Add native target for FreeBSD/mips.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75 #include <algorithm>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* This DIE has been marked DW_AT_main_subprogram. */
1109 unsigned int main_subprogram : 1;
1110
1111 /* Flag set if the SCOPE field of this structure has been
1112 computed. */
1113 unsigned int scope_set : 1;
1114
1115 /* Flag set if the DIE has a byte_size attribute. */
1116 unsigned int has_byte_size : 1;
1117
1118 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1119 unsigned int has_const_value : 1;
1120
1121 /* Flag set if any of the DIE's children are template arguments. */
1122 unsigned int has_template_arguments : 1;
1123
1124 /* Flag set if fixup_partial_die has been called on this die. */
1125 unsigned int fixup_called : 1;
1126
1127 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1128 unsigned int is_dwz : 1;
1129
1130 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1131 unsigned int spec_is_dwz : 1;
1132
1133 /* The name of this DIE. Normally the value of DW_AT_name, but
1134 sometimes a default name for unnamed DIEs. */
1135 const char *name;
1136
1137 /* The linkage name, if present. */
1138 const char *linkage_name;
1139
1140 /* The scope to prepend to our children. This is generally
1141 allocated on the comp_unit_obstack, so will disappear
1142 when this compilation unit leaves the cache. */
1143 const char *scope;
1144
1145 /* Some data associated with the partial DIE. The tag determines
1146 which field is live. */
1147 union
1148 {
1149 /* The location description associated with this DIE, if any. */
1150 struct dwarf_block *locdesc;
1151 /* The offset of an import, for DW_TAG_imported_unit. */
1152 sect_offset offset;
1153 } d;
1154
1155 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1156 CORE_ADDR lowpc;
1157 CORE_ADDR highpc;
1158
1159 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1160 DW_AT_sibling, if any. */
1161 /* NOTE: This member isn't strictly necessary, read_partial_die could
1162 return DW_AT_sibling values to its caller load_partial_dies. */
1163 const gdb_byte *sibling;
1164
1165 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1166 DW_AT_specification (or DW_AT_abstract_origin or
1167 DW_AT_extension). */
1168 sect_offset spec_offset;
1169
1170 /* Pointers to this DIE's parent, first child, and next sibling,
1171 if any. */
1172 struct partial_die_info *die_parent, *die_child, *die_sibling;
1173 };
1174
1175 /* This data structure holds the information of an abbrev. */
1176 struct abbrev_info
1177 {
1178 unsigned int number; /* number identifying abbrev */
1179 enum dwarf_tag tag; /* dwarf tag */
1180 unsigned short has_children; /* boolean */
1181 unsigned short num_attrs; /* number of attributes */
1182 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1183 struct abbrev_info *next; /* next in chain */
1184 };
1185
1186 struct attr_abbrev
1187 {
1188 ENUM_BITFIELD(dwarf_attribute) name : 16;
1189 ENUM_BITFIELD(dwarf_form) form : 16;
1190 };
1191
1192 /* Size of abbrev_table.abbrev_hash_table. */
1193 #define ABBREV_HASH_SIZE 121
1194
1195 /* Top level data structure to contain an abbreviation table. */
1196
1197 struct abbrev_table
1198 {
1199 /* Where the abbrev table came from.
1200 This is used as a sanity check when the table is used. */
1201 sect_offset offset;
1202
1203 /* Storage for the abbrev table. */
1204 struct obstack abbrev_obstack;
1205
1206 /* Hash table of abbrevs.
1207 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1208 It could be statically allocated, but the previous code didn't so we
1209 don't either. */
1210 struct abbrev_info **abbrevs;
1211 };
1212
1213 /* Attributes have a name and a value. */
1214 struct attribute
1215 {
1216 ENUM_BITFIELD(dwarf_attribute) name : 16;
1217 ENUM_BITFIELD(dwarf_form) form : 15;
1218
1219 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1220 field should be in u.str (existing only for DW_STRING) but it is kept
1221 here for better struct attribute alignment. */
1222 unsigned int string_is_canonical : 1;
1223
1224 union
1225 {
1226 const char *str;
1227 struct dwarf_block *blk;
1228 ULONGEST unsnd;
1229 LONGEST snd;
1230 CORE_ADDR addr;
1231 ULONGEST signature;
1232 }
1233 u;
1234 };
1235
1236 /* This data structure holds a complete die structure. */
1237 struct die_info
1238 {
1239 /* DWARF-2 tag for this DIE. */
1240 ENUM_BITFIELD(dwarf_tag) tag : 16;
1241
1242 /* Number of attributes */
1243 unsigned char num_attrs;
1244
1245 /* True if we're presently building the full type name for the
1246 type derived from this DIE. */
1247 unsigned char building_fullname : 1;
1248
1249 /* True if this die is in process. PR 16581. */
1250 unsigned char in_process : 1;
1251
1252 /* Abbrev number */
1253 unsigned int abbrev;
1254
1255 /* Offset in .debug_info or .debug_types section. */
1256 sect_offset offset;
1257
1258 /* The dies in a compilation unit form an n-ary tree. PARENT
1259 points to this die's parent; CHILD points to the first child of
1260 this node; and all the children of a given node are chained
1261 together via their SIBLING fields. */
1262 struct die_info *child; /* Its first child, if any. */
1263 struct die_info *sibling; /* Its next sibling, if any. */
1264 struct die_info *parent; /* Its parent, if any. */
1265
1266 /* An array of attributes, with NUM_ATTRS elements. There may be
1267 zero, but it's not common and zero-sized arrays are not
1268 sufficiently portable C. */
1269 struct attribute attrs[1];
1270 };
1271
1272 /* Get at parts of an attribute structure. */
1273
1274 #define DW_STRING(attr) ((attr)->u.str)
1275 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1276 #define DW_UNSND(attr) ((attr)->u.unsnd)
1277 #define DW_BLOCK(attr) ((attr)->u.blk)
1278 #define DW_SND(attr) ((attr)->u.snd)
1279 #define DW_ADDR(attr) ((attr)->u.addr)
1280 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1281
1282 /* Blocks are a bunch of untyped bytes. */
1283 struct dwarf_block
1284 {
1285 size_t size;
1286
1287 /* Valid only if SIZE is not zero. */
1288 const gdb_byte *data;
1289 };
1290
1291 #ifndef ATTR_ALLOC_CHUNK
1292 #define ATTR_ALLOC_CHUNK 4
1293 #endif
1294
1295 /* Allocate fields for structs, unions and enums in this size. */
1296 #ifndef DW_FIELD_ALLOC_CHUNK
1297 #define DW_FIELD_ALLOC_CHUNK 4
1298 #endif
1299
1300 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1301 but this would require a corresponding change in unpack_field_as_long
1302 and friends. */
1303 static int bits_per_byte = 8;
1304
1305 struct nextfield
1306 {
1307 struct nextfield *next;
1308 int accessibility;
1309 int virtuality;
1310 struct field field;
1311 };
1312
1313 struct nextfnfield
1314 {
1315 struct nextfnfield *next;
1316 struct fn_field fnfield;
1317 };
1318
1319 struct fnfieldlist
1320 {
1321 const char *name;
1322 int length;
1323 struct nextfnfield *head;
1324 };
1325
1326 struct typedef_field_list
1327 {
1328 struct typedef_field field;
1329 struct typedef_field_list *next;
1330 };
1331
1332 /* The routines that read and process dies for a C struct or C++ class
1333 pass lists of data member fields and lists of member function fields
1334 in an instance of a field_info structure, as defined below. */
1335 struct field_info
1336 {
1337 /* List of data member and baseclasses fields. */
1338 struct nextfield *fields, *baseclasses;
1339
1340 /* Number of fields (including baseclasses). */
1341 int nfields;
1342
1343 /* Number of baseclasses. */
1344 int nbaseclasses;
1345
1346 /* Set if the accesibility of one of the fields is not public. */
1347 int non_public_fields;
1348
1349 /* Member function fields array, entries are allocated in the order they
1350 are encountered in the object file. */
1351 struct nextfnfield *fnfields;
1352
1353 /* Member function fieldlist array, contains name of possibly overloaded
1354 member function, number of overloaded member functions and a pointer
1355 to the head of the member function field chain. */
1356 struct fnfieldlist *fnfieldlists;
1357
1358 /* Number of entries in the fnfieldlists array. */
1359 int nfnfields;
1360
1361 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1362 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1363 struct typedef_field_list *typedef_field_list;
1364 unsigned typedef_field_list_count;
1365 };
1366
1367 /* One item on the queue of compilation units to read in full symbols
1368 for. */
1369 struct dwarf2_queue_item
1370 {
1371 struct dwarf2_per_cu_data *per_cu;
1372 enum language pretend_language;
1373 struct dwarf2_queue_item *next;
1374 };
1375
1376 /* The current queue. */
1377 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1378
1379 /* Loaded secondary compilation units are kept in memory until they
1380 have not been referenced for the processing of this many
1381 compilation units. Set this to zero to disable caching. Cache
1382 sizes of up to at least twenty will improve startup time for
1383 typical inter-CU-reference binaries, at an obvious memory cost. */
1384 static int dwarf_max_cache_age = 5;
1385 static void
1386 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1387 struct cmd_list_element *c, const char *value)
1388 {
1389 fprintf_filtered (file, _("The upper bound on the age of cached "
1390 "DWARF compilation units is %s.\n"),
1391 value);
1392 }
1393 \f
1394 /* local function prototypes */
1395
1396 static const char *get_section_name (const struct dwarf2_section_info *);
1397
1398 static const char *get_section_file_name (const struct dwarf2_section_info *);
1399
1400 static void dwarf2_locate_sections (bfd *, asection *, void *);
1401
1402 static void dwarf2_find_base_address (struct die_info *die,
1403 struct dwarf2_cu *cu);
1404
1405 static struct partial_symtab *create_partial_symtab
1406 (struct dwarf2_per_cu_data *per_cu, const char *name);
1407
1408 static void dwarf2_build_psymtabs_hard (struct objfile *);
1409
1410 static void scan_partial_symbols (struct partial_die_info *,
1411 CORE_ADDR *, CORE_ADDR *,
1412 int, struct dwarf2_cu *);
1413
1414 static void add_partial_symbol (struct partial_die_info *,
1415 struct dwarf2_cu *);
1416
1417 static void add_partial_namespace (struct partial_die_info *pdi,
1418 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1419 int set_addrmap, struct dwarf2_cu *cu);
1420
1421 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1422 CORE_ADDR *highpc, int set_addrmap,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1426 struct dwarf2_cu *cu);
1427
1428 static void add_partial_subprogram (struct partial_die_info *pdi,
1429 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1430 int need_pc, struct dwarf2_cu *cu);
1431
1432 static void dwarf2_read_symtab (struct partial_symtab *,
1433 struct objfile *);
1434
1435 static void psymtab_to_symtab_1 (struct partial_symtab *);
1436
1437 static struct abbrev_info *abbrev_table_lookup_abbrev
1438 (const struct abbrev_table *, unsigned int);
1439
1440 static struct abbrev_table *abbrev_table_read_table
1441 (struct dwarf2_section_info *, sect_offset);
1442
1443 static void abbrev_table_free (struct abbrev_table *);
1444
1445 static void abbrev_table_free_cleanup (void *);
1446
1447 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1448 struct dwarf2_section_info *);
1449
1450 static void dwarf2_free_abbrev_table (void *);
1451
1452 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1453
1454 static struct partial_die_info *load_partial_dies
1455 (const struct die_reader_specs *, const gdb_byte *, int);
1456
1457 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1458 struct partial_die_info *,
1459 struct abbrev_info *,
1460 unsigned int,
1461 const gdb_byte *);
1462
1463 static struct partial_die_info *find_partial_die (sect_offset, int,
1464 struct dwarf2_cu *);
1465
1466 static void fixup_partial_die (struct partial_die_info *,
1467 struct dwarf2_cu *);
1468
1469 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1470 struct attribute *, struct attr_abbrev *,
1471 const gdb_byte *);
1472
1473 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1474
1475 static int read_1_signed_byte (bfd *, const gdb_byte *);
1476
1477 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1478
1479 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1480
1481 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1482
1483 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1484 unsigned int *);
1485
1486 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_checked_initial_length_and_offset
1489 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1490 unsigned int *, unsigned int *);
1491
1492 static LONGEST read_offset (bfd *, const gdb_byte *,
1493 const struct comp_unit_head *,
1494 unsigned int *);
1495
1496 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1497
1498 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1499 sect_offset);
1500
1501 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1502
1503 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static const char *read_indirect_string (bfd *, const gdb_byte *,
1506 const struct comp_unit_head *,
1507 unsigned int *);
1508
1509 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1510
1511 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1512
1513 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1514
1515 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1516 const gdb_byte *,
1517 unsigned int *);
1518
1519 static const char *read_str_index (const struct die_reader_specs *reader,
1520 ULONGEST str_index);
1521
1522 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1525 struct dwarf2_cu *);
1526
1527 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1528 unsigned int);
1529
1530 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1531 struct dwarf2_cu *cu);
1532
1533 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1534 struct dwarf2_cu *cu);
1535
1536 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1537
1538 static struct die_info *die_specification (struct die_info *die,
1539 struct dwarf2_cu **);
1540
1541 static void free_line_header (struct line_header *lh);
1542
1543 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1544 struct dwarf2_cu *cu);
1545
1546 static void dwarf_decode_lines (struct line_header *, const char *,
1547 struct dwarf2_cu *, struct partial_symtab *,
1548 CORE_ADDR, int decode_mapping);
1549
1550 static void dwarf2_start_subfile (const char *, const char *);
1551
1552 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1553 const char *, const char *,
1554 CORE_ADDR);
1555
1556 static struct symbol *new_symbol (struct die_info *, struct type *,
1557 struct dwarf2_cu *);
1558
1559 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1560 struct dwarf2_cu *, struct symbol *);
1561
1562 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1563 struct dwarf2_cu *);
1564
1565 static void dwarf2_const_value_attr (const struct attribute *attr,
1566 struct type *type,
1567 const char *name,
1568 struct obstack *obstack,
1569 struct dwarf2_cu *cu, LONGEST *value,
1570 const gdb_byte **bytes,
1571 struct dwarf2_locexpr_baton **baton);
1572
1573 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1574
1575 static int need_gnat_info (struct dwarf2_cu *);
1576
1577 static struct type *die_descriptive_type (struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static void set_descriptive_type (struct type *, struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *die_containing_type (struct die_info *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1587 struct dwarf2_cu *);
1588
1589 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1590
1591 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1592
1593 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1594
1595 static char *typename_concat (struct obstack *obs, const char *prefix,
1596 const char *suffix, int physname,
1597 struct dwarf2_cu *cu);
1598
1599 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1600
1601 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1602
1603 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1608
1609 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1610 struct dwarf2_cu *, struct partial_symtab *);
1611
1612 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1613 values. Keep the items ordered with increasing constraints compliance. */
1614 enum pc_bounds_kind
1615 {
1616 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1617 PC_BOUNDS_NOT_PRESENT,
1618
1619 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1620 were present but they do not form a valid range of PC addresses. */
1621 PC_BOUNDS_INVALID,
1622
1623 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1624 PC_BOUNDS_RANGES,
1625
1626 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1627 PC_BOUNDS_HIGH_LOW,
1628 };
1629
1630 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1631 CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *,
1633 struct partial_symtab *);
1634
1635 static void get_scope_pc_bounds (struct die_info *,
1636 CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *);
1638
1639 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1640 CORE_ADDR, struct dwarf2_cu *);
1641
1642 static void dwarf2_add_field (struct field_info *, struct die_info *,
1643 struct dwarf2_cu *);
1644
1645 static void dwarf2_attach_fields_to_type (struct field_info *,
1646 struct type *, struct dwarf2_cu *);
1647
1648 static void dwarf2_add_member_fn (struct field_info *,
1649 struct die_info *, struct type *,
1650 struct dwarf2_cu *);
1651
1652 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1653 struct type *,
1654 struct dwarf2_cu *);
1655
1656 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1657
1658 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1659
1660 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1661
1662 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1663
1664 static struct using_direct **using_directives (enum language);
1665
1666 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1667
1668 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1669
1670 static struct type *read_module_type (struct die_info *die,
1671 struct dwarf2_cu *cu);
1672
1673 static const char *namespace_name (struct die_info *die,
1674 int *is_anonymous, struct dwarf2_cu *);
1675
1676 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1677
1678 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1679
1680 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1681 struct dwarf2_cu *);
1682
1683 static struct die_info *read_die_and_siblings_1
1684 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1685 struct die_info *);
1686
1687 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1688 const gdb_byte *info_ptr,
1689 const gdb_byte **new_info_ptr,
1690 struct die_info *parent);
1691
1692 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1693 struct die_info **, const gdb_byte *,
1694 int *, int);
1695
1696 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1697 struct die_info **, const gdb_byte *,
1698 int *);
1699
1700 static void process_die (struct die_info *, struct dwarf2_cu *);
1701
1702 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1703 struct obstack *);
1704
1705 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1706
1707 static const char *dwarf2_full_name (const char *name,
1708 struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
1711 static const char *dwarf2_physname (const char *name, struct die_info *die,
1712 struct dwarf2_cu *cu);
1713
1714 static struct die_info *dwarf2_extension (struct die_info *die,
1715 struct dwarf2_cu **);
1716
1717 static const char *dwarf_tag_name (unsigned int);
1718
1719 static const char *dwarf_attr_name (unsigned int);
1720
1721 static const char *dwarf_form_name (unsigned int);
1722
1723 static char *dwarf_bool_name (unsigned int);
1724
1725 static const char *dwarf_type_encoding_name (unsigned int);
1726
1727 static struct die_info *sibling_die (struct die_info *);
1728
1729 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1730
1731 static void dump_die_for_error (struct die_info *);
1732
1733 static void dump_die_1 (struct ui_file *, int level, int max_level,
1734 struct die_info *);
1735
1736 /*static*/ void dump_die (struct die_info *, int max_level);
1737
1738 static void store_in_ref_table (struct die_info *,
1739 struct dwarf2_cu *);
1740
1741 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1742
1743 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1744
1745 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1746 const struct attribute *,
1747 struct dwarf2_cu **);
1748
1749 static struct die_info *follow_die_ref (struct die_info *,
1750 const struct attribute *,
1751 struct dwarf2_cu **);
1752
1753 static struct die_info *follow_die_sig (struct die_info *,
1754 const struct attribute *,
1755 struct dwarf2_cu **);
1756
1757 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1758 struct dwarf2_cu *);
1759
1760 static struct type *get_DW_AT_signature_type (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu *);
1763
1764 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1765
1766 static void read_signatured_type (struct signatured_type *);
1767
1768 static int attr_to_dynamic_prop (const struct attribute *attr,
1769 struct die_info *die, struct dwarf2_cu *cu,
1770 struct dynamic_prop *prop);
1771
1772 /* memory allocation interface */
1773
1774 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1775
1776 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1777
1778 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1779
1780 static int attr_form_is_block (const struct attribute *);
1781
1782 static int attr_form_is_section_offset (const struct attribute *);
1783
1784 static int attr_form_is_constant (const struct attribute *);
1785
1786 static int attr_form_is_ref (const struct attribute *);
1787
1788 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1789 struct dwarf2_loclist_baton *baton,
1790 const struct attribute *attr);
1791
1792 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1793 struct symbol *sym,
1794 struct dwarf2_cu *cu,
1795 int is_block);
1796
1797 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1798 const gdb_byte *info_ptr,
1799 struct abbrev_info *abbrev);
1800
1801 static void free_stack_comp_unit (void *);
1802
1803 static hashval_t partial_die_hash (const void *item);
1804
1805 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1806
1807 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1808 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1809
1810 static void init_one_comp_unit (struct dwarf2_cu *cu,
1811 struct dwarf2_per_cu_data *per_cu);
1812
1813 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1814 struct die_info *comp_unit_die,
1815 enum language pretend_language);
1816
1817 static void free_heap_comp_unit (void *);
1818
1819 static void free_cached_comp_units (void *);
1820
1821 static void age_cached_comp_units (void);
1822
1823 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1824
1825 static struct type *set_die_type (struct die_info *, struct type *,
1826 struct dwarf2_cu *);
1827
1828 static void create_all_comp_units (struct objfile *);
1829
1830 static int create_all_type_units (struct objfile *);
1831
1832 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
1834
1835 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void dwarf2_add_dependence (struct dwarf2_cu *,
1842 struct dwarf2_per_cu_data *);
1843
1844 static void dwarf2_mark (struct dwarf2_cu *);
1845
1846 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1847
1848 static struct type *get_die_type_at_offset (sect_offset,
1849 struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1852
1853 static void dwarf2_release_queue (void *dummy);
1854
1855 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1856 enum language pretend_language);
1857
1858 static void process_queue (void);
1859
1860 static void find_file_and_directory (struct die_info *die,
1861 struct dwarf2_cu *cu,
1862 const char **name, const char **comp_dir);
1863
1864 static char *file_full_name (int file, struct line_header *lh,
1865 const char *comp_dir);
1866
1867 static const gdb_byte *read_and_check_comp_unit_head
1868 (struct comp_unit_head *header,
1869 struct dwarf2_section_info *section,
1870 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1871 int is_debug_types_section);
1872
1873 static void init_cutu_and_read_dies
1874 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1875 int use_existing_cu, int keep,
1876 die_reader_func_ftype *die_reader_func, void *data);
1877
1878 static void init_cutu_and_read_dies_simple
1879 (struct dwarf2_per_cu_data *this_cu,
1880 die_reader_func_ftype *die_reader_func, void *data);
1881
1882 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1883
1884 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1885
1886 static struct dwo_unit *lookup_dwo_unit_in_dwp
1887 (struct dwp_file *dwp_file, const char *comp_dir,
1888 ULONGEST signature, int is_debug_types);
1889
1890 static struct dwp_file *get_dwp_file (void);
1891
1892 static struct dwo_unit *lookup_dwo_comp_unit
1893 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1894
1895 static struct dwo_unit *lookup_dwo_type_unit
1896 (struct signatured_type *, const char *, const char *);
1897
1898 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1899
1900 static void free_dwo_file_cleanup (void *);
1901
1902 static void process_cu_includes (void);
1903
1904 static void check_producer (struct dwarf2_cu *cu);
1905
1906 static void free_line_header_voidp (void *arg);
1907 \f
1908 /* Various complaints about symbol reading that don't abort the process. */
1909
1910 static void
1911 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1912 {
1913 complaint (&symfile_complaints,
1914 _("statement list doesn't fit in .debug_line section"));
1915 }
1916
1917 static void
1918 dwarf2_debug_line_missing_file_complaint (void)
1919 {
1920 complaint (&symfile_complaints,
1921 _(".debug_line section has line data without a file"));
1922 }
1923
1924 static void
1925 dwarf2_debug_line_missing_end_sequence_complaint (void)
1926 {
1927 complaint (&symfile_complaints,
1928 _(".debug_line section has line "
1929 "program sequence without an end"));
1930 }
1931
1932 static void
1933 dwarf2_complex_location_expr_complaint (void)
1934 {
1935 complaint (&symfile_complaints, _("location expression too complex"));
1936 }
1937
1938 static void
1939 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1940 int arg3)
1941 {
1942 complaint (&symfile_complaints,
1943 _("const value length mismatch for '%s', got %d, expected %d"),
1944 arg1, arg2, arg3);
1945 }
1946
1947 static void
1948 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1949 {
1950 complaint (&symfile_complaints,
1951 _("debug info runs off end of %s section"
1952 " [in module %s]"),
1953 get_section_name (section),
1954 get_section_file_name (section));
1955 }
1956
1957 static void
1958 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1959 {
1960 complaint (&symfile_complaints,
1961 _("macro debug info contains a "
1962 "malformed macro definition:\n`%s'"),
1963 arg1);
1964 }
1965
1966 static void
1967 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1968 {
1969 complaint (&symfile_complaints,
1970 _("invalid attribute class or form for '%s' in '%s'"),
1971 arg1, arg2);
1972 }
1973
1974 /* Hash function for line_header_hash. */
1975
1976 static hashval_t
1977 line_header_hash (const struct line_header *ofs)
1978 {
1979 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1980 }
1981
1982 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1983
1984 static hashval_t
1985 line_header_hash_voidp (const void *item)
1986 {
1987 const struct line_header *ofs = (const struct line_header *) item;
1988
1989 return line_header_hash (ofs);
1990 }
1991
1992 /* Equality function for line_header_hash. */
1993
1994 static int
1995 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1996 {
1997 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1998 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1999
2000 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2001 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2002 }
2003
2004 \f
2005 #if WORDS_BIGENDIAN
2006
2007 /* Convert VALUE between big- and little-endian. */
2008 static offset_type
2009 byte_swap (offset_type value)
2010 {
2011 offset_type result;
2012
2013 result = (value & 0xff) << 24;
2014 result |= (value & 0xff00) << 8;
2015 result |= (value & 0xff0000) >> 8;
2016 result |= (value & 0xff000000) >> 24;
2017 return result;
2018 }
2019
2020 #define MAYBE_SWAP(V) byte_swap (V)
2021
2022 #else
2023 #define MAYBE_SWAP(V) (V)
2024 #endif /* WORDS_BIGENDIAN */
2025
2026 /* Read the given attribute value as an address, taking the attribute's
2027 form into account. */
2028
2029 static CORE_ADDR
2030 attr_value_as_address (struct attribute *attr)
2031 {
2032 CORE_ADDR addr;
2033
2034 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2035 {
2036 /* Aside from a few clearly defined exceptions, attributes that
2037 contain an address must always be in DW_FORM_addr form.
2038 Unfortunately, some compilers happen to be violating this
2039 requirement by encoding addresses using other forms, such
2040 as DW_FORM_data4 for example. For those broken compilers,
2041 we try to do our best, without any guarantee of success,
2042 to interpret the address correctly. It would also be nice
2043 to generate a complaint, but that would require us to maintain
2044 a list of legitimate cases where a non-address form is allowed,
2045 as well as update callers to pass in at least the CU's DWARF
2046 version. This is more overhead than what we're willing to
2047 expand for a pretty rare case. */
2048 addr = DW_UNSND (attr);
2049 }
2050 else
2051 addr = DW_ADDR (attr);
2052
2053 return addr;
2054 }
2055
2056 /* The suffix for an index file. */
2057 #define INDEX_SUFFIX ".gdb-index"
2058
2059 /* Try to locate the sections we need for DWARF 2 debugging
2060 information and return true if we have enough to do something.
2061 NAMES points to the dwarf2 section names, or is NULL if the standard
2062 ELF names are used. */
2063
2064 int
2065 dwarf2_has_info (struct objfile *objfile,
2066 const struct dwarf2_debug_sections *names)
2067 {
2068 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2069 objfile_data (objfile, dwarf2_objfile_data_key));
2070 if (!dwarf2_per_objfile)
2071 {
2072 /* Initialize per-objfile state. */
2073 struct dwarf2_per_objfile *data
2074 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2075
2076 memset (data, 0, sizeof (*data));
2077 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2078 dwarf2_per_objfile = data;
2079
2080 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2081 (void *) names);
2082 dwarf2_per_objfile->objfile = objfile;
2083 }
2084 return (!dwarf2_per_objfile->info.is_virtual
2085 && dwarf2_per_objfile->info.s.section != NULL
2086 && !dwarf2_per_objfile->abbrev.is_virtual
2087 && dwarf2_per_objfile->abbrev.s.section != NULL);
2088 }
2089
2090 /* Return the containing section of virtual section SECTION. */
2091
2092 static struct dwarf2_section_info *
2093 get_containing_section (const struct dwarf2_section_info *section)
2094 {
2095 gdb_assert (section->is_virtual);
2096 return section->s.containing_section;
2097 }
2098
2099 /* Return the bfd owner of SECTION. */
2100
2101 static struct bfd *
2102 get_section_bfd_owner (const struct dwarf2_section_info *section)
2103 {
2104 if (section->is_virtual)
2105 {
2106 section = get_containing_section (section);
2107 gdb_assert (!section->is_virtual);
2108 }
2109 return section->s.section->owner;
2110 }
2111
2112 /* Return the bfd section of SECTION.
2113 Returns NULL if the section is not present. */
2114
2115 static asection *
2116 get_section_bfd_section (const struct dwarf2_section_info *section)
2117 {
2118 if (section->is_virtual)
2119 {
2120 section = get_containing_section (section);
2121 gdb_assert (!section->is_virtual);
2122 }
2123 return section->s.section;
2124 }
2125
2126 /* Return the name of SECTION. */
2127
2128 static const char *
2129 get_section_name (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 gdb_assert (sectp != NULL);
2134 return bfd_section_name (get_section_bfd_owner (section), sectp);
2135 }
2136
2137 /* Return the name of the file SECTION is in. */
2138
2139 static const char *
2140 get_section_file_name (const struct dwarf2_section_info *section)
2141 {
2142 bfd *abfd = get_section_bfd_owner (section);
2143
2144 return bfd_get_filename (abfd);
2145 }
2146
2147 /* Return the id of SECTION.
2148 Returns 0 if SECTION doesn't exist. */
2149
2150 static int
2151 get_section_id (const struct dwarf2_section_info *section)
2152 {
2153 asection *sectp = get_section_bfd_section (section);
2154
2155 if (sectp == NULL)
2156 return 0;
2157 return sectp->id;
2158 }
2159
2160 /* Return the flags of SECTION.
2161 SECTION (or containing section if this is a virtual section) must exist. */
2162
2163 static int
2164 get_section_flags (const struct dwarf2_section_info *section)
2165 {
2166 asection *sectp = get_section_bfd_section (section);
2167
2168 gdb_assert (sectp != NULL);
2169 return bfd_get_section_flags (sectp->owner, sectp);
2170 }
2171
2172 /* When loading sections, we look either for uncompressed section or for
2173 compressed section names. */
2174
2175 static int
2176 section_is_p (const char *section_name,
2177 const struct dwarf2_section_names *names)
2178 {
2179 if (names->normal != NULL
2180 && strcmp (section_name, names->normal) == 0)
2181 return 1;
2182 if (names->compressed != NULL
2183 && strcmp (section_name, names->compressed) == 0)
2184 return 1;
2185 return 0;
2186 }
2187
2188 /* This function is mapped across the sections and remembers the
2189 offset and size of each of the debugging sections we are interested
2190 in. */
2191
2192 static void
2193 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2194 {
2195 const struct dwarf2_debug_sections *names;
2196 flagword aflag = bfd_get_section_flags (abfd, sectp);
2197
2198 if (vnames == NULL)
2199 names = &dwarf2_elf_names;
2200 else
2201 names = (const struct dwarf2_debug_sections *) vnames;
2202
2203 if ((aflag & SEC_HAS_CONTENTS) == 0)
2204 {
2205 }
2206 else if (section_is_p (sectp->name, &names->info))
2207 {
2208 dwarf2_per_objfile->info.s.section = sectp;
2209 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->abbrev))
2212 {
2213 dwarf2_per_objfile->abbrev.s.section = sectp;
2214 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2215 }
2216 else if (section_is_p (sectp->name, &names->line))
2217 {
2218 dwarf2_per_objfile->line.s.section = sectp;
2219 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2220 }
2221 else if (section_is_p (sectp->name, &names->loc))
2222 {
2223 dwarf2_per_objfile->loc.s.section = sectp;
2224 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2225 }
2226 else if (section_is_p (sectp->name, &names->macinfo))
2227 {
2228 dwarf2_per_objfile->macinfo.s.section = sectp;
2229 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2230 }
2231 else if (section_is_p (sectp->name, &names->macro))
2232 {
2233 dwarf2_per_objfile->macro.s.section = sectp;
2234 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2235 }
2236 else if (section_is_p (sectp->name, &names->str))
2237 {
2238 dwarf2_per_objfile->str.s.section = sectp;
2239 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2240 }
2241 else if (section_is_p (sectp->name, &names->addr))
2242 {
2243 dwarf2_per_objfile->addr.s.section = sectp;
2244 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2245 }
2246 else if (section_is_p (sectp->name, &names->frame))
2247 {
2248 dwarf2_per_objfile->frame.s.section = sectp;
2249 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2250 }
2251 else if (section_is_p (sectp->name, &names->eh_frame))
2252 {
2253 dwarf2_per_objfile->eh_frame.s.section = sectp;
2254 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2255 }
2256 else if (section_is_p (sectp->name, &names->ranges))
2257 {
2258 dwarf2_per_objfile->ranges.s.section = sectp;
2259 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2260 }
2261 else if (section_is_p (sectp->name, &names->types))
2262 {
2263 struct dwarf2_section_info type_section;
2264
2265 memset (&type_section, 0, sizeof (type_section));
2266 type_section.s.section = sectp;
2267 type_section.size = bfd_get_section_size (sectp);
2268
2269 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2270 &type_section);
2271 }
2272 else if (section_is_p (sectp->name, &names->gdb_index))
2273 {
2274 dwarf2_per_objfile->gdb_index.s.section = sectp;
2275 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2276 }
2277
2278 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2279 && bfd_section_vma (abfd, sectp) == 0)
2280 dwarf2_per_objfile->has_section_at_zero = 1;
2281 }
2282
2283 /* A helper function that decides whether a section is empty,
2284 or not present. */
2285
2286 static int
2287 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2288 {
2289 if (section->is_virtual)
2290 return section->size == 0;
2291 return section->s.section == NULL || section->size == 0;
2292 }
2293
2294 /* Read the contents of the section INFO.
2295 OBJFILE is the main object file, but not necessarily the file where
2296 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2297 of the DWO file.
2298 If the section is compressed, uncompress it before returning. */
2299
2300 static void
2301 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2302 {
2303 asection *sectp;
2304 bfd *abfd;
2305 gdb_byte *buf, *retbuf;
2306
2307 if (info->readin)
2308 return;
2309 info->buffer = NULL;
2310 info->readin = 1;
2311
2312 if (dwarf2_section_empty_p (info))
2313 return;
2314
2315 sectp = get_section_bfd_section (info);
2316
2317 /* If this is a virtual section we need to read in the real one first. */
2318 if (info->is_virtual)
2319 {
2320 struct dwarf2_section_info *containing_section =
2321 get_containing_section (info);
2322
2323 gdb_assert (sectp != NULL);
2324 if ((sectp->flags & SEC_RELOC) != 0)
2325 {
2326 error (_("Dwarf Error: DWP format V2 with relocations is not"
2327 " supported in section %s [in module %s]"),
2328 get_section_name (info), get_section_file_name (info));
2329 }
2330 dwarf2_read_section (objfile, containing_section);
2331 /* Other code should have already caught virtual sections that don't
2332 fit. */
2333 gdb_assert (info->virtual_offset + info->size
2334 <= containing_section->size);
2335 /* If the real section is empty or there was a problem reading the
2336 section we shouldn't get here. */
2337 gdb_assert (containing_section->buffer != NULL);
2338 info->buffer = containing_section->buffer + info->virtual_offset;
2339 return;
2340 }
2341
2342 /* If the section has relocations, we must read it ourselves.
2343 Otherwise we attach it to the BFD. */
2344 if ((sectp->flags & SEC_RELOC) == 0)
2345 {
2346 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2347 return;
2348 }
2349
2350 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2351 info->buffer = buf;
2352
2353 /* When debugging .o files, we may need to apply relocations; see
2354 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2355 We never compress sections in .o files, so we only need to
2356 try this when the section is not compressed. */
2357 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2358 if (retbuf != NULL)
2359 {
2360 info->buffer = retbuf;
2361 return;
2362 }
2363
2364 abfd = get_section_bfd_owner (info);
2365 gdb_assert (abfd != NULL);
2366
2367 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2368 || bfd_bread (buf, info->size, abfd) != info->size)
2369 {
2370 error (_("Dwarf Error: Can't read DWARF data"
2371 " in section %s [in module %s]"),
2372 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2373 }
2374 }
2375
2376 /* A helper function that returns the size of a section in a safe way.
2377 If you are positive that the section has been read before using the
2378 size, then it is safe to refer to the dwarf2_section_info object's
2379 "size" field directly. In other cases, you must call this
2380 function, because for compressed sections the size field is not set
2381 correctly until the section has been read. */
2382
2383 static bfd_size_type
2384 dwarf2_section_size (struct objfile *objfile,
2385 struct dwarf2_section_info *info)
2386 {
2387 if (!info->readin)
2388 dwarf2_read_section (objfile, info);
2389 return info->size;
2390 }
2391
2392 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2393 SECTION_NAME. */
2394
2395 void
2396 dwarf2_get_section_info (struct objfile *objfile,
2397 enum dwarf2_section_enum sect,
2398 asection **sectp, const gdb_byte **bufp,
2399 bfd_size_type *sizep)
2400 {
2401 struct dwarf2_per_objfile *data
2402 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2403 dwarf2_objfile_data_key);
2404 struct dwarf2_section_info *info;
2405
2406 /* We may see an objfile without any DWARF, in which case we just
2407 return nothing. */
2408 if (data == NULL)
2409 {
2410 *sectp = NULL;
2411 *bufp = NULL;
2412 *sizep = 0;
2413 return;
2414 }
2415 switch (sect)
2416 {
2417 case DWARF2_DEBUG_FRAME:
2418 info = &data->frame;
2419 break;
2420 case DWARF2_EH_FRAME:
2421 info = &data->eh_frame;
2422 break;
2423 default:
2424 gdb_assert_not_reached ("unexpected section");
2425 }
2426
2427 dwarf2_read_section (objfile, info);
2428
2429 *sectp = get_section_bfd_section (info);
2430 *bufp = info->buffer;
2431 *sizep = info->size;
2432 }
2433
2434 /* A helper function to find the sections for a .dwz file. */
2435
2436 static void
2437 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2438 {
2439 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2440
2441 /* Note that we only support the standard ELF names, because .dwz
2442 is ELF-only (at the time of writing). */
2443 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2444 {
2445 dwz_file->abbrev.s.section = sectp;
2446 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2449 {
2450 dwz_file->info.s.section = sectp;
2451 dwz_file->info.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2454 {
2455 dwz_file->str.s.section = sectp;
2456 dwz_file->str.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2459 {
2460 dwz_file->line.s.section = sectp;
2461 dwz_file->line.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2464 {
2465 dwz_file->macro.s.section = sectp;
2466 dwz_file->macro.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2469 {
2470 dwz_file->gdb_index.s.section = sectp;
2471 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2472 }
2473 }
2474
2475 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2476 there is no .gnu_debugaltlink section in the file. Error if there
2477 is such a section but the file cannot be found. */
2478
2479 static struct dwz_file *
2480 dwarf2_get_dwz_file (void)
2481 {
2482 bfd *dwz_bfd;
2483 char *data;
2484 struct cleanup *cleanup;
2485 const char *filename;
2486 struct dwz_file *result;
2487 bfd_size_type buildid_len_arg;
2488 size_t buildid_len;
2489 bfd_byte *buildid;
2490
2491 if (dwarf2_per_objfile->dwz_file != NULL)
2492 return dwarf2_per_objfile->dwz_file;
2493
2494 bfd_set_error (bfd_error_no_error);
2495 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2496 &buildid_len_arg, &buildid);
2497 if (data == NULL)
2498 {
2499 if (bfd_get_error () == bfd_error_no_error)
2500 return NULL;
2501 error (_("could not read '.gnu_debugaltlink' section: %s"),
2502 bfd_errmsg (bfd_get_error ()));
2503 }
2504 cleanup = make_cleanup (xfree, data);
2505 make_cleanup (xfree, buildid);
2506
2507 buildid_len = (size_t) buildid_len_arg;
2508
2509 filename = (const char *) data;
2510 if (!IS_ABSOLUTE_PATH (filename))
2511 {
2512 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2513 char *rel;
2514
2515 make_cleanup (xfree, abs);
2516 abs = ldirname (abs);
2517 make_cleanup (xfree, abs);
2518
2519 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2520 make_cleanup (xfree, rel);
2521 filename = rel;
2522 }
2523
2524 /* First try the file name given in the section. If that doesn't
2525 work, try to use the build-id instead. */
2526 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2527 if (dwz_bfd != NULL)
2528 {
2529 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2530 {
2531 gdb_bfd_unref (dwz_bfd);
2532 dwz_bfd = NULL;
2533 }
2534 }
2535
2536 if (dwz_bfd == NULL)
2537 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2538
2539 if (dwz_bfd == NULL)
2540 error (_("could not find '.gnu_debugaltlink' file for %s"),
2541 objfile_name (dwarf2_per_objfile->objfile));
2542
2543 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2544 struct dwz_file);
2545 result->dwz_bfd = dwz_bfd;
2546
2547 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2548
2549 do_cleanups (cleanup);
2550
2551 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2552 dwarf2_per_objfile->dwz_file = result;
2553 return result;
2554 }
2555 \f
2556 /* DWARF quick_symbols_functions support. */
2557
2558 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2559 unique line tables, so we maintain a separate table of all .debug_line
2560 derived entries to support the sharing.
2561 All the quick functions need is the list of file names. We discard the
2562 line_header when we're done and don't need to record it here. */
2563 struct quick_file_names
2564 {
2565 /* The data used to construct the hash key. */
2566 struct stmt_list_hash hash;
2567
2568 /* The number of entries in file_names, real_names. */
2569 unsigned int num_file_names;
2570
2571 /* The file names from the line table, after being run through
2572 file_full_name. */
2573 const char **file_names;
2574
2575 /* The file names from the line table after being run through
2576 gdb_realpath. These are computed lazily. */
2577 const char **real_names;
2578 };
2579
2580 /* When using the index (and thus not using psymtabs), each CU has an
2581 object of this type. This is used to hold information needed by
2582 the various "quick" methods. */
2583 struct dwarf2_per_cu_quick_data
2584 {
2585 /* The file table. This can be NULL if there was no file table
2586 or it's currently not read in.
2587 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2588 struct quick_file_names *file_names;
2589
2590 /* The corresponding symbol table. This is NULL if symbols for this
2591 CU have not yet been read. */
2592 struct compunit_symtab *compunit_symtab;
2593
2594 /* A temporary mark bit used when iterating over all CUs in
2595 expand_symtabs_matching. */
2596 unsigned int mark : 1;
2597
2598 /* True if we've tried to read the file table and found there isn't one.
2599 There will be no point in trying to read it again next time. */
2600 unsigned int no_file_data : 1;
2601 };
2602
2603 /* Utility hash function for a stmt_list_hash. */
2604
2605 static hashval_t
2606 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2607 {
2608 hashval_t v = 0;
2609
2610 if (stmt_list_hash->dwo_unit != NULL)
2611 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2612 v += stmt_list_hash->line_offset.sect_off;
2613 return v;
2614 }
2615
2616 /* Utility equality function for a stmt_list_hash. */
2617
2618 static int
2619 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2620 const struct stmt_list_hash *rhs)
2621 {
2622 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2623 return 0;
2624 if (lhs->dwo_unit != NULL
2625 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2626 return 0;
2627
2628 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2629 }
2630
2631 /* Hash function for a quick_file_names. */
2632
2633 static hashval_t
2634 hash_file_name_entry (const void *e)
2635 {
2636 const struct quick_file_names *file_data
2637 = (const struct quick_file_names *) e;
2638
2639 return hash_stmt_list_entry (&file_data->hash);
2640 }
2641
2642 /* Equality function for a quick_file_names. */
2643
2644 static int
2645 eq_file_name_entry (const void *a, const void *b)
2646 {
2647 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2648 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2649
2650 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2651 }
2652
2653 /* Delete function for a quick_file_names. */
2654
2655 static void
2656 delete_file_name_entry (void *e)
2657 {
2658 struct quick_file_names *file_data = (struct quick_file_names *) e;
2659 int i;
2660
2661 for (i = 0; i < file_data->num_file_names; ++i)
2662 {
2663 xfree ((void*) file_data->file_names[i]);
2664 if (file_data->real_names)
2665 xfree ((void*) file_data->real_names[i]);
2666 }
2667
2668 /* The space for the struct itself lives on objfile_obstack,
2669 so we don't free it here. */
2670 }
2671
2672 /* Create a quick_file_names hash table. */
2673
2674 static htab_t
2675 create_quick_file_names_table (unsigned int nr_initial_entries)
2676 {
2677 return htab_create_alloc (nr_initial_entries,
2678 hash_file_name_entry, eq_file_name_entry,
2679 delete_file_name_entry, xcalloc, xfree);
2680 }
2681
2682 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2683 have to be created afterwards. You should call age_cached_comp_units after
2684 processing PER_CU->CU. dw2_setup must have been already called. */
2685
2686 static void
2687 load_cu (struct dwarf2_per_cu_data *per_cu)
2688 {
2689 if (per_cu->is_debug_types)
2690 load_full_type_unit (per_cu);
2691 else
2692 load_full_comp_unit (per_cu, language_minimal);
2693
2694 if (per_cu->cu == NULL)
2695 return; /* Dummy CU. */
2696
2697 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2698 }
2699
2700 /* Read in the symbols for PER_CU. */
2701
2702 static void
2703 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2704 {
2705 struct cleanup *back_to;
2706
2707 /* Skip type_unit_groups, reading the type units they contain
2708 is handled elsewhere. */
2709 if (IS_TYPE_UNIT_GROUP (per_cu))
2710 return;
2711
2712 back_to = make_cleanup (dwarf2_release_queue, NULL);
2713
2714 if (dwarf2_per_objfile->using_index
2715 ? per_cu->v.quick->compunit_symtab == NULL
2716 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2717 {
2718 queue_comp_unit (per_cu, language_minimal);
2719 load_cu (per_cu);
2720
2721 /* If we just loaded a CU from a DWO, and we're working with an index
2722 that may badly handle TUs, load all the TUs in that DWO as well.
2723 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2724 if (!per_cu->is_debug_types
2725 && per_cu->cu != NULL
2726 && per_cu->cu->dwo_unit != NULL
2727 && dwarf2_per_objfile->index_table != NULL
2728 && dwarf2_per_objfile->index_table->version <= 7
2729 /* DWP files aren't supported yet. */
2730 && get_dwp_file () == NULL)
2731 queue_and_load_all_dwo_tus (per_cu);
2732 }
2733
2734 process_queue ();
2735
2736 /* Age the cache, releasing compilation units that have not
2737 been used recently. */
2738 age_cached_comp_units ();
2739
2740 do_cleanups (back_to);
2741 }
2742
2743 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2744 the objfile from which this CU came. Returns the resulting symbol
2745 table. */
2746
2747 static struct compunit_symtab *
2748 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2749 {
2750 gdb_assert (dwarf2_per_objfile->using_index);
2751 if (!per_cu->v.quick->compunit_symtab)
2752 {
2753 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2754 increment_reading_symtab ();
2755 dw2_do_instantiate_symtab (per_cu);
2756 process_cu_includes ();
2757 do_cleanups (back_to);
2758 }
2759
2760 return per_cu->v.quick->compunit_symtab;
2761 }
2762
2763 /* Return the CU/TU given its index.
2764
2765 This is intended for loops like:
2766
2767 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2768 + dwarf2_per_objfile->n_type_units); ++i)
2769 {
2770 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2771
2772 ...;
2773 }
2774 */
2775
2776 static struct dwarf2_per_cu_data *
2777 dw2_get_cutu (int index)
2778 {
2779 if (index >= dwarf2_per_objfile->n_comp_units)
2780 {
2781 index -= dwarf2_per_objfile->n_comp_units;
2782 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2783 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2784 }
2785
2786 return dwarf2_per_objfile->all_comp_units[index];
2787 }
2788
2789 /* Return the CU given its index.
2790 This differs from dw2_get_cutu in that it's for when you know INDEX
2791 refers to a CU. */
2792
2793 static struct dwarf2_per_cu_data *
2794 dw2_get_cu (int index)
2795 {
2796 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2797
2798 return dwarf2_per_objfile->all_comp_units[index];
2799 }
2800
2801 /* A helper for create_cus_from_index that handles a given list of
2802 CUs. */
2803
2804 static void
2805 create_cus_from_index_list (struct objfile *objfile,
2806 const gdb_byte *cu_list, offset_type n_elements,
2807 struct dwarf2_section_info *section,
2808 int is_dwz,
2809 int base_offset)
2810 {
2811 offset_type i;
2812
2813 for (i = 0; i < n_elements; i += 2)
2814 {
2815 struct dwarf2_per_cu_data *the_cu;
2816 ULONGEST offset, length;
2817
2818 gdb_static_assert (sizeof (ULONGEST) >= 8);
2819 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2820 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2821 cu_list += 2 * 8;
2822
2823 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2824 struct dwarf2_per_cu_data);
2825 the_cu->offset.sect_off = offset;
2826 the_cu->length = length;
2827 the_cu->objfile = objfile;
2828 the_cu->section = section;
2829 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2830 struct dwarf2_per_cu_quick_data);
2831 the_cu->is_dwz = is_dwz;
2832 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2833 }
2834 }
2835
2836 /* Read the CU list from the mapped index, and use it to create all
2837 the CU objects for this objfile. */
2838
2839 static void
2840 create_cus_from_index (struct objfile *objfile,
2841 const gdb_byte *cu_list, offset_type cu_list_elements,
2842 const gdb_byte *dwz_list, offset_type dwz_elements)
2843 {
2844 struct dwz_file *dwz;
2845
2846 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2847 dwarf2_per_objfile->all_comp_units =
2848 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2849 dwarf2_per_objfile->n_comp_units);
2850
2851 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2852 &dwarf2_per_objfile->info, 0, 0);
2853
2854 if (dwz_elements == 0)
2855 return;
2856
2857 dwz = dwarf2_get_dwz_file ();
2858 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2859 cu_list_elements / 2);
2860 }
2861
2862 /* Create the signatured type hash table from the index. */
2863
2864 static void
2865 create_signatured_type_table_from_index (struct objfile *objfile,
2866 struct dwarf2_section_info *section,
2867 const gdb_byte *bytes,
2868 offset_type elements)
2869 {
2870 offset_type i;
2871 htab_t sig_types_hash;
2872
2873 dwarf2_per_objfile->n_type_units
2874 = dwarf2_per_objfile->n_allocated_type_units
2875 = elements / 3;
2876 dwarf2_per_objfile->all_type_units =
2877 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2878
2879 sig_types_hash = allocate_signatured_type_table (objfile);
2880
2881 for (i = 0; i < elements; i += 3)
2882 {
2883 struct signatured_type *sig_type;
2884 ULONGEST offset, type_offset_in_tu, signature;
2885 void **slot;
2886
2887 gdb_static_assert (sizeof (ULONGEST) >= 8);
2888 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2889 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2890 BFD_ENDIAN_LITTLE);
2891 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2892 bytes += 3 * 8;
2893
2894 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2895 struct signatured_type);
2896 sig_type->signature = signature;
2897 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2898 sig_type->per_cu.is_debug_types = 1;
2899 sig_type->per_cu.section = section;
2900 sig_type->per_cu.offset.sect_off = offset;
2901 sig_type->per_cu.objfile = objfile;
2902 sig_type->per_cu.v.quick
2903 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2904 struct dwarf2_per_cu_quick_data);
2905
2906 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2907 *slot = sig_type;
2908
2909 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2910 }
2911
2912 dwarf2_per_objfile->signatured_types = sig_types_hash;
2913 }
2914
2915 /* Read the address map data from the mapped index, and use it to
2916 populate the objfile's psymtabs_addrmap. */
2917
2918 static void
2919 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2920 {
2921 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2922 const gdb_byte *iter, *end;
2923 struct obstack temp_obstack;
2924 struct addrmap *mutable_map;
2925 struct cleanup *cleanup;
2926 CORE_ADDR baseaddr;
2927
2928 obstack_init (&temp_obstack);
2929 cleanup = make_cleanup_obstack_free (&temp_obstack);
2930 mutable_map = addrmap_create_mutable (&temp_obstack);
2931
2932 iter = index->address_table;
2933 end = iter + index->address_table_size;
2934
2935 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2936
2937 while (iter < end)
2938 {
2939 ULONGEST hi, lo, cu_index;
2940 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2941 iter += 8;
2942 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2943 iter += 8;
2944 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2945 iter += 4;
2946
2947 if (lo > hi)
2948 {
2949 complaint (&symfile_complaints,
2950 _(".gdb_index address table has invalid range (%s - %s)"),
2951 hex_string (lo), hex_string (hi));
2952 continue;
2953 }
2954
2955 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2956 {
2957 complaint (&symfile_complaints,
2958 _(".gdb_index address table has invalid CU number %u"),
2959 (unsigned) cu_index);
2960 continue;
2961 }
2962
2963 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2964 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2965 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2966 }
2967
2968 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2969 &objfile->objfile_obstack);
2970 do_cleanups (cleanup);
2971 }
2972
2973 /* The hash function for strings in the mapped index. This is the same as
2974 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2975 implementation. This is necessary because the hash function is tied to the
2976 format of the mapped index file. The hash values do not have to match with
2977 SYMBOL_HASH_NEXT.
2978
2979 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2980
2981 static hashval_t
2982 mapped_index_string_hash (int index_version, const void *p)
2983 {
2984 const unsigned char *str = (const unsigned char *) p;
2985 hashval_t r = 0;
2986 unsigned char c;
2987
2988 while ((c = *str++) != 0)
2989 {
2990 if (index_version >= 5)
2991 c = tolower (c);
2992 r = r * 67 + c - 113;
2993 }
2994
2995 return r;
2996 }
2997
2998 /* Find a slot in the mapped index INDEX for the object named NAME.
2999 If NAME is found, set *VEC_OUT to point to the CU vector in the
3000 constant pool and return 1. If NAME cannot be found, return 0. */
3001
3002 static int
3003 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3004 offset_type **vec_out)
3005 {
3006 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3007 offset_type hash;
3008 offset_type slot, step;
3009 int (*cmp) (const char *, const char *);
3010
3011 if (current_language->la_language == language_cplus
3012 || current_language->la_language == language_fortran
3013 || current_language->la_language == language_d)
3014 {
3015 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3016 not contain any. */
3017
3018 if (strchr (name, '(') != NULL)
3019 {
3020 char *without_params = cp_remove_params (name);
3021
3022 if (without_params != NULL)
3023 {
3024 make_cleanup (xfree, without_params);
3025 name = without_params;
3026 }
3027 }
3028 }
3029
3030 /* Index version 4 did not support case insensitive searches. But the
3031 indices for case insensitive languages are built in lowercase, therefore
3032 simulate our NAME being searched is also lowercased. */
3033 hash = mapped_index_string_hash ((index->version == 4
3034 && case_sensitivity == case_sensitive_off
3035 ? 5 : index->version),
3036 name);
3037
3038 slot = hash & (index->symbol_table_slots - 1);
3039 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3040 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3041
3042 for (;;)
3043 {
3044 /* Convert a slot number to an offset into the table. */
3045 offset_type i = 2 * slot;
3046 const char *str;
3047 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3048 {
3049 do_cleanups (back_to);
3050 return 0;
3051 }
3052
3053 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3054 if (!cmp (name, str))
3055 {
3056 *vec_out = (offset_type *) (index->constant_pool
3057 + MAYBE_SWAP (index->symbol_table[i + 1]));
3058 do_cleanups (back_to);
3059 return 1;
3060 }
3061
3062 slot = (slot + step) & (index->symbol_table_slots - 1);
3063 }
3064 }
3065
3066 /* A helper function that reads the .gdb_index from SECTION and fills
3067 in MAP. FILENAME is the name of the file containing the section;
3068 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3069 ok to use deprecated sections.
3070
3071 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3072 out parameters that are filled in with information about the CU and
3073 TU lists in the section.
3074
3075 Returns 1 if all went well, 0 otherwise. */
3076
3077 static int
3078 read_index_from_section (struct objfile *objfile,
3079 const char *filename,
3080 int deprecated_ok,
3081 struct dwarf2_section_info *section,
3082 struct mapped_index *map,
3083 const gdb_byte **cu_list,
3084 offset_type *cu_list_elements,
3085 const gdb_byte **types_list,
3086 offset_type *types_list_elements)
3087 {
3088 const gdb_byte *addr;
3089 offset_type version;
3090 offset_type *metadata;
3091 int i;
3092
3093 if (dwarf2_section_empty_p (section))
3094 return 0;
3095
3096 /* Older elfutils strip versions could keep the section in the main
3097 executable while splitting it for the separate debug info file. */
3098 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3099 return 0;
3100
3101 dwarf2_read_section (objfile, section);
3102
3103 addr = section->buffer;
3104 /* Version check. */
3105 version = MAYBE_SWAP (*(offset_type *) addr);
3106 /* Versions earlier than 3 emitted every copy of a psymbol. This
3107 causes the index to behave very poorly for certain requests. Version 3
3108 contained incomplete addrmap. So, it seems better to just ignore such
3109 indices. */
3110 if (version < 4)
3111 {
3112 static int warning_printed = 0;
3113 if (!warning_printed)
3114 {
3115 warning (_("Skipping obsolete .gdb_index section in %s."),
3116 filename);
3117 warning_printed = 1;
3118 }
3119 return 0;
3120 }
3121 /* Index version 4 uses a different hash function than index version
3122 5 and later.
3123
3124 Versions earlier than 6 did not emit psymbols for inlined
3125 functions. Using these files will cause GDB not to be able to
3126 set breakpoints on inlined functions by name, so we ignore these
3127 indices unless the user has done
3128 "set use-deprecated-index-sections on". */
3129 if (version < 6 && !deprecated_ok)
3130 {
3131 static int warning_printed = 0;
3132 if (!warning_printed)
3133 {
3134 warning (_("\
3135 Skipping deprecated .gdb_index section in %s.\n\
3136 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3137 to use the section anyway."),
3138 filename);
3139 warning_printed = 1;
3140 }
3141 return 0;
3142 }
3143 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3144 of the TU (for symbols coming from TUs),
3145 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3146 Plus gold-generated indices can have duplicate entries for global symbols,
3147 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3148 These are just performance bugs, and we can't distinguish gdb-generated
3149 indices from gold-generated ones, so issue no warning here. */
3150
3151 /* Indexes with higher version than the one supported by GDB may be no
3152 longer backward compatible. */
3153 if (version > 8)
3154 return 0;
3155
3156 map->version = version;
3157 map->total_size = section->size;
3158
3159 metadata = (offset_type *) (addr + sizeof (offset_type));
3160
3161 i = 0;
3162 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3163 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3164 / 8);
3165 ++i;
3166
3167 *types_list = addr + MAYBE_SWAP (metadata[i]);
3168 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3169 - MAYBE_SWAP (metadata[i]))
3170 / 8);
3171 ++i;
3172
3173 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3174 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3175 - MAYBE_SWAP (metadata[i]));
3176 ++i;
3177
3178 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3179 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3180 - MAYBE_SWAP (metadata[i]))
3181 / (2 * sizeof (offset_type)));
3182 ++i;
3183
3184 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3185
3186 return 1;
3187 }
3188
3189
3190 /* Read the index file. If everything went ok, initialize the "quick"
3191 elements of all the CUs and return 1. Otherwise, return 0. */
3192
3193 static int
3194 dwarf2_read_index (struct objfile *objfile)
3195 {
3196 struct mapped_index local_map, *map;
3197 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3198 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3199 struct dwz_file *dwz;
3200
3201 if (!read_index_from_section (objfile, objfile_name (objfile),
3202 use_deprecated_index_sections,
3203 &dwarf2_per_objfile->gdb_index, &local_map,
3204 &cu_list, &cu_list_elements,
3205 &types_list, &types_list_elements))
3206 return 0;
3207
3208 /* Don't use the index if it's empty. */
3209 if (local_map.symbol_table_slots == 0)
3210 return 0;
3211
3212 /* If there is a .dwz file, read it so we can get its CU list as
3213 well. */
3214 dwz = dwarf2_get_dwz_file ();
3215 if (dwz != NULL)
3216 {
3217 struct mapped_index dwz_map;
3218 const gdb_byte *dwz_types_ignore;
3219 offset_type dwz_types_elements_ignore;
3220
3221 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3222 1,
3223 &dwz->gdb_index, &dwz_map,
3224 &dwz_list, &dwz_list_elements,
3225 &dwz_types_ignore,
3226 &dwz_types_elements_ignore))
3227 {
3228 warning (_("could not read '.gdb_index' section from %s; skipping"),
3229 bfd_get_filename (dwz->dwz_bfd));
3230 return 0;
3231 }
3232 }
3233
3234 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3235 dwz_list_elements);
3236
3237 if (types_list_elements)
3238 {
3239 struct dwarf2_section_info *section;
3240
3241 /* We can only handle a single .debug_types when we have an
3242 index. */
3243 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3244 return 0;
3245
3246 section = VEC_index (dwarf2_section_info_def,
3247 dwarf2_per_objfile->types, 0);
3248
3249 create_signatured_type_table_from_index (objfile, section, types_list,
3250 types_list_elements);
3251 }
3252
3253 create_addrmap_from_index (objfile, &local_map);
3254
3255 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3256 *map = local_map;
3257
3258 dwarf2_per_objfile->index_table = map;
3259 dwarf2_per_objfile->using_index = 1;
3260 dwarf2_per_objfile->quick_file_names_table =
3261 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3262
3263 return 1;
3264 }
3265
3266 /* A helper for the "quick" functions which sets the global
3267 dwarf2_per_objfile according to OBJFILE. */
3268
3269 static void
3270 dw2_setup (struct objfile *objfile)
3271 {
3272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3273 objfile_data (objfile, dwarf2_objfile_data_key));
3274 gdb_assert (dwarf2_per_objfile);
3275 }
3276
3277 /* die_reader_func for dw2_get_file_names. */
3278
3279 static void
3280 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3281 const gdb_byte *info_ptr,
3282 struct die_info *comp_unit_die,
3283 int has_children,
3284 void *data)
3285 {
3286 struct dwarf2_cu *cu = reader->cu;
3287 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3288 struct objfile *objfile = dwarf2_per_objfile->objfile;
3289 struct dwarf2_per_cu_data *lh_cu;
3290 struct line_header *lh;
3291 struct attribute *attr;
3292 int i;
3293 const char *name, *comp_dir;
3294 void **slot;
3295 struct quick_file_names *qfn;
3296 unsigned int line_offset;
3297
3298 gdb_assert (! this_cu->is_debug_types);
3299
3300 /* Our callers never want to match partial units -- instead they
3301 will match the enclosing full CU. */
3302 if (comp_unit_die->tag == DW_TAG_partial_unit)
3303 {
3304 this_cu->v.quick->no_file_data = 1;
3305 return;
3306 }
3307
3308 lh_cu = this_cu;
3309 lh = NULL;
3310 slot = NULL;
3311 line_offset = 0;
3312
3313 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3314 if (attr)
3315 {
3316 struct quick_file_names find_entry;
3317
3318 line_offset = DW_UNSND (attr);
3319
3320 /* We may have already read in this line header (TU line header sharing).
3321 If we have we're done. */
3322 find_entry.hash.dwo_unit = cu->dwo_unit;
3323 find_entry.hash.line_offset.sect_off = line_offset;
3324 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3325 &find_entry, INSERT);
3326 if (*slot != NULL)
3327 {
3328 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3329 return;
3330 }
3331
3332 lh = dwarf_decode_line_header (line_offset, cu);
3333 }
3334 if (lh == NULL)
3335 {
3336 lh_cu->v.quick->no_file_data = 1;
3337 return;
3338 }
3339
3340 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3341 qfn->hash.dwo_unit = cu->dwo_unit;
3342 qfn->hash.line_offset.sect_off = line_offset;
3343 gdb_assert (slot != NULL);
3344 *slot = qfn;
3345
3346 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3347
3348 qfn->num_file_names = lh->num_file_names;
3349 qfn->file_names =
3350 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3351 for (i = 0; i < lh->num_file_names; ++i)
3352 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3353 qfn->real_names = NULL;
3354
3355 free_line_header (lh);
3356
3357 lh_cu->v.quick->file_names = qfn;
3358 }
3359
3360 /* A helper for the "quick" functions which attempts to read the line
3361 table for THIS_CU. */
3362
3363 static struct quick_file_names *
3364 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3365 {
3366 /* This should never be called for TUs. */
3367 gdb_assert (! this_cu->is_debug_types);
3368 /* Nor type unit groups. */
3369 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3370
3371 if (this_cu->v.quick->file_names != NULL)
3372 return this_cu->v.quick->file_names;
3373 /* If we know there is no line data, no point in looking again. */
3374 if (this_cu->v.quick->no_file_data)
3375 return NULL;
3376
3377 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3378
3379 if (this_cu->v.quick->no_file_data)
3380 return NULL;
3381 return this_cu->v.quick->file_names;
3382 }
3383
3384 /* A helper for the "quick" functions which computes and caches the
3385 real path for a given file name from the line table. */
3386
3387 static const char *
3388 dw2_get_real_path (struct objfile *objfile,
3389 struct quick_file_names *qfn, int index)
3390 {
3391 if (qfn->real_names == NULL)
3392 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3393 qfn->num_file_names, const char *);
3394
3395 if (qfn->real_names[index] == NULL)
3396 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3397
3398 return qfn->real_names[index];
3399 }
3400
3401 static struct symtab *
3402 dw2_find_last_source_symtab (struct objfile *objfile)
3403 {
3404 struct compunit_symtab *cust;
3405 int index;
3406
3407 dw2_setup (objfile);
3408 index = dwarf2_per_objfile->n_comp_units - 1;
3409 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3410 if (cust == NULL)
3411 return NULL;
3412 return compunit_primary_filetab (cust);
3413 }
3414
3415 /* Traversal function for dw2_forget_cached_source_info. */
3416
3417 static int
3418 dw2_free_cached_file_names (void **slot, void *info)
3419 {
3420 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3421
3422 if (file_data->real_names)
3423 {
3424 int i;
3425
3426 for (i = 0; i < file_data->num_file_names; ++i)
3427 {
3428 xfree ((void*) file_data->real_names[i]);
3429 file_data->real_names[i] = NULL;
3430 }
3431 }
3432
3433 return 1;
3434 }
3435
3436 static void
3437 dw2_forget_cached_source_info (struct objfile *objfile)
3438 {
3439 dw2_setup (objfile);
3440
3441 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3442 dw2_free_cached_file_names, NULL);
3443 }
3444
3445 /* Helper function for dw2_map_symtabs_matching_filename that expands
3446 the symtabs and calls the iterator. */
3447
3448 static int
3449 dw2_map_expand_apply (struct objfile *objfile,
3450 struct dwarf2_per_cu_data *per_cu,
3451 const char *name, const char *real_path,
3452 int (*callback) (struct symtab *, void *),
3453 void *data)
3454 {
3455 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3456
3457 /* Don't visit already-expanded CUs. */
3458 if (per_cu->v.quick->compunit_symtab)
3459 return 0;
3460
3461 /* This may expand more than one symtab, and we want to iterate over
3462 all of them. */
3463 dw2_instantiate_symtab (per_cu);
3464
3465 return iterate_over_some_symtabs (name, real_path, callback, data,
3466 objfile->compunit_symtabs, last_made);
3467 }
3468
3469 /* Implementation of the map_symtabs_matching_filename method. */
3470
3471 static int
3472 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3473 const char *real_path,
3474 int (*callback) (struct symtab *, void *),
3475 void *data)
3476 {
3477 int i;
3478 const char *name_basename = lbasename (name);
3479
3480 dw2_setup (objfile);
3481
3482 /* The rule is CUs specify all the files, including those used by
3483 any TU, so there's no need to scan TUs here. */
3484
3485 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3486 {
3487 int j;
3488 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3489 struct quick_file_names *file_data;
3490
3491 /* We only need to look at symtabs not already expanded. */
3492 if (per_cu->v.quick->compunit_symtab)
3493 continue;
3494
3495 file_data = dw2_get_file_names (per_cu);
3496 if (file_data == NULL)
3497 continue;
3498
3499 for (j = 0; j < file_data->num_file_names; ++j)
3500 {
3501 const char *this_name = file_data->file_names[j];
3502 const char *this_real_name;
3503
3504 if (compare_filenames_for_search (this_name, name))
3505 {
3506 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3507 callback, data))
3508 return 1;
3509 continue;
3510 }
3511
3512 /* Before we invoke realpath, which can get expensive when many
3513 files are involved, do a quick comparison of the basenames. */
3514 if (! basenames_may_differ
3515 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3516 continue;
3517
3518 this_real_name = dw2_get_real_path (objfile, file_data, j);
3519 if (compare_filenames_for_search (this_real_name, name))
3520 {
3521 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3522 callback, data))
3523 return 1;
3524 continue;
3525 }
3526
3527 if (real_path != NULL)
3528 {
3529 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3530 gdb_assert (IS_ABSOLUTE_PATH (name));
3531 if (this_real_name != NULL
3532 && FILENAME_CMP (real_path, this_real_name) == 0)
3533 {
3534 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3535 callback, data))
3536 return 1;
3537 continue;
3538 }
3539 }
3540 }
3541 }
3542
3543 return 0;
3544 }
3545
3546 /* Struct used to manage iterating over all CUs looking for a symbol. */
3547
3548 struct dw2_symtab_iterator
3549 {
3550 /* The internalized form of .gdb_index. */
3551 struct mapped_index *index;
3552 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3553 int want_specific_block;
3554 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3555 Unused if !WANT_SPECIFIC_BLOCK. */
3556 int block_index;
3557 /* The kind of symbol we're looking for. */
3558 domain_enum domain;
3559 /* The list of CUs from the index entry of the symbol,
3560 or NULL if not found. */
3561 offset_type *vec;
3562 /* The next element in VEC to look at. */
3563 int next;
3564 /* The number of elements in VEC, or zero if there is no match. */
3565 int length;
3566 /* Have we seen a global version of the symbol?
3567 If so we can ignore all further global instances.
3568 This is to work around gold/15646, inefficient gold-generated
3569 indices. */
3570 int global_seen;
3571 };
3572
3573 /* Initialize the index symtab iterator ITER.
3574 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3575 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3576
3577 static void
3578 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3579 struct mapped_index *index,
3580 int want_specific_block,
3581 int block_index,
3582 domain_enum domain,
3583 const char *name)
3584 {
3585 iter->index = index;
3586 iter->want_specific_block = want_specific_block;
3587 iter->block_index = block_index;
3588 iter->domain = domain;
3589 iter->next = 0;
3590 iter->global_seen = 0;
3591
3592 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3593 iter->length = MAYBE_SWAP (*iter->vec);
3594 else
3595 {
3596 iter->vec = NULL;
3597 iter->length = 0;
3598 }
3599 }
3600
3601 /* Return the next matching CU or NULL if there are no more. */
3602
3603 static struct dwarf2_per_cu_data *
3604 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3605 {
3606 for ( ; iter->next < iter->length; ++iter->next)
3607 {
3608 offset_type cu_index_and_attrs =
3609 MAYBE_SWAP (iter->vec[iter->next + 1]);
3610 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3611 struct dwarf2_per_cu_data *per_cu;
3612 int want_static = iter->block_index != GLOBAL_BLOCK;
3613 /* This value is only valid for index versions >= 7. */
3614 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3615 gdb_index_symbol_kind symbol_kind =
3616 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3617 /* Only check the symbol attributes if they're present.
3618 Indices prior to version 7 don't record them,
3619 and indices >= 7 may elide them for certain symbols
3620 (gold does this). */
3621 int attrs_valid =
3622 (iter->index->version >= 7
3623 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3624
3625 /* Don't crash on bad data. */
3626 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3627 + dwarf2_per_objfile->n_type_units))
3628 {
3629 complaint (&symfile_complaints,
3630 _(".gdb_index entry has bad CU index"
3631 " [in module %s]"),
3632 objfile_name (dwarf2_per_objfile->objfile));
3633 continue;
3634 }
3635
3636 per_cu = dw2_get_cutu (cu_index);
3637
3638 /* Skip if already read in. */
3639 if (per_cu->v.quick->compunit_symtab)
3640 continue;
3641
3642 /* Check static vs global. */
3643 if (attrs_valid)
3644 {
3645 if (iter->want_specific_block
3646 && want_static != is_static)
3647 continue;
3648 /* Work around gold/15646. */
3649 if (!is_static && iter->global_seen)
3650 continue;
3651 if (!is_static)
3652 iter->global_seen = 1;
3653 }
3654
3655 /* Only check the symbol's kind if it has one. */
3656 if (attrs_valid)
3657 {
3658 switch (iter->domain)
3659 {
3660 case VAR_DOMAIN:
3661 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3662 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3663 /* Some types are also in VAR_DOMAIN. */
3664 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3665 continue;
3666 break;
3667 case STRUCT_DOMAIN:
3668 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3669 continue;
3670 break;
3671 case LABEL_DOMAIN:
3672 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3673 continue;
3674 break;
3675 default:
3676 break;
3677 }
3678 }
3679
3680 ++iter->next;
3681 return per_cu;
3682 }
3683
3684 return NULL;
3685 }
3686
3687 static struct compunit_symtab *
3688 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3689 const char *name, domain_enum domain)
3690 {
3691 struct compunit_symtab *stab_best = NULL;
3692 struct mapped_index *index;
3693
3694 dw2_setup (objfile);
3695
3696 index = dwarf2_per_objfile->index_table;
3697
3698 /* index is NULL if OBJF_READNOW. */
3699 if (index)
3700 {
3701 struct dw2_symtab_iterator iter;
3702 struct dwarf2_per_cu_data *per_cu;
3703
3704 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 {
3708 struct symbol *sym, *with_opaque = NULL;
3709 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3710 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3711 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3712
3713 sym = block_find_symbol (block, name, domain,
3714 block_find_non_opaque_type_preferred,
3715 &with_opaque);
3716
3717 /* Some caution must be observed with overloaded functions
3718 and methods, since the index will not contain any overload
3719 information (but NAME might contain it). */
3720
3721 if (sym != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3723 return stab;
3724 if (with_opaque != NULL
3725 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3726 stab_best = stab;
3727
3728 /* Keep looking through other CUs. */
3729 }
3730 }
3731
3732 return stab_best;
3733 }
3734
3735 static void
3736 dw2_print_stats (struct objfile *objfile)
3737 {
3738 int i, total, count;
3739
3740 dw2_setup (objfile);
3741 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3742 count = 0;
3743 for (i = 0; i < total; ++i)
3744 {
3745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3746
3747 if (!per_cu->v.quick->compunit_symtab)
3748 ++count;
3749 }
3750 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3751 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3752 }
3753
3754 /* This dumps minimal information about the index.
