
15288 if (die->tag == DW_TAG_typedef)
15289 fip->typedef_field_list.push_back (fp);
15290 else
15291 fip->nested_types_list.push_back (fp);
15292 }
15293
15294 /* Create the vector of fields, and attach it to the type. */
15295
15296 static void
15297 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15298 struct dwarf2_cu *cu)
15299 {
15300 int nfields = fip->nfields;
15301
15302 /* Record the field count, allocate space for the array of fields,
15303 and create blank accessibility bitfields if necessary. */
15304 TYPE_NFIELDS (type) = nfields;
15305 TYPE_FIELDS (type) = (struct field *)
15306 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15307
15308 if (fip->non_public_fields && cu->language != language_ada)
15309 {
15310 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15311
15312 TYPE_FIELD_PRIVATE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15315
15316 TYPE_FIELD_PROTECTED_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15319
15320 TYPE_FIELD_IGNORE_BITS (type) =
15321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15322 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15323 }
15324
15325 /* If the type has baseclasses, allocate and clear a bit vector for
15326 TYPE_FIELD_VIRTUAL_BITS. */
15327 if (!fip->baseclasses.empty () && cu->language != language_ada)
15328 {
15329 int num_bytes = B_BYTES (fip->baseclasses.size ());
15330 unsigned char *pointer;
15331
15332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15333 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15334 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15335 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15336 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15337 }
15338
15339 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15340 {
15341 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15342
15343 for (int index = 0; index < nfields; ++index)
15344 {
15345 struct nextfield &field = fip->fields[index];
15346
15347 if (field.variant.is_discriminant)
15348 di->discriminant_index = index;
15349 else if (field.variant.default_branch)
15350 di->default_index = index;
15351 else
15352 di->discriminants[index] = field.variant.discriminant_value;
15353 }
15354 }
15355
15356 /* Copy the saved-up fields into the field vector. */
15357 for (int i = 0; i < nfields; ++i)
15358 {
15359 struct nextfield &field
15360 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15361 : fip->fields[i - fip->baseclasses.size ()]);
15362
15363 TYPE_FIELD (type, i) = field.field;
15364 switch (field.accessibility)
15365 {
15366 case DW_ACCESS_private:
15367 if (cu->language != language_ada)
15368 SET_TYPE_FIELD_PRIVATE (type, i);
15369 break;
15370
15371 case DW_ACCESS_protected:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PROTECTED (type, i);
15374 break;
15375
15376 case DW_ACCESS_public:
15377 break;
15378
15379 default:
15380 /* Unknown accessibility. Complain and treat it as public. */
15381 {
15382 complaint (_("unsupported accessibility %d"),
15383 field.accessibility);
15384 }
15385 break;
15386 }
15387 if (i < fip->baseclasses.size ())
15388 {
15389 switch (field.virtuality)
15390 {
15391 case DW_VIRTUALITY_virtual:
15392 case DW_VIRTUALITY_pure_virtual:
15393 if (cu->language == language_ada)
15394 error (_("unexpected virtuality in component of Ada type"));
15395 SET_TYPE_FIELD_VIRTUAL (type, i);
15396 break;
15397 }
15398 }
15399 }
15400 }
15401
15402 /* Return true if this member function is a constructor, false
15403 otherwise. */
15404
15405 static int
15406 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15407 {
15408 const char *fieldname;
15409 const char *type_name;
15410 int len;
15411
15412 if (die->parent == NULL)
15413 return 0;
15414
15415 if (die->parent->tag != DW_TAG_structure_type
15416 && die->parent->tag != DW_TAG_union_type
15417 && die->parent->tag != DW_TAG_class_type)
15418 return 0;
15419
15420 fieldname = dwarf2_name (die, cu);
15421 type_name = dwarf2_name (die->parent, cu);
15422 if (fieldname == NULL || type_name == NULL)
15423 return 0;
15424
15425 len = strlen (fieldname);
15426 return (strncmp (fieldname, type_name, len) == 0
15427 && (type_name[len] == '\0' || type_name[len] == '<'));
15428 }
15429
15430 /* Add a member function to the proper fieldlist. */
15431
15432 static void
15433 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15434 struct type *type, struct dwarf2_cu *cu)
15435 {
15436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15437 struct attribute *attr;
15438 int i;
15439 struct fnfieldlist *flp = nullptr;
15440 struct fn_field *fnp;
15441 const char *fieldname;
15442 struct type *this_type;
15443 enum dwarf_access_attribute accessibility;
15444
15445 if (cu->language == language_ada)
15446 error (_("unexpected member function in Ada type"));
15447
15448 /* Get name of member function. */
15449 fieldname = dwarf2_name (die, cu);
15450 if (fieldname == NULL)
15451 return;
15452
15453 /* Look up member function name in fieldlist. */
15454 for (i = 0; i < fip->fnfieldlists.size (); i++)
15455 {
15456 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15457 {
15458 flp = &fip->fnfieldlists[i];
15459 break;
15460 }
15461 }
15462
15463 /* Create a new fnfieldlist if necessary. */
15464 if (flp == nullptr)
15465 {
15466 fip->fnfieldlists.emplace_back ();
15467 flp = &fip->fnfieldlists.back ();
15468 flp->name = fieldname;
15469 i = fip->fnfieldlists.size () - 1;
15470 }
15471
15472 /* Create a new member function field and add it to the vector of
15473 fnfieldlists. */
15474 flp->fnfields.emplace_back ();
15475 fnp = &flp->fnfields.back ();
15476
15477 /* Delay processing of the physname until later. */
15478 if (cu->language == language_cplus)
15479 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15480 die, cu);
15481 else
15482 {
15483 const char *physname = dwarf2_physname (fieldname, die, cu);
15484 fnp->physname = physname ? physname : "";
15485 }
15486
15487 fnp->type = alloc_type (objfile);
15488 this_type = read_type_die (die, cu);
15489 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15490 {
15491 int nparams = TYPE_NFIELDS (this_type);
15492
15493 /* TYPE is the domain of this method, and THIS_TYPE is the type
15494 of the method itself (TYPE_CODE_METHOD). */
15495 smash_to_method_type (fnp->type, type,
15496 TYPE_TARGET_TYPE (this_type),
15497 TYPE_FIELDS (this_type),
15498 TYPE_NFIELDS (this_type),
15499 TYPE_VARARGS (this_type));
15500
15501 /* Handle static member functions.
15502 Dwarf2 has no clean way to discern C++ static and non-static
15503 member functions. G++ helps GDB by marking the first
15504 parameter for non-static member functions (which is the this
15505 pointer) as artificial. We obtain this information from
15506 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15507 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15508 fnp->voffset = VOFFSET_STATIC;
15509 }
15510 else
15511 complaint (_("member function type missing for '%s'"),
15512 dwarf2_full_name (fieldname, die, cu));
15513
15514 /* Get fcontext from DW_AT_containing_type if present. */
15515 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15516 fnp->fcontext = die_containing_type (die, cu);
15517
15518 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15519 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15520
15521 /* Get accessibility. */
15522 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15523 if (attr)
15524 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15525 else
15526 accessibility = dwarf2_default_access_attribute (die, cu);
15527 switch (accessibility)
15528 {
15529 case DW_ACCESS_private:
15530 fnp->is_private = 1;
15531 break;
15532 case DW_ACCESS_protected:
15533 fnp->is_protected = 1;
15534 break;
15535 }
15536
15537 /* Check for artificial methods. */
15538 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15539 if (attr && DW_UNSND (attr) != 0)
15540 fnp->is_artificial = 1;
15541
15542 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15543
15544 /* Get index in virtual function table if it is a virtual member
15545 function. For older versions of GCC, this is an offset in the
15546 appropriate virtual table, as specified by DW_AT_containing_type.
15547 For everyone else, it is an expression to be evaluated relative
15548 to the object address. */
15549
15550 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15551 if (attr)
15552 {
15553 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15554 {
15555 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15556 {
15557 /* Old-style GCC. */
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15559 }
15560 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15561 || (DW_BLOCK (attr)->size > 1
15562 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15563 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15564 {
15565 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15566 if ((fnp->voffset % cu->header.addr_size) != 0)
15567 dwarf2_complex_location_expr_complaint ();
15568 else
15569 fnp->voffset /= cu->header.addr_size;
15570 fnp->voffset += 2;
15571 }
15572 else
15573 dwarf2_complex_location_expr_complaint ();
15574
15575 if (!fnp->fcontext)
15576 {
15577 /* If there is no `this' field and no DW_AT_containing_type,
15578 we cannot actually find a base class context for the
15579 vtable! */
15580 if (TYPE_NFIELDS (this_type) == 0
15581 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15582 {
15583 complaint (_("cannot determine context for virtual member "
15584 "function \"%s\" (offset %s)"),
15585 fieldname, sect_offset_str (die->sect_off));
15586 }
15587 else
15588 {
15589 fnp->fcontext
15590 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15591 }
15592 }
15593 }
15594 else if (attr_form_is_section_offset (attr))
15595 {
15596 dwarf2_complex_location_expr_complaint ();
15597 }
15598 else
15599 {
15600 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15601 fieldname);
15602 }
15603 }
15604 else
15605 {
15606 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15607 if (attr && DW_UNSND (attr))
15608 {
15609 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15610 complaint (_("Member function \"%s\" (offset %s) is virtual "
15611 "but the vtable offset is not specified"),
15612 fieldname, sect_offset_str (die->sect_off));
15613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15614 TYPE_CPLUS_DYNAMIC (type) = 1;
15615 }
15616 }
15617 }
15618
15619 /* Create the vector of member function fields, and attach it to the type. */
15620
15621 static void
15622 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15623 struct dwarf2_cu *cu)
15624 {
15625 if (cu->language == language_ada)
15626 error (_("unexpected member functions in Ada type"));
15627
15628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15629 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15630 TYPE_ALLOC (type,
15631 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15632
15633 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15634 {
15635 struct fnfieldlist &nf = fip->fnfieldlists[i];
15636 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15637
15638 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15639 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15640 fn_flp->fn_fields = (struct fn_field *)
15641 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15642
15643 for (int k = 0; k < nf.fnfields.size (); ++k)
15644 fn_flp->fn_fields[k] = nf.fnfields[k];
15645 }
15646
15647 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15648 }
15649
15650 /* Returns non-zero if NAME is the name of a vtable member in CU's
15651 language, zero otherwise. */
15652 static int
15653 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15654 {
15655 static const char vptr[] = "_vptr";
15656
15657 /* Look for the C++ form of the vtable. */
15658 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15659 return 1;
15660
15661 return 0;
15662 }
15663
15664 /* GCC outputs unnamed structures that are really pointers to member
15665 functions, with the ABI-specified layout. If TYPE describes
15666 such a structure, smash it into a member function type.
15667
15668 GCC shouldn't do this; it should just output pointer to member DIEs.
15669 This is GCC PR debug/28767. */
15670
15671 static void
15672 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15673 {
15674 struct type *pfn_type, *self_type, *new_type;
15675
15676 /* Check for a structure with no name and two children. */
15677 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15678 return;
15679
15680 /* Check for __pfn and __delta members. */
15681 if (TYPE_FIELD_NAME (type, 0) == NULL
15682 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15683 || TYPE_FIELD_NAME (type, 1) == NULL
15684 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15685 return;
15686
15687 /* Find the type of the method. */
15688 pfn_type = TYPE_FIELD_TYPE (type, 0);
15689 if (pfn_type == NULL
15690 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15691 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15692 return;
15693
15694 /* Look for the "this" argument. */
15695 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15696 if (TYPE_NFIELDS (pfn_type) == 0
15697 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15698 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15699 return;
15700
15701 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15702 new_type = alloc_type (objfile);
15703 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15704 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15705 TYPE_VARARGS (pfn_type));
15706 smash_to_methodptr_type (type, new_type);
15707 }
15708
15709 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15710 appropriate error checking and issuing complaints if there is a
15711 problem. */
15712
15713 static ULONGEST
15714 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15715 {
15716 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15717
15718 if (attr == nullptr)
15719 return 0;
15720
15721 if (!attr_form_is_constant (attr))
15722 {
15723 complaint (_("DW_AT_alignment must have constant form"
15724 " - DIE at %s [in module %s]"),
15725 sect_offset_str (die->sect_off),
15726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15727 return 0;
15728 }
15729
15730 ULONGEST align;
15731 if (attr->form == DW_FORM_sdata)
15732 {
15733 LONGEST val = DW_SND (attr);
15734 if (val < 0)
15735 {
15736 complaint (_("DW_AT_alignment value must not be negative"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15740 return 0;
15741 }
15742 align = val;
15743 }
15744 else
15745 align = DW_UNSND (attr);
15746
15747 if (align == 0)
15748 {
15749 complaint (_("DW_AT_alignment value must not be zero"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15753 return 0;
15754 }
15755 if ((align & (align - 1)) != 0)
15756 {
15757 complaint (_("DW_AT_alignment value must be a power of 2"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15761 return 0;
15762 }
15763
15764 return align;
15765 }
15766
15767 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15768 the alignment for TYPE. */
15769
15770 static void
15771 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15772 struct type *type)
15773 {
15774 if (!set_type_align (type, get_alignment (cu, die)))
15775 complaint (_("DW_AT_alignment value too large"
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15779 }
15780
15781 /* Called when we find the DIE that starts a structure or union scope
15782 (definition) to create a type for the structure or union. Fill in
15783 the type's name and general properties; the members will not be
15784 processed until process_structure_scope. A symbol table entry for
15785 the type will also not be done until process_structure_scope (assuming
15786 the type has a name).
15787
15788 NOTE: we need to call these functions regardless of whether or not the
15789 DIE has a DW_AT_name attribute, since it might be an anonymous
15790 structure or union. This gets the type entered into our set of
15791 user defined types. */
15792
15793 static struct type *
15794 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15795 {
15796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15797 struct type *type;
15798 struct attribute *attr;
15799 const char *name;
15800
15801 /* If the definition of this type lives in .debug_types, read that type.
15802 Don't follow DW_AT_specification though, that will take us back up
15803 the chain and we want to go down. */
15804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15805 if (attr)
15806 {
15807 type = get_DW_AT_signature_type (die, attr, cu);
15808
15809 /* The type's CU may not be the same as CU.
15810 Ensure TYPE is recorded with CU in die_type_hash. */
15811 return set_die_type (die, type, cu);
15812 }
15813
15814 type = alloc_type (objfile);
15815 INIT_CPLUS_SPECIFIC (type);
15816
15817 name = dwarf2_name (die, cu);
15818 if (name != NULL)
15819 {
15820 if (cu->language == language_cplus
15821 || cu->language == language_d
15822 || cu->language == language_rust)
15823 {
15824 const char *full_name = dwarf2_full_name (name, die, cu);
15825
15826 /* dwarf2_full_name might have already finished building the DIE's
15827 type. If so, there is no need to continue. */
15828 if (get_die_type (die, cu) != NULL)
15829 return get_die_type (die, cu);
15830
15831 TYPE_NAME (type) = full_name;
15832 }
15833 else
15834 {
15835 /* The name is already allocated along with this objfile, so
15836 we don't need to duplicate it for the type. */
15837 TYPE_NAME (type) = name;
15838 }
15839 }
15840
15841 if (die->tag == DW_TAG_structure_type)
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15844 }
15845 else if (die->tag == DW_TAG_union_type)
15846 {
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15848 }
15849 else if (die->tag == DW_TAG_variant_part)
15850 {
15851 TYPE_CODE (type) = TYPE_CODE_UNION;
15852 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15853 }
15854 else
15855 {
15856 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15857 }
15858
15859 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15860 TYPE_DECLARED_CLASS (type) = 1;
15861
15862 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15863 if (attr)
15864 {
15865 if (attr_form_is_constant (attr))
15866 TYPE_LENGTH (type) = DW_UNSND (attr);
15867 else
15868 {
15869 /* For the moment, dynamic type sizes are not supported
15870 by GDB's struct type. The actual size is determined
15871 on-demand when resolving the type of a given object,
15872 so set the type's length to zero for now. Otherwise,
15873 we record an expression as the length, and that expression
15874 could lead to a very large value, which could eventually
15875 lead to us trying to allocate that much memory when creating
15876 a value of that type. */
15877 TYPE_LENGTH (type) = 0;
15878 }
15879 }
15880 else
15881 {
15882 TYPE_LENGTH (type) = 0;
15883 }
15884
15885 maybe_set_alignment (cu, die, type);
15886
15887 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15888 {
15889 /* ICC<14 does not output the required DW_AT_declaration on
15890 incomplete types, but gives them a size of zero. */
15891 TYPE_STUB (type) = 1;
15892 }
15893 else
15894 TYPE_STUB_SUPPORTED (type) = 1;
15895
15896 if (die_is_declaration (die, cu))
15897 TYPE_STUB (type) = 1;
15898 else if (attr == NULL && die->child == NULL
15899 && producer_is_realview (cu->producer))
15900 /* RealView does not output the required DW_AT_declaration
15901 on incomplete types. */
15902 TYPE_STUB (type) = 1;
15903
15904 /* We need to add the type field to the die immediately so we don't
15905 infinitely recurse when dealing with pointers to the structure
15906 type within the structure itself. */
15907 set_die_type (die, type, cu);
15908
15909 /* set_die_type should be already done. */
15910 set_descriptive_type (type, die, cu);
15911
15912 return type;
15913 }
15914
15915 /* A helper for process_structure_scope that handles a single member
15916 DIE. */
15917
15918 static void
15919 handle_struct_member_die (struct die_info *child_die, struct type *type,
15920 struct field_info *fi,
15921 std::vector<struct symbol *> *template_args,
15922 struct dwarf2_cu *cu)
15923 {
15924 if (child_die->tag == DW_TAG_member
15925 || child_die->tag == DW_TAG_variable
15926 || child_die->tag == DW_TAG_variant_part)
15927 {
15928 /* NOTE: carlton/2002-11-05: A C++ static data member
15929 should be a DW_TAG_member that is a declaration, but
15930 all versions of G++ as of this writing (so through at
15931 least 3.2.1) incorrectly generate DW_TAG_variable
15932 tags for them instead. */
15933 dwarf2_add_field (fi, child_die, cu);
15934 }
15935 else if (child_die->tag == DW_TAG_subprogram)
15936 {
15937 /* Rust doesn't have member functions in the C++ sense.
15938 However, it does emit ordinary functions as children
15939 of a struct DIE. */
15940 if (cu->language == language_rust)
15941 read_func_scope (child_die, cu);
15942 else
15943 {
15944 /* C++ member function. */
15945 dwarf2_add_member_fn (fi, child_die, type, cu);
15946 }
15947 }
15948 else if (child_die->tag == DW_TAG_inheritance)
15949 {
15950 /* C++ base class field. */
15951 dwarf2_add_field (fi, child_die, cu);
15952 }
15953 else if (type_can_define_types (child_die))
15954 dwarf2_add_type_defn (fi, child_die, cu);
15955 else if (child_die->tag == DW_TAG_template_type_param
15956 || child_die->tag == DW_TAG_template_value_param)
15957 {
15958 struct symbol *arg = new_symbol (child_die, NULL, cu);
15959
15960 if (arg != NULL)
15961 template_args->push_back (arg);
15962 }
15963 else if (child_die->tag == DW_TAG_variant)
15964 {
15965 /* In a variant we want to get the discriminant and also add a
15966 field for our sole member child. */
15967 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15968
15969 for (struct die_info *variant_child = child_die->child;
15970 variant_child != NULL;
15971 variant_child = sibling_die (variant_child))
15972 {
15973 if (variant_child->tag == DW_TAG_member)
15974 {
15975 handle_struct_member_die (variant_child, type, fi,
15976 template_args, cu);
15977 /* Only handle the one. */
15978 break;
15979 }
15980 }
15981
15982 /* We don't handle this but we might as well report it if we see
15983 it. */
15984 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15985 complaint (_("DW_AT_discr_list is not supported yet"
15986 " - DIE at %s [in module %s]"),
15987 sect_offset_str (child_die->sect_off),
15988 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15989
15990 /* The first field was just added, so we can stash the
15991 discriminant there. */
15992 gdb_assert (!fi->fields.empty ());
15993 if (discr == NULL)
15994 fi->fields.back ().variant.default_branch = true;
15995 else
15996 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15997 }
15998 }
15999
16000 /* Finish creating a structure or union type, including filling in
16001 its members and creating a symbol for it. */
16002
16003 static void
16004 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16005 {
16006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16007 struct die_info *child_die;
16008 struct type *type;
16009
16010 type = get_die_type (die, cu);
16011 if (type == NULL)
16012 type = read_structure_type (die, cu);
16013
16014 /* When reading a DW_TAG_variant_part, we need to notice when we
16015 read the discriminant member, so we can record it later in the
16016 discriminant_info. */
16017 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16018 sect_offset discr_offset;
16019 bool has_template_parameters = false;
16020
16021 if (is_variant_part)
16022 {
16023 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16024 if (discr == NULL)
16025 {
16026 /* Maybe it's a univariant form, an extension we support.
16027 In this case arrange not to check the offset. */
16028 is_variant_part = false;
16029 }
16030 else if (attr_form_is_ref (discr))
16031 {
16032 struct dwarf2_cu *target_cu = cu;
16033 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16034
16035 discr_offset = target_die->sect_off;
16036 }
16037 else
16038 {
16039 complaint (_("DW_AT_discr does not have DIE reference form"
16040 " - DIE at %s [in module %s]"),
16041 sect_offset_str (die->sect_off),
16042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16043 is_variant_part = false;
16044 }
16045 }
16046
16047 if (die->child != NULL && ! die_is_declaration (die, cu))
16048 {
16049 struct field_info fi;
16050 std::vector<struct symbol *> template_args;
16051
16052 child_die = die->child;
16053
16054 while (child_die && child_die->tag)
16055 {
16056 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16057
16058 if (is_variant_part && discr_offset == child_die->sect_off)
16059 fi.fields.back ().variant.is_discriminant = true;
16060
16061 child_die = sibling_die (child_die);
16062 }
16063
16064 /* Attach template arguments to type. */
16065 if (!template_args.empty ())
16066 {
16067 has_template_parameters = true;
16068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16069 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16070 TYPE_TEMPLATE_ARGUMENTS (type)
16071 = XOBNEWVEC (&objfile->objfile_obstack,
16072 struct symbol *,
16073 TYPE_N_TEMPLATE_ARGUMENTS (type));
16074 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16075 template_args.data (),
16076 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16077 * sizeof (struct symbol *)));
16078 }
16079
16080 /* Attach fields and member functions to the type. */
16081 if (fi.nfields)
16082 dwarf2_attach_fields_to_type (&fi, type, cu);
16083 if (!fi.fnfieldlists.empty ())
16084 {
16085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16086
16087 /* Get the type which refers to the base class (possibly this
16088 class itself) which contains the vtable pointer for the current
16089 class from the DW_AT_containing_type attribute. This use of
16090 DW_AT_containing_type is a GNU extension. */
16091
16092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16093 {
16094 struct type *t = die_containing_type (die, cu);
16095
16096 set_type_vptr_basetype (type, t);
16097 if (type == t)
16098 {
16099 int i;
16100
16101 /* Our own class provides vtbl ptr. */
16102 for (i = TYPE_NFIELDS (t) - 1;
16103 i >= TYPE_N_BASECLASSES (t);
16104 --i)
16105 {
16106 const char *fieldname = TYPE_FIELD_NAME (t, i);
16107
16108 if (is_vtable_name (fieldname, cu))
16109 {
16110 set_type_vptr_fieldno (type, i);
16111 break;
16112 }
16113 }
16114
16115 /* Complain if virtual function table field not found. */
16116 if (i < TYPE_N_BASECLASSES (t))
16117 complaint (_("virtual function table pointer "
16118 "not found when defining class '%s'"),
16119 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16120 }
16121 else
16122 {
16123 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16124 }
16125 }
16126 else if (cu->producer
16127 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16128 {
16129 /* The IBM XLC compiler does not provide direct indication
16130 of the containing type, but the vtable pointer is
16131 always named __vfp. */
16132
16133 int i;
16134
16135 for (i = TYPE_NFIELDS (type) - 1;
16136 i >= TYPE_N_BASECLASSES (type);
16137 --i)
16138 {
16139 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16140 {
16141 set_type_vptr_fieldno (type, i);
16142 set_type_vptr_basetype (type, type);
16143 break;
16144 }
16145 }
16146 }
16147 }
16148
16149 /* Copy fi.typedef_field_list linked list elements content into the
16150 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16151 if (!fi.typedef_field_list.empty ())
16152 {
16153 int count = fi.typedef_field_list.size ();
16154
16155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16156 TYPE_TYPEDEF_FIELD_ARRAY (type)
16157 = ((struct decl_field *)
16158 TYPE_ALLOC (type,
16159 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16160 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16161
16162 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16163 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16164 }
16165
16166 /* Copy fi.nested_types_list linked list elements content into the
16167 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16168 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16169 {
16170 int count = fi.nested_types_list.size ();
16171
16172 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16173 TYPE_NESTED_TYPES_ARRAY (type)
16174 = ((struct decl_field *)
16175 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16176 TYPE_NESTED_TYPES_COUNT (type) = count;
16177
16178 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16179 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16180 }
16181 }
16182
16183 quirk_gcc_member_function_pointer (type, objfile);
16184 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16185 cu->rust_unions.push_back (type);
16186
16187 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16188 snapshots) has been known to create a die giving a declaration
16189 for a class that has, as a child, a die giving a definition for a
16190 nested class. So we have to process our children even if the
16191 current die is a declaration. Normally, of course, a declaration
16192 won't have any children at all. */
16193
16194 child_die = die->child;
16195
16196 while (child_die != NULL && child_die->tag)
16197 {
16198 if (child_die->tag == DW_TAG_member
16199 || child_die->tag == DW_TAG_variable
16200 || child_die->tag == DW_TAG_inheritance
16201 || child_die->tag == DW_TAG_template_value_param
16202 || child_die->tag == DW_TAG_template_type_param)
16203 {
16204 /* Do nothing. */
16205 }
16206 else
16207 process_die (child_die, cu);
16208
16209 child_die = sibling_die (child_die);
16210 }
16211
16212 /* Do not consider external references. According to the DWARF standard,
16213 these DIEs are identified by the fact that they have no byte_size
16214 attribute, and a declaration attribute. */
16215 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16216 || !die_is_declaration (die, cu))
16217 {
16218 struct symbol *sym = new_symbol (die, type, cu);
16219
16220 if (has_template_parameters)
16221 {
16222 /* Make sure that the symtab is set on the new symbols.
16223 Even though they don't appear in this symtab directly,
16224 other parts of gdb assume that symbols do, and this is
16225 reasonably true. */
16226 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16227 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16228 symbol_symtab (sym));
16229 }
16230 }
16231 }
16232
16233 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16234 update TYPE using some information only available in DIE's children. */
16235
16236 static void
16237 update_enumeration_type_from_children (struct die_info *die,
16238 struct type *type,
16239 struct dwarf2_cu *cu)
16240 {
16241 struct die_info *child_die;
16242 int unsigned_enum = 1;
16243 int flag_enum = 1;
16244 ULONGEST mask = 0;
16245
16246 auto_obstack obstack;
16247
16248 for (child_die = die->child;
16249 child_die != NULL && child_die->tag;
16250 child_die = sibling_die (child_die))
16251 {
16252 struct attribute *attr;
16253 LONGEST value;
16254 const gdb_byte *bytes;
16255 struct dwarf2_locexpr_baton *baton;
16256 const char *name;
16257
16258 if (child_die->tag != DW_TAG_enumerator)
16259 continue;
16260
16261 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16262 if (attr == NULL)
16263 continue;
16264
16265 name = dwarf2_name (child_die, cu);
16266 if (name == NULL)
16267 name = "<anonymous enumerator>";
16268
16269 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16270 &value, &bytes, &baton);
16271 if (value < 0)
16272 {
16273 unsigned_enum = 0;
16274 flag_enum = 0;
16275 }
16276 else if ((mask & value) != 0)
16277 flag_enum = 0;
16278 else
16279 mask |= value;
16280
16281 /* If we already know that the enum type is neither unsigned, nor
16282 a flag type, no need to look at the rest of the enumerates. */
16283 if (!unsigned_enum && !flag_enum)
16284 break;
16285 }
16286
16287 if (unsigned_enum)
16288 TYPE_UNSIGNED (type) = 1;
16289 if (flag_enum)
16290 TYPE_FLAG_ENUM (type) = 1;
16291 }
16292
16293 /* Given a DW_AT_enumeration_type die, set its type. We do not
16294 complete the type's fields yet, or create any symbols. */
16295
16296 static struct type *
16297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16298 {
16299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16300 struct type *type;
16301 struct attribute *attr;
16302 const char *name;
16303
16304 /* If the definition of this type lives in .debug_types, read that type.
16305 Don't follow DW_AT_specification though, that will take us back up
16306 the chain and we want to go down. */
16307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16308 if (attr)
16309 {
16310 type = get_DW_AT_signature_type (die, attr, cu);
16311
16312 /* The type's CU may not be the same as CU.
16313 Ensure TYPE is recorded with CU in die_type_hash. */
16314 return set_die_type (die, type, cu);
16315 }
16316
16317 type = alloc_type (objfile);
16318
16319 TYPE_CODE (type) = TYPE_CODE_ENUM;
16320 name = dwarf2_full_name (NULL, die, cu);
16321 if (name != NULL)
16322 TYPE_NAME (type) = name;
16323
16324 attr = dwarf2_attr (die, DW_AT_type, cu);
16325 if (attr != NULL)
16326 {
16327 struct type *underlying_type = die_type (die, cu);
16328
16329 TYPE_TARGET_TYPE (type) = underlying_type;
16330 }
16331
16332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16333 if (attr)
16334 {
16335 TYPE_LENGTH (type) = DW_UNSND (attr);
16336 }
16337 else
16338 {
16339 TYPE_LENGTH (type) = 0;
16340 }
16341
16342 maybe_set_alignment (cu, die, type);
16343
16344 /* The enumeration DIE can be incomplete. In Ada, any type can be
16345 declared as private in the package spec, and then defined only
16346 inside the package body. Such types are known as Taft Amendment
16347 Types. When another package uses such a type, an incomplete DIE
16348 may be generated by the compiler. */
16349 if (die_is_declaration (die, cu))
16350 TYPE_STUB (type) = 1;
16351
16352 /* Finish the creation of this type by using the enum's children.
16353 We must call this even when the underlying type has been provided
16354 so that we can determine if we're looking at a "flag" enum. */
16355 update_enumeration_type_from_children (die, type, cu);
16356
16357 /* If this type has an underlying type that is not a stub, then we
16358 may use its attributes. We always use the "unsigned" attribute
16359 in this situation, because ordinarily we guess whether the type
16360 is unsigned -- but the guess can be wrong and the underlying type
16361 can tell us the reality. However, we defer to a local size
16362 attribute if one exists, because this lets the compiler override
16363 the underlying type if needed. */
16364 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16365 {
16366 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16367 if (TYPE_LENGTH (type) == 0)
16368 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16369 if (TYPE_RAW_ALIGN (type) == 0
16370 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16371 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16372 }
16373
16374 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16375
16376 return set_die_type (die, type, cu);
16377 }
16378
16379 /* Given a pointer to a die which begins an enumeration, process all
16380 the dies that define the members of the enumeration, and create the
16381 symbol for the enumeration type.
16382
16383 NOTE: We reverse the order of the element list. */
16384
16385 static void
16386 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16387 {
16388 struct type *this_type;
16389
16390 this_type = get_die_type (die, cu);
16391 if (this_type == NULL)
16392 this_type = read_enumeration_type (die, cu);
16393
16394 if (die->child != NULL)
16395 {
16396 struct die_info *child_die;
16397 struct symbol *sym;
16398 struct field *fields = NULL;
16399 int num_fields = 0;
16400 const char *name;
16401
16402 child_die = die->child;
16403 while (child_die && child_die->tag)
16404 {
16405 if (child_die->tag != DW_TAG_enumerator)
16406 {
16407 process_die (child_die, cu);
16408 }
16409 else
16410 {
16411 name = dwarf2_name (child_die, cu);
16412 if (name)
16413 {
16414 sym = new_symbol (child_die, this_type, cu);
16415
16416 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16417 {
16418 fields = (struct field *)
16419 xrealloc (fields,
16420 (num_fields + DW_FIELD_ALLOC_CHUNK)
16421 * sizeof (struct field));
16422 }
16423
16424 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16425 FIELD_TYPE (fields[num_fields]) = NULL;
16426 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16427 FIELD_BITSIZE (fields[num_fields]) = 0;
16428
16429 num_fields++;
16430 }
16431 }
16432
16433 child_die = sibling_die (child_die);
16434 }
16435
16436 if (num_fields)
16437 {
16438 TYPE_NFIELDS (this_type) = num_fields;
16439 TYPE_FIELDS (this_type) = (struct field *)
16440 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16441 memcpy (TYPE_FIELDS (this_type), fields,
16442 sizeof (struct field) * num_fields);
16443 xfree (fields);
16444 }
16445 }
16446
16447 /* If we are reading an enum from a .debug_types unit, and the enum
16448 is a declaration, and the enum is not the signatured type in the
16449 unit, then we do not want to add a symbol for it. Adding a
16450 symbol would in some cases obscure the true definition of the
16451 enum, giving users an incomplete type when the definition is
16452 actually available. Note that we do not want to do this for all
16453 enums which are just declarations, because C++0x allows forward
16454 enum declarations. */
16455 if (cu->per_cu->is_debug_types
16456 && die_is_declaration (die, cu))
16457 {
16458 struct signatured_type *sig_type;
16459
16460 sig_type = (struct signatured_type *) cu->per_cu;
16461 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16462 if (sig_type->type_offset_in_section != die->sect_off)
16463 return;
16464 }
16465
16466 new_symbol (die, this_type, cu);
16467 }
16468
16469 /* Extract all information from a DW_TAG_array_type DIE and put it in
16470 the DIE's type field. For now, this only handles one dimensional
16471 arrays. */
16472
16473 static struct type *
16474 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16475 {
16476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16477 struct die_info *child_die;
16478 struct type *type;
16479 struct type *element_type, *range_type, *index_type;
16480 struct attribute *attr;
16481 const char *name;
16482 struct dynamic_prop *byte_stride_prop = NULL;
16483 unsigned int bit_stride = 0;
16484
16485 element_type = die_type (die, cu);
16486
16487 /* The die_type call above may have already set the type for this DIE. */
16488 type = get_die_type (die, cu);
16489 if (type)
16490 return type;
16491
16492 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16493 if (attr != NULL)
16494 {
16495 int stride_ok;
16496
16497 byte_stride_prop
16498 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16499 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16500 if (!stride_ok)
16501 {
16502 complaint (_("unable to read array DW_AT_byte_stride "
16503 " - DIE at %s [in module %s]"),
16504 sect_offset_str (die->sect_off),
16505 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16506 /* Ignore this attribute. We will likely not be able to print
16507 arrays of this type correctly, but there is little we can do
16508 to help if we cannot read the attribute's value. */
16509 byte_stride_prop = NULL;
16510 }
16511 }
16512
16513 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16514 if (attr != NULL)
16515 bit_stride = DW_UNSND (attr);
16516
16517 /* Irix 6.2 native cc creates array types without children for
16518 arrays with unspecified length. */
16519 if (die->child == NULL)
16520 {
16521 index_type = objfile_type (objfile)->builtin_int;
16522 range_type = create_static_range_type (NULL, index_type, 0, -1);
16523 type = create_array_type_with_stride (NULL, element_type, range_type,
16524 byte_stride_prop, bit_stride);
16525 return set_die_type (die, type, cu);
16526 }
16527
16528 std::vector<struct type *> range_types;
16529 child_die = die->child;
16530 while (child_die && child_die->tag)
16531 {
16532 if (child_die->tag == DW_TAG_subrange_type)
16533 {
16534 struct type *child_type = read_type_die (child_die, cu);
16535
16536 if (child_type != NULL)
16537 {
16538 /* The range type was succesfully read. Save it for the
16539 array type creation. */
16540 range_types.push_back (child_type);
16541 }
16542 }
16543 child_die = sibling_die (child_die);
16544 }
16545
16546 /* Dwarf2 dimensions are output from left to right, create the
16547 necessary array types in backwards order. */
16548
16549 type = element_type;
16550
16551 if (read_array_order (die, cu) == DW_ORD_col_major)
16552 {
16553 int i = 0;
16554
16555 while (i < range_types.size ())
16556 type = create_array_type_with_stride (NULL, type, range_types[i++],
16557 byte_stride_prop, bit_stride);
16558 }
16559 else
16560 {
16561 size_t ndim = range_types.size ();
16562 while (ndim-- > 0)
16563 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16564 byte_stride_prop, bit_stride);
16565 }
16566
16567 /* Understand Dwarf2 support for vector types (like they occur on
16568 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16569 array type. This is not part of the Dwarf2/3 standard yet, but a
16570 custom vendor extension. The main difference between a regular
16571 array and the vector variant is that vectors are passed by value
16572 to functions. */
16573 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16574 if (attr)
16575 make_vector_type (type);
16576
16577 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16578 implementation may choose to implement triple vectors using this
16579 attribute. */
16580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16581 if (attr)
16582 {
16583 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16584 TYPE_LENGTH (type) = DW_UNSND (attr);
16585 else
16586 complaint (_("DW_AT_byte_size for array type smaller "
16587 "than the total size of elements"));
16588 }
16589
16590 name = dwarf2_name (die, cu);
16591 if (name)
16592 TYPE_NAME (type) = name;
16593
16594 maybe_set_alignment (cu, die, type);
16595
16596 /* Install the type in the die. */
16597 set_die_type (die, type, cu);
16598
16599 /* set_die_type should be already done. */
16600 set_descriptive_type (type, die, cu);
16601
16602 return type;
16603 }
16604
16605 static enum dwarf_array_dim_ordering
16606 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16607 {
16608 struct attribute *attr;
16609
16610 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16611
16612 if (attr)
16613 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16614
16615 /* GNU F77 is a special case, as at 08/2004 array type info is the
16616 opposite order to the dwarf2 specification, but data is still
16617 laid out as per normal fortran.
16618
16619 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16620 version checking. */
16621
16622 if (cu->language == language_fortran
16623 && cu->producer && strstr (cu->producer, "GNU F77"))
16624 {
16625 return DW_ORD_row_major;
16626 }
16627
16628 switch (cu->language_defn->la_array_ordering)
16629 {
16630 case array_column_major:
16631 return DW_ORD_col_major;
16632 case array_row_major:
16633 default:
16634 return DW_ORD_row_major;
16635 };
16636 }
16637
16638 /* Extract all information from a DW_TAG_set_type DIE and put it in
16639 the DIE's type field. */
16640
16641 static struct type *
16642 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16643 {
16644 struct type *domain_type, *set_type;
16645 struct attribute *attr;
16646
16647 domain_type = die_type (die, cu);
16648
16649 /* The die_type call above may have already set the type for this DIE. */
16650 set_type = get_die_type (die, cu);
16651 if (set_type)
16652 return set_type;
16653
16654 set_type = create_set_type (NULL, domain_type);
16655
16656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16657 if (attr)
16658 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16659
16660 maybe_set_alignment (cu, die, set_type);
16661
16662 return set_die_type (die, set_type, cu);
16663 }
16664
16665 /* A helper for read_common_block that creates a locexpr baton.
