PR symtab/14931:
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 union
570 {
571 /* The CUs we import using DW_TAG_imported_unit. This is filled in
572 while reading psymtabs, used to compute the psymtab dependencies,
573 and then cleared. Then it is filled in again while reading full
574 symbols, and only deleted when the objfile is destroyed. */
575 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
576
577 /* Type units are grouped by their DW_AT_stmt_list entry so that they
578 can share them. If this is a TU, this points to the containing
579 symtab. */
580 struct type_unit_group *type_unit_group;
581 } s;
582 };
583
584 /* Entry in the signatured_types hash table. */
585
586 struct signatured_type
587 {
588 /* The "per_cu" object of this type.
589 N.B.: This is the first member so that it's easy to convert pointers
590 between them. */
591 struct dwarf2_per_cu_data per_cu;
592
593 /* The type's signature. */
594 ULONGEST signature;
595
596 /* Offset in the TU of the type's DIE, as read from the TU header.
597 If the definition lives in a DWO file, this value is unusable. */
598 cu_offset type_offset_in_tu;
599
600 /* Offset in the section of the type's DIE.
601 If the definition lives in a DWO file, this is the offset in the
602 .debug_types.dwo section.
603 The value is zero until the actual value is known.
604 Zero is otherwise not a valid section offset. */
605 sect_offset type_offset_in_section;
606 };
607
608 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
609 This includes type_unit_group and quick_file_names. */
610
611 struct stmt_list_hash
612 {
613 /* The DWO unit this table is from or NULL if there is none. */
614 struct dwo_unit *dwo_unit;
615
616 /* Offset in .debug_line or .debug_line.dwo. */
617 sect_offset line_offset;
618 };
619
620 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
621 an object of this type. */
622
623 struct type_unit_group
624 {
625 /* dwarf2read.c's main "handle" on the symtab.
626 To simplify things we create an artificial CU that "includes" all the
627 type units using this stmt_list so that the rest of the code still has
628 a "per_cu" handle on the symtab.
629 This PER_CU is recognized by having no section. */
630 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
631 struct dwarf2_per_cu_data per_cu;
632
633 union
634 {
635 /* The TUs that share this DW_AT_stmt_list entry.
636 This is added to while parsing type units to build partial symtabs,
637 and is deleted afterwards and not used again. */
638 VEC (dwarf2_per_cu_ptr) *tus;
639
640 /* When reading the line table in "quick" functions, we need a real TU.
641 Any will do, we know they all share the same DW_AT_stmt_list entry.
642 For simplicity's sake, we pick the first one. */
643 struct dwarf2_per_cu_data *first_tu;
644 } t;
645
646 /* The primary symtab.
647 Type units in a group needn't all be defined in the same source file,
648 so we create an essentially anonymous symtab as the primary symtab. */
649 struct symtab *primary_symtab;
650
651 /* The data used to construct the hash key. */
652 struct stmt_list_hash hash;
653
654 /* The number of symtabs from the line header.
655 The value here must match line_header.num_file_names. */
656 unsigned int num_symtabs;
657
658 /* The symbol tables for this TU (obtained from the files listed in
659 DW_AT_stmt_list).
660 WARNING: The order of entries here must match the order of entries
661 in the line header. After the first TU using this type_unit_group, the
662 line header for the subsequent TUs is recreated from this. This is done
663 because we need to use the same symtabs for each TU using the same
664 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
665 there's no guarantee the line header doesn't have duplicate entries. */
666 struct symtab **symtabs;
667 };
668
669 /* These sections are what may appear in a DWO file. */
670
671 struct dwo_sections
672 {
673 struct dwarf2_section_info abbrev;
674 struct dwarf2_section_info line;
675 struct dwarf2_section_info loc;
676 struct dwarf2_section_info macinfo;
677 struct dwarf2_section_info macro;
678 struct dwarf2_section_info str;
679 struct dwarf2_section_info str_offsets;
680 /* In the case of a virtual DWO file, these two are unused. */
681 struct dwarf2_section_info info;
682 VEC (dwarf2_section_info_def) *types;
683 };
684
685 /* Common bits of DWO CUs/TUs. */
686
687 struct dwo_unit
688 {
689 /* Backlink to the containing struct dwo_file. */
690 struct dwo_file *dwo_file;
691
692 /* The "id" that distinguishes this CU/TU.
693 .debug_info calls this "dwo_id", .debug_types calls this "signature".
694 Since signatures came first, we stick with it for consistency. */
695 ULONGEST signature;
696
697 /* The section this CU/TU lives in, in the DWO file. */
698 struct dwarf2_section_info *info_or_types_section;
699
700 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
701 sect_offset offset;
702 unsigned int length;
703
704 /* For types, offset in the type's DIE of the type defined by this TU. */
705 cu_offset type_offset_in_tu;
706 };
707
708 /* Data for one DWO file.
709 This includes virtual DWO files that have been packaged into a
710 DWP file. */
711
712 struct dwo_file
713 {
714 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
715 For virtual DWO files the name is constructed from the section offsets
716 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
717 from related CU+TUs. */
718 const char *name;
719
720 /* The bfd, when the file is open. Otherwise this is NULL.
721 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
722 bfd *dbfd;
723
724 /* Section info for this file. */
725 struct dwo_sections sections;
726
727 /* Table of CUs in the file.
728 Each element is a struct dwo_unit. */
729 htab_t cus;
730
731 /* Table of TUs in the file.
732 Each element is a struct dwo_unit. */
733 htab_t tus;
734 };
735
736 /* These sections are what may appear in a DWP file. */
737
738 struct dwp_sections
739 {
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
744 by section number. We don't need to record them here. */
745 };
746
747 /* These sections are what may appear in a virtual DWO file. */
748
749 struct virtual_dwo_sections
750 {
751 struct dwarf2_section_info abbrev;
752 struct dwarf2_section_info line;
753 struct dwarf2_section_info loc;
754 struct dwarf2_section_info macinfo;
755 struct dwarf2_section_info macro;
756 struct dwarf2_section_info str_offsets;
757 /* Each DWP hash table entry records one CU or one TU.
758 That is recorded here, and copied to dwo_unit.info_or_types_section. */
759 struct dwarf2_section_info info_or_types;
760 };
761
762 /* Contents of DWP hash tables. */
763
764 struct dwp_hash_table
765 {
766 uint32_t nr_units, nr_slots;
767 const gdb_byte *hash_table, *unit_table, *section_pool;
768 };
769
770 /* Data for one DWP file. */
771
772 struct dwp_file
773 {
774 /* Name of the file. */
775 const char *name;
776
777 /* The bfd, when the file is open. Otherwise this is NULL. */
778 bfd *dbfd;
779
780 /* Section info for this file. */
781 struct dwp_sections sections;
782
783 /* Table of CUs in the file. */
784 const struct dwp_hash_table *cus;
785
786 /* Table of TUs in the file. */
787 const struct dwp_hash_table *tus;
788
789 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
790 htab_t loaded_cutus;
791
792 /* Table to map ELF section numbers to their sections. */
793 unsigned int num_sections;
794 asection **elf_sections;
795 };
796
797 /* This represents a '.dwz' file. */
798
799 struct dwz_file
800 {
801 /* A dwz file can only contain a few sections. */
802 struct dwarf2_section_info abbrev;
803 struct dwarf2_section_info info;
804 struct dwarf2_section_info str;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info macro;
807 struct dwarf2_section_info gdb_index;
808
809 /* The dwz's BFD. */
810 bfd *dwz_bfd;
811 };
812
813 /* Struct used to pass misc. parameters to read_die_and_children, et
814 al. which are used for both .debug_info and .debug_types dies.
815 All parameters here are unchanging for the life of the call. This
816 struct exists to abstract away the constant parameters of die reading. */
817
818 struct die_reader_specs
819 {
820 /* die_section->asection->owner. */
821 bfd* abfd;
822
823 /* The CU of the DIE we are parsing. */
824 struct dwarf2_cu *cu;
825
826 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
827 struct dwo_file *dwo_file;
828
829 /* The section the die comes from.
830 This is either .debug_info or .debug_types, or the .dwo variants. */
831 struct dwarf2_section_info *die_section;
832
833 /* die_section->buffer. */
834 gdb_byte *buffer;
835
836 /* The end of the buffer. */
837 const gdb_byte *buffer_end;
838 };
839
840 /* Type of function passed to init_cutu_and_read_dies, et.al. */
841 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
842 gdb_byte *info_ptr,
843 struct die_info *comp_unit_die,
844 int has_children,
845 void *data);
846
847 /* The line number information for a compilation unit (found in the
848 .debug_line section) begins with a "statement program header",
849 which contains the following information. */
850 struct line_header
851 {
852 unsigned int total_length;
853 unsigned short version;
854 unsigned int header_length;
855 unsigned char minimum_instruction_length;
856 unsigned char maximum_ops_per_instruction;
857 unsigned char default_is_stmt;
858 int line_base;
859 unsigned char line_range;
860 unsigned char opcode_base;
861
862 /* standard_opcode_lengths[i] is the number of operands for the
863 standard opcode whose value is i. This means that
864 standard_opcode_lengths[0] is unused, and the last meaningful
865 element is standard_opcode_lengths[opcode_base - 1]. */
866 unsigned char *standard_opcode_lengths;
867
868 /* The include_directories table. NOTE! These strings are not
869 allocated with xmalloc; instead, they are pointers into
870 debug_line_buffer. If you try to free them, `free' will get
871 indigestion. */
872 unsigned int num_include_dirs, include_dirs_size;
873 char **include_dirs;
874
875 /* The file_names table. NOTE! These strings are not allocated
876 with xmalloc; instead, they are pointers into debug_line_buffer.
877 Don't try to free them directly. */
878 unsigned int num_file_names, file_names_size;
879 struct file_entry
880 {
881 char *name;
882 unsigned int dir_index;
883 unsigned int mod_time;
884 unsigned int length;
885 int included_p; /* Non-zero if referenced by the Line Number Program. */
886 struct symtab *symtab; /* The associated symbol table, if any. */
887 } *file_names;
888
889 /* The start and end of the statement program following this
890 header. These point into dwarf2_per_objfile->line_buffer. */
891 gdb_byte *statement_program_start, *statement_program_end;
892 };
893
894 /* When we construct a partial symbol table entry we only
895 need this much information. */
896 struct partial_die_info
897 {
898 /* Offset of this DIE. */
899 sect_offset offset;
900
901 /* DWARF-2 tag for this DIE. */
902 ENUM_BITFIELD(dwarf_tag) tag : 16;
903
904 /* Assorted flags describing the data found in this DIE. */
905 unsigned int has_children : 1;
906 unsigned int is_external : 1;
907 unsigned int is_declaration : 1;
908 unsigned int has_type : 1;
909 unsigned int has_specification : 1;
910 unsigned int has_pc_info : 1;
911 unsigned int may_be_inlined : 1;
912
913 /* Flag set if the SCOPE field of this structure has been
914 computed. */
915 unsigned int scope_set : 1;
916
917 /* Flag set if the DIE has a byte_size attribute. */
918 unsigned int has_byte_size : 1;
919
920 /* Flag set if any of the DIE's children are template arguments. */
921 unsigned int has_template_arguments : 1;
922
923 /* Flag set if fixup_partial_die has been called on this die. */
924 unsigned int fixup_called : 1;
925
926 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
927 unsigned int is_dwz : 1;
928
929 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
930 unsigned int spec_is_dwz : 1;
931
932 /* The name of this DIE. Normally the value of DW_AT_name, but
933 sometimes a default name for unnamed DIEs. */
934 char *name;
935
936 /* The linkage name, if present. */
937 const char *linkage_name;
938
939 /* The scope to prepend to our children. This is generally
940 allocated on the comp_unit_obstack, so will disappear
941 when this compilation unit leaves the cache. */
942 char *scope;
943
944 /* Some data associated with the partial DIE. The tag determines
945 which field is live. */
946 union
947 {
948 /* The location description associated with this DIE, if any. */
949 struct dwarf_block *locdesc;
950 /* The offset of an import, for DW_TAG_imported_unit. */
951 sect_offset offset;
952 } d;
953
954 /* If HAS_PC_INFO, the PC range associated with this DIE. */
955 CORE_ADDR lowpc;
956 CORE_ADDR highpc;
957
958 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
959 DW_AT_sibling, if any. */
960 /* NOTE: This member isn't strictly necessary, read_partial_die could
961 return DW_AT_sibling values to its caller load_partial_dies. */
962 gdb_byte *sibling;
963
964 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
965 DW_AT_specification (or DW_AT_abstract_origin or
966 DW_AT_extension). */
967 sect_offset spec_offset;
968
969 /* Pointers to this DIE's parent, first child, and next sibling,
970 if any. */
971 struct partial_die_info *die_parent, *die_child, *die_sibling;
972 };
973
974 /* This data structure holds the information of an abbrev. */
975 struct abbrev_info
976 {
977 unsigned int number; /* number identifying abbrev */
978 enum dwarf_tag tag; /* dwarf tag */
979 unsigned short has_children; /* boolean */
980 unsigned short num_attrs; /* number of attributes */
981 struct attr_abbrev *attrs; /* an array of attribute descriptions */
982 struct abbrev_info *next; /* next in chain */
983 };
984
985 struct attr_abbrev
986 {
987 ENUM_BITFIELD(dwarf_attribute) name : 16;
988 ENUM_BITFIELD(dwarf_form) form : 16;
989 };
990
991 /* Size of abbrev_table.abbrev_hash_table. */
992 #define ABBREV_HASH_SIZE 121
993
994 /* Top level data structure to contain an abbreviation table. */
995
996 struct abbrev_table
997 {
998 /* Where the abbrev table came from.
999 This is used as a sanity check when the table is used. */
1000 sect_offset offset;
1001
1002 /* Storage for the abbrev table. */
1003 struct obstack abbrev_obstack;
1004
1005 /* Hash table of abbrevs.
1006 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1007 It could be statically allocated, but the previous code didn't so we
1008 don't either. */
1009 struct abbrev_info **abbrevs;
1010 };
1011
1012 /* Attributes have a name and a value. */
1013 struct attribute
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 15;
1017
1018 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1019 field should be in u.str (existing only for DW_STRING) but it is kept
1020 here for better struct attribute alignment. */
1021 unsigned int string_is_canonical : 1;
1022
1023 union
1024 {
1025 char *str;
1026 struct dwarf_block *blk;
1027 ULONGEST unsnd;
1028 LONGEST snd;
1029 CORE_ADDR addr;
1030 struct signatured_type *signatured_type;
1031 }
1032 u;
1033 };
1034
1035 /* This data structure holds a complete die structure. */
1036 struct die_info
1037 {
1038 /* DWARF-2 tag for this DIE. */
1039 ENUM_BITFIELD(dwarf_tag) tag : 16;
1040
1041 /* Number of attributes */
1042 unsigned char num_attrs;
1043
1044 /* True if we're presently building the full type name for the
1045 type derived from this DIE. */
1046 unsigned char building_fullname : 1;
1047
1048 /* Abbrev number */
1049 unsigned int abbrev;
1050
1051 /* Offset in .debug_info or .debug_types section. */
1052 sect_offset offset;
1053
1054 /* The dies in a compilation unit form an n-ary tree. PARENT
1055 points to this die's parent; CHILD points to the first child of
1056 this node; and all the children of a given node are chained
1057 together via their SIBLING fields. */
1058 struct die_info *child; /* Its first child, if any. */
1059 struct die_info *sibling; /* Its next sibling, if any. */
1060 struct die_info *parent; /* Its parent, if any. */
1061
1062 /* An array of attributes, with NUM_ATTRS elements. There may be
1063 zero, but it's not common and zero-sized arrays are not
1064 sufficiently portable C. */
1065 struct attribute attrs[1];
1066 };
1067
1068 /* Get at parts of an attribute structure. */
1069
1070 #define DW_STRING(attr) ((attr)->u.str)
1071 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1072 #define DW_UNSND(attr) ((attr)->u.unsnd)
1073 #define DW_BLOCK(attr) ((attr)->u.blk)
1074 #define DW_SND(attr) ((attr)->u.snd)
1075 #define DW_ADDR(attr) ((attr)->u.addr)
1076 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1077
1078 /* Blocks are a bunch of untyped bytes. */
1079 struct dwarf_block
1080 {
1081 size_t size;
1082
1083 /* Valid only if SIZE is not zero. */
1084 gdb_byte *data;
1085 };
1086
1087 #ifndef ATTR_ALLOC_CHUNK
1088 #define ATTR_ALLOC_CHUNK 4
1089 #endif
1090
1091 /* Allocate fields for structs, unions and enums in this size. */
1092 #ifndef DW_FIELD_ALLOC_CHUNK
1093 #define DW_FIELD_ALLOC_CHUNK 4
1094 #endif
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 /* The routines that read and process dies for a C struct or C++ class
1102 pass lists of data member fields and lists of member function fields
1103 in an instance of a field_info structure, as defined below. */
1104 struct field_info
1105 {
1106 /* List of data member and baseclasses fields. */
1107 struct nextfield
1108 {
1109 struct nextfield *next;
1110 int accessibility;
1111 int virtuality;
1112 struct field field;
1113 }
1114 *fields, *baseclasses;
1115
1116 /* Number of fields (including baseclasses). */
1117 int nfields;
1118
1119 /* Number of baseclasses. */
1120 int nbaseclasses;
1121
1122 /* Set if the accesibility of one of the fields is not public. */
1123 int non_public_fields;
1124
1125 /* Member function fields array, entries are allocated in the order they
1126 are encountered in the object file. */
1127 struct nextfnfield
1128 {
1129 struct nextfnfield *next;
1130 struct fn_field fnfield;
1131 }
1132 *fnfields;
1133
1134 /* Member function fieldlist array, contains name of possibly overloaded
1135 member function, number of overloaded member functions and a pointer
1136 to the head of the member function field chain. */
1137 struct fnfieldlist
1138 {
1139 char *name;
1140 int length;
1141 struct nextfnfield *head;
1142 }
1143 *fnfieldlists;
1144
1145 /* Number of entries in the fnfieldlists array. */
1146 int nfnfields;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 struct typedef_field_list
1151 {
1152 struct typedef_field field;
1153 struct typedef_field_list *next;
1154 }
1155 *typedef_field_list;
1156 unsigned typedef_field_list_count;
1157 };
1158
1159 /* One item on the queue of compilation units to read in full symbols
1160 for. */
1161 struct dwarf2_queue_item
1162 {
1163 struct dwarf2_per_cu_data *per_cu;
1164 enum language pretend_language;
1165 struct dwarf2_queue_item *next;
1166 };
1167
1168 /* The current queue. */
1169 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1170
1171 /* Loaded secondary compilation units are kept in memory until they
1172 have not been referenced for the processing of this many
1173 compilation units. Set this to zero to disable caching. Cache
1174 sizes of up to at least twenty will improve startup time for
1175 typical inter-CU-reference binaries, at an obvious memory cost. */
1176 static int dwarf2_max_cache_age = 5;
1177 static void
1178 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1179 struct cmd_list_element *c, const char *value)
1180 {
1181 fprintf_filtered (file, _("The upper bound on the age of cached "
1182 "dwarf2 compilation units is %s.\n"),
1183 value);
1184 }
1185
1186
1187 /* Various complaints about symbol reading that don't abort the process. */
1188
1189 static void
1190 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1191 {
1192 complaint (&symfile_complaints,
1193 _("statement list doesn't fit in .debug_line section"));
1194 }
1195
1196 static void
1197 dwarf2_debug_line_missing_file_complaint (void)
1198 {
1199 complaint (&symfile_complaints,
1200 _(".debug_line section has line data without a file"));
1201 }
1202
1203 static void
1204 dwarf2_debug_line_missing_end_sequence_complaint (void)
1205 {
1206 complaint (&symfile_complaints,
1207 _(".debug_line section has line "
1208 "program sequence without an end"));
1209 }
1210
1211 static void
1212 dwarf2_complex_location_expr_complaint (void)
1213 {
1214 complaint (&symfile_complaints, _("location expression too complex"));
1215 }
1216
1217 static void
1218 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1219 int arg3)
1220 {
1221 complaint (&symfile_complaints,
1222 _("const value length mismatch for '%s', got %d, expected %d"),
1223 arg1, arg2, arg3);
1224 }
1225
1226 static void
1227 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1228 {
1229 complaint (&symfile_complaints,
1230 _("debug info runs off end of %s section"
1231 " [in module %s]"),
1232 section->asection->name,
1233 bfd_get_filename (section->asection->owner));
1234 }
1235
1236 static void
1237 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1238 {
1239 complaint (&symfile_complaints,
1240 _("macro debug info contains a "
1241 "malformed macro definition:\n`%s'"),
1242 arg1);
1243 }
1244
1245 static void
1246 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1247 {
1248 complaint (&symfile_complaints,
1249 _("invalid attribute class or form for '%s' in '%s'"),
1250 arg1, arg2);
1251 }
1252
1253 /* local function prototypes */
1254
1255 static void dwarf2_locate_sections (bfd *, asection *, void *);
1256
1257 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1258 struct objfile *);
1259
1260 static void dwarf2_find_base_address (struct die_info *die,
1261 struct dwarf2_cu *cu);
1262
1263 static void dwarf2_build_psymtabs_hard (struct objfile *);
1264
1265 static void scan_partial_symbols (struct partial_die_info *,
1266 CORE_ADDR *, CORE_ADDR *,
1267 int, struct dwarf2_cu *);
1268
1269 static void add_partial_symbol (struct partial_die_info *,
1270 struct dwarf2_cu *);
1271
1272 static void add_partial_namespace (struct partial_die_info *pdi,
1273 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1274 int need_pc, struct dwarf2_cu *cu);
1275
1276 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1277 CORE_ADDR *highpc, int need_pc,
1278 struct dwarf2_cu *cu);
1279
1280 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1281 struct dwarf2_cu *cu);
1282
1283 static void add_partial_subprogram (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void dwarf2_psymtab_to_symtab (struct objfile *,
1288 struct partial_symtab *);
1289
1290 static void psymtab_to_symtab_1 (struct partial_symtab *);
1291
1292 static struct abbrev_info *abbrev_table_lookup_abbrev
1293 (const struct abbrev_table *, unsigned int);
1294
1295 static struct abbrev_table *abbrev_table_read_table
1296 (struct dwarf2_section_info *, sect_offset);
1297
1298 static void abbrev_table_free (struct abbrev_table *);
1299
1300 static void abbrev_table_free_cleanup (void *);
1301
1302 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1303 struct dwarf2_section_info *);
1304
1305 static void dwarf2_free_abbrev_table (void *);
1306
1307 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1308
1309 static struct partial_die_info *load_partial_dies
1310 (const struct die_reader_specs *, gdb_byte *, int);
1311
1312 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1313 struct partial_die_info *,
1314 struct abbrev_info *,
1315 unsigned int,
1316 gdb_byte *);
1317
1318 static struct partial_die_info *find_partial_die (sect_offset, int,
1319 struct dwarf2_cu *);
1320
1321 static void fixup_partial_die (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static gdb_byte *read_attribute (const struct die_reader_specs *,
1325 struct attribute *, struct attr_abbrev *,
1326 gdb_byte *);
1327
1328 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1329
1330 static int read_1_signed_byte (bfd *, const gdb_byte *);
1331
1332 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1333
1334 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1335
1336 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1337
1338 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1339 unsigned int *);
1340
1341 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1342
1343 static LONGEST read_checked_initial_length_and_offset
1344 (bfd *, gdb_byte *, const struct comp_unit_head *,
1345 unsigned int *, unsigned int *);
1346
1347 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1351
1352 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1353 sect_offset);
1354
1355 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1356
1357 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1358
1359 static char *read_indirect_string (bfd *, gdb_byte *,
1360 const struct comp_unit_head *,
1361 unsigned int *);
1362
1363 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1364
1365 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1366
1367 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1368
1369 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1370 unsigned int *);
1371
1372 static char *read_str_index (const struct die_reader_specs *reader,
1373 struct dwarf2_cu *cu, ULONGEST str_index);
1374
1375 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1376
1377 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1378 struct dwarf2_cu *);
1379
1380 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1381 unsigned int);
1382
1383 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1384 struct dwarf2_cu *cu);
1385
1386 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1387
1388 static struct die_info *die_specification (struct die_info *die,
1389 struct dwarf2_cu **);
1390
1391 static void free_line_header (struct line_header *lh);
1392
1393 static void add_file_name (struct line_header *, char *, unsigned int,
1394 unsigned int, unsigned int);
1395
1396 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1397 struct dwarf2_cu *cu);
1398
1399 static void dwarf_decode_lines (struct line_header *, const char *,
1400 struct dwarf2_cu *, struct partial_symtab *,
1401 int);
1402
1403 static void dwarf2_start_subfile (char *, const char *, const char *);
1404
1405 static void dwarf2_start_symtab (struct dwarf2_cu *,
1406 char *, char *, CORE_ADDR);
1407
1408 static struct symbol *new_symbol (struct die_info *, struct type *,
1409 struct dwarf2_cu *);
1410
1411 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1412 struct dwarf2_cu *, struct symbol *);
1413
1414 static void dwarf2_const_value (struct attribute *, struct symbol *,
1415 struct dwarf2_cu *);
1416
1417 static void dwarf2_const_value_attr (struct attribute *attr,
1418 struct type *type,
1419 const char *name,
1420 struct obstack *obstack,
1421 struct dwarf2_cu *cu, LONGEST *value,
1422 gdb_byte **bytes,
1423 struct dwarf2_locexpr_baton **baton);
1424
1425 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1426
1427 static int need_gnat_info (struct dwarf2_cu *);
1428
1429 static struct type *die_descriptive_type (struct die_info *,
1430 struct dwarf2_cu *);
1431
1432 static void set_descriptive_type (struct type *, struct die_info *,
1433 struct dwarf2_cu *);
1434
1435 static struct type *die_containing_type (struct die_info *,
1436 struct dwarf2_cu *);
1437
1438 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1439 struct dwarf2_cu *);
1440
1441 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1442
1443 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1444
1445 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1446
1447 static char *typename_concat (struct obstack *obs, const char *prefix,
1448 const char *suffix, int physname,
1449 struct dwarf2_cu *cu);
1450
1451 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1452
1453 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1454
1455 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1456
1457 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1458
1459 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1460
1461 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1462 struct dwarf2_cu *, struct partial_symtab *);
1463
1464 static int dwarf2_get_pc_bounds (struct die_info *,
1465 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1466 struct partial_symtab *);
1467
1468 static void get_scope_pc_bounds (struct die_info *,
1469 CORE_ADDR *, CORE_ADDR *,
1470 struct dwarf2_cu *);
1471
1472 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1473 CORE_ADDR, struct dwarf2_cu *);
1474
1475 static void dwarf2_add_field (struct field_info *, struct die_info *,
1476 struct dwarf2_cu *);
1477
1478 static void dwarf2_attach_fields_to_type (struct field_info *,
1479 struct type *, struct dwarf2_cu *);
1480
1481 static void dwarf2_add_member_fn (struct field_info *,
1482 struct die_info *, struct type *,
1483 struct dwarf2_cu *);
1484
1485 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1486 struct type *,
1487 struct dwarf2_cu *);
1488
1489 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1490
1491 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1492
1493 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1494
1495 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1496
1497 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1498
1499 static struct type *read_module_type (struct die_info *die,
1500 struct dwarf2_cu *cu);
1501
1502 static const char *namespace_name (struct die_info *die,
1503 int *is_anonymous, struct dwarf2_cu *);
1504
1505 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1506
1507 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1508
1509 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1510 struct dwarf2_cu *);
1511
1512 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1513 gdb_byte *info_ptr,
1514 gdb_byte **new_info_ptr,
1515 struct die_info *parent);
1516
1517 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1518 gdb_byte *info_ptr,
1519 gdb_byte **new_info_ptr,
1520 struct die_info *parent);
1521
1522 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1523 struct die_info **, gdb_byte *, int *, int);
1524
1525 static gdb_byte *read_full_die (const struct die_reader_specs *,
1526 struct die_info **, gdb_byte *, int *);
1527
1528 static void process_die (struct die_info *, struct dwarf2_cu *);
1529
1530 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1531 struct obstack *);
1532
1533 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1534
1535 static const char *dwarf2_full_name (char *name,
1536 struct die_info *die,
1537 struct dwarf2_cu *cu);
1538
1539 static struct die_info *dwarf2_extension (struct die_info *die,
1540 struct dwarf2_cu **);
1541
1542 static const char *dwarf_tag_name (unsigned int);
1543
1544 static const char *dwarf_attr_name (unsigned int);
1545
1546 static const char *dwarf_form_name (unsigned int);
1547
1548 static char *dwarf_bool_name (unsigned int);
1549
1550 static const char *dwarf_type_encoding_name (unsigned int);
1551
1552 static struct die_info *sibling_die (struct die_info *);
1553
1554 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1555
1556 static void dump_die_for_error (struct die_info *);
1557
1558 static void dump_die_1 (struct ui_file *, int level, int max_level,
1559 struct die_info *);
1560
1561 /*static*/ void dump_die (struct die_info *, int max_level);
1562
1563 static void store_in_ref_table (struct die_info *,
1564 struct dwarf2_cu *);
1565
1566 static int is_ref_attr (struct attribute *);
1567
1568 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1569
1570 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1571
1572 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1573 struct attribute *,
1574 struct dwarf2_cu **);
1575
1576 static struct die_info *follow_die_ref (struct die_info *,
1577 struct attribute *,
1578 struct dwarf2_cu **);
1579
1580 static struct die_info *follow_die_sig (struct die_info *,
1581 struct attribute *,
1582 struct dwarf2_cu **);
1583
1584 static struct signatured_type *lookup_signatured_type_at_offset
1585 (struct objfile *objfile,
1586 struct dwarf2_section_info *section, sect_offset offset);
1587
1588 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1589
1590 static void read_signatured_type (struct signatured_type *);
1591
1592 static struct type_unit_group *get_type_unit_group
1593 (struct dwarf2_cu *, struct attribute *);
1594
1595 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1596
1597 /* memory allocation interface */
1598
1599 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1600
1601 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1602
1603 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1604 char *, int);
1605
1606 static int attr_form_is_block (struct attribute *);
1607
1608 static int attr_form_is_section_offset (struct attribute *);
1609
1610 static int attr_form_is_constant (struct attribute *);
1611
1612 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1613 struct dwarf2_loclist_baton *baton,
1614 struct attribute *attr);
1615
1616 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1617 struct symbol *sym,
1618 struct dwarf2_cu *cu);
1619
1620 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1621 gdb_byte *info_ptr,
1622 struct abbrev_info *abbrev);
1623
1624 static void free_stack_comp_unit (void *);
1625
1626 static hashval_t partial_die_hash (const void *item);
1627
1628 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1629
1630 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1631 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1632
1633 static void init_one_comp_unit (struct dwarf2_cu *cu,
1634 struct dwarf2_per_cu_data *per_cu);
1635
1636 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1637 struct die_info *comp_unit_die,
1638 enum language pretend_language);
1639
1640 static void free_heap_comp_unit (void *);
1641
1642 static void free_cached_comp_units (void *);
1643
1644 static void age_cached_comp_units (void);
1645
1646 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1647
1648 static struct type *set_die_type (struct die_info *, struct type *,
1649 struct dwarf2_cu *);
1650
1651 static void create_all_comp_units (struct objfile *);
1652
1653 static int create_all_type_units (struct objfile *);
1654
1655 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1656 enum language);
1657
1658 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1659 enum language);
1660
1661 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1662 enum language);
1663
1664 static void dwarf2_add_dependence (struct dwarf2_cu *,
1665 struct dwarf2_per_cu_data *);
1666
1667 static void dwarf2_mark (struct dwarf2_cu *);
1668
1669 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1670
1671 static struct type *get_die_type_at_offset (sect_offset,
1672 struct dwarf2_per_cu_data *per_cu);
1673
1674 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1675
1676 static void dwarf2_release_queue (void *dummy);
1677
1678 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1679 enum language pretend_language);
1680
1681 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1682 struct dwarf2_per_cu_data *per_cu,
1683 enum language pretend_language);
1684
1685 static void process_queue (void);
1686
1687 static void find_file_and_directory (struct die_info *die,
1688 struct dwarf2_cu *cu,
1689 char **name, char **comp_dir);
1690
1691 static char *file_full_name (int file, struct line_header *lh,
1692 const char *comp_dir);
1693
1694 static gdb_byte *read_and_check_comp_unit_head
1695 (struct comp_unit_head *header,
1696 struct dwarf2_section_info *section,
1697 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1698 int is_debug_types_section);
1699
1700 static void init_cutu_and_read_dies
1701 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1702 int use_existing_cu, int keep,
1703 die_reader_func_ftype *die_reader_func, void *data);
1704
1705 static void init_cutu_and_read_dies_simple
1706 (struct dwarf2_per_cu_data *this_cu,
1707 die_reader_func_ftype *die_reader_func, void *data);
1708
1709 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1710
1711 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1712
1713 static struct dwo_unit *lookup_dwo_comp_unit
1714 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1715
1716 static struct dwo_unit *lookup_dwo_type_unit
1717 (struct signatured_type *, const char *, const char *);
1718
1719 static void free_dwo_file_cleanup (void *);
1720
1721 static void process_cu_includes (void);
1722
1723 static void check_producer (struct dwarf2_cu *cu);
1724
1725 #if WORDS_BIGENDIAN
1726
1727 /* Convert VALUE between big- and little-endian. */
1728 static offset_type
1729 byte_swap (offset_type value)
1730 {
1731 offset_type result;
1732
1733 result = (value & 0xff) << 24;
1734 result |= (value & 0xff00) << 8;
1735 result |= (value & 0xff0000) >> 8;
1736 result |= (value & 0xff000000) >> 24;
1737 return result;
1738 }
1739
1740 #define MAYBE_SWAP(V) byte_swap (V)
1741
1742 #else
1743 #define MAYBE_SWAP(V) (V)
1744 #endif /* WORDS_BIGENDIAN */
1745
1746 /* The suffix for an index file. */
1747 #define INDEX_SUFFIX ".gdb-index"
1748
1749 static const char *dwarf2_physname (char *name, struct die_info *die,
1750 struct dwarf2_cu *cu);
1751
1752 /* Try to locate the sections we need for DWARF 2 debugging
1753 information and return true if we have enough to do something.
1754 NAMES points to the dwarf2 section names, or is NULL if the standard
1755 ELF names are used. */
1756
1757 int
1758 dwarf2_has_info (struct objfile *objfile,
1759 const struct dwarf2_debug_sections *names)
1760 {
1761 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1762 if (!dwarf2_per_objfile)
1763 {
1764 /* Initialize per-objfile state. */
1765 struct dwarf2_per_objfile *data
1766 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1767
1768 memset (data, 0, sizeof (*data));
1769 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1770 dwarf2_per_objfile = data;
1771
1772 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1773 (void *) names);
1774 dwarf2_per_objfile->objfile = objfile;
1775 }
1776 return (dwarf2_per_objfile->info.asection != NULL
1777 && dwarf2_per_objfile->abbrev.asection != NULL);
1778 }
1779
1780 /* When loading sections, we look either for uncompressed section or for
1781 compressed section names. */
1782
1783 static int
1784 section_is_p (const char *section_name,
1785 const struct dwarf2_section_names *names)
1786 {
1787 if (names->normal != NULL
1788 && strcmp (section_name, names->normal) == 0)
1789 return 1;
1790 if (names->compressed != NULL
1791 && strcmp (section_name, names->compressed) == 0)
1792 return 1;
1793 return 0;
1794 }
1795
1796 /* This function is mapped across the sections and remembers the
1797 offset and size of each of the debugging sections we are interested
1798 in. */
1799
1800 static void
1801 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1802 {
1803 const struct dwarf2_debug_sections *names;
1804 flagword aflag = bfd_get_section_flags (abfd, sectp);
1805
1806 if (vnames == NULL)
1807 names = &dwarf2_elf_names;
1808 else
1809 names = (const struct dwarf2_debug_sections *) vnames;
1810
1811 if ((aflag & SEC_HAS_CONTENTS) == 0)
1812 {
1813 }
1814 else if (section_is_p (sectp->name, &names->info))
1815 {
1816 dwarf2_per_objfile->info.asection = sectp;
1817 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1818 }
1819 else if (section_is_p (sectp->name, &names->abbrev))
1820 {
1821 dwarf2_per_objfile->abbrev.asection = sectp;
1822 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1823 }
1824 else if (section_is_p (sectp->name, &names->line))
1825 {
1826 dwarf2_per_objfile->line.asection = sectp;
1827 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1828 }
1829 else if (section_is_p (sectp->name, &names->loc))
1830 {
1831 dwarf2_per_objfile->loc.asection = sectp;
1832 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->macinfo))
1835 {
1836 dwarf2_per_objfile->macinfo.asection = sectp;
1837 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->macro))
1840 {
1841 dwarf2_per_objfile->macro.asection = sectp;
1842 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->str))
1845 {
1846 dwarf2_per_objfile->str.asection = sectp;
1847 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->addr))
1850 {
1851 dwarf2_per_objfile->addr.asection = sectp;
1852 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->frame))
1855 {
1856 dwarf2_per_objfile->frame.asection = sectp;
1857 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->eh_frame))
1860 {
1861 dwarf2_per_objfile->eh_frame.asection = sectp;
1862 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->ranges))
1865 {
1866 dwarf2_per_objfile->ranges.asection = sectp;
1867 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->types))
1870 {
1871 struct dwarf2_section_info type_section;
1872
1873 memset (&type_section, 0, sizeof (type_section));
1874 type_section.asection = sectp;
1875 type_section.size = bfd_get_section_size (sectp);
1876
1877 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1878 &type_section);
1879 }
1880 else if (section_is_p (sectp->name, &names->gdb_index))
1881 {
1882 dwarf2_per_objfile->gdb_index.asection = sectp;
1883 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1884 }
1885
1886 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1887 && bfd_section_vma (abfd, sectp) == 0)
1888 dwarf2_per_objfile->has_section_at_zero = 1;
1889 }
1890
1891 /* A helper function that decides whether a section is empty,
1892 or not present. */
1893
1894 static int
1895 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1896 {
1897 return info->asection == NULL || info->size == 0;
1898 }
1899
1900 /* Read the contents of the section INFO.
1901 OBJFILE is the main object file, but not necessarily the file where
1902 the section comes from. E.g., for DWO files INFO->asection->owner
1903 is the bfd of the DWO file.
1904 If the section is compressed, uncompress it before returning. */
1905
1906 static void
1907 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1908 {
1909 asection *sectp = info->asection;
1910 bfd *abfd;
1911 gdb_byte *buf, *retbuf;
1912 unsigned char header[4];
1913
1914 if (info->readin)
1915 return;
1916 info->buffer = NULL;
1917 info->readin = 1;
1918
1919 if (dwarf2_section_empty_p (info))
1920 return;
1921
1922 abfd = sectp->owner;
1923
1924 /* If the section has relocations, we must read it ourselves.
1925 Otherwise we attach it to the BFD. */
1926 if ((sectp->flags & SEC_RELOC) == 0)
1927 {
1928 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1929
1930 /* We have to cast away const here for historical reasons.
1931 Fixing dwarf2read to be const-correct would be quite nice. */
1932 info->buffer = (gdb_byte *) bytes;
1933 return;
1934 }
1935
1936 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1937 info->buffer = buf;
1938
1939 /* When debugging .o files, we may need to apply relocations; see
1940 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1941 We never compress sections in .o files, so we only need to
1942 try this when the section is not compressed. */
1943 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1944 if (retbuf != NULL)
1945 {
1946 info->buffer = retbuf;
1947 return;
1948 }
1949
1950 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1951 || bfd_bread (buf, info->size, abfd) != info->size)
1952 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1953 bfd_get_filename (abfd));
1954 }
1955
1956 /* A helper function that returns the size of a section in a safe way.
1957 If you are positive that the section has been read before using the
1958 size, then it is safe to refer to the dwarf2_section_info object's
1959 "size" field directly. In other cases, you must call this
1960 function, because for compressed sections the size field is not set
1961 correctly until the section has been read. */
1962
1963 static bfd_size_type
1964 dwarf2_section_size (struct objfile *objfile,
1965 struct dwarf2_section_info *info)
1966 {
1967 if (!info->readin)
1968 dwarf2_read_section (objfile, info);
1969 return info->size;
1970 }
1971
1972 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1973 SECTION_NAME. */
1974
1975 void
1976 dwarf2_get_section_info (struct objfile *objfile,
1977 enum dwarf2_section_enum sect,
1978 asection **sectp, gdb_byte **bufp,
1979 bfd_size_type *sizep)
1980 {
1981 struct dwarf2_per_objfile *data
1982 = objfile_data (objfile, dwarf2_objfile_data_key);
1983 struct dwarf2_section_info *info;
1984
1985 /* We may see an objfile without any DWARF, in which case we just
1986 return nothing. */
1987 if (data == NULL)
1988 {
1989 *sectp = NULL;
1990 *bufp = NULL;
1991 *sizep = 0;
1992 return;
1993 }
1994 switch (sect)
1995 {
1996 case DWARF2_DEBUG_FRAME:
1997 info = &data->frame;
1998 break;
1999 case DWARF2_EH_FRAME:
2000 info = &data->eh_frame;
2001 break;
2002 default:
2003 gdb_assert_not_reached ("unexpected section");
2004 }
2005
2006 dwarf2_read_section (objfile, info);
2007
2008 *sectp = info->asection;
2009 *bufp = info->buffer;
2010 *sizep = info->size;
2011 }
2012
2013 /* A helper function to find the sections for a .dwz file. */
2014
2015 static void
2016 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2017 {
2018 struct dwz_file *dwz_file = arg;
2019
2020 /* Note that we only support the standard ELF names, because .dwz
2021 is ELF-only (at the time of writing). */
2022 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2023 {
2024 dwz_file->abbrev.asection = sectp;
2025 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2026 }
2027 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2028 {
2029 dwz_file->info.asection = sectp;
2030 dwz_file->info.size = bfd_get_section_size (sectp);
2031 }
2032 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2033 {
2034 dwz_file->str.asection = sectp;
2035 dwz_file->str.size = bfd_get_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2038 {
2039 dwz_file->line.asection = sectp;
2040 dwz_file->line.size = bfd_get_section_size (sectp);
2041 }
2042 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2043 {
2044 dwz_file->macro.asection = sectp;
2045 dwz_file->macro.size = bfd_get_section_size (sectp);
2046 }
2047 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2048 {
2049 dwz_file->gdb_index.asection = sectp;
2050 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2051 }
2052 }
2053
2054 /* Open the separate '.dwz' debug file, if needed. Error if the file
2055 cannot be found. */
2056
2057 static struct dwz_file *
2058 dwarf2_get_dwz_file (void)
2059 {
2060 bfd *abfd, *dwz_bfd;
2061 asection *section;
2062 gdb_byte *data;
2063 struct cleanup *cleanup;
2064 const char *filename;
2065 struct dwz_file *result;
2066
2067 if (dwarf2_per_objfile->dwz_file != NULL)
2068 return dwarf2_per_objfile->dwz_file;
2069
2070 abfd = dwarf2_per_objfile->objfile->obfd;
2071 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2072 if (section == NULL)
2073 error (_("could not find '.gnu_debugaltlink' section"));
2074 if (!bfd_malloc_and_get_section (abfd, section, &data))
2075 error (_("could not read '.gnu_debugaltlink' section: %s"),
2076 bfd_errmsg (bfd_get_error ()));
2077 cleanup = make_cleanup (xfree, data);
2078
2079 filename = data;
2080 if (!IS_ABSOLUTE_PATH (filename))
2081 {
2082 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2083 char *rel;
2084
2085 make_cleanup (xfree, abs);
2086 abs = ldirname (abs);
2087 make_cleanup (xfree, abs);
2088
2089 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2090 make_cleanup (xfree, rel);
2091 filename = rel;
2092 }
2093
2094 /* The format is just a NUL-terminated file name, followed by the
2095 build-id. For now, though, we ignore the build-id. */
2096 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2097 if (dwz_bfd == NULL)
2098 error (_("could not read '%s': %s"), filename,
2099 bfd_errmsg (bfd_get_error ()));
2100
2101 if (!bfd_check_format (dwz_bfd, bfd_object))
2102 {
2103 gdb_bfd_unref (dwz_bfd);
2104 error (_("file '%s' was not usable: %s"), filename,
2105 bfd_errmsg (bfd_get_error ()));
2106 }
2107
2108 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2109 struct dwz_file);
2110 result->dwz_bfd = dwz_bfd;
2111
2112 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2113
2114 do_cleanups (cleanup);
2115
2116 dwarf2_per_objfile->dwz_file = result;
2117 return result;
2118 }
2119 \f
2120 /* DWARF quick_symbols_functions support. */
2121
2122 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2123 unique line tables, so we maintain a separate table of all .debug_line
2124 derived entries to support the sharing.
2125 All the quick functions need is the list of file names. We discard the
2126 line_header when we're done and don't need to record it here. */
2127 struct quick_file_names
2128 {
2129 /* The data used to construct the hash key. */
2130 struct stmt_list_hash hash;
2131
2132 /* The number of entries in file_names, real_names. */
2133 unsigned int num_file_names;
2134
2135 /* The file names from the line table, after being run through
2136 file_full_name. */
2137 const char **file_names;
2138
2139 /* The file names from the line table after being run through
2140 gdb_realpath. These are computed lazily. */
2141 const char **real_names;
2142 };
2143
2144 /* When using the index (and thus not using psymtabs), each CU has an
2145 object of this type. This is used to hold information needed by
2146 the various "quick" methods. */
2147 struct dwarf2_per_cu_quick_data
2148 {
2149 /* The file table. This can be NULL if there was no file table
2150 or it's currently not read in.
2151 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2152 struct quick_file_names *file_names;
2153
2154 /* The corresponding symbol table. This is NULL if symbols for this
2155 CU have not yet been read. */
2156 struct symtab *symtab;
2157
2158 /* A temporary mark bit used when iterating over all CUs in
2159 expand_symtabs_matching. */
2160 unsigned int mark : 1;
2161
2162 /* True if we've tried to read the file table and found there isn't one.
2163 There will be no point in trying to read it again next time. */
2164 unsigned int no_file_data : 1;
2165 };
2166
2167 /* Utility hash function for a stmt_list_hash. */
2168
2169 static hashval_t
2170 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2171 {
2172 hashval_t v = 0;
2173
2174 if (stmt_list_hash->dwo_unit != NULL)
2175 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2176 v += stmt_list_hash->line_offset.sect_off;
2177 return v;
2178 }
2179
2180 /* Utility equality function for a stmt_list_hash. */
2181
2182 static int
2183 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2184 const struct stmt_list_hash *rhs)
2185 {
2186 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2187 return 0;
2188 if (lhs->dwo_unit != NULL
2189 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2190 return 0;
2191
2192 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2193 }
2194
2195 /* Hash function for a quick_file_names. */
2196
2197 static hashval_t
2198 hash_file_name_entry (const void *e)
2199 {
2200 const struct quick_file_names *file_data = e;
2201
2202 return hash_stmt_list_entry (&file_data->hash);
2203 }
2204
2205 /* Equality function for a quick_file_names. */
2206
2207 static int
2208 eq_file_name_entry (const void *a, const void *b)
2209 {
2210 const struct quick_file_names *ea = a;
2211 const struct quick_file_names *eb = b;
2212
2213 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2214 }
2215
2216 /* Delete function for a quick_file_names. */
2217
2218 static void
2219 delete_file_name_entry (void *e)
2220 {
2221 struct quick_file_names *file_data = e;
2222 int i;
2223
2224 for (i = 0; i < file_data->num_file_names; ++i)
2225 {
2226 xfree ((void*) file_data->file_names[i]);
2227 if (file_data->real_names)
2228 xfree ((void*) file_data->real_names[i]);
2229 }
2230
2231 /* The space for the struct itself lives on objfile_obstack,
2232 so we don't free it here. */
2233 }
2234
2235 /* Create a quick_file_names hash table. */
2236
2237 static htab_t
2238 create_quick_file_names_table (unsigned int nr_initial_entries)
2239 {
2240 return htab_create_alloc (nr_initial_entries,
2241 hash_file_name_entry, eq_file_name_entry,
2242 delete_file_name_entry, xcalloc, xfree);
2243 }
2244
2245 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2246 have to be created afterwards. You should call age_cached_comp_units after
2247 processing PER_CU->CU. dw2_setup must have been already called. */
2248
2249 static void
2250 load_cu (struct dwarf2_per_cu_data *per_cu)
2251 {
2252 if (per_cu->is_debug_types)
2253 load_full_type_unit (per_cu);
2254 else
2255 load_full_comp_unit (per_cu, language_minimal);
2256
2257 gdb_assert (per_cu->cu != NULL);
2258
2259 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2260 }
2261
2262 /* Read in the symbols for PER_CU. */
2263
2264 static void
2265 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2266 {
2267 struct cleanup *back_to;
2268
2269 /* Skip type_unit_groups, reading the type units they contain
2270 is handled elsewhere. */
2271 if (IS_TYPE_UNIT_GROUP (per_cu))
2272 return;
2273
2274 back_to = make_cleanup (dwarf2_release_queue, NULL);
2275
2276 if (dwarf2_per_objfile->using_index
2277 ? per_cu->v.quick->symtab == NULL
2278 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2279 {
2280 queue_comp_unit (per_cu, language_minimal);
2281 load_cu (per_cu);
2282 }
2283
2284 process_queue ();
2285
2286 /* Age the cache, releasing compilation units that have not
2287 been used recently. */
2288 age_cached_comp_units ();
2289
2290 do_cleanups (back_to);
2291 }
2292
2293 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2294 the objfile from which this CU came. Returns the resulting symbol
2295 table. */
2296
2297 static struct symtab *
2298 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 gdb_assert (dwarf2_per_objfile->using_index);
2301 if (!per_cu->v.quick->symtab)
2302 {
2303 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2304 increment_reading_symtab ();
2305 dw2_do_instantiate_symtab (per_cu);
2306 process_cu_includes ();
2307 do_cleanups (back_to);
2308 }
2309 return per_cu->v.quick->symtab;
2310 }
2311
2312 /* Return the CU given its index.
2313
2314 This is intended for loops like:
2315
2316 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2317 + dwarf2_per_objfile->n_type_units); ++i)
2318 {
2319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2320
2321 ...;
2322 }
2323 */
2324
2325 static struct dwarf2_per_cu_data *
2326 dw2_get_cu (int index)
2327 {
2328 if (index >= dwarf2_per_objfile->n_comp_units)
2329 {
2330 index -= dwarf2_per_objfile->n_comp_units;
2331 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2332 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2333 }
2334
2335 return dwarf2_per_objfile->all_comp_units[index];
2336 }
2337
2338 /* Return the primary CU given its index.
2339 The difference between this function and dw2_get_cu is in the handling
2340 of type units (TUs). Here we return the type_unit_group object.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2348
2349 ...;
2350 }
2351 */
2352
2353 static struct dwarf2_per_cu_data *
2354 dw2_get_primary_cu (int index)
2355 {
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
2358 index -= dwarf2_per_objfile->n_comp_units;
2359 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2360 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364 }
2365
2366 /* A helper for create_cus_from_index that handles a given list of
2367 CUs. */
2368
2369 static void
2370 create_cus_from_index_list (struct objfile *objfile,
2371 const gdb_byte *cu_list, offset_type n_elements,
2372 struct dwarf2_section_info *section,
2373 int is_dwz,
2374 int base_offset)
2375 {
2376 offset_type i;
2377
2378 for (i = 0; i < n_elements; i += 2)
2379 {
2380 struct dwarf2_per_cu_data *the_cu;
2381 ULONGEST offset, length;
2382
2383 gdb_static_assert (sizeof (ULONGEST) >= 8);
2384 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2385 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2386 cu_list += 2 * 8;
2387
2388 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2389 struct dwarf2_per_cu_data);
2390 the_cu->offset.sect_off = offset;
2391 the_cu->length = length;
2392 the_cu->objfile = objfile;
2393 the_cu->info_or_types_section = section;
2394 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2395 struct dwarf2_per_cu_quick_data);
2396 the_cu->is_dwz = is_dwz;
2397 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2398 }
2399 }
2400
2401 /* Read the CU list from the mapped index, and use it to create all
2402 the CU objects for this objfile. */
2403
2404 static void
2405 create_cus_from_index (struct objfile *objfile,
2406 const gdb_byte *cu_list, offset_type cu_list_elements,
2407 const gdb_byte *dwz_list, offset_type dwz_elements)
2408 {
2409 struct dwz_file *dwz;
2410
2411 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2412 dwarf2_per_objfile->all_comp_units
2413 = obstack_alloc (&objfile->objfile_obstack,
2414 dwarf2_per_objfile->n_comp_units
2415 * sizeof (struct dwarf2_per_cu_data *));
2416
2417 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2418 &dwarf2_per_objfile->info, 0, 0);
2419
2420 if (dwz_elements == 0)
2421 return;
2422
2423 dwz = dwarf2_get_dwz_file ();
2424 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2425 cu_list_elements / 2);
2426 }
2427
2428 /* Create the signatured type hash table from the index. */
2429
2430 static void
2431 create_signatured_type_table_from_index (struct objfile *objfile,
2432 struct dwarf2_section_info *section,
2433 const gdb_byte *bytes,
2434 offset_type elements)
2435 {
2436 offset_type i;
2437 htab_t sig_types_hash;
2438
2439 dwarf2_per_objfile->n_type_units = elements / 3;
2440 dwarf2_per_objfile->all_type_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_type_units
2443 * sizeof (struct signatured_type *));
2444
2445 sig_types_hash = allocate_signatured_type_table (objfile);
2446
2447 for (i = 0; i < elements; i += 3)
2448 {
2449 struct signatured_type *sig_type;
2450 ULONGEST offset, type_offset_in_tu, signature;
2451 void **slot;
2452
2453 gdb_static_assert (sizeof (ULONGEST) >= 8);
2454 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2455 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2456 BFD_ENDIAN_LITTLE);
2457 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2458 bytes += 3 * 8;
2459
2460 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2461 struct signatured_type);
2462 sig_type->signature = signature;
2463 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2464 sig_type->per_cu.is_debug_types = 1;
2465 sig_type->per_cu.info_or_types_section = section;
2466 sig_type->per_cu.offset.sect_off = offset;
2467 sig_type->per_cu.objfile = objfile;
2468 sig_type->per_cu.v.quick
2469 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2470 struct dwarf2_per_cu_quick_data);
2471
2472 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2473 *slot = sig_type;
2474
2475 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2476 }
2477
2478 dwarf2_per_objfile->signatured_types = sig_types_hash;
2479 }
2480
2481 /* Read the address map data from the mapped index, and use it to
2482 populate the objfile's psymtabs_addrmap. */
2483
2484 static void
2485 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2486 {
2487 const gdb_byte *iter, *end;
2488 struct obstack temp_obstack;
2489 struct addrmap *mutable_map;
2490 struct cleanup *cleanup;
2491 CORE_ADDR baseaddr;
2492
2493 obstack_init (&temp_obstack);
2494 cleanup = make_cleanup_obstack_free (&temp_obstack);
2495 mutable_map = addrmap_create_mutable (&temp_obstack);
2496
2497 iter = index->address_table;
2498 end = iter + index->address_table_size;
2499
2500 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2501
2502 while (iter < end)
2503 {
2504 ULONGEST hi, lo, cu_index;
2505 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2506 iter += 8;
2507 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2508 iter += 8;
2509 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2510 iter += 4;
2511
2512 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2513 dw2_get_cu (cu_index));
2514 }
2515
2516 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2517 &objfile->objfile_obstack);
2518 do_cleanups (cleanup);
2519 }
2520
2521 /* The hash function for strings in the mapped index. This is the same as
2522 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2523 implementation. This is necessary because the hash function is tied to the
2524 format of the mapped index file. The hash values do not have to match with
2525 SYMBOL_HASH_NEXT.
2526
2527 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2528
2529 static hashval_t
2530 mapped_index_string_hash (int index_version, const void *p)
2531 {
2532 const unsigned char *str = (const unsigned char *) p;
2533 hashval_t r = 0;
2534 unsigned char c;
2535
2536 while ((c = *str++) != 0)
2537 {
2538 if (index_version >= 5)
2539 c = tolower (c);
2540 r = r * 67 + c - 113;
2541 }
2542
2543 return r;
2544 }
2545
2546 /* Find a slot in the mapped index INDEX for the object named NAME.
2547 If NAME is found, set *VEC_OUT to point to the CU vector in the
2548 constant pool and return 1. If NAME cannot be found, return 0. */
2549
2550 static int
2551 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2552 offset_type **vec_out)
2553 {
2554 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2555 offset_type hash;
2556 offset_type slot, step;
2557 int (*cmp) (const char *, const char *);
2558
2559 if (current_language->la_language == language_cplus
2560 || current_language->la_language == language_java
2561 || current_language->la_language == language_fortran)
2562 {
2563 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2564 not contain any. */
2565 const char *paren = strchr (name, '(');
2566
2567 if (paren)
2568 {
2569 char *dup;
2570
2571 dup = xmalloc (paren - name + 1);
2572 memcpy (dup, name, paren - name);
2573 dup[paren - name] = 0;
2574
2575 make_cleanup (xfree, dup);
2576 name = dup;
2577 }
2578 }
2579
2580 /* Index version 4 did not support case insensitive searches. But the
2581 indices for case insensitive languages are built in lowercase, therefore
2582 simulate our NAME being searched is also lowercased. */
2583 hash = mapped_index_string_hash ((index->version == 4
2584 && case_sensitivity == case_sensitive_off
2585 ? 5 : index->version),
2586 name);
2587
2588 slot = hash & (index->symbol_table_slots - 1);
2589 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2590 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2591
2592 for (;;)
2593 {
2594 /* Convert a slot number to an offset into the table. */
2595 offset_type i = 2 * slot;
2596 const char *str;
2597 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2598 {
2599 do_cleanups (back_to);
2600 return 0;
2601 }
2602
2603 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2604 if (!cmp (name, str))
2605 {
2606 *vec_out = (offset_type *) (index->constant_pool
2607 + MAYBE_SWAP (index->symbol_table[i + 1]));
2608 do_cleanups (back_to);
2609 return 1;
2610 }
2611
2612 slot = (slot + step) & (index->symbol_table_slots - 1);
2613 }
2614 }
2615
2616 /* A helper function that reads the .gdb_index from SECTION and fills
2617 in MAP. FILENAME is the name of the file containing the section;
2618 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2619 ok to use deprecated sections.
2620
2621 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2622 out parameters that are filled in with information about the CU and
2623 TU lists in the section.
2624
2625 Returns 1 if all went well, 0 otherwise. */
2626
2627 static int
2628 read_index_from_section (struct objfile *objfile,
2629 const char *filename,
2630 int deprecated_ok,
2631 struct dwarf2_section_info *section,
2632 struct mapped_index *map,
2633 const gdb_byte **cu_list,
2634 offset_type *cu_list_elements,
2635 const gdb_byte **types_list,
2636 offset_type *types_list_elements)
2637 {
2638 char *addr;
2639 offset_type version;
2640 offset_type *metadata;
2641 int i;
2642
2643 if (dwarf2_section_empty_p (section))
2644 return 0;
2645
2646 /* Older elfutils strip versions could keep the section in the main
2647 executable while splitting it for the separate debug info file. */
2648 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2649 return 0;
2650
2651 dwarf2_read_section (objfile, section);
2652
2653 addr = section->buffer;
2654 /* Version check. */
2655 version = MAYBE_SWAP (*(offset_type *) addr);
2656 /* Versions earlier than 3 emitted every copy of a psymbol. This
2657 causes the index to behave very poorly for certain requests. Version 3
2658 contained incomplete addrmap. So, it seems better to just ignore such
2659 indices. */
2660 if (version < 4)
2661 {
2662 static int warning_printed = 0;
2663 if (!warning_printed)
2664 {
2665 warning (_("Skipping obsolete .gdb_index section in %s."),
2666 filename);
2667 warning_printed = 1;
2668 }
2669 return 0;
2670 }
2671 /* Index version 4 uses a different hash function than index version
2672 5 and later.
2673
2674 Versions earlier than 6 did not emit psymbols for inlined
2675 functions. Using these files will cause GDB not to be able to
2676 set breakpoints on inlined functions by name, so we ignore these
2677 indices unless the user has done
2678 "set use-deprecated-index-sections on". */
2679 if (version < 6 && !deprecated_ok)
2680 {
2681 static int warning_printed = 0;
2682 if (!warning_printed)
2683 {
2684 warning (_("\
2685 Skipping deprecated .gdb_index section in %s.\n\
2686 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2687 to use the section anyway."),
2688 filename);
2689 warning_printed = 1;
2690 }
2691 return 0;
2692 }
2693 /* Indexes with higher version than the one supported by GDB may be no
2694 longer backward compatible. */
2695 if (version > 7)
2696 return 0;
2697
2698 map->version = version;
2699 map->total_size = section->size;
2700
2701 metadata = (offset_type *) (addr + sizeof (offset_type));
2702
2703 i = 0;
2704 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2705 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2706 / 8);
2707 ++i;
2708
2709 *types_list = addr + MAYBE_SWAP (metadata[i]);
2710 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2711 - MAYBE_SWAP (metadata[i]))
2712 / 8);
2713 ++i;
2714
2715 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2716 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2717 - MAYBE_SWAP (metadata[i]));
2718 ++i;
2719
2720 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2721 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2722 - MAYBE_SWAP (metadata[i]))
2723 / (2 * sizeof (offset_type)));
2724 ++i;
2725
2726 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2727
2728 return 1;
2729 }
2730
2731
2732 /* Read the index file. If everything went ok, initialize the "quick"
2733 elements of all the CUs and return 1. Otherwise, return 0. */
2734
2735 static int
2736 dwarf2_read_index (struct objfile *objfile)
2737 {
2738 struct mapped_index local_map, *map;
2739 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2740 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2741
2742 if (!read_index_from_section (objfile, objfile->name,
2743 use_deprecated_index_sections,
2744 &dwarf2_per_objfile->gdb_index, &local_map,
2745 &cu_list, &cu_list_elements,
2746 &types_list, &types_list_elements))
2747 return 0;
2748
2749 /* Don't use the index if it's empty. */
2750 if (local_map.symbol_table_slots == 0)
2751 return 0;
2752
2753 /* If there is a .dwz file, read it so we can get its CU list as
2754 well. */
2755 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2756 {
2757 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2758 struct mapped_index dwz_map;
2759 const gdb_byte *dwz_types_ignore;
2760 offset_type dwz_types_elements_ignore;
2761
2762 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2763 1,
2764 &dwz->gdb_index, &dwz_map,
2765 &dwz_list, &dwz_list_elements,
2766 &dwz_types_ignore,
2767 &dwz_types_elements_ignore))
2768 {
2769 warning (_("could not read '.gdb_index' section from %s; skipping"),
2770 bfd_get_filename (dwz->dwz_bfd));
2771 return 0;
2772 }
2773 }
2774
2775 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2776 dwz_list_elements);
2777
2778 if (types_list_elements)
2779 {
2780 struct dwarf2_section_info *section;
2781
2782 /* We can only handle a single .debug_types when we have an
2783 index. */
2784 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2785 return 0;
2786
2787 section = VEC_index (dwarf2_section_info_def,
2788 dwarf2_per_objfile->types, 0);
2789
2790 create_signatured_type_table_from_index (objfile, section, types_list,
2791 types_list_elements);
2792 }
2793
2794 create_addrmap_from_index (objfile, &local_map);
2795
2796 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2797 *map = local_map;
2798
2799 dwarf2_per_objfile->index_table = map;
2800 dwarf2_per_objfile->using_index = 1;
2801 dwarf2_per_objfile->quick_file_names_table =
2802 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2803
2804 return 1;
2805 }
2806
2807 /* A helper for the "quick" functions which sets the global
2808 dwarf2_per_objfile according to OBJFILE. */
2809
2810 static void
2811 dw2_setup (struct objfile *objfile)
2812 {
2813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2814 gdb_assert (dwarf2_per_objfile);
2815 }
2816
2817 /* Reader function for dw2_build_type_unit_groups. */
2818
2819 static void
2820 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2821 gdb_byte *info_ptr,
2822 struct die_info *type_unit_die,
2823 int has_children,
2824 void *data)
2825 {
2826 struct dwarf2_cu *cu = reader->cu;
2827 struct attribute *attr;
2828 struct type_unit_group *tu_group;
2829
2830 gdb_assert (data == NULL);
2831
2832 if (! has_children)
2833 return;
2834
2835 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2836 /* Call this for its side-effect of creating the associated
2837 struct type_unit_group if it doesn't already exist. */
2838 tu_group = get_type_unit_group (cu, attr);
2839 }
2840
2841 /* Build dwarf2_per_objfile->type_unit_groups.
2842 This function may be called multiple times. */
2843
2844 static void
2845 dw2_build_type_unit_groups (void)
2846 {
2847 if (dwarf2_per_objfile->type_unit_groups == NULL)
2848 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2849 }
2850
2851 /* die_reader_func for dw2_get_file_names. */
2852
2853 static void
2854 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2855 gdb_byte *info_ptr,
2856 struct die_info *comp_unit_die,
2857 int has_children,
2858 void *data)
2859 {
2860 struct dwarf2_cu *cu = reader->cu;
2861 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2862 struct objfile *objfile = dwarf2_per_objfile->objfile;
2863 struct dwarf2_per_cu_data *lh_cu;
2864 struct line_header *lh;
2865 struct attribute *attr;
2866 int i;
2867 char *name, *comp_dir;
2868 void **slot;
2869 struct quick_file_names *qfn;
2870 unsigned int line_offset;
2871
2872 /* Our callers never want to match partial units -- instead they
2873 will match the enclosing full CU. */
2874 if (comp_unit_die->tag == DW_TAG_partial_unit)
2875 {
2876 this_cu->v.quick->no_file_data = 1;
2877 return;
2878 }
2879
2880 /* If we're reading the line header for TUs, store it in the "per_cu"
2881 for tu_group. */
2882 if (this_cu->is_debug_types)
2883 {
2884 struct type_unit_group *tu_group = data;
2885
2886 gdb_assert (tu_group != NULL);
2887 lh_cu = &tu_group->per_cu;
2888 }
2889 else
2890 lh_cu = this_cu;
2891
2892 lh = NULL;
2893 slot = NULL;
2894 line_offset = 0;
2895
2896 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2897 if (attr)
2898 {
2899 struct quick_file_names find_entry;
2900
2901 line_offset = DW_UNSND (attr);
2902
2903 /* We may have already read in this line header (TU line header sharing).
2904 If we have we're done. */
2905 find_entry.hash.dwo_unit = cu->dwo_unit;
2906 find_entry.hash.line_offset.sect_off = line_offset;
2907 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2908 &find_entry, INSERT);
2909 if (*slot != NULL)
2910 {
2911 lh_cu->v.quick->file_names = *slot;
2912 return;
2913 }
2914
2915 lh = dwarf_decode_line_header (line_offset, cu);
2916 }
2917 if (lh == NULL)
2918 {
2919 lh_cu->v.quick->no_file_data = 1;
2920 return;
2921 }
2922
2923 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2924 qfn->hash.dwo_unit = cu->dwo_unit;
2925 qfn->hash.line_offset.sect_off = line_offset;
2926 gdb_assert (slot != NULL);
2927 *slot = qfn;
2928
2929 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2930
2931 qfn->num_file_names = lh->num_file_names;
2932 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2933 lh->num_file_names * sizeof (char *));
2934 for (i = 0; i < lh->num_file_names; ++i)
2935 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2936 qfn->real_names = NULL;
2937
2938 free_line_header (lh);
2939
2940 lh_cu->v.quick->file_names = qfn;
2941 }
2942
2943 /* A helper for the "quick" functions which attempts to read the line
2944 table for THIS_CU. */
2945
2946 static struct quick_file_names *
2947 dw2_get_file_names (struct objfile *objfile,
2948 struct dwarf2_per_cu_data *this_cu)
2949 {
2950 /* For TUs this should only be called on the parent group. */
2951 if (this_cu->is_debug_types)
2952 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2953
2954 if (this_cu->v.quick->file_names != NULL)
2955 return this_cu->v.quick->file_names;
2956 /* If we know there is no line data, no point in looking again. */
2957 if (this_cu->v.quick->no_file_data)
2958 return NULL;
2959
2960 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2961 in the stub for CUs, there's is no need to lookup the DWO file.
2962 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2963 DWO file. */
2964 if (this_cu->is_debug_types)
2965 {
2966 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2967
2968 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2969 dw2_get_file_names_reader, tu_group);
2970 }
2971 else
2972 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2973
2974 if (this_cu->v.quick->no_file_data)
2975 return NULL;
2976 return this_cu->v.quick->file_names;
2977 }
2978
2979 /* A helper for the "quick" functions which computes and caches the
2980 real path for a given file name from the line table. */
2981
2982 static const char *
2983 dw2_get_real_path (struct objfile *objfile,
2984 struct quick_file_names *qfn, int index)
2985 {
2986 if (qfn->real_names == NULL)
2987 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2988 qfn->num_file_names, sizeof (char *));
2989
2990 if (qfn->real_names[index] == NULL)
2991 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2992
2993 return qfn->real_names[index];
2994 }
2995
2996 static struct symtab *
2997 dw2_find_last_source_symtab (struct objfile *objfile)
2998 {
2999 int index;
3000
3001 dw2_setup (objfile);
3002 index = dwarf2_per_objfile->n_comp_units - 1;
3003 return dw2_instantiate_symtab (dw2_get_cu (index));
3004 }
3005
3006 /* Traversal function for dw2_forget_cached_source_info. */
3007
3008 static int
3009 dw2_free_cached_file_names (void **slot, void *info)
3010 {
3011 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3012
3013 if (file_data->real_names)
3014 {
3015 int i;
3016
3017 for (i = 0; i < file_data->num_file_names; ++i)
3018 {
3019 xfree ((void*) file_data->real_names[i]);
3020 file_data->real_names[i] = NULL;
3021 }
3022 }
3023
3024 return 1;
3025 }
3026
3027 static void
3028 dw2_forget_cached_source_info (struct objfile *objfile)
3029 {
3030 dw2_setup (objfile);
3031
3032 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3033 dw2_free_cached_file_names, NULL);
3034 }
3035
3036 /* Helper function for dw2_map_symtabs_matching_filename that expands
3037 the symtabs and calls the iterator. */
3038
3039 static int
3040 dw2_map_expand_apply (struct objfile *objfile,
3041 struct dwarf2_per_cu_data *per_cu,
3042 const char *name,
3043 const char *full_path, const char *real_path,
3044 int (*callback) (struct symtab *, void *),
3045 void *data)
3046 {
3047 struct symtab *last_made = objfile->symtabs;
3048
3049 /* Don't visit already-expanded CUs. */
3050 if (per_cu->v.quick->symtab)
3051 return 0;
3052
3053 /* This may expand more than one symtab, and we want to iterate over
3054 all of them. */
3055 dw2_instantiate_symtab (per_cu);
3056
3057 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3058 objfile->symtabs, last_made);
3059 }
3060
3061 /* Implementation of the map_symtabs_matching_filename method. */
3062
3063 static int
3064 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3065 const char *full_path, const char *real_path,
3066 int (*callback) (struct symtab *, void *),
3067 void *data)
3068 {
3069 int i;
3070 const char *name_basename = lbasename (name);
3071 int is_abs = IS_ABSOLUTE_PATH (name);
3072
3073 dw2_setup (objfile);
3074
3075 dw2_build_type_unit_groups ();
3076
3077 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3078 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3079 {
3080 int j;
3081 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3082 struct quick_file_names *file_data;
3083
3084 /* We only need to look at symtabs not already expanded. */
3085 if (per_cu->v.quick->symtab)
3086 continue;
3087
3088 file_data = dw2_get_file_names (objfile, per_cu);
3089 if (file_data == NULL)
3090 continue;
3091
3092 for (j = 0; j < file_data->num_file_names; ++j)
3093 {
3094 const char *this_name = file_data->file_names[j];
3095
3096 if (FILENAME_CMP (name, this_name) == 0
3097 || (!is_abs && compare_filenames_for_search (this_name, name)))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu,
3100 name, full_path, real_path,
3101 callback, data))
3102 return 1;
3103 }
3104
3105 /* Before we invoke realpath, which can get expensive when many
3106 files are involved, do a quick comparison of the basenames. */
3107 if (! basenames_may_differ
3108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3109 continue;
3110
3111 if (full_path != NULL)
3112 {
3113 const char *this_real_name = dw2_get_real_path (objfile,
3114 file_data, j);
3115
3116 if (this_real_name != NULL
3117 && (FILENAME_CMP (full_path, this_real_name) == 0
3118 || (!is_abs
3119 && compare_filenames_for_search (this_real_name,
3120 name))))
3121 {
3122 if (dw2_map_expand_apply (objfile, per_cu,
3123 name, full_path, real_path,
3124 callback, data))
3125 return 1;
3126 }
3127 }
3128
3129 if (real_path != NULL)
3130 {
3131 const char *this_real_name = dw2_get_real_path (objfile,
3132 file_data, j);
3133
3134 if (this_real_name != NULL
3135 && (FILENAME_CMP (real_path, this_real_name) == 0
3136 || (!is_abs
3137 && compare_filenames_for_search (this_real_name,
3138 name))))
3139 {
3140 if (dw2_map_expand_apply (objfile, per_cu,
3141 name, full_path, real_path,
3142 callback, data))
3143 return 1;
3144 }
3145 }
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 /* Struct used to manage iterating over all CUs looking for a symbol. */
3153
3154 struct dw2_symtab_iterator
3155 {
3156 /* The internalized form of .gdb_index. */
3157 struct mapped_index *index;
3158 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3159 int want_specific_block;
3160 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3161 Unused if !WANT_SPECIFIC_BLOCK. */
3162 int block_index;
3163 /* The kind of symbol we're looking for. */
3164 domain_enum domain;
3165 /* The list of CUs from the index entry of the symbol,
3166 or NULL if not found. */
3167 offset_type *vec;
3168 /* The next element in VEC to look at. */
3169 int next;
3170 /* The number of elements in VEC, or zero if there is no match. */
3171 int length;
3172 };
3173
3174 /* Initialize the index symtab iterator ITER.
3175 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3176 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3177
3178 static void
3179 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3180 struct mapped_index *index,
3181 int want_specific_block,
3182 int block_index,
3183 domain_enum domain,
3184 const char *name)
3185 {
3186 iter->index = index;
3187 iter->want_specific_block = want_specific_block;
3188 iter->block_index = block_index;
3189 iter->domain = domain;
3190 iter->next = 0;
3191
3192 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3193 iter->length = MAYBE_SWAP (*iter->vec);
3194 else
3195 {
3196 iter->vec = NULL;
3197 iter->length = 0;
3198 }
3199 }
3200
3201 /* Return the next matching CU or NULL if there are no more. */
3202
3203 static struct dwarf2_per_cu_data *
3204 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3205 {
3206 for ( ; iter->next < iter->length; ++iter->next)
3207 {
3208 offset_type cu_index_and_attrs =
3209 MAYBE_SWAP (iter->vec[iter->next + 1]);
3210 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3211 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3212 int want_static = iter->block_index != GLOBAL_BLOCK;
3213 /* This value is only valid for index versions >= 7. */
3214 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3215 gdb_index_symbol_kind symbol_kind =
3216 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3217 /* Only check the symbol attributes if they're present.