3755 It is called via "mt print objfiles".
3756 One use is to verify .gdb_index has been loaded by the
3757 gdb.dwarf2/gdb-index.exp testcase. */
3758
3759 static void
3760 dw2_dump (struct objfile *objfile)
3761 {
3762 dw2_setup (objfile);
3763 gdb_assert (dwarf2_per_objfile->using_index);
3764 printf_filtered (".gdb_index:");
3765 if (dwarf2_per_objfile->index_table != NULL)
3766 {
3767 printf_filtered (" version %d\n",
3768 dwarf2_per_objfile->index_table->version);
3769 }
3770 else
3771 printf_filtered (" faked for \"readnow\"\n");
3772 printf_filtered ("\n");
3773 }
3774
3775 static void
3776 dw2_relocate (struct objfile *objfile,
3777 const struct section_offsets *new_offsets,
3778 const struct section_offsets *delta)
3779 {
3780 /* There's nothing to relocate here. */
3781 }
3782
3783 static void
3784 dw2_expand_symtabs_for_function (struct objfile *objfile,
3785 const char *func_name)
3786 {
3787 struct mapped_index *index;
3788
3789 dw2_setup (objfile);
3790
3791 index = dwarf2_per_objfile->index_table;
3792
3793 /* index is NULL if OBJF_READNOW. */
3794 if (index)
3795 {
3796 struct dw2_symtab_iterator iter;
3797 struct dwarf2_per_cu_data *per_cu;
3798
3799 /* Note: It doesn't matter what we pass for block_index here. */
3800 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3801 func_name);
3802
3803 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3804 dw2_instantiate_symtab (per_cu);
3805 }
3806 }
3807
3808 static void
3809 dw2_expand_all_symtabs (struct objfile *objfile)
3810 {
3811 int i;
3812
3813 dw2_setup (objfile);
3814
3815 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3816 + dwarf2_per_objfile->n_type_units); ++i)
3817 {
3818 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3819
3820 dw2_instantiate_symtab (per_cu);
3821 }
3822 }
3823
3824 static void
3825 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3826 const char *fullname)
3827 {
3828 int i;
3829
3830 dw2_setup (objfile);
3831
3832 /* We don't need to consider type units here.
3833 This is only called for examining code, e.g. expand_line_sal.
3834 There can be an order of magnitude (or more) more type units
3835 than comp units, and we avoid them if we can. */
3836
3837 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3838 {
3839 int j;
3840 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3841 struct quick_file_names *file_data;
3842
3843 /* We only need to look at symtabs not already expanded. */
3844 if (per_cu->v.quick->compunit_symtab)
3845 continue;
3846
3847 file_data = dw2_get_file_names (per_cu);
3848 if (file_data == NULL)
3849 continue;
3850
3851 for (j = 0; j < file_data->num_file_names; ++j)
3852 {
3853 const char *this_fullname = file_data->file_names[j];
3854
3855 if (filename_cmp (this_fullname, fullname) == 0)
3856 {
3857 dw2_instantiate_symtab (per_cu);
3858 break;
3859 }
3860 }
3861 }
3862 }
3863
3864 static void
3865 dw2_map_matching_symbols (struct objfile *objfile,
3866 const char * name, domain_enum domain,
3867 int global,
3868 int (*callback) (struct block *,
3869 struct symbol *, void *),
3870 void *data, symbol_compare_ftype *match,
3871 symbol_compare_ftype *ordered_compare)
3872 {
3873 /* Currently unimplemented; used for Ada. The function can be called if the
3874 current language is Ada for a non-Ada objfile using GNU index. As Ada
3875 does not look for non-Ada symbols this function should just return. */
3876 }
3877
3878 static void
3879 dw2_expand_symtabs_matching
3880 (struct objfile *objfile,
3881 expand_symtabs_file_matcher_ftype *file_matcher,
3882 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3883 expand_symtabs_exp_notify_ftype *expansion_notify,
3884 enum search_domain kind,
3885 void *data)
3886 {
3887 int i;
3888 offset_type iter;
3889 struct mapped_index *index;
3890
3891 dw2_setup (objfile);
3892
3893 /* index_table is NULL if OBJF_READNOW. */
3894 if (!dwarf2_per_objfile->index_table)
3895 return;
3896 index = dwarf2_per_objfile->index_table;
3897
3898 if (file_matcher != NULL)
3899 {
3900 struct cleanup *cleanup;
3901 htab_t visited_found, visited_not_found;
3902
3903 visited_found = htab_create_alloc (10,
3904 htab_hash_pointer, htab_eq_pointer,
3905 NULL, xcalloc, xfree);
3906 cleanup = make_cleanup_htab_delete (visited_found);
3907 visited_not_found = htab_create_alloc (10,
3908 htab_hash_pointer, htab_eq_pointer,
3909 NULL, xcalloc, xfree);
3910 make_cleanup_htab_delete (visited_not_found);
3911
3912 /* The rule is CUs specify all the files, including those used by
3913 any TU, so there's no need to scan TUs here. */
3914
3915 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3916 {
3917 int j;
3918 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3919 struct quick_file_names *file_data;
3920 void **slot;
3921
3922 QUIT;
3923
3924 per_cu->v.quick->mark = 0;
3925
3926 /* We only need to look at symtabs not already expanded. */
3927 if (per_cu->v.quick->compunit_symtab)
3928 continue;
3929
3930 file_data = dw2_get_file_names (per_cu);
3931 if (file_data == NULL)
3932 continue;
3933
3934 if (htab_find (visited_not_found, file_data) != NULL)
3935 continue;
3936 else if (htab_find (visited_found, file_data) != NULL)
3937 {
3938 per_cu->v.quick->mark = 1;
3939 continue;
3940 }
3941
3942 for (j = 0; j < file_data->num_file_names; ++j)
3943 {
3944 const char *this_real_name;
3945
3946 if (file_matcher (file_data->file_names[j], data, 0))
3947 {
3948 per_cu->v.quick->mark = 1;
3949 break;
3950 }
3951
3952 /* Before we invoke realpath, which can get expensive when many
3953 files are involved, do a quick comparison of the basenames. */
3954 if (!basenames_may_differ
3955 && !file_matcher (lbasename (file_data->file_names[j]),
3956 data, 1))
3957 continue;
3958
3959 this_real_name = dw2_get_real_path (objfile, file_data, j);
3960 if (file_matcher (this_real_name, data, 0))
3961 {
3962 per_cu->v.quick->mark = 1;
3963 break;
3964 }
3965 }
3966
3967 slot = htab_find_slot (per_cu->v.quick->mark
3968 ? visited_found
3969 : visited_not_found,
3970 file_data, INSERT);
3971 *slot = file_data;
3972 }
3973
3974 do_cleanups (cleanup);
3975 }
3976
3977 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3978 {
3979 offset_type idx = 2 * iter;
3980 const char *name;
3981 offset_type *vec, vec_len, vec_idx;
3982 int global_seen = 0;
3983
3984 QUIT;
3985
3986 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3987 continue;
3988
3989 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3990
3991 if (! (*symbol_matcher) (name, data))
3992 continue;
3993
3994 /* The name was matched, now expand corresponding CUs that were
3995 marked. */
3996 vec = (offset_type *) (index->constant_pool
3997 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3998 vec_len = MAYBE_SWAP (vec[0]);
3999 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4000 {
4001 struct dwarf2_per_cu_data *per_cu;
4002 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4003 /* This value is only valid for index versions >= 7. */
4004 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4005 gdb_index_symbol_kind symbol_kind =
4006 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4007 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4008 /* Only check the symbol attributes if they're present.
4009 Indices prior to version 7 don't record them,
4010 and indices >= 7 may elide them for certain symbols
4011 (gold does this). */
4012 int attrs_valid =
4013 (index->version >= 7
4014 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4015
4016 /* Work around gold/15646. */
4017 if (attrs_valid)
4018 {
4019 if (!is_static && global_seen)
4020 continue;
4021 if (!is_static)
4022 global_seen = 1;
4023 }
4024
4025 /* Only check the symbol's kind if it has one. */
4026 if (attrs_valid)
4027 {
4028 switch (kind)
4029 {
4030 case VARIABLES_DOMAIN:
4031 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4032 continue;
4033 break;
4034 case FUNCTIONS_DOMAIN:
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4036 continue;
4037 break;
4038 case TYPES_DOMAIN:
4039 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4040 continue;
4041 break;
4042 default:
4043 break;
4044 }
4045 }
4046
4047 /* Don't crash on bad data. */
4048 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4049 + dwarf2_per_objfile->n_type_units))
4050 {
4051 complaint (&symfile_complaints,
4052 _(".gdb_index entry has bad CU index"
4053 " [in module %s]"), objfile_name (objfile));
4054 continue;
4055 }
4056
4057 per_cu = dw2_get_cutu (cu_index);
4058 if (file_matcher == NULL || per_cu->v.quick->mark)
4059 {
4060 int symtab_was_null =
4061 (per_cu->v.quick->compunit_symtab == NULL);
4062
4063 dw2_instantiate_symtab (per_cu);
4064
4065 if (expansion_notify != NULL
4066 && symtab_was_null
4067 && per_cu->v.quick->compunit_symtab != NULL)
4068 {
4069 expansion_notify (per_cu->v.quick->compunit_symtab,
4070 data);
4071 }
4072 }
4073 }
4074 }
4075 }
4076
4077 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4078 symtab. */
4079
4080 static struct compunit_symtab *
4081 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4082 CORE_ADDR pc)
4083 {
4084 int i;
4085
4086 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4087 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4088 return cust;
4089
4090 if (cust->includes == NULL)
4091 return NULL;
4092
4093 for (i = 0; cust->includes[i]; ++i)
4094 {
4095 struct compunit_symtab *s = cust->includes[i];
4096
4097 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4098 if (s != NULL)
4099 return s;
4100 }
4101
4102 return NULL;
4103 }
4104
4105 static struct compunit_symtab *
4106 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4107 struct bound_minimal_symbol msymbol,
4108 CORE_ADDR pc,
4109 struct obj_section *section,
4110 int warn_if_readin)
4111 {
4112 struct dwarf2_per_cu_data *data;
4113 struct compunit_symtab *result;
4114
4115 dw2_setup (objfile);
4116
4117 if (!objfile->psymtabs_addrmap)
4118 return NULL;
4119
4120 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4121 pc);
4122 if (!data)
4123 return NULL;
4124
4125 if (warn_if_readin && data->v.quick->compunit_symtab)
4126 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4127 paddress (get_objfile_arch (objfile), pc));
4128
4129 result
4130 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4131 pc);
4132 gdb_assert (result != NULL);
4133 return result;
4134 }
4135
4136 static void
4137 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4138 void *data, int need_fullname)
4139 {
4140 int i;
4141 struct cleanup *cleanup;
4142 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4143 NULL, xcalloc, xfree);
4144
4145 cleanup = make_cleanup_htab_delete (visited);
4146 dw2_setup (objfile);
4147
4148 /* The rule is CUs specify all the files, including those used by
4149 any TU, so there's no need to scan TUs here.
4150 We can ignore file names coming from already-expanded CUs. */
4151
4152 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4153 {
4154 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4155
4156 if (per_cu->v.quick->compunit_symtab)
4157 {
4158 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4159 INSERT);
4160
4161 *slot = per_cu->v.quick->file_names;
4162 }
4163 }
4164
4165 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4166 {
4167 int j;
4168 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4169 struct quick_file_names *file_data;
4170 void **slot;
4171
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4174 continue;
4175
4176 file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4178 continue;
4179
4180 slot = htab_find_slot (visited, file_data, INSERT);
4181 if (*slot)
4182 {
4183 /* Already visited. */
4184 continue;
4185 }
4186 *slot = file_data;
4187
4188 for (j = 0; j < file_data->num_file_names; ++j)
4189 {
4190 const char *this_real_name;
4191
4192 if (need_fullname)
4193 this_real_name = dw2_get_real_path (objfile, file_data, j);
4194 else
4195 this_real_name = NULL;
4196 (*fun) (file_data->file_names[j], this_real_name, data);
4197 }
4198 }
4199
4200 do_cleanups (cleanup);
4201 }
4202
4203 static int
4204 dw2_has_symbols (struct objfile *objfile)
4205 {
4206 return 1;
4207 }
4208
4209 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4210 {
4211 dw2_has_symbols,
4212 dw2_find_last_source_symtab,
4213 dw2_forget_cached_source_info,
4214 dw2_map_symtabs_matching_filename,
4215 dw2_lookup_symbol,
4216 dw2_print_stats,
4217 dw2_dump,
4218 dw2_relocate,
4219 dw2_expand_symtabs_for_function,
4220 dw2_expand_all_symtabs,
4221 dw2_expand_symtabs_with_fullname,
4222 dw2_map_matching_symbols,
4223 dw2_expand_symtabs_matching,
4224 dw2_find_pc_sect_compunit_symtab,
4225 dw2_map_symbol_filenames
4226 };
4227
4228 /* Initialize for reading DWARF for this objfile. Return 0 if this
4229 file will use psymtabs, or 1 if using the GNU index. */
4230
4231 int
4232 dwarf2_initialize_objfile (struct objfile *objfile)
4233 {
4234 /* If we're about to read full symbols, don't bother with the
4235 indices. In this case we also don't care if some other debug
4236 format is making psymtabs, because they are all about to be
4237 expanded anyway. */
4238 if ((objfile->flags & OBJF_READNOW))
4239 {
4240 int i;
4241
4242 dwarf2_per_objfile->using_index = 1;
4243 create_all_comp_units (objfile);
4244 create_all_type_units (objfile);
4245 dwarf2_per_objfile->quick_file_names_table =
4246 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4247
4248 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4249 + dwarf2_per_objfile->n_type_units); ++i)
4250 {
4251 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4252
4253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4254 struct dwarf2_per_cu_quick_data);
4255 }
4256
4257 /* Return 1 so that gdb sees the "quick" functions. However,
4258 these functions will be no-ops because we will have expanded
4259 all symtabs. */
4260 return 1;
4261 }
4262
4263 if (dwarf2_read_index (objfile))
4264 return 1;
4265
4266 return 0;
4267 }
4268
4269 \f
4270
4271 /* Build a partial symbol table. */
4272
4273 void
4274 dwarf2_build_psymtabs (struct objfile *objfile)
4275 {
4276
4277 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4278 {
4279 init_psymbol_list (objfile, 1024);
4280 }
4281
4282 TRY
4283 {
4284 /* This isn't really ideal: all the data we allocate on the
4285 objfile's obstack is still uselessly kept around. However,
4286 freeing it seems unsafe. */
4287 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4288
4289 dwarf2_build_psymtabs_hard (objfile);
4290 discard_cleanups (cleanups);
4291 }
4292 CATCH (except, RETURN_MASK_ERROR)
4293 {
4294 exception_print (gdb_stderr, except);
4295 }
4296 END_CATCH
4297 }
4298
4299 /* Return the total length of the CU described by HEADER. */
4300
4301 static unsigned int
4302 get_cu_length (const struct comp_unit_head *header)
4303 {
4304 return header->initial_length_size + header->length;
4305 }
4306
4307 /* Return TRUE if OFFSET is within CU_HEADER. */
4308
4309 static inline int
4310 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4311 {
4312 sect_offset bottom = { cu_header->offset.sect_off };
4313 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4314
4315 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4316 }
4317
4318 /* Find the base address of the compilation unit for range lists and
4319 location lists. It will normally be specified by DW_AT_low_pc.
4320 In DWARF-3 draft 4, the base address could be overridden by
4321 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4322 compilation units with discontinuous ranges. */
4323
4324 static void
4325 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4326 {
4327 struct attribute *attr;
4328
4329 cu->base_known = 0;
4330 cu->base_address = 0;
4331
4332 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4333 if (attr)
4334 {
4335 cu->base_address = attr_value_as_address (attr);
4336 cu->base_known = 1;
4337 }
4338 else
4339 {
4340 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4341 if (attr)
4342 {
4343 cu->base_address = attr_value_as_address (attr);
4344 cu->base_known = 1;
4345 }
4346 }
4347 }
4348
4349 /* Read in the comp unit header information from the debug_info at info_ptr.
4350 NOTE: This leaves members offset, first_die_offset to be filled in
4351 by the caller. */
4352
4353 static const gdb_byte *
4354 read_comp_unit_head (struct comp_unit_head *cu_header,
4355 const gdb_byte *info_ptr, bfd *abfd)
4356 {
4357 int signed_addr;
4358 unsigned int bytes_read;
4359
4360 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4361 cu_header->initial_length_size = bytes_read;
4362 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4363 info_ptr += bytes_read;
4364 cu_header->version = read_2_bytes (abfd, info_ptr);
4365 info_ptr += 2;
4366 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4367 &bytes_read);
4368 info_ptr += bytes_read;
4369 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4370 info_ptr += 1;
4371 signed_addr = bfd_get_sign_extend_vma (abfd);
4372 if (signed_addr < 0)
4373 internal_error (__FILE__, __LINE__,
4374 _("read_comp_unit_head: dwarf from non elf file"));
4375 cu_header->signed_addr_p = signed_addr;
4376
4377 return info_ptr;
4378 }
4379
4380 /* Helper function that returns the proper abbrev section for
4381 THIS_CU. */
4382
4383 static struct dwarf2_section_info *
4384 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4385 {
4386 struct dwarf2_section_info *abbrev;
4387
4388 if (this_cu->is_dwz)
4389 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4390 else
4391 abbrev = &dwarf2_per_objfile->abbrev;
4392
4393 return abbrev;
4394 }
4395
4396 /* Subroutine of read_and_check_comp_unit_head and
4397 read_and_check_type_unit_head to simplify them.
4398 Perform various error checking on the header. */
4399
4400 static void
4401 error_check_comp_unit_head (struct comp_unit_head *header,
4402 struct dwarf2_section_info *section,
4403 struct dwarf2_section_info *abbrev_section)
4404 {
4405 const char *filename = get_section_file_name (section);
4406
4407 if (header->version != 2 && header->version != 3 && header->version != 4)
4408 error (_("Dwarf Error: wrong version in compilation unit header "
4409 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4410 filename);
4411
4412 if (header->abbrev_offset.sect_off
4413 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4414 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4415 "(offset 0x%lx + 6) [in module %s]"),
4416 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4417 filename);
4418
4419 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4420 avoid potential 32-bit overflow. */
4421 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4422 > section->size)
4423 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4424 "(offset 0x%lx + 0) [in module %s]"),
4425 (long) header->length, (long) header->offset.sect_off,
4426 filename);
4427 }
4428
4429 /* Read in a CU/TU header and perform some basic error checking.
4430 The contents of the header are stored in HEADER.
4431 The result is a pointer to the start of the first DIE. */
4432
4433 static const gdb_byte *
4434 read_and_check_comp_unit_head (struct comp_unit_head *header,
4435 struct dwarf2_section_info *section,
4436 struct dwarf2_section_info *abbrev_section,
4437 const gdb_byte *info_ptr,
4438 int is_debug_types_section)
4439 {
4440 const gdb_byte *beg_of_comp_unit = info_ptr;
4441 bfd *abfd = get_section_bfd_owner (section);
4442
4443 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4444
4445 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4446
4447 /* If we're reading a type unit, skip over the signature and
4448 type_offset fields. */
4449 if (is_debug_types_section)
4450 info_ptr += 8 /*signature*/ + header->offset_size;
4451
4452 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4453
4454 error_check_comp_unit_head (header, section, abbrev_section);
4455
4456 return info_ptr;
4457 }
4458
4459 /* Read in the types comp unit header information from .debug_types entry at
4460 types_ptr. The result is a pointer to one past the end of the header. */
4461
4462 static const gdb_byte *
4463 read_and_check_type_unit_head (struct comp_unit_head *header,
4464 struct dwarf2_section_info *section,
4465 struct dwarf2_section_info *abbrev_section,
4466 const gdb_byte *info_ptr,
4467 ULONGEST *signature,
4468 cu_offset *type_offset_in_tu)
4469 {
4470 const gdb_byte *beg_of_comp_unit = info_ptr;
4471 bfd *abfd = get_section_bfd_owner (section);
4472
4473 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4474
4475 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4476
4477 /* If we're reading a type unit, skip over the signature and
4478 type_offset fields. */
4479 if (signature != NULL)
4480 *signature = read_8_bytes (abfd, info_ptr);
4481 info_ptr += 8;
4482 if (type_offset_in_tu != NULL)
4483 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4484 header->offset_size);
4485 info_ptr += header->offset_size;
4486
4487 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4488
4489 error_check_comp_unit_head (header, section, abbrev_section);
4490
4491 return info_ptr;
4492 }
4493
4494 /* Fetch the abbreviation table offset from a comp or type unit header. */
4495
4496 static sect_offset
4497 read_abbrev_offset (struct dwarf2_section_info *section,
4498 sect_offset offset)
4499 {
4500 bfd *abfd = get_section_bfd_owner (section);
4501 const gdb_byte *info_ptr;
4502 unsigned int initial_length_size, offset_size;
4503 sect_offset abbrev_offset;
4504
4505 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4506 info_ptr = section->buffer + offset.sect_off;
4507 read_initial_length (abfd, info_ptr, &initial_length_size);
4508 offset_size = initial_length_size == 4 ? 4 : 8;
4509 info_ptr += initial_length_size + 2 /*version*/;
4510 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4511 return abbrev_offset;
4512 }
4513
4514 /* Allocate a new partial symtab for file named NAME and mark this new
4515 partial symtab as being an include of PST. */
4516
4517 static void
4518 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4519 struct objfile *objfile)
4520 {
4521 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4522
4523 if (!IS_ABSOLUTE_PATH (subpst->filename))
4524 {
4525 /* It shares objfile->objfile_obstack. */
4526 subpst->dirname = pst->dirname;
4527 }
4528
4529 subpst->textlow = 0;
4530 subpst->texthigh = 0;
4531
4532 subpst->dependencies
4533 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4534 subpst->dependencies[0] = pst;
4535 subpst->number_of_dependencies = 1;
4536
4537 subpst->globals_offset = 0;
4538 subpst->n_global_syms = 0;
4539 subpst->statics_offset = 0;
4540 subpst->n_static_syms = 0;
4541 subpst->compunit_symtab = NULL;
4542 subpst->read_symtab = pst->read_symtab;
4543 subpst->readin = 0;
4544
4545 /* No private part is necessary for include psymtabs. This property
4546 can be used to differentiate between such include psymtabs and
4547 the regular ones. */
4548 subpst->read_symtab_private = NULL;
4549 }
4550
4551 /* Read the Line Number Program data and extract the list of files
4552 included by the source file represented by PST. Build an include
4553 partial symtab for each of these included files. */
4554
4555 static void
4556 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4557 struct die_info *die,
4558 struct partial_symtab *pst)
4559 {
4560 struct line_header *lh = NULL;
4561 struct attribute *attr;
4562
4563 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4564 if (attr)
4565 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4566 if (lh == NULL)
4567 return; /* No linetable, so no includes. */
4568
4569 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4570 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4571
4572 free_line_header (lh);
4573 }
4574
4575 static hashval_t
4576 hash_signatured_type (const void *item)
4577 {
4578 const struct signatured_type *sig_type
4579 = (const struct signatured_type *) item;
4580
4581 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4582 return sig_type->signature;
4583 }
4584
4585 static int
4586 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4587 {
4588 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4589 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4590
4591 return lhs->signature == rhs->signature;
4592 }
4593
4594 /* Allocate a hash table for signatured types. */
4595
4596 static htab_t
4597 allocate_signatured_type_table (struct objfile *objfile)
4598 {
4599 return htab_create_alloc_ex (41,
4600 hash_signatured_type,
4601 eq_signatured_type,
4602 NULL,
4603 &objfile->objfile_obstack,
4604 hashtab_obstack_allocate,
4605 dummy_obstack_deallocate);
4606 }
4607
4608 /* A helper function to add a signatured type CU to a table. */
4609
4610 static int
4611 add_signatured_type_cu_to_table (void **slot, void *datum)
4612 {
4613 struct signatured_type *sigt = (struct signatured_type *) *slot;
4614 struct signatured_type ***datap = (struct signatured_type ***) datum;
4615
4616 **datap = sigt;
4617 ++*datap;
4618
4619 return 1;
4620 }
4621
4622 /* Create the hash table of all entries in the .debug_types
4623 (or .debug_types.dwo) section(s).
4624 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4625 otherwise it is NULL.
4626
4627 The result is a pointer to the hash table or NULL if there are no types.
4628
4629 Note: This function processes DWO files only, not DWP files. */
4630
4631 static htab_t
4632 create_debug_types_hash_table (struct dwo_file *dwo_file,
4633 VEC (dwarf2_section_info_def) *types)
4634 {
4635 struct objfile *objfile = dwarf2_per_objfile->objfile;
4636 htab_t types_htab = NULL;
4637 int ix;
4638 struct dwarf2_section_info *section;
4639 struct dwarf2_section_info *abbrev_section;
4640
4641 if (VEC_empty (dwarf2_section_info_def, types))
4642 return NULL;
4643
4644 abbrev_section = (dwo_file != NULL
4645 ? &dwo_file->sections.abbrev
4646 : &dwarf2_per_objfile->abbrev);
4647
4648 if (dwarf_read_debug)
4649 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4650 dwo_file ? ".dwo" : "",
4651 get_section_file_name (abbrev_section));
4652
4653 for (ix = 0;
4654 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4655 ++ix)
4656 {
4657 bfd *abfd;
4658 const gdb_byte *info_ptr, *end_ptr;
4659
4660 dwarf2_read_section (objfile, section);
4661 info_ptr = section->buffer;
4662
4663 if (info_ptr == NULL)
4664 continue;
4665
4666 /* We can't set abfd until now because the section may be empty or
4667 not present, in which case the bfd is unknown. */
4668 abfd = get_section_bfd_owner (section);
4669
4670 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4671 because we don't need to read any dies: the signature is in the
4672 header. */
4673
4674 end_ptr = info_ptr + section->size;
4675 while (info_ptr < end_ptr)
4676 {
4677 sect_offset offset;
4678 cu_offset type_offset_in_tu;
4679 ULONGEST signature;
4680 struct signatured_type *sig_type;
4681 struct dwo_unit *dwo_tu;
4682 void **slot;
4683 const gdb_byte *ptr = info_ptr;
4684 struct comp_unit_head header;
4685 unsigned int length;
4686
4687 offset.sect_off = ptr - section->buffer;
4688
4689 /* We need to read the type's signature in order to build the hash
4690 table, but we don't need anything else just yet. */
4691
4692 ptr = read_and_check_type_unit_head (&header, section,
4693 abbrev_section, ptr,
4694 &signature, &type_offset_in_tu);
4695
4696 length = get_cu_length (&header);
4697
4698 /* Skip dummy type units. */
4699 if (ptr >= info_ptr + length
4700 || peek_abbrev_code (abfd, ptr) == 0)
4701 {
4702 info_ptr += length;
4703 continue;
4704 }
4705
4706 if (types_htab == NULL)
4707 {
4708 if (dwo_file)
4709 types_htab = allocate_dwo_unit_table (objfile);
4710 else
4711 types_htab = allocate_signatured_type_table (objfile);
4712 }
4713
4714 if (dwo_file)
4715 {
4716 sig_type = NULL;
4717 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4718 struct dwo_unit);
4719 dwo_tu->dwo_file = dwo_file;
4720 dwo_tu->signature = signature;
4721 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4722 dwo_tu->section = section;
4723 dwo_tu->offset = offset;
4724 dwo_tu->length = length;
4725 }
4726 else
4727 {
4728 /* N.B.: type_offset is not usable if this type uses a DWO file.
4729 The real type_offset is in the DWO file. */
4730 dwo_tu = NULL;
4731 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct signatured_type);
4733 sig_type->signature = signature;
4734 sig_type->type_offset_in_tu = type_offset_in_tu;
4735 sig_type->per_cu.objfile = objfile;
4736 sig_type->per_cu.is_debug_types = 1;
4737 sig_type->per_cu.section = section;
4738 sig_type->per_cu.offset = offset;
4739 sig_type->per_cu.length = length;
4740 }
4741
4742 slot = htab_find_slot (types_htab,
4743 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4744 INSERT);
4745 gdb_assert (slot != NULL);
4746 if (*slot != NULL)
4747 {
4748 sect_offset dup_offset;
4749
4750 if (dwo_file)
4751 {
4752 const struct dwo_unit *dup_tu
4753 = (const struct dwo_unit *) *slot;
4754
4755 dup_offset = dup_tu->offset;
4756 }
4757 else
4758 {
4759 const struct signatured_type *dup_tu
4760 = (const struct signatured_type *) *slot;
4761
4762 dup_offset = dup_tu->per_cu.offset;
4763 }
4764
4765 complaint (&symfile_complaints,
4766 _("debug type entry at offset 0x%x is duplicate to"
4767 " the entry at offset 0x%x, signature %s"),
4768 offset.sect_off, dup_offset.sect_off,
4769 hex_string (signature));
4770 }
4771 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4772
4773 if (dwarf_read_debug > 1)
4774 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4775 offset.sect_off,
4776 hex_string (signature));
4777
4778 info_ptr += length;
4779 }
4780 }
4781
4782 return types_htab;
4783 }
4784
4785 /* Create the hash table of all entries in the .debug_types section,
4786 and initialize all_type_units.
4787 The result is zero if there is an error (e.g. missing .debug_types section),
4788 otherwise non-zero. */
4789
4790 static int
4791 create_all_type_units (struct objfile *objfile)
4792 {
4793 htab_t types_htab;
4794 struct signatured_type **iter;
4795
4796 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4797 if (types_htab == NULL)
4798 {
4799 dwarf2_per_objfile->signatured_types = NULL;
4800 return 0;
4801 }
4802
4803 dwarf2_per_objfile->signatured_types = types_htab;
4804
4805 dwarf2_per_objfile->n_type_units
4806 = dwarf2_per_objfile->n_allocated_type_units
4807 = htab_elements (types_htab);
4808 dwarf2_per_objfile->all_type_units =
4809 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4810 iter = &dwarf2_per_objfile->all_type_units[0];
4811 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4812 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4813 == dwarf2_per_objfile->n_type_units);
4814
4815 return 1;
4816 }
4817
4818 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4819 If SLOT is non-NULL, it is the entry to use in the hash table.
4820 Otherwise we find one. */
4821
4822 static struct signatured_type *
4823 add_type_unit (ULONGEST sig, void **slot)
4824 {
4825 struct objfile *objfile = dwarf2_per_objfile->objfile;
4826 int n_type_units = dwarf2_per_objfile->n_type_units;
4827 struct signatured_type *sig_type;
4828
4829 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4830 ++n_type_units;
4831 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4832 {
4833 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4834 dwarf2_per_objfile->n_allocated_type_units = 1;
4835 dwarf2_per_objfile->n_allocated_type_units *= 2;
4836 dwarf2_per_objfile->all_type_units
4837 = XRESIZEVEC (struct signatured_type *,
4838 dwarf2_per_objfile->all_type_units,
4839 dwarf2_per_objfile->n_allocated_type_units);
4840 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4841 }
4842 dwarf2_per_objfile->n_type_units = n_type_units;
4843
4844 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4845 struct signatured_type);
4846 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4847 sig_type->signature = sig;
4848 sig_type->per_cu.is_debug_types = 1;
4849 if (dwarf2_per_objfile->using_index)
4850 {
4851 sig_type->per_cu.v.quick =
4852 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4853 struct dwarf2_per_cu_quick_data);
4854 }
4855
4856 if (slot == NULL)
4857 {
4858 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4859 sig_type, INSERT);
4860 }
4861 gdb_assert (*slot == NULL);
4862 *slot = sig_type;
4863 /* The rest of sig_type must be filled in by the caller. */
4864 return sig_type;
4865 }
4866
4867 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4868 Fill in SIG_ENTRY with DWO_ENTRY. */
4869
4870 static void
4871 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4872 struct signatured_type *sig_entry,
4873 struct dwo_unit *dwo_entry)
4874 {
4875 /* Make sure we're not clobbering something we don't expect to. */
4876 gdb_assert (! sig_entry->per_cu.queued);
4877 gdb_assert (sig_entry->per_cu.cu == NULL);
4878 if (dwarf2_per_objfile->using_index)
4879 {
4880 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4881 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4882 }
4883 else
4884 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4885 gdb_assert (sig_entry->signature == dwo_entry->signature);
4886 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4887 gdb_assert (sig_entry->type_unit_group == NULL);
4888 gdb_assert (sig_entry->dwo_unit == NULL);
4889
4890 sig_entry->per_cu.section = dwo_entry->section;
4891 sig_entry->per_cu.offset = dwo_entry->offset;
4892 sig_entry->per_cu.length = dwo_entry->length;
4893 sig_entry->per_cu.reading_dwo_directly = 1;
4894 sig_entry->per_cu.objfile = objfile;
4895 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4896 sig_entry->dwo_unit = dwo_entry;
4897 }
4898
4899 /* Subroutine of lookup_signatured_type.
4900 If we haven't read the TU yet, create the signatured_type data structure
4901 for a TU to be read in directly from a DWO file, bypassing the stub.
4902 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4903 using .gdb_index, then when reading a CU we want to stay in the DWO file
4904 containing that CU. Otherwise we could end up reading several other DWO
4905 files (due to comdat folding) to process the transitive closure of all the
4906 mentioned TUs, and that can be slow. The current DWO file will have every
4907 type signature that it needs.
4908 We only do this for .gdb_index because in the psymtab case we already have
4909 to read all the DWOs to build the type unit groups. */
4910
4911 static struct signatured_type *
4912 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4913 {
4914 struct objfile *objfile = dwarf2_per_objfile->objfile;
4915 struct dwo_file *dwo_file;
4916 struct dwo_unit find_dwo_entry, *dwo_entry;
4917 struct signatured_type find_sig_entry, *sig_entry;
4918 void **slot;
4919
4920 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4921
4922 /* If TU skeletons have been removed then we may not have read in any
4923 TUs yet. */
4924 if (dwarf2_per_objfile->signatured_types == NULL)
4925 {
4926 dwarf2_per_objfile->signatured_types
4927 = allocate_signatured_type_table (objfile);
4928 }
4929
4930 /* We only ever need to read in one copy of a signatured type.
4931 Use the global signatured_types array to do our own comdat-folding
4932 of types. If this is the first time we're reading this TU, and
4933 the TU has an entry in .gdb_index, replace the recorded data from
4934 .gdb_index with this TU. */
4935
4936 find_sig_entry.signature = sig;
4937 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4938 &find_sig_entry, INSERT);
4939 sig_entry = (struct signatured_type *) *slot;
4940
4941 /* We can get here with the TU already read, *or* in the process of being
4942 read. Don't reassign the global entry to point to this DWO if that's
4943 the case. Also note that if the TU is already being read, it may not
4944 have come from a DWO, the program may be a mix of Fission-compiled
4945 code and non-Fission-compiled code. */
4946
4947 /* Have we already tried to read this TU?
4948 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4949 needn't exist in the global table yet). */
4950 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4951 return sig_entry;
4952
4953 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4954 dwo_unit of the TU itself. */
4955 dwo_file = cu->dwo_unit->dwo_file;
4956
4957 /* Ok, this is the first time we're reading this TU. */
4958 if (dwo_file->tus == NULL)
4959 return NULL;
4960 find_dwo_entry.signature = sig;
4961 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4962 if (dwo_entry == NULL)
4963 return NULL;
4964
4965 /* If the global table doesn't have an entry for this TU, add one. */
4966 if (sig_entry == NULL)
4967 sig_entry = add_type_unit (sig, slot);
4968
4969 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4970 sig_entry->per_cu.tu_read = 1;
4971 return sig_entry;
4972 }
4973
4974 /* Subroutine of lookup_signatured_type.
4975 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4976 then try the DWP file. If the TU stub (skeleton) has been removed then
4977 it won't be in .gdb_index. */
4978
4979 static struct signatured_type *
4980 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4981 {
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwp_file *dwp_file = get_dwp_file ();
4984 struct dwo_unit *dwo_entry;
4985 struct signatured_type find_sig_entry, *sig_entry;
4986 void **slot;
4987
4988 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4989 gdb_assert (dwp_file != NULL);
4990
4991 /* If TU skeletons have been removed then we may not have read in any
4992 TUs yet. */
4993 if (dwarf2_per_objfile->signatured_types == NULL)
4994 {
4995 dwarf2_per_objfile->signatured_types
4996 = allocate_signatured_type_table (objfile);
4997 }
4998
4999 find_sig_entry.signature = sig;
5000 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5001 &find_sig_entry, INSERT);
5002 sig_entry = (struct signatured_type *) *slot;
5003
5004 /* Have we already tried to read this TU?
5005 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5006 needn't exist in the global table yet). */
5007 if (sig_entry != NULL)
5008 return sig_entry;
5009
5010 if (dwp_file->tus == NULL)
5011 return NULL;
5012 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5013 sig, 1 /* is_debug_types */);
5014 if (dwo_entry == NULL)
5015 return NULL;
5016
5017 sig_entry = add_type_unit (sig, slot);
5018 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5019
5020 return sig_entry;
5021 }
5022
5023 /* Lookup a signature based type for DW_FORM_ref_sig8.
5024 Returns NULL if signature SIG is not present in the table.
5025 It is up to the caller to complain about this. */
5026
5027 static struct signatured_type *
5028 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5029 {
5030 if (cu->dwo_unit
5031 && dwarf2_per_objfile->using_index)
5032 {
5033 /* We're in a DWO/DWP file, and we're using .gdb_index.
5034 These cases require special processing. */
5035 if (get_dwp_file () == NULL)
5036 return lookup_dwo_signatured_type (cu, sig);
5037 else
5038 return lookup_dwp_signatured_type (cu, sig);
5039 }
5040 else
5041 {
5042 struct signatured_type find_entry, *entry;
5043
5044 if (dwarf2_per_objfile->signatured_types == NULL)
5045 return NULL;
5046 find_entry.signature = sig;
5047 entry = ((struct signatured_type *)
5048 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5049 return entry;
5050 }
5051 }
5052 \f
5053 /* Low level DIE reading support. */
5054
5055 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5056
5057 static void
5058 init_cu_die_reader (struct die_reader_specs *reader,
5059 struct dwarf2_cu *cu,
5060 struct dwarf2_section_info *section,
5061 struct dwo_file *dwo_file)
5062 {
5063 gdb_assert (section->readin && section->buffer != NULL);
5064 reader->abfd = get_section_bfd_owner (section);
5065 reader->cu = cu;
5066 reader->dwo_file = dwo_file;
5067 reader->die_section = section;
5068 reader->buffer = section->buffer;
5069 reader->buffer_end = section->buffer + section->size;
5070 reader->comp_dir = NULL;
5071 }
5072
5073 /* Subroutine of init_cutu_and_read_dies to simplify it.
5074 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5075 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5076 already.
5077
5078 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5079 from it to the DIE in the DWO. If NULL we are skipping the stub.
5080 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5081 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5082 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5083 STUB_COMP_DIR may be non-NULL.
5084 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5085 are filled in with the info of the DIE from the DWO file.
5086 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5087 provided an abbrev table to use.
5088 The result is non-zero if a valid (non-dummy) DIE was found. */
5089
5090 static int
5091 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5092 struct dwo_unit *dwo_unit,
5093 int abbrev_table_provided,
5094 struct die_info *stub_comp_unit_die,
5095 const char *stub_comp_dir,
5096 struct die_reader_specs *result_reader,
5097 const gdb_byte **result_info_ptr,
5098 struct die_info **result_comp_unit_die,
5099 int *result_has_children)
5100 {
5101 struct objfile *objfile = dwarf2_per_objfile->objfile;
5102 struct dwarf2_cu *cu = this_cu->cu;
5103 struct dwarf2_section_info *section;
5104 bfd *abfd;
5105 const gdb_byte *begin_info_ptr, *info_ptr;
5106 ULONGEST signature; /* Or dwo_id. */
5107 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5108 int i,num_extra_attrs;
5109 struct dwarf2_section_info *dwo_abbrev_section;
5110 struct attribute *attr;
5111 struct die_info *comp_unit_die;
5112
5113 /* At most one of these may be provided. */
5114 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5115
5116 /* These attributes aren't processed until later:
5117 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5118 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5119 referenced later. However, these attributes are found in the stub
5120 which we won't have later. In order to not impose this complication
5121 on the rest of the code, we read them here and copy them to the
5122 DWO CU/TU die. */
5123
5124 stmt_list = NULL;
5125 low_pc = NULL;
5126 high_pc = NULL;
5127 ranges = NULL;
5128 comp_dir = NULL;
5129
5130 if (stub_comp_unit_die != NULL)
5131 {
5132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5133 DWO file. */
5134 if (! this_cu->is_debug_types)
5135 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5136 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5137 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5138 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5139 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5140
5141 /* There should be a DW_AT_addr_base attribute here (if needed).
5142 We need the value before we can process DW_FORM_GNU_addr_index. */
5143 cu->addr_base = 0;
5144 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5145 if (attr)
5146 cu->addr_base = DW_UNSND (attr);
5147
5148 /* There should be a DW_AT_ranges_base attribute here (if needed).
5149 We need the value before we can process DW_AT_ranges. */
5150 cu->ranges_base = 0;
5151 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5152 if (attr)
5153 cu->ranges_base = DW_UNSND (attr);
5154 }
5155 else if (stub_comp_dir != NULL)
5156 {
5157 /* Reconstruct the comp_dir attribute to simplify the code below. */
5158 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5159 comp_dir->name = DW_AT_comp_dir;
5160 comp_dir->form = DW_FORM_string;
5161 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5162 DW_STRING (comp_dir) = stub_comp_dir;
5163 }
5164
5165 /* Set up for reading the DWO CU/TU. */
5166 cu->dwo_unit = dwo_unit;
5167 section = dwo_unit->section;
5168 dwarf2_read_section (objfile, section);
5169 abfd = get_section_bfd_owner (section);
5170 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5171 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5172 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5173
5174 if (this_cu->is_debug_types)
5175 {
5176 ULONGEST header_signature;
5177 cu_offset type_offset_in_tu;
5178 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5179
5180 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5181 dwo_abbrev_section,
5182 info_ptr,
5183 &header_signature,
5184 &type_offset_in_tu);
5185 /* This is not an assert because it can be caused by bad debug info. */
5186 if (sig_type->signature != header_signature)
5187 {
5188 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5189 " TU at offset 0x%x [in module %s]"),
5190 hex_string (sig_type->signature),
5191 hex_string (header_signature),
5192 dwo_unit->offset.sect_off,
5193 bfd_get_filename (abfd));
5194 }
5195 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5196 /* For DWOs coming from DWP files, we don't know the CU length
5197 nor the type's offset in the TU until now. */
5198 dwo_unit->length = get_cu_length (&cu->header);
5199 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5200
5201 /* Establish the type offset that can be used to lookup the type.
5202 For DWO files, we don't know it until now. */
5203 sig_type->type_offset_in_section.sect_off =
5204 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5205 }
5206 else
5207 {
5208 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5209 dwo_abbrev_section,
5210 info_ptr, 0);
5211 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5212 /* For DWOs coming from DWP files, we don't know the CU length
5213 until now. */
5214 dwo_unit->length = get_cu_length (&cu->header);
5215 }
5216
5217 /* Replace the CU's original abbrev table with the DWO's.
5218 Reminder: We can't read the abbrev table until we've read the header. */
5219 if (abbrev_table_provided)
5220 {
5221 /* Don't free the provided abbrev table, the caller of
5222 init_cutu_and_read_dies owns it. */
5223 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5224 /* Ensure the DWO abbrev table gets freed. */
5225 make_cleanup (dwarf2_free_abbrev_table, cu);
5226 }
5227 else
5228 {
5229 dwarf2_free_abbrev_table (cu);
5230 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5231 /* Leave any existing abbrev table cleanup as is. */
5232 }
5233
5234 /* Read in the die, but leave space to copy over the attributes
5235 from the stub. This has the benefit of simplifying the rest of
5236 the code - all the work to maintain the illusion of a single
5237 DW_TAG_{compile,type}_unit DIE is done here. */
5238 num_extra_attrs = ((stmt_list != NULL)
5239 + (low_pc != NULL)
5240 + (high_pc != NULL)
5241 + (ranges != NULL)
5242 + (comp_dir != NULL));
5243 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5244 result_has_children, num_extra_attrs);
5245
5246 /* Copy over the attributes from the stub to the DIE we just read in. */
5247 comp_unit_die = *result_comp_unit_die;
5248 i = comp_unit_die->num_attrs;
5249 if (stmt_list != NULL)
5250 comp_unit_die->attrs[i++] = *stmt_list;
5251 if (low_pc != NULL)
5252 comp_unit_die->attrs[i++] = *low_pc;
5253 if (high_pc != NULL)
5254 comp_unit_die->attrs[i++] = *high_pc;
5255 if (ranges != NULL)
5256 comp_unit_die->attrs[i++] = *ranges;
5257 if (comp_dir != NULL)
5258 comp_unit_die->attrs[i++] = *comp_dir;
5259 comp_unit_die->num_attrs += num_extra_attrs;
5260
5261 if (dwarf_die_debug)
5262 {
5263 fprintf_unfiltered (gdb_stdlog,
5264 "Read die from %s@0x%x of %s:\n",
5265 get_section_name (section),
5266 (unsigned) (begin_info_ptr - section->buffer),
5267 bfd_get_filename (abfd));
5268 dump_die (comp_unit_die, dwarf_die_debug);
5269 }
5270
5271 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5272 TUs by skipping the stub and going directly to the entry in the DWO file.
5273 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5274 to get it via circuitous means. Blech. */
5275 if (comp_dir != NULL)
5276 result_reader->comp_dir = DW_STRING (comp_dir);
5277
5278 /* Skip dummy compilation units. */
5279 if (info_ptr >= begin_info_ptr + dwo_unit->length
5280 || peek_abbrev_code (abfd, info_ptr) == 0)
5281 return 0;
5282
5283 *result_info_ptr = info_ptr;
5284 return 1;
5285 }
5286
5287 /* Subroutine of init_cutu_and_read_dies to simplify it.
5288 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5289 Returns NULL if the specified DWO unit cannot be found. */
5290
5291 static struct dwo_unit *
5292 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5293 struct die_info *comp_unit_die)
5294 {
5295 struct dwarf2_cu *cu = this_cu->cu;
5296 struct attribute *attr;
5297 ULONGEST signature;
5298 struct dwo_unit *dwo_unit;
5299 const char *comp_dir, *dwo_name;
5300
5301 gdb_assert (cu != NULL);
5302
5303 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5304 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5305 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5306
5307 if (this_cu->is_debug_types)
5308 {
5309 struct signatured_type *sig_type;
5310
5311 /* Since this_cu is the first member of struct signatured_type,
5312 we can go from a pointer to one to a pointer to the other. */
5313 sig_type = (struct signatured_type *) this_cu;
5314 signature = sig_type->signature;
5315 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5316 }
5317 else
5318 {
5319 struct attribute *attr;
5320
5321 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5322 if (! attr)
5323 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5324 " [in module %s]"),
5325 dwo_name, objfile_name (this_cu->objfile));
5326 signature = DW_UNSND (attr);
5327 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5328 signature);
5329 }
5330
5331 return dwo_unit;
5332 }
5333
5334 /* Subroutine of init_cutu_and_read_dies to simplify it.
5335 See it for a description of the parameters.
5336 Read a TU directly from a DWO file, bypassing the stub.
5337
5338 Note: This function could be a little bit simpler if we shared cleanups
5339 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5340 to do, so we keep this function self-contained. Or we could move this
5341 into our caller, but it's complex enough already. */
5342
5343 static void
5344 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5345 int use_existing_cu, int keep,
5346 die_reader_func_ftype *die_reader_func,
5347 void *data)
5348 {
5349 struct dwarf2_cu *cu;
5350 struct signatured_type *sig_type;
5351 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5352 struct die_reader_specs reader;
5353 const gdb_byte *info_ptr;
5354 struct die_info *comp_unit_die;
5355 int has_children;
5356
5357 /* Verify we can do the following downcast, and that we have the
5358 data we need. */
5359 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5360 sig_type = (struct signatured_type *) this_cu;
5361 gdb_assert (sig_type->dwo_unit != NULL);
5362
5363 cleanups = make_cleanup (null_cleanup, NULL);
5364
5365 if (use_existing_cu && this_cu->cu != NULL)
5366 {
5367 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5368 cu = this_cu->cu;
5369 /* There's no need to do the rereading_dwo_cu handling that
5370 init_cutu_and_read_dies does since we don't read the stub. */
5371 }
5372 else
5373 {
5374 /* If !use_existing_cu, this_cu->cu must be NULL. */
5375 gdb_assert (this_cu->cu == NULL);
5376 cu = XNEW (struct dwarf2_cu);
5377 init_one_comp_unit (cu, this_cu);
5378 /* If an error occurs while loading, release our storage. */
5379 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5380 }
5381
5382 /* A future optimization, if needed, would be to use an existing
5383 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5384 could share abbrev tables. */
5385
5386 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5387 0 /* abbrev_table_provided */,
5388 NULL /* stub_comp_unit_die */,
5389 sig_type->dwo_unit->dwo_file->comp_dir,
5390 &reader, &info_ptr,
5391 &comp_unit_die, &has_children) == 0)
5392 {
5393 /* Dummy die. */
5394 do_cleanups (cleanups);
5395 return;
5396 }
5397
5398 /* All the "real" work is done here. */
5399 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5400
5401 /* This duplicates the code in init_cutu_and_read_dies,
5402 but the alternative is making the latter more complex.
5403 This function is only for the special case of using DWO files directly:
5404 no point in overly complicating the general case just to handle this. */
5405 if (free_cu_cleanup != NULL)
5406 {
5407 if (keep)
5408 {
5409 /* We've successfully allocated this compilation unit. Let our
5410 caller clean it up when finished with it. */
5411 discard_cleanups (free_cu_cleanup);
5412
5413 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5414 So we have to manually free the abbrev table. */
5415 dwarf2_free_abbrev_table (cu);
5416
5417 /* Link this CU into read_in_chain. */
5418 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5419 dwarf2_per_objfile->read_in_chain = this_cu;
5420 }
5421 else
5422 do_cleanups (free_cu_cleanup);
5423 }
5424
5425 do_cleanups (cleanups);
5426 }
5427
5428 /* Initialize a CU (or TU) and read its DIEs.
5429 If the CU defers to a DWO file, read the DWO file as well.
5430
5431 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5432 Otherwise the table specified in the comp unit header is read in and used.
5433 This is an optimization for when we already have the abbrev table.
5434
5435 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5436 Otherwise, a new CU is allocated with xmalloc.
5437
5438 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5439 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5440
5441 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5442 linker) then DIE_READER_FUNC will not get called. */
5443
5444 static void
5445 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5446 struct abbrev_table *abbrev_table,
5447 int use_existing_cu, int keep,
5448 die_reader_func_ftype *die_reader_func,
5449 void *data)
5450 {
5451 struct objfile *objfile = dwarf2_per_objfile->objfile;
5452 struct dwarf2_section_info *section = this_cu->section;
5453 bfd *abfd = get_section_bfd_owner (section);
5454 struct dwarf2_cu *cu;
5455 const gdb_byte *begin_info_ptr, *info_ptr;
5456 struct die_reader_specs reader;
5457 struct die_info *comp_unit_die;
5458 int has_children;
5459 struct attribute *attr;
5460 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5461 struct signatured_type *sig_type = NULL;
5462 struct dwarf2_section_info *abbrev_section;
5463 /* Non-zero if CU currently points to a DWO file and we need to
5464 reread it. When this happens we need to reread the skeleton die
5465 before we can reread the DWO file (this only applies to CUs, not TUs). */
5466 int rereading_dwo_cu = 0;
5467
5468 if (dwarf_die_debug)
5469 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5470 this_cu->is_debug_types ? "type" : "comp",
5471 this_cu->offset.sect_off);
5472
5473 if (use_existing_cu)
5474 gdb_assert (keep);
5475
5476 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5477 file (instead of going through the stub), short-circuit all of this. */
5478 if (this_cu->reading_dwo_directly)
5479 {
5480 /* Narrow down the scope of possibilities to have to understand. */
5481 gdb_assert (this_cu->is_debug_types);
5482 gdb_assert (abbrev_table == NULL);
5483 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5484 die_reader_func, data);
5485 return;
5486 }
5487
5488 cleanups = make_cleanup (null_cleanup, NULL);
5489
5490 /* This is cheap if the section is already read in. */
5491 dwarf2_read_section (objfile, section);
5492
5493 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5494
5495 abbrev_section = get_abbrev_section_for_cu (this_cu);
5496
5497 if (use_existing_cu && this_cu->cu != NULL)
5498 {
5499 cu = this_cu->cu;
5500 /* If this CU is from a DWO file we need to start over, we need to
5501 refetch the attributes from the skeleton CU.
5502 This could be optimized by retrieving those attributes from when we
5503 were here the first time: the previous comp_unit_die was stored in
5504 comp_unit_obstack. But there's no data yet that we need this
5505 optimization. */
5506 if (cu->dwo_unit != NULL)
5507 rereading_dwo_cu = 1;
5508 }
5509 else
5510 {
5511 /* If !use_existing_cu, this_cu->cu must be NULL. */
5512 gdb_assert (this_cu->cu == NULL);
5513 cu = XNEW (struct dwarf2_cu);
5514 init_one_comp_unit (cu, this_cu);
5515 /* If an error occurs while loading, release our storage. */
5516 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5517 }
5518
5519 /* Get the header. */
5520 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5521 {
5522 /* We already have the header, there's no need to read it in again. */
5523 info_ptr += cu->header.first_die_offset.cu_off;
5524 }
5525 else
5526 {
5527 if (this_cu->is_debug_types)
5528 {
5529 ULONGEST signature;
5530 cu_offset type_offset_in_tu;
5531
5532 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5533 abbrev_section, info_ptr,
5534 &signature,
5535 &type_offset_in_tu);
5536
5537 /* Since per_cu is the first member of struct signatured_type,
5538 we can go from a pointer to one to a pointer to the other. */
5539 sig_type = (struct signatured_type *) this_cu;
5540 gdb_assert (sig_type->signature == signature);
5541 gdb_assert (sig_type->type_offset_in_tu.cu_off
5542 == type_offset_in_tu.cu_off);
5543 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5544
5545 /* LENGTH has not been set yet for type units if we're
5546 using .gdb_index. */
5547 this_cu->length = get_cu_length (&cu->header);
5548
5549 /* Establish the type offset that can be used to lookup the type. */
5550 sig_type->type_offset_in_section.sect_off =
5551 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5552 }
5553 else
5554 {
5555 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5556 abbrev_section,
5557 info_ptr, 0);
5558
5559 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5560 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5561 }
5562 }
5563
5564 /* Skip dummy compilation units. */
5565 if (info_ptr >= begin_info_ptr + this_cu->length
5566 || peek_abbrev_code (abfd, info_ptr) == 0)
5567 {
5568 do_cleanups (cleanups);
5569 return;
5570 }
5571
5572 /* If we don't have them yet, read the abbrevs for this compilation unit.
5573 And if we need to read them now, make sure they're freed when we're
5574 done. Note that it's important that if the CU had an abbrev table
5575 on entry we don't free it when we're done: Somewhere up the call stack
5576 it may be in use. */
5577 if (abbrev_table != NULL)
5578 {
5579 gdb_assert (cu->abbrev_table == NULL);
5580 gdb_assert (cu->header.abbrev_offset.sect_off
5581 == abbrev_table->offset.sect_off);
5582 cu->abbrev_table = abbrev_table;
5583 }
5584 else if (cu->abbrev_table == NULL)
5585 {
5586 dwarf2_read_abbrevs (cu, abbrev_section);
5587 make_cleanup (dwarf2_free_abbrev_table, cu);
5588 }
5589 else if (rereading_dwo_cu)
5590 {
5591 dwarf2_free_abbrev_table (cu);
5592 dwarf2_read_abbrevs (cu, abbrev_section);
5593 }
5594
5595 /* Read the top level CU/TU die. */
5596 init_cu_die_reader (&reader, cu, section, NULL);
5597 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5598
5599 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5600 from the DWO file.
5601 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5602 DWO CU, that this test will fail (the attribute will not be present). */
5603 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5604 if (attr)
5605 {
5606 struct dwo_unit *dwo_unit;
5607 struct die_info *dwo_comp_unit_die;
5608
5609 if (has_children)
5610 {
5611 complaint (&symfile_complaints,
5612 _("compilation unit with DW_AT_GNU_dwo_name"
5613 " has children (offset 0x%x) [in module %s]"),
5614 this_cu->offset.sect_off, bfd_get_filename (abfd));
5615 }
5616 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5617 if (dwo_unit != NULL)
5618 {
5619 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5620 abbrev_table != NULL,
5621 comp_unit_die, NULL,
5622 &reader, &info_ptr,
5623 &dwo_comp_unit_die, &has_children) == 0)
5624 {
5625 /* Dummy die. */
5626 do_cleanups (cleanups);
5627 return;
5628 }
5629 comp_unit_die = dwo_comp_unit_die;
5630 }
5631 else
5632 {
5633 /* Yikes, we couldn't find the rest of the DIE, we only have
5634 the stub. A complaint has already been logged. There's
5635 not much more we can do except pass on the stub DIE to
5636 die_reader_func. We don't want to throw an error on bad
5637 debug info. */
5638 }
5639 }
5640
5641 /* All of the above is setup for this call. Yikes. */
5642 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5643
5644 /* Done, clean up. */
5645 if (free_cu_cleanup != NULL)
5646 {
5647 if (keep)
5648 {
5649 /* We've successfully allocated this compilation unit. Let our
5650 caller clean it up when finished with it. */
5651 discard_cleanups (free_cu_cleanup);
5652
5653 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5654 So we have to manually free the abbrev table. */
5655 dwarf2_free_abbrev_table (cu);
5656
5657 /* Link this CU into read_in_chain. */
5658 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5659 dwarf2_per_objfile->read_in_chain = this_cu;
5660 }
5661 else
5662 do_cleanups (free_cu_cleanup);
5663 }
5664
5665 do_cleanups (cleanups);
5666 }
5667
5668 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5669 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5670 to have already done the lookup to find the DWO file).
5671
5672 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5673 THIS_CU->is_debug_types, but nothing else.
5674
5675 We fill in THIS_CU->length.
5676
5677 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5678 linker) then DIE_READER_FUNC will not get called.
5679
5680 THIS_CU->cu is always freed when done.
5681 This is done in order to not leave THIS_CU->cu in a state where we have
5682 to care whether it refers to the "main" CU or the DWO CU. */
5683
5684 static void
5685 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5686 struct dwo_file *dwo_file,
5687 die_reader_func_ftype *die_reader_func,
5688 void *data)
5689 {
5690 struct objfile *objfile = dwarf2_per_objfile->objfile;
5691 struct dwarf2_section_info *section = this_cu->section;
5692 bfd *abfd = get_section_bfd_owner (section);
5693 struct dwarf2_section_info *abbrev_section;
5694 struct dwarf2_cu cu;
5695 const gdb_byte *begin_info_ptr, *info_ptr;
5696 struct die_reader_specs reader;
5697 struct cleanup *cleanups;
5698 struct die_info *comp_unit_die;
5699 int has_children;
5700
5701 if (dwarf_die_debug)
5702 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5703 this_cu->is_debug_types ? "type" : "comp",
5704 this_cu->offset.sect_off);
5705
5706 gdb_assert (this_cu->cu == NULL);
5707
5708 abbrev_section = (dwo_file != NULL
5709 ? &dwo_file->sections.abbrev
5710 : get_abbrev_section_for_cu (this_cu));
5711
5712 /* This is cheap if the section is already read in. */
5713 dwarf2_read_section (objfile, section);
5714
5715 init_one_comp_unit (&cu, this_cu);
5716
5717 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5718
5719 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5720 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5721 abbrev_section, info_ptr,
5722 this_cu->is_debug_types);
5723
5724 this_cu->length = get_cu_length (&cu.header);
5725
5726 /* Skip dummy compilation units. */
5727 if (info_ptr >= begin_info_ptr + this_cu->length
5728 || peek_abbrev_code (abfd, info_ptr) == 0)
5729 {
5730 do_cleanups (cleanups);
5731 return;
5732 }
5733
5734 dwarf2_read_abbrevs (&cu, abbrev_section);
5735 make_cleanup (dwarf2_free_abbrev_table, &cu);
5736
5737 init_cu_die_reader (&reader, &cu, section, dwo_file);
5738 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5739
5740 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5741
5742 do_cleanups (cleanups);
5743 }
5744
5745 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5746 does not lookup the specified DWO file.
5747 This cannot be used to read DWO files.
5748
5749 THIS_CU->cu is always freed when done.
5750 This is done in order to not leave THIS_CU->cu in a state where we have
5751 to care whether it refers to the "main" CU or the DWO CU.
5752 We can revisit this if the data shows there's a performance issue. */
5753
5754 static void
5755 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5756 die_reader_func_ftype *die_reader_func,
5757 void *data)
5758 {
5759 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5760 }
5761 \f
5762 /* Type Unit Groups.
5763
5764 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5765 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5766 so that all types coming from the same compilation (.o file) are grouped
5767 together. A future step could be to put the types in the same symtab as
5768 the CU the types ultimately came from. */
5769
5770 static hashval_t
5771 hash_type_unit_group (const void *item)
5772 {
5773 const struct type_unit_group *tu_group
5774 = (const struct type_unit_group *) item;
5775
5776 return hash_stmt_list_entry (&tu_group->hash);
5777 }
5778
5779 static int
5780 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5781 {
5782 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5783 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5784
5785 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5786 }
5787
5788 /* Allocate a hash table for type unit groups. */
5789
5790 static htab_t
5791 allocate_type_unit_groups_table (void)
5792 {
5793 return htab_create_alloc_ex (3,
5794 hash_type_unit_group,
5795 eq_type_unit_group,
5796 NULL,
5797 &dwarf2_per_objfile->objfile->objfile_obstack,
5798 hashtab_obstack_allocate,
5799 dummy_obstack_deallocate);
5800 }
5801
5802 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5803 partial symtabs. We combine several TUs per psymtab to not let the size
5804 of any one psymtab grow too big. */
5805 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5806 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5807
5808 /* Helper routine for get_type_unit_group.
5809 Create the type_unit_group object used to hold one or more TUs. */
5810
5811 static struct type_unit_group *
5812 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5813 {
5814 struct objfile *objfile = dwarf2_per_objfile->objfile;
5815 struct dwarf2_per_cu_data *per_cu;
5816 struct type_unit_group *tu_group;
5817
5818 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5819 struct type_unit_group);
5820 per_cu = &tu_group->per_cu;
5821 per_cu->objfile = objfile;
5822
5823 if (dwarf2_per_objfile->using_index)
5824 {
5825 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5826 struct dwarf2_per_cu_quick_data);
5827 }
5828 else
5829 {
5830 unsigned int line_offset = line_offset_struct.sect_off;
5831 struct partial_symtab *pst;
5832 char *name;
5833
5834 /* Give the symtab a useful name for debug purposes. */
5835 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5836 name = xstrprintf ("<type_units_%d>",
5837 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5838 else
5839 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5840
5841 pst = create_partial_symtab (per_cu, name);
5842 pst->anonymous = 1;
5843
5844 xfree (name);
5845 }
5846
5847 tu_group->hash.dwo_unit = cu->dwo_unit;
5848 tu_group->hash.line_offset = line_offset_struct;
5849
5850 return tu_group;
5851 }
5852
5853 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5854 STMT_LIST is a DW_AT_stmt_list attribute. */
5855
5856 static struct type_unit_group *
5857 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5858 {
5859 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5860 struct type_unit_group *tu_group;
5861 void **slot;
5862 unsigned int line_offset;
5863 struct type_unit_group type_unit_group_for_lookup;
5864
5865 if (dwarf2_per_objfile->type_unit_groups == NULL)
5866 {
5867 dwarf2_per_objfile->type_unit_groups =
5868 allocate_type_unit_groups_table ();
5869 }
5870
5871 /* Do we need to create a new group, or can we use an existing one? */
5872
5873 if (stmt_list)
5874 {
5875 line_offset = DW_UNSND (stmt_list);
5876 ++tu_stats->nr_symtab_sharers;
5877 }
5878 else
5879 {
5880 /* Ugh, no stmt_list. Rare, but we have to handle it.
5881 We can do various things here like create one group per TU or
5882 spread them over multiple groups to split up the expansion work.
5883 To avoid worst case scenarios (too many groups or too large groups)
5884 we, umm, group them in bunches. */
5885 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5886 | (tu_stats->nr_stmt_less_type_units
5887 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5888 ++tu_stats->nr_stmt_less_type_units;
5889 }
5890
5891 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5892 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5893 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5894 &type_unit_group_for_lookup, INSERT);
5895 if (*slot != NULL)
5896 {
5897 tu_group = (struct type_unit_group *) *slot;
5898 gdb_assert (tu_group != NULL);
5899 }
5900 else
5901 {
5902 sect_offset line_offset_struct;
5903
5904 line_offset_struct.sect_off = line_offset;
5905 tu_group = create_type_unit_group (cu, line_offset_struct);
5906 *slot = tu_group;
5907 ++tu_stats->nr_symtabs;
5908 }
5909
5910 return tu_group;
5911 }
5912 \f
5913 /* Partial symbol tables. */
5914
5915 /* Create a psymtab named NAME and assign it to PER_CU.
5916
5917 The caller must fill in the following details:
5918 dirname, textlow, texthigh. */
5919
5920 static struct partial_symtab *
5921 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5922 {
5923 struct objfile *objfile = per_cu->objfile;
5924 struct partial_symtab *pst;
5925
5926 pst = start_psymtab_common (objfile, name, 0,
5927 objfile->global_psymbols.next,
5928 objfile->static_psymbols.next);
5929
5930 pst->psymtabs_addrmap_supported = 1;
5931
5932 /* This is the glue that links PST into GDB's symbol API. */
5933 pst->read_symtab_private = per_cu;
5934 pst->read_symtab = dwarf2_read_symtab;
5935 per_cu->v.psymtab = pst;
5936
5937 return pst;
5938 }
5939
5940 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5941 type. */
5942
5943 struct process_psymtab_comp_unit_data
5944 {
5945 /* True if we are reading a DW_TAG_partial_unit. */
5946
5947 int want_partial_unit;
5948
5949 /* The "pretend" language that is used if the CU doesn't declare a
5950 language. */
5951
5952 enum language pretend_language;
5953 };
5954
5955 /* die_reader_func for process_psymtab_comp_unit. */
5956
5957 static void
5958 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5959 const gdb_byte *info_ptr,
5960 struct die_info *comp_unit_die,
5961 int has_children,
5962 void *data)
5963 {
5964 struct dwarf2_cu *cu = reader->cu;
5965 struct objfile *objfile = cu->objfile;
5966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5967 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5968 CORE_ADDR baseaddr;
5969 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5970 struct partial_symtab *pst;
5971 enum pc_bounds_kind cu_bounds_kind;
5972 const char *filename;
5973 struct process_psymtab_comp_unit_data *info
5974 = (struct process_psymtab_comp_unit_data *) data;
5975
5976 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5977 return;
5978
5979 gdb_assert (! per_cu->is_debug_types);
5980
5981 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5982
5983 cu->list_in_scope = &file_symbols;
5984
5985 /* Allocate a new partial symbol table structure. */
5986 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5987 if (filename == NULL)
5988 filename = "";
5989
5990 pst = create_partial_symtab (per_cu, filename);
5991
5992 /* This must be done before calling dwarf2_build_include_psymtabs. */
5993 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5994
5995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5996
5997 dwarf2_find_base_address (comp_unit_die, cu);
5998
5999 /* Possibly set the default values of LOWPC and HIGHPC from
6000 `DW_AT_ranges'. */
6001 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6002 &best_highpc, cu, pst);
6003 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6004 /* Store the contiguous range if it is not empty; it can be empty for
6005 CUs with no code. */
6006 addrmap_set_empty (objfile->psymtabs_addrmap,
6007 gdbarch_adjust_dwarf2_addr (gdbarch,
6008 best_lowpc + baseaddr),
6009 gdbarch_adjust_dwarf2_addr (gdbarch,
6010 best_highpc + baseaddr) - 1,
6011 pst);
6012
6013 /* Check if comp unit has_children.
6014 If so, read the rest of the partial symbols from this comp unit.
6015 If not, there's no more debug_info for this comp unit. */
6016 if (has_children)
6017 {
6018 struct partial_die_info *first_die;
6019 CORE_ADDR lowpc, highpc;
6020
6021 lowpc = ((CORE_ADDR) -1);
6022 highpc = ((CORE_ADDR) 0);
6023
6024 first_die = load_partial_dies (reader, info_ptr, 1);
6025
6026 scan_partial_symbols (first_die, &lowpc, &highpc,
6027 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6028
6029 /* If we didn't find a lowpc, set it to highpc to avoid
6030 complaints from `maint check'. */
6031 if (lowpc == ((CORE_ADDR) -1))
6032 lowpc = highpc;
6033
6034 /* If the compilation unit didn't have an explicit address range,
6035 then use the information extracted from its child dies. */
6036 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6037 {
6038 best_lowpc = lowpc;
6039 best_highpc = highpc;
6040 }
6041 }
6042 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6043 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6044
6045 end_psymtab_common (objfile, pst);
6046
6047 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6048 {
6049 int i;
6050 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6051 struct dwarf2_per_cu_data *iter;
6052
6053 /* Fill in 'dependencies' here; we fill in 'users' in a
6054 post-pass. */
6055 pst->number_of_dependencies = len;
6056 pst->dependencies =
6057 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6058 for (i = 0;
6059 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6060 i, iter);
6061 ++i)
6062 pst->dependencies[i] = iter->v.psymtab;
6063
6064 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6065 }
6066
6067 /* Get the list of files included in the current compilation unit,
6068 and build a psymtab for each of them. */
6069 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6070
6071 if (dwarf_read_debug)
6072 {
6073 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6074
6075 fprintf_unfiltered (gdb_stdlog,
6076 "Psymtab for %s unit @0x%x: %s - %s"
6077 ", %d global, %d static syms\n",
6078 per_cu->is_debug_types ? "type" : "comp",
6079 per_cu->offset.sect_off,
6080 paddress (gdbarch, pst->textlow),
6081 paddress (gdbarch, pst->texthigh),
6082 pst->n_global_syms, pst->n_static_syms);
6083 }
6084 }
6085
6086 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6087 Process compilation unit THIS_CU for a psymtab. */
6088
6089 static void
6090 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6091 int want_partial_unit,
6092 enum language pretend_language)
6093 {
6094 struct process_psymtab_comp_unit_data info;
6095
6096 /* If this compilation unit was already read in, free the
6097 cached copy in order to read it in again. This is
6098 necessary because we skipped some symbols when we first
6099 read in the compilation unit (see load_partial_dies).
6100 This problem could be avoided, but the benefit is unclear. */
6101 if (this_cu->cu != NULL)
6102 free_one_cached_comp_unit (this_cu);
6103
6104 gdb_assert (! this_cu->is_debug_types);
6105 info.want_partial_unit = want_partial_unit;
6106 info.pretend_language = pretend_language;
6107 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6108 process_psymtab_comp_unit_reader,
6109 &info);
6110
6111 /* Age out any secondary CUs. */
6112 age_cached_comp_units ();
6113 }
6114
6115 /* Reader function for build_type_psymtabs. */
6116
6117 static void
6118 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6119 const gdb_byte *info_ptr,
6120 struct die_info *type_unit_die,
6121 int has_children,
6122 void *data)
6123 {
6124 struct objfile *objfile = dwarf2_per_objfile->objfile;
6125 struct dwarf2_cu *cu = reader->cu;
6126 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6127 struct signatured_type *sig_type;
6128 struct type_unit_group *tu_group;
6129 struct attribute *attr;
6130 struct partial_die_info *first_die;
6131 CORE_ADDR lowpc, highpc;
6132 struct partial_symtab *pst;
6133
6134 gdb_assert (data == NULL);
6135 gdb_assert (per_cu->is_debug_types);
6136 sig_type = (struct signatured_type *) per_cu;
6137
6138 if (! has_children)
6139 return;
6140
6141 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6142 tu_group = get_type_unit_group (cu, attr);
6143
6144 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6145
6146 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6147 cu->list_in_scope = &file_symbols;
6148 pst = create_partial_symtab (per_cu, "");
6149 pst->anonymous = 1;
6150
6151 first_die = load_partial_dies (reader, info_ptr, 1);
6152
6153 lowpc = (CORE_ADDR) -1;
6154 highpc = (CORE_ADDR) 0;
6155 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6156
6157 end_psymtab_common (objfile, pst);
6158 }
6159
6160 /* Struct used to sort TUs by their abbreviation table offset. */
6161
6162 struct tu_abbrev_offset
6163 {
6164 struct signatured_type *sig_type;
6165 sect_offset abbrev_offset;
6166 };
6167
6168 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6169
6170 static int
6171 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6172 {
6173 const struct tu_abbrev_offset * const *a
6174 = (const struct tu_abbrev_offset * const*) ap;
6175 const struct tu_abbrev_offset * const *b
6176 = (const struct tu_abbrev_offset * const*) bp;
6177 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6178 unsigned int boff = (*b)->abbrev_offset.sect_off;
6179
6180 return (aoff > boff) - (aoff < boff);
6181 }
6182
6183 /* Efficiently read all the type units.