16666 SYM is the symbol which we are marking as computed.
16667 COMMON_DIE is the DIE for the common block.
16668 COMMON_LOC is the location expression attribute for the common
16669 block itself.
16670 MEMBER_LOC is the location expression attribute for the particular
16671 member of the common block that we are processing.
16672 CU is the CU from which the above come. */
16673
16674 static void
16675 mark_common_block_symbol_computed (struct symbol *sym,
16676 struct die_info *common_die,
16677 struct attribute *common_loc,
16678 struct attribute *member_loc,
16679 struct dwarf2_cu *cu)
16680 {
16681 struct dwarf2_per_objfile *dwarf2_per_objfile
16682 = cu->per_cu->dwarf2_per_objfile;
16683 struct objfile *objfile = dwarf2_per_objfile->objfile;
16684 struct dwarf2_locexpr_baton *baton;
16685 gdb_byte *ptr;
16686 unsigned int cu_off;
16687 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16688 LONGEST offset = 0;
16689
16690 gdb_assert (common_loc && member_loc);
16691 gdb_assert (attr_form_is_block (common_loc));
16692 gdb_assert (attr_form_is_block (member_loc)
16693 || attr_form_is_constant (member_loc));
16694
16695 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16696 baton->per_cu = cu->per_cu;
16697 gdb_assert (baton->per_cu);
16698
16699 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16700
16701 if (attr_form_is_constant (member_loc))
16702 {
16703 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16704 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16705 }
16706 else
16707 baton->size += DW_BLOCK (member_loc)->size;
16708
16709 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16710 baton->data = ptr;
16711
16712 *ptr++ = DW_OP_call4;
16713 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16714 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16715 ptr += 4;
16716
16717 if (attr_form_is_constant (member_loc))
16718 {
16719 *ptr++ = DW_OP_addr;
16720 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16721 ptr += cu->header.addr_size;
16722 }
16723 else
16724 {
16725 /* We have to copy the data here, because DW_OP_call4 will only
16726 use a DW_AT_location attribute. */
16727 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16728 ptr += DW_BLOCK (member_loc)->size;
16729 }
16730
16731 *ptr++ = DW_OP_plus;
16732 gdb_assert (ptr - baton->data == baton->size);
16733
16734 SYMBOL_LOCATION_BATON (sym) = baton;
16735 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16736 }
16737
16738 /* Create appropriate locally-scoped variables for all the
16739 DW_TAG_common_block entries. Also create a struct common_block
16740 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16741 is used to sepate the common blocks name namespace from regular
16742 variable names. */
16743
16744 static void
16745 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16746 {
16747 struct attribute *attr;
16748
16749 attr = dwarf2_attr (die, DW_AT_location, cu);
16750 if (attr)
16751 {
16752 /* Support the .debug_loc offsets. */
16753 if (attr_form_is_block (attr))
16754 {
16755 /* Ok. */
16756 }
16757 else if (attr_form_is_section_offset (attr))
16758 {
16759 dwarf2_complex_location_expr_complaint ();
16760 attr = NULL;
16761 }
16762 else
16763 {
16764 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16765 "common block member");
16766 attr = NULL;
16767 }
16768 }
16769
16770 if (die->child != NULL)
16771 {
16772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16773 struct die_info *child_die;
16774 size_t n_entries = 0, size;
16775 struct common_block *common_block;
16776 struct symbol *sym;
16777
16778 for (child_die = die->child;
16779 child_die && child_die->tag;
16780 child_die = sibling_die (child_die))
16781 ++n_entries;
16782
16783 size = (sizeof (struct common_block)
16784 + (n_entries - 1) * sizeof (struct symbol *));
16785 common_block
16786 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16787 size);
16788 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16789 common_block->n_entries = 0;
16790
16791 for (child_die = die->child;
16792 child_die && child_die->tag;
16793 child_die = sibling_die (child_die))
16794 {
16795 /* Create the symbol in the DW_TAG_common_block block in the current
16796 symbol scope. */
16797 sym = new_symbol (child_die, NULL, cu);
16798 if (sym != NULL)
16799 {
16800 struct attribute *member_loc;
16801
16802 common_block->contents[common_block->n_entries++] = sym;
16803
16804 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16805 cu);
16806 if (member_loc)
16807 {
16808 /* GDB has handled this for a long time, but it is
16809 not specified by DWARF. It seems to have been
16810 emitted by gfortran at least as recently as:
16811 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16812 complaint (_("Variable in common block has "
16813 "DW_AT_data_member_location "
16814 "- DIE at %s [in module %s]"),
16815 sect_offset_str (child_die->sect_off),
16816 objfile_name (objfile));
16817
16818 if (attr_form_is_section_offset (member_loc))
16819 dwarf2_complex_location_expr_complaint ();
16820 else if (attr_form_is_constant (member_loc)
16821 || attr_form_is_block (member_loc))
16822 {
16823 if (attr)
16824 mark_common_block_symbol_computed (sym, die, attr,
16825 member_loc, cu);
16826 }
16827 else
16828 dwarf2_complex_location_expr_complaint ();
16829 }
16830 }
16831 }
16832
16833 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16834 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16835 }
16836 }
16837
16838 /* Create a type for a C++ namespace. */
16839
16840 static struct type *
16841 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16842 {
16843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16844 const char *previous_prefix, *name;
16845 int is_anonymous;
16846 struct type *type;
16847
16848 /* For extensions, reuse the type of the original namespace. */
16849 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16850 {
16851 struct die_info *ext_die;
16852 struct dwarf2_cu *ext_cu = cu;
16853
16854 ext_die = dwarf2_extension (die, &ext_cu);
16855 type = read_type_die (ext_die, ext_cu);
16856
16857 /* EXT_CU may not be the same as CU.
16858 Ensure TYPE is recorded with CU in die_type_hash. */
16859 return set_die_type (die, type, cu);
16860 }
16861
16862 name = namespace_name (die, &is_anonymous, cu);
16863
16864 /* Now build the name of the current namespace. */
16865
16866 previous_prefix = determine_prefix (die, cu);
16867 if (previous_prefix[0] != '\0')
16868 name = typename_concat (&objfile->objfile_obstack,
16869 previous_prefix, name, 0, cu);
16870
16871 /* Create the type. */
16872 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16873
16874 return set_die_type (die, type, cu);
16875 }
16876
16877 /* Read a namespace scope. */
16878
16879 static void
16880 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16881 {
16882 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16883 int is_anonymous;
16884
16885 /* Add a symbol associated to this if we haven't seen the namespace
16886 before. Also, add a using directive if it's an anonymous
16887 namespace. */
16888
16889 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16890 {
16891 struct type *type;
16892
16893 type = read_type_die (die, cu);
16894 new_symbol (die, type, cu);
16895
16896 namespace_name (die, &is_anonymous, cu);
16897 if (is_anonymous)
16898 {
16899 const char *previous_prefix = determine_prefix (die, cu);
16900
16901 std::vector<const char *> excludes;
16902 add_using_directive (using_directives (cu),
16903 previous_prefix, TYPE_NAME (type), NULL,
16904 NULL, excludes, 0, &objfile->objfile_obstack);
16905 }
16906 }
16907
16908 if (die->child != NULL)
16909 {
16910 struct die_info *child_die = die->child;
16911
16912 while (child_die && child_die->tag)
16913 {
16914 process_die (child_die, cu);
16915 child_die = sibling_die (child_die);
16916 }
16917 }
16918 }
16919
16920 /* Read a Fortran module as type. This DIE can be only a declaration used for
16921 imported module. Still we need that type as local Fortran "use ... only"
16922 declaration imports depend on the created type in determine_prefix. */
16923
16924 static struct type *
16925 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16926 {
16927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16928 const char *module_name;
16929 struct type *type;
16930
16931 module_name = dwarf2_name (die, cu);
16932 if (!module_name)
16933 complaint (_("DW_TAG_module has no name, offset %s"),
16934 sect_offset_str (die->sect_off));
16935 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16936
16937 return set_die_type (die, type, cu);
16938 }
16939
16940 /* Read a Fortran module. */
16941
16942 static void
16943 read_module (struct die_info *die, struct dwarf2_cu *cu)
16944 {
16945 struct die_info *child_die = die->child;
16946 struct type *type;
16947
16948 type = read_type_die (die, cu);
16949 new_symbol (die, type, cu);
16950
16951 while (child_die && child_die->tag)
16952 {
16953 process_die (child_die, cu);
16954 child_die = sibling_die (child_die);
16955 }
16956 }
16957
16958 /* Return the name of the namespace represented by DIE. Set
16959 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16960 namespace. */
16961
16962 static const char *
16963 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16964 {
16965 struct die_info *current_die;
16966 const char *name = NULL;
16967
16968 /* Loop through the extensions until we find a name. */
16969
16970 for (current_die = die;
16971 current_die != NULL;
16972 current_die = dwarf2_extension (die, &cu))
16973 {
16974 /* We don't use dwarf2_name here so that we can detect the absence
16975 of a name -> anonymous namespace. */
16976 name = dwarf2_string_attr (die, DW_AT_name, cu);
16977
16978 if (name != NULL)
16979 break;
16980 }
16981
16982 /* Is it an anonymous namespace? */
16983
16984 *is_anonymous = (name == NULL);
16985 if (*is_anonymous)
16986 name = CP_ANONYMOUS_NAMESPACE_STR;
16987
16988 return name;
16989 }
16990
16991 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16992 the user defined type vector. */
16993
16994 static struct type *
16995 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16996 {
16997 struct gdbarch *gdbarch
16998 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16999 struct comp_unit_head *cu_header = &cu->header;
17000 struct type *type;
17001 struct attribute *attr_byte_size;
17002 struct attribute *attr_address_class;
17003 int byte_size, addr_class;
17004 struct type *target_type;
17005
17006 target_type = die_type (die, cu);
17007
17008 /* The die_type call above may have already set the type for this DIE. */
17009 type = get_die_type (die, cu);
17010 if (type)
17011 return type;
17012
17013 type = lookup_pointer_type (target_type);
17014
17015 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17016 if (attr_byte_size)
17017 byte_size = DW_UNSND (attr_byte_size);
17018 else
17019 byte_size = cu_header->addr_size;
17020
17021 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17022 if (attr_address_class)
17023 addr_class = DW_UNSND (attr_address_class);
17024 else
17025 addr_class = DW_ADDR_none;
17026
17027 ULONGEST alignment = get_alignment (cu, die);
17028
17029 /* If the pointer size, alignment, or address class is different
17030 than the default, create a type variant marked as such and set
17031 the length accordingly. */
17032 if (TYPE_LENGTH (type) != byte_size
17033 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17034 && alignment != TYPE_RAW_ALIGN (type))
17035 || addr_class != DW_ADDR_none)
17036 {
17037 if (gdbarch_address_class_type_flags_p (gdbarch))
17038 {
17039 int type_flags;
17040
17041 type_flags = gdbarch_address_class_type_flags
17042 (gdbarch, byte_size, addr_class);
17043 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17044 == 0);
17045 type = make_type_with_address_space (type, type_flags);
17046 }
17047 else if (TYPE_LENGTH (type) != byte_size)
17048 {
17049 complaint (_("invalid pointer size %d"), byte_size);
17050 }
17051 else if (TYPE_RAW_ALIGN (type) != alignment)
17052 {
17053 complaint (_("Invalid DW_AT_alignment"
17054 " - DIE at %s [in module %s]"),
17055 sect_offset_str (die->sect_off),
17056 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17057 }
17058 else
17059 {
17060 /* Should we also complain about unhandled address classes? */
17061 }
17062 }
17063
17064 TYPE_LENGTH (type) = byte_size;
17065 set_type_align (type, alignment);
17066 return set_die_type (die, type, cu);
17067 }
17068
17069 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17070 the user defined type vector. */
17071
17072 static struct type *
17073 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17074 {
17075 struct type *type;
17076 struct type *to_type;
17077 struct type *domain;
17078
17079 to_type = die_type (die, cu);
17080 domain = die_containing_type (die, cu);
17081
17082 /* The calls above may have already set the type for this DIE. */
17083 type = get_die_type (die, cu);
17084 if (type)
17085 return type;
17086
17087 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17088 type = lookup_methodptr_type (to_type);
17089 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17090 {
17091 struct type *new_type
17092 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17093
17094 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17095 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17096 TYPE_VARARGS (to_type));
17097 type = lookup_methodptr_type (new_type);
17098 }
17099 else
17100 type = lookup_memberptr_type (to_type, domain);
17101
17102 return set_die_type (die, type, cu);
17103 }
17104
17105 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17106 the user defined type vector. */
17107
17108 static struct type *
17109 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17110 enum type_code refcode)
17111 {
17112 struct comp_unit_head *cu_header = &cu->header;
17113 struct type *type, *target_type;
17114 struct attribute *attr;
17115
17116 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17117
17118 target_type = die_type (die, cu);
17119
17120 /* The die_type call above may have already set the type for this DIE. */
17121 type = get_die_type (die, cu);
17122 if (type)
17123 return type;
17124
17125 type = lookup_reference_type (target_type, refcode);
17126 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17127 if (attr)
17128 {
17129 TYPE_LENGTH (type) = DW_UNSND (attr);
17130 }
17131 else
17132 {
17133 TYPE_LENGTH (type) = cu_header->addr_size;
17134 }
17135 maybe_set_alignment (cu, die, type);
17136 return set_die_type (die, type, cu);
17137 }
17138
17139 /* Add the given cv-qualifiers to the element type of the array. GCC
17140 outputs DWARF type qualifiers that apply to an array, not the
17141 element type. But GDB relies on the array element type to carry
17142 the cv-qualifiers. This mimics section 6.7.3 of the C99
17143 specification. */
17144
17145 static struct type *
17146 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17147 struct type *base_type, int cnst, int voltl)
17148 {
17149 struct type *el_type, *inner_array;
17150
17151 base_type = copy_type (base_type);
17152 inner_array = base_type;
17153
17154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17155 {
17156 TYPE_TARGET_TYPE (inner_array) =
17157 copy_type (TYPE_TARGET_TYPE (inner_array));
17158 inner_array = TYPE_TARGET_TYPE (inner_array);
17159 }
17160
17161 el_type = TYPE_TARGET_TYPE (inner_array);
17162 cnst |= TYPE_CONST (el_type);
17163 voltl |= TYPE_VOLATILE (el_type);
17164 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17165
17166 return set_die_type (die, base_type, cu);
17167 }
17168
17169 static struct type *
17170 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17171 {
17172 struct type *base_type, *cv_type;
17173
17174 base_type = die_type (die, cu);
17175
17176 /* The die_type call above may have already set the type for this DIE. */
17177 cv_type = get_die_type (die, cu);
17178 if (cv_type)
17179 return cv_type;
17180
17181 /* In case the const qualifier is applied to an array type, the element type
17182 is so qualified, not the array type (section 6.7.3 of C99). */
17183 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17184 return add_array_cv_type (die, cu, base_type, 1, 0);
17185
17186 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17187 return set_die_type (die, cv_type, cu);
17188 }
17189
17190 static struct type *
17191 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17192 {
17193 struct type *base_type, *cv_type;
17194
17195 base_type = die_type (die, cu);
17196
17197 /* The die_type call above may have already set the type for this DIE. */
17198 cv_type = get_die_type (die, cu);
17199 if (cv_type)
17200 return cv_type;
17201
17202 /* In case the volatile qualifier is applied to an array type, the
17203 element type is so qualified, not the array type (section 6.7.3
17204 of C99). */
17205 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17206 return add_array_cv_type (die, cu, base_type, 0, 1);
17207
17208 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17209 return set_die_type (die, cv_type, cu);
17210 }
17211
17212 /* Handle DW_TAG_restrict_type. */
17213
17214 static struct type *
17215 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17216 {
17217 struct type *base_type, *cv_type;
17218
17219 base_type = die_type (die, cu);
17220
17221 /* The die_type call above may have already set the type for this DIE. */
17222 cv_type = get_die_type (die, cu);
17223 if (cv_type)
17224 return cv_type;
17225
17226 cv_type = make_restrict_type (base_type);
17227 return set_die_type (die, cv_type, cu);
17228 }
17229
17230 /* Handle DW_TAG_atomic_type. */
17231
17232 static struct type *
17233 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct type *base_type, *cv_type;
17236
17237 base_type = die_type (die, cu);
17238
17239 /* The die_type call above may have already set the type for this DIE. */
17240 cv_type = get_die_type (die, cu);
17241 if (cv_type)
17242 return cv_type;
17243
17244 cv_type = make_atomic_type (base_type);
17245 return set_die_type (die, cv_type, cu);
17246 }
17247
17248 /* Extract all information from a DW_TAG_string_type DIE and add to
17249 the user defined type vector. It isn't really a user defined type,
17250 but it behaves like one, with other DIE's using an AT_user_def_type
17251 attribute to reference it. */
17252
17253 static struct type *
17254 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17255 {
17256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17258 struct type *type, *range_type, *index_type, *char_type;
17259 struct attribute *attr;
17260 unsigned int length;
17261
17262 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17263 if (attr)
17264 {
17265 length = DW_UNSND (attr);
17266 }
17267 else
17268 {
17269 /* Check for the DW_AT_byte_size attribute. */
17270 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17271 if (attr)
17272 {
17273 length = DW_UNSND (attr);
17274 }
17275 else
17276 {
17277 length = 1;
17278 }
17279 }
17280
17281 index_type = objfile_type (objfile)->builtin_int;
17282 range_type = create_static_range_type (NULL, index_type, 1, length);
17283 char_type = language_string_char_type (cu->language_defn, gdbarch);
17284 type = create_string_type (NULL, char_type, range_type);
17285
17286 return set_die_type (die, type, cu);
17287 }
17288
17289 /* Assuming that DIE corresponds to a function, returns nonzero
17290 if the function is prototyped. */
17291
17292 static int
17293 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17294 {
17295 struct attribute *attr;
17296
17297 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17298 if (attr && (DW_UNSND (attr) != 0))
17299 return 1;
17300
17301 /* The DWARF standard implies that the DW_AT_prototyped attribute
17302 is only meaninful for C, but the concept also extends to other
17303 languages that allow unprototyped functions (Eg: Objective C).
17304 For all other languages, assume that functions are always
17305 prototyped. */
17306 if (cu->language != language_c
17307 && cu->language != language_objc
17308 && cu->language != language_opencl)
17309 return 1;
17310
17311 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17312 prototyped and unprototyped functions; default to prototyped,
17313 since that is more common in modern code (and RealView warns
17314 about unprototyped functions). */
17315 if (producer_is_realview (cu->producer))
17316 return 1;
17317
17318 return 0;
17319 }
17320
17321 /* Handle DIES due to C code like:
17322
17323 struct foo
17324 {
17325 int (*funcp)(int a, long l);
17326 int b;
17327 };
17328
17329 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17330
17331 static struct type *
17332 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17333 {
17334 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17335 struct type *type; /* Type that this function returns. */
17336 struct type *ftype; /* Function that returns above type. */
17337 struct attribute *attr;
17338
17339 type = die_type (die, cu);
17340
17341 /* The die_type call above may have already set the type for this DIE. */
17342 ftype = get_die_type (die, cu);
17343 if (ftype)
17344 return ftype;
17345
17346 ftype = lookup_function_type (type);
17347
17348 if (prototyped_function_p (die, cu))
17349 TYPE_PROTOTYPED (ftype) = 1;
17350
17351 /* Store the calling convention in the type if it's available in
17352 the subroutine die. Otherwise set the calling convention to
17353 the default value DW_CC_normal. */
17354 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17355 if (attr)
17356 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17357 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17358 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17359 else
17360 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17361
17362 /* Record whether the function returns normally to its caller or not
17363 if the DWARF producer set that information. */
17364 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17365 if (attr && (DW_UNSND (attr) != 0))
17366 TYPE_NO_RETURN (ftype) = 1;
17367
17368 /* We need to add the subroutine type to the die immediately so
17369 we don't infinitely recurse when dealing with parameters
17370 declared as the same subroutine type. */
17371 set_die_type (die, ftype, cu);
17372
17373 if (die->child != NULL)
17374 {
17375 struct type *void_type = objfile_type (objfile)->builtin_void;
17376 struct die_info *child_die;
17377 int nparams, iparams;
17378
17379 /* Count the number of parameters.
17380 FIXME: GDB currently ignores vararg functions, but knows about
17381 vararg member functions. */
17382 nparams = 0;
17383 child_die = die->child;
17384 while (child_die && child_die->tag)
17385 {
17386 if (child_die->tag == DW_TAG_formal_parameter)
17387 nparams++;
17388 else if (child_die->tag == DW_TAG_unspecified_parameters)
17389 TYPE_VARARGS (ftype) = 1;
17390 child_die = sibling_die (child_die);
17391 }
17392
17393 /* Allocate storage for parameters and fill them in. */
17394 TYPE_NFIELDS (ftype) = nparams;
17395 TYPE_FIELDS (ftype) = (struct field *)
17396 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17397
17398 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17399 even if we error out during the parameters reading below. */
17400 for (iparams = 0; iparams < nparams; iparams++)
17401 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17402
17403 iparams = 0;
17404 child_die = die->child;
17405 while (child_die && child_die->tag)
17406 {
17407 if (child_die->tag == DW_TAG_formal_parameter)
17408 {
17409 struct type *arg_type;
17410
17411 /* DWARF version 2 has no clean way to discern C++
17412 static and non-static member functions. G++ helps
17413 GDB by marking the first parameter for non-static
17414 member functions (which is the this pointer) as
17415 artificial. We pass this information to
17416 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17417
17418 DWARF version 3 added DW_AT_object_pointer, which GCC
17419 4.5 does not yet generate. */
17420 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17421 if (attr)
17422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17423 else
17424 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17425 arg_type = die_type (child_die, cu);
17426
17427 /* RealView does not mark THIS as const, which the testsuite
17428 expects. GCC marks THIS as const in method definitions,
17429 but not in the class specifications (GCC PR 43053). */
17430 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17431 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17432 {
17433 int is_this = 0;
17434 struct dwarf2_cu *arg_cu = cu;
17435 const char *name = dwarf2_name (child_die, cu);
17436
17437 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17438 if (attr)
17439 {
17440 /* If the compiler emits this, use it. */
17441 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17442 is_this = 1;
17443 }
17444 else if (name && strcmp (name, "this") == 0)
17445 /* Function definitions will have the argument names. */
17446 is_this = 1;
17447 else if (name == NULL && iparams == 0)
17448 /* Declarations may not have the names, so like
17449 elsewhere in GDB, assume an artificial first
17450 argument is "this". */
17451 is_this = 1;
17452
17453 if (is_this)
17454 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17455 arg_type, 0);
17456 }
17457
17458 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17459 iparams++;
17460 }
17461 child_die = sibling_die (child_die);
17462 }
17463 }
17464
17465 return ftype;
17466 }
17467
17468 static struct type *
17469 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17470 {
17471 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17472 const char *name = NULL;
17473 struct type *this_type, *target_type;
17474
17475 name = dwarf2_full_name (NULL, die, cu);
17476 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17477 TYPE_TARGET_STUB (this_type) = 1;
17478 set_die_type (die, this_type, cu);
17479 target_type = die_type (die, cu);
17480 if (target_type != this_type)
17481 TYPE_TARGET_TYPE (this_type) = target_type;
17482 else
17483 {
17484 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17485 spec and cause infinite loops in GDB. */
17486 complaint (_("Self-referential DW_TAG_typedef "
17487 "- DIE at %s [in module %s]"),
17488 sect_offset_str (die->sect_off), objfile_name (objfile));
17489 TYPE_TARGET_TYPE (this_type) = NULL;
17490 }
17491 return this_type;
17492 }
17493
17494 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17495 (which may be different from NAME) to the architecture back-end to allow
17496 it to guess the correct format if necessary. */
17497
17498 static struct type *
17499 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17500 const char *name_hint)
17501 {
17502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17503 const struct floatformat **format;
17504 struct type *type;
17505
17506 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17507 if (format)
17508 type = init_float_type (objfile, bits, name, format);
17509 else
17510 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17511
17512 return type;
17513 }
17514
17515 /* Allocate an integer type of size BITS and name NAME. */
17516
17517 static struct type *
17518 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17519 int bits, int unsigned_p, const char *name)
17520 {
17521 struct type *type;
17522
17523 /* Versions of Intel's C Compiler generate an integer type called "void"
17524 instead of using DW_TAG_unspecified_type. This has been seen on
17525 at least versions 14, 17, and 18. */
17526 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17527 && strcmp (name, "void") == 0)
17528 type = objfile_type (objfile)->builtin_void;
17529 else
17530 type = init_integer_type (objfile, bits, unsigned_p, name);
17531
17532 return type;
17533 }
17534
17535 /* Initialise and return a floating point type of size BITS suitable for
17536 use as a component of a complex number. The NAME_HINT is passed through
17537 when initialising the floating point type and is the name of the complex
17538 type.
17539
17540 As DWARF doesn't currently provide an explicit name for the components
17541 of a complex number, but it can be helpful to have these components
17542 named, we try to select a suitable name based on the size of the
17543 component. */
17544 static struct type *
17545 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17546 struct objfile *objfile,
17547 int bits, const char *name_hint)
17548 {
17549 gdbarch *gdbarch = get_objfile_arch (objfile);
17550 struct type *tt = nullptr;
17551
17552 /* Try to find a suitable floating point builtin type of size BITS.
17553 We're going to use the name of this type as the name for the complex
17554 target type that we are about to create. */
17555 switch (bits)
17556 {
17557 case 32:
17558 tt = builtin_type (gdbarch)->builtin_float;
17559 break;
17560 case 64:
17561 tt = builtin_type (gdbarch)->builtin_double;
17562 break;
17563 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17564 case 128:
17565 tt = builtin_type (gdbarch)->builtin_long_double;
17566 break;
17567 }
17568
17569 /* If the type we found doesn't match the size we were looking for, then
17570 pretend we didn't find a type at all, the complex target type we
17571 create will then be nameless. */
17572 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17573 tt = nullptr;
17574
17575 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17576 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17577 }
17578
17579 /* Find a representation of a given base type and install
17580 it in the TYPE field of the die. */
17581
17582 static struct type *
17583 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17584 {
17585 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17586 struct type *type;
17587 struct attribute *attr;
17588 int encoding = 0, bits = 0;
17589 const char *name;
17590
17591 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17592 if (attr)
17593 {
17594 encoding = DW_UNSND (attr);
17595 }
17596 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17597 if (attr)
17598 {
17599 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17600 }
17601 name = dwarf2_name (die, cu);
17602 if (!name)
17603 {
17604 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17605 }
17606
17607 switch (encoding)
17608 {
17609 case DW_ATE_address:
17610 /* Turn DW_ATE_address into a void * pointer. */
17611 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17612 type = init_pointer_type (objfile, bits, name, type);
17613 break;
17614 case DW_ATE_boolean:
17615 type = init_boolean_type (objfile, bits, 1, name);
17616 break;
17617 case DW_ATE_complex_float:
17618 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17619 type = init_complex_type (objfile, name, type);
17620 break;
17621 case DW_ATE_decimal_float:
17622 type = init_decfloat_type (objfile, bits, name);
17623 break;
17624 case DW_ATE_float:
17625 type = dwarf2_init_float_type (objfile, bits, name, name);
17626 break;
17627 case DW_ATE_signed:
17628 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17629 break;
17630 case DW_ATE_unsigned:
17631 if (cu->language == language_fortran
17632 && name
17633 && startswith (name, "character("))
17634 type = init_character_type (objfile, bits, 1, name);
17635 else
17636 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17637 break;
17638 case DW_ATE_signed_char:
17639 if (cu->language == language_ada || cu->language == language_m2
17640 || cu->language == language_pascal
17641 || cu->language == language_fortran)
17642 type = init_character_type (objfile, bits, 0, name);
17643 else
17644 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17645 break;
17646 case DW_ATE_unsigned_char:
17647 if (cu->language == language_ada || cu->language == language_m2
17648 || cu->language == language_pascal
17649 || cu->language == language_fortran
17650 || cu->language == language_rust)
17651 type = init_character_type (objfile, bits, 1, name);
17652 else
17653 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17654 break;
17655 case DW_ATE_UTF:
17656 {
17657 gdbarch *arch = get_objfile_arch (objfile);
17658
17659 if (bits == 16)
17660 type = builtin_type (arch)->builtin_char16;
17661 else if (bits == 32)
17662 type = builtin_type (arch)->builtin_char32;
17663 else
17664 {
17665 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17666 bits);
17667 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17668 }
17669 return set_die_type (die, type, cu);
17670 }
17671 break;
17672
17673 default:
17674 complaint (_("unsupported DW_AT_encoding: '%s'"),
17675 dwarf_type_encoding_name (encoding));
17676 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17677 break;
17678 }
17679
17680 if (name && strcmp (name, "char") == 0)
17681 TYPE_NOSIGN (type) = 1;
17682
17683 maybe_set_alignment (cu, die, type);
17684
17685 return set_die_type (die, type, cu);
17686 }
17687
17688 /* Parse dwarf attribute if it's a block, reference or constant and put the
17689 resulting value of the attribute into struct bound_prop.
17690 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17691
17692 static int
17693 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17694 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17695 {
17696 struct dwarf2_property_baton *baton;
17697 struct obstack *obstack
17698 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17699
17700 if (attr == NULL || prop == NULL)
17701 return 0;
17702
17703 if (attr_form_is_block (attr))
17704 {
17705 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17706 baton->referenced_type = NULL;
17707 baton->locexpr.per_cu = cu->per_cu;
17708 baton->locexpr.size = DW_BLOCK (attr)->size;
17709 baton->locexpr.data = DW_BLOCK (attr)->data;
17710 prop->data.baton = baton;
17711 prop->kind = PROP_LOCEXPR;
17712 gdb_assert (prop->data.baton != NULL);
17713 }
17714 else if (attr_form_is_ref (attr))
17715 {
17716 struct dwarf2_cu *target_cu = cu;
17717 struct die_info *target_die;
17718 struct attribute *target_attr;
17719
17720 target_die = follow_die_ref (die, attr, &target_cu);
17721 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17722 if (target_attr == NULL)
17723 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17724 target_cu);
17725 if (target_attr == NULL)
17726 return 0;
17727
17728 switch (target_attr->name)
17729 {
17730 case DW_AT_location:
17731 if (attr_form_is_section_offset (target_attr))
17732 {
17733 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17734 baton->referenced_type = die_type (target_die, target_cu);
17735 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17736 prop->data.baton = baton;
17737 prop->kind = PROP_LOCLIST;
17738 gdb_assert (prop->data.baton != NULL);
17739 }
17740 else if (attr_form_is_block (target_attr))
17741 {
17742 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17743 baton->referenced_type = die_type (target_die, target_cu);
17744 baton->locexpr.per_cu = cu->per_cu;
17745 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17746 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17747 prop->data.baton = baton;
17748 prop->kind = PROP_LOCEXPR;
17749 gdb_assert (prop->data.baton != NULL);
17750 }
17751 else
17752 {
17753 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17754 "dynamic property");
17755 return 0;
17756 }
17757 break;
17758 case DW_AT_data_member_location:
17759 {
17760 LONGEST offset;
17761
17762 if (!handle_data_member_location (target_die, target_cu,
17763 &offset))
17764 return 0;
17765
17766 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17767 baton->referenced_type = read_type_die (target_die->parent,
17768 target_cu);
17769 baton->offset_info.offset = offset;
17770 baton->offset_info.type = die_type (target_die, target_cu);
17771 prop->data.baton = baton;
17772 prop->kind = PROP_ADDR_OFFSET;
17773 break;
17774 }
17775 }
17776 }
17777 else if (attr_form_is_constant (attr))
17778 {
17779 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17780 prop->kind = PROP_CONST;
17781 }
17782 else
17783 {
17784 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17785 dwarf2_name (die, cu));
17786 return 0;
17787 }
17788
17789 return 1;
17790 }
17791
17792 /* Read the given DW_AT_subrange DIE. */
17793
17794 static struct type *
17795 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17796 {
17797 struct type *base_type, *orig_base_type;
17798 struct type *range_type;
17799 struct attribute *attr;
17800 struct dynamic_prop low, high;
17801 int low_default_is_valid;
17802 int high_bound_is_count = 0;
17803 const char *name;
17804 ULONGEST negative_mask;
17805
17806 orig_base_type = die_type (die, cu);
17807 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17808 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17809 creating the range type, but we use the result of check_typedef
17810 when examining properties of the type. */
17811 base_type = check_typedef (orig_base_type);
17812
17813 /* The die_type call above may have already set the type for this DIE. */
17814 range_type = get_die_type (die, cu);
17815 if (range_type)
17816 return range_type;
17817
17818 low.kind = PROP_CONST;
17819 high.kind = PROP_CONST;
17820 high.data.const_val = 0;
17821
17822 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17823 omitting DW_AT_lower_bound. */
17824 switch (cu->language)
17825 {
17826 case language_c:
17827 case language_cplus:
17828 low.data.const_val = 0;
17829 low_default_is_valid = 1;
17830 break;
17831 case language_fortran:
17832 low.data.const_val = 1;
17833 low_default_is_valid = 1;
17834 break;
17835 case language_d:
17836 case language_objc:
17837 case language_rust:
17838 low.data.const_val = 0;
17839 low_default_is_valid = (cu->header.version >= 4);
17840 break;
17841 case language_ada:
17842 case language_m2:
17843 case language_pascal:
17844 low.data.const_val = 1;
17845 low_default_is_valid = (cu->header.version >= 4);
17846 break;
17847 default:
17848 low.data.const_val = 0;
17849 low_default_is_valid = 0;
17850 break;
17851 }
17852
17853 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17854 if (attr)
17855 attr_to_dynamic_prop (attr, die, cu, &low);
17856 else if (!low_default_is_valid)
17857 complaint (_("Missing DW_AT_lower_bound "
17858 "- DIE at %s [in module %s]"),
17859 sect_offset_str (die->sect_off),
17860 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17861
17862 struct attribute *attr_ub, *attr_count;
17863 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17864 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17865 {
17866 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17867 if (attr_to_dynamic_prop (attr, die, cu, &high))
17868 {
17869 /* If bounds are constant do the final calculation here. */
17870 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17871 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17872 else
17873 high_bound_is_count = 1;
17874 }
17875 else
17876 {
17877 if (attr_ub != NULL)
17878 complaint (_("Unresolved DW_AT_upper_bound "
17879 "- DIE at %s [in module %s]"),
17880 sect_offset_str (die->sect_off),
17881 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17882 if (attr_count != NULL)
17883 complaint (_("Unresolved DW_AT_count "
17884 "- DIE at %s [in module %s]"),
17885 sect_offset_str (die->sect_off),
17886 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17887 }
17888
17889 }
17890
17891 /* Dwarf-2 specifications explicitly allows to create subrange types
17892 without specifying a base type.
17893 In that case, the base type must be set to the type of
17894 the lower bound, upper bound or count, in that order, if any of these
17895 three attributes references an object that has a type.
17896 If no base type is found, the Dwarf-2 specifications say that
17897 a signed integer type of size equal to the size of an address should
17898 be used.
17899 For the following C code: `extern char gdb_int [];'
17900 GCC produces an empty range DIE.
17901 FIXME: muller/2010-05-28: Possible references to object for low bound,
17902 high bound or count are not yet handled by this code. */
17903 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17904 {
17905 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17907 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17908 struct type *int_type = objfile_type (objfile)->builtin_int;
17909
17910 /* Test "int", "long int", and "long long int" objfile types,
17911 and select the first one having a size above or equal to the
17912 architecture address size. */
17913 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17914 base_type = int_type;
17915 else
17916 {
17917 int_type = objfile_type (objfile)->builtin_long;
17918 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17919 base_type = int_type;
17920 else
17921 {
17922 int_type = objfile_type (objfile)->builtin_long_long;
17923 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17924 base_type = int_type;
17925 }
17926 }
17927 }
17928
17929 /* Normally, the DWARF producers are expected to use a signed
17930 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17931 But this is unfortunately not always the case, as witnessed
17932 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17933 is used instead. To work around that ambiguity, we treat
17934 the bounds as signed, and thus sign-extend their values, when
17935 the base type is signed. */
17936 negative_mask =
17937 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17938 if (low.kind == PROP_CONST
17939 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17940 low.data.const_val |= negative_mask;
17941 if (high.kind == PROP_CONST
17942 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17943 high.data.const_val |= negative_mask;
17944
17945 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17946
17947 if (high_bound_is_count)
17948 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17949
17950 /* Ada expects an empty array on no boundary attributes. */
17951 if (attr == NULL && cu->language != language_ada)
17952 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17953
17954 name = dwarf2_name (die, cu);
17955 if (name)
17956 TYPE_NAME (range_type) = name;
17957
17958 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17959 if (attr)
17960 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17961
17962 maybe_set_alignment (cu, die, range_type);
17963
17964 set_die_type (die, range_type, cu);
17965
17966 /* set_die_type should be already done. */
17967 set_descriptive_type (range_type, die, cu);
17968
17969 return range_type;
17970 }
17971
17972 static struct type *
17973 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17974 {
17975 struct type *type;
17976
17977 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17978 NULL);
17979 TYPE_NAME (type) = dwarf2_name (die, cu);
17980
17981 /* In Ada, an unspecified type is typically used when the description
17982 of the type is defered to a different unit. When encountering
17983 such a type, we treat it as a stub, and try to resolve it later on,
17984 when needed. */
17985 if (cu->language == language_ada)
17986 TYPE_STUB (type) = 1;
17987
17988 return set_die_type (die, type, cu);
17989 }
17990
17991 /* Read a single die and all its descendents. Set the die's sibling
17992 field to NULL; set other fields in the die correctly, and set all
17993 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17994 location of the info_ptr after reading all of those dies. PARENT
17995 is the parent of the die in question. */
17996
17997 static struct die_info *
17998 read_die_and_children (const struct die_reader_specs *reader,
17999 const gdb_byte *info_ptr,
18000 const gdb_byte **new_info_ptr,
18001 struct die_info *parent)
18002 {
18003 struct die_info *die;
18004 const gdb_byte *cur_ptr;
18005 int has_children;
18006
18007 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18008 if (die == NULL)
18009 {
18010 *new_info_ptr = cur_ptr;
18011 return NULL;
18012 }
18013 store_in_ref_table (die, reader->cu);
18014
18015 if (has_children)
18016 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18017 else
18018 {
18019 die->child = NULL;
18020 *new_info_ptr = cur_ptr;
18021 }
18022
18023 die->sibling = NULL;
18024 die->parent = parent;
18025 return die;
18026 }
18027
18028 /* Read a die, all of its descendents, and all of its siblings; set
18029 all of the fields of all of the dies correctly. Arguments are as
18030 in read_die_and_children. */
18031
18032 static struct die_info *
18033 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18034 const gdb_byte *info_ptr,
18035 const gdb_byte **new_info_ptr,
18036 struct die_info *parent)
18037 {
18038 struct die_info *first_die, *last_sibling;
18039 const gdb_byte *cur_ptr;
18040
18041 cur_ptr = info_ptr;
18042 first_die = last_sibling = NULL;
18043
18044 while (1)
18045 {
18046 struct die_info *die
18047 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18048
18049 if (die == NULL)
18050 {
18051 *new_info_ptr = cur_ptr;
18052 return first_die;
18053 }
18054
18055 if (!first_die)
18056 first_die = die;
18057 else
18058 last_sibling->sibling = die;
18059
18060 last_sibling = die;
18061 }
18062 }
18063
18064 /* Read a die, all of its descendents, and all of its siblings; set
18065 all of the fields of all of the dies correctly. Arguments are as
18066 in read_die_and_children.