3218 Indices prior to version 7 don't record them,
3219 and indices >= 7 may elide them for certain symbols
3220 (gold does this). */
3221 int attrs_valid =
3222 (iter->index->version >= 7
3223 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3224
3225 /* Skip if already read in. */
3226 if (per_cu->v.quick->symtab)
3227 continue;
3228
3229 if (attrs_valid
3230 && iter->want_specific_block
3231 && want_static != is_static)
3232 continue;
3233
3234 /* Only check the symbol's kind if it has one. */
3235 if (attrs_valid)
3236 {
3237 switch (iter->domain)
3238 {
3239 case VAR_DOMAIN:
3240 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3241 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3242 /* Some types are also in VAR_DOMAIN. */
3243 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3244 continue;
3245 break;
3246 case STRUCT_DOMAIN:
3247 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3248 continue;
3249 break;
3250 case LABEL_DOMAIN:
3251 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3252 continue;
3253 break;
3254 default:
3255 break;
3256 }
3257 }
3258
3259 ++iter->next;
3260 return per_cu;
3261 }
3262
3263 return NULL;
3264 }
3265
3266 static struct symtab *
3267 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3268 const char *name, domain_enum domain)
3269 {
3270 struct symtab *stab_best = NULL;
3271 struct mapped_index *index;
3272
3273 dw2_setup (objfile);
3274
3275 index = dwarf2_per_objfile->index_table;
3276
3277 /* index is NULL if OBJF_READNOW. */
3278 if (index)
3279 {
3280 struct dw2_symtab_iterator iter;
3281 struct dwarf2_per_cu_data *per_cu;
3282
3283 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3284
3285 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3286 {
3287 struct symbol *sym = NULL;
3288 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3289
3290 /* Some caution must be observed with overloaded functions
3291 and methods, since the index will not contain any overload
3292 information (but NAME might contain it). */
3293 if (stab->primary)
3294 {
3295 struct blockvector *bv = BLOCKVECTOR (stab);
3296 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3297
3298 sym = lookup_block_symbol (block, name, domain);
3299 }
3300
3301 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3302 {
3303 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3304 return stab;
3305
3306 stab_best = stab;
3307 }
3308
3309 /* Keep looking through other CUs. */
3310 }
3311 }
3312
3313 return stab_best;
3314 }
3315
3316 static void
3317 dw2_print_stats (struct objfile *objfile)
3318 {
3319 int i, count;
3320
3321 dw2_setup (objfile);
3322 count = 0;
3323 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3324 + dwarf2_per_objfile->n_type_units); ++i)
3325 {
3326 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3327
3328 if (!per_cu->v.quick->symtab)
3329 ++count;
3330 }
3331 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3332 }
3333
3334 static void
3335 dw2_dump (struct objfile *objfile)
3336 {
3337 /* Nothing worth printing. */
3338 }
3339
3340 static void
3341 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3342 struct section_offsets *delta)
3343 {
3344 /* There's nothing to relocate here. */
3345 }
3346
3347 static void
3348 dw2_expand_symtabs_for_function (struct objfile *objfile,
3349 const char *func_name)
3350 {
3351 struct mapped_index *index;
3352
3353 dw2_setup (objfile);
3354
3355 index = dwarf2_per_objfile->index_table;
3356
3357 /* index is NULL if OBJF_READNOW. */
3358 if (index)
3359 {
3360 struct dw2_symtab_iterator iter;
3361 struct dwarf2_per_cu_data *per_cu;
3362
3363 /* Note: It doesn't matter what we pass for block_index here. */
3364 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3365 func_name);
3366
3367 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3368 dw2_instantiate_symtab (per_cu);
3369 }
3370 }
3371
3372 static void
3373 dw2_expand_all_symtabs (struct objfile *objfile)
3374 {
3375 int i;
3376
3377 dw2_setup (objfile);
3378
3379 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3380 + dwarf2_per_objfile->n_type_units); ++i)
3381 {
3382 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3383
3384 dw2_instantiate_symtab (per_cu);
3385 }
3386 }
3387
3388 static void
3389 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3390 const char *filename)
3391 {
3392 int i;
3393
3394 dw2_setup (objfile);
3395
3396 /* We don't need to consider type units here.
3397 This is only called for examining code, e.g. expand_line_sal.
3398 There can be an order of magnitude (or more) more type units
3399 than comp units, and we avoid them if we can. */
3400
3401 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3402 {
3403 int j;
3404 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3405 struct quick_file_names *file_data;
3406
3407 /* We only need to look at symtabs not already expanded. */
3408 if (per_cu->v.quick->symtab)
3409 continue;
3410
3411 file_data = dw2_get_file_names (objfile, per_cu);
3412 if (file_data == NULL)
3413 continue;
3414
3415 for (j = 0; j < file_data->num_file_names; ++j)
3416 {
3417 const char *this_name = file_data->file_names[j];
3418 if (FILENAME_CMP (this_name, filename) == 0)
3419 {
3420 dw2_instantiate_symtab (per_cu);
3421 break;
3422 }
3423 }
3424 }
3425 }
3426
3427 /* A helper function for dw2_find_symbol_file that finds the primary
3428 file name for a given CU. This is a die_reader_func. */
3429
3430 static void
3431 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3432 gdb_byte *info_ptr,
3433 struct die_info *comp_unit_die,
3434 int has_children,
3435 void *data)
3436 {
3437 const char **result_ptr = data;
3438 struct dwarf2_cu *cu = reader->cu;
3439 struct attribute *attr;
3440
3441 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3442 if (attr == NULL)
3443 *result_ptr = NULL;
3444 else
3445 *result_ptr = DW_STRING (attr);
3446 }
3447
3448 static const char *
3449 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3450 {
3451 struct dwarf2_per_cu_data *per_cu;
3452 offset_type *vec;
3453 const char *filename;
3454
3455 dw2_setup (objfile);
3456
3457 /* index_table is NULL if OBJF_READNOW. */
3458 if (!dwarf2_per_objfile->index_table)
3459 {
3460 struct symtab *s;
3461
3462 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3463 {
3464 struct blockvector *bv = BLOCKVECTOR (s);
3465 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3466 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3467
3468 if (sym)
3469 return SYMBOL_SYMTAB (sym)->filename;
3470 }
3471 return NULL;
3472 }
3473
3474 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3475 name, &vec))
3476 return NULL;
3477
3478 /* Note that this just looks at the very first one named NAME -- but
3479 actually we are looking for a function. find_main_filename
3480 should be rewritten so that it doesn't require a custom hook. It
3481 could just use the ordinary symbol tables. */
3482 /* vec[0] is the length, which must always be >0. */
3483 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3484
3485 if (per_cu->v.quick->symtab != NULL)
3486 return per_cu->v.quick->symtab->filename;
3487
3488 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3489 dw2_get_primary_filename_reader, &filename);
3490
3491 return filename;
3492 }
3493
3494 static void
3495 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3496 struct objfile *objfile, int global,
3497 int (*callback) (struct block *,
3498 struct symbol *, void *),
3499 void *data, symbol_compare_ftype *match,
3500 symbol_compare_ftype *ordered_compare)
3501 {
3502 /* Currently unimplemented; used for Ada. The function can be called if the
3503 current language is Ada for a non-Ada objfile using GNU index. As Ada
3504 does not look for non-Ada symbols this function should just return. */
3505 }
3506
3507 static void
3508 dw2_expand_symtabs_matching
3509 (struct objfile *objfile,
3510 int (*file_matcher) (const char *, void *),
3511 int (*name_matcher) (const char *, void *),
3512 enum search_domain kind,
3513 void *data)
3514 {
3515 int i;
3516 offset_type iter;
3517 struct mapped_index *index;
3518
3519 dw2_setup (objfile);
3520
3521 /* index_table is NULL if OBJF_READNOW. */
3522 if (!dwarf2_per_objfile->index_table)
3523 return;
3524 index = dwarf2_per_objfile->index_table;
3525
3526 if (file_matcher != NULL)
3527 {
3528 struct cleanup *cleanup;
3529 htab_t visited_found, visited_not_found;
3530
3531 dw2_build_type_unit_groups ();
3532
3533 visited_found = htab_create_alloc (10,
3534 htab_hash_pointer, htab_eq_pointer,
3535 NULL, xcalloc, xfree);
3536 cleanup = make_cleanup_htab_delete (visited_found);
3537 visited_not_found = htab_create_alloc (10,
3538 htab_hash_pointer, htab_eq_pointer,
3539 NULL, xcalloc, xfree);
3540 make_cleanup_htab_delete (visited_not_found);
3541
3542 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3543 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3544 {
3545 int j;
3546 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3547 struct quick_file_names *file_data;
3548 void **slot;
3549
3550 per_cu->v.quick->mark = 0;
3551
3552 /* We only need to look at symtabs not already expanded. */
3553 if (per_cu->v.quick->symtab)
3554 continue;
3555
3556 file_data = dw2_get_file_names (objfile, per_cu);
3557 if (file_data == NULL)
3558 continue;
3559
3560 if (htab_find (visited_not_found, file_data) != NULL)
3561 continue;
3562 else if (htab_find (visited_found, file_data) != NULL)
3563 {
3564 per_cu->v.quick->mark = 1;
3565 continue;
3566 }
3567
3568 for (j = 0; j < file_data->num_file_names; ++j)
3569 {
3570 if (file_matcher (file_data->file_names[j], data))
3571 {
3572 per_cu->v.quick->mark = 1;
3573 break;
3574 }
3575 }
3576
3577 slot = htab_find_slot (per_cu->v.quick->mark
3578 ? visited_found
3579 : visited_not_found,
3580 file_data, INSERT);
3581 *slot = file_data;
3582 }
3583
3584 do_cleanups (cleanup);
3585 }
3586
3587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3588 {
3589 offset_type idx = 2 * iter;
3590 const char *name;
3591 offset_type *vec, vec_len, vec_idx;
3592
3593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3594 continue;
3595
3596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3597
3598 if (! (*name_matcher) (name, data))
3599 continue;
3600
3601 /* The name was matched, now expand corresponding CUs that were
3602 marked. */
3603 vec = (offset_type *) (index->constant_pool
3604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3605 vec_len = MAYBE_SWAP (vec[0]);
3606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3607 {
3608 struct dwarf2_per_cu_data *per_cu;
3609 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3610 gdb_index_symbol_kind symbol_kind =
3611 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3612 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3613
3614 /* Don't crash on bad data. */
3615 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3616 + dwarf2_per_objfile->n_type_units))
3617 continue;
3618
3619 /* Only check the symbol's kind if it has one.
3620 Indices prior to version 7 don't record it. */
3621 if (index->version >= 7)
3622 {
3623 switch (kind)
3624 {
3625 case VARIABLES_DOMAIN:
3626 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3627 continue;
3628 break;
3629 case FUNCTIONS_DOMAIN:
3630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3631 continue;
3632 break;
3633 case TYPES_DOMAIN:
3634 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3635 continue;
3636 break;
3637 default:
3638 break;
3639 }
3640 }
3641
3642 per_cu = dw2_get_cu (cu_index);
3643 if (file_matcher == NULL || per_cu->v.quick->mark)
3644 dw2_instantiate_symtab (per_cu);
3645 }
3646 }
3647 }
3648
3649 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3650 symtab. */
3651
3652 static struct symtab *
3653 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3654 {
3655 int i;
3656
3657 if (BLOCKVECTOR (symtab) != NULL
3658 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3659 return symtab;
3660
3661 if (symtab->includes == NULL)
3662 return NULL;
3663
3664 for (i = 0; symtab->includes[i]; ++i)
3665 {
3666 struct symtab *s = symtab->includes[i];
3667
3668 s = recursively_find_pc_sect_symtab (s, pc);
3669 if (s != NULL)
3670 return s;
3671 }
3672
3673 return NULL;
3674 }
3675
3676 static struct symtab *
3677 dw2_find_pc_sect_symtab (struct objfile *objfile,
3678 struct minimal_symbol *msymbol,
3679 CORE_ADDR pc,
3680 struct obj_section *section,
3681 int warn_if_readin)
3682 {
3683 struct dwarf2_per_cu_data *data;
3684 struct symtab *result;
3685
3686 dw2_setup (objfile);
3687
3688 if (!objfile->psymtabs_addrmap)
3689 return NULL;
3690
3691 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3692 if (!data)
3693 return NULL;
3694
3695 if (warn_if_readin && data->v.quick->symtab)
3696 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3697 paddress (get_objfile_arch (objfile), pc));
3698
3699 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3700 gdb_assert (result != NULL);
3701 return result;
3702 }
3703
3704 static void
3705 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3706 void *data, int need_fullname)
3707 {
3708 int i;
3709 struct cleanup *cleanup;
3710 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3711 NULL, xcalloc, xfree);
3712
3713 cleanup = make_cleanup_htab_delete (visited);
3714 dw2_setup (objfile);
3715
3716 dw2_build_type_unit_groups ();
3717
3718 /* We can ignore file names coming from already-expanded CUs. */
3719 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3720 + dwarf2_per_objfile->n_type_units); ++i)
3721 {
3722 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3723
3724 if (per_cu->v.quick->symtab)
3725 {
3726 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3727 INSERT);
3728
3729 *slot = per_cu->v.quick->file_names;
3730 }
3731 }
3732
3733 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3734 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3735 {
3736 int j;
3737 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3738 struct quick_file_names *file_data;
3739 void **slot;
3740
3741 /* We only need to look at symtabs not already expanded. */
3742 if (per_cu->v.quick->symtab)
3743 continue;
3744
3745 file_data = dw2_get_file_names (objfile, per_cu);
3746 if (file_data == NULL)
3747 continue;
3748
3749 slot = htab_find_slot (visited, file_data, INSERT);
3750 if (*slot)
3751 {
3752 /* Already visited. */
3753 continue;
3754 }
3755 *slot = file_data;
3756
3757 for (j = 0; j < file_data->num_file_names; ++j)
3758 {
3759 const char *this_real_name;
3760
3761 if (need_fullname)
3762 this_real_name = dw2_get_real_path (objfile, file_data, j);
3763 else
3764 this_real_name = NULL;
3765 (*fun) (file_data->file_names[j], this_real_name, data);
3766 }
3767 }
3768
3769 do_cleanups (cleanup);
3770 }
3771
3772 static int
3773 dw2_has_symbols (struct objfile *objfile)
3774 {
3775 return 1;
3776 }
3777
3778 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3779 {
3780 dw2_has_symbols,
3781 dw2_find_last_source_symtab,
3782 dw2_forget_cached_source_info,
3783 dw2_map_symtabs_matching_filename,
3784 dw2_lookup_symbol,
3785 dw2_print_stats,
3786 dw2_dump,
3787 dw2_relocate,
3788 dw2_expand_symtabs_for_function,
3789 dw2_expand_all_symtabs,
3790 dw2_expand_symtabs_with_filename,
3791 dw2_find_symbol_file,
3792 dw2_map_matching_symbols,
3793 dw2_expand_symtabs_matching,
3794 dw2_find_pc_sect_symtab,
3795 dw2_map_symbol_filenames
3796 };
3797
3798 /* Initialize for reading DWARF for this objfile. Return 0 if this
3799 file will use psymtabs, or 1 if using the GNU index. */
3800
3801 int
3802 dwarf2_initialize_objfile (struct objfile *objfile)
3803 {
3804 /* If we're about to read full symbols, don't bother with the
3805 indices. In this case we also don't care if some other debug
3806 format is making psymtabs, because they are all about to be
3807 expanded anyway. */
3808 if ((objfile->flags & OBJF_READNOW))
3809 {
3810 int i;
3811
3812 dwarf2_per_objfile->using_index = 1;
3813 create_all_comp_units (objfile);
3814 create_all_type_units (objfile);
3815 dwarf2_per_objfile->quick_file_names_table =
3816 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3817
3818 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3819 + dwarf2_per_objfile->n_type_units); ++i)
3820 {
3821 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3822
3823 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3824 struct dwarf2_per_cu_quick_data);
3825 }
3826
3827 /* Return 1 so that gdb sees the "quick" functions. However,
3828 these functions will be no-ops because we will have expanded
3829 all symtabs. */
3830 return 1;
3831 }
3832
3833 if (dwarf2_read_index (objfile))
3834 return 1;
3835
3836 return 0;
3837 }
3838
3839 \f
3840
3841 /* Build a partial symbol table. */
3842
3843 void
3844 dwarf2_build_psymtabs (struct objfile *objfile)
3845 {
3846 volatile struct gdb_exception except;
3847
3848 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3849 {
3850 init_psymbol_list (objfile, 1024);
3851 }
3852
3853 TRY_CATCH (except, RETURN_MASK_ERROR)
3854 {
3855 /* This isn't really ideal: all the data we allocate on the
3856 objfile's obstack is still uselessly kept around. However,
3857 freeing it seems unsafe. */
3858 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3859
3860 dwarf2_build_psymtabs_hard (objfile);
3861 discard_cleanups (cleanups);
3862 }
3863 if (except.reason < 0)
3864 exception_print (gdb_stderr, except);
3865 }
3866
3867 /* Return the total length of the CU described by HEADER. */
3868
3869 static unsigned int
3870 get_cu_length (const struct comp_unit_head *header)
3871 {
3872 return header->initial_length_size + header->length;
3873 }
3874
3875 /* Return TRUE if OFFSET is within CU_HEADER. */
3876
3877 static inline int
3878 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3879 {
3880 sect_offset bottom = { cu_header->offset.sect_off };
3881 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3882
3883 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3884 }
3885
3886 /* Find the base address of the compilation unit for range lists and
3887 location lists. It will normally be specified by DW_AT_low_pc.
3888 In DWARF-3 draft 4, the base address could be overridden by
3889 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3890 compilation units with discontinuous ranges. */
3891
3892 static void
3893 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3894 {
3895 struct attribute *attr;
3896
3897 cu->base_known = 0;
3898 cu->base_address = 0;
3899
3900 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3901 if (attr)
3902 {
3903 cu->base_address = DW_ADDR (attr);
3904 cu->base_known = 1;
3905 }
3906 else
3907 {
3908 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3909 if (attr)
3910 {
3911 cu->base_address = DW_ADDR (attr);
3912 cu->base_known = 1;
3913 }
3914 }
3915 }
3916
3917 /* Read in the comp unit header information from the debug_info at info_ptr.
3918 NOTE: This leaves members offset, first_die_offset to be filled in
3919 by the caller. */
3920
3921 static gdb_byte *
3922 read_comp_unit_head (struct comp_unit_head *cu_header,
3923 gdb_byte *info_ptr, bfd *abfd)
3924 {
3925 int signed_addr;
3926 unsigned int bytes_read;
3927
3928 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3929 cu_header->initial_length_size = bytes_read;
3930 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3931 info_ptr += bytes_read;
3932 cu_header->version = read_2_bytes (abfd, info_ptr);
3933 info_ptr += 2;
3934 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3935 &bytes_read);
3936 info_ptr += bytes_read;
3937 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3938 info_ptr += 1;
3939 signed_addr = bfd_get_sign_extend_vma (abfd);
3940 if (signed_addr < 0)
3941 internal_error (__FILE__, __LINE__,
3942 _("read_comp_unit_head: dwarf from non elf file"));
3943 cu_header->signed_addr_p = signed_addr;
3944
3945 return info_ptr;
3946 }
3947
3948 /* Helper function that returns the proper abbrev section for
3949 THIS_CU. */
3950
3951 static struct dwarf2_section_info *
3952 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3953 {
3954 struct dwarf2_section_info *abbrev;
3955
3956 if (this_cu->is_dwz)
3957 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3958 else
3959 abbrev = &dwarf2_per_objfile->abbrev;
3960
3961 return abbrev;
3962 }
3963
3964 /* Subroutine of read_and_check_comp_unit_head and
3965 read_and_check_type_unit_head to simplify them.
3966 Perform various error checking on the header. */
3967
3968 static void
3969 error_check_comp_unit_head (struct comp_unit_head *header,
3970 struct dwarf2_section_info *section,
3971 struct dwarf2_section_info *abbrev_section)
3972 {
3973 bfd *abfd = section->asection->owner;
3974 const char *filename = bfd_get_filename (abfd);
3975
3976 if (header->version != 2 && header->version != 3 && header->version != 4)
3977 error (_("Dwarf Error: wrong version in compilation unit header "
3978 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3979 filename);
3980
3981 if (header->abbrev_offset.sect_off
3982 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3983 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3984 "(offset 0x%lx + 6) [in module %s]"),
3985 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3986 filename);
3987
3988 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3989 avoid potential 32-bit overflow. */
3990 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3991 > section->size)
3992 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3993 "(offset 0x%lx + 0) [in module %s]"),
3994 (long) header->length, (long) header->offset.sect_off,
3995 filename);
3996 }
3997
3998 /* Read in a CU/TU header and perform some basic error checking.
3999 The contents of the header are stored in HEADER.
4000 The result is a pointer to the start of the first DIE. */
4001
4002 static gdb_byte *
4003 read_and_check_comp_unit_head (struct comp_unit_head *header,
4004 struct dwarf2_section_info *section,
4005 struct dwarf2_section_info *abbrev_section,
4006 gdb_byte *info_ptr,
4007 int is_debug_types_section)
4008 {
4009 gdb_byte *beg_of_comp_unit = info_ptr;
4010 bfd *abfd = section->asection->owner;
4011
4012 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4013
4014 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4015
4016 /* If we're reading a type unit, skip over the signature and
4017 type_offset fields. */
4018 if (is_debug_types_section)
4019 info_ptr += 8 /*signature*/ + header->offset_size;
4020
4021 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4022
4023 error_check_comp_unit_head (header, section, abbrev_section);
4024
4025 return info_ptr;
4026 }
4027
4028 /* Read in the types comp unit header information from .debug_types entry at
4029 types_ptr. The result is a pointer to one past the end of the header. */
4030
4031 static gdb_byte *
4032 read_and_check_type_unit_head (struct comp_unit_head *header,
4033 struct dwarf2_section_info *section,
4034 struct dwarf2_section_info *abbrev_section,
4035 gdb_byte *info_ptr,
4036 ULONGEST *signature,
4037 cu_offset *type_offset_in_tu)
4038 {
4039 gdb_byte *beg_of_comp_unit = info_ptr;
4040 bfd *abfd = section->asection->owner;
4041
4042 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4043
4044 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4045
4046 /* If we're reading a type unit, skip over the signature and
4047 type_offset fields. */
4048 if (signature != NULL)
4049 *signature = read_8_bytes (abfd, info_ptr);
4050 info_ptr += 8;
4051 if (type_offset_in_tu != NULL)
4052 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4053 header->offset_size);
4054 info_ptr += header->offset_size;
4055
4056 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4057
4058 error_check_comp_unit_head (header, section, abbrev_section);
4059
4060 return info_ptr;
4061 }
4062
4063 /* Fetch the abbreviation table offset from a comp or type unit header. */
4064
4065 static sect_offset
4066 read_abbrev_offset (struct dwarf2_section_info *section,
4067 sect_offset offset)
4068 {
4069 bfd *abfd = section->asection->owner;
4070 gdb_byte *info_ptr;
4071 unsigned int length, initial_length_size, offset_size;
4072 sect_offset abbrev_offset;
4073
4074 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4075 info_ptr = section->buffer + offset.sect_off;
4076 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4077 offset_size = initial_length_size == 4 ? 4 : 8;
4078 info_ptr += initial_length_size + 2 /*version*/;
4079 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4080 return abbrev_offset;
4081 }
4082
4083 /* Allocate a new partial symtab for file named NAME and mark this new
4084 partial symtab as being an include of PST. */
4085
4086 static void
4087 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4088 struct objfile *objfile)
4089 {
4090 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4091
4092 subpst->section_offsets = pst->section_offsets;
4093 subpst->textlow = 0;
4094 subpst->texthigh = 0;
4095
4096 subpst->dependencies = (struct partial_symtab **)
4097 obstack_alloc (&objfile->objfile_obstack,
4098 sizeof (struct partial_symtab *));
4099 subpst->dependencies[0] = pst;
4100 subpst->number_of_dependencies = 1;
4101
4102 subpst->globals_offset = 0;
4103 subpst->n_global_syms = 0;
4104 subpst->statics_offset = 0;
4105 subpst->n_static_syms = 0;
4106 subpst->symtab = NULL;
4107 subpst->read_symtab = pst->read_symtab;
4108 subpst->readin = 0;
4109
4110 /* No private part is necessary for include psymtabs. This property
4111 can be used to differentiate between such include psymtabs and
4112 the regular ones. */
4113 subpst->read_symtab_private = NULL;
4114 }
4115
4116 /* Read the Line Number Program data and extract the list of files
4117 included by the source file represented by PST. Build an include
4118 partial symtab for each of these included files. */
4119
4120 static void
4121 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4122 struct die_info *die,
4123 struct partial_symtab *pst)
4124 {
4125 struct line_header *lh = NULL;
4126 struct attribute *attr;
4127
4128 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4129 if (attr)
4130 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4131 if (lh == NULL)
4132 return; /* No linetable, so no includes. */
4133
4134 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4135 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4136
4137 free_line_header (lh);
4138 }
4139
4140 static hashval_t
4141 hash_signatured_type (const void *item)
4142 {
4143 const struct signatured_type *sig_type = item;
4144
4145 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4146 return sig_type->signature;
4147 }
4148
4149 static int
4150 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4151 {
4152 const struct signatured_type *lhs = item_lhs;
4153 const struct signatured_type *rhs = item_rhs;
4154
4155 return lhs->signature == rhs->signature;
4156 }
4157
4158 /* Allocate a hash table for signatured types. */
4159
4160 static htab_t
4161 allocate_signatured_type_table (struct objfile *objfile)
4162 {
4163 return htab_create_alloc_ex (41,
4164 hash_signatured_type,
4165 eq_signatured_type,
4166 NULL,
4167 &objfile->objfile_obstack,
4168 hashtab_obstack_allocate,
4169 dummy_obstack_deallocate);
4170 }
4171
4172 /* A helper function to add a signatured type CU to a table. */
4173
4174 static int
4175 add_signatured_type_cu_to_table (void **slot, void *datum)
4176 {
4177 struct signatured_type *sigt = *slot;
4178 struct signatured_type ***datap = datum;
4179
4180 **datap = sigt;
4181 ++*datap;
4182
4183 return 1;
4184 }
4185
4186 /* Create the hash table of all entries in the .debug_types section.
4187 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4188 NULL otherwise.
4189 Note: This function processes DWO files only, not DWP files.
4190 The result is a pointer to the hash table or NULL if there are
4191 no types. */
4192
4193 static htab_t
4194 create_debug_types_hash_table (struct dwo_file *dwo_file,
4195 VEC (dwarf2_section_info_def) *types)
4196 {
4197 struct objfile *objfile = dwarf2_per_objfile->objfile;
4198 htab_t types_htab = NULL;
4199 int ix;
4200 struct dwarf2_section_info *section;
4201 struct dwarf2_section_info *abbrev_section;
4202
4203 if (VEC_empty (dwarf2_section_info_def, types))
4204 return NULL;
4205
4206 abbrev_section = (dwo_file != NULL
4207 ? &dwo_file->sections.abbrev
4208 : &dwarf2_per_objfile->abbrev);
4209
4210 if (dwarf2_read_debug)
4211 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4212 dwo_file ? ".dwo" : "",
4213 bfd_get_filename (abbrev_section->asection->owner));
4214
4215 for (ix = 0;
4216 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4217 ++ix)
4218 {
4219 bfd *abfd;
4220 gdb_byte *info_ptr, *end_ptr;
4221 struct dwarf2_section_info *abbrev_section;
4222
4223 dwarf2_read_section (objfile, section);
4224 info_ptr = section->buffer;
4225
4226 if (info_ptr == NULL)
4227 continue;
4228
4229 /* We can't set abfd until now because the section may be empty or
4230 not present, in which case section->asection will be NULL. */
4231 abfd = section->asection->owner;
4232
4233 if (dwo_file)
4234 abbrev_section = &dwo_file->sections.abbrev;
4235 else
4236 abbrev_section = &dwarf2_per_objfile->abbrev;
4237
4238 if (types_htab == NULL)
4239 {
4240 if (dwo_file)
4241 types_htab = allocate_dwo_unit_table (objfile);
4242 else
4243 types_htab = allocate_signatured_type_table (objfile);
4244 }
4245
4246 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4247 because we don't need to read any dies: the signature is in the
4248 header. */
4249
4250 end_ptr = info_ptr + section->size;
4251 while (info_ptr < end_ptr)
4252 {
4253 sect_offset offset;
4254 cu_offset type_offset_in_tu;
4255 ULONGEST signature;
4256 struct signatured_type *sig_type;
4257 struct dwo_unit *dwo_tu;
4258 void **slot;
4259 gdb_byte *ptr = info_ptr;
4260 struct comp_unit_head header;
4261 unsigned int length;
4262
4263 offset.sect_off = ptr - section->buffer;
4264
4265 /* We need to read the type's signature in order to build the hash
4266 table, but we don't need anything else just yet. */
4267
4268 ptr = read_and_check_type_unit_head (&header, section,
4269 abbrev_section, ptr,
4270 &signature, &type_offset_in_tu);
4271
4272 length = get_cu_length (&header);
4273
4274 /* Skip dummy type units. */
4275 if (ptr >= info_ptr + length
4276 || peek_abbrev_code (abfd, ptr) == 0)
4277 {
4278 info_ptr += length;
4279 continue;
4280 }
4281
4282 if (dwo_file)
4283 {
4284 sig_type = NULL;
4285 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4286 struct dwo_unit);
4287 dwo_tu->dwo_file = dwo_file;
4288 dwo_tu->signature = signature;
4289 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4290 dwo_tu->info_or_types_section = section;
4291 dwo_tu->offset = offset;
4292 dwo_tu->length = length;
4293 }
4294 else
4295 {
4296 /* N.B.: type_offset is not usable if this type uses a DWO file.
4297 The real type_offset is in the DWO file. */
4298 dwo_tu = NULL;
4299 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4300 struct signatured_type);
4301 sig_type->signature = signature;
4302 sig_type->type_offset_in_tu = type_offset_in_tu;
4303 sig_type->per_cu.objfile = objfile;
4304 sig_type->per_cu.is_debug_types = 1;
4305 sig_type->per_cu.info_or_types_section = section;
4306 sig_type->per_cu.offset = offset;
4307 sig_type->per_cu.length = length;
4308 }
4309
4310 slot = htab_find_slot (types_htab,
4311 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4312 INSERT);
4313 gdb_assert (slot != NULL);
4314 if (*slot != NULL)
4315 {
4316 sect_offset dup_offset;
4317
4318 if (dwo_file)
4319 {
4320 const struct dwo_unit *dup_tu = *slot;
4321
4322 dup_offset = dup_tu->offset;
4323 }
4324 else
4325 {
4326 const struct signatured_type *dup_tu = *slot;
4327
4328 dup_offset = dup_tu->per_cu.offset;
4329 }
4330
4331 complaint (&symfile_complaints,
4332 _("debug type entry at offset 0x%x is duplicate to the "
4333 "entry at offset 0x%x, signature 0x%s"),
4334 offset.sect_off, dup_offset.sect_off,
4335 phex (signature, sizeof (signature)));
4336 }
4337 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4338
4339 if (dwarf2_read_debug)
4340 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4341 offset.sect_off,
4342 phex (signature, sizeof (signature)));
4343
4344 info_ptr += length;
4345 }
4346 }
4347
4348 return types_htab;
4349 }
4350
4351 /* Create the hash table of all entries in the .debug_types section,
4352 and initialize all_type_units.
4353 The result is zero if there is an error (e.g. missing .debug_types section),
4354 otherwise non-zero. */
4355
4356 static int
4357 create_all_type_units (struct objfile *objfile)
4358 {
4359 htab_t types_htab;
4360 struct signatured_type **iter;
4361
4362 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4363 if (types_htab == NULL)
4364 {
4365 dwarf2_per_objfile->signatured_types = NULL;
4366 return 0;
4367 }
4368
4369 dwarf2_per_objfile->signatured_types = types_htab;
4370
4371 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4372 dwarf2_per_objfile->all_type_units
4373 = obstack_alloc (&objfile->objfile_obstack,
4374 dwarf2_per_objfile->n_type_units
4375 * sizeof (struct signatured_type *));
4376 iter = &dwarf2_per_objfile->all_type_units[0];
4377 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4378 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4379 == dwarf2_per_objfile->n_type_units);
4380
4381 return 1;
4382 }
4383
4384 /* Lookup a signature based type for DW_FORM_ref_sig8.
4385 Returns NULL if signature SIG is not present in the table. */
4386
4387 static struct signatured_type *
4388 lookup_signatured_type (ULONGEST sig)
4389 {
4390 struct signatured_type find_entry, *entry;
4391
4392 if (dwarf2_per_objfile->signatured_types == NULL)
4393 {
4394 complaint (&symfile_complaints,
4395 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4396 return NULL;
4397 }
4398
4399 find_entry.signature = sig;
4400 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4401 return entry;
4402 }
4403 \f
4404 /* Low level DIE reading support. */
4405
4406 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4407
4408 static void
4409 init_cu_die_reader (struct die_reader_specs *reader,
4410 struct dwarf2_cu *cu,
4411 struct dwarf2_section_info *section,
4412 struct dwo_file *dwo_file)
4413 {
4414 gdb_assert (section->readin && section->buffer != NULL);
4415 reader->abfd = section->asection->owner;
4416 reader->cu = cu;
4417 reader->dwo_file = dwo_file;
4418 reader->die_section = section;
4419 reader->buffer = section->buffer;
4420 reader->buffer_end = section->buffer + section->size;
4421 }
4422
4423 /* Initialize a CU (or TU) and read its DIEs.
4424 If the CU defers to a DWO file, read the DWO file as well.
4425
4426 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4427 Otherwise the table specified in the comp unit header is read in and used.
4428 This is an optimization for when we already have the abbrev table.
4429
4430 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4431 Otherwise, a new CU is allocated with xmalloc.
4432
4433 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4434 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4435
4436 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4437 linker) then DIE_READER_FUNC will not get called. */
4438
4439 static void
4440 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4441 struct abbrev_table *abbrev_table,
4442 int use_existing_cu, int keep,
4443 die_reader_func_ftype *die_reader_func,
4444 void *data)
4445 {
4446 struct objfile *objfile = dwarf2_per_objfile->objfile;
4447 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4448 bfd *abfd = section->asection->owner;
4449 struct dwarf2_cu *cu;
4450 gdb_byte *begin_info_ptr, *info_ptr;
4451 struct die_reader_specs reader;
4452 struct die_info *comp_unit_die;
4453 int has_children;
4454 struct attribute *attr;
4455 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4456 struct signatured_type *sig_type = NULL;
4457 struct dwarf2_section_info *abbrev_section;
4458 /* Non-zero if CU currently points to a DWO file and we need to
4459 reread it. When this happens we need to reread the skeleton die
4460 before we can reread the DWO file. */
4461 int rereading_dwo_cu = 0;
4462
4463 if (dwarf2_die_debug)
4464 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4465 this_cu->is_debug_types ? "type" : "comp",
4466 this_cu->offset.sect_off);
4467
4468 if (use_existing_cu)
4469 gdb_assert (keep);
4470
4471 cleanups = make_cleanup (null_cleanup, NULL);
4472
4473 /* This is cheap if the section is already read in. */
4474 dwarf2_read_section (objfile, section);
4475
4476 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4477
4478 abbrev_section = get_abbrev_section_for_cu (this_cu);
4479
4480 if (use_existing_cu && this_cu->cu != NULL)
4481 {
4482 cu = this_cu->cu;
4483
4484 /* If this CU is from a DWO file we need to start over, we need to
4485 refetch the attributes from the skeleton CU.
4486 This could be optimized by retrieving those attributes from when we
4487 were here the first time: the previous comp_unit_die was stored in
4488 comp_unit_obstack. But there's no data yet that we need this
4489 optimization. */
4490 if (cu->dwo_unit != NULL)
4491 rereading_dwo_cu = 1;
4492 }
4493 else
4494 {
4495 /* If !use_existing_cu, this_cu->cu must be NULL. */
4496 gdb_assert (this_cu->cu == NULL);
4497
4498 cu = xmalloc (sizeof (*cu));
4499 init_one_comp_unit (cu, this_cu);
4500
4501 /* If an error occurs while loading, release our storage. */
4502 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4503 }
4504
4505 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4506 {
4507 /* We already have the header, there's no need to read it in again. */
4508 info_ptr += cu->header.first_die_offset.cu_off;
4509 }
4510 else
4511 {
4512 if (this_cu->is_debug_types)
4513 {
4514 ULONGEST signature;
4515 cu_offset type_offset_in_tu;
4516
4517 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4518 abbrev_section, info_ptr,
4519 &signature,
4520 &type_offset_in_tu);
4521
4522 /* Since per_cu is the first member of struct signatured_type,
4523 we can go from a pointer to one to a pointer to the other. */
4524 sig_type = (struct signatured_type *) this_cu;
4525 gdb_assert (sig_type->signature == signature);
4526 gdb_assert (sig_type->type_offset_in_tu.cu_off
4527 == type_offset_in_tu.cu_off);
4528 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4529
4530 /* LENGTH has not been set yet for type units if we're
4531 using .gdb_index. */
4532 this_cu->length = get_cu_length (&cu->header);
4533
4534 /* Establish the type offset that can be used to lookup the type. */
4535 sig_type->type_offset_in_section.sect_off =
4536 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4537 }
4538 else
4539 {
4540 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4541 abbrev_section,
4542 info_ptr, 0);
4543
4544 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4545 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4546 }
4547 }
4548
4549 /* Skip dummy compilation units. */
4550 if (info_ptr >= begin_info_ptr + this_cu->length
4551 || peek_abbrev_code (abfd, info_ptr) == 0)
4552 {
4553 do_cleanups (cleanups);
4554 return;
4555 }
4556
4557 /* If we don't have them yet, read the abbrevs for this compilation unit.
4558 And if we need to read them now, make sure they're freed when we're
4559 done. Note that it's important that if the CU had an abbrev table
4560 on entry we don't free it when we're done: Somewhere up the call stack
4561 it may be in use. */
4562 if (abbrev_table != NULL)
4563 {
4564 gdb_assert (cu->abbrev_table == NULL);
4565 gdb_assert (cu->header.abbrev_offset.sect_off
4566 == abbrev_table->offset.sect_off);
4567 cu->abbrev_table = abbrev_table;
4568 }
4569 else if (cu->abbrev_table == NULL)
4570 {
4571 dwarf2_read_abbrevs (cu, abbrev_section);
4572 make_cleanup (dwarf2_free_abbrev_table, cu);
4573 }
4574 else if (rereading_dwo_cu)
4575 {
4576 dwarf2_free_abbrev_table (cu);
4577 dwarf2_read_abbrevs (cu, abbrev_section);
4578 }
4579
4580 /* Read the top level CU/TU die. */
4581 init_cu_die_reader (&reader, cu, section, NULL);
4582 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4583
4584 /* If we have a DWO stub, process it and then read in the DWO file.
4585 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4586 a DWO CU, that this test will fail. */
4587 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4588 if (attr)
4589 {
4590 char *dwo_name = DW_STRING (attr);
4591 const char *comp_dir_string;
4592 struct dwo_unit *dwo_unit;
4593 ULONGEST signature; /* Or dwo_id. */
4594 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4595 int i,num_extra_attrs;
4596 struct dwarf2_section_info *dwo_abbrev_section;
4597
4598 if (has_children)
4599 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4600 " has children (offset 0x%x) [in module %s]"),
4601 this_cu->offset.sect_off, bfd_get_filename (abfd));
4602
4603 /* These attributes aren't processed until later:
4604 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4605 However, the attribute is found in the stub which we won't have later.
4606 In order to not impose this complication on the rest of the code,
4607 we read them here and copy them to the DWO CU/TU die. */
4608
4609 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4610 DWO file. */
4611 stmt_list = NULL;
4612 if (! this_cu->is_debug_types)
4613 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4614 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4615 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4616 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4617 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4618
4619 /* There should be a DW_AT_addr_base attribute here (if needed).
4620 We need the value before we can process DW_FORM_GNU_addr_index. */
4621 cu->addr_base = 0;
4622 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4623 if (attr)
4624 cu->addr_base = DW_UNSND (attr);
4625
4626 /* There should be a DW_AT_ranges_base attribute here (if needed).
4627 We need the value before we can process DW_AT_ranges. */
4628 cu->ranges_base = 0;
4629 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4630 if (attr)
4631 cu->ranges_base = DW_UNSND (attr);
4632
4633 if (this_cu->is_debug_types)
4634 {
4635 gdb_assert (sig_type != NULL);
4636 signature = sig_type->signature;
4637 }
4638 else
4639 {
4640 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4641 if (! attr)
4642 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4643 dwo_name);
4644 signature = DW_UNSND (attr);
4645 }
4646
4647 /* We may need the comp_dir in order to find the DWO file. */
4648 comp_dir_string = NULL;
4649 if (comp_dir)
4650 comp_dir_string = DW_STRING (comp_dir);
4651
4652 if (this_cu->is_debug_types)
4653 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4654 else
4655 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4656 signature);
4657
4658 if (dwo_unit == NULL)
4659 {
4660 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4661 " with ID %s [in module %s]"),
4662 this_cu->offset.sect_off,
4663 phex (signature, sizeof (signature)),
4664 objfile->name);
4665 }
4666
4667 /* Set up for reading the DWO CU/TU. */
4668 cu->dwo_unit = dwo_unit;
4669 section = dwo_unit->info_or_types_section;
4670 dwarf2_read_section (objfile, section);
4671 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4672 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4673 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4674
4675 if (this_cu->is_debug_types)
4676 {
4677 ULONGEST signature;
4678 cu_offset type_offset_in_tu;
4679
4680 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4681 dwo_abbrev_section,
4682 info_ptr,
4683 &signature,
4684 &type_offset_in_tu);
4685 gdb_assert (sig_type->signature == signature);
4686 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4687 /* For DWOs coming from DWP files, we don't know the CU length
4688 nor the type's offset in the TU until now. */
4689 dwo_unit->length = get_cu_length (&cu->header);
4690 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4691
4692 /* Establish the type offset that can be used to lookup the type.
4693 For DWO files, we don't know it until now. */
4694 sig_type->type_offset_in_section.sect_off =
4695 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4696 }
4697 else
4698 {
4699 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4700 dwo_abbrev_section,
4701 info_ptr, 0);
4702 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4703 /* For DWOs coming from DWP files, we don't know the CU length
4704 until now. */
4705 dwo_unit->length = get_cu_length (&cu->header);
4706 }
4707
4708 /* Discard the original CU's abbrev table, and read the DWO's. */
4709 if (abbrev_table == NULL)
4710 {
4711 dwarf2_free_abbrev_table (cu);
4712 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4713 }
4714 else
4715 {
4716 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4717 make_cleanup (dwarf2_free_abbrev_table, cu);
4718 }
4719
4720 /* Read in the die, but leave space to copy over the attributes
4721 from the stub. This has the benefit of simplifying the rest of
4722 the code - all the real work is done here. */
4723 num_extra_attrs = ((stmt_list != NULL)
4724 + (low_pc != NULL)
4725 + (high_pc != NULL)
4726 + (ranges != NULL)
4727 + (comp_dir != NULL));
4728 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4729 &has_children, num_extra_attrs);
4730
4731 /* Copy over the attributes from the stub to the DWO die. */
4732 i = comp_unit_die->num_attrs;
4733 if (stmt_list != NULL)
4734 comp_unit_die->attrs[i++] = *stmt_list;
4735 if (low_pc != NULL)
4736 comp_unit_die->attrs[i++] = *low_pc;
4737 if (high_pc != NULL)
4738 comp_unit_die->attrs[i++] = *high_pc;
4739 if (ranges != NULL)
4740 comp_unit_die->attrs[i++] = *ranges;
4741 if (comp_dir != NULL)
4742 comp_unit_die->attrs[i++] = *comp_dir;
4743 comp_unit_die->num_attrs += num_extra_attrs;
4744
4745 /* Skip dummy compilation units. */
4746 if (info_ptr >= begin_info_ptr + dwo_unit->length
4747 || peek_abbrev_code (abfd, info_ptr) == 0)
4748 {
4749 do_cleanups (cleanups);
4750 return;
4751 }
4752 }
4753
4754 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4755
4756 if (free_cu_cleanup != NULL)
4757 {
4758 if (keep)
4759 {
4760 /* We've successfully allocated this compilation unit. Let our
4761 caller clean it up when finished with it. */
4762 discard_cleanups (free_cu_cleanup);
4763
4764 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4765 So we have to manually free the abbrev table. */
4766 dwarf2_free_abbrev_table (cu);
4767
4768 /* Link this CU into read_in_chain. */
4769 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4770 dwarf2_per_objfile->read_in_chain = this_cu;
4771 }
4772 else
4773 do_cleanups (free_cu_cleanup);
4774 }
4775
4776 do_cleanups (cleanups);
4777 }
4778
4779 /* Read CU/TU THIS_CU in section SECTION,
4780 but do not follow DW_AT_GNU_dwo_name if present.
4781 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4782 to have already done the lookup to find the DWO/DWP file).
4783
4784 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4785 THIS_CU->is_debug_types, but nothing else.
4786
4787 We fill in THIS_CU->length.
4788
4789 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4790 linker) then DIE_READER_FUNC will not get called.
4791
4792 THIS_CU->cu is always freed when done.
4793 This is done in order to not leave THIS_CU->cu in a state where we have
4794 to care whether it refers to the "main" CU or the DWO CU. */
4795
4796 static void
4797 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4798 struct dwarf2_section_info *abbrev_section,
4799 struct dwo_file *dwo_file,
4800 die_reader_func_ftype *die_reader_func,
4801 void *data)
4802 {
4803 struct objfile *objfile = dwarf2_per_objfile->objfile;
4804 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4805 bfd *abfd = section->asection->owner;
4806 struct dwarf2_cu cu;
4807 gdb_byte *begin_info_ptr, *info_ptr;
4808 struct die_reader_specs reader;
4809 struct cleanup *cleanups;
4810 struct die_info *comp_unit_die;
4811 int has_children;
4812
4813 if (dwarf2_die_debug)
4814 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4815 this_cu->is_debug_types ? "type" : "comp",
4816 this_cu->offset.sect_off);
4817
4818 gdb_assert (this_cu->cu == NULL);
4819
4820 /* This is cheap if the section is already read in. */
4821 dwarf2_read_section (objfile, section);
4822
4823 init_one_comp_unit (&cu, this_cu);
4824
4825 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4826
4827 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4828 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4829 abbrev_section, info_ptr,
4830 this_cu->is_debug_types);
4831
4832 this_cu->length = get_cu_length (&cu.header);
4833
4834 /* Skip dummy compilation units. */
4835 if (info_ptr >= begin_info_ptr + this_cu->length
4836 || peek_abbrev_code (abfd, info_ptr) == 0)
4837 {
4838 do_cleanups (cleanups);
4839 return;
4840 }
4841
4842 dwarf2_read_abbrevs (&cu, abbrev_section);
4843 make_cleanup (dwarf2_free_abbrev_table, &cu);
4844
4845 init_cu_die_reader (&reader, &cu, section, dwo_file);
4846 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4847
4848 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4849
4850 do_cleanups (cleanups);
4851 }
4852
4853 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4854 does not lookup the specified DWO file.
4855 This cannot be used to read DWO files.
4856
4857 THIS_CU->cu is always freed when done.
4858 This is done in order to not leave THIS_CU->cu in a state where we have
4859 to care whether it refers to the "main" CU or the DWO CU.
4860 We can revisit this if the data shows there's a performance issue. */
4861
4862 static void
4863 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4864 die_reader_func_ftype *die_reader_func,
4865 void *data)
4866 {
4867 init_cutu_and_read_dies_no_follow (this_cu,
4868 get_abbrev_section_for_cu (this_cu),
4869 NULL,
4870 die_reader_func, data);
4871 }
4872
4873 /* Create a psymtab named NAME and assign it to PER_CU.
4874
4875 The caller must fill in the following details:
4876 dirname, textlow, texthigh. */
4877
4878 static struct partial_symtab *
4879 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4880 {
4881 struct objfile *objfile = per_cu->objfile;
4882 struct partial_symtab *pst;
4883
4884 pst = start_psymtab_common (objfile, objfile->section_offsets,
4885 name, 0,
4886 objfile->global_psymbols.next,
4887 objfile->static_psymbols.next);
4888
4889 pst->psymtabs_addrmap_supported = 1;
4890
4891 /* This is the glue that links PST into GDB's symbol API. */
4892 pst->read_symtab_private = per_cu;
4893 pst->read_symtab = dwarf2_psymtab_to_symtab;
4894 per_cu->v.psymtab = pst;
4895
4896 return pst;
4897 }
4898
4899 /* die_reader_func for process_psymtab_comp_unit. */
4900
4901 static void
4902 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4903 gdb_byte *info_ptr,
4904 struct die_info *comp_unit_die,
4905 int has_children,
4906 void *data)
4907 {
4908 struct dwarf2_cu *cu = reader->cu;
4909 struct objfile *objfile = cu->objfile;
4910 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4911 struct attribute *attr;
4912 CORE_ADDR baseaddr;
4913 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4914 struct partial_symtab *pst;
4915 int has_pc_info;
4916 const char *filename;
4917 int *want_partial_unit_ptr = data;
4918
4919 if (comp_unit_die->tag == DW_TAG_partial_unit
4920 && (want_partial_unit_ptr == NULL
4921 || !*want_partial_unit_ptr))
4922 return;
4923
4924 gdb_assert (! per_cu->is_debug_types);
4925
4926 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4927
4928 cu->list_in_scope = &file_symbols;
4929
4930 /* Allocate a new partial symbol table structure. */
4931 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4932 if (attr == NULL || !DW_STRING (attr))
4933 filename = "";
4934 else
4935 filename = DW_STRING (attr);
4936
4937 pst = create_partial_symtab (per_cu, filename);
4938
4939 /* This must be done before calling dwarf2_build_include_psymtabs. */
4940 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4941 if (attr != NULL)
4942 pst->dirname = DW_STRING (attr);
4943
4944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4945
4946 dwarf2_find_base_address (comp_unit_die, cu);
4947
4948 /* Possibly set the default values of LOWPC and HIGHPC from
4949 `DW_AT_ranges'. */
4950 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4951 &best_highpc, cu, pst);
4952 if (has_pc_info == 1 && best_lowpc < best_highpc)
4953 /* Store the contiguous range if it is not empty; it can be empty for
4954 CUs with no code. */
4955 addrmap_set_empty (objfile->psymtabs_addrmap,
4956 best_lowpc + baseaddr,
4957 best_highpc + baseaddr - 1, pst);
4958
4959 /* Check if comp unit has_children.
4960 If so, read the rest of the partial symbols from this comp unit.
4961 If not, there's no more debug_info for this comp unit. */
4962 if (has_children)
4963 {
4964 struct partial_die_info *first_die;
4965 CORE_ADDR lowpc, highpc;
4966
4967 lowpc = ((CORE_ADDR) -1);
4968 highpc = ((CORE_ADDR) 0);
4969
4970 first_die = load_partial_dies (reader, info_ptr, 1);
4971
4972 scan_partial_symbols (first_die, &lowpc, &highpc,
4973 ! has_pc_info, cu);
4974
4975 /* If we didn't find a lowpc, set it to highpc to avoid
4976 complaints from `maint check'. */
4977 if (lowpc == ((CORE_ADDR) -1))
4978 lowpc = highpc;
4979
4980 /* If the compilation unit didn't have an explicit address range,
4981 then use the information extracted from its child dies. */
4982 if (! has_pc_info)
4983 {
4984 best_lowpc = lowpc;
4985 best_highpc = highpc;
4986 }
4987 }
4988 pst->textlow = best_lowpc + baseaddr;
4989 pst->texthigh = best_highpc + baseaddr;
4990
4991 pst->n_global_syms = objfile->global_psymbols.next -
4992 (objfile->global_psymbols.list + pst->globals_offset);
4993 pst->n_static_syms = objfile->static_psymbols.next -
4994 (objfile->static_psymbols.list + pst->statics_offset);
4995 sort_pst_symbols (objfile, pst);
4996
4997 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4998 {
4999 int i;
5000 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
5001 struct dwarf2_per_cu_data *iter;
5002
5003 /* Fill in 'dependencies' here; we fill in 'users' in a
5004 post-pass. */
5005 pst->number_of_dependencies = len;
5006 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5007 len * sizeof (struct symtab *));
5008 for (i = 0;
5009 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
5010 i, iter);
5011 ++i)
5012 pst->dependencies[i] = iter->v.psymtab;
5013
5014 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
5015 }
5016
5017 /* Get the list of files included in the current compilation unit,
5018 and build a psymtab for each of them. */
5019 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5020
5021 if (dwarf2_read_debug)
5022 {
5023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5024
5025 fprintf_unfiltered (gdb_stdlog,
5026 "Psymtab for %s unit @0x%x: %s - %s"
5027 ", %d global, %d static syms\n",
5028 per_cu->is_debug_types ? "type" : "comp",
5029 per_cu->offset.sect_off,
5030 paddress (gdbarch, pst->textlow),
5031 paddress (gdbarch, pst->texthigh),
5032 pst->n_global_syms, pst->n_static_syms);
5033 }
5034 }
5035
5036 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5037 Process compilation unit THIS_CU for a psymtab. */
5038
5039 static void
5040 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5041 int want_partial_unit)
5042 {
5043 /* If this compilation unit was already read in, free the
5044 cached copy in order to read it in again. This is
5045 necessary because we skipped some symbols when we first
5046 read in the compilation unit (see load_partial_dies).
5047 This problem could be avoided, but the benefit is unclear. */
5048 if (this_cu->cu != NULL)
5049 free_one_cached_comp_unit (this_cu);
5050
5051 gdb_assert (! this_cu->is_debug_types);
5052 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5053 process_psymtab_comp_unit_reader,
5054 &want_partial_unit);
5055
5056 /* Age out any secondary CUs. */
5057 age_cached_comp_units ();
5058 }
5059
5060 static hashval_t
5061 hash_type_unit_group (const void *item)
5062 {
5063 const struct type_unit_group *tu_group = item;
5064
5065 return hash_stmt_list_entry (&tu_group->hash);
5066 }
5067
5068 static int
5069 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5070 {
5071 const struct type_unit_group *lhs = item_lhs;
5072 const struct type_unit_group *rhs = item_rhs;
5073
5074 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5075 }
5076
5077 /* Allocate a hash table for type unit groups. */
5078
5079 static htab_t
5080 allocate_type_unit_groups_table (void)
5081 {
5082 return htab_create_alloc_ex (3,
5083 hash_type_unit_group,
5084 eq_type_unit_group,
5085 NULL,
5086 &dwarf2_per_objfile->objfile->objfile_obstack,
5087 hashtab_obstack_allocate,
5088 dummy_obstack_deallocate);
5089 }
5090
5091 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5092 partial symtabs. We combine several TUs per psymtab to not let the size
5093 of any one psymtab grow too big. */
5094 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5095 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5096
5097 /* Helper routine for get_type_unit_group.
5098 Create the type_unit_group object used to hold one or more TUs. */
5099
5100 static struct type_unit_group *
5101 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5102 {
5103 struct objfile *objfile = dwarf2_per_objfile->objfile;
5104 struct dwarf2_per_cu_data *per_cu;
5105 struct type_unit_group *tu_group;
5106
5107 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5108 struct type_unit_group);
5109 per_cu = &tu_group->per_cu;
5110 per_cu->objfile = objfile;
5111 per_cu->is_debug_types = 1;
5112 per_cu->s.type_unit_group = tu_group;
5113
5114 if (dwarf2_per_objfile->using_index)
5115 {
5116 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5117 struct dwarf2_per_cu_quick_data);
5118 tu_group->t.first_tu = cu->per_cu;
5119 }
5120 else
5121 {
5122 unsigned int line_offset = line_offset_struct.sect_off;
5123 struct partial_symtab *pst;
5124 char *name;
5125
5126 /* Give the symtab a useful name for debug purposes. */
5127 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5128 name = xstrprintf ("<type_units_%d>",
5129 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5130 else
5131 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5132
5133 pst = create_partial_symtab (per_cu, name);
5134 pst->anonymous = 1;
5135
5136 xfree (name);
5137 }
5138
5139 tu_group->hash.dwo_unit = cu->dwo_unit;
5140 tu_group->hash.line_offset = line_offset_struct;
5141
5142 return tu_group;
5143 }
5144
5145 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5146 STMT_LIST is a DW_AT_stmt_list attribute. */
5147
5148 static struct type_unit_group *
5149 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5150 {
5151 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5152 struct type_unit_group *tu_group;
5153 void **slot;
5154 unsigned int line_offset;
5155 struct type_unit_group type_unit_group_for_lookup;
5156
5157 if (dwarf2_per_objfile->type_unit_groups == NULL)
5158 {
5159 dwarf2_per_objfile->type_unit_groups =
5160 allocate_type_unit_groups_table ();
5161 }
5162
5163 /* Do we need to create a new group, or can we use an existing one? */
5164
5165 if (stmt_list)
5166 {
5167 line_offset = DW_UNSND (stmt_list);
5168 ++tu_stats->nr_symtab_sharers;
5169 }
5170 else
5171 {
5172 /* Ugh, no stmt_list. Rare, but we have to handle it.
5173 We can do various things here like create one group per TU or
5174 spread them over multiple groups to split up the expansion work.
5175 To avoid worst case scenarios (too many groups or too large groups)
5176 we, umm, group them in bunches. */
5177 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5178 | (tu_stats->nr_stmt_less_type_units
5179 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5180 ++tu_stats->nr_stmt_less_type_units;
5181 }
5182
5183 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5184 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5185 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5186 &type_unit_group_for_lookup, INSERT);
5187 if (*slot != NULL)
5188 {
5189 tu_group = *slot;
5190 gdb_assert (tu_group != NULL);
5191 }
5192 else
5193 {
5194 sect_offset line_offset_struct;
5195
5196 line_offset_struct.sect_off = line_offset;
5197 tu_group = create_type_unit_group (cu, line_offset_struct);
5198 *slot = tu_group;
5199 ++tu_stats->nr_symtabs;
5200 }
5201
5202 return tu_group;
5203 }
5204
5205 /* Struct used to sort TUs by their abbreviation table offset. */
5206
5207 struct tu_abbrev_offset
5208 {
5209 struct signatured_type *sig_type;
5210 sect_offset abbrev_offset;
5211 };
5212
5213 /* Helper routine for build_type_unit_groups, passed to qsort. */
5214
5215 static int
5216 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5217 {
5218 const struct tu_abbrev_offset * const *a = ap;
5219 const struct tu_abbrev_offset * const *b = bp;
5220 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5221 unsigned int boff = (*b)->abbrev_offset.sect_off;
5222
5223 return (aoff > boff) - (aoff < boff);
5224 }
5225
5226 /* A helper function to add a type_unit_group to a table. */
5227
5228 static int
5229 add_type_unit_group_to_table (void **slot, void *datum)
5230 {
5231 struct type_unit_group *tu_group = *slot;
5232 struct type_unit_group ***datap = datum;
5233
5234 **datap = tu_group;
5235 ++*datap;
5236
5237 return 1;
5238 }
5239
5240 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5241 each one passing FUNC,DATA.
5242
5243 The efficiency is because we sort TUs by the abbrev table they use and
5244 only read each abbrev table once. In one program there are 200K TUs
5245 sharing 8K abbrev tables.
5246
5247 The main purpose of this function is to support building the
5248 dwarf2_per_objfile->type_unit_groups table.
5249 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5250 can collapse the search space by grouping them by stmt_list.
5251 The savings can be significant, in the same program from above the 200K TUs
5252 share 8K stmt_list tables.
5253
5254 FUNC is expected to call get_type_unit_group, which will create the
5255 struct type_unit_group if necessary and add it to
5256 dwarf2_per_objfile->type_unit_groups. */
5257
5258 static void
5259 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5260 {
5261 struct objfile *objfile = dwarf2_per_objfile->objfile;
5262 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5263 struct cleanup *cleanups;
5264 struct abbrev_table *abbrev_table;
5265 sect_offset abbrev_offset;
5266 struct tu_abbrev_offset *sorted_by_abbrev;
5267 struct type_unit_group **iter;
5268 int i;
5269
5270 /* It's up to the caller to not call us multiple times. */
5271 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5272
5273 if (dwarf2_per_objfile->n_type_units == 0)
5274 return;
5275
5276 /* TUs typically share abbrev tables, and there can be way more TUs than
5277 abbrev tables. Sort by abbrev table to reduce the number of times we
5278 read each abbrev table in.
5279 Alternatives are to punt or to maintain a cache of abbrev tables.
5280 This is simpler and efficient enough for now.
5281
5282 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5283 symtab to use). Typically TUs with the same abbrev offset have the same
5284 stmt_list value too so in practice this should work well.
5285
5286 The basic algorithm here is:
5287
5288 sort TUs by abbrev table
5289 for each TU with same abbrev table:
5290 read abbrev table if first user
5291 read TU top level DIE
5292 [IWBN if DWO skeletons had DW_AT_stmt_list]
5293 call FUNC */
5294
5295 if (dwarf2_read_debug)
5296 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5297
5298 /* Sort in a separate table to maintain the order of all_type_units
5299 for .gdb_index: TU indices directly index all_type_units. */
5300 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5301 dwarf2_per_objfile->n_type_units);
5302 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5303 {
5304 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5305
5306 sorted_by_abbrev[i].sig_type = sig_type;
5307 sorted_by_abbrev[i].abbrev_offset =
5308 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5309 sig_type->per_cu.offset);
5310 }
5311 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5312 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5313 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5314
5315 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5316 called any number of times, so we don't reset tu_stats here. */
5317
5318 abbrev_offset.sect_off = ~(unsigned) 0;
5319 abbrev_table = NULL;
5320 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5321
5322 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5323 {
5324 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5325
5326 /* Switch to the next abbrev table if necessary. */
5327 if (abbrev_table == NULL
5328 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5329 {
5330 if (abbrev_table != NULL)
5331 {
5332 abbrev_table_free (abbrev_table);
5333 /* Reset to NULL in case abbrev_table_read_table throws
5334 an error: abbrev_table_free_cleanup will get called. */
5335 abbrev_table = NULL;
5336 }
5337 abbrev_offset = tu->abbrev_offset;
5338 abbrev_table =
5339 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5340 abbrev_offset);
5341 ++tu_stats->nr_uniq_abbrev_tables;
5342 }
5343
5344 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5345 func, data);
5346 }
5347
5348 /* Create a vector of pointers to primary type units to make it easy to
5349 iterate over them and CUs. See dw2_get_primary_cu. */
5350 dwarf2_per_objfile->n_type_unit_groups =
5351 htab_elements (dwarf2_per_objfile->type_unit_groups);
5352 dwarf2_per_objfile->all_type_unit_groups =
5353 obstack_alloc (&objfile->objfile_obstack,
5354 dwarf2_per_objfile->n_type_unit_groups
5355 * sizeof (struct type_unit_group *));
5356 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5357 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5358 add_type_unit_group_to_table, &iter);
5359 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5360 == dwarf2_per_objfile->n_type_unit_groups);
5361
5362 do_cleanups (cleanups);
5363
5364 if (dwarf2_read_debug)
5365 {
5366 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5367 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5368 dwarf2_per_objfile->n_type_units);
5369 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5370 tu_stats->nr_uniq_abbrev_tables);
5371 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5372 tu_stats->nr_symtabs);
5373 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5374 tu_stats->nr_symtab_sharers);
5375 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5376 tu_stats->nr_stmt_less_type_units);
5377 }
5378 }
5379
5380 /* Reader function for build_type_psymtabs. */
5381
5382 static void
5383 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5384 gdb_byte *info_ptr,
5385 struct die_info *type_unit_die,
5386 int has_children,
5387 void *data)
5388 {
5389 struct objfile *objfile = dwarf2_per_objfile->objfile;
5390 struct dwarf2_cu *cu = reader->cu;
5391 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5392 struct type_unit_group *tu_group;
5393 struct attribute *attr;
5394 struct partial_die_info *first_die;
5395 CORE_ADDR lowpc, highpc;
5396 struct partial_symtab *pst;
5397
5398 gdb_assert (data == NULL);
5399
5400 if (! has_children)
5401 return;
5402
5403 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5404 tu_group = get_type_unit_group (cu, attr);
5405
5406 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5407
5408 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5409 cu->list_in_scope = &file_symbols;
5410 pst = create_partial_symtab (per_cu, "");
5411 pst->anonymous = 1;
5412
5413 first_die = load_partial_dies (reader, info_ptr, 1);
5414
5415 lowpc = (CORE_ADDR) -1;
5416 highpc = (CORE_ADDR) 0;
5417 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5418
5419 pst->n_global_syms = objfile->global_psymbols.next -
5420 (objfile->global_psymbols.list + pst->globals_offset);
5421 pst->n_static_syms = objfile->static_psymbols.next -
5422 (objfile->static_psymbols.list + pst->statics_offset);
5423 sort_pst_symbols (objfile, pst);
5424 }
5425
5426 /* Traversal function for build_type_psymtabs. */
5427
5428 static int
5429 build_type_psymtab_dependencies (void **slot, void *info)
5430 {
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5433 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5434 struct partial_symtab *pst = per_cu->v.psymtab;
5435 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5436 struct dwarf2_per_cu_data *iter;
5437 int i;
5438
5439 gdb_assert (len > 0);
5440
5441 pst->number_of_dependencies = len;
5442 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5443 len * sizeof (struct psymtab *));
5444 for (i = 0;
5445 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5446 ++i)
5447 {
5448 pst->dependencies[i] = iter->v.psymtab;
5449 iter->s.type_unit_group = tu_group;
5450 }
5451
5452 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5453
5454 return 1;
5455 }
5456
5457 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5458 Build partial symbol tables for the .debug_types comp-units. */
5459
5460 static void
5461 build_type_psymtabs (struct objfile *objfile)
5462 {
5463 if (! create_all_type_units (objfile))
5464 return;
5465
5466 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5467
5468 /* Now that all TUs have been processed we can fill in the dependencies. */
5469 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5470 build_type_psymtab_dependencies, NULL);
5471 }
5472
5473 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5474
5475 static void
5476 psymtabs_addrmap_cleanup (void *o)
5477 {
5478 struct objfile *objfile = o;
5479
5480 objfile->psymtabs_addrmap = NULL;
5481 }
5482
5483 /* Compute the 'user' field for each psymtab in OBJFILE. */
5484
5485 static void
5486 set_partial_user (struct objfile *objfile)
5487 {
5488 int i;
5489
5490 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5491 {
5492 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5493 struct partial_symtab *pst = per_cu->v.psymtab;
5494 int j;
5495
5496 if (pst == NULL)
5497 continue;
5498
5499 for (j = 0; j < pst->number_of_dependencies; ++j)
5500 {
5501 /* Set the 'user' field only if it is not already set. */
5502 if (pst->dependencies[j]->user == NULL)
5503 pst->dependencies[j]->user = pst;
5504 }
5505 }
5506 }
5507
5508 /* Build the partial symbol table by doing a quick pass through the
5509 .debug_info and .debug_abbrev sections. */
5510
5511 static void
5512 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5513 {
5514 struct cleanup *back_to, *addrmap_cleanup;
5515 struct obstack temp_obstack;
5516 int i;
5517
5518 if (dwarf2_read_debug)
5519 {
5520 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5521 objfile->name);
5522 }
5523
5524 dwarf2_per_objfile->reading_partial_symbols = 1;
5525
5526 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5527
5528 /* Any cached compilation units will be linked by the per-objfile
5529 read_in_chain. Make sure to free them when we're done. */
5530 back_to = make_cleanup (free_cached_comp_units, NULL);
5531
5532 build_type_psymtabs (objfile);
5533
5534 create_all_comp_units (objfile);
5535
5536 /* Create a temporary address map on a temporary obstack. We later
5537 copy this to the final obstack. */
5538 obstack_init (&temp_obstack);
5539 make_cleanup_obstack_free (&temp_obstack);
5540 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5541 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5542
5543 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5544 {
5545 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5546
5547 process_psymtab_comp_unit (per_cu, 0);
5548 }
5549
5550 set_partial_user (objfile);
5551
5552 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5553 &objfile->objfile_obstack);
5554 discard_cleanups (addrmap_cleanup);
5555
5556 do_cleanups (back_to);
5557
5558 if (dwarf2_read_debug)
5559 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5560 objfile->name);
5561 }
5562
5563 /* die_reader_func for load_partial_comp_unit. */
5564
5565 static void
5566 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5567 gdb_byte *info_ptr,
5568 struct die_info *comp_unit_die,
5569 int has_children,
5570 void *data)
5571 {
5572 struct dwarf2_cu *cu = reader->cu;
5573
5574 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5575
5576 /* Check if comp unit has_children.
5577 If so, read the rest of the partial symbols from this comp unit.
5578 If not, there's no more debug_info for this comp unit. */
5579 if (has_children)
5580 load_partial_dies (reader, info_ptr, 0);
5581 }
5582
5583 /* Load the partial DIEs for a secondary CU into memory.
5584 This is also used when rereading a primary CU with load_all_dies. */
5585
5586 static void
5587 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5588 {
5589 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5590 load_partial_comp_unit_reader, NULL);
5591 }
5592
5593 static void
5594 read_comp_units_from_section (struct objfile *objfile,
5595 struct dwarf2_section_info *section,
5596 unsigned int is_dwz,
5597 int *n_allocated,
5598 int *n_comp_units,
5599 struct dwarf2_per_cu_data ***all_comp_units)
5600 {
5601 gdb_byte *info_ptr;
5602 bfd *abfd = section->asection->owner;
5603
5604 dwarf2_read_section (objfile, section);
5605
5606 info_ptr = section->buffer;
5607
5608 while (info_ptr < section->buffer + section->size)
5609 {
5610 unsigned int length, initial_length_size;
5611 struct dwarf2_per_cu_data *this_cu;
5612 sect_offset offset;
5613
5614 offset.sect_off = info_ptr - section->buffer;
5615
5616 /* Read just enough information to find out where the next
5617 compilation unit is. */
5618 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5619
5620 /* Save the compilation unit for later lookup. */
5621 this_cu = obstack_alloc (&objfile->objfile_obstack,
5622 sizeof (struct dwarf2_per_cu_data));
5623 memset (this_cu, 0, sizeof (*this_cu));
5624 this_cu->offset = offset;
5625 this_cu->length = length + initial_length_size;
5626 this_cu->is_dwz = is_dwz;
5627 this_cu->objfile = objfile;
5628 this_cu->info_or_types_section = section;
5629
5630 if (*n_comp_units == *n_allocated)
5631 {
5632 *n_allocated *= 2;
5633 *all_comp_units = xrealloc (*all_comp_units,
5634 *n_allocated
5635 * sizeof (struct dwarf2_per_cu_data *));
5636 }
5637 (*all_comp_units)[*n_comp_units] = this_cu;
5638 ++*n_comp_units;
5639
5640 info_ptr = info_ptr + this_cu->length;
5641 }
5642 }
5643
5644 /* Create a list of all compilation units in OBJFILE.
5645 This is only done for -readnow and building partial symtabs. */
5646
5647 static void
5648 create_all_comp_units (struct objfile *objfile)
5649 {
5650 int n_allocated;
5651 int n_comp_units;
5652 struct dwarf2_per_cu_data **all_comp_units;
5653
5654 n_comp_units = 0;
5655 n_allocated = 10;
5656 all_comp_units = xmalloc (n_allocated
5657 * sizeof (struct dwarf2_per_cu_data *));
5658
5659 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5660 &n_allocated, &n_comp_units, &all_comp_units);
5661
5662 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5663 {
5664 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5665
5666 read_comp_units_from_section (objfile, &dwz->info, 1,
5667 &n_allocated, &n_comp_units,
5668 &all_comp_units);
5669 }
5670
5671 dwarf2_per_objfile->all_comp_units
5672 = obstack_alloc (&objfile->objfile_obstack,
5673 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5674 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5675 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5676 xfree (all_comp_units);
5677 dwarf2_per_objfile->n_comp_units = n_comp_units;
5678 }
5679
5680 /* Process all loaded DIEs for compilation unit CU, starting at
5681 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5682 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5683 DW_AT_ranges). If NEED_PC is set, then this function will set
5684 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5685 and record the covered ranges in the addrmap. */
5686
5687 static void
5688 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5689 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5690 {
5691 struct partial_die_info *pdi;
5692
5693 /* Now, march along the PDI's, descending into ones which have
5694 interesting children but skipping the children of the other ones,
5695 until we reach the end of the compilation unit. */
5696
5697 pdi = first_die;
5698
5699 while (pdi != NULL)
5700 {
5701 fixup_partial_die (pdi, cu);
5702
5703 /* Anonymous namespaces or modules have no name but have interesting
5704 children, so we need to look at them. Ditto for anonymous
5705 enums. */
5706
5707 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5708 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5709 || pdi->tag == DW_TAG_imported_unit)
5710 {
5711 switch (pdi->tag)
5712 {
5713 case DW_TAG_subprogram:
5714 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5715 break;
5716 case DW_TAG_constant:
5717 case DW_TAG_variable:
5718 case DW_TAG_typedef:
5719 case DW_TAG_union_type:
5720 if (!pdi->is_declaration)
5721 {
5722 add_partial_symbol (pdi, cu);
5723 }
5724 break;
5725 case DW_TAG_class_type:
5726 case DW_TAG_interface_type:
5727 case DW_TAG_structure_type:
5728 if (!pdi->is_declaration)
5729 {
5730 add_partial_symbol (pdi, cu);
5731 }
5732 break;
5733 case DW_TAG_enumeration_type:
5734 if (!pdi->is_declaration)
5735 add_partial_enumeration (pdi, cu);
5736 break;
5737 case DW_TAG_base_type:
5738 case DW_TAG_subrange_type:
5739 /* File scope base type definitions are added to the partial
5740 symbol table. */
5741 add_partial_symbol (pdi, cu);
5742 break;
5743 case DW_TAG_namespace:
5744 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5745 break;
5746 case DW_TAG_module:
5747 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5748 break;
5749 case DW_TAG_imported_unit:
5750 {
5751 struct dwarf2_per_cu_data *per_cu;
5752
5753 /* For now we don't handle imported units in type units. */
5754 if (cu->per_cu->is_debug_types)
5755 {
5756 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5757 " supported in type units [in module %s]"),
5758 cu->objfile->name);
5759 }
5760
5761 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5762 pdi->is_dwz,
5763 cu->objfile);
5764
5765 /* Go read the partial unit, if needed. */
5766 if (per_cu->v.psymtab == NULL)
5767 process_psymtab_comp_unit (per_cu, 1);
5768
5769 VEC_safe_push (dwarf2_per_cu_ptr,
5770 cu->per_cu->s.imported_symtabs, per_cu);
5771 }
5772 break;
5773 default:
5774 break;
5775 }
5776 }
5777
5778 /* If the die has a sibling, skip to the sibling. */
5779
5780 pdi = pdi->die_sibling;
5781 }
5782 }
5783
5784 /* Functions used to compute the fully scoped name of a partial DIE.