6184 This does the bulk of the work for build_type_psymtabs.
6185
6186 The efficiency is because we sort TUs by the abbrev table they use and
6187 only read each abbrev table once. In one program there are 200K TUs
6188 sharing 8K abbrev tables.
6189
6190 The main purpose of this function is to support building the
6191 dwarf2_per_objfile->type_unit_groups table.
6192 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6193 can collapse the search space by grouping them by stmt_list.
6194 The savings can be significant, in the same program from above the 200K TUs
6195 share 8K stmt_list tables.
6196
6197 FUNC is expected to call get_type_unit_group, which will create the
6198 struct type_unit_group if necessary and add it to
6199 dwarf2_per_objfile->type_unit_groups. */
6200
6201 static void
6202 build_type_psymtabs_1 (void)
6203 {
6204 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6205 struct cleanup *cleanups;
6206 struct abbrev_table *abbrev_table;
6207 sect_offset abbrev_offset;
6208 struct tu_abbrev_offset *sorted_by_abbrev;
6209 int i;
6210
6211 /* It's up to the caller to not call us multiple times. */
6212 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6213
6214 if (dwarf2_per_objfile->n_type_units == 0)
6215 return;
6216
6217 /* TUs typically share abbrev tables, and there can be way more TUs than
6218 abbrev tables. Sort by abbrev table to reduce the number of times we
6219 read each abbrev table in.
6220 Alternatives are to punt or to maintain a cache of abbrev tables.
6221 This is simpler and efficient enough for now.
6222
6223 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6224 symtab to use). Typically TUs with the same abbrev offset have the same
6225 stmt_list value too so in practice this should work well.
6226
6227 The basic algorithm here is:
6228
6229 sort TUs by abbrev table
6230 for each TU with same abbrev table:
6231 read abbrev table if first user
6232 read TU top level DIE
6233 [IWBN if DWO skeletons had DW_AT_stmt_list]
6234 call FUNC */
6235
6236 if (dwarf_read_debug)
6237 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6238
6239 /* Sort in a separate table to maintain the order of all_type_units
6240 for .gdb_index: TU indices directly index all_type_units. */
6241 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6242 dwarf2_per_objfile->n_type_units);
6243 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6244 {
6245 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6246
6247 sorted_by_abbrev[i].sig_type = sig_type;
6248 sorted_by_abbrev[i].abbrev_offset =
6249 read_abbrev_offset (sig_type->per_cu.section,
6250 sig_type->per_cu.offset);
6251 }
6252 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6253 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6254 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6255
6256 abbrev_offset.sect_off = ~(unsigned) 0;
6257 abbrev_table = NULL;
6258 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6259
6260 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6261 {
6262 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6263
6264 /* Switch to the next abbrev table if necessary. */
6265 if (abbrev_table == NULL
6266 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6267 {
6268 if (abbrev_table != NULL)
6269 {
6270 abbrev_table_free (abbrev_table);
6271 /* Reset to NULL in case abbrev_table_read_table throws
6272 an error: abbrev_table_free_cleanup will get called. */
6273 abbrev_table = NULL;
6274 }
6275 abbrev_offset = tu->abbrev_offset;
6276 abbrev_table =
6277 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6278 abbrev_offset);
6279 ++tu_stats->nr_uniq_abbrev_tables;
6280 }
6281
6282 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6283 build_type_psymtabs_reader, NULL);
6284 }
6285
6286 do_cleanups (cleanups);
6287 }
6288
6289 /* Print collected type unit statistics. */
6290
6291 static void
6292 print_tu_stats (void)
6293 {
6294 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6295
6296 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6297 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6298 dwarf2_per_objfile->n_type_units);
6299 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6300 tu_stats->nr_uniq_abbrev_tables);
6301 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6302 tu_stats->nr_symtabs);
6303 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6304 tu_stats->nr_symtab_sharers);
6305 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6306 tu_stats->nr_stmt_less_type_units);
6307 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6308 tu_stats->nr_all_type_units_reallocs);
6309 }
6310
6311 /* Traversal function for build_type_psymtabs. */
6312
6313 static int
6314 build_type_psymtab_dependencies (void **slot, void *info)
6315 {
6316 struct objfile *objfile = dwarf2_per_objfile->objfile;
6317 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6318 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6319 struct partial_symtab *pst = per_cu->v.psymtab;
6320 int len = VEC_length (sig_type_ptr, tu_group->tus);
6321 struct signatured_type *iter;
6322 int i;
6323
6324 gdb_assert (len > 0);
6325 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6326
6327 pst->number_of_dependencies = len;
6328 pst->dependencies =
6329 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6330 for (i = 0;
6331 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6332 ++i)
6333 {
6334 gdb_assert (iter->per_cu.is_debug_types);
6335 pst->dependencies[i] = iter->per_cu.v.psymtab;
6336 iter->type_unit_group = tu_group;
6337 }
6338
6339 VEC_free (sig_type_ptr, tu_group->tus);
6340
6341 return 1;
6342 }
6343
6344 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6345 Build partial symbol tables for the .debug_types comp-units. */
6346
6347 static void
6348 build_type_psymtabs (struct objfile *objfile)
6349 {
6350 if (! create_all_type_units (objfile))
6351 return;
6352
6353 build_type_psymtabs_1 ();
6354 }
6355
6356 /* Traversal function for process_skeletonless_type_unit.
6357 Read a TU in a DWO file and build partial symbols for it. */
6358
6359 static int
6360 process_skeletonless_type_unit (void **slot, void *info)
6361 {
6362 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6363 struct objfile *objfile = (struct objfile *) info;
6364 struct signatured_type find_entry, *entry;
6365
6366 /* If this TU doesn't exist in the global table, add it and read it in. */
6367
6368 if (dwarf2_per_objfile->signatured_types == NULL)
6369 {
6370 dwarf2_per_objfile->signatured_types
6371 = allocate_signatured_type_table (objfile);
6372 }
6373
6374 find_entry.signature = dwo_unit->signature;
6375 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6376 INSERT);
6377 /* If we've already seen this type there's nothing to do. What's happening
6378 is we're doing our own version of comdat-folding here. */
6379 if (*slot != NULL)
6380 return 1;
6381
6382 /* This does the job that create_all_type_units would have done for
6383 this TU. */
6384 entry = add_type_unit (dwo_unit->signature, slot);
6385 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6386 *slot = entry;
6387
6388 /* This does the job that build_type_psymtabs_1 would have done. */
6389 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6390 build_type_psymtabs_reader, NULL);
6391
6392 return 1;
6393 }
6394
6395 /* Traversal function for process_skeletonless_type_units. */
6396
6397 static int
6398 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6399 {
6400 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6401
6402 if (dwo_file->tus != NULL)
6403 {
6404 htab_traverse_noresize (dwo_file->tus,
6405 process_skeletonless_type_unit, info);
6406 }
6407
6408 return 1;
6409 }
6410
6411 /* Scan all TUs of DWO files, verifying we've processed them.
6412 This is needed in case a TU was emitted without its skeleton.
6413 Note: This can't be done until we know what all the DWO files are. */
6414
6415 static void
6416 process_skeletonless_type_units (struct objfile *objfile)
6417 {
6418 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6419 if (get_dwp_file () == NULL
6420 && dwarf2_per_objfile->dwo_files != NULL)
6421 {
6422 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6423 process_dwo_file_for_skeletonless_type_units,
6424 objfile);
6425 }
6426 }
6427
6428 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6429
6430 static void
6431 psymtabs_addrmap_cleanup (void *o)
6432 {
6433 struct objfile *objfile = (struct objfile *) o;
6434
6435 objfile->psymtabs_addrmap = NULL;
6436 }
6437
6438 /* Compute the 'user' field for each psymtab in OBJFILE. */
6439
6440 static void
6441 set_partial_user (struct objfile *objfile)
6442 {
6443 int i;
6444
6445 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6446 {
6447 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6448 struct partial_symtab *pst = per_cu->v.psymtab;
6449 int j;
6450
6451 if (pst == NULL)
6452 continue;
6453
6454 for (j = 0; j < pst->number_of_dependencies; ++j)
6455 {
6456 /* Set the 'user' field only if it is not already set. */
6457 if (pst->dependencies[j]->user == NULL)
6458 pst->dependencies[j]->user = pst;
6459 }
6460 }
6461 }
6462
6463 /* Build the partial symbol table by doing a quick pass through the
6464 .debug_info and .debug_abbrev sections. */
6465
6466 static void
6467 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6468 {
6469 struct cleanup *back_to, *addrmap_cleanup;
6470 struct obstack temp_obstack;
6471 int i;
6472
6473 if (dwarf_read_debug)
6474 {
6475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6476 objfile_name (objfile));
6477 }
6478
6479 dwarf2_per_objfile->reading_partial_symbols = 1;
6480
6481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6482
6483 /* Any cached compilation units will be linked by the per-objfile
6484 read_in_chain. Make sure to free them when we're done. */
6485 back_to = make_cleanup (free_cached_comp_units, NULL);
6486
6487 build_type_psymtabs (objfile);
6488
6489 create_all_comp_units (objfile);
6490
6491 /* Create a temporary address map on a temporary obstack. We later
6492 copy this to the final obstack. */
6493 obstack_init (&temp_obstack);
6494 make_cleanup_obstack_free (&temp_obstack);
6495 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6496 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6497
6498 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6499 {
6500 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6501
6502 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6503 }
6504
6505 /* This has to wait until we read the CUs, we need the list of DWOs. */
6506 process_skeletonless_type_units (objfile);
6507
6508 /* Now that all TUs have been processed we can fill in the dependencies. */
6509 if (dwarf2_per_objfile->type_unit_groups != NULL)
6510 {
6511 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6512 build_type_psymtab_dependencies, NULL);
6513 }
6514
6515 if (dwarf_read_debug)
6516 print_tu_stats ();
6517
6518 set_partial_user (objfile);
6519
6520 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6521 &objfile->objfile_obstack);
6522 discard_cleanups (addrmap_cleanup);
6523
6524 do_cleanups (back_to);
6525
6526 if (dwarf_read_debug)
6527 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6528 objfile_name (objfile));
6529 }
6530
6531 /* die_reader_func for load_partial_comp_unit. */
6532
6533 static void
6534 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6535 const gdb_byte *info_ptr,
6536 struct die_info *comp_unit_die,
6537 int has_children,
6538 void *data)
6539 {
6540 struct dwarf2_cu *cu = reader->cu;
6541
6542 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6543
6544 /* Check if comp unit has_children.
6545 If so, read the rest of the partial symbols from this comp unit.
6546 If not, there's no more debug_info for this comp unit. */
6547 if (has_children)
6548 load_partial_dies (reader, info_ptr, 0);
6549 }
6550
6551 /* Load the partial DIEs for a secondary CU into memory.
6552 This is also used when rereading a primary CU with load_all_dies. */
6553
6554 static void
6555 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6556 {
6557 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6558 load_partial_comp_unit_reader, NULL);
6559 }
6560
6561 static void
6562 read_comp_units_from_section (struct objfile *objfile,
6563 struct dwarf2_section_info *section,
6564 unsigned int is_dwz,
6565 int *n_allocated,
6566 int *n_comp_units,
6567 struct dwarf2_per_cu_data ***all_comp_units)
6568 {
6569 const gdb_byte *info_ptr;
6570 bfd *abfd = get_section_bfd_owner (section);
6571
6572 if (dwarf_read_debug)
6573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6574 get_section_name (section),
6575 get_section_file_name (section));
6576
6577 dwarf2_read_section (objfile, section);
6578
6579 info_ptr = section->buffer;
6580
6581 while (info_ptr < section->buffer + section->size)
6582 {
6583 unsigned int length, initial_length_size;
6584 struct dwarf2_per_cu_data *this_cu;
6585 sect_offset offset;
6586
6587 offset.sect_off = info_ptr - section->buffer;
6588
6589 /* Read just enough information to find out where the next
6590 compilation unit is. */
6591 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6592
6593 /* Save the compilation unit for later lookup. */
6594 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6595 memset (this_cu, 0, sizeof (*this_cu));
6596 this_cu->offset = offset;
6597 this_cu->length = length + initial_length_size;
6598 this_cu->is_dwz = is_dwz;
6599 this_cu->objfile = objfile;
6600 this_cu->section = section;
6601
6602 if (*n_comp_units == *n_allocated)
6603 {
6604 *n_allocated *= 2;
6605 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6606 *all_comp_units, *n_allocated);
6607 }
6608 (*all_comp_units)[*n_comp_units] = this_cu;
6609 ++*n_comp_units;
6610
6611 info_ptr = info_ptr + this_cu->length;
6612 }
6613 }
6614
6615 /* Create a list of all compilation units in OBJFILE.
6616 This is only done for -readnow and building partial symtabs. */
6617
6618 static void
6619 create_all_comp_units (struct objfile *objfile)
6620 {
6621 int n_allocated;
6622 int n_comp_units;
6623 struct dwarf2_per_cu_data **all_comp_units;
6624 struct dwz_file *dwz;
6625
6626 n_comp_units = 0;
6627 n_allocated = 10;
6628 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6629
6630 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6631 &n_allocated, &n_comp_units, &all_comp_units);
6632
6633 dwz = dwarf2_get_dwz_file ();
6634 if (dwz != NULL)
6635 read_comp_units_from_section (objfile, &dwz->info, 1,
6636 &n_allocated, &n_comp_units,
6637 &all_comp_units);
6638
6639 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6640 struct dwarf2_per_cu_data *,
6641 n_comp_units);
6642 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6643 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6644 xfree (all_comp_units);
6645 dwarf2_per_objfile->n_comp_units = n_comp_units;
6646 }
6647
6648 /* Process all loaded DIEs for compilation unit CU, starting at
6649 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6650 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6651 DW_AT_ranges). See the comments of add_partial_subprogram on how
6652 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6653
6654 static void
6655 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6656 CORE_ADDR *highpc, int set_addrmap,
6657 struct dwarf2_cu *cu)
6658 {
6659 struct partial_die_info *pdi;
6660
6661 /* Now, march along the PDI's, descending into ones which have
6662 interesting children but skipping the children of the other ones,
6663 until we reach the end of the compilation unit. */
6664
6665 pdi = first_die;
6666
6667 while (pdi != NULL)
6668 {
6669 fixup_partial_die (pdi, cu);
6670
6671 /* Anonymous namespaces or modules have no name but have interesting
6672 children, so we need to look at them. Ditto for anonymous
6673 enums. */
6674
6675 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6676 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6677 || pdi->tag == DW_TAG_imported_unit)
6678 {
6679 switch (pdi->tag)
6680 {
6681 case DW_TAG_subprogram:
6682 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6683 break;
6684 case DW_TAG_constant:
6685 case DW_TAG_variable:
6686 case DW_TAG_typedef:
6687 case DW_TAG_union_type:
6688 if (!pdi->is_declaration)
6689 {
6690 add_partial_symbol (pdi, cu);
6691 }
6692 break;
6693 case DW_TAG_class_type:
6694 case DW_TAG_interface_type:
6695 case DW_TAG_structure_type:
6696 if (!pdi->is_declaration)
6697 {
6698 add_partial_symbol (pdi, cu);
6699 }
6700 if (cu->language == language_rust && pdi->has_children)
6701 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6702 set_addrmap, cu);
6703 break;
6704 case DW_TAG_enumeration_type:
6705 if (!pdi->is_declaration)
6706 add_partial_enumeration (pdi, cu);
6707 break;
6708 case DW_TAG_base_type:
6709 case DW_TAG_subrange_type:
6710 /* File scope base type definitions are added to the partial
6711 symbol table. */
6712 add_partial_symbol (pdi, cu);
6713 break;
6714 case DW_TAG_namespace:
6715 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6716 break;
6717 case DW_TAG_module:
6718 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6719 break;
6720 case DW_TAG_imported_unit:
6721 {
6722 struct dwarf2_per_cu_data *per_cu;
6723
6724 /* For now we don't handle imported units in type units. */
6725 if (cu->per_cu->is_debug_types)
6726 {
6727 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6728 " supported in type units [in module %s]"),
6729 objfile_name (cu->objfile));
6730 }
6731
6732 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6733 pdi->is_dwz,
6734 cu->objfile);
6735
6736 /* Go read the partial unit, if needed. */
6737 if (per_cu->v.psymtab == NULL)
6738 process_psymtab_comp_unit (per_cu, 1, cu->language);
6739
6740 VEC_safe_push (dwarf2_per_cu_ptr,
6741 cu->per_cu->imported_symtabs, per_cu);
6742 }
6743 break;
6744 case DW_TAG_imported_declaration:
6745 add_partial_symbol (pdi, cu);
6746 break;
6747 default:
6748 break;
6749 }
6750 }
6751
6752 /* If the die has a sibling, skip to the sibling. */
6753
6754 pdi = pdi->die_sibling;
6755 }
6756 }
6757
6758 /* Functions used to compute the fully scoped name of a partial DIE.
6759
6760 Normally, this is simple. For C++, the parent DIE's fully scoped
6761 name is concatenated with "::" and the partial DIE's name.
6762 Enumerators are an exception; they use the scope of their parent
6763 enumeration type, i.e. the name of the enumeration type is not
6764 prepended to the enumerator.
6765
6766 There are two complexities. One is DW_AT_specification; in this
6767 case "parent" means the parent of the target of the specification,
6768 instead of the direct parent of the DIE. The other is compilers
6769 which do not emit DW_TAG_namespace; in this case we try to guess
6770 the fully qualified name of structure types from their members'
6771 linkage names. This must be done using the DIE's children rather
6772 than the children of any DW_AT_specification target. We only need
6773 to do this for structures at the top level, i.e. if the target of
6774 any DW_AT_specification (if any; otherwise the DIE itself) does not
6775 have a parent. */
6776
6777 /* Compute the scope prefix associated with PDI's parent, in
6778 compilation unit CU. The result will be allocated on CU's
6779 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6780 field. NULL is returned if no prefix is necessary. */
6781 static const char *
6782 partial_die_parent_scope (struct partial_die_info *pdi,
6783 struct dwarf2_cu *cu)
6784 {
6785 const char *grandparent_scope;
6786 struct partial_die_info *parent, *real_pdi;
6787
6788 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6789 then this means the parent of the specification DIE. */
6790
6791 real_pdi = pdi;
6792 while (real_pdi->has_specification)
6793 real_pdi = find_partial_die (real_pdi->spec_offset,
6794 real_pdi->spec_is_dwz, cu);
6795
6796 parent = real_pdi->die_parent;
6797 if (parent == NULL)
6798 return NULL;
6799
6800 if (parent->scope_set)
6801 return parent->scope;
6802
6803 fixup_partial_die (parent, cu);
6804
6805 grandparent_scope = partial_die_parent_scope (parent, cu);
6806
6807 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6808 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6809 Work around this problem here. */
6810 if (cu->language == language_cplus
6811 && parent->tag == DW_TAG_namespace
6812 && strcmp (parent->name, "::") == 0
6813 && grandparent_scope == NULL)
6814 {
6815 parent->scope = NULL;
6816 parent->scope_set = 1;
6817 return NULL;
6818 }
6819
6820 if (pdi->tag == DW_TAG_enumerator)
6821 /* Enumerators should not get the name of the enumeration as a prefix. */
6822 parent->scope = grandparent_scope;
6823 else if (parent->tag == DW_TAG_namespace
6824 || parent->tag == DW_TAG_module
6825 || parent->tag == DW_TAG_structure_type
6826 || parent->tag == DW_TAG_class_type
6827 || parent->tag == DW_TAG_interface_type
6828 || parent->tag == DW_TAG_union_type
6829 || parent->tag == DW_TAG_enumeration_type)
6830 {
6831 if (grandparent_scope == NULL)
6832 parent->scope = parent->name;
6833 else
6834 parent->scope = typename_concat (&cu->comp_unit_obstack,
6835 grandparent_scope,
6836 parent->name, 0, cu);
6837 }
6838 else
6839 {
6840 /* FIXME drow/2004-04-01: What should we be doing with
6841 function-local names? For partial symbols, we should probably be
6842 ignoring them. */
6843 complaint (&symfile_complaints,
6844 _("unhandled containing DIE tag %d for DIE at %d"),
6845 parent->tag, pdi->offset.sect_off);
6846 parent->scope = grandparent_scope;
6847 }
6848
6849 parent->scope_set = 1;
6850 return parent->scope;
6851 }
6852
6853 /* Return the fully scoped name associated with PDI, from compilation unit
6854 CU. The result will be allocated with malloc. */
6855
6856 static char *
6857 partial_die_full_name (struct partial_die_info *pdi,
6858 struct dwarf2_cu *cu)
6859 {
6860 const char *parent_scope;
6861
6862 /* If this is a template instantiation, we can not work out the
6863 template arguments from partial DIEs. So, unfortunately, we have
6864 to go through the full DIEs. At least any work we do building
6865 types here will be reused if full symbols are loaded later. */
6866 if (pdi->has_template_arguments)
6867 {
6868 fixup_partial_die (pdi, cu);
6869
6870 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6871 {
6872 struct die_info *die;
6873 struct attribute attr;
6874 struct dwarf2_cu *ref_cu = cu;
6875
6876 /* DW_FORM_ref_addr is using section offset. */
6877 attr.name = (enum dwarf_attribute) 0;
6878 attr.form = DW_FORM_ref_addr;
6879 attr.u.unsnd = pdi->offset.sect_off;
6880 die = follow_die_ref (NULL, &attr, &ref_cu);
6881
6882 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6883 }
6884 }
6885
6886 parent_scope = partial_die_parent_scope (pdi, cu);
6887 if (parent_scope == NULL)
6888 return NULL;
6889 else
6890 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6891 }
6892
6893 static void
6894 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6895 {
6896 struct objfile *objfile = cu->objfile;
6897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6898 CORE_ADDR addr = 0;
6899 const char *actual_name = NULL;
6900 CORE_ADDR baseaddr;
6901 char *built_actual_name;
6902
6903 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6904
6905 built_actual_name = partial_die_full_name (pdi, cu);
6906 if (built_actual_name != NULL)
6907 actual_name = built_actual_name;
6908
6909 if (actual_name == NULL)
6910 actual_name = pdi->name;
6911
6912 switch (pdi->tag)
6913 {
6914 case DW_TAG_subprogram:
6915 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6916 if (pdi->is_external || cu->language == language_ada)
6917 {
6918 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6919 of the global scope. But in Ada, we want to be able to access
6920 nested procedures globally. So all Ada subprograms are stored
6921 in the global scope. */
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 VAR_DOMAIN, LOC_BLOCK,
6925 &objfile->global_psymbols,
6926 addr, cu->language, objfile);
6927 }
6928 else
6929 {
6930 add_psymbol_to_list (actual_name, strlen (actual_name),
6931 built_actual_name != NULL,
6932 VAR_DOMAIN, LOC_BLOCK,
6933 &objfile->static_psymbols,
6934 addr, cu->language, objfile);
6935 }
6936
6937 if (pdi->main_subprogram && actual_name != NULL)
6938 set_objfile_main_name (objfile, actual_name, cu->language);
6939 break;
6940 case DW_TAG_constant:
6941 {
6942 struct psymbol_allocation_list *list;
6943
6944 if (pdi->is_external)
6945 list = &objfile->global_psymbols;
6946 else
6947 list = &objfile->static_psymbols;
6948 add_psymbol_to_list (actual_name, strlen (actual_name),
6949 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6950 list, 0, cu->language, objfile);
6951 }
6952 break;
6953 case DW_TAG_variable:
6954 if (pdi->d.locdesc)
6955 addr = decode_locdesc (pdi->d.locdesc, cu);
6956
6957 if (pdi->d.locdesc
6958 && addr == 0
6959 && !dwarf2_per_objfile->has_section_at_zero)
6960 {
6961 /* A global or static variable may also have been stripped
6962 out by the linker if unused, in which case its address
6963 will be nullified; do not add such variables into partial
6964 symbol table then. */
6965 }
6966 else if (pdi->is_external)
6967 {
6968 /* Global Variable.
6969 Don't enter into the minimal symbol tables as there is
6970 a minimal symbol table entry from the ELF symbols already.
6971 Enter into partial symbol table if it has a location
6972 descriptor or a type.
6973 If the location descriptor is missing, new_symbol will create
6974 a LOC_UNRESOLVED symbol, the address of the variable will then
6975 be determined from the minimal symbol table whenever the variable
6976 is referenced.
6977 The address for the partial symbol table entry is not
6978 used by GDB, but it comes in handy for debugging partial symbol
6979 table building. */
6980
6981 if (pdi->d.locdesc || pdi->has_type)
6982 add_psymbol_to_list (actual_name, strlen (actual_name),
6983 built_actual_name != NULL,
6984 VAR_DOMAIN, LOC_STATIC,
6985 &objfile->global_psymbols,
6986 addr + baseaddr,
6987 cu->language, objfile);
6988 }
6989 else
6990 {
6991 int has_loc = pdi->d.locdesc != NULL;
6992
6993 /* Static Variable. Skip symbols whose value we cannot know (those
6994 without location descriptors or constant values). */
6995 if (!has_loc && !pdi->has_const_value)
6996 {
6997 xfree (built_actual_name);
6998 return;
6999 }
7000
7001 add_psymbol_to_list (actual_name, strlen (actual_name),
7002 built_actual_name != NULL,
7003 VAR_DOMAIN, LOC_STATIC,
7004 &objfile->static_psymbols,
7005 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7006 cu->language, objfile);
7007 }
7008 break;
7009 case DW_TAG_typedef:
7010 case DW_TAG_base_type:
7011 case DW_TAG_subrange_type:
7012 add_psymbol_to_list (actual_name, strlen (actual_name),
7013 built_actual_name != NULL,
7014 VAR_DOMAIN, LOC_TYPEDEF,
7015 &objfile->static_psymbols,
7016 0, cu->language, objfile);
7017 break;
7018 case DW_TAG_imported_declaration:
7019 case DW_TAG_namespace:
7020 add_psymbol_to_list (actual_name, strlen (actual_name),
7021 built_actual_name != NULL,
7022 VAR_DOMAIN, LOC_TYPEDEF,
7023 &objfile->global_psymbols,
7024 0, cu->language, objfile);
7025 break;
7026 case DW_TAG_module:
7027 add_psymbol_to_list (actual_name, strlen (actual_name),
7028 built_actual_name != NULL,
7029 MODULE_DOMAIN, LOC_TYPEDEF,
7030 &objfile->global_psymbols,
7031 0, cu->language, objfile);
7032 break;
7033 case DW_TAG_class_type:
7034 case DW_TAG_interface_type:
7035 case DW_TAG_structure_type:
7036 case DW_TAG_union_type:
7037 case DW_TAG_enumeration_type:
7038 /* Skip external references. The DWARF standard says in the section
7039 about "Structure, Union, and Class Type Entries": "An incomplete
7040 structure, union or class type is represented by a structure,
7041 union or class entry that does not have a byte size attribute
7042 and that has a DW_AT_declaration attribute." */
7043 if (!pdi->has_byte_size && pdi->is_declaration)
7044 {
7045 xfree (built_actual_name);
7046 return;
7047 }
7048
7049 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7050 static vs. global. */
7051 add_psymbol_to_list (actual_name, strlen (actual_name),
7052 built_actual_name != NULL,
7053 STRUCT_DOMAIN, LOC_TYPEDEF,
7054 cu->language == language_cplus
7055 ? &objfile->global_psymbols
7056 : &objfile->static_psymbols,
7057 0, cu->language, objfile);
7058
7059 break;
7060 case DW_TAG_enumerator:
7061 add_psymbol_to_list (actual_name, strlen (actual_name),
7062 built_actual_name != NULL,
7063 VAR_DOMAIN, LOC_CONST,
7064 cu->language == language_cplus
7065 ? &objfile->global_psymbols
7066 : &objfile->static_psymbols,
7067 0, cu->language, objfile);
7068 break;
7069 default:
7070 break;
7071 }
7072
7073 xfree (built_actual_name);
7074 }
7075
7076 /* Read a partial die corresponding to a namespace; also, add a symbol
7077 corresponding to that namespace to the symbol table. NAMESPACE is
7078 the name of the enclosing namespace. */
7079
7080 static void
7081 add_partial_namespace (struct partial_die_info *pdi,
7082 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7083 int set_addrmap, struct dwarf2_cu *cu)
7084 {
7085 /* Add a symbol for the namespace. */
7086
7087 add_partial_symbol (pdi, cu);
7088
7089 /* Now scan partial symbols in that namespace. */
7090
7091 if (pdi->has_children)
7092 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7093 }
7094
7095 /* Read a partial die corresponding to a Fortran module. */
7096
7097 static void
7098 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7099 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7100 {
7101 /* Add a symbol for the namespace. */
7102
7103 add_partial_symbol (pdi, cu);
7104
7105 /* Now scan partial symbols in that module. */
7106
7107 if (pdi->has_children)
7108 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7109 }
7110
7111 /* Read a partial die corresponding to a subprogram and create a partial
7112 symbol for that subprogram. When the CU language allows it, this
7113 routine also defines a partial symbol for each nested subprogram
7114 that this subprogram contains. If SET_ADDRMAP is true, record the
7115 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7116 and highest PC values found in PDI.
7117
7118 PDI may also be a lexical block, in which case we simply search
7119 recursively for subprograms defined inside that lexical block.
7120 Again, this is only performed when the CU language allows this
7121 type of definitions. */
7122
7123 static void
7124 add_partial_subprogram (struct partial_die_info *pdi,
7125 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7126 int set_addrmap, struct dwarf2_cu *cu)
7127 {
7128 if (pdi->tag == DW_TAG_subprogram)
7129 {
7130 if (pdi->has_pc_info)
7131 {
7132 if (pdi->lowpc < *lowpc)
7133 *lowpc = pdi->lowpc;
7134 if (pdi->highpc > *highpc)
7135 *highpc = pdi->highpc;
7136 if (set_addrmap)
7137 {
7138 struct objfile *objfile = cu->objfile;
7139 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7140 CORE_ADDR baseaddr;
7141 CORE_ADDR highpc;
7142 CORE_ADDR lowpc;
7143
7144 baseaddr = ANOFFSET (objfile->section_offsets,
7145 SECT_OFF_TEXT (objfile));
7146 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7147 pdi->lowpc + baseaddr);
7148 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7149 pdi->highpc + baseaddr);
7150 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7151 cu->per_cu->v.psymtab);
7152 }
7153 }
7154
7155 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7156 {
7157 if (!pdi->is_declaration)
7158 /* Ignore subprogram DIEs that do not have a name, they are
7159 illegal. Do not emit a complaint at this point, we will
7160 do so when we convert this psymtab into a symtab. */
7161 if (pdi->name)
7162 add_partial_symbol (pdi, cu);
7163 }
7164 }
7165
7166 if (! pdi->has_children)
7167 return;
7168
7169 if (cu->language == language_ada)
7170 {
7171 pdi = pdi->die_child;
7172 while (pdi != NULL)
7173 {
7174 fixup_partial_die (pdi, cu);
7175 if (pdi->tag == DW_TAG_subprogram
7176 || pdi->tag == DW_TAG_lexical_block)
7177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7178 pdi = pdi->die_sibling;
7179 }
7180 }
7181 }
7182
7183 /* Read a partial die corresponding to an enumeration type. */
7184
7185 static void
7186 add_partial_enumeration (struct partial_die_info *enum_pdi,
7187 struct dwarf2_cu *cu)
7188 {
7189 struct partial_die_info *pdi;
7190
7191 if (enum_pdi->name != NULL)
7192 add_partial_symbol (enum_pdi, cu);
7193
7194 pdi = enum_pdi->die_child;
7195 while (pdi)
7196 {
7197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7198 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7199 else
7200 add_partial_symbol (pdi, cu);
7201 pdi = pdi->die_sibling;
7202 }
7203 }
7204
7205 /* Return the initial uleb128 in the die at INFO_PTR. */
7206
7207 static unsigned int
7208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7209 {
7210 unsigned int bytes_read;
7211
7212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7213 }
7214
7215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7216 Return the corresponding abbrev, or NULL if the number is zero (indicating
7217 an empty DIE). In either case *BYTES_READ will be set to the length of
7218 the initial number. */
7219
7220 static struct abbrev_info *
7221 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7222 struct dwarf2_cu *cu)
7223 {
7224 bfd *abfd = cu->objfile->obfd;
7225 unsigned int abbrev_number;
7226 struct abbrev_info *abbrev;
7227
7228 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7229
7230 if (abbrev_number == 0)
7231 return NULL;
7232
7233 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7234 if (!abbrev)
7235 {
7236 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7237 " at offset 0x%x [in module %s]"),
7238 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7239 cu->header.offset.sect_off, bfd_get_filename (abfd));
7240 }
7241
7242 return abbrev;
7243 }
7244
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 Returns a pointer to the end of a series of DIEs, terminated by an empty
7247 DIE. Any children of the skipped DIEs will also be skipped. */
7248
7249 static const gdb_byte *
7250 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7251 {
7252 struct dwarf2_cu *cu = reader->cu;
7253 struct abbrev_info *abbrev;
7254 unsigned int bytes_read;
7255
7256 while (1)
7257 {
7258 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7259 if (abbrev == NULL)
7260 return info_ptr + bytes_read;
7261 else
7262 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7263 }
7264 }
7265
7266 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7267 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7268 abbrev corresponding to that skipped uleb128 should be passed in
7269 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7270 children. */
7271
7272 static const gdb_byte *
7273 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7274 struct abbrev_info *abbrev)
7275 {
7276 unsigned int bytes_read;
7277 struct attribute attr;
7278 bfd *abfd = reader->abfd;
7279 struct dwarf2_cu *cu = reader->cu;
7280 const gdb_byte *buffer = reader->buffer;
7281 const gdb_byte *buffer_end = reader->buffer_end;
7282 unsigned int form, i;
7283
7284 for (i = 0; i < abbrev->num_attrs; i++)
7285 {
7286 /* The only abbrev we care about is DW_AT_sibling. */
7287 if (abbrev->attrs[i].name == DW_AT_sibling)
7288 {
7289 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7290 if (attr.form == DW_FORM_ref_addr)
7291 complaint (&symfile_complaints,
7292 _("ignoring absolute DW_AT_sibling"));
7293 else
7294 {
7295 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7296 const gdb_byte *sibling_ptr = buffer + off;
7297
7298 if (sibling_ptr < info_ptr)
7299 complaint (&symfile_complaints,
7300 _("DW_AT_sibling points backwards"));
7301 else if (sibling_ptr > reader->buffer_end)
7302 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7303 else
7304 return sibling_ptr;
7305 }
7306 }
7307
7308 /* If it isn't DW_AT_sibling, skip this attribute. */
7309 form = abbrev->attrs[i].form;
7310 skip_attribute:
7311 switch (form)
7312 {
7313 case DW_FORM_ref_addr:
7314 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7315 and later it is offset sized. */
7316 if (cu->header.version == 2)
7317 info_ptr += cu->header.addr_size;
7318 else
7319 info_ptr += cu->header.offset_size;
7320 break;
7321 case DW_FORM_GNU_ref_alt:
7322 info_ptr += cu->header.offset_size;
7323 break;
7324 case DW_FORM_addr:
7325 info_ptr += cu->header.addr_size;
7326 break;
7327 case DW_FORM_data1:
7328 case DW_FORM_ref1:
7329 case DW_FORM_flag:
7330 info_ptr += 1;
7331 break;
7332 case DW_FORM_flag_present:
7333 break;
7334 case DW_FORM_data2:
7335 case DW_FORM_ref2:
7336 info_ptr += 2;
7337 break;
7338 case DW_FORM_data4:
7339 case DW_FORM_ref4:
7340 info_ptr += 4;
7341 break;
7342 case DW_FORM_data8:
7343 case DW_FORM_ref8:
7344 case DW_FORM_ref_sig8:
7345 info_ptr += 8;
7346 break;
7347 case DW_FORM_string:
7348 read_direct_string (abfd, info_ptr, &bytes_read);
7349 info_ptr += bytes_read;
7350 break;
7351 case DW_FORM_sec_offset:
7352 case DW_FORM_strp:
7353 case DW_FORM_GNU_strp_alt:
7354 info_ptr += cu->header.offset_size;
7355 break;
7356 case DW_FORM_exprloc:
7357 case DW_FORM_block:
7358 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 break;
7361 case DW_FORM_block1:
7362 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7363 break;
7364 case DW_FORM_block2:
7365 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7366 break;
7367 case DW_FORM_block4:
7368 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7369 break;
7370 case DW_FORM_sdata:
7371 case DW_FORM_udata:
7372 case DW_FORM_ref_udata:
7373 case DW_FORM_GNU_addr_index:
7374 case DW_FORM_GNU_str_index:
7375 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7376 break;
7377 case DW_FORM_indirect:
7378 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7379 info_ptr += bytes_read;
7380 /* We need to continue parsing from here, so just go back to
7381 the top. */
7382 goto skip_attribute;
7383
7384 default:
7385 error (_("Dwarf Error: Cannot handle %s "
7386 "in DWARF reader [in module %s]"),
7387 dwarf_form_name (form),
7388 bfd_get_filename (abfd));
7389 }
7390 }
7391
7392 if (abbrev->has_children)
7393 return skip_children (reader, info_ptr);
7394 else
7395 return info_ptr;
7396 }
7397
7398 /* Locate ORIG_PDI's sibling.
7399 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7400
7401 static const gdb_byte *
7402 locate_pdi_sibling (const struct die_reader_specs *reader,
7403 struct partial_die_info *orig_pdi,
7404 const gdb_byte *info_ptr)
7405 {
7406 /* Do we know the sibling already? */
7407
7408 if (orig_pdi->sibling)
7409 return orig_pdi->sibling;
7410
7411 /* Are there any children to deal with? */
7412
7413 if (!orig_pdi->has_children)
7414 return info_ptr;
7415
7416 /* Skip the children the long way. */
7417
7418 return skip_children (reader, info_ptr);
7419 }
7420
7421 /* Expand this partial symbol table into a full symbol table. SELF is
7422 not NULL. */
7423
7424 static void
7425 dwarf2_read_symtab (struct partial_symtab *self,
7426 struct objfile *objfile)
7427 {
7428 if (self->readin)
7429 {
7430 warning (_("bug: psymtab for %s is already read in."),
7431 self->filename);
7432 }
7433 else
7434 {
7435 if (info_verbose)
7436 {
7437 printf_filtered (_("Reading in symbols for %s..."),
7438 self->filename);
7439 gdb_flush (gdb_stdout);
7440 }
7441
7442 /* Restore our global data. */
7443 dwarf2_per_objfile
7444 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7445 dwarf2_objfile_data_key);
7446
7447 /* If this psymtab is constructed from a debug-only objfile, the
7448 has_section_at_zero flag will not necessarily be correct. We
7449 can get the correct value for this flag by looking at the data
7450 associated with the (presumably stripped) associated objfile. */
7451 if (objfile->separate_debug_objfile_backlink)
7452 {
7453 struct dwarf2_per_objfile *dpo_backlink
7454 = ((struct dwarf2_per_objfile *)
7455 objfile_data (objfile->separate_debug_objfile_backlink,
7456 dwarf2_objfile_data_key));
7457
7458 dwarf2_per_objfile->has_section_at_zero
7459 = dpo_backlink->has_section_at_zero;
7460 }
7461
7462 dwarf2_per_objfile->reading_partial_symbols = 0;
7463
7464 psymtab_to_symtab_1 (self);
7465
7466 /* Finish up the debug error message. */
7467 if (info_verbose)
7468 printf_filtered (_("done.\n"));
7469 }
7470
7471 process_cu_includes ();
7472 }
7473 \f
7474 /* Reading in full CUs. */
7475
7476 /* Add PER_CU to the queue. */
7477
7478 static void
7479 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7480 enum language pretend_language)
7481 {
7482 struct dwarf2_queue_item *item;
7483
7484 per_cu->queued = 1;
7485 item = XNEW (struct dwarf2_queue_item);
7486 item->per_cu = per_cu;
7487 item->pretend_language = pretend_language;
7488 item->next = NULL;
7489
7490 if (dwarf2_queue == NULL)
7491 dwarf2_queue = item;
7492 else
7493 dwarf2_queue_tail->next = item;
7494
7495 dwarf2_queue_tail = item;
7496 }
7497
7498 /* If PER_CU is not yet queued, add it to the queue.
7499 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7500 dependency.
7501 The result is non-zero if PER_CU was queued, otherwise the result is zero
7502 meaning either PER_CU is already queued or it is already loaded.
7503
7504 N.B. There is an invariant here that if a CU is queued then it is loaded.
7505 The caller is required to load PER_CU if we return non-zero. */
7506
7507 static int
7508 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7509 struct dwarf2_per_cu_data *per_cu,
7510 enum language pretend_language)
7511 {
7512 /* We may arrive here during partial symbol reading, if we need full
7513 DIEs to process an unusual case (e.g. template arguments). Do
7514 not queue PER_CU, just tell our caller to load its DIEs. */
7515 if (dwarf2_per_objfile->reading_partial_symbols)
7516 {
7517 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7518 return 1;
7519 return 0;
7520 }
7521
7522 /* Mark the dependence relation so that we don't flush PER_CU
7523 too early. */
7524 if (dependent_cu != NULL)
7525 dwarf2_add_dependence (dependent_cu, per_cu);
7526
7527 /* If it's already on the queue, we have nothing to do. */
7528 if (per_cu->queued)
7529 return 0;
7530
7531 /* If the compilation unit is already loaded, just mark it as
7532 used. */
7533 if (per_cu->cu != NULL)
7534 {
7535 per_cu->cu->last_used = 0;
7536 return 0;
7537 }
7538
7539 /* Add it to the queue. */
7540 queue_comp_unit (per_cu, pretend_language);
7541
7542 return 1;
7543 }
7544
7545 /* Process the queue. */
7546
7547 static void
7548 process_queue (void)
7549 {
7550 struct dwarf2_queue_item *item, *next_item;
7551
7552 if (dwarf_read_debug)
7553 {
7554 fprintf_unfiltered (gdb_stdlog,
7555 "Expanding one or more symtabs of objfile %s ...\n",
7556 objfile_name (dwarf2_per_objfile->objfile));
7557 }
7558
7559 /* The queue starts out with one item, but following a DIE reference
7560 may load a new CU, adding it to the end of the queue. */
7561 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7562 {
7563 if ((dwarf2_per_objfile->using_index
7564 ? !item->per_cu->v.quick->compunit_symtab
7565 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7566 /* Skip dummy CUs. */
7567 && item->per_cu->cu != NULL)
7568 {
7569 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7570 unsigned int debug_print_threshold;
7571 char buf[100];
7572
7573 if (per_cu->is_debug_types)
7574 {
7575 struct signatured_type *sig_type =
7576 (struct signatured_type *) per_cu;
7577
7578 sprintf (buf, "TU %s at offset 0x%x",
7579 hex_string (sig_type->signature),
7580 per_cu->offset.sect_off);
7581 /* There can be 100s of TUs.
7582 Only print them in verbose mode. */
7583 debug_print_threshold = 2;
7584 }
7585 else
7586 {
7587 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7588 debug_print_threshold = 1;
7589 }
7590
7591 if (dwarf_read_debug >= debug_print_threshold)
7592 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7593
7594 if (per_cu->is_debug_types)
7595 process_full_type_unit (per_cu, item->pretend_language);
7596 else
7597 process_full_comp_unit (per_cu, item->pretend_language);
7598
7599 if (dwarf_read_debug >= debug_print_threshold)
7600 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7601 }
7602
7603 item->per_cu->queued = 0;
7604 next_item = item->next;
7605 xfree (item);
7606 }
7607
7608 dwarf2_queue_tail = NULL;
7609
7610 if (dwarf_read_debug)
7611 {
7612 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7613 objfile_name (dwarf2_per_objfile->objfile));
7614 }
7615 }
7616
7617 /* Free all allocated queue entries. This function only releases anything if
7618 an error was thrown; if the queue was processed then it would have been
7619 freed as we went along. */
7620
7621 static void
7622 dwarf2_release_queue (void *dummy)
7623 {
7624 struct dwarf2_queue_item *item, *last;
7625
7626 item = dwarf2_queue;
7627 while (item)
7628 {
7629 /* Anything still marked queued is likely to be in an
7630 inconsistent state, so discard it. */
7631 if (item->per_cu->queued)
7632 {
7633 if (item->per_cu->cu != NULL)
7634 free_one_cached_comp_unit (item->per_cu);
7635 item->per_cu->queued = 0;
7636 }
7637
7638 last = item;
7639 item = item->next;
7640 xfree (last);
7641 }
7642
7643 dwarf2_queue = dwarf2_queue_tail = NULL;
7644 }
7645
7646 /* Read in full symbols for PST, and anything it depends on. */
7647
7648 static void
7649 psymtab_to_symtab_1 (struct partial_symtab *pst)
7650 {
7651 struct dwarf2_per_cu_data *per_cu;
7652 int i;
7653
7654 if (pst->readin)
7655 return;
7656
7657 for (i = 0; i < pst->number_of_dependencies; i++)
7658 if (!pst->dependencies[i]->readin
7659 && pst->dependencies[i]->user == NULL)
7660 {
7661 /* Inform about additional files that need to be read in. */
7662 if (info_verbose)
7663 {
7664 /* FIXME: i18n: Need to make this a single string. */
7665 fputs_filtered (" ", gdb_stdout);
7666 wrap_here ("");
7667 fputs_filtered ("and ", gdb_stdout);
7668 wrap_here ("");
7669 printf_filtered ("%s...", pst->dependencies[i]->filename);
7670 wrap_here (""); /* Flush output. */
7671 gdb_flush (gdb_stdout);
7672 }
7673 psymtab_to_symtab_1 (pst->dependencies[i]);
7674 }
7675
7676 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7677
7678 if (per_cu == NULL)
7679 {
7680 /* It's an include file, no symbols to read for it.
7681 Everything is in the parent symtab. */
7682 pst->readin = 1;
7683 return;
7684 }
7685
7686 dw2_do_instantiate_symtab (per_cu);
7687 }
7688
7689 /* Trivial hash function for die_info: the hash value of a DIE
7690 is its offset in .debug_info for this objfile. */
7691
7692 static hashval_t
7693 die_hash (const void *item)
7694 {
7695 const struct die_info *die = (const struct die_info *) item;
7696
7697 return die->offset.sect_off;
7698 }
7699
7700 /* Trivial comparison function for die_info structures: two DIEs
7701 are equal if they have the same offset. */
7702
7703 static int
7704 die_eq (const void *item_lhs, const void *item_rhs)
7705 {
7706 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7707 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7708
7709 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7710 }
7711
7712 /* die_reader_func for load_full_comp_unit.
7713 This is identical to read_signatured_type_reader,
7714 but is kept separate for now. */
7715
7716 static void
7717 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7718 const gdb_byte *info_ptr,
7719 struct die_info *comp_unit_die,
7720 int has_children,
7721 void *data)
7722 {
7723 struct dwarf2_cu *cu = reader->cu;
7724 enum language *language_ptr = (enum language *) data;
7725
7726 gdb_assert (cu->die_hash == NULL);
7727 cu->die_hash =
7728 htab_create_alloc_ex (cu->header.length / 12,
7729 die_hash,
7730 die_eq,
7731 NULL,
7732 &cu->comp_unit_obstack,
7733 hashtab_obstack_allocate,
7734 dummy_obstack_deallocate);
7735
7736 if (has_children)
7737 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7738 &info_ptr, comp_unit_die);
7739 cu->dies = comp_unit_die;
7740 /* comp_unit_die is not stored in die_hash, no need. */
7741
7742 /* We try not to read any attributes in this function, because not
7743 all CUs needed for references have been loaded yet, and symbol
7744 table processing isn't initialized. But we have to set the CU language,
7745 or we won't be able to build types correctly.
7746 Similarly, if we do not read the producer, we can not apply
7747 producer-specific interpretation. */
7748 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7749 }
7750
7751 /* Load the DIEs associated with PER_CU into memory. */
7752
7753 static void
7754 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7755 enum language pretend_language)
7756 {
7757 gdb_assert (! this_cu->is_debug_types);
7758
7759 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7760 load_full_comp_unit_reader, &pretend_language);
7761 }
7762
7763 /* Add a DIE to the delayed physname list. */
7764
7765 static void
7766 add_to_method_list (struct type *type, int fnfield_index, int index,
7767 const char *name, struct die_info *die,
7768 struct dwarf2_cu *cu)
7769 {
7770 struct delayed_method_info mi;
7771 mi.type = type;
7772 mi.fnfield_index = fnfield_index;
7773 mi.index = index;
7774 mi.name = name;
7775 mi.die = die;
7776 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7777 }
7778
7779 /* A cleanup for freeing the delayed method list. */
7780
7781 static void
7782 free_delayed_list (void *ptr)
7783 {
7784 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7785 if (cu->method_list != NULL)
7786 {
7787 VEC_free (delayed_method_info, cu->method_list);
7788 cu->method_list = NULL;
7789 }
7790 }
7791
7792 /* Compute the physnames of any methods on the CU's method list.
7793
7794 The computation of method physnames is delayed in order to avoid the
7795 (bad) condition that one of the method's formal parameters is of an as yet
7796 incomplete type. */
7797
7798 static void
7799 compute_delayed_physnames (struct dwarf2_cu *cu)
7800 {
7801 int i;
7802 struct delayed_method_info *mi;
7803 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7804 {
7805 const char *physname;
7806 struct fn_fieldlist *fn_flp
7807 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7808 physname = dwarf2_physname (mi->name, mi->die, cu);
7809 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7810 = physname ? physname : "";
7811 }
7812 }
7813
7814 /* Go objects should be embedded in a DW_TAG_module DIE,
7815 and it's not clear if/how imported objects will appear.
7816 To keep Go support simple until that's worked out,
7817 go back through what we've read and create something usable.
7818 We could do this while processing each DIE, and feels kinda cleaner,
7819 but that way is more invasive.
7820 This is to, for example, allow the user to type "p var" or "b main"
7821 without having to specify the package name, and allow lookups
7822 of module.object to work in contexts that use the expression
7823 parser. */
7824
7825 static void
7826 fixup_go_packaging (struct dwarf2_cu *cu)
7827 {
7828 char *package_name = NULL;
7829 struct pending *list;
7830 int i;
7831
7832 for (list = global_symbols; list != NULL; list = list->next)
7833 {
7834 for (i = 0; i < list->nsyms; ++i)
7835 {
7836 struct symbol *sym = list->symbol[i];
7837
7838 if (SYMBOL_LANGUAGE (sym) == language_go
7839 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7840 {
7841 char *this_package_name = go_symbol_package_name (sym);
7842
7843 if (this_package_name == NULL)
7844 continue;
7845 if (package_name == NULL)
7846 package_name = this_package_name;
7847 else
7848 {
7849 if (strcmp (package_name, this_package_name) != 0)
7850 complaint (&symfile_complaints,
7851 _("Symtab %s has objects from two different Go packages: %s and %s"),
7852 (symbol_symtab (sym) != NULL
7853 ? symtab_to_filename_for_display
7854 (symbol_symtab (sym))
7855 : objfile_name (cu->objfile)),
7856 this_package_name, package_name);
7857 xfree (this_package_name);
7858 }
7859 }
7860 }
7861 }
7862
7863 if (package_name != NULL)
7864 {
7865 struct objfile *objfile = cu->objfile;
7866 const char *saved_package_name
7867 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7868 package_name,
7869 strlen (package_name));
7870 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7871 saved_package_name);
7872 struct symbol *sym;
7873
7874 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7875
7876 sym = allocate_symbol (objfile);
7877 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7878 SYMBOL_SET_NAMES (sym, saved_package_name,
7879 strlen (saved_package_name), 0, objfile);
7880 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7881 e.g., "main" finds the "main" module and not C's main(). */
7882 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7883 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7884 SYMBOL_TYPE (sym) = type;
7885
7886 add_symbol_to_list (sym, &global_symbols);
7887
7888 xfree (package_name);
7889 }
7890 }
7891
7892 /* Return the symtab for PER_CU. This works properly regardless of
7893 whether we're using the index or psymtabs. */
7894
7895 static struct compunit_symtab *
7896 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7897 {
7898 return (dwarf2_per_objfile->using_index
7899 ? per_cu->v.quick->compunit_symtab
7900 : per_cu->v.psymtab->compunit_symtab);
7901 }
7902
7903 /* A helper function for computing the list of all symbol tables
7904 included by PER_CU. */
7905
7906 static void
7907 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7908 htab_t all_children, htab_t all_type_symtabs,
7909 struct dwarf2_per_cu_data *per_cu,
7910 struct compunit_symtab *immediate_parent)
7911 {
7912 void **slot;
7913 int ix;
7914 struct compunit_symtab *cust;
7915 struct dwarf2_per_cu_data *iter;
7916
7917 slot = htab_find_slot (all_children, per_cu, INSERT);
7918 if (*slot != NULL)
7919 {
7920 /* This inclusion and its children have been processed. */
7921 return;
7922 }
7923
7924 *slot = per_cu;
7925 /* Only add a CU if it has a symbol table. */
7926 cust = get_compunit_symtab (per_cu);
7927 if (cust != NULL)
7928 {
7929 /* If this is a type unit only add its symbol table if we haven't
7930 seen it yet (type unit per_cu's can share symtabs). */
7931 if (per_cu->is_debug_types)
7932 {
7933 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7934 if (*slot == NULL)
7935 {
7936 *slot = cust;
7937 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7938 if (cust->user == NULL)
7939 cust->user = immediate_parent;
7940 }
7941 }
7942 else
7943 {
7944 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7945 if (cust->user == NULL)
7946 cust->user = immediate_parent;
7947 }
7948 }
7949
7950 for (ix = 0;
7951 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7952 ++ix)
7953 {
7954 recursively_compute_inclusions (result, all_children,
7955 all_type_symtabs, iter, cust);
7956 }
7957 }
7958
7959 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7960 PER_CU. */
7961
7962 static void
7963 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7964 {
7965 gdb_assert (! per_cu->is_debug_types);
7966
7967 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7968 {
7969 int ix, len;
7970 struct dwarf2_per_cu_data *per_cu_iter;
7971 struct compunit_symtab *compunit_symtab_iter;
7972 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7973 htab_t all_children, all_type_symtabs;
7974 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7975
7976 /* If we don't have a symtab, we can just skip this case. */
7977 if (cust == NULL)
7978 return;
7979
7980 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7981 NULL, xcalloc, xfree);
7982 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7983 NULL, xcalloc, xfree);
7984
7985 for (ix = 0;
7986 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7987 ix, per_cu_iter);
7988 ++ix)
7989 {
7990 recursively_compute_inclusions (&result_symtabs, all_children,
7991 all_type_symtabs, per_cu_iter,
7992 cust);
7993 }
7994
7995 /* Now we have a transitive closure of all the included symtabs. */
7996 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7997 cust->includes
7998 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7999 struct compunit_symtab *, len + 1);
8000 for (ix = 0;
8001 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8002 compunit_symtab_iter);
8003 ++ix)
8004 cust->includes[ix] = compunit_symtab_iter;
8005 cust->includes[len] = NULL;
8006
8007 VEC_free (compunit_symtab_ptr, result_symtabs);
8008 htab_delete (all_children);
8009 htab_delete (all_type_symtabs);
8010 }
8011 }
8012
8013 /* Compute the 'includes' field for the symtabs of all the CUs we just
8014 read. */
8015
8016 static void
8017 process_cu_includes (void)
8018 {
8019 int ix;
8020 struct dwarf2_per_cu_data *iter;
8021
8022 for (ix = 0;
8023 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8024 ix, iter);
8025 ++ix)
8026 {
8027 if (! iter->is_debug_types)
8028 compute_compunit_symtab_includes (iter);
8029 }
8030
8031 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8032 }
8033
8034 /* Generate full symbol information for PER_CU, whose DIEs have
8035 already been loaded into memory. */
8036
8037 static void
8038 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8039 enum language pretend_language)
8040 {
8041 struct dwarf2_cu *cu = per_cu->cu;
8042 struct objfile *objfile = per_cu->objfile;
8043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8044 CORE_ADDR lowpc, highpc;
8045 struct compunit_symtab *cust;
8046 struct cleanup *back_to, *delayed_list_cleanup;
8047 CORE_ADDR baseaddr;
8048 struct block *static_block;
8049 CORE_ADDR addr;
8050
8051 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8052
8053 buildsym_init ();
8054 back_to = make_cleanup (really_free_pendings, NULL);
8055 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8056
8057 cu->list_in_scope = &file_symbols;
8058
8059 cu->language = pretend_language;
8060 cu->language_defn = language_def (cu->language);
8061
8062 /* Do line number decoding in read_file_scope () */
8063 process_die (cu->dies, cu);
8064
8065 /* For now fudge the Go package. */
8066 if (cu->language == language_go)
8067 fixup_go_packaging (cu);
8068
8069 /* Now that we have processed all the DIEs in the CU, all the types
8070 should be complete, and it should now be safe to compute all of the
8071 physnames. */
8072 compute_delayed_physnames (cu);
8073 do_cleanups (delayed_list_cleanup);
8074
8075 /* Some compilers don't define a DW_AT_high_pc attribute for the
8076 compilation unit. If the DW_AT_high_pc is missing, synthesize
8077 it, by scanning the DIE's below the compilation unit. */
8078 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8079
8080 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8081 static_block = end_symtab_get_static_block (addr, 0, 1);
8082
8083 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8084 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8085 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8086 addrmap to help ensure it has an accurate map of pc values belonging to
8087 this comp unit. */
8088 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8089
8090 cust = end_symtab_from_static_block (static_block,
8091 SECT_OFF_TEXT (objfile), 0);
8092
8093 if (cust != NULL)
8094 {
8095 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8096
8097 /* Set symtab language to language from DW_AT_language. If the
8098 compilation is from a C file generated by language preprocessors, do
8099 not set the language if it was already deduced by start_subfile. */
8100 if (!(cu->language == language_c
8101 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8102 COMPUNIT_FILETABS (cust)->language = cu->language;
8103
8104 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8105 produce DW_AT_location with location lists but it can be possibly
8106 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8107 there were bugs in prologue debug info, fixed later in GCC-4.5
8108 by "unwind info for epilogues" patch (which is not directly related).
8109
8110 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8111 needed, it would be wrong due to missing DW_AT_producer there.
8112
8113 Still one can confuse GDB by using non-standard GCC compilation
8114 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8115 */
8116 if (cu->has_loclist && gcc_4_minor >= 5)
8117 cust->locations_valid = 1;
8118
8119 if (gcc_4_minor >= 5)
8120 cust->epilogue_unwind_valid = 1;
8121
8122 cust->call_site_htab = cu->call_site_htab;
8123 }
8124
8125 if (dwarf2_per_objfile->using_index)
8126 per_cu->v.quick->compunit_symtab = cust;
8127 else
8128 {
8129 struct partial_symtab *pst = per_cu->v.psymtab;
8130 pst->compunit_symtab = cust;
8131 pst->readin = 1;
8132 }
8133
8134 /* Push it for inclusion processing later. */
8135 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8136
8137 do_cleanups (back_to);
8138 }
8139
8140 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8141 already been loaded into memory. */
8142
8143 static void
8144 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8145 enum language pretend_language)
8146 {
8147 struct dwarf2_cu *cu = per_cu->cu;
8148 struct objfile *objfile = per_cu->objfile;
8149 struct compunit_symtab *cust;
8150 struct cleanup *back_to, *delayed_list_cleanup;
8151 struct signatured_type *sig_type;
8152
8153 gdb_assert (per_cu->is_debug_types);
8154 sig_type = (struct signatured_type *) per_cu;
8155
8156 buildsym_init ();
8157 back_to = make_cleanup (really_free_pendings, NULL);
8158 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8159
8160 cu->list_in_scope = &file_symbols;
8161
8162 cu->language = pretend_language;
8163 cu->language_defn = language_def (cu->language);
8164
8165 /* The symbol tables are set up in read_type_unit_scope. */
8166 process_die (cu->dies, cu);
8167
8168 /* For now fudge the Go package. */
8169 if (cu->language == language_go)
8170 fixup_go_packaging (cu);
8171
8172 /* Now that we have processed all the DIEs in the CU, all the types
8173 should be complete, and it should now be safe to compute all of the
8174 physnames. */
8175 compute_delayed_physnames (cu);
8176 do_cleanups (delayed_list_cleanup);
8177
8178 /* TUs share symbol tables.
8179 If this is the first TU to use this symtab, complete the construction
8180 of it with end_expandable_symtab. Otherwise, complete the addition of
8181 this TU's symbols to the existing symtab. */
8182 if (sig_type->type_unit_group->compunit_symtab == NULL)
8183 {
8184 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8185 sig_type->type_unit_group->compunit_symtab = cust;
8186
8187 if (cust != NULL)
8188 {
8189 /* Set symtab language to language from DW_AT_language. If the
8190 compilation is from a C file generated by language preprocessors,
8191 do not set the language if it was already deduced by
8192 start_subfile. */
8193 if (!(cu->language == language_c
8194 && COMPUNIT_FILETABS (cust)->language != language_c))
8195 COMPUNIT_FILETABS (cust)->language = cu->language;
8196 }
8197 }
8198 else
8199 {
8200 augment_type_symtab ();
8201 cust = sig_type->type_unit_group->compunit_symtab;
8202 }
8203
8204 if (dwarf2_per_objfile->using_index)
8205 per_cu->v.quick->compunit_symtab = cust;
8206 else
8207 {
8208 struct partial_symtab *pst = per_cu->v.psymtab;
8209 pst->compunit_symtab = cust;
8210 pst->readin = 1;
8211 }
8212
8213 do_cleanups (back_to);
8214 }
8215
8216 /* Process an imported unit DIE. */
8217
8218 static void
8219 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8220 {
8221 struct attribute *attr;
8222
8223 /* For now we don't handle imported units in type units. */
8224 if (cu->per_cu->is_debug_types)
8225 {
8226 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8227 " supported in type units [in module %s]"),
8228 objfile_name (cu->objfile));
8229 }
8230
8231 attr = dwarf2_attr (die, DW_AT_import, cu);
8232 if (attr != NULL)
8233 {
8234 struct dwarf2_per_cu_data *per_cu;
8235 sect_offset offset;
8236 int is_dwz;
8237
8238 offset = dwarf2_get_ref_die_offset (attr);
8239 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8240 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8241
8242 /* If necessary, add it to the queue and load its DIEs. */
8243 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8244 load_full_comp_unit (per_cu, cu->language);
8245
8246 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8247 per_cu);
8248 }
8249 }
8250
8251 /* Reset the in_process bit of a die. */
8252
8253 static void
8254 reset_die_in_process (void *arg)
8255 {
8256 struct die_info *die = (struct die_info *) arg;
8257
8258 die->in_process = 0;
8259 }
8260
8261 /* Process a die and its children. */
8262
8263 static void
8264 process_die (struct die_info *die, struct dwarf2_cu *cu)
8265 {
8266 struct cleanup *in_process;
8267
8268 /* We should only be processing those not already in process. */
8269 gdb_assert (!die->in_process);
8270
8271 die->in_process = 1;
8272 in_process = make_cleanup (reset_die_in_process,die);
8273
8274 switch (die->tag)
8275 {
8276 case DW_TAG_padding:
8277 break;
8278 case DW_TAG_compile_unit:
8279 case DW_TAG_partial_unit:
8280 read_file_scope (die, cu);
8281 break;
8282 case DW_TAG_type_unit:
8283 read_type_unit_scope (die, cu);
8284 break;
8285 case DW_TAG_subprogram:
8286 case DW_TAG_inlined_subroutine:
8287 read_func_scope (die, cu);
8288 break;
8289 case DW_TAG_lexical_block:
8290 case DW_TAG_try_block:
8291 case DW_TAG_catch_block:
8292 read_lexical_block_scope (die, cu);
8293 break;
8294 case DW_TAG_GNU_call_site:
8295 read_call_site_scope (die, cu);
8296 break;
8297 case DW_TAG_class_type:
8298 case DW_TAG_interface_type:
8299 case DW_TAG_structure_type:
8300 case DW_TAG_union_type:
8301 process_structure_scope (die, cu);
8302 break;
8303 case DW_TAG_enumeration_type:
8304 process_enumeration_scope (die, cu);
8305 break;
8306
8307 /* These dies have a type, but processing them does not create
8308 a symbol or recurse to process the children. Therefore we can
8309 read them on-demand through read_type_die. */
8310 case DW_TAG_subroutine_type:
8311 case DW_TAG_set_type:
8312 case DW_TAG_array_type:
8313 case DW_TAG_pointer_type:
8314 case DW_TAG_ptr_to_member_type:
8315 case DW_TAG_reference_type:
8316 case DW_TAG_string_type:
8317 break;
8318
8319 case DW_TAG_base_type:
8320 case DW_TAG_subrange_type:
8321 case DW_TAG_typedef:
8322 /* Add a typedef symbol for the type definition, if it has a
8323 DW_AT_name. */
8324 new_symbol (die, read_type_die (die, cu), cu);
8325 break;
8326 case DW_TAG_common_block:
8327 read_common_block (die, cu);
8328 break;
8329 case DW_TAG_common_inclusion:
8330 break;
8331 case DW_TAG_namespace:
8332 cu->processing_has_namespace_info = 1;
8333 read_namespace (die, cu);
8334 break;
8335 case DW_TAG_module:
8336 cu->processing_has_namespace_info = 1;
8337 read_module (die, cu);
8338 break;
8339 case DW_TAG_imported_declaration:
8340 cu->processing_has_namespace_info = 1;
8341 if (read_namespace_alias (die, cu))
8342 break;
8343 /* The declaration is not a global namespace alias: fall through. */
8344 case DW_TAG_imported_module:
8345 cu->processing_has_namespace_info = 1;
8346 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8347 || cu->language != language_fortran))
8348 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8349 dwarf_tag_name (die->tag));
8350 read_import_statement (die, cu);
8351 break;
8352
8353 case DW_TAG_imported_unit:
8354 process_imported_unit_die (die, cu);
8355 break;
8356
8357 default:
8358 new_symbol (die, NULL, cu);
8359 break;
8360 }
8361
8362 do_cleanups (in_process);
8363 }
8364 \f
8365 /* DWARF name computation. */
8366
8367 /* A helper function for dwarf2_compute_name which determines whether DIE
8368 needs to have the name of the scope prepended to the name listed in the
8369 die. */
8370
8371 static int
8372 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8373 {
8374 struct attribute *attr;
8375
8376 switch (die->tag)
8377 {
8378 case DW_TAG_namespace:
8379 case DW_TAG_typedef:
8380 case DW_TAG_class_type:
8381 case DW_TAG_interface_type:
8382 case DW_TAG_structure_type:
8383 case DW_TAG_union_type:
8384 case DW_TAG_enumeration_type:
8385 case DW_TAG_enumerator:
8386 case DW_TAG_subprogram:
8387 case DW_TAG_inlined_subroutine:
8388 case DW_TAG_member:
8389 case DW_TAG_imported_declaration:
8390 return 1;
8391
8392 case DW_TAG_variable:
8393 case DW_TAG_constant:
8394 /* We only need to prefix "globally" visible variables. These include
8395 any variable marked with DW_AT_external or any variable that
8396 lives in a namespace. [Variables in anonymous namespaces
8397 require prefixing, but they are not DW_AT_external.] */
8398
8399 if (dwarf2_attr (die, DW_AT_specification, cu))
8400 {
8401 struct dwarf2_cu *spec_cu = cu;
8402
8403 return die_needs_namespace (die_specification (die, &spec_cu),
8404 spec_cu);
8405 }
8406
8407 attr = dwarf2_attr (die, DW_AT_external, cu);
8408 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8409 && die->parent->tag != DW_TAG_module)
8410 return 0;
8411 /* A variable in a lexical block of some kind does not need a
8412 namespace, even though in C++ such variables may be external
8413 and have a mangled name. */
8414 if (die->parent->tag == DW_TAG_lexical_block
8415 || die->parent->tag == DW_TAG_try_block
8416 || die->parent->tag == DW_TAG_catch_block
8417 || die->parent->tag == DW_TAG_subprogram)
8418 return 0;
8419 return 1;
8420
8421 default:
8422 return 0;
8423 }
8424 }
8425
8426 /* Retrieve the last character from a mem_file. */
8427
8428 static void
8429 do_ui_file_peek_last (void *object, const char *buffer, long length)
8430 {
8431 char *last_char_p = (char *) object;
8432
8433 if (length > 0)
8434 *last_char_p = buffer[length - 1];
8435 }
8436
8437 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8438 compute the physname for the object, which include a method's:
8439 - formal parameters (C++),
8440 - receiver type (Go),
8441
8442 The term "physname" is a bit confusing.
8443 For C++, for example, it is the demangled name.
8444 For Go, for example, it's the mangled name.
8445
8446 For Ada, return the DIE's linkage name rather than the fully qualified
8447 name. PHYSNAME is ignored..
8448
8449 The result is allocated on the objfile_obstack and canonicalized. */
8450
8451 static const char *
8452 dwarf2_compute_name (const char *name,
8453 struct die_info *die, struct dwarf2_cu *cu,
8454 int physname)
8455 {
8456 struct objfile *objfile = cu->objfile;
8457
8458 if (name == NULL)
8459 name = dwarf2_name (die, cu);
8460
8461 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8462 but otherwise compute it by typename_concat inside GDB.
8463 FIXME: Actually this is not really true, or at least not always true.
8464 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8465 Fortran names because there is no mangling standard. So new_symbol_full
8466 will set the demangled name to the result of dwarf2_full_name, and it is
8467 the demangled name that GDB uses if it exists. */
8468 if (cu->language == language_ada
8469 || (cu->language == language_fortran && physname))
8470 {
8471 /* For Ada unit, we prefer the linkage name over the name, as
8472 the former contains the exported name, which the user expects
8473 to be able to reference. Ideally, we want the user to be able
8474 to reference this entity using either natural or linkage name,
8475 but we haven't started looking at this enhancement yet. */
8476 const char *linkage_name;
8477
8478 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8479 if (linkage_name == NULL)
8480 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8481 if (linkage_name != NULL)
8482 return linkage_name;
8483 }
8484
8485 /* These are the only languages we know how to qualify names in. */
8486 if (name != NULL
8487 && (cu->language == language_cplus
8488 || cu->language == language_fortran || cu->language == language_d
8489 || cu->language == language_rust))
8490 {
8491 if (die_needs_namespace (die, cu))
8492 {
8493 long length;
8494 const char *prefix;
8495 struct ui_file *buf;
8496 const char *canonical_name = NULL;
8497
8498 prefix = determine_prefix (die, cu);
8499 buf = mem_fileopen ();
8500 if (*prefix != '\0')
8501 {
8502 char *prefixed_name = typename_concat (NULL, prefix, name,
8503 physname, cu);
8504
8505 fputs_unfiltered (prefixed_name, buf);
8506 xfree (prefixed_name);
8507 }
8508 else
8509 fputs_unfiltered (name, buf);
8510
8511 /* Template parameters may be specified in the DIE's DW_AT_name, or
8512 as children with DW_TAG_template_type_param or
8513 DW_TAG_value_type_param. If the latter, add them to the name
8514 here. If the name already has template parameters, then
8515 skip this step; some versions of GCC emit both, and
8516 it is more efficient to use the pre-computed name.
8517
8518 Something to keep in mind about this process: it is very
8519 unlikely, or in some cases downright impossible, to produce
8520 something that will match the mangled name of a function.
8521 If the definition of the function has the same debug info,
8522 we should be able to match up with it anyway. But fallbacks
8523 using the minimal symbol, for instance to find a method
8524 implemented in a stripped copy of libstdc++, will not work.
8525 If we do not have debug info for the definition, we will have to
8526 match them up some other way.