18067 This the main entry point for reading a DIE and all its children. */
18068
18069 static struct die_info *
18070 read_die_and_siblings (const struct die_reader_specs *reader,
18071 const gdb_byte *info_ptr,
18072 const gdb_byte **new_info_ptr,
18073 struct die_info *parent)
18074 {
18075 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18076 new_info_ptr, parent);
18077
18078 if (dwarf_die_debug)
18079 {
18080 fprintf_unfiltered (gdb_stdlog,
18081 "Read die from %s@0x%x of %s:\n",
18082 get_section_name (reader->die_section),
18083 (unsigned) (info_ptr - reader->die_section->buffer),
18084 bfd_get_filename (reader->abfd));
18085 dump_die (die, dwarf_die_debug);
18086 }
18087
18088 return die;
18089 }
18090
18091 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18092 attributes.
18093 The caller is responsible for filling in the extra attributes
18094 and updating (*DIEP)->num_attrs.
18095 Set DIEP to point to a newly allocated die with its information,
18096 except for its child, sibling, and parent fields.
18097 Set HAS_CHILDREN to tell whether the die has children or not. */
18098
18099 static const gdb_byte *
18100 read_full_die_1 (const struct die_reader_specs *reader,
18101 struct die_info **diep, const gdb_byte *info_ptr,
18102 int *has_children, int num_extra_attrs)
18103 {
18104 unsigned int abbrev_number, bytes_read, i;
18105 struct abbrev_info *abbrev;
18106 struct die_info *die;
18107 struct dwarf2_cu *cu = reader->cu;
18108 bfd *abfd = reader->abfd;
18109
18110 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18111 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18112 info_ptr += bytes_read;
18113 if (!abbrev_number)
18114 {
18115 *diep = NULL;
18116 *has_children = 0;
18117 return info_ptr;
18118 }
18119
18120 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18121 if (!abbrev)
18122 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18123 abbrev_number,
18124 bfd_get_filename (abfd));
18125
18126 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18127 die->sect_off = sect_off;
18128 die->tag = abbrev->tag;
18129 die->abbrev = abbrev_number;
18130
18131 /* Make the result usable.
18132 The caller needs to update num_attrs after adding the extra
18133 attributes. */
18134 die->num_attrs = abbrev->num_attrs;
18135
18136 for (i = 0; i < abbrev->num_attrs; ++i)
18137 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18138 info_ptr);
18139
18140 *diep = die;
18141 *has_children = abbrev->has_children;
18142 return info_ptr;
18143 }
18144
18145 /* Read a die and all its attributes.
18146 Set DIEP to point to a newly allocated die with its information,
18147 except for its child, sibling, and parent fields.
18148 Set HAS_CHILDREN to tell whether the die has children or not. */
18149
18150 static const gdb_byte *
18151 read_full_die (const struct die_reader_specs *reader,
18152 struct die_info **diep, const gdb_byte *info_ptr,
18153 int *has_children)
18154 {
18155 const gdb_byte *result;
18156
18157 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18158
18159 if (dwarf_die_debug)
18160 {
18161 fprintf_unfiltered (gdb_stdlog,
18162 "Read die from %s@0x%x of %s:\n",
18163 get_section_name (reader->die_section),
18164 (unsigned) (info_ptr - reader->die_section->buffer),
18165 bfd_get_filename (reader->abfd));
18166 dump_die (*diep, dwarf_die_debug);
18167 }
18168
18169 return result;
18170 }
18171 \f
18172 /* Abbreviation tables.
18173
18174 In DWARF version 2, the description of the debugging information is
18175 stored in a separate .debug_abbrev section. Before we read any
18176 dies from a section we read in all abbreviations and install them
18177 in a hash table. */
18178
18179 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18180
18181 struct abbrev_info *
18182 abbrev_table::alloc_abbrev ()
18183 {
18184 struct abbrev_info *abbrev;
18185
18186 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18187 memset (abbrev, 0, sizeof (struct abbrev_info));
18188
18189 return abbrev;
18190 }
18191
18192 /* Add an abbreviation to the table. */
18193
18194 void
18195 abbrev_table::add_abbrev (unsigned int abbrev_number,
18196 struct abbrev_info *abbrev)
18197 {
18198 unsigned int hash_number;
18199
18200 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18201 abbrev->next = m_abbrevs[hash_number];
18202 m_abbrevs[hash_number] = abbrev;
18203 }
18204
18205 /* Look up an abbrev in the table.
18206 Returns NULL if the abbrev is not found. */
18207
18208 struct abbrev_info *
18209 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18210 {
18211 unsigned int hash_number;
18212 struct abbrev_info *abbrev;
18213
18214 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18215 abbrev = m_abbrevs[hash_number];
18216
18217 while (abbrev)
18218 {
18219 if (abbrev->number == abbrev_number)
18220 return abbrev;
18221 abbrev = abbrev->next;
18222 }
18223 return NULL;
18224 }
18225
18226 /* Read in an abbrev table. */
18227
18228 static abbrev_table_up
18229 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18230 struct dwarf2_section_info *section,
18231 sect_offset sect_off)
18232 {
18233 struct objfile *objfile = dwarf2_per_objfile->objfile;
18234 bfd *abfd = get_section_bfd_owner (section);
18235 const gdb_byte *abbrev_ptr;
18236 struct abbrev_info *cur_abbrev;
18237 unsigned int abbrev_number, bytes_read, abbrev_name;
18238 unsigned int abbrev_form;
18239 struct attr_abbrev *cur_attrs;
18240 unsigned int allocated_attrs;
18241
18242 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18243
18244 dwarf2_read_section (objfile, section);
18245 abbrev_ptr = section->buffer + to_underlying (sect_off);
18246 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18247 abbrev_ptr += bytes_read;
18248
18249 allocated_attrs = ATTR_ALLOC_CHUNK;
18250 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18251
18252 /* Loop until we reach an abbrev number of 0. */
18253 while (abbrev_number)
18254 {
18255 cur_abbrev = abbrev_table->alloc_abbrev ();
18256
18257 /* read in abbrev header */
18258 cur_abbrev->number = abbrev_number;
18259 cur_abbrev->tag
18260 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18261 abbrev_ptr += bytes_read;
18262 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18263 abbrev_ptr += 1;
18264
18265 /* now read in declarations */
18266 for (;;)
18267 {
18268 LONGEST implicit_const;
18269
18270 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18271 abbrev_ptr += bytes_read;
18272 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18273 abbrev_ptr += bytes_read;
18274 if (abbrev_form == DW_FORM_implicit_const)
18275 {
18276 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18277 &bytes_read);
18278 abbrev_ptr += bytes_read;
18279 }
18280 else
18281 {
18282 /* Initialize it due to a false compiler warning. */
18283 implicit_const = -1;
18284 }
18285
18286 if (abbrev_name == 0)
18287 break;
18288
18289 if (cur_abbrev->num_attrs == allocated_attrs)
18290 {
18291 allocated_attrs += ATTR_ALLOC_CHUNK;
18292 cur_attrs
18293 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18294 }
18295
18296 cur_attrs[cur_abbrev->num_attrs].name
18297 = (enum dwarf_attribute) abbrev_name;
18298 cur_attrs[cur_abbrev->num_attrs].form
18299 = (enum dwarf_form) abbrev_form;
18300 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18301 ++cur_abbrev->num_attrs;
18302 }
18303
18304 cur_abbrev->attrs =
18305 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18306 cur_abbrev->num_attrs);
18307 memcpy (cur_abbrev->attrs, cur_attrs,
18308 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18309
18310 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18311
18312 /* Get next abbreviation.
18313 Under Irix6 the abbreviations for a compilation unit are not
18314 always properly terminated with an abbrev number of 0.
18315 Exit loop if we encounter an abbreviation which we have
18316 already read (which means we are about to read the abbreviations
18317 for the next compile unit) or if the end of the abbreviation
18318 table is reached. */
18319 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18320 break;
18321 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18322 abbrev_ptr += bytes_read;
18323 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18324 break;
18325 }
18326
18327 xfree (cur_attrs);
18328 return abbrev_table;
18329 }
18330
18331 /* Returns nonzero if TAG represents a type that we might generate a partial
18332 symbol for. */
18333
18334 static int
18335 is_type_tag_for_partial (int tag)
18336 {
18337 switch (tag)
18338 {
18339 #if 0
18340 /* Some types that would be reasonable to generate partial symbols for,
18341 that we don't at present. */
18342 case DW_TAG_array_type:
18343 case DW_TAG_file_type:
18344 case DW_TAG_ptr_to_member_type:
18345 case DW_TAG_set_type:
18346 case DW_TAG_string_type:
18347 case DW_TAG_subroutine_type:
18348 #endif
18349 case DW_TAG_base_type:
18350 case DW_TAG_class_type:
18351 case DW_TAG_interface_type:
18352 case DW_TAG_enumeration_type:
18353 case DW_TAG_structure_type:
18354 case DW_TAG_subrange_type:
18355 case DW_TAG_typedef:
18356 case DW_TAG_union_type:
18357 return 1;
18358 default:
18359 return 0;
18360 }
18361 }
18362
18363 /* Load all DIEs that are interesting for partial symbols into memory. */
18364
18365 static struct partial_die_info *
18366 load_partial_dies (const struct die_reader_specs *reader,
18367 const gdb_byte *info_ptr, int building_psymtab)
18368 {
18369 struct dwarf2_cu *cu = reader->cu;
18370 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18371 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18372 unsigned int bytes_read;
18373 unsigned int load_all = 0;
18374 int nesting_level = 1;
18375
18376 parent_die = NULL;
18377 last_die = NULL;
18378
18379 gdb_assert (cu->per_cu != NULL);
18380 if (cu->per_cu->load_all_dies)
18381 load_all = 1;
18382
18383 cu->partial_dies
18384 = htab_create_alloc_ex (cu->header.length / 12,
18385 partial_die_hash,
18386 partial_die_eq,
18387 NULL,
18388 &cu->comp_unit_obstack,
18389 hashtab_obstack_allocate,
18390 dummy_obstack_deallocate);
18391
18392 while (1)
18393 {
18394 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18395
18396 /* A NULL abbrev means the end of a series of children. */
18397 if (abbrev == NULL)
18398 {
18399 if (--nesting_level == 0)
18400 return first_die;
18401
18402 info_ptr += bytes_read;
18403 last_die = parent_die;
18404 parent_die = parent_die->die_parent;
18405 continue;
18406 }
18407
18408 /* Check for template arguments. We never save these; if
18409 they're seen, we just mark the parent, and go on our way. */
18410 if (parent_die != NULL
18411 && cu->language == language_cplus
18412 && (abbrev->tag == DW_TAG_template_type_param
18413 || abbrev->tag == DW_TAG_template_value_param))
18414 {
18415 parent_die->has_template_arguments = 1;
18416
18417 if (!load_all)
18418 {
18419 /* We don't need a partial DIE for the template argument. */
18420 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18421 continue;
18422 }
18423 }
18424
18425 /* We only recurse into c++ subprograms looking for template arguments.
18426 Skip their other children. */
18427 if (!load_all
18428 && cu->language == language_cplus
18429 && parent_die != NULL
18430 && parent_die->tag == DW_TAG_subprogram)
18431 {
18432 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18433 continue;
18434 }
18435
18436 /* Check whether this DIE is interesting enough to save. Normally
18437 we would not be interested in members here, but there may be
18438 later variables referencing them via DW_AT_specification (for
18439 static members). */
18440 if (!load_all
18441 && !is_type_tag_for_partial (abbrev->tag)
18442 && abbrev->tag != DW_TAG_constant
18443 && abbrev->tag != DW_TAG_enumerator
18444 && abbrev->tag != DW_TAG_subprogram
18445 && abbrev->tag != DW_TAG_inlined_subroutine
18446 && abbrev->tag != DW_TAG_lexical_block
18447 && abbrev->tag != DW_TAG_variable
18448 && abbrev->tag != DW_TAG_namespace
18449 && abbrev->tag != DW_TAG_module
18450 && abbrev->tag != DW_TAG_member
18451 && abbrev->tag != DW_TAG_imported_unit
18452 && abbrev->tag != DW_TAG_imported_declaration)
18453 {
18454 /* Otherwise we skip to the next sibling, if any. */
18455 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18456 continue;
18457 }
18458
18459 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18460 abbrev);
18461
18462 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18463
18464 /* This two-pass algorithm for processing partial symbols has a
18465 high cost in cache pressure. Thus, handle some simple cases
18466 here which cover the majority of C partial symbols. DIEs
18467 which neither have specification tags in them, nor could have
18468 specification tags elsewhere pointing at them, can simply be
18469 processed and discarded.
18470
18471 This segment is also optional; scan_partial_symbols and
18472 add_partial_symbol will handle these DIEs if we chain
18473 them in normally. When compilers which do not emit large
18474 quantities of duplicate debug information are more common,
18475 this code can probably be removed. */
18476
18477 /* Any complete simple types at the top level (pretty much all
18478 of them, for a language without namespaces), can be processed
18479 directly. */
18480 if (parent_die == NULL
18481 && pdi.has_specification == 0
18482 && pdi.is_declaration == 0
18483 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18484 || pdi.tag == DW_TAG_base_type
18485 || pdi.tag == DW_TAG_subrange_type))
18486 {
18487 if (building_psymtab && pdi.name != NULL)
18488 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18489 VAR_DOMAIN, LOC_TYPEDEF, -1,
18490 psymbol_placement::STATIC,
18491 0, cu->language, objfile);
18492 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18493 continue;
18494 }
18495
18496 /* The exception for DW_TAG_typedef with has_children above is
18497 a workaround of GCC PR debug/47510. In the case of this complaint
18498 type_name_or_error will error on such types later.
18499
18500 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18501 it could not find the child DIEs referenced later, this is checked
18502 above. In correct DWARF DW_TAG_typedef should have no children. */
18503
18504 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18505 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18506 "- DIE at %s [in module %s]"),
18507 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18508
18509 /* If we're at the second level, and we're an enumerator, and
18510 our parent has no specification (meaning possibly lives in a
18511 namespace elsewhere), then we can add the partial symbol now
18512 instead of queueing it. */
18513 if (pdi.tag == DW_TAG_enumerator
18514 && parent_die != NULL
18515 && parent_die->die_parent == NULL
18516 && parent_die->tag == DW_TAG_enumeration_type
18517 && parent_die->has_specification == 0)
18518 {
18519 if (pdi.name == NULL)
18520 complaint (_("malformed enumerator DIE ignored"));
18521 else if (building_psymtab)
18522 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18523 VAR_DOMAIN, LOC_CONST, -1,
18524 cu->language == language_cplus
18525 ? psymbol_placement::GLOBAL
18526 : psymbol_placement::STATIC,
18527 0, cu->language, objfile);
18528
18529 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18530 continue;
18531 }
18532
18533 struct partial_die_info *part_die
18534 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18535
18536 /* We'll save this DIE so link it in. */
18537 part_die->die_parent = parent_die;
18538 part_die->die_sibling = NULL;
18539 part_die->die_child = NULL;
18540
18541 if (last_die && last_die == parent_die)
18542 last_die->die_child = part_die;
18543 else if (last_die)
18544 last_die->die_sibling = part_die;
18545
18546 last_die = part_die;
18547
18548 if (first_die == NULL)
18549 first_die = part_die;
18550
18551 /* Maybe add the DIE to the hash table. Not all DIEs that we
18552 find interesting need to be in the hash table, because we
18553 also have the parent/sibling/child chains; only those that we
18554 might refer to by offset later during partial symbol reading.
18555
18556 For now this means things that might have be the target of a
18557 DW_AT_specification, DW_AT_abstract_origin, or
18558 DW_AT_extension. DW_AT_extension will refer only to
18559 namespaces; DW_AT_abstract_origin refers to functions (and
18560 many things under the function DIE, but we do not recurse
18561 into function DIEs during partial symbol reading) and
18562 possibly variables as well; DW_AT_specification refers to
18563 declarations. Declarations ought to have the DW_AT_declaration
18564 flag. It happens that GCC forgets to put it in sometimes, but
18565 only for functions, not for types.
18566
18567 Adding more things than necessary to the hash table is harmless
18568 except for the performance cost. Adding too few will result in
18569 wasted time in find_partial_die, when we reread the compilation
18570 unit with load_all_dies set. */
18571
18572 if (load_all
18573 || abbrev->tag == DW_TAG_constant
18574 || abbrev->tag == DW_TAG_subprogram
18575 || abbrev->tag == DW_TAG_variable
18576 || abbrev->tag == DW_TAG_namespace
18577 || part_die->is_declaration)
18578 {
18579 void **slot;
18580
18581 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18582 to_underlying (part_die->sect_off),
18583 INSERT);
18584 *slot = part_die;
18585 }
18586
18587 /* For some DIEs we want to follow their children (if any). For C
18588 we have no reason to follow the children of structures; for other
18589 languages we have to, so that we can get at method physnames
18590 to infer fully qualified class names, for DW_AT_specification,
18591 and for C++ template arguments. For C++, we also look one level
18592 inside functions to find template arguments (if the name of the
18593 function does not already contain the template arguments).
18594
18595 For Ada, we need to scan the children of subprograms and lexical
18596 blocks as well because Ada allows the definition of nested
18597 entities that could be interesting for the debugger, such as
18598 nested subprograms for instance. */
18599 if (last_die->has_children
18600 && (load_all
18601 || last_die->tag == DW_TAG_namespace
18602 || last_die->tag == DW_TAG_module
18603 || last_die->tag == DW_TAG_enumeration_type
18604 || (cu->language == language_cplus
18605 && last_die->tag == DW_TAG_subprogram
18606 && (last_die->name == NULL
18607 || strchr (last_die->name, '<') == NULL))
18608 || (cu->language != language_c
18609 && (last_die->tag == DW_TAG_class_type
18610 || last_die->tag == DW_TAG_interface_type
18611 || last_die->tag == DW_TAG_structure_type
18612 || last_die->tag == DW_TAG_union_type))
18613 || (cu->language == language_ada
18614 && (last_die->tag == DW_TAG_subprogram
18615 || last_die->tag == DW_TAG_lexical_block))))
18616 {
18617 nesting_level++;
18618 parent_die = last_die;
18619 continue;
18620 }
18621
18622 /* Otherwise we skip to the next sibling, if any. */
18623 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18624
18625 /* Back to the top, do it again. */
18626 }
18627 }
18628
18629 partial_die_info::partial_die_info (sect_offset sect_off_,
18630 struct abbrev_info *abbrev)
18631 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18632 {
18633 }
18634
18635 /* Read a minimal amount of information into the minimal die structure.
18636 INFO_PTR should point just after the initial uleb128 of a DIE. */
18637
18638 const gdb_byte *
18639 partial_die_info::read (const struct die_reader_specs *reader,
18640 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18641 {
18642 struct dwarf2_cu *cu = reader->cu;
18643 struct dwarf2_per_objfile *dwarf2_per_objfile
18644 = cu->per_cu->dwarf2_per_objfile;
18645 unsigned int i;
18646 int has_low_pc_attr = 0;
18647 int has_high_pc_attr = 0;
18648 int high_pc_relative = 0;
18649
18650 for (i = 0; i < abbrev.num_attrs; ++i)
18651 {
18652 struct attribute attr;
18653
18654 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18655
18656 /* Store the data if it is of an attribute we want to keep in a
18657 partial symbol table. */
18658 switch (attr.name)
18659 {
18660 case DW_AT_name:
18661 switch (tag)
18662 {
18663 case DW_TAG_compile_unit:
18664 case DW_TAG_partial_unit:
18665 case DW_TAG_type_unit:
18666 /* Compilation units have a DW_AT_name that is a filename, not
18667 a source language identifier. */
18668 case DW_TAG_enumeration_type:
18669 case DW_TAG_enumerator:
18670 /* These tags always have simple identifiers already; no need
18671 to canonicalize them. */
18672 name = DW_STRING (&attr);
18673 break;
18674 default:
18675 {
18676 struct objfile *objfile = dwarf2_per_objfile->objfile;
18677
18678 name
18679 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18680 &objfile->per_bfd->storage_obstack);
18681 }
18682 break;
18683 }
18684 break;
18685 case DW_AT_linkage_name:
18686 case DW_AT_MIPS_linkage_name:
18687 /* Note that both forms of linkage name might appear. We
18688 assume they will be the same, and we only store the last
18689 one we see. */
18690 if (cu->language == language_ada)
18691 name = DW_STRING (&attr);
18692 linkage_name = DW_STRING (&attr);
18693 break;
18694 case DW_AT_low_pc:
18695 has_low_pc_attr = 1;
18696 lowpc = attr_value_as_address (&attr);
18697 break;
18698 case DW_AT_high_pc:
18699 has_high_pc_attr = 1;
18700 highpc = attr_value_as_address (&attr);
18701 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18702 high_pc_relative = 1;
18703 break;
18704 case DW_AT_location:
18705 /* Support the .debug_loc offsets. */
18706 if (attr_form_is_block (&attr))
18707 {
18708 d.locdesc = DW_BLOCK (&attr);
18709 }
18710 else if (attr_form_is_section_offset (&attr))
18711 {
18712 dwarf2_complex_location_expr_complaint ();
18713 }
18714 else
18715 {
18716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18717 "partial symbol information");
18718 }
18719 break;
18720 case DW_AT_external:
18721 is_external = DW_UNSND (&attr);
18722 break;
18723 case DW_AT_declaration:
18724 is_declaration = DW_UNSND (&attr);
18725 break;
18726 case DW_AT_type:
18727 has_type = 1;
18728 break;
18729 case DW_AT_abstract_origin:
18730 case DW_AT_specification:
18731 case DW_AT_extension:
18732 has_specification = 1;
18733 spec_offset = dwarf2_get_ref_die_offset (&attr);
18734 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18735 || cu->per_cu->is_dwz);
18736 break;
18737 case DW_AT_sibling:
18738 /* Ignore absolute siblings, they might point outside of
18739 the current compile unit. */
18740 if (attr.form == DW_FORM_ref_addr)
18741 complaint (_("ignoring absolute DW_AT_sibling"));
18742 else
18743 {
18744 const gdb_byte *buffer = reader->buffer;
18745 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18746 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18747
18748 if (sibling_ptr < info_ptr)
18749 complaint (_("DW_AT_sibling points backwards"));
18750 else if (sibling_ptr > reader->buffer_end)
18751 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18752 else
18753 sibling = sibling_ptr;
18754 }
18755 break;
18756 case DW_AT_byte_size:
18757 has_byte_size = 1;
18758 break;
18759 case DW_AT_const_value:
18760 has_const_value = 1;
18761 break;
18762 case DW_AT_calling_convention:
18763 /* DWARF doesn't provide a way to identify a program's source-level
18764 entry point. DW_AT_calling_convention attributes are only meant
18765 to describe functions' calling conventions.
18766
18767 However, because it's a necessary piece of information in
18768 Fortran, and before DWARF 4 DW_CC_program was the only
18769 piece of debugging information whose definition refers to
18770 a 'main program' at all, several compilers marked Fortran
18771 main programs with DW_CC_program --- even when those
18772 functions use the standard calling conventions.
18773
18774 Although DWARF now specifies a way to provide this
18775 information, we support this practice for backward
18776 compatibility. */
18777 if (DW_UNSND (&attr) == DW_CC_program
18778 && cu->language == language_fortran)
18779 main_subprogram = 1;
18780 break;
18781 case DW_AT_inline:
18782 if (DW_UNSND (&attr) == DW_INL_inlined
18783 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18784 may_be_inlined = 1;
18785 break;
18786
18787 case DW_AT_import:
18788 if (tag == DW_TAG_imported_unit)
18789 {
18790 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18791 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18792 || cu->per_cu->is_dwz);
18793 }
18794 break;
18795
18796 case DW_AT_main_subprogram:
18797 main_subprogram = DW_UNSND (&attr);
18798 break;
18799
18800 case DW_AT_ranges:
18801 {
18802 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18803 but that requires a full DIE, so instead we just
18804 reimplement it. */
18805 int need_ranges_base = tag != DW_TAG_compile_unit;
18806 unsigned int ranges_offset = (DW_UNSND (&attr)
18807 + (need_ranges_base
18808 ? cu->ranges_base
18809 : 0));
18810
18811 /* Value of the DW_AT_ranges attribute is the offset in the
18812 .debug_ranges section. */
18813 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18814 nullptr))
18815 has_pc_info = 1;
18816 }
18817 break;
18818
18819 default:
18820 break;
18821 }
18822 }
18823
18824 if (high_pc_relative)
18825 highpc += lowpc;
18826
18827 if (has_low_pc_attr && has_high_pc_attr)
18828 {
18829 /* When using the GNU linker, .gnu.linkonce. sections are used to
18830 eliminate duplicate copies of functions and vtables and such.
18831 The linker will arbitrarily choose one and discard the others.
18832 The AT_*_pc values for such functions refer to local labels in
18833 these sections. If the section from that file was discarded, the
18834 labels are not in the output, so the relocs get a value of 0.
18835 If this is a discarded function, mark the pc bounds as invalid,
18836 so that GDB will ignore it. */
18837 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18838 {
18839 struct objfile *objfile = dwarf2_per_objfile->objfile;
18840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18841
18842 complaint (_("DW_AT_low_pc %s is zero "
18843 "for DIE at %s [in module %s]"),
18844 paddress (gdbarch, lowpc),
18845 sect_offset_str (sect_off),
18846 objfile_name (objfile));
18847 }
18848 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18849 else if (lowpc >= highpc)
18850 {
18851 struct objfile *objfile = dwarf2_per_objfile->objfile;
18852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18853
18854 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18855 "for DIE at %s [in module %s]"),
18856 paddress (gdbarch, lowpc),
18857 paddress (gdbarch, highpc),
18858 sect_offset_str (sect_off),
18859 objfile_name (objfile));
18860 }
18861 else
18862 has_pc_info = 1;
18863 }
18864
18865 return info_ptr;
18866 }
18867
18868 /* Find a cached partial DIE at OFFSET in CU. */
18869
18870 struct partial_die_info *
18871 dwarf2_cu::find_partial_die (sect_offset sect_off)
18872 {
18873 struct partial_die_info *lookup_die = NULL;
18874 struct partial_die_info part_die (sect_off);
18875
18876 lookup_die = ((struct partial_die_info *)
18877 htab_find_with_hash (partial_dies, &part_die,
18878 to_underlying (sect_off)));
18879
18880 return lookup_die;
18881 }
18882
18883 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18884 except in the case of .debug_types DIEs which do not reference
18885 outside their CU (they do however referencing other types via
18886 DW_FORM_ref_sig8). */
18887
18888 static struct partial_die_info *
18889 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18890 {
18891 struct dwarf2_per_objfile *dwarf2_per_objfile
18892 = cu->per_cu->dwarf2_per_objfile;
18893 struct objfile *objfile = dwarf2_per_objfile->objfile;
18894 struct dwarf2_per_cu_data *per_cu = NULL;
18895 struct partial_die_info *pd = NULL;
18896
18897 if (offset_in_dwz == cu->per_cu->is_dwz
18898 && offset_in_cu_p (&cu->header, sect_off))
18899 {
18900 pd = cu->find_partial_die (sect_off);
18901 if (pd != NULL)
18902 return pd;
18903 /* We missed recording what we needed.
18904 Load all dies and try again. */
18905 per_cu = cu->per_cu;
18906 }
18907 else
18908 {
18909 /* TUs don't reference other CUs/TUs (except via type signatures). */
18910 if (cu->per_cu->is_debug_types)
18911 {
18912 error (_("Dwarf Error: Type Unit at offset %s contains"
18913 " external reference to offset %s [in module %s].\n"),
18914 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18915 bfd_get_filename (objfile->obfd));
18916 }
18917 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18918 dwarf2_per_objfile);
18919
18920 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18921 load_partial_comp_unit (per_cu);
18922
18923 per_cu->cu->last_used = 0;
18924 pd = per_cu->cu->find_partial_die (sect_off);
18925 }
18926
18927 /* If we didn't find it, and not all dies have been loaded,
18928 load them all and try again. */
18929
18930 if (pd == NULL && per_cu->load_all_dies == 0)
18931 {
18932 per_cu->load_all_dies = 1;
18933
18934 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18935 THIS_CU->cu may already be in use. So we can't just free it and
18936 replace its DIEs with the ones we read in. Instead, we leave those
18937 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18938 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18939 set. */
18940 load_partial_comp_unit (per_cu);
18941
18942 pd = per_cu->cu->find_partial_die (sect_off);
18943 }
18944
18945 if (pd == NULL)
18946 internal_error (__FILE__, __LINE__,
18947 _("could not find partial DIE %s "
18948 "in cache [from module %s]\n"),
18949 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18950 return pd;
18951 }
18952
18953 /* See if we can figure out if the class lives in a namespace. We do
18954 this by looking for a member function; its demangled name will
18955 contain namespace info, if there is any. */
18956
18957 static void
18958 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18959 struct dwarf2_cu *cu)
18960 {
18961 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18962 what template types look like, because the demangler
18963 frequently doesn't give the same name as the debug info. We
18964 could fix this by only using the demangled name to get the
18965 prefix (but see comment in read_structure_type). */
18966
18967 struct partial_die_info *real_pdi;
18968 struct partial_die_info *child_pdi;
18969
18970 /* If this DIE (this DIE's specification, if any) has a parent, then
18971 we should not do this. We'll prepend the parent's fully qualified
18972 name when we create the partial symbol. */
18973
18974 real_pdi = struct_pdi;
18975 while (real_pdi->has_specification)
18976 real_pdi = find_partial_die (real_pdi->spec_offset,
18977 real_pdi->spec_is_dwz, cu);
18978
18979 if (real_pdi->die_parent != NULL)
18980 return;
18981
18982 for (child_pdi = struct_pdi->die_child;
18983 child_pdi != NULL;
18984 child_pdi = child_pdi->die_sibling)
18985 {
18986 if (child_pdi->tag == DW_TAG_subprogram
18987 && child_pdi->linkage_name != NULL)
18988 {
18989 char *actual_class_name
18990 = language_class_name_from_physname (cu->language_defn,
18991 child_pdi->linkage_name);
18992 if (actual_class_name != NULL)
18993 {
18994 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18995 struct_pdi->name
18996 = ((const char *)
18997 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18998 actual_class_name,
18999 strlen (actual_class_name)));
19000 xfree (actual_class_name);
19001 }
19002 break;
19003 }
19004 }
19005 }
19006
19007 void
19008 partial_die_info::fixup (struct dwarf2_cu *cu)
19009 {
19010 /* Once we've fixed up a die, there's no point in doing so again.
19011 This also avoids a memory leak if we were to call
19012 guess_partial_die_structure_name multiple times. */
19013 if (fixup_called)
19014 return;
19015
19016 /* If we found a reference attribute and the DIE has no name, try
19017 to find a name in the referred to DIE. */
19018
19019 if (name == NULL && has_specification)
19020 {
19021 struct partial_die_info *spec_die;
19022
19023 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19024
19025 spec_die->fixup (cu);
19026
19027 if (spec_die->name)
19028 {
19029 name = spec_die->name;
19030
19031 /* Copy DW_AT_external attribute if it is set. */
19032 if (spec_die->is_external)
19033 is_external = spec_die->is_external;
19034 }
19035 }
19036
19037 /* Set default names for some unnamed DIEs. */
19038
19039 if (name == NULL && tag == DW_TAG_namespace)
19040 name = CP_ANONYMOUS_NAMESPACE_STR;
19041
19042 /* If there is no parent die to provide a namespace, and there are
19043 children, see if we can determine the namespace from their linkage
19044 name. */
19045 if (cu->language == language_cplus
19046 && !VEC_empty (dwarf2_section_info_def,
19047 cu->per_cu->dwarf2_per_objfile->types)
19048 && die_parent == NULL
19049 && has_children
19050 && (tag == DW_TAG_class_type
19051 || tag == DW_TAG_structure_type
19052 || tag == DW_TAG_union_type))
19053 guess_partial_die_structure_name (this, cu);
19054
19055 /* GCC might emit a nameless struct or union that has a linkage
19056 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19057 if (name == NULL
19058 && (tag == DW_TAG_class_type
19059 || tag == DW_TAG_interface_type
19060 || tag == DW_TAG_structure_type
19061 || tag == DW_TAG_union_type)
19062 && linkage_name != NULL)
19063 {
19064 char *demangled;
19065
19066 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19067 if (demangled)
19068 {
19069 const char *base;
19070
19071 /* Strip any leading namespaces/classes, keep only the base name.
19072 DW_AT_name for named DIEs does not contain the prefixes. */
19073 base = strrchr (demangled, ':');
19074 if (base && base > demangled && base[-1] == ':')
19075 base++;
19076 else
19077 base = demangled;
19078
19079 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19080 name
19081 = ((const char *)
19082 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19083 base, strlen (base)));
19084 xfree (demangled);
19085 }
19086 }
19087
19088 fixup_called = 1;
19089 }
19090
19091 /* Read an attribute value described by an attribute form. */
19092
19093 static const gdb_byte *
19094 read_attribute_value (const struct die_reader_specs *reader,
19095 struct attribute *attr, unsigned form,
19096 LONGEST implicit_const, const gdb_byte *info_ptr)
19097 {
19098 struct dwarf2_cu *cu = reader->cu;
19099 struct dwarf2_per_objfile *dwarf2_per_objfile
19100 = cu->per_cu->dwarf2_per_objfile;
19101 struct objfile *objfile = dwarf2_per_objfile->objfile;
19102 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19103 bfd *abfd = reader->abfd;
19104 struct comp_unit_head *cu_header = &cu->header;
19105 unsigned int bytes_read;
19106 struct dwarf_block *blk;
19107
19108 attr->form = (enum dwarf_form) form;
19109 switch (form)
19110 {
19111 case DW_FORM_ref_addr:
19112 if (cu->header.version == 2)
19113 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19114 else
19115 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19116 &cu->header, &bytes_read);
19117 info_ptr += bytes_read;
19118 break;
19119 case DW_FORM_GNU_ref_alt:
19120 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19121 info_ptr += bytes_read;
19122 break;
19123 case DW_FORM_addr:
19124 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19125 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19126 info_ptr += bytes_read;
19127 break;
19128 case DW_FORM_block2:
19129 blk = dwarf_alloc_block (cu);
19130 blk->size = read_2_bytes (abfd, info_ptr);
19131 info_ptr += 2;
19132 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19133 info_ptr += blk->size;
19134 DW_BLOCK (attr) = blk;
19135 break;
19136 case DW_FORM_block4:
19137 blk = dwarf_alloc_block (cu);
19138 blk->size = read_4_bytes (abfd, info_ptr);
19139 info_ptr += 4;
19140 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19141 info_ptr += blk->size;
19142 DW_BLOCK (attr) = blk;
19143 break;
19144 case DW_FORM_data2:
19145 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19146 info_ptr += 2;
19147 break;
19148 case DW_FORM_data4:
19149 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19150 info_ptr += 4;
19151 break;
19152 case DW_FORM_data8:
19153 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19154 info_ptr += 8;
19155 break;
19156 case DW_FORM_data16:
19157 blk = dwarf_alloc_block (cu);
19158 blk->size = 16;
19159 blk->data = read_n_bytes (abfd, info_ptr, 16);
19160 info_ptr += 16;
19161 DW_BLOCK (attr) = blk;
19162 break;
19163 case DW_FORM_sec_offset:
19164 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19165 info_ptr += bytes_read;
19166 break;
19167 case DW_FORM_string:
19168 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19169 DW_STRING_IS_CANONICAL (attr) = 0;
19170 info_ptr += bytes_read;
19171 break;
19172 case DW_FORM_strp:
19173 if (!cu->per_cu->is_dwz)
19174 {
19175 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19176 abfd, info_ptr, cu_header,
19177 &bytes_read);
19178 DW_STRING_IS_CANONICAL (attr) = 0;
19179 info_ptr += bytes_read;
19180 break;
19181 }
19182 /* FALLTHROUGH */
19183 case DW_FORM_line_strp:
19184 if (!cu->per_cu->is_dwz)
19185 {
19186 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19187 abfd, info_ptr,
19188 cu_header, &bytes_read);
19189 DW_STRING_IS_CANONICAL (attr) = 0;
19190 info_ptr += bytes_read;
19191 break;
19192 }
19193 /* FALLTHROUGH */
19194 case DW_FORM_GNU_strp_alt:
19195 {
19196 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19197 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19198 &bytes_read);
19199
19200 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19201 dwz, str_offset);
19202 DW_STRING_IS_CANONICAL (attr) = 0;
19203 info_ptr += bytes_read;
19204 }
19205 break;
19206 case DW_FORM_exprloc:
19207 case DW_FORM_block:
19208 blk = dwarf_alloc_block (cu);
19209 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19210 info_ptr += bytes_read;
19211 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19212 info_ptr += blk->size;
19213 DW_BLOCK (attr) = blk;
19214 break;
19215 case DW_FORM_block1:
19216 blk = dwarf_alloc_block (cu);
19217 blk->size = read_1_byte (abfd, info_ptr);
19218 info_ptr += 1;
19219 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19220 info_ptr += blk->size;
19221 DW_BLOCK (attr) = blk;
19222 break;
19223 case DW_FORM_data1:
19224 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19225 info_ptr += 1;
19226 break;
19227 case DW_FORM_flag:
19228 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19229 info_ptr += 1;
19230 break;
19231 case DW_FORM_flag_present:
19232 DW_UNSND (attr) = 1;
19233 break;
19234 case DW_FORM_sdata:
19235 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19236 info_ptr += bytes_read;
19237 break;
19238 case DW_FORM_udata:
19239 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19240 info_ptr += bytes_read;
19241 break;
19242 case DW_FORM_ref1:
19243 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19244 + read_1_byte (abfd, info_ptr));
19245 info_ptr += 1;
19246 break;
19247 case DW_FORM_ref2:
19248 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19249 + read_2_bytes (abfd, info_ptr));
19250 info_ptr += 2;
19251 break;
19252 case DW_FORM_ref4:
19253 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19254 + read_4_bytes (abfd, info_ptr));
19255 info_ptr += 4;
19256 break;
19257 case DW_FORM_ref8:
19258 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19259 + read_8_bytes (abfd, info_ptr));
19260 info_ptr += 8;
19261 break;
19262 case DW_FORM_ref_sig8:
19263 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19264 info_ptr += 8;
19265 break;
19266 case DW_FORM_ref_udata:
19267 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19268 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19269 info_ptr += bytes_read;
19270 break;
19271 case DW_FORM_indirect:
19272 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19273 info_ptr += bytes_read;
19274 if (form == DW_FORM_implicit_const)
19275 {
19276 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19278 }
19279 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19280 info_ptr);
19281 break;
19282 case DW_FORM_implicit_const:
19283 DW_SND (attr) = implicit_const;
19284 break;
19285 case DW_FORM_addrx:
19286 case DW_FORM_GNU_addr_index:
19287 if (reader->dwo_file == NULL)
19288 {
19289 /* For now flag a hard error.