5785
5786 Normally, this is simple. For C++, the parent DIE's fully scoped
5787 name is concatenated with "::" and the partial DIE's name. For
5788 Java, the same thing occurs except that "." is used instead of "::".
5789 Enumerators are an exception; they use the scope of their parent
5790 enumeration type, i.e. the name of the enumeration type is not
5791 prepended to the enumerator.
5792
5793 There are two complexities. One is DW_AT_specification; in this
5794 case "parent" means the parent of the target of the specification,
5795 instead of the direct parent of the DIE. The other is compilers
5796 which do not emit DW_TAG_namespace; in this case we try to guess
5797 the fully qualified name of structure types from their members'
5798 linkage names. This must be done using the DIE's children rather
5799 than the children of any DW_AT_specification target. We only need
5800 to do this for structures at the top level, i.e. if the target of
5801 any DW_AT_specification (if any; otherwise the DIE itself) does not
5802 have a parent. */
5803
5804 /* Compute the scope prefix associated with PDI's parent, in
5805 compilation unit CU. The result will be allocated on CU's
5806 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5807 field. NULL is returned if no prefix is necessary. */
5808 static char *
5809 partial_die_parent_scope (struct partial_die_info *pdi,
5810 struct dwarf2_cu *cu)
5811 {
5812 char *grandparent_scope;
5813 struct partial_die_info *parent, *real_pdi;
5814
5815 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5816 then this means the parent of the specification DIE. */
5817
5818 real_pdi = pdi;
5819 while (real_pdi->has_specification)
5820 real_pdi = find_partial_die (real_pdi->spec_offset,
5821 real_pdi->spec_is_dwz, cu);
5822
5823 parent = real_pdi->die_parent;
5824 if (parent == NULL)
5825 return NULL;
5826
5827 if (parent->scope_set)
5828 return parent->scope;
5829
5830 fixup_partial_die (parent, cu);
5831
5832 grandparent_scope = partial_die_parent_scope (parent, cu);
5833
5834 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5835 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5836 Work around this problem here. */
5837 if (cu->language == language_cplus
5838 && parent->tag == DW_TAG_namespace
5839 && strcmp (parent->name, "::") == 0
5840 && grandparent_scope == NULL)
5841 {
5842 parent->scope = NULL;
5843 parent->scope_set = 1;
5844 return NULL;
5845 }
5846
5847 if (pdi->tag == DW_TAG_enumerator)
5848 /* Enumerators should not get the name of the enumeration as a prefix. */
5849 parent->scope = grandparent_scope;
5850 else if (parent->tag == DW_TAG_namespace
5851 || parent->tag == DW_TAG_module
5852 || parent->tag == DW_TAG_structure_type
5853 || parent->tag == DW_TAG_class_type
5854 || parent->tag == DW_TAG_interface_type
5855 || parent->tag == DW_TAG_union_type
5856 || parent->tag == DW_TAG_enumeration_type)
5857 {
5858 if (grandparent_scope == NULL)
5859 parent->scope = parent->name;
5860 else
5861 parent->scope = typename_concat (&cu->comp_unit_obstack,
5862 grandparent_scope,
5863 parent->name, 0, cu);
5864 }
5865 else
5866 {
5867 /* FIXME drow/2004-04-01: What should we be doing with
5868 function-local names? For partial symbols, we should probably be
5869 ignoring them. */
5870 complaint (&symfile_complaints,
5871 _("unhandled containing DIE tag %d for DIE at %d"),
5872 parent->tag, pdi->offset.sect_off);
5873 parent->scope = grandparent_scope;
5874 }
5875
5876 parent->scope_set = 1;
5877 return parent->scope;
5878 }
5879
5880 /* Return the fully scoped name associated with PDI, from compilation unit
5881 CU. The result will be allocated with malloc. */
5882
5883 static char *
5884 partial_die_full_name (struct partial_die_info *pdi,
5885 struct dwarf2_cu *cu)
5886 {
5887 char *parent_scope;
5888
5889 /* If this is a template instantiation, we can not work out the
5890 template arguments from partial DIEs. So, unfortunately, we have
5891 to go through the full DIEs. At least any work we do building
5892 types here will be reused if full symbols are loaded later. */
5893 if (pdi->has_template_arguments)
5894 {
5895 fixup_partial_die (pdi, cu);
5896
5897 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5898 {
5899 struct die_info *die;
5900 struct attribute attr;
5901 struct dwarf2_cu *ref_cu = cu;
5902
5903 /* DW_FORM_ref_addr is using section offset. */
5904 attr.name = 0;
5905 attr.form = DW_FORM_ref_addr;
5906 attr.u.unsnd = pdi->offset.sect_off;
5907 die = follow_die_ref (NULL, &attr, &ref_cu);
5908
5909 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5910 }
5911 }
5912
5913 parent_scope = partial_die_parent_scope (pdi, cu);
5914 if (parent_scope == NULL)
5915 return NULL;
5916 else
5917 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5918 }
5919
5920 static void
5921 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5922 {
5923 struct objfile *objfile = cu->objfile;
5924 CORE_ADDR addr = 0;
5925 char *actual_name = NULL;
5926 CORE_ADDR baseaddr;
5927 int built_actual_name = 0;
5928
5929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5930
5931 actual_name = partial_die_full_name (pdi, cu);
5932 if (actual_name)
5933 built_actual_name = 1;
5934
5935 if (actual_name == NULL)
5936 actual_name = pdi->name;
5937
5938 switch (pdi->tag)
5939 {
5940 case DW_TAG_subprogram:
5941 if (pdi->is_external || cu->language == language_ada)
5942 {
5943 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5944 of the global scope. But in Ada, we want to be able to access
5945 nested procedures globally. So all Ada subprograms are stored
5946 in the global scope. */
5947 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5948 mst_text, objfile); */
5949 add_psymbol_to_list (actual_name, strlen (actual_name),
5950 built_actual_name,
5951 VAR_DOMAIN, LOC_BLOCK,
5952 &objfile->global_psymbols,
5953 0, pdi->lowpc + baseaddr,
5954 cu->language, objfile);
5955 }
5956 else
5957 {
5958 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5959 mst_file_text, objfile); */
5960 add_psymbol_to_list (actual_name, strlen (actual_name),
5961 built_actual_name,
5962 VAR_DOMAIN, LOC_BLOCK,
5963 &objfile->static_psymbols,
5964 0, pdi->lowpc + baseaddr,
5965 cu->language, objfile);
5966 }
5967 break;
5968 case DW_TAG_constant:
5969 {
5970 struct psymbol_allocation_list *list;
5971
5972 if (pdi->is_external)
5973 list = &objfile->global_psymbols;
5974 else
5975 list = &objfile->static_psymbols;
5976 add_psymbol_to_list (actual_name, strlen (actual_name),
5977 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5978 list, 0, 0, cu->language, objfile);
5979 }
5980 break;
5981 case DW_TAG_variable:
5982 if (pdi->d.locdesc)
5983 addr = decode_locdesc (pdi->d.locdesc, cu);
5984
5985 if (pdi->d.locdesc
5986 && addr == 0
5987 && !dwarf2_per_objfile->has_section_at_zero)
5988 {
5989 /* A global or static variable may also have been stripped
5990 out by the linker if unused, in which case its address
5991 will be nullified; do not add such variables into partial
5992 symbol table then. */
5993 }
5994 else if (pdi->is_external)
5995 {
5996 /* Global Variable.
5997 Don't enter into the minimal symbol tables as there is
5998 a minimal symbol table entry from the ELF symbols already.
5999 Enter into partial symbol table if it has a location
6000 descriptor or a type.
6001 If the location descriptor is missing, new_symbol will create
6002 a LOC_UNRESOLVED symbol, the address of the variable will then
6003 be determined from the minimal symbol table whenever the variable
6004 is referenced.
6005 The address for the partial symbol table entry is not
6006 used by GDB, but it comes in handy for debugging partial symbol
6007 table building. */
6008
6009 if (pdi->d.locdesc || pdi->has_type)
6010 add_psymbol_to_list (actual_name, strlen (actual_name),
6011 built_actual_name,
6012 VAR_DOMAIN, LOC_STATIC,
6013 &objfile->global_psymbols,
6014 0, addr + baseaddr,
6015 cu->language, objfile);
6016 }
6017 else
6018 {
6019 /* Static Variable. Skip symbols without location descriptors. */
6020 if (pdi->d.locdesc == NULL)
6021 {
6022 if (built_actual_name)
6023 xfree (actual_name);
6024 return;
6025 }
6026 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6027 mst_file_data, objfile); */
6028 add_psymbol_to_list (actual_name, strlen (actual_name),
6029 built_actual_name,
6030 VAR_DOMAIN, LOC_STATIC,
6031 &objfile->static_psymbols,
6032 0, addr + baseaddr,
6033 cu->language, objfile);
6034 }
6035 break;
6036 case DW_TAG_typedef:
6037 case DW_TAG_base_type:
6038 case DW_TAG_subrange_type:
6039 add_psymbol_to_list (actual_name, strlen (actual_name),
6040 built_actual_name,
6041 VAR_DOMAIN, LOC_TYPEDEF,
6042 &objfile->static_psymbols,
6043 0, (CORE_ADDR) 0, cu->language, objfile);
6044 break;
6045 case DW_TAG_namespace:
6046 add_psymbol_to_list (actual_name, strlen (actual_name),
6047 built_actual_name,
6048 VAR_DOMAIN, LOC_TYPEDEF,
6049 &objfile->global_psymbols,
6050 0, (CORE_ADDR) 0, cu->language, objfile);
6051 break;
6052 case DW_TAG_class_type:
6053 case DW_TAG_interface_type:
6054 case DW_TAG_structure_type:
6055 case DW_TAG_union_type:
6056 case DW_TAG_enumeration_type:
6057 /* Skip external references. The DWARF standard says in the section
6058 about "Structure, Union, and Class Type Entries": "An incomplete
6059 structure, union or class type is represented by a structure,
6060 union or class entry that does not have a byte size attribute
6061 and that has a DW_AT_declaration attribute." */
6062 if (!pdi->has_byte_size && pdi->is_declaration)
6063 {
6064 if (built_actual_name)
6065 xfree (actual_name);
6066 return;
6067 }
6068
6069 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6070 static vs. global. */
6071 add_psymbol_to_list (actual_name, strlen (actual_name),
6072 built_actual_name,
6073 STRUCT_DOMAIN, LOC_TYPEDEF,
6074 (cu->language == language_cplus
6075 || cu->language == language_java)
6076 ? &objfile->global_psymbols
6077 : &objfile->static_psymbols,
6078 0, (CORE_ADDR) 0, cu->language, objfile);
6079
6080 break;
6081 case DW_TAG_enumerator:
6082 add_psymbol_to_list (actual_name, strlen (actual_name),
6083 built_actual_name,
6084 VAR_DOMAIN, LOC_CONST,
6085 (cu->language == language_cplus
6086 || cu->language == language_java)
6087 ? &objfile->global_psymbols
6088 : &objfile->static_psymbols,
6089 0, (CORE_ADDR) 0, cu->language, objfile);
6090 break;
6091 default:
6092 break;
6093 }
6094
6095 if (built_actual_name)
6096 xfree (actual_name);
6097 }
6098
6099 /* Read a partial die corresponding to a namespace; also, add a symbol
6100 corresponding to that namespace to the symbol table. NAMESPACE is
6101 the name of the enclosing namespace. */
6102
6103 static void
6104 add_partial_namespace (struct partial_die_info *pdi,
6105 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6106 int need_pc, struct dwarf2_cu *cu)
6107 {
6108 /* Add a symbol for the namespace. */
6109
6110 add_partial_symbol (pdi, cu);
6111
6112 /* Now scan partial symbols in that namespace. */
6113
6114 if (pdi->has_children)
6115 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6116 }
6117
6118 /* Read a partial die corresponding to a Fortran module. */
6119
6120 static void
6121 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6122 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6123 {
6124 /* Now scan partial symbols in that module. */
6125
6126 if (pdi->has_children)
6127 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6128 }
6129
6130 /* Read a partial die corresponding to a subprogram and create a partial
6131 symbol for that subprogram. When the CU language allows it, this
6132 routine also defines a partial symbol for each nested subprogram
6133 that this subprogram contains.
6134
6135 DIE my also be a lexical block, in which case we simply search
6136 recursively for suprograms defined inside that lexical block.
6137 Again, this is only performed when the CU language allows this
6138 type of definitions. */
6139
6140 static void
6141 add_partial_subprogram (struct partial_die_info *pdi,
6142 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6143 int need_pc, struct dwarf2_cu *cu)
6144 {
6145 if (pdi->tag == DW_TAG_subprogram)
6146 {
6147 if (pdi->has_pc_info)
6148 {
6149 if (pdi->lowpc < *lowpc)
6150 *lowpc = pdi->lowpc;
6151 if (pdi->highpc > *highpc)
6152 *highpc = pdi->highpc;
6153 if (need_pc)
6154 {
6155 CORE_ADDR baseaddr;
6156 struct objfile *objfile = cu->objfile;
6157
6158 baseaddr = ANOFFSET (objfile->section_offsets,
6159 SECT_OFF_TEXT (objfile));
6160 addrmap_set_empty (objfile->psymtabs_addrmap,
6161 pdi->lowpc + baseaddr,
6162 pdi->highpc - 1 + baseaddr,
6163 cu->per_cu->v.psymtab);
6164 }
6165 }
6166
6167 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6168 {
6169 if (!pdi->is_declaration)
6170 /* Ignore subprogram DIEs that do not have a name, they are
6171 illegal. Do not emit a complaint at this point, we will
6172 do so when we convert this psymtab into a symtab. */
6173 if (pdi->name)
6174 add_partial_symbol (pdi, cu);
6175 }
6176 }
6177
6178 if (! pdi->has_children)
6179 return;
6180
6181 if (cu->language == language_ada)
6182 {
6183 pdi = pdi->die_child;
6184 while (pdi != NULL)
6185 {
6186 fixup_partial_die (pdi, cu);
6187 if (pdi->tag == DW_TAG_subprogram
6188 || pdi->tag == DW_TAG_lexical_block)
6189 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6190 pdi = pdi->die_sibling;
6191 }
6192 }
6193 }
6194
6195 /* Read a partial die corresponding to an enumeration type. */
6196
6197 static void
6198 add_partial_enumeration (struct partial_die_info *enum_pdi,
6199 struct dwarf2_cu *cu)
6200 {
6201 struct partial_die_info *pdi;
6202
6203 if (enum_pdi->name != NULL)
6204 add_partial_symbol (enum_pdi, cu);
6205
6206 pdi = enum_pdi->die_child;
6207 while (pdi)
6208 {
6209 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6210 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6211 else
6212 add_partial_symbol (pdi, cu);
6213 pdi = pdi->die_sibling;
6214 }
6215 }
6216
6217 /* Return the initial uleb128 in the die at INFO_PTR. */
6218
6219 static unsigned int
6220 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6221 {
6222 unsigned int bytes_read;
6223
6224 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6225 }
6226
6227 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6228 Return the corresponding abbrev, or NULL if the number is zero (indicating
6229 an empty DIE). In either case *BYTES_READ will be set to the length of
6230 the initial number. */
6231
6232 static struct abbrev_info *
6233 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6234 struct dwarf2_cu *cu)
6235 {
6236 bfd *abfd = cu->objfile->obfd;
6237 unsigned int abbrev_number;
6238 struct abbrev_info *abbrev;
6239
6240 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6241
6242 if (abbrev_number == 0)
6243 return NULL;
6244
6245 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6246 if (!abbrev)
6247 {
6248 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6249 abbrev_number, bfd_get_filename (abfd));
6250 }
6251
6252 return abbrev;
6253 }
6254
6255 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6256 Returns a pointer to the end of a series of DIEs, terminated by an empty
6257 DIE. Any children of the skipped DIEs will also be skipped. */
6258
6259 static gdb_byte *
6260 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6261 {
6262 struct dwarf2_cu *cu = reader->cu;
6263 struct abbrev_info *abbrev;
6264 unsigned int bytes_read;
6265
6266 while (1)
6267 {
6268 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6269 if (abbrev == NULL)
6270 return info_ptr + bytes_read;
6271 else
6272 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6273 }
6274 }
6275
6276 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6277 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6278 abbrev corresponding to that skipped uleb128 should be passed in
6279 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6280 children. */
6281
6282 static gdb_byte *
6283 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6284 struct abbrev_info *abbrev)
6285 {
6286 unsigned int bytes_read;
6287 struct attribute attr;
6288 bfd *abfd = reader->abfd;
6289 struct dwarf2_cu *cu = reader->cu;
6290 gdb_byte *buffer = reader->buffer;
6291 const gdb_byte *buffer_end = reader->buffer_end;
6292 gdb_byte *start_info_ptr = info_ptr;
6293 unsigned int form, i;
6294
6295 for (i = 0; i < abbrev->num_attrs; i++)
6296 {
6297 /* The only abbrev we care about is DW_AT_sibling. */
6298 if (abbrev->attrs[i].name == DW_AT_sibling)
6299 {
6300 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6301 if (attr.form == DW_FORM_ref_addr)
6302 complaint (&symfile_complaints,
6303 _("ignoring absolute DW_AT_sibling"));
6304 else
6305 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6306 }
6307
6308 /* If it isn't DW_AT_sibling, skip this attribute. */
6309 form = abbrev->attrs[i].form;
6310 skip_attribute:
6311 switch (form)
6312 {
6313 case DW_FORM_ref_addr:
6314 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6315 and later it is offset sized. */
6316 if (cu->header.version == 2)
6317 info_ptr += cu->header.addr_size;
6318 else
6319 info_ptr += cu->header.offset_size;
6320 break;
6321 case DW_FORM_GNU_ref_alt:
6322 info_ptr += cu->header.offset_size;
6323 break;
6324 case DW_FORM_addr:
6325 info_ptr += cu->header.addr_size;
6326 break;
6327 case DW_FORM_data1:
6328 case DW_FORM_ref1:
6329 case DW_FORM_flag:
6330 info_ptr += 1;
6331 break;
6332 case DW_FORM_flag_present:
6333 break;
6334 case DW_FORM_data2:
6335 case DW_FORM_ref2:
6336 info_ptr += 2;
6337 break;
6338 case DW_FORM_data4:
6339 case DW_FORM_ref4:
6340 info_ptr += 4;
6341 break;
6342 case DW_FORM_data8:
6343 case DW_FORM_ref8:
6344 case DW_FORM_ref_sig8:
6345 info_ptr += 8;
6346 break;
6347 case DW_FORM_string:
6348 read_direct_string (abfd, info_ptr, &bytes_read);
6349 info_ptr += bytes_read;
6350 break;
6351 case DW_FORM_sec_offset:
6352 case DW_FORM_strp:
6353 case DW_FORM_GNU_strp_alt:
6354 info_ptr += cu->header.offset_size;
6355 break;
6356 case DW_FORM_exprloc:
6357 case DW_FORM_block:
6358 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6359 info_ptr += bytes_read;
6360 break;
6361 case DW_FORM_block1:
6362 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6363 break;
6364 case DW_FORM_block2:
6365 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6366 break;
6367 case DW_FORM_block4:
6368 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6369 break;
6370 case DW_FORM_sdata:
6371 case DW_FORM_udata:
6372 case DW_FORM_ref_udata:
6373 case DW_FORM_GNU_addr_index:
6374 case DW_FORM_GNU_str_index:
6375 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6376 break;
6377 case DW_FORM_indirect:
6378 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6379 info_ptr += bytes_read;
6380 /* We need to continue parsing from here, so just go back to
6381 the top. */
6382 goto skip_attribute;
6383
6384 default:
6385 error (_("Dwarf Error: Cannot handle %s "
6386 "in DWARF reader [in module %s]"),
6387 dwarf_form_name (form),
6388 bfd_get_filename (abfd));
6389 }
6390 }
6391
6392 if (abbrev->has_children)
6393 return skip_children (reader, info_ptr);
6394 else
6395 return info_ptr;
6396 }
6397
6398 /* Locate ORIG_PDI's sibling.
6399 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6400
6401 static gdb_byte *
6402 locate_pdi_sibling (const struct die_reader_specs *reader,
6403 struct partial_die_info *orig_pdi,
6404 gdb_byte *info_ptr)
6405 {
6406 /* Do we know the sibling already? */
6407
6408 if (orig_pdi->sibling)
6409 return orig_pdi->sibling;
6410
6411 /* Are there any children to deal with? */
6412
6413 if (!orig_pdi->has_children)
6414 return info_ptr;
6415
6416 /* Skip the children the long way. */
6417
6418 return skip_children (reader, info_ptr);
6419 }
6420
6421 /* Expand this partial symbol table into a full symbol table. PST is
6422 not NULL. */
6423
6424 static void
6425 dwarf2_psymtab_to_symtab (struct objfile *objfile, struct partial_symtab *pst)
6426 {
6427 if (pst->readin)
6428 {
6429 warning (_("bug: psymtab for %s is already read in."),
6430 pst->filename);
6431 }
6432 else
6433 {
6434 if (info_verbose)
6435 {
6436 printf_filtered (_("Reading in symbols for %s..."),
6437 pst->filename);
6438 gdb_flush (gdb_stdout);
6439 }
6440
6441 /* Restore our global data. */
6442 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6443
6444 /* If this psymtab is constructed from a debug-only objfile, the
6445 has_section_at_zero flag will not necessarily be correct. We
6446 can get the correct value for this flag by looking at the data
6447 associated with the (presumably stripped) associated objfile. */
6448 if (objfile->separate_debug_objfile_backlink)
6449 {
6450 struct dwarf2_per_objfile *dpo_backlink
6451 = objfile_data (objfile->separate_debug_objfile_backlink,
6452 dwarf2_objfile_data_key);
6453
6454 dwarf2_per_objfile->has_section_at_zero
6455 = dpo_backlink->has_section_at_zero;
6456 }
6457
6458 dwarf2_per_objfile->reading_partial_symbols = 0;
6459
6460 psymtab_to_symtab_1 (pst);
6461
6462 /* Finish up the debug error message. */
6463 if (info_verbose)
6464 printf_filtered (_("done.\n"));
6465 }
6466
6467 process_cu_includes ();
6468 }
6469 \f
6470 /* Reading in full CUs. */
6471
6472 /* Add PER_CU to the queue. */
6473
6474 static void
6475 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6476 enum language pretend_language)
6477 {
6478 struct dwarf2_queue_item *item;
6479
6480 per_cu->queued = 1;
6481 item = xmalloc (sizeof (*item));
6482 item->per_cu = per_cu;
6483 item->pretend_language = pretend_language;
6484 item->next = NULL;
6485
6486 if (dwarf2_queue == NULL)
6487 dwarf2_queue = item;
6488 else
6489 dwarf2_queue_tail->next = item;
6490
6491 dwarf2_queue_tail = item;
6492 }
6493
6494 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6495 unit and add it to our queue.
6496 The result is non-zero if PER_CU was queued, otherwise the result is zero
6497 meaning either PER_CU is already queued or it is already loaded. */
6498
6499 static int
6500 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6501 struct dwarf2_per_cu_data *per_cu,
6502 enum language pretend_language)
6503 {
6504 /* We may arrive here during partial symbol reading, if we need full
6505 DIEs to process an unusual case (e.g. template arguments). Do
6506 not queue PER_CU, just tell our caller to load its DIEs. */
6507 if (dwarf2_per_objfile->reading_partial_symbols)
6508 {
6509 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6510 return 1;
6511 return 0;
6512 }
6513
6514 /* Mark the dependence relation so that we don't flush PER_CU
6515 too early. */
6516 dwarf2_add_dependence (this_cu, per_cu);
6517
6518 /* If it's already on the queue, we have nothing to do. */
6519 if (per_cu->queued)
6520 return 0;
6521
6522 /* If the compilation unit is already loaded, just mark it as
6523 used. */
6524 if (per_cu->cu != NULL)
6525 {
6526 per_cu->cu->last_used = 0;
6527 return 0;
6528 }
6529
6530 /* Add it to the queue. */
6531 queue_comp_unit (per_cu, pretend_language);
6532
6533 return 1;
6534 }
6535
6536 /* Process the queue. */
6537
6538 static void
6539 process_queue (void)
6540 {
6541 struct dwarf2_queue_item *item, *next_item;
6542
6543 if (dwarf2_read_debug)
6544 {
6545 fprintf_unfiltered (gdb_stdlog,
6546 "Expanding one or more symtabs of objfile %s ...\n",
6547 dwarf2_per_objfile->objfile->name);
6548 }
6549
6550 /* The queue starts out with one item, but following a DIE reference
6551 may load a new CU, adding it to the end of the queue. */
6552 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6553 {
6554 if (dwarf2_per_objfile->using_index
6555 ? !item->per_cu->v.quick->symtab
6556 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6557 {
6558 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6559
6560 if (dwarf2_read_debug)
6561 {
6562 fprintf_unfiltered (gdb_stdlog,
6563 "Expanding symtab of %s at offset 0x%x\n",
6564 per_cu->is_debug_types ? "TU" : "CU",
6565 per_cu->offset.sect_off);
6566 }
6567
6568 if (per_cu->is_debug_types)
6569 process_full_type_unit (per_cu, item->pretend_language);
6570 else
6571 process_full_comp_unit (per_cu, item->pretend_language);
6572
6573 if (dwarf2_read_debug)
6574 {
6575 fprintf_unfiltered (gdb_stdlog,
6576 "Done expanding %s at offset 0x%x\n",
6577 per_cu->is_debug_types ? "TU" : "CU",
6578 per_cu->offset.sect_off);
6579 }
6580 }
6581
6582 item->per_cu->queued = 0;
6583 next_item = item->next;
6584 xfree (item);
6585 }
6586
6587 dwarf2_queue_tail = NULL;
6588
6589 if (dwarf2_read_debug)
6590 {
6591 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6592 dwarf2_per_objfile->objfile->name);
6593 }
6594 }
6595
6596 /* Free all allocated queue entries. This function only releases anything if
6597 an error was thrown; if the queue was processed then it would have been
6598 freed as we went along. */
6599
6600 static void
6601 dwarf2_release_queue (void *dummy)
6602 {
6603 struct dwarf2_queue_item *item, *last;
6604
6605 item = dwarf2_queue;
6606 while (item)
6607 {
6608 /* Anything still marked queued is likely to be in an
6609 inconsistent state, so discard it. */
6610 if (item->per_cu->queued)
6611 {
6612 if (item->per_cu->cu != NULL)
6613 free_one_cached_comp_unit (item->per_cu);
6614 item->per_cu->queued = 0;
6615 }
6616
6617 last = item;
6618 item = item->next;
6619 xfree (last);
6620 }
6621
6622 dwarf2_queue = dwarf2_queue_tail = NULL;
6623 }
6624
6625 /* Read in full symbols for PST, and anything it depends on. */
6626
6627 static void
6628 psymtab_to_symtab_1 (struct partial_symtab *pst)
6629 {
6630 struct dwarf2_per_cu_data *per_cu;
6631 int i;
6632
6633 if (pst->readin)
6634 return;
6635
6636 for (i = 0; i < pst->number_of_dependencies; i++)
6637 if (!pst->dependencies[i]->readin
6638 && pst->dependencies[i]->user == NULL)
6639 {
6640 /* Inform about additional files that need to be read in. */
6641 if (info_verbose)
6642 {
6643 /* FIXME: i18n: Need to make this a single string. */
6644 fputs_filtered (" ", gdb_stdout);
6645 wrap_here ("");
6646 fputs_filtered ("and ", gdb_stdout);
6647 wrap_here ("");
6648 printf_filtered ("%s...", pst->dependencies[i]->filename);
6649 wrap_here (""); /* Flush output. */
6650 gdb_flush (gdb_stdout);
6651 }
6652 psymtab_to_symtab_1 (pst->dependencies[i]);
6653 }
6654
6655 per_cu = pst->read_symtab_private;
6656
6657 if (per_cu == NULL)
6658 {
6659 /* It's an include file, no symbols to read for it.
6660 Everything is in the parent symtab. */
6661 pst->readin = 1;
6662 return;
6663 }
6664
6665 dw2_do_instantiate_symtab (per_cu);
6666 }
6667
6668 /* Trivial hash function for die_info: the hash value of a DIE
6669 is its offset in .debug_info for this objfile. */
6670
6671 static hashval_t
6672 die_hash (const void *item)
6673 {
6674 const struct die_info *die = item;
6675
6676 return die->offset.sect_off;
6677 }
6678
6679 /* Trivial comparison function for die_info structures: two DIEs
6680 are equal if they have the same offset. */
6681
6682 static int
6683 die_eq (const void *item_lhs, const void *item_rhs)
6684 {
6685 const struct die_info *die_lhs = item_lhs;
6686 const struct die_info *die_rhs = item_rhs;
6687
6688 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6689 }
6690
6691 /* die_reader_func for load_full_comp_unit.
6692 This is identical to read_signatured_type_reader,
6693 but is kept separate for now. */
6694
6695 static void
6696 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6697 gdb_byte *info_ptr,
6698 struct die_info *comp_unit_die,
6699 int has_children,
6700 void *data)
6701 {
6702 struct dwarf2_cu *cu = reader->cu;
6703 enum language *language_ptr = data;
6704
6705 gdb_assert (cu->die_hash == NULL);
6706 cu->die_hash =
6707 htab_create_alloc_ex (cu->header.length / 12,
6708 die_hash,
6709 die_eq,
6710 NULL,
6711 &cu->comp_unit_obstack,
6712 hashtab_obstack_allocate,
6713 dummy_obstack_deallocate);
6714
6715 if (has_children)
6716 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6717 &info_ptr, comp_unit_die);
6718 cu->dies = comp_unit_die;
6719 /* comp_unit_die is not stored in die_hash, no need. */
6720
6721 /* We try not to read any attributes in this function, because not
6722 all CUs needed for references have been loaded yet, and symbol
6723 table processing isn't initialized. But we have to set the CU language,
6724 or we won't be able to build types correctly.
6725 Similarly, if we do not read the producer, we can not apply
6726 producer-specific interpretation. */
6727 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6728 }
6729
6730 /* Load the DIEs associated with PER_CU into memory. */
6731
6732 static void
6733 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6734 enum language pretend_language)
6735 {
6736 gdb_assert (! this_cu->is_debug_types);
6737
6738 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6739 load_full_comp_unit_reader, &pretend_language);
6740 }
6741
6742 /* Add a DIE to the delayed physname list. */
6743
6744 static void
6745 add_to_method_list (struct type *type, int fnfield_index, int index,
6746 const char *name, struct die_info *die,
6747 struct dwarf2_cu *cu)
6748 {
6749 struct delayed_method_info mi;
6750 mi.type = type;
6751 mi.fnfield_index = fnfield_index;
6752 mi.index = index;
6753 mi.name = name;
6754 mi.die = die;
6755 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6756 }
6757
6758 /* A cleanup for freeing the delayed method list. */
6759
6760 static void
6761 free_delayed_list (void *ptr)
6762 {
6763 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6764 if (cu->method_list != NULL)
6765 {
6766 VEC_free (delayed_method_info, cu->method_list);
6767 cu->method_list = NULL;
6768 }
6769 }
6770
6771 /* Compute the physnames of any methods on the CU's method list.
6772
6773 The computation of method physnames is delayed in order to avoid the
6774 (bad) condition that one of the method's formal parameters is of an as yet
6775 incomplete type. */
6776
6777 static void
6778 compute_delayed_physnames (struct dwarf2_cu *cu)
6779 {
6780 int i;
6781 struct delayed_method_info *mi;
6782 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6783 {
6784 const char *physname;
6785 struct fn_fieldlist *fn_flp
6786 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6787 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6788 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6789 }
6790 }
6791
6792 /* Go objects should be embedded in a DW_TAG_module DIE,
6793 and it's not clear if/how imported objects will appear.
6794 To keep Go support simple until that's worked out,
6795 go back through what we've read and create something usable.
6796 We could do this while processing each DIE, and feels kinda cleaner,
6797 but that way is more invasive.
6798 This is to, for example, allow the user to type "p var" or "b main"
6799 without having to specify the package name, and allow lookups
6800 of module.object to work in contexts that use the expression
6801 parser. */
6802
6803 static void
6804 fixup_go_packaging (struct dwarf2_cu *cu)
6805 {
6806 char *package_name = NULL;
6807 struct pending *list;
6808 int i;
6809
6810 for (list = global_symbols; list != NULL; list = list->next)
6811 {
6812 for (i = 0; i < list->nsyms; ++i)
6813 {
6814 struct symbol *sym = list->symbol[i];
6815
6816 if (SYMBOL_LANGUAGE (sym) == language_go
6817 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6818 {
6819 char *this_package_name = go_symbol_package_name (sym);
6820
6821 if (this_package_name == NULL)
6822 continue;
6823 if (package_name == NULL)
6824 package_name = this_package_name;
6825 else
6826 {
6827 if (strcmp (package_name, this_package_name) != 0)
6828 complaint (&symfile_complaints,
6829 _("Symtab %s has objects from two different Go packages: %s and %s"),
6830 (SYMBOL_SYMTAB (sym)
6831 ? SYMBOL_SYMTAB (sym)->filename
6832 : cu->objfile->name),
6833 this_package_name, package_name);
6834 xfree (this_package_name);
6835 }
6836 }
6837 }
6838 }
6839
6840 if (package_name != NULL)
6841 {
6842 struct objfile *objfile = cu->objfile;
6843 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6844 package_name, objfile);
6845 struct symbol *sym;
6846
6847 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6848
6849 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6850 SYMBOL_SET_LANGUAGE (sym, language_go);
6851 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6852 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6853 e.g., "main" finds the "main" module and not C's main(). */
6854 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6855 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6856 SYMBOL_TYPE (sym) = type;
6857
6858 add_symbol_to_list (sym, &global_symbols);
6859
6860 xfree (package_name);
6861 }
6862 }
6863
6864 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6865
6866 /* Return the symtab for PER_CU. This works properly regardless of
6867 whether we're using the index or psymtabs. */
6868
6869 static struct symtab *
6870 get_symtab (struct dwarf2_per_cu_data *per_cu)
6871 {
6872 return (dwarf2_per_objfile->using_index
6873 ? per_cu->v.quick->symtab
6874 : per_cu->v.psymtab->symtab);
6875 }
6876
6877 /* A helper function for computing the list of all symbol tables
6878 included by PER_CU. */
6879
6880 static void
6881 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6882 htab_t all_children,
6883 struct dwarf2_per_cu_data *per_cu)
6884 {
6885 void **slot;
6886 int ix;
6887 struct dwarf2_per_cu_data *iter;
6888
6889 slot = htab_find_slot (all_children, per_cu, INSERT);
6890 if (*slot != NULL)
6891 {
6892 /* This inclusion and its children have been processed. */
6893 return;
6894 }
6895
6896 *slot = per_cu;
6897 /* Only add a CU if it has a symbol table. */
6898 if (get_symtab (per_cu) != NULL)
6899 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6900
6901 for (ix = 0;
6902 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6903 ++ix)
6904 recursively_compute_inclusions (result, all_children, iter);
6905 }
6906
6907 /* Compute the symtab 'includes' fields for the symtab related to
6908 PER_CU. */
6909
6910 static void
6911 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6912 {
6913 gdb_assert (! per_cu->is_debug_types);
6914
6915 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6916 {
6917 int ix, len;
6918 struct dwarf2_per_cu_data *iter;
6919 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6920 htab_t all_children;
6921 struct symtab *symtab = get_symtab (per_cu);
6922
6923 /* If we don't have a symtab, we can just skip this case. */
6924 if (symtab == NULL)
6925 return;
6926
6927 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6928 NULL, xcalloc, xfree);
6929
6930 for (ix = 0;
6931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6932 ix, iter);
6933 ++ix)
6934 recursively_compute_inclusions (&result_children, all_children, iter);
6935
6936 /* Now we have a transitive closure of all the included CUs, so
6937 we can convert it to a list of symtabs. */
6938 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6939 symtab->includes
6940 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6941 (len + 1) * sizeof (struct symtab *));
6942 for (ix = 0;
6943 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6944 ++ix)
6945 symtab->includes[ix] = get_symtab (iter);
6946 symtab->includes[len] = NULL;
6947
6948 VEC_free (dwarf2_per_cu_ptr, result_children);
6949 htab_delete (all_children);
6950 }
6951 }
6952
6953 /* Compute the 'includes' field for the symtabs of all the CUs we just
6954 read. */
6955
6956 static void
6957 process_cu_includes (void)
6958 {
6959 int ix;
6960 struct dwarf2_per_cu_data *iter;
6961
6962 for (ix = 0;
6963 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6964 ix, iter);
6965 ++ix)
6966 {
6967 if (! iter->is_debug_types)
6968 compute_symtab_includes (iter);
6969 }
6970
6971 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6972 }
6973
6974 /* Generate full symbol information for PER_CU, whose DIEs have
6975 already been loaded into memory. */
6976
6977 static void
6978 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6979 enum language pretend_language)
6980 {
6981 struct dwarf2_cu *cu = per_cu->cu;
6982 struct objfile *objfile = per_cu->objfile;
6983 CORE_ADDR lowpc, highpc;
6984 struct symtab *symtab;
6985 struct cleanup *back_to, *delayed_list_cleanup;
6986 CORE_ADDR baseaddr;
6987 struct block *static_block;
6988
6989 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6990
6991 buildsym_init ();
6992 back_to = make_cleanup (really_free_pendings, NULL);
6993 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6994
6995 cu->list_in_scope = &file_symbols;
6996
6997 cu->language = pretend_language;
6998 cu->language_defn = language_def (cu->language);
6999
7000 /* Do line number decoding in read_file_scope () */
7001 process_die (cu->dies, cu);
7002
7003 /* For now fudge the Go package. */
7004 if (cu->language == language_go)
7005 fixup_go_packaging (cu);
7006
7007 /* Now that we have processed all the DIEs in the CU, all the types
7008 should be complete, and it should now be safe to compute all of the
7009 physnames. */
7010 compute_delayed_physnames (cu);
7011 do_cleanups (delayed_list_cleanup);
7012
7013 /* Some compilers don't define a DW_AT_high_pc attribute for the
7014 compilation unit. If the DW_AT_high_pc is missing, synthesize
7015 it, by scanning the DIE's below the compilation unit. */
7016 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7017
7018 static_block
7019 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7020 per_cu->s.imported_symtabs != NULL);
7021
7022 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7023 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7024 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7025 addrmap to help ensure it has an accurate map of pc values belonging to
7026 this comp unit. */
7027 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7028
7029 symtab = end_symtab_from_static_block (static_block, objfile,
7030 SECT_OFF_TEXT (objfile), 0);
7031
7032 if (symtab != NULL)
7033 {
7034 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7035
7036 /* Set symtab language to language from DW_AT_language. If the
7037 compilation is from a C file generated by language preprocessors, do
7038 not set the language if it was already deduced by start_subfile. */
7039 if (!(cu->language == language_c && symtab->language != language_c))
7040 symtab->language = cu->language;
7041
7042 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7043 produce DW_AT_location with location lists but it can be possibly
7044 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7045 there were bugs in prologue debug info, fixed later in GCC-4.5
7046 by "unwind info for epilogues" patch (which is not directly related).
7047
7048 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7049 needed, it would be wrong due to missing DW_AT_producer there.
7050
7051 Still one can confuse GDB by using non-standard GCC compilation
7052 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7053 */
7054 if (cu->has_loclist && gcc_4_minor >= 5)
7055 symtab->locations_valid = 1;
7056
7057 if (gcc_4_minor >= 5)
7058 symtab->epilogue_unwind_valid = 1;
7059
7060 symtab->call_site_htab = cu->call_site_htab;
7061 }
7062
7063 if (dwarf2_per_objfile->using_index)
7064 per_cu->v.quick->symtab = symtab;
7065 else
7066 {
7067 struct partial_symtab *pst = per_cu->v.psymtab;
7068 pst->symtab = symtab;
7069 pst->readin = 1;
7070 }
7071
7072 /* Push it for inclusion processing later. */
7073 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7074
7075 do_cleanups (back_to);
7076 }
7077
7078 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7079 already been loaded into memory. */
7080
7081 static void
7082 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7083 enum language pretend_language)
7084 {
7085 struct dwarf2_cu *cu = per_cu->cu;
7086 struct objfile *objfile = per_cu->objfile;
7087 struct symtab *symtab;
7088 struct cleanup *back_to, *delayed_list_cleanup;
7089
7090 buildsym_init ();
7091 back_to = make_cleanup (really_free_pendings, NULL);
7092 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7093
7094 cu->list_in_scope = &file_symbols;
7095
7096 cu->language = pretend_language;
7097 cu->language_defn = language_def (cu->language);
7098
7099 /* The symbol tables are set up in read_type_unit_scope. */
7100 process_die (cu->dies, cu);
7101
7102 /* For now fudge the Go package. */
7103 if (cu->language == language_go)
7104 fixup_go_packaging (cu);
7105
7106 /* Now that we have processed all the DIEs in the CU, all the types
7107 should be complete, and it should now be safe to compute all of the
7108 physnames. */
7109 compute_delayed_physnames (cu);
7110 do_cleanups (delayed_list_cleanup);
7111
7112 /* TUs share symbol tables.
7113 If this is the first TU to use this symtab, complete the construction
7114 of it with end_expandable_symtab. Otherwise, complete the addition of
7115 this TU's symbols to the existing symtab. */
7116 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7117 {
7118 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7119 per_cu->s.type_unit_group->primary_symtab = symtab;
7120
7121 if (symtab != NULL)
7122 {
7123 /* Set symtab language to language from DW_AT_language. If the
7124 compilation is from a C file generated by language preprocessors,
7125 do not set the language if it was already deduced by
7126 start_subfile. */
7127 if (!(cu->language == language_c && symtab->language != language_c))
7128 symtab->language = cu->language;
7129 }
7130 }
7131 else
7132 {
7133 augment_type_symtab (objfile,
7134 per_cu->s.type_unit_group->primary_symtab);
7135 symtab = per_cu->s.type_unit_group->primary_symtab;
7136 }
7137
7138 if (dwarf2_per_objfile->using_index)
7139 per_cu->v.quick->symtab = symtab;
7140 else
7141 {
7142 struct partial_symtab *pst = per_cu->v.psymtab;
7143 pst->symtab = symtab;
7144 pst->readin = 1;
7145 }
7146
7147 do_cleanups (back_to);
7148 }
7149
7150 /* Process an imported unit DIE. */
7151
7152 static void
7153 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7154 {
7155 struct attribute *attr;
7156
7157 /* For now we don't handle imported units in type units. */
7158 if (cu->per_cu->is_debug_types)
7159 {
7160 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7161 " supported in type units [in module %s]"),
7162 cu->objfile->name);
7163 }
7164
7165 attr = dwarf2_attr (die, DW_AT_import, cu);
7166 if (attr != NULL)
7167 {
7168 struct dwarf2_per_cu_data *per_cu;
7169 struct symtab *imported_symtab;
7170 sect_offset offset;
7171 int is_dwz;
7172
7173 offset = dwarf2_get_ref_die_offset (attr);
7174 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7175 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7176
7177 /* Queue the unit, if needed. */
7178 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7179 load_full_comp_unit (per_cu, cu->language);
7180
7181 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7182 per_cu);
7183 }
7184 }
7185
7186 /* Process a die and its children. */
7187
7188 static void
7189 process_die (struct die_info *die, struct dwarf2_cu *cu)
7190 {
7191 switch (die->tag)
7192 {
7193 case DW_TAG_padding:
7194 break;
7195 case DW_TAG_compile_unit:
7196 case DW_TAG_partial_unit:
7197 read_file_scope (die, cu);
7198 break;
7199 case DW_TAG_type_unit:
7200 read_type_unit_scope (die, cu);
7201 break;
7202 case DW_TAG_subprogram:
7203 case DW_TAG_inlined_subroutine:
7204 read_func_scope (die, cu);
7205 break;
7206 case DW_TAG_lexical_block:
7207 case DW_TAG_try_block:
7208 case DW_TAG_catch_block:
7209 read_lexical_block_scope (die, cu);
7210 break;
7211 case DW_TAG_GNU_call_site:
7212 read_call_site_scope (die, cu);
7213 break;
7214 case DW_TAG_class_type:
7215 case DW_TAG_interface_type:
7216 case DW_TAG_structure_type:
7217 case DW_TAG_union_type:
7218 process_structure_scope (die, cu);
7219 break;
7220 case DW_TAG_enumeration_type:
7221 process_enumeration_scope (die, cu);
7222 break;
7223
7224 /* These dies have a type, but processing them does not create
7225 a symbol or recurse to process the children. Therefore we can
7226 read them on-demand through read_type_die. */
7227 case DW_TAG_subroutine_type:
7228 case DW_TAG_set_type:
7229 case DW_TAG_array_type:
7230 case DW_TAG_pointer_type:
7231 case DW_TAG_ptr_to_member_type:
7232 case DW_TAG_reference_type:
7233 case DW_TAG_string_type:
7234 break;
7235
7236 case DW_TAG_base_type:
7237 case DW_TAG_subrange_type:
7238 case DW_TAG_typedef:
7239 /* Add a typedef symbol for the type definition, if it has a
7240 DW_AT_name. */
7241 new_symbol (die, read_type_die (die, cu), cu);
7242 break;
7243 case DW_TAG_common_block:
7244 read_common_block (die, cu);
7245 break;
7246 case DW_TAG_common_inclusion:
7247 break;
7248 case DW_TAG_namespace:
7249 processing_has_namespace_info = 1;
7250 read_namespace (die, cu);
7251 break;
7252 case DW_TAG_module:
7253 processing_has_namespace_info = 1;
7254 read_module (die, cu);
7255 break;
7256 case DW_TAG_imported_declaration:
7257 case DW_TAG_imported_module:
7258 processing_has_namespace_info = 1;
7259 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7260 || cu->language != language_fortran))
7261 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7262 dwarf_tag_name (die->tag));
7263 read_import_statement (die, cu);
7264 break;
7265
7266 case DW_TAG_imported_unit:
7267 process_imported_unit_die (die, cu);
7268 break;
7269
7270 default:
7271 new_symbol (die, NULL, cu);
7272 break;
7273 }
7274 }
7275
7276 /* A helper function for dwarf2_compute_name which determines whether DIE
7277 needs to have the name of the scope prepended to the name listed in the
7278 die. */
7279
7280 static int
7281 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7282 {
7283 struct attribute *attr;
7284
7285 switch (die->tag)
7286 {
7287 case DW_TAG_namespace:
7288 case DW_TAG_typedef:
7289 case DW_TAG_class_type:
7290 case DW_TAG_interface_type:
7291 case DW_TAG_structure_type:
7292 case DW_TAG_union_type:
7293 case DW_TAG_enumeration_type:
7294 case DW_TAG_enumerator:
7295 case DW_TAG_subprogram:
7296 case DW_TAG_member:
7297 return 1;
7298
7299 case DW_TAG_variable:
7300 case DW_TAG_constant:
7301 /* We only need to prefix "globally" visible variables. These include
7302 any variable marked with DW_AT_external or any variable that
7303 lives in a namespace. [Variables in anonymous namespaces
7304 require prefixing, but they are not DW_AT_external.] */
7305
7306 if (dwarf2_attr (die, DW_AT_specification, cu))
7307 {
7308 struct dwarf2_cu *spec_cu = cu;
7309
7310 return die_needs_namespace (die_specification (die, &spec_cu),
7311 spec_cu);
7312 }
7313
7314 attr = dwarf2_attr (die, DW_AT_external, cu);
7315 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7316 && die->parent->tag != DW_TAG_module)
7317 return 0;
7318 /* A variable in a lexical block of some kind does not need a
7319 namespace, even though in C++ such variables may be external
7320 and have a mangled name. */
7321 if (die->parent->tag == DW_TAG_lexical_block
7322 || die->parent->tag == DW_TAG_try_block
7323 || die->parent->tag == DW_TAG_catch_block
7324 || die->parent->tag == DW_TAG_subprogram)
7325 return 0;
7326 return 1;
7327
7328 default:
7329 return 0;
7330 }
7331 }
7332
7333 /* Retrieve the last character from a mem_file. */
7334
7335 static void
7336 do_ui_file_peek_last (void *object, const char *buffer, long length)
7337 {
7338 char *last_char_p = (char *) object;
7339
7340 if (length > 0)
7341 *last_char_p = buffer[length - 1];
7342 }
7343
7344 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7345 compute the physname for the object, which include a method's:
7346 - formal parameters (C++/Java),
7347 - receiver type (Go),
7348 - return type (Java).
7349
7350 The term "physname" is a bit confusing.
7351 For C++, for example, it is the demangled name.
7352 For Go, for example, it's the mangled name.
7353
7354 For Ada, return the DIE's linkage name rather than the fully qualified
7355 name. PHYSNAME is ignored..
7356
7357 The result is allocated on the objfile_obstack and canonicalized. */
7358
7359 static const char *
7360 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7361 int physname)
7362 {
7363 struct objfile *objfile = cu->objfile;
7364
7365 if (name == NULL)
7366 name = dwarf2_name (die, cu);
7367
7368 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7369 compute it by typename_concat inside GDB. */
7370 if (cu->language == language_ada
7371 || (cu->language == language_fortran && physname))
7372 {
7373 /* For Ada unit, we prefer the linkage name over the name, as
7374 the former contains the exported name, which the user expects
7375 to be able to reference. Ideally, we want the user to be able
7376 to reference this entity using either natural or linkage name,
7377 but we haven't started looking at this enhancement yet. */
7378 struct attribute *attr;
7379
7380 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7381 if (attr == NULL)
7382 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7383 if (attr && DW_STRING (attr))
7384 return DW_STRING (attr);
7385 }
7386
7387 /* These are the only languages we know how to qualify names in. */
7388 if (name != NULL
7389 && (cu->language == language_cplus || cu->language == language_java
7390 || cu->language == language_fortran))
7391 {
7392 if (die_needs_namespace (die, cu))
7393 {
7394 long length;
7395 const char *prefix;
7396 struct ui_file *buf;
7397
7398 prefix = determine_prefix (die, cu);
7399 buf = mem_fileopen ();
7400 if (*prefix != '\0')
7401 {
7402 char *prefixed_name = typename_concat (NULL, prefix, name,
7403 physname, cu);
7404
7405 fputs_unfiltered (prefixed_name, buf);
7406 xfree (prefixed_name);
7407 }
7408 else
7409 fputs_unfiltered (name, buf);
7410
7411 /* Template parameters may be specified in the DIE's DW_AT_name, or
7412 as children with DW_TAG_template_type_param or
7413 DW_TAG_value_type_param. If the latter, add them to the name
7414 here. If the name already has template parameters, then
7415 skip this step; some versions of GCC emit both, and
7416 it is more efficient to use the pre-computed name.
7417
7418 Something to keep in mind about this process: it is very
7419 unlikely, or in some cases downright impossible, to produce
7420 something that will match the mangled name of a function.
7421 If the definition of the function has the same debug info,
7422 we should be able to match up with it anyway. But fallbacks
7423 using the minimal symbol, for instance to find a method
7424 implemented in a stripped copy of libstdc++, will not work.
7425 If we do not have debug info for the definition, we will have to
7426 match them up some other way.
7427
7428 When we do name matching there is a related problem with function
7429 templates; two instantiated function templates are allowed to
7430 differ only by their return types, which we do not add here. */
7431
7432 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7433 {
7434 struct attribute *attr;
7435 struct die_info *child;
7436 int first = 1;
7437
7438 die->building_fullname = 1;
7439
7440 for (child = die->child; child != NULL; child = child->sibling)
7441 {
7442 struct type *type;
7443 LONGEST value;
7444 gdb_byte *bytes;
7445 struct dwarf2_locexpr_baton *baton;
7446 struct value *v;
7447
7448 if (child->tag != DW_TAG_template_type_param
7449 && child->tag != DW_TAG_template_value_param)
7450 continue;
7451
7452 if (first)
7453 {
7454 fputs_unfiltered ("<", buf);
7455 first = 0;
7456 }
7457 else
7458 fputs_unfiltered (", ", buf);
7459
7460 attr = dwarf2_attr (child, DW_AT_type, cu);
7461 if (attr == NULL)
7462 {
7463 complaint (&symfile_complaints,
7464 _("template parameter missing DW_AT_type"));
7465 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7466 continue;
7467 }
7468 type = die_type (child, cu);
7469
7470 if (child->tag == DW_TAG_template_type_param)
7471 {
7472 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7473 continue;
7474 }
7475
7476 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7477 if (attr == NULL)
7478 {
7479 complaint (&symfile_complaints,
7480 _("template parameter missing "
7481 "DW_AT_const_value"));
7482 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7483 continue;
7484 }
7485
7486 dwarf2_const_value_attr (attr, type, name,
7487 &cu->comp_unit_obstack, cu,
7488 &value, &bytes, &baton);
7489
7490 if (TYPE_NOSIGN (type))
7491 /* GDB prints characters as NUMBER 'CHAR'. If that's
7492 changed, this can use value_print instead. */
7493 c_printchar (value, type, buf);
7494 else
7495 {
7496 struct value_print_options opts;
7497
7498 if (baton != NULL)
7499 v = dwarf2_evaluate_loc_desc (type, NULL,
7500 baton->data,
7501 baton->size,
7502 baton->per_cu);
7503 else if (bytes != NULL)
7504 {
7505 v = allocate_value (type);
7506 memcpy (value_contents_writeable (v), bytes,
7507 TYPE_LENGTH (type));
7508 }
7509 else
7510 v = value_from_longest (type, value);
7511
7512 /* Specify decimal so that we do not depend on
7513 the radix. */
7514 get_formatted_print_options (&opts, 'd');
7515 opts.raw = 1;
7516 value_print (v, buf, &opts);
7517 release_value (v);
7518 value_free (v);
7519 }
7520 }
7521
7522 die->building_fullname = 0;
7523
7524 if (!first)
7525 {
7526 /* Close the argument list, with a space if necessary
7527 (nested templates). */
7528 char last_char = '\0';
7529 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7530 if (last_char == '>')
7531 fputs_unfiltered (" >", buf);
7532 else
7533 fputs_unfiltered (">", buf);
7534 }
7535 }
7536
7537 /* For Java and C++ methods, append formal parameter type
7538 information, if PHYSNAME. */
7539
7540 if (physname && die->tag == DW_TAG_subprogram
7541 && (cu->language == language_cplus
7542 || cu->language == language_java))
7543 {
7544 struct type *type = read_type_die (die, cu);
7545
7546 c_type_print_args (type, buf, 1, cu->language,
7547 &type_print_raw_options);
7548
7549 if (cu->language == language_java)
7550 {
7551 /* For java, we must append the return type to method
7552 names. */
7553 if (die->tag == DW_TAG_subprogram)
7554 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7555 0, 0, &type_print_raw_options);
7556 }
7557 else if (cu->language == language_cplus)
7558 {
7559 /* Assume that an artificial first parameter is
7560 "this", but do not crash if it is not. RealView
7561 marks unnamed (and thus unused) parameters as
7562 artificial; there is no way to differentiate
7563 the two cases. */
7564 if (TYPE_NFIELDS (type) > 0
7565 && TYPE_FIELD_ARTIFICIAL (type, 0)
7566 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7567 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7568 0))))
7569 fputs_unfiltered (" const", buf);
7570 }
7571 }
7572
7573 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7574 &length);
7575 ui_file_delete (buf);
7576
7577 if (cu->language == language_cplus)
7578 {
7579 char *cname
7580 = dwarf2_canonicalize_name (name, cu,
7581 &objfile->objfile_obstack);
7582
7583 if (cname != NULL)
7584 name = cname;
7585 }
7586 }
7587 }
7588
7589 return name;
7590 }
7591
7592 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7593 If scope qualifiers are appropriate they will be added. The result
7594 will be allocated on the objfile_obstack, or NULL if the DIE does
7595 not have a name. NAME may either be from a previous call to
7596 dwarf2_name or NULL.
7597
7598 The output string will be canonicalized (if C++/Java). */
7599
7600 static const char *
7601 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7602 {
7603 return dwarf2_compute_name (name, die, cu, 0);
7604 }
7605
7606 /* Construct a physname for the given DIE in CU. NAME may either be
7607 from a previous call to dwarf2_name or NULL. The result will be
7608 allocated on the objfile_objstack or NULL if the DIE does not have a
7609 name.
7610
7611 The output string will be canonicalized (if C++/Java). */
7612
7613 static const char *
7614 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7615 {
7616 struct objfile *objfile = cu->objfile;
7617 struct attribute *attr;
7618 const char *retval, *mangled = NULL, *canon = NULL;
7619 struct cleanup *back_to;
7620 int need_copy = 1;
7621
7622 /* In this case dwarf2_compute_name is just a shortcut not building anything
7623 on its own. */
7624 if (!die_needs_namespace (die, cu))
7625 return dwarf2_compute_name (name, die, cu, 1);
7626
7627 back_to = make_cleanup (null_cleanup, NULL);
7628
7629 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7630 if (!attr)
7631 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7632
7633 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7634 has computed. */
7635 if (attr && DW_STRING (attr))
7636 {
7637 char *demangled;
7638
7639 mangled = DW_STRING (attr);
7640
7641 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7642 type. It is easier for GDB users to search for such functions as
7643 `name(params)' than `long name(params)'. In such case the minimal
7644 symbol names do not match the full symbol names but for template
7645 functions there is never a need to look up their definition from their
7646 declaration so the only disadvantage remains the minimal symbol
7647 variant `long name(params)' does not have the proper inferior type.
7648 */
7649
7650 if (cu->language == language_go)
7651 {
7652 /* This is a lie, but we already lie to the caller new_symbol_full.
7653 new_symbol_full assumes we return the mangled name.
7654 This just undoes that lie until things are cleaned up. */
7655 demangled = NULL;
7656 }
7657 else
7658 {
7659 demangled = cplus_demangle (mangled,
7660 (DMGL_PARAMS | DMGL_ANSI
7661 | (cu->language == language_java
7662 ? DMGL_JAVA | DMGL_RET_POSTFIX
7663 : DMGL_RET_DROP)));
7664 }
7665 if (demangled)
7666 {
7667 make_cleanup (xfree, demangled);
7668 canon = demangled;
7669 }
7670 else
7671 {
7672 canon = mangled;
7673 need_copy = 0;
7674 }
7675 }
7676
7677 if (canon == NULL || check_physname)
7678 {
7679 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7680
7681 if (canon != NULL && strcmp (physname, canon) != 0)
7682 {
7683 /* It may not mean a bug in GDB. The compiler could also
7684 compute DW_AT_linkage_name incorrectly. But in such case
7685 GDB would need to be bug-to-bug compatible. */
7686
7687 complaint (&symfile_complaints,
7688 _("Computed physname <%s> does not match demangled <%s> "
7689 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7690 physname, canon, mangled, die->offset.sect_off, objfile->name);
7691
7692 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7693 is available here - over computed PHYSNAME. It is safer
7694 against both buggy GDB and buggy compilers. */
7695
7696 retval = canon;
7697 }
7698 else
7699 {
7700 retval = physname;
7701 need_copy = 0;
7702 }
7703 }
7704 else
7705 retval = canon;
7706
7707 if (need_copy)
7708 retval = obsavestring (retval, strlen (retval),
7709 &objfile->objfile_obstack);
7710
7711 do_cleanups (back_to);
7712 return retval;
7713 }
7714
7715 /* Read the import statement specified by the given die and record it. */
7716
7717 static void
7718 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7719 {
7720 struct objfile *objfile = cu->objfile;
7721 struct attribute *import_attr;
7722 struct die_info *imported_die, *child_die;
7723 struct dwarf2_cu *imported_cu;
7724 const char *imported_name;
7725 const char *imported_name_prefix;
7726 const char *canonical_name;
7727 const char *import_alias;
7728 const char *imported_declaration = NULL;
7729 const char *import_prefix;
7730 VEC (const_char_ptr) *excludes = NULL;
7731 struct cleanup *cleanups;
7732
7733 char *temp;
7734
7735 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7736 if (import_attr == NULL)
7737 {
7738 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7739 dwarf_tag_name (die->tag));
7740 return;
7741 }
7742
7743 imported_cu = cu;
7744 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7745 imported_name = dwarf2_name (imported_die, imported_cu);
7746 if (imported_name == NULL)
7747 {
7748 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7749
7750 The import in the following code:
7751 namespace A
7752 {
7753 typedef int B;
7754 }
7755
7756 int main ()
7757 {
7758 using A::B;
7759 B b;
7760 return b;
7761 }
7762
7763 ...
7764 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7765 <52> DW_AT_decl_file : 1
7766 <53> DW_AT_decl_line : 6
7767 <54> DW_AT_import : <0x75>
7768 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7769 <59> DW_AT_name : B
7770 <5b> DW_AT_decl_file : 1
7771 <5c> DW_AT_decl_line : 2
7772 <5d> DW_AT_type : <0x6e>
7773 ...
7774 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7775 <76> DW_AT_byte_size : 4
7776 <77> DW_AT_encoding : 5 (signed)
7777
7778 imports the wrong die ( 0x75 instead of 0x58 ).
7779 This case will be ignored until the gcc bug is fixed. */
7780 return;
7781 }
7782
7783 /* Figure out the local name after import. */
7784 import_alias = dwarf2_name (die, cu);
7785
7786 /* Figure out where the statement is being imported to. */
7787 import_prefix = determine_prefix (die, cu);
7788
7789 /* Figure out what the scope of the imported die is and prepend it
7790 to the name of the imported die. */
7791 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7792
7793 if (imported_die->tag != DW_TAG_namespace
7794 && imported_die->tag != DW_TAG_module)
7795 {
7796 imported_declaration = imported_name;
7797 canonical_name = imported_name_prefix;
7798 }
7799 else if (strlen (imported_name_prefix) > 0)
7800 {
7801 temp = alloca (strlen (imported_name_prefix)
7802 + 2 + strlen (imported_name) + 1);
7803 strcpy (temp, imported_name_prefix);
7804 strcat (temp, "::");
7805 strcat (temp, imported_name);
7806 canonical_name = temp;
7807 }
7808 else
7809 canonical_name = imported_name;
7810
7811 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7812
7813 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7814 for (child_die = die->child; child_die && child_die->tag;
7815 child_die = sibling_die (child_die))
7816 {
7817 /* DWARF-4: A Fortran use statement with a “rename list” may be
7818 represented by an imported module entry with an import attribute
7819 referring to the module and owned entries corresponding to those
7820 entities that are renamed as part of being imported. */
7821
7822 if (child_die->tag != DW_TAG_imported_declaration)
7823 {
7824 complaint (&symfile_complaints,
7825 _("child DW_TAG_imported_declaration expected "
7826 "- DIE at 0x%x [in module %s]"),
7827 child_die->offset.sect_off, objfile->name);
7828 continue;
7829 }
7830
7831 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7832 if (import_attr == NULL)
7833 {
7834 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7835 dwarf_tag_name (child_die->tag));
7836 continue;
7837 }
7838
7839 imported_cu = cu;
7840 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7841 &imported_cu);
7842 imported_name = dwarf2_name (imported_die, imported_cu);
7843 if (imported_name == NULL)
7844 {
7845 complaint (&symfile_complaints,
7846 _("child DW_TAG_imported_declaration has unknown "
7847 "imported name - DIE at 0x%x [in module %s]"),
7848 child_die->offset.sect_off, objfile->name);
7849 continue;
7850 }
7851
7852 VEC_safe_push (const_char_ptr, excludes, imported_name);
7853
7854 process_die (child_die, cu);
7855 }
7856
7857 cp_add_using_directive (import_prefix,
7858 canonical_name,
7859 import_alias,
7860 imported_declaration,
7861 excludes,
7862 &objfile->objfile_obstack);
7863
7864 do_cleanups (cleanups);
7865 }
7866
7867 /* Cleanup function for handle_DW_AT_stmt_list. */
7868
7869 static void
7870 free_cu_line_header (void *arg)
7871 {
7872 struct dwarf2_cu *cu = arg;
7873
7874 free_line_header (cu->line_header);
7875 cu->line_header = NULL;
7876 }
7877
7878 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7879 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7880 this, it was first present in GCC release 4.3.0. */
7881
7882 static int
7883 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7884 {
7885 if (!cu->checked_producer)
7886 check_producer (cu);
7887
7888 return cu->producer_is_gcc_lt_4_3;
7889 }
7890
7891 static void
7892 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7893 char **name, char **comp_dir)
7894 {
7895 struct attribute *attr;
7896
7897 *name = NULL;
7898 *comp_dir = NULL;
7899
7900 /* Find the filename. Do not use dwarf2_name here, since the filename
7901 is not a source language identifier. */
7902 attr = dwarf2_attr (die, DW_AT_name, cu);
7903 if (attr)
7904 {
7905 *name = DW_STRING (attr);
7906 }
7907
7908 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7909 if (attr)
7910 *comp_dir = DW_STRING (attr);
7911 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7912 && IS_ABSOLUTE_PATH (*name))
7913 {
7914 *comp_dir = ldirname (*name);
7915 if (*comp_dir != NULL)
7916 make_cleanup (xfree, *comp_dir);
7917 }
7918 if (*comp_dir != NULL)
7919 {
7920 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7921 directory, get rid of it. */
7922 char *cp = strchr (*comp_dir, ':');
7923
7924 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7925 *comp_dir = cp + 1;
7926 }
7927
7928 if (*name == NULL)
7929 *name = "<unknown>";
7930 }
7931
7932 /* Handle DW_AT_stmt_list for a compilation unit.
7933 DIE is the DW_TAG_compile_unit die for CU.
7934 COMP_DIR is the compilation directory.
7935 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7936
7937 static void
7938 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7939 const char *comp_dir)
7940 {
7941 struct attribute *attr;
7942
7943 gdb_assert (! cu->per_cu->is_debug_types);
7944
7945 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7946 if (attr)
7947 {
7948 unsigned int line_offset = DW_UNSND (attr);
7949 struct line_header *line_header
7950 = dwarf_decode_line_header (line_offset, cu);
7951
7952 if (line_header)
7953 {
7954 cu->line_header = line_header;
7955 make_cleanup (free_cu_line_header, cu);
7956 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7957 }
7958 }
7959 }
7960
7961 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7962
7963 static void
7964 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7965 {
7966 struct objfile *objfile = dwarf2_per_objfile->objfile;
7967 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7968 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7969 CORE_ADDR highpc = ((CORE_ADDR) 0);
7970 struct attribute *attr;
7971 char *name = NULL;
7972 char *comp_dir = NULL;
7973 struct die_info *child_die;
7974 bfd *abfd = objfile->obfd;
7975 CORE_ADDR baseaddr;
7976
7977 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7978
7979 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7980
7981 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7982 from finish_block. */
7983 if (lowpc == ((CORE_ADDR) -1))
7984 lowpc = highpc;
7985 lowpc += baseaddr;
7986 highpc += baseaddr;
7987
7988 find_file_and_directory (die, cu, &name, &comp_dir);
7989
7990 prepare_one_comp_unit (cu, die, cu->language);
7991
7992 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7993 standardised yet. As a workaround for the language detection we fall
7994 back to the DW_AT_producer string. */
7995 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7996 cu->language = language_opencl;
7997
7998 /* Similar hack for Go. */
7999 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8000 set_cu_language (DW_LANG_Go, cu);
8001
8002 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8003
8004 /* Decode line number information if present. We do this before
8005 processing child DIEs, so that the line header table is available
8006 for DW_AT_decl_file. */
8007 handle_DW_AT_stmt_list (die, cu, comp_dir);
8008
8009 /* Process all dies in compilation unit. */
8010 if (die->child != NULL)
8011 {
8012 child_die = die->child;
8013 while (child_die && child_die->tag)
8014 {
8015 process_die (child_die, cu);
8016 child_die = sibling_die (child_die);
8017 }
8018 }
8019
8020 /* Decode macro information, if present. Dwarf 2 macro information
8021 refers to information in the line number info statement program
8022 header, so we can only read it if we've read the header
8023 successfully. */
8024 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8025 if (attr && cu->line_header)
8026 {
8027 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8028 complaint (&symfile_complaints,
8029 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8030
8031 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8032 }
8033 else
8034 {
8035 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8036 if (attr && cu->line_header)
8037 {
8038 unsigned int macro_offset = DW_UNSND (attr);
8039
8040 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8041 }
8042 }
8043
8044 do_cleanups (back_to);
8045 }
8046
8047 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8048 Create the set of symtabs used by this TU, or if this TU is sharing
8049 symtabs with another TU and the symtabs have already been created
8050 then restore those symtabs in the line header.
8051 We don't need the pc/line-number mapping for type units. */
8052
8053 static void
8054 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8055 {
8056 struct objfile *objfile = dwarf2_per_objfile->objfile;
8057 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8058 struct type_unit_group *tu_group;
8059 int first_time;
8060 struct line_header *lh;
8061 struct attribute *attr;
8062 unsigned int i, line_offset;
8063
8064 gdb_assert (per_cu->is_debug_types);
8065
8066 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8067
8068 /* If we're using .gdb_index (includes -readnow) then
8069 per_cu->s.type_unit_group may not have been set up yet. */
8070 if (per_cu->s.type_unit_group == NULL)
8071 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
8072 tu_group = per_cu->s.type_unit_group;
8073
8074 /* If we've already processed this stmt_list there's no real need to
8075 do it again, we could fake it and just recreate the part we need
8076 (file name,index -> symtab mapping). If data shows this optimization
8077 is useful we can do it then. */
8078 first_time = tu_group->primary_symtab == NULL;
8079
8080 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8081 debug info. */
8082 lh = NULL;
8083 if (attr != NULL)
8084 {
8085 line_offset = DW_UNSND (attr);
8086 lh = dwarf_decode_line_header (line_offset, cu);
8087 }
8088 if (lh == NULL)
8089 {
8090 if (first_time)
8091 dwarf2_start_symtab (cu, "", NULL, 0);
8092 else
8093 {
8094 gdb_assert (tu_group->symtabs == NULL);
8095 restart_symtab (0);
8096 }
8097 /* Note: The primary symtab will get allocated at the end. */
8098 return;
8099 }
8100
8101 cu->line_header = lh;
8102 make_cleanup (free_cu_line_header, cu);
8103
8104 if (first_time)
8105 {
8106 dwarf2_start_symtab (cu, "", NULL, 0);
8107
8108 tu_group->num_symtabs = lh->num_file_names;
8109 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8110
8111 for (i = 0; i < lh->num_file_names; ++i)
8112 {
8113 char *dir = NULL;
8114 struct file_entry *fe = &lh->file_names[i];
8115
8116 if (fe->dir_index)
8117 dir = lh->include_dirs[fe->dir_index - 1];
8118 dwarf2_start_subfile (fe->name, dir, NULL);
8119
8120 /* Note: We don't have to watch for the main subfile here, type units
8121 don't have DW_AT_name. */
8122
8123 if (current_subfile->symtab == NULL)
8124 {
8125 /* NOTE: start_subfile will recognize when it's been passed
8126 a file it has already seen. So we can't assume there's a
8127 simple mapping from lh->file_names to subfiles,
8128 lh->file_names may contain dups. */
8129 current_subfile->symtab = allocate_symtab (current_subfile->name,
8130 objfile);
8131 }
8132
8133 fe->symtab = current_subfile->symtab;
8134 tu_group->symtabs[i] = fe->symtab;
8135 }
8136 }
8137 else
8138 {
8139 restart_symtab (0);
8140
8141 for (i = 0; i < lh->num_file_names; ++i)
8142 {
8143 struct file_entry *fe = &lh->file_names[i];
8144
8145 fe->symtab = tu_group->symtabs[i];
8146 }
8147 }
8148
8149 /* The main symtab is allocated last. Type units don't have DW_AT_name
8150 so they don't have a "real" (so to speak) symtab anyway.
8151 There is later code that will assign the main symtab to all symbols
8152 that don't have one. We need to handle the case of a symbol with a
8153 missing symtab (DW_AT_decl_file) anyway. */
8154 }
8155
8156 /* Process DW_TAG_type_unit.
8157 For TUs we want to skip the first top level sibling if it's not the
8158 actual type being defined by this TU. In this case the first top
8159 level sibling is there to provide context only. */
8160
8161 static void
8162 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8163 {
8164 struct die_info *child_die;
8165
8166 prepare_one_comp_unit (cu, die, language_minimal);
8167
8168 /* Initialize (or reinitialize) the machinery for building symtabs.
8169 We do this before processing child DIEs, so that the line header table
8170 is available for DW_AT_decl_file. */
8171 setup_type_unit_groups (die, cu);
8172
8173 if (die->child != NULL)
8174 {
8175 child_die = die->child;
8176 while (child_die && child_die->tag)
8177 {
8178 process_die (child_die, cu);
8179 child_die = sibling_die (child_die);
8180 }
8181 }
8182 }
8183 \f
8184 /* DWO/DWP files.
8185
8186 http://gcc.gnu.org/wiki/DebugFission
8187 http://gcc.gnu.org/wiki/DebugFissionDWP
8188
8189 To simplify handling of both DWO files ("object" files with the DWARF info)
8190 and DWP files (a file with the DWOs packaged up into one file), we treat
8191 DWP files as having a collection of virtual DWO files. */
8192
8193 static hashval_t
8194 hash_dwo_file (const void *item)
8195 {
8196 const struct dwo_file *dwo_file = item;
8197
8198 return htab_hash_string (dwo_file->name);
8199 }
8200
8201 static int
8202 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8203 {
8204 const struct dwo_file *lhs = item_lhs;
8205 const struct dwo_file *rhs = item_rhs;
8206
8207 return strcmp (lhs->name, rhs->name) == 0;
8208 }
8209
8210 /* Allocate a hash table for DWO files. */
8211
8212 static htab_t
8213 allocate_dwo_file_hash_table (void)
8214 {
8215 struct objfile *objfile = dwarf2_per_objfile->objfile;
8216
8217 return htab_create_alloc_ex (41,
8218 hash_dwo_file,
8219 eq_dwo_file,
8220 NULL,
8221 &objfile->objfile_obstack,
8222 hashtab_obstack_allocate,
8223 dummy_obstack_deallocate);
8224 }
8225
8226 /* Lookup DWO file DWO_NAME. */
8227
8228 static void **
8229 lookup_dwo_file_slot (const char *dwo_name)
8230 {
8231 struct dwo_file find_entry;
8232 void **slot;
8233
8234 if (dwarf2_per_objfile->dwo_files == NULL)
8235 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8236
8237 memset (&find_entry, 0, sizeof (find_entry));
8238 find_entry.name = dwo_name;
8239 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8240
8241 return slot;
8242 }
8243
8244 static hashval_t
8245 hash_dwo_unit (const void *item)
8246 {
8247 const struct dwo_unit *dwo_unit = item;
8248
8249 /* This drops the top 32 bits of the id, but is ok for a hash. */
8250 return dwo_unit->signature;
8251 }
8252
8253 static int
8254 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8255 {
8256 const struct dwo_unit *lhs = item_lhs;
8257 const struct dwo_unit *rhs = item_rhs;
8258
8259 /* The signature is assumed to be unique within the DWO file.