8527
8528 When we do name matching there is a related problem with function
8529 templates; two instantiated function templates are allowed to
8530 differ only by their return types, which we do not add here. */
8531
8532 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8533 {
8534 struct attribute *attr;
8535 struct die_info *child;
8536 int first = 1;
8537
8538 die->building_fullname = 1;
8539
8540 for (child = die->child; child != NULL; child = child->sibling)
8541 {
8542 struct type *type;
8543 LONGEST value;
8544 const gdb_byte *bytes;
8545 struct dwarf2_locexpr_baton *baton;
8546 struct value *v;
8547
8548 if (child->tag != DW_TAG_template_type_param
8549 && child->tag != DW_TAG_template_value_param)
8550 continue;
8551
8552 if (first)
8553 {
8554 fputs_unfiltered ("<", buf);
8555 first = 0;
8556 }
8557 else
8558 fputs_unfiltered (", ", buf);
8559
8560 attr = dwarf2_attr (child, DW_AT_type, cu);
8561 if (attr == NULL)
8562 {
8563 complaint (&symfile_complaints,
8564 _("template parameter missing DW_AT_type"));
8565 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8566 continue;
8567 }
8568 type = die_type (child, cu);
8569
8570 if (child->tag == DW_TAG_template_type_param)
8571 {
8572 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8573 continue;
8574 }
8575
8576 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8577 if (attr == NULL)
8578 {
8579 complaint (&symfile_complaints,
8580 _("template parameter missing "
8581 "DW_AT_const_value"));
8582 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8583 continue;
8584 }
8585
8586 dwarf2_const_value_attr (attr, type, name,
8587 &cu->comp_unit_obstack, cu,
8588 &value, &bytes, &baton);
8589
8590 if (TYPE_NOSIGN (type))
8591 /* GDB prints characters as NUMBER 'CHAR'. If that's
8592 changed, this can use value_print instead. */
8593 c_printchar (value, type, buf);
8594 else
8595 {
8596 struct value_print_options opts;
8597
8598 if (baton != NULL)
8599 v = dwarf2_evaluate_loc_desc (type, NULL,
8600 baton->data,
8601 baton->size,
8602 baton->per_cu);
8603 else if (bytes != NULL)
8604 {
8605 v = allocate_value (type);
8606 memcpy (value_contents_writeable (v), bytes,
8607 TYPE_LENGTH (type));
8608 }
8609 else
8610 v = value_from_longest (type, value);
8611
8612 /* Specify decimal so that we do not depend on
8613 the radix. */
8614 get_formatted_print_options (&opts, 'd');
8615 opts.raw = 1;
8616 value_print (v, buf, &opts);
8617 release_value (v);
8618 value_free (v);
8619 }
8620 }
8621
8622 die->building_fullname = 0;
8623
8624 if (!first)
8625 {
8626 /* Close the argument list, with a space if necessary
8627 (nested templates). */
8628 char last_char = '\0';
8629 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8630 if (last_char == '>')
8631 fputs_unfiltered (" >", buf);
8632 else
8633 fputs_unfiltered (">", buf);
8634 }
8635 }
8636
8637 /* For C++ methods, append formal parameter type
8638 information, if PHYSNAME. */
8639
8640 if (physname && die->tag == DW_TAG_subprogram
8641 && cu->language == language_cplus)
8642 {
8643 struct type *type = read_type_die (die, cu);
8644
8645 c_type_print_args (type, buf, 1, cu->language,
8646 &type_print_raw_options);
8647
8648 if (cu->language == language_cplus)
8649 {
8650 /* Assume that an artificial first parameter is
8651 "this", but do not crash if it is not. RealView
8652 marks unnamed (and thus unused) parameters as
8653 artificial; there is no way to differentiate
8654 the two cases. */
8655 if (TYPE_NFIELDS (type) > 0
8656 && TYPE_FIELD_ARTIFICIAL (type, 0)
8657 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8658 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8659 0))))
8660 fputs_unfiltered (" const", buf);
8661 }
8662 }
8663
8664 std::string intermediate_name = ui_file_as_string (buf);
8665 ui_file_delete (buf);
8666
8667 if (cu->language == language_cplus)
8668 canonical_name
8669 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8670 &objfile->per_bfd->storage_obstack);
8671
8672 /* If we only computed INTERMEDIATE_NAME, or if
8673 INTERMEDIATE_NAME is already canonical, then we need to
8674 copy it to the appropriate obstack. */
8675 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8676 name = ((const char *)
8677 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8678 intermediate_name.c_str (),
8679 intermediate_name.length ()));
8680 else
8681 name = canonical_name;
8682 }
8683 }
8684
8685 return name;
8686 }
8687
8688 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8689 If scope qualifiers are appropriate they will be added. The result
8690 will be allocated on the storage_obstack, or NULL if the DIE does
8691 not have a name. NAME may either be from a previous call to
8692 dwarf2_name or NULL.
8693
8694 The output string will be canonicalized (if C++). */
8695
8696 static const char *
8697 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8698 {
8699 return dwarf2_compute_name (name, die, cu, 0);
8700 }
8701
8702 /* Construct a physname for the given DIE in CU. NAME may either be
8703 from a previous call to dwarf2_name or NULL. The result will be
8704 allocated on the objfile_objstack or NULL if the DIE does not have a
8705 name.
8706
8707 The output string will be canonicalized (if C++). */
8708
8709 static const char *
8710 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8711 {
8712 struct objfile *objfile = cu->objfile;
8713 const char *retval, *mangled = NULL, *canon = NULL;
8714 struct cleanup *back_to;
8715 int need_copy = 1;
8716
8717 /* In this case dwarf2_compute_name is just a shortcut not building anything
8718 on its own. */
8719 if (!die_needs_namespace (die, cu))
8720 return dwarf2_compute_name (name, die, cu, 1);
8721
8722 back_to = make_cleanup (null_cleanup, NULL);
8723
8724 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8725 if (mangled == NULL)
8726 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8727
8728 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8729 See https://github.com/rust-lang/rust/issues/32925. */
8730 if (cu->language == language_rust && mangled != NULL
8731 && strchr (mangled, '{') != NULL)
8732 mangled = NULL;
8733
8734 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8735 has computed. */
8736 if (mangled != NULL)
8737 {
8738 char *demangled;
8739
8740 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8741 type. It is easier for GDB users to search for such functions as
8742 `name(params)' than `long name(params)'. In such case the minimal
8743 symbol names do not match the full symbol names but for template
8744 functions there is never a need to look up their definition from their
8745 declaration so the only disadvantage remains the minimal symbol
8746 variant `long name(params)' does not have the proper inferior type.
8747 */
8748
8749 if (cu->language == language_go)
8750 {
8751 /* This is a lie, but we already lie to the caller new_symbol_full.
8752 new_symbol_full assumes we return the mangled name.
8753 This just undoes that lie until things are cleaned up. */
8754 demangled = NULL;
8755 }
8756 else
8757 {
8758 demangled = gdb_demangle (mangled,
8759 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8760 }
8761 if (demangled)
8762 {
8763 make_cleanup (xfree, demangled);
8764 canon = demangled;
8765 }
8766 else
8767 {
8768 canon = mangled;
8769 need_copy = 0;
8770 }
8771 }
8772
8773 if (canon == NULL || check_physname)
8774 {
8775 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8776
8777 if (canon != NULL && strcmp (physname, canon) != 0)
8778 {
8779 /* It may not mean a bug in GDB. The compiler could also
8780 compute DW_AT_linkage_name incorrectly. But in such case
8781 GDB would need to be bug-to-bug compatible. */
8782
8783 complaint (&symfile_complaints,
8784 _("Computed physname <%s> does not match demangled <%s> "
8785 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8786 physname, canon, mangled, die->offset.sect_off,
8787 objfile_name (objfile));
8788
8789 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8790 is available here - over computed PHYSNAME. It is safer
8791 against both buggy GDB and buggy compilers. */
8792
8793 retval = canon;
8794 }
8795 else
8796 {
8797 retval = physname;
8798 need_copy = 0;
8799 }
8800 }
8801 else
8802 retval = canon;
8803
8804 if (need_copy)
8805 retval = ((const char *)
8806 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8807 retval, strlen (retval)));
8808
8809 do_cleanups (back_to);
8810 return retval;
8811 }
8812
8813 /* Inspect DIE in CU for a namespace alias. If one exists, record
8814 a new symbol for it.
8815
8816 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8817
8818 static int
8819 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8820 {
8821 struct attribute *attr;
8822
8823 /* If the die does not have a name, this is not a namespace
8824 alias. */
8825 attr = dwarf2_attr (die, DW_AT_name, cu);
8826 if (attr != NULL)
8827 {
8828 int num;
8829 struct die_info *d = die;
8830 struct dwarf2_cu *imported_cu = cu;
8831
8832 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8833 keep inspecting DIEs until we hit the underlying import. */
8834 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8835 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8836 {
8837 attr = dwarf2_attr (d, DW_AT_import, cu);
8838 if (attr == NULL)
8839 break;
8840
8841 d = follow_die_ref (d, attr, &imported_cu);
8842 if (d->tag != DW_TAG_imported_declaration)
8843 break;
8844 }
8845
8846 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8847 {
8848 complaint (&symfile_complaints,
8849 _("DIE at 0x%x has too many recursively imported "
8850 "declarations"), d->offset.sect_off);
8851 return 0;
8852 }
8853
8854 if (attr != NULL)
8855 {
8856 struct type *type;
8857 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8858
8859 type = get_die_type_at_offset (offset, cu->per_cu);
8860 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8861 {
8862 /* This declaration is a global namespace alias. Add
8863 a symbol for it whose type is the aliased namespace. */
8864 new_symbol (die, type, cu);
8865 return 1;
8866 }
8867 }
8868 }
8869
8870 return 0;
8871 }
8872
8873 /* Return the using directives repository (global or local?) to use in the
8874 current context for LANGUAGE.
8875
8876 For Ada, imported declarations can materialize renamings, which *may* be
8877 global. However it is impossible (for now?) in DWARF to distinguish
8878 "external" imported declarations and "static" ones. As all imported
8879 declarations seem to be static in all other languages, make them all CU-wide
8880 global only in Ada. */
8881
8882 static struct using_direct **
8883 using_directives (enum language language)
8884 {
8885 if (language == language_ada && context_stack_depth == 0)
8886 return &global_using_directives;
8887 else
8888 return &local_using_directives;
8889 }
8890
8891 /* Read the import statement specified by the given die and record it. */
8892
8893 static void
8894 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8895 {
8896 struct objfile *objfile = cu->objfile;
8897 struct attribute *import_attr;
8898 struct die_info *imported_die, *child_die;
8899 struct dwarf2_cu *imported_cu;
8900 const char *imported_name;
8901 const char *imported_name_prefix;
8902 const char *canonical_name;
8903 const char *import_alias;
8904 const char *imported_declaration = NULL;
8905 const char *import_prefix;
8906 VEC (const_char_ptr) *excludes = NULL;
8907 struct cleanup *cleanups;
8908
8909 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8910 if (import_attr == NULL)
8911 {
8912 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8913 dwarf_tag_name (die->tag));
8914 return;
8915 }
8916
8917 imported_cu = cu;
8918 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8919 imported_name = dwarf2_name (imported_die, imported_cu);
8920 if (imported_name == NULL)
8921 {
8922 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8923
8924 The import in the following code:
8925 namespace A
8926 {
8927 typedef int B;
8928 }
8929
8930 int main ()
8931 {
8932 using A::B;
8933 B b;
8934 return b;
8935 }
8936
8937 ...
8938 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8939 <52> DW_AT_decl_file : 1
8940 <53> DW_AT_decl_line : 6
8941 <54> DW_AT_import : <0x75>
8942 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8943 <59> DW_AT_name : B
8944 <5b> DW_AT_decl_file : 1
8945 <5c> DW_AT_decl_line : 2
8946 <5d> DW_AT_type : <0x6e>
8947 ...
8948 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8949 <76> DW_AT_byte_size : 4
8950 <77> DW_AT_encoding : 5 (signed)
8951
8952 imports the wrong die ( 0x75 instead of 0x58 ).
8953 This case will be ignored until the gcc bug is fixed. */
8954 return;
8955 }
8956
8957 /* Figure out the local name after import. */
8958 import_alias = dwarf2_name (die, cu);
8959
8960 /* Figure out where the statement is being imported to. */
8961 import_prefix = determine_prefix (die, cu);
8962
8963 /* Figure out what the scope of the imported die is and prepend it
8964 to the name of the imported die. */
8965 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8966
8967 if (imported_die->tag != DW_TAG_namespace
8968 && imported_die->tag != DW_TAG_module)
8969 {
8970 imported_declaration = imported_name;
8971 canonical_name = imported_name_prefix;
8972 }
8973 else if (strlen (imported_name_prefix) > 0)
8974 canonical_name = obconcat (&objfile->objfile_obstack,
8975 imported_name_prefix,
8976 (cu->language == language_d ? "." : "::"),
8977 imported_name, (char *) NULL);
8978 else
8979 canonical_name = imported_name;
8980
8981 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8982
8983 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8984 for (child_die = die->child; child_die && child_die->tag;
8985 child_die = sibling_die (child_die))
8986 {
8987 /* DWARF-4: A Fortran use statement with a “rename list” may be
8988 represented by an imported module entry with an import attribute
8989 referring to the module and owned entries corresponding to those
8990 entities that are renamed as part of being imported. */
8991
8992 if (child_die->tag != DW_TAG_imported_declaration)
8993 {
8994 complaint (&symfile_complaints,
8995 _("child DW_TAG_imported_declaration expected "
8996 "- DIE at 0x%x [in module %s]"),
8997 child_die->offset.sect_off, objfile_name (objfile));
8998 continue;
8999 }
9000
9001 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9002 if (import_attr == NULL)
9003 {
9004 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9005 dwarf_tag_name (child_die->tag));
9006 continue;
9007 }
9008
9009 imported_cu = cu;
9010 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9011 &imported_cu);
9012 imported_name = dwarf2_name (imported_die, imported_cu);
9013 if (imported_name == NULL)
9014 {
9015 complaint (&symfile_complaints,
9016 _("child DW_TAG_imported_declaration has unknown "
9017 "imported name - DIE at 0x%x [in module %s]"),
9018 child_die->offset.sect_off, objfile_name (objfile));
9019 continue;
9020 }
9021
9022 VEC_safe_push (const_char_ptr, excludes, imported_name);
9023
9024 process_die (child_die, cu);
9025 }
9026
9027 add_using_directive (using_directives (cu->language),
9028 import_prefix,
9029 canonical_name,
9030 import_alias,
9031 imported_declaration,
9032 excludes,
9033 0,
9034 &objfile->objfile_obstack);
9035
9036 do_cleanups (cleanups);
9037 }
9038
9039 /* Cleanup function for handle_DW_AT_stmt_list. */
9040
9041 static void
9042 free_cu_line_header (void *arg)
9043 {
9044 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9045
9046 free_line_header (cu->line_header);
9047 cu->line_header = NULL;
9048 }
9049
9050 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9051 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9052 this, it was first present in GCC release 4.3.0. */
9053
9054 static int
9055 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9056 {
9057 if (!cu->checked_producer)
9058 check_producer (cu);
9059
9060 return cu->producer_is_gcc_lt_4_3;
9061 }
9062
9063 static void
9064 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9065 const char **name, const char **comp_dir)
9066 {
9067 /* Find the filename. Do not use dwarf2_name here, since the filename
9068 is not a source language identifier. */
9069 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9070 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9071
9072 if (*comp_dir == NULL
9073 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9074 && IS_ABSOLUTE_PATH (*name))
9075 {
9076 char *d = ldirname (*name);
9077
9078 *comp_dir = d;
9079 if (d != NULL)
9080 make_cleanup (xfree, d);
9081 }
9082 if (*comp_dir != NULL)
9083 {
9084 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9085 directory, get rid of it. */
9086 const char *cp = strchr (*comp_dir, ':');
9087
9088 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9089 *comp_dir = cp + 1;
9090 }
9091
9092 if (*name == NULL)
9093 *name = "<unknown>";
9094 }
9095
9096 /* Handle DW_AT_stmt_list for a compilation unit.
9097 DIE is the DW_TAG_compile_unit die for CU.
9098 COMP_DIR is the compilation directory. LOWPC is passed to
9099 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9100
9101 static void
9102 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9103 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9104 {
9105 struct objfile *objfile = dwarf2_per_objfile->objfile;
9106 struct attribute *attr;
9107 unsigned int line_offset;
9108 struct line_header line_header_local;
9109 hashval_t line_header_local_hash;
9110 unsigned u;
9111 void **slot;
9112 int decode_mapping;
9113
9114 gdb_assert (! cu->per_cu->is_debug_types);
9115
9116 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9117 if (attr == NULL)
9118 return;
9119
9120 line_offset = DW_UNSND (attr);
9121
9122 /* The line header hash table is only created if needed (it exists to
9123 prevent redundant reading of the line table for partial_units).
9124 If we're given a partial_unit, we'll need it. If we're given a
9125 compile_unit, then use the line header hash table if it's already
9126 created, but don't create one just yet. */
9127
9128 if (dwarf2_per_objfile->line_header_hash == NULL
9129 && die->tag == DW_TAG_partial_unit)
9130 {
9131 dwarf2_per_objfile->line_header_hash
9132 = htab_create_alloc_ex (127, line_header_hash_voidp,
9133 line_header_eq_voidp,
9134 free_line_header_voidp,
9135 &objfile->objfile_obstack,
9136 hashtab_obstack_allocate,
9137 dummy_obstack_deallocate);
9138 }
9139
9140 line_header_local.offset.sect_off = line_offset;
9141 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9142 line_header_local_hash = line_header_hash (&line_header_local);
9143 if (dwarf2_per_objfile->line_header_hash != NULL)
9144 {
9145 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9146 &line_header_local,
9147 line_header_local_hash, NO_INSERT);
9148
9149 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9150 is not present in *SLOT (since if there is something in *SLOT then
9151 it will be for a partial_unit). */
9152 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9153 {
9154 gdb_assert (*slot != NULL);
9155 cu->line_header = (struct line_header *) *slot;
9156 return;
9157 }
9158 }
9159
9160 /* dwarf_decode_line_header does not yet provide sufficient information.
9161 We always have to call also dwarf_decode_lines for it. */
9162 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9163 if (cu->line_header == NULL)
9164 return;
9165
9166 if (dwarf2_per_objfile->line_header_hash == NULL)
9167 slot = NULL;
9168 else
9169 {
9170 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9171 &line_header_local,
9172 line_header_local_hash, INSERT);
9173 gdb_assert (slot != NULL);
9174 }
9175 if (slot != NULL && *slot == NULL)
9176 {
9177 /* This newly decoded line number information unit will be owned
9178 by line_header_hash hash table. */
9179 *slot = cu->line_header;
9180 }
9181 else
9182 {
9183 /* We cannot free any current entry in (*slot) as that struct line_header
9184 may be already used by multiple CUs. Create only temporary decoded
9185 line_header for this CU - it may happen at most once for each line
9186 number information unit. And if we're not using line_header_hash
9187 then this is what we want as well. */
9188 gdb_assert (die->tag != DW_TAG_partial_unit);
9189 make_cleanup (free_cu_line_header, cu);
9190 }
9191 decode_mapping = (die->tag != DW_TAG_partial_unit);
9192 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9193 decode_mapping);
9194 }
9195
9196 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9197
9198 static void
9199 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9200 {
9201 struct objfile *objfile = dwarf2_per_objfile->objfile;
9202 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9203 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9204 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9205 CORE_ADDR highpc = ((CORE_ADDR) 0);
9206 struct attribute *attr;
9207 const char *name = NULL;
9208 const char *comp_dir = NULL;
9209 struct die_info *child_die;
9210 CORE_ADDR baseaddr;
9211
9212 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9213
9214 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9215
9216 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9217 from finish_block. */
9218 if (lowpc == ((CORE_ADDR) -1))
9219 lowpc = highpc;
9220 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9221
9222 find_file_and_directory (die, cu, &name, &comp_dir);
9223
9224 prepare_one_comp_unit (cu, die, cu->language);
9225
9226 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9227 standardised yet. As a workaround for the language detection we fall
9228 back to the DW_AT_producer string. */
9229 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9230 cu->language = language_opencl;
9231
9232 /* Similar hack for Go. */
9233 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9234 set_cu_language (DW_LANG_Go, cu);
9235
9236 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9237
9238 /* Decode line number information if present. We do this before
9239 processing child DIEs, so that the line header table is available
9240 for DW_AT_decl_file. */
9241 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9242
9243 /* Process all dies in compilation unit. */
9244 if (die->child != NULL)
9245 {
9246 child_die = die->child;
9247 while (child_die && child_die->tag)
9248 {
9249 process_die (child_die, cu);
9250 child_die = sibling_die (child_die);
9251 }
9252 }
9253
9254 /* Decode macro information, if present. Dwarf 2 macro information
9255 refers to information in the line number info statement program
9256 header, so we can only read it if we've read the header
9257 successfully. */
9258 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9259 if (attr && cu->line_header)
9260 {
9261 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9262 complaint (&symfile_complaints,
9263 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9264
9265 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9266 }
9267 else
9268 {
9269 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9270 if (attr && cu->line_header)
9271 {
9272 unsigned int macro_offset = DW_UNSND (attr);
9273
9274 dwarf_decode_macros (cu, macro_offset, 0);
9275 }
9276 }
9277
9278 do_cleanups (back_to);
9279 }
9280
9281 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9282 Create the set of symtabs used by this TU, or if this TU is sharing
9283 symtabs with another TU and the symtabs have already been created
9284 then restore those symtabs in the line header.
9285 We don't need the pc/line-number mapping for type units. */
9286
9287 static void
9288 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9289 {
9290 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9291 struct type_unit_group *tu_group;
9292 int first_time;
9293 struct line_header *lh;
9294 struct attribute *attr;
9295 unsigned int i, line_offset;
9296 struct signatured_type *sig_type;
9297
9298 gdb_assert (per_cu->is_debug_types);
9299 sig_type = (struct signatured_type *) per_cu;
9300
9301 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9302
9303 /* If we're using .gdb_index (includes -readnow) then
9304 per_cu->type_unit_group may not have been set up yet. */
9305 if (sig_type->type_unit_group == NULL)
9306 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9307 tu_group = sig_type->type_unit_group;
9308
9309 /* If we've already processed this stmt_list there's no real need to
9310 do it again, we could fake it and just recreate the part we need
9311 (file name,index -> symtab mapping). If data shows this optimization
9312 is useful we can do it then. */
9313 first_time = tu_group->compunit_symtab == NULL;
9314
9315 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9316 debug info. */
9317 lh = NULL;
9318 if (attr != NULL)
9319 {
9320 line_offset = DW_UNSND (attr);
9321 lh = dwarf_decode_line_header (line_offset, cu);
9322 }
9323 if (lh == NULL)
9324 {
9325 if (first_time)
9326 dwarf2_start_symtab (cu, "", NULL, 0);
9327 else
9328 {
9329 gdb_assert (tu_group->symtabs == NULL);
9330 restart_symtab (tu_group->compunit_symtab, "", 0);
9331 }
9332 return;
9333 }
9334
9335 cu->line_header = lh;
9336 make_cleanup (free_cu_line_header, cu);
9337
9338 if (first_time)
9339 {
9340 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9341
9342 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9343 still initializing it, and our caller (a few levels up)
9344 process_full_type_unit still needs to know if this is the first
9345 time. */
9346
9347 tu_group->num_symtabs = lh->num_file_names;
9348 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9349
9350 for (i = 0; i < lh->num_file_names; ++i)
9351 {
9352 const char *dir = NULL;
9353 struct file_entry *fe = &lh->file_names[i];
9354
9355 if (fe->dir_index && lh->include_dirs != NULL)
9356 dir = lh->include_dirs[fe->dir_index - 1];
9357 dwarf2_start_subfile (fe->name, dir);
9358
9359 if (current_subfile->symtab == NULL)
9360 {
9361 /* NOTE: start_subfile will recognize when it's been passed
9362 a file it has already seen. So we can't assume there's a
9363 simple mapping from lh->file_names to subfiles, plus
9364 lh->file_names may contain dups. */
9365 current_subfile->symtab
9366 = allocate_symtab (cust, current_subfile->name);
9367 }
9368
9369 fe->symtab = current_subfile->symtab;
9370 tu_group->symtabs[i] = fe->symtab;
9371 }
9372 }
9373 else
9374 {
9375 restart_symtab (tu_group->compunit_symtab, "", 0);
9376
9377 for (i = 0; i < lh->num_file_names; ++i)
9378 {
9379 struct file_entry *fe = &lh->file_names[i];
9380
9381 fe->symtab = tu_group->symtabs[i];
9382 }
9383 }
9384
9385 /* The main symtab is allocated last. Type units don't have DW_AT_name
9386 so they don't have a "real" (so to speak) symtab anyway.
9387 There is later code that will assign the main symtab to all symbols
9388 that don't have one. We need to handle the case of a symbol with a
9389 missing symtab (DW_AT_decl_file) anyway. */
9390 }
9391
9392 /* Process DW_TAG_type_unit.
9393 For TUs we want to skip the first top level sibling if it's not the
9394 actual type being defined by this TU. In this case the first top
9395 level sibling is there to provide context only. */
9396
9397 static void
9398 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9399 {
9400 struct die_info *child_die;
9401
9402 prepare_one_comp_unit (cu, die, language_minimal);
9403
9404 /* Initialize (or reinitialize) the machinery for building symtabs.
9405 We do this before processing child DIEs, so that the line header table
9406 is available for DW_AT_decl_file. */
9407 setup_type_unit_groups (die, cu);
9408
9409 if (die->child != NULL)
9410 {
9411 child_die = die->child;
9412 while (child_die && child_die->tag)
9413 {
9414 process_die (child_die, cu);
9415 child_die = sibling_die (child_die);
9416 }
9417 }
9418 }
9419 \f
9420 /* DWO/DWP files.
9421
9422 http://gcc.gnu.org/wiki/DebugFission
9423 http://gcc.gnu.org/wiki/DebugFissionDWP
9424
9425 To simplify handling of both DWO files ("object" files with the DWARF info)
9426 and DWP files (a file with the DWOs packaged up into one file), we treat
9427 DWP files as having a collection of virtual DWO files. */
9428
9429 static hashval_t
9430 hash_dwo_file (const void *item)
9431 {
9432 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9433 hashval_t hash;
9434
9435 hash = htab_hash_string (dwo_file->dwo_name);
9436 if (dwo_file->comp_dir != NULL)
9437 hash += htab_hash_string (dwo_file->comp_dir);
9438 return hash;
9439 }
9440
9441 static int
9442 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9443 {
9444 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9445 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9446
9447 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9448 return 0;
9449 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9450 return lhs->comp_dir == rhs->comp_dir;
9451 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9452 }
9453
9454 /* Allocate a hash table for DWO files. */
9455
9456 static htab_t
9457 allocate_dwo_file_hash_table (void)
9458 {
9459 struct objfile *objfile = dwarf2_per_objfile->objfile;
9460
9461 return htab_create_alloc_ex (41,
9462 hash_dwo_file,
9463 eq_dwo_file,
9464 NULL,
9465 &objfile->objfile_obstack,
9466 hashtab_obstack_allocate,
9467 dummy_obstack_deallocate);
9468 }
9469
9470 /* Lookup DWO file DWO_NAME. */
9471
9472 static void **
9473 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9474 {
9475 struct dwo_file find_entry;
9476 void **slot;
9477
9478 if (dwarf2_per_objfile->dwo_files == NULL)
9479 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9480
9481 memset (&find_entry, 0, sizeof (find_entry));
9482 find_entry.dwo_name = dwo_name;
9483 find_entry.comp_dir = comp_dir;
9484 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9485
9486 return slot;
9487 }
9488
9489 static hashval_t
9490 hash_dwo_unit (const void *item)
9491 {
9492 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9493
9494 /* This drops the top 32 bits of the id, but is ok for a hash. */
9495 return dwo_unit->signature;
9496 }
9497
9498 static int
9499 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9500 {
9501 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9502 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9503
9504 /* The signature is assumed to be unique within the DWO file.
9505 So while object file CU dwo_id's always have the value zero,
9506 that's OK, assuming each object file DWO file has only one CU,
9507 and that's the rule for now. */
9508 return lhs->signature == rhs->signature;
9509 }
9510
9511 /* Allocate a hash table for DWO CUs,TUs.
9512 There is one of these tables for each of CUs,TUs for each DWO file. */
9513
9514 static htab_t
9515 allocate_dwo_unit_table (struct objfile *objfile)
9516 {
9517 /* Start out with a pretty small number.
9518 Generally DWO files contain only one CU and maybe some TUs. */
9519 return htab_create_alloc_ex (3,
9520 hash_dwo_unit,
9521 eq_dwo_unit,
9522 NULL,
9523 &objfile->objfile_obstack,
9524 hashtab_obstack_allocate,
9525 dummy_obstack_deallocate);
9526 }
9527
9528 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9529
9530 struct create_dwo_cu_data
9531 {
9532 struct dwo_file *dwo_file;
9533 struct dwo_unit dwo_unit;
9534 };
9535
9536 /* die_reader_func for create_dwo_cu. */
9537
9538 static void
9539 create_dwo_cu_reader (const struct die_reader_specs *reader,
9540 const gdb_byte *info_ptr,
9541 struct die_info *comp_unit_die,
9542 int has_children,
9543 void *datap)
9544 {
9545 struct dwarf2_cu *cu = reader->cu;
9546 sect_offset offset = cu->per_cu->offset;
9547 struct dwarf2_section_info *section = cu->per_cu->section;
9548 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9549 struct dwo_file *dwo_file = data->dwo_file;
9550 struct dwo_unit *dwo_unit = &data->dwo_unit;
9551 struct attribute *attr;
9552
9553 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9554 if (attr == NULL)
9555 {
9556 complaint (&symfile_complaints,
9557 _("Dwarf Error: debug entry at offset 0x%x is missing"
9558 " its dwo_id [in module %s]"),
9559 offset.sect_off, dwo_file->dwo_name);
9560 return;
9561 }
9562
9563 dwo_unit->dwo_file = dwo_file;
9564 dwo_unit->signature = DW_UNSND (attr);
9565 dwo_unit->section = section;
9566 dwo_unit->offset = offset;
9567 dwo_unit->length = cu->per_cu->length;
9568
9569 if (dwarf_read_debug)
9570 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9571 offset.sect_off, hex_string (dwo_unit->signature));
9572 }
9573
9574 /* Create the dwo_unit for the lone CU in DWO_FILE.
9575 Note: This function processes DWO files only, not DWP files. */
9576
9577 static struct dwo_unit *
9578 create_dwo_cu (struct dwo_file *dwo_file)
9579 {
9580 struct objfile *objfile = dwarf2_per_objfile->objfile;
9581 struct dwarf2_section_info *section = &dwo_file->sections.info;
9582 const gdb_byte *info_ptr, *end_ptr;
9583 struct create_dwo_cu_data create_dwo_cu_data;
9584 struct dwo_unit *dwo_unit;
9585
9586 dwarf2_read_section (objfile, section);
9587 info_ptr = section->buffer;
9588
9589 if (info_ptr == NULL)
9590 return NULL;
9591
9592 if (dwarf_read_debug)
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9595 get_section_name (section),
9596 get_section_file_name (section));
9597 }
9598
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
9613 per_cu.section = section;
9614
9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
9628 dwo_file->dwo_name, objfile_name (objfile));
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
9635
9636 info_ptr += per_cu.length;
9637 }
9638
9639 return dwo_unit;
9640 }
9641
9642 /* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
9645 DWP Version 1:
9646
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
9659
9660 Numbers are recorded using the byte order of the application binary.
9661
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9666
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
9673
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
9759
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
9762
9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9764
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
9768
9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
9770
9771 Because M > N and H' and M are relatively prime, the search is guaranteed
9772 to stop at an unused slot or find the match. */
9773
9774 /* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779 static struct dwp_hash_table *
9780 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781 {
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
9784 const gdb_byte *index_ptr, *index_end;
9785 struct dwarf2_section_info *index;
9786 uint32_t version, nr_columns, nr_units, nr_slots;
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
9813 if (version != 1 && version != 2)
9814 {
9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
9816 " [in module %s]"),
9817 pulongest (version), dwp_file->name);
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9822 " is not power of 2 [in module %s]"),
9823 pulongest (nr_slots), dwp_file->name);
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
9927
9928 return htab;
9929 }
9930
9931 /* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
9935 read comes from the DWP V1 hash table, not the full ELF section table.
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939 static int
9940 locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
9942 {
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->abbrev.s.section != NULL)
9949 return 0;
9950 sections->abbrev.s.section = sectp;
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
9957 if (sections->info_or_types.s.section != NULL)
9958 return 0;
9959 sections->info_or_types.s.section = sectp;
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
9965 if (sections->line.s.section != NULL)
9966 return 0;
9967 sections->line.s.section = sectp;
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
9973 if (sections->loc.s.section != NULL)
9974 return 0;
9975 sections->loc.s.section = sectp;
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
9981 if (sections->macinfo.s.section != NULL)
9982 return 0;
9983 sections->macinfo.s.section = sectp;
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
9989 if (sections->macro.s.section != NULL)
9990 return 0;
9991 sections->macro.s.section = sectp;
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
9997 if (sections->str_offsets.s.section != NULL)
9998 return 0;
9999 sections->str_offsets.s.section = sectp;
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009 }
10010
10011 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
10015
10016 static struct dwo_unit *
10017 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
10021 {
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
10029 struct virtual_v1_dwo_sections sections;
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct cleanup *cleanups;
10033 int i;
10034
10035 gdb_assert (dwp_file->version == 1);
10036
10037 if (dwarf_read_debug)
10038 {
10039 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10040 kind,
10041 pulongest (unit_index), hex_string (signature),
10042 dwp_file->name);
10043 }
10044
10045 /* Fetch the sections of this DWO unit.
10046 Put a limit on the number of sections we look for so that bad data
10047 doesn't cause us to loop forever. */
10048
10049 #define MAX_NR_V1_DWO_SECTIONS \
10050 (1 /* .debug_info or .debug_types */ \
10051 + 1 /* .debug_abbrev */ \
10052 + 1 /* .debug_line */ \
10053 + 1 /* .debug_loc */ \
10054 + 1 /* .debug_str_offsets */ \
10055 + 1 /* .debug_macro or .debug_macinfo */ \
10056 + 1 /* trailing zero */)
10057
10058 memset (&sections, 0, sizeof (sections));
10059 cleanups = make_cleanup (null_cleanup, 0);
10060
10061 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10062 {
10063 asection *sectp;
10064 uint32_t section_nr =
10065 read_4_bytes (dbfd,
10066 dwp_htab->section_pool.v1.indices
10067 + (unit_index + i) * sizeof (uint32_t));
10068
10069 if (section_nr == 0)
10070 break;
10071 if (section_nr >= dwp_file->num_sections)
10072 {
10073 error (_("Dwarf Error: bad DWP hash table, section number too large"
10074 " [in module %s]"),
10075 dwp_file->name);
10076 }
10077
10078 sectp = dwp_file->elf_sections[section_nr];
10079 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10080 {
10081 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10082 " [in module %s]"),
10083 dwp_file->name);
10084 }
10085 }
10086
10087 if (i < 2
10088 || dwarf2_section_empty_p (&sections.info_or_types)
10089 || dwarf2_section_empty_p (&sections.abbrev))
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10092 " [in module %s]"),
10093 dwp_file->name);
10094 }
10095 if (i == MAX_NR_V1_DWO_SECTIONS)
10096 {
10097 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10098 " [in module %s]"),
10099 dwp_file->name);
10100 }
10101
10102 /* It's easier for the rest of the code if we fake a struct dwo_file and
10103 have dwo_unit "live" in that. At least for now.
10104
10105 The DWP file can be made up of a random collection of CUs and TUs.
10106 However, for each CU + set of TUs that came from the same original DWO
10107 file, we can combine them back into a virtual DWO file to save space
10108 (fewer struct dwo_file objects to allocate). Remember that for really
10109 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10110
10111 virtual_dwo_name =
10112 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10113 get_section_id (&sections.abbrev),
10114 get_section_id (&sections.line),
10115 get_section_id (&sections.loc),
10116 get_section_id (&sections.str_offsets));
10117 make_cleanup (xfree, virtual_dwo_name);
10118 /* Can we use an existing virtual DWO file? */
10119 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10120 /* Create one if necessary. */
10121 if (*dwo_file_slot == NULL)
10122 {
10123 if (dwarf_read_debug)
10124 {
10125 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10126 virtual_dwo_name);
10127 }
10128 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10129 dwo_file->dwo_name
10130 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10131 virtual_dwo_name,
10132 strlen (virtual_dwo_name));
10133 dwo_file->comp_dir = comp_dir;
10134 dwo_file->sections.abbrev = sections.abbrev;
10135 dwo_file->sections.line = sections.line;
10136 dwo_file->sections.loc = sections.loc;
10137 dwo_file->sections.macinfo = sections.macinfo;
10138 dwo_file->sections.macro = sections.macro;
10139 dwo_file->sections.str_offsets = sections.str_offsets;
10140 /* The "str" section is global to the entire DWP file. */
10141 dwo_file->sections.str = dwp_file->sections.str;
10142 /* The info or types section is assigned below to dwo_unit,
10143 there's no need to record it in dwo_file.
10144 Also, we can't simply record type sections in dwo_file because
10145 we record a pointer into the vector in dwo_unit. As we collect more
10146 types we'll grow the vector and eventually have to reallocate space
10147 for it, invalidating all copies of pointers into the previous
10148 contents. */
10149 *dwo_file_slot = dwo_file;
10150 }
10151 else
10152 {
10153 if (dwarf_read_debug)
10154 {
10155 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10156 virtual_dwo_name);
10157 }
10158 dwo_file = (struct dwo_file *) *dwo_file_slot;
10159 }
10160 do_cleanups (cleanups);
10161
10162 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10163 dwo_unit->dwo_file = dwo_file;
10164 dwo_unit->signature = signature;
10165 dwo_unit->section =
10166 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10167 *dwo_unit->section = sections.info_or_types;
10168 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10169
10170 return dwo_unit;
10171 }
10172
10173 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10174 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10175 piece within that section used by a TU/CU, return a virtual section
10176 of just that piece. */
10177
10178 static struct dwarf2_section_info
10179 create_dwp_v2_section (struct dwarf2_section_info *section,
10180 bfd_size_type offset, bfd_size_type size)
10181 {
10182 struct dwarf2_section_info result;
10183 asection *sectp;
10184
10185 gdb_assert (section != NULL);
10186 gdb_assert (!section->is_virtual);
10187
10188 memset (&result, 0, sizeof (result));
10189 result.s.containing_section = section;
10190 result.is_virtual = 1;
10191
10192 if (size == 0)
10193 return result;
10194
10195 sectp = get_section_bfd_section (section);
10196
10197 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10198 bounds of the real section. This is a pretty-rare event, so just
10199 flag an error (easier) instead of a warning and trying to cope. */
10200 if (sectp == NULL
10201 || offset + size > bfd_get_section_size (sectp))
10202 {
10203 bfd *abfd = sectp->owner;
10204
10205 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10206 " in section %s [in module %s]"),
10207 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10208 objfile_name (dwarf2_per_objfile->objfile));
10209 }
10210
10211 result.virtual_offset = offset;
10212 result.size = size;
10213 return result;
10214 }
10215
10216 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10217 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10218 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10219 This is for DWP version 2 files. */
10220
10221 static struct dwo_unit *
10222 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10223 uint32_t unit_index,
10224 const char *comp_dir,
10225 ULONGEST signature, int is_debug_types)
10226 {
10227 struct objfile *objfile = dwarf2_per_objfile->objfile;
10228 const struct dwp_hash_table *dwp_htab =
10229 is_debug_types ? dwp_file->tus : dwp_file->cus;
10230 bfd *dbfd = dwp_file->dbfd;
10231 const char *kind = is_debug_types ? "TU" : "CU";
10232 struct dwo_file *dwo_file;
10233 struct dwo_unit *dwo_unit;
10234 struct virtual_v2_dwo_sections sections;
10235 void **dwo_file_slot;
10236 char *virtual_dwo_name;
10237 struct cleanup *cleanups;
10238 int i;
10239
10240 gdb_assert (dwp_file->version == 2);
10241
10242 if (dwarf_read_debug)
10243 {
10244 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10245 kind,
10246 pulongest (unit_index), hex_string (signature),
10247 dwp_file->name);
10248 }
10249
10250 /* Fetch the section offsets of this DWO unit. */
10251
10252 memset (&sections, 0, sizeof (sections));
10253 cleanups = make_cleanup (null_cleanup, 0);
10254
10255 for (i = 0; i < dwp_htab->nr_columns; ++i)
10256 {
10257 uint32_t offset = read_4_bytes (dbfd,
10258 dwp_htab->section_pool.v2.offsets
10259 + (((unit_index - 1) * dwp_htab->nr_columns
10260 + i)
10261 * sizeof (uint32_t)));
10262 uint32_t size = read_4_bytes (dbfd,
10263 dwp_htab->section_pool.v2.sizes
10264 + (((unit_index - 1) * dwp_htab->nr_columns
10265 + i)
10266 * sizeof (uint32_t)));
10267
10268 switch (dwp_htab->section_pool.v2.section_ids[i])
10269 {
10270 case DW_SECT_INFO:
10271 case DW_SECT_TYPES:
10272 sections.info_or_types_offset = offset;
10273 sections.info_or_types_size = size;
10274 break;
10275 case DW_SECT_ABBREV:
10276 sections.abbrev_offset = offset;
10277 sections.abbrev_size = size;
10278 break;
10279 case DW_SECT_LINE:
10280 sections.line_offset = offset;
10281 sections.line_size = size;
10282 break;
10283 case DW_SECT_LOC:
10284 sections.loc_offset = offset;
10285 sections.loc_size = size;
10286 break;
10287 case DW_SECT_STR_OFFSETS:
10288 sections.str_offsets_offset = offset;
10289 sections.str_offsets_size = size;
10290 break;
10291 case DW_SECT_MACINFO:
10292 sections.macinfo_offset = offset;
10293 sections.macinfo_size = size;
10294 break;
10295 case DW_SECT_MACRO:
10296 sections.macro_offset = offset;
10297 sections.macro_size = size;
10298 break;
10299 }
10300 }
10301
10302 /* It's easier for the rest of the code if we fake a struct dwo_file and
10303 have dwo_unit "live" in that. At least for now.
10304
10305 The DWP file can be made up of a random collection of CUs and TUs.
10306 However, for each CU + set of TUs that came from the same original DWO
10307 file, we can combine them back into a virtual DWO file to save space
10308 (fewer struct dwo_file objects to allocate). Remember that for really
10309 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10310
10311 virtual_dwo_name =
10312 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10313 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10314 (long) (sections.line_size ? sections.line_offset : 0),
10315 (long) (sections.loc_size ? sections.loc_offset : 0),
10316 (long) (sections.str_offsets_size
10317 ? sections.str_offsets_offset : 0));
10318 make_cleanup (xfree, virtual_dwo_name);
10319 /* Can we use an existing virtual DWO file? */
10320 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10321 /* Create one if necessary. */
10322 if (*dwo_file_slot == NULL)
10323 {
10324 if (dwarf_read_debug)
10325 {
10326 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10327 virtual_dwo_name);
10328 }
10329 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10330 dwo_file->dwo_name
10331 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10332 virtual_dwo_name,
10333 strlen (virtual_dwo_name));
10334 dwo_file->comp_dir = comp_dir;
10335 dwo_file->sections.abbrev =
10336 create_dwp_v2_section (&dwp_file->sections.abbrev,
10337 sections.abbrev_offset, sections.abbrev_size);
10338 dwo_file->sections.line =
10339 create_dwp_v2_section (&dwp_file->sections.line,
10340 sections.line_offset, sections.line_size);
10341 dwo_file->sections.loc =
10342 create_dwp_v2_section (&dwp_file->sections.loc,
10343 sections.loc_offset, sections.loc_size);
10344 dwo_file->sections.macinfo =
10345 create_dwp_v2_section (&dwp_file->sections.macinfo,
10346 sections.macinfo_offset, sections.macinfo_size);
10347 dwo_file->sections.macro =
10348 create_dwp_v2_section (&dwp_file->sections.macro,
10349 sections.macro_offset, sections.macro_size);
10350 dwo_file->sections.str_offsets =
10351 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10352 sections.str_offsets_offset,
10353 sections.str_offsets_size);
10354 /* The "str" section is global to the entire DWP file. */
10355 dwo_file->sections.str = dwp_file->sections.str;
10356 /* The info or types section is assigned below to dwo_unit,
10357 there's no need to record it in dwo_file.
10358 Also, we can't simply record type sections in dwo_file because
10359 we record a pointer into the vector in dwo_unit. As we collect more
10360 types we'll grow the vector and eventually have to reallocate space
10361 for it, invalidating all copies of pointers into the previous
10362 contents. */
10363 *dwo_file_slot = dwo_file;
10364 }
10365 else
10366 {
10367 if (dwarf_read_debug)
10368 {
10369 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10370 virtual_dwo_name);
10371 }
10372 dwo_file = (struct dwo_file *) *dwo_file_slot;
10373 }
10374 do_cleanups (cleanups);
10375
10376 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10377 dwo_unit->dwo_file = dwo_file;
10378 dwo_unit->signature = signature;
10379 dwo_unit->section =
10380 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10381 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10382 ? &dwp_file->sections.types
10383 : &dwp_file->sections.info,
10384 sections.info_or_types_offset,
10385 sections.info_or_types_size);
10386 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10387
10388 return dwo_unit;
10389 }
10390
10391 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10392 Returns NULL if the signature isn't found. */
10393
10394 static struct dwo_unit *
10395 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10396 ULONGEST signature, int is_debug_types)
10397 {
10398 const struct dwp_hash_table *dwp_htab =
10399 is_debug_types ? dwp_file->tus : dwp_file->cus;
10400 bfd *dbfd = dwp_file->dbfd;
10401 uint32_t mask = dwp_htab->nr_slots - 1;
10402 uint32_t hash = signature & mask;
10403 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10404 unsigned int i;
10405 void **slot;
10406 struct dwo_unit find_dwo_cu;
10407
10408 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10409 find_dwo_cu.signature = signature;
10410 slot = htab_find_slot (is_debug_types
10411 ? dwp_file->loaded_tus
10412 : dwp_file->loaded_cus,
10413 &find_dwo_cu, INSERT);
10414
10415 if (*slot != NULL)
10416 return (struct dwo_unit *) *slot;
10417
10418 /* Use a for loop so that we don't loop forever on bad debug info. */
10419 for (i = 0; i < dwp_htab->nr_slots; ++i)
10420 {
10421 ULONGEST signature_in_table;
10422
10423 signature_in_table =
10424 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10425 if (signature_in_table == signature)
10426 {
10427 uint32_t unit_index =
10428 read_4_bytes (dbfd,
10429 dwp_htab->unit_table + hash * sizeof (uint32_t));
10430
10431 if (dwp_file->version == 1)
10432 {
10433 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10434 comp_dir, signature,
10435 is_debug_types);
10436 }
10437 else
10438 {
10439 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10440 comp_dir, signature,
10441 is_debug_types);
10442 }
10443 return (struct dwo_unit *) *slot;
10444 }
10445 if (signature_in_table == 0)
10446 return NULL;
10447 hash = (hash + hash2) & mask;
10448 }
10449
10450 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10451 " [in module %s]"),
10452 dwp_file->name);
10453 }
10454
10455 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10456 Open the file specified by FILE_NAME and hand it off to BFD for
10457 preliminary analysis. Return a newly initialized bfd *, which
10458 includes a canonicalized copy of FILE_NAME.
10459 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10460 SEARCH_CWD is true if the current directory is to be searched.
10461 It will be searched before debug-file-directory.
10462 If successful, the file is added to the bfd include table of the
10463 objfile's bfd (see gdb_bfd_record_inclusion).
10464 If unable to find/open the file, return NULL.
10465 NOTE: This function is derived from symfile_bfd_open. */
10466
10467 static bfd *
10468 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10469 {
10470 bfd *sym_bfd;
10471 int desc, flags;
10472 char *absolute_name;
10473 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10474 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10475 to debug_file_directory. */
10476 char *search_path;
10477 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10478
10479 if (search_cwd)
10480 {
10481 if (*debug_file_directory != '\0')
10482 search_path = concat (".", dirname_separator_string,
10483 debug_file_directory, (char *) NULL);
10484 else
10485 search_path = xstrdup (".");
10486 }
10487 else
10488 search_path = xstrdup (debug_file_directory);
10489
10490 flags = OPF_RETURN_REALPATH;
10491 if (is_dwp)
10492 flags |= OPF_SEARCH_IN_PATH;
10493 desc = openp (search_path, flags, file_name,
10494 O_RDONLY | O_BINARY, &absolute_name);
10495 xfree (search_path);
10496 if (desc < 0)
10497 return NULL;
10498
10499 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10500 xfree (absolute_name);
10501 if (sym_bfd == NULL)
10502 return NULL;
10503 bfd_set_cacheable (sym_bfd, 1);
10504
10505 if (!bfd_check_format (sym_bfd, bfd_object))
10506 {
10507 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10508 return NULL;
10509 }
10510
10511 /* Success. Record the bfd as having been included by the objfile's bfd.
10512 This is important because things like demangled_names_hash lives in the
10513 objfile's per_bfd space and may have references to things like symbol
10514 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10515 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10516
10517 return sym_bfd;
10518 }
10519
10520 /* Try to open DWO file FILE_NAME.
10521 COMP_DIR is the DW_AT_comp_dir attribute.
10522 The result is the bfd handle of the file.
10523 If there is a problem finding or opening the file, return NULL.
10524 Upon success, the canonicalized path of the file is stored in the bfd,
10525 same as symfile_bfd_open. */
10526
10527 static bfd *
10528 open_dwo_file (const char *file_name, const char *comp_dir)
10529 {
10530 bfd *abfd;
10531
10532 if (IS_ABSOLUTE_PATH (file_name))
10533 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10534
10535 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10536
10537 if (comp_dir != NULL)
10538 {
10539 char *path_to_try = concat (comp_dir, SLASH_STRING,
10540 file_name, (char *) NULL);
10541
10542 /* NOTE: If comp_dir is a relative path, this will also try the
10543 search path, which seems useful. */
10544 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10545 xfree (path_to_try);
10546 if (abfd != NULL)
10547 return abfd;
10548 }
10549
10550 /* That didn't work, try debug-file-directory, which, despite its name,
10551 is a list of paths. */
10552
10553 if (*debug_file_directory == '\0')
10554 return NULL;
10555
10556 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10557 }
10558
10559 /* This function is mapped across the sections and remembers the offset and
10560 size of each of the DWO debugging sections we are interested in. */
10561
10562 static void
10563 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10564 {
10565 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10566 const struct dwop_section_names *names = &dwop_section_names;
10567
10568 if (section_is_p (sectp->name, &names->abbrev_dwo))
10569 {
10570 dwo_sections->abbrev.s.section = sectp;
10571 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10572 }
10573 else if (section_is_p (sectp->name, &names->info_dwo))
10574 {
10575 dwo_sections->info.s.section = sectp;
10576 dwo_sections->info.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->line_dwo))
10579 {
10580 dwo_sections->line.s.section = sectp;
10581 dwo_sections->line.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->loc_dwo))
10584 {
10585 dwo_sections->loc.s.section = sectp;
10586 dwo_sections->loc.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10589 {
10590 dwo_sections->macinfo.s.section = sectp;
10591 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10592 }
10593 else if (section_is_p (sectp->name, &names->macro_dwo))
10594 {
10595 dwo_sections->macro.s.section = sectp;
10596 dwo_sections->macro.size = bfd_get_section_size (sectp);
10597 }
10598 else if (section_is_p (sectp->name, &names->str_dwo))
10599 {
10600 dwo_sections->str.s.section = sectp;
10601 dwo_sections->str.size = bfd_get_section_size (sectp);
10602 }
10603 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10604 {
10605 dwo_sections->str_offsets.s.section = sectp;
10606 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10607 }
10608 else if (section_is_p (sectp->name, &names->types_dwo))
10609 {
10610 struct dwarf2_section_info type_section;
10611
10612 memset (&type_section, 0, sizeof (type_section));
10613 type_section.s.section = sectp;
10614 type_section.size = bfd_get_section_size (sectp);
10615 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10616 &type_section);
10617 }
10618 }
10619
10620 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10621 by PER_CU. This is for the non-DWP case.
10622 The result is NULL if DWO_NAME can't be found. */
10623
10624 static struct dwo_file *
10625 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10626 const char *dwo_name, const char *comp_dir)
10627 {
10628 struct objfile *objfile = dwarf2_per_objfile->objfile;
10629 struct dwo_file *dwo_file;
10630 bfd *dbfd;
10631 struct cleanup *cleanups;
10632
10633 dbfd = open_dwo_file (dwo_name, comp_dir);
10634 if (dbfd == NULL)
10635 {
10636 if (dwarf_read_debug)
10637 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10638 return NULL;
10639 }
10640 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10641 dwo_file->dwo_name = dwo_name;
10642 dwo_file->comp_dir = comp_dir;
10643 dwo_file->dbfd = dbfd;
10644
10645 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10646
10647 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10648
10649 dwo_file->cu = create_dwo_cu (dwo_file);
10650
10651 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10652 dwo_file->sections.types);
10653
10654 discard_cleanups (cleanups);
10655
10656 if (dwarf_read_debug)
10657 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10658
10659 return dwo_file;
10660 }
10661
10662 /* This function is mapped across the sections and remembers the offset and
10663 size of each of the DWP debugging sections common to version 1 and 2 that
10664 we are interested in. */
10665
10666 static void
10667 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10668 void *dwp_file_ptr)
10669 {
10670 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10671 const struct dwop_section_names *names = &dwop_section_names;
10672 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10673
10674 /* Record the ELF section number for later lookup: this is what the
10675 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10676 gdb_assert (elf_section_nr < dwp_file->num_sections);
10677 dwp_file->elf_sections[elf_section_nr] = sectp;
10678
10679 /* Look for specific sections that we need. */
10680 if (section_is_p (sectp->name, &names->str_dwo))
10681 {
10682 dwp_file->sections.str.s.section = sectp;
10683 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10684 }
10685 else if (section_is_p (sectp->name, &names->cu_index))
10686 {
10687 dwp_file->sections.cu_index.s.section = sectp;
10688 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10689 }
10690 else if (section_is_p (sectp->name, &names->tu_index))
10691 {
10692 dwp_file->sections.tu_index.s.section = sectp;
10693 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10694 }
10695 }
10696
10697 /* This function is mapped across the sections and remembers the offset and
10698 size of each of the DWP version 2 debugging sections that we are interested
10699 in. This is split into a separate function because we don't know if we
10700 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10701
10702 static void
10703 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10704 {
10705 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10706 const struct dwop_section_names *names = &dwop_section_names;
10707 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10708
10709 /* Record the ELF section number for later lookup: this is what the
10710 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10711 gdb_assert (elf_section_nr < dwp_file->num_sections);
10712 dwp_file->elf_sections[elf_section_nr] = sectp;
10713
10714 /* Look for specific sections that we need. */
10715 if (section_is_p (sectp->name, &names->abbrev_dwo))
10716 {
10717 dwp_file->sections.abbrev.s.section = sectp;
10718 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10719 }
10720 else if (section_is_p (sectp->name, &names->info_dwo))
10721 {
10722 dwp_file->sections.info.s.section = sectp;
10723 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->line_dwo))
10726 {
10727 dwp_file->sections.line.s.section = sectp;
10728 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->loc_dwo))
10731 {
10732 dwp_file->sections.loc.s.section = sectp;
10733 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10734 }
10735 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10736 {
10737 dwp_file->sections.macinfo.s.section = sectp;
10738 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10739 }
10740 else if (section_is_p (sectp->name, &names->macro_dwo))
10741 {
10742 dwp_file->sections.macro.s.section = sectp;
10743 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10744 }
10745 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10746 {
10747 dwp_file->sections.str_offsets.s.section = sectp;
10748 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10749 }
10750 else if (section_is_p (sectp->name, &names->types_dwo))
10751 {
10752 dwp_file->sections.types.s.section = sectp;
10753 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10754 }
10755 }
10756
10757 /* Hash function for dwp_file loaded CUs/TUs. */
10758
10759 static hashval_t
10760 hash_dwp_loaded_cutus (const void *item)
10761 {
10762 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10763
10764 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10765 return dwo_unit->signature;
10766 }
10767
10768 /* Equality function for dwp_file loaded CUs/TUs. */
10769
10770 static int
10771 eq_dwp_loaded_cutus (const void *a, const void *b)
10772 {
10773 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10774 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10775
10776 return dua->signature == dub->signature;
10777 }
10778
10779 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10780
10781 static htab_t
10782 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10783 {
10784 return htab_create_alloc_ex (3,
10785 hash_dwp_loaded_cutus,
10786 eq_dwp_loaded_cutus,
10787 NULL,
10788 &objfile->objfile_obstack,
10789 hashtab_obstack_allocate,
10790 dummy_obstack_deallocate);
10791 }
10792
10793 /* Try to open DWP file FILE_NAME.
10794 The result is the bfd handle of the file.
10795 If there is a problem finding or opening the file, return NULL.
10796 Upon success, the canonicalized path of the file is stored in the bfd,
10797 same as symfile_bfd_open. */
10798
10799 static bfd *
10800 open_dwp_file (const char *file_name)
10801 {
10802 bfd *abfd;
10803
10804 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10805 if (abfd != NULL)
10806 return abfd;
10807
10808 /* Work around upstream bug 15652.
10809 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10810 [Whether that's a "bug" is debatable, but it is getting in our way.]
10811 We have no real idea where the dwp file is, because gdb's realpath-ing
10812 of the executable's path may have discarded the needed info.
10813 [IWBN if the dwp file name was recorded in the executable, akin to
10814 .gnu_debuglink, but that doesn't exist yet.]
10815 Strip the directory from FILE_NAME and search again. */
10816 if (*debug_file_directory != '\0')
10817 {
10818 /* Don't implicitly search the current directory here.
10819 If the user wants to search "." to handle this case,
10820 it must be added to debug-file-directory. */
10821 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10822 0 /*search_cwd*/);
10823 }
10824
10825 return NULL;
10826 }
10827
10828 /* Initialize the use of the DWP file for the current objfile.
10829 By convention the name of the DWP file is ${objfile}.dwp.
10830 The result is NULL if it can't be found. */
10831
10832 static struct dwp_file *
10833 open_and_init_dwp_file (void)
10834 {
10835 struct objfile *objfile = dwarf2_per_objfile->objfile;
10836 struct dwp_file *dwp_file;
10837 char *dwp_name;
10838 bfd *dbfd;
10839 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10840
10841 /* Try to find first .dwp for the binary file before any symbolic links
10842 resolving. */
10843
10844 /* If the objfile is a debug file, find the name of the real binary
10845 file and get the name of dwp file from there. */
10846 if (objfile->separate_debug_objfile_backlink != NULL)
10847 {
10848 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10849 const char *backlink_basename = lbasename (backlink->original_name);
10850 char *debug_dirname = ldirname (objfile->original_name);
10851
10852 make_cleanup (xfree, debug_dirname);
10853 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10854 SLASH_STRING, backlink_basename);
10855 }
10856 else
10857 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10858 make_cleanup (xfree, dwp_name);
10859
10860 dbfd = open_dwp_file (dwp_name);
10861 if (dbfd == NULL
10862 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10863 {
10864 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10865 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10866 make_cleanup (xfree, dwp_name);
10867 dbfd = open_dwp_file (dwp_name);
10868 }
10869
10870 if (dbfd == NULL)
10871 {
10872 if (dwarf_read_debug)
10873 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10874 do_cleanups (cleanups);
10875 return NULL;
10876 }
10877 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10878 dwp_file->name = bfd_get_filename (dbfd);
10879 dwp_file->dbfd = dbfd;
10880 do_cleanups (cleanups);
10881
10882 /* +1: section 0 is unused */
10883 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10884 dwp_file->elf_sections =
10885 OBSTACK_CALLOC (&objfile->objfile_obstack,
10886 dwp_file->num_sections, asection *);
10887
10888 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10889
10890 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10891
10892 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10893
10894 /* The DWP file version is stored in the hash table. Oh well. */
10895 if (dwp_file->cus->version != dwp_file->tus->version)
10896 {
10897 /* Technically speaking, we should try to limp along, but this is
10898 pretty bizarre. We use pulongest here because that's the established
10899 portability solution (e.g, we cannot use %u for uint32_t). */
10900 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10901 " TU version %s [in DWP file %s]"),
10902 pulongest (dwp_file->cus->version),
10903 pulongest (dwp_file->tus->version), dwp_name);
10904 }
10905 dwp_file->version = dwp_file->cus->version;
10906
10907 if (dwp_file->version == 2)
10908 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10909
10910 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10911 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10912
10913 if (dwarf_read_debug)
10914 {
10915 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10916 fprintf_unfiltered (gdb_stdlog,
10917 " %s CUs, %s TUs\n",
10918 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10919 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10920 }
10921
10922 return dwp_file;
10923 }
10924
10925 /* Wrapper around open_and_init_dwp_file, only open it once. */
10926
10927 static struct dwp_file *
10928 get_dwp_file (void)
10929 {
10930 if (! dwarf2_per_objfile->dwp_checked)
10931 {
10932 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10933 dwarf2_per_objfile->dwp_checked = 1;
10934 }
10935 return dwarf2_per_objfile->dwp_file;
10936 }
10937
10938 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10939 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10940 or in the DWP file for the objfile, referenced by THIS_UNIT.
10941 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10942 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10943
10944 This is called, for example, when wanting to read a variable with a
10945 complex location. Therefore we don't want to do file i/o for every call.
10946 Therefore we don't want to look for a DWO file on every call.
10947 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10948 then we check if we've already seen DWO_NAME, and only THEN do we check
10949 for a DWO file.
10950
10951 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10952 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10953
10954 static struct dwo_unit *
10955 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10956 const char *dwo_name, const char *comp_dir,
10957 ULONGEST signature, int is_debug_types)
10958 {
10959 struct objfile *objfile = dwarf2_per_objfile->objfile;
10960 const char *kind = is_debug_types ? "TU" : "CU";
10961 void **dwo_file_slot;
10962 struct dwo_file *dwo_file;
10963 struct dwp_file *dwp_file;
10964
10965 /* First see if there's a DWP file.
10966 If we have a DWP file but didn't find the DWO inside it, don't
10967 look for the original DWO file. It makes gdb behave differently
10968 depending on whether one is debugging in the build tree. */
10969
10970 dwp_file = get_dwp_file ();
10971 if (dwp_file != NULL)
10972 {
10973 const struct dwp_hash_table *dwp_htab =
10974 is_debug_types ? dwp_file->tus : dwp_file->cus;
10975
10976 if (dwp_htab != NULL)
10977 {
10978 struct dwo_unit *dwo_cutu =
10979 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10980 signature, is_debug_types);
10981
10982 if (dwo_cutu != NULL)
10983 {
10984 if (dwarf_read_debug)
10985 {
10986 fprintf_unfiltered (gdb_stdlog,
10987 "Virtual DWO %s %s found: @%s\n",
10988 kind, hex_string (signature),
10989 host_address_to_string (dwo_cutu));
10990 }
10991 return dwo_cutu;
10992 }
10993 }
10994 }
10995 else
10996 {
10997 /* No DWP file, look for the DWO file. */
10998
10999 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11000 if (*dwo_file_slot == NULL)
11001 {
11002 /* Read in the file and build a table of the CUs/TUs it contains. */
11003 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11004 }
11005 /* NOTE: This will be NULL if unable to open the file. */
11006 dwo_file = (struct dwo_file *) *dwo_file_slot;
11007
11008 if (dwo_file != NULL)
11009 {
11010 struct dwo_unit *dwo_cutu = NULL;
11011
11012 if (is_debug_types && dwo_file->tus)
11013 {
11014 struct dwo_unit find_dwo_cutu;
11015
11016 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11017 find_dwo_cutu.signature = signature;
11018 dwo_cutu
11019 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11020 }
11021 else if (!is_debug_types && dwo_file->cu)
11022 {
11023 if (signature == dwo_file->cu->signature)
11024 dwo_cutu = dwo_file->cu;
11025 }
11026
11027 if (dwo_cutu != NULL)
11028 {
11029 if (dwarf_read_debug)
11030 {
11031 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11032 kind, dwo_name, hex_string (signature),
11033 host_address_to_string (dwo_cutu));
11034 }
11035 return dwo_cutu;
11036 }
11037 }
11038 }
11039
11040 /* We didn't find it. This could mean a dwo_id mismatch, or
11041 someone deleted the DWO/DWP file, or the search path isn't set up
11042 correctly to find the file. */
11043
11044 if (dwarf_read_debug)
11045 {
11046 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11047 kind, dwo_name, hex_string (signature));
11048 }
11049
11050 /* This is a warning and not a complaint because it can be caused by
11051 pilot error (e.g., user accidentally deleting the DWO). */
11052 {
11053 /* Print the name of the DWP file if we looked there, helps the user
11054 better diagnose the problem. */
11055 char *dwp_text = NULL;
11056 struct cleanup *cleanups;
11057
11058 if (dwp_file != NULL)
11059 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11060 cleanups = make_cleanup (xfree, dwp_text);
11061
11062 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11063 " [in module %s]"),
11064 kind, dwo_name, hex_string (signature),
11065 dwp_text != NULL ? dwp_text : "",
11066 this_unit->is_debug_types ? "TU" : "CU",
11067 this_unit->offset.sect_off, objfile_name (objfile));
11068
11069 do_cleanups (cleanups);
11070 }
11071 return NULL;
11072 }
11073
11074 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11075 See lookup_dwo_cutu_unit for details. */
11076
11077 static struct dwo_unit *
11078 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11079 const char *dwo_name, const char *comp_dir,
11080 ULONGEST signature)
11081 {
11082 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11083 }
11084
11085 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11086 See lookup_dwo_cutu_unit for details. */
11087
11088 static struct dwo_unit *
11089 lookup_dwo_type_unit (struct signatured_type *this_tu,
11090 const char *dwo_name, const char *comp_dir)
11091 {
11092 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11093 }
11094
11095 /* Traversal function for queue_and_load_all_dwo_tus. */
11096
11097 static int
11098 queue_and_load_dwo_tu (void **slot, void *info)
11099 {
11100 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11101 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11102 ULONGEST signature = dwo_unit->signature;
11103 struct signatured_type *sig_type =
11104 lookup_dwo_signatured_type (per_cu->cu, signature);
11105
11106 if (sig_type != NULL)
11107 {
11108 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11109
11110 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11111 a real dependency of PER_CU on SIG_TYPE. That is detected later
11112 while processing PER_CU. */
11113 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11114 load_full_type_unit (sig_cu);
11115 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11116 }
11117
11118 return 1;
11119 }
11120
11121 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11122 The DWO may have the only definition of the type, though it may not be
11123 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11125
11126 static void
11127 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11128 {
11129 struct dwo_unit *dwo_unit;
11130 struct dwo_file *dwo_file;
11131
11132 gdb_assert (!per_cu->is_debug_types);
11133 gdb_assert (get_dwp_file () == NULL);
11134 gdb_assert (per_cu->cu != NULL);
11135
11136 dwo_unit = per_cu->cu->dwo_unit;
11137 gdb_assert (dwo_unit != NULL);
11138
11139 dwo_file = dwo_unit->dwo_file;
11140 if (dwo_file->tus != NULL)
11141 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11142 }
11143
11144 /* Free all resources associated with DWO_FILE.
11145 Close the DWO file and munmap the sections.
11146 All memory should be on the objfile obstack. */
11147
11148 static void
11149 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11150 {
11151
11152 /* Note: dbfd is NULL for virtual DWO files. */
11153 gdb_bfd_unref (dwo_file->dbfd);
11154
11155 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11156 }
11157
11158 /* Wrapper for free_dwo_file for use in cleanups. */
11159
11160 static void
11161 free_dwo_file_cleanup (void *arg)
11162 {
11163 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11164 struct objfile *objfile = dwarf2_per_objfile->objfile;
11165
11166 free_dwo_file (dwo_file, objfile);
11167 }
11168
11169 /* Traversal function for free_dwo_files. */
11170
11171 static int
11172 free_dwo_file_from_slot (void **slot, void *info)
11173 {
11174 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11175 struct objfile *objfile = (struct objfile *) info;
11176
11177 free_dwo_file (dwo_file, objfile);
11178
11179 return 1;
11180 }
11181
11182 /* Free all resources associated with DWO_FILES. */
11183
11184 static void
11185 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11186 {
11187 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11188 }
11189 \f
11190 /* Read in various DIEs. */
11191
11192 /* qsort helper for inherit_abstract_dies. */
11193
11194 static int
11195 unsigned_int_compar (const void *ap, const void *bp)
11196 {
11197 unsigned int a = *(unsigned int *) ap;
11198 unsigned int b = *(unsigned int *) bp;
11199
11200 return (a > b) - (b > a);
11201 }
11202
11203 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11204 Inherit only the children of the DW_AT_abstract_origin DIE not being
11205 already referenced by DW_AT_abstract_origin from the children of the
11206 current DIE. */
11207
11208 static void
11209 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11210 {
11211 struct die_info *child_die;
11212 unsigned die_children_count;
11213 /* CU offsets which were referenced by children of the current DIE. */
11214 sect_offset *offsets;
11215 sect_offset *offsets_end, *offsetp;
11216 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11217 struct die_info *origin_die;
11218 /* Iterator of the ORIGIN_DIE children. */
11219 struct die_info *origin_child_die;
11220 struct cleanup *cleanups;
11221 struct attribute *attr;
11222 struct dwarf2_cu *origin_cu;
11223 struct pending **origin_previous_list_in_scope;
11224
11225 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11226 if (!attr)
11227 return;
11228
11229 /* Note that following die references may follow to a die in a
11230 different cu. */
11231
11232 origin_cu = cu;
11233 origin_die = follow_die_ref (die, attr, &origin_cu);
11234
11235 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11236 symbols in. */
11237 origin_previous_list_in_scope = origin_cu->list_in_scope;
11238 origin_cu->list_in_scope = cu->list_in_scope;
11239
11240 if (die->tag != origin_die->tag
11241 && !(die->tag == DW_TAG_inlined_subroutine
11242 && origin_die->tag == DW_TAG_subprogram))
11243 complaint (&symfile_complaints,
11244 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11245 die->offset.sect_off, origin_die->offset.sect_off);
11246
11247 child_die = die->child;
11248 die_children_count = 0;
11249 while (child_die && child_die->tag)
11250 {
11251 child_die = sibling_die (child_die);
11252 die_children_count++;
11253 }
11254 offsets = XNEWVEC (sect_offset, die_children_count);
11255 cleanups = make_cleanup (xfree, offsets);
11256
11257 offsets_end = offsets;
11258 for (child_die = die->child;
11259 child_die && child_die->tag;
11260 child_die = sibling_die (child_die))
11261 {
11262 struct die_info *child_origin_die;
11263 struct dwarf2_cu *child_origin_cu;
11264
11265 /* We are trying to process concrete instance entries:
11266 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11267 it's not relevant to our analysis here. i.e. detecting DIEs that are
11268 present in the abstract instance but not referenced in the concrete
11269 one. */
11270 if (child_die->tag == DW_TAG_GNU_call_site)
11271 continue;
11272
11273 /* For each CHILD_DIE, find the corresponding child of
11274 ORIGIN_DIE. If there is more than one layer of
11275 DW_AT_abstract_origin, follow them all; there shouldn't be,
11276 but GCC versions at least through 4.4 generate this (GCC PR
11277 40573). */
11278 child_origin_die = child_die;
11279 child_origin_cu = cu;
11280 while (1)
11281 {
11282 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11283 child_origin_cu);
11284 if (attr == NULL)
11285 break;
11286 child_origin_die = follow_die_ref (child_origin_die, attr,
11287 &child_origin_cu);
11288 }
11289
11290 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11291 counterpart may exist. */
11292 if (child_origin_die != child_die)
11293 {
11294 if (child_die->tag != child_origin_die->tag
11295 && !(child_die->tag == DW_TAG_inlined_subroutine
11296 && child_origin_die->tag == DW_TAG_subprogram))
11297 complaint (&symfile_complaints,
11298 _("Child DIE 0x%x and its abstract origin 0x%x have "
11299 "different tags"), child_die->offset.sect_off,
11300 child_origin_die->offset.sect_off);
11301 if (child_origin_die->parent != origin_die)
11302 complaint (&symfile_complaints,
11303 _("Child DIE 0x%x and its abstract origin 0x%x have "
11304 "different parents"), child_die->offset.sect_off,
11305 child_origin_die->offset.sect_off);
11306 else
11307 *offsets_end++ = child_origin_die->offset;
11308 }
11309 }
11310 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11311 unsigned_int_compar);
11312 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11313 if (offsetp[-1].sect_off == offsetp->sect_off)
11314 complaint (&symfile_complaints,
11315 _("Multiple children of DIE 0x%x refer "
11316 "to DIE 0x%x as their abstract origin"),
11317 die->offset.sect_off, offsetp->sect_off);
11318
11319 offsetp = offsets;
11320 origin_child_die = origin_die->child;
11321 while (origin_child_die && origin_child_die->tag)
11322 {
11323 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11324 while (offsetp < offsets_end
11325 && offsetp->sect_off < origin_child_die->offset.sect_off)
11326 offsetp++;
11327 if (offsetp >= offsets_end
11328 || offsetp->sect_off > origin_child_die->offset.sect_off)
11329 {
11330 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11331 Check whether we're already processing ORIGIN_CHILD_DIE.