19290 Later we can turn this into a complaint. */
19291 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19292 dwarf_form_name (form),
19293 bfd_get_filename (abfd));
19294 }
19295 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19296 info_ptr += bytes_read;
19297 break;
19298 case DW_FORM_GNU_str_index:
19299 if (reader->dwo_file == NULL)
19300 {
19301 /* For now flag a hard error.
19302 Later we can turn this into a complaint if warranted. */
19303 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19304 dwarf_form_name (form),
19305 bfd_get_filename (abfd));
19306 }
19307 {
19308 ULONGEST str_index =
19309 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19310
19311 DW_STRING (attr) = read_str_index (reader, str_index);
19312 DW_STRING_IS_CANONICAL (attr) = 0;
19313 info_ptr += bytes_read;
19314 }
19315 break;
19316 default:
19317 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19318 dwarf_form_name (form),
19319 bfd_get_filename (abfd));
19320 }
19321
19322 /* Super hack. */
19323 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19324 attr->form = DW_FORM_GNU_ref_alt;
19325
19326 /* We have seen instances where the compiler tried to emit a byte
19327 size attribute of -1 which ended up being encoded as an unsigned
19328 0xffffffff. Although 0xffffffff is technically a valid size value,
19329 an object of this size seems pretty unlikely so we can relatively
19330 safely treat these cases as if the size attribute was invalid and
19331 treat them as zero by default. */
19332 if (attr->name == DW_AT_byte_size
19333 && form == DW_FORM_data4
19334 && DW_UNSND (attr) >= 0xffffffff)
19335 {
19336 complaint
19337 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19338 hex_string (DW_UNSND (attr)));
19339 DW_UNSND (attr) = 0;
19340 }
19341
19342 return info_ptr;
19343 }
19344
19345 /* Read an attribute described by an abbreviated attribute. */
19346
19347 static const gdb_byte *
19348 read_attribute (const struct die_reader_specs *reader,
19349 struct attribute *attr, struct attr_abbrev *abbrev,
19350 const gdb_byte *info_ptr)
19351 {
19352 attr->name = abbrev->name;
19353 return read_attribute_value (reader, attr, abbrev->form,
19354 abbrev->implicit_const, info_ptr);
19355 }
19356
19357 /* Read dwarf information from a buffer. */
19358
19359 static unsigned int
19360 read_1_byte (bfd *abfd, const gdb_byte *buf)
19361 {
19362 return bfd_get_8 (abfd, buf);
19363 }
19364
19365 static int
19366 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19367 {
19368 return bfd_get_signed_8 (abfd, buf);
19369 }
19370
19371 static unsigned int
19372 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19373 {
19374 return bfd_get_16 (abfd, buf);
19375 }
19376
19377 static int
19378 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19379 {
19380 return bfd_get_signed_16 (abfd, buf);
19381 }
19382
19383 static unsigned int
19384 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19385 {
19386 return bfd_get_32 (abfd, buf);
19387 }
19388
19389 static int
19390 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19391 {
19392 return bfd_get_signed_32 (abfd, buf);
19393 }
19394
19395 static ULONGEST
19396 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19397 {
19398 return bfd_get_64 (abfd, buf);
19399 }
19400
19401 static CORE_ADDR
19402 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19403 unsigned int *bytes_read)
19404 {
19405 struct comp_unit_head *cu_header = &cu->header;
19406 CORE_ADDR retval = 0;
19407
19408 if (cu_header->signed_addr_p)
19409 {
19410 switch (cu_header->addr_size)
19411 {
19412 case 2:
19413 retval = bfd_get_signed_16 (abfd, buf);
19414 break;
19415 case 4:
19416 retval = bfd_get_signed_32 (abfd, buf);
19417 break;
19418 case 8:
19419 retval = bfd_get_signed_64 (abfd, buf);
19420 break;
19421 default:
19422 internal_error (__FILE__, __LINE__,
19423 _("read_address: bad switch, signed [in module %s]"),
19424 bfd_get_filename (abfd));
19425 }
19426 }
19427 else
19428 {
19429 switch (cu_header->addr_size)
19430 {
19431 case 2:
19432 retval = bfd_get_16 (abfd, buf);
19433 break;
19434 case 4:
19435 retval = bfd_get_32 (abfd, buf);
19436 break;
19437 case 8:
19438 retval = bfd_get_64 (abfd, buf);
19439 break;
19440 default:
19441 internal_error (__FILE__, __LINE__,
19442 _("read_address: bad switch, "
19443 "unsigned [in module %s]"),
19444 bfd_get_filename (abfd));
19445 }
19446 }
19447
19448 *bytes_read = cu_header->addr_size;
19449 return retval;
19450 }
19451
19452 /* Read the initial length from a section. The (draft) DWARF 3
19453 specification allows the initial length to take up either 4 bytes
19454 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19455 bytes describe the length and all offsets will be 8 bytes in length
19456 instead of 4.
19457
19458 An older, non-standard 64-bit format is also handled by this
19459 function. The older format in question stores the initial length
19460 as an 8-byte quantity without an escape value. Lengths greater
19461 than 2^32 aren't very common which means that the initial 4 bytes
19462 is almost always zero. Since a length value of zero doesn't make
19463 sense for the 32-bit format, this initial zero can be considered to
19464 be an escape value which indicates the presence of the older 64-bit
19465 format. As written, the code can't detect (old format) lengths
19466 greater than 4GB. If it becomes necessary to handle lengths
19467 somewhat larger than 4GB, we could allow other small values (such
19468 as the non-sensical values of 1, 2, and 3) to also be used as
19469 escape values indicating the presence of the old format.
19470
19471 The value returned via bytes_read should be used to increment the
19472 relevant pointer after calling read_initial_length().
19473
19474 [ Note: read_initial_length() and read_offset() are based on the
19475 document entitled "DWARF Debugging Information Format", revision
19476 3, draft 8, dated November 19, 2001. This document was obtained
19477 from:
19478
19479 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19480
19481 This document is only a draft and is subject to change. (So beware.)
19482
19483 Details regarding the older, non-standard 64-bit format were
19484 determined empirically by examining 64-bit ELF files produced by
19485 the SGI toolchain on an IRIX 6.5 machine.
19486
19487 - Kevin, July 16, 2002
19488 ] */
19489
19490 static LONGEST
19491 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19492 {
19493 LONGEST length = bfd_get_32 (abfd, buf);
19494
19495 if (length == 0xffffffff)
19496 {
19497 length = bfd_get_64 (abfd, buf + 4);
19498 *bytes_read = 12;
19499 }
19500 else if (length == 0)
19501 {
19502 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19503 length = bfd_get_64 (abfd, buf);
19504 *bytes_read = 8;
19505 }
19506 else
19507 {
19508 *bytes_read = 4;
19509 }
19510
19511 return length;
19512 }
19513
19514 /* Cover function for read_initial_length.
19515 Returns the length of the object at BUF, and stores the size of the
19516 initial length in *BYTES_READ and stores the size that offsets will be in
19517 *OFFSET_SIZE.
19518 If the initial length size is not equivalent to that specified in
19519 CU_HEADER then issue a complaint.
19520 This is useful when reading non-comp-unit headers. */
19521
19522 static LONGEST
19523 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19524 const struct comp_unit_head *cu_header,
19525 unsigned int *bytes_read,
19526 unsigned int *offset_size)
19527 {
19528 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19529
19530 gdb_assert (cu_header->initial_length_size == 4
19531 || cu_header->initial_length_size == 8
19532 || cu_header->initial_length_size == 12);
19533
19534 if (cu_header->initial_length_size != *bytes_read)
19535 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19536
19537 *offset_size = (*bytes_read == 4) ? 4 : 8;
19538 return length;
19539 }
19540
19541 /* Read an offset from the data stream. The size of the offset is
19542 given by cu_header->offset_size. */
19543
19544 static LONGEST
19545 read_offset (bfd *abfd, const gdb_byte *buf,
19546 const struct comp_unit_head *cu_header,
19547 unsigned int *bytes_read)
19548 {
19549 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19550
19551 *bytes_read = cu_header->offset_size;
19552 return offset;
19553 }
19554
19555 /* Read an offset from the data stream. */
19556
19557 static LONGEST
19558 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19559 {
19560 LONGEST retval = 0;
19561
19562 switch (offset_size)
19563 {
19564 case 4:
19565 retval = bfd_get_32 (abfd, buf);
19566 break;
19567 case 8:
19568 retval = bfd_get_64 (abfd, buf);
19569 break;
19570 default:
19571 internal_error (__FILE__, __LINE__,
19572 _("read_offset_1: bad switch [in module %s]"),
19573 bfd_get_filename (abfd));
19574 }
19575
19576 return retval;
19577 }
19578
19579 static const gdb_byte *
19580 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19581 {
19582 /* If the size of a host char is 8 bits, we can return a pointer
19583 to the buffer, otherwise we have to copy the data to a buffer
19584 allocated on the temporary obstack. */
19585 gdb_assert (HOST_CHAR_BIT == 8);
19586 return buf;
19587 }
19588
19589 static const char *
19590 read_direct_string (bfd *abfd, const gdb_byte *buf,
19591 unsigned int *bytes_read_ptr)
19592 {
19593 /* If the size of a host char is 8 bits, we can return a pointer
19594 to the string, otherwise we have to copy the string to a buffer
19595 allocated on the temporary obstack. */
19596 gdb_assert (HOST_CHAR_BIT == 8);
19597 if (*buf == '\0')
19598 {
19599 *bytes_read_ptr = 1;
19600 return NULL;
19601 }
19602 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19603 return (const char *) buf;
19604 }
19605
19606 /* Return pointer to string at section SECT offset STR_OFFSET with error
19607 reporting strings FORM_NAME and SECT_NAME. */
19608
19609 static const char *
19610 read_indirect_string_at_offset_from (struct objfile *objfile,
19611 bfd *abfd, LONGEST str_offset,
19612 struct dwarf2_section_info *sect,
19613 const char *form_name,
19614 const char *sect_name)
19615 {
19616 dwarf2_read_section (objfile, sect);
19617 if (sect->buffer == NULL)
19618 error (_("%s used without %s section [in module %s]"),
19619 form_name, sect_name, bfd_get_filename (abfd));
19620 if (str_offset >= sect->size)
19621 error (_("%s pointing outside of %s section [in module %s]"),
19622 form_name, sect_name, bfd_get_filename (abfd));
19623 gdb_assert (HOST_CHAR_BIT == 8);
19624 if (sect->buffer[str_offset] == '\0')
19625 return NULL;
19626 return (const char *) (sect->buffer + str_offset);
19627 }
19628
19629 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19630
19631 static const char *
19632 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19633 bfd *abfd, LONGEST str_offset)
19634 {
19635 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19636 abfd, str_offset,
19637 &dwarf2_per_objfile->str,
19638 "DW_FORM_strp", ".debug_str");
19639 }
19640
19641 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19642
19643 static const char *
19644 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19645 bfd *abfd, LONGEST str_offset)
19646 {
19647 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19648 abfd, str_offset,
19649 &dwarf2_per_objfile->line_str,
19650 "DW_FORM_line_strp",
19651 ".debug_line_str");
19652 }
19653
19654 /* Read a string at offset STR_OFFSET in the .debug_str section from
19655 the .dwz file DWZ. Throw an error if the offset is too large. If
19656 the string consists of a single NUL byte, return NULL; otherwise
19657 return a pointer to the string. */
19658
19659 static const char *
19660 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19661 LONGEST str_offset)
19662 {
19663 dwarf2_read_section (objfile, &dwz->str);
19664
19665 if (dwz->str.buffer == NULL)
19666 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19667 "section [in module %s]"),
19668 bfd_get_filename (dwz->dwz_bfd));
19669 if (str_offset >= dwz->str.size)
19670 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19671 ".debug_str section [in module %s]"),
19672 bfd_get_filename (dwz->dwz_bfd));
19673 gdb_assert (HOST_CHAR_BIT == 8);
19674 if (dwz->str.buffer[str_offset] == '\0')
19675 return NULL;
19676 return (const char *) (dwz->str.buffer + str_offset);
19677 }
19678
19679 /* Return pointer to string at .debug_str offset as read from BUF.
19680 BUF is assumed to be in a compilation unit described by CU_HEADER.
19681 Return *BYTES_READ_PTR count of bytes read from BUF. */
19682
19683 static const char *
19684 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19685 const gdb_byte *buf,
19686 const struct comp_unit_head *cu_header,
19687 unsigned int *bytes_read_ptr)
19688 {
19689 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19690
19691 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19692 }
19693
19694 /* Return pointer to string at .debug_line_str offset as read from BUF.
19695 BUF is assumed to be in a compilation unit described by CU_HEADER.
19696 Return *BYTES_READ_PTR count of bytes read from BUF. */
19697
19698 static const char *
19699 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19700 bfd *abfd, const gdb_byte *buf,
19701 const struct comp_unit_head *cu_header,
19702 unsigned int *bytes_read_ptr)
19703 {
19704 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19705
19706 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19707 str_offset);
19708 }
19709
19710 ULONGEST
19711 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19712 unsigned int *bytes_read_ptr)
19713 {
19714 ULONGEST result;
19715 unsigned int num_read;
19716 int shift;
19717 unsigned char byte;
19718
19719 result = 0;
19720 shift = 0;
19721 num_read = 0;
19722 while (1)
19723 {
19724 byte = bfd_get_8 (abfd, buf);
19725 buf++;
19726 num_read++;
19727 result |= ((ULONGEST) (byte & 127) << shift);
19728 if ((byte & 128) == 0)
19729 {
19730 break;
19731 }
19732 shift += 7;
19733 }
19734 *bytes_read_ptr = num_read;
19735 return result;
19736 }
19737
19738 static LONGEST
19739 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19740 unsigned int *bytes_read_ptr)
19741 {
19742 ULONGEST result;
19743 int shift, num_read;
19744 unsigned char byte;
19745
19746 result = 0;
19747 shift = 0;
19748 num_read = 0;
19749 while (1)
19750 {
19751 byte = bfd_get_8 (abfd, buf);
19752 buf++;
19753 num_read++;
19754 result |= ((ULONGEST) (byte & 127) << shift);
19755 shift += 7;
19756 if ((byte & 128) == 0)
19757 {
19758 break;
19759 }
19760 }
19761 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19762 result |= -(((ULONGEST) 1) << shift);
19763 *bytes_read_ptr = num_read;
19764 return result;
19765 }
19766
19767 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19768 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19769 ADDR_SIZE is the size of addresses from the CU header. */
19770
19771 static CORE_ADDR
19772 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19773 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19774 {
19775 struct objfile *objfile = dwarf2_per_objfile->objfile;
19776 bfd *abfd = objfile->obfd;
19777 const gdb_byte *info_ptr;
19778
19779 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19780 if (dwarf2_per_objfile->addr.buffer == NULL)
19781 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19782 objfile_name (objfile));
19783 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19784 error (_("DW_FORM_addr_index pointing outside of "
19785 ".debug_addr section [in module %s]"),
19786 objfile_name (objfile));
19787 info_ptr = (dwarf2_per_objfile->addr.buffer
19788 + addr_base + addr_index * addr_size);
19789 if (addr_size == 4)
19790 return bfd_get_32 (abfd, info_ptr);
19791 else
19792 return bfd_get_64 (abfd, info_ptr);
19793 }
19794
19795 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19796
19797 static CORE_ADDR
19798 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19799 {
19800 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19801 cu->addr_base, cu->header.addr_size);
19802 }
19803
19804 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19805
19806 static CORE_ADDR
19807 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19808 unsigned int *bytes_read)
19809 {
19810 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19811 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19812
19813 return read_addr_index (cu, addr_index);
19814 }
19815
19816 /* Data structure to pass results from dwarf2_read_addr_index_reader
19817 back to dwarf2_read_addr_index. */
19818
19819 struct dwarf2_read_addr_index_data
19820 {
19821 ULONGEST addr_base;
19822 int addr_size;
19823 };
19824
19825 /* die_reader_func for dwarf2_read_addr_index. */
19826
19827 static void
19828 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19829 const gdb_byte *info_ptr,
19830 struct die_info *comp_unit_die,
19831 int has_children,
19832 void *data)
19833 {
19834 struct dwarf2_cu *cu = reader->cu;
19835 struct dwarf2_read_addr_index_data *aidata =
19836 (struct dwarf2_read_addr_index_data *) data;
19837
19838 aidata->addr_base = cu->addr_base;
19839 aidata->addr_size = cu->header.addr_size;
19840 }
19841
19842 /* Given an index in .debug_addr, fetch the value.
19843 NOTE: This can be called during dwarf expression evaluation,
19844 long after the debug information has been read, and thus per_cu->cu
19845 may no longer exist. */
19846
19847 CORE_ADDR
19848 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19849 unsigned int addr_index)
19850 {
19851 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19852 struct dwarf2_cu *cu = per_cu->cu;
19853 ULONGEST addr_base;
19854 int addr_size;
19855
19856 /* We need addr_base and addr_size.
19857 If we don't have PER_CU->cu, we have to get it.
19858 Nasty, but the alternative is storing the needed info in PER_CU,
19859 which at this point doesn't seem justified: it's not clear how frequently
19860 it would get used and it would increase the size of every PER_CU.
19861 Entry points like dwarf2_per_cu_addr_size do a similar thing
19862 so we're not in uncharted territory here.
19863 Alas we need to be a bit more complicated as addr_base is contained
19864 in the DIE.
19865
19866 We don't need to read the entire CU(/TU).
19867 We just need the header and top level die.
19868
19869 IWBN to use the aging mechanism to let us lazily later discard the CU.
19870 For now we skip this optimization. */
19871
19872 if (cu != NULL)
19873 {
19874 addr_base = cu->addr_base;
19875 addr_size = cu->header.addr_size;
19876 }
19877 else
19878 {
19879 struct dwarf2_read_addr_index_data aidata;
19880
19881 /* Note: We can't use init_cutu_and_read_dies_simple here,
19882 we need addr_base. */
19883 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19884 dwarf2_read_addr_index_reader, &aidata);
19885 addr_base = aidata.addr_base;
19886 addr_size = aidata.addr_size;
19887 }
19888
19889 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19890 addr_size);
19891 }
19892
19893 /* Given a DW_FORM_GNU_str_index, fetch the string.
19894 This is only used by the Fission support. */
19895
19896 static const char *
19897 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19898 {
19899 struct dwarf2_cu *cu = reader->cu;
19900 struct dwarf2_per_objfile *dwarf2_per_objfile
19901 = cu->per_cu->dwarf2_per_objfile;
19902 struct objfile *objfile = dwarf2_per_objfile->objfile;
19903 const char *objf_name = objfile_name (objfile);
19904 bfd *abfd = objfile->obfd;
19905 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19906 struct dwarf2_section_info *str_offsets_section =
19907 &reader->dwo_file->sections.str_offsets;
19908 const gdb_byte *info_ptr;
19909 ULONGEST str_offset;
19910 static const char form_name[] = "DW_FORM_GNU_str_index";
19911
19912 dwarf2_read_section (objfile, str_section);
19913 dwarf2_read_section (objfile, str_offsets_section);
19914 if (str_section->buffer == NULL)
19915 error (_("%s used without .debug_str.dwo section"
19916 " in CU at offset %s [in module %s]"),
19917 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19918 if (str_offsets_section->buffer == NULL)
19919 error (_("%s used without .debug_str_offsets.dwo section"
19920 " in CU at offset %s [in module %s]"),
19921 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19922 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19923 error (_("%s pointing outside of .debug_str_offsets.dwo"
19924 " section in CU at offset %s [in module %s]"),
19925 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19926 info_ptr = (str_offsets_section->buffer
19927 + str_index * cu->header.offset_size);
19928 if (cu->header.offset_size == 4)
19929 str_offset = bfd_get_32 (abfd, info_ptr);
19930 else
19931 str_offset = bfd_get_64 (abfd, info_ptr);
19932 if (str_offset >= str_section->size)
19933 error (_("Offset from %s pointing outside of"
19934 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19935 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19936 return (const char *) (str_section->buffer + str_offset);
19937 }
19938
19939 /* Return the length of an LEB128 number in BUF. */
19940
19941 static int
19942 leb128_size (const gdb_byte *buf)
19943 {
19944 const gdb_byte *begin = buf;
19945 gdb_byte byte;
19946
19947 while (1)
19948 {
19949 byte = *buf++;
19950 if ((byte & 128) == 0)
19951 return buf - begin;
19952 }
19953 }
19954
19955 static void
19956 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19957 {
19958 switch (lang)
19959 {
19960 case DW_LANG_C89:
19961 case DW_LANG_C99:
19962 case DW_LANG_C11:
19963 case DW_LANG_C:
19964 case DW_LANG_UPC:
19965 cu->language = language_c;
19966 break;
19967 case DW_LANG_Java:
19968 case DW_LANG_C_plus_plus:
19969 case DW_LANG_C_plus_plus_11:
19970 case DW_LANG_C_plus_plus_14:
19971 cu->language = language_cplus;
19972 break;
19973 case DW_LANG_D:
19974 cu->language = language_d;
19975 break;
19976 case DW_LANG_Fortran77:
19977 case DW_LANG_Fortran90:
19978 case DW_LANG_Fortran95:
19979 case DW_LANG_Fortran03:
19980 case DW_LANG_Fortran08:
19981 cu->language = language_fortran;
19982 break;
19983 case DW_LANG_Go:
19984 cu->language = language_go;
19985 break;
19986 case DW_LANG_Mips_Assembler:
19987 cu->language = language_asm;
19988 break;
19989 case DW_LANG_Ada83:
19990 case DW_LANG_Ada95:
19991 cu->language = language_ada;
19992 break;
19993 case DW_LANG_Modula2:
19994 cu->language = language_m2;
19995 break;
19996 case DW_LANG_Pascal83:
19997 cu->language = language_pascal;
19998 break;
19999 case DW_LANG_ObjC:
20000 cu->language = language_objc;
20001 break;
20002 case DW_LANG_Rust:
20003 case DW_LANG_Rust_old:
20004 cu->language = language_rust;
20005 break;
20006 case DW_LANG_Cobol74:
20007 case DW_LANG_Cobol85:
20008 default:
20009 cu->language = language_minimal;
20010 break;
20011 }
20012 cu->language_defn = language_def (cu->language);
20013 }
20014
20015 /* Return the named attribute or NULL if not there. */
20016
20017 static struct attribute *
20018 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20019 {
20020 for (;;)
20021 {
20022 unsigned int i;
20023 struct attribute *spec = NULL;
20024
20025 for (i = 0; i < die->num_attrs; ++i)
20026 {
20027 if (die->attrs[i].name == name)
20028 return &die->attrs[i];
20029 if (die->attrs[i].name == DW_AT_specification
20030 || die->attrs[i].name == DW_AT_abstract_origin)
20031 spec = &die->attrs[i];
20032 }
20033
20034 if (!spec)
20035 break;
20036
20037 die = follow_die_ref (die, spec, &cu);
20038 }
20039
20040 return NULL;
20041 }
20042
20043 /* Return the named attribute or NULL if not there,
20044 but do not follow DW_AT_specification, etc.
20045 This is for use in contexts where we're reading .debug_types dies.
20046 Following DW_AT_specification, DW_AT_abstract_origin will take us
20047 back up the chain, and we want to go down. */
20048
20049 static struct attribute *
20050 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20051 {
20052 unsigned int i;
20053
20054 for (i = 0; i < die->num_attrs; ++i)
20055 if (die->attrs[i].name == name)
20056 return &die->attrs[i];
20057
20058 return NULL;
20059 }
20060
20061 /* Return the string associated with a string-typed attribute, or NULL if it
20062 is either not found or is of an incorrect type. */
20063
20064 static const char *
20065 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20066 {
20067 struct attribute *attr;
20068 const char *str = NULL;
20069
20070 attr = dwarf2_attr (die, name, cu);
20071
20072 if (attr != NULL)
20073 {
20074 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20075 || attr->form == DW_FORM_string
20076 || attr->form == DW_FORM_GNU_str_index
20077 || attr->form == DW_FORM_GNU_strp_alt)
20078 str = DW_STRING (attr);
20079 else
20080 complaint (_("string type expected for attribute %s for "
20081 "DIE at %s in module %s"),
20082 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20083 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20084 }
20085
20086 return str;
20087 }
20088
20089 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20090 and holds a non-zero value. This function should only be used for
20091 DW_FORM_flag or DW_FORM_flag_present attributes. */
20092
20093 static int
20094 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20095 {
20096 struct attribute *attr = dwarf2_attr (die, name, cu);
20097
20098 return (attr && DW_UNSND (attr));
20099 }
20100
20101 static int
20102 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20103 {
20104 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20105 which value is non-zero. However, we have to be careful with
20106 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20107 (via dwarf2_flag_true_p) follows this attribute. So we may
20108 end up accidently finding a declaration attribute that belongs
20109 to a different DIE referenced by the specification attribute,
20110 even though the given DIE does not have a declaration attribute. */
20111 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20112 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20113 }
20114
20115 /* Return the die giving the specification for DIE, if there is
20116 one. *SPEC_CU is the CU containing DIE on input, and the CU
20117 containing the return value on output. If there is no
20118 specification, but there is an abstract origin, that is
20119 returned. */
20120
20121 static struct die_info *
20122 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20123 {
20124 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20125 *spec_cu);
20126
20127 if (spec_attr == NULL)
20128 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20129
20130 if (spec_attr == NULL)
20131 return NULL;
20132 else
20133 return follow_die_ref (die, spec_attr, spec_cu);
20134 }
20135
20136 /* Stub for free_line_header to match void * callback types. */
20137
20138 static void
20139 free_line_header_voidp (void *arg)
20140 {
20141 struct line_header *lh = (struct line_header *) arg;
20142
20143 delete lh;
20144 }
20145
20146 void
20147 line_header::add_include_dir (const char *include_dir)
20148 {
20149 if (dwarf_line_debug >= 2)
20150 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20151 include_dirs.size () + 1, include_dir);
20152
20153 include_dirs.push_back (include_dir);
20154 }
20155
20156 void
20157 line_header::add_file_name (const char *name,
20158 dir_index d_index,
20159 unsigned int mod_time,
20160 unsigned int length)
20161 {
20162 if (dwarf_line_debug >= 2)
20163 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20164 (unsigned) file_names.size () + 1, name);
20165
20166 file_names.emplace_back (name, d_index, mod_time, length);
20167 }
20168
20169 /* A convenience function to find the proper .debug_line section for a CU. */
20170
20171 static struct dwarf2_section_info *
20172 get_debug_line_section (struct dwarf2_cu *cu)
20173 {
20174 struct dwarf2_section_info *section;
20175 struct dwarf2_per_objfile *dwarf2_per_objfile
20176 = cu->per_cu->dwarf2_per_objfile;
20177
20178 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20179 DWO file. */
20180 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20181 section = &cu->dwo_unit->dwo_file->sections.line;
20182 else if (cu->per_cu->is_dwz)
20183 {
20184 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20185
20186 section = &dwz->line;
20187 }
20188 else
20189 section = &dwarf2_per_objfile->line;
20190
20191 return section;
20192 }
20193
20194 /* Read directory or file name entry format, starting with byte of
20195 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20196 entries count and the entries themselves in the described entry
20197 format. */
20198
20199 static void
20200 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20201 bfd *abfd, const gdb_byte **bufp,
20202 struct line_header *lh,
20203 const struct comp_unit_head *cu_header,
20204 void (*callback) (struct line_header *lh,
20205 const char *name,
20206 dir_index d_index,
20207 unsigned int mod_time,
20208 unsigned int length))
20209 {
20210 gdb_byte format_count, formati;
20211 ULONGEST data_count, datai;
20212 const gdb_byte *buf = *bufp;
20213 const gdb_byte *format_header_data;
20214 unsigned int bytes_read;
20215
20216 format_count = read_1_byte (abfd, buf);
20217 buf += 1;
20218 format_header_data = buf;
20219 for (formati = 0; formati < format_count; formati++)
20220 {
20221 read_unsigned_leb128 (abfd, buf, &bytes_read);
20222 buf += bytes_read;
20223 read_unsigned_leb128 (abfd, buf, &bytes_read);
20224 buf += bytes_read;
20225 }
20226
20227 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20228 buf += bytes_read;
20229 for (datai = 0; datai < data_count; datai++)
20230 {
20231 const gdb_byte *format = format_header_data;
20232 struct file_entry fe;
20233
20234 for (formati = 0; formati < format_count; formati++)
20235 {
20236 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20237 format += bytes_read;
20238
20239 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20240 format += bytes_read;
20241
20242 gdb::optional<const char *> string;
20243 gdb::optional<unsigned int> uint;
20244
20245 switch (form)
20246 {
20247 case DW_FORM_string:
20248 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20249 buf += bytes_read;
20250 break;
20251
20252 case DW_FORM_line_strp:
20253 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20254 abfd, buf,
20255 cu_header,
20256 &bytes_read));
20257 buf += bytes_read;
20258 break;
20259
20260 case DW_FORM_data1:
20261 uint.emplace (read_1_byte (abfd, buf));
20262 buf += 1;
20263 break;
20264
20265 case DW_FORM_data2:
20266 uint.emplace (read_2_bytes (abfd, buf));
20267 buf += 2;
20268 break;
20269
20270 case DW_FORM_data4:
20271 uint.emplace (read_4_bytes (abfd, buf));
20272 buf += 4;
20273 break;
20274
20275 case DW_FORM_data8:
20276 uint.emplace (read_8_bytes (abfd, buf));
20277 buf += 8;
20278 break;
20279
20280 case DW_FORM_udata:
20281 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20282 buf += bytes_read;
20283 break;
20284
20285 case DW_FORM_block:
20286 /* It is valid only for DW_LNCT_timestamp which is ignored by
20287 current GDB. */
20288 break;
20289 }
20290
20291 switch (content_type)
20292 {
20293 case DW_LNCT_path:
20294 if (string.has_value ())
20295 fe.name = *string;
20296 break;
20297 case DW_LNCT_directory_index:
20298 if (uint.has_value ())
20299 fe.d_index = (dir_index) *uint;
20300 break;
20301 case DW_LNCT_timestamp:
20302 if (uint.has_value ())
20303 fe.mod_time = *uint;
20304 break;
20305 case DW_LNCT_size:
20306 if (uint.has_value ())
20307 fe.length = *uint;
20308 break;
20309 case DW_LNCT_MD5:
20310 break;
20311 default:
20312 complaint (_("Unknown format content type %s"),
20313 pulongest (content_type));
20314 }
20315 }
20316
20317 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20318 }
20319
20320 *bufp = buf;
20321 }
20322
20323 /* Read the statement program header starting at OFFSET in
20324 .debug_line, or .debug_line.dwo. Return a pointer
20325 to a struct line_header, allocated using xmalloc.
20326 Returns NULL if there is a problem reading the header, e.g., if it
20327 has a version we don't understand.
20328
20329 NOTE: the strings in the include directory and file name tables of
20330 the returned object point into the dwarf line section buffer,
20331 and must not be freed. */
20332
20333 static line_header_up
20334 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20335 {
20336 const gdb_byte *line_ptr;
20337 unsigned int bytes_read, offset_size;
20338 int i;
20339 const char *cur_dir, *cur_file;
20340 struct dwarf2_section_info *section;
20341 bfd *abfd;
20342 struct dwarf2_per_objfile *dwarf2_per_objfile
20343 = cu->per_cu->dwarf2_per_objfile;
20344
20345 section = get_debug_line_section (cu);
20346 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20347 if (section->buffer == NULL)
20348 {
20349 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20350 complaint (_("missing .debug_line.dwo section"));
20351 else
20352 complaint (_("missing .debug_line section"));
20353 return 0;
20354 }
20355
20356 /* We can't do this until we know the section is non-empty.
20357 Only then do we know we have such a section. */
20358 abfd = get_section_bfd_owner (section);
20359
20360 /* Make sure that at least there's room for the total_length field.
20361 That could be 12 bytes long, but we're just going to fudge that. */
20362 if (to_underlying (sect_off) + 4 >= section->size)
20363 {
20364 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20365 return 0;
20366 }
20367
20368 line_header_up lh (new line_header ());
20369
20370 lh->sect_off = sect_off;
20371 lh->offset_in_dwz = cu->per_cu->is_dwz;
20372
20373 line_ptr = section->buffer + to_underlying (sect_off);
20374
20375 /* Read in the header. */
20376 lh->total_length =
20377 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20378 &bytes_read, &offset_size);
20379 line_ptr += bytes_read;
20380 if (line_ptr + lh->total_length > (section->buffer + section->size))
20381 {
20382 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20383 return 0;
20384 }
20385 lh->statement_program_end = line_ptr + lh->total_length;
20386 lh->version = read_2_bytes (abfd, line_ptr);
20387 line_ptr += 2;
20388 if (lh->version > 5)
20389 {
20390 /* This is a version we don't understand. The format could have
20391 changed in ways we don't handle properly so just punt. */
20392 complaint (_("unsupported version in .debug_line section"));
20393 return NULL;
20394 }
20395 if (lh->version >= 5)
20396 {
20397 gdb_byte segment_selector_size;
20398
20399 /* Skip address size. */
20400 read_1_byte (abfd, line_ptr);
20401 line_ptr += 1;
20402
20403 segment_selector_size = read_1_byte (abfd, line_ptr);
20404 line_ptr += 1;
20405 if (segment_selector_size != 0)
20406 {
20407 complaint (_("unsupported segment selector size %u "
20408 "in .debug_line section"),
20409 segment_selector_size);
20410 return NULL;
20411 }
20412 }
20413 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20414 line_ptr += offset_size;
20415 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20416 line_ptr += 1;
20417 if (lh->version >= 4)
20418 {
20419 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20420 line_ptr += 1;
20421 }
20422 else
20423 lh->maximum_ops_per_instruction = 1;
20424
20425 if (lh->maximum_ops_per_instruction == 0)
20426 {
20427 lh->maximum_ops_per_instruction = 1;
20428 complaint (_("invalid maximum_ops_per_instruction "
20429 "in `.debug_line' section"));
20430 }
20431
20432 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20433 line_ptr += 1;
20434 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20435 line_ptr += 1;
20436 lh->line_range = read_1_byte (abfd, line_ptr);
20437 line_ptr += 1;
20438 lh->opcode_base = read_1_byte (abfd, line_ptr);
20439 line_ptr += 1;
20440 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20441
20442 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20443 for (i = 1; i < lh->opcode_base; ++i)
20444 {
20445 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20446 line_ptr += 1;
20447 }
20448
20449 if (lh->version >= 5)
20450 {
20451 /* Read directory table. */
20452 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20453 &cu->header,
20454 [] (struct line_header *header, const char *name,
20455 dir_index d_index, unsigned int mod_time,
20456 unsigned int length)
20457 {
20458 header->add_include_dir (name);
20459 });
20460
20461 /* Read file name table. */
20462 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20463 &cu->header,
20464 [] (struct line_header *header, const char *name,
20465 dir_index d_index, unsigned int mod_time,
20466 unsigned int length)
20467 {
20468 header->add_file_name (name, d_index, mod_time, length);
20469 });
20470 }
20471 else
20472 {
20473 /* Read directory table. */
20474 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20475 {
20476 line_ptr += bytes_read;
20477 lh->add_include_dir (cur_dir);
20478 }
20479 line_ptr += bytes_read;
20480
20481 /* Read file name table. */
20482 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20483 {
20484 unsigned int mod_time, length;
20485 dir_index d_index;
20486
20487 line_ptr += bytes_read;
20488 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20489 line_ptr += bytes_read;
20490 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20491 line_ptr += bytes_read;
20492 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20493 line_ptr += bytes_read;
20494
20495 lh->add_file_name (cur_file, d_index, mod_time, length);
20496 }
20497 line_ptr += bytes_read;
20498 }
20499 lh->statement_program_start = line_ptr;
20500
20501 if (line_ptr > (section->buffer + section->size))
20502 complaint (_("line number info header doesn't "
20503 "fit in `.debug_line' section"));
20504
20505 return lh;
20506 }
20507
20508 /* Subroutine of dwarf_decode_lines to simplify it.
20509 Return the file name of the psymtab for included file FILE_INDEX
20510 in line header LH of PST.
20511 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20512 If space for the result is malloc'd, *NAME_HOLDER will be set.
20513 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20514
20515 static const char *
20516 psymtab_include_file_name (const struct line_header *lh, int file_index,
20517 const struct partial_symtab *pst,
20518 const char *comp_dir,
20519 gdb::unique_xmalloc_ptr<char> *name_holder)
20520 {
20521 const file_entry &fe = lh->file_names[file_index];
20522 const char *include_name = fe.name;
20523 const char *include_name_to_compare = include_name;
20524 const char *pst_filename;
20525 int file_is_pst;
20526
20527 const char *dir_name = fe.include_dir (lh);
20528
20529 gdb::unique_xmalloc_ptr<char> hold_compare;
20530 if (!IS_ABSOLUTE_PATH (include_name)
20531 && (dir_name != NULL || comp_dir != NULL))
20532 {
20533 /* Avoid creating a duplicate psymtab for PST.
20534 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20535 Before we do the comparison, however, we need to account
20536 for DIR_NAME and COMP_DIR.
20537 First prepend dir_name (if non-NULL). If we still don't
20538 have an absolute path prepend comp_dir (if non-NULL).
20539 However, the directory we record in the include-file's
20540 psymtab does not contain COMP_DIR (to match the
20541 corresponding symtab(s)).
20542
20543 Example:
20544
20545 bash$ cd /tmp
20546 bash$ gcc -g ./hello.c
20547 include_name = "hello.c"
20548 dir_name = "."