8260 So while object file CU dwo_id's always have the value zero,
8261 that's OK, assuming each object file DWO file has only one CU,
8262 and that's the rule for now. */
8263 return lhs->signature == rhs->signature;
8264 }
8265
8266 /* Allocate a hash table for DWO CUs,TUs.
8267 There is one of these tables for each of CUs,TUs for each DWO file. */
8268
8269 static htab_t
8270 allocate_dwo_unit_table (struct objfile *objfile)
8271 {
8272 /* Start out with a pretty small number.
8273 Generally DWO files contain only one CU and maybe some TUs. */
8274 return htab_create_alloc_ex (3,
8275 hash_dwo_unit,
8276 eq_dwo_unit,
8277 NULL,
8278 &objfile->objfile_obstack,
8279 hashtab_obstack_allocate,
8280 dummy_obstack_deallocate);
8281 }
8282
8283 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8284
8285 struct create_dwo_info_table_data
8286 {
8287 struct dwo_file *dwo_file;
8288 htab_t cu_htab;
8289 };
8290
8291 /* die_reader_func for create_dwo_debug_info_hash_table. */
8292
8293 static void
8294 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8295 gdb_byte *info_ptr,
8296 struct die_info *comp_unit_die,
8297 int has_children,
8298 void *datap)
8299 {
8300 struct dwarf2_cu *cu = reader->cu;
8301 struct objfile *objfile = dwarf2_per_objfile->objfile;
8302 sect_offset offset = cu->per_cu->offset;
8303 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8304 struct create_dwo_info_table_data *data = datap;
8305 struct dwo_file *dwo_file = data->dwo_file;
8306 htab_t cu_htab = data->cu_htab;
8307 void **slot;
8308 struct attribute *attr;
8309 struct dwo_unit *dwo_unit;
8310
8311 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8312 if (attr == NULL)
8313 {
8314 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8315 " its dwo_id [in module %s]"),
8316 offset.sect_off, dwo_file->name);
8317 return;
8318 }
8319
8320 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8321 dwo_unit->dwo_file = dwo_file;
8322 dwo_unit->signature = DW_UNSND (attr);
8323 dwo_unit->info_or_types_section = section;
8324 dwo_unit->offset = offset;
8325 dwo_unit->length = cu->per_cu->length;
8326
8327 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8328 gdb_assert (slot != NULL);
8329 if (*slot != NULL)
8330 {
8331 const struct dwo_unit *dup_dwo_unit = *slot;
8332
8333 complaint (&symfile_complaints,
8334 _("debug entry at offset 0x%x is duplicate to the entry at"
8335 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8336 offset.sect_off, dup_dwo_unit->offset.sect_off,
8337 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8338 dwo_file->name);
8339 }
8340 else
8341 *slot = dwo_unit;
8342
8343 if (dwarf2_read_debug)
8344 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8345 offset.sect_off,
8346 phex (dwo_unit->signature,
8347 sizeof (dwo_unit->signature)));
8348 }
8349
8350 /* Create a hash table to map DWO IDs to their CU entry in
8351 .debug_info.dwo in DWO_FILE.
8352 Note: This function processes DWO files only, not DWP files. */
8353
8354 static htab_t
8355 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8356 {
8357 struct objfile *objfile = dwarf2_per_objfile->objfile;
8358 struct dwarf2_section_info *section = &dwo_file->sections.info;
8359 bfd *abfd;
8360 htab_t cu_htab;
8361 gdb_byte *info_ptr, *end_ptr;
8362 struct create_dwo_info_table_data create_dwo_info_table_data;
8363
8364 dwarf2_read_section (objfile, section);
8365 info_ptr = section->buffer;
8366
8367 if (info_ptr == NULL)
8368 return NULL;
8369
8370 /* We can't set abfd until now because the section may be empty or
8371 not present, in which case section->asection will be NULL. */
8372 abfd = section->asection->owner;
8373
8374 if (dwarf2_read_debug)
8375 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8376 bfd_get_filename (abfd));
8377
8378 cu_htab = allocate_dwo_unit_table (objfile);
8379
8380 create_dwo_info_table_data.dwo_file = dwo_file;
8381 create_dwo_info_table_data.cu_htab = cu_htab;
8382
8383 end_ptr = info_ptr + section->size;
8384 while (info_ptr < end_ptr)
8385 {
8386 struct dwarf2_per_cu_data per_cu;
8387
8388 memset (&per_cu, 0, sizeof (per_cu));
8389 per_cu.objfile = objfile;
8390 per_cu.is_debug_types = 0;
8391 per_cu.offset.sect_off = info_ptr - section->buffer;
8392 per_cu.info_or_types_section = section;
8393
8394 init_cutu_and_read_dies_no_follow (&per_cu,
8395 &dwo_file->sections.abbrev,
8396 dwo_file,
8397 create_dwo_debug_info_hash_table_reader,
8398 &create_dwo_info_table_data);
8399
8400 info_ptr += per_cu.length;
8401 }
8402
8403 return cu_htab;
8404 }
8405
8406 /* DWP file .debug_{cu,tu}_index section format:
8407 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8408
8409 Both index sections have the same format, and serve to map a 64-bit
8410 signature to a set of section numbers. Each section begins with a header,
8411 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8412 indexes, and a pool of 32-bit section numbers. The index sections will be
8413 aligned at 8-byte boundaries in the file.
8414
8415 The index section header contains two unsigned 32-bit values (using the
8416 byte order of the application binary):
8417
8418 N, the number of compilation units or type units in the index
8419 M, the number of slots in the hash table
8420
8421 (We assume that N and M will not exceed 2^32 - 1.)
8422
8423 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8424
8425 The hash table begins at offset 8 in the section, and consists of an array
8426 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8427 order of the application binary). Unused slots in the hash table are 0.
8428 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8429
8430 The parallel table begins immediately after the hash table
8431 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8432 array of 32-bit indexes (using the byte order of the application binary),
8433 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8434 table contains a 32-bit index into the pool of section numbers. For unused
8435 hash table slots, the corresponding entry in the parallel table will be 0.
8436
8437 Given a 64-bit compilation unit signature or a type signature S, an entry
8438 in the hash table is located as follows:
8439
8440 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8441 the low-order k bits all set to 1.
8442
8443 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8444
8445 3) If the hash table entry at index H matches the signature, use that
8446 entry. If the hash table entry at index H is unused (all zeroes),
8447 terminate the search: the signature is not present in the table.
8448
8449 4) Let H = (H + H') modulo M. Repeat at Step 3.
8450
8451 Because M > N and H' and M are relatively prime, the search is guaranteed
8452 to stop at an unused slot or find the match.
8453
8454 The pool of section numbers begins immediately following the hash table
8455 (at offset 8 + 12 * M from the beginning of the section). The pool of
8456 section numbers consists of an array of 32-bit words (using the byte order
8457 of the application binary). Each item in the array is indexed starting
8458 from 0. The hash table entry provides the index of the first section
8459 number in the set. Additional section numbers in the set follow, and the
8460 set is terminated by a 0 entry (section number 0 is not used in ELF).
8461
8462 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8463 section must be the first entry in the set, and the .debug_abbrev.dwo must
8464 be the second entry. Other members of the set may follow in any order. */
8465
8466 /* Create a hash table to map DWO IDs to their CU/TU entry in
8467 .debug_{info,types}.dwo in DWP_FILE.
8468 Returns NULL if there isn't one.
8469 Note: This function processes DWP files only, not DWO files. */
8470
8471 static struct dwp_hash_table *
8472 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8473 {
8474 struct objfile *objfile = dwarf2_per_objfile->objfile;
8475 bfd *dbfd = dwp_file->dbfd;
8476 char *index_ptr, *index_end;
8477 struct dwarf2_section_info *index;
8478 uint32_t version, nr_units, nr_slots;
8479 struct dwp_hash_table *htab;
8480
8481 if (is_debug_types)
8482 index = &dwp_file->sections.tu_index;
8483 else
8484 index = &dwp_file->sections.cu_index;
8485
8486 if (dwarf2_section_empty_p (index))
8487 return NULL;
8488 dwarf2_read_section (objfile, index);
8489
8490 index_ptr = index->buffer;
8491 index_end = index_ptr + index->size;
8492
8493 version = read_4_bytes (dbfd, index_ptr);
8494 index_ptr += 8; /* Skip the unused word. */
8495 nr_units = read_4_bytes (dbfd, index_ptr);
8496 index_ptr += 4;
8497 nr_slots = read_4_bytes (dbfd, index_ptr);
8498 index_ptr += 4;
8499
8500 if (version != 1)
8501 {
8502 error (_("Dwarf Error: unsupported DWP file version (%u)"
8503 " [in module %s]"),
8504 version, dwp_file->name);
8505 }
8506 if (nr_slots != (nr_slots & -nr_slots))
8507 {
8508 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8509 " is not power of 2 [in module %s]"),
8510 nr_slots, dwp_file->name);
8511 }
8512
8513 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8514 htab->nr_units = nr_units;
8515 htab->nr_slots = nr_slots;
8516 htab->hash_table = index_ptr;
8517 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8518 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8519
8520 return htab;
8521 }
8522
8523 /* Update SECTIONS with the data from SECTP.
8524
8525 This function is like the other "locate" section routines that are
8526 passed to bfd_map_over_sections, but in this context the sections to
8527 read comes from the DWP hash table, not the full ELF section table.
8528
8529 The result is non-zero for success, or zero if an error was found. */
8530
8531 static int
8532 locate_virtual_dwo_sections (asection *sectp,
8533 struct virtual_dwo_sections *sections)
8534 {
8535 const struct dwop_section_names *names = &dwop_section_names;
8536
8537 if (section_is_p (sectp->name, &names->abbrev_dwo))
8538 {
8539 /* There can be only one. */
8540 if (sections->abbrev.asection != NULL)
8541 return 0;
8542 sections->abbrev.asection = sectp;
8543 sections->abbrev.size = bfd_get_section_size (sectp);
8544 }
8545 else if (section_is_p (sectp->name, &names->info_dwo)
8546 || section_is_p (sectp->name, &names->types_dwo))
8547 {
8548 /* There can be only one. */
8549 if (sections->info_or_types.asection != NULL)
8550 return 0;
8551 sections->info_or_types.asection = sectp;
8552 sections->info_or_types.size = bfd_get_section_size (sectp);
8553 }
8554 else if (section_is_p (sectp->name, &names->line_dwo))
8555 {
8556 /* There can be only one. */
8557 if (sections->line.asection != NULL)
8558 return 0;
8559 sections->line.asection = sectp;
8560 sections->line.size = bfd_get_section_size (sectp);
8561 }
8562 else if (section_is_p (sectp->name, &names->loc_dwo))
8563 {
8564 /* There can be only one. */
8565 if (sections->loc.asection != NULL)
8566 return 0;
8567 sections->loc.asection = sectp;
8568 sections->loc.size = bfd_get_section_size (sectp);
8569 }
8570 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8571 {
8572 /* There can be only one. */
8573 if (sections->macinfo.asection != NULL)
8574 return 0;
8575 sections->macinfo.asection = sectp;
8576 sections->macinfo.size = bfd_get_section_size (sectp);
8577 }
8578 else if (section_is_p (sectp->name, &names->macro_dwo))
8579 {
8580 /* There can be only one. */
8581 if (sections->macro.asection != NULL)
8582 return 0;
8583 sections->macro.asection = sectp;
8584 sections->macro.size = bfd_get_section_size (sectp);
8585 }
8586 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8587 {
8588 /* There can be only one. */
8589 if (sections->str_offsets.asection != NULL)
8590 return 0;
8591 sections->str_offsets.asection = sectp;
8592 sections->str_offsets.size = bfd_get_section_size (sectp);
8593 }
8594 else
8595 {
8596 /* No other kind of section is valid. */
8597 return 0;
8598 }
8599
8600 return 1;
8601 }
8602
8603 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8604 HTAB is the hash table from the DWP file.
8605 SECTION_INDEX is the index of the DWO in HTAB. */
8606
8607 static struct dwo_unit *
8608 create_dwo_in_dwp (struct dwp_file *dwp_file,
8609 const struct dwp_hash_table *htab,
8610 uint32_t section_index,
8611 ULONGEST signature, int is_debug_types)
8612 {
8613 struct objfile *objfile = dwarf2_per_objfile->objfile;
8614 bfd *dbfd = dwp_file->dbfd;
8615 const char *kind = is_debug_types ? "TU" : "CU";
8616 struct dwo_file *dwo_file;
8617 struct dwo_unit *dwo_unit;
8618 struct virtual_dwo_sections sections;
8619 void **dwo_file_slot;
8620 char *virtual_dwo_name;
8621 struct dwarf2_section_info *cutu;
8622 struct cleanup *cleanups;
8623 int i;
8624
8625 if (dwarf2_read_debug)
8626 {
8627 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8628 kind,
8629 section_index, phex (signature, sizeof (signature)),
8630 dwp_file->name);
8631 }
8632
8633 /* Fetch the sections of this DWO.
8634 Put a limit on the number of sections we look for so that bad data
8635 doesn't cause us to loop forever. */
8636
8637 #define MAX_NR_DWO_SECTIONS \
8638 (1 /* .debug_info or .debug_types */ \
8639 + 1 /* .debug_abbrev */ \
8640 + 1 /* .debug_line */ \
8641 + 1 /* .debug_loc */ \
8642 + 1 /* .debug_str_offsets */ \
8643 + 1 /* .debug_macro */ \
8644 + 1 /* .debug_macinfo */ \
8645 + 1 /* trailing zero */)
8646
8647 memset (&sections, 0, sizeof (sections));
8648 cleanups = make_cleanup (null_cleanup, 0);
8649
8650 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8651 {
8652 asection *sectp;
8653 uint32_t section_nr =
8654 read_4_bytes (dbfd,
8655 htab->section_pool
8656 + (section_index + i) * sizeof (uint32_t));
8657
8658 if (section_nr == 0)
8659 break;
8660 if (section_nr >= dwp_file->num_sections)
8661 {
8662 error (_("Dwarf Error: bad DWP hash table, section number too large"
8663 " [in module %s]"),
8664 dwp_file->name);
8665 }
8666
8667 sectp = dwp_file->elf_sections[section_nr];
8668 if (! locate_virtual_dwo_sections (sectp, &sections))
8669 {
8670 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8671 " [in module %s]"),
8672 dwp_file->name);
8673 }
8674 }
8675
8676 if (i < 2
8677 || sections.info_or_types.asection == NULL
8678 || sections.abbrev.asection == NULL)
8679 {
8680 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8681 " [in module %s]"),
8682 dwp_file->name);
8683 }
8684 if (i == MAX_NR_DWO_SECTIONS)
8685 {
8686 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8687 " [in module %s]"),
8688 dwp_file->name);
8689 }
8690
8691 /* It's easier for the rest of the code if we fake a struct dwo_file and
8692 have dwo_unit "live" in that. At least for now.
8693
8694 The DWP file can be made up of a random collection of CUs and TUs.
8695 However, for each CU + set of TUs that came from the same original DWO
8696 file, we want to combine them back into a virtual DWO file to save space
8697 (fewer struct dwo_file objects to allocated). Remember that for really
8698 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8699
8700 virtual_dwo_name =
8701 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8702 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8703 sections.line.asection ? sections.line.asection->id : 0,
8704 sections.loc.asection ? sections.loc.asection->id : 0,
8705 (sections.str_offsets.asection
8706 ? sections.str_offsets.asection->id
8707 : 0));
8708 make_cleanup (xfree, virtual_dwo_name);
8709 /* Can we use an existing virtual DWO file? */
8710 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8711 /* Create one if necessary. */
8712 if (*dwo_file_slot == NULL)
8713 {
8714 if (dwarf2_read_debug)
8715 {
8716 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8717 virtual_dwo_name);
8718 }
8719 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8720 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8721 virtual_dwo_name,
8722 strlen (virtual_dwo_name));
8723 dwo_file->sections.abbrev = sections.abbrev;
8724 dwo_file->sections.line = sections.line;
8725 dwo_file->sections.loc = sections.loc;
8726 dwo_file->sections.macinfo = sections.macinfo;
8727 dwo_file->sections.macro = sections.macro;
8728 dwo_file->sections.str_offsets = sections.str_offsets;
8729 /* The "str" section is global to the entire DWP file. */
8730 dwo_file->sections.str = dwp_file->sections.str;
8731 /* The info or types section is assigned later to dwo_unit,
8732 there's no need to record it in dwo_file.
8733 Also, we can't simply record type sections in dwo_file because
8734 we record a pointer into the vector in dwo_unit. As we collect more
8735 types we'll grow the vector and eventually have to reallocate space
8736 for it, invalidating all the pointers into the current copy. */
8737 *dwo_file_slot = dwo_file;
8738 }
8739 else
8740 {
8741 if (dwarf2_read_debug)
8742 {
8743 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8744 virtual_dwo_name);
8745 }
8746 dwo_file = *dwo_file_slot;
8747 }
8748 do_cleanups (cleanups);
8749
8750 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8751 dwo_unit->dwo_file = dwo_file;
8752 dwo_unit->signature = signature;
8753 dwo_unit->info_or_types_section =
8754 obstack_alloc (&objfile->objfile_obstack,
8755 sizeof (struct dwarf2_section_info));
8756 *dwo_unit->info_or_types_section = sections.info_or_types;
8757 /* offset, length, type_offset_in_tu are set later. */
8758
8759 return dwo_unit;
8760 }
8761
8762 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8763
8764 static struct dwo_unit *
8765 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8766 const struct dwp_hash_table *htab,
8767 ULONGEST signature, int is_debug_types)
8768 {
8769 bfd *dbfd = dwp_file->dbfd;
8770 uint32_t mask = htab->nr_slots - 1;
8771 uint32_t hash = signature & mask;
8772 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8773 unsigned int i;
8774 void **slot;
8775 struct dwo_unit find_dwo_cu, *dwo_cu;
8776
8777 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8778 find_dwo_cu.signature = signature;
8779 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8780
8781 if (*slot != NULL)
8782 return *slot;
8783
8784 /* Use a for loop so that we don't loop forever on bad debug info. */
8785 for (i = 0; i < htab->nr_slots; ++i)
8786 {
8787 ULONGEST signature_in_table;
8788
8789 signature_in_table =
8790 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8791 if (signature_in_table == signature)
8792 {
8793 uint32_t section_index =
8794 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8795
8796 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8797 signature, is_debug_types);
8798 return *slot;
8799 }
8800 if (signature_in_table == 0)
8801 return NULL;
8802 hash = (hash + hash2) & mask;
8803 }
8804
8805 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8806 " [in module %s]"),
8807 dwp_file->name);
8808 }
8809
8810 /* Subroutine of open_dwop_file to simplify it.
8811 Open the file specified by FILE_NAME and hand it off to BFD for
8812 preliminary analysis. Return a newly initialized bfd *, which
8813 includes a canonicalized copy of FILE_NAME.
8814 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8815 In case of trouble, return NULL.
8816 NOTE: This function is derived from symfile_bfd_open. */
8817
8818 static bfd *
8819 try_open_dwop_file (const char *file_name, int is_dwp)
8820 {
8821 bfd *sym_bfd;
8822 int desc, flags;
8823 char *absolute_name;
8824
8825 flags = OPF_TRY_CWD_FIRST;
8826 if (is_dwp)
8827 flags |= OPF_SEARCH_IN_PATH;
8828 desc = openp (debug_file_directory, flags, file_name,
8829 O_RDONLY | O_BINARY, &absolute_name);
8830 if (desc < 0)
8831 return NULL;
8832
8833 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8834 if (!sym_bfd)
8835 {
8836 xfree (absolute_name);
8837 return NULL;
8838 }
8839 xfree (absolute_name);
8840 bfd_set_cacheable (sym_bfd, 1);
8841
8842 if (!bfd_check_format (sym_bfd, bfd_object))
8843 {
8844 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8845 return NULL;
8846 }
8847
8848 return sym_bfd;
8849 }
8850
8851 /* Try to open DWO/DWP file FILE_NAME.
8852 COMP_DIR is the DW_AT_comp_dir attribute.
8853 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8854 The result is the bfd handle of the file.
8855 If there is a problem finding or opening the file, return NULL.
8856 Upon success, the canonicalized path of the file is stored in the bfd,
8857 same as symfile_bfd_open. */
8858
8859 static bfd *
8860 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8861 {
8862 bfd *abfd;
8863
8864 if (IS_ABSOLUTE_PATH (file_name))
8865 return try_open_dwop_file (file_name, is_dwp);
8866
8867 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8868
8869 if (comp_dir != NULL)
8870 {
8871 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8872
8873 /* NOTE: If comp_dir is a relative path, this will also try the
8874 search path, which seems useful. */
8875 abfd = try_open_dwop_file (path_to_try, is_dwp);
8876 xfree (path_to_try);
8877 if (abfd != NULL)
8878 return abfd;
8879 }
8880
8881 /* That didn't work, try debug-file-directory, which, despite its name,
8882 is a list of paths. */
8883
8884 if (*debug_file_directory == '\0')
8885 return NULL;
8886
8887 return try_open_dwop_file (file_name, is_dwp);
8888 }
8889
8890 /* This function is mapped across the sections and remembers the offset and
8891 size of each of the DWO debugging sections we are interested in. */
8892
8893 static void
8894 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8895 {
8896 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8897 const struct dwop_section_names *names = &dwop_section_names;
8898
8899 if (section_is_p (sectp->name, &names->abbrev_dwo))
8900 {
8901 dwo_sections->abbrev.asection = sectp;
8902 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8903 }
8904 else if (section_is_p (sectp->name, &names->info_dwo))
8905 {
8906 dwo_sections->info.asection = sectp;
8907 dwo_sections->info.size = bfd_get_section_size (sectp);
8908 }
8909 else if (section_is_p (sectp->name, &names->line_dwo))
8910 {
8911 dwo_sections->line.asection = sectp;
8912 dwo_sections->line.size = bfd_get_section_size (sectp);
8913 }
8914 else if (section_is_p (sectp->name, &names->loc_dwo))
8915 {
8916 dwo_sections->loc.asection = sectp;
8917 dwo_sections->loc.size = bfd_get_section_size (sectp);
8918 }
8919 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8920 {
8921 dwo_sections->macinfo.asection = sectp;
8922 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8923 }
8924 else if (section_is_p (sectp->name, &names->macro_dwo))
8925 {
8926 dwo_sections->macro.asection = sectp;
8927 dwo_sections->macro.size = bfd_get_section_size (sectp);
8928 }
8929 else if (section_is_p (sectp->name, &names->str_dwo))
8930 {
8931 dwo_sections->str.asection = sectp;
8932 dwo_sections->str.size = bfd_get_section_size (sectp);
8933 }
8934 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8935 {
8936 dwo_sections->str_offsets.asection = sectp;
8937 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8938 }
8939 else if (section_is_p (sectp->name, &names->types_dwo))
8940 {
8941 struct dwarf2_section_info type_section;
8942
8943 memset (&type_section, 0, sizeof (type_section));
8944 type_section.asection = sectp;
8945 type_section.size = bfd_get_section_size (sectp);
8946 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8947 &type_section);
8948 }
8949 }
8950
8951 /* Initialize the use of the DWO file specified by DWO_NAME.
8952 The result is NULL if DWO_NAME can't be found. */
8953
8954 static struct dwo_file *
8955 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8956 {
8957 struct objfile *objfile = dwarf2_per_objfile->objfile;
8958 struct dwo_file *dwo_file;
8959 bfd *dbfd;
8960 struct cleanup *cleanups;
8961
8962 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8963 if (dbfd == NULL)
8964 {
8965 if (dwarf2_read_debug)
8966 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8967 return NULL;
8968 }
8969 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8970 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8971 dwo_name, strlen (dwo_name));
8972 dwo_file->dbfd = dbfd;
8973
8974 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8975
8976 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8977
8978 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8979
8980 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8981 dwo_file->sections.types);
8982
8983 discard_cleanups (cleanups);
8984
8985 if (dwarf2_read_debug)
8986 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8987
8988 return dwo_file;
8989 }
8990
8991 /* This function is mapped across the sections and remembers the offset and
8992 size of each of the DWP debugging sections we are interested in. */
8993
8994 static void
8995 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8996 {
8997 struct dwp_file *dwp_file = dwp_file_ptr;
8998 const struct dwop_section_names *names = &dwop_section_names;
8999 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9000
9001 /* Record the ELF section number for later lookup: this is what the
9002 .debug_cu_index,.debug_tu_index tables use. */
9003 gdb_assert (elf_section_nr < dwp_file->num_sections);
9004 dwp_file->elf_sections[elf_section_nr] = sectp;
9005
9006 /* Look for specific sections that we need. */
9007 if (section_is_p (sectp->name, &names->str_dwo))
9008 {
9009 dwp_file->sections.str.asection = sectp;
9010 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9011 }
9012 else if (section_is_p (sectp->name, &names->cu_index))
9013 {
9014 dwp_file->sections.cu_index.asection = sectp;
9015 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9016 }
9017 else if (section_is_p (sectp->name, &names->tu_index))
9018 {
9019 dwp_file->sections.tu_index.asection = sectp;
9020 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9021 }
9022 }
9023
9024 /* Hash function for dwp_file loaded CUs/TUs. */
9025
9026 static hashval_t
9027 hash_dwp_loaded_cutus (const void *item)
9028 {
9029 const struct dwo_unit *dwo_unit = item;
9030
9031 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9032 return dwo_unit->signature;
9033 }
9034
9035 /* Equality function for dwp_file loaded CUs/TUs. */
9036
9037 static int
9038 eq_dwp_loaded_cutus (const void *a, const void *b)
9039 {
9040 const struct dwo_unit *dua = a;
9041 const struct dwo_unit *dub = b;
9042
9043 return dua->signature == dub->signature;
9044 }
9045
9046 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9047
9048 static htab_t
9049 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9050 {
9051 return htab_create_alloc_ex (3,
9052 hash_dwp_loaded_cutus,
9053 eq_dwp_loaded_cutus,
9054 NULL,
9055 &objfile->objfile_obstack,
9056 hashtab_obstack_allocate,
9057 dummy_obstack_deallocate);
9058 }
9059
9060 /* Initialize the use of the DWP file for the current objfile.
9061 By convention the name of the DWP file is ${objfile}.dwp.
9062 The result is NULL if it can't be found. */
9063
9064 static struct dwp_file *
9065 open_and_init_dwp_file (const char *comp_dir)
9066 {
9067 struct objfile *objfile = dwarf2_per_objfile->objfile;
9068 struct dwp_file *dwp_file;
9069 char *dwp_name;
9070 bfd *dbfd;
9071 struct cleanup *cleanups;
9072
9073 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9074 cleanups = make_cleanup (xfree, dwp_name);
9075
9076 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9077 if (dbfd == NULL)
9078 {
9079 if (dwarf2_read_debug)
9080 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9081 do_cleanups (cleanups);
9082 return NULL;
9083 }
9084 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9085 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9086 dwp_name, strlen (dwp_name));
9087 dwp_file->dbfd = dbfd;
9088 do_cleanups (cleanups);
9089
9090 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9091
9092 /* +1: section 0 is unused */
9093 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9094 dwp_file->elf_sections =
9095 OBSTACK_CALLOC (&objfile->objfile_obstack,
9096 dwp_file->num_sections, asection *);
9097
9098 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9099
9100 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9101
9102 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9103
9104 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9105
9106 discard_cleanups (cleanups);
9107
9108 if (dwarf2_read_debug)
9109 {
9110 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9111 fprintf_unfiltered (gdb_stdlog,
9112 " %u CUs, %u TUs\n",
9113 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9114 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9115 }
9116
9117 return dwp_file;
9118 }
9119
9120 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9121 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9122 or in the DWP file for the objfile, referenced by THIS_UNIT.
9123 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9124 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9125
9126 This is called, for example, when wanting to read a variable with a
9127 complex location. Therefore we don't want to do file i/o for every call.
9128 Therefore we don't want to look for a DWO file on every call.
9129 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9130 then we check if we've already seen DWO_NAME, and only THEN do we check
9131 for a DWO file.
9132
9133 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9134 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9135
9136 static struct dwo_unit *
9137 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9138 const char *dwo_name, const char *comp_dir,
9139 ULONGEST signature, int is_debug_types)
9140 {
9141 struct objfile *objfile = dwarf2_per_objfile->objfile;
9142 const char *kind = is_debug_types ? "TU" : "CU";
9143 void **dwo_file_slot;
9144 struct dwo_file *dwo_file;
9145 struct dwp_file *dwp_file;
9146
9147 /* Have we already read SIGNATURE from a DWP file? */
9148
9149 if (! dwarf2_per_objfile->dwp_checked)
9150 {
9151 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9152 dwarf2_per_objfile->dwp_checked = 1;
9153 }
9154 dwp_file = dwarf2_per_objfile->dwp_file;
9155
9156 if (dwp_file != NULL)
9157 {
9158 const struct dwp_hash_table *dwp_htab =
9159 is_debug_types ? dwp_file->tus : dwp_file->cus;
9160
9161 if (dwp_htab != NULL)
9162 {
9163 struct dwo_unit *dwo_cutu =
9164 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9165
9166 if (dwo_cutu != NULL)
9167 {
9168 if (dwarf2_read_debug)
9169 {
9170 fprintf_unfiltered (gdb_stdlog,
9171 "Virtual DWO %s %s found: @%s\n",
9172 kind, hex_string (signature),
9173 host_address_to_string (dwo_cutu));
9174 }
9175 return dwo_cutu;
9176 }
9177 }
9178 }
9179
9180 /* Have we already seen DWO_NAME? */
9181
9182 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9183 if (*dwo_file_slot == NULL)
9184 {
9185 /* Read in the file and build a table of the DWOs it contains. */
9186 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9187 }
9188 /* NOTE: This will be NULL if unable to open the file. */
9189 dwo_file = *dwo_file_slot;
9190
9191 if (dwo_file != NULL)
9192 {
9193 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9194
9195 if (htab != NULL)
9196 {
9197 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9198
9199 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9200 find_dwo_cutu.signature = signature;
9201 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9202
9203 if (dwo_cutu != NULL)
9204 {
9205 if (dwarf2_read_debug)
9206 {
9207 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9208 kind, dwo_name, hex_string (signature),
9209 host_address_to_string (dwo_cutu));
9210 }
9211 return dwo_cutu;
9212 }
9213 }
9214 }
9215
9216 /* We didn't find it. This could mean a dwo_id mismatch, or
9217 someone deleted the DWO/DWP file, or the search path isn't set up
9218 correctly to find the file. */
9219
9220 if (dwarf2_read_debug)
9221 {
9222 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9223 kind, dwo_name, hex_string (signature));
9224 }
9225
9226 complaint (&symfile_complaints,
9227 _("Could not find DWO CU referenced by CU at offset 0x%x"
9228 " [in module %s]"),
9229 this_unit->offset.sect_off, objfile->name);
9230 return NULL;
9231 }
9232
9233 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9234 See lookup_dwo_cutu_unit for details. */
9235
9236 static struct dwo_unit *
9237 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9238 const char *dwo_name, const char *comp_dir,
9239 ULONGEST signature)
9240 {
9241 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9242 }
9243
9244 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9245 See lookup_dwo_cutu_unit for details. */
9246
9247 static struct dwo_unit *
9248 lookup_dwo_type_unit (struct signatured_type *this_tu,
9249 const char *dwo_name, const char *comp_dir)
9250 {
9251 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9252 }
9253
9254 /* Free all resources associated with DWO_FILE.
9255 Close the DWO file and munmap the sections.
9256 All memory should be on the objfile obstack. */
9257
9258 static void
9259 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9260 {
9261 int ix;
9262 struct dwarf2_section_info *section;
9263
9264 gdb_assert (dwo_file->dbfd != objfile->obfd);
9265 gdb_bfd_unref (dwo_file->dbfd);
9266
9267 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9268 }
9269
9270 /* Wrapper for free_dwo_file for use in cleanups. */
9271
9272 static void
9273 free_dwo_file_cleanup (void *arg)
9274 {
9275 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9276 struct objfile *objfile = dwarf2_per_objfile->objfile;
9277
9278 free_dwo_file (dwo_file, objfile);
9279 }
9280
9281 /* Traversal function for free_dwo_files. */
9282
9283 static int
9284 free_dwo_file_from_slot (void **slot, void *info)
9285 {
9286 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9287 struct objfile *objfile = (struct objfile *) info;
9288
9289 free_dwo_file (dwo_file, objfile);
9290
9291 return 1;
9292 }
9293
9294 /* Free all resources associated with DWO_FILES. */
9295
9296 static void
9297 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9298 {
9299 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9300 }
9301 \f
9302 /* Read in various DIEs. */
9303
9304 /* qsort helper for inherit_abstract_dies. */
9305
9306 static int
9307 unsigned_int_compar (const void *ap, const void *bp)
9308 {
9309 unsigned int a = *(unsigned int *) ap;
9310 unsigned int b = *(unsigned int *) bp;
9311
9312 return (a > b) - (b > a);
9313 }
9314
9315 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9316 Inherit only the children of the DW_AT_abstract_origin DIE not being
9317 already referenced by DW_AT_abstract_origin from the children of the
9318 current DIE. */
9319
9320 static void
9321 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9322 {
9323 struct die_info *child_die;
9324 unsigned die_children_count;
9325 /* CU offsets which were referenced by children of the current DIE. */
9326 sect_offset *offsets;
9327 sect_offset *offsets_end, *offsetp;
9328 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9329 struct die_info *origin_die;
9330 /* Iterator of the ORIGIN_DIE children. */
9331 struct die_info *origin_child_die;
9332 struct cleanup *cleanups;
9333 struct attribute *attr;
9334 struct dwarf2_cu *origin_cu;
9335 struct pending **origin_previous_list_in_scope;
9336
9337 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9338 if (!attr)
9339 return;
9340
9341 /* Note that following die references may follow to a die in a
9342 different cu. */
9343
9344 origin_cu = cu;
9345 origin_die = follow_die_ref (die, attr, &origin_cu);
9346
9347 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9348 symbols in. */
9349 origin_previous_list_in_scope = origin_cu->list_in_scope;
9350 origin_cu->list_in_scope = cu->list_in_scope;
9351
9352 if (die->tag != origin_die->tag
9353 && !(die->tag == DW_TAG_inlined_subroutine
9354 && origin_die->tag == DW_TAG_subprogram))
9355 complaint (&symfile_complaints,
9356 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9357 die->offset.sect_off, origin_die->offset.sect_off);
9358
9359 child_die = die->child;
9360 die_children_count = 0;
9361 while (child_die && child_die->tag)
9362 {
9363 child_die = sibling_die (child_die);
9364 die_children_count++;
9365 }
9366 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9367 cleanups = make_cleanup (xfree, offsets);
9368
9369 offsets_end = offsets;
9370 child_die = die->child;
9371 while (child_die && child_die->tag)
9372 {
9373 /* For each CHILD_DIE, find the corresponding child of
9374 ORIGIN_DIE. If there is more than one layer of
9375 DW_AT_abstract_origin, follow them all; there shouldn't be,
9376 but GCC versions at least through 4.4 generate this (GCC PR
9377 40573). */
9378 struct die_info *child_origin_die = child_die;
9379 struct dwarf2_cu *child_origin_cu = cu;
9380
9381 while (1)
9382 {
9383 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9384 child_origin_cu);
9385 if (attr == NULL)
9386 break;
9387 child_origin_die = follow_die_ref (child_origin_die, attr,
9388 &child_origin_cu);
9389 }
9390
9391 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9392 counterpart may exist. */
9393 if (child_origin_die != child_die)
9394 {
9395 if (child_die->tag != child_origin_die->tag
9396 && !(child_die->tag == DW_TAG_inlined_subroutine
9397 && child_origin_die->tag == DW_TAG_subprogram))
9398 complaint (&symfile_complaints,
9399 _("Child DIE 0x%x and its abstract origin 0x%x have "
9400 "different tags"), child_die->offset.sect_off,
9401 child_origin_die->offset.sect_off);
9402 if (child_origin_die->parent != origin_die)
9403 complaint (&symfile_complaints,
9404 _("Child DIE 0x%x and its abstract origin 0x%x have "
9405 "different parents"), child_die->offset.sect_off,
9406 child_origin_die->offset.sect_off);
9407 else
9408 *offsets_end++ = child_origin_die->offset;
9409 }
9410 child_die = sibling_die (child_die);
9411 }
9412 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9413 unsigned_int_compar);
9414 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9415 if (offsetp[-1].sect_off == offsetp->sect_off)
9416 complaint (&symfile_complaints,
9417 _("Multiple children of DIE 0x%x refer "
9418 "to DIE 0x%x as their abstract origin"),
9419 die->offset.sect_off, offsetp->sect_off);
9420
9421 offsetp = offsets;
9422 origin_child_die = origin_die->child;
9423 while (origin_child_die && origin_child_die->tag)
9424 {
9425 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9426 while (offsetp < offsets_end
9427 && offsetp->sect_off < origin_child_die->offset.sect_off)
9428 offsetp++;
9429 if (offsetp >= offsets_end
9430 || offsetp->sect_off > origin_child_die->offset.sect_off)
9431 {
9432 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9433 process_die (origin_child_die, origin_cu);
9434 }
9435 origin_child_die = sibling_die (origin_child_die);
9436 }
9437 origin_cu->list_in_scope = origin_previous_list_in_scope;
9438
9439 do_cleanups (cleanups);
9440 }
9441
9442 static void
9443 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9444 {
9445 struct objfile *objfile = cu->objfile;
9446 struct context_stack *new;
9447 CORE_ADDR lowpc;
9448 CORE_ADDR highpc;
9449 struct die_info *child_die;
9450 struct attribute *attr, *call_line, *call_file;
9451 char *name;
9452 CORE_ADDR baseaddr;
9453 struct block *block;
9454 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9455 VEC (symbolp) *template_args = NULL;
9456 struct template_symbol *templ_func = NULL;
9457
9458 if (inlined_func)
9459 {
9460 /* If we do not have call site information, we can't show the
9461 caller of this inlined function. That's too confusing, so
9462 only use the scope for local variables. */
9463 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9464 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9465 if (call_line == NULL || call_file == NULL)
9466 {
9467 read_lexical_block_scope (die, cu);
9468 return;
9469 }
9470 }
9471
9472 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9473
9474 name = dwarf2_name (die, cu);
9475
9476 /* Ignore functions with missing or empty names. These are actually
9477 illegal according to the DWARF standard. */
9478 if (name == NULL)
9479 {
9480 complaint (&symfile_complaints,
9481 _("missing name for subprogram DIE at %d"),
9482 die->offset.sect_off);
9483 return;
9484 }
9485
9486 /* Ignore functions with missing or invalid low and high pc attributes. */
9487 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9488 {
9489 attr = dwarf2_attr (die, DW_AT_external, cu);
9490 if (!attr || !DW_UNSND (attr))
9491 complaint (&symfile_complaints,
9492 _("cannot get low and high bounds "
9493 "for subprogram DIE at %d"),
9494 die->offset.sect_off);
9495 return;
9496 }
9497
9498 lowpc += baseaddr;
9499 highpc += baseaddr;
9500
9501 /* If we have any template arguments, then we must allocate a
9502 different sort of symbol. */
9503 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9504 {
9505 if (child_die->tag == DW_TAG_template_type_param
9506 || child_die->tag == DW_TAG_template_value_param)
9507 {
9508 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9509 struct template_symbol);
9510 templ_func->base.is_cplus_template_function = 1;
9511 break;
9512 }
9513 }
9514
9515 new = push_context (0, lowpc);
9516 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9517 (struct symbol *) templ_func);
9518
9519 /* If there is a location expression for DW_AT_frame_base, record
9520 it. */
9521 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9522 if (attr)
9523 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9524 expression is being recorded directly in the function's symbol
9525 and not in a separate frame-base object. I guess this hack is
9526 to avoid adding some sort of frame-base adjunct/annex to the
9527 function's symbol :-(. The problem with doing this is that it
9528 results in a function symbol with a location expression that
9529 has nothing to do with the location of the function, ouch! The
9530 relationship should be: a function's symbol has-a frame base; a
9531 frame-base has-a location expression. */
9532 dwarf2_symbol_mark_computed (attr, new->name, cu);
9533
9534 cu->list_in_scope = &local_symbols;
9535
9536 if (die->child != NULL)
9537 {
9538 child_die = die->child;
9539 while (child_die && child_die->tag)
9540 {
9541 if (child_die->tag == DW_TAG_template_type_param
9542 || child_die->tag == DW_TAG_template_value_param)
9543 {
9544 struct symbol *arg = new_symbol (child_die, NULL, cu);
9545
9546 if (arg != NULL)
9547 VEC_safe_push (symbolp, template_args, arg);
9548 }
9549 else
9550 process_die (child_die, cu);
9551 child_die = sibling_die (child_die);
9552 }
9553 }
9554
9555 inherit_abstract_dies (die, cu);
9556
9557 /* If we have a DW_AT_specification, we might need to import using
9558 directives from the context of the specification DIE. See the
9559 comment in determine_prefix. */
9560 if (cu->language == language_cplus
9561 && dwarf2_attr (die, DW_AT_specification, cu))
9562 {
9563 struct dwarf2_cu *spec_cu = cu;
9564 struct die_info *spec_die = die_specification (die, &spec_cu);
9565
9566 while (spec_die)
9567 {
9568 child_die = spec_die->child;
9569 while (child_die && child_die->tag)
9570 {
9571 if (child_die->tag == DW_TAG_imported_module)
9572 process_die (child_die, spec_cu);
9573 child_die = sibling_die (child_die);
9574 }
9575
9576 /* In some cases, GCC generates specification DIEs that
9577 themselves contain DW_AT_specification attributes. */
9578 spec_die = die_specification (spec_die, &spec_cu);
9579 }
9580 }
9581
9582 new = pop_context ();
9583 /* Make a block for the local symbols within. */
9584 block = finish_block (new->name, &local_symbols, new->old_blocks,
9585 lowpc, highpc, objfile);
9586
9587 /* For C++, set the block's scope. */
9588 if (cu->language == language_cplus || cu->language == language_fortran)
9589 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9590 determine_prefix (die, cu),
9591 processing_has_namespace_info);
9592
9593 /* If we have address ranges, record them. */
9594 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9595
9596 /* Attach template arguments to function. */
9597 if (! VEC_empty (symbolp, template_args))
9598 {
9599 gdb_assert (templ_func != NULL);
9600
9601 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9602 templ_func->template_arguments
9603 = obstack_alloc (&objfile->objfile_obstack,
9604 (templ_func->n_template_arguments
9605 * sizeof (struct symbol *)));
9606 memcpy (templ_func->template_arguments,
9607 VEC_address (symbolp, template_args),
9608 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9609 VEC_free (symbolp, template_args);
9610 }
9611
9612 /* In C++, we can have functions nested inside functions (e.g., when
9613 a function declares a class that has methods). This means that
9614 when we finish processing a function scope, we may need to go
9615 back to building a containing block's symbol lists. */
9616 local_symbols = new->locals;
9617 using_directives = new->using_directives;
9618
9619 /* If we've finished processing a top-level function, subsequent
9620 symbols go in the file symbol list. */
9621 if (outermost_context_p ())
9622 cu->list_in_scope = &file_symbols;
9623 }
9624
9625 /* Process all the DIES contained within a lexical block scope. Start
9626 a new scope, process the dies, and then close the scope. */
9627
9628 static void
9629 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9630 {
9631 struct objfile *objfile = cu->objfile;
9632 struct context_stack *new;
9633 CORE_ADDR lowpc, highpc;
9634 struct die_info *child_die;
9635 CORE_ADDR baseaddr;
9636
9637 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9638
9639 /* Ignore blocks with missing or invalid low and high pc attributes. */
9640 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9641 as multiple lexical blocks? Handling children in a sane way would
9642 be nasty. Might be easier to properly extend generic blocks to
9643 describe ranges. */
9644 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9645 return;
9646 lowpc += baseaddr;
9647 highpc += baseaddr;
9648
9649 push_context (0, lowpc);
9650 if (die->child != NULL)
9651 {
9652 child_die = die->child;
9653 while (child_die && child_die->tag)
9654 {
9655 process_die (child_die, cu);
9656 child_die = sibling_die (child_die);
9657 }
9658 }
9659 new = pop_context ();
9660
9661 if (local_symbols != NULL || using_directives != NULL)
9662 {
9663 struct block *block
9664 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9665 highpc, objfile);
9666
9667 /* Note that recording ranges after traversing children, as we
9668 do here, means that recording a parent's ranges entails
9669 walking across all its children's ranges as they appear in
9670 the address map, which is quadratic behavior.
9671
9672 It would be nicer to record the parent's ranges before
9673 traversing its children, simply overriding whatever you find
9674 there. But since we don't even decide whether to create a
9675 block until after we've traversed its children, that's hard
9676 to do. */
9677 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9678 }
9679 local_symbols = new->locals;
9680 using_directives = new->using_directives;
9681 }
9682
9683 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9684
9685 static void
9686 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9687 {
9688 struct objfile *objfile = cu->objfile;
9689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9690 CORE_ADDR pc, baseaddr;
9691 struct attribute *attr;
9692 struct call_site *call_site, call_site_local;
9693 void **slot;
9694 int nparams;
9695 struct die_info *child_die;
9696
9697 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9698
9699 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9700 if (!attr)
9701 {
9702 complaint (&symfile_complaints,
9703 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9704 "DIE 0x%x [in module %s]"),
9705 die->offset.sect_off, objfile->name);
9706 return;
9707 }
9708 pc = DW_ADDR (attr) + baseaddr;
9709
9710 if (cu->call_site_htab == NULL)
9711 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9712 NULL, &objfile->objfile_obstack,
9713 hashtab_obstack_allocate, NULL);
9714 call_site_local.pc = pc;
9715 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9716 if (*slot != NULL)
9717 {
9718 complaint (&symfile_complaints,
9719 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9720 "DIE 0x%x [in module %s]"),
9721 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9722 return;
9723 }
9724
9725 /* Count parameters at the caller. */
9726
9727 nparams = 0;
9728 for (child_die = die->child; child_die && child_die->tag;
9729 child_die = sibling_die (child_die))
9730 {
9731 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9732 {
9733 complaint (&symfile_complaints,
9734 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9735 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9736 child_die->tag, child_die->offset.sect_off, objfile->name);
9737 continue;
9738 }
9739
9740 nparams++;
9741 }
9742
9743 call_site = obstack_alloc (&objfile->objfile_obstack,
9744 (sizeof (*call_site)
9745 + (sizeof (*call_site->parameter)
9746 * (nparams - 1))));
9747 *slot = call_site;
9748 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9749 call_site->pc = pc;
9750
9751 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9752 {
9753 struct die_info *func_die;
9754
9755 /* Skip also over DW_TAG_inlined_subroutine. */
9756 for (func_die = die->parent;
9757 func_die && func_die->tag != DW_TAG_subprogram
9758 && func_die->tag != DW_TAG_subroutine_type;
9759 func_die = func_die->parent);
9760
9761 /* DW_AT_GNU_all_call_sites is a superset
9762 of DW_AT_GNU_all_tail_call_sites. */
9763 if (func_die
9764 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9765 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9766 {
9767 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9768 not complete. But keep CALL_SITE for look ups via call_site_htab,
9769 both the initial caller containing the real return address PC and
9770 the final callee containing the current PC of a chain of tail
9771 calls do not need to have the tail call list complete. But any
9772 function candidate for a virtual tail call frame searched via
9773 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9774 determined unambiguously. */
9775 }
9776 else
9777 {
9778 struct type *func_type = NULL;
9779
9780 if (func_die)
9781 func_type = get_die_type (func_die, cu);
9782 if (func_type != NULL)
9783 {
9784 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9785
9786 /* Enlist this call site to the function. */
9787 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9788 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9789 }
9790 else
9791 complaint (&symfile_complaints,
9792 _("Cannot find function owning DW_TAG_GNU_call_site "
9793 "DIE 0x%x [in module %s]"),
9794 die->offset.sect_off, objfile->name);
9795 }
9796 }
9797
9798 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9799 if (attr == NULL)
9800 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9801 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9802 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9803 /* Keep NULL DWARF_BLOCK. */;
9804 else if (attr_form_is_block (attr))
9805 {
9806 struct dwarf2_locexpr_baton *dlbaton;
9807
9808 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9809 dlbaton->data = DW_BLOCK (attr)->data;
9810 dlbaton->size = DW_BLOCK (attr)->size;
9811 dlbaton->per_cu = cu->per_cu;
9812
9813 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9814 }
9815 else if (is_ref_attr (attr))
9816 {
9817 struct dwarf2_cu *target_cu = cu;
9818 struct die_info *target_die;
9819
9820 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9821 gdb_assert (target_cu->objfile == objfile);
9822 if (die_is_declaration (target_die, target_cu))
9823 {
9824 const char *target_physname;
9825
9826 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9827 if (target_physname == NULL)
9828 complaint (&symfile_complaints,
9829 _("DW_AT_GNU_call_site_target target DIE has invalid "
9830 "physname, for referencing DIE 0x%x [in module %s]"),
9831 die->offset.sect_off, objfile->name);
9832 else
9833 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9834 }
9835 else
9836 {
9837 CORE_ADDR lowpc;
9838
9839 /* DW_AT_entry_pc should be preferred. */
9840 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9841 complaint (&symfile_complaints,
9842 _("DW_AT_GNU_call_site_target target DIE has invalid "
9843 "low pc, for referencing DIE 0x%x [in module %s]"),
9844 die->offset.sect_off, objfile->name);
9845 else
9846 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9847 }
9848 }
9849 else
9850 complaint (&symfile_complaints,
9851 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9852 "block nor reference, for DIE 0x%x [in module %s]"),
9853 die->offset.sect_off, objfile->name);
9854
9855 call_site->per_cu = cu->per_cu;
9856
9857 for (child_die = die->child;
9858 child_die && child_die->tag;
9859 child_die = sibling_die (child_die))
9860 {
9861 struct call_site_parameter *parameter;
9862 struct attribute *loc, *origin;
9863
9864 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9865 {
9866 /* Already printed the complaint above. */
9867 continue;
9868 }
9869
9870 gdb_assert (call_site->parameter_count < nparams);
9871 parameter = &call_site->parameter[call_site->parameter_count];
9872
9873 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9874 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9875 register is contained in DW_AT_GNU_call_site_value. */
9876
9877 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9878 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9879 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9880 {
9881 sect_offset offset;
9882
9883 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9884 offset = dwarf2_get_ref_die_offset (origin);
9885 if (!offset_in_cu_p (&cu->header, offset))
9886 {
9887 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9888 binding can be done only inside one CU. Such referenced DIE
9889 therefore cannot be even moved to DW_TAG_partial_unit. */
9890 complaint (&symfile_complaints,
9891 _("DW_AT_abstract_origin offset is not in CU for "
9892 "DW_TAG_GNU_call_site child DIE 0x%x "
9893 "[in module %s]"),
9894 child_die->offset.sect_off, objfile->name);
9895 continue;
9896 }
9897 parameter->u.param_offset.cu_off = (offset.sect_off
9898 - cu->header.offset.sect_off);
9899 }
9900 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9901 {
9902 complaint (&symfile_complaints,
9903 _("No DW_FORM_block* DW_AT_location for "
9904 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9905 child_die->offset.sect_off, objfile->name);
9906 continue;
9907 }
9908 else
9909 {
9910 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9911 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9912 if (parameter->u.dwarf_reg != -1)
9913 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9914 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9915 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9916 &parameter->u.fb_offset))
9917 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9918 else
9919 {
9920 complaint (&symfile_complaints,
9921 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9922 "for DW_FORM_block* DW_AT_location is supported for "
9923 "DW_TAG_GNU_call_site child DIE 0x%x "
9924 "[in module %s]"),
9925 child_die->offset.sect_off, objfile->name);
9926 continue;
9927 }
9928 }
9929
9930 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9931 if (!attr_form_is_block (attr))
9932 {
9933 complaint (&symfile_complaints,
9934 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9935 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9936 child_die->offset.sect_off, objfile->name);
9937 continue;
9938 }
9939 parameter->value = DW_BLOCK (attr)->data;
9940 parameter->value_size = DW_BLOCK (attr)->size;
9941
9942 /* Parameters are not pre-cleared by memset above. */
9943 parameter->data_value = NULL;
9944 parameter->data_value_size = 0;
9945 call_site->parameter_count++;
9946
9947 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9948 if (attr)
9949 {
9950 if (!attr_form_is_block (attr))
9951 complaint (&symfile_complaints,
9952 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9953 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9954 child_die->offset.sect_off, objfile->name);
9955 else
9956 {
9957 parameter->data_value = DW_BLOCK (attr)->data;
9958 parameter->data_value_size = DW_BLOCK (attr)->size;
9959 }
9960 }
9961 }
9962 }
9963
9964 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9965 Return 1 if the attributes are present and valid, otherwise, return 0.
9966 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9967
9968 static int
9969 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9970 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9971 struct partial_symtab *ranges_pst)
9972 {
9973 struct objfile *objfile = cu->objfile;
9974 struct comp_unit_head *cu_header = &cu->header;
9975 bfd *obfd = objfile->obfd;
9976 unsigned int addr_size = cu_header->addr_size;
9977 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9978 /* Base address selection entry. */
9979 CORE_ADDR base;
9980 int found_base;
9981 unsigned int dummy;
9982 gdb_byte *buffer;
9983 CORE_ADDR marker;
9984 int low_set;
9985 CORE_ADDR low = 0;
9986 CORE_ADDR high = 0;
9987 CORE_ADDR baseaddr;
9988
9989 found_base = cu->base_known;
9990 base = cu->base_address;
9991
9992 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9993 if (offset >= dwarf2_per_objfile->ranges.size)
9994 {
9995 complaint (&symfile_complaints,
9996 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9997 offset);
9998 return 0;
9999 }
10000 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10001
10002 /* Read in the largest possible address. */
10003 marker = read_address (obfd, buffer, cu, &dummy);
10004 if ((marker & mask) == mask)
10005 {
10006 /* If we found the largest possible address, then
10007 read the base address. */
10008 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10009 buffer += 2 * addr_size;
10010 offset += 2 * addr_size;
10011 found_base = 1;
10012 }
10013
10014 low_set = 0;
10015
10016 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10017
10018 while (1)
10019 {
10020 CORE_ADDR range_beginning, range_end;
10021
10022 range_beginning = read_address (obfd, buffer, cu, &dummy);
10023 buffer += addr_size;
10024 range_end = read_address (obfd, buffer, cu, &dummy);
10025 buffer += addr_size;
10026 offset += 2 * addr_size;
10027
10028 /* An end of list marker is a pair of zero addresses. */
10029 if (range_beginning == 0 && range_end == 0)
10030 /* Found the end of list entry. */
10031 break;
10032
10033 /* Each base address selection entry is a pair of 2 values.
10034 The first is the largest possible address, the second is
10035 the base address. Check for a base address here. */
10036 if ((range_beginning & mask) == mask)
10037 {
10038 /* If we found the largest possible address, then
10039 read the base address. */
10040 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10041 found_base = 1;
10042 continue;
10043 }
10044
10045 if (!found_base)
10046 {
10047 /* We have no valid base address for the ranges
10048 data. */
10049 complaint (&symfile_complaints,
10050 _("Invalid .debug_ranges data (no base address)"));
10051 return 0;
10052 }
10053
10054 if (range_beginning > range_end)
10055 {
10056 /* Inverted range entries are invalid. */
10057 complaint (&symfile_complaints,
10058 _("Invalid .debug_ranges data (inverted range)"));
10059 return 0;
10060 }
10061
10062 /* Empty range entries have no effect. */
10063 if (range_beginning == range_end)
10064 continue;
10065
10066 range_beginning += base;
10067 range_end += base;
10068
10069 /* A not-uncommon case of bad debug info.
10070 Don't pollute the addrmap with bad data. */
10071 if (range_beginning + baseaddr == 0
10072 && !dwarf2_per_objfile->has_section_at_zero)
10073 {
10074 complaint (&symfile_complaints,
10075 _(".debug_ranges entry has start address of zero"
10076 " [in module %s]"), objfile->name);
10077 continue;
10078 }
10079
10080 if (ranges_pst != NULL)
10081 addrmap_set_empty (objfile->psymtabs_addrmap,
10082 range_beginning + baseaddr,
10083 range_end - 1 + baseaddr,
10084 ranges_pst);
10085
10086 /* FIXME: This is recording everything as a low-high
10087 segment of consecutive addresses. We should have a
10088 data structure for discontiguous block ranges
10089 instead. */
10090 if (! low_set)
10091 {
10092 low = range_beginning;
10093 high = range_end;
10094 low_set = 1;
10095 }
10096 else
10097 {
10098 if (range_beginning < low)
10099 low = range_beginning;
10100 if (range_end > high)
10101 high = range_end;
10102 }
10103 }
10104
10105 if (! low_set)
10106 /* If the first entry is an end-of-list marker, the range
10107 describes an empty scope, i.e. no instructions. */
10108 return 0;
10109
10110 if (low_return)
10111 *low_return = low;
10112 if (high_return)
10113 *high_return = high;
10114 return 1;
10115 }
10116
10117 /* Get low and high pc attributes from a die. Return 1 if the attributes
10118 are present and valid, otherwise, return 0. Return -1 if the range is
10119 discontinuous, i.e. derived from DW_AT_ranges information. */
10120
10121 static int
10122 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10123 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10124 struct partial_symtab *pst)
10125 {
10126 struct attribute *attr;
10127 struct attribute *attr_high;
10128 CORE_ADDR low = 0;
10129 CORE_ADDR high = 0;
10130 int ret = 0;
10131
10132 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10133 if (attr_high)
10134 {
10135 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10136 if (attr)
10137 {
10138 low = DW_ADDR (attr);
10139 if (attr_high->form == DW_FORM_addr
10140 || attr_high->form == DW_FORM_GNU_addr_index)
10141 high = DW_ADDR (attr_high);
10142 else
10143 high = low + DW_UNSND (attr_high);
10144 }
10145 else
10146 /* Found high w/o low attribute. */
10147 return 0;
10148
10149 /* Found consecutive range of addresses. */
10150 ret = 1;
10151 }
10152 else
10153 {
10154 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10155 if (attr != NULL)
10156 {
10157 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10158 We take advantage of the fact that DW_AT_ranges does not appear
10159 in DW_TAG_compile_unit of DWO files. */
10160 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10161 unsigned int ranges_offset = (DW_UNSND (attr)
10162 + (need_ranges_base
10163 ? cu->ranges_base
10164 : 0));
10165
10166 /* Value of the DW_AT_ranges attribute is the offset in the
10167 .debug_ranges section. */
10168 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10169 return 0;
10170 /* Found discontinuous range of addresses. */
10171 ret = -1;
10172 }
10173 }
10174
10175 /* read_partial_die has also the strict LOW < HIGH requirement. */
10176 if (high <= low)
10177 return 0;
10178
10179 /* When using the GNU linker, .gnu.linkonce. sections are used to
10180 eliminate duplicate copies of functions and vtables and such.
10181 The linker will arbitrarily choose one and discard the others.
10182 The AT_*_pc values for such functions refer to local labels in
10183 these sections. If the section from that file was discarded, the
10184 labels are not in the output, so the relocs get a value of 0.
10185 If this is a discarded function, mark the pc bounds as invalid,
10186 so that GDB will ignore it. */
10187 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10188 return 0;
10189
10190 *lowpc = low;
10191 if (highpc)
10192 *highpc = high;
10193 return ret;
10194 }
10195
10196 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10197 its low and high PC addresses. Do nothing if these addresses could not
10198 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10199 and HIGHPC to the high address if greater than HIGHPC. */
10200
10201 static void
10202 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10203 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10204 struct dwarf2_cu *cu)
10205 {
10206 CORE_ADDR low, high;
10207 struct die_info *child = die->child;
10208
10209 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10210 {
10211 *lowpc = min (*lowpc, low);
10212 *highpc = max (*highpc, high);
10213 }
10214
10215 /* If the language does not allow nested subprograms (either inside
10216 subprograms or lexical blocks), we're done. */
10217 if (cu->language != language_ada)
10218 return;
10219
10220 /* Check all the children of the given DIE. If it contains nested
10221 subprograms, then check their pc bounds. Likewise, we need to
10222 check lexical blocks as well, as they may also contain subprogram
10223 definitions. */
10224 while (child && child->tag)
10225 {
10226 if (child->tag == DW_TAG_subprogram
10227 || child->tag == DW_TAG_lexical_block)
10228 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10229 child = sibling_die (child);
10230 }
10231 }
10232
10233 /* Get the low and high pc's represented by the scope DIE, and store
10234 them in *LOWPC and *HIGHPC. If the correct values can't be
10235 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10236
10237 static void
10238 get_scope_pc_bounds (struct die_info *die,
10239 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10240 struct dwarf2_cu *cu)
10241 {
10242 CORE_ADDR best_low = (CORE_ADDR) -1;
10243 CORE_ADDR best_high = (CORE_ADDR) 0;
10244 CORE_ADDR current_low, current_high;
10245
10246 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10247 {
10248 best_low = current_low;
10249 best_high = current_high;
10250 }
10251 else
10252 {
10253 struct die_info *child = die->child;
10254
10255 while (child && child->tag)
10256 {
10257 switch (child->tag) {
10258 case DW_TAG_subprogram:
10259 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10260 break;
10261 case DW_TAG_namespace:
10262 case DW_TAG_module:
10263 /* FIXME: carlton/2004-01-16: Should we do this for
10264 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10265 that current GCC's always emit the DIEs corresponding
10266 to definitions of methods of classes as children of a
10267 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10268 the DIEs giving the declarations, which could be
10269 anywhere). But I don't see any reason why the
10270 standards says that they have to be there. */
10271 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10272
10273 if (current_low != ((CORE_ADDR) -1))
10274 {
10275 best_low = min (best_low, current_low);
10276 best_high = max (best_high, current_high);
10277 }
10278 break;
10279 default:
10280 /* Ignore. */
10281 break;
10282 }
10283
10284 child = sibling_die (child);
10285 }
10286 }
10287
10288 *lowpc = best_low;
10289 *highpc = best_high;
10290 }
10291
10292 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10293 in DIE. */
10294
10295 static void
10296 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10297 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10298 {
10299 struct objfile *objfile = cu->objfile;
10300 struct attribute *attr;
10301 struct attribute *attr_high;
10302
10303 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10304 if (attr_high)
10305 {
10306 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10307 if (attr)
10308 {
10309 CORE_ADDR low = DW_ADDR (attr);
10310 CORE_ADDR high;
10311 if (attr_high->form == DW_FORM_addr
10312 || attr_high->form == DW_FORM_GNU_addr_index)
10313 high = DW_ADDR (attr_high);
10314 else
10315 high = low + DW_UNSND (attr_high);
10316
10317 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10318 }
10319 }
10320
10321 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10322 if (attr)
10323 {
10324 bfd *obfd = objfile->obfd;
10325 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10326 We take advantage of the fact that DW_AT_ranges does not appear
10327 in DW_TAG_compile_unit of DWO files. */
10328 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10329
10330 /* The value of the DW_AT_ranges attribute is the offset of the
10331 address range list in the .debug_ranges section. */
10332 unsigned long offset = (DW_UNSND (attr)
10333 + (need_ranges_base ? cu->ranges_base : 0));
10334 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10335
10336 /* For some target architectures, but not others, the
10337 read_address function sign-extends the addresses it returns.
10338 To recognize base address selection entries, we need a
10339 mask. */
10340 unsigned int addr_size = cu->header.addr_size;
10341 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10342
10343 /* The base address, to which the next pair is relative. Note
10344 that this 'base' is a DWARF concept: most entries in a range
10345 list are relative, to reduce the number of relocs against the
10346 debugging information. This is separate from this function's
10347 'baseaddr' argument, which GDB uses to relocate debugging
10348 information from a shared library based on the address at
10349 which the library was loaded. */
10350 CORE_ADDR base = cu->base_address;
10351 int base_known = cu->base_known;
10352
10353 gdb_assert (dwarf2_per_objfile->ranges.readin);
10354 if (offset >= dwarf2_per_objfile->ranges.size)
10355 {
10356 complaint (&symfile_complaints,
10357 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10358 offset);
10359 return;
10360 }
10361
10362 for (;;)
10363 {
10364 unsigned int bytes_read;
10365 CORE_ADDR start, end;
10366
10367 start = read_address (obfd, buffer, cu, &bytes_read);
10368 buffer += bytes_read;
10369 end = read_address (obfd, buffer, cu, &bytes_read);
10370 buffer += bytes_read;
10371
10372 /* Did we find the end of the range list? */
10373 if (start == 0 && end == 0)
10374 break;
10375
10376 /* Did we find a base address selection entry? */
10377 else if ((start & base_select_mask) == base_select_mask)
10378 {
10379 base = end;
10380 base_known = 1;
10381 }
10382
10383 /* We found an ordinary address range. */
10384 else
10385 {
10386 if (!base_known)
10387 {
10388 complaint (&symfile_complaints,
10389 _("Invalid .debug_ranges data "
10390 "(no base address)"));
10391 return;
10392 }
10393
10394 if (start > end)
10395 {
10396 /* Inverted range entries are invalid. */
10397 complaint (&symfile_complaints,
10398 _("Invalid .debug_ranges data "
10399 "(inverted range)"));
10400 return;
10401 }
10402
10403 /* Empty range entries have no effect. */
10404 if (start == end)
10405 continue;
10406
10407 start += base + baseaddr;
10408 end += base + baseaddr;
10409
10410 /* A not-uncommon case of bad debug info.
10411 Don't pollute the addrmap with bad data. */
10412 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10413 {
10414 complaint (&symfile_complaints,
10415 _(".debug_ranges entry has start address of zero"
10416 " [in module %s]"), objfile->name);
10417 continue;
10418 }
10419
10420 record_block_range (block, start, end - 1);
10421 }
10422 }
10423 }
10424 }
10425
10426 /* Check whether the producer field indicates either of GCC < 4.6, or the
10427 Intel C/C++ compiler, and cache the result in CU. */
10428
10429 static void
10430 check_producer (struct dwarf2_cu *cu)
10431 {
10432 const char *cs;
10433 int major, minor, release;
10434
10435 if (cu->producer == NULL)
10436 {
10437 /* For unknown compilers expect their behavior is DWARF version
10438 compliant.
10439
10440 GCC started to support .debug_types sections by -gdwarf-4 since
10441 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10442 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10443 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10444 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10445 }
10446 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10447 {
10448 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10449
10450 cs = &cu->producer[strlen ("GNU ")];
10451 while (*cs && !isdigit (*cs))
10452 cs++;
10453 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10454 {
10455 /* Not recognized as GCC. */
10456 }
10457 else
10458 {
10459 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10460 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10461 }
10462 }
10463 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10464 cu->producer_is_icc = 1;
10465 else
10466 {
10467 /* For other non-GCC compilers, expect their behavior is DWARF version
10468 compliant. */
10469 }
10470
10471 cu->checked_producer = 1;
10472 }
10473
10474 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10475 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10476 during 4.6.0 experimental. */
10477
10478 static int
10479 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10480 {
10481 if (!cu->checked_producer)
10482 check_producer (cu);
10483
10484 return cu->producer_is_gxx_lt_4_6;
10485 }
10486
10487 /* Return the default accessibility type if it is not overriden by
10488 DW_AT_accessibility. */
10489
10490 static enum dwarf_access_attribute
10491 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10492 {
10493 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10494 {
10495 /* The default DWARF 2 accessibility for members is public, the default
10496 accessibility for inheritance is private. */
10497
10498 if (die->tag != DW_TAG_inheritance)
10499 return DW_ACCESS_public;
10500 else
10501 return DW_ACCESS_private;
10502 }
10503 else
10504 {
10505 /* DWARF 3+ defines the default accessibility a different way. The same
10506 rules apply now for DW_TAG_inheritance as for the members and it only
10507 depends on the container kind. */
10508
10509 if (die->parent->tag == DW_TAG_class_type)
10510 return DW_ACCESS_private;
10511 else
10512 return DW_ACCESS_public;
10513 }
10514 }
10515
10516 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10517 offset. If the attribute was not found return 0, otherwise return
10518 1. If it was found but could not properly be handled, set *OFFSET
10519 to 0. */
10520
10521 static int
10522 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10523 LONGEST *offset)
10524 {
10525 struct attribute *attr;
10526
10527 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10528 if (attr != NULL)
10529 {
10530 *offset = 0;
10531
10532 /* Note that we do not check for a section offset first here.
10533 This is because DW_AT_data_member_location is new in DWARF 4,
10534 so if we see it, we can assume that a constant form is really
10535 a constant and not a section offset. */
10536 if (attr_form_is_constant (attr))
10537 *offset = dwarf2_get_attr_constant_value (attr, 0);
10538 else if (attr_form_is_section_offset (attr))
10539 dwarf2_complex_location_expr_complaint ();
10540 else if (attr_form_is_block (attr))
10541 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10542 else
10543 dwarf2_complex_location_expr_complaint ();
10544
10545 return 1;
10546 }
10547
10548 return 0;
10549 }
10550
10551 /* Add an aggregate field to the field list. */
10552
10553 static void
10554 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10555 struct dwarf2_cu *cu)
10556 {
10557 struct objfile *objfile = cu->objfile;
10558 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10559 struct nextfield *new_field;
10560 struct attribute *attr;
10561 struct field *fp;
10562 char *fieldname = "";
10563
10564 /* Allocate a new field list entry and link it in. */
10565 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10566 make_cleanup (xfree, new_field);
10567 memset (new_field, 0, sizeof (struct nextfield));
10568
10569 if (die->tag == DW_TAG_inheritance)
10570 {
10571 new_field->next = fip->baseclasses;
10572 fip->baseclasses = new_field;
10573 }
10574 else
10575 {
10576 new_field->next = fip->fields;
10577 fip->fields = new_field;
10578 }
10579 fip->nfields++;
10580
10581 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10582 if (attr)
10583 new_field->accessibility = DW_UNSND (attr);
10584 else
10585 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10586 if (new_field->accessibility != DW_ACCESS_public)
10587 fip->non_public_fields = 1;
10588
10589 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10590 if (attr)
10591 new_field->virtuality = DW_UNSND (attr);
10592 else
10593 new_field->virtuality = DW_VIRTUALITY_none;
10594
10595 fp = &new_field->field;
10596
10597 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10598 {
10599 LONGEST offset;
10600
10601 /* Data member other than a C++ static data member. */
10602
10603 /* Get type of field. */
10604 fp->type = die_type (die, cu);
10605
10606 SET_FIELD_BITPOS (*fp, 0);
10607
10608 /* Get bit size of field (zero if none). */
10609 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10610 if (attr)
10611 {
10612 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10613 }
10614 else
10615 {
10616 FIELD_BITSIZE (*fp) = 0;
10617 }
10618
10619 /* Get bit offset of field. */
10620 if (handle_data_member_location (die, cu, &offset))
10621 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10622 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10623 if (attr)
10624 {
10625 if (gdbarch_bits_big_endian (gdbarch))
10626 {
10627 /* For big endian bits, the DW_AT_bit_offset gives the
10628 additional bit offset from the MSB of the containing
10629 anonymous object to the MSB of the field. We don't
10630 have to do anything special since we don't need to
10631 know the size of the anonymous object. */
10632 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10633 }
10634 else
10635 {
10636 /* For little endian bits, compute the bit offset to the
10637 MSB of the anonymous object, subtract off the number of
10638 bits from the MSB of the field to the MSB of the
10639 object, and then subtract off the number of bits of
10640 the field itself. The result is the bit offset of
10641 the LSB of the field. */
10642 int anonymous_size;
10643 int bit_offset = DW_UNSND (attr);
10644
10645 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10646 if (attr)
10647 {
10648 /* The size of the anonymous object containing
10649 the bit field is explicit, so use the
10650 indicated size (in bytes). */
10651 anonymous_size = DW_UNSND (attr);
10652 }
10653 else
10654 {
10655 /* The size of the anonymous object containing
10656 the bit field must be inferred from the type
10657 attribute of the data member containing the
10658 bit field. */
10659 anonymous_size = TYPE_LENGTH (fp->type);
10660 }
10661 SET_FIELD_BITPOS (*fp,
10662 (FIELD_BITPOS (*fp)
10663 + anonymous_size * bits_per_byte
10664 - bit_offset - FIELD_BITSIZE (*fp)));
10665 }
10666 }
10667
10668 /* Get name of field. */
10669 fieldname = dwarf2_name (die, cu);
10670 if (fieldname == NULL)
10671 fieldname = "";
10672
10673 /* The name is already allocated along with this objfile, so we don't
10674 need to duplicate it for the type. */
10675 fp->name = fieldname;
10676
10677 /* Change accessibility for artificial fields (e.g. virtual table
10678 pointer or virtual base class pointer) to private. */
10679 if (dwarf2_attr (die, DW_AT_artificial, cu))
10680 {
10681 FIELD_ARTIFICIAL (*fp) = 1;
10682 new_field->accessibility = DW_ACCESS_private;
10683 fip->non_public_fields = 1;
10684 }
10685 }
10686 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10687 {
10688 /* C++ static member. */
10689
10690 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10691 is a declaration, but all versions of G++ as of this writing
10692 (so through at least 3.2.1) incorrectly generate
10693 DW_TAG_variable tags. */
10694
10695 const char *physname;
10696
10697 /* Get name of field. */
10698 fieldname = dwarf2_name (die, cu);
10699 if (fieldname == NULL)
10700 return;
10701
10702 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10703 if (attr
10704 /* Only create a symbol if this is an external value.