11332 This can happen with mutually referenced abstract_origins.
11333 PR 16581. */
11334 if (!origin_child_die->in_process)
11335 process_die (origin_child_die, origin_cu);
11336 }
11337 origin_child_die = sibling_die (origin_child_die);
11338 }
11339 origin_cu->list_in_scope = origin_previous_list_in_scope;
11340
11341 do_cleanups (cleanups);
11342 }
11343
11344 static void
11345 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11346 {
11347 struct objfile *objfile = cu->objfile;
11348 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11349 struct context_stack *newobj;
11350 CORE_ADDR lowpc;
11351 CORE_ADDR highpc;
11352 struct die_info *child_die;
11353 struct attribute *attr, *call_line, *call_file;
11354 const char *name;
11355 CORE_ADDR baseaddr;
11356 struct block *block;
11357 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11358 VEC (symbolp) *template_args = NULL;
11359 struct template_symbol *templ_func = NULL;
11360
11361 if (inlined_func)
11362 {
11363 /* If we do not have call site information, we can't show the
11364 caller of this inlined function. That's too confusing, so
11365 only use the scope for local variables. */
11366 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11367 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11368 if (call_line == NULL || call_file == NULL)
11369 {
11370 read_lexical_block_scope (die, cu);
11371 return;
11372 }
11373 }
11374
11375 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11376
11377 name = dwarf2_name (die, cu);
11378
11379 /* Ignore functions with missing or empty names. These are actually
11380 illegal according to the DWARF standard. */
11381 if (name == NULL)
11382 {
11383 complaint (&symfile_complaints,
11384 _("missing name for subprogram DIE at %d"),
11385 die->offset.sect_off);
11386 return;
11387 }
11388
11389 /* Ignore functions with missing or invalid low and high pc attributes. */
11390 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11391 <= PC_BOUNDS_INVALID)
11392 {
11393 attr = dwarf2_attr (die, DW_AT_external, cu);
11394 if (!attr || !DW_UNSND (attr))
11395 complaint (&symfile_complaints,
11396 _("cannot get low and high bounds "
11397 "for subprogram DIE at %d"),
11398 die->offset.sect_off);
11399 return;
11400 }
11401
11402 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11403 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11404
11405 /* If we have any template arguments, then we must allocate a
11406 different sort of symbol. */
11407 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11408 {
11409 if (child_die->tag == DW_TAG_template_type_param
11410 || child_die->tag == DW_TAG_template_value_param)
11411 {
11412 templ_func = allocate_template_symbol (objfile);
11413 templ_func->base.is_cplus_template_function = 1;
11414 break;
11415 }
11416 }
11417
11418 newobj = push_context (0, lowpc);
11419 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11420 (struct symbol *) templ_func);
11421
11422 /* If there is a location expression for DW_AT_frame_base, record
11423 it. */
11424 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11425 if (attr)
11426 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11427
11428 /* If there is a location for the static link, record it. */
11429 newobj->static_link = NULL;
11430 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11431 if (attr)
11432 {
11433 newobj->static_link
11434 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11435 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11436 }
11437
11438 cu->list_in_scope = &local_symbols;
11439
11440 if (die->child != NULL)
11441 {
11442 child_die = die->child;
11443 while (child_die && child_die->tag)
11444 {
11445 if (child_die->tag == DW_TAG_template_type_param
11446 || child_die->tag == DW_TAG_template_value_param)
11447 {
11448 struct symbol *arg = new_symbol (child_die, NULL, cu);
11449
11450 if (arg != NULL)
11451 VEC_safe_push (symbolp, template_args, arg);
11452 }
11453 else
11454 process_die (child_die, cu);
11455 child_die = sibling_die (child_die);
11456 }
11457 }
11458
11459 inherit_abstract_dies (die, cu);
11460
11461 /* If we have a DW_AT_specification, we might need to import using
11462 directives from the context of the specification DIE. See the
11463 comment in determine_prefix. */
11464 if (cu->language == language_cplus
11465 && dwarf2_attr (die, DW_AT_specification, cu))
11466 {
11467 struct dwarf2_cu *spec_cu = cu;
11468 struct die_info *spec_die = die_specification (die, &spec_cu);
11469
11470 while (spec_die)
11471 {
11472 child_die = spec_die->child;
11473 while (child_die && child_die->tag)
11474 {
11475 if (child_die->tag == DW_TAG_imported_module)
11476 process_die (child_die, spec_cu);
11477 child_die = sibling_die (child_die);
11478 }
11479
11480 /* In some cases, GCC generates specification DIEs that
11481 themselves contain DW_AT_specification attributes. */
11482 spec_die = die_specification (spec_die, &spec_cu);
11483 }
11484 }
11485
11486 newobj = pop_context ();
11487 /* Make a block for the local symbols within. */
11488 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11489 newobj->static_link, lowpc, highpc);
11490
11491 /* For C++, set the block's scope. */
11492 if ((cu->language == language_cplus
11493 || cu->language == language_fortran
11494 || cu->language == language_d
11495 || cu->language == language_rust)
11496 && cu->processing_has_namespace_info)
11497 block_set_scope (block, determine_prefix (die, cu),
11498 &objfile->objfile_obstack);
11499
11500 /* If we have address ranges, record them. */
11501 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11502
11503 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11504
11505 /* Attach template arguments to function. */
11506 if (! VEC_empty (symbolp, template_args))
11507 {
11508 gdb_assert (templ_func != NULL);
11509
11510 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11511 templ_func->template_arguments
11512 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11513 templ_func->n_template_arguments);
11514 memcpy (templ_func->template_arguments,
11515 VEC_address (symbolp, template_args),
11516 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11517 VEC_free (symbolp, template_args);
11518 }
11519
11520 /* In C++, we can have functions nested inside functions (e.g., when
11521 a function declares a class that has methods). This means that
11522 when we finish processing a function scope, we may need to go
11523 back to building a containing block's symbol lists. */
11524 local_symbols = newobj->locals;
11525 local_using_directives = newobj->local_using_directives;
11526
11527 /* If we've finished processing a top-level function, subsequent
11528 symbols go in the file symbol list. */
11529 if (outermost_context_p ())
11530 cu->list_in_scope = &file_symbols;
11531 }
11532
11533 /* Process all the DIES contained within a lexical block scope. Start
11534 a new scope, process the dies, and then close the scope. */
11535
11536 static void
11537 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11538 {
11539 struct objfile *objfile = cu->objfile;
11540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11541 struct context_stack *newobj;
11542 CORE_ADDR lowpc, highpc;
11543 struct die_info *child_die;
11544 CORE_ADDR baseaddr;
11545
11546 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11547
11548 /* Ignore blocks with missing or invalid low and high pc attributes. */
11549 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11550 as multiple lexical blocks? Handling children in a sane way would
11551 be nasty. Might be easier to properly extend generic blocks to
11552 describe ranges. */
11553 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11554 {
11555 case PC_BOUNDS_NOT_PRESENT:
11556 /* DW_TAG_lexical_block has no attributes, process its children as if
11557 there was no wrapping by that DW_TAG_lexical_block.
11558 GCC does no longer produces such DWARF since GCC r224161. */
11559 for (child_die = die->child;
11560 child_die != NULL && child_die->tag;
11561 child_die = sibling_die (child_die))
11562 process_die (child_die, cu);
11563 return;
11564 case PC_BOUNDS_INVALID:
11565 return;
11566 }
11567 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11568 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11569
11570 push_context (0, lowpc);
11571 if (die->child != NULL)
11572 {
11573 child_die = die->child;
11574 while (child_die && child_die->tag)
11575 {
11576 process_die (child_die, cu);
11577 child_die = sibling_die (child_die);
11578 }
11579 }
11580 inherit_abstract_dies (die, cu);
11581 newobj = pop_context ();
11582
11583 if (local_symbols != NULL || local_using_directives != NULL)
11584 {
11585 struct block *block
11586 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11587 newobj->start_addr, highpc);
11588
11589 /* Note that recording ranges after traversing children, as we
11590 do here, means that recording a parent's ranges entails
11591 walking across all its children's ranges as they appear in
11592 the address map, which is quadratic behavior.
11593
11594 It would be nicer to record the parent's ranges before
11595 traversing its children, simply overriding whatever you find
11596 there. But since we don't even decide whether to create a
11597 block until after we've traversed its children, that's hard
11598 to do. */
11599 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11600 }
11601 local_symbols = newobj->locals;
11602 local_using_directives = newobj->local_using_directives;
11603 }
11604
11605 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11606
11607 static void
11608 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11609 {
11610 struct objfile *objfile = cu->objfile;
11611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11612 CORE_ADDR pc, baseaddr;
11613 struct attribute *attr;
11614 struct call_site *call_site, call_site_local;
11615 void **slot;
11616 int nparams;
11617 struct die_info *child_die;
11618
11619 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11620
11621 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11622 if (!attr)
11623 {
11624 complaint (&symfile_complaints,
11625 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11626 "DIE 0x%x [in module %s]"),
11627 die->offset.sect_off, objfile_name (objfile));
11628 return;
11629 }
11630 pc = attr_value_as_address (attr) + baseaddr;
11631 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11632
11633 if (cu->call_site_htab == NULL)
11634 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11635 NULL, &objfile->objfile_obstack,
11636 hashtab_obstack_allocate, NULL);
11637 call_site_local.pc = pc;
11638 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11639 if (*slot != NULL)
11640 {
11641 complaint (&symfile_complaints,
11642 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11643 "DIE 0x%x [in module %s]"),
11644 paddress (gdbarch, pc), die->offset.sect_off,
11645 objfile_name (objfile));
11646 return;
11647 }
11648
11649 /* Count parameters at the caller. */
11650
11651 nparams = 0;
11652 for (child_die = die->child; child_die && child_die->tag;
11653 child_die = sibling_die (child_die))
11654 {
11655 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11656 {
11657 complaint (&symfile_complaints,
11658 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11659 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11660 child_die->tag, child_die->offset.sect_off,
11661 objfile_name (objfile));
11662 continue;
11663 }
11664
11665 nparams++;
11666 }
11667
11668 call_site
11669 = ((struct call_site *)
11670 obstack_alloc (&objfile->objfile_obstack,
11671 sizeof (*call_site)
11672 + (sizeof (*call_site->parameter) * (nparams - 1))));
11673 *slot = call_site;
11674 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11675 call_site->pc = pc;
11676
11677 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11678 {
11679 struct die_info *func_die;
11680
11681 /* Skip also over DW_TAG_inlined_subroutine. */
11682 for (func_die = die->parent;
11683 func_die && func_die->tag != DW_TAG_subprogram
11684 && func_die->tag != DW_TAG_subroutine_type;
11685 func_die = func_die->parent);
11686
11687 /* DW_AT_GNU_all_call_sites is a superset
11688 of DW_AT_GNU_all_tail_call_sites. */
11689 if (func_die
11690 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11691 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11692 {
11693 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11694 not complete. But keep CALL_SITE for look ups via call_site_htab,
11695 both the initial caller containing the real return address PC and
11696 the final callee containing the current PC of a chain of tail
11697 calls do not need to have the tail call list complete. But any
11698 function candidate for a virtual tail call frame searched via
11699 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11700 determined unambiguously. */
11701 }
11702 else
11703 {
11704 struct type *func_type = NULL;
11705
11706 if (func_die)
11707 func_type = get_die_type (func_die, cu);
11708 if (func_type != NULL)
11709 {
11710 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11711
11712 /* Enlist this call site to the function. */
11713 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11714 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11715 }
11716 else
11717 complaint (&symfile_complaints,
11718 _("Cannot find function owning DW_TAG_GNU_call_site "
11719 "DIE 0x%x [in module %s]"),
11720 die->offset.sect_off, objfile_name (objfile));
11721 }
11722 }
11723
11724 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11725 if (attr == NULL)
11726 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11727 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11728 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11729 /* Keep NULL DWARF_BLOCK. */;
11730 else if (attr_form_is_block (attr))
11731 {
11732 struct dwarf2_locexpr_baton *dlbaton;
11733
11734 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11735 dlbaton->data = DW_BLOCK (attr)->data;
11736 dlbaton->size = DW_BLOCK (attr)->size;
11737 dlbaton->per_cu = cu->per_cu;
11738
11739 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11740 }
11741 else if (attr_form_is_ref (attr))
11742 {
11743 struct dwarf2_cu *target_cu = cu;
11744 struct die_info *target_die;
11745
11746 target_die = follow_die_ref (die, attr, &target_cu);
11747 gdb_assert (target_cu->objfile == objfile);
11748 if (die_is_declaration (target_die, target_cu))
11749 {
11750 const char *target_physname;
11751
11752 /* Prefer the mangled name; otherwise compute the demangled one. */
11753 target_physname = dwarf2_string_attr (target_die,
11754 DW_AT_linkage_name,
11755 target_cu);
11756 if (target_physname == NULL)
11757 target_physname = dwarf2_string_attr (target_die,
11758 DW_AT_MIPS_linkage_name,
11759 target_cu);
11760 if (target_physname == NULL)
11761 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11762 if (target_physname == NULL)
11763 complaint (&symfile_complaints,
11764 _("DW_AT_GNU_call_site_target target DIE has invalid "
11765 "physname, for referencing DIE 0x%x [in module %s]"),
11766 die->offset.sect_off, objfile_name (objfile));
11767 else
11768 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11769 }
11770 else
11771 {
11772 CORE_ADDR lowpc;
11773
11774 /* DW_AT_entry_pc should be preferred. */
11775 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11776 <= PC_BOUNDS_INVALID)
11777 complaint (&symfile_complaints,
11778 _("DW_AT_GNU_call_site_target target DIE has invalid "
11779 "low pc, for referencing DIE 0x%x [in module %s]"),
11780 die->offset.sect_off, objfile_name (objfile));
11781 else
11782 {
11783 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11784 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11785 }
11786 }
11787 }
11788 else
11789 complaint (&symfile_complaints,
11790 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11791 "block nor reference, for DIE 0x%x [in module %s]"),
11792 die->offset.sect_off, objfile_name (objfile));
11793
11794 call_site->per_cu = cu->per_cu;
11795
11796 for (child_die = die->child;
11797 child_die && child_die->tag;
11798 child_die = sibling_die (child_die))
11799 {
11800 struct call_site_parameter *parameter;
11801 struct attribute *loc, *origin;
11802
11803 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11804 {
11805 /* Already printed the complaint above. */
11806 continue;
11807 }
11808
11809 gdb_assert (call_site->parameter_count < nparams);
11810 parameter = &call_site->parameter[call_site->parameter_count];
11811
11812 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11813 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11814 register is contained in DW_AT_GNU_call_site_value. */
11815
11816 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11817 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11818 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11819 {
11820 sect_offset offset;
11821
11822 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11823 offset = dwarf2_get_ref_die_offset (origin);
11824 if (!offset_in_cu_p (&cu->header, offset))
11825 {
11826 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11827 binding can be done only inside one CU. Such referenced DIE
11828 therefore cannot be even moved to DW_TAG_partial_unit. */
11829 complaint (&symfile_complaints,
11830 _("DW_AT_abstract_origin offset is not in CU for "
11831 "DW_TAG_GNU_call_site child DIE 0x%x "
11832 "[in module %s]"),
11833 child_die->offset.sect_off, objfile_name (objfile));
11834 continue;
11835 }
11836 parameter->u.param_offset.cu_off = (offset.sect_off
11837 - cu->header.offset.sect_off);
11838 }
11839 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11840 {
11841 complaint (&symfile_complaints,
11842 _("No DW_FORM_block* DW_AT_location for "
11843 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11844 child_die->offset.sect_off, objfile_name (objfile));
11845 continue;
11846 }
11847 else
11848 {
11849 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11850 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11851 if (parameter->u.dwarf_reg != -1)
11852 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11853 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11854 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11855 &parameter->u.fb_offset))
11856 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11857 else
11858 {
11859 complaint (&symfile_complaints,
11860 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11861 "for DW_FORM_block* DW_AT_location is supported for "
11862 "DW_TAG_GNU_call_site child DIE 0x%x "
11863 "[in module %s]"),
11864 child_die->offset.sect_off, objfile_name (objfile));
11865 continue;
11866 }
11867 }
11868
11869 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11870 if (!attr_form_is_block (attr))
11871 {
11872 complaint (&symfile_complaints,
11873 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11874 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11875 child_die->offset.sect_off, objfile_name (objfile));
11876 continue;
11877 }
11878 parameter->value = DW_BLOCK (attr)->data;
11879 parameter->value_size = DW_BLOCK (attr)->size;
11880
11881 /* Parameters are not pre-cleared by memset above. */
11882 parameter->data_value = NULL;
11883 parameter->data_value_size = 0;
11884 call_site->parameter_count++;
11885
11886 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11887 if (attr)
11888 {
11889 if (!attr_form_is_block (attr))
11890 complaint (&symfile_complaints,
11891 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11892 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11893 child_die->offset.sect_off, objfile_name (objfile));
11894 else
11895 {
11896 parameter->data_value = DW_BLOCK (attr)->data;
11897 parameter->data_value_size = DW_BLOCK (attr)->size;
11898 }
11899 }
11900 }
11901 }
11902
11903 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11904 Return 1 if the attributes are present and valid, otherwise, return 0.
11905 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11906
11907 static int
11908 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11909 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11910 struct partial_symtab *ranges_pst)
11911 {
11912 struct objfile *objfile = cu->objfile;
11913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11914 struct comp_unit_head *cu_header = &cu->header;
11915 bfd *obfd = objfile->obfd;
11916 unsigned int addr_size = cu_header->addr_size;
11917 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11918 /* Base address selection entry. */
11919 CORE_ADDR base;
11920 int found_base;
11921 unsigned int dummy;
11922 const gdb_byte *buffer;
11923 int low_set;
11924 CORE_ADDR low = 0;
11925 CORE_ADDR high = 0;
11926 CORE_ADDR baseaddr;
11927
11928 found_base = cu->base_known;
11929 base = cu->base_address;
11930
11931 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11932 if (offset >= dwarf2_per_objfile->ranges.size)
11933 {
11934 complaint (&symfile_complaints,
11935 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11936 offset);
11937 return 0;
11938 }
11939 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11940
11941 low_set = 0;
11942
11943 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11944
11945 while (1)
11946 {
11947 CORE_ADDR range_beginning, range_end;
11948
11949 range_beginning = read_address (obfd, buffer, cu, &dummy);
11950 buffer += addr_size;
11951 range_end = read_address (obfd, buffer, cu, &dummy);
11952 buffer += addr_size;
11953 offset += 2 * addr_size;
11954
11955 /* An end of list marker is a pair of zero addresses. */
11956 if (range_beginning == 0 && range_end == 0)
11957 /* Found the end of list entry. */
11958 break;
11959
11960 /* Each base address selection entry is a pair of 2 values.
11961 The first is the largest possible address, the second is
11962 the base address. Check for a base address here. */
11963 if ((range_beginning & mask) == mask)
11964 {
11965 /* If we found the largest possible address, then we already
11966 have the base address in range_end. */
11967 base = range_end;
11968 found_base = 1;
11969 continue;
11970 }
11971
11972 if (!found_base)
11973 {
11974 /* We have no valid base address for the ranges
11975 data. */
11976 complaint (&symfile_complaints,
11977 _("Invalid .debug_ranges data (no base address)"));
11978 return 0;
11979 }
11980
11981 if (range_beginning > range_end)
11982 {
11983 /* Inverted range entries are invalid. */
11984 complaint (&symfile_complaints,
11985 _("Invalid .debug_ranges data (inverted range)"));
11986 return 0;
11987 }
11988
11989 /* Empty range entries have no effect. */
11990 if (range_beginning == range_end)
11991 continue;
11992
11993 range_beginning += base;
11994 range_end += base;
11995
11996 /* A not-uncommon case of bad debug info.
11997 Don't pollute the addrmap with bad data. */
11998 if (range_beginning + baseaddr == 0
11999 && !dwarf2_per_objfile->has_section_at_zero)
12000 {
12001 complaint (&symfile_complaints,
12002 _(".debug_ranges entry has start address of zero"
12003 " [in module %s]"), objfile_name (objfile));
12004 continue;
12005 }
12006
12007 if (ranges_pst != NULL)
12008 {
12009 CORE_ADDR lowpc;
12010 CORE_ADDR highpc;
12011
12012 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12013 range_beginning + baseaddr);
12014 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12015 range_end + baseaddr);
12016 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12017 ranges_pst);
12018 }
12019
12020 /* FIXME: This is recording everything as a low-high
12021 segment of consecutive addresses. We should have a
12022 data structure for discontiguous block ranges
12023 instead. */
12024 if (! low_set)
12025 {
12026 low = range_beginning;
12027 high = range_end;
12028 low_set = 1;
12029 }
12030 else
12031 {
12032 if (range_beginning < low)
12033 low = range_beginning;
12034 if (range_end > high)
12035 high = range_end;
12036 }
12037 }
12038
12039 if (! low_set)
12040 /* If the first entry is an end-of-list marker, the range
12041 describes an empty scope, i.e. no instructions. */
12042 return 0;
12043
12044 if (low_return)
12045 *low_return = low;
12046 if (high_return)
12047 *high_return = high;
12048 return 1;
12049 }
12050
12051 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12052 definition for the return value. *LOWPC and *HIGHPC are set iff
12053 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12054
12055 static enum pc_bounds_kind
12056 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12057 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12058 struct partial_symtab *pst)
12059 {
12060 struct attribute *attr;
12061 struct attribute *attr_high;
12062 CORE_ADDR low = 0;
12063 CORE_ADDR high = 0;
12064 enum pc_bounds_kind ret;
12065
12066 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12067 if (attr_high)
12068 {
12069 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12070 if (attr)
12071 {
12072 low = attr_value_as_address (attr);
12073 high = attr_value_as_address (attr_high);
12074 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12075 high += low;
12076 }
12077 else
12078 /* Found high w/o low attribute. */
12079 return PC_BOUNDS_INVALID;
12080
12081 /* Found consecutive range of addresses. */
12082 ret = PC_BOUNDS_HIGH_LOW;
12083 }
12084 else
12085 {
12086 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12087 if (attr != NULL)
12088 {
12089 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12090 We take advantage of the fact that DW_AT_ranges does not appear
12091 in DW_TAG_compile_unit of DWO files. */
12092 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12093 unsigned int ranges_offset = (DW_UNSND (attr)
12094 + (need_ranges_base
12095 ? cu->ranges_base
12096 : 0));
12097
12098 /* Value of the DW_AT_ranges attribute is the offset in the
12099 .debug_ranges section. */
12100 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12101 return PC_BOUNDS_INVALID;
12102 /* Found discontinuous range of addresses. */
12103 ret = PC_BOUNDS_RANGES;
12104 }
12105 else
12106 return PC_BOUNDS_NOT_PRESENT;
12107 }
12108
12109 /* read_partial_die has also the strict LOW < HIGH requirement. */
12110 if (high <= low)
12111 return PC_BOUNDS_INVALID;
12112
12113 /* When using the GNU linker, .gnu.linkonce. sections are used to
12114 eliminate duplicate copies of functions and vtables and such.
12115 The linker will arbitrarily choose one and discard the others.
12116 The AT_*_pc values for such functions refer to local labels in
12117 these sections. If the section from that file was discarded, the
12118 labels are not in the output, so the relocs get a value of 0.
12119 If this is a discarded function, mark the pc bounds as invalid,
12120 so that GDB will ignore it. */
12121 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12122 return PC_BOUNDS_INVALID;
12123
12124 *lowpc = low;
12125 if (highpc)
12126 *highpc = high;
12127 return ret;
12128 }
12129
12130 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12131 its low and high PC addresses. Do nothing if these addresses could not
12132 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12133 and HIGHPC to the high address if greater than HIGHPC. */
12134
12135 static void
12136 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12137 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12138 struct dwarf2_cu *cu)
12139 {
12140 CORE_ADDR low, high;
12141 struct die_info *child = die->child;
12142
12143 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12144 {
12145 *lowpc = std::min (*lowpc, low);
12146 *highpc = std::max (*highpc, high);
12147 }
12148
12149 /* If the language does not allow nested subprograms (either inside
12150 subprograms or lexical blocks), we're done. */
12151 if (cu->language != language_ada)
12152 return;
12153
12154 /* Check all the children of the given DIE. If it contains nested
12155 subprograms, then check their pc bounds. Likewise, we need to
12156 check lexical blocks as well, as they may also contain subprogram
12157 definitions. */
12158 while (child && child->tag)
12159 {
12160 if (child->tag == DW_TAG_subprogram
12161 || child->tag == DW_TAG_lexical_block)
12162 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12163 child = sibling_die (child);
12164 }
12165 }
12166
12167 /* Get the low and high pc's represented by the scope DIE, and store
12168 them in *LOWPC and *HIGHPC. If the correct values can't be
12169 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12170
12171 static void
12172 get_scope_pc_bounds (struct die_info *die,
12173 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12174 struct dwarf2_cu *cu)
12175 {
12176 CORE_ADDR best_low = (CORE_ADDR) -1;
12177 CORE_ADDR best_high = (CORE_ADDR) 0;
12178 CORE_ADDR current_low, current_high;
12179
12180 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12181 >= PC_BOUNDS_RANGES)
12182 {
12183 best_low = current_low;
12184 best_high = current_high;
12185 }
12186 else
12187 {
12188 struct die_info *child = die->child;
12189
12190 while (child && child->tag)
12191 {
12192 switch (child->tag) {
12193 case DW_TAG_subprogram:
12194 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12195 break;
12196 case DW_TAG_namespace:
12197 case DW_TAG_module:
12198 /* FIXME: carlton/2004-01-16: Should we do this for
12199 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12200 that current GCC's always emit the DIEs corresponding
12201 to definitions of methods of classes as children of a
12202 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12203 the DIEs giving the declarations, which could be
12204 anywhere). But I don't see any reason why the
12205 standards says that they have to be there. */
12206 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12207
12208 if (current_low != ((CORE_ADDR) -1))
12209 {
12210 best_low = std::min (best_low, current_low);
12211 best_high = std::max (best_high, current_high);
12212 }
12213 break;
12214 default:
12215 /* Ignore. */
12216 break;
12217 }
12218
12219 child = sibling_die (child);
12220 }
12221 }
12222
12223 *lowpc = best_low;
12224 *highpc = best_high;
12225 }
12226
12227 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12228 in DIE. */
12229
12230 static void
12231 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12232 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12233 {
12234 struct objfile *objfile = cu->objfile;
12235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12236 struct attribute *attr;
12237 struct attribute *attr_high;
12238
12239 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12240 if (attr_high)
12241 {
12242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12243 if (attr)
12244 {
12245 CORE_ADDR low = attr_value_as_address (attr);
12246 CORE_ADDR high = attr_value_as_address (attr_high);
12247
12248 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12249 high += low;
12250
12251 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12252 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12253 record_block_range (block, low, high - 1);
12254 }
12255 }
12256
12257 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12258 if (attr)
12259 {
12260 bfd *obfd = objfile->obfd;
12261 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12262 We take advantage of the fact that DW_AT_ranges does not appear
12263 in DW_TAG_compile_unit of DWO files. */
12264 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12265
12266 /* The value of the DW_AT_ranges attribute is the offset of the
12267 address range list in the .debug_ranges section. */
12268 unsigned long offset = (DW_UNSND (attr)
12269 + (need_ranges_base ? cu->ranges_base : 0));
12270 const gdb_byte *buffer;
12271
12272 /* For some target architectures, but not others, the
12273 read_address function sign-extends the addresses it returns.
12274 To recognize base address selection entries, we need a
12275 mask. */
12276 unsigned int addr_size = cu->header.addr_size;
12277 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12278
12279 /* The base address, to which the next pair is relative. Note
12280 that this 'base' is a DWARF concept: most entries in a range
12281 list are relative, to reduce the number of relocs against the
12282 debugging information. This is separate from this function's
12283 'baseaddr' argument, which GDB uses to relocate debugging
12284 information from a shared library based on the address at
12285 which the library was loaded. */
12286 CORE_ADDR base = cu->base_address;
12287 int base_known = cu->base_known;
12288
12289 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12290 if (offset >= dwarf2_per_objfile->ranges.size)
12291 {
12292 complaint (&symfile_complaints,
12293 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12294 offset);
12295 return;
12296 }
12297 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12298
12299 for (;;)
12300 {
12301 unsigned int bytes_read;
12302 CORE_ADDR start, end;
12303
12304 start = read_address (obfd, buffer, cu, &bytes_read);
12305 buffer += bytes_read;
12306 end = read_address (obfd, buffer, cu, &bytes_read);
12307 buffer += bytes_read;
12308
12309 /* Did we find the end of the range list? */
12310 if (start == 0 && end == 0)
12311 break;
12312
12313 /* Did we find a base address selection entry? */
12314 else if ((start & base_select_mask) == base_select_mask)
12315 {
12316 base = end;
12317 base_known = 1;
12318 }
12319
12320 /* We found an ordinary address range. */
12321 else
12322 {
12323 if (!base_known)
12324 {
12325 complaint (&symfile_complaints,
12326 _("Invalid .debug_ranges data "
12327 "(no base address)"));
12328 return;
12329 }
12330
12331 if (start > end)
12332 {
12333 /* Inverted range entries are invalid. */
12334 complaint (&symfile_complaints,
12335 _("Invalid .debug_ranges data "
12336 "(inverted range)"));
12337 return;
12338 }
12339
12340 /* Empty range entries have no effect. */
12341 if (start == end)
12342 continue;
12343
12344 start += base + baseaddr;
12345 end += base + baseaddr;
12346
12347 /* A not-uncommon case of bad debug info.
12348 Don't pollute the addrmap with bad data. */
12349 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12350 {
12351 complaint (&symfile_complaints,
12352 _(".debug_ranges entry has start address of zero"
12353 " [in module %s]"), objfile_name (objfile));
12354 continue;
12355 }
12356
12357 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12358 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12359 record_block_range (block, start, end - 1);
12360 }
12361 }
12362 }
12363 }
12364
12365 /* Check whether the producer field indicates either of GCC < 4.6, or the
12366 Intel C/C++ compiler, and cache the result in CU. */
12367
12368 static void
12369 check_producer (struct dwarf2_cu *cu)
12370 {
12371 int major, minor;
12372
12373 if (cu->producer == NULL)
12374 {
12375 /* For unknown compilers expect their behavior is DWARF version
12376 compliant.
12377
12378 GCC started to support .debug_types sections by -gdwarf-4 since
12379 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12380 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12381 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12382 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12383 }
12384 else if (producer_is_gcc (cu->producer, &major, &minor))
12385 {
12386 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12387 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12388 }
12389 else if (startswith (cu->producer, "Intel(R) C"))
12390 cu->producer_is_icc = 1;
12391 else
12392 {
12393 /* For other non-GCC compilers, expect their behavior is DWARF version
12394 compliant. */
12395 }
12396
12397 cu->checked_producer = 1;
12398 }
12399
12400 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12401 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12402 during 4.6.0 experimental. */
12403
12404 static int
12405 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12406 {
12407 if (!cu->checked_producer)
12408 check_producer (cu);
12409
12410 return cu->producer_is_gxx_lt_4_6;
12411 }
12412
12413 /* Return the default accessibility type if it is not overriden by
12414 DW_AT_accessibility. */
12415
12416 static enum dwarf_access_attribute
12417 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12418 {
12419 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12420 {
12421 /* The default DWARF 2 accessibility for members is public, the default
12422 accessibility for inheritance is private. */
12423
12424 if (die->tag != DW_TAG_inheritance)
12425 return DW_ACCESS_public;
12426 else
12427 return DW_ACCESS_private;
12428 }
12429 else
12430 {
12431 /* DWARF 3+ defines the default accessibility a different way. The same
12432 rules apply now for DW_TAG_inheritance as for the members and it only
12433 depends on the container kind. */
12434
12435 if (die->parent->tag == DW_TAG_class_type)
12436 return DW_ACCESS_private;
12437 else
12438 return DW_ACCESS_public;
12439 }
12440 }
12441
12442 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12443 offset. If the attribute was not found return 0, otherwise return
12444 1. If it was found but could not properly be handled, set *OFFSET
12445 to 0. */
12446
12447 static int
12448 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12449 LONGEST *offset)
12450 {
12451 struct attribute *attr;
12452
12453 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12454 if (attr != NULL)
12455 {
12456 *offset = 0;
12457
12458 /* Note that we do not check for a section offset first here.
12459 This is because DW_AT_data_member_location is new in DWARF 4,
12460 so if we see it, we can assume that a constant form is really
12461 a constant and not a section offset. */
12462 if (attr_form_is_constant (attr))
12463 *offset = dwarf2_get_attr_constant_value (attr, 0);
12464 else if (attr_form_is_section_offset (attr))
12465 dwarf2_complex_location_expr_complaint ();
12466 else if (attr_form_is_block (attr))
12467 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12468 else
12469 dwarf2_complex_location_expr_complaint ();
12470
12471 return 1;
12472 }
12473
12474 return 0;
12475 }
12476
12477 /* Add an aggregate field to the field list. */
12478
12479 static void
12480 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12481 struct dwarf2_cu *cu)
12482 {
12483 struct objfile *objfile = cu->objfile;
12484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12485 struct nextfield *new_field;
12486 struct attribute *attr;
12487 struct field *fp;
12488 const char *fieldname = "";
12489
12490 /* Allocate a new field list entry and link it in. */
12491 new_field = XNEW (struct nextfield);
12492 make_cleanup (xfree, new_field);
12493 memset (new_field, 0, sizeof (struct nextfield));
12494
12495 if (die->tag == DW_TAG_inheritance)
12496 {
12497 new_field->next = fip->baseclasses;
12498 fip->baseclasses = new_field;
12499 }
12500 else
12501 {
12502 new_field->next = fip->fields;
12503 fip->fields = new_field;
12504 }
12505 fip->nfields++;
12506
12507 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12508 if (attr)
12509 new_field->accessibility = DW_UNSND (attr);
12510 else
12511 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12512 if (new_field->accessibility != DW_ACCESS_public)
12513 fip->non_public_fields = 1;
12514
12515 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12516 if (attr)
12517 new_field->virtuality = DW_UNSND (attr);
12518 else
12519 new_field->virtuality = DW_VIRTUALITY_none;
12520
12521 fp = &new_field->field;
12522
12523 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12524 {
12525 LONGEST offset;
12526
12527 /* Data member other than a C++ static data member. */
12528
12529 /* Get type of field. */
12530 fp->type = die_type (die, cu);
12531
12532 SET_FIELD_BITPOS (*fp, 0);
12533
12534 /* Get bit size of field (zero if none). */
12535 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12536 if (attr)
12537 {
12538 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12539 }
12540 else
12541 {
12542 FIELD_BITSIZE (*fp) = 0;
12543 }
12544
12545 /* Get bit offset of field. */
12546 if (handle_data_member_location (die, cu, &offset))
12547 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12548 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12549 if (attr)
12550 {
12551 if (gdbarch_bits_big_endian (gdbarch))
12552 {
12553 /* For big endian bits, the DW_AT_bit_offset gives the
12554 additional bit offset from the MSB of the containing
12555 anonymous object to the MSB of the field. We don't
12556 have to do anything special since we don't need to
12557 know the size of the anonymous object. */
12558 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12559 }
12560 else
12561 {
12562 /* For little endian bits, compute the bit offset to the
12563 MSB of the anonymous object, subtract off the number of
12564 bits from the MSB of the field to the MSB of the
12565 object, and then subtract off the number of bits of
12566 the field itself. The result is the bit offset of
12567 the LSB of the field. */
12568 int anonymous_size;
12569 int bit_offset = DW_UNSND (attr);
12570
12571 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12572 if (attr)
12573 {
12574 /* The size of the anonymous object containing
12575 the bit field is explicit, so use the
12576 indicated size (in bytes). */
12577 anonymous_size = DW_UNSND (attr);
12578 }
12579 else
12580 {
12581 /* The size of the anonymous object containing
12582 the bit field must be inferred from the type
12583 attribute of the data member containing the
12584 bit field. */
12585 anonymous_size = TYPE_LENGTH (fp->type);
12586 }
12587 SET_FIELD_BITPOS (*fp,
12588 (FIELD_BITPOS (*fp)
12589 + anonymous_size * bits_per_byte
12590 - bit_offset - FIELD_BITSIZE (*fp)));
12591 }
12592 }
12593 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12594 if (attr != NULL)
12595 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12596 + dwarf2_get_attr_constant_value (attr, 0)));
12597
12598 /* Get name of field. */
12599 fieldname = dwarf2_name (die, cu);
12600 if (fieldname == NULL)
12601 fieldname = "";
12602
12603 /* The name is already allocated along with this objfile, so we don't
12604 need to duplicate it for the type. */
12605 fp->name = fieldname;
12606
12607 /* Change accessibility for artificial fields (e.g. virtual table
12608 pointer or virtual base class pointer) to private. */
12609 if (dwarf2_attr (die, DW_AT_artificial, cu))
12610 {
12611 FIELD_ARTIFICIAL (*fp) = 1;
12612 new_field->accessibility = DW_ACCESS_private;
12613 fip->non_public_fields = 1;
12614 }
12615 }
12616 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12617 {
12618 /* C++ static member. */
12619
12620 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12621 is a declaration, but all versions of G++ as of this writing
12622 (so through at least 3.2.1) incorrectly generate
12623 DW_TAG_variable tags. */
12624
12625 const char *physname;
12626
12627 /* Get name of field. */
12628 fieldname = dwarf2_name (die, cu);
12629 if (fieldname == NULL)
12630 return;
12631
12632 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12633 if (attr
12634 /* Only create a symbol if this is an external value.
12635 new_symbol checks this and puts the value in the global symbol
12636 table, which we want. If it is not external, new_symbol
12637 will try to put the value in cu->list_in_scope which is wrong. */
12638 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12639 {
12640 /* A static const member, not much different than an enum as far as
12641 we're concerned, except that we can support more types. */
12642 new_symbol (die, NULL, cu);
12643 }
12644
12645 /* Get physical name. */
12646 physname = dwarf2_physname (fieldname, die, cu);
12647
12648 /* The name is already allocated along with this objfile, so we don't
12649 need to duplicate it for the type. */
12650 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12651 FIELD_TYPE (*fp) = die_type (die, cu);
12652 FIELD_NAME (*fp) = fieldname;
12653 }
12654 else if (die->tag == DW_TAG_inheritance)
12655 {
12656 LONGEST offset;
12657
12658 /* C++ base class field. */
12659 if (handle_data_member_location (die, cu, &offset))
12660 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12661 FIELD_BITSIZE (*fp) = 0;
12662 FIELD_TYPE (*fp) = die_type (die, cu);
12663 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12664 fip->nbaseclasses++;
12665 }
12666 }
12667
12668 /* Add a typedef defined in the scope of the FIP's class. */
12669
12670 static void
12671 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12672 struct dwarf2_cu *cu)
12673 {
12674 struct typedef_field_list *new_field;
12675 struct typedef_field *fp;
12676
12677 /* Allocate a new field list entry and link it in. */
12678 new_field = XCNEW (struct typedef_field_list);
12679 make_cleanup (xfree, new_field);
12680
12681 gdb_assert (die->tag == DW_TAG_typedef);
12682
12683 fp = &new_field->field;
12684
12685 /* Get name of field. */
12686 fp->name = dwarf2_name (die, cu);
12687 if (fp->name == NULL)
12688 return;
12689
12690 fp->type = read_type_die (die, cu);
12691
12692 new_field->next = fip->typedef_field_list;
12693 fip->typedef_field_list = new_field;
12694 fip->typedef_field_list_count++;
12695 }
12696
12697 /* Create the vector of fields, and attach it to the type. */
12698
12699 static void
12700 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12701 struct dwarf2_cu *cu)
12702 {
12703 int nfields = fip->nfields;
12704
12705 /* Record the field count, allocate space for the array of fields,
12706 and create blank accessibility bitfields if necessary. */
12707 TYPE_NFIELDS (type) = nfields;
12708 TYPE_FIELDS (type) = (struct field *)
12709 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12710 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12711
12712 if (fip->non_public_fields && cu->language != language_ada)
12713 {
12714 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12715
12716 TYPE_FIELD_PRIVATE_BITS (type) =
12717 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12718 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12719
12720 TYPE_FIELD_PROTECTED_BITS (type) =
12721 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12722 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12723
12724 TYPE_FIELD_IGNORE_BITS (type) =
12725 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12726 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12727 }
12728
12729 /* If the type has baseclasses, allocate and clear a bit vector for
12730 TYPE_FIELD_VIRTUAL_BITS. */
12731 if (fip->nbaseclasses && cu->language != language_ada)
12732 {
12733 int num_bytes = B_BYTES (fip->nbaseclasses);
12734 unsigned char *pointer;
12735
12736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12737 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12738 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12739 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12740 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12741 }
12742
12743 /* Copy the saved-up fields into the field vector. Start from the head of
12744 the list, adding to the tail of the field array, so that they end up in
12745 the same order in the array in which they were added to the list. */
12746 while (nfields-- > 0)
12747 {
12748 struct nextfield *fieldp;
12749
12750 if (fip->fields)
12751 {
12752 fieldp = fip->fields;
12753 fip->fields = fieldp->next;
12754 }
12755 else
12756 {
12757 fieldp = fip->baseclasses;
12758 fip->baseclasses = fieldp->next;
12759 }
12760
12761 TYPE_FIELD (type, nfields) = fieldp->field;
12762 switch (fieldp->accessibility)
12763 {
12764 case DW_ACCESS_private:
12765 if (cu->language != language_ada)
12766 SET_TYPE_FIELD_PRIVATE (type, nfields);
12767 break;
12768
12769 case DW_ACCESS_protected:
12770 if (cu->language != language_ada)
12771 SET_TYPE_FIELD_PROTECTED (type, nfields);
12772 break;
12773
12774 case DW_ACCESS_public:
12775 break;
12776
12777 default:
12778 /* Unknown accessibility. Complain and treat it as public. */
12779 {
12780 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12781 fieldp->accessibility);
12782 }
12783 break;
12784 }
12785 if (nfields < fip->nbaseclasses)
12786 {
12787 switch (fieldp->virtuality)
12788 {
12789 case DW_VIRTUALITY_virtual:
12790 case DW_VIRTUALITY_pure_virtual:
12791 if (cu->language == language_ada)
12792 error (_("unexpected virtuality in component of Ada type"));
12793 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12794 break;
12795 }
12796 }
12797 }
12798 }
12799
12800 /* Return true if this member function is a constructor, false
12801 otherwise. */
12802
12803 static int
12804 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12805 {
12806 const char *fieldname;
12807 const char *type_name;
12808 int len;
12809
12810 if (die->parent == NULL)
12811 return 0;
12812
12813 if (die->parent->tag != DW_TAG_structure_type
12814 && die->parent->tag != DW_TAG_union_type
12815 && die->parent->tag != DW_TAG_class_type)
12816 return 0;
12817
12818 fieldname = dwarf2_name (die, cu);
12819 type_name = dwarf2_name (die->parent, cu);
12820 if (fieldname == NULL || type_name == NULL)
12821 return 0;
12822
12823 len = strlen (fieldname);
12824 return (strncmp (fieldname, type_name, len) == 0
12825 && (type_name[len] == '\0' || type_name[len] == '<'));
12826 }
12827
12828 /* Add a member function to the proper fieldlist. */
12829
12830 static void
12831 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12832 struct type *type, struct dwarf2_cu *cu)
12833 {
12834 struct objfile *objfile = cu->objfile;
12835 struct attribute *attr;
12836 struct fnfieldlist *flp;
12837 int i;
12838 struct fn_field *fnp;
12839 const char *fieldname;
12840 struct nextfnfield *new_fnfield;
12841 struct type *this_type;
12842 enum dwarf_access_attribute accessibility;
12843
12844 if (cu->language == language_ada)
12845 error (_("unexpected member function in Ada type"));
12846
12847 /* Get name of member function. */
12848 fieldname = dwarf2_name (die, cu);
12849 if (fieldname == NULL)
12850 return;
12851
12852 /* Look up member function name in fieldlist. */
12853 for (i = 0; i < fip->nfnfields; i++)
12854 {
12855 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12856 break;
12857 }
12858
12859 /* Create new list element if necessary. */
12860 if (i < fip->nfnfields)
12861 flp = &fip->fnfieldlists[i];
12862 else
12863 {
12864 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12865 {
12866 fip->fnfieldlists = (struct fnfieldlist *)
12867 xrealloc (fip->fnfieldlists,
12868 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12869 * sizeof (struct fnfieldlist));
12870 if (fip->nfnfields == 0)
12871 make_cleanup (free_current_contents, &fip->fnfieldlists);
12872 }
12873 flp = &fip->fnfieldlists[fip->nfnfields];
12874 flp->name = fieldname;
12875 flp->length = 0;
12876 flp->head = NULL;
12877 i = fip->nfnfields++;
12878 }
12879
12880 /* Create a new member function field and chain it to the field list
12881 entry. */
12882 new_fnfield = XNEW (struct nextfnfield);
12883 make_cleanup (xfree, new_fnfield);
12884 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12885 new_fnfield->next = flp->head;
12886 flp->head = new_fnfield;
12887 flp->length++;
12888
12889 /* Fill in the member function field info. */
12890 fnp = &new_fnfield->fnfield;
12891
12892 /* Delay processing of the physname until later. */
12893 if (cu->language == language_cplus)
12894 {
12895 add_to_method_list (type, i, flp->length - 1, fieldname,
12896 die, cu);
12897 }
12898 else
12899 {
12900 const char *physname = dwarf2_physname (fieldname, die, cu);
12901 fnp->physname = physname ? physname : "";
12902 }
12903
12904 fnp->type = alloc_type (objfile);
12905 this_type = read_type_die (die, cu);
12906 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12907 {
12908 int nparams = TYPE_NFIELDS (this_type);
12909
12910 /* TYPE is the domain of this method, and THIS_TYPE is the type
12911 of the method itself (TYPE_CODE_METHOD). */
12912 smash_to_method_type (fnp->type, type,
12913 TYPE_TARGET_TYPE (this_type),
12914 TYPE_FIELDS (this_type),
12915 TYPE_NFIELDS (this_type),
12916 TYPE_VARARGS (this_type));
12917
12918 /* Handle static member functions.
12919 Dwarf2 has no clean way to discern C++ static and non-static
12920 member functions. G++ helps GDB by marking the first
12921 parameter for non-static member functions (which is the this
12922 pointer) as artificial. We obtain this information from
12923 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12924 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12925 fnp->voffset = VOFFSET_STATIC;
12926 }
12927 else
12928 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12929 dwarf2_full_name (fieldname, die, cu));
12930
12931 /* Get fcontext from DW_AT_containing_type if present. */
12932 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12933 fnp->fcontext = die_containing_type (die, cu);
12934
12935 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12936 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12937
12938 /* Get accessibility. */
12939 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12940 if (attr)
12941 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12942 else
12943 accessibility = dwarf2_default_access_attribute (die, cu);
12944 switch (accessibility)
12945 {
12946 case DW_ACCESS_private:
12947 fnp->is_private = 1;
12948 break;
12949 case DW_ACCESS_protected:
12950 fnp->is_protected = 1;
12951 break;
12952 }
12953
12954 /* Check for artificial methods. */
12955 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12956 if (attr && DW_UNSND (attr) != 0)
12957 fnp->is_artificial = 1;
12958
12959 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12960
12961 /* Get index in virtual function table if it is a virtual member
12962 function. For older versions of GCC, this is an offset in the
12963 appropriate virtual table, as specified by DW_AT_containing_type.
12964 For everyone else, it is an expression to be evaluated relative
12965 to the object address. */
12966
12967 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12968 if (attr)
12969 {
12970 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12971 {
12972 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12973 {
12974 /* Old-style GCC. */
12975 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12976 }
12977 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12978 || (DW_BLOCK (attr)->size > 1
12979 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12980 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12981 {
12982 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12983 if ((fnp->voffset % cu->header.addr_size) != 0)
12984 dwarf2_complex_location_expr_complaint ();
12985 else
12986 fnp->voffset /= cu->header.addr_size;
12987 fnp->voffset += 2;
12988 }
12989 else
12990 dwarf2_complex_location_expr_complaint ();
12991
12992 if (!fnp->fcontext)
12993 {
12994 /* If there is no `this' field and no DW_AT_containing_type,
12995 we cannot actually find a base class context for the
12996 vtable! */
12997 if (TYPE_NFIELDS (this_type) == 0
12998 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12999 {
13000 complaint (&symfile_complaints,
13001 _("cannot determine context for virtual member "
13002 "function \"%s\" (offset %d)"),
13003 fieldname, die->offset.sect_off);
13004 }
13005 else
13006 {
13007 fnp->fcontext
13008 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13009 }
13010 }
13011 }
13012 else if (attr_form_is_section_offset (attr))
13013 {
13014 dwarf2_complex_location_expr_complaint ();
13015 }
13016 else
13017 {
13018 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13019 fieldname);
13020 }
13021 }
13022 else
13023 {
13024 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13025 if (attr && DW_UNSND (attr))
13026 {
13027 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13028 complaint (&symfile_complaints,
13029 _("Member function \"%s\" (offset %d) is virtual "
13030 "but the vtable offset is not specified"),
13031 fieldname, die->offset.sect_off);
13032 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13033 TYPE_CPLUS_DYNAMIC (type) = 1;
13034 }
13035 }
13036 }
13037
13038 /* Create the vector of member function fields, and attach it to the type. */
13039
13040 static void
13041 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13042 struct dwarf2_cu *cu)
13043 {
13044 struct fnfieldlist *flp;
13045 int i;
13046
13047 if (cu->language == language_ada)
13048 error (_("unexpected member functions in Ada type"));
13049
13050 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13051 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13052 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13053
13054 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13055 {
13056 struct nextfnfield *nfp = flp->head;
13057 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13058 int k;
13059
13060 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13061 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13062 fn_flp->fn_fields = (struct fn_field *)
13063 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13064 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13065 fn_flp->fn_fields[k] = nfp->fnfield;
13066 }
13067
13068 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13069 }
13070
13071 /* Returns non-zero if NAME is the name of a vtable member in CU's
13072 language, zero otherwise. */
13073 static int
13074 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13075 {
13076 static const char vptr[] = "_vptr";
13077 static const char vtable[] = "vtable";
13078
13079 /* Look for the C++ form of the vtable. */
13080 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13081 return 1;
13082
13083 return 0;
13084 }
13085
13086 /* GCC outputs unnamed structures that are really pointers to member
13087 functions, with the ABI-specified layout. If TYPE describes
13088 such a structure, smash it into a member function type.
13089
13090 GCC shouldn't do this; it should just output pointer to member DIEs.
13091 This is GCC PR debug/28767. */
13092
13093 static void
13094 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13095 {
13096 struct type *pfn_type, *self_type, *new_type;
13097
13098 /* Check for a structure with no name and two children. */
13099 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13100 return;
13101
13102 /* Check for __pfn and __delta members. */
13103 if (TYPE_FIELD_NAME (type, 0) == NULL
13104 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13105 || TYPE_FIELD_NAME (type, 1) == NULL
13106 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13107 return;
13108
13109 /* Find the type of the method. */
13110 pfn_type = TYPE_FIELD_TYPE (type, 0);
13111 if (pfn_type == NULL
13112 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13113 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13114 return;
13115
13116 /* Look for the "this" argument. */
13117 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13118 if (TYPE_NFIELDS (pfn_type) == 0
13119 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13120 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13121 return;
13122
13123 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13124 new_type = alloc_type (objfile);
13125 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13126 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13127 TYPE_VARARGS (pfn_type));
13128 smash_to_methodptr_type (type, new_type);
13129 }
13130
13131 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13132 (icc). */
13133
13134 static int
13135 producer_is_icc (struct dwarf2_cu *cu)
13136 {
13137 if (!cu->checked_producer)
13138 check_producer (cu);
13139
13140 return cu->producer_is_icc;
13141 }
13142
13143 /* Called when we find the DIE that starts a structure or union scope
13144 (definition) to create a type for the structure or union. Fill in
13145 the type's name and general properties; the members will not be
13146 processed until process_structure_scope. A symbol table entry for
13147 the type will also not be done until process_structure_scope (assuming
13148 the type has a name).
13149
13150 NOTE: we need to call these functions regardless of whether or not the
13151 DIE has a DW_AT_name attribute, since it might be an anonymous
13152 structure or union. This gets the type entered into our set of
13153 user defined types. */
13154
13155 static struct type *
13156 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13157 {
13158 struct objfile *objfile = cu->objfile;
13159 struct type *type;
13160 struct attribute *attr;
13161 const char *name;
13162
13163 /* If the definition of this type lives in .debug_types, read that type.
13164 Don't follow DW_AT_specification though, that will take us back up
13165 the chain and we want to go down. */
13166 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13167 if (attr)
13168 {
13169 type = get_DW_AT_signature_type (die, attr, cu);
13170
13171 /* The type's CU may not be the same as CU.
13172 Ensure TYPE is recorded with CU in die_type_hash. */
13173 return set_die_type (die, type, cu);
13174 }
13175
13176 type = alloc_type (objfile);
13177 INIT_CPLUS_SPECIFIC (type);
13178
13179 name = dwarf2_name (die, cu);
13180 if (name != NULL)
13181 {
13182 if (cu->language == language_cplus
13183 || cu->language == language_d
13184 || cu->language == language_rust)
13185 {
13186 const char *full_name = dwarf2_full_name (name, die, cu);
13187
13188 /* dwarf2_full_name might have already finished building the DIE's
13189 type. If so, there is no need to continue. */
13190 if (get_die_type (die, cu) != NULL)
13191 return get_die_type (die, cu);
13192
13193 TYPE_TAG_NAME (type) = full_name;
13194 if (die->tag == DW_TAG_structure_type
13195 || die->tag == DW_TAG_class_type)
13196 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13197 }
13198 else
13199 {
13200 /* The name is already allocated along with this objfile, so
13201 we don't need to duplicate it for the type. */
13202 TYPE_TAG_NAME (type) = name;
13203 if (die->tag == DW_TAG_class_type)
13204 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13205 }
13206 }
13207
13208 if (die->tag == DW_TAG_structure_type)
13209 {
13210 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13211 }
13212 else if (die->tag == DW_TAG_union_type)
13213 {
13214 TYPE_CODE (type) = TYPE_CODE_UNION;
13215 }
13216 else
13217 {
13218 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13219 }
13220
13221 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13222 TYPE_DECLARED_CLASS (type) = 1;
13223
13224 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13225 if (attr)
13226 {
13227 if (attr_form_is_constant (attr))
13228 TYPE_LENGTH (type) = DW_UNSND (attr);
13229 else
13230 {
13231 /* For the moment, dynamic type sizes are not supported
13232 by GDB's struct type. The actual size is determined
13233 on-demand when resolving the type of a given object,
13234 so set the type's length to zero for now. Otherwise,
13235 we record an expression as the length, and that expression
13236 could lead to a very large value, which could eventually
13237 lead to us trying to allocate that much memory when creating
13238 a value of that type. */
13239 TYPE_LENGTH (type) = 0;
13240 }
13241 }
13242 else
13243 {
13244 TYPE_LENGTH (type) = 0;
13245 }
13246
13247 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13248 {
13249 /* ICC does not output the required DW_AT_declaration
13250 on incomplete types, but gives them a size of zero. */
13251 TYPE_STUB (type) = 1;
13252 }
13253 else
13254 TYPE_STUB_SUPPORTED (type) = 1;
13255
13256 if (die_is_declaration (die, cu))
13257 TYPE_STUB (type) = 1;
13258 else if (attr == NULL && die->child == NULL
13259 && producer_is_realview (cu->producer))
13260 /* RealView does not output the required DW_AT_declaration
13261 on incomplete types. */
13262 TYPE_STUB (type) = 1;
13263
13264 /* We need to add the type field to the die immediately so we don't
13265 infinitely recurse when dealing with pointers to the structure
13266 type within the structure itself. */
13267 set_die_type (die, type, cu);
13268
13269 /* set_die_type should be already done. */
13270 set_descriptive_type (type, die, cu);
13271
13272 return type;
13273 }
13274
13275 /* Finish creating a structure or union type, including filling in
13276 its members and creating a symbol for it. */
13277
13278 static void
13279 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13280 {
13281 struct objfile *objfile = cu->objfile;
13282 struct die_info *child_die;
13283 struct type *type;
13284
13285 type = get_die_type (die, cu);
13286 if (type == NULL)
13287 type = read_structure_type (die, cu);
13288
13289 if (die->child != NULL && ! die_is_declaration (die, cu))
13290 {
13291 struct field_info fi;
13292 VEC (symbolp) *template_args = NULL;
13293 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13294
13295 memset (&fi, 0, sizeof (struct field_info));
13296
13297 child_die = die->child;
13298
13299 while (child_die && child_die->tag)
13300 {
13301 if (child_die->tag == DW_TAG_member
13302 || child_die->tag == DW_TAG_variable)
13303 {
13304 /* NOTE: carlton/2002-11-05: A C++ static data member
13305 should be a DW_TAG_member that is a declaration, but
13306 all versions of G++ as of this writing (so through at
13307 least 3.2.1) incorrectly generate DW_TAG_variable
13308 tags for them instead. */
13309 dwarf2_add_field (&fi, child_die, cu);
13310 }
13311 else if (child_die->tag == DW_TAG_subprogram)
13312 {
13313 /* Rust doesn't have member functions in the C++ sense.
13314 However, it does emit ordinary functions as children
13315 of a struct DIE. */
13316 if (cu->language == language_rust)
13317 read_func_scope (child_die, cu);
13318 else
13319 {
13320 /* C++ member function. */
13321 dwarf2_add_member_fn (&fi, child_die, type, cu);
13322 }
13323 }
13324 else if (child_die->tag == DW_TAG_inheritance)
13325 {
13326 /* C++ base class field. */
13327 dwarf2_add_field (&fi, child_die, cu);
13328 }
13329 else if (child_die->tag == DW_TAG_typedef)
13330 dwarf2_add_typedef (&fi, child_die, cu);
13331 else if (child_die->tag == DW_TAG_template_type_param
13332 || child_die->tag == DW_TAG_template_value_param)
13333 {
13334 struct symbol *arg = new_symbol (child_die, NULL, cu);
13335
13336 if (arg != NULL)
13337 VEC_safe_push (symbolp, template_args, arg);
13338 }
13339
13340 child_die = sibling_die (child_die);
13341 }
13342
13343 /* Attach template arguments to type. */
13344 if (! VEC_empty (symbolp, template_args))
13345 {
13346 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13347 TYPE_N_TEMPLATE_ARGUMENTS (type)
13348 = VEC_length (symbolp, template_args);
13349 TYPE_TEMPLATE_ARGUMENTS (type)
13350 = XOBNEWVEC (&objfile->objfile_obstack,
13351 struct symbol *,
13352 TYPE_N_TEMPLATE_ARGUMENTS (type));
13353 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13354 VEC_address (symbolp, template_args),
13355 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13356 * sizeof (struct symbol *)));
13357 VEC_free (symbolp, template_args);
13358 }
13359
13360 /* Attach fields and member functions to the type. */
13361 if (fi.nfields)
13362 dwarf2_attach_fields_to_type (&fi, type, cu);
13363 if (fi.nfnfields)
13364 {
13365 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13366
13367 /* Get the type which refers to the base class (possibly this
13368 class itself) which contains the vtable pointer for the current
13369 class from the DW_AT_containing_type attribute. This use of
13370 DW_AT_containing_type is a GNU extension. */
13371
13372 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13373 {
13374 struct type *t = die_containing_type (die, cu);
13375
13376 set_type_vptr_basetype (type, t);
13377 if (type == t)
13378 {
13379 int i;
13380
13381 /* Our own class provides vtbl ptr. */
13382 for (i = TYPE_NFIELDS (t) - 1;
13383 i >= TYPE_N_BASECLASSES (t);
13384 --i)
13385 {
13386 const char *fieldname = TYPE_FIELD_NAME (t, i);
13387
13388 if (is_vtable_name (fieldname, cu))
13389 {
13390 set_type_vptr_fieldno (type, i);
13391 break;
13392 }
13393 }
13394
13395 /* Complain if virtual function table field not found. */
13396 if (i < TYPE_N_BASECLASSES (t))
13397 complaint (&symfile_complaints,
13398 _("virtual function table pointer "
13399 "not found when defining class '%s'"),
13400 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13401 "");
13402 }
13403 else
13404 {
13405 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13406 }
13407 }
13408 else if (cu->producer
13409 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13410 {
13411 /* The IBM XLC compiler does not provide direct indication
13412 of the containing type, but the vtable pointer is
13413 always named __vfp. */
13414
13415 int i;
13416
13417 for (i = TYPE_NFIELDS (type) - 1;
13418 i >= TYPE_N_BASECLASSES (type);
13419 --i)
13420 {
13421 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13422 {
13423 set_type_vptr_fieldno (type, i);
13424 set_type_vptr_basetype (type, type);
13425 break;
13426 }
13427 }
13428 }
13429 }
13430
13431 /* Copy fi.typedef_field_list linked list elements content into the
13432 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13433 if (fi.typedef_field_list)
13434 {
13435 int i = fi.typedef_field_list_count;
13436
13437 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13438 TYPE_TYPEDEF_FIELD_ARRAY (type)
13439 = ((struct typedef_field *)
13440 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13441 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13442
13443 /* Reverse the list order to keep the debug info elements order. */
13444 while (--i >= 0)
13445 {
13446 struct typedef_field *dest, *src;
13447
13448 dest = &TYPE_TYPEDEF_FIELD (type, i);
13449 src = &fi.typedef_field_list->field;
13450 fi.typedef_field_list = fi.typedef_field_list->next;
13451 *dest = *src;
13452 }
13453 }
13454
13455 do_cleanups (back_to);
13456 }
13457
13458 quirk_gcc_member_function_pointer (type, objfile);
13459
13460 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13461 snapshots) has been known to create a die giving a declaration
13462 for a class that has, as a child, a die giving a definition for a
13463 nested class. So we have to process our children even if the
13464 current die is a declaration. Normally, of course, a declaration
13465 won't have any children at all. */
13466
13467 child_die = die->child;
13468
13469 while (child_die != NULL && child_die->tag)
13470 {
13471 if (child_die->tag == DW_TAG_member
13472 || child_die->tag == DW_TAG_variable
13473 || child_die->tag == DW_TAG_inheritance
13474 || child_die->tag == DW_TAG_template_value_param
13475 || child_die->tag == DW_TAG_template_type_param)
13476 {
13477 /* Do nothing. */
13478 }
13479 else
13480 process_die (child_die, cu);
13481
13482 child_die = sibling_die (child_die);
13483 }
13484
13485 /* Do not consider external references. According to the DWARF standard,
13486 these DIEs are identified by the fact that they have no byte_size
13487 attribute, and a declaration attribute. */
13488 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13489 || !die_is_declaration (die, cu))
13490 new_symbol (die, type, cu);
13491 }
13492
13493 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13494 update TYPE using some information only available in DIE's children. */
13495
13496 static void
13497 update_enumeration_type_from_children (struct die_info *die,
13498 struct type *type,
13499 struct dwarf2_cu *cu)
13500 {
13501 struct obstack obstack;
13502 struct die_info *child_die;
13503 int unsigned_enum = 1;
13504 int flag_enum = 1;
13505 ULONGEST mask = 0;
13506 struct cleanup *old_chain;
13507
13508 obstack_init (&obstack);
13509 old_chain = make_cleanup_obstack_free (&obstack);
13510
13511 for (child_die = die->child;
13512 child_die != NULL && child_die->tag;
13513 child_die = sibling_die (child_die))
13514 {
13515 struct attribute *attr;
13516 LONGEST value;
13517 const gdb_byte *bytes;
13518 struct dwarf2_locexpr_baton *baton;
13519 const char *name;
13520
13521 if (child_die->tag != DW_TAG_enumerator)
13522 continue;
13523
13524 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13525 if (attr == NULL)
13526 continue;
13527
13528 name = dwarf2_name (child_die, cu);
13529 if (name == NULL)
13530 name = "<anonymous enumerator>";
13531
13532 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13533 &value, &bytes, &baton);
13534 if (value < 0)
13535 {
13536 unsigned_enum = 0;
13537 flag_enum = 0;
13538 }
13539 else if ((mask & value) != 0)
13540 flag_enum = 0;
13541 else
13542 mask |= value;
13543
13544 /* If we already know that the enum type is neither unsigned, nor
13545 a flag type, no need to look at the rest of the enumerates. */
13546 if (!unsigned_enum && !flag_enum)
13547 break;
13548 }
13549
13550 if (unsigned_enum)
13551 TYPE_UNSIGNED (type) = 1;
13552 if (flag_enum)
13553 TYPE_FLAG_ENUM (type) = 1;
13554
13555 do_cleanups (old_chain);
13556 }
13557
13558 /* Given a DW_AT_enumeration_type die, set its type. We do not
13559 complete the type's fields yet, or create any symbols. */
13560
13561 static struct type *
13562 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13563 {
13564 struct objfile *objfile = cu->objfile;
13565 struct type *type;
13566 struct attribute *attr;
13567 const char *name;
13568
13569 /* If the definition of this type lives in .debug_types, read that type.
13570 Don't follow DW_AT_specification though, that will take us back up
13571 the chain and we want to go down. */
13572 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13573 if (attr)
13574 {
13575 type = get_DW_AT_signature_type (die, attr, cu);
13576
13577 /* The type's CU may not be the same as CU.
13578 Ensure TYPE is recorded with CU in die_type_hash. */
13579 return set_die_type (die, type, cu);
13580 }
13581
13582 type = alloc_type (objfile);
13583
13584 TYPE_CODE (type) = TYPE_CODE_ENUM;
13585 name = dwarf2_full_name (NULL, die, cu);
13586 if (name != NULL)
13587 TYPE_TAG_NAME (type) = name;
13588
13589 attr = dwarf2_attr (die, DW_AT_type, cu);
13590 if (attr != NULL)
13591 {
13592 struct type *underlying_type = die_type (die, cu);
13593
13594 TYPE_TARGET_TYPE (type) = underlying_type;
13595 }
13596
13597 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13598 if (attr)
13599 {
13600 TYPE_LENGTH (type) = DW_UNSND (attr);
13601 }
13602 else
13603 {
13604 TYPE_LENGTH (type) = 0;
13605 }
13606
13607 /* The enumeration DIE can be incomplete. In Ada, any type can be
13608 declared as private in the package spec, and then defined only
13609 inside the package body. Such types are known as Taft Amendment
13610 Types. When another package uses such a type, an incomplete DIE
13611 may be generated by the compiler. */
13612 if (die_is_declaration (die, cu))
13613 TYPE_STUB (type) = 1;
13614
13615 /* Finish the creation of this type by using the enum's children.
13616 We must call this even when the underlying type has been provided
13617 so that we can determine if we're looking at a "flag" enum. */
13618 update_enumeration_type_from_children (die, type, cu);
13619
13620 /* If this type has an underlying type that is not a stub, then we
13621 may use its attributes. We always use the "unsigned" attribute
13622 in this situation, because ordinarily we guess whether the type
13623 is unsigned -- but the guess can be wrong and the underlying type
13624 can tell us the reality. However, we defer to a local size
13625 attribute if one exists, because this lets the compiler override
13626 the underlying type if needed. */
13627 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13628 {
13629 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13630 if (TYPE_LENGTH (type) == 0)
13631 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13632 }
13633
13634 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13635
13636 return set_die_type (die, type, cu);
13637 }
13638
13639 /* Given a pointer to a die which begins an enumeration, process all
13640 the dies that define the members of the enumeration, and create the
13641 symbol for the enumeration type.
13642
13643 NOTE: We reverse the order of the element list. */
13644
13645 static void
13646 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13647 {
13648 struct type *this_type;
13649
13650 this_type = get_die_type (die, cu);
13651 if (this_type == NULL)
13652 this_type = read_enumeration_type (die, cu);
13653
13654 if (die->child != NULL)
13655 {
13656 struct die_info *child_die;
13657 struct symbol *sym;
13658 struct field *fields = NULL;
13659 int num_fields = 0;
13660 const char *name;
13661
13662 child_die = die->child;
13663 while (child_die && child_die->tag)
13664 {
13665 if (child_die->tag != DW_TAG_enumerator)
13666 {
13667 process_die (child_die, cu);
13668 }
13669 else
13670 {
13671 name = dwarf2_name (child_die, cu);
13672 if (name)
13673 {
13674 sym = new_symbol (child_die, this_type, cu);
13675
13676 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13677 {
13678 fields = (struct field *)
13679 xrealloc (fields,
13680 (num_fields + DW_FIELD_ALLOC_CHUNK)
13681 * sizeof (struct field));
13682 }
13683
13684 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13685 FIELD_TYPE (fields[num_fields]) = NULL;
13686 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13687 FIELD_BITSIZE (fields[num_fields]) = 0;
13688
13689 num_fields++;
13690 }
13691 }
13692
13693 child_die = sibling_die (child_die);
13694 }
13695
13696 if (num_fields)
13697 {
13698 TYPE_NFIELDS (this_type) = num_fields;
13699 TYPE_FIELDS (this_type) = (struct field *)
13700 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13701 memcpy (TYPE_FIELDS (this_type), fields,
13702 sizeof (struct field) * num_fields);
13703 xfree (fields);
13704 }
13705 }
13706
13707 /* If we are reading an enum from a .debug_types unit, and the enum
13708 is a declaration, and the enum is not the signatured type in the
13709 unit, then we do not want to add a symbol for it. Adding a
13710 symbol would in some cases obscure the true definition of the
13711 enum, giving users an incomplete type when the definition is
13712 actually available. Note that we do not want to do this for all
13713 enums which are just declarations, because C++0x allows forward
13714 enum declarations. */
13715 if (cu->per_cu->is_debug_types
13716 && die_is_declaration (die, cu))
13717 {
13718 struct signatured_type *sig_type;
13719
13720 sig_type = (struct signatured_type *) cu->per_cu;
13721 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13722 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13723 return;
13724 }
13725
13726 new_symbol (die, this_type, cu);
13727 }
13728
13729 /* Extract all information from a DW_TAG_array_type DIE and put it in
13730 the DIE's type field. For now, this only handles one dimensional
13731 arrays. */
13732
13733 static struct type *
13734 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13735 {
13736 struct objfile *objfile = cu->objfile;
13737 struct die_info *child_die;
13738 struct type *type;
13739 struct type *element_type, *range_type, *index_type;
13740 struct type **range_types = NULL;
13741 struct attribute *attr;
13742 int ndim = 0;
13743 struct cleanup *back_to;
13744 const char *name;
13745 unsigned int bit_stride = 0;
13746
13747 element_type = die_type (die, cu);
13748
13749 /* The die_type call above may have already set the type for this DIE. */
13750 type = get_die_type (die, cu);
13751 if (type)
13752 return type;
13753
13754 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13755 if (attr != NULL)
13756 bit_stride = DW_UNSND (attr) * 8;
13757
13758 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13759 if (attr != NULL)
13760 bit_stride = DW_UNSND (attr);
13761
13762 /* Irix 6.2 native cc creates array types without children for
13763 arrays with unspecified length. */
13764 if (die->child == NULL)
13765 {
13766 index_type = objfile_type (objfile)->builtin_int;
13767 range_type = create_static_range_type (NULL, index_type, 0, -1);
13768 type = create_array_type_with_stride (NULL, element_type, range_type,
13769 bit_stride);
13770 return set_die_type (die, type, cu);
13771 }
13772
13773 back_to = make_cleanup (null_cleanup, NULL);
13774 child_die = die->child;
13775 while (child_die && child_die->tag)
13776 {
13777 if (child_die->tag == DW_TAG_subrange_type)
13778 {
13779 struct type *child_type = read_type_die (child_die, cu);
13780
13781 if (child_type != NULL)
13782 {
13783 /* The range type was succesfully read. Save it for the
13784 array type creation. */
13785 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13786 {
13787 range_types = (struct type **)
13788 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13789 * sizeof (struct type *));
13790 if (ndim == 0)
13791 make_cleanup (free_current_contents, &range_types);
13792 }
13793 range_types[ndim++] = child_type;
13794 }
13795 }
13796 child_die = sibling_die (child_die);
13797 }
13798
13799 /* Dwarf2 dimensions are output from left to right, create the
13800 necessary array types in backwards order. */
13801
13802 type = element_type;
13803
13804 if (read_array_order (die, cu) == DW_ORD_col_major)
13805 {
13806 int i = 0;
13807
13808 while (i < ndim)
13809 type = create_array_type_with_stride (NULL, type, range_types[i++],
13810 bit_stride);
13811 }
13812 else
13813 {
13814 while (ndim-- > 0)
13815 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13816 bit_stride);
13817 }
13818
13819 /* Understand Dwarf2 support for vector types (like they occur on
13820 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13821 array type. This is not part of the Dwarf2/3 standard yet, but a
13822 custom vendor extension. The main difference between a regular
13823 array and the vector variant is that vectors are passed by value
13824 to functions. */
13825 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13826 if (attr)
13827 make_vector_type (type);
13828
13829 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13830 implementation may choose to implement triple vectors using this
13831 attribute. */
13832 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13833 if (attr)
13834 {
13835 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13836 TYPE_LENGTH (type) = DW_UNSND (attr);
13837 else
13838 complaint (&symfile_complaints,
13839 _("DW_AT_byte_size for array type smaller "
13840 "than the total size of elements"));
13841 }
13842
13843 name = dwarf2_name (die, cu);
13844 if (name)
13845 TYPE_NAME (type) = name;
13846
13847 /* Install the type in the die. */
13848 set_die_type (die, type, cu);
13849
13850 /* set_die_type should be already done. */
13851 set_descriptive_type (type, die, cu);
13852
13853 do_cleanups (back_to);
13854
13855 return type;
13856 }
13857
13858 static enum dwarf_array_dim_ordering
13859 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct attribute *attr;
13862
13863 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13864
13865 if (attr)
13866 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13867
13868 /* GNU F77 is a special case, as at 08/2004 array type info is the
13869 opposite order to the dwarf2 specification, but data is still
13870 laid out as per normal fortran.