20549 DW_AT_comp_dir = comp_dir = "/tmp"
20550 DW_AT_name = "./hello.c"
20551
20552 */
20553
20554 if (dir_name != NULL)
20555 {
20556 name_holder->reset (concat (dir_name, SLASH_STRING,
20557 include_name, (char *) NULL));
20558 include_name = name_holder->get ();
20559 include_name_to_compare = include_name;
20560 }
20561 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20562 {
20563 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20564 include_name, (char *) NULL));
20565 include_name_to_compare = hold_compare.get ();
20566 }
20567 }
20568
20569 pst_filename = pst->filename;
20570 gdb::unique_xmalloc_ptr<char> copied_name;
20571 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20572 {
20573 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20574 pst_filename, (char *) NULL));
20575 pst_filename = copied_name.get ();
20576 }
20577
20578 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20579
20580 if (file_is_pst)
20581 return NULL;
20582 return include_name;
20583 }
20584
20585 /* State machine to track the state of the line number program. */
20586
20587 class lnp_state_machine
20588 {
20589 public:
20590 /* Initialize a machine state for the start of a line number
20591 program. */
20592 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20593 bool record_lines_p);
20594
20595 file_entry *current_file ()
20596 {
20597 /* lh->file_names is 0-based, but the file name numbers in the
20598 statement program are 1-based. */
20599 return m_line_header->file_name_at (m_file);
20600 }
20601
20602 /* Record the line in the state machine. END_SEQUENCE is true if
20603 we're processing the end of a sequence. */
20604 void record_line (bool end_sequence);
20605
20606 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20607 nop-out rest of the lines in this sequence. */
20608 void check_line_address (struct dwarf2_cu *cu,
20609 const gdb_byte *line_ptr,
20610 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20611
20612 void handle_set_discriminator (unsigned int discriminator)
20613 {
20614 m_discriminator = discriminator;
20615 m_line_has_non_zero_discriminator |= discriminator != 0;
20616 }
20617
20618 /* Handle DW_LNE_set_address. */
20619 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20620 {
20621 m_op_index = 0;
20622 address += baseaddr;
20623 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20624 }
20625
20626 /* Handle DW_LNS_advance_pc. */
20627 void handle_advance_pc (CORE_ADDR adjust);
20628
20629 /* Handle a special opcode. */
20630 void handle_special_opcode (unsigned char op_code);
20631
20632 /* Handle DW_LNS_advance_line. */
20633 void handle_advance_line (int line_delta)
20634 {
20635 advance_line (line_delta);
20636 }
20637
20638 /* Handle DW_LNS_set_file. */
20639 void handle_set_file (file_name_index file);
20640
20641 /* Handle DW_LNS_negate_stmt. */
20642 void handle_negate_stmt ()
20643 {
20644 m_is_stmt = !m_is_stmt;
20645 }
20646
20647 /* Handle DW_LNS_const_add_pc. */
20648 void handle_const_add_pc ();
20649
20650 /* Handle DW_LNS_fixed_advance_pc. */
20651 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20652 {
20653 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20654 m_op_index = 0;
20655 }
20656
20657 /* Handle DW_LNS_copy. */
20658 void handle_copy ()
20659 {
20660 record_line (false);
20661 m_discriminator = 0;
20662 }
20663
20664 /* Handle DW_LNE_end_sequence. */
20665 void handle_end_sequence ()
20666 {
20667 m_currently_recording_lines = true;
20668 }
20669
20670 private:
20671 /* Advance the line by LINE_DELTA. */
20672 void advance_line (int line_delta)
20673 {
20674 m_line += line_delta;
20675
20676 if (line_delta != 0)
20677 m_line_has_non_zero_discriminator = m_discriminator != 0;
20678 }
20679
20680 struct dwarf2_cu *m_cu;
20681
20682 gdbarch *m_gdbarch;
20683
20684 /* True if we're recording lines.
20685 Otherwise we're building partial symtabs and are just interested in
20686 finding include files mentioned by the line number program. */
20687 bool m_record_lines_p;
20688
20689 /* The line number header. */
20690 line_header *m_line_header;
20691
20692 /* These are part of the standard DWARF line number state machine,
20693 and initialized according to the DWARF spec. */
20694
20695 unsigned char m_op_index = 0;
20696 /* The line table index (1-based) of the current file. */
20697 file_name_index m_file = (file_name_index) 1;
20698 unsigned int m_line = 1;
20699
20700 /* These are initialized in the constructor. */
20701
20702 CORE_ADDR m_address;
20703 bool m_is_stmt;
20704 unsigned int m_discriminator;
20705
20706 /* Additional bits of state we need to track. */
20707
20708 /* The last file that we called dwarf2_start_subfile for.
20709 This is only used for TLLs. */
20710 unsigned int m_last_file = 0;
20711 /* The last file a line number was recorded for. */
20712 struct subfile *m_last_subfile = NULL;
20713
20714 /* When true, record the lines we decode. */
20715 bool m_currently_recording_lines = false;
20716
20717 /* The last line number that was recorded, used to coalesce
20718 consecutive entries for the same line. This can happen, for
20719 example, when discriminators are present. PR 17276. */
20720 unsigned int m_last_line = 0;
20721 bool m_line_has_non_zero_discriminator = false;
20722 };
20723
20724 void
20725 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20726 {
20727 CORE_ADDR addr_adj = (((m_op_index + adjust)
20728 / m_line_header->maximum_ops_per_instruction)
20729 * m_line_header->minimum_instruction_length);
20730 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20731 m_op_index = ((m_op_index + adjust)
20732 % m_line_header->maximum_ops_per_instruction);
20733 }
20734
20735 void
20736 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20737 {
20738 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20739 CORE_ADDR addr_adj = (((m_op_index
20740 + (adj_opcode / m_line_header->line_range))
20741 / m_line_header->maximum_ops_per_instruction)
20742 * m_line_header->minimum_instruction_length);
20743 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20744 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20745 % m_line_header->maximum_ops_per_instruction);
20746
20747 int line_delta = (m_line_header->line_base
20748 + (adj_opcode % m_line_header->line_range));
20749 advance_line (line_delta);
20750 record_line (false);
20751 m_discriminator = 0;
20752 }
20753
20754 void
20755 lnp_state_machine::handle_set_file (file_name_index file)
20756 {
20757 m_file = file;
20758
20759 const file_entry *fe = current_file ();
20760 if (fe == NULL)
20761 dwarf2_debug_line_missing_file_complaint ();
20762 else if (m_record_lines_p)
20763 {
20764 const char *dir = fe->include_dir (m_line_header);
20765
20766 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20767 m_line_has_non_zero_discriminator = m_discriminator != 0;
20768 dwarf2_start_subfile (m_cu, fe->name, dir);
20769 }
20770 }
20771
20772 void
20773 lnp_state_machine::handle_const_add_pc ()
20774 {
20775 CORE_ADDR adjust
20776 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20777
20778 CORE_ADDR addr_adj
20779 = (((m_op_index + adjust)
20780 / m_line_header->maximum_ops_per_instruction)
20781 * m_line_header->minimum_instruction_length);
20782
20783 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20784 m_op_index = ((m_op_index + adjust)
20785 % m_line_header->maximum_ops_per_instruction);
20786 }
20787
20788 /* Return non-zero if we should add LINE to the line number table.
20789 LINE is the line to add, LAST_LINE is the last line that was added,
20790 LAST_SUBFILE is the subfile for LAST_LINE.
20791 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20792 had a non-zero discriminator.
20793
20794 We have to be careful in the presence of discriminators.
20795 E.g., for this line:
20796
20797 for (i = 0; i < 100000; i++);
20798
20799 clang can emit four line number entries for that one line,
20800 each with a different discriminator.
20801 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20802
20803 However, we want gdb to coalesce all four entries into one.
20804 Otherwise the user could stepi into the middle of the line and
20805 gdb would get confused about whether the pc really was in the
20806 middle of the line.
20807
20808 Things are further complicated by the fact that two consecutive
20809 line number entries for the same line is a heuristic used by gcc
20810 to denote the end of the prologue. So we can't just discard duplicate
20811 entries, we have to be selective about it. The heuristic we use is
20812 that we only collapse consecutive entries for the same line if at least
20813 one of those entries has a non-zero discriminator. PR 17276.
20814
20815 Note: Addresses in the line number state machine can never go backwards
20816 within one sequence, thus this coalescing is ok. */
20817
20818 static int
20819 dwarf_record_line_p (struct dwarf2_cu *cu,
20820 unsigned int line, unsigned int last_line,
20821 int line_has_non_zero_discriminator,
20822 struct subfile *last_subfile)
20823 {
20824 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20825 return 1;
20826 if (line != last_line)
20827 return 1;
20828 /* Same line for the same file that we've seen already.
20829 As a last check, for pr 17276, only record the line if the line
20830 has never had a non-zero discriminator. */
20831 if (!line_has_non_zero_discriminator)
20832 return 1;
20833 return 0;
20834 }
20835
20836 /* Use the CU's builder to record line number LINE beginning at
20837 address ADDRESS in the line table of subfile SUBFILE. */
20838
20839 static void
20840 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20841 unsigned int line, CORE_ADDR address,
20842 struct dwarf2_cu *cu)
20843 {
20844 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20845
20846 if (dwarf_line_debug)
20847 {
20848 fprintf_unfiltered (gdb_stdlog,
20849 "Recording line %u, file %s, address %s\n",
20850 line, lbasename (subfile->name),
20851 paddress (gdbarch, address));
20852 }
20853
20854 if (cu != nullptr)
20855 cu->get_builder ()->record_line (subfile, line, addr);
20856 }
20857
20858 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20859 Mark the end of a set of line number records.
20860 The arguments are the same as for dwarf_record_line_1.
20861 If SUBFILE is NULL the request is ignored. */
20862
20863 static void
20864 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20865 CORE_ADDR address, struct dwarf2_cu *cu)
20866 {
20867 if (subfile == NULL)
20868 return;
20869
20870 if (dwarf_line_debug)
20871 {
20872 fprintf_unfiltered (gdb_stdlog,
20873 "Finishing current line, file %s, address %s\n",
20874 lbasename (subfile->name),
20875 paddress (gdbarch, address));
20876 }
20877
20878 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20879 }
20880
20881 void
20882 lnp_state_machine::record_line (bool end_sequence)
20883 {
20884 if (dwarf_line_debug)
20885 {
20886 fprintf_unfiltered (gdb_stdlog,
20887 "Processing actual line %u: file %u,"
20888 " address %s, is_stmt %u, discrim %u\n",
20889 m_line, to_underlying (m_file),
20890 paddress (m_gdbarch, m_address),
20891 m_is_stmt, m_discriminator);
20892 }
20893
20894 file_entry *fe = current_file ();
20895
20896 if (fe == NULL)
20897 dwarf2_debug_line_missing_file_complaint ();
20898 /* For now we ignore lines not starting on an instruction boundary.
20899 But not when processing end_sequence for compatibility with the
20900 previous version of the code. */
20901 else if (m_op_index == 0 || end_sequence)
20902 {
20903 fe->included_p = 1;
20904 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20905 {
20906 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20907 || end_sequence)
20908 {
20909 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20910 m_currently_recording_lines ? m_cu : nullptr);
20911 }
20912
20913 if (!end_sequence)
20914 {
20915 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20916 m_line_has_non_zero_discriminator,
20917 m_last_subfile))
20918 {
20919 buildsym_compunit *builder = m_cu->get_builder ();
20920 dwarf_record_line_1 (m_gdbarch,
20921 builder->get_current_subfile (),
20922 m_line, m_address,
20923 m_currently_recording_lines ? m_cu : nullptr);
20924 }
20925 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20926 m_last_line = m_line;
20927 }
20928 }
20929 }
20930 }
20931
20932 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20933 line_header *lh, bool record_lines_p)
20934 {
20935 m_cu = cu;
20936 m_gdbarch = arch;
20937 m_record_lines_p = record_lines_p;
20938 m_line_header = lh;
20939
20940 m_currently_recording_lines = true;
20941
20942 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20943 was a line entry for it so that the backend has a chance to adjust it
20944 and also record it in case it needs it. This is currently used by MIPS
20945 code, cf. `mips_adjust_dwarf2_line'. */
20946 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20947 m_is_stmt = lh->default_is_stmt;
20948 m_discriminator = 0;
20949 }
20950
20951 void
20952 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20953 const gdb_byte *line_ptr,
20954 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20955 {
20956 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20957 the pc range of the CU. However, we restrict the test to only ADDRESS
20958 values of zero to preserve GDB's previous behaviour which is to handle
20959 the specific case of a function being GC'd by the linker. */
20960
20961 if (address == 0 && address < unrelocated_lowpc)
20962 {
20963 /* This line table is for a function which has been
20964 GCd by the linker. Ignore it. PR gdb/12528 */
20965
20966 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20967 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20968
20969 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20970 line_offset, objfile_name (objfile));
20971 m_currently_recording_lines = false;
20972 /* Note: m_currently_recording_lines is left as false until we see
20973 DW_LNE_end_sequence. */
20974 }
20975 }
20976
20977 /* Subroutine of dwarf_decode_lines to simplify it.
20978 Process the line number information in LH.
20979 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20980 program in order to set included_p for every referenced header. */
20981
20982 static void
20983 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20984 const int decode_for_pst_p, CORE_ADDR lowpc)
20985 {
20986 const gdb_byte *line_ptr, *extended_end;
20987 const gdb_byte *line_end;
20988 unsigned int bytes_read, extended_len;
20989 unsigned char op_code, extended_op;
20990 CORE_ADDR baseaddr;
20991 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20992 bfd *abfd = objfile->obfd;
20993 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20994 /* True if we're recording line info (as opposed to building partial
20995 symtabs and just interested in finding include files mentioned by
20996 the line number program). */
20997 bool record_lines_p = !decode_for_pst_p;
20998
20999 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21000
21001 line_ptr = lh->statement_program_start;
21002 line_end = lh->statement_program_end;
21003
21004 /* Read the statement sequences until there's nothing left. */
21005 while (line_ptr < line_end)
21006 {
21007 /* The DWARF line number program state machine. Reset the state
21008 machine at the start of each sequence. */
21009 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21010 bool end_sequence = false;
21011
21012 if (record_lines_p)
21013 {
21014 /* Start a subfile for the current file of the state
21015 machine. */
21016 const file_entry *fe = state_machine.current_file ();
21017
21018 if (fe != NULL)
21019 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21020 }
21021
21022 /* Decode the table. */
21023 while (line_ptr < line_end && !end_sequence)
21024 {
21025 op_code = read_1_byte (abfd, line_ptr);
21026 line_ptr += 1;
21027
21028 if (op_code >= lh->opcode_base)
21029 {
21030 /* Special opcode. */
21031 state_machine.handle_special_opcode (op_code);
21032 }
21033 else switch (op_code)
21034 {
21035 case DW_LNS_extended_op:
21036 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21037 &bytes_read);
21038 line_ptr += bytes_read;
21039 extended_end = line_ptr + extended_len;
21040 extended_op = read_1_byte (abfd, line_ptr);
21041 line_ptr += 1;
21042 switch (extended_op)
21043 {
21044 case DW_LNE_end_sequence:
21045 state_machine.handle_end_sequence ();
21046 end_sequence = true;
21047 break;
21048 case DW_LNE_set_address:
21049 {
21050 CORE_ADDR address
21051 = read_address (abfd, line_ptr, cu, &bytes_read);
21052 line_ptr += bytes_read;
21053
21054 state_machine.check_line_address (cu, line_ptr,
21055 lowpc - baseaddr, address);
21056 state_machine.handle_set_address (baseaddr, address);
21057 }
21058 break;
21059 case DW_LNE_define_file:
21060 {
21061 const char *cur_file;
21062 unsigned int mod_time, length;
21063 dir_index dindex;
21064
21065 cur_file = read_direct_string (abfd, line_ptr,
21066 &bytes_read);
21067 line_ptr += bytes_read;
21068 dindex = (dir_index)
21069 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21070 line_ptr += bytes_read;
21071 mod_time =
21072 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21073 line_ptr += bytes_read;
21074 length =
21075 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21076 line_ptr += bytes_read;
21077 lh->add_file_name (cur_file, dindex, mod_time, length);
21078 }
21079 break;
21080 case DW_LNE_set_discriminator:
21081 {
21082 /* The discriminator is not interesting to the
21083 debugger; just ignore it. We still need to
21084 check its value though:
21085 if there are consecutive entries for the same
21086 (non-prologue) line we want to coalesce them.
21087 PR 17276. */
21088 unsigned int discr
21089 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21090 line_ptr += bytes_read;
21091
21092 state_machine.handle_set_discriminator (discr);
21093 }
21094 break;
21095 default:
21096 complaint (_("mangled .debug_line section"));
21097 return;
21098 }
21099 /* Make sure that we parsed the extended op correctly. If e.g.
21100 we expected a different address size than the producer used,
21101 we may have read the wrong number of bytes. */
21102 if (line_ptr != extended_end)
21103 {
21104 complaint (_("mangled .debug_line section"));
21105 return;
21106 }
21107 break;
21108 case DW_LNS_copy:
21109 state_machine.handle_copy ();
21110 break;
21111 case DW_LNS_advance_pc:
21112 {
21113 CORE_ADDR adjust
21114 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21115 line_ptr += bytes_read;
21116
21117 state_machine.handle_advance_pc (adjust);
21118 }
21119 break;
21120 case DW_LNS_advance_line:
21121 {
21122 int line_delta
21123 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21124 line_ptr += bytes_read;
21125
21126 state_machine.handle_advance_line (line_delta);
21127 }
21128 break;
21129 case DW_LNS_set_file:
21130 {
21131 file_name_index file
21132 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21133 &bytes_read);
21134 line_ptr += bytes_read;
21135
21136 state_machine.handle_set_file (file);
21137 }
21138 break;
21139 case DW_LNS_set_column:
21140 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21141 line_ptr += bytes_read;
21142 break;
21143 case DW_LNS_negate_stmt:
21144 state_machine.handle_negate_stmt ();
21145 break;
21146 case DW_LNS_set_basic_block:
21147 break;
21148 /* Add to the address register of the state machine the
21149 address increment value corresponding to special opcode
21150 255. I.e., this value is scaled by the minimum
21151 instruction length since special opcode 255 would have
21152 scaled the increment. */
21153 case DW_LNS_const_add_pc:
21154 state_machine.handle_const_add_pc ();
21155 break;
21156 case DW_LNS_fixed_advance_pc:
21157 {
21158 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21159 line_ptr += 2;
21160
21161 state_machine.handle_fixed_advance_pc (addr_adj);
21162 }
21163 break;
21164 default:
21165 {
21166 /* Unknown standard opcode, ignore it. */
21167 int i;
21168
21169 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21170 {
21171 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21172 line_ptr += bytes_read;
21173 }
21174 }
21175 }
21176 }
21177
21178 if (!end_sequence)
21179 dwarf2_debug_line_missing_end_sequence_complaint ();
21180
21181 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21182 in which case we still finish recording the last line). */
21183 state_machine.record_line (true);
21184 }
21185 }
21186
21187 /* Decode the Line Number Program (LNP) for the given line_header
21188 structure and CU. The actual information extracted and the type
21189 of structures created from the LNP depends on the value of PST.
21190
21191 1. If PST is NULL, then this procedure uses the data from the program
21192 to create all necessary symbol tables, and their linetables.
21193
21194 2. If PST is not NULL, this procedure reads the program to determine
21195 the list of files included by the unit represented by PST, and
21196 builds all the associated partial symbol tables.
21197
21198 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21199 It is used for relative paths in the line table.
21200 NOTE: When processing partial symtabs (pst != NULL),
21201 comp_dir == pst->dirname.
21202
21203 NOTE: It is important that psymtabs have the same file name (via strcmp)
21204 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21205 symtab we don't use it in the name of the psymtabs we create.
21206 E.g. expand_line_sal requires this when finding psymtabs to expand.
21207 A good testcase for this is mb-inline.exp.
21208
21209 LOWPC is the lowest address in CU (or 0 if not known).
21210
21211 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21212 for its PC<->lines mapping information. Otherwise only the filename
21213 table is read in. */
21214
21215 static void
21216 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21217 struct dwarf2_cu *cu, struct partial_symtab *pst,
21218 CORE_ADDR lowpc, int decode_mapping)
21219 {
21220 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21221 const int decode_for_pst_p = (pst != NULL);
21222
21223 if (decode_mapping)
21224 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21225
21226 if (decode_for_pst_p)
21227 {
21228 int file_index;
21229
21230 /* Now that we're done scanning the Line Header Program, we can
21231 create the psymtab of each included file. */
21232 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21233 if (lh->file_names[file_index].included_p == 1)
21234 {
21235 gdb::unique_xmalloc_ptr<char> name_holder;
21236 const char *include_name =
21237 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21238 &name_holder);
21239 if (include_name != NULL)
21240 dwarf2_create_include_psymtab (include_name, pst, objfile);
21241 }
21242 }
21243 else
21244 {
21245 /* Make sure a symtab is created for every file, even files
21246 which contain only variables (i.e. no code with associated
21247 line numbers). */
21248 buildsym_compunit *builder = cu->get_builder ();
21249 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21250 int i;
21251
21252 for (i = 0; i < lh->file_names.size (); i++)
21253 {
21254 file_entry &fe = lh->file_names[i];
21255
21256 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21257
21258 if (builder->get_current_subfile ()->symtab == NULL)
21259 {
21260 builder->get_current_subfile ()->symtab
21261 = allocate_symtab (cust,
21262 builder->get_current_subfile ()->name);
21263 }
21264 fe.symtab = builder->get_current_subfile ()->symtab;
21265 }
21266 }
21267 }
21268
21269 /* Start a subfile for DWARF. FILENAME is the name of the file and
21270 DIRNAME the name of the source directory which contains FILENAME
21271 or NULL if not known.
21272 This routine tries to keep line numbers from identical absolute and
21273 relative file names in a common subfile.
21274
21275 Using the `list' example from the GDB testsuite, which resides in
21276 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21277 of /srcdir/list0.c yields the following debugging information for list0.c:
21278
21279 DW_AT_name: /srcdir/list0.c
21280 DW_AT_comp_dir: /compdir
21281 files.files[0].name: list0.h
21282 files.files[0].dir: /srcdir
21283 files.files[1].name: list0.c
21284 files.files[1].dir: /srcdir
21285
21286 The line number information for list0.c has to end up in a single
21287 subfile, so that `break /srcdir/list0.c:1' works as expected.
21288 start_subfile will ensure that this happens provided that we pass the
21289 concatenation of files.files[1].dir and files.files[1].name as the
21290 subfile's name. */
21291
21292 static void
21293 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21294 const char *dirname)
21295 {
21296 char *copy = NULL;
21297
21298 /* In order not to lose the line information directory,
21299 we concatenate it to the filename when it makes sense.
21300 Note that the Dwarf3 standard says (speaking of filenames in line
21301 information): ``The directory index is ignored for file names
21302 that represent full path names''. Thus ignoring dirname in the
21303 `else' branch below isn't an issue. */
21304
21305 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21306 {
21307 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21308 filename = copy;
21309 }
21310
21311 cu->get_builder ()->start_subfile (filename);
21312
21313 if (copy != NULL)
21314 xfree (copy);
21315 }
21316
21317 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21318 buildsym_compunit constructor. */
21319
21320 struct compunit_symtab *
21321 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21322 CORE_ADDR low_pc)
21323 {
21324 gdb_assert (m_builder == nullptr);
21325
21326 m_builder.reset (new struct buildsym_compunit
21327 (per_cu->dwarf2_per_objfile->objfile,
21328 name, comp_dir, language, low_pc));
21329
21330 list_in_scope = get_builder ()->get_file_symbols ();
21331
21332 get_builder ()->record_debugformat ("DWARF 2");
21333 get_builder ()->record_producer (producer);
21334
21335 processing_has_namespace_info = false;
21336
21337 return get_builder ()->get_compunit_symtab ();
21338 }
21339
21340 static void
21341 var_decode_location (struct attribute *attr, struct symbol *sym,
21342 struct dwarf2_cu *cu)
21343 {
21344 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21345 struct comp_unit_head *cu_header = &cu->header;
21346
21347 /* NOTE drow/2003-01-30: There used to be a comment and some special
21348 code here to turn a symbol with DW_AT_external and a
21349 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21350 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21351 with some versions of binutils) where shared libraries could have
21352 relocations against symbols in their debug information - the
21353 minimal symbol would have the right address, but the debug info
21354 would not. It's no longer necessary, because we will explicitly
21355 apply relocations when we read in the debug information now. */
21356
21357 /* A DW_AT_location attribute with no contents indicates that a
21358 variable has been optimized away. */
21359 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21360 {
21361 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21362 return;
21363 }
21364
21365 /* Handle one degenerate form of location expression specially, to
21366 preserve GDB's previous behavior when section offsets are
21367 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21368 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21369
21370 if (attr_form_is_block (attr)
21371 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21372 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21373 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21374 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21375 && (DW_BLOCK (attr)->size
21376 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21377 {
21378 unsigned int dummy;
21379
21380 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21381 SYMBOL_VALUE_ADDRESS (sym) =
21382 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21383 else
21384 SYMBOL_VALUE_ADDRESS (sym) =
21385 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21386 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21387 fixup_symbol_section (sym, objfile);
21388 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21389 SYMBOL_SECTION (sym));
21390 return;
21391 }
21392
21393 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21394 expression evaluator, and use LOC_COMPUTED only when necessary
21395 (i.e. when the value of a register or memory location is
21396 referenced, or a thread-local block, etc.). Then again, it might
21397 not be worthwhile. I'm assuming that it isn't unless performance
21398 or memory numbers show me otherwise. */
21399
21400 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21401
21402 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21403 cu->has_loclist = true;
21404 }
21405
21406 /* Given a pointer to a DWARF information entry, figure out if we need
21407 to make a symbol table entry for it, and if so, create a new entry
21408 and return a pointer to it.
21409 If TYPE is NULL, determine symbol type from the die, otherwise
21410 used the passed type.
21411 If SPACE is not NULL, use it to hold the new symbol. If it is
21412 NULL, allocate a new symbol on the objfile's obstack. */
21413
21414 static struct symbol *
21415 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21416 struct symbol *space)
21417 {
21418 struct dwarf2_per_objfile *dwarf2_per_objfile
21419 = cu->per_cu->dwarf2_per_objfile;
21420 struct objfile *objfile = dwarf2_per_objfile->objfile;
21421 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21422 struct symbol *sym = NULL;
21423 const char *name;
21424 struct attribute *attr = NULL;
21425 struct attribute *attr2 = NULL;
21426 CORE_ADDR baseaddr;
21427 struct pending **list_to_add = NULL;
21428
21429 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21430
21431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21432
21433 name = dwarf2_name (die, cu);
21434 if (name)
21435 {
21436 const char *linkagename;
21437 int suppress_add = 0;
21438
21439 if (space)
21440 sym = space;
21441 else
21442 sym = allocate_symbol (objfile);
21443 OBJSTAT (objfile, n_syms++);
21444
21445 /* Cache this symbol's name and the name's demangled form (if any). */
21446 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21447 linkagename = dwarf2_physname (name, die, cu);
21448 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21449
21450 /* Fortran does not have mangling standard and the mangling does differ
21451 between gfortran, iFort etc. */
21452 if (cu->language == language_fortran
21453 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21454 symbol_set_demangled_name (&(sym->ginfo),
21455 dwarf2_full_name (name, die, cu),
21456 NULL);
21457
21458 /* Default assumptions.
21459 Use the passed type or decode it from the die. */
21460 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21462 if (type != NULL)
21463 SYMBOL_TYPE (sym) = type;
21464 else
21465 SYMBOL_TYPE (sym) = die_type (die, cu);
21466 attr = dwarf2_attr (die,
21467 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21468 cu);
21469 if (attr)
21470 {
21471 SYMBOL_LINE (sym) = DW_UNSND (attr);
21472 }
21473
21474 attr = dwarf2_attr (die,
21475 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21476 cu);
21477 if (attr)
21478 {
21479 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21480 struct file_entry *fe;
21481
21482 if (cu->line_header != NULL)
21483 fe = cu->line_header->file_name_at (file_index);
21484 else
21485 fe = NULL;
21486
21487 if (fe == NULL)
21488 complaint (_("file index out of range"));
21489 else
21490 symbol_set_symtab (sym, fe->symtab);
21491 }
21492
21493 switch (die->tag)
21494 {
21495 case DW_TAG_label:
21496 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21497 if (attr)
21498 {
21499 CORE_ADDR addr;
21500
21501 addr = attr_value_as_address (attr);
21502 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21503 SYMBOL_VALUE_ADDRESS (sym) = addr;
21504 }
21505 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21506 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21507 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21508 add_symbol_to_list (sym, cu->list_in_scope);
21509 break;
21510 case DW_TAG_subprogram:
21511 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21512 finish_block. */
21513 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21514 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21515 if ((attr2 && (DW_UNSND (attr2) != 0))
21516 || cu->language == language_ada)
21517 {
21518 /* Subprograms marked external are stored as a global symbol.
21519 Ada subprograms, whether marked external or not, are always
21520 stored as a global symbol, because we want to be able to
21521 access them globally. For instance, we want to be able
21522 to break on a nested subprogram without having to
21523 specify the context. */
21524 list_to_add = cu->get_builder ()->get_global_symbols ();
21525 }
21526 else
21527 {
21528 list_to_add = cu->list_in_scope;
21529 }
21530 break;
21531 case DW_TAG_inlined_subroutine:
21532 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21533 finish_block. */
21534 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21535 SYMBOL_INLINED (sym) = 1;
21536 list_to_add = cu->list_in_scope;
21537 break;
21538 case DW_TAG_template_value_param:
21539 suppress_add = 1;
21540 /* Fall through. */
21541 case DW_TAG_constant:
21542 case DW_TAG_variable:
21543 case DW_TAG_member:
21544 /* Compilation with minimal debug info may result in
21545 variables with missing type entries. Change the
21546 misleading `void' type to something sensible. */
21547 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21548 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21549
21550 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21551 /* In the case of DW_TAG_member, we should only be called for
21552 static const members. */
21553 if (die->tag == DW_TAG_member)
21554 {
21555 /* dwarf2_add_field uses die_is_declaration,
21556 so we do the same. */
21557 gdb_assert (die_is_declaration (die, cu));
21558 gdb_assert (attr);
21559 }
21560 if (attr)
21561 {
21562 dwarf2_const_value (attr, sym, cu);
21563 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21564 if (!suppress_add)
21565 {
21566 if (attr2 && (DW_UNSND (attr2) != 0))
21567 list_to_add = cu->get_builder ()->get_global_symbols ();
21568 else
21569 list_to_add = cu->list_in_scope;
21570 }
21571 break;
21572 }
21573 attr = dwarf2_attr (die, DW_AT_location, cu);
21574 if (attr)
21575 {
21576 var_decode_location (attr, sym, cu);
21577 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21578
21579 /* Fortran explicitly imports any global symbols to the local
21580 scope by DW_TAG_common_block. */
21581 if (cu->language == language_fortran && die->parent
21582 && die->parent->tag == DW_TAG_common_block)
21583 attr2 = NULL;
21584
21585 if (SYMBOL_CLASS (sym) == LOC_STATIC
21586 && SYMBOL_VALUE_ADDRESS (sym) == 0
21587 && !dwarf2_per_objfile->has_section_at_zero)
21588 {
21589 /* When a static variable is eliminated by the linker,
21590 the corresponding debug information is not stripped
21591 out, but the variable address is set to null;
21592 do not add such variables into symbol table. */
21593 }
21594 else if (attr2 && (DW_UNSND (attr2) != 0))
21595 {
21596 /* Workaround gfortran PR debug/40040 - it uses
21597 DW_AT_location for variables in -fPIC libraries which may
21598 get overriden by other libraries/executable and get
21599 a different address. Resolve it by the minimal symbol
21600 which may come from inferior's executable using copy
21601 relocation. Make this workaround only for gfortran as for
21602 other compilers GDB cannot guess the minimal symbol
21603 Fortran mangling kind. */
21604 if (cu->language == language_fortran && die->parent
21605 && die->parent->tag == DW_TAG_module
21606 && cu->producer
21607 && startswith (cu->producer, "GNU Fortran"))
21608 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21609
21610 /* A variable with DW_AT_external is never static,
21611 but it may be block-scoped. */
21612 list_to_add
21613 = ((cu->list_in_scope
21614 == cu->get_builder ()->get_file_symbols ())
21615 ? cu->get_builder ()->get_global_symbols ()
21616 : cu->list_in_scope);
21617 }
21618 else
21619 list_to_add = cu->list_in_scope;
21620 }
21621 else
21622 {
21623 /* We do not know the address of this symbol.
21624 If it is an external symbol and we have type information
21625 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21626 The address of the variable will then be determined from
21627 the minimal symbol table whenever the variable is
21628 referenced. */
21629 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21630
21631 /* Fortran explicitly imports any global symbols to the local
21632 scope by DW_TAG_common_block. */
21633 if (cu->language == language_fortran && die->parent
21634 && die->parent->tag == DW_TAG_common_block)
21635 {
21636 /* SYMBOL_CLASS doesn't matter here because
21637 read_common_block is going to reset it. */
21638 if (!suppress_add)
21639 list_to_add = cu->list_in_scope;
21640 }
21641 else if (attr2 && (DW_UNSND (attr2) != 0)
21642 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21643 {
21644 /* A variable with DW_AT_external is never static, but it
21645 may be block-scoped. */
21646 list_to_add
21647 = ((cu->list_in_scope
21648 == cu->get_builder ()->get_file_symbols ())
21649 ? cu->get_builder ()->get_global_symbols ()
21650 : cu->list_in_scope);
21651
21652 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21653 }
21654 else if (!die_is_declaration (die, cu))
21655 {
21656 /* Use the default LOC_OPTIMIZED_OUT class. */
21657 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21658 if (!suppress_add)
21659 list_to_add = cu->list_in_scope;
21660 }
21661 }
21662 break;
21663 case DW_TAG_formal_parameter:
21664 {
21665 /* If we are inside a function, mark this as an argument. If
21666 not, we might be looking at an argument to an inlined function
21667 when we do not have enough information to show inlined frames;
21668 pretend it's a local variable in that case so that the user can
21669 still see it. */
21670 struct context_stack *curr
21671 = cu->get_builder ()->get_current_context_stack ();
21672 if (curr != nullptr && curr->name != nullptr)
21673 SYMBOL_IS_ARGUMENT (sym) = 1;
21674 attr = dwarf2_attr (die, DW_AT_location, cu);
21675 if (attr)
21676 {
21677 var_decode_location (attr, sym, cu);
21678 }
21679 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21680 if (attr)
21681 {
21682 dwarf2_const_value (attr, sym, cu);
21683 }
21684
21685 list_to_add = cu->list_in_scope;
21686 }
21687 break;
21688 case DW_TAG_unspecified_parameters:
21689 /* From varargs functions; gdb doesn't seem to have any
21690 interest in this information, so just ignore it for now.