10705 new_symbol checks this and puts the value in the global symbol
10706 table, which we want. If it is not external, new_symbol
10707 will try to put the value in cu->list_in_scope which is wrong. */
10708 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10709 {
10710 /* A static const member, not much different than an enum as far as
10711 we're concerned, except that we can support more types. */
10712 new_symbol (die, NULL, cu);
10713 }
10714
10715 /* Get physical name. */
10716 physname = dwarf2_physname (fieldname, die, cu);
10717
10718 /* The name is already allocated along with this objfile, so we don't
10719 need to duplicate it for the type. */
10720 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10721 FIELD_TYPE (*fp) = die_type (die, cu);
10722 FIELD_NAME (*fp) = fieldname;
10723 }
10724 else if (die->tag == DW_TAG_inheritance)
10725 {
10726 LONGEST offset;
10727
10728 /* C++ base class field. */
10729 if (handle_data_member_location (die, cu, &offset))
10730 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10731 FIELD_BITSIZE (*fp) = 0;
10732 FIELD_TYPE (*fp) = die_type (die, cu);
10733 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10734 fip->nbaseclasses++;
10735 }
10736 }
10737
10738 /* Add a typedef defined in the scope of the FIP's class. */
10739
10740 static void
10741 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10742 struct dwarf2_cu *cu)
10743 {
10744 struct objfile *objfile = cu->objfile;
10745 struct typedef_field_list *new_field;
10746 struct attribute *attr;
10747 struct typedef_field *fp;
10748 char *fieldname = "";
10749
10750 /* Allocate a new field list entry and link it in. */
10751 new_field = xzalloc (sizeof (*new_field));
10752 make_cleanup (xfree, new_field);
10753
10754 gdb_assert (die->tag == DW_TAG_typedef);
10755
10756 fp = &new_field->field;
10757
10758 /* Get name of field. */
10759 fp->name = dwarf2_name (die, cu);
10760 if (fp->name == NULL)
10761 return;
10762
10763 fp->type = read_type_die (die, cu);
10764
10765 new_field->next = fip->typedef_field_list;
10766 fip->typedef_field_list = new_field;
10767 fip->typedef_field_list_count++;
10768 }
10769
10770 /* Create the vector of fields, and attach it to the type. */
10771
10772 static void
10773 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10774 struct dwarf2_cu *cu)
10775 {
10776 int nfields = fip->nfields;
10777
10778 /* Record the field count, allocate space for the array of fields,
10779 and create blank accessibility bitfields if necessary. */
10780 TYPE_NFIELDS (type) = nfields;
10781 TYPE_FIELDS (type) = (struct field *)
10782 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10783 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10784
10785 if (fip->non_public_fields && cu->language != language_ada)
10786 {
10787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10788
10789 TYPE_FIELD_PRIVATE_BITS (type) =
10790 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10791 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10792
10793 TYPE_FIELD_PROTECTED_BITS (type) =
10794 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10795 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10796
10797 TYPE_FIELD_IGNORE_BITS (type) =
10798 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10799 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10800 }
10801
10802 /* If the type has baseclasses, allocate and clear a bit vector for
10803 TYPE_FIELD_VIRTUAL_BITS. */
10804 if (fip->nbaseclasses && cu->language != language_ada)
10805 {
10806 int num_bytes = B_BYTES (fip->nbaseclasses);
10807 unsigned char *pointer;
10808
10809 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10810 pointer = TYPE_ALLOC (type, num_bytes);
10811 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10812 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10813 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10814 }
10815
10816 /* Copy the saved-up fields into the field vector. Start from the head of
10817 the list, adding to the tail of the field array, so that they end up in
10818 the same order in the array in which they were added to the list. */
10819 while (nfields-- > 0)
10820 {
10821 struct nextfield *fieldp;
10822
10823 if (fip->fields)
10824 {
10825 fieldp = fip->fields;
10826 fip->fields = fieldp->next;
10827 }
10828 else
10829 {
10830 fieldp = fip->baseclasses;
10831 fip->baseclasses = fieldp->next;
10832 }
10833
10834 TYPE_FIELD (type, nfields) = fieldp->field;
10835 switch (fieldp->accessibility)
10836 {
10837 case DW_ACCESS_private:
10838 if (cu->language != language_ada)
10839 SET_TYPE_FIELD_PRIVATE (type, nfields);
10840 break;
10841
10842 case DW_ACCESS_protected:
10843 if (cu->language != language_ada)
10844 SET_TYPE_FIELD_PROTECTED (type, nfields);
10845 break;
10846
10847 case DW_ACCESS_public:
10848 break;
10849
10850 default:
10851 /* Unknown accessibility. Complain and treat it as public. */
10852 {
10853 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10854 fieldp->accessibility);
10855 }
10856 break;
10857 }
10858 if (nfields < fip->nbaseclasses)
10859 {
10860 switch (fieldp->virtuality)
10861 {
10862 case DW_VIRTUALITY_virtual:
10863 case DW_VIRTUALITY_pure_virtual:
10864 if (cu->language == language_ada)
10865 error (_("unexpected virtuality in component of Ada type"));
10866 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10867 break;
10868 }
10869 }
10870 }
10871 }
10872
10873 /* Return true if this member function is a constructor, false
10874 otherwise. */
10875
10876 static int
10877 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10878 {
10879 const char *fieldname;
10880 const char *typename;
10881 int len;
10882
10883 if (die->parent == NULL)
10884 return 0;
10885
10886 if (die->parent->tag != DW_TAG_structure_type
10887 && die->parent->tag != DW_TAG_union_type
10888 && die->parent->tag != DW_TAG_class_type)
10889 return 0;
10890
10891 fieldname = dwarf2_name (die, cu);
10892 typename = dwarf2_name (die->parent, cu);
10893 if (fieldname == NULL || typename == NULL)
10894 return 0;
10895
10896 len = strlen (fieldname);
10897 return (strncmp (fieldname, typename, len) == 0
10898 && (typename[len] == '\0' || typename[len] == '<'));
10899 }
10900
10901 /* Add a member function to the proper fieldlist. */
10902
10903 static void
10904 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10905 struct type *type, struct dwarf2_cu *cu)
10906 {
10907 struct objfile *objfile = cu->objfile;
10908 struct attribute *attr;
10909 struct fnfieldlist *flp;
10910 int i;
10911 struct fn_field *fnp;
10912 char *fieldname;
10913 struct nextfnfield *new_fnfield;
10914 struct type *this_type;
10915 enum dwarf_access_attribute accessibility;
10916
10917 if (cu->language == language_ada)
10918 error (_("unexpected member function in Ada type"));
10919
10920 /* Get name of member function. */
10921 fieldname = dwarf2_name (die, cu);
10922 if (fieldname == NULL)
10923 return;
10924
10925 /* Look up member function name in fieldlist. */
10926 for (i = 0; i < fip->nfnfields; i++)
10927 {
10928 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10929 break;
10930 }
10931
10932 /* Create new list element if necessary. */
10933 if (i < fip->nfnfields)
10934 flp = &fip->fnfieldlists[i];
10935 else
10936 {
10937 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10938 {
10939 fip->fnfieldlists = (struct fnfieldlist *)
10940 xrealloc (fip->fnfieldlists,
10941 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10942 * sizeof (struct fnfieldlist));
10943 if (fip->nfnfields == 0)
10944 make_cleanup (free_current_contents, &fip->fnfieldlists);
10945 }
10946 flp = &fip->fnfieldlists[fip->nfnfields];
10947 flp->name = fieldname;
10948 flp->length = 0;
10949 flp->head = NULL;
10950 i = fip->nfnfields++;
10951 }
10952
10953 /* Create a new member function field and chain it to the field list
10954 entry. */
10955 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10956 make_cleanup (xfree, new_fnfield);
10957 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10958 new_fnfield->next = flp->head;
10959 flp->head = new_fnfield;
10960 flp->length++;
10961
10962 /* Fill in the member function field info. */
10963 fnp = &new_fnfield->fnfield;
10964
10965 /* Delay processing of the physname until later. */
10966 if (cu->language == language_cplus || cu->language == language_java)
10967 {
10968 add_to_method_list (type, i, flp->length - 1, fieldname,
10969 die, cu);
10970 }
10971 else
10972 {
10973 const char *physname = dwarf2_physname (fieldname, die, cu);
10974 fnp->physname = physname ? physname : "";
10975 }
10976
10977 fnp->type = alloc_type (objfile);
10978 this_type = read_type_die (die, cu);
10979 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10980 {
10981 int nparams = TYPE_NFIELDS (this_type);
10982
10983 /* TYPE is the domain of this method, and THIS_TYPE is the type
10984 of the method itself (TYPE_CODE_METHOD). */
10985 smash_to_method_type (fnp->type, type,
10986 TYPE_TARGET_TYPE (this_type),
10987 TYPE_FIELDS (this_type),
10988 TYPE_NFIELDS (this_type),
10989 TYPE_VARARGS (this_type));
10990
10991 /* Handle static member functions.
10992 Dwarf2 has no clean way to discern C++ static and non-static
10993 member functions. G++ helps GDB by marking the first
10994 parameter for non-static member functions (which is the this
10995 pointer) as artificial. We obtain this information from
10996 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10997 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10998 fnp->voffset = VOFFSET_STATIC;
10999 }
11000 else
11001 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11002 dwarf2_full_name (fieldname, die, cu));
11003
11004 /* Get fcontext from DW_AT_containing_type if present. */
11005 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11006 fnp->fcontext = die_containing_type (die, cu);
11007
11008 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11009 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11010
11011 /* Get accessibility. */
11012 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11013 if (attr)
11014 accessibility = DW_UNSND (attr);
11015 else
11016 accessibility = dwarf2_default_access_attribute (die, cu);
11017 switch (accessibility)
11018 {
11019 case DW_ACCESS_private:
11020 fnp->is_private = 1;
11021 break;
11022 case DW_ACCESS_protected:
11023 fnp->is_protected = 1;
11024 break;
11025 }
11026
11027 /* Check for artificial methods. */
11028 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11029 if (attr && DW_UNSND (attr) != 0)
11030 fnp->is_artificial = 1;
11031
11032 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11033
11034 /* Get index in virtual function table if it is a virtual member
11035 function. For older versions of GCC, this is an offset in the
11036 appropriate virtual table, as specified by DW_AT_containing_type.
11037 For everyone else, it is an expression to be evaluated relative
11038 to the object address. */
11039
11040 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11041 if (attr)
11042 {
11043 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11044 {
11045 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11046 {
11047 /* Old-style GCC. */
11048 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11049 }
11050 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11051 || (DW_BLOCK (attr)->size > 1
11052 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11053 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11054 {
11055 struct dwarf_block blk;
11056 int offset;
11057
11058 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11059 ? 1 : 2);
11060 blk.size = DW_BLOCK (attr)->size - offset;
11061 blk.data = DW_BLOCK (attr)->data + offset;
11062 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11063 if ((fnp->voffset % cu->header.addr_size) != 0)
11064 dwarf2_complex_location_expr_complaint ();
11065 else
11066 fnp->voffset /= cu->header.addr_size;
11067 fnp->voffset += 2;
11068 }
11069 else
11070 dwarf2_complex_location_expr_complaint ();
11071
11072 if (!fnp->fcontext)
11073 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11074 }
11075 else if (attr_form_is_section_offset (attr))
11076 {
11077 dwarf2_complex_location_expr_complaint ();
11078 }
11079 else
11080 {
11081 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11082 fieldname);
11083 }
11084 }
11085 else
11086 {
11087 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11088 if (attr && DW_UNSND (attr))
11089 {
11090 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11091 complaint (&symfile_complaints,
11092 _("Member function \"%s\" (offset %d) is virtual "
11093 "but the vtable offset is not specified"),
11094 fieldname, die->offset.sect_off);
11095 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11096 TYPE_CPLUS_DYNAMIC (type) = 1;
11097 }
11098 }
11099 }
11100
11101 /* Create the vector of member function fields, and attach it to the type. */
11102
11103 static void
11104 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11105 struct dwarf2_cu *cu)
11106 {
11107 struct fnfieldlist *flp;
11108 int i;
11109
11110 if (cu->language == language_ada)
11111 error (_("unexpected member functions in Ada type"));
11112
11113 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11114 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11115 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11116
11117 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11118 {
11119 struct nextfnfield *nfp = flp->head;
11120 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11121 int k;
11122
11123 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11124 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11125 fn_flp->fn_fields = (struct fn_field *)
11126 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11127 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11128 fn_flp->fn_fields[k] = nfp->fnfield;
11129 }
11130
11131 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11132 }
11133
11134 /* Returns non-zero if NAME is the name of a vtable member in CU's
11135 language, zero otherwise. */
11136 static int
11137 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11138 {
11139 static const char vptr[] = "_vptr";
11140 static const char vtable[] = "vtable";
11141
11142 /* Look for the C++ and Java forms of the vtable. */
11143 if ((cu->language == language_java
11144 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11145 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11146 && is_cplus_marker (name[sizeof (vptr) - 1])))
11147 return 1;
11148
11149 return 0;
11150 }
11151
11152 /* GCC outputs unnamed structures that are really pointers to member
11153 functions, with the ABI-specified layout. If TYPE describes
11154 such a structure, smash it into a member function type.
11155
11156 GCC shouldn't do this; it should just output pointer to member DIEs.
11157 This is GCC PR debug/28767. */
11158
11159 static void
11160 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11161 {
11162 struct type *pfn_type, *domain_type, *new_type;
11163
11164 /* Check for a structure with no name and two children. */
11165 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11166 return;
11167
11168 /* Check for __pfn and __delta members. */
11169 if (TYPE_FIELD_NAME (type, 0) == NULL
11170 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11171 || TYPE_FIELD_NAME (type, 1) == NULL
11172 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11173 return;
11174
11175 /* Find the type of the method. */
11176 pfn_type = TYPE_FIELD_TYPE (type, 0);
11177 if (pfn_type == NULL
11178 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11179 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11180 return;
11181
11182 /* Look for the "this" argument. */
11183 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11184 if (TYPE_NFIELDS (pfn_type) == 0
11185 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11186 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11187 return;
11188
11189 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11190 new_type = alloc_type (objfile);
11191 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11192 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11193 TYPE_VARARGS (pfn_type));
11194 smash_to_methodptr_type (type, new_type);
11195 }
11196
11197 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11198 (icc). */
11199
11200 static int
11201 producer_is_icc (struct dwarf2_cu *cu)
11202 {
11203 if (!cu->checked_producer)
11204 check_producer (cu);
11205
11206 return cu->producer_is_icc;
11207 }
11208
11209 /* Called when we find the DIE that starts a structure or union scope
11210 (definition) to create a type for the structure or union. Fill in
11211 the type's name and general properties; the members will not be
11212 processed until process_structure_type.
11213
11214 NOTE: we need to call these functions regardless of whether or not the
11215 DIE has a DW_AT_name attribute, since it might be an anonymous
11216 structure or union. This gets the type entered into our set of
11217 user defined types.
11218
11219 However, if the structure is incomplete (an opaque struct/union)
11220 then suppress creating a symbol table entry for it since gdb only
11221 wants to find the one with the complete definition. Note that if
11222 it is complete, we just call new_symbol, which does it's own
11223 checking about whether the struct/union is anonymous or not (and
11224 suppresses creating a symbol table entry itself). */
11225
11226 static struct type *
11227 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11228 {
11229 struct objfile *objfile = cu->objfile;
11230 struct type *type;
11231 struct attribute *attr;
11232 char *name;
11233
11234 /* If the definition of this type lives in .debug_types, read that type.
11235 Don't follow DW_AT_specification though, that will take us back up
11236 the chain and we want to go down. */
11237 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11238 if (attr)
11239 {
11240 struct dwarf2_cu *type_cu = cu;
11241 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11242
11243 /* We could just recurse on read_structure_type, but we need to call
11244 get_die_type to ensure only one type for this DIE is created.
11245 This is important, for example, because for c++ classes we need
11246 TYPE_NAME set which is only done by new_symbol. Blech. */
11247 type = read_type_die (type_die, type_cu);
11248
11249 /* TYPE_CU may not be the same as CU.
11250 Ensure TYPE is recorded in CU's type_hash table. */
11251 return set_die_type (die, type, cu);
11252 }
11253
11254 type = alloc_type (objfile);
11255 INIT_CPLUS_SPECIFIC (type);
11256
11257 name = dwarf2_name (die, cu);
11258 if (name != NULL)
11259 {
11260 if (cu->language == language_cplus
11261 || cu->language == language_java)
11262 {
11263 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11264
11265 /* dwarf2_full_name might have already finished building the DIE's
11266 type. If so, there is no need to continue. */
11267 if (get_die_type (die, cu) != NULL)
11268 return get_die_type (die, cu);
11269
11270 TYPE_TAG_NAME (type) = full_name;
11271 if (die->tag == DW_TAG_structure_type
11272 || die->tag == DW_TAG_class_type)
11273 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11274 }
11275 else
11276 {
11277 /* The name is already allocated along with this objfile, so
11278 we don't need to duplicate it for the type. */
11279 TYPE_TAG_NAME (type) = (char *) name;
11280 if (die->tag == DW_TAG_class_type)
11281 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11282 }
11283 }
11284
11285 if (die->tag == DW_TAG_structure_type)
11286 {
11287 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11288 }
11289 else if (die->tag == DW_TAG_union_type)
11290 {
11291 TYPE_CODE (type) = TYPE_CODE_UNION;
11292 }
11293 else
11294 {
11295 TYPE_CODE (type) = TYPE_CODE_CLASS;
11296 }
11297
11298 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11299 TYPE_DECLARED_CLASS (type) = 1;
11300
11301 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11302 if (attr)
11303 {
11304 TYPE_LENGTH (type) = DW_UNSND (attr);
11305 }
11306 else
11307 {
11308 TYPE_LENGTH (type) = 0;
11309 }
11310
11311 if (producer_is_icc (cu))
11312 {
11313 /* ICC does not output the required DW_AT_declaration
11314 on incomplete types, but gives them a size of zero. */
11315 }
11316 else
11317 TYPE_STUB_SUPPORTED (type) = 1;
11318
11319 if (die_is_declaration (die, cu))
11320 TYPE_STUB (type) = 1;
11321 else if (attr == NULL && die->child == NULL
11322 && producer_is_realview (cu->producer))
11323 /* RealView does not output the required DW_AT_declaration
11324 on incomplete types. */
11325 TYPE_STUB (type) = 1;
11326
11327 /* We need to add the type field to the die immediately so we don't
11328 infinitely recurse when dealing with pointers to the structure
11329 type within the structure itself. */
11330 set_die_type (die, type, cu);
11331
11332 /* set_die_type should be already done. */
11333 set_descriptive_type (type, die, cu);
11334
11335 return type;
11336 }
11337
11338 /* Finish creating a structure or union type, including filling in
11339 its members and creating a symbol for it. */
11340
11341 static void
11342 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11343 {
11344 struct objfile *objfile = cu->objfile;
11345 struct die_info *child_die = die->child;
11346 struct type *type;
11347
11348 type = get_die_type (die, cu);
11349 if (type == NULL)
11350 type = read_structure_type (die, cu);
11351
11352 if (die->child != NULL && ! die_is_declaration (die, cu))
11353 {
11354 struct field_info fi;
11355 struct die_info *child_die;
11356 VEC (symbolp) *template_args = NULL;
11357 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11358
11359 memset (&fi, 0, sizeof (struct field_info));
11360
11361 child_die = die->child;
11362
11363 while (child_die && child_die->tag)
11364 {
11365 if (child_die->tag == DW_TAG_member
11366 || child_die->tag == DW_TAG_variable)
11367 {
11368 /* NOTE: carlton/2002-11-05: A C++ static data member
11369 should be a DW_TAG_member that is a declaration, but
11370 all versions of G++ as of this writing (so through at
11371 least 3.2.1) incorrectly generate DW_TAG_variable
11372 tags for them instead. */
11373 dwarf2_add_field (&fi, child_die, cu);
11374 }
11375 else if (child_die->tag == DW_TAG_subprogram)
11376 {
11377 /* C++ member function. */
11378 dwarf2_add_member_fn (&fi, child_die, type, cu);
11379 }
11380 else if (child_die->tag == DW_TAG_inheritance)
11381 {
11382 /* C++ base class field. */
11383 dwarf2_add_field (&fi, child_die, cu);
11384 }
11385 else if (child_die->tag == DW_TAG_typedef)
11386 dwarf2_add_typedef (&fi, child_die, cu);
11387 else if (child_die->tag == DW_TAG_template_type_param
11388 || child_die->tag == DW_TAG_template_value_param)
11389 {
11390 struct symbol *arg = new_symbol (child_die, NULL, cu);
11391
11392 if (arg != NULL)
11393 VEC_safe_push (symbolp, template_args, arg);
11394 }
11395
11396 child_die = sibling_die (child_die);
11397 }
11398
11399 /* Attach template arguments to type. */
11400 if (! VEC_empty (symbolp, template_args))
11401 {
11402 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11403 TYPE_N_TEMPLATE_ARGUMENTS (type)
11404 = VEC_length (symbolp, template_args);
11405 TYPE_TEMPLATE_ARGUMENTS (type)
11406 = obstack_alloc (&objfile->objfile_obstack,
11407 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11408 * sizeof (struct symbol *)));
11409 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11410 VEC_address (symbolp, template_args),
11411 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11412 * sizeof (struct symbol *)));
11413 VEC_free (symbolp, template_args);
11414 }
11415
11416 /* Attach fields and member functions to the type. */
11417 if (fi.nfields)
11418 dwarf2_attach_fields_to_type (&fi, type, cu);
11419 if (fi.nfnfields)
11420 {
11421 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11422
11423 /* Get the type which refers to the base class (possibly this
11424 class itself) which contains the vtable pointer for the current
11425 class from the DW_AT_containing_type attribute. This use of
11426 DW_AT_containing_type is a GNU extension. */
11427
11428 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11429 {
11430 struct type *t = die_containing_type (die, cu);
11431
11432 TYPE_VPTR_BASETYPE (type) = t;
11433 if (type == t)
11434 {
11435 int i;
11436
11437 /* Our own class provides vtbl ptr. */
11438 for (i = TYPE_NFIELDS (t) - 1;
11439 i >= TYPE_N_BASECLASSES (t);
11440 --i)
11441 {
11442 const char *fieldname = TYPE_FIELD_NAME (t, i);
11443
11444 if (is_vtable_name (fieldname, cu))
11445 {
11446 TYPE_VPTR_FIELDNO (type) = i;
11447 break;
11448 }
11449 }
11450
11451 /* Complain if virtual function table field not found. */
11452 if (i < TYPE_N_BASECLASSES (t))
11453 complaint (&symfile_complaints,
11454 _("virtual function table pointer "
11455 "not found when defining class '%s'"),
11456 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11457 "");
11458 }
11459 else
11460 {
11461 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11462 }
11463 }
11464 else if (cu->producer
11465 && strncmp (cu->producer,
11466 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11467 {
11468 /* The IBM XLC compiler does not provide direct indication
11469 of the containing type, but the vtable pointer is
11470 always named __vfp. */
11471
11472 int i;
11473
11474 for (i = TYPE_NFIELDS (type) - 1;
11475 i >= TYPE_N_BASECLASSES (type);
11476 --i)
11477 {
11478 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11479 {
11480 TYPE_VPTR_FIELDNO (type) = i;
11481 TYPE_VPTR_BASETYPE (type) = type;
11482 break;
11483 }
11484 }
11485 }
11486 }
11487
11488 /* Copy fi.typedef_field_list linked list elements content into the
11489 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11490 if (fi.typedef_field_list)
11491 {
11492 int i = fi.typedef_field_list_count;
11493
11494 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11495 TYPE_TYPEDEF_FIELD_ARRAY (type)
11496 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11497 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11498
11499 /* Reverse the list order to keep the debug info elements order. */
11500 while (--i >= 0)
11501 {
11502 struct typedef_field *dest, *src;
11503
11504 dest = &TYPE_TYPEDEF_FIELD (type, i);
11505 src = &fi.typedef_field_list->field;
11506 fi.typedef_field_list = fi.typedef_field_list->next;
11507 *dest = *src;
11508 }
11509 }
11510
11511 do_cleanups (back_to);
11512
11513 if (HAVE_CPLUS_STRUCT (type))
11514 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11515 }
11516
11517 quirk_gcc_member_function_pointer (type, objfile);
11518
11519 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11520 snapshots) has been known to create a die giving a declaration
11521 for a class that has, as a child, a die giving a definition for a
11522 nested class. So we have to process our children even if the
11523 current die is a declaration. Normally, of course, a declaration
11524 won't have any children at all. */
11525
11526 while (child_die != NULL && child_die->tag)
11527 {
11528 if (child_die->tag == DW_TAG_member
11529 || child_die->tag == DW_TAG_variable
11530 || child_die->tag == DW_TAG_inheritance
11531 || child_die->tag == DW_TAG_template_value_param
11532 || child_die->tag == DW_TAG_template_type_param)
11533 {
11534 /* Do nothing. */
11535 }
11536 else
11537 process_die (child_die, cu);
11538
11539 child_die = sibling_die (child_die);
11540 }
11541
11542 /* Do not consider external references. According to the DWARF standard,
11543 these DIEs are identified by the fact that they have no byte_size
11544 attribute, and a declaration attribute. */
11545 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11546 || !die_is_declaration (die, cu))
11547 new_symbol (die, type, cu);
11548 }
11549
11550 /* Given a DW_AT_enumeration_type die, set its type. We do not
11551 complete the type's fields yet, or create any symbols. */
11552
11553 static struct type *
11554 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11555 {
11556 struct objfile *objfile = cu->objfile;
11557 struct type *type;
11558 struct attribute *attr;
11559 const char *name;
11560
11561 /* If the definition of this type lives in .debug_types, read that type.
11562 Don't follow DW_AT_specification though, that will take us back up
11563 the chain and we want to go down. */
11564 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11565 if (attr)
11566 {
11567 struct dwarf2_cu *type_cu = cu;
11568 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11569
11570 type = read_type_die (type_die, type_cu);
11571
11572 /* TYPE_CU may not be the same as CU.
11573 Ensure TYPE is recorded in CU's type_hash table. */
11574 return set_die_type (die, type, cu);
11575 }
11576
11577 type = alloc_type (objfile);
11578
11579 TYPE_CODE (type) = TYPE_CODE_ENUM;
11580 name = dwarf2_full_name (NULL, die, cu);
11581 if (name != NULL)
11582 TYPE_TAG_NAME (type) = (char *) name;
11583
11584 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11585 if (attr)
11586 {
11587 TYPE_LENGTH (type) = DW_UNSND (attr);
11588 }
11589 else
11590 {
11591 TYPE_LENGTH (type) = 0;
11592 }
11593
11594 /* The enumeration DIE can be incomplete. In Ada, any type can be
11595 declared as private in the package spec, and then defined only
11596 inside the package body. Such types are known as Taft Amendment
11597 Types. When another package uses such a type, an incomplete DIE
11598 may be generated by the compiler. */
11599 if (die_is_declaration (die, cu))
11600 TYPE_STUB (type) = 1;
11601
11602 return set_die_type (die, type, cu);
11603 }
11604
11605 /* Given a pointer to a die which begins an enumeration, process all
11606 the dies that define the members of the enumeration, and create the
11607 symbol for the enumeration type.
11608
11609 NOTE: We reverse the order of the element list. */
11610
11611 static void
11612 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11613 {
11614 struct type *this_type;
11615
11616 this_type = get_die_type (die, cu);
11617 if (this_type == NULL)
11618 this_type = read_enumeration_type (die, cu);
11619
11620 if (die->child != NULL)
11621 {
11622 struct die_info *child_die;
11623 struct symbol *sym;
11624 struct field *fields = NULL;
11625 int num_fields = 0;
11626 int unsigned_enum = 1;
11627 char *name;
11628 int flag_enum = 1;
11629 ULONGEST mask = 0;
11630
11631 child_die = die->child;
11632 while (child_die && child_die->tag)
11633 {
11634 if (child_die->tag != DW_TAG_enumerator)
11635 {
11636 process_die (child_die, cu);
11637 }
11638 else
11639 {
11640 name = dwarf2_name (child_die, cu);
11641 if (name)
11642 {
11643 sym = new_symbol (child_die, this_type, cu);
11644 if (SYMBOL_VALUE (sym) < 0)
11645 {
11646 unsigned_enum = 0;
11647 flag_enum = 0;
11648 }
11649 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11650 flag_enum = 0;
11651 else
11652 mask |= SYMBOL_VALUE (sym);
11653
11654 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11655 {
11656 fields = (struct field *)
11657 xrealloc (fields,
11658 (num_fields + DW_FIELD_ALLOC_CHUNK)
11659 * sizeof (struct field));
11660 }
11661
11662 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11663 FIELD_TYPE (fields[num_fields]) = NULL;
11664 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11665 FIELD_BITSIZE (fields[num_fields]) = 0;
11666
11667 num_fields++;
11668 }
11669 }
11670
11671 child_die = sibling_die (child_die);
11672 }
11673
11674 if (num_fields)
11675 {
11676 TYPE_NFIELDS (this_type) = num_fields;
11677 TYPE_FIELDS (this_type) = (struct field *)
11678 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11679 memcpy (TYPE_FIELDS (this_type), fields,
11680 sizeof (struct field) * num_fields);
11681 xfree (fields);
11682 }
11683 if (unsigned_enum)
11684 TYPE_UNSIGNED (this_type) = 1;
11685 if (flag_enum)
11686 TYPE_FLAG_ENUM (this_type) = 1;
11687 }
11688
11689 /* If we are reading an enum from a .debug_types unit, and the enum
11690 is a declaration, and the enum is not the signatured type in the
11691 unit, then we do not want to add a symbol for it. Adding a
11692 symbol would in some cases obscure the true definition of the
11693 enum, giving users an incomplete type when the definition is
11694 actually available. Note that we do not want to do this for all
11695 enums which are just declarations, because C++0x allows forward
11696 enum declarations. */
11697 if (cu->per_cu->is_debug_types
11698 && die_is_declaration (die, cu))
11699 {
11700 struct signatured_type *sig_type;
11701
11702 sig_type
11703 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11704 cu->per_cu->info_or_types_section,
11705 cu->per_cu->offset);
11706 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11707 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11708 return;
11709 }
11710
11711 new_symbol (die, this_type, cu);
11712 }
11713
11714 /* Extract all information from a DW_TAG_array_type DIE and put it in
11715 the DIE's type field. For now, this only handles one dimensional
11716 arrays. */
11717
11718 static struct type *
11719 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11720 {
11721 struct objfile *objfile = cu->objfile;
11722 struct die_info *child_die;
11723 struct type *type;
11724 struct type *element_type, *range_type, *index_type;
11725 struct type **range_types = NULL;
11726 struct attribute *attr;
11727 int ndim = 0;
11728 struct cleanup *back_to;
11729 char *name;
11730
11731 element_type = die_type (die, cu);
11732
11733 /* The die_type call above may have already set the type for this DIE. */
11734 type = get_die_type (die, cu);
11735 if (type)
11736 return type;
11737
11738 /* Irix 6.2 native cc creates array types without children for
11739 arrays with unspecified length. */
11740 if (die->child == NULL)
11741 {
11742 index_type = objfile_type (objfile)->builtin_int;
11743 range_type = create_range_type (NULL, index_type, 0, -1);
11744 type = create_array_type (NULL, element_type, range_type);
11745 return set_die_type (die, type, cu);
11746 }
11747
11748 back_to = make_cleanup (null_cleanup, NULL);
11749 child_die = die->child;
11750 while (child_die && child_die->tag)
11751 {
11752 if (child_die->tag == DW_TAG_subrange_type)
11753 {
11754 struct type *child_type = read_type_die (child_die, cu);
11755
11756 if (child_type != NULL)
11757 {
11758 /* The range type was succesfully read. Save it for the
11759 array type creation. */
11760 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11761 {
11762 range_types = (struct type **)
11763 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11764 * sizeof (struct type *));
11765 if (ndim == 0)
11766 make_cleanup (free_current_contents, &range_types);
11767 }
11768 range_types[ndim++] = child_type;
11769 }
11770 }
11771 child_die = sibling_die (child_die);
11772 }
11773
11774 /* Dwarf2 dimensions are output from left to right, create the
11775 necessary array types in backwards order. */
11776
11777 type = element_type;
11778
11779 if (read_array_order (die, cu) == DW_ORD_col_major)
11780 {
11781 int i = 0;
11782
11783 while (i < ndim)
11784 type = create_array_type (NULL, type, range_types[i++]);
11785 }
11786 else
11787 {
11788 while (ndim-- > 0)
11789 type = create_array_type (NULL, type, range_types[ndim]);
11790 }
11791
11792 /* Understand Dwarf2 support for vector types (like they occur on
11793 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11794 array type. This is not part of the Dwarf2/3 standard yet, but a
11795 custom vendor extension. The main difference between a regular
11796 array and the vector variant is that vectors are passed by value
11797 to functions. */
11798 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11799 if (attr)
11800 make_vector_type (type);
11801
11802 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11803 implementation may choose to implement triple vectors using this
11804 attribute. */
11805 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11806 if (attr)
11807 {
11808 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11809 TYPE_LENGTH (type) = DW_UNSND (attr);
11810 else
11811 complaint (&symfile_complaints,
11812 _("DW_AT_byte_size for array type smaller "
11813 "than the total size of elements"));
11814 }
11815
11816 name = dwarf2_name (die, cu);
11817 if (name)
11818 TYPE_NAME (type) = name;
11819
11820 /* Install the type in the die. */
11821 set_die_type (die, type, cu);
11822
11823 /* set_die_type should be already done. */
11824 set_descriptive_type (type, die, cu);
11825
11826 do_cleanups (back_to);
11827
11828 return type;
11829 }
11830
11831 static enum dwarf_array_dim_ordering
11832 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11833 {
11834 struct attribute *attr;
11835
11836 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11837
11838 if (attr) return DW_SND (attr);
11839
11840 /* GNU F77 is a special case, as at 08/2004 array type info is the
11841 opposite order to the dwarf2 specification, but data is still
11842 laid out as per normal fortran.
11843
11844 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11845 version checking. */
11846
11847 if (cu->language == language_fortran
11848 && cu->producer && strstr (cu->producer, "GNU F77"))
11849 {
11850 return DW_ORD_row_major;
11851 }
11852
11853 switch (cu->language_defn->la_array_ordering)
11854 {
11855 case array_column_major:
11856 return DW_ORD_col_major;
11857 case array_row_major:
11858 default:
11859 return DW_ORD_row_major;
11860 };
11861 }
11862
11863 /* Extract all information from a DW_TAG_set_type DIE and put it in
11864 the DIE's type field. */
11865
11866 static struct type *
11867 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11868 {
11869 struct type *domain_type, *set_type;
11870 struct attribute *attr;
11871
11872 domain_type = die_type (die, cu);
11873
11874 /* The die_type call above may have already set the type for this DIE. */
11875 set_type = get_die_type (die, cu);
11876 if (set_type)
11877 return set_type;
11878
11879 set_type = create_set_type (NULL, domain_type);
11880
11881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11882 if (attr)
11883 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11884
11885 return set_die_type (die, set_type, cu);
11886 }
11887
11888 /* A helper for read_common_block that creates a locexpr baton.
11889 SYM is the symbol which we are marking as computed.
11890 COMMON_DIE is the DIE for the common block.
11891 COMMON_LOC is the location expression attribute for the common
11892 block itself.
11893 MEMBER_LOC is the location expression attribute for the particular
11894 member of the common block that we are processing.
11895 CU is the CU from which the above come. */
11896
11897 static void
11898 mark_common_block_symbol_computed (struct symbol *sym,
11899 struct die_info *common_die,
11900 struct attribute *common_loc,
11901 struct attribute *member_loc,
11902 struct dwarf2_cu *cu)
11903 {
11904 struct objfile *objfile = dwarf2_per_objfile->objfile;
11905 struct dwarf2_locexpr_baton *baton;
11906 gdb_byte *ptr;
11907 unsigned int cu_off;
11908 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11909 LONGEST offset = 0;
11910
11911 gdb_assert (common_loc && member_loc);
11912 gdb_assert (attr_form_is_block (common_loc));
11913 gdb_assert (attr_form_is_block (member_loc)
11914 || attr_form_is_constant (member_loc));
11915
11916 baton = obstack_alloc (&objfile->objfile_obstack,
11917 sizeof (struct dwarf2_locexpr_baton));
11918 baton->per_cu = cu->per_cu;
11919 gdb_assert (baton->per_cu);
11920
11921 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11922
11923 if (attr_form_is_constant (member_loc))
11924 {
11925 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11926 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11927 }
11928 else
11929 baton->size += DW_BLOCK (member_loc)->size;
11930
11931 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11932 baton->data = ptr;
11933
11934 *ptr++ = DW_OP_call4;
11935 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11936 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11937 ptr += 4;
11938
11939 if (attr_form_is_constant (member_loc))
11940 {
11941 *ptr++ = DW_OP_addr;
11942 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11943 ptr += cu->header.addr_size;
11944 }
11945 else
11946 {
11947 /* We have to copy the data here, because DW_OP_call4 will only
11948 use a DW_AT_location attribute. */
11949 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11950 ptr += DW_BLOCK (member_loc)->size;
11951 }
11952
11953 *ptr++ = DW_OP_plus;
11954 gdb_assert (ptr - baton->data == baton->size);
11955
11956 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11957 SYMBOL_LOCATION_BATON (sym) = baton;
11958 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11959 }
11960
11961 /* Create appropriate locally-scoped variables for all the
11962 DW_TAG_common_block entries. Also create a struct common_block
11963 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11964 is used to sepate the common blocks name namespace from regular
11965 variable names. */
11966
11967 static void
11968 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11969 {
11970 struct attribute *attr;
11971
11972 attr = dwarf2_attr (die, DW_AT_location, cu);
11973 if (attr)
11974 {
11975 /* Support the .debug_loc offsets. */
11976 if (attr_form_is_block (attr))
11977 {
11978 /* Ok. */
11979 }
11980 else if (attr_form_is_section_offset (attr))
11981 {
11982 dwarf2_complex_location_expr_complaint ();
11983 attr = NULL;
11984 }
11985 else
11986 {
11987 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11988 "common block member");
11989 attr = NULL;
11990 }
11991 }
11992
11993 if (die->child != NULL)
11994 {
11995 struct objfile *objfile = cu->objfile;
11996 struct die_info *child_die;
11997 size_t n_entries = 0, size;
11998 struct common_block *common_block;
11999 struct symbol *sym;
12000
12001 for (child_die = die->child;
12002 child_die && child_die->tag;
12003 child_die = sibling_die (child_die))
12004 ++n_entries;
12005
12006 size = (sizeof (struct common_block)
12007 + (n_entries - 1) * sizeof (struct symbol *));
12008 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12009 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12010 common_block->n_entries = 0;
12011
12012 for (child_die = die->child;
12013 child_die && child_die->tag;
12014 child_die = sibling_die (child_die))
12015 {
12016 /* Create the symbol in the DW_TAG_common_block block in the current
12017 symbol scope. */
12018 sym = new_symbol (child_die, NULL, cu);
12019 if (sym != NULL)
12020 {
12021 struct attribute *member_loc;
12022
12023 common_block->contents[common_block->n_entries++] = sym;
12024
12025 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12026 cu);
12027 if (member_loc)
12028 {
12029 /* GDB has handled this for a long time, but it is
12030 not specified by DWARF. It seems to have been
12031 emitted by gfortran at least as recently as:
12032 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12033 complaint (&symfile_complaints,
12034 _("Variable in common block has "
12035 "DW_AT_data_member_location "
12036 "- DIE at 0x%x [in module %s]"),
12037 child_die->offset.sect_off, cu->objfile->name);
12038
12039 if (attr_form_is_section_offset (member_loc))
12040 dwarf2_complex_location_expr_complaint ();
12041 else if (attr_form_is_constant (member_loc)
12042 || attr_form_is_block (member_loc))
12043 {
12044 if (attr)
12045 mark_common_block_symbol_computed (sym, die, attr,
12046 member_loc, cu);
12047 }
12048 else
12049 dwarf2_complex_location_expr_complaint ();
12050 }
12051 }
12052 }
12053
12054 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12055 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12056 }
12057 }
12058
12059 /* Create a type for a C++ namespace. */
12060
12061 static struct type *
12062 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12063 {
12064 struct objfile *objfile = cu->objfile;
12065 const char *previous_prefix, *name;
12066 int is_anonymous;
12067 struct type *type;
12068
12069 /* For extensions, reuse the type of the original namespace. */
12070 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12071 {
12072 struct die_info *ext_die;
12073 struct dwarf2_cu *ext_cu = cu;
12074
12075 ext_die = dwarf2_extension (die, &ext_cu);
12076 type = read_type_die (ext_die, ext_cu);
12077
12078 /* EXT_CU may not be the same as CU.
12079 Ensure TYPE is recorded in CU's type_hash table. */
12080 return set_die_type (die, type, cu);
12081 }
12082
12083 name = namespace_name (die, &is_anonymous, cu);
12084
12085 /* Now build the name of the current namespace. */
12086
12087 previous_prefix = determine_prefix (die, cu);
12088 if (previous_prefix[0] != '\0')
12089 name = typename_concat (&objfile->objfile_obstack,
12090 previous_prefix, name, 0, cu);
12091
12092 /* Create the type. */
12093 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12094 objfile);
12095 TYPE_NAME (type) = (char *) name;
12096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12097
12098 return set_die_type (die, type, cu);
12099 }
12100
12101 /* Read a C++ namespace. */
12102
12103 static void
12104 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12105 {
12106 struct objfile *objfile = cu->objfile;
12107 int is_anonymous;
12108
12109 /* Add a symbol associated to this if we haven't seen the namespace
12110 before. Also, add a using directive if it's an anonymous
12111 namespace. */
12112
12113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12114 {
12115 struct type *type;
12116
12117 type = read_type_die (die, cu);
12118 new_symbol (die, type, cu);
12119
12120 namespace_name (die, &is_anonymous, cu);
12121 if (is_anonymous)
12122 {
12123 const char *previous_prefix = determine_prefix (die, cu);
12124
12125 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12126 NULL, NULL, &objfile->objfile_obstack);
12127 }
12128 }
12129
12130 if (die->child != NULL)
12131 {
12132 struct die_info *child_die = die->child;
12133
12134 while (child_die && child_die->tag)
12135 {
12136 process_die (child_die, cu);
12137 child_die = sibling_die (child_die);
12138 }
12139 }
12140 }
12141
12142 /* Read a Fortran module as type. This DIE can be only a declaration used for
12143 imported module. Still we need that type as local Fortran "use ... only"
12144 declaration imports depend on the created type in determine_prefix. */
12145
12146 static struct type *
12147 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12148 {
12149 struct objfile *objfile = cu->objfile;
12150 char *module_name;
12151 struct type *type;
12152
12153 module_name = dwarf2_name (die, cu);
12154 if (!module_name)
12155 complaint (&symfile_complaints,
12156 _("DW_TAG_module has no name, offset 0x%x"),
12157 die->offset.sect_off);
12158 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12159
12160 /* determine_prefix uses TYPE_TAG_NAME. */
12161 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12162
12163 return set_die_type (die, type, cu);
12164 }
12165
12166 /* Read a Fortran module. */
12167
12168 static void
12169 read_module (struct die_info *die, struct dwarf2_cu *cu)
12170 {
12171 struct die_info *child_die = die->child;
12172
12173 while (child_die && child_die->tag)
12174 {
12175 process_die (child_die, cu);
12176 child_die = sibling_die (child_die);
12177 }
12178 }
12179
12180 /* Return the name of the namespace represented by DIE. Set
12181 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12182 namespace. */
12183
12184 static const char *
12185 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12186 {
12187 struct die_info *current_die;
12188 const char *name = NULL;
12189
12190 /* Loop through the extensions until we find a name. */
12191
12192 for (current_die = die;
12193 current_die != NULL;
12194 current_die = dwarf2_extension (die, &cu))
12195 {
12196 name = dwarf2_name (current_die, cu);
12197 if (name != NULL)
12198 break;
12199 }
12200
12201 /* Is it an anonymous namespace? */
12202
12203 *is_anonymous = (name == NULL);
12204 if (*is_anonymous)
12205 name = CP_ANONYMOUS_NAMESPACE_STR;
12206
12207 return name;
12208 }
12209
12210 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12211 the user defined type vector. */
12212
12213 static struct type *
12214 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12215 {
12216 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12217 struct comp_unit_head *cu_header = &cu->header;
12218 struct type *type;
12219 struct attribute *attr_byte_size;
12220 struct attribute *attr_address_class;
12221 int byte_size, addr_class;
12222 struct type *target_type;
12223
12224 target_type = die_type (die, cu);
12225
12226 /* The die_type call above may have already set the type for this DIE. */
12227 type = get_die_type (die, cu);
12228 if (type)
12229 return type;
12230
12231 type = lookup_pointer_type (target_type);
12232
12233 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12234 if (attr_byte_size)
12235 byte_size = DW_UNSND (attr_byte_size);
12236 else
12237 byte_size = cu_header->addr_size;
12238
12239 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12240 if (attr_address_class)
12241 addr_class = DW_UNSND (attr_address_class);
12242 else
12243 addr_class = DW_ADDR_none;
12244
12245 /* If the pointer size or address class is different than the
12246 default, create a type variant marked as such and set the
12247 length accordingly. */
12248 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12249 {
12250 if (gdbarch_address_class_type_flags_p (gdbarch))
12251 {
12252 int type_flags;
12253
12254 type_flags = gdbarch_address_class_type_flags
12255 (gdbarch, byte_size, addr_class);
12256 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12257 == 0);
12258 type = make_type_with_address_space (type, type_flags);
12259 }
12260 else if (TYPE_LENGTH (type) != byte_size)
12261 {
12262 complaint (&symfile_complaints,
12263 _("invalid pointer size %d"), byte_size);
12264 }
12265 else
12266 {
12267 /* Should we also complain about unhandled address classes? */
12268 }
12269 }
12270
12271 TYPE_LENGTH (type) = byte_size;
12272 return set_die_type (die, type, cu);
12273 }
12274
12275 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12276 the user defined type vector. */
12277
12278 static struct type *
12279 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12280 {
12281 struct type *type;
12282 struct type *to_type;
12283 struct type *domain;
12284
12285 to_type = die_type (die, cu);
12286 domain = die_containing_type (die, cu);
12287
12288 /* The calls above may have already set the type for this DIE. */
12289 type = get_die_type (die, cu);
12290 if (type)
12291 return type;
12292
12293 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12294 type = lookup_methodptr_type (to_type);
12295 else
12296 type = lookup_memberptr_type (to_type, domain);
12297
12298 return set_die_type (die, type, cu);
12299 }
12300
12301 /* Extract all information from a DW_TAG_reference_type DIE and add to
12302 the user defined type vector. */
12303
12304 static struct type *
12305 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12306 {
12307 struct comp_unit_head *cu_header = &cu->header;
12308 struct type *type, *target_type;
12309 struct attribute *attr;
12310
12311 target_type = die_type (die, cu);
12312
12313 /* The die_type call above may have already set the type for this DIE. */
12314 type = get_die_type (die, cu);
12315 if (type)
12316 return type;
12317
12318 type = lookup_reference_type (target_type);
12319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12320 if (attr)
12321 {
12322 TYPE_LENGTH (type) = DW_UNSND (attr);
12323 }
12324 else
12325 {
12326 TYPE_LENGTH (type) = cu_header->addr_size;
12327 }
12328 return set_die_type (die, type, cu);
12329 }
12330
12331 static struct type *
12332 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12333 {
12334 struct type *base_type, *cv_type;
12335
12336 base_type = die_type (die, cu);
12337
12338 /* The die_type call above may have already set the type for this DIE. */
12339 cv_type = get_die_type (die, cu);
12340 if (cv_type)
12341 return cv_type;
12342
12343 /* In case the const qualifier is applied to an array type, the element type
12344 is so qualified, not the array type (section 6.7.3 of C99). */
12345 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12346 {
12347 struct type *el_type, *inner_array;
12348
12349 base_type = copy_type (base_type);
12350 inner_array = base_type;
12351
12352 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12353 {
12354 TYPE_TARGET_TYPE (inner_array) =
12355 copy_type (TYPE_TARGET_TYPE (inner_array));
12356 inner_array = TYPE_TARGET_TYPE (inner_array);
12357 }
12358
12359 el_type = TYPE_TARGET_TYPE (inner_array);
12360 TYPE_TARGET_TYPE (inner_array) =
12361 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12362
12363 return set_die_type (die, base_type, cu);
12364 }
12365
12366 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12367 return set_die_type (die, cv_type, cu);
12368 }
12369
12370 static struct type *
12371 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12372 {
12373 struct type *base_type, *cv_type;
12374
12375 base_type = die_type (die, cu);
12376
12377 /* The die_type call above may have already set the type for this DIE. */
12378 cv_type = get_die_type (die, cu);
12379 if (cv_type)
12380 return cv_type;
12381
12382 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12383 return set_die_type (die, cv_type, cu);
12384 }
12385
12386 /* Extract all information from a DW_TAG_string_type DIE and add to
12387 the user defined type vector. It isn't really a user defined type,
12388 but it behaves like one, with other DIE's using an AT_user_def_type
12389 attribute to reference it. */
12390
12391 static struct type *
12392 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12393 {
12394 struct objfile *objfile = cu->objfile;
12395 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12396 struct type *type, *range_type, *index_type, *char_type;
12397 struct attribute *attr;
12398 unsigned int length;
12399
12400 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12401 if (attr)
12402 {
12403 length = DW_UNSND (attr);
12404 }
12405 else
12406 {
12407 /* Check for the DW_AT_byte_size attribute. */
12408 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12409 if (attr)
12410 {
12411 length = DW_UNSND (attr);
12412 }
12413 else
12414 {
12415 length = 1;
12416 }
12417 }
12418
12419 index_type = objfile_type (objfile)->builtin_int;
12420 range_type = create_range_type (NULL, index_type, 1, length);
12421 char_type = language_string_char_type (cu->language_defn, gdbarch);
12422 type = create_string_type (NULL, char_type, range_type);
12423
12424 return set_die_type (die, type, cu);
12425 }
12426
12427 /* Handle DIES due to C code like:
12428
12429 struct foo
12430 {
12431 int (*funcp)(int a, long l);
12432 int b;
12433 };
12434
12435 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12436
12437 static struct type *
12438 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12439 {
12440 struct objfile *objfile = cu->objfile;
12441 struct type *type; /* Type that this function returns. */
12442 struct type *ftype; /* Function that returns above type. */
12443 struct attribute *attr;
12444
12445 type = die_type (die, cu);
12446
12447 /* The die_type call above may have already set the type for this DIE. */
12448 ftype = get_die_type (die, cu);
12449 if (ftype)
12450 return ftype;
12451
12452 ftype = lookup_function_type (type);
12453
12454 /* All functions in C++, Pascal and Java have prototypes. */
12455 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12456 if ((attr && (DW_UNSND (attr) != 0))
12457 || cu->language == language_cplus
12458 || cu->language == language_java
12459 || cu->language == language_pascal)
12460 TYPE_PROTOTYPED (ftype) = 1;
12461 else if (producer_is_realview (cu->producer))
12462 /* RealView does not emit DW_AT_prototyped. We can not
12463 distinguish prototyped and unprototyped functions; default to
12464 prototyped, since that is more common in modern code (and
12465 RealView warns about unprototyped functions). */
12466 TYPE_PROTOTYPED (ftype) = 1;
12467
12468 /* Store the calling convention in the type if it's available in
12469 the subroutine die. Otherwise set the calling convention to
12470 the default value DW_CC_normal. */
12471 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12472 if (attr)
12473 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12474 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12475 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12476 else
12477 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12478
12479 /* We need to add the subroutine type to the die immediately so
12480 we don't infinitely recurse when dealing with parameters
12481 declared as the same subroutine type. */
12482 set_die_type (die, ftype, cu);
12483
12484 if (die->child != NULL)
12485 {
12486 struct type *void_type = objfile_type (objfile)->builtin_void;
12487 struct die_info *child_die;
12488 int nparams, iparams;
12489
12490 /* Count the number of parameters.
12491 FIXME: GDB currently ignores vararg functions, but knows about
12492 vararg member functions. */
12493 nparams = 0;
12494 child_die = die->child;
12495 while (child_die && child_die->tag)
12496 {
12497 if (child_die->tag == DW_TAG_formal_parameter)
12498 nparams++;
12499 else if (child_die->tag == DW_TAG_unspecified_parameters)
12500 TYPE_VARARGS (ftype) = 1;
12501 child_die = sibling_die (child_die);
12502 }
12503
12504 /* Allocate storage for parameters and fill them in. */
12505 TYPE_NFIELDS (ftype) = nparams;
12506 TYPE_FIELDS (ftype) = (struct field *)
12507 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12508
12509 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12510 even if we error out during the parameters reading below. */
12511 for (iparams = 0; iparams < nparams; iparams++)
12512 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12513
12514 iparams = 0;
12515 child_die = die->child;
12516 while (child_die && child_die->tag)
12517 {
12518 if (child_die->tag == DW_TAG_formal_parameter)
12519 {
12520 struct type *arg_type;
12521
12522 /* DWARF version 2 has no clean way to discern C++
12523 static and non-static member functions. G++ helps
12524 GDB by marking the first parameter for non-static
12525 member functions (which is the this pointer) as
12526 artificial. We pass this information to
12527 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12528
12529 DWARF version 3 added DW_AT_object_pointer, which GCC
12530 4.5 does not yet generate. */
12531 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12532 if (attr)
12533 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12534 else
12535 {
12536 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12537
12538 /* GCC/43521: In java, the formal parameter
12539 "this" is sometimes not marked with DW_AT_artificial. */
12540 if (cu->language == language_java)
12541 {
12542 const char *name = dwarf2_name (child_die, cu);
12543
12544 if (name && !strcmp (name, "this"))
12545 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12546 }
12547 }
12548 arg_type = die_type (child_die, cu);
12549
12550 /* RealView does not mark THIS as const, which the testsuite
12551 expects. GCC marks THIS as const in method definitions,
12552 but not in the class specifications (GCC PR 43053). */
12553 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12554 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12555 {
12556 int is_this = 0;
12557 struct dwarf2_cu *arg_cu = cu;
12558 const char *name = dwarf2_name (child_die, cu);
12559
12560 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12561 if (attr)
12562 {
12563 /* If the compiler emits this, use it. */
12564 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12565 is_this = 1;
12566 }
12567 else if (name && strcmp (name, "this") == 0)
12568 /* Function definitions will have the argument names. */
12569 is_this = 1;
12570 else if (name == NULL && iparams == 0)
12571 /* Declarations may not have the names, so like
12572 elsewhere in GDB, assume an artificial first
12573 argument is "this". */
12574 is_this = 1;
12575
12576 if (is_this)
12577 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12578 arg_type, 0);
12579 }
12580
12581 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12582 iparams++;
12583 }
12584 child_die = sibling_die (child_die);
12585 }
12586 }
12587
12588 return ftype;
12589 }
12590
12591 static struct type *
12592 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12593 {
12594 struct objfile *objfile = cu->objfile;
12595 const char *name = NULL;
12596 struct type *this_type, *target_type;
12597
12598 name = dwarf2_full_name (NULL, die, cu);
12599 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12600 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12601 TYPE_NAME (this_type) = (char *) name;
12602 set_die_type (die, this_type, cu);
12603 target_type = die_type (die, cu);
12604 if (target_type != this_type)
12605 TYPE_TARGET_TYPE (this_type) = target_type;
12606 else
12607 {
12608 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12609 spec and cause infinite loops in GDB. */
12610 complaint (&symfile_complaints,
12611 _("Self-referential DW_TAG_typedef "
12612 "- DIE at 0x%x [in module %s]"),
12613 die->offset.sect_off, objfile->name);
12614 TYPE_TARGET_TYPE (this_type) = NULL;
12615 }
12616 return this_type;
12617 }
12618
12619 /* Find a representation of a given base type and install
12620 it in the TYPE field of the die. */
12621
12622 static struct type *
12623 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12624 {
12625 struct objfile *objfile = cu->objfile;
12626 struct type *type;
12627 struct attribute *attr;
12628 int encoding = 0, size = 0;
12629 char *name;
12630 enum type_code code = TYPE_CODE_INT;
12631 int type_flags = 0;
12632 struct type *target_type = NULL;
12633
12634 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12635 if (attr)
12636 {
12637 encoding = DW_UNSND (attr);
12638 }
12639 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12640 if (attr)
12641 {
12642 size = DW_UNSND (attr);
12643 }
12644 name = dwarf2_name (die, cu);
12645 if (!name)
12646 {
12647 complaint (&symfile_complaints,
12648 _("DW_AT_name missing from DW_TAG_base_type"));
12649 }
12650
12651 switch (encoding)
12652 {
12653 case DW_ATE_address:
12654 /* Turn DW_ATE_address into a void * pointer. */
12655 code = TYPE_CODE_PTR;
12656 type_flags |= TYPE_FLAG_UNSIGNED;
12657 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12658 break;
12659 case DW_ATE_boolean:
12660 code = TYPE_CODE_BOOL;
12661 type_flags |= TYPE_FLAG_UNSIGNED;
12662 break;
12663 case DW_ATE_complex_float:
12664 code = TYPE_CODE_COMPLEX;
12665 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12666 break;
12667 case DW_ATE_decimal_float:
12668 code = TYPE_CODE_DECFLOAT;
12669 break;
12670 case DW_ATE_float:
12671 code = TYPE_CODE_FLT;
12672 break;
12673 case DW_ATE_signed:
12674 break;
12675 case DW_ATE_unsigned:
12676 type_flags |= TYPE_FLAG_UNSIGNED;
12677 if (cu->language == language_fortran
12678 && name
12679 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12680 code = TYPE_CODE_CHAR;
12681 break;
12682 case DW_ATE_signed_char:
12683 if (cu->language == language_ada || cu->language == language_m2
12684 || cu->language == language_pascal
12685 || cu->language == language_fortran)
12686 code = TYPE_CODE_CHAR;
12687 break;
12688 case DW_ATE_unsigned_char:
12689 if (cu->language == language_ada || cu->language == language_m2
12690 || cu->language == language_pascal
12691 || cu->language == language_fortran)
12692 code = TYPE_CODE_CHAR;
12693 type_flags |= TYPE_FLAG_UNSIGNED;
12694 break;
12695 case DW_ATE_UTF:
12696 /* We just treat this as an integer and then recognize the
12697 type by name elsewhere. */
12698 break;
12699
12700 default:
12701 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12702 dwarf_type_encoding_name (encoding));
12703 break;
12704 }
12705
12706 type = init_type (code, size, type_flags, NULL, objfile);
12707 TYPE_NAME (type) = name;
12708 TYPE_TARGET_TYPE (type) = target_type;
12709
12710 if (name && strcmp (name, "char") == 0)
12711 TYPE_NOSIGN (type) = 1;
12712
12713 return set_die_type (die, type, cu);
12714 }
12715
12716 /* Read the given DW_AT_subrange DIE. */
12717
12718 static struct type *
12719 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12720 {
12721 struct type *base_type;
12722 struct type *range_type;
12723 struct attribute *attr;
12724 LONGEST low, high;
12725 int low_default_is_valid;
12726 char *name;
12727 LONGEST negative_mask;
12728
12729 base_type = die_type (die, cu);
12730 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12731 check_typedef (base_type);
12732
12733 /* The die_type call above may have already set the type for this DIE. */
12734 range_type = get_die_type (die, cu);
12735 if (range_type)
12736 return range_type;
12737
12738 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12739 omitting DW_AT_lower_bound. */
12740 switch (cu->language)
12741 {
12742 case language_c:
12743 case language_cplus:
12744 low = 0;
12745 low_default_is_valid = 1;
12746 break;
12747 case language_fortran:
12748 low = 1;
12749 low_default_is_valid = 1;
12750 break;
12751 case language_d:
12752 case language_java:
12753 case language_objc:
12754 low = 0;
12755 low_default_is_valid = (cu->header.version >= 4);
12756 break;
12757 case language_ada:
12758 case language_m2:
12759 case language_pascal:
12760 low = 1;
12761 low_default_is_valid = (cu->header.version >= 4);
12762 break;
12763 default:
12764 low = 0;
12765 low_default_is_valid = 0;
12766 break;
12767 }
12768
12769 /* FIXME: For variable sized arrays either of these could be
12770 a variable rather than a constant value. We'll allow it,
12771 but we don't know how to handle it. */
12772 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12773 if (attr)
12774 low = dwarf2_get_attr_constant_value (attr, low);
12775 else if (!low_default_is_valid)
12776 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12777 "- DIE at 0x%x [in module %s]"),
12778 die->offset.sect_off, cu->objfile->name);
12779
12780 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12781 if (attr)
12782 {
12783 if (attr_form_is_block (attr) || is_ref_attr (attr))
12784 {
12785 /* GCC encodes arrays with unspecified or dynamic length
12786 with a DW_FORM_block1 attribute or a reference attribute.
12787 FIXME: GDB does not yet know how to handle dynamic
12788 arrays properly, treat them as arrays with unspecified
12789 length for now.
12790
12791 FIXME: jimb/2003-09-22: GDB does not really know
12792 how to handle arrays of unspecified length
12793 either; we just represent them as zero-length
12794 arrays. Choose an appropriate upper bound given
12795 the lower bound we've computed above. */
12796 high = low - 1;
12797 }
12798 else
12799 high = dwarf2_get_attr_constant_value (attr, 1);
12800 }
12801 else
12802 {
12803 attr = dwarf2_attr (die, DW_AT_count, cu);
12804 if (attr)
12805 {
12806 int count = dwarf2_get_attr_constant_value (attr, 1);
12807 high = low + count - 1;
12808 }
12809 else
12810 {
12811 /* Unspecified array length. */
12812 high = low - 1;
12813 }
12814 }
12815
12816 /* Dwarf-2 specifications explicitly allows to create subrange types
12817 without specifying a base type.
12818 In that case, the base type must be set to the type of
12819 the lower bound, upper bound or count, in that order, if any of these
12820 three attributes references an object that has a type.
12821 If no base type is found, the Dwarf-2 specifications say that
12822 a signed integer type of size equal to the size of an address should
12823 be used.
12824 For the following C code: `extern char gdb_int [];'
12825 GCC produces an empty range DIE.
12826 FIXME: muller/2010-05-28: Possible references to object for low bound,
12827 high bound or count are not yet handled by this code. */
12828 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12829 {
12830 struct objfile *objfile = cu->objfile;
12831 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12832 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12833 struct type *int_type = objfile_type (objfile)->builtin_int;
12834
12835 /* Test "int", "long int", and "long long int" objfile types,
12836 and select the first one having a size above or equal to the
12837 architecture address size. */
12838 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12839 base_type = int_type;
12840 else
12841 {
12842 int_type = objfile_type (objfile)->builtin_long;
12843 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12844 base_type = int_type;
12845 else
12846 {
12847 int_type = objfile_type (objfile)->builtin_long_long;
12848 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12849 base_type = int_type;
12850 }
12851 }
12852 }
12853
12854 negative_mask =
12855 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12856 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12857 low |= negative_mask;
12858 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12859 high |= negative_mask;
12860
12861 range_type = create_range_type (NULL, base_type, low, high);
12862
12863 /* Mark arrays with dynamic length at least as an array of unspecified
12864 length. GDB could check the boundary but before it gets implemented at
12865 least allow accessing the array elements. */
12866 if (attr && attr_form_is_block (attr))
12867 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12868
12869 /* Ada expects an empty array on no boundary attributes. */
12870 if (attr == NULL && cu->language != language_ada)
12871 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12872
12873 name = dwarf2_name (die, cu);
12874 if (name)
12875 TYPE_NAME (range_type) = name;
12876
12877 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12878 if (attr)
12879 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12880
12881 set_die_type (die, range_type, cu);
12882
12883 /* set_die_type should be already done. */
12884 set_descriptive_type (range_type, die, cu);
12885
12886 return range_type;
12887 }
12888
12889 static struct type *
12890 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12891 {
12892 struct type *type;
12893
12894 /* For now, we only support the C meaning of an unspecified type: void. */
12895
12896 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12897 TYPE_NAME (type) = dwarf2_name (die, cu);
12898
12899 return set_die_type (die, type, cu);
12900 }
12901
12902 /* Read a single die and all its descendents. Set the die's sibling
12903 field to NULL; set other fields in the die correctly, and set all
12904 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12905 location of the info_ptr after reading all of those dies. PARENT
12906 is the parent of the die in question. */
12907
12908 static struct die_info *
12909 read_die_and_children (const struct die_reader_specs *reader,
12910 gdb_byte *info_ptr,
12911 gdb_byte **new_info_ptr,
12912 struct die_info *parent)
12913 {
12914 struct die_info *die;
12915 gdb_byte *cur_ptr;
12916 int has_children;
12917
12918 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12919 if (die == NULL)
12920 {
12921 *new_info_ptr = cur_ptr;
12922 return NULL;
12923 }
12924 store_in_ref_table (die, reader->cu);
12925
12926 if (has_children)
12927 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12928 else
12929 {
12930 die->child = NULL;
12931 *new_info_ptr = cur_ptr;
12932 }
12933
12934 die->sibling = NULL;
12935 die->parent = parent;
12936 return die;
12937 }
12938
12939 /* Read a die, all of its descendents, and all of its siblings; set
12940 all of the fields of all of the dies correctly. Arguments are as
12941 in read_die_and_children. */
12942
12943 static struct die_info *
12944 read_die_and_siblings (const struct die_reader_specs *reader,
12945 gdb_byte *info_ptr,
12946 gdb_byte **new_info_ptr,
12947 struct die_info *parent)
12948 {
12949 struct die_info *first_die, *last_sibling;
12950 gdb_byte *cur_ptr;
12951
12952 cur_ptr = info_ptr;
12953 first_die = last_sibling = NULL;
12954
12955 while (1)
12956 {
12957 struct die_info *die
12958 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12959
12960 if (die == NULL)
12961 {
12962 *new_info_ptr = cur_ptr;
12963 return first_die;
12964 }
12965
12966 if (!first_die)
12967 first_die = die;
12968 else
12969 last_sibling->sibling = die;
12970
12971 last_sibling = die;
12972 }
12973 }
12974
12975 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12976 attributes.
12977 The caller is responsible for filling in the extra attributes
12978 and updating (*DIEP)->num_attrs.
12979 Set DIEP to point to a newly allocated die with its information,
12980 except for its child, sibling, and parent fields.
12981 Set HAS_CHILDREN to tell whether the die has children or not. */
12982
12983 static gdb_byte *
12984 read_full_die_1 (const struct die_reader_specs *reader,
12985 struct die_info **diep, gdb_byte *info_ptr,
12986 int *has_children, int num_extra_attrs)
12987 {
12988 unsigned int abbrev_number, bytes_read, i;
12989 sect_offset offset;
12990 struct abbrev_info *abbrev;
12991 struct die_info *die;
12992 struct dwarf2_cu *cu = reader->cu;
12993 bfd *abfd = reader->abfd;
12994
12995 offset.sect_off = info_ptr - reader->buffer;
12996 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12997 info_ptr += bytes_read;
12998 if (!abbrev_number)
12999 {
13000 *diep = NULL;
13001 *has_children = 0;
13002 return info_ptr;
13003 }
13004
13005 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13006 if (!abbrev)
13007 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13008 abbrev_number,
13009 bfd_get_filename (abfd));
13010
13011 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13012 die->offset = offset;
13013 die->tag = abbrev->tag;
13014 die->abbrev = abbrev_number;
13015
13016 /* Make the result usable.
13017 The caller needs to update num_attrs after adding the extra
13018 attributes. */
13019 die->num_attrs = abbrev->num_attrs;
13020
13021 for (i = 0; i < abbrev->num_attrs; ++i)
13022 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13023 info_ptr);
13024
13025 *diep = die;
13026 *has_children = abbrev->has_children;
13027 return info_ptr;
13028 }
13029
13030 /* Read a die and all its attributes.
13031 Set DIEP to point to a newly allocated die with its information,
13032 except for its child, sibling, and parent fields.
13033 Set HAS_CHILDREN to tell whether the die has children or not. */
13034
13035 static gdb_byte *
13036 read_full_die (const struct die_reader_specs *reader,
13037 struct die_info **diep, gdb_byte *info_ptr,
13038 int *has_children)
13039 {
13040 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13041 }
13042 \f
13043 /* Abbreviation tables.
13044
13045 In DWARF version 2, the description of the debugging information is
13046 stored in a separate .debug_abbrev section. Before we read any
13047 dies from a section we read in all abbreviations and install them
13048 in a hash table. */
13049
13050 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13051
13052 static struct abbrev_info *
13053 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13054 {
13055 struct abbrev_info *abbrev;
13056
13057 abbrev = (struct abbrev_info *)
13058 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13059 memset (abbrev, 0, sizeof (struct abbrev_info));
13060 return abbrev;
13061 }
13062
13063 /* Add an abbreviation to the table. */
13064
13065 static void
13066 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13067 unsigned int abbrev_number,
13068 struct abbrev_info *abbrev)
13069 {
13070 unsigned int hash_number;
13071
13072 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13073 abbrev->next = abbrev_table->abbrevs[hash_number];
13074 abbrev_table->abbrevs[hash_number] = abbrev;
13075 }
13076
13077 /* Look up an abbrev in the table.
13078 Returns NULL if the abbrev is not found. */
13079
13080 static struct abbrev_info *
13081 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13082 unsigned int abbrev_number)
13083 {
13084 unsigned int hash_number;
13085 struct abbrev_info *abbrev;
13086
13087 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13088 abbrev = abbrev_table->abbrevs[hash_number];
13089
13090 while (abbrev)
13091 {
13092 if (abbrev->number == abbrev_number)
13093 return abbrev;
13094 abbrev = abbrev->next;
13095 }
13096 return NULL;
13097 }
13098
13099 /* Read in an abbrev table. */
13100
13101 static struct abbrev_table *
13102 abbrev_table_read_table (struct dwarf2_section_info *section,
13103 sect_offset offset)
13104 {
13105 struct objfile *objfile = dwarf2_per_objfile->objfile;
13106 bfd *abfd = section->asection->owner;
13107 struct abbrev_table *abbrev_table;
13108 gdb_byte *abbrev_ptr;
13109 struct abbrev_info *cur_abbrev;
13110 unsigned int abbrev_number, bytes_read, abbrev_name;
13111 unsigned int abbrev_form;
13112 struct attr_abbrev *cur_attrs;
13113 unsigned int allocated_attrs;
13114
13115 abbrev_table = XMALLOC (struct abbrev_table);
13116 abbrev_table->offset = offset;
13117 obstack_init (&abbrev_table->abbrev_obstack);
13118 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13119 (ABBREV_HASH_SIZE
13120 * sizeof (struct abbrev_info *)));
13121 memset (abbrev_table->abbrevs, 0,
13122 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13123
13124 dwarf2_read_section (objfile, section);
13125 abbrev_ptr = section->buffer + offset.sect_off;
13126 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13127 abbrev_ptr += bytes_read;
13128
13129 allocated_attrs = ATTR_ALLOC_CHUNK;
13130 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13131
13132 /* Loop until we reach an abbrev number of 0. */
13133 while (abbrev_number)
13134 {
13135 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13136
13137 /* read in abbrev header */
13138 cur_abbrev->number = abbrev_number;
13139 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13140 abbrev_ptr += bytes_read;
13141 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13142 abbrev_ptr += 1;
13143
13144 /* now read in declarations */
13145 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13146 abbrev_ptr += bytes_read;
13147 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13148 abbrev_ptr += bytes_read;
13149 while (abbrev_name)
13150 {
13151 if (cur_abbrev->num_attrs == allocated_attrs)
13152 {
13153 allocated_attrs += ATTR_ALLOC_CHUNK;
13154 cur_attrs
13155 = xrealloc (cur_attrs, (allocated_attrs
13156 * sizeof (struct attr_abbrev)));
13157 }
13158
13159 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13160 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13161 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13162 abbrev_ptr += bytes_read;
13163 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13164 abbrev_ptr += bytes_read;
13165 }
13166
13167 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13168 (cur_abbrev->num_attrs
13169 * sizeof (struct attr_abbrev)));
13170 memcpy (cur_abbrev->attrs, cur_attrs,
13171 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13172
13173 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13174
13175 /* Get next abbreviation.
13176 Under Irix6 the abbreviations for a compilation unit are not
13177 always properly terminated with an abbrev number of 0.
13178 Exit loop if we encounter an abbreviation which we have
13179 already read (which means we are about to read the abbreviations
13180 for the next compile unit) or if the end of the abbreviation
13181 table is reached. */
13182 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13183 break;
13184 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13185 abbrev_ptr += bytes_read;
13186 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13187 break;
13188 }
13189
13190 xfree (cur_attrs);
13191 return abbrev_table;
13192 }
13193
13194 /* Free the resources held by ABBREV_TABLE. */
13195
13196 static void
13197 abbrev_table_free (struct abbrev_table *abbrev_table)
13198 {
13199 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13200 xfree (abbrev_table);
13201 }
13202
13203 /* Same as abbrev_table_free but as a cleanup.
13204 We pass in a pointer to the pointer to the table so that we can
13205 set the pointer to NULL when we're done. It also simplifies
13206 build_type_unit_groups. */
13207
13208 static void
13209 abbrev_table_free_cleanup (void *table_ptr)
13210 {
13211 struct abbrev_table **abbrev_table_ptr = table_ptr;
13212
13213 if (*abbrev_table_ptr != NULL)
13214 abbrev_table_free (*abbrev_table_ptr);
13215 *abbrev_table_ptr = NULL;
13216 }
13217
13218 /* Read the abbrev table for CU from ABBREV_SECTION. */
13219
13220 static void
13221 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13222 struct dwarf2_section_info *abbrev_section)
13223 {
13224 cu->abbrev_table =
13225 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13226 }
13227
13228 /* Release the memory used by the abbrev table for a compilation unit. */
13229
13230 static void
13231 dwarf2_free_abbrev_table (void *ptr_to_cu)
13232 {
13233 struct dwarf2_cu *cu = ptr_to_cu;
13234
13235 abbrev_table_free (cu->abbrev_table);
13236 /* Set this to NULL so that we SEGV if we try to read it later,
13237 and also because free_comp_unit verifies this is NULL. */
13238 cu->abbrev_table = NULL;
13239 }
13240 \f
13241 /* Returns nonzero if TAG represents a type that we might generate a partial
13242 symbol for. */
13243
13244 static int
13245 is_type_tag_for_partial (int tag)
13246 {
13247 switch (tag)
13248 {
13249 #if 0
13250 /* Some types that would be reasonable to generate partial symbols for,
13251 that we don't at present. */
13252 case DW_TAG_array_type:
13253 case DW_TAG_file_type:
13254 case DW_TAG_ptr_to_member_type:
13255 case DW_TAG_set_type:
13256 case DW_TAG_string_type:
13257 case DW_TAG_subroutine_type:
13258 #endif
13259 case DW_TAG_base_type:
13260 case DW_TAG_class_type:
13261 case DW_TAG_interface_type:
13262 case DW_TAG_enumeration_type:
13263 case DW_TAG_structure_type:
13264 case DW_TAG_subrange_type:
13265 case DW_TAG_typedef:
13266 case DW_TAG_union_type:
13267 return 1;
13268 default:
13269 return 0;
13270 }
13271 }
13272
13273 /* Load all DIEs that are interesting for partial symbols into memory. */
13274
13275 static struct partial_die_info *
13276 load_partial_dies (const struct die_reader_specs *reader,
13277 gdb_byte *info_ptr, int building_psymtab)
13278 {
13279 struct dwarf2_cu *cu = reader->cu;
13280 struct objfile *objfile = cu->objfile;
13281 struct partial_die_info *part_die;
13282 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13283 struct abbrev_info *abbrev;
13284 unsigned int bytes_read;
13285 unsigned int load_all = 0;
13286 int nesting_level = 1;
13287
13288 parent_die = NULL;
13289 last_die = NULL;
13290
13291 gdb_assert (cu->per_cu != NULL);
13292 if (cu->per_cu->load_all_dies)
13293 load_all = 1;
13294
13295 cu->partial_dies
13296 = htab_create_alloc_ex (cu->header.length / 12,
13297 partial_die_hash,
13298 partial_die_eq,
13299 NULL,
13300 &cu->comp_unit_obstack,
13301 hashtab_obstack_allocate,
13302 dummy_obstack_deallocate);
13303
13304 part_die = obstack_alloc (&cu->comp_unit_obstack,
13305 sizeof (struct partial_die_info));
13306
13307 while (1)
13308 {
13309 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13310
13311 /* A NULL abbrev means the end of a series of children. */
13312 if (abbrev == NULL)
13313 {
13314 if (--nesting_level == 0)
13315 {
13316 /* PART_DIE was probably the last thing allocated on the
13317 comp_unit_obstack, so we could call obstack_free
13318 here. We don't do that because the waste is small,
13319 and will be cleaned up when we're done with this
13320 compilation unit. This way, we're also more robust
13321 against other users of the comp_unit_obstack. */
13322 return first_die;
13323 }
13324 info_ptr += bytes_read;
13325 last_die = parent_die;
13326 parent_die = parent_die->die_parent;
13327 continue;
13328 }
13329
13330 /* Check for template arguments. We never save these; if
13331 they're seen, we just mark the parent, and go on our way. */
13332 if (parent_die != NULL
13333 && cu->language == language_cplus
13334 && (abbrev->tag == DW_TAG_template_type_param
13335 || abbrev->tag == DW_TAG_template_value_param))
13336 {
13337 parent_die->has_template_arguments = 1;
13338
13339 if (!load_all)
13340 {
13341 /* We don't need a partial DIE for the template argument. */
13342 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13343 continue;
13344 }
13345 }
13346
13347 /* We only recurse into c++ subprograms looking for template arguments.