13871
13872 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13873 version checking. */
13874
13875 if (cu->language == language_fortran
13876 && cu->producer && strstr (cu->producer, "GNU F77"))
13877 {
13878 return DW_ORD_row_major;
13879 }
13880
13881 switch (cu->language_defn->la_array_ordering)
13882 {
13883 case array_column_major:
13884 return DW_ORD_col_major;
13885 case array_row_major:
13886 default:
13887 return DW_ORD_row_major;
13888 };
13889 }
13890
13891 /* Extract all information from a DW_TAG_set_type DIE and put it in
13892 the DIE's type field. */
13893
13894 static struct type *
13895 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13896 {
13897 struct type *domain_type, *set_type;
13898 struct attribute *attr;
13899
13900 domain_type = die_type (die, cu);
13901
13902 /* The die_type call above may have already set the type for this DIE. */
13903 set_type = get_die_type (die, cu);
13904 if (set_type)
13905 return set_type;
13906
13907 set_type = create_set_type (NULL, domain_type);
13908
13909 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13910 if (attr)
13911 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13912
13913 return set_die_type (die, set_type, cu);
13914 }
13915
13916 /* A helper for read_common_block that creates a locexpr baton.
13917 SYM is the symbol which we are marking as computed.
13918 COMMON_DIE is the DIE for the common block.
13919 COMMON_LOC is the location expression attribute for the common
13920 block itself.
13921 MEMBER_LOC is the location expression attribute for the particular
13922 member of the common block that we are processing.
13923 CU is the CU from which the above come. */
13924
13925 static void
13926 mark_common_block_symbol_computed (struct symbol *sym,
13927 struct die_info *common_die,
13928 struct attribute *common_loc,
13929 struct attribute *member_loc,
13930 struct dwarf2_cu *cu)
13931 {
13932 struct objfile *objfile = dwarf2_per_objfile->objfile;
13933 struct dwarf2_locexpr_baton *baton;
13934 gdb_byte *ptr;
13935 unsigned int cu_off;
13936 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13937 LONGEST offset = 0;
13938
13939 gdb_assert (common_loc && member_loc);
13940 gdb_assert (attr_form_is_block (common_loc));
13941 gdb_assert (attr_form_is_block (member_loc)
13942 || attr_form_is_constant (member_loc));
13943
13944 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13945 baton->per_cu = cu->per_cu;
13946 gdb_assert (baton->per_cu);
13947
13948 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13949
13950 if (attr_form_is_constant (member_loc))
13951 {
13952 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13953 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13954 }
13955 else
13956 baton->size += DW_BLOCK (member_loc)->size;
13957
13958 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13959 baton->data = ptr;
13960
13961 *ptr++ = DW_OP_call4;
13962 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13963 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13964 ptr += 4;
13965
13966 if (attr_form_is_constant (member_loc))
13967 {
13968 *ptr++ = DW_OP_addr;
13969 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13970 ptr += cu->header.addr_size;
13971 }
13972 else
13973 {
13974 /* We have to copy the data here, because DW_OP_call4 will only
13975 use a DW_AT_location attribute. */
13976 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13977 ptr += DW_BLOCK (member_loc)->size;
13978 }
13979
13980 *ptr++ = DW_OP_plus;
13981 gdb_assert (ptr - baton->data == baton->size);
13982
13983 SYMBOL_LOCATION_BATON (sym) = baton;
13984 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13985 }
13986
13987 /* Create appropriate locally-scoped variables for all the
13988 DW_TAG_common_block entries. Also create a struct common_block
13989 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13990 is used to sepate the common blocks name namespace from regular
13991 variable names. */
13992
13993 static void
13994 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13995 {
13996 struct attribute *attr;
13997
13998 attr = dwarf2_attr (die, DW_AT_location, cu);
13999 if (attr)
14000 {
14001 /* Support the .debug_loc offsets. */
14002 if (attr_form_is_block (attr))
14003 {
14004 /* Ok. */
14005 }
14006 else if (attr_form_is_section_offset (attr))
14007 {
14008 dwarf2_complex_location_expr_complaint ();
14009 attr = NULL;
14010 }
14011 else
14012 {
14013 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14014 "common block member");
14015 attr = NULL;
14016 }
14017 }
14018
14019 if (die->child != NULL)
14020 {
14021 struct objfile *objfile = cu->objfile;
14022 struct die_info *child_die;
14023 size_t n_entries = 0, size;
14024 struct common_block *common_block;
14025 struct symbol *sym;
14026
14027 for (child_die = die->child;
14028 child_die && child_die->tag;
14029 child_die = sibling_die (child_die))
14030 ++n_entries;
14031
14032 size = (sizeof (struct common_block)
14033 + (n_entries - 1) * sizeof (struct symbol *));
14034 common_block
14035 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14036 size);
14037 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14038 common_block->n_entries = 0;
14039
14040 for (child_die = die->child;
14041 child_die && child_die->tag;
14042 child_die = sibling_die (child_die))
14043 {
14044 /* Create the symbol in the DW_TAG_common_block block in the current
14045 symbol scope. */
14046 sym = new_symbol (child_die, NULL, cu);
14047 if (sym != NULL)
14048 {
14049 struct attribute *member_loc;
14050
14051 common_block->contents[common_block->n_entries++] = sym;
14052
14053 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14054 cu);
14055 if (member_loc)
14056 {
14057 /* GDB has handled this for a long time, but it is
14058 not specified by DWARF. It seems to have been
14059 emitted by gfortran at least as recently as:
14060 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14061 complaint (&symfile_complaints,
14062 _("Variable in common block has "
14063 "DW_AT_data_member_location "
14064 "- DIE at 0x%x [in module %s]"),
14065 child_die->offset.sect_off,
14066 objfile_name (cu->objfile));
14067
14068 if (attr_form_is_section_offset (member_loc))
14069 dwarf2_complex_location_expr_complaint ();
14070 else if (attr_form_is_constant (member_loc)
14071 || attr_form_is_block (member_loc))
14072 {
14073 if (attr)
14074 mark_common_block_symbol_computed (sym, die, attr,
14075 member_loc, cu);
14076 }
14077 else
14078 dwarf2_complex_location_expr_complaint ();
14079 }
14080 }
14081 }
14082
14083 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14084 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14085 }
14086 }
14087
14088 /* Create a type for a C++ namespace. */
14089
14090 static struct type *
14091 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14092 {
14093 struct objfile *objfile = cu->objfile;
14094 const char *previous_prefix, *name;
14095 int is_anonymous;
14096 struct type *type;
14097
14098 /* For extensions, reuse the type of the original namespace. */
14099 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14100 {
14101 struct die_info *ext_die;
14102 struct dwarf2_cu *ext_cu = cu;
14103
14104 ext_die = dwarf2_extension (die, &ext_cu);
14105 type = read_type_die (ext_die, ext_cu);
14106
14107 /* EXT_CU may not be the same as CU.
14108 Ensure TYPE is recorded with CU in die_type_hash. */
14109 return set_die_type (die, type, cu);
14110 }
14111
14112 name = namespace_name (die, &is_anonymous, cu);
14113
14114 /* Now build the name of the current namespace. */
14115
14116 previous_prefix = determine_prefix (die, cu);
14117 if (previous_prefix[0] != '\0')
14118 name = typename_concat (&objfile->objfile_obstack,
14119 previous_prefix, name, 0, cu);
14120
14121 /* Create the type. */
14122 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14123 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14124
14125 return set_die_type (die, type, cu);
14126 }
14127
14128 /* Read a namespace scope. */
14129
14130 static void
14131 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14132 {
14133 struct objfile *objfile = cu->objfile;
14134 int is_anonymous;
14135
14136 /* Add a symbol associated to this if we haven't seen the namespace
14137 before. Also, add a using directive if it's an anonymous
14138 namespace. */
14139
14140 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14141 {
14142 struct type *type;
14143
14144 type = read_type_die (die, cu);
14145 new_symbol (die, type, cu);
14146
14147 namespace_name (die, &is_anonymous, cu);
14148 if (is_anonymous)
14149 {
14150 const char *previous_prefix = determine_prefix (die, cu);
14151
14152 add_using_directive (using_directives (cu->language),
14153 previous_prefix, TYPE_NAME (type), NULL,
14154 NULL, NULL, 0, &objfile->objfile_obstack);
14155 }
14156 }
14157
14158 if (die->child != NULL)
14159 {
14160 struct die_info *child_die = die->child;
14161
14162 while (child_die && child_die->tag)
14163 {
14164 process_die (child_die, cu);
14165 child_die = sibling_die (child_die);
14166 }
14167 }
14168 }
14169
14170 /* Read a Fortran module as type. This DIE can be only a declaration used for
14171 imported module. Still we need that type as local Fortran "use ... only"
14172 declaration imports depend on the created type in determine_prefix. */
14173
14174 static struct type *
14175 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14176 {
14177 struct objfile *objfile = cu->objfile;
14178 const char *module_name;
14179 struct type *type;
14180
14181 module_name = dwarf2_name (die, cu);
14182 if (!module_name)
14183 complaint (&symfile_complaints,
14184 _("DW_TAG_module has no name, offset 0x%x"),
14185 die->offset.sect_off);
14186 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14187
14188 /* determine_prefix uses TYPE_TAG_NAME. */
14189 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14190
14191 return set_die_type (die, type, cu);
14192 }
14193
14194 /* Read a Fortran module. */
14195
14196 static void
14197 read_module (struct die_info *die, struct dwarf2_cu *cu)
14198 {
14199 struct die_info *child_die = die->child;
14200 struct type *type;
14201
14202 type = read_type_die (die, cu);
14203 new_symbol (die, type, cu);
14204
14205 while (child_die && child_die->tag)
14206 {
14207 process_die (child_die, cu);
14208 child_die = sibling_die (child_die);
14209 }
14210 }
14211
14212 /* Return the name of the namespace represented by DIE. Set
14213 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14214 namespace. */
14215
14216 static const char *
14217 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14218 {
14219 struct die_info *current_die;
14220 const char *name = NULL;
14221
14222 /* Loop through the extensions until we find a name. */
14223
14224 for (current_die = die;
14225 current_die != NULL;
14226 current_die = dwarf2_extension (die, &cu))
14227 {
14228 /* We don't use dwarf2_name here so that we can detect the absence
14229 of a name -> anonymous namespace. */
14230 name = dwarf2_string_attr (die, DW_AT_name, cu);
14231
14232 if (name != NULL)
14233 break;
14234 }
14235
14236 /* Is it an anonymous namespace? */
14237
14238 *is_anonymous = (name == NULL);
14239 if (*is_anonymous)
14240 name = CP_ANONYMOUS_NAMESPACE_STR;
14241
14242 return name;
14243 }
14244
14245 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14246 the user defined type vector. */
14247
14248 static struct type *
14249 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14250 {
14251 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14252 struct comp_unit_head *cu_header = &cu->header;
14253 struct type *type;
14254 struct attribute *attr_byte_size;
14255 struct attribute *attr_address_class;
14256 int byte_size, addr_class;
14257 struct type *target_type;
14258
14259 target_type = die_type (die, cu);
14260
14261 /* The die_type call above may have already set the type for this DIE. */
14262 type = get_die_type (die, cu);
14263 if (type)
14264 return type;
14265
14266 type = lookup_pointer_type (target_type);
14267
14268 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14269 if (attr_byte_size)
14270 byte_size = DW_UNSND (attr_byte_size);
14271 else
14272 byte_size = cu_header->addr_size;
14273
14274 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14275 if (attr_address_class)
14276 addr_class = DW_UNSND (attr_address_class);
14277 else
14278 addr_class = DW_ADDR_none;
14279
14280 /* If the pointer size or address class is different than the
14281 default, create a type variant marked as such and set the
14282 length accordingly. */
14283 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14284 {
14285 if (gdbarch_address_class_type_flags_p (gdbarch))
14286 {
14287 int type_flags;
14288
14289 type_flags = gdbarch_address_class_type_flags
14290 (gdbarch, byte_size, addr_class);
14291 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14292 == 0);
14293 type = make_type_with_address_space (type, type_flags);
14294 }
14295 else if (TYPE_LENGTH (type) != byte_size)
14296 {
14297 complaint (&symfile_complaints,
14298 _("invalid pointer size %d"), byte_size);
14299 }
14300 else
14301 {
14302 /* Should we also complain about unhandled address classes? */
14303 }
14304 }
14305
14306 TYPE_LENGTH (type) = byte_size;
14307 return set_die_type (die, type, cu);
14308 }
14309
14310 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14311 the user defined type vector. */
14312
14313 static struct type *
14314 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14315 {
14316 struct type *type;
14317 struct type *to_type;
14318 struct type *domain;
14319
14320 to_type = die_type (die, cu);
14321 domain = die_containing_type (die, cu);
14322
14323 /* The calls above may have already set the type for this DIE. */
14324 type = get_die_type (die, cu);
14325 if (type)
14326 return type;
14327
14328 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14329 type = lookup_methodptr_type (to_type);
14330 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14331 {
14332 struct type *new_type = alloc_type (cu->objfile);
14333
14334 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14335 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14336 TYPE_VARARGS (to_type));
14337 type = lookup_methodptr_type (new_type);
14338 }
14339 else
14340 type = lookup_memberptr_type (to_type, domain);
14341
14342 return set_die_type (die, type, cu);
14343 }
14344
14345 /* Extract all information from a DW_TAG_reference_type DIE and add to
14346 the user defined type vector. */
14347
14348 static struct type *
14349 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14350 {
14351 struct comp_unit_head *cu_header = &cu->header;
14352 struct type *type, *target_type;
14353 struct attribute *attr;
14354
14355 target_type = die_type (die, cu);
14356
14357 /* The die_type call above may have already set the type for this DIE. */
14358 type = get_die_type (die, cu);
14359 if (type)
14360 return type;
14361
14362 type = lookup_reference_type (target_type);
14363 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14364 if (attr)
14365 {
14366 TYPE_LENGTH (type) = DW_UNSND (attr);
14367 }
14368 else
14369 {
14370 TYPE_LENGTH (type) = cu_header->addr_size;
14371 }
14372 return set_die_type (die, type, cu);
14373 }
14374
14375 /* Add the given cv-qualifiers to the element type of the array. GCC
14376 outputs DWARF type qualifiers that apply to an array, not the
14377 element type. But GDB relies on the array element type to carry
14378 the cv-qualifiers. This mimics section 6.7.3 of the C99
14379 specification. */
14380
14381 static struct type *
14382 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14383 struct type *base_type, int cnst, int voltl)
14384 {
14385 struct type *el_type, *inner_array;
14386
14387 base_type = copy_type (base_type);
14388 inner_array = base_type;
14389
14390 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14391 {
14392 TYPE_TARGET_TYPE (inner_array) =
14393 copy_type (TYPE_TARGET_TYPE (inner_array));
14394 inner_array = TYPE_TARGET_TYPE (inner_array);
14395 }
14396
14397 el_type = TYPE_TARGET_TYPE (inner_array);
14398 cnst |= TYPE_CONST (el_type);
14399 voltl |= TYPE_VOLATILE (el_type);
14400 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14401
14402 return set_die_type (die, base_type, cu);
14403 }
14404
14405 static struct type *
14406 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14407 {
14408 struct type *base_type, *cv_type;
14409
14410 base_type = die_type (die, cu);
14411
14412 /* The die_type call above may have already set the type for this DIE. */
14413 cv_type = get_die_type (die, cu);
14414 if (cv_type)
14415 return cv_type;
14416
14417 /* In case the const qualifier is applied to an array type, the element type
14418 is so qualified, not the array type (section 6.7.3 of C99). */
14419 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14420 return add_array_cv_type (die, cu, base_type, 1, 0);
14421
14422 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14423 return set_die_type (die, cv_type, cu);
14424 }
14425
14426 static struct type *
14427 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14428 {
14429 struct type *base_type, *cv_type;
14430
14431 base_type = die_type (die, cu);
14432
14433 /* The die_type call above may have already set the type for this DIE. */
14434 cv_type = get_die_type (die, cu);
14435 if (cv_type)
14436 return cv_type;
14437
14438 /* In case the volatile qualifier is applied to an array type, the
14439 element type is so qualified, not the array type (section 6.7.3
14440 of C99). */
14441 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14442 return add_array_cv_type (die, cu, base_type, 0, 1);
14443
14444 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14445 return set_die_type (die, cv_type, cu);
14446 }
14447
14448 /* Handle DW_TAG_restrict_type. */
14449
14450 static struct type *
14451 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14452 {
14453 struct type *base_type, *cv_type;
14454
14455 base_type = die_type (die, cu);
14456
14457 /* The die_type call above may have already set the type for this DIE. */
14458 cv_type = get_die_type (die, cu);
14459 if (cv_type)
14460 return cv_type;
14461
14462 cv_type = make_restrict_type (base_type);
14463 return set_die_type (die, cv_type, cu);
14464 }
14465
14466 /* Handle DW_TAG_atomic_type. */
14467
14468 static struct type *
14469 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14470 {
14471 struct type *base_type, *cv_type;
14472
14473 base_type = die_type (die, cu);
14474
14475 /* The die_type call above may have already set the type for this DIE. */
14476 cv_type = get_die_type (die, cu);
14477 if (cv_type)
14478 return cv_type;
14479
14480 cv_type = make_atomic_type (base_type);
14481 return set_die_type (die, cv_type, cu);
14482 }
14483
14484 /* Extract all information from a DW_TAG_string_type DIE and add to
14485 the user defined type vector. It isn't really a user defined type,
14486 but it behaves like one, with other DIE's using an AT_user_def_type
14487 attribute to reference it. */
14488
14489 static struct type *
14490 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14491 {
14492 struct objfile *objfile = cu->objfile;
14493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14494 struct type *type, *range_type, *index_type, *char_type;
14495 struct attribute *attr;
14496 unsigned int length;
14497
14498 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14499 if (attr)
14500 {
14501 length = DW_UNSND (attr);
14502 }
14503 else
14504 {
14505 /* Check for the DW_AT_byte_size attribute. */
14506 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14507 if (attr)
14508 {
14509 length = DW_UNSND (attr);
14510 }
14511 else
14512 {
14513 length = 1;
14514 }
14515 }
14516
14517 index_type = objfile_type (objfile)->builtin_int;
14518 range_type = create_static_range_type (NULL, index_type, 1, length);
14519 char_type = language_string_char_type (cu->language_defn, gdbarch);
14520 type = create_string_type (NULL, char_type, range_type);
14521
14522 return set_die_type (die, type, cu);
14523 }
14524
14525 /* Assuming that DIE corresponds to a function, returns nonzero
14526 if the function is prototyped. */
14527
14528 static int
14529 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14530 {
14531 struct attribute *attr;
14532
14533 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14534 if (attr && (DW_UNSND (attr) != 0))
14535 return 1;
14536
14537 /* The DWARF standard implies that the DW_AT_prototyped attribute
14538 is only meaninful for C, but the concept also extends to other
14539 languages that allow unprototyped functions (Eg: Objective C).
14540 For all other languages, assume that functions are always
14541 prototyped. */
14542 if (cu->language != language_c
14543 && cu->language != language_objc
14544 && cu->language != language_opencl)
14545 return 1;
14546
14547 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14548 prototyped and unprototyped functions; default to prototyped,
14549 since that is more common in modern code (and RealView warns
14550 about unprototyped functions). */
14551 if (producer_is_realview (cu->producer))
14552 return 1;
14553
14554 return 0;
14555 }
14556
14557 /* Handle DIES due to C code like:
14558
14559 struct foo
14560 {
14561 int (*funcp)(int a, long l);
14562 int b;
14563 };
14564
14565 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14566
14567 static struct type *
14568 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14569 {
14570 struct objfile *objfile = cu->objfile;
14571 struct type *type; /* Type that this function returns. */
14572 struct type *ftype; /* Function that returns above type. */
14573 struct attribute *attr;
14574
14575 type = die_type (die, cu);
14576
14577 /* The die_type call above may have already set the type for this DIE. */
14578 ftype = get_die_type (die, cu);
14579 if (ftype)
14580 return ftype;
14581
14582 ftype = lookup_function_type (type);
14583
14584 if (prototyped_function_p (die, cu))
14585 TYPE_PROTOTYPED (ftype) = 1;
14586
14587 /* Store the calling convention in the type if it's available in
14588 the subroutine die. Otherwise set the calling convention to
14589 the default value DW_CC_normal. */
14590 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14591 if (attr)
14592 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14593 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14594 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14595 else
14596 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14597
14598 /* Record whether the function returns normally to its caller or not
14599 if the DWARF producer set that information. */
14600 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14601 if (attr && (DW_UNSND (attr) != 0))
14602 TYPE_NO_RETURN (ftype) = 1;
14603
14604 /* We need to add the subroutine type to the die immediately so
14605 we don't infinitely recurse when dealing with parameters
14606 declared as the same subroutine type. */
14607 set_die_type (die, ftype, cu);
14608
14609 if (die->child != NULL)
14610 {
14611 struct type *void_type = objfile_type (objfile)->builtin_void;
14612 struct die_info *child_die;
14613 int nparams, iparams;
14614
14615 /* Count the number of parameters.
14616 FIXME: GDB currently ignores vararg functions, but knows about
14617 vararg member functions. */
14618 nparams = 0;
14619 child_die = die->child;
14620 while (child_die && child_die->tag)
14621 {
14622 if (child_die->tag == DW_TAG_formal_parameter)
14623 nparams++;
14624 else if (child_die->tag == DW_TAG_unspecified_parameters)
14625 TYPE_VARARGS (ftype) = 1;
14626 child_die = sibling_die (child_die);
14627 }
14628
14629 /* Allocate storage for parameters and fill them in. */
14630 TYPE_NFIELDS (ftype) = nparams;
14631 TYPE_FIELDS (ftype) = (struct field *)
14632 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14633
14634 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14635 even if we error out during the parameters reading below. */
14636 for (iparams = 0; iparams < nparams; iparams++)
14637 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14638
14639 iparams = 0;
14640 child_die = die->child;
14641 while (child_die && child_die->tag)
14642 {
14643 if (child_die->tag == DW_TAG_formal_parameter)
14644 {
14645 struct type *arg_type;
14646
14647 /* DWARF version 2 has no clean way to discern C++
14648 static and non-static member functions. G++ helps
14649 GDB by marking the first parameter for non-static
14650 member functions (which is the this pointer) as
14651 artificial. We pass this information to
14652 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14653
14654 DWARF version 3 added DW_AT_object_pointer, which GCC
14655 4.5 does not yet generate. */
14656 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14657 if (attr)
14658 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14659 else
14660 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14661 arg_type = die_type (child_die, cu);
14662
14663 /* RealView does not mark THIS as const, which the testsuite
14664 expects. GCC marks THIS as const in method definitions,
14665 but not in the class specifications (GCC PR 43053). */
14666 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14667 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14668 {
14669 int is_this = 0;
14670 struct dwarf2_cu *arg_cu = cu;
14671 const char *name = dwarf2_name (child_die, cu);
14672
14673 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14674 if (attr)
14675 {
14676 /* If the compiler emits this, use it. */
14677 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14678 is_this = 1;
14679 }
14680 else if (name && strcmp (name, "this") == 0)
14681 /* Function definitions will have the argument names. */
14682 is_this = 1;
14683 else if (name == NULL && iparams == 0)
14684 /* Declarations may not have the names, so like
14685 elsewhere in GDB, assume an artificial first
14686 argument is "this". */
14687 is_this = 1;
14688
14689 if (is_this)
14690 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14691 arg_type, 0);
14692 }
14693
14694 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14695 iparams++;
14696 }
14697 child_die = sibling_die (child_die);
14698 }
14699 }
14700
14701 return ftype;
14702 }
14703
14704 static struct type *
14705 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14706 {
14707 struct objfile *objfile = cu->objfile;
14708 const char *name = NULL;
14709 struct type *this_type, *target_type;
14710
14711 name = dwarf2_full_name (NULL, die, cu);
14712 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14713 TYPE_TARGET_STUB (this_type) = 1;
14714 set_die_type (die, this_type, cu);
14715 target_type = die_type (die, cu);
14716 if (target_type != this_type)
14717 TYPE_TARGET_TYPE (this_type) = target_type;
14718 else
14719 {
14720 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14721 spec and cause infinite loops in GDB. */
14722 complaint (&symfile_complaints,
14723 _("Self-referential DW_TAG_typedef "
14724 "- DIE at 0x%x [in module %s]"),
14725 die->offset.sect_off, objfile_name (objfile));
14726 TYPE_TARGET_TYPE (this_type) = NULL;
14727 }
14728 return this_type;
14729 }
14730
14731 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14732 (which may be different from NAME) to the architecture back-end to allow
14733 it to guess the correct format if necessary. */
14734
14735 static struct type *
14736 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14737 const char *name_hint)
14738 {
14739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14740 const struct floatformat **format;
14741 struct type *type;
14742
14743 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14744 if (format)
14745 type = init_float_type (objfile, bits, name, format);
14746 else
14747 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14748
14749 return type;
14750 }
14751
14752 /* Find a representation of a given base type and install
14753 it in the TYPE field of the die. */
14754
14755 static struct type *
14756 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14757 {
14758 struct objfile *objfile = cu->objfile;
14759 struct type *type;
14760 struct attribute *attr;
14761 int encoding = 0, bits = 0;
14762 const char *name;
14763
14764 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14765 if (attr)
14766 {
14767 encoding = DW_UNSND (attr);
14768 }
14769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14770 if (attr)
14771 {
14772 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14773 }
14774 name = dwarf2_name (die, cu);
14775 if (!name)
14776 {
14777 complaint (&symfile_complaints,
14778 _("DW_AT_name missing from DW_TAG_base_type"));
14779 }
14780
14781 switch (encoding)
14782 {
14783 case DW_ATE_address:
14784 /* Turn DW_ATE_address into a void * pointer. */
14785 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14786 type = init_pointer_type (objfile, bits, name, type);
14787 break;
14788 case DW_ATE_boolean:
14789 type = init_boolean_type (objfile, bits, 1, name);
14790 break;
14791 case DW_ATE_complex_float:
14792 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14793 type = init_complex_type (objfile, name, type);
14794 break;
14795 case DW_ATE_decimal_float:
14796 type = init_decfloat_type (objfile, bits, name);
14797 break;
14798 case DW_ATE_float:
14799 type = dwarf2_init_float_type (objfile, bits, name, name);
14800 break;
14801 case DW_ATE_signed:
14802 type = init_integer_type (objfile, bits, 0, name);
14803 break;
14804 case DW_ATE_unsigned:
14805 if (cu->language == language_fortran
14806 && name
14807 && startswith (name, "character("))
14808 type = init_character_type (objfile, bits, 1, name);
14809 else
14810 type = init_integer_type (objfile, bits, 1, name);
14811 break;
14812 case DW_ATE_signed_char:
14813 if (cu->language == language_ada || cu->language == language_m2
14814 || cu->language == language_pascal
14815 || cu->language == language_fortran)
14816 type = init_character_type (objfile, bits, 0, name);
14817 else
14818 type = init_integer_type (objfile, bits, 0, name);
14819 break;
14820 case DW_ATE_unsigned_char:
14821 if (cu->language == language_ada || cu->language == language_m2
14822 || cu->language == language_pascal
14823 || cu->language == language_fortran
14824 || cu->language == language_rust)
14825 type = init_character_type (objfile, bits, 1, name);
14826 else
14827 type = init_integer_type (objfile, bits, 1, name);
14828 break;
14829 case DW_ATE_UTF:
14830 /* We just treat this as an integer and then recognize the
14831 type by name elsewhere. */
14832 type = init_integer_type (objfile, bits, 0, name);
14833 break;
14834
14835 default:
14836 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14837 dwarf_type_encoding_name (encoding));
14838 type = init_type (objfile, TYPE_CODE_ERROR,
14839 bits / TARGET_CHAR_BIT, name);
14840 break;
14841 }
14842
14843 if (name && strcmp (name, "char") == 0)
14844 TYPE_NOSIGN (type) = 1;
14845
14846 return set_die_type (die, type, cu);
14847 }
14848
14849 /* Parse dwarf attribute if it's a block, reference or constant and put the
14850 resulting value of the attribute into struct bound_prop.
14851 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14852
14853 static int
14854 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14855 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14856 {
14857 struct dwarf2_property_baton *baton;
14858 struct obstack *obstack = &cu->objfile->objfile_obstack;
14859
14860 if (attr == NULL || prop == NULL)
14861 return 0;
14862
14863 if (attr_form_is_block (attr))
14864 {
14865 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14866 baton->referenced_type = NULL;
14867 baton->locexpr.per_cu = cu->per_cu;
14868 baton->locexpr.size = DW_BLOCK (attr)->size;
14869 baton->locexpr.data = DW_BLOCK (attr)->data;
14870 prop->data.baton = baton;
14871 prop->kind = PROP_LOCEXPR;
14872 gdb_assert (prop->data.baton != NULL);
14873 }
14874 else if (attr_form_is_ref (attr))
14875 {
14876 struct dwarf2_cu *target_cu = cu;
14877 struct die_info *target_die;
14878 struct attribute *target_attr;
14879
14880 target_die = follow_die_ref (die, attr, &target_cu);
14881 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14882 if (target_attr == NULL)
14883 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14884 target_cu);
14885 if (target_attr == NULL)
14886 return 0;
14887
14888 switch (target_attr->name)
14889 {
14890 case DW_AT_location:
14891 if (attr_form_is_section_offset (target_attr))
14892 {
14893 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14894 baton->referenced_type = die_type (target_die, target_cu);
14895 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14896 prop->data.baton = baton;
14897 prop->kind = PROP_LOCLIST;
14898 gdb_assert (prop->data.baton != NULL);
14899 }
14900 else if (attr_form_is_block (target_attr))
14901 {
14902 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14903 baton->referenced_type = die_type (target_die, target_cu);
14904 baton->locexpr.per_cu = cu->per_cu;
14905 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14906 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14907 prop->data.baton = baton;
14908 prop->kind = PROP_LOCEXPR;
14909 gdb_assert (prop->data.baton != NULL);
14910 }
14911 else
14912 {
14913 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14914 "dynamic property");
14915 return 0;
14916 }
14917 break;
14918 case DW_AT_data_member_location:
14919 {
14920 LONGEST offset;
14921
14922 if (!handle_data_member_location (target_die, target_cu,
14923 &offset))
14924 return 0;
14925
14926 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14927 baton->referenced_type = read_type_die (target_die->parent,
14928 target_cu);
14929 baton->offset_info.offset = offset;
14930 baton->offset_info.type = die_type (target_die, target_cu);
14931 prop->data.baton = baton;
14932 prop->kind = PROP_ADDR_OFFSET;
14933 break;
14934 }
14935 }
14936 }
14937 else if (attr_form_is_constant (attr))
14938 {
14939 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14940 prop->kind = PROP_CONST;
14941 }
14942 else
14943 {
14944 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14945 dwarf2_name (die, cu));
14946 return 0;
14947 }
14948
14949 return 1;
14950 }
14951
14952 /* Read the given DW_AT_subrange DIE. */
14953
14954 static struct type *
14955 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14956 {
14957 struct type *base_type, *orig_base_type;
14958 struct type *range_type;
14959 struct attribute *attr;
14960 struct dynamic_prop low, high;
14961 int low_default_is_valid;
14962 int high_bound_is_count = 0;
14963 const char *name;
14964 LONGEST negative_mask;
14965
14966 orig_base_type = die_type (die, cu);
14967 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14968 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14969 creating the range type, but we use the result of check_typedef
14970 when examining properties of the type. */
14971 base_type = check_typedef (orig_base_type);
14972
14973 /* The die_type call above may have already set the type for this DIE. */
14974 range_type = get_die_type (die, cu);
14975 if (range_type)
14976 return range_type;
14977
14978 low.kind = PROP_CONST;
14979 high.kind = PROP_CONST;
14980 high.data.const_val = 0;
14981
14982 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14983 omitting DW_AT_lower_bound. */
14984 switch (cu->language)
14985 {
14986 case language_c:
14987 case language_cplus:
14988 low.data.const_val = 0;
14989 low_default_is_valid = 1;
14990 break;
14991 case language_fortran:
14992 low.data.const_val = 1;
14993 low_default_is_valid = 1;
14994 break;
14995 case language_d:
14996 case language_objc:
14997 case language_rust:
14998 low.data.const_val = 0;
14999 low_default_is_valid = (cu->header.version >= 4);
15000 break;
15001 case language_ada:
15002 case language_m2:
15003 case language_pascal:
15004 low.data.const_val = 1;
15005 low_default_is_valid = (cu->header.version >= 4);
15006 break;
15007 default:
15008 low.data.const_val = 0;
15009 low_default_is_valid = 0;
15010 break;
15011 }
15012
15013 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15014 if (attr)
15015 attr_to_dynamic_prop (attr, die, cu, &low);
15016 else if (!low_default_is_valid)
15017 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15018 "- DIE at 0x%x [in module %s]"),
15019 die->offset.sect_off, objfile_name (cu->objfile));
15020
15021 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15022 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15023 {
15024 attr = dwarf2_attr (die, DW_AT_count, cu);
15025 if (attr_to_dynamic_prop (attr, die, cu, &high))
15026 {
15027 /* If bounds are constant do the final calculation here. */
15028 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15029 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15030 else
15031 high_bound_is_count = 1;
15032 }
15033 }
15034
15035 /* Dwarf-2 specifications explicitly allows to create subrange types
15036 without specifying a base type.
15037 In that case, the base type must be set to the type of
15038 the lower bound, upper bound or count, in that order, if any of these
15039 three attributes references an object that has a type.
15040 If no base type is found, the Dwarf-2 specifications say that
15041 a signed integer type of size equal to the size of an address should
15042 be used.
15043 For the following C code: `extern char gdb_int [];'
15044 GCC produces an empty range DIE.
15045 FIXME: muller/2010-05-28: Possible references to object for low bound,
15046 high bound or count are not yet handled by this code. */
15047 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15048 {
15049 struct objfile *objfile = cu->objfile;
15050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15051 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15052 struct type *int_type = objfile_type (objfile)->builtin_int;
15053
15054 /* Test "int", "long int", and "long long int" objfile types,
15055 and select the first one having a size above or equal to the
15056 architecture address size. */
15057 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15058 base_type = int_type;
15059 else
15060 {
15061 int_type = objfile_type (objfile)->builtin_long;
15062 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15063 base_type = int_type;
15064 else
15065 {
15066 int_type = objfile_type (objfile)->builtin_long_long;
15067 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15068 base_type = int_type;
15069 }
15070 }
15071 }
15072
15073 /* Normally, the DWARF producers are expected to use a signed
15074 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15075 But this is unfortunately not always the case, as witnessed
15076 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15077 is used instead. To work around that ambiguity, we treat
15078 the bounds as signed, and thus sign-extend their values, when
15079 the base type is signed. */
15080 negative_mask =
15081 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15082 if (low.kind == PROP_CONST
15083 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15084 low.data.const_val |= negative_mask;
15085 if (high.kind == PROP_CONST
15086 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15087 high.data.const_val |= negative_mask;
15088
15089 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15090
15091 if (high_bound_is_count)
15092 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15093
15094 /* Ada expects an empty array on no boundary attributes. */
15095 if (attr == NULL && cu->language != language_ada)
15096 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15097
15098 name = dwarf2_name (die, cu);
15099 if (name)
15100 TYPE_NAME (range_type) = name;
15101
15102 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15103 if (attr)
15104 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15105
15106 set_die_type (die, range_type, cu);
15107
15108 /* set_die_type should be already done. */
15109 set_descriptive_type (range_type, die, cu);
15110
15111 return range_type;
15112 }
15113
15114 static struct type *
15115 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15116 {
15117 struct type *type;
15118
15119 /* For now, we only support the C meaning of an unspecified type: void. */
15120
15121 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15122 TYPE_NAME (type) = dwarf2_name (die, cu);
15123
15124 return set_die_type (die, type, cu);
15125 }
15126
15127 /* Read a single die and all its descendents. Set the die's sibling
15128 field to NULL; set other fields in the die correctly, and set all
15129 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15130 location of the info_ptr after reading all of those dies. PARENT
15131 is the parent of the die in question. */
15132
15133 static struct die_info *
15134 read_die_and_children (const struct die_reader_specs *reader,
15135 const gdb_byte *info_ptr,
15136 const gdb_byte **new_info_ptr,
15137 struct die_info *parent)
15138 {
15139 struct die_info *die;
15140 const gdb_byte *cur_ptr;
15141 int has_children;
15142
15143 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15144 if (die == NULL)
15145 {
15146 *new_info_ptr = cur_ptr;
15147 return NULL;
15148 }
15149 store_in_ref_table (die, reader->cu);
15150
15151 if (has_children)
15152 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15153 else
15154 {
15155 die->child = NULL;
15156 *new_info_ptr = cur_ptr;
15157 }
15158
15159 die->sibling = NULL;
15160 die->parent = parent;
15161 return die;
15162 }
15163
15164 /* Read a die, all of its descendents, and all of its siblings; set
15165 all of the fields of all of the dies correctly. Arguments are as
15166 in read_die_and_children. */
15167
15168 static struct die_info *
15169 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15170 const gdb_byte *info_ptr,
15171 const gdb_byte **new_info_ptr,
15172 struct die_info *parent)
15173 {
15174 struct die_info *first_die, *last_sibling;
15175 const gdb_byte *cur_ptr;
15176
15177 cur_ptr = info_ptr;
15178 first_die = last_sibling = NULL;
15179
15180 while (1)
15181 {
15182 struct die_info *die
15183 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15184
15185 if (die == NULL)
15186 {
15187 *new_info_ptr = cur_ptr;
15188 return first_die;
15189 }
15190
15191 if (!first_die)
15192 first_die = die;
15193 else
15194 last_sibling->sibling = die;
15195
15196 last_sibling = die;
15197 }
15198 }
15199
15200 /* Read a die, all of its descendents, and all of its siblings; set
15201 all of the fields of all of the dies correctly. Arguments are as
15202 in read_die_and_children.
15203 This the main entry point for reading a DIE and all its children. */
15204
15205 static struct die_info *
15206 read_die_and_siblings (const struct die_reader_specs *reader,
15207 const gdb_byte *info_ptr,
15208 const gdb_byte **new_info_ptr,
15209 struct die_info *parent)
15210 {
15211 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15212 new_info_ptr, parent);
15213
15214 if (dwarf_die_debug)
15215 {
15216 fprintf_unfiltered (gdb_stdlog,
15217 "Read die from %s@0x%x of %s:\n",
15218 get_section_name (reader->die_section),
15219 (unsigned) (info_ptr - reader->die_section->buffer),
15220 bfd_get_filename (reader->abfd));
15221 dump_die (die, dwarf_die_debug);
15222 }
15223
15224 return die;
15225 }
15226
15227 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15228 attributes.
15229 The caller is responsible for filling in the extra attributes
15230 and updating (*DIEP)->num_attrs.
15231 Set DIEP to point to a newly allocated die with its information,
15232 except for its child, sibling, and parent fields.
15233 Set HAS_CHILDREN to tell whether the die has children or not. */
15234
15235 static const gdb_byte *
15236 read_full_die_1 (const struct die_reader_specs *reader,
15237 struct die_info **diep, const gdb_byte *info_ptr,
15238 int *has_children, int num_extra_attrs)
15239 {
15240 unsigned int abbrev_number, bytes_read, i;
15241 sect_offset offset;
15242 struct abbrev_info *abbrev;
15243 struct die_info *die;
15244 struct dwarf2_cu *cu = reader->cu;
15245 bfd *abfd = reader->abfd;
15246
15247 offset.sect_off = info_ptr - reader->buffer;
15248 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15249 info_ptr += bytes_read;
15250 if (!abbrev_number)
15251 {
15252 *diep = NULL;
15253 *has_children = 0;
15254 return info_ptr;
15255 }
15256
15257 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15258 if (!abbrev)
15259 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15260 abbrev_number,
15261 bfd_get_filename (abfd));
15262
15263 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15264 die->offset = offset;
15265 die->tag = abbrev->tag;
15266 die->abbrev = abbrev_number;
15267
15268 /* Make the result usable.
15269 The caller needs to update num_attrs after adding the extra
15270 attributes. */
15271 die->num_attrs = abbrev->num_attrs;
15272
15273 for (i = 0; i < abbrev->num_attrs; ++i)
15274 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15275 info_ptr);
15276
15277 *diep = die;
15278 *has_children = abbrev->has_children;
15279 return info_ptr;
15280 }
15281
15282 /* Read a die and all its attributes.
15283 Set DIEP to point to a newly allocated die with its information,
15284 except for its child, sibling, and parent fields.
15285 Set HAS_CHILDREN to tell whether the die has children or not. */
15286
15287 static const gdb_byte *
15288 read_full_die (const struct die_reader_specs *reader,
15289 struct die_info **diep, const gdb_byte *info_ptr,
15290 int *has_children)
15291 {
15292 const gdb_byte *result;
15293
15294 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15295
15296 if (dwarf_die_debug)
15297 {
15298 fprintf_unfiltered (gdb_stdlog,
15299 "Read die from %s@0x%x of %s:\n",
15300 get_section_name (reader->die_section),
15301 (unsigned) (info_ptr - reader->die_section->buffer),
15302 bfd_get_filename (reader->abfd));
15303 dump_die (*diep, dwarf_die_debug);
15304 }
15305
15306 return result;
15307 }
15308 \f
15309 /* Abbreviation tables.
15310
15311 In DWARF version 2, the description of the debugging information is
15312 stored in a separate .debug_abbrev section. Before we read any
15313 dies from a section we read in all abbreviations and install them
15314 in a hash table. */
15315
15316 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15317
15318 static struct abbrev_info *
15319 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15320 {
15321 struct abbrev_info *abbrev;
15322
15323 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15324 memset (abbrev, 0, sizeof (struct abbrev_info));
15325
15326 return abbrev;
15327 }
15328
15329 /* Add an abbreviation to the table. */
15330
15331 static void
15332 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15333 unsigned int abbrev_number,
15334 struct abbrev_info *abbrev)
15335 {
15336 unsigned int hash_number;
15337
15338 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15339 abbrev->next = abbrev_table->abbrevs[hash_number];
15340 abbrev_table->abbrevs[hash_number] = abbrev;
15341 }
15342
15343 /* Look up an abbrev in the table.
15344 Returns NULL if the abbrev is not found. */
15345
15346 static struct abbrev_info *
15347 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15348 unsigned int abbrev_number)
15349 {
15350 unsigned int hash_number;
15351 struct abbrev_info *abbrev;
15352
15353 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15354 abbrev = abbrev_table->abbrevs[hash_number];
15355
15356 while (abbrev)
15357 {
15358 if (abbrev->number == abbrev_number)
15359 return abbrev;
15360 abbrev = abbrev->next;
15361 }
15362 return NULL;
15363 }
15364
15365 /* Read in an abbrev table. */
15366
15367 static struct abbrev_table *
15368 abbrev_table_read_table (struct dwarf2_section_info *section,
15369 sect_offset offset)
15370 {
15371 struct objfile *objfile = dwarf2_per_objfile->objfile;
15372 bfd *abfd = get_section_bfd_owner (section);
15373 struct abbrev_table *abbrev_table;
15374 const gdb_byte *abbrev_ptr;
15375 struct abbrev_info *cur_abbrev;
15376 unsigned int abbrev_number, bytes_read, abbrev_name;
15377 unsigned int abbrev_form;
15378 struct attr_abbrev *cur_attrs;
15379 unsigned int allocated_attrs;
15380
15381 abbrev_table = XNEW (struct abbrev_table);
15382 abbrev_table->offset = offset;
15383 obstack_init (&abbrev_table->abbrev_obstack);
15384 abbrev_table->abbrevs =
15385 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15386 ABBREV_HASH_SIZE);
15387 memset (abbrev_table->abbrevs, 0,
15388 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15389
15390 dwarf2_read_section (objfile, section);
15391 abbrev_ptr = section->buffer + offset.sect_off;
15392 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15393 abbrev_ptr += bytes_read;
15394
15395 allocated_attrs = ATTR_ALLOC_CHUNK;
15396 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15397
15398 /* Loop until we reach an abbrev number of 0. */
15399 while (abbrev_number)
15400 {
15401 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15402
15403 /* read in abbrev header */
15404 cur_abbrev->number = abbrev_number;
15405 cur_abbrev->tag
15406 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15407 abbrev_ptr += bytes_read;
15408 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15409 abbrev_ptr += 1;
15410
15411 /* now read in declarations */
15412 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
15414 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15415 abbrev_ptr += bytes_read;
15416 while (abbrev_name)
15417 {
15418 if (cur_abbrev->num_attrs == allocated_attrs)
15419 {
15420 allocated_attrs += ATTR_ALLOC_CHUNK;
15421 cur_attrs
15422 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15423 }
15424
15425 cur_attrs[cur_abbrev->num_attrs].name
15426 = (enum dwarf_attribute) abbrev_name;
15427 cur_attrs[cur_abbrev->num_attrs++].form
15428 = (enum dwarf_form) abbrev_form;
15429 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15430 abbrev_ptr += bytes_read;
15431 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15432 abbrev_ptr += bytes_read;
15433 }
15434
15435 cur_abbrev->attrs =
15436 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15437 cur_abbrev->num_attrs);
15438 memcpy (cur_abbrev->attrs, cur_attrs,
15439 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15440
15441 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15442
15443 /* Get next abbreviation.
15444 Under Irix6 the abbreviations for a compilation unit are not
15445 always properly terminated with an abbrev number of 0.
15446 Exit loop if we encounter an abbreviation which we have
15447 already read (which means we are about to read the abbreviations
15448 for the next compile unit) or if the end of the abbreviation
15449 table is reached. */
15450 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15451 break;
15452 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15453 abbrev_ptr += bytes_read;
15454 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15455 break;
15456 }
15457
15458 xfree (cur_attrs);
15459 return abbrev_table;
15460 }
15461
15462 /* Free the resources held by ABBREV_TABLE. */
15463
15464 static void
15465 abbrev_table_free (struct abbrev_table *abbrev_table)
15466 {
15467 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15468 xfree (abbrev_table);
15469 }
15470
15471 /* Same as abbrev_table_free but as a cleanup.
15472 We pass in a pointer to the pointer to the table so that we can
15473 set the pointer to NULL when we're done. It also simplifies
15474 build_type_psymtabs_1. */
15475
15476 static void
15477 abbrev_table_free_cleanup (void *table_ptr)
15478 {
15479 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15480
15481 if (*abbrev_table_ptr != NULL)
15482 abbrev_table_free (*abbrev_table_ptr);
15483 *abbrev_table_ptr = NULL;
15484 }
15485
15486 /* Read the abbrev table for CU from ABBREV_SECTION. */
15487
15488 static void
15489 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15490 struct dwarf2_section_info *abbrev_section)
15491 {
15492 cu->abbrev_table =
15493 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15494 }
15495
15496 /* Release the memory used by the abbrev table for a compilation unit. */
15497
15498 static void
15499 dwarf2_free_abbrev_table (void *ptr_to_cu)
15500 {
15501 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15502
15503 if (cu->abbrev_table != NULL)
15504 abbrev_table_free (cu->abbrev_table);
15505 /* Set this to NULL so that we SEGV if we try to read it later,
15506 and also because free_comp_unit verifies this is NULL. */
15507 cu->abbrev_table = NULL;
15508 }
15509 \f
15510 /* Returns nonzero if TAG represents a type that we might generate a partial
15511 symbol for. */
15512
15513 static int
15514 is_type_tag_for_partial (int tag)
15515 {
15516 switch (tag)
15517 {
15518 #if 0
15519 /* Some types that would be reasonable to generate partial symbols for,
15520 that we don't at present. */
15521 case DW_TAG_array_type:
15522 case DW_TAG_file_type:
15523 case DW_TAG_ptr_to_member_type:
15524 case DW_TAG_set_type:
15525 case DW_TAG_string_type:
15526 case DW_TAG_subroutine_type:
15527 #endif
15528 case DW_TAG_base_type:
15529 case DW_TAG_class_type:
15530 case DW_TAG_interface_type:
15531 case DW_TAG_enumeration_type:
15532 case DW_TAG_structure_type:
15533 case DW_TAG_subrange_type:
15534 case DW_TAG_typedef:
15535 case DW_TAG_union_type:
15536 return 1;
15537 default:
15538 return 0;
15539 }
15540 }
15541
15542 /* Load all DIEs that are interesting for partial symbols into memory. */
15543
15544 static struct partial_die_info *
15545 load_partial_dies (const struct die_reader_specs *reader,
15546 const gdb_byte *info_ptr, int building_psymtab)
15547 {
15548 struct dwarf2_cu *cu = reader->cu;
15549 struct objfile *objfile = cu->objfile;
15550 struct partial_die_info *part_die;
15551 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15552 struct abbrev_info *abbrev;
15553 unsigned int bytes_read;
15554 unsigned int load_all = 0;
15555 int nesting_level = 1;
15556
15557 parent_die = NULL;
15558 last_die = NULL;
15559
15560 gdb_assert (cu->per_cu != NULL);
15561 if (cu->per_cu->load_all_dies)
15562 load_all = 1;
15563
15564 cu->partial_dies
15565 = htab_create_alloc_ex (cu->header.length / 12,
15566 partial_die_hash,
15567 partial_die_eq,
15568 NULL,
15569 &cu->comp_unit_obstack,
15570 hashtab_obstack_allocate,
15571 dummy_obstack_deallocate);
15572
15573 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15574
15575 while (1)
15576 {
15577 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15578
15579 /* A NULL abbrev means the end of a series of children. */
15580 if (abbrev == NULL)
15581 {
15582 if (--nesting_level == 0)
15583 {
15584 /* PART_DIE was probably the last thing allocated on the
15585 comp_unit_obstack, so we could call obstack_free
15586 here. We don't do that because the waste is small,
15587 and will be cleaned up when we're done with this
15588 compilation unit. This way, we're also more robust
15589 against other users of the comp_unit_obstack. */
15590 return first_die;
15591 }
15592 info_ptr += bytes_read;
15593 last_die = parent_die;
15594 parent_die = parent_die->die_parent;
15595 continue;
15596 }
15597
15598 /* Check for template arguments. We never save these; if
15599 they're seen, we just mark the parent, and go on our way. */
15600 if (parent_die != NULL
15601 && cu->language == language_cplus
15602 && (abbrev->tag == DW_TAG_template_type_param
15603 || abbrev->tag == DW_TAG_template_value_param))
15604 {
15605 parent_die->has_template_arguments = 1;
15606
15607 if (!load_all)
15608 {
15609 /* We don't need a partial DIE for the template argument. */
15610 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15611 continue;
15612 }
15613 }
15614
15615 /* We only recurse into c++ subprograms looking for template arguments.
15616 Skip their other children. */
15617 if (!load_all
15618 && cu->language == language_cplus
15619 && parent_die != NULL
15620 && parent_die->tag == DW_TAG_subprogram)
15621 {
15622 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15623 continue;
15624 }
15625
15626 /* Check whether this DIE is interesting enough to save. Normally
15627 we would not be interested in members here, but there may be
15628 later variables referencing them via DW_AT_specification (for
15629 static members). */
15630 if (!load_all
15631 && !is_type_tag_for_partial (abbrev->tag)
15632 && abbrev->tag != DW_TAG_constant
15633 && abbrev->tag != DW_TAG_enumerator
15634 && abbrev->tag != DW_TAG_subprogram
15635 && abbrev->tag != DW_TAG_lexical_block
15636 && abbrev->tag != DW_TAG_variable
15637 && abbrev->tag != DW_TAG_namespace
15638 && abbrev->tag != DW_TAG_module
15639 && abbrev->tag != DW_TAG_member
15640 && abbrev->tag != DW_TAG_imported_unit
15641 && abbrev->tag != DW_TAG_imported_declaration)
15642 {
15643 /* Otherwise we skip to the next sibling, if any. */
15644 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15645 continue;
15646 }
15647
15648 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15649 info_ptr);
15650
15651 /* This two-pass algorithm for processing partial symbols has a
15652 high cost in cache pressure. Thus, handle some simple cases
15653 here which cover the majority of C partial symbols. DIEs
15654 which neither have specification tags in them, nor could have
15655 specification tags elsewhere pointing at them, can simply be
15656 processed and discarded.
15657
15658 This segment is also optional; scan_partial_symbols and
15659 add_partial_symbol will handle these DIEs if we chain
15660 them in normally. When compilers which do not emit large
15661 quantities of duplicate debug information are more common,
15662 this code can probably be removed. */
15663
15664 /* Any complete simple types at the top level (pretty much all
15665 of them, for a language without namespaces), can be processed
15666 directly. */
15667 if (parent_die == NULL
15668 && part_die->has_specification == 0
15669 && part_die->is_declaration == 0
15670 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15671 || part_die->tag == DW_TAG_base_type
15672 || part_die->tag == DW_TAG_subrange_type))
15673 {
15674 if (building_psymtab && part_die->name != NULL)
15675 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15676 VAR_DOMAIN, LOC_TYPEDEF,
15677 &objfile->static_psymbols,
15678 0, cu->language, objfile);
15679 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15680 continue;
15681 }
15682
15683 /* The exception for DW_TAG_typedef with has_children above is
15684 a workaround of GCC PR debug/47510. In the case of this complaint
15685 type_name_no_tag_or_error will error on such types later.
15686
15687 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15688 it could not find the child DIEs referenced later, this is checked
15689 above. In correct DWARF DW_TAG_typedef should have no children. */
15690
15691 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15692 complaint (&symfile_complaints,
15693 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15694 "- DIE at 0x%x [in module %s]"),
15695 part_die->offset.sect_off, objfile_name (objfile));
15696
15697 /* If we're at the second level, and we're an enumerator, and
15698 our parent has no specification (meaning possibly lives in a
15699 namespace elsewhere), then we can add the partial symbol now
15700 instead of queueing it. */
15701 if (part_die->tag == DW_TAG_enumerator
15702 && parent_die != NULL
15703 && parent_die->die_parent == NULL
15704 && parent_die->tag == DW_TAG_enumeration_type
15705 && parent_die->has_specification == 0)
15706 {
15707 if (part_die->name == NULL)
15708 complaint (&symfile_complaints,
15709 _("malformed enumerator DIE ignored"));
15710 else if (building_psymtab)
15711 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15712 VAR_DOMAIN, LOC_CONST,
15713 cu->language == language_cplus
15714 ? &objfile->global_psymbols
15715 : &objfile->static_psymbols,
15716 0, cu->language, objfile);
15717
15718 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15719 continue;
15720 }
15721
15722 /* We'll save this DIE so link it in. */
15723 part_die->die_parent = parent_die;
15724 part_die->die_sibling = NULL;
15725 part_die->die_child = NULL;
15726
15727 if (last_die && last_die == parent_die)
15728 last_die->die_child = part_die;
15729 else if (last_die)
15730 last_die->die_sibling = part_die;
15731
15732 last_die = part_die;
15733
15734 if (first_die == NULL)
15735 first_die = part_die;
15736
15737 /* Maybe add the DIE to the hash table. Not all DIEs that we
15738 find interesting need to be in the hash table, because we
15739 also have the parent/sibling/child chains; only those that we
15740 might refer to by offset later during partial symbol reading.
15741
15742 For now this means things that might have be the target of a
15743 DW_AT_specification, DW_AT_abstract_origin, or
15744 DW_AT_extension. DW_AT_extension will refer only to
15745 namespaces; DW_AT_abstract_origin refers to functions (and
15746 many things under the function DIE, but we do not recurse
15747 into function DIEs during partial symbol reading) and
15748 possibly variables as well; DW_AT_specification refers to
15749 declarations. Declarations ought to have the DW_AT_declaration
15750 flag. It happens that GCC forgets to put it in sometimes, but
15751 only for functions, not for types.
15752
15753 Adding more things than necessary to the hash table is harmless
15754 except for the performance cost. Adding too few will result in
15755 wasted time in find_partial_die, when we reread the compilation
15756 unit with load_all_dies set. */
15757
15758 if (load_all
15759 || abbrev->tag == DW_TAG_constant
15760 || abbrev->tag == DW_TAG_subprogram
15761 || abbrev->tag == DW_TAG_variable
15762 || abbrev->tag == DW_TAG_namespace
15763 || part_die->is_declaration)
15764 {
15765 void **slot;
15766
15767 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15768 part_die->offset.sect_off, INSERT);
15769 *slot = part_die;
15770 }
15771
15772 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15773
15774 /* For some DIEs we want to follow their children (if any). For C
15775 we have no reason to follow the children of structures; for other
15776 languages we have to, so that we can get at method physnames
15777 to infer fully qualified class names, for DW_AT_specification,
15778 and for C++ template arguments. For C++, we also look one level
15779 inside functions to find template arguments (if the name of the
15780 function does not already contain the template arguments).
15781
15782 For Ada, we need to scan the children of subprograms and lexical
15783 blocks as well because Ada allows the definition of nested
15784 entities that could be interesting for the debugger, such as
15785 nested subprograms for instance. */
15786 if (last_die->has_children
15787 && (load_all
15788 || last_die->tag == DW_TAG_namespace
15789 || last_die->tag == DW_TAG_module
15790 || last_die->tag == DW_TAG_enumeration_type
15791 || (cu->language == language_cplus
15792 && last_die->tag == DW_TAG_subprogram
15793 && (last_die->name == NULL
15794 || strchr (last_die->name, '<') == NULL))
15795 || (cu->language != language_c
15796 && (last_die->tag == DW_TAG_class_type
15797 || last_die->tag == DW_TAG_interface_type
15798 || last_die->tag == DW_TAG_structure_type
15799 || last_die->tag == DW_TAG_union_type))
15800 || (cu->language == language_ada
15801 && (last_die->tag == DW_TAG_subprogram
15802 || last_die->tag == DW_TAG_lexical_block))))
15803 {
15804 nesting_level++;
15805 parent_die = last_die;
15806 continue;
15807 }
15808
15809 /* Otherwise we skip to the next sibling, if any. */
15810 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15811
15812 /* Back to the top, do it again. */
15813 }
15814 }
15815
15816 /* Read a minimal amount of information into the minimal die structure. */
15817
15818 static const gdb_byte *
15819 read_partial_die (const struct die_reader_specs *reader,
15820 struct partial_die_info *part_die,
15821 struct abbrev_info *abbrev, unsigned int abbrev_len,
15822 const gdb_byte *info_ptr)
15823 {
15824 struct dwarf2_cu *cu = reader->cu;
15825 struct objfile *objfile = cu->objfile;
15826 const gdb_byte *buffer = reader->buffer;
15827 unsigned int i;
15828 struct attribute attr;
15829 int has_low_pc_attr = 0;
15830 int has_high_pc_attr = 0;
15831 int high_pc_relative = 0;
15832
15833 memset (part_die, 0, sizeof (struct partial_die_info));
15834
15835 part_die->offset.sect_off = info_ptr - buffer;
15836
15837 info_ptr += abbrev_len;
15838
15839 if (abbrev == NULL)
15840 return info_ptr;
15841
15842 part_die->tag = abbrev->tag;
15843 part_die->has_children = abbrev->has_children;
15844
15845 for (i = 0; i < abbrev->num_attrs; ++i)
15846 {
15847 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15848
15849 /* Store the data if it is of an attribute we want to keep in a
15850 partial symbol table. */
15851 switch (attr.name)
15852 {
15853 case DW_AT_name:
15854 switch (part_die->tag)
15855 {
15856 case DW_TAG_compile_unit:
15857 case DW_TAG_partial_unit:
15858 case DW_TAG_type_unit:
15859 /* Compilation units have a DW_AT_name that is a filename, not
15860 a source language identifier. */
15861 case DW_TAG_enumeration_type:
15862 case DW_TAG_enumerator:
15863 /* These tags always have simple identifiers already; no need
15864 to canonicalize them. */
15865 part_die->name = DW_STRING (&attr);
15866 break;
15867 default:
15868 part_die->name
15869 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15870 &objfile->per_bfd->storage_obstack);
15871 break;
15872 }
15873 break;
15874 case DW_AT_linkage_name:
15875 case DW_AT_MIPS_linkage_name:
15876 /* Note that both forms of linkage name might appear. We
15877 assume they will be the same, and we only store the last
15878 one we see. */
15879 if (cu->language == language_ada)
15880 part_die->name = DW_STRING (&attr);
15881 part_die->linkage_name = DW_STRING (&attr);
15882 break;
15883 case DW_AT_low_pc:
15884 has_low_pc_attr = 1;
15885 part_die->lowpc = attr_value_as_address (&attr);
15886 break;
15887 case DW_AT_high_pc:
15888 has_high_pc_attr = 1;
15889 part_die->highpc = attr_value_as_address (&attr);
15890 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15891 high_pc_relative = 1;
15892 break;
15893 case DW_AT_location:
15894 /* Support the .debug_loc offsets. */
15895 if (attr_form_is_block (&attr))
15896 {
15897 part_die->d.locdesc = DW_BLOCK (&attr);
15898 }
15899 else if (attr_form_is_section_offset (&attr))
15900 {
15901 dwarf2_complex_location_expr_complaint ();
15902 }
15903 else
15904 {
15905 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15906 "partial symbol information");
15907 }
15908 break;
15909 case DW_AT_external:
15910 part_die->is_external = DW_UNSND (&attr);
15911 break;
15912 case DW_AT_declaration:
15913 part_die->is_declaration = DW_UNSND (&attr);
15914 break;
15915 case DW_AT_type:
15916 part_die->has_type = 1;
15917 break;
15918 case DW_AT_abstract_origin:
15919 case DW_AT_specification:
15920 case DW_AT_extension:
15921 part_die->has_specification = 1;
15922 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15923 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15924 || cu->per_cu->is_dwz);
15925 break;
15926 case DW_AT_sibling:
15927 /* Ignore absolute siblings, they might point outside of
15928 the current compile unit. */
15929 if (attr.form == DW_FORM_ref_addr)
15930 complaint (&symfile_complaints,
15931 _("ignoring absolute DW_AT_sibling"));
15932 else
15933 {
15934 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15935 const gdb_byte *sibling_ptr = buffer + off;
15936
15937 if (sibling_ptr < info_ptr)
15938 complaint (&symfile_complaints,
15939 _("DW_AT_sibling points backwards"));
15940 else if (sibling_ptr > reader->buffer_end)
15941 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15942 else
15943 part_die->sibling = sibling_ptr;
15944 }
15945 break;
15946 case DW_AT_byte_size:
15947 part_die->has_byte_size = 1;
15948 break;
15949 case DW_AT_const_value:
15950 part_die->has_const_value = 1;
15951 break;
15952 case DW_AT_calling_convention:
15953 /* DWARF doesn't provide a way to identify a program's source-level
15954 entry point. DW_AT_calling_convention attributes are only meant
15955 to describe functions' calling conventions.
15956
15957 However, because it's a necessary piece of information in
15958 Fortran, and before DWARF 4 DW_CC_program was the only
15959 piece of debugging information whose definition refers to
15960 a 'main program' at all, several compilers marked Fortran
15961 main programs with DW_CC_program --- even when those
15962 functions use the standard calling conventions.
15963
15964 Although DWARF now specifies a way to provide this
15965 information, we support this practice for backward
15966 compatibility. */
15967 if (DW_UNSND (&attr) == DW_CC_program
15968 && cu->language == language_fortran)
15969 part_die->main_subprogram = 1;
15970 break;
15971 case DW_AT_inline:
15972 if (DW_UNSND (&attr) == DW_INL_inlined
15973 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15974 part_die->may_be_inlined = 1;
15975 break;
15976
15977 case DW_AT_import:
15978 if (part_die->tag == DW_TAG_imported_unit)
15979 {
15980 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15981 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15982 || cu->per_cu->is_dwz);
15983 }
15984 break;
15985
15986 case DW_AT_main_subprogram:
15987 part_die->main_subprogram = DW_UNSND (&attr);
15988 break;
15989
15990 default:
15991 break;
15992 }
15993 }
15994
15995 if (high_pc_relative)
15996 part_die->highpc += part_die->lowpc;
15997
15998 if (has_low_pc_attr && has_high_pc_attr)
15999 {
16000 /* When using the GNU linker, .gnu.linkonce. sections are used to
16001 eliminate duplicate copies of functions and vtables and such.
16002 The linker will arbitrarily choose one and discard the others.
16003 The AT_*_pc values for such functions refer to local labels in
16004 these sections. If the section from that file was discarded, the
16005 labels are not in the output, so the relocs get a value of 0.
16006 If this is a discarded function, mark the pc bounds as invalid,
16007 so that GDB will ignore it. */
16008 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16009 {
16010 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16011
16012 complaint (&symfile_complaints,
16013 _("DW_AT_low_pc %s is zero "
16014 "for DIE at 0x%x [in module %s]"),
16015 paddress (gdbarch, part_die->lowpc),
16016 part_die->offset.sect_off, objfile_name (objfile));
16017 }
16018 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16019 else if (part_die->lowpc >= part_die->highpc)
16020 {
16021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16022
16023 complaint (&symfile_complaints,
16024 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16025 "for DIE at 0x%x [in module %s]"),
16026 paddress (gdbarch, part_die->lowpc),
16027 paddress (gdbarch, part_die->highpc),
16028 part_die->offset.sect_off, objfile_name (objfile));
16029 }
16030 else
16031 part_die->has_pc_info = 1;
16032 }
16033
16034 return info_ptr;
16035 }
16036
16037 /* Find a cached partial DIE at OFFSET in CU. */
16038
16039 static struct partial_die_info *
16040 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16041 {
16042 struct partial_die_info *lookup_die = NULL;
16043 struct partial_die_info part_die;
16044
16045 part_die.offset = offset;
16046 lookup_die = ((struct partial_die_info *)
16047 htab_find_with_hash (cu->partial_dies, &part_die,
16048 offset.sect_off));
16049
16050 return lookup_die;
16051 }
16052
16053 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16054 except in the case of .debug_types DIEs which do not reference
16055 outside their CU (they do however referencing other types via
16056 DW_FORM_ref_sig8). */
16057
16058 static struct partial_die_info *
16059 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16060 {
16061 struct objfile *objfile = cu->objfile;
16062 struct dwarf2_per_cu_data *per_cu = NULL;
16063 struct partial_die_info *pd = NULL;
16064
16065 if (offset_in_dwz == cu->per_cu->is_dwz
16066 && offset_in_cu_p (&cu->header, offset))
16067 {
16068 pd = find_partial_die_in_comp_unit (offset, cu);
16069 if (pd != NULL)
16070 return pd;
16071 /* We missed recording what we needed.
16072 Load all dies and try again. */
16073 per_cu = cu->per_cu;
16074 }
16075 else
16076 {
16077 /* TUs don't reference other CUs/TUs (except via type signatures). */
16078 if (cu->per_cu->is_debug_types)
16079 {
16080 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16081 " external reference to offset 0x%lx [in module %s].\n"),
16082 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16083 bfd_get_filename (objfile->obfd));
16084 }
16085 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16086 objfile);
16087
16088 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16089 load_partial_comp_unit (per_cu);
16090
16091 per_cu->cu->last_used = 0;
16092 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16093 }
16094
16095 /* If we didn't find it, and not all dies have been loaded,
16096 load them all and try again. */
16097
16098 if (pd == NULL && per_cu->load_all_dies == 0)
16099 {
16100 per_cu->load_all_dies = 1;
16101
16102 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16103 THIS_CU->cu may already be in use. So we can't just free it and
16104 replace its DIEs with the ones we read in. Instead, we leave those
16105 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16106 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16107 set. */
16108 load_partial_comp_unit (per_cu);
16109
16110 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16111 }
16112
16113 if (pd == NULL)
16114 internal_error (__FILE__, __LINE__,
16115 _("could not find partial DIE 0x%x "
16116 "in cache [from module %s]\n"),
16117 offset.sect_off, bfd_get_filename (objfile->obfd));
16118 return pd;
16119 }
16120
16121 /* See if we can figure out if the class lives in a namespace. We do
16122 this by looking for a member function; its demangled name will
16123 contain namespace info, if there is any. */
16124
16125 static void
16126 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16127 struct dwarf2_cu *cu)
16128 {
16129 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16130 what template types look like, because the demangler
16131 frequently doesn't give the same name as the debug info. We
16132 could fix this by only using the demangled name to get the
16133 prefix (but see comment in read_structure_type). */
16134
16135 struct partial_die_info *real_pdi;
16136 struct partial_die_info *child_pdi;
16137
16138 /* If this DIE (this DIE's specification, if any) has a parent, then
16139 we should not do this. We'll prepend the parent's fully qualified
16140 name when we create the partial symbol. */
16141
16142 real_pdi = struct_pdi;
16143 while (real_pdi->has_specification)
16144 real_pdi = find_partial_die (real_pdi->spec_offset,
16145 real_pdi->spec_is_dwz, cu);
16146
16147 if (real_pdi->die_parent != NULL)
16148 return;
16149
16150 for (child_pdi = struct_pdi->die_child;
16151 child_pdi != NULL;
16152 child_pdi = child_pdi->die_sibling)
16153 {
16154 if (child_pdi->tag == DW_TAG_subprogram
16155 && child_pdi->linkage_name != NULL)
16156 {
16157 char *actual_class_name
16158 = language_class_name_from_physname (cu->language_defn,
16159 child_pdi->linkage_name);
16160 if (actual_class_name != NULL)
16161 {
16162 struct_pdi->name
16163 = ((const char *)
16164 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16165 actual_class_name,
16166 strlen (actual_class_name)));
16167 xfree (actual_class_name);
16168 }
16169 break;
16170 }
16171 }
16172 }
16173
16174 /* Adjust PART_DIE before generating a symbol for it. This function
16175 may set the is_external flag or change the DIE's name. */
16176
16177 static void
16178 fixup_partial_die (struct partial_die_info *part_die,
16179 struct dwarf2_cu *cu)
16180 {
16181 /* Once we've fixed up a die, there's no point in doing so again.
16182 This also avoids a memory leak if we were to call
16183 guess_partial_die_structure_name multiple times. */
16184 if (part_die->fixup_called)
16185 return;
16186
16187 /* If we found a reference attribute and the DIE has no name, try
16188 to find a name in the referred to DIE. */
16189
16190 if (part_die->name == NULL && part_die->has_specification)
16191 {
16192 struct partial_die_info *spec_die;
16193
16194 spec_die = find_partial_die (part_die->spec_offset,
16195 part_die->spec_is_dwz, cu);
16196
16197 fixup_partial_die (spec_die, cu);
16198
16199 if (spec_die->name)
16200 {
16201 part_die->name = spec_die->name;
16202
16203 /* Copy DW_AT_external attribute if it is set. */
16204 if (spec_die->is_external)
16205 part_die->is_external = spec_die->is_external;
16206 }
16207 }
16208
16209 /* Set default names for some unnamed DIEs. */
16210
16211 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16212 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16213
16214 /* If there is no parent die to provide a namespace, and there are
16215 children, see if we can determine the namespace from their linkage
16216 name. */
16217 if (cu->language == language_cplus
16218 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16219 && part_die->die_parent == NULL
16220 && part_die->has_children
16221 && (part_die->tag == DW_TAG_class_type
16222 || part_die->tag == DW_TAG_structure_type
16223 || part_die->tag == DW_TAG_union_type))
16224 guess_partial_die_structure_name (part_die, cu);
16225
16226 /* GCC might emit a nameless struct or union that has a linkage
16227 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16228 if (part_die->name == NULL
16229 && (part_die->tag == DW_TAG_class_type
16230 || part_die->tag == DW_TAG_interface_type
16231 || part_die->tag == DW_TAG_structure_type
16232 || part_die->tag == DW_TAG_union_type)
16233 && part_die->linkage_name != NULL)
16234 {
16235 char *demangled;
16236
16237 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16238 if (demangled)
16239 {
16240 const char *base;
16241
16242 /* Strip any leading namespaces/classes, keep only the base name.