21691 (FIXME?) */
21692 break;
21693 case DW_TAG_template_type_param:
21694 suppress_add = 1;
21695 /* Fall through. */
21696 case DW_TAG_class_type:
21697 case DW_TAG_interface_type:
21698 case DW_TAG_structure_type:
21699 case DW_TAG_union_type:
21700 case DW_TAG_set_type:
21701 case DW_TAG_enumeration_type:
21702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21703 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21704
21705 {
21706 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21707 really ever be static objects: otherwise, if you try
21708 to, say, break of a class's method and you're in a file
21709 which doesn't mention that class, it won't work unless
21710 the check for all static symbols in lookup_symbol_aux
21711 saves you. See the OtherFileClass tests in
21712 gdb.c++/namespace.exp. */
21713
21714 if (!suppress_add)
21715 {
21716 buildsym_compunit *builder = cu->get_builder ();
21717 list_to_add
21718 = (cu->list_in_scope == builder->get_file_symbols ()
21719 && cu->language == language_cplus
21720 ? builder->get_global_symbols ()
21721 : cu->list_in_scope);
21722
21723 /* The semantics of C++ state that "struct foo {
21724 ... }" also defines a typedef for "foo". */
21725 if (cu->language == language_cplus
21726 || cu->language == language_ada
21727 || cu->language == language_d
21728 || cu->language == language_rust)
21729 {
21730 /* The symbol's name is already allocated along
21731 with this objfile, so we don't need to
21732 duplicate it for the type. */
21733 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21734 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21735 }
21736 }
21737 }
21738 break;
21739 case DW_TAG_typedef:
21740 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21741 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21742 list_to_add = cu->list_in_scope;
21743 break;
21744 case DW_TAG_base_type:
21745 case DW_TAG_subrange_type:
21746 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21747 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21748 list_to_add = cu->list_in_scope;
21749 break;
21750 case DW_TAG_enumerator:
21751 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21752 if (attr)
21753 {
21754 dwarf2_const_value (attr, sym, cu);
21755 }
21756 {
21757 /* NOTE: carlton/2003-11-10: See comment above in the
21758 DW_TAG_class_type, etc. block. */
21759
21760 list_to_add
21761 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21762 && cu->language == language_cplus
21763 ? cu->get_builder ()->get_global_symbols ()
21764 : cu->list_in_scope);
21765 }
21766 break;
21767 case DW_TAG_imported_declaration:
21768 case DW_TAG_namespace:
21769 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21770 list_to_add = cu->get_builder ()->get_global_symbols ();
21771 break;
21772 case DW_TAG_module:
21773 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21774 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21775 list_to_add = cu->get_builder ()->get_global_symbols ();
21776 break;
21777 case DW_TAG_common_block:
21778 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21779 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21780 add_symbol_to_list (sym, cu->list_in_scope);
21781 break;
21782 default:
21783 /* Not a tag we recognize. Hopefully we aren't processing
21784 trash data, but since we must specifically ignore things
21785 we don't recognize, there is nothing else we should do at
21786 this point. */
21787 complaint (_("unsupported tag: '%s'"),
21788 dwarf_tag_name (die->tag));
21789 break;
21790 }
21791
21792 if (suppress_add)
21793 {
21794 sym->hash_next = objfile->template_symbols;
21795 objfile->template_symbols = sym;
21796 list_to_add = NULL;
21797 }
21798
21799 if (list_to_add != NULL)
21800 add_symbol_to_list (sym, list_to_add);
21801
21802 /* For the benefit of old versions of GCC, check for anonymous
21803 namespaces based on the demangled name. */
21804 if (!cu->processing_has_namespace_info
21805 && cu->language == language_cplus)
21806 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21807 }
21808 return (sym);
21809 }
21810
21811 /* Given an attr with a DW_FORM_dataN value in host byte order,
21812 zero-extend it as appropriate for the symbol's type. The DWARF
21813 standard (v4) is not entirely clear about the meaning of using
21814 DW_FORM_dataN for a constant with a signed type, where the type is
21815 wider than the data. The conclusion of a discussion on the DWARF
21816 list was that this is unspecified. We choose to always zero-extend
21817 because that is the interpretation long in use by GCC. */
21818
21819 static gdb_byte *
21820 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21821 struct dwarf2_cu *cu, LONGEST *value, int bits)
21822 {
21823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21824 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21825 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21826 LONGEST l = DW_UNSND (attr);
21827
21828 if (bits < sizeof (*value) * 8)
21829 {
21830 l &= ((LONGEST) 1 << bits) - 1;
21831 *value = l;
21832 }
21833 else if (bits == sizeof (*value) * 8)
21834 *value = l;
21835 else
21836 {
21837 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21838 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21839 return bytes;
21840 }
21841
21842 return NULL;
21843 }
21844
21845 /* Read a constant value from an attribute. Either set *VALUE, or if
21846 the value does not fit in *VALUE, set *BYTES - either already
21847 allocated on the objfile obstack, or newly allocated on OBSTACK,
21848 or, set *BATON, if we translated the constant to a location
21849 expression. */
21850
21851 static void
21852 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21853 const char *name, struct obstack *obstack,
21854 struct dwarf2_cu *cu,
21855 LONGEST *value, const gdb_byte **bytes,
21856 struct dwarf2_locexpr_baton **baton)
21857 {
21858 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21859 struct comp_unit_head *cu_header = &cu->header;
21860 struct dwarf_block *blk;
21861 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21862 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21863
21864 *value = 0;
21865 *bytes = NULL;
21866 *baton = NULL;
21867
21868 switch (attr->form)
21869 {
21870 case DW_FORM_addr:
21871 case DW_FORM_addrx:
21872 case DW_FORM_GNU_addr_index:
21873 {
21874 gdb_byte *data;
21875
21876 if (TYPE_LENGTH (type) != cu_header->addr_size)
21877 dwarf2_const_value_length_mismatch_complaint (name,
21878 cu_header->addr_size,
21879 TYPE_LENGTH (type));
21880 /* Symbols of this form are reasonably rare, so we just
21881 piggyback on the existing location code rather than writing
21882 a new implementation of symbol_computed_ops. */
21883 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21884 (*baton)->per_cu = cu->per_cu;
21885 gdb_assert ((*baton)->per_cu);
21886
21887 (*baton)->size = 2 + cu_header->addr_size;
21888 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21889 (*baton)->data = data;
21890
21891 data[0] = DW_OP_addr;
21892 store_unsigned_integer (&data[1], cu_header->addr_size,
21893 byte_order, DW_ADDR (attr));
21894 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21895 }
21896 break;
21897 case DW_FORM_string:
21898 case DW_FORM_strp:
21899 case DW_FORM_GNU_str_index:
21900 case DW_FORM_GNU_strp_alt:
21901 /* DW_STRING is already allocated on the objfile obstack, point
21902 directly to it. */
21903 *bytes = (const gdb_byte *) DW_STRING (attr);
21904 break;
21905 case DW_FORM_block1:
21906 case DW_FORM_block2:
21907 case DW_FORM_block4:
21908 case DW_FORM_block:
21909 case DW_FORM_exprloc:
21910 case DW_FORM_data16:
21911 blk = DW_BLOCK (attr);
21912 if (TYPE_LENGTH (type) != blk->size)
21913 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21914 TYPE_LENGTH (type));
21915 *bytes = blk->data;
21916 break;
21917
21918 /* The DW_AT_const_value attributes are supposed to carry the
21919 symbol's value "represented as it would be on the target
21920 architecture." By the time we get here, it's already been
21921 converted to host endianness, so we just need to sign- or
21922 zero-extend it as appropriate. */
21923 case DW_FORM_data1:
21924 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21925 break;
21926 case DW_FORM_data2:
21927 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21928 break;
21929 case DW_FORM_data4:
21930 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21931 break;
21932 case DW_FORM_data8:
21933 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21934 break;
21935
21936 case DW_FORM_sdata:
21937 case DW_FORM_implicit_const:
21938 *value = DW_SND (attr);
21939 break;
21940
21941 case DW_FORM_udata:
21942 *value = DW_UNSND (attr);
21943 break;
21944
21945 default:
21946 complaint (_("unsupported const value attribute form: '%s'"),
21947 dwarf_form_name (attr->form));
21948 *value = 0;
21949 break;
21950 }
21951 }
21952
21953
21954 /* Copy constant value from an attribute to a symbol. */
21955
21956 static void
21957 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21958 struct dwarf2_cu *cu)
21959 {
21960 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21961 LONGEST value;
21962 const gdb_byte *bytes;
21963 struct dwarf2_locexpr_baton *baton;
21964
21965 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21966 SYMBOL_PRINT_NAME (sym),
21967 &objfile->objfile_obstack, cu,
21968 &value, &bytes, &baton);
21969
21970 if (baton != NULL)
21971 {
21972 SYMBOL_LOCATION_BATON (sym) = baton;
21973 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21974 }
21975 else if (bytes != NULL)
21976 {
21977 SYMBOL_VALUE_BYTES (sym) = bytes;
21978 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21979 }
21980 else
21981 {
21982 SYMBOL_VALUE (sym) = value;
21983 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21984 }
21985 }
21986
21987 /* Return the type of the die in question using its DW_AT_type attribute. */
21988
21989 static struct type *
21990 die_type (struct die_info *die, struct dwarf2_cu *cu)
21991 {
21992 struct attribute *type_attr;
21993
21994 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21995 if (!type_attr)
21996 {
21997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21998 /* A missing DW_AT_type represents a void type. */
21999 return objfile_type (objfile)->builtin_void;
22000 }
22001
22002 return lookup_die_type (die, type_attr, cu);
22003 }
22004
22005 /* True iff CU's producer generates GNAT Ada auxiliary information
22006 that allows to find parallel types through that information instead
22007 of having to do expensive parallel lookups by type name. */
22008
22009 static int
22010 need_gnat_info (struct dwarf2_cu *cu)
22011 {
22012 /* Assume that the Ada compiler was GNAT, which always produces
22013 the auxiliary information. */
22014 return (cu->language == language_ada);
22015 }
22016
22017 /* Return the auxiliary type of the die in question using its
22018 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22019 attribute is not present. */
22020
22021 static struct type *
22022 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22023 {
22024 struct attribute *type_attr;
22025
22026 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22027 if (!type_attr)
22028 return NULL;
22029
22030 return lookup_die_type (die, type_attr, cu);
22031 }
22032
22033 /* If DIE has a descriptive_type attribute, then set the TYPE's
22034 descriptive type accordingly. */
22035
22036 static void
22037 set_descriptive_type (struct type *type, struct die_info *die,
22038 struct dwarf2_cu *cu)
22039 {
22040 struct type *descriptive_type = die_descriptive_type (die, cu);
22041
22042 if (descriptive_type)
22043 {
22044 ALLOCATE_GNAT_AUX_TYPE (type);
22045 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22046 }
22047 }
22048
22049 /* Return the containing type of the die in question using its
22050 DW_AT_containing_type attribute. */
22051
22052 static struct type *
22053 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22054 {
22055 struct attribute *type_attr;
22056 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22057
22058 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22059 if (!type_attr)
22060 error (_("Dwarf Error: Problem turning containing type into gdb type "
22061 "[in module %s]"), objfile_name (objfile));
22062
22063 return lookup_die_type (die, type_attr, cu);
22064 }
22065
22066 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22067
22068 static struct type *
22069 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22070 {
22071 struct dwarf2_per_objfile *dwarf2_per_objfile
22072 = cu->per_cu->dwarf2_per_objfile;
22073 struct objfile *objfile = dwarf2_per_objfile->objfile;
22074 char *saved;
22075
22076 std::string message
22077 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22078 objfile_name (objfile),
22079 sect_offset_str (cu->header.sect_off),
22080 sect_offset_str (die->sect_off));
22081 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22082 message.c_str (), message.length ());
22083
22084 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22085 }
22086
22087 /* Look up the type of DIE in CU using its type attribute ATTR.
22088 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22089 DW_AT_containing_type.
22090 If there is no type substitute an error marker. */
22091
22092 static struct type *
22093 lookup_die_type (struct die_info *die, const struct attribute *attr,
22094 struct dwarf2_cu *cu)
22095 {
22096 struct dwarf2_per_objfile *dwarf2_per_objfile
22097 = cu->per_cu->dwarf2_per_objfile;
22098 struct objfile *objfile = dwarf2_per_objfile->objfile;
22099 struct type *this_type;
22100
22101 gdb_assert (attr->name == DW_AT_type
22102 || attr->name == DW_AT_GNAT_descriptive_type
22103 || attr->name == DW_AT_containing_type);
22104
22105 /* First see if we have it cached. */
22106
22107 if (attr->form == DW_FORM_GNU_ref_alt)
22108 {
22109 struct dwarf2_per_cu_data *per_cu;
22110 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22111
22112 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22113 dwarf2_per_objfile);
22114 this_type = get_die_type_at_offset (sect_off, per_cu);
22115 }
22116 else if (attr_form_is_ref (attr))
22117 {
22118 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22119
22120 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22121 }
22122 else if (attr->form == DW_FORM_ref_sig8)
22123 {
22124 ULONGEST signature = DW_SIGNATURE (attr);
22125
22126 return get_signatured_type (die, signature, cu);
22127 }
22128 else
22129 {
22130 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22131 " at %s [in module %s]"),
22132 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22133 objfile_name (objfile));
22134 return build_error_marker_type (cu, die);
22135 }
22136
22137 /* If not cached we need to read it in. */
22138
22139 if (this_type == NULL)
22140 {
22141 struct die_info *type_die = NULL;
22142 struct dwarf2_cu *type_cu = cu;
22143
22144 if (attr_form_is_ref (attr))
22145 type_die = follow_die_ref (die, attr, &type_cu);
22146 if (type_die == NULL)
22147 return build_error_marker_type (cu, die);
22148 /* If we find the type now, it's probably because the type came
22149 from an inter-CU reference and the type's CU got expanded before
22150 ours. */
22151 this_type = read_type_die (type_die, type_cu);
22152 }
22153
22154 /* If we still don't have a type use an error marker. */
22155
22156 if (this_type == NULL)
22157 return build_error_marker_type (cu, die);
22158
22159 return this_type;
22160 }
22161
22162 /* Return the type in DIE, CU.
22163 Returns NULL for invalid types.
22164
22165 This first does a lookup in die_type_hash,
22166 and only reads the die in if necessary.
22167
22168 NOTE: This can be called when reading in partial or full symbols. */
22169
22170 static struct type *
22171 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22172 {
22173 struct type *this_type;
22174
22175 this_type = get_die_type (die, cu);
22176 if (this_type)
22177 return this_type;
22178
22179 return read_type_die_1 (die, cu);
22180 }
22181
22182 /* Read the type in DIE, CU.
22183 Returns NULL for invalid types. */
22184
22185 static struct type *
22186 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22187 {
22188 struct type *this_type = NULL;
22189
22190 switch (die->tag)
22191 {
22192 case DW_TAG_class_type:
22193 case DW_TAG_interface_type:
22194 case DW_TAG_structure_type:
22195 case DW_TAG_union_type:
22196 this_type = read_structure_type (die, cu);
22197 break;
22198 case DW_TAG_enumeration_type:
22199 this_type = read_enumeration_type (die, cu);
22200 break;
22201 case DW_TAG_subprogram:
22202 case DW_TAG_subroutine_type:
22203 case DW_TAG_inlined_subroutine:
22204 this_type = read_subroutine_type (die, cu);
22205 break;
22206 case DW_TAG_array_type:
22207 this_type = read_array_type (die, cu);
22208 break;
22209 case DW_TAG_set_type:
22210 this_type = read_set_type (die, cu);
22211 break;
22212 case DW_TAG_pointer_type:
22213 this_type = read_tag_pointer_type (die, cu);
22214 break;
22215 case DW_TAG_ptr_to_member_type:
22216 this_type = read_tag_ptr_to_member_type (die, cu);
22217 break;
22218 case DW_TAG_reference_type:
22219 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22220 break;
22221 case DW_TAG_rvalue_reference_type:
22222 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22223 break;
22224 case DW_TAG_const_type:
22225 this_type = read_tag_const_type (die, cu);
22226 break;
22227 case DW_TAG_volatile_type:
22228 this_type = read_tag_volatile_type (die, cu);
22229 break;
22230 case DW_TAG_restrict_type:
22231 this_type = read_tag_restrict_type (die, cu);
22232 break;
22233 case DW_TAG_string_type:
22234 this_type = read_tag_string_type (die, cu);
22235 break;
22236 case DW_TAG_typedef:
22237 this_type = read_typedef (die, cu);
22238 break;
22239 case DW_TAG_subrange_type:
22240 this_type = read_subrange_type (die, cu);
22241 break;
22242 case DW_TAG_base_type:
22243 this_type = read_base_type (die, cu);
22244 break;
22245 case DW_TAG_unspecified_type:
22246 this_type = read_unspecified_type (die, cu);
22247 break;
22248 case DW_TAG_namespace:
22249 this_type = read_namespace_type (die, cu);
22250 break;
22251 case DW_TAG_module:
22252 this_type = read_module_type (die, cu);
22253 break;
22254 case DW_TAG_atomic_type:
22255 this_type = read_tag_atomic_type (die, cu);
22256 break;
22257 default:
22258 complaint (_("unexpected tag in read_type_die: '%s'"),
22259 dwarf_tag_name (die->tag));
22260 break;
22261 }
22262
22263 return this_type;
22264 }
22265
22266 /* See if we can figure out if the class lives in a namespace. We do
22267 this by looking for a member function; its demangled name will
22268 contain namespace info, if there is any.
22269 Return the computed name or NULL.
22270 Space for the result is allocated on the objfile's obstack.
22271 This is the full-die version of guess_partial_die_structure_name.
22272 In this case we know DIE has no useful parent. */
22273
22274 static char *
22275 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22276 {
22277 struct die_info *spec_die;
22278 struct dwarf2_cu *spec_cu;
22279 struct die_info *child;
22280 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22281
22282 spec_cu = cu;
22283 spec_die = die_specification (die, &spec_cu);
22284 if (spec_die != NULL)
22285 {
22286 die = spec_die;
22287 cu = spec_cu;
22288 }
22289
22290 for (child = die->child;
22291 child != NULL;
22292 child = child->sibling)
22293 {
22294 if (child->tag == DW_TAG_subprogram)
22295 {
22296 const char *linkage_name = dw2_linkage_name (child, cu);
22297
22298 if (linkage_name != NULL)
22299 {
22300 char *actual_name
22301 = language_class_name_from_physname (cu->language_defn,
22302 linkage_name);
22303 char *name = NULL;
22304
22305 if (actual_name != NULL)
22306 {
22307 const char *die_name = dwarf2_name (die, cu);
22308
22309 if (die_name != NULL
22310 && strcmp (die_name, actual_name) != 0)
22311 {
22312 /* Strip off the class name from the full name.
22313 We want the prefix. */
22314 int die_name_len = strlen (die_name);
22315 int actual_name_len = strlen (actual_name);
22316
22317 /* Test for '::' as a sanity check. */
22318 if (actual_name_len > die_name_len + 2
22319 && actual_name[actual_name_len
22320 - die_name_len - 1] == ':')
22321 name = (char *) obstack_copy0 (
22322 &objfile->per_bfd->storage_obstack,
22323 actual_name, actual_name_len - die_name_len - 2);
22324 }
22325 }
22326 xfree (actual_name);
22327 return name;
22328 }
22329 }
22330 }
22331
22332 return NULL;
22333 }
22334
22335 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22336 prefix part in such case. See
22337 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22338
22339 static const char *
22340 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22341 {
22342 struct attribute *attr;
22343 const char *base;
22344
22345 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22346 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22347 return NULL;
22348
22349 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22350 return NULL;
22351
22352 attr = dw2_linkage_name_attr (die, cu);
22353 if (attr == NULL || DW_STRING (attr) == NULL)
22354 return NULL;
22355
22356 /* dwarf2_name had to be already called. */
22357 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22358
22359 /* Strip the base name, keep any leading namespaces/classes. */
22360 base = strrchr (DW_STRING (attr), ':');
22361 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22362 return "";
22363
22364 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22365 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22366 DW_STRING (attr),
22367 &base[-1] - DW_STRING (attr));
22368 }
22369
22370 /* Return the name of the namespace/class that DIE is defined within,
22371 or "" if we can't tell. The caller should not xfree the result.
22372
22373 For example, if we're within the method foo() in the following
22374 code:
22375
22376 namespace N {
22377 class C {
22378 void foo () {
22379 }
22380 };
22381 }
22382
22383 then determine_prefix on foo's die will return "N::C". */
22384
22385 static const char *
22386 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22387 {
22388 struct dwarf2_per_objfile *dwarf2_per_objfile
22389 = cu->per_cu->dwarf2_per_objfile;
22390 struct die_info *parent, *spec_die;
22391 struct dwarf2_cu *spec_cu;
22392 struct type *parent_type;
22393 const char *retval;
22394
22395 if (cu->language != language_cplus
22396 && cu->language != language_fortran && cu->language != language_d
22397 && cu->language != language_rust)
22398 return "";
22399
22400 retval = anonymous_struct_prefix (die, cu);
22401 if (retval)
22402 return retval;
22403
22404 /* We have to be careful in the presence of DW_AT_specification.
22405 For example, with GCC 3.4, given the code
22406
22407 namespace N {
22408 void foo() {
22409 // Definition of N::foo.
22410 }
22411 }
22412
22413 then we'll have a tree of DIEs like this:
22414
22415 1: DW_TAG_compile_unit
22416 2: DW_TAG_namespace // N
22417 3: DW_TAG_subprogram // declaration of N::foo
22418 4: DW_TAG_subprogram // definition of N::foo
22419 DW_AT_specification // refers to die #3
22420
22421 Thus, when processing die #4, we have to pretend that we're in
22422 the context of its DW_AT_specification, namely the contex of die
22423 #3. */
22424 spec_cu = cu;
22425 spec_die = die_specification (die, &spec_cu);
22426 if (spec_die == NULL)
22427 parent = die->parent;
22428 else
22429 {
22430 parent = spec_die->parent;
22431 cu = spec_cu;
22432 }
22433
22434 if (parent == NULL)
22435 return "";
22436 else if (parent->building_fullname)
22437 {
22438 const char *name;
22439 const char *parent_name;
22440
22441 /* It has been seen on RealView 2.2 built binaries,
22442 DW_TAG_template_type_param types actually _defined_ as
22443 children of the parent class:
22444
22445 enum E {};
22446 template class <class Enum> Class{};
22447 Class<enum E> class_e;
22448
22449 1: DW_TAG_class_type (Class)
22450 2: DW_TAG_enumeration_type (E)
22451 3: DW_TAG_enumerator (enum1:0)
22452 3: DW_TAG_enumerator (enum2:1)
22453 ...
22454 2: DW_TAG_template_type_param
22455 DW_AT_type DW_FORM_ref_udata (E)
22456
22457 Besides being broken debug info, it can put GDB into an
22458 infinite loop. Consider:
22459
22460 When we're building the full name for Class<E>, we'll start
22461 at Class, and go look over its template type parameters,
22462 finding E. We'll then try to build the full name of E, and
22463 reach here. We're now trying to build the full name of E,
22464 and look over the parent DIE for containing scope. In the
22465 broken case, if we followed the parent DIE of E, we'd again
22466 find Class, and once again go look at its template type
22467 arguments, etc., etc. Simply don't consider such parent die
22468 as source-level parent of this die (it can't be, the language
22469 doesn't allow it), and break the loop here. */
22470 name = dwarf2_name (die, cu);
22471 parent_name = dwarf2_name (parent, cu);
22472 complaint (_("template param type '%s' defined within parent '%s'"),
22473 name ? name : "<unknown>",
22474 parent_name ? parent_name : "<unknown>");
22475 return "";
22476 }
22477 else
22478 switch (parent->tag)
22479 {
22480 case DW_TAG_namespace:
22481 parent_type = read_type_die (parent, cu);
22482 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22483 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22484 Work around this problem here. */
22485 if (cu->language == language_cplus
22486 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22487 return "";
22488 /* We give a name to even anonymous namespaces. */
22489 return TYPE_NAME (parent_type);
22490 case DW_TAG_class_type:
22491 case DW_TAG_interface_type:
22492 case DW_TAG_structure_type:
22493 case DW_TAG_union_type:
22494 case DW_TAG_module:
22495 parent_type = read_type_die (parent, cu);
22496 if (TYPE_NAME (parent_type) != NULL)
22497 return TYPE_NAME (parent_type);
22498 else
22499 /* An anonymous structure is only allowed non-static data
22500 members; no typedefs, no member functions, et cetera.
22501 So it does not need a prefix. */
22502 return "";
22503 case DW_TAG_compile_unit:
22504 case DW_TAG_partial_unit:
22505 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22506 if (cu->language == language_cplus
22507 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22508 && die->child != NULL
22509 && (die->tag == DW_TAG_class_type
22510 || die->tag == DW_TAG_structure_type
22511 || die->tag == DW_TAG_union_type))
22512 {
22513 char *name = guess_full_die_structure_name (die, cu);
22514 if (name != NULL)
22515 return name;
22516 }
22517 return "";
22518 case DW_TAG_enumeration_type:
22519 parent_type = read_type_die (parent, cu);
22520 if (TYPE_DECLARED_CLASS (parent_type))
22521 {
22522 if (TYPE_NAME (parent_type) != NULL)
22523 return TYPE_NAME (parent_type);
22524 return "";
22525 }
22526 /* Fall through. */
22527 default:
22528 return determine_prefix (parent, cu);
22529 }
22530 }
22531
22532 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22533 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22534 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22535 an obconcat, otherwise allocate storage for the result. The CU argument is
22536 used to determine the language and hence, the appropriate separator. */
22537
22538 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22539
22540 static char *
22541 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22542 int physname, struct dwarf2_cu *cu)
22543 {
22544 const char *lead = "";
22545 const char *sep;
22546
22547 if (suffix == NULL || suffix[0] == '\0'
22548 || prefix == NULL || prefix[0] == '\0')
22549 sep = "";
22550 else if (cu->language == language_d)
22551 {
22552 /* For D, the 'main' function could be defined in any module, but it
22553 should never be prefixed. */
22554 if (strcmp (suffix, "D main") == 0)
22555 {
22556 prefix = "";
22557 sep = "";
22558 }
22559 else
22560 sep = ".";
22561 }
22562 else if (cu->language == language_fortran && physname)
22563 {
22564 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22565 DW_AT_MIPS_linkage_name is preferred and used instead. */
22566
22567 lead = "__";
22568 sep = "_MOD_";
22569 }
22570 else
22571 sep = "::";
22572
22573 if (prefix == NULL)
22574 prefix = "";
22575 if (suffix == NULL)
22576 suffix = "";
22577
22578 if (obs == NULL)
22579 {
22580 char *retval
22581 = ((char *)
22582 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22583
22584 strcpy (retval, lead);
22585 strcat (retval, prefix);
22586 strcat (retval, sep);
22587 strcat (retval, suffix);
22588 return retval;
22589 }
22590 else
22591 {
22592 /* We have an obstack. */
22593 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22594 }
22595 }
22596
22597 /* Return sibling of die, NULL if no sibling. */
22598
22599 static struct die_info *
22600 sibling_die (struct die_info *die)
22601 {
22602 return die->sibling;
22603 }
22604
22605 /* Get name of a die, return NULL if not found. */
22606
22607 static const char *
22608 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22609 struct obstack *obstack)
22610 {
22611 if (name && cu->language == language_cplus)
22612 {
22613 std::string canon_name = cp_canonicalize_string (name);
22614
22615 if (!canon_name.empty ())
22616 {
22617 if (canon_name != name)
22618 name = (const char *) obstack_copy0 (obstack,
22619 canon_name.c_str (),
22620 canon_name.length ());
22621 }
22622 }
22623
22624 return name;
22625 }
22626
22627 /* Get name of a die, return NULL if not found.
22628 Anonymous namespaces are converted to their magic string. */
22629
22630 static const char *
22631 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22632 {
22633 struct attribute *attr;
22634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22635
22636 attr = dwarf2_attr (die, DW_AT_name, cu);
22637 if ((!attr || !DW_STRING (attr))
22638 && die->tag != DW_TAG_namespace
22639 && die->tag != DW_TAG_class_type
22640 && die->tag != DW_TAG_interface_type
22641 && die->tag != DW_TAG_structure_type
22642 && die->tag != DW_TAG_union_type)
22643 return NULL;
22644
22645 switch (die->tag)
22646 {
22647 case DW_TAG_compile_unit:
22648 case DW_TAG_partial_unit:
22649 /* Compilation units have a DW_AT_name that is a filename, not
22650 a source language identifier. */
22651 case DW_TAG_enumeration_type:
22652 case DW_TAG_enumerator:
22653 /* These tags always have simple identifiers already; no need
22654 to canonicalize them. */
22655 return DW_STRING (attr);
22656
22657 case DW_TAG_namespace:
22658 if (attr != NULL && DW_STRING (attr) != NULL)
22659 return DW_STRING (attr);
22660 return CP_ANONYMOUS_NAMESPACE_STR;
22661
22662 case DW_TAG_class_type:
22663 case DW_TAG_interface_type:
22664 case DW_TAG_structure_type:
22665 case DW_TAG_union_type:
22666 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22667 structures or unions. These were of the form "._%d" in GCC 4.1,
22668 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22669 and GCC 4.4. We work around this problem by ignoring these. */
22670 if (attr && DW_STRING (attr)
22671 && (startswith (DW_STRING (attr), "._")
22672 || startswith (DW_STRING (attr), "<anonymous")))
22673 return NULL;
22674
22675 /* GCC might emit a nameless typedef that has a linkage name. See
22676 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22677 if (!attr || DW_STRING (attr) == NULL)
22678 {
22679 char *demangled = NULL;
22680
22681 attr = dw2_linkage_name_attr (die, cu);
22682 if (attr == NULL || DW_STRING (attr) == NULL)
22683 return NULL;
22684
22685 /* Avoid demangling DW_STRING (attr) the second time on a second
22686 call for the same DIE. */
22687 if (!DW_STRING_IS_CANONICAL (attr))
22688 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22689
22690 if (demangled)
22691 {
22692 const char *base;
22693
22694 /* FIXME: we already did this for the partial symbol... */
22695 DW_STRING (attr)
22696 = ((const char *)
22697 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22698 demangled, strlen (demangled)));
22699 DW_STRING_IS_CANONICAL (attr) = 1;
22700 xfree (demangled);
22701
22702 /* Strip any leading namespaces/classes, keep only the base name.
22703 DW_AT_name for named DIEs does not contain the prefixes. */
22704 base = strrchr (DW_STRING (attr), ':');
22705 if (base && base > DW_STRING (attr) && base[-1] == ':')
22706 return &base[1];
22707 else
22708 return DW_STRING (attr);
22709 }
22710 }
22711 break;
22712
22713 default:
22714 break;
22715 }
22716
22717 if (!DW_STRING_IS_CANONICAL (attr))
22718 {
22719 DW_STRING (attr)
22720 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22721 &objfile->per_bfd->storage_obstack);
22722 DW_STRING_IS_CANONICAL (attr) = 1;
22723 }
22724 return DW_STRING (attr);
22725 }
22726
22727 /* Return the die that this die in an extension of, or NULL if there
22728 is none. *EXT_CU is the CU containing DIE on input, and the CU
22729 containing the return value on output. */
22730
22731 static struct die_info *
22732 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22733 {
22734 struct attribute *attr;
22735
22736 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22737 if (attr == NULL)
22738 return NULL;
22739
22740 return follow_die_ref (die, attr, ext_cu);
22741 }
22742
22743 /* Convert a DIE tag into its string name. */
22744
22745 static const char *
22746 dwarf_tag_name (unsigned tag)
22747 {
22748 const char *name = get_DW_TAG_name (tag);
22749
22750 if (name == NULL)
22751 return "DW_TAG_<unknown>";
22752
22753 return name;
22754 }
22755
22756 /* Convert a DWARF attribute code into its string name. */
22757
22758 static const char *
22759 dwarf_attr_name (unsigned attr)
22760 {
22761 const char *name;
22762
22763 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22764 if (attr == DW_AT_MIPS_fde)
22765 return "DW_AT_MIPS_fde";
22766 #else
22767 if (attr == DW_AT_HP_block_index)
22768 return "DW_AT_HP_block_index";
22769 #endif
22770
22771 name = get_DW_AT_name (attr);
22772
22773 if (name == NULL)
22774 return "DW_AT_<unknown>";
22775
22776 return name;
22777 }
22778
22779 /* Convert a DWARF value form code into its string name. */
22780
22781 static const char *
22782 dwarf_form_name (unsigned form)
22783 {
22784 const char *name = get_DW_FORM_name (form);
22785
22786 if (name == NULL)
22787 return "DW_FORM_<unknown>";
22788
22789 return name;
22790 }
22791
22792 static const char *
22793 dwarf_bool_name (unsigned mybool)
22794 {
22795 if (mybool)
22796 return "TRUE";
22797 else
22798 return "FALSE";
22799 }
22800
22801 /* Convert a DWARF type code into its string name. */
22802
22803 static const char *
22804 dwarf_type_encoding_name (unsigned enc)
22805 {
22806 const char *name = get_DW_ATE_name (enc);
22807
22808 if (name == NULL)
22809 return "DW_ATE_<unknown>";
22810
22811 return name;
22812 }
22813
22814 static void
22815 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22816 {
22817 unsigned int i;
22818
22819 print_spaces (indent, f);
22820 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22821 dwarf_tag_name (die->tag), die->abbrev,
22822 sect_offset_str (die->sect_off));
22823
22824 if (die->parent != NULL)
22825 {
22826 print_spaces (indent, f);
22827 fprintf_unfiltered (f, " parent at offset: %s\n",
22828 sect_offset_str (die->parent->sect_off));
22829 }
22830
22831 print_spaces (indent, f);
22832 fprintf_unfiltered (f, " has children: %s\n",
22833 dwarf_bool_name (die->child != NULL));
22834
22835 print_spaces (indent, f);
22836 fprintf_unfiltered (f, " attributes:\n");
22837
22838 for (i = 0; i < die->num_attrs; ++i)
22839 {
22840 print_spaces (indent, f);
22841 fprintf_unfiltered (f, " %s (%s) ",
22842 dwarf_attr_name (die->attrs[i].name),
22843 dwarf_form_name (die->attrs[i].form));
22844
22845 switch (die->attrs[i].form)
22846 {
22847 case DW_FORM_addr:
22848 case DW_FORM_addrx:
22849 case DW_FORM_GNU_addr_index:
22850 fprintf_unfiltered (f, "address: ");
22851 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22852 break;
22853 case DW_FORM_block2:
22854 case DW_FORM_block4:
22855 case DW_FORM_block:
22856 case DW_FORM_block1:
22857 fprintf_unfiltered (f, "block: size %s",
22858 pulongest (DW_BLOCK (&die->attrs[i])->size));
22859 break;
22860 case DW_FORM_exprloc:
22861 fprintf_unfiltered (f, "expression: size %s",
22862 pulongest (DW_BLOCK (&die->attrs[i])->size));
22863 break;
22864 case DW_FORM_data16:
22865 fprintf_unfiltered (f, "constant of 16 bytes");
22866 break;
22867 case DW_FORM_ref_addr:
22868 fprintf_unfiltered (f, "ref address: ");
22869 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22870 break;
22871 case DW_FORM_GNU_ref_alt:
22872 fprintf_unfiltered (f, "alt ref address: ");
22873 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22874 break;
22875 case DW_FORM_ref1:
22876 case DW_FORM_ref2:
22877 case DW_FORM_ref4:
22878 case DW_FORM_ref8:
22879 case DW_FORM_ref_udata:
22880 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22881 (long) (DW_UNSND (&die->attrs[i])));
22882 break;
22883 case DW_FORM_data1:
22884 case DW_FORM_data2:
22885 case DW_FORM_data4:
22886 case DW_FORM_data8:
22887 case DW_FORM_udata:
22888 case DW_FORM_sdata:
22889 fprintf_unfiltered (f, "constant: %s",
22890 pulongest (DW_UNSND (&die->attrs[i])));
22891 break;
22892 case DW_FORM_sec_offset:
22893 fprintf_unfiltered (f, "section offset: %s",
22894 pulongest (DW_UNSND (&die->attrs[i])));
22895 break;
22896 case DW_FORM_ref_sig8:
22897 fprintf_unfiltered (f, "signature: %s",
22898 hex_string (DW_SIGNATURE (&die->attrs[i])));
22899 break;
22900 case DW_FORM_string:
22901 case DW_FORM_strp:
22902 case DW_FORM_line_strp:
22903 case DW_FORM_GNU_str_index:
22904 case DW_FORM_GNU_strp_alt:
22905 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22906 DW_STRING (&die->attrs[i])
22907 ? DW_STRING (&die->attrs[i]) : "",
22908 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22909 break;
22910 case DW_FORM_flag:
22911 if (DW_UNSND (&die->attrs[i]))
22912 fprintf_unfiltered (f, "flag: TRUE");
22913 else
22914 fprintf_unfiltered (f, "flag: FALSE");
22915 break;
22916 case DW_FORM_flag_present:
22917 fprintf_unfiltered (f, "flag: TRUE");
22918 break;
22919 case DW_FORM_indirect:
22920 /* The reader will have reduced the indirect form to
22921 the "base form" so this form should not occur. */
22922 fprintf_unfiltered (f,
22923 "unexpected attribute form: DW_FORM_indirect");
22924 break;
22925 case DW_FORM_implicit_const:
22926 fprintf_unfiltered (f, "constant: %s",
22927 plongest (DW_SND (&die->attrs[i])));
22928 break;
22929 default:
22930 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22931 die->attrs[i].form);
22932 break;
22933 }
22934 fprintf_unfiltered (f, "\n");
22935 }
22936 }
22937
22938 static void
22939 dump_die_for_error (struct die_info *die)
22940 {
22941 dump_die_shallow (gdb_stderr, 0, die);
22942 }
22943
22944 static void
22945 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22946 {
22947 int indent = level * 4;
22948
22949 gdb_assert (die != NULL);
22950
22951 if (level >= max_level)
22952 return;
22953
22954 dump_die_shallow (f, indent, die);
22955
22956 if (die->child != NULL)
22957 {
22958 print_spaces (indent, f);
22959 fprintf_unfiltered (f, " Children:");
22960 if (level + 1 < max_level)
22961 {
22962 fprintf_unfiltered (f, "\n");
22963 dump_die_1 (f, level + 1, max_level, die->child);
22964 }
22965 else
22966 {
22967 fprintf_unfiltered (f,
22968 " [not printed, max nesting level reached]\n");
22969 }
22970 }
22971
22972 if (die->sibling != NULL && level > 0)
22973 {
22974 dump_die_1 (f, level, max_level, die->sibling);
22975 }
22976 }
22977
22978 /* This is called from the pdie macro in gdbinit.in.
22979 It's not static so gcc will keep a copy callable from gdb. */
22980
22981 void
22982 dump_die (struct die_info *die, int max_level)
22983 {
22984 dump_die_1 (gdb_stdlog, 0, max_level, die);
22985 }
22986
22987 static void
22988 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22989 {
22990 void **slot;
22991
22992 slot = htab_find_slot_with_hash (cu->die_hash, die,
22993 to_underlying (die->sect_off),
22994 INSERT);
22995
22996 *slot = die;
22997 }
22998
22999 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23000 required kind. */
23001
23002 static sect_offset
23003 dwarf2_get_ref_die_offset (const struct attribute *attr)
23004 {
23005 if (attr_form_is_ref (attr))
23006 return (sect_offset) DW_UNSND (attr);
23007
23008 complaint (_("unsupported die ref attribute form: '%s'"),
23009 dwarf_form_name (attr->form));
23010 return {};
23011 }
23012
23013 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23014 * the value held by the attribute is not constant. */
23015
23016 static LONGEST
23017 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23018 {
23019 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23020 return DW_SND (attr);
23021 else if (attr->form == DW_FORM_udata
23022 || attr->form == DW_FORM_data1
23023 || attr->form == DW_FORM_data2
23024 || attr->form == DW_FORM_data4
23025 || attr->form == DW_FORM_data8)
23026 return DW_UNSND (attr);
23027 else
23028 {
23029 /* For DW_FORM_data16 see attr_form_is_constant. */
23030 complaint (_("Attribute value is not a constant (%s)"),
23031 dwarf_form_name (attr->form));
23032 return default_value;
23033 }
23034 }
23035
23036 /* Follow reference or signature attribute ATTR of SRC_DIE.
23037 On entry *REF_CU is the CU of SRC_DIE.
23038 On exit *REF_CU is the CU of the result. */
23039
23040 static struct die_info *
23041 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23042 struct dwarf2_cu **ref_cu)
23043 {
23044 struct die_info *die;
23045
23046 if (attr_form_is_ref (attr))
23047 die = follow_die_ref (src_die, attr, ref_cu);
23048 else if (attr->form == DW_FORM_ref_sig8)
23049 die = follow_die_sig (src_die, attr, ref_cu);
23050 else
23051 {
23052 dump_die_for_error (src_die);
23053 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23054 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23055 }
23056
23057 return die;
23058 }
23059
23060 /* Follow reference OFFSET.
23061 On entry *REF_CU is the CU of the source die referencing OFFSET.
23062 On exit *REF_CU is the CU of the result.
23063 Returns NULL if OFFSET is invalid. */
23064
23065 static struct die_info *
23066 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23067 struct dwarf2_cu **ref_cu)
23068 {
23069 struct die_info temp_die;
23070 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23071 struct dwarf2_per_objfile *dwarf2_per_objfile
23072 = cu->per_cu->dwarf2_per_objfile;
23073
23074 gdb_assert (cu->per_cu != NULL);
23075
23076 target_cu = cu;
23077
23078 if (cu->per_cu->is_debug_types)
23079 {
23080 /* .debug_types CUs cannot reference anything outside their CU.
23081 If they need to, they have to reference a signatured type via
23082 DW_FORM_ref_sig8. */
23083 if (!offset_in_cu_p (&cu->header, sect_off))
23084 return NULL;
23085 }
23086 else if (offset_in_dwz != cu->per_cu->is_dwz
23087 || !offset_in_cu_p (&cu->header, sect_off))
23088 {
23089 struct dwarf2_per_cu_data *per_cu;
23090
23091 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23092 dwarf2_per_objfile);
23093
23094 /* If necessary, add it to the queue and load its DIEs. */
23095 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23096 load_full_comp_unit (per_cu, false, cu->language);
23097
23098 target_cu = per_cu->cu;
23099 }
23100 else if (cu->dies == NULL)
23101 {
23102 /* We're loading full DIEs during partial symbol reading. */
23103 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23104 load_full_comp_unit (cu->per_cu, false, language_minimal);
23105 }
23106
23107 *ref_cu = target_cu;
23108 temp_die.sect_off = sect_off;
23109
23110 if (target_cu != cu)
23111 target_cu->ancestor = cu;
23112
23113 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23114 &temp_die,
23115 to_underlying (sect_off));
23116 }
23117
23118 /* Follow reference attribute ATTR of SRC_DIE.