13348 Skip their other children. */
13349 if (!load_all
13350 && cu->language == language_cplus
13351 && parent_die != NULL
13352 && parent_die->tag == DW_TAG_subprogram)
13353 {
13354 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13355 continue;
13356 }
13357
13358 /* Check whether this DIE is interesting enough to save. Normally
13359 we would not be interested in members here, but there may be
13360 later variables referencing them via DW_AT_specification (for
13361 static members). */
13362 if (!load_all
13363 && !is_type_tag_for_partial (abbrev->tag)
13364 && abbrev->tag != DW_TAG_constant
13365 && abbrev->tag != DW_TAG_enumerator
13366 && abbrev->tag != DW_TAG_subprogram
13367 && abbrev->tag != DW_TAG_lexical_block
13368 && abbrev->tag != DW_TAG_variable
13369 && abbrev->tag != DW_TAG_namespace
13370 && abbrev->tag != DW_TAG_module
13371 && abbrev->tag != DW_TAG_member
13372 && abbrev->tag != DW_TAG_imported_unit)
13373 {
13374 /* Otherwise we skip to the next sibling, if any. */
13375 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13376 continue;
13377 }
13378
13379 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13380 info_ptr);
13381
13382 /* This two-pass algorithm for processing partial symbols has a
13383 high cost in cache pressure. Thus, handle some simple cases
13384 here which cover the majority of C partial symbols. DIEs
13385 which neither have specification tags in them, nor could have
13386 specification tags elsewhere pointing at them, can simply be
13387 processed and discarded.
13388
13389 This segment is also optional; scan_partial_symbols and
13390 add_partial_symbol will handle these DIEs if we chain
13391 them in normally. When compilers which do not emit large
13392 quantities of duplicate debug information are more common,
13393 this code can probably be removed. */
13394
13395 /* Any complete simple types at the top level (pretty much all
13396 of them, for a language without namespaces), can be processed
13397 directly. */
13398 if (parent_die == NULL
13399 && part_die->has_specification == 0
13400 && part_die->is_declaration == 0
13401 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13402 || part_die->tag == DW_TAG_base_type
13403 || part_die->tag == DW_TAG_subrange_type))
13404 {
13405 if (building_psymtab && part_die->name != NULL)
13406 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13407 VAR_DOMAIN, LOC_TYPEDEF,
13408 &objfile->static_psymbols,
13409 0, (CORE_ADDR) 0, cu->language, objfile);
13410 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13411 continue;
13412 }
13413
13414 /* The exception for DW_TAG_typedef with has_children above is
13415 a workaround of GCC PR debug/47510. In the case of this complaint
13416 type_name_no_tag_or_error will error on such types later.
13417
13418 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13419 it could not find the child DIEs referenced later, this is checked
13420 above. In correct DWARF DW_TAG_typedef should have no children. */
13421
13422 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13423 complaint (&symfile_complaints,
13424 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13425 "- DIE at 0x%x [in module %s]"),
13426 part_die->offset.sect_off, objfile->name);
13427
13428 /* If we're at the second level, and we're an enumerator, and
13429 our parent has no specification (meaning possibly lives in a
13430 namespace elsewhere), then we can add the partial symbol now
13431 instead of queueing it. */
13432 if (part_die->tag == DW_TAG_enumerator
13433 && parent_die != NULL
13434 && parent_die->die_parent == NULL
13435 && parent_die->tag == DW_TAG_enumeration_type
13436 && parent_die->has_specification == 0)
13437 {
13438 if (part_die->name == NULL)
13439 complaint (&symfile_complaints,
13440 _("malformed enumerator DIE ignored"));
13441 else if (building_psymtab)
13442 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13443 VAR_DOMAIN, LOC_CONST,
13444 (cu->language == language_cplus
13445 || cu->language == language_java)
13446 ? &objfile->global_psymbols
13447 : &objfile->static_psymbols,
13448 0, (CORE_ADDR) 0, cu->language, objfile);
13449
13450 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13451 continue;
13452 }
13453
13454 /* We'll save this DIE so link it in. */
13455 part_die->die_parent = parent_die;
13456 part_die->die_sibling = NULL;
13457 part_die->die_child = NULL;
13458
13459 if (last_die && last_die == parent_die)
13460 last_die->die_child = part_die;
13461 else if (last_die)
13462 last_die->die_sibling = part_die;
13463
13464 last_die = part_die;
13465
13466 if (first_die == NULL)
13467 first_die = part_die;
13468
13469 /* Maybe add the DIE to the hash table. Not all DIEs that we
13470 find interesting need to be in the hash table, because we
13471 also have the parent/sibling/child chains; only those that we
13472 might refer to by offset later during partial symbol reading.
13473
13474 For now this means things that might have be the target of a
13475 DW_AT_specification, DW_AT_abstract_origin, or
13476 DW_AT_extension. DW_AT_extension will refer only to
13477 namespaces; DW_AT_abstract_origin refers to functions (and
13478 many things under the function DIE, but we do not recurse
13479 into function DIEs during partial symbol reading) and
13480 possibly variables as well; DW_AT_specification refers to
13481 declarations. Declarations ought to have the DW_AT_declaration
13482 flag. It happens that GCC forgets to put it in sometimes, but
13483 only for functions, not for types.
13484
13485 Adding more things than necessary to the hash table is harmless
13486 except for the performance cost. Adding too few will result in
13487 wasted time in find_partial_die, when we reread the compilation
13488 unit with load_all_dies set. */
13489
13490 if (load_all
13491 || abbrev->tag == DW_TAG_constant
13492 || abbrev->tag == DW_TAG_subprogram
13493 || abbrev->tag == DW_TAG_variable
13494 || abbrev->tag == DW_TAG_namespace
13495 || part_die->is_declaration)
13496 {
13497 void **slot;
13498
13499 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13500 part_die->offset.sect_off, INSERT);
13501 *slot = part_die;
13502 }
13503
13504 part_die = obstack_alloc (&cu->comp_unit_obstack,
13505 sizeof (struct partial_die_info));
13506
13507 /* For some DIEs we want to follow their children (if any). For C
13508 we have no reason to follow the children of structures; for other
13509 languages we have to, so that we can get at method physnames
13510 to infer fully qualified class names, for DW_AT_specification,
13511 and for C++ template arguments. For C++, we also look one level
13512 inside functions to find template arguments (if the name of the
13513 function does not already contain the template arguments).
13514
13515 For Ada, we need to scan the children of subprograms and lexical
13516 blocks as well because Ada allows the definition of nested
13517 entities that could be interesting for the debugger, such as
13518 nested subprograms for instance. */
13519 if (last_die->has_children
13520 && (load_all
13521 || last_die->tag == DW_TAG_namespace
13522 || last_die->tag == DW_TAG_module
13523 || last_die->tag == DW_TAG_enumeration_type
13524 || (cu->language == language_cplus
13525 && last_die->tag == DW_TAG_subprogram
13526 && (last_die->name == NULL
13527 || strchr (last_die->name, '<') == NULL))
13528 || (cu->language != language_c
13529 && (last_die->tag == DW_TAG_class_type
13530 || last_die->tag == DW_TAG_interface_type
13531 || last_die->tag == DW_TAG_structure_type
13532 || last_die->tag == DW_TAG_union_type))
13533 || (cu->language == language_ada
13534 && (last_die->tag == DW_TAG_subprogram
13535 || last_die->tag == DW_TAG_lexical_block))))
13536 {
13537 nesting_level++;
13538 parent_die = last_die;
13539 continue;
13540 }
13541
13542 /* Otherwise we skip to the next sibling, if any. */
13543 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13544
13545 /* Back to the top, do it again. */
13546 }
13547 }
13548
13549 /* Read a minimal amount of information into the minimal die structure. */
13550
13551 static gdb_byte *
13552 read_partial_die (const struct die_reader_specs *reader,
13553 struct partial_die_info *part_die,
13554 struct abbrev_info *abbrev, unsigned int abbrev_len,
13555 gdb_byte *info_ptr)
13556 {
13557 struct dwarf2_cu *cu = reader->cu;
13558 struct objfile *objfile = cu->objfile;
13559 gdb_byte *buffer = reader->buffer;
13560 unsigned int i;
13561 struct attribute attr;
13562 int has_low_pc_attr = 0;
13563 int has_high_pc_attr = 0;
13564 int high_pc_relative = 0;
13565
13566 memset (part_die, 0, sizeof (struct partial_die_info));
13567
13568 part_die->offset.sect_off = info_ptr - buffer;
13569
13570 info_ptr += abbrev_len;
13571
13572 if (abbrev == NULL)
13573 return info_ptr;
13574
13575 part_die->tag = abbrev->tag;
13576 part_die->has_children = abbrev->has_children;
13577
13578 for (i = 0; i < abbrev->num_attrs; ++i)
13579 {
13580 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13581
13582 /* Store the data if it is of an attribute we want to keep in a
13583 partial symbol table. */
13584 switch (attr.name)
13585 {
13586 case DW_AT_name:
13587 switch (part_die->tag)
13588 {
13589 case DW_TAG_compile_unit:
13590 case DW_TAG_partial_unit:
13591 case DW_TAG_type_unit:
13592 /* Compilation units have a DW_AT_name that is a filename, not
13593 a source language identifier. */
13594 case DW_TAG_enumeration_type:
13595 case DW_TAG_enumerator:
13596 /* These tags always have simple identifiers already; no need
13597 to canonicalize them. */
13598 part_die->name = DW_STRING (&attr);
13599 break;
13600 default:
13601 part_die->name
13602 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13603 &objfile->objfile_obstack);
13604 break;
13605 }
13606 break;
13607 case DW_AT_linkage_name:
13608 case DW_AT_MIPS_linkage_name:
13609 /* Note that both forms of linkage name might appear. We
13610 assume they will be the same, and we only store the last
13611 one we see. */
13612 if (cu->language == language_ada)
13613 part_die->name = DW_STRING (&attr);
13614 part_die->linkage_name = DW_STRING (&attr);
13615 break;
13616 case DW_AT_low_pc:
13617 has_low_pc_attr = 1;
13618 part_die->lowpc = DW_ADDR (&attr);
13619 break;
13620 case DW_AT_high_pc:
13621 has_high_pc_attr = 1;
13622 if (attr.form == DW_FORM_addr
13623 || attr.form == DW_FORM_GNU_addr_index)
13624 part_die->highpc = DW_ADDR (&attr);
13625 else
13626 {
13627 high_pc_relative = 1;
13628 part_die->highpc = DW_UNSND (&attr);
13629 }
13630 break;
13631 case DW_AT_location:
13632 /* Support the .debug_loc offsets. */
13633 if (attr_form_is_block (&attr))
13634 {
13635 part_die->d.locdesc = DW_BLOCK (&attr);
13636 }
13637 else if (attr_form_is_section_offset (&attr))
13638 {
13639 dwarf2_complex_location_expr_complaint ();
13640 }
13641 else
13642 {
13643 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13644 "partial symbol information");
13645 }
13646 break;
13647 case DW_AT_external:
13648 part_die->is_external = DW_UNSND (&attr);
13649 break;
13650 case DW_AT_declaration:
13651 part_die->is_declaration = DW_UNSND (&attr);
13652 break;
13653 case DW_AT_type:
13654 part_die->has_type = 1;
13655 break;
13656 case DW_AT_abstract_origin:
13657 case DW_AT_specification:
13658 case DW_AT_extension:
13659 part_die->has_specification = 1;
13660 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13661 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13662 || cu->per_cu->is_dwz);
13663 break;
13664 case DW_AT_sibling:
13665 /* Ignore absolute siblings, they might point outside of
13666 the current compile unit. */
13667 if (attr.form == DW_FORM_ref_addr)
13668 complaint (&symfile_complaints,
13669 _("ignoring absolute DW_AT_sibling"));
13670 else
13671 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13672 break;
13673 case DW_AT_byte_size:
13674 part_die->has_byte_size = 1;
13675 break;
13676 case DW_AT_calling_convention:
13677 /* DWARF doesn't provide a way to identify a program's source-level
13678 entry point. DW_AT_calling_convention attributes are only meant
13679 to describe functions' calling conventions.
13680
13681 However, because it's a necessary piece of information in
13682 Fortran, and because DW_CC_program is the only piece of debugging
13683 information whose definition refers to a 'main program' at all,
13684 several compilers have begun marking Fortran main programs with
13685 DW_CC_program --- even when those functions use the standard
13686 calling conventions.
13687
13688 So until DWARF specifies a way to provide this information and
13689 compilers pick up the new representation, we'll support this
13690 practice. */
13691 if (DW_UNSND (&attr) == DW_CC_program
13692 && cu->language == language_fortran)
13693 {
13694 set_main_name (part_die->name);
13695
13696 /* As this DIE has a static linkage the name would be difficult
13697 to look up later. */
13698 language_of_main = language_fortran;
13699 }
13700 break;
13701 case DW_AT_inline:
13702 if (DW_UNSND (&attr) == DW_INL_inlined
13703 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13704 part_die->may_be_inlined = 1;
13705 break;
13706
13707 case DW_AT_import:
13708 if (part_die->tag == DW_TAG_imported_unit)
13709 {
13710 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13711 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13712 || cu->per_cu->is_dwz);
13713 }
13714 break;
13715
13716 default:
13717 break;
13718 }
13719 }
13720
13721 if (high_pc_relative)
13722 part_die->highpc += part_die->lowpc;
13723
13724 if (has_low_pc_attr && has_high_pc_attr)
13725 {
13726 /* When using the GNU linker, .gnu.linkonce. sections are used to
13727 eliminate duplicate copies of functions and vtables and such.
13728 The linker will arbitrarily choose one and discard the others.
13729 The AT_*_pc values for such functions refer to local labels in
13730 these sections. If the section from that file was discarded, the
13731 labels are not in the output, so the relocs get a value of 0.
13732 If this is a discarded function, mark the pc bounds as invalid,
13733 so that GDB will ignore it. */
13734 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13735 {
13736 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13737
13738 complaint (&symfile_complaints,
13739 _("DW_AT_low_pc %s is zero "
13740 "for DIE at 0x%x [in module %s]"),
13741 paddress (gdbarch, part_die->lowpc),
13742 part_die->offset.sect_off, objfile->name);
13743 }
13744 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13745 else if (part_die->lowpc >= part_die->highpc)
13746 {
13747 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13748
13749 complaint (&symfile_complaints,
13750 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13751 "for DIE at 0x%x [in module %s]"),
13752 paddress (gdbarch, part_die->lowpc),
13753 paddress (gdbarch, part_die->highpc),
13754 part_die->offset.sect_off, objfile->name);
13755 }
13756 else
13757 part_die->has_pc_info = 1;
13758 }
13759
13760 return info_ptr;
13761 }
13762
13763 /* Find a cached partial DIE at OFFSET in CU. */
13764
13765 static struct partial_die_info *
13766 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13767 {
13768 struct partial_die_info *lookup_die = NULL;
13769 struct partial_die_info part_die;
13770
13771 part_die.offset = offset;
13772 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13773 offset.sect_off);
13774
13775 return lookup_die;
13776 }
13777
13778 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13779 except in the case of .debug_types DIEs which do not reference
13780 outside their CU (they do however referencing other types via
13781 DW_FORM_ref_sig8). */
13782
13783 static struct partial_die_info *
13784 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13785 {
13786 struct objfile *objfile = cu->objfile;
13787 struct dwarf2_per_cu_data *per_cu = NULL;
13788 struct partial_die_info *pd = NULL;
13789
13790 if (offset_in_dwz == cu->per_cu->is_dwz
13791 && offset_in_cu_p (&cu->header, offset))
13792 {
13793 pd = find_partial_die_in_comp_unit (offset, cu);
13794 if (pd != NULL)
13795 return pd;
13796 /* We missed recording what we needed.
13797 Load all dies and try again. */
13798 per_cu = cu->per_cu;
13799 }
13800 else
13801 {
13802 /* TUs don't reference other CUs/TUs (except via type signatures). */
13803 if (cu->per_cu->is_debug_types)
13804 {
13805 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13806 " external reference to offset 0x%lx [in module %s].\n"),
13807 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13808 bfd_get_filename (objfile->obfd));
13809 }
13810 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13811 objfile);
13812
13813 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13814 load_partial_comp_unit (per_cu);
13815
13816 per_cu->cu->last_used = 0;
13817 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13818 }
13819
13820 /* If we didn't find it, and not all dies have been loaded,
13821 load them all and try again. */
13822
13823 if (pd == NULL && per_cu->load_all_dies == 0)
13824 {
13825 per_cu->load_all_dies = 1;
13826
13827 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13828 THIS_CU->cu may already be in use. So we can't just free it and
13829 replace its DIEs with the ones we read in. Instead, we leave those
13830 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13831 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13832 set. */
13833 load_partial_comp_unit (per_cu);
13834
13835 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13836 }
13837
13838 if (pd == NULL)
13839 internal_error (__FILE__, __LINE__,
13840 _("could not find partial DIE 0x%x "
13841 "in cache [from module %s]\n"),
13842 offset.sect_off, bfd_get_filename (objfile->obfd));
13843 return pd;
13844 }
13845
13846 /* See if we can figure out if the class lives in a namespace. We do
13847 this by looking for a member function; its demangled name will
13848 contain namespace info, if there is any. */
13849
13850 static void
13851 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13852 struct dwarf2_cu *cu)
13853 {
13854 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13855 what template types look like, because the demangler
13856 frequently doesn't give the same name as the debug info. We
13857 could fix this by only using the demangled name to get the
13858 prefix (but see comment in read_structure_type). */
13859
13860 struct partial_die_info *real_pdi;
13861 struct partial_die_info *child_pdi;
13862
13863 /* If this DIE (this DIE's specification, if any) has a parent, then
13864 we should not do this. We'll prepend the parent's fully qualified
13865 name when we create the partial symbol. */
13866
13867 real_pdi = struct_pdi;
13868 while (real_pdi->has_specification)
13869 real_pdi = find_partial_die (real_pdi->spec_offset,
13870 real_pdi->spec_is_dwz, cu);
13871
13872 if (real_pdi->die_parent != NULL)
13873 return;
13874
13875 for (child_pdi = struct_pdi->die_child;
13876 child_pdi != NULL;
13877 child_pdi = child_pdi->die_sibling)
13878 {
13879 if (child_pdi->tag == DW_TAG_subprogram
13880 && child_pdi->linkage_name != NULL)
13881 {
13882 char *actual_class_name
13883 = language_class_name_from_physname (cu->language_defn,
13884 child_pdi->linkage_name);
13885 if (actual_class_name != NULL)
13886 {
13887 struct_pdi->name
13888 = obsavestring (actual_class_name,
13889 strlen (actual_class_name),
13890 &cu->objfile->objfile_obstack);
13891 xfree (actual_class_name);
13892 }
13893 break;
13894 }
13895 }
13896 }
13897
13898 /* Adjust PART_DIE before generating a symbol for it. This function
13899 may set the is_external flag or change the DIE's name. */
13900
13901 static void
13902 fixup_partial_die (struct partial_die_info *part_die,
13903 struct dwarf2_cu *cu)
13904 {
13905 /* Once we've fixed up a die, there's no point in doing so again.
13906 This also avoids a memory leak if we were to call
13907 guess_partial_die_structure_name multiple times. */
13908 if (part_die->fixup_called)
13909 return;
13910
13911 /* If we found a reference attribute and the DIE has no name, try
13912 to find a name in the referred to DIE. */
13913
13914 if (part_die->name == NULL && part_die->has_specification)
13915 {
13916 struct partial_die_info *spec_die;
13917
13918 spec_die = find_partial_die (part_die->spec_offset,
13919 part_die->spec_is_dwz, cu);
13920
13921 fixup_partial_die (spec_die, cu);
13922
13923 if (spec_die->name)
13924 {
13925 part_die->name = spec_die->name;
13926
13927 /* Copy DW_AT_external attribute if it is set. */
13928 if (spec_die->is_external)
13929 part_die->is_external = spec_die->is_external;
13930 }
13931 }
13932
13933 /* Set default names for some unnamed DIEs. */
13934
13935 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13936 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13937
13938 /* If there is no parent die to provide a namespace, and there are
13939 children, see if we can determine the namespace from their linkage
13940 name. */
13941 if (cu->language == language_cplus
13942 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13943 && part_die->die_parent == NULL
13944 && part_die->has_children
13945 && (part_die->tag == DW_TAG_class_type
13946 || part_die->tag == DW_TAG_structure_type
13947 || part_die->tag == DW_TAG_union_type))
13948 guess_partial_die_structure_name (part_die, cu);
13949
13950 /* GCC might emit a nameless struct or union that has a linkage
13951 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13952 if (part_die->name == NULL
13953 && (part_die->tag == DW_TAG_class_type
13954 || part_die->tag == DW_TAG_interface_type
13955 || part_die->tag == DW_TAG_structure_type
13956 || part_die->tag == DW_TAG_union_type)
13957 && part_die->linkage_name != NULL)
13958 {
13959 char *demangled;
13960
13961 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13962 if (demangled)
13963 {
13964 const char *base;
13965
13966 /* Strip any leading namespaces/classes, keep only the base name.
13967 DW_AT_name for named DIEs does not contain the prefixes. */
13968 base = strrchr (demangled, ':');
13969 if (base && base > demangled && base[-1] == ':')
13970 base++;
13971 else
13972 base = demangled;
13973
13974 part_die->name = obsavestring (base, strlen (base),
13975 &cu->objfile->objfile_obstack);
13976 xfree (demangled);
13977 }
13978 }
13979
13980 part_die->fixup_called = 1;
13981 }
13982
13983 /* Read an attribute value described by an attribute form. */
13984
13985 static gdb_byte *
13986 read_attribute_value (const struct die_reader_specs *reader,
13987 struct attribute *attr, unsigned form,
13988 gdb_byte *info_ptr)
13989 {
13990 struct dwarf2_cu *cu = reader->cu;
13991 bfd *abfd = reader->abfd;
13992 struct comp_unit_head *cu_header = &cu->header;
13993 unsigned int bytes_read;
13994 struct dwarf_block *blk;
13995
13996 attr->form = form;
13997 switch (form)
13998 {
13999 case DW_FORM_ref_addr:
14000 if (cu->header.version == 2)
14001 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14002 else
14003 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14004 &cu->header, &bytes_read);
14005 info_ptr += bytes_read;
14006 break;
14007 case DW_FORM_GNU_ref_alt:
14008 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14009 info_ptr += bytes_read;
14010 break;
14011 case DW_FORM_addr:
14012 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14013 info_ptr += bytes_read;
14014 break;
14015 case DW_FORM_block2:
14016 blk = dwarf_alloc_block (cu);
14017 blk->size = read_2_bytes (abfd, info_ptr);
14018 info_ptr += 2;
14019 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14020 info_ptr += blk->size;
14021 DW_BLOCK (attr) = blk;
14022 break;
14023 case DW_FORM_block4:
14024 blk = dwarf_alloc_block (cu);
14025 blk->size = read_4_bytes (abfd, info_ptr);
14026 info_ptr += 4;
14027 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14028 info_ptr += blk->size;
14029 DW_BLOCK (attr) = blk;
14030 break;
14031 case DW_FORM_data2:
14032 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14033 info_ptr += 2;
14034 break;
14035 case DW_FORM_data4:
14036 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14037 info_ptr += 4;
14038 break;
14039 case DW_FORM_data8:
14040 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14041 info_ptr += 8;
14042 break;
14043 case DW_FORM_sec_offset:
14044 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14045 info_ptr += bytes_read;
14046 break;
14047 case DW_FORM_string:
14048 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14049 DW_STRING_IS_CANONICAL (attr) = 0;
14050 info_ptr += bytes_read;
14051 break;
14052 case DW_FORM_strp:
14053 if (!cu->per_cu->is_dwz)
14054 {
14055 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14056 &bytes_read);
14057 DW_STRING_IS_CANONICAL (attr) = 0;
14058 info_ptr += bytes_read;
14059 break;
14060 }
14061 /* FALLTHROUGH */
14062 case DW_FORM_GNU_strp_alt:
14063 {
14064 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14065 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14066 &bytes_read);
14067
14068 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14069 DW_STRING_IS_CANONICAL (attr) = 0;
14070 info_ptr += bytes_read;
14071 }
14072 break;
14073 case DW_FORM_exprloc:
14074 case DW_FORM_block:
14075 blk = dwarf_alloc_block (cu);
14076 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14077 info_ptr += bytes_read;
14078 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14079 info_ptr += blk->size;
14080 DW_BLOCK (attr) = blk;
14081 break;
14082 case DW_FORM_block1:
14083 blk = dwarf_alloc_block (cu);
14084 blk->size = read_1_byte (abfd, info_ptr);
14085 info_ptr += 1;
14086 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14087 info_ptr += blk->size;
14088 DW_BLOCK (attr) = blk;
14089 break;
14090 case DW_FORM_data1:
14091 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14092 info_ptr += 1;
14093 break;
14094 case DW_FORM_flag:
14095 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14096 info_ptr += 1;
14097 break;
14098 case DW_FORM_flag_present:
14099 DW_UNSND (attr) = 1;
14100 break;
14101 case DW_FORM_sdata:
14102 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14103 info_ptr += bytes_read;
14104 break;
14105 case DW_FORM_udata:
14106 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14107 info_ptr += bytes_read;
14108 break;
14109 case DW_FORM_ref1:
14110 DW_UNSND (attr) = (cu->header.offset.sect_off
14111 + read_1_byte (abfd, info_ptr));
14112 info_ptr += 1;
14113 break;
14114 case DW_FORM_ref2:
14115 DW_UNSND (attr) = (cu->header.offset.sect_off
14116 + read_2_bytes (abfd, info_ptr));
14117 info_ptr += 2;
14118 break;
14119 case DW_FORM_ref4:
14120 DW_UNSND (attr) = (cu->header.offset.sect_off
14121 + read_4_bytes (abfd, info_ptr));
14122 info_ptr += 4;
14123 break;
14124 case DW_FORM_ref8:
14125 DW_UNSND (attr) = (cu->header.offset.sect_off
14126 + read_8_bytes (abfd, info_ptr));
14127 info_ptr += 8;
14128 break;
14129 case DW_FORM_ref_sig8:
14130 /* Convert the signature to something we can record in DW_UNSND
14131 for later lookup.
14132 NOTE: This is NULL if the type wasn't found. */
14133 DW_SIGNATURED_TYPE (attr) =
14134 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14135 info_ptr += 8;
14136 break;
14137 case DW_FORM_ref_udata:
14138 DW_UNSND (attr) = (cu->header.offset.sect_off
14139 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14140 info_ptr += bytes_read;
14141 break;
14142 case DW_FORM_indirect:
14143 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14144 info_ptr += bytes_read;
14145 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14146 break;
14147 case DW_FORM_GNU_addr_index:
14148 if (reader->dwo_file == NULL)
14149 {
14150 /* For now flag a hard error.
14151 Later we can turn this into a complaint. */
14152 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14153 dwarf_form_name (form),
14154 bfd_get_filename (abfd));
14155 }
14156 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14157 info_ptr += bytes_read;
14158 break;
14159 case DW_FORM_GNU_str_index:
14160 if (reader->dwo_file == NULL)
14161 {
14162 /* For now flag a hard error.
14163 Later we can turn this into a complaint if warranted. */
14164 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14165 dwarf_form_name (form),
14166 bfd_get_filename (abfd));
14167 }
14168 {
14169 ULONGEST str_index =
14170 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14171
14172 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14173 DW_STRING_IS_CANONICAL (attr) = 0;
14174 info_ptr += bytes_read;
14175 }
14176 break;
14177 default:
14178 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14179 dwarf_form_name (form),
14180 bfd_get_filename (abfd));
14181 }
14182
14183 /* Super hack. */
14184 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14185 attr->form = DW_FORM_GNU_ref_alt;
14186
14187 /* We have seen instances where the compiler tried to emit a byte
14188 size attribute of -1 which ended up being encoded as an unsigned
14189 0xffffffff. Although 0xffffffff is technically a valid size value,
14190 an object of this size seems pretty unlikely so we can relatively
14191 safely treat these cases as if the size attribute was invalid and
14192 treat them as zero by default. */
14193 if (attr->name == DW_AT_byte_size
14194 && form == DW_FORM_data4
14195 && DW_UNSND (attr) >= 0xffffffff)
14196 {
14197 complaint
14198 (&symfile_complaints,
14199 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14200 hex_string (DW_UNSND (attr)));
14201 DW_UNSND (attr) = 0;
14202 }
14203
14204 return info_ptr;
14205 }
14206
14207 /* Read an attribute described by an abbreviated attribute. */
14208
14209 static gdb_byte *
14210 read_attribute (const struct die_reader_specs *reader,
14211 struct attribute *attr, struct attr_abbrev *abbrev,
14212 gdb_byte *info_ptr)
14213 {
14214 attr->name = abbrev->name;
14215 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14216 }
14217
14218 /* Read dwarf information from a buffer. */
14219
14220 static unsigned int
14221 read_1_byte (bfd *abfd, const gdb_byte *buf)
14222 {
14223 return bfd_get_8 (abfd, buf);
14224 }
14225
14226 static int
14227 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14228 {
14229 return bfd_get_signed_8 (abfd, buf);
14230 }
14231
14232 static unsigned int
14233 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14234 {
14235 return bfd_get_16 (abfd, buf);
14236 }
14237
14238 static int
14239 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14240 {
14241 return bfd_get_signed_16 (abfd, buf);
14242 }
14243
14244 static unsigned int
14245 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14246 {
14247 return bfd_get_32 (abfd, buf);
14248 }
14249
14250 static int
14251 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14252 {
14253 return bfd_get_signed_32 (abfd, buf);
14254 }
14255
14256 static ULONGEST
14257 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14258 {
14259 return bfd_get_64 (abfd, buf);
14260 }
14261
14262 static CORE_ADDR
14263 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14264 unsigned int *bytes_read)
14265 {
14266 struct comp_unit_head *cu_header = &cu->header;
14267 CORE_ADDR retval = 0;
14268
14269 if (cu_header->signed_addr_p)
14270 {
14271 switch (cu_header->addr_size)
14272 {
14273 case 2:
14274 retval = bfd_get_signed_16 (abfd, buf);
14275 break;
14276 case 4:
14277 retval = bfd_get_signed_32 (abfd, buf);
14278 break;
14279 case 8:
14280 retval = bfd_get_signed_64 (abfd, buf);
14281 break;
14282 default:
14283 internal_error (__FILE__, __LINE__,
14284 _("read_address: bad switch, signed [in module %s]"),
14285 bfd_get_filename (abfd));
14286 }
14287 }
14288 else
14289 {
14290 switch (cu_header->addr_size)
14291 {
14292 case 2:
14293 retval = bfd_get_16 (abfd, buf);
14294 break;
14295 case 4:
14296 retval = bfd_get_32 (abfd, buf);
14297 break;
14298 case 8:
14299 retval = bfd_get_64 (abfd, buf);
14300 break;
14301 default:
14302 internal_error (__FILE__, __LINE__,
14303 _("read_address: bad switch, "
14304 "unsigned [in module %s]"),
14305 bfd_get_filename (abfd));
14306 }
14307 }
14308
14309 *bytes_read = cu_header->addr_size;
14310 return retval;
14311 }
14312
14313 /* Read the initial length from a section. The (draft) DWARF 3
14314 specification allows the initial length to take up either 4 bytes
14315 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14316 bytes describe the length and all offsets will be 8 bytes in length
14317 instead of 4.
14318
14319 An older, non-standard 64-bit format is also handled by this
14320 function. The older format in question stores the initial length
14321 as an 8-byte quantity without an escape value. Lengths greater
14322 than 2^32 aren't very common which means that the initial 4 bytes
14323 is almost always zero. Since a length value of zero doesn't make
14324 sense for the 32-bit format, this initial zero can be considered to
14325 be an escape value which indicates the presence of the older 64-bit
14326 format. As written, the code can't detect (old format) lengths
14327 greater than 4GB. If it becomes necessary to handle lengths
14328 somewhat larger than 4GB, we could allow other small values (such
14329 as the non-sensical values of 1, 2, and 3) to also be used as
14330 escape values indicating the presence of the old format.
14331
14332 The value returned via bytes_read should be used to increment the
14333 relevant pointer after calling read_initial_length().
14334
14335 [ Note: read_initial_length() and read_offset() are based on the
14336 document entitled "DWARF Debugging Information Format", revision
14337 3, draft 8, dated November 19, 2001. This document was obtained
14338 from:
14339
14340 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14341
14342 This document is only a draft and is subject to change. (So beware.)
14343
14344 Details regarding the older, non-standard 64-bit format were
14345 determined empirically by examining 64-bit ELF files produced by
14346 the SGI toolchain on an IRIX 6.5 machine.
14347
14348 - Kevin, July 16, 2002
14349 ] */
14350
14351 static LONGEST
14352 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14353 {
14354 LONGEST length = bfd_get_32 (abfd, buf);
14355
14356 if (length == 0xffffffff)
14357 {
14358 length = bfd_get_64 (abfd, buf + 4);
14359 *bytes_read = 12;
14360 }
14361 else if (length == 0)
14362 {
14363 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14364 length = bfd_get_64 (abfd, buf);
14365 *bytes_read = 8;
14366 }
14367 else
14368 {
14369 *bytes_read = 4;
14370 }
14371
14372 return length;
14373 }
14374
14375 /* Cover function for read_initial_length.
14376 Returns the length of the object at BUF, and stores the size of the
14377 initial length in *BYTES_READ and stores the size that offsets will be in
14378 *OFFSET_SIZE.
14379 If the initial length size is not equivalent to that specified in
14380 CU_HEADER then issue a complaint.
14381 This is useful when reading non-comp-unit headers. */
14382
14383 static LONGEST
14384 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14385 const struct comp_unit_head *cu_header,
14386 unsigned int *bytes_read,
14387 unsigned int *offset_size)
14388 {
14389 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14390
14391 gdb_assert (cu_header->initial_length_size == 4
14392 || cu_header->initial_length_size == 8
14393 || cu_header->initial_length_size == 12);
14394
14395 if (cu_header->initial_length_size != *bytes_read)
14396 complaint (&symfile_complaints,
14397 _("intermixed 32-bit and 64-bit DWARF sections"));
14398
14399 *offset_size = (*bytes_read == 4) ? 4 : 8;
14400 return length;
14401 }
14402
14403 /* Read an offset from the data stream. The size of the offset is
14404 given by cu_header->offset_size. */
14405
14406 static LONGEST
14407 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14408 unsigned int *bytes_read)
14409 {
14410 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14411
14412 *bytes_read = cu_header->offset_size;
14413 return offset;
14414 }
14415
14416 /* Read an offset from the data stream. */
14417
14418 static LONGEST
14419 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14420 {
14421 LONGEST retval = 0;
14422
14423 switch (offset_size)
14424 {
14425 case 4:
14426 retval = bfd_get_32 (abfd, buf);
14427 break;
14428 case 8:
14429 retval = bfd_get_64 (abfd, buf);
14430 break;
14431 default:
14432 internal_error (__FILE__, __LINE__,
14433 _("read_offset_1: bad switch [in module %s]"),
14434 bfd_get_filename (abfd));
14435 }
14436
14437 return retval;
14438 }
14439
14440 static gdb_byte *
14441 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14442 {
14443 /* If the size of a host char is 8 bits, we can return a pointer
14444 to the buffer, otherwise we have to copy the data to a buffer
14445 allocated on the temporary obstack. */
14446 gdb_assert (HOST_CHAR_BIT == 8);
14447 return buf;
14448 }
14449
14450 static char *
14451 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14452 {
14453 /* If the size of a host char is 8 bits, we can return a pointer
14454 to the string, otherwise we have to copy the string to a buffer
14455 allocated on the temporary obstack. */
14456 gdb_assert (HOST_CHAR_BIT == 8);
14457 if (*buf == '\0')
14458 {
14459 *bytes_read_ptr = 1;
14460 return NULL;
14461 }
14462 *bytes_read_ptr = strlen ((char *) buf) + 1;
14463 return (char *) buf;
14464 }
14465
14466 static char *
14467 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14468 {
14469 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14470 if (dwarf2_per_objfile->str.buffer == NULL)
14471 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14472 bfd_get_filename (abfd));
14473 if (str_offset >= dwarf2_per_objfile->str.size)
14474 error (_("DW_FORM_strp pointing outside of "
14475 ".debug_str section [in module %s]"),
14476 bfd_get_filename (abfd));
14477 gdb_assert (HOST_CHAR_BIT == 8);
14478 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14479 return NULL;
14480 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14481 }
14482
14483 /* Read a string at offset STR_OFFSET in the .debug_str section from
14484 the .dwz file DWZ. Throw an error if the offset is too large. If
14485 the string consists of a single NUL byte, return NULL; otherwise
14486 return a pointer to the string. */
14487
14488 static char *
14489 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14490 {
14491 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14492
14493 if (dwz->str.buffer == NULL)
14494 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14495 "section [in module %s]"),
14496 bfd_get_filename (dwz->dwz_bfd));
14497 if (str_offset >= dwz->str.size)
14498 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14499 ".debug_str section [in module %s]"),
14500 bfd_get_filename (dwz->dwz_bfd));
14501 gdb_assert (HOST_CHAR_BIT == 8);
14502 if (dwz->str.buffer[str_offset] == '\0')
14503 return NULL;
14504 return (char *) (dwz->str.buffer + str_offset);
14505 }
14506
14507 static char *
14508 read_indirect_string (bfd *abfd, gdb_byte *buf,
14509 const struct comp_unit_head *cu_header,
14510 unsigned int *bytes_read_ptr)
14511 {
14512 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14513
14514 return read_indirect_string_at_offset (abfd, str_offset);
14515 }
14516
14517 static ULONGEST
14518 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14519 {
14520 ULONGEST result;
14521 unsigned int num_read;
14522 int i, shift;
14523 unsigned char byte;
14524
14525 result = 0;
14526 shift = 0;
14527 num_read = 0;
14528 i = 0;
14529 while (1)
14530 {
14531 byte = bfd_get_8 (abfd, buf);
14532 buf++;
14533 num_read++;
14534 result |= ((ULONGEST) (byte & 127) << shift);
14535 if ((byte & 128) == 0)
14536 {
14537 break;
14538 }
14539 shift += 7;
14540 }
14541 *bytes_read_ptr = num_read;
14542 return result;
14543 }
14544
14545 static LONGEST
14546 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14547 {
14548 LONGEST result;
14549 int i, shift, num_read;
14550 unsigned char byte;
14551
14552 result = 0;
14553 shift = 0;
14554 num_read = 0;
14555 i = 0;
14556 while (1)
14557 {
14558 byte = bfd_get_8 (abfd, buf);
14559 buf++;
14560 num_read++;
14561 result |= ((LONGEST) (byte & 127) << shift);
14562 shift += 7;
14563 if ((byte & 128) == 0)
14564 {
14565 break;
14566 }
14567 }
14568 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14569 result |= -(((LONGEST) 1) << shift);
14570 *bytes_read_ptr = num_read;
14571 return result;
14572 }
14573
14574 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14575 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14576 ADDR_SIZE is the size of addresses from the CU header. */
14577
14578 static CORE_ADDR
14579 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14580 {
14581 struct objfile *objfile = dwarf2_per_objfile->objfile;
14582 bfd *abfd = objfile->obfd;
14583 const gdb_byte *info_ptr;
14584
14585 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14586 if (dwarf2_per_objfile->addr.buffer == NULL)
14587 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14588 objfile->name);
14589 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14590 error (_("DW_FORM_addr_index pointing outside of "
14591 ".debug_addr section [in module %s]"),
14592 objfile->name);
14593 info_ptr = (dwarf2_per_objfile->addr.buffer
14594 + addr_base + addr_index * addr_size);
14595 if (addr_size == 4)
14596 return bfd_get_32 (abfd, info_ptr);
14597 else
14598 return bfd_get_64 (abfd, info_ptr);
14599 }
14600
14601 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14602
14603 static CORE_ADDR
14604 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14605 {
14606 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14607 }
14608
14609 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14610
14611 static CORE_ADDR
14612 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14613 unsigned int *bytes_read)
14614 {
14615 bfd *abfd = cu->objfile->obfd;
14616 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14617
14618 return read_addr_index (cu, addr_index);
14619 }
14620
14621 /* Data structure to pass results from dwarf2_read_addr_index_reader
14622 back to dwarf2_read_addr_index. */
14623
14624 struct dwarf2_read_addr_index_data
14625 {
14626 ULONGEST addr_base;
14627 int addr_size;
14628 };
14629
14630 /* die_reader_func for dwarf2_read_addr_index. */
14631
14632 static void
14633 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14634 gdb_byte *info_ptr,
14635 struct die_info *comp_unit_die,
14636 int has_children,
14637 void *data)
14638 {
14639 struct dwarf2_cu *cu = reader->cu;
14640 struct dwarf2_read_addr_index_data *aidata =
14641 (struct dwarf2_read_addr_index_data *) data;
14642
14643 aidata->addr_base = cu->addr_base;
14644 aidata->addr_size = cu->header.addr_size;
14645 }
14646
14647 /* Given an index in .debug_addr, fetch the value.
14648 NOTE: This can be called during dwarf expression evaluation,
14649 long after the debug information has been read, and thus per_cu->cu
14650 may no longer exist. */
14651
14652 CORE_ADDR
14653 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14654 unsigned int addr_index)
14655 {
14656 struct objfile *objfile = per_cu->objfile;
14657 struct dwarf2_cu *cu = per_cu->cu;
14658 ULONGEST addr_base;
14659 int addr_size;
14660
14661 /* This is intended to be called from outside this file. */
14662 dw2_setup (objfile);
14663
14664 /* We need addr_base and addr_size.
14665 If we don't have PER_CU->cu, we have to get it.
14666 Nasty, but the alternative is storing the needed info in PER_CU,
14667 which at this point doesn't seem justified: it's not clear how frequently
14668 it would get used and it would increase the size of every PER_CU.
14669 Entry points like dwarf2_per_cu_addr_size do a similar thing
14670 so we're not in uncharted territory here.
14671 Alas we need to be a bit more complicated as addr_base is contained
14672 in the DIE.
14673
14674 We don't need to read the entire CU(/TU).
14675 We just need the header and top level die.
14676
14677 IWBN to use the aging mechanism to let us lazily later discard the CU.
14678 For now we skip this optimization. */
14679
14680 if (cu != NULL)
14681 {
14682 addr_base = cu->addr_base;
14683 addr_size = cu->header.addr_size;
14684 }
14685 else
14686 {
14687 struct dwarf2_read_addr_index_data aidata;
14688
14689 /* Note: We can't use init_cutu_and_read_dies_simple here,
14690 we need addr_base. */
14691 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14692 dwarf2_read_addr_index_reader, &aidata);
14693 addr_base = aidata.addr_base;
14694 addr_size = aidata.addr_size;
14695 }
14696
14697 return read_addr_index_1 (addr_index, addr_base, addr_size);
14698 }
14699
14700 /* Given a DW_AT_str_index, fetch the string. */
14701
14702 static char *
14703 read_str_index (const struct die_reader_specs *reader,
14704 struct dwarf2_cu *cu, ULONGEST str_index)
14705 {
14706 struct objfile *objfile = dwarf2_per_objfile->objfile;
14707 const char *dwo_name = objfile->name;
14708 bfd *abfd = objfile->obfd;
14709 struct dwo_sections *sections = &reader->dwo_file->sections;
14710 gdb_byte *info_ptr;
14711 ULONGEST str_offset;
14712
14713 dwarf2_read_section (objfile, &sections->str);
14714 dwarf2_read_section (objfile, &sections->str_offsets);
14715 if (sections->str.buffer == NULL)
14716 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14717 " in CU at offset 0x%lx [in module %s]"),
14718 (long) cu->header.offset.sect_off, dwo_name);
14719 if (sections->str_offsets.buffer == NULL)
14720 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14721 " in CU at offset 0x%lx [in module %s]"),
14722 (long) cu->header.offset.sect_off, dwo_name);
14723 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14724 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14725 " section in CU at offset 0x%lx [in module %s]"),
14726 (long) cu->header.offset.sect_off, dwo_name);
14727 info_ptr = (sections->str_offsets.buffer
14728 + str_index * cu->header.offset_size);
14729 if (cu->header.offset_size == 4)
14730 str_offset = bfd_get_32 (abfd, info_ptr);
14731 else
14732 str_offset = bfd_get_64 (abfd, info_ptr);
14733 if (str_offset >= sections->str.size)
14734 error (_("Offset from DW_FORM_str_index pointing outside of"
14735 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14736 (long) cu->header.offset.sect_off, dwo_name);
14737 return (char *) (sections->str.buffer + str_offset);
14738 }
14739
14740 /* Return the length of an LEB128 number in BUF. */
14741
14742 static int
14743 leb128_size (const gdb_byte *buf)
14744 {
14745 const gdb_byte *begin = buf;
14746 gdb_byte byte;
14747
14748 while (1)
14749 {
14750 byte = *buf++;
14751 if ((byte & 128) == 0)
14752 return buf - begin;
14753 }
14754 }
14755
14756 static void
14757 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14758 {
14759 switch (lang)
14760 {
14761 case DW_LANG_C89:
14762 case DW_LANG_C99:
14763 case DW_LANG_C:
14764 cu->language = language_c;
14765 break;
14766 case DW_LANG_C_plus_plus:
14767 cu->language = language_cplus;
14768 break;
14769 case DW_LANG_D:
14770 cu->language = language_d;
14771 break;
14772 case DW_LANG_Fortran77:
14773 case DW_LANG_Fortran90:
14774 case DW_LANG_Fortran95:
14775 cu->language = language_fortran;
14776 break;
14777 case DW_LANG_Go:
14778 cu->language = language_go;
14779 break;
14780 case DW_LANG_Mips_Assembler:
14781 cu->language = language_asm;
14782 break;
14783 case DW_LANG_Java:
14784 cu->language = language_java;
14785 break;
14786 case DW_LANG_Ada83:
14787 case DW_LANG_Ada95:
14788 cu->language = language_ada;
14789 break;
14790 case DW_LANG_Modula2:
14791 cu->language = language_m2;
14792 break;
14793 case DW_LANG_Pascal83:
14794 cu->language = language_pascal;
14795 break;
14796 case DW_LANG_ObjC:
14797 cu->language = language_objc;
14798 break;
14799 case DW_LANG_Cobol74:
14800 case DW_LANG_Cobol85:
14801 default:
14802 cu->language = language_minimal;
14803 break;
14804 }
14805 cu->language_defn = language_def (cu->language);
14806 }
14807
14808 /* Return the named attribute or NULL if not there. */
14809
14810 static struct attribute *
14811 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14812 {
14813 for (;;)
14814 {
14815 unsigned int i;
14816 struct attribute *spec = NULL;
14817
14818 for (i = 0; i < die->num_attrs; ++i)
14819 {
14820 if (die->attrs[i].name == name)
14821 return &die->attrs[i];
14822 if (die->attrs[i].name == DW_AT_specification
14823 || die->attrs[i].name == DW_AT_abstract_origin)
14824 spec = &die->attrs[i];
14825 }
14826
14827 if (!spec)
14828 break;
14829
14830 die = follow_die_ref (die, spec, &cu);
14831 }
14832
14833 return NULL;
14834 }
14835
14836 /* Return the named attribute or NULL if not there,
14837 but do not follow DW_AT_specification, etc.
14838 This is for use in contexts where we're reading .debug_types dies.
14839 Following DW_AT_specification, DW_AT_abstract_origin will take us
14840 back up the chain, and we want to go down. */
14841
14842 static struct attribute *
14843 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14844 {
14845 unsigned int i;
14846
14847 for (i = 0; i < die->num_attrs; ++i)
14848 if (die->attrs[i].name == name)
14849 return &die->attrs[i];
14850
14851 return NULL;
14852 }
14853
14854 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14855 and holds a non-zero value. This function should only be used for
14856 DW_FORM_flag or DW_FORM_flag_present attributes. */
14857
14858 static int
14859 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14860 {
14861 struct attribute *attr = dwarf2_attr (die, name, cu);
14862
14863 return (attr && DW_UNSND (attr));
14864 }
14865
14866 static int
14867 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14868 {
14869 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14870 which value is non-zero. However, we have to be careful with
14871 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14872 (via dwarf2_flag_true_p) follows this attribute. So we may
14873 end up accidently finding a declaration attribute that belongs
14874 to a different DIE referenced by the specification attribute,
14875 even though the given DIE does not have a declaration attribute. */
14876 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14877 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14878 }
14879
14880 /* Return the die giving the specification for DIE, if there is
14881 one. *SPEC_CU is the CU containing DIE on input, and the CU
14882 containing the return value on output. If there is no
14883 specification, but there is an abstract origin, that is
14884 returned. */
14885
14886 static struct die_info *
14887 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14888 {
14889 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14890 *spec_cu);
14891
14892 if (spec_attr == NULL)
14893 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14894
14895 if (spec_attr == NULL)
14896 return NULL;
14897 else
14898 return follow_die_ref (die, spec_attr, spec_cu);
14899 }
14900
14901 /* Free the line_header structure *LH, and any arrays and strings it
14902 refers to.
14903 NOTE: This is also used as a "cleanup" function. */
14904
14905 static void
14906 free_line_header (struct line_header *lh)
14907 {
14908 if (lh->standard_opcode_lengths)
14909 xfree (lh->standard_opcode_lengths);
14910
14911 /* Remember that all the lh->file_names[i].name pointers are
14912 pointers into debug_line_buffer, and don't need to be freed. */
14913 if (lh->file_names)
14914 xfree (lh->file_names);
14915
14916 /* Similarly for the include directory names. */
14917 if (lh->include_dirs)
14918 xfree (lh->include_dirs);
14919
14920 xfree (lh);
14921 }
14922
14923 /* Add an entry to LH's include directory table. */
14924
14925 static void
14926 add_include_dir (struct line_header *lh, char *include_dir)
14927 {
14928 /* Grow the array if necessary. */
14929 if (lh->include_dirs_size == 0)
14930 {
14931 lh->include_dirs_size = 1; /* for testing */
14932 lh->include_dirs = xmalloc (lh->include_dirs_size
14933 * sizeof (*lh->include_dirs));
14934 }
14935 else if (lh->num_include_dirs >= lh->include_dirs_size)
14936 {
14937 lh->include_dirs_size *= 2;
14938 lh->include_dirs = xrealloc (lh->include_dirs,
14939 (lh->include_dirs_size
14940 * sizeof (*lh->include_dirs)));
14941 }
14942
14943 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14944 }
14945
14946 /* Add an entry to LH's file name table. */
14947
14948 static void
14949 add_file_name (struct line_header *lh,
14950 char *name,
14951 unsigned int dir_index,
14952 unsigned int mod_time,
14953 unsigned int length)
14954 {
14955 struct file_entry *fe;
14956
14957 /* Grow the array if necessary. */
14958 if (lh->file_names_size == 0)
14959 {
14960 lh->file_names_size = 1; /* for testing */
14961 lh->file_names = xmalloc (lh->file_names_size
14962 * sizeof (*lh->file_names));
14963 }
14964 else if (lh->num_file_names >= lh->file_names_size)
14965 {
14966 lh->file_names_size *= 2;
14967 lh->file_names = xrealloc (lh->file_names,
14968 (lh->file_names_size
14969 * sizeof (*lh->file_names)));
14970 }
14971
14972 fe = &lh->file_names[lh->num_file_names++];
14973 fe->name = name;
14974 fe->dir_index = dir_index;
14975 fe->mod_time = mod_time;
14976 fe->length = length;
14977 fe->included_p = 0;
14978 fe->symtab = NULL;
14979 }
14980
14981 /* A convenience function to find the proper .debug_line section for a
14982 CU. */
14983
14984 static struct dwarf2_section_info *
14985 get_debug_line_section (struct dwarf2_cu *cu)
14986 {
14987 struct dwarf2_section_info *section;
14988
14989 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14990 DWO file. */
14991 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14992 section = &cu->dwo_unit->dwo_file->sections.line;
14993 else if (cu->per_cu->is_dwz)
14994 {
14995 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14996
14997 section = &dwz->line;
14998 }
14999 else
15000 section = &dwarf2_per_objfile->line;
15001
15002 return section;
15003 }
15004
15005 /* Read the statement program header starting at OFFSET in
15006 .debug_line, or .debug_line.dwo. Return a pointer
15007 to a struct line_header, allocated using xmalloc.
15008
15009 NOTE: the strings in the include directory and file name tables of
15010 the returned object point into the dwarf line section buffer,
15011 and must not be freed. */
15012
15013 static struct line_header *
15014 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15015 {
15016 struct cleanup *back_to;
15017 struct line_header *lh;
15018 gdb_byte *line_ptr;
15019 unsigned int bytes_read, offset_size;
15020 int i;
15021 char *cur_dir, *cur_file;
15022 struct dwarf2_section_info *section;
15023 bfd *abfd;
15024
15025 section = get_debug_line_section (cu);
15026 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15027 if (section->buffer == NULL)
15028 {
15029 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15030 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15031 else
15032 complaint (&symfile_complaints, _("missing .debug_line section"));
15033 return 0;
15034 }
15035
15036 /* We can't do this until we know the section is non-empty.
15037 Only then do we know we have such a section. */
15038 abfd = section->asection->owner;
15039
15040 /* Make sure that at least there's room for the total_length field.
15041 That could be 12 bytes long, but we're just going to fudge that. */
15042 if (offset + 4 >= section->size)
15043 {
15044 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15045 return 0;
15046 }
15047
15048 lh = xmalloc (sizeof (*lh));
15049 memset (lh, 0, sizeof (*lh));
15050 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15051 (void *) lh);
15052
15053 line_ptr = section->buffer + offset;
15054
15055 /* Read in the header. */
15056 lh->total_length =
15057 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15058 &bytes_read, &offset_size);
15059 line_ptr += bytes_read;
15060 if (line_ptr + lh->total_length > (section->buffer + section->size))
15061 {
15062 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15063 return 0;
15064 }
15065 lh->statement_program_end = line_ptr + lh->total_length;
15066 lh->version = read_2_bytes (abfd, line_ptr);
15067 line_ptr += 2;
15068 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15069 line_ptr += offset_size;
15070 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15071 line_ptr += 1;
15072 if (lh->version >= 4)
15073 {
15074 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15075 line_ptr += 1;
15076 }
15077 else
15078 lh->maximum_ops_per_instruction = 1;
15079
15080 if (lh->maximum_ops_per_instruction == 0)
15081 {
15082 lh->maximum_ops_per_instruction = 1;
15083 complaint (&symfile_complaints,
15084 _("invalid maximum_ops_per_instruction "
15085 "in `.debug_line' section"));
15086 }
15087
15088 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15089 line_ptr += 1;
15090 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15091 line_ptr += 1;
15092 lh->line_range = read_1_byte (abfd, line_ptr);
15093 line_ptr += 1;
15094 lh->opcode_base = read_1_byte (abfd, line_ptr);
15095 line_ptr += 1;
15096 lh->standard_opcode_lengths
15097 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15098
15099 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15100 for (i = 1; i < lh->opcode_base; ++i)
15101 {
15102 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15103 line_ptr += 1;
15104 }
15105
15106 /* Read directory table. */
15107 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15108 {
15109 line_ptr += bytes_read;
15110 add_include_dir (lh, cur_dir);
15111 }
15112 line_ptr += bytes_read;
15113
15114 /* Read file name table. */
15115 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15116 {
15117 unsigned int dir_index, mod_time, length;
15118
15119 line_ptr += bytes_read;
15120 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15121 line_ptr += bytes_read;
15122 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15123 line_ptr += bytes_read;
15124 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15125 line_ptr += bytes_read;
15126
15127 add_file_name (lh, cur_file, dir_index, mod_time, length);
15128 }
15129 line_ptr += bytes_read;
15130 lh->statement_program_start = line_ptr;
15131
15132 if (line_ptr > (section->buffer + section->size))
15133 complaint (&symfile_complaints,
15134 _("line number info header doesn't "
15135 "fit in `.debug_line' section"));
15136
15137 discard_cleanups (back_to);
15138 return lh;
15139 }
15140
15141 /* Subroutine of dwarf_decode_lines to simplify it.
15142 Return the file name of the psymtab for included file FILE_INDEX
15143 in line header LH of PST.
15144 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15145 If space for the result is malloc'd, it will be freed by a cleanup.
15146 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15147
15148 static char *
15149 psymtab_include_file_name (const struct line_header *lh, int file_index,
15150 const struct partial_symtab *pst,
15151 const char *comp_dir)
15152 {
15153 const struct file_entry fe = lh->file_names [file_index];
15154 char *include_name = fe.name;
15155 char *include_name_to_compare = include_name;
15156 char *dir_name = NULL;
15157 const char *pst_filename;
15158 char *copied_name = NULL;
15159 int file_is_pst;
15160
15161 if (fe.dir_index)
15162 dir_name = lh->include_dirs[fe.dir_index - 1];
15163
15164 if (!IS_ABSOLUTE_PATH (include_name)
15165 && (dir_name != NULL || comp_dir != NULL))
15166 {
15167 /* Avoid creating a duplicate psymtab for PST.
15168 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15169 Before we do the comparison, however, we need to account
15170 for DIR_NAME and COMP_DIR.
15171 First prepend dir_name (if non-NULL). If we still don't
15172 have an absolute path prepend comp_dir (if non-NULL).
15173 However, the directory we record in the include-file's
15174 psymtab does not contain COMP_DIR (to match the
15175 corresponding symtab(s)).
15176
15177 Example:
15178
15179 bash$ cd /tmp
15180 bash$ gcc -g ./hello.c
15181 include_name = "hello.c"
15182 dir_name = "."
15183 DW_AT_comp_dir = comp_dir = "/tmp"
15184 DW_AT_name = "./hello.c" */
15185
15186 if (dir_name != NULL)
15187 {
15188 include_name = concat (dir_name, SLASH_STRING,
15189 include_name, (char *)NULL);
15190 include_name_to_compare = include_name;
15191 make_cleanup (xfree, include_name);
15192 }
15193 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15194 {
15195 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15196 include_name, (char *)NULL);
15197 }
15198 }
15199
15200 pst_filename = pst->filename;
15201 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15202 {
15203 copied_name = concat (pst->dirname, SLASH_STRING,
15204 pst_filename, (char *)NULL);
15205 pst_filename = copied_name;
15206 }
15207
15208 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15209
15210 if (include_name_to_compare != include_name)
15211 xfree (include_name_to_compare);
15212 if (copied_name != NULL)
15213 xfree (copied_name);
15214
15215 if (file_is_pst)
15216 return NULL;
15217 return include_name;
15218 }
15219
15220 /* Ignore this record_line request. */
15221
15222 static void
15223 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15224 {
15225 return;
15226 }
15227
15228 /* Subroutine of dwarf_decode_lines to simplify it.
15229 Process the line number information in LH. */
15230
15231 static void
15232 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15233 struct dwarf2_cu *cu, struct partial_symtab *pst)
15234 {
15235 gdb_byte *line_ptr, *extended_end;
15236 gdb_byte *line_end;
15237 unsigned int bytes_read, extended_len;
15238 unsigned char op_code, extended_op, adj_opcode;
15239 CORE_ADDR baseaddr;
15240 struct objfile *objfile = cu->objfile;
15241 bfd *abfd = objfile->obfd;
15242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15243 const int decode_for_pst_p = (pst != NULL);
15244 struct subfile *last_subfile = NULL;
15245 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15246 = record_line;
15247
15248 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15249
15250 line_ptr = lh->statement_program_start;
15251 line_end = lh->statement_program_end;
15252
15253 /* Read the statement sequences until there's nothing left. */
15254 while (line_ptr < line_end)
15255 {
15256 /* state machine registers */
15257 CORE_ADDR address = 0;
15258 unsigned int file = 1;
15259 unsigned int line = 1;
15260 unsigned int column = 0;
15261 int is_stmt = lh->default_is_stmt;
15262 int basic_block = 0;
15263 int end_sequence = 0;
15264 CORE_ADDR addr;
15265 unsigned char op_index = 0;
15266
15267 if (!decode_for_pst_p && lh->num_file_names >= file)
15268 {
15269 /* Start a subfile for the current file of the state machine. */
15270 /* lh->include_dirs and lh->file_names are 0-based, but the
15271 directory and file name numbers in the statement program
15272 are 1-based. */
15273 struct file_entry *fe = &lh->file_names[file - 1];
15274 char *dir = NULL;
15275
15276 if (fe->dir_index)
15277 dir = lh->include_dirs[fe->dir_index - 1];
15278
15279 dwarf2_start_subfile (fe->name, dir, comp_dir);
15280 }
15281
15282 /* Decode the table. */
15283 while (!end_sequence)
15284 {
15285 op_code = read_1_byte (abfd, line_ptr);
15286 line_ptr += 1;
15287 if (line_ptr > line_end)
15288 {
15289 dwarf2_debug_line_missing_end_sequence_complaint ();
15290 break;
15291 }
15292
15293 if (op_code >= lh->opcode_base)
15294 {
15295 /* Special operand. */
15296 adj_opcode = op_code - lh->opcode_base;
15297 address += (((op_index + (adj_opcode / lh->line_range))
15298 / lh->maximum_ops_per_instruction)
15299 * lh->minimum_instruction_length);
15300 op_index = ((op_index + (adj_opcode / lh->line_range))
15301 % lh->maximum_ops_per_instruction);
15302 line += lh->line_base + (adj_opcode % lh->line_range);
15303 if (lh->num_file_names < file || file == 0)
15304 dwarf2_debug_line_missing_file_complaint ();
15305 /* For now we ignore lines not starting on an
15306 instruction boundary. */
15307 else if (op_index == 0)
15308 {
15309 lh->file_names[file - 1].included_p = 1;
15310 if (!decode_for_pst_p && is_stmt)
15311 {
15312 if (last_subfile != current_subfile)
15313 {
15314 addr = gdbarch_addr_bits_remove (gdbarch, address);
15315 if (last_subfile)
15316 (*p_record_line) (last_subfile, 0, addr);
15317 last_subfile = current_subfile;
15318 }
15319 /* Append row to matrix using current values. */
15320 addr = gdbarch_addr_bits_remove (gdbarch, address);
15321 (*p_record_line) (current_subfile, line, addr);
15322 }
15323 }
15324 basic_block = 0;
15325 }
15326 else switch (op_code)
15327 {
15328 case DW_LNS_extended_op:
15329 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15330 &bytes_read);
15331 line_ptr += bytes_read;
15332 extended_end = line_ptr + extended_len;
15333 extended_op = read_1_byte (abfd, line_ptr);
15334 line_ptr += 1;
15335 switch (extended_op)
15336 {
15337 case DW_LNE_end_sequence:
15338 p_record_line = record_line;
15339 end_sequence = 1;
15340 break;
15341 case DW_LNE_set_address:
15342 address = read_address (abfd, line_ptr, cu, &bytes_read);
15343
15344 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15345 {
15346 /* This line table is for a function which has been
15347 GCd by the linker. Ignore it. PR gdb/12528 */
15348
15349 long line_offset
15350 = line_ptr - get_debug_line_section (cu)->buffer;
15351
15352 complaint (&symfile_complaints,
15353 _(".debug_line address at offset 0x%lx is 0 "
15354 "[in module %s]"),
15355 line_offset, objfile->name);
15356 p_record_line = noop_record_line;
15357 }
15358
15359 op_index = 0;
15360 line_ptr += bytes_read;
15361 address += baseaddr;
15362 break;
15363 case DW_LNE_define_file:
15364 {
15365 char *cur_file;
15366 unsigned int dir_index, mod_time, length;
15367
15368 cur_file = read_direct_string (abfd, line_ptr,
15369 &bytes_read);
15370 line_ptr += bytes_read;
15371 dir_index =
15372 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15373 line_ptr += bytes_read;
15374 mod_time =
15375 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15376 line_ptr += bytes_read;
15377 length =
15378 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15379 line_ptr += bytes_read;
15380 add_file_name (lh, cur_file, dir_index, mod_time, length);
15381 }
15382 break;
15383 case DW_LNE_set_discriminator:
15384 /* The discriminator is not interesting to the debugger;
15385 just ignore it. */
15386 line_ptr = extended_end;
15387 break;
15388 default:
15389 complaint (&symfile_complaints,
15390 _("mangled .debug_line section"));
15391 return;
15392 }
15393 /* Make sure that we parsed the extended op correctly. If e.g.
15394 we expected a different address size than the producer used,
15395 we may have read the wrong number of bytes. */
15396 if (line_ptr != extended_end)
15397 {
15398 complaint (&symfile_complaints,
15399 _("mangled .debug_line section"));
15400 return;
15401 }
15402 break;
15403 case DW_LNS_copy:
15404 if (lh->num_file_names < file || file == 0)
15405 dwarf2_debug_line_missing_file_complaint ();
15406 else
15407 {
15408 lh->file_names[file - 1].included_p = 1;
15409 if (!decode_for_pst_p && is_stmt)
15410 {
15411 if (last_subfile != current_subfile)
15412 {
15413 addr = gdbarch_addr_bits_remove (gdbarch, address);
15414 if (last_subfile)
15415 (*p_record_line) (last_subfile, 0, addr);
15416 last_subfile = current_subfile;
15417 }
15418 addr = gdbarch_addr_bits_remove (gdbarch, address);
15419 (*p_record_line) (current_subfile, line, addr);
15420 }
15421 }
15422 basic_block = 0;
15423 break;
15424 case DW_LNS_advance_pc:
15425 {
15426 CORE_ADDR adjust
15427 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15428
15429 address += (((op_index + adjust)
15430 / lh->maximum_ops_per_instruction)
15431 * lh->minimum_instruction_length);
15432 op_index = ((op_index + adjust)
15433 % lh->maximum_ops_per_instruction);
15434 line_ptr += bytes_read;
15435 }
15436 break;
15437 case DW_LNS_advance_line:
15438 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15439 line_ptr += bytes_read;
15440 break;
15441 case DW_LNS_set_file:
15442 {
15443 /* The arrays lh->include_dirs and lh->file_names are
15444 0-based, but the directory and file name numbers in
15445 the statement program are 1-based. */
15446 struct file_entry *fe;
15447 char *dir = NULL;
15448
15449 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15450 line_ptr += bytes_read;
15451 if (lh->num_file_names < file || file == 0)
15452 dwarf2_debug_line_missing_file_complaint ();
15453 else
15454 {
15455 fe = &lh->file_names[file - 1];
15456 if (fe->dir_index)
15457 dir = lh->include_dirs[fe->dir_index - 1];
15458 if (!decode_for_pst_p)
15459 {
15460 last_subfile = current_subfile;
15461 dwarf2_start_subfile (fe->name, dir, comp_dir);
15462 }
15463 }
15464 }
15465 break;
15466 case DW_LNS_set_column:
15467 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15468 line_ptr += bytes_read;
15469 break;
15470 case DW_LNS_negate_stmt:
15471 is_stmt = (!is_stmt);
15472 break;
15473 case DW_LNS_set_basic_block:
15474 basic_block = 1;
15475 break;
15476 /* Add to the address register of the state machine the
15477 address increment value corresponding to special opcode
15478 255. I.e., this value is scaled by the minimum
15479 instruction length since special opcode 255 would have
15480 scaled the increment. */
15481 case DW_LNS_const_add_pc:
15482 {
15483 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15484
15485 address += (((op_index + adjust)
15486 / lh->maximum_ops_per_instruction)
15487 * lh->minimum_instruction_length);
15488 op_index = ((op_index + adjust)
15489 % lh->maximum_ops_per_instruction);
15490 }
15491 break;
15492 case DW_LNS_fixed_advance_pc:
15493 address += read_2_bytes (abfd, line_ptr);
15494 op_index = 0;
15495 line_ptr += 2;
15496 break;
15497 default:
15498 {
15499 /* Unknown standard opcode, ignore it. */
15500 int i;
15501
15502 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15503 {
15504 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15505 line_ptr += bytes_read;
15506 }
15507 }
15508 }
15509 }
15510 if (lh->num_file_names < file || file == 0)
15511 dwarf2_debug_line_missing_file_complaint ();
15512 else
15513 {
15514 lh->file_names[file - 1].included_p = 1;
15515 if (!decode_for_pst_p)
15516 {
15517 addr = gdbarch_addr_bits_remove (gdbarch, address);
15518 (*p_record_line) (current_subfile, 0, addr);
15519 }
15520 }
15521 }
15522 }
15523
15524 /* Decode the Line Number Program (LNP) for the given line_header
15525 structure and CU. The actual information extracted and the type
15526 of structures created from the LNP depends on the value of PST.
15527
15528 1. If PST is NULL, then this procedure uses the data from the program
15529 to create all necessary symbol tables, and their linetables.
15530
15531 2. If PST is not NULL, this procedure reads the program to determine
15532 the list of files included by the unit represented by PST, and
15533 builds all the associated partial symbol tables.
15534
15535 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15536 It is used for relative paths in the line table.
15537 NOTE: When processing partial symtabs (pst != NULL),
15538 comp_dir == pst->dirname.
15539
15540 NOTE: It is important that psymtabs have the same file name (via strcmp)
15541 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15542 symtab we don't use it in the name of the psymtabs we create.
15543 E.g. expand_line_sal requires this when finding psymtabs to expand.
15544 A good testcase for this is mb-inline.exp. */
15545
15546 static void
15547 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15548 struct dwarf2_cu *cu, struct partial_symtab *pst,
15549 int want_line_info)
15550 {
15551 struct objfile *objfile = cu->objfile;
15552 const int decode_for_pst_p = (pst != NULL);
15553 struct subfile *first_subfile = current_subfile;
15554
15555 if (want_line_info)
15556 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15557
15558 if (decode_for_pst_p)
15559 {
15560 int file_index;
15561
15562 /* Now that we're done scanning the Line Header Program, we can
15563 create the psymtab of each included file. */
15564 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15565 if (lh->file_names[file_index].included_p == 1)
15566 {
15567 char *include_name =
15568 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15569 if (include_name != NULL)
15570 dwarf2_create_include_psymtab (include_name, pst, objfile);
15571 }
15572 }
15573 else
15574 {
15575 /* Make sure a symtab is created for every file, even files
15576 which contain only variables (i.e. no code with associated
15577 line numbers). */
15578 int i;
15579
15580 for (i = 0; i < lh->num_file_names; i++)
15581 {
15582 char *dir = NULL;
15583 struct file_entry *fe;
15584
15585 fe = &lh->file_names[i];
15586 if (fe->dir_index)
15587 dir = lh->include_dirs[fe->dir_index - 1];
15588 dwarf2_start_subfile (fe->name, dir, comp_dir);
15589
15590 /* Skip the main file; we don't need it, and it must be
15591 allocated last, so that it will show up before the
15592 non-primary symtabs in the objfile's symtab list. */
15593 if (current_subfile == first_subfile)
15594 continue;
15595
15596 if (current_subfile->symtab == NULL)
15597 current_subfile->symtab = allocate_symtab (current_subfile->name,
15598 objfile);
15599 fe->symtab = current_subfile->symtab;
15600 }
15601 }
15602 }
15603
15604 /* Start a subfile for DWARF. FILENAME is the name of the file and
15605 DIRNAME the name of the source directory which contains FILENAME
15606 or NULL if not known. COMP_DIR is the compilation directory for the
15607 linetable's compilation unit or NULL if not known.
15608 This routine tries to keep line numbers from identical absolute and
15609 relative file names in a common subfile.
15610
15611 Using the `list' example from the GDB testsuite, which resides in
15612 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15613 of /srcdir/list0.c yields the following debugging information for list0.c:
15614
15615 DW_AT_name: /srcdir/list0.c
15616 DW_AT_comp_dir: /compdir
15617 files.files[0].name: list0.h
15618 files.files[0].dir: /srcdir
15619 files.files[1].name: list0.c
15620 files.files[1].dir: /srcdir
15621
15622 The line number information for list0.c has to end up in a single
15623 subfile, so that `break /srcdir/list0.c:1' works as expected.
15624 start_subfile will ensure that this happens provided that we pass the
15625 concatenation of files.files[1].dir and files.files[1].name as the
15626 subfile's name. */
15627
15628 static void
15629 dwarf2_start_subfile (char *filename, const char *dirname,
15630 const char *comp_dir)
15631 {
15632 char *fullname;
15633
15634 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15635 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15636 second argument to start_subfile. To be consistent, we do the
15637 same here. In order not to lose the line information directory,
15638 we concatenate it to the filename when it makes sense.
15639 Note that the Dwarf3 standard says (speaking of filenames in line
15640 information): ``The directory index is ignored for file names
15641 that represent full path names''. Thus ignoring dirname in the
15642 `else' branch below isn't an issue. */
15643
15644 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15645 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15646 else
15647 fullname = filename;
15648
15649 start_subfile (fullname, comp_dir);
15650
15651 if (fullname != filename)
15652 xfree (fullname);
15653 }
15654
15655 /* Start a symtab for DWARF.