16243 DW_AT_name for named DIEs does not contain the prefixes. */
16244 base = strrchr (demangled, ':');
16245 if (base && base > demangled && base[-1] == ':')
16246 base++;
16247 else
16248 base = demangled;
16249
16250 part_die->name
16251 = ((const char *)
16252 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16253 base, strlen (base)));
16254 xfree (demangled);
16255 }
16256 }
16257
16258 part_die->fixup_called = 1;
16259 }
16260
16261 /* Read an attribute value described by an attribute form. */
16262
16263 static const gdb_byte *
16264 read_attribute_value (const struct die_reader_specs *reader,
16265 struct attribute *attr, unsigned form,
16266 const gdb_byte *info_ptr)
16267 {
16268 struct dwarf2_cu *cu = reader->cu;
16269 struct objfile *objfile = cu->objfile;
16270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16271 bfd *abfd = reader->abfd;
16272 struct comp_unit_head *cu_header = &cu->header;
16273 unsigned int bytes_read;
16274 struct dwarf_block *blk;
16275
16276 attr->form = (enum dwarf_form) form;
16277 switch (form)
16278 {
16279 case DW_FORM_ref_addr:
16280 if (cu->header.version == 2)
16281 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16282 else
16283 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16284 &cu->header, &bytes_read);
16285 info_ptr += bytes_read;
16286 break;
16287 case DW_FORM_GNU_ref_alt:
16288 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16289 info_ptr += bytes_read;
16290 break;
16291 case DW_FORM_addr:
16292 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16293 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16294 info_ptr += bytes_read;
16295 break;
16296 case DW_FORM_block2:
16297 blk = dwarf_alloc_block (cu);
16298 blk->size = read_2_bytes (abfd, info_ptr);
16299 info_ptr += 2;
16300 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16301 info_ptr += blk->size;
16302 DW_BLOCK (attr) = blk;
16303 break;
16304 case DW_FORM_block4:
16305 blk = dwarf_alloc_block (cu);
16306 blk->size = read_4_bytes (abfd, info_ptr);
16307 info_ptr += 4;
16308 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16309 info_ptr += blk->size;
16310 DW_BLOCK (attr) = blk;
16311 break;
16312 case DW_FORM_data2:
16313 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16314 info_ptr += 2;
16315 break;
16316 case DW_FORM_data4:
16317 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16318 info_ptr += 4;
16319 break;
16320 case DW_FORM_data8:
16321 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16322 info_ptr += 8;
16323 break;
16324 case DW_FORM_sec_offset:
16325 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16326 info_ptr += bytes_read;
16327 break;
16328 case DW_FORM_string:
16329 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16330 DW_STRING_IS_CANONICAL (attr) = 0;
16331 info_ptr += bytes_read;
16332 break;
16333 case DW_FORM_strp:
16334 if (!cu->per_cu->is_dwz)
16335 {
16336 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16337 &bytes_read);
16338 DW_STRING_IS_CANONICAL (attr) = 0;
16339 info_ptr += bytes_read;
16340 break;
16341 }
16342 /* FALLTHROUGH */
16343 case DW_FORM_GNU_strp_alt:
16344 {
16345 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16346 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16347 &bytes_read);
16348
16349 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16350 DW_STRING_IS_CANONICAL (attr) = 0;
16351 info_ptr += bytes_read;
16352 }
16353 break;
16354 case DW_FORM_exprloc:
16355 case DW_FORM_block:
16356 blk = dwarf_alloc_block (cu);
16357 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16358 info_ptr += bytes_read;
16359 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16360 info_ptr += blk->size;
16361 DW_BLOCK (attr) = blk;
16362 break;
16363 case DW_FORM_block1:
16364 blk = dwarf_alloc_block (cu);
16365 blk->size = read_1_byte (abfd, info_ptr);
16366 info_ptr += 1;
16367 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16368 info_ptr += blk->size;
16369 DW_BLOCK (attr) = blk;
16370 break;
16371 case DW_FORM_data1:
16372 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16373 info_ptr += 1;
16374 break;
16375 case DW_FORM_flag:
16376 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16377 info_ptr += 1;
16378 break;
16379 case DW_FORM_flag_present:
16380 DW_UNSND (attr) = 1;
16381 break;
16382 case DW_FORM_sdata:
16383 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16384 info_ptr += bytes_read;
16385 break;
16386 case DW_FORM_udata:
16387 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16388 info_ptr += bytes_read;
16389 break;
16390 case DW_FORM_ref1:
16391 DW_UNSND (attr) = (cu->header.offset.sect_off
16392 + read_1_byte (abfd, info_ptr));
16393 info_ptr += 1;
16394 break;
16395 case DW_FORM_ref2:
16396 DW_UNSND (attr) = (cu->header.offset.sect_off
16397 + read_2_bytes (abfd, info_ptr));
16398 info_ptr += 2;
16399 break;
16400 case DW_FORM_ref4:
16401 DW_UNSND (attr) = (cu->header.offset.sect_off
16402 + read_4_bytes (abfd, info_ptr));
16403 info_ptr += 4;
16404 break;
16405 case DW_FORM_ref8:
16406 DW_UNSND (attr) = (cu->header.offset.sect_off
16407 + read_8_bytes (abfd, info_ptr));
16408 info_ptr += 8;
16409 break;
16410 case DW_FORM_ref_sig8:
16411 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16412 info_ptr += 8;
16413 break;
16414 case DW_FORM_ref_udata:
16415 DW_UNSND (attr) = (cu->header.offset.sect_off
16416 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16417 info_ptr += bytes_read;
16418 break;
16419 case DW_FORM_indirect:
16420 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16421 info_ptr += bytes_read;
16422 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16423 break;
16424 case DW_FORM_GNU_addr_index:
16425 if (reader->dwo_file == NULL)
16426 {
16427 /* For now flag a hard error.
16428 Later we can turn this into a complaint. */
16429 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16430 dwarf_form_name (form),
16431 bfd_get_filename (abfd));
16432 }
16433 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16434 info_ptr += bytes_read;
16435 break;
16436 case DW_FORM_GNU_str_index:
16437 if (reader->dwo_file == NULL)
16438 {
16439 /* For now flag a hard error.
16440 Later we can turn this into a complaint if warranted. */
16441 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16442 dwarf_form_name (form),
16443 bfd_get_filename (abfd));
16444 }
16445 {
16446 ULONGEST str_index =
16447 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16448
16449 DW_STRING (attr) = read_str_index (reader, str_index);
16450 DW_STRING_IS_CANONICAL (attr) = 0;
16451 info_ptr += bytes_read;
16452 }
16453 break;
16454 default:
16455 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16456 dwarf_form_name (form),
16457 bfd_get_filename (abfd));
16458 }
16459
16460 /* Super hack. */
16461 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16462 attr->form = DW_FORM_GNU_ref_alt;
16463
16464 /* We have seen instances where the compiler tried to emit a byte
16465 size attribute of -1 which ended up being encoded as an unsigned
16466 0xffffffff. Although 0xffffffff is technically a valid size value,
16467 an object of this size seems pretty unlikely so we can relatively
16468 safely treat these cases as if the size attribute was invalid and
16469 treat them as zero by default. */
16470 if (attr->name == DW_AT_byte_size
16471 && form == DW_FORM_data4
16472 && DW_UNSND (attr) >= 0xffffffff)
16473 {
16474 complaint
16475 (&symfile_complaints,
16476 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16477 hex_string (DW_UNSND (attr)));
16478 DW_UNSND (attr) = 0;
16479 }
16480
16481 return info_ptr;
16482 }
16483
16484 /* Read an attribute described by an abbreviated attribute. */
16485
16486 static const gdb_byte *
16487 read_attribute (const struct die_reader_specs *reader,
16488 struct attribute *attr, struct attr_abbrev *abbrev,
16489 const gdb_byte *info_ptr)
16490 {
16491 attr->name = abbrev->name;
16492 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16493 }
16494
16495 /* Read dwarf information from a buffer. */
16496
16497 static unsigned int
16498 read_1_byte (bfd *abfd, const gdb_byte *buf)
16499 {
16500 return bfd_get_8 (abfd, buf);
16501 }
16502
16503 static int
16504 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16505 {
16506 return bfd_get_signed_8 (abfd, buf);
16507 }
16508
16509 static unsigned int
16510 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16511 {
16512 return bfd_get_16 (abfd, buf);
16513 }
16514
16515 static int
16516 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16517 {
16518 return bfd_get_signed_16 (abfd, buf);
16519 }
16520
16521 static unsigned int
16522 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16523 {
16524 return bfd_get_32 (abfd, buf);
16525 }
16526
16527 static int
16528 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16529 {
16530 return bfd_get_signed_32 (abfd, buf);
16531 }
16532
16533 static ULONGEST
16534 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16535 {
16536 return bfd_get_64 (abfd, buf);
16537 }
16538
16539 static CORE_ADDR
16540 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16541 unsigned int *bytes_read)
16542 {
16543 struct comp_unit_head *cu_header = &cu->header;
16544 CORE_ADDR retval = 0;
16545
16546 if (cu_header->signed_addr_p)
16547 {
16548 switch (cu_header->addr_size)
16549 {
16550 case 2:
16551 retval = bfd_get_signed_16 (abfd, buf);
16552 break;
16553 case 4:
16554 retval = bfd_get_signed_32 (abfd, buf);
16555 break;
16556 case 8:
16557 retval = bfd_get_signed_64 (abfd, buf);
16558 break;
16559 default:
16560 internal_error (__FILE__, __LINE__,
16561 _("read_address: bad switch, signed [in module %s]"),
16562 bfd_get_filename (abfd));
16563 }
16564 }
16565 else
16566 {
16567 switch (cu_header->addr_size)
16568 {
16569 case 2:
16570 retval = bfd_get_16 (abfd, buf);
16571 break;
16572 case 4:
16573 retval = bfd_get_32 (abfd, buf);
16574 break;
16575 case 8:
16576 retval = bfd_get_64 (abfd, buf);
16577 break;
16578 default:
16579 internal_error (__FILE__, __LINE__,
16580 _("read_address: bad switch, "
16581 "unsigned [in module %s]"),
16582 bfd_get_filename (abfd));
16583 }
16584 }
16585
16586 *bytes_read = cu_header->addr_size;
16587 return retval;
16588 }
16589
16590 /* Read the initial length from a section. The (draft) DWARF 3
16591 specification allows the initial length to take up either 4 bytes
16592 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16593 bytes describe the length and all offsets will be 8 bytes in length
16594 instead of 4.
16595
16596 An older, non-standard 64-bit format is also handled by this
16597 function. The older format in question stores the initial length
16598 as an 8-byte quantity without an escape value. Lengths greater
16599 than 2^32 aren't very common which means that the initial 4 bytes
16600 is almost always zero. Since a length value of zero doesn't make
16601 sense for the 32-bit format, this initial zero can be considered to
16602 be an escape value which indicates the presence of the older 64-bit
16603 format. As written, the code can't detect (old format) lengths
16604 greater than 4GB. If it becomes necessary to handle lengths
16605 somewhat larger than 4GB, we could allow other small values (such
16606 as the non-sensical values of 1, 2, and 3) to also be used as
16607 escape values indicating the presence of the old format.
16608
16609 The value returned via bytes_read should be used to increment the
16610 relevant pointer after calling read_initial_length().
16611
16612 [ Note: read_initial_length() and read_offset() are based on the
16613 document entitled "DWARF Debugging Information Format", revision
16614 3, draft 8, dated November 19, 2001. This document was obtained
16615 from:
16616
16617 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16618
16619 This document is only a draft and is subject to change. (So beware.)
16620
16621 Details regarding the older, non-standard 64-bit format were
16622 determined empirically by examining 64-bit ELF files produced by
16623 the SGI toolchain on an IRIX 6.5 machine.
16624
16625 - Kevin, July 16, 2002
16626 ] */
16627
16628 static LONGEST
16629 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16630 {
16631 LONGEST length = bfd_get_32 (abfd, buf);
16632
16633 if (length == 0xffffffff)
16634 {
16635 length = bfd_get_64 (abfd, buf + 4);
16636 *bytes_read = 12;
16637 }
16638 else if (length == 0)
16639 {
16640 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16641 length = bfd_get_64 (abfd, buf);
16642 *bytes_read = 8;
16643 }
16644 else
16645 {
16646 *bytes_read = 4;
16647 }
16648
16649 return length;
16650 }
16651
16652 /* Cover function for read_initial_length.
16653 Returns the length of the object at BUF, and stores the size of the
16654 initial length in *BYTES_READ and stores the size that offsets will be in
16655 *OFFSET_SIZE.
16656 If the initial length size is not equivalent to that specified in
16657 CU_HEADER then issue a complaint.
16658 This is useful when reading non-comp-unit headers. */
16659
16660 static LONGEST
16661 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16662 const struct comp_unit_head *cu_header,
16663 unsigned int *bytes_read,
16664 unsigned int *offset_size)
16665 {
16666 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16667
16668 gdb_assert (cu_header->initial_length_size == 4
16669 || cu_header->initial_length_size == 8
16670 || cu_header->initial_length_size == 12);
16671
16672 if (cu_header->initial_length_size != *bytes_read)
16673 complaint (&symfile_complaints,
16674 _("intermixed 32-bit and 64-bit DWARF sections"));
16675
16676 *offset_size = (*bytes_read == 4) ? 4 : 8;
16677 return length;
16678 }
16679
16680 /* Read an offset from the data stream. The size of the offset is
16681 given by cu_header->offset_size. */
16682
16683 static LONGEST
16684 read_offset (bfd *abfd, const gdb_byte *buf,
16685 const struct comp_unit_head *cu_header,
16686 unsigned int *bytes_read)
16687 {
16688 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16689
16690 *bytes_read = cu_header->offset_size;
16691 return offset;
16692 }
16693
16694 /* Read an offset from the data stream. */
16695
16696 static LONGEST
16697 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16698 {
16699 LONGEST retval = 0;
16700
16701 switch (offset_size)
16702 {
16703 case 4:
16704 retval = bfd_get_32 (abfd, buf);
16705 break;
16706 case 8:
16707 retval = bfd_get_64 (abfd, buf);
16708 break;
16709 default:
16710 internal_error (__FILE__, __LINE__,
16711 _("read_offset_1: bad switch [in module %s]"),
16712 bfd_get_filename (abfd));
16713 }
16714
16715 return retval;
16716 }
16717
16718 static const gdb_byte *
16719 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16720 {
16721 /* If the size of a host char is 8 bits, we can return a pointer
16722 to the buffer, otherwise we have to copy the data to a buffer
16723 allocated on the temporary obstack. */
16724 gdb_assert (HOST_CHAR_BIT == 8);
16725 return buf;
16726 }
16727
16728 static const char *
16729 read_direct_string (bfd *abfd, const gdb_byte *buf,
16730 unsigned int *bytes_read_ptr)
16731 {
16732 /* If the size of a host char is 8 bits, we can return a pointer
16733 to the string, otherwise we have to copy the string to a buffer
16734 allocated on the temporary obstack. */
16735 gdb_assert (HOST_CHAR_BIT == 8);
16736 if (*buf == '\0')
16737 {
16738 *bytes_read_ptr = 1;
16739 return NULL;
16740 }
16741 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16742 return (const char *) buf;
16743 }
16744
16745 static const char *
16746 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16747 {
16748 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16749 if (dwarf2_per_objfile->str.buffer == NULL)
16750 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16751 bfd_get_filename (abfd));
16752 if (str_offset >= dwarf2_per_objfile->str.size)
16753 error (_("DW_FORM_strp pointing outside of "
16754 ".debug_str section [in module %s]"),
16755 bfd_get_filename (abfd));
16756 gdb_assert (HOST_CHAR_BIT == 8);
16757 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16758 return NULL;
16759 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16760 }
16761
16762 /* Read a string at offset STR_OFFSET in the .debug_str section from
16763 the .dwz file DWZ. Throw an error if the offset is too large. If
16764 the string consists of a single NUL byte, return NULL; otherwise
16765 return a pointer to the string. */
16766
16767 static const char *
16768 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16769 {
16770 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16771
16772 if (dwz->str.buffer == NULL)
16773 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16774 "section [in module %s]"),
16775 bfd_get_filename (dwz->dwz_bfd));
16776 if (str_offset >= dwz->str.size)
16777 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16778 ".debug_str section [in module %s]"),
16779 bfd_get_filename (dwz->dwz_bfd));
16780 gdb_assert (HOST_CHAR_BIT == 8);
16781 if (dwz->str.buffer[str_offset] == '\0')
16782 return NULL;
16783 return (const char *) (dwz->str.buffer + str_offset);
16784 }
16785
16786 static const char *
16787 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16788 const struct comp_unit_head *cu_header,
16789 unsigned int *bytes_read_ptr)
16790 {
16791 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16792
16793 return read_indirect_string_at_offset (abfd, str_offset);
16794 }
16795
16796 static ULONGEST
16797 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16798 unsigned int *bytes_read_ptr)
16799 {
16800 ULONGEST result;
16801 unsigned int num_read;
16802 int shift;
16803 unsigned char byte;
16804
16805 result = 0;
16806 shift = 0;
16807 num_read = 0;
16808 while (1)
16809 {
16810 byte = bfd_get_8 (abfd, buf);
16811 buf++;
16812 num_read++;
16813 result |= ((ULONGEST) (byte & 127) << shift);
16814 if ((byte & 128) == 0)
16815 {
16816 break;
16817 }
16818 shift += 7;
16819 }
16820 *bytes_read_ptr = num_read;
16821 return result;
16822 }
16823
16824 static LONGEST
16825 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16826 unsigned int *bytes_read_ptr)
16827 {
16828 LONGEST result;
16829 int shift, num_read;
16830 unsigned char byte;
16831
16832 result = 0;
16833 shift = 0;
16834 num_read = 0;
16835 while (1)
16836 {
16837 byte = bfd_get_8 (abfd, buf);
16838 buf++;
16839 num_read++;
16840 result |= ((LONGEST) (byte & 127) << shift);
16841 shift += 7;
16842 if ((byte & 128) == 0)
16843 {
16844 break;
16845 }
16846 }
16847 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16848 result |= -(((LONGEST) 1) << shift);
16849 *bytes_read_ptr = num_read;
16850 return result;
16851 }
16852
16853 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16854 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16855 ADDR_SIZE is the size of addresses from the CU header. */
16856
16857 static CORE_ADDR
16858 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16859 {
16860 struct objfile *objfile = dwarf2_per_objfile->objfile;
16861 bfd *abfd = objfile->obfd;
16862 const gdb_byte *info_ptr;
16863
16864 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16865 if (dwarf2_per_objfile->addr.buffer == NULL)
16866 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16867 objfile_name (objfile));
16868 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16869 error (_("DW_FORM_addr_index pointing outside of "
16870 ".debug_addr section [in module %s]"),
16871 objfile_name (objfile));
16872 info_ptr = (dwarf2_per_objfile->addr.buffer
16873 + addr_base + addr_index * addr_size);
16874 if (addr_size == 4)
16875 return bfd_get_32 (abfd, info_ptr);
16876 else
16877 return bfd_get_64 (abfd, info_ptr);
16878 }
16879
16880 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16881
16882 static CORE_ADDR
16883 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16884 {
16885 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16886 }
16887
16888 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16889
16890 static CORE_ADDR
16891 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16892 unsigned int *bytes_read)
16893 {
16894 bfd *abfd = cu->objfile->obfd;
16895 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16896
16897 return read_addr_index (cu, addr_index);
16898 }
16899
16900 /* Data structure to pass results from dwarf2_read_addr_index_reader
16901 back to dwarf2_read_addr_index. */
16902
16903 struct dwarf2_read_addr_index_data
16904 {
16905 ULONGEST addr_base;
16906 int addr_size;
16907 };
16908
16909 /* die_reader_func for dwarf2_read_addr_index. */
16910
16911 static void
16912 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16913 const gdb_byte *info_ptr,
16914 struct die_info *comp_unit_die,
16915 int has_children,
16916 void *data)
16917 {
16918 struct dwarf2_cu *cu = reader->cu;
16919 struct dwarf2_read_addr_index_data *aidata =
16920 (struct dwarf2_read_addr_index_data *) data;
16921
16922 aidata->addr_base = cu->addr_base;
16923 aidata->addr_size = cu->header.addr_size;
16924 }
16925
16926 /* Given an index in .debug_addr, fetch the value.
16927 NOTE: This can be called during dwarf expression evaluation,
16928 long after the debug information has been read, and thus per_cu->cu
16929 may no longer exist. */
16930
16931 CORE_ADDR
16932 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16933 unsigned int addr_index)
16934 {
16935 struct objfile *objfile = per_cu->objfile;
16936 struct dwarf2_cu *cu = per_cu->cu;
16937 ULONGEST addr_base;
16938 int addr_size;
16939
16940 /* This is intended to be called from outside this file. */
16941 dw2_setup (objfile);
16942
16943 /* We need addr_base and addr_size.
16944 If we don't have PER_CU->cu, we have to get it.
16945 Nasty, but the alternative is storing the needed info in PER_CU,
16946 which at this point doesn't seem justified: it's not clear how frequently
16947 it would get used and it would increase the size of every PER_CU.
16948 Entry points like dwarf2_per_cu_addr_size do a similar thing
16949 so we're not in uncharted territory here.
16950 Alas we need to be a bit more complicated as addr_base is contained
16951 in the DIE.
16952
16953 We don't need to read the entire CU(/TU).
16954 We just need the header and top level die.
16955
16956 IWBN to use the aging mechanism to let us lazily later discard the CU.
16957 For now we skip this optimization. */
16958
16959 if (cu != NULL)
16960 {
16961 addr_base = cu->addr_base;
16962 addr_size = cu->header.addr_size;
16963 }
16964 else
16965 {
16966 struct dwarf2_read_addr_index_data aidata;
16967
16968 /* Note: We can't use init_cutu_and_read_dies_simple here,
16969 we need addr_base. */
16970 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16971 dwarf2_read_addr_index_reader, &aidata);
16972 addr_base = aidata.addr_base;
16973 addr_size = aidata.addr_size;
16974 }
16975
16976 return read_addr_index_1 (addr_index, addr_base, addr_size);
16977 }
16978
16979 /* Given a DW_FORM_GNU_str_index, fetch the string.
16980 This is only used by the Fission support. */
16981
16982 static const char *
16983 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16984 {
16985 struct objfile *objfile = dwarf2_per_objfile->objfile;
16986 const char *objf_name = objfile_name (objfile);
16987 bfd *abfd = objfile->obfd;
16988 struct dwarf2_cu *cu = reader->cu;
16989 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16990 struct dwarf2_section_info *str_offsets_section =
16991 &reader->dwo_file->sections.str_offsets;
16992 const gdb_byte *info_ptr;
16993 ULONGEST str_offset;
16994 static const char form_name[] = "DW_FORM_GNU_str_index";
16995
16996 dwarf2_read_section (objfile, str_section);
16997 dwarf2_read_section (objfile, str_offsets_section);
16998 if (str_section->buffer == NULL)
16999 error (_("%s used without .debug_str.dwo section"
17000 " in CU at offset 0x%lx [in module %s]"),
17001 form_name, (long) cu->header.offset.sect_off, objf_name);
17002 if (str_offsets_section->buffer == NULL)
17003 error (_("%s used without .debug_str_offsets.dwo section"
17004 " in CU at offset 0x%lx [in module %s]"),
17005 form_name, (long) cu->header.offset.sect_off, objf_name);
17006 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17007 error (_("%s pointing outside of .debug_str_offsets.dwo"
17008 " section in CU at offset 0x%lx [in module %s]"),
17009 form_name, (long) cu->header.offset.sect_off, objf_name);
17010 info_ptr = (str_offsets_section->buffer
17011 + str_index * cu->header.offset_size);
17012 if (cu->header.offset_size == 4)
17013 str_offset = bfd_get_32 (abfd, info_ptr);
17014 else
17015 str_offset = bfd_get_64 (abfd, info_ptr);
17016 if (str_offset >= str_section->size)
17017 error (_("Offset from %s pointing outside of"
17018 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17019 form_name, (long) cu->header.offset.sect_off, objf_name);
17020 return (const char *) (str_section->buffer + str_offset);
17021 }
17022
17023 /* Return the length of an LEB128 number in BUF. */
17024
17025 static int
17026 leb128_size (const gdb_byte *buf)
17027 {
17028 const gdb_byte *begin = buf;
17029 gdb_byte byte;
17030
17031 while (1)
17032 {
17033 byte = *buf++;
17034 if ((byte & 128) == 0)
17035 return buf - begin;
17036 }
17037 }
17038
17039 static void
17040 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17041 {
17042 switch (lang)
17043 {
17044 case DW_LANG_C89:
17045 case DW_LANG_C99:
17046 case DW_LANG_C11:
17047 case DW_LANG_C:
17048 case DW_LANG_UPC:
17049 cu->language = language_c;
17050 break;
17051 case DW_LANG_Java:
17052 case DW_LANG_C_plus_plus:
17053 case DW_LANG_C_plus_plus_11:
17054 case DW_LANG_C_plus_plus_14:
17055 cu->language = language_cplus;
17056 break;
17057 case DW_LANG_D:
17058 cu->language = language_d;
17059 break;
17060 case DW_LANG_Fortran77:
17061 case DW_LANG_Fortran90:
17062 case DW_LANG_Fortran95:
17063 case DW_LANG_Fortran03:
17064 case DW_LANG_Fortran08:
17065 cu->language = language_fortran;
17066 break;
17067 case DW_LANG_Go:
17068 cu->language = language_go;
17069 break;
17070 case DW_LANG_Mips_Assembler:
17071 cu->language = language_asm;
17072 break;
17073 case DW_LANG_Ada83:
17074 case DW_LANG_Ada95:
17075 cu->language = language_ada;
17076 break;
17077 case DW_LANG_Modula2:
17078 cu->language = language_m2;
17079 break;
17080 case DW_LANG_Pascal83:
17081 cu->language = language_pascal;
17082 break;
17083 case DW_LANG_ObjC:
17084 cu->language = language_objc;
17085 break;
17086 case DW_LANG_Rust:
17087 case DW_LANG_Rust_old:
17088 cu->language = language_rust;
17089 break;
17090 case DW_LANG_Cobol74:
17091 case DW_LANG_Cobol85:
17092 default:
17093 cu->language = language_minimal;
17094 break;
17095 }
17096 cu->language_defn = language_def (cu->language);
17097 }
17098
17099 /* Return the named attribute or NULL if not there. */
17100
17101 static struct attribute *
17102 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17103 {
17104 for (;;)
17105 {
17106 unsigned int i;
17107 struct attribute *spec = NULL;
17108
17109 for (i = 0; i < die->num_attrs; ++i)
17110 {
17111 if (die->attrs[i].name == name)
17112 return &die->attrs[i];
17113 if (die->attrs[i].name == DW_AT_specification
17114 || die->attrs[i].name == DW_AT_abstract_origin)
17115 spec = &die->attrs[i];
17116 }
17117
17118 if (!spec)
17119 break;
17120
17121 die = follow_die_ref (die, spec, &cu);
17122 }
17123
17124 return NULL;
17125 }
17126
17127 /* Return the named attribute or NULL if not there,
17128 but do not follow DW_AT_specification, etc.
17129 This is for use in contexts where we're reading .debug_types dies.
17130 Following DW_AT_specification, DW_AT_abstract_origin will take us
17131 back up the chain, and we want to go down. */
17132
17133 static struct attribute *
17134 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17135 {
17136 unsigned int i;
17137
17138 for (i = 0; i < die->num_attrs; ++i)
17139 if (die->attrs[i].name == name)
17140 return &die->attrs[i];
17141
17142 return NULL;
17143 }
17144
17145 /* Return the string associated with a string-typed attribute, or NULL if it
17146 is either not found or is of an incorrect type. */
17147
17148 static const char *
17149 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17150 {
17151 struct attribute *attr;
17152 const char *str = NULL;
17153
17154 attr = dwarf2_attr (die, name, cu);
17155
17156 if (attr != NULL)
17157 {
17158 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17159 || attr->form == DW_FORM_GNU_strp_alt)
17160 str = DW_STRING (attr);
17161 else
17162 complaint (&symfile_complaints,
17163 _("string type expected for attribute %s for "
17164 "DIE at 0x%x in module %s"),
17165 dwarf_attr_name (name), die->offset.sect_off,
17166 objfile_name (cu->objfile));
17167 }
17168
17169 return str;
17170 }
17171
17172 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17173 and holds a non-zero value. This function should only be used for
17174 DW_FORM_flag or DW_FORM_flag_present attributes. */
17175
17176 static int
17177 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17178 {
17179 struct attribute *attr = dwarf2_attr (die, name, cu);
17180
17181 return (attr && DW_UNSND (attr));
17182 }
17183
17184 static int
17185 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17186 {
17187 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17188 which value is non-zero. However, we have to be careful with
17189 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17190 (via dwarf2_flag_true_p) follows this attribute. So we may
17191 end up accidently finding a declaration attribute that belongs
17192 to a different DIE referenced by the specification attribute,
17193 even though the given DIE does not have a declaration attribute. */
17194 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17195 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17196 }
17197
17198 /* Return the die giving the specification for DIE, if there is
17199 one. *SPEC_CU is the CU containing DIE on input, and the CU
17200 containing the return value on output. If there is no
17201 specification, but there is an abstract origin, that is
17202 returned. */
17203
17204 static struct die_info *
17205 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17206 {
17207 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17208 *spec_cu);
17209
17210 if (spec_attr == NULL)
17211 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17212
17213 if (spec_attr == NULL)
17214 return NULL;
17215 else
17216 return follow_die_ref (die, spec_attr, spec_cu);
17217 }
17218
17219 /* Free the line_header structure *LH, and any arrays and strings it
17220 refers to.
17221 NOTE: This is also used as a "cleanup" function. */
17222
17223 static void
17224 free_line_header (struct line_header *lh)
17225 {
17226 if (lh->standard_opcode_lengths)
17227 xfree (lh->standard_opcode_lengths);
17228
17229 /* Remember that all the lh->file_names[i].name pointers are
17230 pointers into debug_line_buffer, and don't need to be freed. */
17231 if (lh->file_names)
17232 xfree (lh->file_names);
17233
17234 /* Similarly for the include directory names. */
17235 if (lh->include_dirs)
17236 xfree (lh->include_dirs);
17237
17238 xfree (lh);
17239 }
17240
17241 /* Stub for free_line_header to match void * callback types. */
17242
17243 static void
17244 free_line_header_voidp (void *arg)
17245 {
17246 struct line_header *lh = (struct line_header *) arg;
17247
17248 free_line_header (lh);
17249 }
17250
17251 /* Add an entry to LH's include directory table. */
17252
17253 static void
17254 add_include_dir (struct line_header *lh, const char *include_dir)
17255 {
17256 if (dwarf_line_debug >= 2)
17257 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17258 lh->num_include_dirs + 1, include_dir);
17259
17260 /* Grow the array if necessary. */
17261 if (lh->include_dirs_size == 0)
17262 {
17263 lh->include_dirs_size = 1; /* for testing */
17264 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17265 }
17266 else if (lh->num_include_dirs >= lh->include_dirs_size)
17267 {
17268 lh->include_dirs_size *= 2;
17269 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17270 lh->include_dirs_size);
17271 }
17272
17273 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17274 }
17275
17276 /* Add an entry to LH's file name table. */
17277
17278 static void
17279 add_file_name (struct line_header *lh,
17280 const char *name,
17281 unsigned int dir_index,
17282 unsigned int mod_time,
17283 unsigned int length)
17284 {
17285 struct file_entry *fe;
17286
17287 if (dwarf_line_debug >= 2)
17288 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17289 lh->num_file_names + 1, name);
17290
17291 /* Grow the array if necessary. */
17292 if (lh->file_names_size == 0)
17293 {
17294 lh->file_names_size = 1; /* for testing */
17295 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17296 }
17297 else if (lh->num_file_names >= lh->file_names_size)
17298 {
17299 lh->file_names_size *= 2;
17300 lh->file_names
17301 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17302 }
17303
17304 fe = &lh->file_names[lh->num_file_names++];
17305 fe->name = name;
17306 fe->dir_index = dir_index;
17307 fe->mod_time = mod_time;
17308 fe->length = length;
17309 fe->included_p = 0;
17310 fe->symtab = NULL;
17311 }
17312
17313 /* A convenience function to find the proper .debug_line section for a CU. */
17314
17315 static struct dwarf2_section_info *
17316 get_debug_line_section (struct dwarf2_cu *cu)
17317 {
17318 struct dwarf2_section_info *section;
17319
17320 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17321 DWO file. */
17322 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17323 section = &cu->dwo_unit->dwo_file->sections.line;
17324 else if (cu->per_cu->is_dwz)
17325 {
17326 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17327
17328 section = &dwz->line;
17329 }
17330 else
17331 section = &dwarf2_per_objfile->line;
17332
17333 return section;
17334 }
17335
17336 /* Read the statement program header starting at OFFSET in
17337 .debug_line, or .debug_line.dwo. Return a pointer
17338 to a struct line_header, allocated using xmalloc.
17339 Returns NULL if there is a problem reading the header, e.g., if it
17340 has a version we don't understand.
17341
17342 NOTE: the strings in the include directory and file name tables of
17343 the returned object point into the dwarf line section buffer,
17344 and must not be freed. */
17345
17346 static struct line_header *
17347 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17348 {
17349 struct cleanup *back_to;
17350 struct line_header *lh;
17351 const gdb_byte *line_ptr;
17352 unsigned int bytes_read, offset_size;
17353 int i;
17354 const char *cur_dir, *cur_file;
17355 struct dwarf2_section_info *section;
17356 bfd *abfd;
17357
17358 section = get_debug_line_section (cu);
17359 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17360 if (section->buffer == NULL)
17361 {
17362 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17363 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17364 else
17365 complaint (&symfile_complaints, _("missing .debug_line section"));
17366 return 0;
17367 }
17368
17369 /* We can't do this until we know the section is non-empty.
17370 Only then do we know we have such a section. */
17371 abfd = get_section_bfd_owner (section);
17372
17373 /* Make sure that at least there's room for the total_length field.
17374 That could be 12 bytes long, but we're just going to fudge that. */
17375 if (offset + 4 >= section->size)
17376 {
17377 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17378 return 0;
17379 }
17380
17381 lh = XNEW (struct line_header);
17382 memset (lh, 0, sizeof (*lh));
17383 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17384 (void *) lh);
17385
17386 lh->offset.sect_off = offset;
17387 lh->offset_in_dwz = cu->per_cu->is_dwz;
17388
17389 line_ptr = section->buffer + offset;
17390
17391 /* Read in the header. */
17392 lh->total_length =
17393 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17394 &bytes_read, &offset_size);
17395 line_ptr += bytes_read;
17396 if (line_ptr + lh->total_length > (section->buffer + section->size))
17397 {
17398 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17399 do_cleanups (back_to);
17400 return 0;
17401 }
17402 lh->statement_program_end = line_ptr + lh->total_length;
17403 lh->version = read_2_bytes (abfd, line_ptr);
17404 line_ptr += 2;
17405 if (lh->version > 4)
17406 {
17407 /* This is a version we don't understand. The format could have
17408 changed in ways we don't handle properly so just punt. */
17409 complaint (&symfile_complaints,
17410 _("unsupported version in .debug_line section"));
17411 return NULL;
17412 }
17413 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17414 line_ptr += offset_size;
17415 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17416 line_ptr += 1;
17417 if (lh->version >= 4)
17418 {
17419 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17420 line_ptr += 1;
17421 }
17422 else
17423 lh->maximum_ops_per_instruction = 1;
17424
17425 if (lh->maximum_ops_per_instruction == 0)
17426 {
17427 lh->maximum_ops_per_instruction = 1;
17428 complaint (&symfile_complaints,
17429 _("invalid maximum_ops_per_instruction "
17430 "in `.debug_line' section"));
17431 }
17432
17433 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17434 line_ptr += 1;
17435 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17436 line_ptr += 1;
17437 lh->line_range = read_1_byte (abfd, line_ptr);
17438 line_ptr += 1;
17439 lh->opcode_base = read_1_byte (abfd, line_ptr);
17440 line_ptr += 1;
17441 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17442
17443 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17444 for (i = 1; i < lh->opcode_base; ++i)
17445 {
17446 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17447 line_ptr += 1;
17448 }
17449
17450 /* Read directory table. */
17451 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17452 {
17453 line_ptr += bytes_read;
17454 add_include_dir (lh, cur_dir);
17455 }
17456 line_ptr += bytes_read;
17457
17458 /* Read file name table. */
17459 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17460 {
17461 unsigned int dir_index, mod_time, length;
17462
17463 line_ptr += bytes_read;
17464 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17465 line_ptr += bytes_read;
17466 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17467 line_ptr += bytes_read;
17468 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17469 line_ptr += bytes_read;
17470
17471 add_file_name (lh, cur_file, dir_index, mod_time, length);
17472 }
17473 line_ptr += bytes_read;
17474 lh->statement_program_start = line_ptr;
17475
17476 if (line_ptr > (section->buffer + section->size))
17477 complaint (&symfile_complaints,
17478 _("line number info header doesn't "
17479 "fit in `.debug_line' section"));
17480
17481 discard_cleanups (back_to);
17482 return lh;
17483 }
17484
17485 /* Subroutine of dwarf_decode_lines to simplify it.
17486 Return the file name of the psymtab for included file FILE_INDEX
17487 in line header LH of PST.
17488 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17489 If space for the result is malloc'd, it will be freed by a cleanup.
17490 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17491
17492 The function creates dangling cleanup registration. */
17493
17494 static const char *
17495 psymtab_include_file_name (const struct line_header *lh, int file_index,
17496 const struct partial_symtab *pst,
17497 const char *comp_dir)
17498 {
17499 const struct file_entry fe = lh->file_names [file_index];
17500 const char *include_name = fe.name;
17501 const char *include_name_to_compare = include_name;
17502 const char *dir_name = NULL;
17503 const char *pst_filename;
17504 char *copied_name = NULL;
17505 int file_is_pst;
17506
17507 if (fe.dir_index && lh->include_dirs != NULL)
17508 dir_name = lh->include_dirs[fe.dir_index - 1];
17509
17510 if (!IS_ABSOLUTE_PATH (include_name)
17511 && (dir_name != NULL || comp_dir != NULL))
17512 {
17513 /* Avoid creating a duplicate psymtab for PST.
17514 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17515 Before we do the comparison, however, we need to account
17516 for DIR_NAME and COMP_DIR.
17517 First prepend dir_name (if non-NULL). If we still don't
17518 have an absolute path prepend comp_dir (if non-NULL).
17519 However, the directory we record in the include-file's
17520 psymtab does not contain COMP_DIR (to match the
17521 corresponding symtab(s)).
17522
17523 Example:
17524
17525 bash$ cd /tmp
17526 bash$ gcc -g ./hello.c
17527 include_name = "hello.c"
17528 dir_name = "."
17529 DW_AT_comp_dir = comp_dir = "/tmp"
17530 DW_AT_name = "./hello.c"
17531
17532 */
17533
17534 if (dir_name != NULL)
17535 {
17536 char *tem = concat (dir_name, SLASH_STRING,
17537 include_name, (char *)NULL);
17538
17539 make_cleanup (xfree, tem);
17540 include_name = tem;
17541 include_name_to_compare = include_name;
17542 }
17543 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17544 {
17545 char *tem = concat (comp_dir, SLASH_STRING,
17546 include_name, (char *)NULL);
17547
17548 make_cleanup (xfree, tem);
17549 include_name_to_compare = tem;
17550 }
17551 }
17552
17553 pst_filename = pst->filename;
17554 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17555 {
17556 copied_name = concat (pst->dirname, SLASH_STRING,
17557 pst_filename, (char *)NULL);
17558 pst_filename = copied_name;
17559 }
17560
17561 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17562
17563 if (copied_name != NULL)
17564 xfree (copied_name);
17565
17566 if (file_is_pst)
17567 return NULL;
17568 return include_name;
17569 }
17570
17571 /* State machine to track the state of the line number program. */
17572
17573 typedef struct
17574 {
17575 /* These are part of the standard DWARF line number state machine. */
17576
17577 unsigned char op_index;
17578 unsigned int file;
17579 unsigned int line;
17580 CORE_ADDR address;
17581 int is_stmt;
17582 unsigned int discriminator;
17583
17584 /* Additional bits of state we need to track. */
17585
17586 /* The last file that we called dwarf2_start_subfile for.
17587 This is only used for TLLs. */
17588 unsigned int last_file;
17589 /* The last file a line number was recorded for. */
17590 struct subfile *last_subfile;
17591
17592 /* The function to call to record a line. */
17593 record_line_ftype *record_line;
17594
17595 /* The last line number that was recorded, used to coalesce
17596 consecutive entries for the same line. This can happen, for
17597 example, when discriminators are present. PR 17276. */
17598 unsigned int last_line;
17599 int line_has_non_zero_discriminator;
17600 } lnp_state_machine;
17601
17602 /* There's a lot of static state to pass to dwarf_record_line.
17603 This keeps it all together. */
17604
17605 typedef struct
17606 {
17607 /* The gdbarch. */
17608 struct gdbarch *gdbarch;
17609
17610 /* The line number header. */
17611 struct line_header *line_header;
17612
17613 /* Non-zero if we're recording lines.
17614 Otherwise we're building partial symtabs and are just interested in
17615 finding include files mentioned by the line number program. */
17616 int record_lines_p;
17617 } lnp_reader_state;
17618
17619 /* Ignore this record_line request. */
17620
17621 static void
17622 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17623 {
17624 return;
17625 }
17626
17627 /* Return non-zero if we should add LINE to the line number table.
17628 LINE is the line to add, LAST_LINE is the last line that was added,
17629 LAST_SUBFILE is the subfile for LAST_LINE.
17630 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17631 had a non-zero discriminator.
17632
17633 We have to be careful in the presence of discriminators.
17634 E.g., for this line:
17635
17636 for (i = 0; i < 100000; i++);
17637
17638 clang can emit four line number entries for that one line,
17639 each with a different discriminator.
17640 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17641
17642 However, we want gdb to coalesce all four entries into one.
17643 Otherwise the user could stepi into the middle of the line and
17644 gdb would get confused about whether the pc really was in the
17645 middle of the line.
17646
17647 Things are further complicated by the fact that two consecutive
17648 line number entries for the same line is a heuristic used by gcc
17649 to denote the end of the prologue. So we can't just discard duplicate
17650 entries, we have to be selective about it. The heuristic we use is
17651 that we only collapse consecutive entries for the same line if at least
17652 one of those entries has a non-zero discriminator. PR 17276.
17653
17654 Note: Addresses in the line number state machine can never go backwards
17655 within one sequence, thus this coalescing is ok. */
17656
17657 static int
17658 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17659 int line_has_non_zero_discriminator,
17660 struct subfile *last_subfile)
17661 {
17662 if (current_subfile != last_subfile)
17663 return 1;
17664 if (line != last_line)
17665 return 1;
17666 /* Same line for the same file that we've seen already.
17667 As a last check, for pr 17276, only record the line if the line
17668 has never had a non-zero discriminator. */
17669 if (!line_has_non_zero_discriminator)
17670 return 1;
17671 return 0;
17672 }
17673
17674 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17675 in the line table of subfile SUBFILE. */
17676
17677 static void
17678 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17679 unsigned int line, CORE_ADDR address,
17680 record_line_ftype p_record_line)
17681 {
17682 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17683
17684 if (dwarf_line_debug)
17685 {
17686 fprintf_unfiltered (gdb_stdlog,
17687 "Recording line %u, file %s, address %s\n",
17688 line, lbasename (subfile->name),
17689 paddress (gdbarch, address));
17690 }
17691
17692 (*p_record_line) (subfile, line, addr);
17693 }
17694
17695 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17696 Mark the end of a set of line number records.
17697 The arguments are the same as for dwarf_record_line_1.
17698 If SUBFILE is NULL the request is ignored. */
17699
17700 static void
17701 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17702 CORE_ADDR address, record_line_ftype p_record_line)
17703 {
17704 if (subfile == NULL)
17705 return;
17706
17707 if (dwarf_line_debug)
17708 {
17709 fprintf_unfiltered (gdb_stdlog,
17710 "Finishing current line, file %s, address %s\n",
17711 lbasename (subfile->name),
17712 paddress (gdbarch, address));
17713 }
17714
17715 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17716 }
17717
17718 /* Record the line in STATE.
17719 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17720
17721 static void
17722 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17723 int end_sequence)
17724 {
17725 const struct line_header *lh = reader->line_header;
17726 unsigned int file, line, discriminator;
17727 int is_stmt;
17728
17729 file = state->file;
17730 line = state->line;
17731 is_stmt = state->is_stmt;
17732 discriminator = state->discriminator;
17733
17734 if (dwarf_line_debug)
17735 {
17736 fprintf_unfiltered (gdb_stdlog,
17737 "Processing actual line %u: file %u,"
17738 " address %s, is_stmt %u, discrim %u\n",
17739 line, file,
17740 paddress (reader->gdbarch, state->address),
17741 is_stmt, discriminator);
17742 }
17743
17744 if (file == 0 || file - 1 >= lh->num_file_names)
17745 dwarf2_debug_line_missing_file_complaint ();
17746 /* For now we ignore lines not starting on an instruction boundary.
17747 But not when processing end_sequence for compatibility with the
17748 previous version of the code. */
17749 else if (state->op_index == 0 || end_sequence)
17750 {
17751 lh->file_names[file - 1].included_p = 1;
17752 if (reader->record_lines_p && is_stmt)
17753 {
17754 if (state->last_subfile != current_subfile || end_sequence)
17755 {
17756 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17757 state->address, state->record_line);
17758 }
17759
17760 if (!end_sequence)
17761 {
17762 if (dwarf_record_line_p (line, state->last_line,
17763 state->line_has_non_zero_discriminator,
17764 state->last_subfile))
17765 {
17766 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17767 line, state->address,
17768 state->record_line);
17769 }
17770 state->last_subfile = current_subfile;
17771 state->last_line = line;
17772 }
17773 }
17774 }
17775 }
17776
17777 /* Initialize STATE for the start of a line number program. */
17778
17779 static void
17780 init_lnp_state_machine (lnp_state_machine *state,
17781 const lnp_reader_state *reader)
17782 {
17783 memset (state, 0, sizeof (*state));
17784
17785 /* Just starting, there is no "last file". */
17786 state->last_file = 0;
17787 state->last_subfile = NULL;
17788
17789 state->record_line = record_line;
17790
17791 state->last_line = 0;
17792 state->line_has_non_zero_discriminator = 0;
17793
17794 /* Initialize these according to the DWARF spec. */
17795 state->op_index = 0;
17796 state->file = 1;
17797 state->line = 1;
17798 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17799 was a line entry for it so that the backend has a chance to adjust it
17800 and also record it in case it needs it. This is currently used by MIPS
17801 code, cf. `mips_adjust_dwarf2_line'. */
17802 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17803 state->is_stmt = reader->line_header->default_is_stmt;
17804 state->discriminator = 0;
17805 }
17806
17807 /* Check address and if invalid nop-out the rest of the lines in this
17808 sequence. */
17809
17810 static void
17811 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17812 const gdb_byte *line_ptr,
17813 CORE_ADDR lowpc, CORE_ADDR address)
17814 {
17815 /* If address < lowpc then it's not a usable value, it's outside the
17816 pc range of the CU. However, we restrict the test to only address
17817 values of zero to preserve GDB's previous behaviour which is to
17818 handle the specific case of a function being GC'd by the linker. */
17819
17820 if (address == 0 && address < lowpc)
17821 {
17822 /* This line table is for a function which has been
17823 GCd by the linker. Ignore it. PR gdb/12528 */
17824
17825 struct objfile *objfile = cu->objfile;
17826 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17827
17828 complaint (&symfile_complaints,
17829 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17830 line_offset, objfile_name (objfile));
17831 state->record_line = noop_record_line;
17832 /* Note: sm.record_line is left as noop_record_line
17833 until we see DW_LNE_end_sequence. */
17834 }
17835 }
17836
17837 /* Subroutine of dwarf_decode_lines to simplify it.
17838 Process the line number information in LH.
17839 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17840 program in order to set included_p for every referenced header. */
17841
17842 static void
17843 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17844 const int decode_for_pst_p, CORE_ADDR lowpc)
17845 {
17846 const gdb_byte *line_ptr, *extended_end;
17847 const gdb_byte *line_end;
17848 unsigned int bytes_read, extended_len;
17849 unsigned char op_code, extended_op;
17850 CORE_ADDR baseaddr;
17851 struct objfile *objfile = cu->objfile;
17852 bfd *abfd = objfile->obfd;
17853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17854 /* Non-zero if we're recording line info (as opposed to building partial
17855 symtabs). */
17856 int record_lines_p = !decode_for_pst_p;
17857 /* A collection of things we need to pass to dwarf_record_line. */
17858 lnp_reader_state reader_state;
17859
17860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17861
17862 line_ptr = lh->statement_program_start;
17863 line_end = lh->statement_program_end;
17864
17865 reader_state.gdbarch = gdbarch;
17866 reader_state.line_header = lh;
17867 reader_state.record_lines_p = record_lines_p;
17868
17869 /* Read the statement sequences until there's nothing left. */
17870 while (line_ptr < line_end)
17871 {
17872 /* The DWARF line number program state machine. */
17873 lnp_state_machine state_machine;
17874 int end_sequence = 0;
17875
17876 /* Reset the state machine at the start of each sequence. */
17877 init_lnp_state_machine (&state_machine, &reader_state);
17878
17879 if (record_lines_p && lh->num_file_names >= state_machine.file)
17880 {
17881 /* Start a subfile for the current file of the state machine. */
17882 /* lh->include_dirs and lh->file_names are 0-based, but the
17883 directory and file name numbers in the statement program
17884 are 1-based. */
17885 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17886 const char *dir = NULL;
17887
17888 if (fe->dir_index && lh->include_dirs != NULL)
17889 dir = lh->include_dirs[fe->dir_index - 1];
17890
17891 dwarf2_start_subfile (fe->name, dir);
17892 }
17893
17894 /* Decode the table. */
17895 while (line_ptr < line_end && !end_sequence)
17896 {
17897 op_code = read_1_byte (abfd, line_ptr);
17898 line_ptr += 1;
17899
17900 if (op_code >= lh->opcode_base)
17901 {
17902 /* Special opcode. */
17903 unsigned char adj_opcode;
17904 CORE_ADDR addr_adj;
17905 int line_delta;
17906
17907 adj_opcode = op_code - lh->opcode_base;
17908 addr_adj = (((state_machine.op_index
17909 + (adj_opcode / lh->line_range))
17910 / lh->maximum_ops_per_instruction)
17911 * lh->minimum_instruction_length);
17912 state_machine.address
17913 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17914 state_machine.op_index = ((state_machine.op_index
17915 + (adj_opcode / lh->line_range))
17916 % lh->maximum_ops_per_instruction);
17917 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17918 state_machine.line += line_delta;
17919 if (line_delta != 0)
17920 state_machine.line_has_non_zero_discriminator
17921 = state_machine.discriminator != 0;
17922
17923 dwarf_record_line (&reader_state, &state_machine, 0);
17924 state_machine.discriminator = 0;
17925 }
17926 else switch (op_code)
17927 {
17928 case DW_LNS_extended_op:
17929 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17930 &bytes_read);
17931 line_ptr += bytes_read;
17932 extended_end = line_ptr + extended_len;
17933 extended_op = read_1_byte (abfd, line_ptr);
17934 line_ptr += 1;
17935 switch (extended_op)
17936 {
17937 case DW_LNE_end_sequence:
17938 state_machine.record_line = record_line;
17939 end_sequence = 1;
17940 break;
17941 case DW_LNE_set_address:
17942 {
17943 CORE_ADDR address
17944 = read_address (abfd, line_ptr, cu, &bytes_read);
17945
17946 line_ptr += bytes_read;
17947 check_line_address (cu, &state_machine, line_ptr,
17948 lowpc, address);
17949 state_machine.op_index = 0;
17950 address += baseaddr;
17951 state_machine.address
17952 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17953 }
17954 break;
17955 case DW_LNE_define_file:
17956 {
17957 const char *cur_file;
17958 unsigned int dir_index, mod_time, length;
17959
17960 cur_file = read_direct_string (abfd, line_ptr,
17961 &bytes_read);
17962 line_ptr += bytes_read;
17963 dir_index =
17964 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17965 line_ptr += bytes_read;
17966 mod_time =
17967 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17968 line_ptr += bytes_read;
17969 length =
17970 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17971 line_ptr += bytes_read;
17972 add_file_name (lh, cur_file, dir_index, mod_time, length);
17973 }
17974 break;
17975 case DW_LNE_set_discriminator:
17976 /* The discriminator is not interesting to the debugger;
17977 just ignore it. We still need to check its value though:
17978 if there are consecutive entries for the same
17979 (non-prologue) line we want to coalesce them.
17980 PR 17276. */
17981 state_machine.discriminator
17982 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17983 state_machine.line_has_non_zero_discriminator
17984 |= state_machine.discriminator != 0;
17985 line_ptr += bytes_read;
17986 break;
17987 default:
17988 complaint (&symfile_complaints,
17989 _("mangled .debug_line section"));
17990 return;
17991 }
17992 /* Make sure that we parsed the extended op correctly. If e.g.
17993 we expected a different address size than the producer used,
17994 we may have read the wrong number of bytes. */
17995 if (line_ptr != extended_end)
17996 {
17997 complaint (&symfile_complaints,
17998 _("mangled .debug_line section"));
17999 return;
18000 }
18001 break;
18002 case DW_LNS_copy:
18003 dwarf_record_line (&reader_state, &state_machine, 0);
18004 state_machine.discriminator = 0;
18005 break;
18006 case DW_LNS_advance_pc:
18007 {
18008 CORE_ADDR adjust
18009 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18010 CORE_ADDR addr_adj;
18011
18012 addr_adj = (((state_machine.op_index + adjust)
18013 / lh->maximum_ops_per_instruction)
18014 * lh->minimum_instruction_length);
18015 state_machine.address
18016 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18017 state_machine.op_index = ((state_machine.op_index + adjust)
18018 % lh->maximum_ops_per_instruction);
18019 line_ptr += bytes_read;
18020 }
18021 break;
18022 case DW_LNS_advance_line:
18023 {
18024 int line_delta
18025 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18026
18027 state_machine.line += line_delta;
18028 if (line_delta != 0)
18029 state_machine.line_has_non_zero_discriminator
18030 = state_machine.discriminator != 0;
18031 line_ptr += bytes_read;
18032 }
18033 break;
18034 case DW_LNS_set_file:
18035 {
18036 /* The arrays lh->include_dirs and lh->file_names are
18037 0-based, but the directory and file name numbers in
18038 the statement program are 1-based. */
18039 struct file_entry *fe;
18040 const char *dir = NULL;
18041
18042 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18043 &bytes_read);
18044 line_ptr += bytes_read;
18045 if (state_machine.file == 0
18046 || state_machine.file - 1 >= lh->num_file_names)
18047 dwarf2_debug_line_missing_file_complaint ();
18048 else
18049 {
18050 fe = &lh->file_names[state_machine.file - 1];
18051 if (fe->dir_index && lh->include_dirs != NULL)
18052 dir = lh->include_dirs[fe->dir_index - 1];
18053 if (record_lines_p)
18054 {
18055 state_machine.last_subfile = current_subfile;
18056 state_machine.line_has_non_zero_discriminator
18057 = state_machine.discriminator != 0;
18058 dwarf2_start_subfile (fe->name, dir);
18059 }
18060 }
18061 }
18062 break;
18063 case DW_LNS_set_column:
18064 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18065 line_ptr += bytes_read;
18066 break;
18067 case DW_LNS_negate_stmt:
18068 state_machine.is_stmt = (!state_machine.is_stmt);
18069 break;
18070 case DW_LNS_set_basic_block:
18071 break;
18072 /* Add to the address register of the state machine the
18073 address increment value corresponding to special opcode
18074 255. I.e., this value is scaled by the minimum
18075 instruction length since special opcode 255 would have
18076 scaled the increment. */
18077 case DW_LNS_const_add_pc:
18078 {
18079 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18080 CORE_ADDR addr_adj;
18081
18082 addr_adj = (((state_machine.op_index + adjust)
18083 / lh->maximum_ops_per_instruction)
18084 * lh->minimum_instruction_length);
18085 state_machine.address
18086 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18087 state_machine.op_index = ((state_machine.op_index + adjust)
18088 % lh->maximum_ops_per_instruction);
18089 }
18090 break;
18091 case DW_LNS_fixed_advance_pc:
18092 {
18093 CORE_ADDR addr_adj;
18094
18095 addr_adj = read_2_bytes (abfd, line_ptr);
18096 state_machine.address
18097 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18098 state_machine.op_index = 0;
18099 line_ptr += 2;
18100 }
18101 break;
18102 default:
18103 {
18104 /* Unknown standard opcode, ignore it. */
18105 int i;
18106
18107 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18108 {
18109 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18110 line_ptr += bytes_read;
18111 }
18112 }
18113 }
18114 }
18115
18116 if (!end_sequence)
18117 dwarf2_debug_line_missing_end_sequence_complaint ();
18118
18119 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18120 in which case we still finish recording the last line). */
18121 dwarf_record_line (&reader_state, &state_machine, 1);
18122 }
18123 }
18124
18125 /* Decode the Line Number Program (LNP) for the given line_header
18126 structure and CU. The actual information extracted and the type
18127 of structures created from the LNP depends on the value of PST.
18128
18129 1. If PST is NULL, then this procedure uses the data from the program
18130 to create all necessary symbol tables, and their linetables.
18131
18132 2. If PST is not NULL, this procedure reads the program to determine
18133 the list of files included by the unit represented by PST, and
18134 builds all the associated partial symbol tables.
18135
18136 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18137 It is used for relative paths in the line table.
18138 NOTE: When processing partial symtabs (pst != NULL),
18139 comp_dir == pst->dirname.
18140
18141 NOTE: It is important that psymtabs have the same file name (via strcmp)
18142 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18143 symtab we don't use it in the name of the psymtabs we create.
18144 E.g. expand_line_sal requires this when finding psymtabs to expand.
18145 A good testcase for this is mb-inline.exp.
18146
18147 LOWPC is the lowest address in CU (or 0 if not known).
18148
18149 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18150 for its PC<->lines mapping information. Otherwise only the filename
18151 table is read in. */
18152
18153 static void
18154 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18155 struct dwarf2_cu *cu, struct partial_symtab *pst,
18156 CORE_ADDR lowpc, int decode_mapping)
18157 {
18158 struct objfile *objfile = cu->objfile;
18159 const int decode_for_pst_p = (pst != NULL);
18160
18161 if (decode_mapping)
18162 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18163
18164 if (decode_for_pst_p)
18165 {
18166 int file_index;
18167
18168 /* Now that we're done scanning the Line Header Program, we can
18169 create the psymtab of each included file. */
18170 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18171 if (lh->file_names[file_index].included_p == 1)
18172 {
18173 const char *include_name =
18174 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18175 if (include_name != NULL)
18176 dwarf2_create_include_psymtab (include_name, pst, objfile);
18177 }
18178 }
18179 else
18180 {
18181 /* Make sure a symtab is created for every file, even files
18182 which contain only variables (i.e. no code with associated
18183 line numbers). */
18184 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18185 int i;
18186
18187 for (i = 0; i < lh->num_file_names; i++)
18188 {
18189 const char *dir = NULL;
18190 struct file_entry *fe;
18191
18192 fe = &lh->file_names[i];
18193 if (fe->dir_index && lh->include_dirs != NULL)
18194 dir = lh->include_dirs[fe->dir_index - 1];
18195 dwarf2_start_subfile (fe->name, dir);
18196
18197 if (current_subfile->symtab == NULL)
18198 {
18199 current_subfile->symtab
18200 = allocate_symtab (cust, current_subfile->name);
18201 }
18202 fe->symtab = current_subfile->symtab;
18203 }
18204 }
18205 }
18206
18207 /* Start a subfile for DWARF. FILENAME is the name of the file and
18208 DIRNAME the name of the source directory which contains FILENAME
18209 or NULL if not known.
18210 This routine tries to keep line numbers from identical absolute and
18211 relative file names in a common subfile.
18212
18213 Using the `list' example from the GDB testsuite, which resides in
18214 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18215 of /srcdir/list0.c yields the following debugging information for list0.c:
18216
18217 DW_AT_name: /srcdir/list0.c
18218 DW_AT_comp_dir: /compdir
18219 files.files[0].name: list0.h
18220 files.files[0].dir: /srcdir
18221 files.files[1].name: list0.c
18222 files.files[1].dir: /srcdir
18223
18224 The line number information for list0.c has to end up in a single
18225 subfile, so that `break /srcdir/list0.c:1' works as expected.
18226 start_subfile will ensure that this happens provided that we pass the
18227 concatenation of files.files[1].dir and files.files[1].name as the
18228 subfile's name. */
18229
18230 static void
18231 dwarf2_start_subfile (const char *filename, const char *dirname)
18232 {
18233 char *copy = NULL;
18234
18235 /* In order not to lose the line information directory,
18236 we concatenate it to the filename when it makes sense.
18237 Note that the Dwarf3 standard says (speaking of filenames in line
18238 information): ``The directory index is ignored for file names
18239 that represent full path names''. Thus ignoring dirname in the
18240 `else' branch below isn't an issue. */
18241
18242 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18243 {
18244 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18245 filename = copy;
18246 }
18247
18248 start_subfile (filename);
18249
18250 if (copy != NULL)
18251 xfree (copy);
18252 }
18253
18254 /* Start a symtab for DWARF.
18255 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18256
18257 static struct compunit_symtab *
18258 dwarf2_start_symtab (struct dwarf2_cu *cu,
18259 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18260 {
18261 struct compunit_symtab *cust
18262 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18263
18264 record_debugformat ("DWARF 2");
18265 record_producer (cu->producer);
18266
18267 /* We assume that we're processing GCC output. */
18268 processing_gcc_compilation = 2;
18269
18270 cu->processing_has_namespace_info = 0;
18271
18272 return cust;
18273 }
18274
18275 static void
18276 var_decode_location (struct attribute *attr, struct symbol *sym,
18277 struct dwarf2_cu *cu)
18278 {
18279 struct objfile *objfile = cu->objfile;
18280 struct comp_unit_head *cu_header = &cu->header;
18281
18282 /* NOTE drow/2003-01-30: There used to be a comment and some special
18283 code here to turn a symbol with DW_AT_external and a
18284 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18285 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18286 with some versions of binutils) where shared libraries could have
18287 relocations against symbols in their debug information - the
18288 minimal symbol would have the right address, but the debug info
18289 would not. It's no longer necessary, because we will explicitly
18290 apply relocations when we read in the debug information now. */
18291
18292 /* A DW_AT_location attribute with no contents indicates that a
18293 variable has been optimized away. */
18294 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18295 {
18296 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18297 return;
18298 }
18299
18300 /* Handle one degenerate form of location expression specially, to
18301 preserve GDB's previous behavior when section offsets are
18302 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18303 then mark this symbol as LOC_STATIC. */
18304
18305 if (attr_form_is_block (attr)
18306 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18307 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18308 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18309 && (DW_BLOCK (attr)->size
18310 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18311 {
18312 unsigned int dummy;
18313
18314 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18315 SYMBOL_VALUE_ADDRESS (sym) =
18316 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18317 else
18318 SYMBOL_VALUE_ADDRESS (sym) =
18319 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18320 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18321 fixup_symbol_section (sym, objfile);
18322 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18323 SYMBOL_SECTION (sym));
18324 return;
18325 }
18326
18327 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18328 expression evaluator, and use LOC_COMPUTED only when necessary
18329 (i.e. when the value of a register or memory location is
18330 referenced, or a thread-local block, etc.). Then again, it might
18331 not be worthwhile. I'm assuming that it isn't unless performance
18332 or memory numbers show me otherwise. */
18333
18334 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18335
18336 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18337 cu->has_loclist = 1;
18338 }
18339
18340 /* Given a pointer to a DWARF information entry, figure out if we need
18341 to make a symbol table entry for it, and if so, create a new entry
18342 and return a pointer to it.
18343 If TYPE is NULL, determine symbol type from the die, otherwise
18344 used the passed type.
18345 If SPACE is not NULL, use it to hold the new symbol. If it is
18346 NULL, allocate a new symbol on the objfile's obstack. */
18347
18348 static struct symbol *
18349 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18350 struct symbol *space)
18351 {
18352 struct objfile *objfile = cu->objfile;
18353 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18354 struct symbol *sym = NULL;
18355 const char *name;
18356 struct attribute *attr = NULL;
18357 struct attribute *attr2 = NULL;
18358 CORE_ADDR baseaddr;
18359 struct pending **list_to_add = NULL;
18360
18361 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18362
18363 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18364
18365 name = dwarf2_name (die, cu);
18366 if (name)
18367 {
18368 const char *linkagename;
18369 int suppress_add = 0;
18370
18371 if (space)
18372 sym = space;
18373 else
18374 sym = allocate_symbol (objfile);
18375 OBJSTAT (objfile, n_syms++);
18376
18377 /* Cache this symbol's name and the name's demangled form (if any). */
18378 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18379 linkagename = dwarf2_physname (name, die, cu);
18380 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18381
18382 /* Fortran does not have mangling standard and the mangling does differ
18383 between gfortran, iFort etc. */
18384 if (cu->language == language_fortran
18385 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18386 symbol_set_demangled_name (&(sym->ginfo),
18387 dwarf2_full_name (name, die, cu),
18388 NULL);
18389
18390 /* Default assumptions.
18391 Use the passed type or decode it from the die. */
18392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18393 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18394 if (type != NULL)
18395 SYMBOL_TYPE (sym) = type;
18396 else
18397 SYMBOL_TYPE (sym) = die_type (die, cu);
18398 attr = dwarf2_attr (die,
18399 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18400 cu);
18401 if (attr)
18402 {
18403 SYMBOL_LINE (sym) = DW_UNSND (attr);
18404 }
18405
18406 attr = dwarf2_attr (die,
18407 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18408 cu);
18409 if (attr)
18410 {
18411 int file_index = DW_UNSND (attr);
18412
18413 if (cu->line_header == NULL
18414 || file_index > cu->line_header->num_file_names)
18415 complaint (&symfile_complaints,
18416 _("file index out of range"));
18417 else if (file_index > 0)
18418 {
18419 struct file_entry *fe;
18420
18421 fe = &cu->line_header->file_names[file_index - 1];
18422 symbol_set_symtab (sym, fe->symtab);
18423 }
18424 }
18425
18426 switch (die->tag)
18427 {
18428 case DW_TAG_label:
18429 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18430 if (attr)
18431 {
18432 CORE_ADDR addr;
18433
18434 addr = attr_value_as_address (attr);
18435 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18436 SYMBOL_VALUE_ADDRESS (sym) = addr;
18437 }
18438 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18439 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18440 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18441 add_symbol_to_list (sym, cu->list_in_scope);
18442 break;
18443 case DW_TAG_subprogram:
18444 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18445 finish_block. */
18446 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18447 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18448 if ((attr2 && (DW_UNSND (attr2) != 0))
18449 || cu->language == language_ada)
18450 {
18451 /* Subprograms marked external are stored as a global symbol.
18452 Ada subprograms, whether marked external or not, are always
18453 stored as a global symbol, because we want to be able to
18454 access them globally. For instance, we want to be able
18455 to break on a nested subprogram without having to
18456 specify the context. */
18457 list_to_add = &global_symbols;
18458 }
18459 else
18460 {
18461 list_to_add = cu->list_in_scope;
18462 }
18463 break;
18464 case DW_TAG_inlined_subroutine:
18465 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18466 finish_block. */
18467 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18468 SYMBOL_INLINED (sym) = 1;
18469 list_to_add = cu->list_in_scope;
18470 break;
18471 case DW_TAG_template_value_param:
18472 suppress_add = 1;
18473 /* Fall through. */
18474 case DW_TAG_constant:
18475 case DW_TAG_variable:
18476 case DW_TAG_member:
18477 /* Compilation with minimal debug info may result in
18478 variables with missing type entries. Change the
18479 misleading `void' type to something sensible. */
18480 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18481 SYMBOL_TYPE (sym)
18482 = objfile_type (objfile)->nodebug_data_symbol;
18483
18484 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18485 /* In the case of DW_TAG_member, we should only be called for
18486 static const members. */
18487 if (die->tag == DW_TAG_member)
18488 {
18489 /* dwarf2_add_field uses die_is_declaration,
18490 so we do the same. */
18491 gdb_assert (die_is_declaration (die, cu));
18492 gdb_assert (attr);
18493 }
18494 if (attr)
18495 {
18496 dwarf2_const_value (attr, sym, cu);
18497 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18498 if (!suppress_add)
18499 {
18500 if (attr2 && (DW_UNSND (attr2) != 0))
18501 list_to_add = &global_symbols;
18502 else
18503 list_to_add = cu->list_in_scope;
18504 }
18505 break;
18506 }
18507 attr = dwarf2_attr (die, DW_AT_location, cu);
18508 if (attr)
18509 {
18510 var_decode_location (attr, sym, cu);
18511 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18512
18513 /* Fortran explicitly imports any global symbols to the local
18514 scope by DW_TAG_common_block. */
18515 if (cu->language == language_fortran && die->parent
18516 && die->parent->tag == DW_TAG_common_block)
18517 attr2 = NULL;
18518
18519 if (SYMBOL_CLASS (sym) == LOC_STATIC
18520 && SYMBOL_VALUE_ADDRESS (sym) == 0
18521 && !dwarf2_per_objfile->has_section_at_zero)
18522 {
18523 /* When a static variable is eliminated by the linker,
18524 the corresponding debug information is not stripped
18525 out, but the variable address is set to null;
18526 do not add such variables into symbol table. */
18527 }
18528 else if (attr2 && (DW_UNSND (attr2) != 0))
18529 {
18530 /* Workaround gfortran PR debug/40040 - it uses
18531 DW_AT_location for variables in -fPIC libraries which may
18532 get overriden by other libraries/executable and get
18533 a different address. Resolve it by the minimal symbol
18534 which may come from inferior's executable using copy
18535 relocation. Make this workaround only for gfortran as for
18536 other compilers GDB cannot guess the minimal symbol
18537 Fortran mangling kind. */
18538 if (cu->language == language_fortran && die->parent
18539 && die->parent->tag == DW_TAG_module
18540 && cu->producer
18541 && startswith (cu->producer, "GNU Fortran"))
18542 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18543
18544 /* A variable with DW_AT_external is never static,
18545 but it may be block-scoped. */
18546 list_to_add = (cu->list_in_scope == &file_symbols
18547 ? &global_symbols : cu->list_in_scope);
18548 }
18549 else
18550 list_to_add = cu->list_in_scope;
18551 }
18552 else
18553 {
18554 /* We do not know the address of this symbol.
18555 If it is an external symbol and we have type information
18556 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18557 The address of the variable will then be determined from
18558 the minimal symbol table whenever the variable is
18559 referenced. */
18560 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18561
18562 /* Fortran explicitly imports any global symbols to the local
18563 scope by DW_TAG_common_block. */
18564 if (cu->language == language_fortran && die->parent
18565 && die->parent->tag == DW_TAG_common_block)
18566 {
18567 /* SYMBOL_CLASS doesn't matter here because
18568 read_common_block is going to reset it. */
18569 if (!suppress_add)
18570 list_to_add = cu->list_in_scope;
18571 }
18572 else if (attr2 && (DW_UNSND (attr2) != 0)
18573 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18574 {
18575 /* A variable with DW_AT_external is never static, but it
18576 may be block-scoped. */
18577 list_to_add = (cu->list_in_scope == &file_symbols
18578 ? &global_symbols : cu->list_in_scope);
18579
18580 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18581 }
18582 else if (!die_is_declaration (die, cu))
18583 {
18584 /* Use the default LOC_OPTIMIZED_OUT class. */
18585 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18586 if (!suppress_add)
18587 list_to_add = cu->list_in_scope;
18588 }
18589 }
18590 break;
18591 case DW_TAG_formal_parameter:
18592 /* If we are inside a function, mark this as an argument. If
18593 not, we might be looking at an argument to an inlined function
18594 when we do not have enough information to show inlined frames;
18595 pretend it's a local variable in that case so that the user can
18596 still see it. */
18597 if (context_stack_depth > 0
18598 && context_stack[context_stack_depth - 1].name != NULL)
18599 SYMBOL_IS_ARGUMENT (sym) = 1;
18600 attr = dwarf2_attr (die, DW_AT_location, cu);
18601 if (attr)
18602 {
18603 var_decode_location (attr, sym, cu);
18604 }
18605 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18606 if (attr)
18607 {
18608 dwarf2_const_value (attr, sym, cu);
18609 }
18610
18611 list_to_add = cu->list_in_scope;
18612 break;
18613 case DW_TAG_unspecified_parameters:
18614 /* From varargs functions; gdb doesn't seem to have any
18615 interest in this information, so just ignore it for now.