23119 On entry *REF_CU is the CU of SRC_DIE.
23120 On exit *REF_CU is the CU of the result. */
23121
23122 static struct die_info *
23123 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23124 struct dwarf2_cu **ref_cu)
23125 {
23126 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23127 struct dwarf2_cu *cu = *ref_cu;
23128 struct die_info *die;
23129
23130 die = follow_die_offset (sect_off,
23131 (attr->form == DW_FORM_GNU_ref_alt
23132 || cu->per_cu->is_dwz),
23133 ref_cu);
23134 if (!die)
23135 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23136 "at %s [in module %s]"),
23137 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23138 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23139
23140 return die;
23141 }
23142
23143 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23144 Returned value is intended for DW_OP_call*. Returned
23145 dwarf2_locexpr_baton->data has lifetime of
23146 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23147
23148 struct dwarf2_locexpr_baton
23149 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23150 struct dwarf2_per_cu_data *per_cu,
23151 CORE_ADDR (*get_frame_pc) (void *baton),
23152 void *baton, bool resolve_abstract_p)
23153 {
23154 struct dwarf2_cu *cu;
23155 struct die_info *die;
23156 struct attribute *attr;
23157 struct dwarf2_locexpr_baton retval;
23158 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23159 struct objfile *objfile = dwarf2_per_objfile->objfile;
23160
23161 if (per_cu->cu == NULL)
23162 load_cu (per_cu, false);
23163 cu = per_cu->cu;
23164 if (cu == NULL)
23165 {
23166 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23167 Instead just throw an error, not much else we can do. */
23168 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23169 sect_offset_str (sect_off), objfile_name (objfile));
23170 }
23171
23172 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23173 if (!die)
23174 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23175 sect_offset_str (sect_off), objfile_name (objfile));
23176
23177 attr = dwarf2_attr (die, DW_AT_location, cu);
23178 if (!attr && resolve_abstract_p
23179 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23180 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23181 {
23182 CORE_ADDR pc = (*get_frame_pc) (baton);
23183
23184 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23185 {
23186 if (!cand->parent
23187 || cand->parent->tag != DW_TAG_subprogram)
23188 continue;
23189
23190 CORE_ADDR pc_low, pc_high;
23191 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23192 if (pc_low == ((CORE_ADDR) -1)
23193 || !(pc_low <= pc && pc < pc_high))
23194 continue;
23195
23196 die = cand;
23197 attr = dwarf2_attr (die, DW_AT_location, cu);
23198 break;
23199 }
23200 }
23201
23202 if (!attr)
23203 {
23204 /* DWARF: "If there is no such attribute, then there is no effect.".
23205 DATA is ignored if SIZE is 0. */
23206
23207 retval.data = NULL;
23208 retval.size = 0;
23209 }
23210 else if (attr_form_is_section_offset (attr))
23211 {
23212 struct dwarf2_loclist_baton loclist_baton;
23213 CORE_ADDR pc = (*get_frame_pc) (baton);
23214 size_t size;
23215
23216 fill_in_loclist_baton (cu, &loclist_baton, attr);
23217
23218 retval.data = dwarf2_find_location_expression (&loclist_baton,
23219 &size, pc);
23220 retval.size = size;
23221 }
23222 else
23223 {
23224 if (!attr_form_is_block (attr))
23225 error (_("Dwarf Error: DIE at %s referenced in module %s "
23226 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23227 sect_offset_str (sect_off), objfile_name (objfile));
23228
23229 retval.data = DW_BLOCK (attr)->data;
23230 retval.size = DW_BLOCK (attr)->size;
23231 }
23232 retval.per_cu = cu->per_cu;
23233
23234 age_cached_comp_units (dwarf2_per_objfile);
23235
23236 return retval;
23237 }
23238
23239 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23240 offset. */
23241
23242 struct dwarf2_locexpr_baton
23243 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23244 struct dwarf2_per_cu_data *per_cu,
23245 CORE_ADDR (*get_frame_pc) (void *baton),
23246 void *baton)
23247 {
23248 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23249
23250 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23251 }
23252
23253 /* Write a constant of a given type as target-ordered bytes into
23254 OBSTACK. */
23255
23256 static const gdb_byte *
23257 write_constant_as_bytes (struct obstack *obstack,
23258 enum bfd_endian byte_order,
23259 struct type *type,
23260 ULONGEST value,
23261 LONGEST *len)
23262 {
23263 gdb_byte *result;
23264
23265 *len = TYPE_LENGTH (type);
23266 result = (gdb_byte *) obstack_alloc (obstack, *len);
23267 store_unsigned_integer (result, *len, byte_order, value);
23268
23269 return result;
23270 }
23271
23272 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23273 pointer to the constant bytes and set LEN to the length of the
23274 data. If memory is needed, allocate it on OBSTACK. If the DIE
23275 does not have a DW_AT_const_value, return NULL. */
23276
23277 const gdb_byte *
23278 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23279 struct dwarf2_per_cu_data *per_cu,
23280 struct obstack *obstack,
23281 LONGEST *len)
23282 {
23283 struct dwarf2_cu *cu;
23284 struct die_info *die;
23285 struct attribute *attr;
23286 const gdb_byte *result = NULL;
23287 struct type *type;
23288 LONGEST value;
23289 enum bfd_endian byte_order;
23290 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23291
23292 if (per_cu->cu == NULL)
23293 load_cu (per_cu, false);
23294 cu = per_cu->cu;
23295 if (cu == NULL)
23296 {
23297 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23298 Instead just throw an error, not much else we can do. */
23299 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23300 sect_offset_str (sect_off), objfile_name (objfile));
23301 }
23302
23303 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23304 if (!die)
23305 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23306 sect_offset_str (sect_off), objfile_name (objfile));
23307
23308 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23309 if (attr == NULL)
23310 return NULL;
23311
23312 byte_order = (bfd_big_endian (objfile->obfd)
23313 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23314
23315 switch (attr->form)
23316 {
23317 case DW_FORM_addr:
23318 case DW_FORM_addrx:
23319 case DW_FORM_GNU_addr_index:
23320 {
23321 gdb_byte *tem;
23322
23323 *len = cu->header.addr_size;
23324 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23325 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23326 result = tem;
23327 }
23328 break;
23329 case DW_FORM_string:
23330 case DW_FORM_strp:
23331 case DW_FORM_GNU_str_index:
23332 case DW_FORM_GNU_strp_alt:
23333 /* DW_STRING is already allocated on the objfile obstack, point
23334 directly to it. */
23335 result = (const gdb_byte *) DW_STRING (attr);
23336 *len = strlen (DW_STRING (attr));
23337 break;
23338 case DW_FORM_block1:
23339 case DW_FORM_block2:
23340 case DW_FORM_block4:
23341 case DW_FORM_block:
23342 case DW_FORM_exprloc:
23343 case DW_FORM_data16:
23344 result = DW_BLOCK (attr)->data;
23345 *len = DW_BLOCK (attr)->size;
23346 break;
23347
23348 /* The DW_AT_const_value attributes are supposed to carry the
23349 symbol's value "represented as it would be on the target
23350 architecture." By the time we get here, it's already been
23351 converted to host endianness, so we just need to sign- or
23352 zero-extend it as appropriate. */
23353 case DW_FORM_data1:
23354 type = die_type (die, cu);
23355 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23356 if (result == NULL)
23357 result = write_constant_as_bytes (obstack, byte_order,
23358 type, value, len);
23359 break;
23360 case DW_FORM_data2:
23361 type = die_type (die, cu);
23362 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23363 if (result == NULL)
23364 result = write_constant_as_bytes (obstack, byte_order,
23365 type, value, len);
23366 break;
23367 case DW_FORM_data4:
23368 type = die_type (die, cu);
23369 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23370 if (result == NULL)
23371 result = write_constant_as_bytes (obstack, byte_order,
23372 type, value, len);
23373 break;
23374 case DW_FORM_data8:
23375 type = die_type (die, cu);
23376 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23377 if (result == NULL)
23378 result = write_constant_as_bytes (obstack, byte_order,
23379 type, value, len);
23380 break;
23381
23382 case DW_FORM_sdata:
23383 case DW_FORM_implicit_const:
23384 type = die_type (die, cu);
23385 result = write_constant_as_bytes (obstack, byte_order,
23386 type, DW_SND (attr), len);
23387 break;
23388
23389 case DW_FORM_udata:
23390 type = die_type (die, cu);
23391 result = write_constant_as_bytes (obstack, byte_order,
23392 type, DW_UNSND (attr), len);
23393 break;
23394
23395 default:
23396 complaint (_("unsupported const value attribute form: '%s'"),
23397 dwarf_form_name (attr->form));
23398 break;
23399 }
23400
23401 return result;
23402 }
23403
23404 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23405 valid type for this die is found. */
23406
23407 struct type *
23408 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23409 struct dwarf2_per_cu_data *per_cu)
23410 {
23411 struct dwarf2_cu *cu;
23412 struct die_info *die;
23413
23414 if (per_cu->cu == NULL)
23415 load_cu (per_cu, false);
23416 cu = per_cu->cu;
23417 if (!cu)
23418 return NULL;
23419
23420 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23421 if (!die)
23422 return NULL;
23423
23424 return die_type (die, cu);
23425 }
23426
23427 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23428 PER_CU. */
23429
23430 struct type *
23431 dwarf2_get_die_type (cu_offset die_offset,
23432 struct dwarf2_per_cu_data *per_cu)
23433 {
23434 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23435 return get_die_type_at_offset (die_offset_sect, per_cu);
23436 }
23437
23438 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23439 On entry *REF_CU is the CU of SRC_DIE.
23440 On exit *REF_CU is the CU of the result.
23441 Returns NULL if the referenced DIE isn't found. */
23442
23443 static struct die_info *
23444 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23445 struct dwarf2_cu **ref_cu)
23446 {
23447 struct die_info temp_die;
23448 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23449 struct die_info *die;
23450
23451 /* While it might be nice to assert sig_type->type == NULL here,
23452 we can get here for DW_AT_imported_declaration where we need
23453 the DIE not the type. */
23454
23455 /* If necessary, add it to the queue and load its DIEs. */
23456
23457 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23458 read_signatured_type (sig_type);
23459
23460 sig_cu = sig_type->per_cu.cu;
23461 gdb_assert (sig_cu != NULL);
23462 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23463 temp_die.sect_off = sig_type->type_offset_in_section;
23464 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23465 to_underlying (temp_die.sect_off));
23466 if (die)
23467 {
23468 struct dwarf2_per_objfile *dwarf2_per_objfile
23469 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23470
23471 /* For .gdb_index version 7 keep track of included TUs.
23472 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23473 if (dwarf2_per_objfile->index_table != NULL
23474 && dwarf2_per_objfile->index_table->version <= 7)
23475 {
23476 VEC_safe_push (dwarf2_per_cu_ptr,
23477 (*ref_cu)->per_cu->imported_symtabs,
23478 sig_cu->per_cu);
23479 }
23480
23481 *ref_cu = sig_cu;
23482 if (sig_cu != cu)
23483 sig_cu->ancestor = cu;
23484
23485 return die;
23486 }
23487
23488 return NULL;
23489 }
23490
23491 /* Follow signatured type referenced by ATTR in SRC_DIE.
23492 On entry *REF_CU is the CU of SRC_DIE.
23493 On exit *REF_CU is the CU of the result.
23494 The result is the DIE of the type.
23495 If the referenced type cannot be found an error is thrown. */
23496
23497 static struct die_info *
23498 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23499 struct dwarf2_cu **ref_cu)
23500 {
23501 ULONGEST signature = DW_SIGNATURE (attr);
23502 struct signatured_type *sig_type;
23503 struct die_info *die;
23504
23505 gdb_assert (attr->form == DW_FORM_ref_sig8);
23506
23507 sig_type = lookup_signatured_type (*ref_cu, signature);
23508 /* sig_type will be NULL if the signatured type is missing from
23509 the debug info. */
23510 if (sig_type == NULL)
23511 {
23512 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23513 " from DIE at %s [in module %s]"),
23514 hex_string (signature), sect_offset_str (src_die->sect_off),
23515 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23516 }
23517
23518 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23519 if (die == NULL)
23520 {
23521 dump_die_for_error (src_die);
23522 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23523 " from DIE at %s [in module %s]"),
23524 hex_string (signature), sect_offset_str (src_die->sect_off),
23525 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23526 }
23527
23528 return die;
23529 }
23530
23531 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23532 reading in and processing the type unit if necessary. */
23533
23534 static struct type *
23535 get_signatured_type (struct die_info *die, ULONGEST signature,
23536 struct dwarf2_cu *cu)
23537 {
23538 struct dwarf2_per_objfile *dwarf2_per_objfile
23539 = cu->per_cu->dwarf2_per_objfile;
23540 struct signatured_type *sig_type;
23541 struct dwarf2_cu *type_cu;
23542 struct die_info *type_die;
23543 struct type *type;
23544
23545 sig_type = lookup_signatured_type (cu, signature);
23546 /* sig_type will be NULL if the signatured type is missing from
23547 the debug info. */
23548 if (sig_type == NULL)
23549 {
23550 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23551 " from DIE at %s [in module %s]"),
23552 hex_string (signature), sect_offset_str (die->sect_off),
23553 objfile_name (dwarf2_per_objfile->objfile));
23554 return build_error_marker_type (cu, die);
23555 }
23556
23557 /* If we already know the type we're done. */
23558 if (sig_type->type != NULL)
23559 return sig_type->type;
23560
23561 type_cu = cu;
23562 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23563 if (type_die != NULL)
23564 {
23565 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23566 is created. This is important, for example, because for c++ classes
23567 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23568 type = read_type_die (type_die, type_cu);
23569 if (type == NULL)
23570 {
23571 complaint (_("Dwarf Error: Cannot build signatured type %s"
23572 " referenced from DIE at %s [in module %s]"),
23573 hex_string (signature), sect_offset_str (die->sect_off),
23574 objfile_name (dwarf2_per_objfile->objfile));
23575 type = build_error_marker_type (cu, die);
23576 }
23577 }
23578 else
23579 {
23580 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23581 " from DIE at %s [in module %s]"),
23582 hex_string (signature), sect_offset_str (die->sect_off),
23583 objfile_name (dwarf2_per_objfile->objfile));
23584 type = build_error_marker_type (cu, die);
23585 }
23586 sig_type->type = type;
23587
23588 return type;
23589 }
23590
23591 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23592 reading in and processing the type unit if necessary. */
23593
23594 static struct type *
23595 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23596 struct dwarf2_cu *cu) /* ARI: editCase function */
23597 {
23598 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23599 if (attr_form_is_ref (attr))
23600 {
23601 struct dwarf2_cu *type_cu = cu;
23602 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23603
23604 return read_type_die (type_die, type_cu);
23605 }
23606 else if (attr->form == DW_FORM_ref_sig8)
23607 {
23608 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23609 }
23610 else
23611 {
23612 struct dwarf2_per_objfile *dwarf2_per_objfile
23613 = cu->per_cu->dwarf2_per_objfile;
23614
23615 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23616 " at %s [in module %s]"),
23617 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23618 objfile_name (dwarf2_per_objfile->objfile));
23619 return build_error_marker_type (cu, die);
23620 }
23621 }
23622
23623 /* Load the DIEs associated with type unit PER_CU into memory. */
23624
23625 static void
23626 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23627 {
23628 struct signatured_type *sig_type;
23629
23630 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23631 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23632
23633 /* We have the per_cu, but we need the signatured_type.
23634 Fortunately this is an easy translation. */
23635 gdb_assert (per_cu->is_debug_types);
23636 sig_type = (struct signatured_type *) per_cu;
23637
23638 gdb_assert (per_cu->cu == NULL);
23639
23640 read_signatured_type (sig_type);
23641
23642 gdb_assert (per_cu->cu != NULL);
23643 }
23644
23645 /* die_reader_func for read_signatured_type.
23646 This is identical to load_full_comp_unit_reader,
23647 but is kept separate for now. */
23648
23649 static void
23650 read_signatured_type_reader (const struct die_reader_specs *reader,
23651 const gdb_byte *info_ptr,
23652 struct die_info *comp_unit_die,
23653 int has_children,
23654 void *data)
23655 {
23656 struct dwarf2_cu *cu = reader->cu;
23657
23658 gdb_assert (cu->die_hash == NULL);
23659 cu->die_hash =
23660 htab_create_alloc_ex (cu->header.length / 12,
23661 die_hash,
23662 die_eq,
23663 NULL,
23664 &cu->comp_unit_obstack,
23665 hashtab_obstack_allocate,
23666 dummy_obstack_deallocate);
23667
23668 if (has_children)
23669 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23670 &info_ptr, comp_unit_die);
23671 cu->dies = comp_unit_die;
23672 /* comp_unit_die is not stored in die_hash, no need. */
23673
23674 /* We try not to read any attributes in this function, because not
23675 all CUs needed for references have been loaded yet, and symbol
23676 table processing isn't initialized. But we have to set the CU language,
23677 or we won't be able to build types correctly.
23678 Similarly, if we do not read the producer, we can not apply
23679 producer-specific interpretation. */
23680 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23681 }
23682
23683 /* Read in a signatured type and build its CU and DIEs.
23684 If the type is a stub for the real type in a DWO file,
23685 read in the real type from the DWO file as well. */
23686
23687 static void
23688 read_signatured_type (struct signatured_type *sig_type)
23689 {
23690 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23691
23692 gdb_assert (per_cu->is_debug_types);
23693 gdb_assert (per_cu->cu == NULL);
23694
23695 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23696 read_signatured_type_reader, NULL);
23697 sig_type->per_cu.tu_read = 1;
23698 }
23699
23700 /* Decode simple location descriptions.
23701 Given a pointer to a dwarf block that defines a location, compute
23702 the location and return the value.
23703
23704 NOTE drow/2003-11-18: This function is called in two situations
23705 now: for the address of static or global variables (partial symbols
23706 only) and for offsets into structures which are expected to be
23707 (more or less) constant. The partial symbol case should go away,
23708 and only the constant case should remain. That will let this
23709 function complain more accurately. A few special modes are allowed
23710 without complaint for global variables (for instance, global
23711 register values and thread-local values).
23712
23713 A location description containing no operations indicates that the
23714 object is optimized out. The return value is 0 for that case.
23715 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23716 callers will only want a very basic result and this can become a
23717 complaint.
23718
23719 Note that stack[0] is unused except as a default error return. */
23720
23721 static CORE_ADDR
23722 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23723 {
23724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23725 size_t i;
23726 size_t size = blk->size;
23727 const gdb_byte *data = blk->data;
23728 CORE_ADDR stack[64];
23729 int stacki;
23730 unsigned int bytes_read, unsnd;
23731 gdb_byte op;
23732
23733 i = 0;
23734 stacki = 0;
23735 stack[stacki] = 0;
23736 stack[++stacki] = 0;
23737
23738 while (i < size)
23739 {
23740 op = data[i++];
23741 switch (op)
23742 {
23743 case DW_OP_lit0:
23744 case DW_OP_lit1:
23745 case DW_OP_lit2:
23746 case DW_OP_lit3:
23747 case DW_OP_lit4:
23748 case DW_OP_lit5:
23749 case DW_OP_lit6:
23750 case DW_OP_lit7:
23751 case DW_OP_lit8:
23752 case DW_OP_lit9:
23753 case DW_OP_lit10:
23754 case DW_OP_lit11:
23755 case DW_OP_lit12:
23756 case DW_OP_lit13:
23757 case DW_OP_lit14:
23758 case DW_OP_lit15:
23759 case DW_OP_lit16:
23760 case DW_OP_lit17:
23761 case DW_OP_lit18:
23762 case DW_OP_lit19:
23763 case DW_OP_lit20:
23764 case DW_OP_lit21:
23765 case DW_OP_lit22:
23766 case DW_OP_lit23:
23767 case DW_OP_lit24:
23768 case DW_OP_lit25:
23769 case DW_OP_lit26:
23770 case DW_OP_lit27:
23771 case DW_OP_lit28:
23772 case DW_OP_lit29:
23773 case DW_OP_lit30:
23774 case DW_OP_lit31:
23775 stack[++stacki] = op - DW_OP_lit0;
23776 break;
23777
23778 case DW_OP_reg0:
23779 case DW_OP_reg1:
23780 case DW_OP_reg2:
23781 case DW_OP_reg3:
23782 case DW_OP_reg4:
23783 case DW_OP_reg5:
23784 case DW_OP_reg6:
23785 case DW_OP_reg7:
23786 case DW_OP_reg8:
23787 case DW_OP_reg9:
23788 case DW_OP_reg10:
23789 case DW_OP_reg11:
23790 case DW_OP_reg12:
23791 case DW_OP_reg13:
23792 case DW_OP_reg14:
23793 case DW_OP_reg15:
23794 case DW_OP_reg16:
23795 case DW_OP_reg17:
23796 case DW_OP_reg18:
23797 case DW_OP_reg19:
23798 case DW_OP_reg20:
23799 case DW_OP_reg21:
23800 case DW_OP_reg22:
23801 case DW_OP_reg23:
23802 case DW_OP_reg24:
23803 case DW_OP_reg25:
23804 case DW_OP_reg26:
23805 case DW_OP_reg27:
23806 case DW_OP_reg28:
23807 case DW_OP_reg29:
23808 case DW_OP_reg30:
23809 case DW_OP_reg31:
23810 stack[++stacki] = op - DW_OP_reg0;
23811 if (i < size)
23812 dwarf2_complex_location_expr_complaint ();
23813 break;
23814
23815 case DW_OP_regx:
23816 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23817 i += bytes_read;
23818 stack[++stacki] = unsnd;
23819 if (i < size)
23820 dwarf2_complex_location_expr_complaint ();
23821 break;
23822
23823 case DW_OP_addr:
23824 stack[++stacki] = read_address (objfile->obfd, &data[i],
23825 cu, &bytes_read);
23826 i += bytes_read;
23827 break;
23828
23829 case DW_OP_const1u:
23830 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23831 i += 1;
23832 break;
23833
23834 case DW_OP_const1s:
23835 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23836 i += 1;
23837 break;
23838
23839 case DW_OP_const2u:
23840 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23841 i += 2;
23842 break;
23843
23844 case DW_OP_const2s:
23845 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23846 i += 2;
23847 break;
23848
23849 case DW_OP_const4u:
23850 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23851 i += 4;
23852 break;
23853
23854 case DW_OP_const4s:
23855 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23856 i += 4;
23857 break;
23858
23859 case DW_OP_const8u:
23860 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23861 i += 8;
23862 break;
23863
23864 case DW_OP_constu:
23865 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23866 &bytes_read);
23867 i += bytes_read;
23868 break;
23869
23870 case DW_OP_consts:
23871 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23872 i += bytes_read;
23873 break;
23874
23875 case DW_OP_dup:
23876 stack[stacki + 1] = stack[stacki];
23877 stacki++;
23878 break;
23879
23880 case DW_OP_plus:
23881 stack[stacki - 1] += stack[stacki];
23882 stacki--;
23883 break;
23884
23885 case DW_OP_plus_uconst:
23886 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23887 &bytes_read);
23888 i += bytes_read;
23889 break;
23890
23891 case DW_OP_minus:
23892 stack[stacki - 1] -= stack[stacki];
23893 stacki--;
23894 break;
23895
23896 case DW_OP_deref:
23897 /* If we're not the last op, then we definitely can't encode
23898 this using GDB's address_class enum. This is valid for partial
23899 global symbols, although the variable's address will be bogus
23900 in the psymtab. */
23901 if (i < size)
23902 dwarf2_complex_location_expr_complaint ();
23903 break;
23904
23905 case DW_OP_GNU_push_tls_address:
23906 case DW_OP_form_tls_address:
23907 /* The top of the stack has the offset from the beginning
23908 of the thread control block at which the variable is located. */
23909 /* Nothing should follow this operator, so the top of stack would
23910 be returned. */
23911 /* This is valid for partial global symbols, but the variable's
23912 address will be bogus in the psymtab. Make it always at least
23913 non-zero to not look as a variable garbage collected by linker
23914 which have DW_OP_addr 0. */
23915 if (i < size)
23916 dwarf2_complex_location_expr_complaint ();
23917 stack[stacki]++;
23918 break;
23919
23920 case DW_OP_GNU_uninit:
23921 break;
23922
23923 case DW_OP_addrx:
23924 case DW_OP_GNU_addr_index:
23925 case DW_OP_GNU_const_index:
23926 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23927 &bytes_read);
23928 i += bytes_read;
23929 break;
23930
23931 default:
23932 {
23933 const char *name = get_DW_OP_name (op);
23934
23935 if (name)
23936 complaint (_("unsupported stack op: '%s'"),
23937 name);
23938 else
23939 complaint (_("unsupported stack op: '%02x'"),
23940 op);
23941 }
23942
23943 return (stack[stacki]);
23944 }
23945
23946 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23947 outside of the allocated space. Also enforce minimum>0. */
23948 if (stacki >= ARRAY_SIZE (stack) - 1)
23949 {
23950 complaint (_("location description stack overflow"));
23951 return 0;
23952 }
23953
23954 if (stacki <= 0)
23955 {
23956 complaint (_("location description stack underflow"));
23957 return 0;
23958 }
23959 }
23960 return (stack[stacki]);
23961 }
23962
23963 /* memory allocation interface */
23964
23965 static struct dwarf_block *
23966 dwarf_alloc_block (struct dwarf2_cu *cu)
23967 {
23968 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23969 }
23970
23971 static struct die_info *
23972 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23973 {
23974 struct die_info *die;
23975 size_t size = sizeof (struct die_info);
23976
23977 if (num_attrs > 1)
23978 size += (num_attrs - 1) * sizeof (struct attribute);
23979
23980 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23981 memset (die, 0, sizeof (struct die_info));
23982 return (die);
23983 }
23984
23985 \f
23986 /* Macro support. */
23987
23988 /* Return file name relative to the compilation directory of file number I in
23989 *LH's file name table. The result is allocated using xmalloc; the caller is
23990 responsible for freeing it. */
23991
23992 static char *
23993 file_file_name (int file, struct line_header *lh)
23994 {
23995 /* Is the file number a valid index into the line header's file name
23996 table? Remember that file numbers start with one, not zero. */
23997 if (1 <= file && file <= lh->file_names.size ())
23998 {
23999 const file_entry &fe = lh->file_names[file - 1];
24000
24001 if (!IS_ABSOLUTE_PATH (fe.name))
24002 {
24003 const char *dir = fe.include_dir (lh);
24004 if (dir != NULL)
24005 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24006 }
24007 return xstrdup (fe.name);
24008 }
24009 else
24010 {
24011 /* The compiler produced a bogus file number. We can at least
24012 record the macro definitions made in the file, even if we
24013 won't be able to find the file by name. */
24014 char fake_name[80];
24015
24016 xsnprintf (fake_name, sizeof (fake_name),
24017 "<bad macro file number %d>", file);
24018
24019 complaint (_("bad file number in macro information (%d)"),
24020 file);
24021
24022 return xstrdup (fake_name);
24023 }
24024 }
24025
24026 /* Return the full name of file number I in *LH's file name table.
24027 Use COMP_DIR as the name of the current directory of the
24028 compilation. The result is allocated using xmalloc; the caller is
24029 responsible for freeing it. */
24030 static char *
24031 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24032 {
24033 /* Is the file number a valid index into the line header's file name
24034 table? Remember that file numbers start with one, not zero. */
24035 if (1 <= file && file <= lh->file_names.size ())
24036 {
24037 char *relative = file_file_name (file, lh);
24038
24039 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24040 return relative;
24041 return reconcat (relative, comp_dir, SLASH_STRING,
24042 relative, (char *) NULL);
24043 }
24044 else
24045 return file_file_name (file, lh);
24046 }
24047
24048
24049 static struct macro_source_file *
24050 macro_start_file (struct dwarf2_cu *cu,
24051 int file, int line,
24052 struct macro_source_file *current_file,
24053 struct line_header *lh)
24054 {
24055 /* File name relative to the compilation directory of this source file. */
24056 char *file_name = file_file_name (file, lh);
24057
24058 if (! current_file)
24059 {
24060 /* Note: We don't create a macro table for this compilation unit
24061 at all until we actually get a filename. */
24062 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24063
24064 /* If we have no current file, then this must be the start_file
24065 directive for the compilation unit's main source file. */
24066 current_file = macro_set_main (macro_table, file_name);
24067 macro_define_special (macro_table);
24068 }
24069 else
24070 current_file = macro_include (current_file, line, file_name);
24071
24072 xfree (file_name);
24073
24074 return current_file;
24075 }
24076
24077 static const char *
24078 consume_improper_spaces (const char *p, const char *body)
24079 {
24080 if (*p == ' ')
24081 {
24082 complaint (_("macro definition contains spaces "
24083 "in formal argument list:\n`%s'"),
24084 body);
24085
24086 while (*p == ' ')
24087 p++;
24088 }
24089
24090 return p;
24091 }
24092
24093
24094 static void
24095 parse_macro_definition (struct macro_source_file *file, int line,
24096 const char *body)
24097 {
24098 const char *p;
24099
24100 /* The body string takes one of two forms. For object-like macro
24101 definitions, it should be:
24102
24103 <macro name> " " <definition>
24104
24105 For function-like macro definitions, it should be:
24106
24107 <macro name> "() " <definition>
24108 or
24109 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24110
24111 Spaces may appear only where explicitly indicated, and in the
24112 <definition>.
24113
24114 The Dwarf 2 spec says that an object-like macro's name is always
24115 followed by a space, but versions of GCC around March 2002 omit
24116 the space when the macro's definition is the empty string.
24117
24118 The Dwarf 2 spec says that there should be no spaces between the
24119 formal arguments in a function-like macro's formal argument list,
24120 but versions of GCC around March 2002 include spaces after the
24121 commas. */
24122
24123
24124 /* Find the extent of the macro name. The macro name is terminated
24125 by either a space or null character (for an object-like macro) or
24126 an opening paren (for a function-like macro). */
24127 for (p = body; *p; p++)
24128 if (*p == ' ' || *p == '(')
24129 break;
24130
24131 if (*p == ' ' || *p == '\0')
24132 {
24133 /* It's an object-like macro. */
24134 int name_len = p - body;
24135 char *name = savestring (body, name_len);
24136 const char *replacement;
24137
24138 if (*p == ' ')
24139 replacement = body + name_len + 1;
24140 else
24141 {
24142 dwarf2_macro_malformed_definition_complaint (body);
24143 replacement = body + name_len;
24144 }
24145
24146 macro_define_object (file, line, name, replacement);
24147
24148 xfree (name);
24149 }
24150 else if (*p == '(')
24151 {
24152 /* It's a function-like macro. */
24153 char *name = savestring (body, p - body);
24154 int argc = 0;
24155 int argv_size = 1;
24156 char **argv = XNEWVEC (char *, argv_size);
24157
24158 p++;
24159
24160 p = consume_improper_spaces (p, body);
24161
24162 /* Parse the formal argument list. */
24163 while (*p && *p != ')')
24164 {
24165 /* Find the extent of the current argument name. */
24166 const char *arg_start = p;
24167
24168 while (*p && *p != ',' && *p != ')' && *p != ' ')
24169 p++;
24170
24171 if (! *p || p == arg_start)
24172 dwarf2_macro_malformed_definition_complaint (body);
24173 else
24174 {
24175 /* Make sure argv has room for the new argument. */
24176 if (argc >= argv_size)
24177 {
24178 argv_size *= 2;
24179 argv = XRESIZEVEC (char *, argv, argv_size);
24180 }
24181
24182 argv[argc++] = savestring (arg_start, p - arg_start);
24183 }
24184
24185 p = consume_improper_spaces (p, body);
24186
24187 /* Consume the comma, if present. */
24188 if (*p == ',')
24189 {
24190 p++;
24191
24192 p = consume_improper_spaces (p, body);
24193 }
24194 }
24195
24196 if (*p == ')')
24197 {
24198 p++;
24199
24200 if (*p == ' ')
24201 /* Perfectly formed definition, no complaints. */
24202 macro_define_function (file, line, name,
24203 argc, (const char **) argv,
24204 p + 1);
24205 else if (*p == '\0')
24206 {
24207 /* Complain, but do define it. */
24208 dwarf2_macro_malformed_definition_complaint (body);
24209 macro_define_function (file, line, name,
24210 argc, (const char **) argv,
24211 p);
24212 }
24213 else
24214 /* Just complain. */
24215 dwarf2_macro_malformed_definition_complaint (body);
24216 }
24217 else
24218 /* Just complain. */
24219 dwarf2_macro_malformed_definition_complaint (body);
24220
24221 xfree (name);
24222 {
24223 int i;
24224
24225 for (i = 0; i < argc; i++)
24226 xfree (argv[i]);
24227 }
24228 xfree (argv);
24229 }
24230 else
24231 dwarf2_macro_malformed_definition_complaint (body);
24232 }
24233
24234 /* Skip some bytes from BYTES according to the form given in FORM.
24235 Returns the new pointer. */
24236
24237 static const gdb_byte *
24238 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24239 enum dwarf_form form,
24240 unsigned int offset_size,
24241 struct dwarf2_section_info *section)
24242 {
24243 unsigned int bytes_read;
24244
24245 switch (form)
24246 {
24247 case DW_FORM_data1:
24248 case DW_FORM_flag:
24249 ++bytes;
24250 break;
24251
24252 case DW_FORM_data2:
24253 bytes += 2;
24254 break;
24255
24256 case DW_FORM_data4:
24257 bytes += 4;
24258 break;
24259
24260 case DW_FORM_data8:
24261 bytes += 8;
24262 break;
24263
24264 case DW_FORM_data16:
24265 bytes += 16;
24266 break;
24267
24268 case DW_FORM_string:
24269 read_direct_string (abfd, bytes, &bytes_read);
24270 bytes += bytes_read;
24271 break;
24272
24273 case DW_FORM_sec_offset:
24274 case DW_FORM_strp:
24275 case DW_FORM_GNU_strp_alt:
24276 bytes += offset_size;
24277 break;
24278
24279 case DW_FORM_block:
24280 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24281 bytes += bytes_read;
24282 break;
24283
24284 case DW_FORM_block1:
24285 bytes += 1 + read_1_byte (abfd, bytes);
24286 break;
24287 case DW_FORM_block2:
24288 bytes += 2 + read_2_bytes (abfd, bytes);
24289 break;
24290 case DW_FORM_block4:
24291 bytes += 4 + read_4_bytes (abfd, bytes);
24292 break;
24293
24294 case DW_FORM_addrx:
24295 case DW_FORM_sdata:
24296 case DW_FORM_udata:
24297 case DW_FORM_GNU_addr_index:
24298 case DW_FORM_GNU_str_index:
24299 bytes = gdb_skip_leb128 (bytes, buffer_end);
24300 if (bytes == NULL)
24301 {
24302 dwarf2_section_buffer_overflow_complaint (section);
24303 return NULL;
24304 }
24305 break;
24306
24307 case DW_FORM_implicit_const:
24308 break;
24309
24310 default:
24311 {
24312 complaint (_("invalid form 0x%x in `%s'"),
24313 form, get_section_name (section));
24314 return NULL;
24315 }
24316 }
24317
24318 return bytes;
24319 }
24320
24321 /* A helper for dwarf_decode_macros that handles skipping an unknown
24322 opcode. Returns an updated pointer to the macro data buffer; or,
24323 on error, issues a complaint and returns NULL. */
24324
24325 static const gdb_byte *
24326 skip_unknown_opcode (unsigned int opcode,
24327 const gdb_byte **opcode_definitions,
24328 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24329 bfd *abfd,
24330 unsigned int offset_size,
24331 struct dwarf2_section_info *section)
24332 {
24333 unsigned int bytes_read, i;
24334 unsigned long arg;
24335 const gdb_byte *defn;
24336
24337 if (opcode_definitions[opcode] == NULL)
24338 {
24339 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24340 opcode);
24341 return NULL;
24342 }
24343
24344 defn = opcode_definitions[opcode];
24345 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24346 defn += bytes_read;
24347
24348 for (i = 0; i < arg; ++i)
24349 {
24350 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24351 (enum dwarf_form) defn[i], offset_size,
24352 section);
24353 if (mac_ptr == NULL)
24354 {
24355 /* skip_form_bytes already issued the complaint. */
24356 return NULL;
24357 }
24358 }
24359
24360 return mac_ptr;
24361 }
24362
24363 /* A helper function which parses the header of a macro section.