15656 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15657
15658 static void
15659 dwarf2_start_symtab (struct dwarf2_cu *cu,
15660 char *name, char *comp_dir, CORE_ADDR low_pc)
15661 {
15662 start_symtab (name, comp_dir, low_pc);
15663 record_debugformat ("DWARF 2");
15664 record_producer (cu->producer);
15665
15666 /* We assume that we're processing GCC output. */
15667 processing_gcc_compilation = 2;
15668
15669 processing_has_namespace_info = 0;
15670 }
15671
15672 static void
15673 var_decode_location (struct attribute *attr, struct symbol *sym,
15674 struct dwarf2_cu *cu)
15675 {
15676 struct objfile *objfile = cu->objfile;
15677 struct comp_unit_head *cu_header = &cu->header;
15678
15679 /* NOTE drow/2003-01-30: There used to be a comment and some special
15680 code here to turn a symbol with DW_AT_external and a
15681 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15682 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15683 with some versions of binutils) where shared libraries could have
15684 relocations against symbols in their debug information - the
15685 minimal symbol would have the right address, but the debug info
15686 would not. It's no longer necessary, because we will explicitly
15687 apply relocations when we read in the debug information now. */
15688
15689 /* A DW_AT_location attribute with no contents indicates that a
15690 variable has been optimized away. */
15691 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15692 {
15693 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15694 return;
15695 }
15696
15697 /* Handle one degenerate form of location expression specially, to
15698 preserve GDB's previous behavior when section offsets are
15699 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15700 then mark this symbol as LOC_STATIC. */
15701
15702 if (attr_form_is_block (attr)
15703 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15704 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15705 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15706 && (DW_BLOCK (attr)->size
15707 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15708 {
15709 unsigned int dummy;
15710
15711 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15712 SYMBOL_VALUE_ADDRESS (sym) =
15713 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15714 else
15715 SYMBOL_VALUE_ADDRESS (sym) =
15716 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15717 SYMBOL_CLASS (sym) = LOC_STATIC;
15718 fixup_symbol_section (sym, objfile);
15719 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15720 SYMBOL_SECTION (sym));
15721 return;
15722 }
15723
15724 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15725 expression evaluator, and use LOC_COMPUTED only when necessary
15726 (i.e. when the value of a register or memory location is
15727 referenced, or a thread-local block, etc.). Then again, it might
15728 not be worthwhile. I'm assuming that it isn't unless performance
15729 or memory numbers show me otherwise. */
15730
15731 dwarf2_symbol_mark_computed (attr, sym, cu);
15732 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15733
15734 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15735 cu->has_loclist = 1;
15736 }
15737
15738 /* Given a pointer to a DWARF information entry, figure out if we need
15739 to make a symbol table entry for it, and if so, create a new entry
15740 and return a pointer to it.
15741 If TYPE is NULL, determine symbol type from the die, otherwise
15742 used the passed type.
15743 If SPACE is not NULL, use it to hold the new symbol. If it is
15744 NULL, allocate a new symbol on the objfile's obstack. */
15745
15746 static struct symbol *
15747 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15748 struct symbol *space)
15749 {
15750 struct objfile *objfile = cu->objfile;
15751 struct symbol *sym = NULL;
15752 char *name;
15753 struct attribute *attr = NULL;
15754 struct attribute *attr2 = NULL;
15755 CORE_ADDR baseaddr;
15756 struct pending **list_to_add = NULL;
15757
15758 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15759
15760 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15761
15762 name = dwarf2_name (die, cu);
15763 if (name)
15764 {
15765 const char *linkagename;
15766 int suppress_add = 0;
15767
15768 if (space)
15769 sym = space;
15770 else
15771 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15772 OBJSTAT (objfile, n_syms++);
15773
15774 /* Cache this symbol's name and the name's demangled form (if any). */
15775 SYMBOL_SET_LANGUAGE (sym, cu->language);
15776 linkagename = dwarf2_physname (name, die, cu);
15777 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15778
15779 /* Fortran does not have mangling standard and the mangling does differ
15780 between gfortran, iFort etc. */
15781 if (cu->language == language_fortran
15782 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15783 symbol_set_demangled_name (&(sym->ginfo),
15784 (char *) dwarf2_full_name (name, die, cu),
15785 NULL);
15786
15787 /* Default assumptions.
15788 Use the passed type or decode it from the die. */
15789 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15790 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15791 if (type != NULL)
15792 SYMBOL_TYPE (sym) = type;
15793 else
15794 SYMBOL_TYPE (sym) = die_type (die, cu);
15795 attr = dwarf2_attr (die,
15796 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15797 cu);
15798 if (attr)
15799 {
15800 SYMBOL_LINE (sym) = DW_UNSND (attr);
15801 }
15802
15803 attr = dwarf2_attr (die,
15804 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15805 cu);
15806 if (attr)
15807 {
15808 int file_index = DW_UNSND (attr);
15809
15810 if (cu->line_header == NULL
15811 || file_index > cu->line_header->num_file_names)
15812 complaint (&symfile_complaints,
15813 _("file index out of range"));
15814 else if (file_index > 0)
15815 {
15816 struct file_entry *fe;
15817
15818 fe = &cu->line_header->file_names[file_index - 1];
15819 SYMBOL_SYMTAB (sym) = fe->symtab;
15820 }
15821 }
15822
15823 switch (die->tag)
15824 {
15825 case DW_TAG_label:
15826 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15827 if (attr)
15828 {
15829 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15830 }
15831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15832 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15833 SYMBOL_CLASS (sym) = LOC_LABEL;
15834 add_symbol_to_list (sym, cu->list_in_scope);
15835 break;
15836 case DW_TAG_subprogram:
15837 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15838 finish_block. */
15839 SYMBOL_CLASS (sym) = LOC_BLOCK;
15840 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15841 if ((attr2 && (DW_UNSND (attr2) != 0))
15842 || cu->language == language_ada)
15843 {
15844 /* Subprograms marked external are stored as a global symbol.
15845 Ada subprograms, whether marked external or not, are always
15846 stored as a global symbol, because we want to be able to
15847 access them globally. For instance, we want to be able
15848 to break on a nested subprogram without having to
15849 specify the context. */
15850 list_to_add = &global_symbols;
15851 }
15852 else
15853 {
15854 list_to_add = cu->list_in_scope;
15855 }
15856 break;
15857 case DW_TAG_inlined_subroutine:
15858 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15859 finish_block. */
15860 SYMBOL_CLASS (sym) = LOC_BLOCK;
15861 SYMBOL_INLINED (sym) = 1;
15862 list_to_add = cu->list_in_scope;
15863 break;
15864 case DW_TAG_template_value_param:
15865 suppress_add = 1;
15866 /* Fall through. */
15867 case DW_TAG_constant:
15868 case DW_TAG_variable:
15869 case DW_TAG_member:
15870 /* Compilation with minimal debug info may result in
15871 variables with missing type entries. Change the
15872 misleading `void' type to something sensible. */
15873 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15874 SYMBOL_TYPE (sym)
15875 = objfile_type (objfile)->nodebug_data_symbol;
15876
15877 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15878 /* In the case of DW_TAG_member, we should only be called for
15879 static const members. */
15880 if (die->tag == DW_TAG_member)
15881 {
15882 /* dwarf2_add_field uses die_is_declaration,
15883 so we do the same. */
15884 gdb_assert (die_is_declaration (die, cu));
15885 gdb_assert (attr);
15886 }
15887 if (attr)
15888 {
15889 dwarf2_const_value (attr, sym, cu);
15890 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15891 if (!suppress_add)
15892 {
15893 if (attr2 && (DW_UNSND (attr2) != 0))
15894 list_to_add = &global_symbols;
15895 else
15896 list_to_add = cu->list_in_scope;
15897 }
15898 break;
15899 }
15900 attr = dwarf2_attr (die, DW_AT_location, cu);
15901 if (attr)
15902 {
15903 var_decode_location (attr, sym, cu);
15904 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15905
15906 /* Fortran explicitly imports any global symbols to the local
15907 scope by DW_TAG_common_block. */
15908 if (cu->language == language_fortran && die->parent
15909 && die->parent->tag == DW_TAG_common_block)
15910 attr2 = NULL;
15911
15912 if (SYMBOL_CLASS (sym) == LOC_STATIC
15913 && SYMBOL_VALUE_ADDRESS (sym) == 0
15914 && !dwarf2_per_objfile->has_section_at_zero)
15915 {
15916 /* When a static variable is eliminated by the linker,
15917 the corresponding debug information is not stripped
15918 out, but the variable address is set to null;
15919 do not add such variables into symbol table. */
15920 }
15921 else if (attr2 && (DW_UNSND (attr2) != 0))
15922 {
15923 /* Workaround gfortran PR debug/40040 - it uses
15924 DW_AT_location for variables in -fPIC libraries which may
15925 get overriden by other libraries/executable and get
15926 a different address. Resolve it by the minimal symbol
15927 which may come from inferior's executable using copy
15928 relocation. Make this workaround only for gfortran as for
15929 other compilers GDB cannot guess the minimal symbol
15930 Fortran mangling kind. */
15931 if (cu->language == language_fortran && die->parent
15932 && die->parent->tag == DW_TAG_module
15933 && cu->producer
15934 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15935 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15936
15937 /* A variable with DW_AT_external is never static,
15938 but it may be block-scoped. */
15939 list_to_add = (cu->list_in_scope == &file_symbols
15940 ? &global_symbols : cu->list_in_scope);
15941 }
15942 else
15943 list_to_add = cu->list_in_scope;
15944 }
15945 else
15946 {
15947 /* We do not know the address of this symbol.
15948 If it is an external symbol and we have type information
15949 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15950 The address of the variable will then be determined from
15951 the minimal symbol table whenever the variable is
15952 referenced. */
15953 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15954
15955 /* Fortran explicitly imports any global symbols to the local
15956 scope by DW_TAG_common_block. */
15957 if (cu->language == language_fortran && die->parent
15958 && die->parent->tag == DW_TAG_common_block)
15959 {
15960 /* SYMBOL_CLASS doesn't matter here because
15961 read_common_block is going to reset it. */
15962 if (!suppress_add)
15963 list_to_add = cu->list_in_scope;
15964 }
15965 else if (attr2 && (DW_UNSND (attr2) != 0)
15966 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15967 {
15968 /* A variable with DW_AT_external is never static, but it
15969 may be block-scoped. */
15970 list_to_add = (cu->list_in_scope == &file_symbols
15971 ? &global_symbols : cu->list_in_scope);
15972
15973 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15974 }
15975 else if (!die_is_declaration (die, cu))
15976 {
15977 /* Use the default LOC_OPTIMIZED_OUT class. */
15978 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15979 if (!suppress_add)
15980 list_to_add = cu->list_in_scope;
15981 }
15982 }
15983 break;
15984 case DW_TAG_formal_parameter:
15985 /* If we are inside a function, mark this as an argument. If
15986 not, we might be looking at an argument to an inlined function
15987 when we do not have enough information to show inlined frames;
15988 pretend it's a local variable in that case so that the user can
15989 still see it. */
15990 if (context_stack_depth > 0
15991 && context_stack[context_stack_depth - 1].name != NULL)
15992 SYMBOL_IS_ARGUMENT (sym) = 1;
15993 attr = dwarf2_attr (die, DW_AT_location, cu);
15994 if (attr)
15995 {
15996 var_decode_location (attr, sym, cu);
15997 }
15998 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15999 if (attr)
16000 {
16001 dwarf2_const_value (attr, sym, cu);
16002 }
16003
16004 list_to_add = cu->list_in_scope;
16005 break;
16006 case DW_TAG_unspecified_parameters:
16007 /* From varargs functions; gdb doesn't seem to have any
16008 interest in this information, so just ignore it for now.
16009 (FIXME?) */
16010 break;
16011 case DW_TAG_template_type_param:
16012 suppress_add = 1;
16013 /* Fall through. */
16014 case DW_TAG_class_type:
16015 case DW_TAG_interface_type:
16016 case DW_TAG_structure_type:
16017 case DW_TAG_union_type:
16018 case DW_TAG_set_type:
16019 case DW_TAG_enumeration_type:
16020 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16021 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16022
16023 {
16024 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16025 really ever be static objects: otherwise, if you try
16026 to, say, break of a class's method and you're in a file
16027 which doesn't mention that class, it won't work unless
16028 the check for all static symbols in lookup_symbol_aux
16029 saves you. See the OtherFileClass tests in
16030 gdb.c++/namespace.exp. */
16031
16032 if (!suppress_add)
16033 {
16034 list_to_add = (cu->list_in_scope == &file_symbols
16035 && (cu->language == language_cplus
16036 || cu->language == language_java)
16037 ? &global_symbols : cu->list_in_scope);
16038
16039 /* The semantics of C++ state that "struct foo {
16040 ... }" also defines a typedef for "foo". A Java
16041 class declaration also defines a typedef for the
16042 class. */
16043 if (cu->language == language_cplus
16044 || cu->language == language_java
16045 || cu->language == language_ada)
16046 {
16047 /* The symbol's name is already allocated along
16048 with this objfile, so we don't need to
16049 duplicate it for the type. */
16050 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16051 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16052 }
16053 }
16054 }
16055 break;
16056 case DW_TAG_typedef:
16057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16058 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16059 list_to_add = cu->list_in_scope;
16060 break;
16061 case DW_TAG_base_type:
16062 case DW_TAG_subrange_type:
16063 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16064 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16065 list_to_add = cu->list_in_scope;
16066 break;
16067 case DW_TAG_enumerator:
16068 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16069 if (attr)
16070 {
16071 dwarf2_const_value (attr, sym, cu);
16072 }
16073 {
16074 /* NOTE: carlton/2003-11-10: See comment above in the
16075 DW_TAG_class_type, etc. block. */
16076
16077 list_to_add = (cu->list_in_scope == &file_symbols
16078 && (cu->language == language_cplus
16079 || cu->language == language_java)
16080 ? &global_symbols : cu->list_in_scope);
16081 }
16082 break;
16083 case DW_TAG_namespace:
16084 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16085 list_to_add = &global_symbols;
16086 break;
16087 case DW_TAG_common_block:
16088 SYMBOL_CLASS (sym) = LOC_STATIC;
16089 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16090 add_symbol_to_list (sym, cu->list_in_scope);
16091 break;
16092 default:
16093 /* Not a tag we recognize. Hopefully we aren't processing
16094 trash data, but since we must specifically ignore things
16095 we don't recognize, there is nothing else we should do at
16096 this point. */
16097 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16098 dwarf_tag_name (die->tag));
16099 break;
16100 }
16101
16102 if (suppress_add)
16103 {
16104 sym->hash_next = objfile->template_symbols;
16105 objfile->template_symbols = sym;
16106 list_to_add = NULL;
16107 }
16108
16109 if (list_to_add != NULL)
16110 add_symbol_to_list (sym, list_to_add);
16111
16112 /* For the benefit of old versions of GCC, check for anonymous
16113 namespaces based on the demangled name. */
16114 if (!processing_has_namespace_info
16115 && cu->language == language_cplus)
16116 cp_scan_for_anonymous_namespaces (sym, objfile);
16117 }
16118 return (sym);
16119 }
16120
16121 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16122
16123 static struct symbol *
16124 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16125 {
16126 return new_symbol_full (die, type, cu, NULL);
16127 }
16128
16129 /* Given an attr with a DW_FORM_dataN value in host byte order,
16130 zero-extend it as appropriate for the symbol's type. The DWARF
16131 standard (v4) is not entirely clear about the meaning of using
16132 DW_FORM_dataN for a constant with a signed type, where the type is
16133 wider than the data. The conclusion of a discussion on the DWARF
16134 list was that this is unspecified. We choose to always zero-extend
16135 because that is the interpretation long in use by GCC. */
16136
16137 static gdb_byte *
16138 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16139 const char *name, struct obstack *obstack,
16140 struct dwarf2_cu *cu, LONGEST *value, int bits)
16141 {
16142 struct objfile *objfile = cu->objfile;
16143 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16144 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16145 LONGEST l = DW_UNSND (attr);
16146
16147 if (bits < sizeof (*value) * 8)
16148 {
16149 l &= ((LONGEST) 1 << bits) - 1;
16150 *value = l;
16151 }
16152 else if (bits == sizeof (*value) * 8)
16153 *value = l;
16154 else
16155 {
16156 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16157 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16158 return bytes;
16159 }
16160
16161 return NULL;
16162 }
16163
16164 /* Read a constant value from an attribute. Either set *VALUE, or if
16165 the value does not fit in *VALUE, set *BYTES - either already
16166 allocated on the objfile obstack, or newly allocated on OBSTACK,
16167 or, set *BATON, if we translated the constant to a location
16168 expression. */
16169
16170 static void
16171 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16172 const char *name, struct obstack *obstack,
16173 struct dwarf2_cu *cu,
16174 LONGEST *value, gdb_byte **bytes,
16175 struct dwarf2_locexpr_baton **baton)
16176 {
16177 struct objfile *objfile = cu->objfile;
16178 struct comp_unit_head *cu_header = &cu->header;
16179 struct dwarf_block *blk;
16180 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16181 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16182
16183 *value = 0;
16184 *bytes = NULL;
16185 *baton = NULL;
16186
16187 switch (attr->form)
16188 {
16189 case DW_FORM_addr:
16190 case DW_FORM_GNU_addr_index:
16191 {
16192 gdb_byte *data;
16193
16194 if (TYPE_LENGTH (type) != cu_header->addr_size)
16195 dwarf2_const_value_length_mismatch_complaint (name,
16196 cu_header->addr_size,
16197 TYPE_LENGTH (type));
16198 /* Symbols of this form are reasonably rare, so we just
16199 piggyback on the existing location code rather than writing
16200 a new implementation of symbol_computed_ops. */
16201 *baton = obstack_alloc (&objfile->objfile_obstack,
16202 sizeof (struct dwarf2_locexpr_baton));
16203 (*baton)->per_cu = cu->per_cu;
16204 gdb_assert ((*baton)->per_cu);
16205
16206 (*baton)->size = 2 + cu_header->addr_size;
16207 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16208 (*baton)->data = data;
16209
16210 data[0] = DW_OP_addr;
16211 store_unsigned_integer (&data[1], cu_header->addr_size,
16212 byte_order, DW_ADDR (attr));
16213 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16214 }
16215 break;
16216 case DW_FORM_string:
16217 case DW_FORM_strp:
16218 case DW_FORM_GNU_str_index:
16219 case DW_FORM_GNU_strp_alt:
16220 /* DW_STRING is already allocated on the objfile obstack, point
16221 directly to it. */
16222 *bytes = (gdb_byte *) DW_STRING (attr);
16223 break;
16224 case DW_FORM_block1:
16225 case DW_FORM_block2:
16226 case DW_FORM_block4:
16227 case DW_FORM_block:
16228 case DW_FORM_exprloc:
16229 blk = DW_BLOCK (attr);
16230 if (TYPE_LENGTH (type) != blk->size)
16231 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16232 TYPE_LENGTH (type));
16233 *bytes = blk->data;
16234 break;
16235
16236 /* The DW_AT_const_value attributes are supposed to carry the
16237 symbol's value "represented as it would be on the target
16238 architecture." By the time we get here, it's already been
16239 converted to host endianness, so we just need to sign- or
16240 zero-extend it as appropriate. */
16241 case DW_FORM_data1:
16242 *bytes = dwarf2_const_value_data (attr, type, name,
16243 obstack, cu, value, 8);
16244 break;
16245 case DW_FORM_data2:
16246 *bytes = dwarf2_const_value_data (attr, type, name,
16247 obstack, cu, value, 16);
16248 break;
16249 case DW_FORM_data4:
16250 *bytes = dwarf2_const_value_data (attr, type, name,
16251 obstack, cu, value, 32);
16252 break;
16253 case DW_FORM_data8:
16254 *bytes = dwarf2_const_value_data (attr, type, name,
16255 obstack, cu, value, 64);
16256 break;
16257
16258 case DW_FORM_sdata:
16259 *value = DW_SND (attr);
16260 break;
16261
16262 case DW_FORM_udata:
16263 *value = DW_UNSND (attr);
16264 break;
16265
16266 default:
16267 complaint (&symfile_complaints,
16268 _("unsupported const value attribute form: '%s'"),
16269 dwarf_form_name (attr->form));
16270 *value = 0;
16271 break;
16272 }
16273 }
16274
16275
16276 /* Copy constant value from an attribute to a symbol. */
16277
16278 static void
16279 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16280 struct dwarf2_cu *cu)
16281 {
16282 struct objfile *objfile = cu->objfile;
16283 struct comp_unit_head *cu_header = &cu->header;
16284 LONGEST value;
16285 gdb_byte *bytes;
16286 struct dwarf2_locexpr_baton *baton;
16287
16288 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16289 SYMBOL_PRINT_NAME (sym),
16290 &objfile->objfile_obstack, cu,
16291 &value, &bytes, &baton);
16292
16293 if (baton != NULL)
16294 {
16295 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16296 SYMBOL_LOCATION_BATON (sym) = baton;
16297 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16298 }
16299 else if (bytes != NULL)
16300 {
16301 SYMBOL_VALUE_BYTES (sym) = bytes;
16302 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16303 }
16304 else
16305 {
16306 SYMBOL_VALUE (sym) = value;
16307 SYMBOL_CLASS (sym) = LOC_CONST;
16308 }
16309 }
16310
16311 /* Return the type of the die in question using its DW_AT_type attribute. */
16312
16313 static struct type *
16314 die_type (struct die_info *die, struct dwarf2_cu *cu)
16315 {
16316 struct attribute *type_attr;
16317
16318 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16319 if (!type_attr)
16320 {
16321 /* A missing DW_AT_type represents a void type. */
16322 return objfile_type (cu->objfile)->builtin_void;
16323 }
16324
16325 return lookup_die_type (die, type_attr, cu);
16326 }
16327
16328 /* True iff CU's producer generates GNAT Ada auxiliary information
16329 that allows to find parallel types through that information instead
16330 of having to do expensive parallel lookups by type name. */
16331
16332 static int
16333 need_gnat_info (struct dwarf2_cu *cu)
16334 {
16335 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16336 of GNAT produces this auxiliary information, without any indication
16337 that it is produced. Part of enhancing the FSF version of GNAT
16338 to produce that information will be to put in place an indicator
16339 that we can use in order to determine whether the descriptive type
16340 info is available or not. One suggestion that has been made is
16341 to use a new attribute, attached to the CU die. For now, assume
16342 that the descriptive type info is not available. */
16343 return 0;
16344 }
16345
16346 /* Return the auxiliary type of the die in question using its
16347 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16348 attribute is not present. */
16349
16350 static struct type *
16351 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16352 {
16353 struct attribute *type_attr;
16354
16355 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16356 if (!type_attr)
16357 return NULL;
16358
16359 return lookup_die_type (die, type_attr, cu);
16360 }
16361
16362 /* If DIE has a descriptive_type attribute, then set the TYPE's
16363 descriptive type accordingly. */
16364
16365 static void
16366 set_descriptive_type (struct type *type, struct die_info *die,
16367 struct dwarf2_cu *cu)
16368 {
16369 struct type *descriptive_type = die_descriptive_type (die, cu);
16370
16371 if (descriptive_type)
16372 {
16373 ALLOCATE_GNAT_AUX_TYPE (type);
16374 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16375 }
16376 }
16377
16378 /* Return the containing type of the die in question using its
16379 DW_AT_containing_type attribute. */
16380
16381 static struct type *
16382 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16383 {
16384 struct attribute *type_attr;
16385
16386 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16387 if (!type_attr)
16388 error (_("Dwarf Error: Problem turning containing type into gdb type "
16389 "[in module %s]"), cu->objfile->name);
16390
16391 return lookup_die_type (die, type_attr, cu);
16392 }
16393
16394 /* Look up the type of DIE in CU using its type attribute ATTR.
16395 If there is no type substitute an error marker. */
16396
16397 static struct type *
16398 lookup_die_type (struct die_info *die, struct attribute *attr,
16399 struct dwarf2_cu *cu)
16400 {
16401 struct objfile *objfile = cu->objfile;
16402 struct type *this_type;
16403
16404 /* First see if we have it cached. */
16405
16406 if (attr->form == DW_FORM_GNU_ref_alt)
16407 {
16408 struct dwarf2_per_cu_data *per_cu;
16409 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16410
16411 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16412 this_type = get_die_type_at_offset (offset, per_cu);
16413 }
16414 else if (is_ref_attr (attr))
16415 {
16416 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16417
16418 this_type = get_die_type_at_offset (offset, cu->per_cu);
16419 }
16420 else if (attr->form == DW_FORM_ref_sig8)
16421 {
16422 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16423
16424 /* sig_type will be NULL if the signatured type is missing from
16425 the debug info. */
16426 if (sig_type == NULL)
16427 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16428 "at 0x%x [in module %s]"),
16429 die->offset.sect_off, objfile->name);
16430
16431 gdb_assert (sig_type->per_cu.is_debug_types);
16432 /* If we haven't filled in type_offset_in_section yet, then we
16433 haven't read the type in yet. */
16434 this_type = NULL;
16435 if (sig_type->type_offset_in_section.sect_off != 0)
16436 {
16437 this_type =
16438 get_die_type_at_offset (sig_type->type_offset_in_section,
16439 &sig_type->per_cu);
16440 }
16441 }
16442 else
16443 {
16444 dump_die_for_error (die);
16445 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16446 dwarf_attr_name (attr->name), objfile->name);
16447 }
16448
16449 /* If not cached we need to read it in. */
16450
16451 if (this_type == NULL)
16452 {
16453 struct die_info *type_die;
16454 struct dwarf2_cu *type_cu = cu;
16455
16456 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16457 /* If we found the type now, it's probably because the type came
16458 from an inter-CU reference and the type's CU got expanded before
16459 ours. */
16460 this_type = get_die_type (type_die, type_cu);
16461 if (this_type == NULL)
16462 this_type = read_type_die_1 (type_die, type_cu);
16463 }
16464
16465 /* If we still don't have a type use an error marker. */
16466
16467 if (this_type == NULL)
16468 {
16469 char *message, *saved;
16470
16471 /* read_type_die already issued a complaint. */
16472 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16473 objfile->name,
16474 cu->header.offset.sect_off,
16475 die->offset.sect_off);
16476 saved = obstack_copy0 (&objfile->objfile_obstack,
16477 message, strlen (message));
16478 xfree (message);
16479
16480 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16481 }
16482
16483 return this_type;
16484 }
16485
16486 /* Return the type in DIE, CU.
16487 Returns NULL for invalid types.
16488
16489 This first does a lookup in the appropriate type_hash table,
16490 and only reads the die in if necessary.
16491
16492 NOTE: This can be called when reading in partial or full symbols. */
16493
16494 static struct type *
16495 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16496 {
16497 struct type *this_type;
16498
16499 this_type = get_die_type (die, cu);
16500 if (this_type)
16501 return this_type;
16502
16503 return read_type_die_1 (die, cu);
16504 }
16505
16506 /* Read the type in DIE, CU.
16507 Returns NULL for invalid types. */
16508
16509 static struct type *
16510 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16511 {
16512 struct type *this_type = NULL;
16513
16514 switch (die->tag)
16515 {
16516 case DW_TAG_class_type:
16517 case DW_TAG_interface_type:
16518 case DW_TAG_structure_type:
16519 case DW_TAG_union_type:
16520 this_type = read_structure_type (die, cu);
16521 break;
16522 case DW_TAG_enumeration_type:
16523 this_type = read_enumeration_type (die, cu);
16524 break;
16525 case DW_TAG_subprogram:
16526 case DW_TAG_subroutine_type:
16527 case DW_TAG_inlined_subroutine:
16528 this_type = read_subroutine_type (die, cu);
16529 break;
16530 case DW_TAG_array_type:
16531 this_type = read_array_type (die, cu);
16532 break;
16533 case DW_TAG_set_type:
16534 this_type = read_set_type (die, cu);
16535 break;
16536 case DW_TAG_pointer_type:
16537 this_type = read_tag_pointer_type (die, cu);
16538 break;
16539 case DW_TAG_ptr_to_member_type:
16540 this_type = read_tag_ptr_to_member_type (die, cu);
16541 break;
16542 case DW_TAG_reference_type:
16543 this_type = read_tag_reference_type (die, cu);
16544 break;
16545 case DW_TAG_const_type:
16546 this_type = read_tag_const_type (die, cu);
16547 break;
16548 case DW_TAG_volatile_type:
16549 this_type = read_tag_volatile_type (die, cu);
16550 break;
16551 case DW_TAG_string_type:
16552 this_type = read_tag_string_type (die, cu);
16553 break;
16554 case DW_TAG_typedef:
16555 this_type = read_typedef (die, cu);
16556 break;
16557 case DW_TAG_subrange_type:
16558 this_type = read_subrange_type (die, cu);
16559 break;
16560 case DW_TAG_base_type:
16561 this_type = read_base_type (die, cu);
16562 break;
16563 case DW_TAG_unspecified_type:
16564 this_type = read_unspecified_type (die, cu);
16565 break;
16566 case DW_TAG_namespace:
16567 this_type = read_namespace_type (die, cu);
16568 break;
16569 case DW_TAG_module:
16570 this_type = read_module_type (die, cu);
16571 break;
16572 default:
16573 complaint (&symfile_complaints,
16574 _("unexpected tag in read_type_die: '%s'"),
16575 dwarf_tag_name (die->tag));
16576 break;
16577 }
16578
16579 return this_type;
16580 }
16581
16582 /* See if we can figure out if the class lives in a namespace. We do
16583 this by looking for a member function; its demangled name will
16584 contain namespace info, if there is any.
16585 Return the computed name or NULL.
16586 Space for the result is allocated on the objfile's obstack.
16587 This is the full-die version of guess_partial_die_structure_name.
16588 In this case we know DIE has no useful parent. */
16589
16590 static char *
16591 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16592 {
16593 struct die_info *spec_die;
16594 struct dwarf2_cu *spec_cu;
16595 struct die_info *child;
16596
16597 spec_cu = cu;
16598 spec_die = die_specification (die, &spec_cu);
16599 if (spec_die != NULL)
16600 {
16601 die = spec_die;
16602 cu = spec_cu;
16603 }
16604
16605 for (child = die->child;
16606 child != NULL;
16607 child = child->sibling)
16608 {
16609 if (child->tag == DW_TAG_subprogram)
16610 {
16611 struct attribute *attr;
16612
16613 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16614 if (attr == NULL)
16615 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16616 if (attr != NULL)
16617 {
16618 char *actual_name
16619 = language_class_name_from_physname (cu->language_defn,
16620 DW_STRING (attr));
16621 char *name = NULL;
16622
16623 if (actual_name != NULL)
16624 {
16625 char *die_name = dwarf2_name (die, cu);
16626
16627 if (die_name != NULL
16628 && strcmp (die_name, actual_name) != 0)
16629 {
16630 /* Strip off the class name from the full name.
16631 We want the prefix. */
16632 int die_name_len = strlen (die_name);
16633 int actual_name_len = strlen (actual_name);
16634
16635 /* Test for '::' as a sanity check. */
16636 if (actual_name_len > die_name_len + 2
16637 && actual_name[actual_name_len
16638 - die_name_len - 1] == ':')
16639 name =
16640 obsavestring (actual_name,
16641 actual_name_len - die_name_len - 2,
16642 &cu->objfile->objfile_obstack);
16643 }
16644 }
16645 xfree (actual_name);
16646 return name;
16647 }
16648 }
16649 }
16650
16651 return NULL;
16652 }
16653
16654 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16655 prefix part in such case. See
16656 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16657
16658 static char *
16659 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16660 {
16661 struct attribute *attr;
16662 char *base;
16663
16664 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16665 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16666 return NULL;
16667
16668 attr = dwarf2_attr (die, DW_AT_name, cu);
16669 if (attr != NULL && DW_STRING (attr) != NULL)
16670 return NULL;
16671
16672 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16673 if (attr == NULL)
16674 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16675 if (attr == NULL || DW_STRING (attr) == NULL)
16676 return NULL;
16677
16678 /* dwarf2_name had to be already called. */
16679 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16680
16681 /* Strip the base name, keep any leading namespaces/classes. */
16682 base = strrchr (DW_STRING (attr), ':');
16683 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16684 return "";
16685
16686 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16687 &cu->objfile->objfile_obstack);
16688 }
16689
16690 /* Return the name of the namespace/class that DIE is defined within,
16691 or "" if we can't tell. The caller should not xfree the result.
16692
16693 For example, if we're within the method foo() in the following
16694 code:
16695
16696 namespace N {
16697 class C {
16698 void foo () {
16699 }
16700 };
16701 }
16702
16703 then determine_prefix on foo's die will return "N::C". */
16704
16705 static const char *
16706 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16707 {
16708 struct die_info *parent, *spec_die;
16709 struct dwarf2_cu *spec_cu;
16710 struct type *parent_type;
16711 char *retval;
16712
16713 if (cu->language != language_cplus && cu->language != language_java
16714 && cu->language != language_fortran)
16715 return "";
16716
16717 retval = anonymous_struct_prefix (die, cu);
16718 if (retval)
16719 return retval;
16720
16721 /* We have to be careful in the presence of DW_AT_specification.
16722 For example, with GCC 3.4, given the code
16723
16724 namespace N {
16725 void foo() {
16726 // Definition of N::foo.
16727 }
16728 }
16729
16730 then we'll have a tree of DIEs like this:
16731
16732 1: DW_TAG_compile_unit
16733 2: DW_TAG_namespace // N
16734 3: DW_TAG_subprogram // declaration of N::foo
16735 4: DW_TAG_subprogram // definition of N::foo
16736 DW_AT_specification // refers to die #3
16737
16738 Thus, when processing die #4, we have to pretend that we're in
16739 the context of its DW_AT_specification, namely the contex of die
16740 #3. */
16741 spec_cu = cu;
16742 spec_die = die_specification (die, &spec_cu);
16743 if (spec_die == NULL)
16744 parent = die->parent;
16745 else
16746 {
16747 parent = spec_die->parent;
16748 cu = spec_cu;
16749 }
16750
16751 if (parent == NULL)
16752 return "";
16753 else if (parent->building_fullname)
16754 {
16755 const char *name;
16756 const char *parent_name;
16757
16758 /* It has been seen on RealView 2.2 built binaries,
16759 DW_TAG_template_type_param types actually _defined_ as
16760 children of the parent class:
16761
16762 enum E {};
16763 template class <class Enum> Class{};
16764 Class<enum E> class_e;
16765
16766 1: DW_TAG_class_type (Class)
16767 2: DW_TAG_enumeration_type (E)
16768 3: DW_TAG_enumerator (enum1:0)
16769 3: DW_TAG_enumerator (enum2:1)
16770 ...
16771 2: DW_TAG_template_type_param
16772 DW_AT_type DW_FORM_ref_udata (E)
16773
16774 Besides being broken debug info, it can put GDB into an
16775 infinite loop. Consider:
16776
16777 When we're building the full name for Class<E>, we'll start
16778 at Class, and go look over its template type parameters,
16779 finding E. We'll then try to build the full name of E, and
16780 reach here. We're now trying to build the full name of E,
16781 and look over the parent DIE for containing scope. In the
16782 broken case, if we followed the parent DIE of E, we'd again
16783 find Class, and once again go look at its template type
16784 arguments, etc., etc. Simply don't consider such parent die
16785 as source-level parent of this die (it can't be, the language
16786 doesn't allow it), and break the loop here. */
16787 name = dwarf2_name (die, cu);
16788 parent_name = dwarf2_name (parent, cu);
16789 complaint (&symfile_complaints,
16790 _("template param type '%s' defined within parent '%s'"),
16791 name ? name : "<unknown>",
16792 parent_name ? parent_name : "<unknown>");
16793 return "";
16794 }
16795 else
16796 switch (parent->tag)
16797 {
16798 case DW_TAG_namespace:
16799 parent_type = read_type_die (parent, cu);
16800 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16801 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16802 Work around this problem here. */
16803 if (cu->language == language_cplus
16804 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16805 return "";
16806 /* We give a name to even anonymous namespaces. */
16807 return TYPE_TAG_NAME (parent_type);
16808 case DW_TAG_class_type:
16809 case DW_TAG_interface_type:
16810 case DW_TAG_structure_type:
16811 case DW_TAG_union_type:
16812 case DW_TAG_module:
16813 parent_type = read_type_die (parent, cu);
16814 if (TYPE_TAG_NAME (parent_type) != NULL)
16815 return TYPE_TAG_NAME (parent_type);
16816 else
16817 /* An anonymous structure is only allowed non-static data
16818 members; no typedefs, no member functions, et cetera.
16819 So it does not need a prefix. */
16820 return "";
16821 case DW_TAG_compile_unit:
16822 case DW_TAG_partial_unit:
16823 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16824 if (cu->language == language_cplus
16825 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16826 && die->child != NULL
16827 && (die->tag == DW_TAG_class_type
16828 || die->tag == DW_TAG_structure_type
16829 || die->tag == DW_TAG_union_type))
16830 {
16831 char *name = guess_full_die_structure_name (die, cu);
16832 if (name != NULL)
16833 return name;
16834 }
16835 return "";
16836 default:
16837 return determine_prefix (parent, cu);
16838 }
16839 }
16840
16841 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16842 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16843 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16844 an obconcat, otherwise allocate storage for the result. The CU argument is
16845 used to determine the language and hence, the appropriate separator. */
16846
16847 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16848
16849 static char *
16850 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16851 int physname, struct dwarf2_cu *cu)
16852 {
16853 const char *lead = "";
16854 const char *sep;
16855
16856 if (suffix == NULL || suffix[0] == '\0'
16857 || prefix == NULL || prefix[0] == '\0')
16858 sep = "";
16859 else if (cu->language == language_java)
16860 sep = ".";
16861 else if (cu->language == language_fortran && physname)
16862 {
16863 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16864 DW_AT_MIPS_linkage_name is preferred and used instead. */
16865
16866 lead = "__";
16867 sep = "_MOD_";
16868 }
16869 else
16870 sep = "::";
16871
16872 if (prefix == NULL)
16873 prefix = "";
16874 if (suffix == NULL)
16875 suffix = "";
16876
16877 if (obs == NULL)
16878 {
16879 char *retval
16880 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16881
16882 strcpy (retval, lead);
16883 strcat (retval, prefix);
16884 strcat (retval, sep);
16885 strcat (retval, suffix);
16886 return retval;
16887 }
16888 else
16889 {
16890 /* We have an obstack. */
16891 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16892 }
16893 }
16894
16895 /* Return sibling of die, NULL if no sibling. */
16896
16897 static struct die_info *
16898 sibling_die (struct die_info *die)
16899 {
16900 return die->sibling;
16901 }
16902
16903 /* Get name of a die, return NULL if not found. */
16904
16905 static char *
16906 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16907 struct obstack *obstack)
16908 {
16909 if (name && cu->language == language_cplus)
16910 {
16911 char *canon_name = cp_canonicalize_string (name);
16912
16913 if (canon_name != NULL)
16914 {
16915 if (strcmp (canon_name, name) != 0)
16916 name = obsavestring (canon_name, strlen (canon_name),
16917 obstack);
16918 xfree (canon_name);
16919 }
16920 }
16921
16922 return name;
16923 }
16924
16925 /* Get name of a die, return NULL if not found. */
16926
16927 static char *
16928 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16929 {
16930 struct attribute *attr;
16931
16932 attr = dwarf2_attr (die, DW_AT_name, cu);
16933 if ((!attr || !DW_STRING (attr))
16934 && die->tag != DW_TAG_class_type
16935 && die->tag != DW_TAG_interface_type
16936 && die->tag != DW_TAG_structure_type
16937 && die->tag != DW_TAG_union_type)
16938 return NULL;
16939
16940 switch (die->tag)
16941 {
16942 case DW_TAG_compile_unit:
16943 case DW_TAG_partial_unit:
16944 /* Compilation units have a DW_AT_name that is a filename, not
16945 a source language identifier. */
16946 case DW_TAG_enumeration_type:
16947 case DW_TAG_enumerator:
16948 /* These tags always have simple identifiers already; no need
16949 to canonicalize them. */
16950 return DW_STRING (attr);
16951
16952 case DW_TAG_subprogram:
16953 /* Java constructors will all be named "<init>", so return
16954 the class name when we see this special case. */
16955 if (cu->language == language_java
16956 && DW_STRING (attr) != NULL
16957 && strcmp (DW_STRING (attr), "<init>") == 0)
16958 {
16959 struct dwarf2_cu *spec_cu = cu;
16960 struct die_info *spec_die;
16961
16962 /* GCJ will output '<init>' for Java constructor names.
16963 For this special case, return the name of the parent class. */
16964
16965 /* GCJ may output suprogram DIEs with AT_specification set.
16966 If so, use the name of the specified DIE. */
16967 spec_die = die_specification (die, &spec_cu);
16968 if (spec_die != NULL)
16969 return dwarf2_name (spec_die, spec_cu);
16970
16971 do
16972 {
16973 die = die->parent;
16974 if (die->tag == DW_TAG_class_type)
16975 return dwarf2_name (die, cu);
16976 }
16977 while (die->tag != DW_TAG_compile_unit
16978 && die->tag != DW_TAG_partial_unit);
16979 }
16980 break;
16981
16982 case DW_TAG_class_type:
16983 case DW_TAG_interface_type:
16984 case DW_TAG_structure_type:
16985 case DW_TAG_union_type:
16986 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16987 structures or unions. These were of the form "._%d" in GCC 4.1,
16988 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16989 and GCC 4.4. We work around this problem by ignoring these. */
16990 if (attr && DW_STRING (attr)
16991 && (strncmp (DW_STRING (attr), "._", 2) == 0
16992 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16993 return NULL;
16994
16995 /* GCC might emit a nameless typedef that has a linkage name. See
16996 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16997 if (!attr || DW_STRING (attr) == NULL)
16998 {
16999 char *demangled = NULL;
17000
17001 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17002 if (attr == NULL)
17003 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17004
17005 if (attr == NULL || DW_STRING (attr) == NULL)
17006 return NULL;
17007
17008 /* Avoid demangling DW_STRING (attr) the second time on a second
17009 call for the same DIE. */
17010 if (!DW_STRING_IS_CANONICAL (attr))
17011 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17012
17013 if (demangled)
17014 {
17015 char *base;
17016
17017 /* FIXME: we already did this for the partial symbol... */
17018 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
17019 &cu->objfile->objfile_obstack);
17020 DW_STRING_IS_CANONICAL (attr) = 1;
17021 xfree (demangled);
17022
17023 /* Strip any leading namespaces/classes, keep only the base name.
17024 DW_AT_name for named DIEs does not contain the prefixes. */
17025 base = strrchr (DW_STRING (attr), ':');
17026 if (base && base > DW_STRING (attr) && base[-1] == ':')
17027 return &base[1];
17028 else
17029 return DW_STRING (attr);
17030 }
17031 }
17032 break;
17033
17034 default:
17035 break;
17036 }
17037
17038 if (!DW_STRING_IS_CANONICAL (attr))
17039 {
17040 DW_STRING (attr)
17041 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17042 &cu->objfile->objfile_obstack);
17043 DW_STRING_IS_CANONICAL (attr) = 1;
17044 }
17045 return DW_STRING (attr);
17046 }
17047
17048 /* Return the die that this die in an extension of, or NULL if there
17049 is none. *EXT_CU is the CU containing DIE on input, and the CU
17050 containing the return value on output. */
17051
17052 static struct die_info *
17053 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17054 {
17055 struct attribute *attr;
17056
17057 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17058 if (attr == NULL)
17059 return NULL;
17060
17061 return follow_die_ref (die, attr, ext_cu);
17062 }
17063
17064 /* Convert a DIE tag into its string name. */
17065
17066 static const char *
17067 dwarf_tag_name (unsigned tag)
17068 {
17069 const char *name = get_DW_TAG_name (tag);
17070
17071 if (name == NULL)
17072 return "DW_TAG_<unknown>";
17073
17074 return name;
17075 }
17076
17077 /* Convert a DWARF attribute code into its string name. */
17078
17079 static const char *
17080 dwarf_attr_name (unsigned attr)
17081 {
17082 const char *name;
17083
17084 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17085 if (attr == DW_AT_MIPS_fde)
17086 return "DW_AT_MIPS_fde";
17087 #else
17088 if (attr == DW_AT_HP_block_index)
17089 return "DW_AT_HP_block_index";
17090 #endif
17091
17092 name = get_DW_AT_name (attr);
17093
17094 if (name == NULL)
17095 return "DW_AT_<unknown>";
17096
17097 return name;
17098 }
17099
17100 /* Convert a DWARF value form code into its string name. */
17101
17102 static const char *
17103 dwarf_form_name (unsigned form)
17104 {
17105 const char *name = get_DW_FORM_name (form);
17106
17107 if (name == NULL)
17108 return "DW_FORM_<unknown>";
17109
17110 return name;
17111 }
17112
17113 static char *
17114 dwarf_bool_name (unsigned mybool)
17115 {
17116 if (mybool)
17117 return "TRUE";
17118 else
17119 return "FALSE";
17120 }
17121
17122 /* Convert a DWARF type code into its string name. */
17123
17124 static const char *
17125 dwarf_type_encoding_name (unsigned enc)
17126 {
17127 const char *name = get_DW_ATE_name (enc);
17128
17129 if (name == NULL)
17130 return "DW_ATE_<unknown>";
17131
17132 return name;
17133 }
17134
17135 static void
17136 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17137 {
17138 unsigned int i;
17139
17140 print_spaces (indent, f);
17141 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17142 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17143
17144 if (die->parent != NULL)
17145 {
17146 print_spaces (indent, f);
17147 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17148 die->parent->offset.sect_off);
17149 }
17150
17151 print_spaces (indent, f);
17152 fprintf_unfiltered (f, " has children: %s\n",
17153 dwarf_bool_name (die->child != NULL));
17154
17155 print_spaces (indent, f);
17156 fprintf_unfiltered (f, " attributes:\n");
17157
17158 for (i = 0; i < die->num_attrs; ++i)
17159 {
17160 print_spaces (indent, f);
17161 fprintf_unfiltered (f, " %s (%s) ",
17162 dwarf_attr_name (die->attrs[i].name),
17163 dwarf_form_name (die->attrs[i].form));
17164
17165 switch (die->attrs[i].form)
17166 {
17167 case DW_FORM_addr:
17168 case DW_FORM_GNU_addr_index:
17169 fprintf_unfiltered (f, "address: ");
17170 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17171 break;
17172 case DW_FORM_block2:
17173 case DW_FORM_block4:
17174 case DW_FORM_block:
17175 case DW_FORM_block1:
17176 fprintf_unfiltered (f, "block: size %s",
17177 pulongest (DW_BLOCK (&die->attrs[i])->size));
17178 break;
17179 case DW_FORM_exprloc:
17180 fprintf_unfiltered (f, "expression: size %s",
17181 pulongest (DW_BLOCK (&die->attrs[i])->size));
17182 break;
17183 case DW_FORM_ref_addr:
17184 fprintf_unfiltered (f, "ref address: ");
17185 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17186 break;
17187 case DW_FORM_GNU_ref_alt:
17188 fprintf_unfiltered (f, "alt ref address: ");
17189 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17190 break;
17191 case DW_FORM_ref1:
17192 case DW_FORM_ref2:
17193 case DW_FORM_ref4:
17194 case DW_FORM_ref8:
17195 case DW_FORM_ref_udata:
17196 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17197 (long) (DW_UNSND (&die->attrs[i])));
17198 break;
17199 case DW_FORM_data1:
17200 case DW_FORM_data2:
17201 case DW_FORM_data4:
17202 case DW_FORM_data8:
17203 case DW_FORM_udata:
17204 case DW_FORM_sdata:
17205 fprintf_unfiltered (f, "constant: %s",
17206 pulongest (DW_UNSND (&die->attrs[i])));
17207 break;
17208 case DW_FORM_sec_offset:
17209 fprintf_unfiltered (f, "section offset: %s",
17210 pulongest (DW_UNSND (&die->attrs[i])));
17211 break;
17212 case DW_FORM_ref_sig8:
17213 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17214 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17215 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17216 else
17217 fprintf_unfiltered (f, "signatured type, offset: unknown");
17218 break;
17219 case DW_FORM_string:
17220 case DW_FORM_strp:
17221 case DW_FORM_GNU_str_index:
17222 case DW_FORM_GNU_strp_alt:
17223 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17224 DW_STRING (&die->attrs[i])
17225 ? DW_STRING (&die->attrs[i]) : "",
17226 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17227 break;
17228 case DW_FORM_flag:
17229 if (DW_UNSND (&die->attrs[i]))
17230 fprintf_unfiltered (f, "flag: TRUE");
17231 else
17232 fprintf_unfiltered (f, "flag: FALSE");
17233 break;
17234 case DW_FORM_flag_present:
17235 fprintf_unfiltered (f, "flag: TRUE");
17236 break;
17237 case DW_FORM_indirect:
17238 /* The reader will have reduced the indirect form to
17239 the "base form" so this form should not occur. */
17240 fprintf_unfiltered (f,
17241 "unexpected attribute form: DW_FORM_indirect");
17242 break;
17243 default:
17244 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17245 die->attrs[i].form);
17246 break;
17247 }
17248 fprintf_unfiltered (f, "\n");
17249 }
17250 }
17251
17252 static void
17253 dump_die_for_error (struct die_info *die)
17254 {
17255 dump_die_shallow (gdb_stderr, 0, die);
17256 }
17257
17258 static void
17259 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17260 {
17261 int indent = level * 4;
17262
17263 gdb_assert (die != NULL);
17264
17265 if (level >= max_level)
17266 return;
17267
17268 dump_die_shallow (f, indent, die);
17269
17270 if (die->child != NULL)
17271 {
17272 print_spaces (indent, f);
17273 fprintf_unfiltered (f, " Children:");
17274 if (level + 1 < max_level)
17275 {
17276 fprintf_unfiltered (f, "\n");
17277 dump_die_1 (f, level + 1, max_level, die->child);
17278 }
17279 else
17280 {
17281 fprintf_unfiltered (f,
17282 " [not printed, max nesting level reached]\n");
17283 }
17284 }
17285
17286 if (die->sibling != NULL && level > 0)
17287 {
17288 dump_die_1 (f, level, max_level, die->sibling);
17289 }
17290 }
17291
17292 /* This is called from the pdie macro in gdbinit.in.
17293 It's not static so gcc will keep a copy callable from gdb. */
17294
17295 void
17296 dump_die (struct die_info *die, int max_level)
17297 {
17298 dump_die_1 (gdb_stdlog, 0, max_level, die);
17299 }
17300
17301 static void
17302 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17303 {
17304 void **slot;
17305
17306 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17307 INSERT);
17308
17309 *slot = die;
17310 }
17311
17312 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17313 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17314
17315 static int
17316 is_ref_attr (struct attribute *attr)
17317 {
17318 switch (attr->form)
17319 {
17320 case DW_FORM_ref_addr:
17321 case DW_FORM_ref1:
17322 case DW_FORM_ref2:
17323 case DW_FORM_ref4:
17324 case DW_FORM_ref8:
17325 case DW_FORM_ref_udata:
17326 case DW_FORM_GNU_ref_alt:
17327 return 1;
17328 default:
17329 return 0;
17330 }
17331 }
17332
17333 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17334 required kind. */
17335
17336 static sect_offset
17337 dwarf2_get_ref_die_offset (struct attribute *attr)
17338 {
17339 sect_offset retval = { DW_UNSND (attr) };
17340
17341 if (is_ref_attr (attr))
17342 return retval;
17343
17344 retval.sect_off = 0;
17345 complaint (&symfile_complaints,
17346 _("unsupported die ref attribute form: '%s'"),
17347 dwarf_form_name (attr->form));
17348 return retval;
17349 }
17350
17351 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17352 * the value held by the attribute is not constant. */
17353
17354 static LONGEST
17355 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17356 {
17357 if (attr->form == DW_FORM_sdata)
17358 return DW_SND (attr);
17359 else if (attr->form == DW_FORM_udata
17360 || attr->form == DW_FORM_data1
17361 || attr->form == DW_FORM_data2
17362 || attr->form == DW_FORM_data4
17363 || attr->form == DW_FORM_data8)
17364 return DW_UNSND (attr);
17365 else
17366 {
17367 complaint (&symfile_complaints,
17368 _("Attribute value is not a constant (%s)"),
17369 dwarf_form_name (attr->form));
17370 return default_value;
17371 }
17372 }
17373
17374 /* Follow reference or signature attribute ATTR of SRC_DIE.
17375 On entry *REF_CU is the CU of SRC_DIE.
17376 On exit *REF_CU is the CU of the result. */
17377
17378 static struct die_info *
17379 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17380 struct dwarf2_cu **ref_cu)
17381 {
17382 struct die_info *die;
17383
17384 if (is_ref_attr (attr))
17385 die = follow_die_ref (src_die, attr, ref_cu);
17386 else if (attr->form == DW_FORM_ref_sig8)
17387 die = follow_die_sig (src_die, attr, ref_cu);
17388 else
17389 {
17390 dump_die_for_error (src_die);
17391 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17392 (*ref_cu)->objfile->name);
17393 }
17394
17395 return die;
17396 }
17397
17398 /* Follow reference OFFSET.
17399 On entry *REF_CU is the CU of the source die referencing OFFSET.
17400 On exit *REF_CU is the CU of the result.
17401 Returns NULL if OFFSET is invalid. */
17402
17403 static struct die_info *
17404 follow_die_offset (sect_offset offset, int offset_in_dwz,
17405 struct dwarf2_cu **ref_cu)
17406 {
17407 struct die_info temp_die;
17408 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17409
17410 gdb_assert (cu->per_cu != NULL);
17411
17412 target_cu = cu;
17413
17414 if (cu->per_cu->is_debug_types)
17415 {
17416 /* .debug_types CUs cannot reference anything outside their CU.
17417 If they need to, they have to reference a signatured type via
17418 DW_FORM_ref_sig8. */
17419 if (! offset_in_cu_p (&cu->header, offset))
17420 return NULL;
17421 }
17422 else if (offset_in_dwz != cu->per_cu->is_dwz
17423 || ! offset_in_cu_p (&cu->header, offset))
17424 {
17425 struct dwarf2_per_cu_data *per_cu;
17426
17427 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17428 cu->objfile);
17429
17430 /* If necessary, add it to the queue and load its DIEs. */
17431 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17432 load_full_comp_unit (per_cu, cu->language);
17433
17434 target_cu = per_cu->cu;
17435 }
17436 else if (cu->dies == NULL)
17437 {
17438 /* We're loading full DIEs during partial symbol reading. */
17439 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17440 load_full_comp_unit (cu->per_cu, language_minimal);
17441 }
17442
17443 *ref_cu = target_cu;
17444 temp_die.offset = offset;
17445 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17446 }
17447
17448 /* Follow reference attribute ATTR of SRC_DIE.
17449 On entry *REF_CU is the CU of SRC_DIE.
17450 On exit *REF_CU is the CU of the result. */
17451
17452 static struct die_info *
17453 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17454 struct dwarf2_cu **ref_cu)
17455 {
17456 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17457 struct dwarf2_cu *cu = *ref_cu;
17458 struct die_info *die;
17459
17460 die = follow_die_offset (offset,
17461 (attr->form == DW_FORM_GNU_ref_alt
17462 || cu->per_cu->is_dwz),
17463 ref_cu);
17464 if (!die)
17465 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17466 "at 0x%x [in module %s]"),
17467 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17468
17469 return die;
17470 }
17471
17472 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17473 Returned value is intended for DW_OP_call*. Returned
17474 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17475
17476 struct dwarf2_locexpr_baton
17477 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17478 struct dwarf2_per_cu_data *per_cu,
17479 CORE_ADDR (*get_frame_pc) (void *baton),
17480 void *baton)
17481 {
17482 struct dwarf2_cu *cu;
17483 struct die_info *die;
17484 struct attribute *attr;
17485 struct dwarf2_locexpr_baton retval;
17486
17487 dw2_setup (per_cu->objfile);
17488
17489 if (per_cu->cu == NULL)
17490 load_cu (per_cu);
17491 cu = per_cu->cu;
17492
17493 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17494 if (!die)
17495 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17496 offset.sect_off, per_cu->objfile->name);
17497
17498 attr = dwarf2_attr (die, DW_AT_location, cu);
17499 if (!attr)
17500 {
17501 /* DWARF: "If there is no such attribute, then there is no effect.".
17502 DATA is ignored if SIZE is 0. */
17503
17504 retval.data = NULL;
17505 retval.size = 0;
17506 }
17507 else if (attr_form_is_section_offset (attr))
17508 {
17509 struct dwarf2_loclist_baton loclist_baton;
17510 CORE_ADDR pc = (*get_frame_pc) (baton);
17511 size_t size;
17512
17513 fill_in_loclist_baton (cu, &loclist_baton, attr);
17514
17515 retval.data = dwarf2_find_location_expression (&loclist_baton,
17516 &size, pc);
17517 retval.size = size;
17518 }
17519 else
17520 {
17521 if (!attr_form_is_block (attr))
17522 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17523 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17524 offset.sect_off, per_cu->objfile->name);
17525
17526 retval.data = DW_BLOCK (attr)->data;
17527 retval.size = DW_BLOCK (attr)->size;
17528 }
17529 retval.per_cu = cu->per_cu;
17530
17531 age_cached_comp_units ();
17532
17533 return retval;
17534 }
17535
17536 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17537 offset. */
17538
17539 struct dwarf2_locexpr_baton
17540 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17541 struct dwarf2_per_cu_data *per_cu,
17542 CORE_ADDR (*get_frame_pc) (void *baton),
17543 void *baton)
17544 {
17545 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17546
17547 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17548 }
17549
17550 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17551 PER_CU. */
17552
17553 struct type *
17554 dwarf2_get_die_type (cu_offset die_offset,
17555 struct dwarf2_per_cu_data *per_cu)
17556 {
17557 sect_offset die_offset_sect;
17558
17559 dw2_setup (per_cu->objfile);
17560
17561 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17562 return get_die_type_at_offset (die_offset_sect, per_cu);
17563 }
17564
17565 /* Follow the signature attribute ATTR in SRC_DIE.
17566 On entry *REF_CU is the CU of SRC_DIE.
17567 On exit *REF_CU is the CU of the result. */
17568
17569 static struct die_info *
17570 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17571 struct dwarf2_cu **ref_cu)
17572 {
17573 struct objfile *objfile = (*ref_cu)->objfile;
17574 struct die_info temp_die;
17575 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17576 struct dwarf2_cu *sig_cu;
17577 struct die_info *die;
17578
17579 /* sig_type will be NULL if the signatured type is missing from
17580 the debug info. */
17581 if (sig_type == NULL)
17582 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17583 "at 0x%x [in module %s]"),
17584 src_die->offset.sect_off, objfile->name);
17585
17586 /* If necessary, add it to the queue and load its DIEs. */
17587
17588 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17589 read_signatured_type (sig_type);
17590
17591 gdb_assert (sig_type->per_cu.cu != NULL);
17592
17593 sig_cu = sig_type->per_cu.cu;
17594 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17595 temp_die.offset = sig_type->type_offset_in_section;
17596 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17597 temp_die.offset.sect_off);
17598 if (die)
17599 {
17600 *ref_cu = sig_cu;
17601 return die;
17602 }
17603
17604 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17605 "from DIE at 0x%x [in module %s]"),
17606 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17607 }
17608
17609 /* Given an offset of a signatured type, return its signatured_type. */
17610
17611 static struct signatured_type *
17612 lookup_signatured_type_at_offset (struct objfile *objfile,
17613 struct dwarf2_section_info *section,
17614 sect_offset offset)
17615 {
17616 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17617 unsigned int length, initial_length_size;
17618 unsigned int sig_offset;
17619 struct signatured_type find_entry, *sig_type;
17620
17621 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17622 sig_offset = (initial_length_size
17623 + 2 /*version*/
17624 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17625 + 1 /*address_size*/);
17626 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17627 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17628
17629 /* This is only used to lookup previously recorded types.
17630 If we didn't find it, it's our bug. */
17631 gdb_assert (sig_type != NULL);
17632 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17633
17634 return sig_type;
17635 }
17636
17637 /* Load the DIEs associated with type unit PER_CU into memory. */
17638
17639 static void
17640 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17641 {
17642 struct signatured_type *sig_type;
17643
17644 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17645 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17646
17647 /* We have the per_cu, but we need the signatured_type.
17648 Fortunately this is an easy translation. */
17649 gdb_assert (per_cu->is_debug_types);
17650 sig_type = (struct signatured_type *) per_cu;
17651
17652 gdb_assert (per_cu->cu == NULL);
17653
17654 read_signatured_type (sig_type);
17655
17656 gdb_assert (per_cu->cu != NULL);
17657 }
17658
17659 /* die_reader_func for read_signatured_type.
17660 This is identical to load_full_comp_unit_reader,
17661 but is kept separate for now. */
17662
17663 static void
17664 read_signatured_type_reader (const struct die_reader_specs *reader,
17665 gdb_byte *info_ptr,
17666 struct die_info *comp_unit_die,
17667 int has_children,
17668 void *data)
17669 {
17670 struct dwarf2_cu *cu = reader->cu;
17671
17672 gdb_assert (cu->die_hash == NULL);
17673 cu->die_hash =
17674 htab_create_alloc_ex (cu->header.length / 12,
17675 die_hash,
17676 die_eq,
17677 NULL,
17678 &cu->comp_unit_obstack,
17679 hashtab_obstack_allocate,
17680 dummy_obstack_deallocate);
17681
17682 if (has_children)
17683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17684 &info_ptr, comp_unit_die);
17685 cu->dies = comp_unit_die;
17686 /* comp_unit_die is not stored in die_hash, no need. */
17687
17688 /* We try not to read any attributes in this function, because not
17689 all CUs needed for references have been loaded yet, and symbol
17690 table processing isn't initialized. But we have to set the CU language,
17691 or we won't be able to build types correctly.
17692 Similarly, if we do not read the producer, we can not apply
17693 producer-specific interpretation. */
17694 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17695 }
17696
17697 /* Read in a signatured type and build its CU and DIEs.
17698 If the type is a stub for the real type in a DWO file,
17699 read in the real type from the DWO file as well. */
17700
17701 static void
17702 read_signatured_type (struct signatured_type *sig_type)
17703 {
17704 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17705
17706 gdb_assert (per_cu->is_debug_types);
17707 gdb_assert (per_cu->cu == NULL);
17708
17709 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17710 read_signatured_type_reader, NULL);
17711 }
17712
17713 /* Decode simple location descriptions.
17714 Given a pointer to a dwarf block that defines a location, compute
17715 the location and return the value.
17716
17717 NOTE drow/2003-11-18: This function is called in two situations
17718 now: for the address of static or global variables (partial symbols
17719 only) and for offsets into structures which are expected to be
17720 (more or less) constant. The partial symbol case should go away,
17721 and only the constant case should remain. That will let this
17722 function complain more accurately. A few special modes are allowed
17723 without complaint for global variables (for instance, global
17724 register values and thread-local values).
17725
17726 A location description containing no operations indicates that the
17727 object is optimized out. The return value is 0 for that case.
17728 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17729 callers will only want a very basic result and this can become a
17730 complaint.
17731
17732 Note that stack[0] is unused except as a default error return. */
17733
17734 static CORE_ADDR
17735 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17736 {
17737 struct objfile *objfile = cu->objfile;
17738 size_t i;
17739 size_t size = blk->size;
17740 gdb_byte *data = blk->data;
17741 CORE_ADDR stack[64];
17742 int stacki;
17743 unsigned int bytes_read, unsnd;
17744 gdb_byte op;
17745
17746 i = 0;
17747 stacki = 0;
17748 stack[stacki] = 0;
17749 stack[++stacki] = 0;
17750
17751 while (i < size)
17752 {
17753 op = data[i++];
17754 switch (op)
17755 {
17756 case DW_OP_lit0:
17757 case DW_OP_lit1:
17758 case DW_OP_lit2:
17759 case DW_OP_lit3:
17760 case DW_OP_lit4:
17761 case DW_OP_lit5:
17762 case DW_OP_lit6:
17763 case DW_OP_lit7:
17764 case DW_OP_lit8:
17765 case DW_OP_lit9:
17766 case DW_OP_lit10:
17767 case DW_OP_lit11:
17768 case DW_OP_lit12:
17769 case DW_OP_lit13:
17770 case DW_OP_lit14:
17771 case DW_OP_lit15:
17772 case DW_OP_lit16:
17773 case DW_OP_lit17:
17774 case DW_OP_lit18:
17775 case DW_OP_lit19:
17776 case DW_OP_lit20:
17777 case DW_OP_lit21:
17778 case DW_OP_lit22:
17779 case DW_OP_lit23:
17780 case DW_OP_lit24:
17781 case DW_OP_lit25:
17782 case DW_OP_lit26:
17783 case DW_OP_lit27:
17784 case DW_OP_lit28:
17785 case DW_OP_lit29:
17786 case DW_OP_lit30:
17787 case DW_OP_lit31:
17788 stack[++stacki] = op - DW_OP_lit0;
17789 break;
17790
17791 case DW_OP_reg0:
17792 case DW_OP_reg1:
17793 case DW_OP_reg2:
17794 case DW_OP_reg3:
17795 case DW_OP_reg4:
17796 case DW_OP_reg5:
17797 case DW_OP_reg6:
17798 case DW_OP_reg7:
17799 case DW_OP_reg8:
17800 case DW_OP_reg9:
17801 case DW_OP_reg10:
17802 case DW_OP_reg11:
17803 case DW_OP_reg12:
17804 case DW_OP_reg13:
17805 case DW_OP_reg14:
17806 case DW_OP_reg15:
17807 case DW_OP_reg16:
17808 case DW_OP_reg17:
17809 case DW_OP_reg18:
17810 case DW_OP_reg19:
17811 case DW_OP_reg20:
17812 case DW_OP_reg21:
17813 case DW_OP_reg22:
17814 case DW_OP_reg23:
17815 case DW_OP_reg24:
17816 case DW_OP_reg25:
17817 case DW_OP_reg26:
17818 case DW_OP_reg27:
17819 case DW_OP_reg28:
17820 case DW_OP_reg29:
17821 case DW_OP_reg30:
17822 case DW_OP_reg31:
17823 stack[++stacki] = op - DW_OP_reg0;
17824 if (i < size)
17825 dwarf2_complex_location_expr_complaint ();
17826 break;
17827
17828 case DW_OP_regx:
17829 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17830 i += bytes_read;
17831 stack[++stacki] = unsnd;
17832 if (i < size)
17833 dwarf2_complex_location_expr_complaint ();
17834 break;
17835
17836 case DW_OP_addr:
17837 stack[++stacki] = read_address (objfile->obfd, &data[i],
17838 cu, &bytes_read);
17839 i += bytes_read;
17840 break;
17841
17842 case DW_OP_const1u:
17843 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17844 i += 1;
17845 break;
17846
17847 case DW_OP_const1s:
17848 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17849 i += 1;
17850 break;
17851
17852 case DW_OP_const2u:
17853 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17854 i += 2;
17855 break;
17856
17857 case DW_OP_const2s:
17858 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17859 i += 2;
17860 break;
17861
17862 case DW_OP_const4u:
17863 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17864 i += 4;
17865 break;
17866
17867 case DW_OP_const4s:
17868 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17869 i += 4;
17870 break;
17871
17872 case DW_OP_const8u:
17873 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17874 i += 8;
17875 break;
17876
17877 case DW_OP_constu:
17878 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17879 &bytes_read);
17880 i += bytes_read;
17881 break;
17882
17883 case DW_OP_consts:
17884 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17885 i += bytes_read;
17886 break;
17887
17888 case DW_OP_dup:
17889 stack[stacki + 1] = stack[stacki];
17890 stacki++;
17891 break;
17892
17893 case DW_OP_plus:
17894 stack[stacki - 1] += stack[stacki];
17895 stacki--;
17896 break;
17897
17898 case DW_OP_plus_uconst:
17899 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17900 &bytes_read);
17901 i += bytes_read;
17902 break;
17903
17904 case DW_OP_minus:
17905 stack[stacki - 1] -= stack[stacki];
17906 stacki--;
17907 break;
17908
17909 case DW_OP_deref:
17910 /* If we're not the last op, then we definitely can't encode
17911 this using GDB's address_class enum. This is valid for partial
17912 global symbols, although the variable's address will be bogus
17913 in the psymtab. */
17914 if (i < size)
17915 dwarf2_complex_location_expr_complaint ();
17916 break;
17917
17918 case DW_OP_GNU_push_tls_address:
17919 /* The top of the stack has the offset from the beginning
17920 of the thread control block at which the variable is located. */
17921 /* Nothing should follow this operator, so the top of stack would
17922 be returned. */
17923 /* This is valid for partial global symbols, but the variable's
17924 address will be bogus in the psymtab. Make it always at least
17925 non-zero to not look as a variable garbage collected by linker
17926 which have DW_OP_addr 0. */
17927 if (i < size)
17928 dwarf2_complex_location_expr_complaint ();
17929 stack[stacki]++;
17930 break;
17931
17932 case DW_OP_GNU_uninit:
17933 break;
17934
17935 case DW_OP_GNU_addr_index:
17936 case DW_OP_GNU_const_index:
17937 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17938 &bytes_read);
17939 i += bytes_read;
17940 break;
17941
17942 default:
17943 {
17944 const char *name = get_DW_OP_name (op);
17945
17946 if (name)
17947 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17948 name);
17949 else
17950 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17951 op);
17952 }
17953
17954 return (stack[stacki]);
17955 }
17956
17957 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17958 outside of the allocated space. Also enforce minimum>0. */
17959 if (stacki >= ARRAY_SIZE (stack) - 1)
17960 {
17961 complaint (&symfile_complaints,
17962 _("location description stack overflow"));
17963 return 0;
17964 }
17965
17966 if (stacki <= 0)
17967 {
17968 complaint (&symfile_complaints,
17969 _("location description stack underflow"));
17970 return 0;
17971 }
17972 }
17973 return (stack[stacki]);
17974 }
17975
17976 /* memory allocation interface */
17977
17978 static struct dwarf_block *
17979 dwarf_alloc_block (struct dwarf2_cu *cu)
17980 {
17981 struct dwarf_block *blk;
17982
17983 blk = (struct dwarf_block *)
17984 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17985 return (blk);
17986 }
17987
17988 static struct die_info *
17989 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17990 {
17991 struct die_info *die;
17992 size_t size = sizeof (struct die_info);
17993
17994 if (num_attrs > 1)
17995 size += (num_attrs - 1) * sizeof (struct attribute);
17996
17997 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17998 memset (die, 0, sizeof (struct die_info));
17999 return (die);
18000 }
18001
18002 \f
18003 /* Macro support. */
18004
18005 /* Return the full name of file number I in *LH's file name table.
18006 Use COMP_DIR as the name of the current directory of the
18007 compilation. The result is allocated using xmalloc; the caller is
18008 responsible for freeing it. */
18009 static char *
18010 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18011 {
18012 /* Is the file number a valid index into the line header's file name
18013 table? Remember that file numbers start with one, not zero. */
18014 if (1 <= file && file <= lh->num_file_names)
18015 {
18016 struct file_entry *fe = &lh->file_names[file - 1];
18017
18018 if (IS_ABSOLUTE_PATH (fe->name))
18019 return xstrdup (fe->name);
18020 else
18021 {
18022 const char *dir;
18023 int dir_len;
18024 char *full_name;
18025
18026 if (fe->dir_index)
18027 dir = lh->include_dirs[fe->dir_index - 1];
18028 else
18029 dir = comp_dir;
18030
18031 if (dir)
18032 {
18033 dir_len = strlen (dir);
18034 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
18035 strcpy (full_name, dir);
18036 full_name[dir_len] = '/';
18037 strcpy (full_name + dir_len + 1, fe->name);
18038 return full_name;
18039 }
18040 else
18041 return xstrdup (fe->name);
18042 }
18043 }
18044 else
18045 {
18046 /* The compiler produced a bogus file number. We can at least
18047 record the macro definitions made in the file, even if we
18048 won't be able to find the file by name. */
18049 char fake_name[80];
18050
18051 xsnprintf (fake_name, sizeof (fake_name),
18052 "<bad macro file number %d>", file);
18053
18054 complaint (&symfile_complaints,
18055 _("bad file number in macro information (%d)"),
18056 file);
18057
18058 return xstrdup (fake_name);
18059 }
18060 }
18061
18062
18063 static struct macro_source_file *
18064 macro_start_file (int file, int line,
18065 struct macro_source_file *current_file,
18066 const char *comp_dir,
18067 struct line_header *lh, struct objfile *objfile)
18068 {
18069 /* The full name of this source file. */
18070 char *full_name = file_full_name (file, lh, comp_dir);
18071
18072 /* We don't create a macro table for this compilation unit
18073 at all until we actually get a filename. */
18074 if (! pending_macros)
18075 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18076 objfile->per_bfd->macro_cache);
18077
18078 if (! current_file)
18079 {
18080 /* If we have no current file, then this must be the start_file
18081 directive for the compilation unit's main source file. */
18082 current_file = macro_set_main (pending_macros, full_name);
18083 macro_define_special (pending_macros);
18084 }
18085 else
18086 current_file = macro_include (current_file, line, full_name);
18087
18088 xfree (full_name);
18089
18090 return current_file;
18091 }
18092
18093
18094 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18095 followed by a null byte. */
18096 static char *
18097 copy_string (const char *buf, int len)
18098 {
18099 char *s = xmalloc (len + 1);
18100
18101 memcpy (s, buf, len);
18102 s[len] = '\0';
18103 return s;
18104 }
18105
18106
18107 static const char *
18108 consume_improper_spaces (const char *p, const char *body)
18109 {
18110 if (*p == ' ')
18111 {
18112 complaint (&symfile_complaints,
18113 _("macro definition contains spaces "
18114 "in formal argument list:\n`%s'"),
18115 body);
18116
18117 while (*p == ' ')
18118 p++;
18119 }
18120
18121 return p;
18122 }
18123
18124
18125 static void
18126 parse_macro_definition (struct macro_source_file *file, int line,
18127 const char *body)
18128 {
18129 const char *p;
18130
18131 /* The body string takes one of two forms. For object-like macro
18132 definitions, it should be:
18133
18134 <macro name> " " <definition>
18135
18136 For function-like macro definitions, it should be:
18137
18138 <macro name> "() " <definition>
18139 or
18140 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18141
18142 Spaces may appear only where explicitly indicated, and in the
18143 <definition>.
18144
18145 The Dwarf 2 spec says that an object-like macro's name is always
18146 followed by a space, but versions of GCC around March 2002 omit
18147 the space when the macro's definition is the empty string.