24364 If the macro section is the extended (for now called "GNU") type,
24365 then this updates *OFFSET_SIZE. Returns a pointer to just after
24366 the header, or issues a complaint and returns NULL on error. */
24367
24368 static const gdb_byte *
24369 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24370 bfd *abfd,
24371 const gdb_byte *mac_ptr,
24372 unsigned int *offset_size,
24373 int section_is_gnu)
24374 {
24375 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24376
24377 if (section_is_gnu)
24378 {
24379 unsigned int version, flags;
24380
24381 version = read_2_bytes (abfd, mac_ptr);
24382 if (version != 4 && version != 5)
24383 {
24384 complaint (_("unrecognized version `%d' in .debug_macro section"),
24385 version);
24386 return NULL;
24387 }
24388 mac_ptr += 2;
24389
24390 flags = read_1_byte (abfd, mac_ptr);
24391 ++mac_ptr;
24392 *offset_size = (flags & 1) ? 8 : 4;
24393
24394 if ((flags & 2) != 0)
24395 /* We don't need the line table offset. */
24396 mac_ptr += *offset_size;
24397
24398 /* Vendor opcode descriptions. */
24399 if ((flags & 4) != 0)
24400 {
24401 unsigned int i, count;
24402
24403 count = read_1_byte (abfd, mac_ptr);
24404 ++mac_ptr;
24405 for (i = 0; i < count; ++i)
24406 {
24407 unsigned int opcode, bytes_read;
24408 unsigned long arg;
24409
24410 opcode = read_1_byte (abfd, mac_ptr);
24411 ++mac_ptr;
24412 opcode_definitions[opcode] = mac_ptr;
24413 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24414 mac_ptr += bytes_read;
24415 mac_ptr += arg;
24416 }
24417 }
24418 }
24419
24420 return mac_ptr;
24421 }
24422
24423 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24424 including DW_MACRO_import. */
24425
24426 static void
24427 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24428 bfd *abfd,
24429 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24430 struct macro_source_file *current_file,
24431 struct line_header *lh,
24432 struct dwarf2_section_info *section,
24433 int section_is_gnu, int section_is_dwz,
24434 unsigned int offset_size,
24435 htab_t include_hash)
24436 {
24437 struct dwarf2_per_objfile *dwarf2_per_objfile
24438 = cu->per_cu->dwarf2_per_objfile;
24439 struct objfile *objfile = dwarf2_per_objfile->objfile;
24440 enum dwarf_macro_record_type macinfo_type;
24441 int at_commandline;
24442 const gdb_byte *opcode_definitions[256];
24443
24444 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24445 &offset_size, section_is_gnu);
24446 if (mac_ptr == NULL)
24447 {
24448 /* We already issued a complaint. */
24449 return;
24450 }
24451
24452 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24453 GDB is still reading the definitions from command line. First
24454 DW_MACINFO_start_file will need to be ignored as it was already executed
24455 to create CURRENT_FILE for the main source holding also the command line
24456 definitions. On first met DW_MACINFO_start_file this flag is reset to
24457 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24458
24459 at_commandline = 1;
24460
24461 do
24462 {
24463 /* Do we at least have room for a macinfo type byte? */
24464 if (mac_ptr >= mac_end)
24465 {
24466 dwarf2_section_buffer_overflow_complaint (section);
24467 break;
24468 }
24469
24470 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24471 mac_ptr++;
24472
24473 /* Note that we rely on the fact that the corresponding GNU and
24474 DWARF constants are the same. */
24475 DIAGNOSTIC_PUSH
24476 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24477 switch (macinfo_type)
24478 {
24479 /* A zero macinfo type indicates the end of the macro
24480 information. */
24481 case 0:
24482 break;
24483
24484 case DW_MACRO_define:
24485 case DW_MACRO_undef:
24486 case DW_MACRO_define_strp:
24487 case DW_MACRO_undef_strp:
24488 case DW_MACRO_define_sup:
24489 case DW_MACRO_undef_sup:
24490 {
24491 unsigned int bytes_read;
24492 int line;
24493 const char *body;
24494 int is_define;
24495
24496 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24497 mac_ptr += bytes_read;
24498
24499 if (macinfo_type == DW_MACRO_define
24500 || macinfo_type == DW_MACRO_undef)
24501 {
24502 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24503 mac_ptr += bytes_read;
24504 }
24505 else
24506 {
24507 LONGEST str_offset;
24508
24509 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24510 mac_ptr += offset_size;
24511
24512 if (macinfo_type == DW_MACRO_define_sup
24513 || macinfo_type == DW_MACRO_undef_sup
24514 || section_is_dwz)
24515 {
24516 struct dwz_file *dwz
24517 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24518
24519 body = read_indirect_string_from_dwz (objfile,
24520 dwz, str_offset);
24521 }
24522 else
24523 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24524 abfd, str_offset);
24525 }
24526
24527 is_define = (macinfo_type == DW_MACRO_define
24528 || macinfo_type == DW_MACRO_define_strp
24529 || macinfo_type == DW_MACRO_define_sup);
24530 if (! current_file)
24531 {
24532 /* DWARF violation as no main source is present. */
24533 complaint (_("debug info with no main source gives macro %s "
24534 "on line %d: %s"),
24535 is_define ? _("definition") : _("undefinition"),
24536 line, body);
24537 break;
24538 }
24539 if ((line == 0 && !at_commandline)
24540 || (line != 0 && at_commandline))
24541 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24542 at_commandline ? _("command-line") : _("in-file"),
24543 is_define ? _("definition") : _("undefinition"),
24544 line == 0 ? _("zero") : _("non-zero"), line, body);
24545
24546 if (is_define)
24547 parse_macro_definition (current_file, line, body);
24548 else
24549 {
24550 gdb_assert (macinfo_type == DW_MACRO_undef
24551 || macinfo_type == DW_MACRO_undef_strp
24552 || macinfo_type == DW_MACRO_undef_sup);
24553 macro_undef (current_file, line, body);
24554 }
24555 }
24556 break;
24557
24558 case DW_MACRO_start_file:
24559 {
24560 unsigned int bytes_read;
24561 int line, file;
24562
24563 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24564 mac_ptr += bytes_read;
24565 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24566 mac_ptr += bytes_read;
24567
24568 if ((line == 0 && !at_commandline)
24569 || (line != 0 && at_commandline))
24570 complaint (_("debug info gives source %d included "
24571 "from %s at %s line %d"),
24572 file, at_commandline ? _("command-line") : _("file"),
24573 line == 0 ? _("zero") : _("non-zero"), line);
24574
24575 if (at_commandline)
24576 {
24577 /* This DW_MACRO_start_file was executed in the
24578 pass one. */
24579 at_commandline = 0;
24580 }
24581 else
24582 current_file = macro_start_file (cu, file, line, current_file,
24583 lh);
24584 }
24585 break;
24586
24587 case DW_MACRO_end_file:
24588 if (! current_file)
24589 complaint (_("macro debug info has an unmatched "
24590 "`close_file' directive"));
24591 else
24592 {
24593 current_file = current_file->included_by;
24594 if (! current_file)
24595 {
24596 enum dwarf_macro_record_type next_type;
24597
24598 /* GCC circa March 2002 doesn't produce the zero
24599 type byte marking the end of the compilation
24600 unit. Complain if it's not there, but exit no
24601 matter what. */
24602
24603 /* Do we at least have room for a macinfo type byte? */
24604 if (mac_ptr >= mac_end)
24605 {
24606 dwarf2_section_buffer_overflow_complaint (section);
24607 return;
24608 }
24609
24610 /* We don't increment mac_ptr here, so this is just
24611 a look-ahead. */
24612 next_type
24613 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24614 mac_ptr);
24615 if (next_type != 0)
24616 complaint (_("no terminating 0-type entry for "
24617 "macros in `.debug_macinfo' section"));
24618
24619 return;
24620 }
24621 }
24622 break;
24623
24624 case DW_MACRO_import:
24625 case DW_MACRO_import_sup:
24626 {
24627 LONGEST offset;
24628 void **slot;
24629 bfd *include_bfd = abfd;
24630 struct dwarf2_section_info *include_section = section;
24631 const gdb_byte *include_mac_end = mac_end;
24632 int is_dwz = section_is_dwz;
24633 const gdb_byte *new_mac_ptr;
24634
24635 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24636 mac_ptr += offset_size;
24637
24638 if (macinfo_type == DW_MACRO_import_sup)
24639 {
24640 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24641
24642 dwarf2_read_section (objfile, &dwz->macro);
24643
24644 include_section = &dwz->macro;
24645 include_bfd = get_section_bfd_owner (include_section);
24646 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24647 is_dwz = 1;
24648 }
24649
24650 new_mac_ptr = include_section->buffer + offset;
24651 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24652
24653 if (*slot != NULL)
24654 {
24655 /* This has actually happened; see
24656 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24657 complaint (_("recursive DW_MACRO_import in "
24658 ".debug_macro section"));
24659 }
24660 else
24661 {
24662 *slot = (void *) new_mac_ptr;
24663
24664 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24665 include_mac_end, current_file, lh,
24666 section, section_is_gnu, is_dwz,
24667 offset_size, include_hash);
24668
24669 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24670 }
24671 }
24672 break;
24673
24674 case DW_MACINFO_vendor_ext:
24675 if (!section_is_gnu)
24676 {
24677 unsigned int bytes_read;
24678
24679 /* This reads the constant, but since we don't recognize
24680 any vendor extensions, we ignore it. */
24681 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24682 mac_ptr += bytes_read;
24683 read_direct_string (abfd, mac_ptr, &bytes_read);
24684 mac_ptr += bytes_read;
24685
24686 /* We don't recognize any vendor extensions. */
24687 break;
24688 }
24689 /* FALLTHROUGH */
24690
24691 default:
24692 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24693 mac_ptr, mac_end, abfd, offset_size,
24694 section);
24695 if (mac_ptr == NULL)
24696 return;
24697 break;
24698 }
24699 DIAGNOSTIC_POP
24700 } while (macinfo_type != 0);
24701 }
24702
24703 static void
24704 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24705 int section_is_gnu)
24706 {
24707 struct dwarf2_per_objfile *dwarf2_per_objfile
24708 = cu->per_cu->dwarf2_per_objfile;
24709 struct objfile *objfile = dwarf2_per_objfile->objfile;
24710 struct line_header *lh = cu->line_header;
24711 bfd *abfd;
24712 const gdb_byte *mac_ptr, *mac_end;
24713 struct macro_source_file *current_file = 0;
24714 enum dwarf_macro_record_type macinfo_type;
24715 unsigned int offset_size = cu->header.offset_size;
24716 const gdb_byte *opcode_definitions[256];
24717 void **slot;
24718 struct dwarf2_section_info *section;
24719 const char *section_name;
24720
24721 if (cu->dwo_unit != NULL)
24722 {
24723 if (section_is_gnu)
24724 {
24725 section = &cu->dwo_unit->dwo_file->sections.macro;
24726 section_name = ".debug_macro.dwo";
24727 }
24728 else
24729 {
24730 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24731 section_name = ".debug_macinfo.dwo";
24732 }
24733 }
24734 else
24735 {
24736 if (section_is_gnu)
24737 {
24738 section = &dwarf2_per_objfile->macro;
24739 section_name = ".debug_macro";
24740 }
24741 else
24742 {
24743 section = &dwarf2_per_objfile->macinfo;
24744 section_name = ".debug_macinfo";
24745 }
24746 }
24747
24748 dwarf2_read_section (objfile, section);
24749 if (section->buffer == NULL)
24750 {
24751 complaint (_("missing %s section"), section_name);
24752 return;
24753 }
24754 abfd = get_section_bfd_owner (section);
24755
24756 /* First pass: Find the name of the base filename.
24757 This filename is needed in order to process all macros whose definition
24758 (or undefinition) comes from the command line. These macros are defined
24759 before the first DW_MACINFO_start_file entry, and yet still need to be
24760 associated to the base file.
24761
24762 To determine the base file name, we scan the macro definitions until we
24763 reach the first DW_MACINFO_start_file entry. We then initialize
24764 CURRENT_FILE accordingly so that any macro definition found before the
24765 first DW_MACINFO_start_file can still be associated to the base file. */
24766
24767 mac_ptr = section->buffer + offset;
24768 mac_end = section->buffer + section->size;
24769
24770 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24771 &offset_size, section_is_gnu);
24772 if (mac_ptr == NULL)
24773 {
24774 /* We already issued a complaint. */
24775 return;
24776 }
24777
24778 do
24779 {
24780 /* Do we at least have room for a macinfo type byte? */
24781 if (mac_ptr >= mac_end)
24782 {
24783 /* Complaint is printed during the second pass as GDB will probably
24784 stop the first pass earlier upon finding
24785 DW_MACINFO_start_file. */
24786 break;
24787 }
24788
24789 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24790 mac_ptr++;
24791
24792 /* Note that we rely on the fact that the corresponding GNU and
24793 DWARF constants are the same. */
24794 DIAGNOSTIC_PUSH
24795 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24796 switch (macinfo_type)
24797 {
24798 /* A zero macinfo type indicates the end of the macro
24799 information. */
24800 case 0:
24801 break;
24802
24803 case DW_MACRO_define:
24804 case DW_MACRO_undef:
24805 /* Only skip the data by MAC_PTR. */
24806 {
24807 unsigned int bytes_read;
24808
24809 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24810 mac_ptr += bytes_read;
24811 read_direct_string (abfd, mac_ptr, &bytes_read);
24812 mac_ptr += bytes_read;
24813 }
24814 break;
24815
24816 case DW_MACRO_start_file:
24817 {
24818 unsigned int bytes_read;
24819 int line, file;
24820
24821 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24822 mac_ptr += bytes_read;
24823 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24824 mac_ptr += bytes_read;
24825
24826 current_file = macro_start_file (cu, file, line, current_file, lh);
24827 }
24828 break;
24829
24830 case DW_MACRO_end_file:
24831 /* No data to skip by MAC_PTR. */
24832 break;
24833
24834 case DW_MACRO_define_strp:
24835 case DW_MACRO_undef_strp:
24836 case DW_MACRO_define_sup:
24837 case DW_MACRO_undef_sup:
24838 {
24839 unsigned int bytes_read;
24840
24841 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24842 mac_ptr += bytes_read;
24843 mac_ptr += offset_size;
24844 }
24845 break;
24846
24847 case DW_MACRO_import:
24848 case DW_MACRO_import_sup:
24849 /* Note that, according to the spec, a transparent include
24850 chain cannot call DW_MACRO_start_file. So, we can just
24851 skip this opcode. */
24852 mac_ptr += offset_size;
24853 break;
24854
24855 case DW_MACINFO_vendor_ext:
24856 /* Only skip the data by MAC_PTR. */
24857 if (!section_is_gnu)
24858 {
24859 unsigned int bytes_read;
24860
24861 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24862 mac_ptr += bytes_read;
24863 read_direct_string (abfd, mac_ptr, &bytes_read);
24864 mac_ptr += bytes_read;
24865 }
24866 /* FALLTHROUGH */
24867
24868 default:
24869 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24870 mac_ptr, mac_end, abfd, offset_size,
24871 section);
24872 if (mac_ptr == NULL)
24873 return;
24874 break;
24875 }
24876 DIAGNOSTIC_POP
24877 } while (macinfo_type != 0 && current_file == NULL);
24878
24879 /* Second pass: Process all entries.
24880
24881 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24882 command-line macro definitions/undefinitions. This flag is unset when we
24883 reach the first DW_MACINFO_start_file entry. */
24884
24885 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24886 htab_eq_pointer,
24887 NULL, xcalloc, xfree));
24888 mac_ptr = section->buffer + offset;
24889 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24890 *slot = (void *) mac_ptr;
24891 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24892 current_file, lh, section,
24893 section_is_gnu, 0, offset_size,
24894 include_hash.get ());
24895 }
24896
24897 /* Check if the attribute's form is a DW_FORM_block*
24898 if so return true else false. */
24899
24900 static int
24901 attr_form_is_block (const struct attribute *attr)
24902 {
24903 return (attr == NULL ? 0 :
24904 attr->form == DW_FORM_block1
24905 || attr->form == DW_FORM_block2
24906 || attr->form == DW_FORM_block4
24907 || attr->form == DW_FORM_block
24908 || attr->form == DW_FORM_exprloc);
24909 }
24910
24911 /* Return non-zero if ATTR's value is a section offset --- classes
24912 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24913 You may use DW_UNSND (attr) to retrieve such offsets.
24914
24915 Section 7.5.4, "Attribute Encodings", explains that no attribute
24916 may have a value that belongs to more than one of these classes; it
24917 would be ambiguous if we did, because we use the same forms for all
24918 of them. */
24919
24920 static int
24921 attr_form_is_section_offset (const struct attribute *attr)
24922 {
24923 return (attr->form == DW_FORM_data4
24924 || attr->form == DW_FORM_data8
24925 || attr->form == DW_FORM_sec_offset);
24926 }
24927
24928 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24929 zero otherwise. When this function returns true, you can apply
24930 dwarf2_get_attr_constant_value to it.
24931
24932 However, note that for some attributes you must check
24933 attr_form_is_section_offset before using this test. DW_FORM_data4
24934 and DW_FORM_data8 are members of both the constant class, and of
24935 the classes that contain offsets into other debug sections
24936 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24937 that, if an attribute's can be either a constant or one of the
24938 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24939 taken as section offsets, not constants.
24940
24941 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24942 cannot handle that. */
24943
24944 static int
24945 attr_form_is_constant (const struct attribute *attr)
24946 {
24947 switch (attr->form)
24948 {
24949 case DW_FORM_sdata:
24950 case DW_FORM_udata:
24951 case DW_FORM_data1:
24952 case DW_FORM_data2:
24953 case DW_FORM_data4:
24954 case DW_FORM_data8:
24955 case DW_FORM_implicit_const:
24956 return 1;
24957 default:
24958 return 0;
24959 }
24960 }
24961
24962
24963 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24964 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24965
24966 static int
24967 attr_form_is_ref (const struct attribute *attr)
24968 {
24969 switch (attr->form)
24970 {
24971 case DW_FORM_ref_addr:
24972 case DW_FORM_ref1:
24973 case DW_FORM_ref2:
24974 case DW_FORM_ref4:
24975 case DW_FORM_ref8:
24976 case DW_FORM_ref_udata:
24977 case DW_FORM_GNU_ref_alt:
24978 return 1;
24979 default:
24980 return 0;
24981 }
24982 }
24983
24984 /* Return the .debug_loc section to use for CU.
24985 For DWO files use .debug_loc.dwo. */
24986
24987 static struct dwarf2_section_info *
24988 cu_debug_loc_section (struct dwarf2_cu *cu)
24989 {
24990 struct dwarf2_per_objfile *dwarf2_per_objfile
24991 = cu->per_cu->dwarf2_per_objfile;
24992
24993 if (cu->dwo_unit)
24994 {
24995 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24996
24997 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24998 }
24999 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25000 : &dwarf2_per_objfile->loc);
25001 }
25002
25003 /* A helper function that fills in a dwarf2_loclist_baton. */
25004
25005 static void
25006 fill_in_loclist_baton (struct dwarf2_cu *cu,
25007 struct dwarf2_loclist_baton *baton,
25008 const struct attribute *attr)
25009 {
25010 struct dwarf2_per_objfile *dwarf2_per_objfile
25011 = cu->per_cu->dwarf2_per_objfile;
25012 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25013
25014 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25015
25016 baton->per_cu = cu->per_cu;
25017 gdb_assert (baton->per_cu);
25018 /* We don't know how long the location list is, but make sure we
25019 don't run off the edge of the section. */
25020 baton->size = section->size - DW_UNSND (attr);
25021 baton->data = section->buffer + DW_UNSND (attr);
25022 baton->base_address = cu->base_address;
25023 baton->from_dwo = cu->dwo_unit != NULL;
25024 }
25025
25026 static void
25027 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25028 struct dwarf2_cu *cu, int is_block)
25029 {
25030 struct dwarf2_per_objfile *dwarf2_per_objfile
25031 = cu->per_cu->dwarf2_per_objfile;
25032 struct objfile *objfile = dwarf2_per_objfile->objfile;
25033 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25034
25035 if (attr_form_is_section_offset (attr)
25036 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25037 the section. If so, fall through to the complaint in the
25038 other branch. */
25039 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25040 {
25041 struct dwarf2_loclist_baton *baton;
25042
25043 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25044
25045 fill_in_loclist_baton (cu, baton, attr);
25046
25047 if (cu->base_known == 0)
25048 complaint (_("Location list used without "
25049 "specifying the CU base address."));
25050
25051 SYMBOL_ACLASS_INDEX (sym) = (is_block
25052 ? dwarf2_loclist_block_index
25053 : dwarf2_loclist_index);
25054 SYMBOL_LOCATION_BATON (sym) = baton;
25055 }
25056 else
25057 {
25058 struct dwarf2_locexpr_baton *baton;
25059
25060 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25061 baton->per_cu = cu->per_cu;
25062 gdb_assert (baton->per_cu);
25063
25064 if (attr_form_is_block (attr))
25065 {
25066 /* Note that we're just copying the block's data pointer
25067 here, not the actual data. We're still pointing into the
25068 info_buffer for SYM's objfile; right now we never release
25069 that buffer, but when we do clean up properly this may
25070 need to change. */
25071 baton->size = DW_BLOCK (attr)->size;
25072 baton->data = DW_BLOCK (attr)->data;
25073 }
25074 else
25075 {
25076 dwarf2_invalid_attrib_class_complaint ("location description",
25077 SYMBOL_NATURAL_NAME (sym));
25078 baton->size = 0;
25079 }
25080
25081 SYMBOL_ACLASS_INDEX (sym) = (is_block
25082 ? dwarf2_locexpr_block_index
25083 : dwarf2_locexpr_index);
25084 SYMBOL_LOCATION_BATON (sym) = baton;
25085 }
25086 }
25087
25088 /* Return the OBJFILE associated with the compilation unit CU. If CU
25089 came from a separate debuginfo file, then the master objfile is
25090 returned. */
25091
25092 struct objfile *
25093 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25094 {
25095 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25096
25097 /* Return the master objfile, so that we can report and look up the
25098 correct file containing this variable. */
25099 if (objfile->separate_debug_objfile_backlink)
25100 objfile = objfile->separate_debug_objfile_backlink;
25101
25102 return objfile;
25103 }
25104
25105 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25106 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25107 CU_HEADERP first. */
25108
25109 static const struct comp_unit_head *
25110 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25111 struct dwarf2_per_cu_data *per_cu)
25112 {
25113 const gdb_byte *info_ptr;
25114
25115 if (per_cu->cu)
25116 return &per_cu->cu->header;
25117
25118 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25119
25120 memset (cu_headerp, 0, sizeof (*cu_headerp));
25121 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25122 rcuh_kind::COMPILE);
25123
25124 return cu_headerp;
25125 }
25126
25127 /* Return the address size given in the compilation unit header for CU. */
25128
25129 int
25130 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25131 {
25132 struct comp_unit_head cu_header_local;
25133 const struct comp_unit_head *cu_headerp;
25134
25135 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25136
25137 return cu_headerp->addr_size;
25138 }
25139
25140 /* Return the offset size given in the compilation unit header for CU. */
25141
25142 int
25143 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25144 {
25145 struct comp_unit_head cu_header_local;
25146 const struct comp_unit_head *cu_headerp;
25147
25148 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25149
25150 return cu_headerp->offset_size;
25151 }
25152
25153 /* See its dwarf2loc.h declaration. */
25154
25155 int
25156 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25157 {
25158 struct comp_unit_head cu_header_local;
25159 const struct comp_unit_head *cu_headerp;
25160
25161 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25162
25163 if (cu_headerp->version == 2)
25164 return cu_headerp->addr_size;
25165 else
25166 return cu_headerp->offset_size;
25167 }
25168
25169 /* Return the text offset of the CU. The returned offset comes from
25170 this CU's objfile. If this objfile came from a separate debuginfo
25171 file, then the offset may be different from the corresponding
25172 offset in the parent objfile. */
25173
25174 CORE_ADDR
25175 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25176 {
25177 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25178
25179 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25180 }
25181
25182 /* Return DWARF version number of PER_CU. */
25183
25184 short
25185 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25186 {
25187 return per_cu->dwarf_version;
25188 }
25189
25190 /* Locate the .debug_info compilation unit from CU's objfile which contains
25191 the DIE at OFFSET. Raises an error on failure. */
25192
25193 static struct dwarf2_per_cu_data *
25194 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25195 unsigned int offset_in_dwz,
25196 struct dwarf2_per_objfile *dwarf2_per_objfile)
25197 {
25198 struct dwarf2_per_cu_data *this_cu;
25199 int low, high;
25200
25201 low = 0;
25202 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25203 while (high > low)
25204 {
25205 struct dwarf2_per_cu_data *mid_cu;
25206 int mid = low + (high - low) / 2;
25207
25208 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25209 if (mid_cu->is_dwz > offset_in_dwz
25210 || (mid_cu->is_dwz == offset_in_dwz
25211 && mid_cu->sect_off + mid_cu->length >= sect_off))
25212 high = mid;
25213 else
25214 low = mid + 1;
25215 }
25216 gdb_assert (low == high);
25217 this_cu = dwarf2_per_objfile->all_comp_units[low];
25218 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25219 {
25220 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25221 error (_("Dwarf Error: could not find partial DIE containing "
25222 "offset %s [in module %s]"),
25223 sect_offset_str (sect_off),
25224 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25225
25226 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25227 <= sect_off);
25228 return dwarf2_per_objfile->all_comp_units[low-1];
25229 }
25230 else
25231 {
25232 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25233 && sect_off >= this_cu->sect_off + this_cu->length)
25234 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25235 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25236 return this_cu;
25237 }
25238 }
25239
25240 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25241
25242 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25243 : per_cu (per_cu_),
25244 mark (false),
25245 has_loclist (false),
25246 checked_producer (false),
25247 producer_is_gxx_lt_4_6 (false),
25248 producer_is_gcc_lt_4_3 (false),
25249 producer_is_icc (false),
25250 producer_is_icc_lt_14 (false),
25251 producer_is_codewarrior (false),
25252 processing_has_namespace_info (false)
25253 {
25254 per_cu->cu = this;
25255 }
25256
25257 /* Destroy a dwarf2_cu. */
25258
25259 dwarf2_cu::~dwarf2_cu ()
25260 {
25261 per_cu->cu = NULL;
25262 }
25263
25264 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25265
25266 static void
25267 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25268 enum language pretend_language)
25269 {
25270 struct attribute *attr;
25271
25272 /* Set the language we're debugging. */
25273 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25274 if (attr)
25275 set_cu_language (DW_UNSND (attr), cu);
25276 else
25277 {
25278 cu->language = pretend_language;
25279 cu->language_defn = language_def (cu->language);
25280 }
25281
25282 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25283 }
25284
25285 /* Increase the age counter on each cached compilation unit, and free
25286 any that are too old. */
25287
25288 static void
25289 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25290 {
25291 struct dwarf2_per_cu_data *per_cu, **last_chain;
25292
25293 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25294 per_cu = dwarf2_per_objfile->read_in_chain;
25295 while (per_cu != NULL)
25296 {
25297 per_cu->cu->last_used ++;
25298 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25299 dwarf2_mark (per_cu->cu);
25300 per_cu = per_cu->cu->read_in_chain;
25301 }
25302
25303 per_cu = dwarf2_per_objfile->read_in_chain;
25304 last_chain = &dwarf2_per_objfile->read_in_chain;
25305 while (per_cu != NULL)
25306 {
25307 struct dwarf2_per_cu_data *next_cu;
25308
25309 next_cu = per_cu->cu->read_in_chain;
25310
25311 if (!per_cu->cu->mark)
25312 {
25313 delete per_cu->cu;
25314 *last_chain = next_cu;
25315 }
25316 else
25317 last_chain = &per_cu->cu->read_in_chain;
25318
25319 per_cu = next_cu;
25320 }
25321 }
25322
25323 /* Remove a single compilation unit from the cache. */
25324
25325 static void
25326 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25327 {
25328 struct dwarf2_per_cu_data *per_cu, **last_chain;
25329 struct dwarf2_per_objfile *dwarf2_per_objfile
25330 = target_per_cu->dwarf2_per_objfile;
25331
25332 per_cu = dwarf2_per_objfile->read_in_chain;
25333 last_chain = &dwarf2_per_objfile->read_in_chain;
25334 while (per_cu != NULL)
25335 {
25336 struct dwarf2_per_cu_data *next_cu;
25337
25338 next_cu = per_cu->cu->read_in_chain;
25339
25340 if (per_cu == target_per_cu)
25341 {
25342 delete per_cu->cu;
25343 per_cu->cu = NULL;
25344 *last_chain = next_cu;
25345 break;
25346 }
25347 else
25348 last_chain = &per_cu->cu->read_in_chain;
25349
25350 per_cu = next_cu;
25351 }
25352 }
25353
25354 /* Cleanup function for the dwarf2_per_objfile data. */
25355
25356 static void
25357 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25358 {
25359 struct dwarf2_per_objfile *dwarf2_per_objfile
25360 = static_cast<struct dwarf2_per_objfile *> (datum);
25361
25362 delete dwarf2_per_objfile;
25363 }
25364
25365 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25366 We store these in a hash table separate from the DIEs, and preserve them
25367 when the DIEs are flushed out of cache.
25368
25369 The CU "per_cu" pointer is needed because offset alone is not enough to
25370 uniquely identify the type. A file may have multiple .debug_types sections,
25371 or the type may come from a DWO file. Furthermore, while it's more logical
25372 to use per_cu->section+offset, with Fission the section with the data is in
25373 the DWO file but we don't know that section at the point we need it.
25374 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25375 because we can enter the lookup routine, get_die_type_at_offset, from
25376 outside this file, and thus won't necessarily have PER_CU->cu.
25377 Fortunately, PER_CU is stable for the life of the objfile. */
25378
25379 struct dwarf2_per_cu_offset_and_type
25380 {
25381 const struct dwarf2_per_cu_data *per_cu;
25382 sect_offset sect_off;
25383 struct type *type;
25384 };
25385
25386 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25387
25388 static hashval_t
25389 per_cu_offset_and_type_hash (const void *item)
25390 {
25391 const struct dwarf2_per_cu_offset_and_type *ofs
25392 = (const struct dwarf2_per_cu_offset_and_type *) item;
25393
25394 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25395 }
25396
25397 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25398
25399 static int
25400 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25401 {
25402 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25403 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25404 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25405 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25406
25407 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25408 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25409 }
25410
25411 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25412 table if necessary. For convenience, return TYPE.
25413
25414 The DIEs reading must have careful ordering to:
25415 * Not cause infite loops trying to read in DIEs as a prerequisite for
25416 reading current DIE.
25417 * Not trying to dereference contents of still incompletely read in types
25418 while reading in other DIEs.
25419 * Enable referencing still incompletely read in types just by a pointer to
25420 the type without accessing its fields.
25421
25422 Therefore caller should follow these rules:
25423 * Try to fetch any prerequisite types we may need to build this DIE type
25424 before building the type and calling set_die_type.
25425 * After building type call set_die_type for current DIE as soon as
25426 possible before fetching more types to complete the current type.
25427 * Make the type as complete as possible before fetching more types. */
25428
25429 static struct type *
25430 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25431 {
25432 struct dwarf2_per_objfile *dwarf2_per_objfile
25433 = cu->per_cu->dwarf2_per_objfile;
25434 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25435 struct objfile *objfile = dwarf2_per_objfile->objfile;
25436 struct attribute *attr;
25437 struct dynamic_prop prop;
25438
25439 /* For Ada types, make sure that the gnat-specific data is always
25440 initialized (if not already set). There are a few types where
25441 we should not be doing so, because the type-specific area is
25442 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25443 where the type-specific area is used to store the floatformat).
25444 But this is not a problem, because the gnat-specific information
25445 is actually not needed for these types. */
25446 if (need_gnat_info (cu)
25447 && TYPE_CODE (type) != TYPE_CODE_FUNC
25448 && TYPE_CODE (type) != TYPE_CODE_FLT
25449 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25450 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25451 && TYPE_CODE (type) != TYPE_CODE_METHOD
25452 && !HAVE_GNAT_AUX_INFO (type))
25453 INIT_GNAT_SPECIFIC (type);
25454
25455 /* Read DW_AT_allocated and set in type. */
25456 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25457 if (attr_form_is_block (attr))
25458 {
25459 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25460 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25461 }
25462 else if (attr != NULL)
25463 {
25464 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25465 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25466 sect_offset_str (die->sect_off));
25467 }
25468
25469 /* Read DW_AT_associated and set in type. */
25470 attr = dwarf2_attr (die, DW_AT_associated, cu);
25471 if (attr_form_is_block (attr))
25472 {
25473 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25474 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25475 }
25476 else if (attr != NULL)
25477 {
25478 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25479 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25480 sect_offset_str (die->sect_off));
25481 }
25482
25483 /* Read DW_AT_data_location and set in type. */
25484 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25485 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25486 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25487
25488 if (dwarf2_per_objfile->die_type_hash == NULL)
25489 {
25490 dwarf2_per_objfile->die_type_hash =
25491 htab_create_alloc_ex (127,
25492 per_cu_offset_and_type_hash,
25493 per_cu_offset_and_type_eq,
25494 NULL,
25495 &objfile->objfile_obstack,
25496 hashtab_obstack_allocate,
25497 dummy_obstack_deallocate);
25498 }
25499
25500 ofs.per_cu = cu->per_cu;
25501 ofs.sect_off = die->sect_off;
25502 ofs.type = type;
25503 slot = (struct dwarf2_per_cu_offset_and_type **)
25504 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25505 if (*slot)
25506 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25507 sect_offset_str (die->sect_off));
25508 *slot = XOBNEW (&objfile->objfile_obstack,
25509 struct dwarf2_per_cu_offset_and_type);
25510 **slot = ofs;
25511 return type;
25512 }
25513
25514 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25515 or return NULL if the die does not have a saved type. */
25516
25517 static struct type *
25518 get_die_type_at_offset (sect_offset sect_off,
25519 struct dwarf2_per_cu_data *per_cu)
25520 {
25521 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25522 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25523
25524 if (dwarf2_per_objfile->die_type_hash == NULL)
25525 return NULL;
25526
25527 ofs.per_cu = per_cu;
25528 ofs.sect_off = sect_off;
25529 slot = ((struct dwarf2_per_cu_offset_and_type *)
25530 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25531 if (slot)
25532 return slot->type;
25533 else
25534 return NULL;
25535 }
25536
25537 /* Look up the type for DIE in CU in die_type_hash,
25538 or return NULL if DIE does not have a saved type. */
25539
25540 static struct type *
25541 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25542 {
25543 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25544 }
25545
25546 /* Add a dependence relationship from CU to REF_PER_CU. */
25547
25548 static void
25549 dwarf2_add_dependence (struct dwarf2_cu *cu,
25550 struct dwarf2_per_cu_data *ref_per_cu)
25551 {
25552 void **slot;
25553
25554 if (cu->dependencies == NULL)
25555 cu->dependencies
25556 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25557 NULL, &cu->comp_unit_obstack,
25558 hashtab_obstack_allocate,
25559 dummy_obstack_deallocate);
25560
25561 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25562 if (*slot == NULL)
25563 *slot = ref_per_cu;
25564 }
25565
25566 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25567 Set the mark field in every compilation unit in the
25568 cache that we must keep because we are keeping CU. */
25569
25570 static int
25571 dwarf2_mark_helper (void **slot, void *data)
25572 {
25573 struct dwarf2_per_cu_data *per_cu;
25574
25575 per_cu = (struct dwarf2_per_cu_data *) *slot;
25576
25577 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25578 reading of the chain. As such dependencies remain valid it is not much
25579 useful to track and undo them during QUIT cleanups. */
25580 if (per_cu->cu == NULL)
25581 return 1;
25582
25583 if (per_cu->cu->mark)
25584 return 1;
25585 per_cu->cu->mark = true;
25586
25587 if (per_cu->cu->dependencies != NULL)
25588 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25589
25590 return 1;
25591 }
25592
25593 /* Set the mark field in CU and in every other compilation unit in the
25594 cache that we must keep because we are keeping CU. */
25595
25596 static void
25597 dwarf2_mark (struct dwarf2_cu *cu)
25598 {
25599 if (cu->mark)
25600 return;
25601 cu->mark = true;
25602 if (cu->dependencies != NULL)
25603 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25604 }
25605
25606 static void
25607 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25608 {
25609 while (per_cu)
25610 {
25611 per_cu->cu->mark = false;
25612 per_cu = per_cu->cu->read_in_chain;
25613 }
25614 }
25615
25616 /* Trivial hash function for partial_die_info: the hash value of a DIE
25617 is its offset in .debug_info for this objfile. */
25618
25619 static hashval_t
25620 partial_die_hash (const void *item)
25621 {
25622 const struct partial_die_info *part_die
25623 = (const struct partial_die_info *) item;
25624
25625 return to_underlying (part_die->sect_off);
25626 }
25627
25628 /* Trivial comparison function for partial_die_info structures: two DIEs
25629 are equal if they have the same offset. */
25630
25631 static int
25632 partial_die_eq (const void *item_lhs, const void *item_rhs)
25633 {
25634 const struct partial_die_info *part_die_lhs
25635 = (const struct partial_die_info *) item_lhs;
25636 const struct partial_die_info *part_die_rhs
25637 = (const struct partial_die_info *) item_rhs;
25638
25639 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25640 }
25641
25642 struct cmd_list_element *set_dwarf_cmdlist;
25643 struct cmd_list_element *show_dwarf_cmdlist;
25644
25645 static void
25646 set_dwarf_cmd (const char *args, int from_tty)
25647 {
25648 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25649 gdb_stdout);
25650 }
25651
25652 static void
25653 show_dwarf_cmd (const char *args, int from_tty)
25654 {
25655 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25656 }
25657
25658 int dwarf_always_disassemble;
25659
25660 static void
25661 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25662 struct cmd_list_element *c, const char *value)
25663 {
25664 fprintf_filtered (file,
25665 _("Whether to always disassemble "
25666 "DWARF expressions is %s.\n"),
25667 value);
25668 }
25669
25670 static void
25671 show_check_physname (struct ui_file *file, int from_tty,
25672 struct cmd_list_element *c, const char *value)
25673 {
25674 fprintf_filtered (file,
25675 _("Whether to check \"physname\" is %s.\n"),
25676 value);
25677 }
25678
25679 void
25680 _initialize_dwarf2_read (void)
25681 {
25682 dwarf2_objfile_data_key
25683 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25684
25685 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25686 Set DWARF specific variables.\n\
25687 Configure DWARF variables such as the cache size"),
25688 &set_dwarf_cmdlist, "maintenance set dwarf ",
25689 0/*allow-unknown*/, &maintenance_set_cmdlist);
25690
25691 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25692 Show DWARF specific variables\n\
25693 Show DWARF variables such as the cache size"),
25694 &show_dwarf_cmdlist, "maintenance show dwarf ",
25695 0/*allow-unknown*/, &maintenance_show_cmdlist);
25696
25697 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25698 &dwarf_max_cache_age, _("\
25699 Set the upper bound on the age of cached DWARF compilation units."), _("\
25700 Show the upper bound on the age of cached DWARF compilation units."), _("\
25701 A higher limit means that cached compilation units will be stored\n\
25702 in memory longer, and more total memory will be used. Zero disables\n\
25703 caching, which can slow down startup."),
25704 NULL,
25705 show_dwarf_max_cache_age,
25706 &set_dwarf_cmdlist,
25707 &show_dwarf_cmdlist);
25708
25709 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25710 &dwarf_always_disassemble, _("\
25711 Set whether `info address' always disassembles DWARF expressions."), _("\
25712 Show whether `info address' always disassembles DWARF expressions."), _("\
25713 When enabled, DWARF expressions are always printed in an assembly-like\n\
25714 syntax. When disabled, expressions will be printed in a more\n\
25715 conversational style, when possible."),
25716 NULL,
25717 show_dwarf_always_disassemble,
25718 &set_dwarf_cmdlist,
25719 &show_dwarf_cmdlist);
25720
25721 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25722 Set debugging of the DWARF reader."), _("\
25723 Show debugging of the DWARF reader."), _("\
25724 When enabled (non-zero), debugging messages are printed during DWARF\n\
25725 reading and symtab expansion. A value of 1 (one) provides basic\n\
25726 information. A value greater than 1 provides more verbose information."),
25727 NULL,
25728 NULL,
25729 &setdebuglist, &showdebuglist);
25730
25731 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25732 Set debugging of the DWARF DIE reader."), _("\
25733 Show debugging of the DWARF DIE reader."), _("\
25734 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25735 The value is the maximum depth to print."),
25736 NULL,
25737 NULL,
25738 &setdebuglist, &showdebuglist);
25739
25740 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25741 Set debugging of the dwarf line reader."), _("\
25742 Show debugging of the dwarf line reader."), _("\
25743 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25744 A value of 1 (one) provides basic information.\n\
25745 A value greater than 1 provides more verbose information."),
25746 NULL,
25747 NULL,
25748 &setdebuglist, &showdebuglist);
25749
25750 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25751 Set cross-checking of \"physname\" code against demangler."), _("\
25752 Show cross-checking of \"physname\" code against demangler."), _("\
25753 When enabled, GDB's internal \"physname\" code is checked against\n\
25754 the demangler."),
25755 NULL, show_check_physname,
25756 &setdebuglist, &showdebuglist);
25757
25758 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25759 no_class, &use_deprecated_index_sections, _("\
25760 Set whether to use deprecated gdb_index sections."), _("\
25761 Show whether to use deprecated gdb_index sections."), _("\
25762 When enabled, deprecated .gdb_index sections are used anyway.\n\
25763 Normally they are ignored either because of a missing feature or\n\
25764 performance issue.\n\
25765 Warning: This option must be enabled before gdb reads the file."),
25766 NULL,
25767 NULL,
25768 &setlist, &showlist);
25769
25770 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25771 &dwarf2_locexpr_funcs);
25772 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25773 &dwarf2_loclist_funcs);
25774
25775 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25776 &dwarf2_block_frame_base_locexpr_funcs);
25777 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25778 &dwarf2_block_frame_base_loclist_funcs);
25779
25780 #if GDB_SELF_TEST
25781 selftests::register_test ("dw2_expand_symtabs_matching",
25782 selftests::dw2_expand_symtabs_matching::run_test);
25783 #endif
25784 }
This page took 0.534017 seconds and 3 git commands to generate.