18148
18149 The Dwarf 2 spec says that there should be no spaces between the
18150 formal arguments in a function-like macro's formal argument list,
18151 but versions of GCC around March 2002 include spaces after the
18152 commas. */
18153
18154
18155 /* Find the extent of the macro name. The macro name is terminated
18156 by either a space or null character (for an object-like macro) or
18157 an opening paren (for a function-like macro). */
18158 for (p = body; *p; p++)
18159 if (*p == ' ' || *p == '(')
18160 break;
18161
18162 if (*p == ' ' || *p == '\0')
18163 {
18164 /* It's an object-like macro. */
18165 int name_len = p - body;
18166 char *name = copy_string (body, name_len);
18167 const char *replacement;
18168
18169 if (*p == ' ')
18170 replacement = body + name_len + 1;
18171 else
18172 {
18173 dwarf2_macro_malformed_definition_complaint (body);
18174 replacement = body + name_len;
18175 }
18176
18177 macro_define_object (file, line, name, replacement);
18178
18179 xfree (name);
18180 }
18181 else if (*p == '(')
18182 {
18183 /* It's a function-like macro. */
18184 char *name = copy_string (body, p - body);
18185 int argc = 0;
18186 int argv_size = 1;
18187 char **argv = xmalloc (argv_size * sizeof (*argv));
18188
18189 p++;
18190
18191 p = consume_improper_spaces (p, body);
18192
18193 /* Parse the formal argument list. */
18194 while (*p && *p != ')')
18195 {
18196 /* Find the extent of the current argument name. */
18197 const char *arg_start = p;
18198
18199 while (*p && *p != ',' && *p != ')' && *p != ' ')
18200 p++;
18201
18202 if (! *p || p == arg_start)
18203 dwarf2_macro_malformed_definition_complaint (body);
18204 else
18205 {
18206 /* Make sure argv has room for the new argument. */
18207 if (argc >= argv_size)
18208 {
18209 argv_size *= 2;
18210 argv = xrealloc (argv, argv_size * sizeof (*argv));
18211 }
18212
18213 argv[argc++] = copy_string (arg_start, p - arg_start);
18214 }
18215
18216 p = consume_improper_spaces (p, body);
18217
18218 /* Consume the comma, if present. */
18219 if (*p == ',')
18220 {
18221 p++;
18222
18223 p = consume_improper_spaces (p, body);
18224 }
18225 }
18226
18227 if (*p == ')')
18228 {
18229 p++;
18230
18231 if (*p == ' ')
18232 /* Perfectly formed definition, no complaints. */
18233 macro_define_function (file, line, name,
18234 argc, (const char **) argv,
18235 p + 1);
18236 else if (*p == '\0')
18237 {
18238 /* Complain, but do define it. */
18239 dwarf2_macro_malformed_definition_complaint (body);
18240 macro_define_function (file, line, name,
18241 argc, (const char **) argv,
18242 p);
18243 }
18244 else
18245 /* Just complain. */
18246 dwarf2_macro_malformed_definition_complaint (body);
18247 }
18248 else
18249 /* Just complain. */
18250 dwarf2_macro_malformed_definition_complaint (body);
18251
18252 xfree (name);
18253 {
18254 int i;
18255
18256 for (i = 0; i < argc; i++)
18257 xfree (argv[i]);
18258 }
18259 xfree (argv);
18260 }
18261 else
18262 dwarf2_macro_malformed_definition_complaint (body);
18263 }
18264
18265 /* Skip some bytes from BYTES according to the form given in FORM.
18266 Returns the new pointer. */
18267
18268 static gdb_byte *
18269 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18270 enum dwarf_form form,
18271 unsigned int offset_size,
18272 struct dwarf2_section_info *section)
18273 {
18274 unsigned int bytes_read;
18275
18276 switch (form)
18277 {
18278 case DW_FORM_data1:
18279 case DW_FORM_flag:
18280 ++bytes;
18281 break;
18282
18283 case DW_FORM_data2:
18284 bytes += 2;
18285 break;
18286
18287 case DW_FORM_data4:
18288 bytes += 4;
18289 break;
18290
18291 case DW_FORM_data8:
18292 bytes += 8;
18293 break;
18294
18295 case DW_FORM_string:
18296 read_direct_string (abfd, bytes, &bytes_read);
18297 bytes += bytes_read;
18298 break;
18299
18300 case DW_FORM_sec_offset:
18301 case DW_FORM_strp:
18302 case DW_FORM_GNU_strp_alt:
18303 bytes += offset_size;
18304 break;
18305
18306 case DW_FORM_block:
18307 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18308 bytes += bytes_read;
18309 break;
18310
18311 case DW_FORM_block1:
18312 bytes += 1 + read_1_byte (abfd, bytes);
18313 break;
18314 case DW_FORM_block2:
18315 bytes += 2 + read_2_bytes (abfd, bytes);
18316 break;
18317 case DW_FORM_block4:
18318 bytes += 4 + read_4_bytes (abfd, bytes);
18319 break;
18320
18321 case DW_FORM_sdata:
18322 case DW_FORM_udata:
18323 case DW_FORM_GNU_addr_index:
18324 case DW_FORM_GNU_str_index:
18325 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18326 if (bytes == NULL)
18327 {
18328 dwarf2_section_buffer_overflow_complaint (section);
18329 return NULL;
18330 }
18331 break;
18332
18333 default:
18334 {
18335 complain:
18336 complaint (&symfile_complaints,
18337 _("invalid form 0x%x in `%s'"),
18338 form,
18339 section->asection->name);
18340 return NULL;
18341 }
18342 }
18343
18344 return bytes;
18345 }
18346
18347 /* A helper for dwarf_decode_macros that handles skipping an unknown
18348 opcode. Returns an updated pointer to the macro data buffer; or,
18349 on error, issues a complaint and returns NULL. */
18350
18351 static gdb_byte *
18352 skip_unknown_opcode (unsigned int opcode,
18353 gdb_byte **opcode_definitions,
18354 gdb_byte *mac_ptr, gdb_byte *mac_end,
18355 bfd *abfd,
18356 unsigned int offset_size,
18357 struct dwarf2_section_info *section)
18358 {
18359 unsigned int bytes_read, i;
18360 unsigned long arg;
18361 gdb_byte *defn;
18362
18363 if (opcode_definitions[opcode] == NULL)
18364 {
18365 complaint (&symfile_complaints,
18366 _("unrecognized DW_MACFINO opcode 0x%x"),
18367 opcode);
18368 return NULL;
18369 }
18370
18371 defn = opcode_definitions[opcode];
18372 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18373 defn += bytes_read;
18374
18375 for (i = 0; i < arg; ++i)
18376 {
18377 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18378 section);
18379 if (mac_ptr == NULL)
18380 {
18381 /* skip_form_bytes already issued the complaint. */
18382 return NULL;
18383 }
18384 }
18385
18386 return mac_ptr;
18387 }
18388
18389 /* A helper function which parses the header of a macro section.
18390 If the macro section is the extended (for now called "GNU") type,
18391 then this updates *OFFSET_SIZE. Returns a pointer to just after
18392 the header, or issues a complaint and returns NULL on error. */
18393
18394 static gdb_byte *
18395 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18396 bfd *abfd,
18397 gdb_byte *mac_ptr,
18398 unsigned int *offset_size,
18399 int section_is_gnu)
18400 {
18401 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18402
18403 if (section_is_gnu)
18404 {
18405 unsigned int version, flags;
18406
18407 version = read_2_bytes (abfd, mac_ptr);
18408 if (version != 4)
18409 {
18410 complaint (&symfile_complaints,
18411 _("unrecognized version `%d' in .debug_macro section"),
18412 version);
18413 return NULL;
18414 }
18415 mac_ptr += 2;
18416
18417 flags = read_1_byte (abfd, mac_ptr);
18418 ++mac_ptr;
18419 *offset_size = (flags & 1) ? 8 : 4;
18420
18421 if ((flags & 2) != 0)
18422 /* We don't need the line table offset. */
18423 mac_ptr += *offset_size;
18424
18425 /* Vendor opcode descriptions. */
18426 if ((flags & 4) != 0)
18427 {
18428 unsigned int i, count;
18429
18430 count = read_1_byte (abfd, mac_ptr);
18431 ++mac_ptr;
18432 for (i = 0; i < count; ++i)
18433 {
18434 unsigned int opcode, bytes_read;
18435 unsigned long arg;
18436
18437 opcode = read_1_byte (abfd, mac_ptr);
18438 ++mac_ptr;
18439 opcode_definitions[opcode] = mac_ptr;
18440 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18441 mac_ptr += bytes_read;
18442 mac_ptr += arg;
18443 }
18444 }
18445 }
18446
18447 return mac_ptr;
18448 }
18449
18450 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18451 including DW_MACRO_GNU_transparent_include. */
18452
18453 static void
18454 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18455 struct macro_source_file *current_file,
18456 struct line_header *lh, char *comp_dir,
18457 struct dwarf2_section_info *section,
18458 int section_is_gnu, int section_is_dwz,
18459 unsigned int offset_size,
18460 struct objfile *objfile,
18461 htab_t include_hash)
18462 {
18463 enum dwarf_macro_record_type macinfo_type;
18464 int at_commandline;
18465 gdb_byte *opcode_definitions[256];
18466
18467 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18468 &offset_size, section_is_gnu);
18469 if (mac_ptr == NULL)
18470 {
18471 /* We already issued a complaint. */
18472 return;
18473 }
18474
18475 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18476 GDB is still reading the definitions from command line. First
18477 DW_MACINFO_start_file will need to be ignored as it was already executed
18478 to create CURRENT_FILE for the main source holding also the command line
18479 definitions. On first met DW_MACINFO_start_file this flag is reset to
18480 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18481
18482 at_commandline = 1;
18483
18484 do
18485 {
18486 /* Do we at least have room for a macinfo type byte? */
18487 if (mac_ptr >= mac_end)
18488 {
18489 dwarf2_section_buffer_overflow_complaint (section);
18490 break;
18491 }
18492
18493 macinfo_type = read_1_byte (abfd, mac_ptr);
18494 mac_ptr++;
18495
18496 /* Note that we rely on the fact that the corresponding GNU and
18497 DWARF constants are the same. */
18498 switch (macinfo_type)
18499 {
18500 /* A zero macinfo type indicates the end of the macro
18501 information. */
18502 case 0:
18503 break;
18504
18505 case DW_MACRO_GNU_define:
18506 case DW_MACRO_GNU_undef:
18507 case DW_MACRO_GNU_define_indirect:
18508 case DW_MACRO_GNU_undef_indirect:
18509 case DW_MACRO_GNU_define_indirect_alt:
18510 case DW_MACRO_GNU_undef_indirect_alt:
18511 {
18512 unsigned int bytes_read;
18513 int line;
18514 char *body;
18515 int is_define;
18516
18517 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18518 mac_ptr += bytes_read;
18519
18520 if (macinfo_type == DW_MACRO_GNU_define
18521 || macinfo_type == DW_MACRO_GNU_undef)
18522 {
18523 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18524 mac_ptr += bytes_read;
18525 }
18526 else
18527 {
18528 LONGEST str_offset;
18529
18530 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18531 mac_ptr += offset_size;
18532
18533 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18534 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18535 || section_is_dwz)
18536 {
18537 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18538
18539 body = read_indirect_string_from_dwz (dwz, str_offset);
18540 }
18541 else
18542 body = read_indirect_string_at_offset (abfd, str_offset);
18543 }
18544
18545 is_define = (macinfo_type == DW_MACRO_GNU_define
18546 || macinfo_type == DW_MACRO_GNU_define_indirect
18547 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18548 if (! current_file)
18549 {
18550 /* DWARF violation as no main source is present. */
18551 complaint (&symfile_complaints,
18552 _("debug info with no main source gives macro %s "
18553 "on line %d: %s"),
18554 is_define ? _("definition") : _("undefinition"),
18555 line, body);
18556 break;
18557 }
18558 if ((line == 0 && !at_commandline)
18559 || (line != 0 && at_commandline))
18560 complaint (&symfile_complaints,
18561 _("debug info gives %s macro %s with %s line %d: %s"),
18562 at_commandline ? _("command-line") : _("in-file"),
18563 is_define ? _("definition") : _("undefinition"),
18564 line == 0 ? _("zero") : _("non-zero"), line, body);
18565
18566 if (is_define)
18567 parse_macro_definition (current_file, line, body);
18568 else
18569 {
18570 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18571 || macinfo_type == DW_MACRO_GNU_undef_indirect
18572 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18573 macro_undef (current_file, line, body);
18574 }
18575 }
18576 break;
18577
18578 case DW_MACRO_GNU_start_file:
18579 {
18580 unsigned int bytes_read;
18581 int line, file;
18582
18583 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18584 mac_ptr += bytes_read;
18585 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18586 mac_ptr += bytes_read;
18587
18588 if ((line == 0 && !at_commandline)
18589 || (line != 0 && at_commandline))
18590 complaint (&symfile_complaints,
18591 _("debug info gives source %d included "
18592 "from %s at %s line %d"),
18593 file, at_commandline ? _("command-line") : _("file"),
18594 line == 0 ? _("zero") : _("non-zero"), line);
18595
18596 if (at_commandline)
18597 {
18598 /* This DW_MACRO_GNU_start_file was executed in the
18599 pass one. */
18600 at_commandline = 0;
18601 }
18602 else
18603 current_file = macro_start_file (file, line,
18604 current_file, comp_dir,
18605 lh, objfile);
18606 }
18607 break;
18608
18609 case DW_MACRO_GNU_end_file:
18610 if (! current_file)
18611 complaint (&symfile_complaints,
18612 _("macro debug info has an unmatched "
18613 "`close_file' directive"));
18614 else
18615 {
18616 current_file = current_file->included_by;
18617 if (! current_file)
18618 {
18619 enum dwarf_macro_record_type next_type;
18620
18621 /* GCC circa March 2002 doesn't produce the zero
18622 type byte marking the end of the compilation
18623 unit. Complain if it's not there, but exit no
18624 matter what. */
18625
18626 /* Do we at least have room for a macinfo type byte? */
18627 if (mac_ptr >= mac_end)
18628 {
18629 dwarf2_section_buffer_overflow_complaint (section);
18630 return;
18631 }
18632
18633 /* We don't increment mac_ptr here, so this is just
18634 a look-ahead. */
18635 next_type = read_1_byte (abfd, mac_ptr);
18636 if (next_type != 0)
18637 complaint (&symfile_complaints,
18638 _("no terminating 0-type entry for "
18639 "macros in `.debug_macinfo' section"));
18640
18641 return;
18642 }
18643 }
18644 break;
18645
18646 case DW_MACRO_GNU_transparent_include:
18647 case DW_MACRO_GNU_transparent_include_alt:
18648 {
18649 LONGEST offset;
18650 void **slot;
18651 bfd *include_bfd = abfd;
18652 struct dwarf2_section_info *include_section = section;
18653 struct dwarf2_section_info alt_section;
18654 gdb_byte *include_mac_end = mac_end;
18655 int is_dwz = section_is_dwz;
18656 gdb_byte *new_mac_ptr;
18657
18658 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18659 mac_ptr += offset_size;
18660
18661 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18662 {
18663 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18664
18665 dwarf2_read_section (dwarf2_per_objfile->objfile,
18666 &dwz->macro);
18667
18668 include_bfd = dwz->macro.asection->owner;
18669 include_section = &dwz->macro;
18670 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18671 is_dwz = 1;
18672 }
18673
18674 new_mac_ptr = include_section->buffer + offset;
18675 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18676
18677 if (*slot != NULL)
18678 {
18679 /* This has actually happened; see
18680 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18681 complaint (&symfile_complaints,
18682 _("recursive DW_MACRO_GNU_transparent_include in "
18683 ".debug_macro section"));
18684 }
18685 else
18686 {
18687 *slot = new_mac_ptr;
18688
18689 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18690 include_mac_end, current_file,
18691 lh, comp_dir,
18692 section, section_is_gnu, is_dwz,
18693 offset_size, objfile, include_hash);
18694
18695 htab_remove_elt (include_hash, new_mac_ptr);
18696 }
18697 }
18698 break;
18699
18700 case DW_MACINFO_vendor_ext:
18701 if (!section_is_gnu)
18702 {
18703 unsigned int bytes_read;
18704 int constant;
18705
18706 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18707 mac_ptr += bytes_read;
18708 read_direct_string (abfd, mac_ptr, &bytes_read);
18709 mac_ptr += bytes_read;
18710
18711 /* We don't recognize any vendor extensions. */
18712 break;
18713 }
18714 /* FALLTHROUGH */
18715
18716 default:
18717 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18718 mac_ptr, mac_end, abfd, offset_size,
18719 section);
18720 if (mac_ptr == NULL)
18721 return;
18722 break;
18723 }
18724 } while (macinfo_type != 0);
18725 }
18726
18727 static void
18728 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18729 char *comp_dir, int section_is_gnu)
18730 {
18731 struct objfile *objfile = dwarf2_per_objfile->objfile;
18732 struct line_header *lh = cu->line_header;
18733 bfd *abfd;
18734 gdb_byte *mac_ptr, *mac_end;
18735 struct macro_source_file *current_file = 0;
18736 enum dwarf_macro_record_type macinfo_type;
18737 unsigned int offset_size = cu->header.offset_size;
18738 gdb_byte *opcode_definitions[256];
18739 struct cleanup *cleanup;
18740 htab_t include_hash;
18741 void **slot;
18742 struct dwarf2_section_info *section;
18743 const char *section_name;
18744
18745 if (cu->dwo_unit != NULL)
18746 {
18747 if (section_is_gnu)
18748 {
18749 section = &cu->dwo_unit->dwo_file->sections.macro;
18750 section_name = ".debug_macro.dwo";
18751 }
18752 else
18753 {
18754 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18755 section_name = ".debug_macinfo.dwo";
18756 }
18757 }
18758 else
18759 {
18760 if (section_is_gnu)
18761 {
18762 section = &dwarf2_per_objfile->macro;
18763 section_name = ".debug_macro";
18764 }
18765 else
18766 {
18767 section = &dwarf2_per_objfile->macinfo;
18768 section_name = ".debug_macinfo";
18769 }
18770 }
18771
18772 dwarf2_read_section (objfile, section);
18773 if (section->buffer == NULL)
18774 {
18775 complaint (&symfile_complaints, _("missing %s section"), section_name);
18776 return;
18777 }
18778 abfd = section->asection->owner;
18779
18780 /* First pass: Find the name of the base filename.
18781 This filename is needed in order to process all macros whose definition
18782 (or undefinition) comes from the command line. These macros are defined
18783 before the first DW_MACINFO_start_file entry, and yet still need to be
18784 associated to the base file.
18785
18786 To determine the base file name, we scan the macro definitions until we
18787 reach the first DW_MACINFO_start_file entry. We then initialize
18788 CURRENT_FILE accordingly so that any macro definition found before the
18789 first DW_MACINFO_start_file can still be associated to the base file. */
18790
18791 mac_ptr = section->buffer + offset;
18792 mac_end = section->buffer + section->size;
18793
18794 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18795 &offset_size, section_is_gnu);
18796 if (mac_ptr == NULL)
18797 {
18798 /* We already issued a complaint. */
18799 return;
18800 }
18801
18802 do
18803 {
18804 /* Do we at least have room for a macinfo type byte? */
18805 if (mac_ptr >= mac_end)
18806 {
18807 /* Complaint is printed during the second pass as GDB will probably
18808 stop the first pass earlier upon finding
18809 DW_MACINFO_start_file. */
18810 break;
18811 }
18812
18813 macinfo_type = read_1_byte (abfd, mac_ptr);
18814 mac_ptr++;
18815
18816 /* Note that we rely on the fact that the corresponding GNU and
18817 DWARF constants are the same. */
18818 switch (macinfo_type)
18819 {
18820 /* A zero macinfo type indicates the end of the macro
18821 information. */
18822 case 0:
18823 break;
18824
18825 case DW_MACRO_GNU_define:
18826 case DW_MACRO_GNU_undef:
18827 /* Only skip the data by MAC_PTR. */
18828 {
18829 unsigned int bytes_read;
18830
18831 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18832 mac_ptr += bytes_read;
18833 read_direct_string (abfd, mac_ptr, &bytes_read);
18834 mac_ptr += bytes_read;
18835 }
18836 break;
18837
18838 case DW_MACRO_GNU_start_file:
18839 {
18840 unsigned int bytes_read;
18841 int line, file;
18842
18843 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18844 mac_ptr += bytes_read;
18845 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18846 mac_ptr += bytes_read;
18847
18848 current_file = macro_start_file (file, line, current_file,
18849 comp_dir, lh, objfile);
18850 }
18851 break;
18852
18853 case DW_MACRO_GNU_end_file:
18854 /* No data to skip by MAC_PTR. */
18855 break;
18856
18857 case DW_MACRO_GNU_define_indirect:
18858 case DW_MACRO_GNU_undef_indirect:
18859 case DW_MACRO_GNU_define_indirect_alt:
18860 case DW_MACRO_GNU_undef_indirect_alt:
18861 {
18862 unsigned int bytes_read;
18863
18864 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18865 mac_ptr += bytes_read;
18866 mac_ptr += offset_size;
18867 }
18868 break;
18869
18870 case DW_MACRO_GNU_transparent_include:
18871 case DW_MACRO_GNU_transparent_include_alt:
18872 /* Note that, according to the spec, a transparent include
18873 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18874 skip this opcode. */
18875 mac_ptr += offset_size;
18876 break;
18877
18878 case DW_MACINFO_vendor_ext:
18879 /* Only skip the data by MAC_PTR. */
18880 if (!section_is_gnu)
18881 {
18882 unsigned int bytes_read;
18883
18884 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18885 mac_ptr += bytes_read;
18886 read_direct_string (abfd, mac_ptr, &bytes_read);
18887 mac_ptr += bytes_read;
18888 }
18889 /* FALLTHROUGH */
18890
18891 default:
18892 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18893 mac_ptr, mac_end, abfd, offset_size,
18894 section);
18895 if (mac_ptr == NULL)
18896 return;
18897 break;
18898 }
18899 } while (macinfo_type != 0 && current_file == NULL);
18900
18901 /* Second pass: Process all entries.
18902
18903 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18904 command-line macro definitions/undefinitions. This flag is unset when we
18905 reach the first DW_MACINFO_start_file entry. */
18906
18907 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18908 NULL, xcalloc, xfree);
18909 cleanup = make_cleanup_htab_delete (include_hash);
18910 mac_ptr = section->buffer + offset;
18911 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18912 *slot = mac_ptr;
18913 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18914 current_file, lh, comp_dir, section,
18915 section_is_gnu, 0,
18916 offset_size, objfile, include_hash);
18917 do_cleanups (cleanup);
18918 }
18919
18920 /* Check if the attribute's form is a DW_FORM_block*
18921 if so return true else false. */
18922
18923 static int
18924 attr_form_is_block (struct attribute *attr)
18925 {
18926 return (attr == NULL ? 0 :
18927 attr->form == DW_FORM_block1
18928 || attr->form == DW_FORM_block2
18929 || attr->form == DW_FORM_block4
18930 || attr->form == DW_FORM_block
18931 || attr->form == DW_FORM_exprloc);
18932 }
18933
18934 /* Return non-zero if ATTR's value is a section offset --- classes
18935 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18936 You may use DW_UNSND (attr) to retrieve such offsets.
18937
18938 Section 7.5.4, "Attribute Encodings", explains that no attribute
18939 may have a value that belongs to more than one of these classes; it
18940 would be ambiguous if we did, because we use the same forms for all
18941 of them. */
18942
18943 static int
18944 attr_form_is_section_offset (struct attribute *attr)
18945 {
18946 return (attr->form == DW_FORM_data4
18947 || attr->form == DW_FORM_data8
18948 || attr->form == DW_FORM_sec_offset);
18949 }
18950
18951 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18952 zero otherwise. When this function returns true, you can apply
18953 dwarf2_get_attr_constant_value to it.
18954
18955 However, note that for some attributes you must check
18956 attr_form_is_section_offset before using this test. DW_FORM_data4
18957 and DW_FORM_data8 are members of both the constant class, and of
18958 the classes that contain offsets into other debug sections
18959 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18960 that, if an attribute's can be either a constant or one of the
18961 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18962 taken as section offsets, not constants. */
18963
18964 static int
18965 attr_form_is_constant (struct attribute *attr)
18966 {
18967 switch (attr->form)
18968 {
18969 case DW_FORM_sdata:
18970 case DW_FORM_udata:
18971 case DW_FORM_data1:
18972 case DW_FORM_data2:
18973 case DW_FORM_data4:
18974 case DW_FORM_data8:
18975 return 1;
18976 default:
18977 return 0;
18978 }
18979 }
18980
18981 /* Return the .debug_loc section to use for CU.
18982 For DWO files use .debug_loc.dwo. */
18983
18984 static struct dwarf2_section_info *
18985 cu_debug_loc_section (struct dwarf2_cu *cu)
18986 {
18987 if (cu->dwo_unit)
18988 return &cu->dwo_unit->dwo_file->sections.loc;
18989 return &dwarf2_per_objfile->loc;
18990 }
18991
18992 /* A helper function that fills in a dwarf2_loclist_baton. */
18993
18994 static void
18995 fill_in_loclist_baton (struct dwarf2_cu *cu,
18996 struct dwarf2_loclist_baton *baton,
18997 struct attribute *attr)
18998 {
18999 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19000
19001 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19002
19003 baton->per_cu = cu->per_cu;
19004 gdb_assert (baton->per_cu);
19005 /* We don't know how long the location list is, but make sure we
19006 don't run off the edge of the section. */
19007 baton->size = section->size - DW_UNSND (attr);
19008 baton->data = section->buffer + DW_UNSND (attr);
19009 baton->base_address = cu->base_address;
19010 baton->from_dwo = cu->dwo_unit != NULL;
19011 }
19012
19013 static void
19014 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19015 struct dwarf2_cu *cu)
19016 {
19017 struct objfile *objfile = dwarf2_per_objfile->objfile;
19018 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19019
19020 if (attr_form_is_section_offset (attr)
19021 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19022 the section. If so, fall through to the complaint in the
19023 other branch. */
19024 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19025 {
19026 struct dwarf2_loclist_baton *baton;
19027
19028 baton = obstack_alloc (&objfile->objfile_obstack,
19029 sizeof (struct dwarf2_loclist_baton));
19030
19031 fill_in_loclist_baton (cu, baton, attr);
19032
19033 if (cu->base_known == 0)
19034 complaint (&symfile_complaints,
19035 _("Location list used without "
19036 "specifying the CU base address."));
19037
19038 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19039 SYMBOL_LOCATION_BATON (sym) = baton;
19040 }
19041 else
19042 {
19043 struct dwarf2_locexpr_baton *baton;
19044
19045 baton = obstack_alloc (&objfile->objfile_obstack,
19046 sizeof (struct dwarf2_locexpr_baton));
19047 baton->per_cu = cu->per_cu;
19048 gdb_assert (baton->per_cu);
19049
19050 if (attr_form_is_block (attr))
19051 {
19052 /* Note that we're just copying the block's data pointer
19053 here, not the actual data. We're still pointing into the
19054 info_buffer for SYM's objfile; right now we never release
19055 that buffer, but when we do clean up properly this may
19056 need to change. */
19057 baton->size = DW_BLOCK (attr)->size;
19058 baton->data = DW_BLOCK (attr)->data;
19059 }
19060 else
19061 {
19062 dwarf2_invalid_attrib_class_complaint ("location description",
19063 SYMBOL_NATURAL_NAME (sym));
19064 baton->size = 0;
19065 }
19066
19067 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19068 SYMBOL_LOCATION_BATON (sym) = baton;
19069 }
19070 }
19071
19072 /* Return the OBJFILE associated with the compilation unit CU. If CU
19073 came from a separate debuginfo file, then the master objfile is
19074 returned. */
19075
19076 struct objfile *
19077 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19078 {
19079 struct objfile *objfile = per_cu->objfile;
19080
19081 /* Return the master objfile, so that we can report and look up the
19082 correct file containing this variable. */
19083 if (objfile->separate_debug_objfile_backlink)
19084 objfile = objfile->separate_debug_objfile_backlink;
19085
19086 return objfile;
19087 }
19088
19089 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19090 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19091 CU_HEADERP first. */
19092
19093 static const struct comp_unit_head *
19094 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19095 struct dwarf2_per_cu_data *per_cu)
19096 {
19097 gdb_byte *info_ptr;
19098
19099 if (per_cu->cu)
19100 return &per_cu->cu->header;
19101
19102 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19103
19104 memset (cu_headerp, 0, sizeof (*cu_headerp));
19105 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19106
19107 return cu_headerp;
19108 }
19109
19110 /* Return the address size given in the compilation unit header for CU. */
19111
19112 int
19113 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19114 {
19115 struct comp_unit_head cu_header_local;
19116 const struct comp_unit_head *cu_headerp;
19117
19118 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19119
19120 return cu_headerp->addr_size;
19121 }
19122
19123 /* Return the offset size given in the compilation unit header for CU. */
19124
19125 int
19126 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19127 {
19128 struct comp_unit_head cu_header_local;
19129 const struct comp_unit_head *cu_headerp;
19130
19131 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19132
19133 return cu_headerp->offset_size;
19134 }
19135
19136 /* See its dwarf2loc.h declaration. */
19137
19138 int
19139 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19140 {
19141 struct comp_unit_head cu_header_local;
19142 const struct comp_unit_head *cu_headerp;
19143
19144 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19145
19146 if (cu_headerp->version == 2)
19147 return cu_headerp->addr_size;
19148 else
19149 return cu_headerp->offset_size;
19150 }
19151
19152 /* Return the text offset of the CU. The returned offset comes from
19153 this CU's objfile. If this objfile came from a separate debuginfo
19154 file, then the offset may be different from the corresponding
19155 offset in the parent objfile. */
19156
19157 CORE_ADDR
19158 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19159 {
19160 struct objfile *objfile = per_cu->objfile;
19161
19162 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19163 }
19164
19165 /* Locate the .debug_info compilation unit from CU's objfile which contains
19166 the DIE at OFFSET. Raises an error on failure. */
19167
19168 static struct dwarf2_per_cu_data *
19169 dwarf2_find_containing_comp_unit (sect_offset offset,
19170 unsigned int offset_in_dwz,
19171 struct objfile *objfile)
19172 {
19173 struct dwarf2_per_cu_data *this_cu;
19174 int low, high;
19175 const sect_offset *cu_off;
19176
19177 low = 0;
19178 high = dwarf2_per_objfile->n_comp_units - 1;
19179 while (high > low)
19180 {
19181 struct dwarf2_per_cu_data *mid_cu;
19182 int mid = low + (high - low) / 2;
19183
19184 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19185 cu_off = &mid_cu->offset;
19186 if (mid_cu->is_dwz > offset_in_dwz
19187 || (mid_cu->is_dwz == offset_in_dwz
19188 && cu_off->sect_off >= offset.sect_off))
19189 high = mid;
19190 else
19191 low = mid + 1;
19192 }
19193 gdb_assert (low == high);
19194 this_cu = dwarf2_per_objfile->all_comp_units[low];
19195 cu_off = &this_cu->offset;
19196 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19197 {
19198 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19199 error (_("Dwarf Error: could not find partial DIE containing "
19200 "offset 0x%lx [in module %s]"),
19201 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19202
19203 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19204 <= offset.sect_off);
19205 return dwarf2_per_objfile->all_comp_units[low-1];
19206 }
19207 else
19208 {
19209 this_cu = dwarf2_per_objfile->all_comp_units[low];
19210 if (low == dwarf2_per_objfile->n_comp_units - 1
19211 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19212 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19213 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19214 return this_cu;
19215 }
19216 }
19217
19218 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19219
19220 static void
19221 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19222 {
19223 memset (cu, 0, sizeof (*cu));
19224 per_cu->cu = cu;
19225 cu->per_cu = per_cu;
19226 cu->objfile = per_cu->objfile;
19227 obstack_init (&cu->comp_unit_obstack);
19228 }
19229
19230 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19231
19232 static void
19233 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19234 enum language pretend_language)
19235 {
19236 struct attribute *attr;
19237
19238 /* Set the language we're debugging. */
19239 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19240 if (attr)
19241 set_cu_language (DW_UNSND (attr), cu);
19242 else
19243 {
19244 cu->language = pretend_language;
19245 cu->language_defn = language_def (cu->language);
19246 }
19247
19248 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19249 if (attr)
19250 cu->producer = DW_STRING (attr);
19251 }
19252
19253 /* Release one cached compilation unit, CU. We unlink it from the tree
19254 of compilation units, but we don't remove it from the read_in_chain;
19255 the caller is responsible for that.
19256 NOTE: DATA is a void * because this function is also used as a
19257 cleanup routine. */
19258
19259 static void
19260 free_heap_comp_unit (void *data)
19261 {
19262 struct dwarf2_cu *cu = data;
19263
19264 gdb_assert (cu->per_cu != NULL);
19265 cu->per_cu->cu = NULL;
19266 cu->per_cu = NULL;
19267
19268 obstack_free (&cu->comp_unit_obstack, NULL);
19269
19270 xfree (cu);
19271 }
19272
19273 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19274 when we're finished with it. We can't free the pointer itself, but be
19275 sure to unlink it from the cache. Also release any associated storage. */
19276
19277 static void
19278 free_stack_comp_unit (void *data)
19279 {
19280 struct dwarf2_cu *cu = data;
19281
19282 gdb_assert (cu->per_cu != NULL);
19283 cu->per_cu->cu = NULL;
19284 cu->per_cu = NULL;
19285
19286 obstack_free (&cu->comp_unit_obstack, NULL);
19287 cu->partial_dies = NULL;
19288 }
19289
19290 /* Free all cached compilation units. */
19291
19292 static void
19293 free_cached_comp_units (void *data)
19294 {
19295 struct dwarf2_per_cu_data *per_cu, **last_chain;
19296
19297 per_cu = dwarf2_per_objfile->read_in_chain;
19298 last_chain = &dwarf2_per_objfile->read_in_chain;
19299 while (per_cu != NULL)
19300 {
19301 struct dwarf2_per_cu_data *next_cu;
19302
19303 next_cu = per_cu->cu->read_in_chain;
19304
19305 free_heap_comp_unit (per_cu->cu);
19306 *last_chain = next_cu;
19307
19308 per_cu = next_cu;
19309 }
19310 }
19311
19312 /* Increase the age counter on each cached compilation unit, and free
19313 any that are too old. */
19314
19315 static void
19316 age_cached_comp_units (void)
19317 {
19318 struct dwarf2_per_cu_data *per_cu, **last_chain;
19319
19320 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19321 per_cu = dwarf2_per_objfile->read_in_chain;
19322 while (per_cu != NULL)
19323 {
19324 per_cu->cu->last_used ++;
19325 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19326 dwarf2_mark (per_cu->cu);
19327 per_cu = per_cu->cu->read_in_chain;
19328 }
19329
19330 per_cu = dwarf2_per_objfile->read_in_chain;
19331 last_chain = &dwarf2_per_objfile->read_in_chain;
19332 while (per_cu != NULL)
19333 {
19334 struct dwarf2_per_cu_data *next_cu;
19335
19336 next_cu = per_cu->cu->read_in_chain;
19337
19338 if (!per_cu->cu->mark)
19339 {
19340 free_heap_comp_unit (per_cu->cu);
19341 *last_chain = next_cu;
19342 }
19343 else
19344 last_chain = &per_cu->cu->read_in_chain;
19345
19346 per_cu = next_cu;
19347 }
19348 }
19349
19350 /* Remove a single compilation unit from the cache. */
19351
19352 static void
19353 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19354 {
19355 struct dwarf2_per_cu_data *per_cu, **last_chain;
19356
19357 per_cu = dwarf2_per_objfile->read_in_chain;
19358 last_chain = &dwarf2_per_objfile->read_in_chain;
19359 while (per_cu != NULL)
19360 {
19361 struct dwarf2_per_cu_data *next_cu;
19362
19363 next_cu = per_cu->cu->read_in_chain;
19364
19365 if (per_cu == target_per_cu)
19366 {
19367 free_heap_comp_unit (per_cu->cu);
19368 per_cu->cu = NULL;
19369 *last_chain = next_cu;
19370 break;
19371 }
19372 else
19373 last_chain = &per_cu->cu->read_in_chain;
19374
19375 per_cu = next_cu;
19376 }
19377 }
19378
19379 /* Release all extra memory associated with OBJFILE. */
19380
19381 void
19382 dwarf2_free_objfile (struct objfile *objfile)
19383 {
19384 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19385
19386 if (dwarf2_per_objfile == NULL)
19387 return;
19388
19389 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19390 free_cached_comp_units (NULL);
19391
19392 if (dwarf2_per_objfile->quick_file_names_table)
19393 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19394
19395 /* Everything else should be on the objfile obstack. */
19396 }
19397
19398 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19399 We store these in a hash table separate from the DIEs, and preserve them
19400 when the DIEs are flushed out of cache.
19401
19402 The CU "per_cu" pointer is needed because offset alone is not enough to
19403 uniquely identify the type. A file may have multiple .debug_types sections,
19404 or the type may come from a DWO file. We have to use something in
19405 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19406 routine, get_die_type_at_offset, from outside this file, and thus won't
19407 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19408 of the objfile. */
19409
19410 struct dwarf2_per_cu_offset_and_type
19411 {
19412 const struct dwarf2_per_cu_data *per_cu;
19413 sect_offset offset;
19414 struct type *type;
19415 };
19416
19417 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19418
19419 static hashval_t
19420 per_cu_offset_and_type_hash (const void *item)
19421 {
19422 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19423
19424 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19425 }
19426
19427 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19428
19429 static int
19430 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19431 {
19432 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19433 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19434
19435 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19436 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19437 }
19438
19439 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19440 table if necessary. For convenience, return TYPE.
19441
19442 The DIEs reading must have careful ordering to:
19443 * Not cause infite loops trying to read in DIEs as a prerequisite for
19444 reading current DIE.
19445 * Not trying to dereference contents of still incompletely read in types
19446 while reading in other DIEs.
19447 * Enable referencing still incompletely read in types just by a pointer to
19448 the type without accessing its fields.
19449
19450 Therefore caller should follow these rules:
19451 * Try to fetch any prerequisite types we may need to build this DIE type
19452 before building the type and calling set_die_type.
19453 * After building type call set_die_type for current DIE as soon as
19454 possible before fetching more types to complete the current type.
19455 * Make the type as complete as possible before fetching more types. */
19456
19457 static struct type *
19458 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19459 {
19460 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19461 struct objfile *objfile = cu->objfile;
19462
19463 /* For Ada types, make sure that the gnat-specific data is always
19464 initialized (if not already set). There are a few types where
19465 we should not be doing so, because the type-specific area is
19466 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19467 where the type-specific area is used to store the floatformat).
19468 But this is not a problem, because the gnat-specific information
19469 is actually not needed for these types. */
19470 if (need_gnat_info (cu)
19471 && TYPE_CODE (type) != TYPE_CODE_FUNC
19472 && TYPE_CODE (type) != TYPE_CODE_FLT
19473 && !HAVE_GNAT_AUX_INFO (type))
19474 INIT_GNAT_SPECIFIC (type);
19475
19476 if (dwarf2_per_objfile->die_type_hash == NULL)
19477 {
19478 dwarf2_per_objfile->die_type_hash =
19479 htab_create_alloc_ex (127,
19480 per_cu_offset_and_type_hash,
19481 per_cu_offset_and_type_eq,
19482 NULL,
19483 &objfile->objfile_obstack,
19484 hashtab_obstack_allocate,
19485 dummy_obstack_deallocate);
19486 }
19487
19488 ofs.per_cu = cu->per_cu;
19489 ofs.offset = die->offset;
19490 ofs.type = type;
19491 slot = (struct dwarf2_per_cu_offset_and_type **)
19492 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19493 if (*slot)
19494 complaint (&symfile_complaints,
19495 _("A problem internal to GDB: DIE 0x%x has type already set"),
19496 die->offset.sect_off);
19497 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19498 **slot = ofs;
19499 return type;
19500 }
19501
19502 /* Look up the type for the die at OFFSET in the appropriate type_hash
19503 table, or return NULL if the die does not have a saved type. */
19504
19505 static struct type *
19506 get_die_type_at_offset (sect_offset offset,
19507 struct dwarf2_per_cu_data *per_cu)
19508 {
19509 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19510
19511 if (dwarf2_per_objfile->die_type_hash == NULL)
19512 return NULL;
19513
19514 ofs.per_cu = per_cu;
19515 ofs.offset = offset;
19516 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19517 if (slot)
19518 return slot->type;
19519 else
19520 return NULL;
19521 }
19522
19523 /* Look up the type for DIE in the appropriate type_hash table,
19524 or return NULL if DIE does not have a saved type. */
19525
19526 static struct type *
19527 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19528 {
19529 return get_die_type_at_offset (die->offset, cu->per_cu);
19530 }
19531
19532 /* Add a dependence relationship from CU to REF_PER_CU. */
19533
19534 static void
19535 dwarf2_add_dependence (struct dwarf2_cu *cu,
19536 struct dwarf2_per_cu_data *ref_per_cu)
19537 {
19538 void **slot;
19539
19540 if (cu->dependencies == NULL)
19541 cu->dependencies
19542 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19543 NULL, &cu->comp_unit_obstack,
19544 hashtab_obstack_allocate,
19545 dummy_obstack_deallocate);
19546
19547 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19548 if (*slot == NULL)
19549 *slot = ref_per_cu;
19550 }
19551
19552 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19553 Set the mark field in every compilation unit in the
19554 cache that we must keep because we are keeping CU. */
19555
19556 static int
19557 dwarf2_mark_helper (void **slot, void *data)
19558 {
19559 struct dwarf2_per_cu_data *per_cu;
19560
19561 per_cu = (struct dwarf2_per_cu_data *) *slot;
19562
19563 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19564 reading of the chain. As such dependencies remain valid it is not much
19565 useful to track and undo them during QUIT cleanups. */
19566 if (per_cu->cu == NULL)
19567 return 1;
19568
19569 if (per_cu->cu->mark)
19570 return 1;
19571 per_cu->cu->mark = 1;
19572
19573 if (per_cu->cu->dependencies != NULL)
19574 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19575
19576 return 1;
19577 }
19578
19579 /* Set the mark field in CU and in every other compilation unit in the
19580 cache that we must keep because we are keeping CU. */
19581
19582 static void
19583 dwarf2_mark (struct dwarf2_cu *cu)
19584 {
19585 if (cu->mark)
19586 return;
19587 cu->mark = 1;
19588 if (cu->dependencies != NULL)
19589 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19590 }
19591
19592 static void
19593 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19594 {
19595 while (per_cu)
19596 {
19597 per_cu->cu->mark = 0;
19598 per_cu = per_cu->cu->read_in_chain;
19599 }
19600 }
19601
19602 /* Trivial hash function for partial_die_info: the hash value of a DIE
19603 is its offset in .debug_info for this objfile. */
19604
19605 static hashval_t
19606 partial_die_hash (const void *item)
19607 {
19608 const struct partial_die_info *part_die = item;
19609
19610 return part_die->offset.sect_off;
19611 }
19612
19613 /* Trivial comparison function for partial_die_info structures: two DIEs
19614 are equal if they have the same offset. */
19615
19616 static int
19617 partial_die_eq (const void *item_lhs, const void *item_rhs)
19618 {
19619 const struct partial_die_info *part_die_lhs = item_lhs;
19620 const struct partial_die_info *part_die_rhs = item_rhs;
19621
19622 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19623 }
19624
19625 static struct cmd_list_element *set_dwarf2_cmdlist;
19626 static struct cmd_list_element *show_dwarf2_cmdlist;
19627
19628 static void
19629 set_dwarf2_cmd (char *args, int from_tty)
19630 {
19631 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19632 }
19633
19634 static void
19635 show_dwarf2_cmd (char *args, int from_tty)
19636 {
19637 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19638 }
19639
19640 /* Free data associated with OBJFILE, if necessary. */
19641
19642 static void
19643 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19644 {
19645 struct dwarf2_per_objfile *data = d;
19646 int ix;
19647
19648 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19649 VEC_free (dwarf2_per_cu_ptr,
19650 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19651
19652 VEC_free (dwarf2_section_info_def, data->types);
19653
19654 if (data->dwo_files)
19655 free_dwo_files (data->dwo_files, objfile);
19656
19657 if (data->dwz_file && data->dwz_file->dwz_bfd)
19658 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19659 }
19660
19661 \f
19662 /* The "save gdb-index" command. */
19663
19664 /* The contents of the hash table we create when building the string
19665 table. */
19666 struct strtab_entry
19667 {
19668 offset_type offset;
19669 const char *str;
19670 };
19671
19672 /* Hash function for a strtab_entry.
19673
19674 Function is used only during write_hash_table so no index format backward
19675 compatibility is needed. */
19676
19677 static hashval_t
19678 hash_strtab_entry (const void *e)
19679 {
19680 const struct strtab_entry *entry = e;
19681 return mapped_index_string_hash (INT_MAX, entry->str);
19682 }
19683
19684 /* Equality function for a strtab_entry. */
19685
19686 static int
19687 eq_strtab_entry (const void *a, const void *b)
19688 {
19689 const struct strtab_entry *ea = a;
19690 const struct strtab_entry *eb = b;
19691 return !strcmp (ea->str, eb->str);
19692 }
19693
19694 /* Create a strtab_entry hash table. */
19695
19696 static htab_t
19697 create_strtab (void)
19698 {
19699 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19700 xfree, xcalloc, xfree);
19701 }
19702
19703 /* Add a string to the constant pool. Return the string's offset in
19704 host order. */
19705
19706 static offset_type
19707 add_string (htab_t table, struct obstack *cpool, const char *str)
19708 {
19709 void **slot;
19710 struct strtab_entry entry;
19711 struct strtab_entry *result;
19712
19713 entry.str = str;
19714 slot = htab_find_slot (table, &entry, INSERT);
19715 if (*slot)
19716 result = *slot;
19717 else
19718 {
19719 result = XNEW (struct strtab_entry);
19720 result->offset = obstack_object_size (cpool);
19721 result->str = str;
19722 obstack_grow_str0 (cpool, str);
19723 *slot = result;
19724 }
19725 return result->offset;
19726 }
19727
19728 /* An entry in the symbol table. */
19729 struct symtab_index_entry
19730 {
19731 /* The name of the symbol. */
19732 const char *name;
19733 /* The offset of the name in the constant pool. */
19734 offset_type index_offset;
19735 /* A sorted vector of the indices of all the CUs that hold an object
19736 of this name. */
19737 VEC (offset_type) *cu_indices;
19738 };
19739
19740 /* The symbol table. This is a power-of-2-sized hash table. */
19741 struct mapped_symtab
19742 {
19743 offset_type n_elements;
19744 offset_type size;
19745 struct symtab_index_entry **data;
19746 };
19747
19748 /* Hash function for a symtab_index_entry. */
19749
19750 static hashval_t
19751 hash_symtab_entry (const void *e)
19752 {
19753 const struct symtab_index_entry *entry = e;
19754 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19755 sizeof (offset_type) * VEC_length (offset_type,
19756 entry->cu_indices),
19757 0);
19758 }
19759
19760 /* Equality function for a symtab_index_entry. */
19761
19762 static int
19763 eq_symtab_entry (const void *a, const void *b)
19764 {
19765 const struct symtab_index_entry *ea = a;
19766 const struct symtab_index_entry *eb = b;
19767 int len = VEC_length (offset_type, ea->cu_indices);
19768 if (len != VEC_length (offset_type, eb->cu_indices))
19769 return 0;
19770 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19771 VEC_address (offset_type, eb->cu_indices),
19772 sizeof (offset_type) * len);
19773 }
19774
19775 /* Destroy a symtab_index_entry. */
19776
19777 static void
19778 delete_symtab_entry (void *p)
19779 {
19780 struct symtab_index_entry *entry = p;
19781 VEC_free (offset_type, entry->cu_indices);
19782 xfree (entry);
19783 }
19784
19785 /* Create a hash table holding symtab_index_entry objects. */
19786
19787 static htab_t
19788 create_symbol_hash_table (void)
19789 {
19790 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19791 delete_symtab_entry, xcalloc, xfree);
19792 }
19793
19794 /* Create a new mapped symtab object. */
19795
19796 static struct mapped_symtab *
19797 create_mapped_symtab (void)
19798 {
19799 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19800 symtab->n_elements = 0;
19801 symtab->size = 1024;
19802 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19803 return symtab;
19804 }
19805
19806 /* Destroy a mapped_symtab. */
19807
19808 static void
19809 cleanup_mapped_symtab (void *p)
19810 {
19811 struct mapped_symtab *symtab = p;
19812 /* The contents of the array are freed when the other hash table is
19813 destroyed. */
19814 xfree (symtab->data);
19815 xfree (symtab);
19816 }
19817
19818 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19819 the slot.
19820
19821 Function is used only during write_hash_table so no index format backward
19822 compatibility is needed. */
19823
19824 static struct symtab_index_entry **
19825 find_slot (struct mapped_symtab *symtab, const char *name)
19826 {
19827 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19828
19829 index = hash & (symtab->size - 1);
19830 step = ((hash * 17) & (symtab->size - 1)) | 1;
19831
19832 for (;;)
19833 {
19834 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19835 return &symtab->data[index];
19836 index = (index + step) & (symtab->size - 1);
19837 }
19838 }
19839
19840 /* Expand SYMTAB's hash table. */
19841
19842 static void
19843 hash_expand (struct mapped_symtab *symtab)
19844 {
19845 offset_type old_size = symtab->size;
19846 offset_type i;
19847 struct symtab_index_entry **old_entries = symtab->data;
19848
19849 symtab->size *= 2;
19850 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19851
19852 for (i = 0; i < old_size; ++i)
19853 {
19854 if (old_entries[i])
19855 {
19856 struct symtab_index_entry **slot = find_slot (symtab,
19857 old_entries[i]->name);
19858 *slot = old_entries[i];
19859 }
19860 }
19861
19862 xfree (old_entries);
19863 }
19864
19865 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19866 CU_INDEX is the index of the CU in which the symbol appears.
19867 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19868
19869 static void
19870 add_index_entry (struct mapped_symtab *symtab, const char *name,
19871 int is_static, gdb_index_symbol_kind kind,
19872 offset_type cu_index)
19873 {
19874 struct symtab_index_entry **slot;
19875 offset_type cu_index_and_attrs;
19876
19877 ++symtab->n_elements;
19878 if (4 * symtab->n_elements / 3 >= symtab->size)
19879 hash_expand (symtab);
19880
19881 slot = find_slot (symtab, name);
19882 if (!*slot)
19883 {
19884 *slot = XNEW (struct symtab_index_entry);
19885 (*slot)->name = name;
19886 /* index_offset is set later. */
19887 (*slot)->cu_indices = NULL;
19888 }
19889
19890 cu_index_and_attrs = 0;
19891 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19892 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19893 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19894
19895 /* We don't want to record an index value twice as we want to avoid the
19896 duplication.
19897 We process all global symbols and then all static symbols
19898 (which would allow us to avoid the duplication by only having to check
19899 the last entry pushed), but a symbol could have multiple kinds in one CU.
19900 To keep things simple we don't worry about the duplication here and
19901 sort and uniqufy the list after we've processed all symbols. */
19902 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19903 }
19904
19905 /* qsort helper routine for uniquify_cu_indices. */
19906
19907 static int
19908 offset_type_compare (const void *ap, const void *bp)
19909 {
19910 offset_type a = *(offset_type *) ap;
19911 offset_type b = *(offset_type *) bp;
19912
19913 return (a > b) - (b > a);
19914 }
19915
19916 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19917
19918 static void
19919 uniquify_cu_indices (struct mapped_symtab *symtab)
19920 {
19921 int i;
19922
19923 for (i = 0; i < symtab->size; ++i)
19924 {
19925 struct symtab_index_entry *entry = symtab->data[i];
19926
19927 if (entry
19928 && entry->cu_indices != NULL)
19929 {
19930 unsigned int next_to_insert, next_to_check;
19931 offset_type last_value;
19932
19933 qsort (VEC_address (offset_type, entry->cu_indices),
19934 VEC_length (offset_type, entry->cu_indices),
19935 sizeof (offset_type), offset_type_compare);
19936
19937 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19938 next_to_insert = 1;
19939 for (next_to_check = 1;
19940 next_to_check < VEC_length (offset_type, entry->cu_indices);
19941 ++next_to_check)
19942 {
19943 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19944 != last_value)
19945 {
19946 last_value = VEC_index (offset_type, entry->cu_indices,
19947 next_to_check);
19948 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19949 last_value);
19950 ++next_to_insert;
19951 }
19952 }
19953 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19954 }
19955 }
19956 }
19957
19958 /* Add a vector of indices to the constant pool. */
19959
19960 static offset_type
19961 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19962 struct symtab_index_entry *entry)
19963 {
19964 void **slot;
19965
19966 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19967 if (!*slot)
19968 {
19969 offset_type len = VEC_length (offset_type, entry->cu_indices);
19970 offset_type val = MAYBE_SWAP (len);
19971 offset_type iter;
19972 int i;
19973
19974 *slot = entry;
19975 entry->index_offset = obstack_object_size (cpool);
19976
19977 obstack_grow (cpool, &val, sizeof (val));
19978 for (i = 0;
19979 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19980 ++i)
19981 {
19982 val = MAYBE_SWAP (iter);
19983 obstack_grow (cpool, &val, sizeof (val));
19984 }
19985 }
19986 else
19987 {
19988 struct symtab_index_entry *old_entry = *slot;
19989 entry->index_offset = old_entry->index_offset;
19990 entry = old_entry;
19991 }
19992 return entry->index_offset;
19993 }
19994
19995 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19996 constant pool entries going into the obstack CPOOL. */
19997
19998 static void
19999 write_hash_table (struct mapped_symtab *symtab,
20000 struct obstack *output, struct obstack *cpool)
20001 {
20002 offset_type i;
20003 htab_t symbol_hash_table;
20004 htab_t str_table;
20005
20006 symbol_hash_table = create_symbol_hash_table ();
20007 str_table = create_strtab ();
20008
20009 /* We add all the index vectors to the constant pool first, to
20010 ensure alignment is ok. */
20011 for (i = 0; i < symtab->size; ++i)
20012 {
20013 if (symtab->data[i])
20014 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20015 }
20016
20017 /* Now write out the hash table. */
20018 for (i = 0; i < symtab->size; ++i)
20019 {
20020 offset_type str_off, vec_off;
20021
20022 if (symtab->data[i])
20023 {
20024 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20025 vec_off = symtab->data[i]->index_offset;
20026 }
20027 else
20028 {
20029 /* While 0 is a valid constant pool index, it is not valid
20030 to have 0 for both offsets. */
20031 str_off = 0;
20032 vec_off = 0;
20033 }
20034
20035 str_off = MAYBE_SWAP (str_off);
20036 vec_off = MAYBE_SWAP (vec_off);
20037
20038 obstack_grow (output, &str_off, sizeof (str_off));
20039 obstack_grow (output, &vec_off, sizeof (vec_off));
20040 }
20041
20042 htab_delete (str_table);
20043 htab_delete (symbol_hash_table);
20044 }
20045
20046 /* Struct to map psymtab to CU index in the index file. */
20047 struct psymtab_cu_index_map
20048 {
20049 struct partial_symtab *psymtab;
20050 unsigned int cu_index;
20051 };
20052
20053 static hashval_t
20054 hash_psymtab_cu_index (const void *item)
20055 {
20056 const struct psymtab_cu_index_map *map = item;
20057
20058 return htab_hash_pointer (map->psymtab);
20059 }
20060
20061 static int
20062 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20063 {
20064 const struct psymtab_cu_index_map *lhs = item_lhs;
20065 const struct psymtab_cu_index_map *rhs = item_rhs;
20066
20067 return lhs->psymtab == rhs->psymtab;
20068 }
20069
20070 /* Helper struct for building the address table. */
20071 struct addrmap_index_data
20072 {
20073 struct objfile *objfile;
20074 struct obstack *addr_obstack;
20075 htab_t cu_index_htab;
20076
20077 /* Non-zero if the previous_* fields are valid.
20078 We can't write an entry until we see the next entry (since it is only then
20079 that we know the end of the entry). */
20080 int previous_valid;
20081 /* Index of the CU in the table of all CUs in the index file. */
20082 unsigned int previous_cu_index;
20083 /* Start address of the CU. */
20084 CORE_ADDR previous_cu_start;
20085 };
20086
20087 /* Write an address entry to OBSTACK. */
20088
20089 static void
20090 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20091 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20092 {
20093 offset_type cu_index_to_write;
20094 char addr[8];
20095 CORE_ADDR baseaddr;
20096
20097 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20098
20099 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20100 obstack_grow (obstack, addr, 8);
20101 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20102 obstack_grow (obstack, addr, 8);
20103 cu_index_to_write = MAYBE_SWAP (cu_index);
20104 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20105 }
20106
20107 /* Worker function for traversing an addrmap to build the address table. */
20108
20109 static int
20110 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20111 {
20112 struct addrmap_index_data *data = datap;
20113 struct partial_symtab *pst = obj;
20114
20115 if (data->previous_valid)
20116 add_address_entry (data->objfile, data->addr_obstack,
20117 data->previous_cu_start, start_addr,
20118 data->previous_cu_index);
20119
20120 data->previous_cu_start = start_addr;
20121 if (pst != NULL)
20122 {
20123 struct psymtab_cu_index_map find_map, *map;
20124 find_map.psymtab = pst;
20125 map = htab_find (data->cu_index_htab, &find_map);
20126 gdb_assert (map != NULL);
20127 data->previous_cu_index = map->cu_index;
20128 data->previous_valid = 1;
20129 }
20130 else
20131 data->previous_valid = 0;
20132
20133 return 0;
20134 }
20135
20136 /* Write OBJFILE's address map to OBSTACK.
20137 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20138 in the index file. */
20139
20140 static void
20141 write_address_map (struct objfile *objfile, struct obstack *obstack,
20142 htab_t cu_index_htab)
20143 {
20144 struct addrmap_index_data addrmap_index_data;
20145
20146 /* When writing the address table, we have to cope with the fact that
20147 the addrmap iterator only provides the start of a region; we have to
20148 wait until the next invocation to get the start of the next region. */
20149
20150 addrmap_index_data.objfile = objfile;
20151 addrmap_index_data.addr_obstack = obstack;
20152 addrmap_index_data.cu_index_htab = cu_index_htab;
20153 addrmap_index_data.previous_valid = 0;
20154
20155 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20156 &addrmap_index_data);
20157
20158 /* It's highly unlikely the last entry (end address = 0xff...ff)
20159 is valid, but we should still handle it.
20160 The end address is recorded as the start of the next region, but that
20161 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20162 anyway. */
20163 if (addrmap_index_data.previous_valid)
20164 add_address_entry (objfile, obstack,
20165 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20166 addrmap_index_data.previous_cu_index);
20167 }
20168
20169 /* Return the symbol kind of PSYM. */
20170
20171 static gdb_index_symbol_kind
20172 symbol_kind (struct partial_symbol *psym)
20173 {
20174 domain_enum domain = PSYMBOL_DOMAIN (psym);
20175 enum address_class aclass = PSYMBOL_CLASS (psym);
20176
20177 switch (domain)
20178 {
20179 case VAR_DOMAIN:
20180 switch (aclass)
20181 {
20182 case LOC_BLOCK:
20183 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20184 case LOC_TYPEDEF:
20185 return GDB_INDEX_SYMBOL_KIND_TYPE;
20186 case LOC_COMPUTED:
20187 case LOC_CONST_BYTES:
20188 case LOC_OPTIMIZED_OUT:
20189 case LOC_STATIC:
20190 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20191 case LOC_CONST:
20192 /* Note: It's currently impossible to recognize psyms as enum values
20193 short of reading the type info. For now punt. */
20194 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20195 default:
20196 /* There are other LOC_FOO values that one might want to classify
20197 as variables, but dwarf2read.c doesn't currently use them. */
20198 return GDB_INDEX_SYMBOL_KIND_OTHER;
20199 }
20200 case STRUCT_DOMAIN:
20201 return GDB_INDEX_SYMBOL_KIND_TYPE;
20202 default:
20203 return GDB_INDEX_SYMBOL_KIND_OTHER;
20204 }
20205 }
20206
20207 /* Add a list of partial symbols to SYMTAB. */
20208
20209 static void
20210 write_psymbols (struct mapped_symtab *symtab,
20211 htab_t psyms_seen,
20212 struct partial_symbol **psymp,
20213 int count,
20214 offset_type cu_index,
20215 int is_static)
20216 {
20217 for (; count-- > 0; ++psymp)
20218 {
20219 struct partial_symbol *psym = *psymp;
20220 void **slot;
20221
20222 if (SYMBOL_LANGUAGE (psym) == language_ada)
20223 error (_("Ada is not currently supported by the index"));
20224
20225 /* Only add a given psymbol once. */
20226 slot = htab_find_slot (psyms_seen, psym, INSERT);
20227 if (!*slot)
20228 {
20229 gdb_index_symbol_kind kind = symbol_kind (psym);
20230
20231 *slot = psym;
20232 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20233 is_static, kind, cu_index);
20234 }
20235 }
20236 }
20237
20238 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20239 exception if there is an error. */
20240
20241 static void
20242 write_obstack (FILE *file, struct obstack *obstack)
20243 {
20244 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20245 file)
20246 != obstack_object_size (obstack))
20247 error (_("couldn't data write to file"));
20248 }
20249
20250 /* Unlink a file if the argument is not NULL. */
20251
20252 static void
20253 unlink_if_set (void *p)
20254 {
20255 char **filename = p;
20256 if (*filename)
20257 unlink (*filename);
20258 }
20259
20260 /* A helper struct used when iterating over debug_types. */
20261 struct signatured_type_index_data
20262 {
20263 struct objfile *objfile;
20264 struct mapped_symtab *symtab;
20265 struct obstack *types_list;
20266 htab_t psyms_seen;
20267 int cu_index;
20268 };
20269
20270 /* A helper function that writes a single signatured_type to an
20271 obstack. */
20272
20273 static int
20274 write_one_signatured_type (void **slot, void *d)
20275 {
20276 struct signatured_type_index_data *info = d;
20277 struct signatured_type *entry = (struct signatured_type *) *slot;
20278 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20279 struct partial_symtab *psymtab = per_cu->v.psymtab;
20280 gdb_byte val[8];
20281
20282 write_psymbols (info->symtab,
20283 info->psyms_seen,
20284 info->objfile->global_psymbols.list
20285 + psymtab->globals_offset,
20286 psymtab->n_global_syms, info->cu_index,
20287 0);
20288 write_psymbols (info->symtab,
20289 info->psyms_seen,
20290 info->objfile->static_psymbols.list
20291 + psymtab->statics_offset,
20292 psymtab->n_static_syms, info->cu_index,
20293 1);
20294
20295 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20296 entry->per_cu.offset.sect_off);
20297 obstack_grow (info->types_list, val, 8);
20298 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20299 entry->type_offset_in_tu.cu_off);
20300 obstack_grow (info->types_list, val, 8);
20301 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20302 obstack_grow (info->types_list, val, 8);
20303
20304 ++info->cu_index;
20305
20306 return 1;
20307 }
20308
20309 /* Recurse into all "included" dependencies and write their symbols as
20310 if they appeared in this psymtab. */
20311
20312 static void
20313 recursively_write_psymbols (struct objfile *objfile,
20314 struct partial_symtab *psymtab,
20315 struct mapped_symtab *symtab,
20316 htab_t psyms_seen,
20317 offset_type cu_index)
20318 {
20319 int i;
20320
20321 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20322 if (psymtab->dependencies[i]->user != NULL)
20323 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20324 symtab, psyms_seen, cu_index);
20325
20326 write_psymbols (symtab,
20327 psyms_seen,
20328 objfile->global_psymbols.list + psymtab->globals_offset,
20329 psymtab->n_global_syms, cu_index,
20330 0);
20331 write_psymbols (symtab,
20332 psyms_seen,
20333 objfile->static_psymbols.list + psymtab->statics_offset,
20334 psymtab->n_static_syms, cu_index,
20335 1);
20336 }
20337
20338 /* Create an index file for OBJFILE in the directory DIR. */
20339
20340 static void
20341 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20342 {
20343 struct cleanup *cleanup;
20344 char *filename, *cleanup_filename;
20345 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20346 struct obstack cu_list, types_cu_list;
20347 int i;
20348 FILE *out_file;
20349 struct mapped_symtab *symtab;
20350 offset_type val, size_of_contents, total_len;
20351 struct stat st;
20352 htab_t psyms_seen;
20353 htab_t cu_index_htab;
20354 struct psymtab_cu_index_map *psymtab_cu_index_map;
20355
20356 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20357 return;
20358
20359 if (dwarf2_per_objfile->using_index)
20360 error (_("Cannot use an index to create the index"));
20361
20362 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20363 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20364
20365 if (stat (objfile->name, &st) < 0)
20366 perror_with_name (objfile->name);
20367
20368 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20369 INDEX_SUFFIX, (char *) NULL);
20370 cleanup = make_cleanup (xfree, filename);
20371
20372 out_file = fopen (filename, "wb");
20373 if (!out_file)
20374 error (_("Can't open `%s' for writing"), filename);
20375
20376 cleanup_filename = filename;
20377 make_cleanup (unlink_if_set, &cleanup_filename);
20378
20379 symtab = create_mapped_symtab ();
20380 make_cleanup (cleanup_mapped_symtab, symtab);
20381
20382 obstack_init (&addr_obstack);
20383 make_cleanup_obstack_free (&addr_obstack);
20384
20385 obstack_init (&cu_list);
20386 make_cleanup_obstack_free (&cu_list);
20387
20388 obstack_init (&types_cu_list);
20389 make_cleanup_obstack_free (&types_cu_list);
20390
20391 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20392 NULL, xcalloc, xfree);
20393 make_cleanup_htab_delete (psyms_seen);
20394
20395 /* While we're scanning CU's create a table that maps a psymtab pointer
20396 (which is what addrmap records) to its index (which is what is recorded
20397 in the index file). This will later be needed to write the address
20398 table. */
20399 cu_index_htab = htab_create_alloc (100,
20400 hash_psymtab_cu_index,
20401 eq_psymtab_cu_index,
20402 NULL, xcalloc, xfree);
20403 make_cleanup_htab_delete (cu_index_htab);
20404 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20405 xmalloc (sizeof (struct psymtab_cu_index_map)
20406 * dwarf2_per_objfile->n_comp_units);
20407 make_cleanup (xfree, psymtab_cu_index_map);
20408
20409 /* The CU list is already sorted, so we don't need to do additional
20410 work here. Also, the debug_types entries do not appear in
20411 all_comp_units, but only in their own hash table. */
20412 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20413 {
20414 struct dwarf2_per_cu_data *per_cu
20415 = dwarf2_per_objfile->all_comp_units[i];
20416 struct partial_symtab *psymtab = per_cu->v.psymtab;
20417 gdb_byte val[8];
20418 struct psymtab_cu_index_map *map;
20419 void **slot;
20420
20421 if (psymtab->user == NULL)
20422 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20423
20424 map = &psymtab_cu_index_map[i];
20425 map->psymtab = psymtab;
20426 map->cu_index = i;
20427 slot = htab_find_slot (cu_index_htab, map, INSERT);
20428 gdb_assert (slot != NULL);
20429 gdb_assert (*slot == NULL);
20430 *slot = map;
20431
20432 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20433 per_cu->offset.sect_off);
20434 obstack_grow (&cu_list, val, 8);
20435 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20436 obstack_grow (&cu_list, val, 8);
20437 }
20438
20439 /* Dump the address map. */
20440 write_address_map (objfile, &addr_obstack, cu_index_htab);
20441
20442 /* Write out the .debug_type entries, if any. */
20443 if (dwarf2_per_objfile->signatured_types)
20444 {
20445 struct signatured_type_index_data sig_data;
20446
20447 sig_data.objfile = objfile;
20448 sig_data.symtab = symtab;
20449 sig_data.types_list = &types_cu_list;
20450 sig_data.psyms_seen = psyms_seen;
20451 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20452 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20453 write_one_signatured_type, &sig_data);
20454 }
20455
20456 /* Now that we've processed all symbols we can shrink their cu_indices
20457 lists. */
20458 uniquify_cu_indices (symtab);
20459
20460 obstack_init (&constant_pool);
20461 make_cleanup_obstack_free (&constant_pool);
20462 obstack_init (&symtab_obstack);
20463 make_cleanup_obstack_free (&symtab_obstack);
20464 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20465
20466 obstack_init (&contents);
20467 make_cleanup_obstack_free (&contents);
20468 size_of_contents = 6 * sizeof (offset_type);
20469 total_len = size_of_contents;
20470
20471 /* The version number. */
20472 val = MAYBE_SWAP (7);
20473 obstack_grow (&contents, &val, sizeof (val));
20474
20475 /* The offset of the CU list from the start of the file. */
20476 val = MAYBE_SWAP (total_len);
20477 obstack_grow (&contents, &val, sizeof (val));
20478 total_len += obstack_object_size (&cu_list);
20479
20480 /* The offset of the types CU list from the start of the file. */
20481 val = MAYBE_SWAP (total_len);
20482 obstack_grow (&contents, &val, sizeof (val));
20483 total_len += obstack_object_size (&types_cu_list);
20484
20485 /* The offset of the address table from the start of the file. */
20486 val = MAYBE_SWAP (total_len);
20487 obstack_grow (&contents, &val, sizeof (val));
20488 total_len += obstack_object_size (&addr_obstack);
20489
20490 /* The offset of the symbol table from the start of the file. */
20491 val = MAYBE_SWAP (total_len);
20492 obstack_grow (&contents, &val, sizeof (val));
20493 total_len += obstack_object_size (&symtab_obstack);
20494
20495 /* The offset of the constant pool from the start of the file. */
20496 val = MAYBE_SWAP (total_len);
20497 obstack_grow (&contents, &val, sizeof (val));
20498 total_len += obstack_object_size (&constant_pool);
20499
20500 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20501
20502 write_obstack (out_file, &contents);
20503 write_obstack (out_file, &cu_list);
20504 write_obstack (out_file, &types_cu_list);
20505 write_obstack (out_file, &addr_obstack);
20506 write_obstack (out_file, &symtab_obstack);
20507 write_obstack (out_file, &constant_pool);
20508
20509 fclose (out_file);
20510
20511 /* We want to keep the file, so we set cleanup_filename to NULL
20512 here. See unlink_if_set. */
20513 cleanup_filename = NULL;
20514
20515 do_cleanups (cleanup);
20516 }
20517
20518 /* Implementation of the `save gdb-index' command.
20519
20520 Note that the file format used by this command is documented in the
20521 GDB manual. Any changes here must be documented there. */
20522
20523 static void
20524 save_gdb_index_command (char *arg, int from_tty)
20525 {
20526 struct objfile *objfile;
20527
20528 if (!arg || !*arg)
20529 error (_("usage: save gdb-index DIRECTORY"));
20530
20531 ALL_OBJFILES (objfile)
20532 {
20533 struct stat st;
20534
20535 /* If the objfile does not correspond to an actual file, skip it. */
20536 if (stat (objfile->name, &st) < 0)
20537 continue;
20538
20539 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20540 if (dwarf2_per_objfile)
20541 {
20542 volatile struct gdb_exception except;
20543
20544 TRY_CATCH (except, RETURN_MASK_ERROR)
20545 {
20546 write_psymtabs_to_index (objfile, arg);
20547 }
20548 if (except.reason < 0)
20549 exception_fprintf (gdb_stderr, except,
20550 _("Error while writing index for `%s': "),
20551 objfile->name);
20552 }
20553 }
20554 }
20555
20556 \f
20557
20558 int dwarf2_always_disassemble;
20559
20560 static void
20561 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20562 struct cmd_list_element *c, const char *value)
20563 {
20564 fprintf_filtered (file,
20565 _("Whether to always disassemble "
20566 "DWARF expressions is %s.\n"),
20567 value);
20568 }
20569
20570 static void
20571 show_check_physname (struct ui_file *file, int from_tty,
20572 struct cmd_list_element *c, const char *value)
20573 {
20574 fprintf_filtered (file,
20575 _("Whether to check \"physname\" is %s.\n"),
20576 value);
20577 }
20578
20579 void _initialize_dwarf2_read (void);
20580
20581 void
20582 _initialize_dwarf2_read (void)
20583 {
20584 struct cmd_list_element *c;
20585
20586 dwarf2_objfile_data_key
20587 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20588
20589 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20590 Set DWARF 2 specific variables.\n\
20591 Configure DWARF 2 variables such as the cache size"),
20592 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20593 0/*allow-unknown*/, &maintenance_set_cmdlist);
20594
20595 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20596 Show DWARF 2 specific variables\n\
20597 Show DWARF 2 variables such as the cache size"),
20598 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20599 0/*allow-unknown*/, &maintenance_show_cmdlist);
20600
20601 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20602 &dwarf2_max_cache_age, _("\
20603 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20604 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20605 A higher limit means that cached compilation units will be stored\n\
20606 in memory longer, and more total memory will be used. Zero disables\n\
20607 caching, which can slow down startup."),
20608 NULL,
20609 show_dwarf2_max_cache_age,
20610 &set_dwarf2_cmdlist,
20611 &show_dwarf2_cmdlist);
20612
20613 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20614 &dwarf2_always_disassemble, _("\
20615 Set whether `info address' always disassembles DWARF expressions."), _("\
20616 Show whether `info address' always disassembles DWARF expressions."), _("\
20617 When enabled, DWARF expressions are always printed in an assembly-like\n\
20618 syntax. When disabled, expressions will be printed in a more\n\
20619 conversational style, when possible."),
20620 NULL,
20621 show_dwarf2_always_disassemble,
20622 &set_dwarf2_cmdlist,
20623 &show_dwarf2_cmdlist);
20624
20625 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20626 Set debugging of the dwarf2 reader."), _("\
20627 Show debugging of the dwarf2 reader."), _("\
20628 When enabled, debugging messages are printed during dwarf2 reading\n\
20629 and symtab expansion."),
20630 NULL,
20631 NULL,
20632 &setdebuglist, &showdebuglist);
20633
20634 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20635 Set debugging of the dwarf2 DIE reader."), _("\
20636 Show debugging of the dwarf2 DIE reader."), _("\
20637 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20638 The value is the maximum depth to print."),
20639 NULL,
20640 NULL,
20641 &setdebuglist, &showdebuglist);
20642
20643 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20644 Set cross-checking of \"physname\" code against demangler."), _("\
20645 Show cross-checking of \"physname\" code against demangler."), _("\
20646 When enabled, GDB's internal \"physname\" code is checked against\n\
20647 the demangler."),
20648 NULL, show_check_physname,
20649 &setdebuglist, &showdebuglist);
20650
20651 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20652 no_class, &use_deprecated_index_sections, _("\
20653 Set whether to use deprecated gdb_index sections."), _("\
20654 Show whether to use deprecated gdb_index sections."), _("\
20655 When enabled, deprecated .gdb_index sections are used anyway.\n\
20656 Normally they are ignored either because of a missing feature or\n\
20657 performance issue.\n\
20658 Warning: This option must be enabled before gdb reads the file."),
20659 NULL,
20660 NULL,
20661 &setlist, &showlist);
20662
20663 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20664 _("\
20665 Save a gdb-index file.\n\
20666 Usage: save gdb-index DIRECTORY"),
20667 &save_cmdlist);
20668 set_cmd_completer (c, filename_completer);
20669 }
This page took 0.460893 seconds and 4 git commands to generate.