18616 (FIXME?) */
18617 break;
18618 case DW_TAG_template_type_param:
18619 suppress_add = 1;
18620 /* Fall through. */
18621 case DW_TAG_class_type:
18622 case DW_TAG_interface_type:
18623 case DW_TAG_structure_type:
18624 case DW_TAG_union_type:
18625 case DW_TAG_set_type:
18626 case DW_TAG_enumeration_type:
18627 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18628 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18629
18630 {
18631 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18632 really ever be static objects: otherwise, if you try
18633 to, say, break of a class's method and you're in a file
18634 which doesn't mention that class, it won't work unless
18635 the check for all static symbols in lookup_symbol_aux
18636 saves you. See the OtherFileClass tests in
18637 gdb.c++/namespace.exp. */
18638
18639 if (!suppress_add)
18640 {
18641 list_to_add = (cu->list_in_scope == &file_symbols
18642 && cu->language == language_cplus
18643 ? &global_symbols : cu->list_in_scope);
18644
18645 /* The semantics of C++ state that "struct foo {
18646 ... }" also defines a typedef for "foo". */
18647 if (cu->language == language_cplus
18648 || cu->language == language_ada
18649 || cu->language == language_d
18650 || cu->language == language_rust)
18651 {
18652 /* The symbol's name is already allocated along
18653 with this objfile, so we don't need to
18654 duplicate it for the type. */
18655 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18656 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18657 }
18658 }
18659 }
18660 break;
18661 case DW_TAG_typedef:
18662 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18663 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18664 list_to_add = cu->list_in_scope;
18665 break;
18666 case DW_TAG_base_type:
18667 case DW_TAG_subrange_type:
18668 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18669 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18670 list_to_add = cu->list_in_scope;
18671 break;
18672 case DW_TAG_enumerator:
18673 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18674 if (attr)
18675 {
18676 dwarf2_const_value (attr, sym, cu);
18677 }
18678 {
18679 /* NOTE: carlton/2003-11-10: See comment above in the
18680 DW_TAG_class_type, etc. block. */
18681
18682 list_to_add = (cu->list_in_scope == &file_symbols
18683 && cu->language == language_cplus
18684 ? &global_symbols : cu->list_in_scope);
18685 }
18686 break;
18687 case DW_TAG_imported_declaration:
18688 case DW_TAG_namespace:
18689 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18690 list_to_add = &global_symbols;
18691 break;
18692 case DW_TAG_module:
18693 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18694 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18695 list_to_add = &global_symbols;
18696 break;
18697 case DW_TAG_common_block:
18698 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18699 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18700 add_symbol_to_list (sym, cu->list_in_scope);
18701 break;
18702 default:
18703 /* Not a tag we recognize. Hopefully we aren't processing
18704 trash data, but since we must specifically ignore things
18705 we don't recognize, there is nothing else we should do at
18706 this point. */
18707 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18708 dwarf_tag_name (die->tag));
18709 break;
18710 }
18711
18712 if (suppress_add)
18713 {
18714 sym->hash_next = objfile->template_symbols;
18715 objfile->template_symbols = sym;
18716 list_to_add = NULL;
18717 }
18718
18719 if (list_to_add != NULL)
18720 add_symbol_to_list (sym, list_to_add);
18721
18722 /* For the benefit of old versions of GCC, check for anonymous
18723 namespaces based on the demangled name. */
18724 if (!cu->processing_has_namespace_info
18725 && cu->language == language_cplus)
18726 cp_scan_for_anonymous_namespaces (sym, objfile);
18727 }
18728 return (sym);
18729 }
18730
18731 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18732
18733 static struct symbol *
18734 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18735 {
18736 return new_symbol_full (die, type, cu, NULL);
18737 }
18738
18739 /* Given an attr with a DW_FORM_dataN value in host byte order,
18740 zero-extend it as appropriate for the symbol's type. The DWARF
18741 standard (v4) is not entirely clear about the meaning of using
18742 DW_FORM_dataN for a constant with a signed type, where the type is
18743 wider than the data. The conclusion of a discussion on the DWARF
18744 list was that this is unspecified. We choose to always zero-extend
18745 because that is the interpretation long in use by GCC. */
18746
18747 static gdb_byte *
18748 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18749 struct dwarf2_cu *cu, LONGEST *value, int bits)
18750 {
18751 struct objfile *objfile = cu->objfile;
18752 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18753 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18754 LONGEST l = DW_UNSND (attr);
18755
18756 if (bits < sizeof (*value) * 8)
18757 {
18758 l &= ((LONGEST) 1 << bits) - 1;
18759 *value = l;
18760 }
18761 else if (bits == sizeof (*value) * 8)
18762 *value = l;
18763 else
18764 {
18765 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18766 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18767 return bytes;
18768 }
18769
18770 return NULL;
18771 }
18772
18773 /* Read a constant value from an attribute. Either set *VALUE, or if
18774 the value does not fit in *VALUE, set *BYTES - either already
18775 allocated on the objfile obstack, or newly allocated on OBSTACK,
18776 or, set *BATON, if we translated the constant to a location
18777 expression. */
18778
18779 static void
18780 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18781 const char *name, struct obstack *obstack,
18782 struct dwarf2_cu *cu,
18783 LONGEST *value, const gdb_byte **bytes,
18784 struct dwarf2_locexpr_baton **baton)
18785 {
18786 struct objfile *objfile = cu->objfile;
18787 struct comp_unit_head *cu_header = &cu->header;
18788 struct dwarf_block *blk;
18789 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18790 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18791
18792 *value = 0;
18793 *bytes = NULL;
18794 *baton = NULL;
18795
18796 switch (attr->form)
18797 {
18798 case DW_FORM_addr:
18799 case DW_FORM_GNU_addr_index:
18800 {
18801 gdb_byte *data;
18802
18803 if (TYPE_LENGTH (type) != cu_header->addr_size)
18804 dwarf2_const_value_length_mismatch_complaint (name,
18805 cu_header->addr_size,
18806 TYPE_LENGTH (type));
18807 /* Symbols of this form are reasonably rare, so we just
18808 piggyback on the existing location code rather than writing
18809 a new implementation of symbol_computed_ops. */
18810 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18811 (*baton)->per_cu = cu->per_cu;
18812 gdb_assert ((*baton)->per_cu);
18813
18814 (*baton)->size = 2 + cu_header->addr_size;
18815 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18816 (*baton)->data = data;
18817
18818 data[0] = DW_OP_addr;
18819 store_unsigned_integer (&data[1], cu_header->addr_size,
18820 byte_order, DW_ADDR (attr));
18821 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18822 }
18823 break;
18824 case DW_FORM_string:
18825 case DW_FORM_strp:
18826 case DW_FORM_GNU_str_index:
18827 case DW_FORM_GNU_strp_alt:
18828 /* DW_STRING is already allocated on the objfile obstack, point
18829 directly to it. */
18830 *bytes = (const gdb_byte *) DW_STRING (attr);
18831 break;
18832 case DW_FORM_block1:
18833 case DW_FORM_block2:
18834 case DW_FORM_block4:
18835 case DW_FORM_block:
18836 case DW_FORM_exprloc:
18837 blk = DW_BLOCK (attr);
18838 if (TYPE_LENGTH (type) != blk->size)
18839 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18840 TYPE_LENGTH (type));
18841 *bytes = blk->data;
18842 break;
18843
18844 /* The DW_AT_const_value attributes are supposed to carry the
18845 symbol's value "represented as it would be on the target
18846 architecture." By the time we get here, it's already been
18847 converted to host endianness, so we just need to sign- or
18848 zero-extend it as appropriate. */
18849 case DW_FORM_data1:
18850 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18851 break;
18852 case DW_FORM_data2:
18853 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18854 break;
18855 case DW_FORM_data4:
18856 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18857 break;
18858 case DW_FORM_data8:
18859 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18860 break;
18861
18862 case DW_FORM_sdata:
18863 *value = DW_SND (attr);
18864 break;
18865
18866 case DW_FORM_udata:
18867 *value = DW_UNSND (attr);
18868 break;
18869
18870 default:
18871 complaint (&symfile_complaints,
18872 _("unsupported const value attribute form: '%s'"),
18873 dwarf_form_name (attr->form));
18874 *value = 0;
18875 break;
18876 }
18877 }
18878
18879
18880 /* Copy constant value from an attribute to a symbol. */
18881
18882 static void
18883 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18884 struct dwarf2_cu *cu)
18885 {
18886 struct objfile *objfile = cu->objfile;
18887 LONGEST value;
18888 const gdb_byte *bytes;
18889 struct dwarf2_locexpr_baton *baton;
18890
18891 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18892 SYMBOL_PRINT_NAME (sym),
18893 &objfile->objfile_obstack, cu,
18894 &value, &bytes, &baton);
18895
18896 if (baton != NULL)
18897 {
18898 SYMBOL_LOCATION_BATON (sym) = baton;
18899 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18900 }
18901 else if (bytes != NULL)
18902 {
18903 SYMBOL_VALUE_BYTES (sym) = bytes;
18904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18905 }
18906 else
18907 {
18908 SYMBOL_VALUE (sym) = value;
18909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18910 }
18911 }
18912
18913 /* Return the type of the die in question using its DW_AT_type attribute. */
18914
18915 static struct type *
18916 die_type (struct die_info *die, struct dwarf2_cu *cu)
18917 {
18918 struct attribute *type_attr;
18919
18920 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18921 if (!type_attr)
18922 {
18923 /* A missing DW_AT_type represents a void type. */
18924 return objfile_type (cu->objfile)->builtin_void;
18925 }
18926
18927 return lookup_die_type (die, type_attr, cu);
18928 }
18929
18930 /* True iff CU's producer generates GNAT Ada auxiliary information
18931 that allows to find parallel types through that information instead
18932 of having to do expensive parallel lookups by type name. */
18933
18934 static int
18935 need_gnat_info (struct dwarf2_cu *cu)
18936 {
18937 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18938 of GNAT produces this auxiliary information, without any indication
18939 that it is produced. Part of enhancing the FSF version of GNAT
18940 to produce that information will be to put in place an indicator
18941 that we can use in order to determine whether the descriptive type
18942 info is available or not. One suggestion that has been made is
18943 to use a new attribute, attached to the CU die. For now, assume
18944 that the descriptive type info is not available. */
18945 return 0;
18946 }
18947
18948 /* Return the auxiliary type of the die in question using its
18949 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18950 attribute is not present. */
18951
18952 static struct type *
18953 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18954 {
18955 struct attribute *type_attr;
18956
18957 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18958 if (!type_attr)
18959 return NULL;
18960
18961 return lookup_die_type (die, type_attr, cu);
18962 }
18963
18964 /* If DIE has a descriptive_type attribute, then set the TYPE's
18965 descriptive type accordingly. */
18966
18967 static void
18968 set_descriptive_type (struct type *type, struct die_info *die,
18969 struct dwarf2_cu *cu)
18970 {
18971 struct type *descriptive_type = die_descriptive_type (die, cu);
18972
18973 if (descriptive_type)
18974 {
18975 ALLOCATE_GNAT_AUX_TYPE (type);
18976 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18977 }
18978 }
18979
18980 /* Return the containing type of the die in question using its
18981 DW_AT_containing_type attribute. */
18982
18983 static struct type *
18984 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18985 {
18986 struct attribute *type_attr;
18987
18988 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18989 if (!type_attr)
18990 error (_("Dwarf Error: Problem turning containing type into gdb type "
18991 "[in module %s]"), objfile_name (cu->objfile));
18992
18993 return lookup_die_type (die, type_attr, cu);
18994 }
18995
18996 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18997
18998 static struct type *
18999 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19000 {
19001 struct objfile *objfile = dwarf2_per_objfile->objfile;
19002 char *message, *saved;
19003
19004 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19005 objfile_name (objfile),
19006 cu->header.offset.sect_off,
19007 die->offset.sect_off);
19008 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19009 message, strlen (message));
19010 xfree (message);
19011
19012 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19013 }
19014
19015 /* Look up the type of DIE in CU using its type attribute ATTR.
19016 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19017 DW_AT_containing_type.
19018 If there is no type substitute an error marker. */
19019
19020 static struct type *
19021 lookup_die_type (struct die_info *die, const struct attribute *attr,
19022 struct dwarf2_cu *cu)
19023 {
19024 struct objfile *objfile = cu->objfile;
19025 struct type *this_type;
19026
19027 gdb_assert (attr->name == DW_AT_type
19028 || attr->name == DW_AT_GNAT_descriptive_type
19029 || attr->name == DW_AT_containing_type);
19030
19031 /* First see if we have it cached. */
19032
19033 if (attr->form == DW_FORM_GNU_ref_alt)
19034 {
19035 struct dwarf2_per_cu_data *per_cu;
19036 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19037
19038 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19039 this_type = get_die_type_at_offset (offset, per_cu);
19040 }
19041 else if (attr_form_is_ref (attr))
19042 {
19043 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19044
19045 this_type = get_die_type_at_offset (offset, cu->per_cu);
19046 }
19047 else if (attr->form == DW_FORM_ref_sig8)
19048 {
19049 ULONGEST signature = DW_SIGNATURE (attr);
19050
19051 return get_signatured_type (die, signature, cu);
19052 }
19053 else
19054 {
19055 complaint (&symfile_complaints,
19056 _("Dwarf Error: Bad type attribute %s in DIE"
19057 " at 0x%x [in module %s]"),
19058 dwarf_attr_name (attr->name), die->offset.sect_off,
19059 objfile_name (objfile));
19060 return build_error_marker_type (cu, die);
19061 }
19062
19063 /* If not cached we need to read it in. */
19064
19065 if (this_type == NULL)
19066 {
19067 struct die_info *type_die = NULL;
19068 struct dwarf2_cu *type_cu = cu;
19069
19070 if (attr_form_is_ref (attr))
19071 type_die = follow_die_ref (die, attr, &type_cu);
19072 if (type_die == NULL)
19073 return build_error_marker_type (cu, die);
19074 /* If we find the type now, it's probably because the type came
19075 from an inter-CU reference and the type's CU got expanded before
19076 ours. */
19077 this_type = read_type_die (type_die, type_cu);
19078 }
19079
19080 /* If we still don't have a type use an error marker. */
19081
19082 if (this_type == NULL)
19083 return build_error_marker_type (cu, die);
19084
19085 return this_type;
19086 }
19087
19088 /* Return the type in DIE, CU.
19089 Returns NULL for invalid types.
19090
19091 This first does a lookup in die_type_hash,
19092 and only reads the die in if necessary.
19093
19094 NOTE: This can be called when reading in partial or full symbols. */
19095
19096 static struct type *
19097 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19098 {
19099 struct type *this_type;
19100
19101 this_type = get_die_type (die, cu);
19102 if (this_type)
19103 return this_type;
19104
19105 return read_type_die_1 (die, cu);
19106 }
19107
19108 /* Read the type in DIE, CU.
19109 Returns NULL for invalid types. */
19110
19111 static struct type *
19112 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19113 {
19114 struct type *this_type = NULL;
19115
19116 switch (die->tag)
19117 {
19118 case DW_TAG_class_type:
19119 case DW_TAG_interface_type:
19120 case DW_TAG_structure_type:
19121 case DW_TAG_union_type:
19122 this_type = read_structure_type (die, cu);
19123 break;
19124 case DW_TAG_enumeration_type:
19125 this_type = read_enumeration_type (die, cu);
19126 break;
19127 case DW_TAG_subprogram:
19128 case DW_TAG_subroutine_type:
19129 case DW_TAG_inlined_subroutine:
19130 this_type = read_subroutine_type (die, cu);
19131 break;
19132 case DW_TAG_array_type:
19133 this_type = read_array_type (die, cu);
19134 break;
19135 case DW_TAG_set_type:
19136 this_type = read_set_type (die, cu);
19137 break;
19138 case DW_TAG_pointer_type:
19139 this_type = read_tag_pointer_type (die, cu);
19140 break;
19141 case DW_TAG_ptr_to_member_type:
19142 this_type = read_tag_ptr_to_member_type (die, cu);
19143 break;
19144 case DW_TAG_reference_type:
19145 this_type = read_tag_reference_type (die, cu);
19146 break;
19147 case DW_TAG_const_type:
19148 this_type = read_tag_const_type (die, cu);
19149 break;
19150 case DW_TAG_volatile_type:
19151 this_type = read_tag_volatile_type (die, cu);
19152 break;
19153 case DW_TAG_restrict_type:
19154 this_type = read_tag_restrict_type (die, cu);
19155 break;
19156 case DW_TAG_string_type:
19157 this_type = read_tag_string_type (die, cu);
19158 break;
19159 case DW_TAG_typedef:
19160 this_type = read_typedef (die, cu);
19161 break;
19162 case DW_TAG_subrange_type:
19163 this_type = read_subrange_type (die, cu);
19164 break;
19165 case DW_TAG_base_type:
19166 this_type = read_base_type (die, cu);
19167 break;
19168 case DW_TAG_unspecified_type:
19169 this_type = read_unspecified_type (die, cu);
19170 break;
19171 case DW_TAG_namespace:
19172 this_type = read_namespace_type (die, cu);
19173 break;
19174 case DW_TAG_module:
19175 this_type = read_module_type (die, cu);
19176 break;
19177 case DW_TAG_atomic_type:
19178 this_type = read_tag_atomic_type (die, cu);
19179 break;
19180 default:
19181 complaint (&symfile_complaints,
19182 _("unexpected tag in read_type_die: '%s'"),
19183 dwarf_tag_name (die->tag));
19184 break;
19185 }
19186
19187 return this_type;
19188 }
19189
19190 /* See if we can figure out if the class lives in a namespace. We do
19191 this by looking for a member function; its demangled name will
19192 contain namespace info, if there is any.
19193 Return the computed name or NULL.
19194 Space for the result is allocated on the objfile's obstack.
19195 This is the full-die version of guess_partial_die_structure_name.
19196 In this case we know DIE has no useful parent. */
19197
19198 static char *
19199 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19200 {
19201 struct die_info *spec_die;
19202 struct dwarf2_cu *spec_cu;
19203 struct die_info *child;
19204
19205 spec_cu = cu;
19206 spec_die = die_specification (die, &spec_cu);
19207 if (spec_die != NULL)
19208 {
19209 die = spec_die;
19210 cu = spec_cu;
19211 }
19212
19213 for (child = die->child;
19214 child != NULL;
19215 child = child->sibling)
19216 {
19217 if (child->tag == DW_TAG_subprogram)
19218 {
19219 const char *linkage_name;
19220
19221 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19222 if (linkage_name == NULL)
19223 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19224 cu);
19225 if (linkage_name != NULL)
19226 {
19227 char *actual_name
19228 = language_class_name_from_physname (cu->language_defn,
19229 linkage_name);
19230 char *name = NULL;
19231
19232 if (actual_name != NULL)
19233 {
19234 const char *die_name = dwarf2_name (die, cu);
19235
19236 if (die_name != NULL
19237 && strcmp (die_name, actual_name) != 0)
19238 {
19239 /* Strip off the class name from the full name.
19240 We want the prefix. */
19241 int die_name_len = strlen (die_name);
19242 int actual_name_len = strlen (actual_name);
19243
19244 /* Test for '::' as a sanity check. */
19245 if (actual_name_len > die_name_len + 2
19246 && actual_name[actual_name_len
19247 - die_name_len - 1] == ':')
19248 name = (char *) obstack_copy0 (
19249 &cu->objfile->per_bfd->storage_obstack,
19250 actual_name, actual_name_len - die_name_len - 2);
19251 }
19252 }
19253 xfree (actual_name);
19254 return name;
19255 }
19256 }
19257 }
19258
19259 return NULL;
19260 }
19261
19262 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19263 prefix part in such case. See
19264 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19265
19266 static char *
19267 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19268 {
19269 struct attribute *attr;
19270 const char *base;
19271
19272 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19273 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19274 return NULL;
19275
19276 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19277 return NULL;
19278
19279 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19280 if (attr == NULL)
19281 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19282 if (attr == NULL || DW_STRING (attr) == NULL)
19283 return NULL;
19284
19285 /* dwarf2_name had to be already called. */
19286 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19287
19288 /* Strip the base name, keep any leading namespaces/classes. */
19289 base = strrchr (DW_STRING (attr), ':');
19290 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19291 return "";
19292
19293 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19294 DW_STRING (attr),
19295 &base[-1] - DW_STRING (attr));
19296 }
19297
19298 /* Return the name of the namespace/class that DIE is defined within,
19299 or "" if we can't tell. The caller should not xfree the result.
19300
19301 For example, if we're within the method foo() in the following
19302 code:
19303
19304 namespace N {
19305 class C {
19306 void foo () {
19307 }
19308 };
19309 }
19310
19311 then determine_prefix on foo's die will return "N::C". */
19312
19313 static const char *
19314 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19315 {
19316 struct die_info *parent, *spec_die;
19317 struct dwarf2_cu *spec_cu;
19318 struct type *parent_type;
19319 char *retval;
19320
19321 if (cu->language != language_cplus
19322 && cu->language != language_fortran && cu->language != language_d
19323 && cu->language != language_rust)
19324 return "";
19325
19326 retval = anonymous_struct_prefix (die, cu);
19327 if (retval)
19328 return retval;
19329
19330 /* We have to be careful in the presence of DW_AT_specification.
19331 For example, with GCC 3.4, given the code
19332
19333 namespace N {
19334 void foo() {
19335 // Definition of N::foo.
19336 }
19337 }
19338
19339 then we'll have a tree of DIEs like this:
19340
19341 1: DW_TAG_compile_unit
19342 2: DW_TAG_namespace // N
19343 3: DW_TAG_subprogram // declaration of N::foo
19344 4: DW_TAG_subprogram // definition of N::foo
19345 DW_AT_specification // refers to die #3
19346
19347 Thus, when processing die #4, we have to pretend that we're in
19348 the context of its DW_AT_specification, namely the contex of die
19349 #3. */
19350 spec_cu = cu;
19351 spec_die = die_specification (die, &spec_cu);
19352 if (spec_die == NULL)
19353 parent = die->parent;
19354 else
19355 {
19356 parent = spec_die->parent;
19357 cu = spec_cu;
19358 }
19359
19360 if (parent == NULL)
19361 return "";
19362 else if (parent->building_fullname)
19363 {
19364 const char *name;
19365 const char *parent_name;
19366
19367 /* It has been seen on RealView 2.2 built binaries,
19368 DW_TAG_template_type_param types actually _defined_ as
19369 children of the parent class:
19370
19371 enum E {};
19372 template class <class Enum> Class{};
19373 Class<enum E> class_e;
19374
19375 1: DW_TAG_class_type (Class)
19376 2: DW_TAG_enumeration_type (E)
19377 3: DW_TAG_enumerator (enum1:0)
19378 3: DW_TAG_enumerator (enum2:1)
19379 ...
19380 2: DW_TAG_template_type_param
19381 DW_AT_type DW_FORM_ref_udata (E)
19382
19383 Besides being broken debug info, it can put GDB into an
19384 infinite loop. Consider:
19385
19386 When we're building the full name for Class<E>, we'll start
19387 at Class, and go look over its template type parameters,
19388 finding E. We'll then try to build the full name of E, and
19389 reach here. We're now trying to build the full name of E,
19390 and look over the parent DIE for containing scope. In the
19391 broken case, if we followed the parent DIE of E, we'd again
19392 find Class, and once again go look at its template type
19393 arguments, etc., etc. Simply don't consider such parent die
19394 as source-level parent of this die (it can't be, the language
19395 doesn't allow it), and break the loop here. */
19396 name = dwarf2_name (die, cu);
19397 parent_name = dwarf2_name (parent, cu);
19398 complaint (&symfile_complaints,
19399 _("template param type '%s' defined within parent '%s'"),
19400 name ? name : "<unknown>",
19401 parent_name ? parent_name : "<unknown>");
19402 return "";
19403 }
19404 else
19405 switch (parent->tag)
19406 {
19407 case DW_TAG_namespace:
19408 parent_type = read_type_die (parent, cu);
19409 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19410 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19411 Work around this problem here. */
19412 if (cu->language == language_cplus
19413 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19414 return "";
19415 /* We give a name to even anonymous namespaces. */
19416 return TYPE_TAG_NAME (parent_type);
19417 case DW_TAG_class_type:
19418 case DW_TAG_interface_type:
19419 case DW_TAG_structure_type:
19420 case DW_TAG_union_type:
19421 case DW_TAG_module:
19422 parent_type = read_type_die (parent, cu);
19423 if (TYPE_TAG_NAME (parent_type) != NULL)
19424 return TYPE_TAG_NAME (parent_type);
19425 else
19426 /* An anonymous structure is only allowed non-static data
19427 members; no typedefs, no member functions, et cetera.
19428 So it does not need a prefix. */
19429 return "";
19430 case DW_TAG_compile_unit:
19431 case DW_TAG_partial_unit:
19432 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19433 if (cu->language == language_cplus
19434 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19435 && die->child != NULL
19436 && (die->tag == DW_TAG_class_type
19437 || die->tag == DW_TAG_structure_type
19438 || die->tag == DW_TAG_union_type))
19439 {
19440 char *name = guess_full_die_structure_name (die, cu);
19441 if (name != NULL)
19442 return name;
19443 }
19444 return "";
19445 case DW_TAG_enumeration_type:
19446 parent_type = read_type_die (parent, cu);
19447 if (TYPE_DECLARED_CLASS (parent_type))
19448 {
19449 if (TYPE_TAG_NAME (parent_type) != NULL)
19450 return TYPE_TAG_NAME (parent_type);
19451 return "";
19452 }
19453 /* Fall through. */
19454 default:
19455 return determine_prefix (parent, cu);
19456 }
19457 }
19458
19459 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19460 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19461 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19462 an obconcat, otherwise allocate storage for the result. The CU argument is
19463 used to determine the language and hence, the appropriate separator. */
19464
19465 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19466
19467 static char *
19468 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19469 int physname, struct dwarf2_cu *cu)
19470 {
19471 const char *lead = "";
19472 const char *sep;
19473
19474 if (suffix == NULL || suffix[0] == '\0'
19475 || prefix == NULL || prefix[0] == '\0')
19476 sep = "";
19477 else if (cu->language == language_d)
19478 {
19479 /* For D, the 'main' function could be defined in any module, but it
19480 should never be prefixed. */
19481 if (strcmp (suffix, "D main") == 0)
19482 {
19483 prefix = "";
19484 sep = "";
19485 }
19486 else
19487 sep = ".";
19488 }
19489 else if (cu->language == language_fortran && physname)
19490 {
19491 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19492 DW_AT_MIPS_linkage_name is preferred and used instead. */
19493
19494 lead = "__";
19495 sep = "_MOD_";
19496 }
19497 else
19498 sep = "::";
19499
19500 if (prefix == NULL)
19501 prefix = "";
19502 if (suffix == NULL)
19503 suffix = "";
19504
19505 if (obs == NULL)
19506 {
19507 char *retval
19508 = ((char *)
19509 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19510
19511 strcpy (retval, lead);
19512 strcat (retval, prefix);
19513 strcat (retval, sep);
19514 strcat (retval, suffix);
19515 return retval;
19516 }
19517 else
19518 {
19519 /* We have an obstack. */
19520 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19521 }
19522 }
19523
19524 /* Return sibling of die, NULL if no sibling. */
19525
19526 static struct die_info *
19527 sibling_die (struct die_info *die)
19528 {
19529 return die->sibling;
19530 }
19531
19532 /* Get name of a die, return NULL if not found. */
19533
19534 static const char *
19535 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19536 struct obstack *obstack)
19537 {
19538 if (name && cu->language == language_cplus)
19539 {
19540 std::string canon_name = cp_canonicalize_string (name);
19541
19542 if (!canon_name.empty ())
19543 {
19544 if (canon_name != name)
19545 name = (const char *) obstack_copy0 (obstack,
19546 canon_name.c_str (),
19547 canon_name.length ());
19548 }
19549 }
19550
19551 return name;
19552 }
19553
19554 /* Get name of a die, return NULL if not found.
19555 Anonymous namespaces are converted to their magic string. */
19556
19557 static const char *
19558 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19559 {
19560 struct attribute *attr;
19561
19562 attr = dwarf2_attr (die, DW_AT_name, cu);
19563 if ((!attr || !DW_STRING (attr))
19564 && die->tag != DW_TAG_namespace
19565 && die->tag != DW_TAG_class_type
19566 && die->tag != DW_TAG_interface_type
19567 && die->tag != DW_TAG_structure_type
19568 && die->tag != DW_TAG_union_type)
19569 return NULL;
19570
19571 switch (die->tag)
19572 {
19573 case DW_TAG_compile_unit:
19574 case DW_TAG_partial_unit:
19575 /* Compilation units have a DW_AT_name that is a filename, not
19576 a source language identifier. */
19577 case DW_TAG_enumeration_type:
19578 case DW_TAG_enumerator:
19579 /* These tags always have simple identifiers already; no need
19580 to canonicalize them. */
19581 return DW_STRING (attr);
19582
19583 case DW_TAG_namespace:
19584 if (attr != NULL && DW_STRING (attr) != NULL)
19585 return DW_STRING (attr);
19586 return CP_ANONYMOUS_NAMESPACE_STR;
19587
19588 case DW_TAG_class_type:
19589 case DW_TAG_interface_type:
19590 case DW_TAG_structure_type:
19591 case DW_TAG_union_type:
19592 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19593 structures or unions. These were of the form "._%d" in GCC 4.1,
19594 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19595 and GCC 4.4. We work around this problem by ignoring these. */
19596 if (attr && DW_STRING (attr)
19597 && (startswith (DW_STRING (attr), "._")
19598 || startswith (DW_STRING (attr), "<anonymous")))
19599 return NULL;
19600
19601 /* GCC might emit a nameless typedef that has a linkage name. See
19602 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19603 if (!attr || DW_STRING (attr) == NULL)
19604 {
19605 char *demangled = NULL;
19606
19607 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19608 if (attr == NULL)
19609 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19610
19611 if (attr == NULL || DW_STRING (attr) == NULL)
19612 return NULL;
19613
19614 /* Avoid demangling DW_STRING (attr) the second time on a second
19615 call for the same DIE. */
19616 if (!DW_STRING_IS_CANONICAL (attr))
19617 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19618
19619 if (demangled)
19620 {
19621 const char *base;
19622
19623 /* FIXME: we already did this for the partial symbol... */
19624 DW_STRING (attr)
19625 = ((const char *)
19626 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19627 demangled, strlen (demangled)));
19628 DW_STRING_IS_CANONICAL (attr) = 1;
19629 xfree (demangled);
19630
19631 /* Strip any leading namespaces/classes, keep only the base name.
19632 DW_AT_name for named DIEs does not contain the prefixes. */
19633 base = strrchr (DW_STRING (attr), ':');
19634 if (base && base > DW_STRING (attr) && base[-1] == ':')
19635 return &base[1];
19636 else
19637 return DW_STRING (attr);
19638 }
19639 }
19640 break;
19641
19642 default:
19643 break;
19644 }
19645
19646 if (!DW_STRING_IS_CANONICAL (attr))
19647 {
19648 DW_STRING (attr)
19649 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19650 &cu->objfile->per_bfd->storage_obstack);
19651 DW_STRING_IS_CANONICAL (attr) = 1;
19652 }
19653 return DW_STRING (attr);
19654 }
19655
19656 /* Return the die that this die in an extension of, or NULL if there
19657 is none. *EXT_CU is the CU containing DIE on input, and the CU
19658 containing the return value on output. */
19659
19660 static struct die_info *
19661 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19662 {
19663 struct attribute *attr;
19664
19665 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19666 if (attr == NULL)
19667 return NULL;
19668
19669 return follow_die_ref (die, attr, ext_cu);
19670 }
19671
19672 /* Convert a DIE tag into its string name. */
19673
19674 static const char *
19675 dwarf_tag_name (unsigned tag)
19676 {
19677 const char *name = get_DW_TAG_name (tag);
19678
19679 if (name == NULL)
19680 return "DW_TAG_<unknown>";
19681
19682 return name;
19683 }
19684
19685 /* Convert a DWARF attribute code into its string name. */
19686
19687 static const char *
19688 dwarf_attr_name (unsigned attr)
19689 {
19690 const char *name;
19691
19692 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19693 if (attr == DW_AT_MIPS_fde)
19694 return "DW_AT_MIPS_fde";
19695 #else
19696 if (attr == DW_AT_HP_block_index)
19697 return "DW_AT_HP_block_index";
19698 #endif
19699
19700 name = get_DW_AT_name (attr);
19701
19702 if (name == NULL)
19703 return "DW_AT_<unknown>";
19704
19705 return name;
19706 }
19707
19708 /* Convert a DWARF value form code into its string name. */
19709
19710 static const char *
19711 dwarf_form_name (unsigned form)
19712 {
19713 const char *name = get_DW_FORM_name (form);
19714
19715 if (name == NULL)
19716 return "DW_FORM_<unknown>";
19717
19718 return name;
19719 }
19720
19721 static char *
19722 dwarf_bool_name (unsigned mybool)
19723 {
19724 if (mybool)
19725 return "TRUE";
19726 else
19727 return "FALSE";
19728 }
19729
19730 /* Convert a DWARF type code into its string name. */
19731
19732 static const char *
19733 dwarf_type_encoding_name (unsigned enc)
19734 {
19735 const char *name = get_DW_ATE_name (enc);
19736
19737 if (name == NULL)
19738 return "DW_ATE_<unknown>";
19739
19740 return name;
19741 }
19742
19743 static void
19744 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19745 {
19746 unsigned int i;
19747
19748 print_spaces (indent, f);
19749 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19750 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19751
19752 if (die->parent != NULL)
19753 {
19754 print_spaces (indent, f);
19755 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19756 die->parent->offset.sect_off);
19757 }
19758
19759 print_spaces (indent, f);
19760 fprintf_unfiltered (f, " has children: %s\n",
19761 dwarf_bool_name (die->child != NULL));
19762
19763 print_spaces (indent, f);
19764 fprintf_unfiltered (f, " attributes:\n");
19765
19766 for (i = 0; i < die->num_attrs; ++i)
19767 {
19768 print_spaces (indent, f);
19769 fprintf_unfiltered (f, " %s (%s) ",
19770 dwarf_attr_name (die->attrs[i].name),
19771 dwarf_form_name (die->attrs[i].form));
19772
19773 switch (die->attrs[i].form)
19774 {
19775 case DW_FORM_addr:
19776 case DW_FORM_GNU_addr_index:
19777 fprintf_unfiltered (f, "address: ");
19778 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19779 break;
19780 case DW_FORM_block2:
19781 case DW_FORM_block4:
19782 case DW_FORM_block:
19783 case DW_FORM_block1:
19784 fprintf_unfiltered (f, "block: size %s",
19785 pulongest (DW_BLOCK (&die->attrs[i])->size));
19786 break;
19787 case DW_FORM_exprloc:
19788 fprintf_unfiltered (f, "expression: size %s",
19789 pulongest (DW_BLOCK (&die->attrs[i])->size));
19790 break;
19791 case DW_FORM_ref_addr:
19792 fprintf_unfiltered (f, "ref address: ");
19793 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19794 break;
19795 case DW_FORM_GNU_ref_alt:
19796 fprintf_unfiltered (f, "alt ref address: ");
19797 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19798 break;
19799 case DW_FORM_ref1:
19800 case DW_FORM_ref2:
19801 case DW_FORM_ref4:
19802 case DW_FORM_ref8:
19803 case DW_FORM_ref_udata:
19804 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19805 (long) (DW_UNSND (&die->attrs[i])));
19806 break;
19807 case DW_FORM_data1:
19808 case DW_FORM_data2:
19809 case DW_FORM_data4:
19810 case DW_FORM_data8:
19811 case DW_FORM_udata:
19812 case DW_FORM_sdata:
19813 fprintf_unfiltered (f, "constant: %s",
19814 pulongest (DW_UNSND (&die->attrs[i])));
19815 break;
19816 case DW_FORM_sec_offset:
19817 fprintf_unfiltered (f, "section offset: %s",
19818 pulongest (DW_UNSND (&die->attrs[i])));
19819 break;
19820 case DW_FORM_ref_sig8:
19821 fprintf_unfiltered (f, "signature: %s",
19822 hex_string (DW_SIGNATURE (&die->attrs[i])));
19823 break;
19824 case DW_FORM_string:
19825 case DW_FORM_strp:
19826 case DW_FORM_GNU_str_index:
19827 case DW_FORM_GNU_strp_alt:
19828 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19829 DW_STRING (&die->attrs[i])
19830 ? DW_STRING (&die->attrs[i]) : "",
19831 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19832 break;
19833 case DW_FORM_flag:
19834 if (DW_UNSND (&die->attrs[i]))
19835 fprintf_unfiltered (f, "flag: TRUE");
19836 else
19837 fprintf_unfiltered (f, "flag: FALSE");
19838 break;
19839 case DW_FORM_flag_present:
19840 fprintf_unfiltered (f, "flag: TRUE");
19841 break;
19842 case DW_FORM_indirect:
19843 /* The reader will have reduced the indirect form to
19844 the "base form" so this form should not occur. */
19845 fprintf_unfiltered (f,
19846 "unexpected attribute form: DW_FORM_indirect");
19847 break;
19848 default:
19849 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19850 die->attrs[i].form);
19851 break;
19852 }
19853 fprintf_unfiltered (f, "\n");
19854 }
19855 }
19856
19857 static void
19858 dump_die_for_error (struct die_info *die)
19859 {
19860 dump_die_shallow (gdb_stderr, 0, die);
19861 }
19862
19863 static void
19864 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19865 {
19866 int indent = level * 4;
19867
19868 gdb_assert (die != NULL);
19869
19870 if (level >= max_level)
19871 return;
19872
19873 dump_die_shallow (f, indent, die);
19874
19875 if (die->child != NULL)
19876 {
19877 print_spaces (indent, f);
19878 fprintf_unfiltered (f, " Children:");
19879 if (level + 1 < max_level)
19880 {
19881 fprintf_unfiltered (f, "\n");
19882 dump_die_1 (f, level + 1, max_level, die->child);
19883 }
19884 else
19885 {
19886 fprintf_unfiltered (f,
19887 " [not printed, max nesting level reached]\n");
19888 }
19889 }
19890
19891 if (die->sibling != NULL && level > 0)
19892 {
19893 dump_die_1 (f, level, max_level, die->sibling);
19894 }
19895 }
19896
19897 /* This is called from the pdie macro in gdbinit.in.
19898 It's not static so gcc will keep a copy callable from gdb. */
19899
19900 void
19901 dump_die (struct die_info *die, int max_level)
19902 {
19903 dump_die_1 (gdb_stdlog, 0, max_level, die);
19904 }
19905
19906 static void
19907 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19908 {
19909 void **slot;
19910
19911 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19912 INSERT);
19913
19914 *slot = die;
19915 }
19916
19917 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19918 required kind. */
19919
19920 static sect_offset
19921 dwarf2_get_ref_die_offset (const struct attribute *attr)
19922 {
19923 sect_offset retval = { DW_UNSND (attr) };
19924
19925 if (attr_form_is_ref (attr))
19926 return retval;
19927
19928 retval.sect_off = 0;
19929 complaint (&symfile_complaints,
19930 _("unsupported die ref attribute form: '%s'"),
19931 dwarf_form_name (attr->form));
19932 return retval;
19933 }
19934
19935 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19936 * the value held by the attribute is not constant. */
19937
19938 static LONGEST
19939 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19940 {
19941 if (attr->form == DW_FORM_sdata)
19942 return DW_SND (attr);
19943 else if (attr->form == DW_FORM_udata
19944 || attr->form == DW_FORM_data1
19945 || attr->form == DW_FORM_data2
19946 || attr->form == DW_FORM_data4
19947 || attr->form == DW_FORM_data8)
19948 return DW_UNSND (attr);
19949 else
19950 {
19951 complaint (&symfile_complaints,
19952 _("Attribute value is not a constant (%s)"),
19953 dwarf_form_name (attr->form));
19954 return default_value;
19955 }
19956 }
19957
19958 /* Follow reference or signature attribute ATTR of SRC_DIE.
19959 On entry *REF_CU is the CU of SRC_DIE.
19960 On exit *REF_CU is the CU of the result. */
19961
19962 static struct die_info *
19963 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19964 struct dwarf2_cu **ref_cu)
19965 {
19966 struct die_info *die;
19967
19968 if (attr_form_is_ref (attr))
19969 die = follow_die_ref (src_die, attr, ref_cu);
19970 else if (attr->form == DW_FORM_ref_sig8)
19971 die = follow_die_sig (src_die, attr, ref_cu);
19972 else
19973 {
19974 dump_die_for_error (src_die);
19975 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19976 objfile_name ((*ref_cu)->objfile));
19977 }
19978
19979 return die;
19980 }
19981
19982 /* Follow reference OFFSET.
19983 On entry *REF_CU is the CU of the source die referencing OFFSET.
19984 On exit *REF_CU is the CU of the result.
19985 Returns NULL if OFFSET is invalid. */
19986
19987 static struct die_info *
19988 follow_die_offset (sect_offset offset, int offset_in_dwz,
19989 struct dwarf2_cu **ref_cu)
19990 {
19991 struct die_info temp_die;
19992 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19993
19994 gdb_assert (cu->per_cu != NULL);
19995
19996 target_cu = cu;
19997
19998 if (cu->per_cu->is_debug_types)
19999 {
20000 /* .debug_types CUs cannot reference anything outside their CU.
20001 If they need to, they have to reference a signatured type via
20002 DW_FORM_ref_sig8. */
20003 if (! offset_in_cu_p (&cu->header, offset))
20004 return NULL;
20005 }
20006 else if (offset_in_dwz != cu->per_cu->is_dwz
20007 || ! offset_in_cu_p (&cu->header, offset))
20008 {
20009 struct dwarf2_per_cu_data *per_cu;
20010
20011 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20012 cu->objfile);
20013
20014 /* If necessary, add it to the queue and load its DIEs. */
20015 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20016 load_full_comp_unit (per_cu, cu->language);
20017
20018 target_cu = per_cu->cu;
20019 }
20020 else if (cu->dies == NULL)
20021 {
20022 /* We're loading full DIEs during partial symbol reading. */
20023 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20024 load_full_comp_unit (cu->per_cu, language_minimal);
20025 }
20026
20027 *ref_cu = target_cu;
20028 temp_die.offset = offset;
20029 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20030 &temp_die, offset.sect_off);
20031 }
20032
20033 /* Follow reference attribute ATTR of SRC_DIE.
20034 On entry *REF_CU is the CU of SRC_DIE.
20035 On exit *REF_CU is the CU of the result. */
20036
20037 static struct die_info *
20038 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20039 struct dwarf2_cu **ref_cu)
20040 {
20041 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20042 struct dwarf2_cu *cu = *ref_cu;
20043 struct die_info *die;
20044
20045 die = follow_die_offset (offset,
20046 (attr->form == DW_FORM_GNU_ref_alt
20047 || cu->per_cu->is_dwz),
20048 ref_cu);
20049 if (!die)
20050 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20051 "at 0x%x [in module %s]"),
20052 offset.sect_off, src_die->offset.sect_off,
20053 objfile_name (cu->objfile));
20054
20055 return die;
20056 }
20057
20058 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20059 Returned value is intended for DW_OP_call*. Returned
20060 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20061
20062 struct dwarf2_locexpr_baton
20063 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20064 struct dwarf2_per_cu_data *per_cu,
20065 CORE_ADDR (*get_frame_pc) (void *baton),
20066 void *baton)
20067 {
20068 struct dwarf2_cu *cu;
20069 struct die_info *die;
20070 struct attribute *attr;
20071 struct dwarf2_locexpr_baton retval;
20072
20073 dw2_setup (per_cu->objfile);
20074
20075 if (per_cu->cu == NULL)
20076 load_cu (per_cu);
20077 cu = per_cu->cu;
20078 if (cu == NULL)
20079 {
20080 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20081 Instead just throw an error, not much else we can do. */
20082 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20083 offset.sect_off, objfile_name (per_cu->objfile));
20084 }
20085
20086 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20087 if (!die)
20088 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20089 offset.sect_off, objfile_name (per_cu->objfile));
20090
20091 attr = dwarf2_attr (die, DW_AT_location, cu);
20092 if (!attr)
20093 {
20094 /* DWARF: "If there is no such attribute, then there is no effect.".
20095 DATA is ignored if SIZE is 0. */
20096
20097 retval.data = NULL;
20098 retval.size = 0;
20099 }
20100 else if (attr_form_is_section_offset (attr))
20101 {
20102 struct dwarf2_loclist_baton loclist_baton;
20103 CORE_ADDR pc = (*get_frame_pc) (baton);
20104 size_t size;
20105
20106 fill_in_loclist_baton (cu, &loclist_baton, attr);
20107
20108 retval.data = dwarf2_find_location_expression (&loclist_baton,
20109 &size, pc);
20110 retval.size = size;
20111 }
20112 else
20113 {
20114 if (!attr_form_is_block (attr))
20115 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20116 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20117 offset.sect_off, objfile_name (per_cu->objfile));
20118
20119 retval.data = DW_BLOCK (attr)->data;
20120 retval.size = DW_BLOCK (attr)->size;
20121 }
20122 retval.per_cu = cu->per_cu;
20123
20124 age_cached_comp_units ();
20125
20126 return retval;
20127 }
20128
20129 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20130 offset. */
20131
20132 struct dwarf2_locexpr_baton
20133 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20134 struct dwarf2_per_cu_data *per_cu,
20135 CORE_ADDR (*get_frame_pc) (void *baton),
20136 void *baton)
20137 {
20138 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20139
20140 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20141 }
20142
20143 /* Write a constant of a given type as target-ordered bytes into
20144 OBSTACK. */
20145
20146 static const gdb_byte *
20147 write_constant_as_bytes (struct obstack *obstack,
20148 enum bfd_endian byte_order,
20149 struct type *type,
20150 ULONGEST value,
20151 LONGEST *len)
20152 {
20153 gdb_byte *result;
20154
20155 *len = TYPE_LENGTH (type);
20156 result = (gdb_byte *) obstack_alloc (obstack, *len);
20157 store_unsigned_integer (result, *len, byte_order, value);
20158
20159 return result;
20160 }
20161
20162 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20163 pointer to the constant bytes and set LEN to the length of the
20164 data. If memory is needed, allocate it on OBSTACK. If the DIE
20165 does not have a DW_AT_const_value, return NULL. */
20166
20167 const gdb_byte *
20168 dwarf2_fetch_constant_bytes (sect_offset offset,
20169 struct dwarf2_per_cu_data *per_cu,
20170 struct obstack *obstack,
20171 LONGEST *len)
20172 {
20173 struct dwarf2_cu *cu;
20174 struct die_info *die;
20175 struct attribute *attr;
20176 const gdb_byte *result = NULL;
20177 struct type *type;
20178 LONGEST value;
20179 enum bfd_endian byte_order;
20180
20181 dw2_setup (per_cu->objfile);
20182
20183 if (per_cu->cu == NULL)
20184 load_cu (per_cu);
20185 cu = per_cu->cu;
20186 if (cu == NULL)
20187 {
20188 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20189 Instead just throw an error, not much else we can do. */
20190 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20191 offset.sect_off, objfile_name (per_cu->objfile));
20192 }
20193
20194 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20195 if (!die)
20196 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20197 offset.sect_off, objfile_name (per_cu->objfile));
20198
20199
20200 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20201 if (attr == NULL)
20202 return NULL;
20203
20204 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20205 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20206
20207 switch (attr->form)
20208 {
20209 case DW_FORM_addr:
20210 case DW_FORM_GNU_addr_index:
20211 {
20212 gdb_byte *tem;
20213
20214 *len = cu->header.addr_size;
20215 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20216 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20217 result = tem;
20218 }
20219 break;
20220 case DW_FORM_string:
20221 case DW_FORM_strp:
20222 case DW_FORM_GNU_str_index:
20223 case DW_FORM_GNU_strp_alt:
20224 /* DW_STRING is already allocated on the objfile obstack, point
20225 directly to it. */
20226 result = (const gdb_byte *) DW_STRING (attr);
20227 *len = strlen (DW_STRING (attr));
20228 break;
20229 case DW_FORM_block1:
20230 case DW_FORM_block2:
20231 case DW_FORM_block4:
20232 case DW_FORM_block:
20233 case DW_FORM_exprloc:
20234 result = DW_BLOCK (attr)->data;
20235 *len = DW_BLOCK (attr)->size;
20236 break;
20237
20238 /* The DW_AT_const_value attributes are supposed to carry the
20239 symbol's value "represented as it would be on the target
20240 architecture." By the time we get here, it's already been
20241 converted to host endianness, so we just need to sign- or
20242 zero-extend it as appropriate. */
20243 case DW_FORM_data1:
20244 type = die_type (die, cu);
20245 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20246 if (result == NULL)
20247 result = write_constant_as_bytes (obstack, byte_order,
20248 type, value, len);
20249 break;
20250 case DW_FORM_data2:
20251 type = die_type (die, cu);
20252 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20253 if (result == NULL)
20254 result = write_constant_as_bytes (obstack, byte_order,
20255 type, value, len);
20256 break;
20257 case DW_FORM_data4:
20258 type = die_type (die, cu);
20259 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20260 if (result == NULL)
20261 result = write_constant_as_bytes (obstack, byte_order,
20262 type, value, len);
20263 break;
20264 case DW_FORM_data8:
20265 type = die_type (die, cu);
20266 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20267 if (result == NULL)
20268 result = write_constant_as_bytes (obstack, byte_order,
20269 type, value, len);
20270 break;
20271
20272 case DW_FORM_sdata:
20273 type = die_type (die, cu);
20274 result = write_constant_as_bytes (obstack, byte_order,
20275 type, DW_SND (attr), len);
20276 break;
20277
20278 case DW_FORM_udata:
20279 type = die_type (die, cu);
20280 result = write_constant_as_bytes (obstack, byte_order,
20281 type, DW_UNSND (attr), len);
20282 break;
20283
20284 default:
20285 complaint (&symfile_complaints,
20286 _("unsupported const value attribute form: '%s'"),
20287 dwarf_form_name (attr->form));
20288 break;
20289 }
20290
20291 return result;
20292 }
20293
20294 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20295 PER_CU. */
20296
20297 struct type *
20298 dwarf2_get_die_type (cu_offset die_offset,
20299 struct dwarf2_per_cu_data *per_cu)
20300 {
20301 sect_offset die_offset_sect;
20302
20303 dw2_setup (per_cu->objfile);
20304
20305 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20306 return get_die_type_at_offset (die_offset_sect, per_cu);
20307 }
20308
20309 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20310 On entry *REF_CU is the CU of SRC_DIE.
20311 On exit *REF_CU is the CU of the result.
20312 Returns NULL if the referenced DIE isn't found. */
20313
20314 static struct die_info *
20315 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20316 struct dwarf2_cu **ref_cu)
20317 {
20318 struct die_info temp_die;
20319 struct dwarf2_cu *sig_cu;
20320 struct die_info *die;
20321
20322 /* While it might be nice to assert sig_type->type == NULL here,
20323 we can get here for DW_AT_imported_declaration where we need
20324 the DIE not the type. */
20325
20326 /* If necessary, add it to the queue and load its DIEs. */
20327
20328 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20329 read_signatured_type (sig_type);
20330
20331 sig_cu = sig_type->per_cu.cu;
20332 gdb_assert (sig_cu != NULL);
20333 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20334 temp_die.offset = sig_type->type_offset_in_section;
20335 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20336 temp_die.offset.sect_off);
20337 if (die)
20338 {
20339 /* For .gdb_index version 7 keep track of included TUs.
20340 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20341 if (dwarf2_per_objfile->index_table != NULL
20342 && dwarf2_per_objfile->index_table->version <= 7)
20343 {
20344 VEC_safe_push (dwarf2_per_cu_ptr,
20345 (*ref_cu)->per_cu->imported_symtabs,
20346 sig_cu->per_cu);
20347 }
20348
20349 *ref_cu = sig_cu;
20350 return die;
20351 }
20352
20353 return NULL;
20354 }
20355
20356 /* Follow signatured type referenced by ATTR in SRC_DIE.
20357 On entry *REF_CU is the CU of SRC_DIE.
20358 On exit *REF_CU is the CU of the result.
20359 The result is the DIE of the type.
20360 If the referenced type cannot be found an error is thrown. */
20361
20362 static struct die_info *
20363 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20364 struct dwarf2_cu **ref_cu)
20365 {
20366 ULONGEST signature = DW_SIGNATURE (attr);
20367 struct signatured_type *sig_type;
20368 struct die_info *die;
20369
20370 gdb_assert (attr->form == DW_FORM_ref_sig8);
20371
20372 sig_type = lookup_signatured_type (*ref_cu, signature);
20373 /* sig_type will be NULL if the signatured type is missing from
20374 the debug info. */
20375 if (sig_type == NULL)
20376 {
20377 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20378 " from DIE at 0x%x [in module %s]"),
20379 hex_string (signature), src_die->offset.sect_off,
20380 objfile_name ((*ref_cu)->objfile));
20381 }
20382
20383 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20384 if (die == NULL)
20385 {
20386 dump_die_for_error (src_die);
20387 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20388 " from DIE at 0x%x [in module %s]"),
20389 hex_string (signature), src_die->offset.sect_off,
20390 objfile_name ((*ref_cu)->objfile));
20391 }
20392
20393 return die;
20394 }
20395
20396 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20397 reading in and processing the type unit if necessary. */
20398
20399 static struct type *
20400 get_signatured_type (struct die_info *die, ULONGEST signature,
20401 struct dwarf2_cu *cu)
20402 {
20403 struct signatured_type *sig_type;
20404 struct dwarf2_cu *type_cu;
20405 struct die_info *type_die;
20406 struct type *type;
20407
20408 sig_type = lookup_signatured_type (cu, signature);
20409 /* sig_type will be NULL if the signatured type is missing from
20410 the debug info. */
20411 if (sig_type == NULL)
20412 {
20413 complaint (&symfile_complaints,
20414 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20415 " from DIE at 0x%x [in module %s]"),
20416 hex_string (signature), die->offset.sect_off,
20417 objfile_name (dwarf2_per_objfile->objfile));
20418 return build_error_marker_type (cu, die);
20419 }
20420
20421 /* If we already know the type we're done. */
20422 if (sig_type->type != NULL)
20423 return sig_type->type;
20424
20425 type_cu = cu;
20426 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20427 if (type_die != NULL)
20428 {
20429 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20430 is created. This is important, for example, because for c++ classes
20431 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20432 type = read_type_die (type_die, type_cu);
20433 if (type == NULL)
20434 {
20435 complaint (&symfile_complaints,
20436 _("Dwarf Error: Cannot build signatured type %s"
20437 " referenced from DIE at 0x%x [in module %s]"),
20438 hex_string (signature), die->offset.sect_off,
20439 objfile_name (dwarf2_per_objfile->objfile));
20440 type = build_error_marker_type (cu, die);
20441 }
20442 }
20443 else
20444 {
20445 complaint (&symfile_complaints,
20446 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20447 " from DIE at 0x%x [in module %s]"),
20448 hex_string (signature), die->offset.sect_off,
20449 objfile_name (dwarf2_per_objfile->objfile));
20450 type = build_error_marker_type (cu, die);
20451 }
20452 sig_type->type = type;
20453
20454 return type;
20455 }
20456
20457 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20458 reading in and processing the type unit if necessary. */
20459
20460 static struct type *
20461 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20462 struct dwarf2_cu *cu) /* ARI: editCase function */
20463 {
20464 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20465 if (attr_form_is_ref (attr))
20466 {
20467 struct dwarf2_cu *type_cu = cu;
20468 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20469
20470 return read_type_die (type_die, type_cu);
20471 }
20472 else if (attr->form == DW_FORM_ref_sig8)
20473 {
20474 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20475 }
20476 else
20477 {
20478 complaint (&symfile_complaints,
20479 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20480 " at 0x%x [in module %s]"),
20481 dwarf_form_name (attr->form), die->offset.sect_off,
20482 objfile_name (dwarf2_per_objfile->objfile));
20483 return build_error_marker_type (cu, die);
20484 }
20485 }
20486
20487 /* Load the DIEs associated with type unit PER_CU into memory. */
20488
20489 static void
20490 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20491 {
20492 struct signatured_type *sig_type;
20493
20494 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20495 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20496
20497 /* We have the per_cu, but we need the signatured_type.
20498 Fortunately this is an easy translation. */
20499 gdb_assert (per_cu->is_debug_types);
20500 sig_type = (struct signatured_type *) per_cu;
20501
20502 gdb_assert (per_cu->cu == NULL);
20503
20504 read_signatured_type (sig_type);
20505
20506 gdb_assert (per_cu->cu != NULL);
20507 }
20508
20509 /* die_reader_func for read_signatured_type.
20510 This is identical to load_full_comp_unit_reader,
20511 but is kept separate for now. */
20512
20513 static void
20514 read_signatured_type_reader (const struct die_reader_specs *reader,
20515 const gdb_byte *info_ptr,
20516 struct die_info *comp_unit_die,
20517 int has_children,
20518 void *data)
20519 {
20520 struct dwarf2_cu *cu = reader->cu;
20521
20522 gdb_assert (cu->die_hash == NULL);
20523 cu->die_hash =
20524 htab_create_alloc_ex (cu->header.length / 12,
20525 die_hash,
20526 die_eq,
20527 NULL,
20528 &cu->comp_unit_obstack,
20529 hashtab_obstack_allocate,
20530 dummy_obstack_deallocate);
20531
20532 if (has_children)
20533 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20534 &info_ptr, comp_unit_die);
20535 cu->dies = comp_unit_die;
20536 /* comp_unit_die is not stored in die_hash, no need. */
20537
20538 /* We try not to read any attributes in this function, because not
20539 all CUs needed for references have been loaded yet, and symbol
20540 table processing isn't initialized. But we have to set the CU language,
20541 or we won't be able to build types correctly.
20542 Similarly, if we do not read the producer, we can not apply
20543 producer-specific interpretation. */
20544 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20545 }
20546
20547 /* Read in a signatured type and build its CU and DIEs.
20548 If the type is a stub for the real type in a DWO file,
20549 read in the real type from the DWO file as well. */
20550
20551 static void
20552 read_signatured_type (struct signatured_type *sig_type)
20553 {
20554 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20555
20556 gdb_assert (per_cu->is_debug_types);
20557 gdb_assert (per_cu->cu == NULL);
20558
20559 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20560 read_signatured_type_reader, NULL);
20561 sig_type->per_cu.tu_read = 1;
20562 }
20563
20564 /* Decode simple location descriptions.
20565 Given a pointer to a dwarf block that defines a location, compute
20566 the location and return the value.
20567
20568 NOTE drow/2003-11-18: This function is called in two situations
20569 now: for the address of static or global variables (partial symbols
20570 only) and for offsets into structures which are expected to be
20571 (more or less) constant. The partial symbol case should go away,
20572 and only the constant case should remain. That will let this
20573 function complain more accurately. A few special modes are allowed
20574 without complaint for global variables (for instance, global
20575 register values and thread-local values).
20576
20577 A location description containing no operations indicates that the
20578 object is optimized out. The return value is 0 for that case.
20579 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20580 callers will only want a very basic result and this can become a
20581 complaint.
20582
20583 Note that stack[0] is unused except as a default error return. */
20584
20585 static CORE_ADDR
20586 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20587 {
20588 struct objfile *objfile = cu->objfile;
20589 size_t i;
20590 size_t size = blk->size;
20591 const gdb_byte *data = blk->data;
20592 CORE_ADDR stack[64];
20593 int stacki;
20594 unsigned int bytes_read, unsnd;
20595 gdb_byte op;
20596
20597 i = 0;
20598 stacki = 0;
20599 stack[stacki] = 0;
20600 stack[++stacki] = 0;
20601
20602 while (i < size)
20603 {
20604 op = data[i++];
20605 switch (op)
20606 {
20607 case DW_OP_lit0:
20608 case DW_OP_lit1:
20609 case DW_OP_lit2:
20610 case DW_OP_lit3:
20611 case DW_OP_lit4:
20612 case DW_OP_lit5:
20613 case DW_OP_lit6:
20614 case DW_OP_lit7:
20615 case DW_OP_lit8:
20616 case DW_OP_lit9:
20617 case DW_OP_lit10:
20618 case DW_OP_lit11:
20619 case DW_OP_lit12:
20620 case DW_OP_lit13:
20621 case DW_OP_lit14:
20622 case DW_OP_lit15:
20623 case DW_OP_lit16:
20624 case DW_OP_lit17:
20625 case DW_OP_lit18:
20626 case DW_OP_lit19:
20627 case DW_OP_lit20:
20628 case DW_OP_lit21:
20629 case DW_OP_lit22:
20630 case DW_OP_lit23:
20631 case DW_OP_lit24:
20632 case DW_OP_lit25:
20633 case DW_OP_lit26:
20634 case DW_OP_lit27:
20635 case DW_OP_lit28:
20636 case DW_OP_lit29:
20637 case DW_OP_lit30:
20638 case DW_OP_lit31:
20639 stack[++stacki] = op - DW_OP_lit0;
20640 break;
20641
20642 case DW_OP_reg0:
20643 case DW_OP_reg1:
20644 case DW_OP_reg2:
20645 case DW_OP_reg3:
20646 case DW_OP_reg4:
20647 case DW_OP_reg5:
20648 case DW_OP_reg6:
20649 case DW_OP_reg7:
20650 case DW_OP_reg8:
20651 case DW_OP_reg9:
20652 case DW_OP_reg10:
20653 case DW_OP_reg11:
20654 case DW_OP_reg12:
20655 case DW_OP_reg13:
20656 case DW_OP_reg14:
20657 case DW_OP_reg15:
20658 case DW_OP_reg16:
20659 case DW_OP_reg17:
20660 case DW_OP_reg18:
20661 case DW_OP_reg19:
20662 case DW_OP_reg20:
20663 case DW_OP_reg21:
20664 case DW_OP_reg22:
20665 case DW_OP_reg23:
20666 case DW_OP_reg24:
20667 case DW_OP_reg25:
20668 case DW_OP_reg26:
20669 case DW_OP_reg27:
20670 case DW_OP_reg28:
20671 case DW_OP_reg29:
20672 case DW_OP_reg30:
20673 case DW_OP_reg31:
20674 stack[++stacki] = op - DW_OP_reg0;
20675 if (i < size)
20676 dwarf2_complex_location_expr_complaint ();
20677 break;
20678
20679 case DW_OP_regx:
20680 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20681 i += bytes_read;
20682 stack[++stacki] = unsnd;
20683 if (i < size)
20684 dwarf2_complex_location_expr_complaint ();
20685 break;
20686
20687 case DW_OP_addr:
20688 stack[++stacki] = read_address (objfile->obfd, &data[i],
20689 cu, &bytes_read);
20690 i += bytes_read;
20691 break;
20692
20693 case DW_OP_const1u:
20694 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20695 i += 1;
20696 break;
20697
20698 case DW_OP_const1s:
20699 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20700 i += 1;
20701 break;
20702
20703 case DW_OP_const2u:
20704 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20705 i += 2;
20706 break;
20707
20708 case DW_OP_const2s:
20709 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20710 i += 2;
20711 break;
20712
20713 case DW_OP_const4u:
20714 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20715 i += 4;
20716 break;
20717
20718 case DW_OP_const4s:
20719 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20720 i += 4;
20721 break;
20722
20723 case DW_OP_const8u:
20724 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20725 i += 8;
20726 break;
20727
20728 case DW_OP_constu:
20729 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20730 &bytes_read);
20731 i += bytes_read;
20732 break;
20733
20734 case DW_OP_consts:
20735 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20736 i += bytes_read;
20737 break;
20738
20739 case DW_OP_dup:
20740 stack[stacki + 1] = stack[stacki];
20741 stacki++;
20742 break;
20743
20744 case DW_OP_plus:
20745 stack[stacki - 1] += stack[stacki];
20746 stacki--;
20747 break;
20748
20749 case DW_OP_plus_uconst:
20750 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20751 &bytes_read);
20752 i += bytes_read;
20753 break;
20754
20755 case DW_OP_minus:
20756 stack[stacki - 1] -= stack[stacki];
20757 stacki--;
20758 break;
20759
20760 case DW_OP_deref:
20761 /* If we're not the last op, then we definitely can't encode
20762 this using GDB's address_class enum. This is valid for partial
20763 global symbols, although the variable's address will be bogus
20764 in the psymtab. */
20765 if (i < size)
20766 dwarf2_complex_location_expr_complaint ();
20767 break;
20768
20769 case DW_OP_GNU_push_tls_address:
20770 case DW_OP_form_tls_address:
20771 /* The top of the stack has the offset from the beginning
20772 of the thread control block at which the variable is located. */
20773 /* Nothing should follow this operator, so the top of stack would
20774 be returned. */
20775 /* This is valid for partial global symbols, but the variable's
20776 address will be bogus in the psymtab. Make it always at least
20777 non-zero to not look as a variable garbage collected by linker
20778 which have DW_OP_addr 0. */
20779 if (i < size)
20780 dwarf2_complex_location_expr_complaint ();
20781 stack[stacki]++;
20782 break;
20783
20784 case DW_OP_GNU_uninit:
20785 break;
20786
20787 case DW_OP_GNU_addr_index:
20788 case DW_OP_GNU_const_index:
20789 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20790 &bytes_read);
20791 i += bytes_read;
20792 break;
20793
20794 default:
20795 {
20796 const char *name = get_DW_OP_name (op);
20797
20798 if (name)
20799 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20800 name);
20801 else
20802 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20803 op);
20804 }
20805
20806 return (stack[stacki]);
20807 }
20808
20809 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20810 outside of the allocated space. Also enforce minimum>0. */
20811 if (stacki >= ARRAY_SIZE (stack) - 1)
20812 {
20813 complaint (&symfile_complaints,
20814 _("location description stack overflow"));
20815 return 0;
20816 }
20817
20818 if (stacki <= 0)
20819 {
20820 complaint (&symfile_complaints,
20821 _("location description stack underflow"));
20822 return 0;
20823 }
20824 }
20825 return (stack[stacki]);
20826 }
20827
20828 /* memory allocation interface */
20829
20830 static struct dwarf_block *
20831 dwarf_alloc_block (struct dwarf2_cu *cu)
20832 {
20833 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20834 }
20835
20836 static struct die_info *
20837 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20838 {
20839 struct die_info *die;
20840 size_t size = sizeof (struct die_info);
20841
20842 if (num_attrs > 1)
20843 size += (num_attrs - 1) * sizeof (struct attribute);
20844
20845 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20846 memset (die, 0, sizeof (struct die_info));
20847 return (die);
20848 }
20849
20850 \f
20851 /* Macro support. */
20852
20853 /* Return file name relative to the compilation directory of file number I in
20854 *LH's file name table. The result is allocated using xmalloc; the caller is
20855 responsible for freeing it. */
20856
20857 static char *
20858 file_file_name (int file, struct line_header *lh)
20859 {
20860 /* Is the file number a valid index into the line header's file name
20861 table? Remember that file numbers start with one, not zero. */
20862 if (1 <= file && file <= lh->num_file_names)
20863 {
20864 struct file_entry *fe = &lh->file_names[file - 1];
20865
20866 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20867 || lh->include_dirs == NULL)
20868 return xstrdup (fe->name);
20869 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20870 fe->name, (char *) NULL);
20871 }
20872 else
20873 {
20874 /* The compiler produced a bogus file number. We can at least
20875 record the macro definitions made in the file, even if we
20876 won't be able to find the file by name. */
20877 char fake_name[80];
20878
20879 xsnprintf (fake_name, sizeof (fake_name),
20880 "<bad macro file number %d>", file);
20881
20882 complaint (&symfile_complaints,
20883 _("bad file number in macro information (%d)"),
20884 file);
20885
20886 return xstrdup (fake_name);
20887 }
20888 }
20889
20890 /* Return the full name of file number I in *LH's file name table.
20891 Use COMP_DIR as the name of the current directory of the
20892 compilation. The result is allocated using xmalloc; the caller is
20893 responsible for freeing it. */
20894 static char *
20895 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20896 {
20897 /* Is the file number a valid index into the line header's file name
20898 table? Remember that file numbers start with one, not zero. */
20899 if (1 <= file && file <= lh->num_file_names)
20900 {
20901 char *relative = file_file_name (file, lh);
20902
20903 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20904 return relative;
20905 return reconcat (relative, comp_dir, SLASH_STRING,
20906 relative, (char *) NULL);
20907 }
20908 else
20909 return file_file_name (file, lh);
20910 }
20911
20912
20913 static struct macro_source_file *
20914 macro_start_file (int file, int line,
20915 struct macro_source_file *current_file,
20916 struct line_header *lh)
20917 {
20918 /* File name relative to the compilation directory of this source file. */
20919 char *file_name = file_file_name (file, lh);
20920
20921 if (! current_file)
20922 {
20923 /* Note: We don't create a macro table for this compilation unit
20924 at all until we actually get a filename. */
20925 struct macro_table *macro_table = get_macro_table ();
20926
20927 /* If we have no current file, then this must be the start_file
20928 directive for the compilation unit's main source file. */
20929 current_file = macro_set_main (macro_table, file_name);
20930 macro_define_special (macro_table);
20931 }
20932 else
20933 current_file = macro_include (current_file, line, file_name);
20934
20935 xfree (file_name);
20936
20937 return current_file;
20938 }
20939
20940
20941 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20942 followed by a null byte. */
20943 static char *
20944 copy_string (const char *buf, int len)
20945 {
20946 char *s = (char *) xmalloc (len + 1);
20947
20948 memcpy (s, buf, len);
20949 s[len] = '\0';
20950 return s;
20951 }
20952
20953
20954 static const char *
20955 consume_improper_spaces (const char *p, const char *body)
20956 {
20957 if (*p == ' ')
20958 {
20959 complaint (&symfile_complaints,
20960 _("macro definition contains spaces "
20961 "in formal argument list:\n`%s'"),
20962 body);
20963
20964 while (*p == ' ')
20965 p++;
20966 }
20967
20968 return p;
20969 }
20970
20971
20972 static void
20973 parse_macro_definition (struct macro_source_file *file, int line,
20974 const char *body)
20975 {
20976 const char *p;
20977
20978 /* The body string takes one of two forms. For object-like macro
20979 definitions, it should be:
20980
20981 <macro name> " " <definition>
20982
20983 For function-like macro definitions, it should be:
20984
20985 <macro name> "() " <definition>
20986 or
20987 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20988
20989 Spaces may appear only where explicitly indicated, and in the
20990 <definition>.
20991
20992 The Dwarf 2 spec says that an object-like macro's name is always
20993 followed by a space, but versions of GCC around March 2002 omit
20994 the space when the macro's definition is the empty string.
20995
20996 The Dwarf 2 spec says that there should be no spaces between the
20997 formal arguments in a function-like macro's formal argument list,
20998 but versions of GCC around March 2002 include spaces after the
20999 commas. */
21000
21001
21002 /* Find the extent of the macro name. The macro name is terminated
21003 by either a space or null character (for an object-like macro) or
21004 an opening paren (for a function-like macro). */
21005 for (p = body; *p; p++)
21006 if (*p == ' ' || *p == '(')
21007 break;
21008
21009 if (*p == ' ' || *p == '\0')
21010 {
21011 /* It's an object-like macro. */
21012 int name_len = p - body;
21013 char *name = copy_string (body, name_len);
21014 const char *replacement;
21015
21016 if (*p == ' ')
21017 replacement = body + name_len + 1;
21018 else
21019 {
21020 dwarf2_macro_malformed_definition_complaint (body);
21021 replacement = body + name_len;
21022 }
21023
21024 macro_define_object (file, line, name, replacement);
21025
21026 xfree (name);
21027 }
21028 else if (*p == '(')
21029 {
21030 /* It's a function-like macro. */
21031 char *name = copy_string (body, p - body);
21032 int argc = 0;
21033 int argv_size = 1;
21034 char **argv = XNEWVEC (char *, argv_size);
21035
21036 p++;
21037
21038 p = consume_improper_spaces (p, body);
21039
21040 /* Parse the formal argument list. */
21041 while (*p && *p != ')')
21042 {
21043 /* Find the extent of the current argument name. */
21044 const char *arg_start = p;
21045
21046 while (*p && *p != ',' && *p != ')' && *p != ' ')
21047 p++;
21048
21049 if (! *p || p == arg_start)
21050 dwarf2_macro_malformed_definition_complaint (body);
21051 else
21052 {
21053 /* Make sure argv has room for the new argument. */
21054 if (argc >= argv_size)
21055 {
21056 argv_size *= 2;
21057 argv = XRESIZEVEC (char *, argv, argv_size);
21058 }
21059
21060 argv[argc++] = copy_string (arg_start, p - arg_start);
21061 }
21062
21063 p = consume_improper_spaces (p, body);
21064
21065 /* Consume the comma, if present. */
21066 if (*p == ',')
21067 {
21068 p++;
21069
21070 p = consume_improper_spaces (p, body);
21071 }
21072 }
21073
21074 if (*p == ')')
21075 {
21076 p++;
21077
21078 if (*p == ' ')
21079 /* Perfectly formed definition, no complaints. */
21080 macro_define_function (file, line, name,
21081 argc, (const char **) argv,
21082 p + 1);
21083 else if (*p == '\0')
21084 {
21085 /* Complain, but do define it. */
21086 dwarf2_macro_malformed_definition_complaint (body);
21087 macro_define_function (file, line, name,
21088 argc, (const char **) argv,
21089 p);
21090 }
21091 else
21092 /* Just complain. */
21093 dwarf2_macro_malformed_definition_complaint (body);
21094 }
21095 else
21096 /* Just complain. */
21097 dwarf2_macro_malformed_definition_complaint (body);
21098
21099 xfree (name);
21100 {
21101 int i;
21102
21103 for (i = 0; i < argc; i++)
21104 xfree (argv[i]);
21105 }
21106 xfree (argv);
21107 }
21108 else
21109 dwarf2_macro_malformed_definition_complaint (body);
21110 }
21111
21112 /* Skip some bytes from BYTES according to the form given in FORM.
21113 Returns the new pointer. */
21114
21115 static const gdb_byte *
21116 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21117 enum dwarf_form form,
21118 unsigned int offset_size,
21119 struct dwarf2_section_info *section)
21120 {
21121 unsigned int bytes_read;
21122
21123 switch (form)
21124 {
21125 case DW_FORM_data1:
21126 case DW_FORM_flag:
21127 ++bytes;
21128 break;
21129
21130 case DW_FORM_data2:
21131 bytes += 2;
21132 break;
21133
21134 case DW_FORM_data4:
21135 bytes += 4;
21136 break;
21137
21138 case DW_FORM_data8:
21139 bytes += 8;
21140 break;
21141
21142 case DW_FORM_string:
21143 read_direct_string (abfd, bytes, &bytes_read);
21144 bytes += bytes_read;
21145 break;
21146
21147 case DW_FORM_sec_offset:
21148 case DW_FORM_strp:
21149 case DW_FORM_GNU_strp_alt:
21150 bytes += offset_size;
21151 break;
21152
21153 case DW_FORM_block:
21154 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21155 bytes += bytes_read;
21156 break;
21157
21158 case DW_FORM_block1:
21159 bytes += 1 + read_1_byte (abfd, bytes);
21160 break;
21161 case DW_FORM_block2:
21162 bytes += 2 + read_2_bytes (abfd, bytes);
21163 break;
21164 case DW_FORM_block4:
21165 bytes += 4 + read_4_bytes (abfd, bytes);
21166 break;
21167
21168 case DW_FORM_sdata:
21169 case DW_FORM_udata:
21170 case DW_FORM_GNU_addr_index:
21171 case DW_FORM_GNU_str_index:
21172 bytes = gdb_skip_leb128 (bytes, buffer_end);
21173 if (bytes == NULL)
21174 {
21175 dwarf2_section_buffer_overflow_complaint (section);
21176 return NULL;
21177 }
21178 break;
21179
21180 default:
21181 {
21182 complain:
21183 complaint (&symfile_complaints,
21184 _("invalid form 0x%x in `%s'"),
21185 form, get_section_name (section));
21186 return NULL;
21187 }
21188 }
21189
21190 return bytes;
21191 }
21192
21193 /* A helper for dwarf_decode_macros that handles skipping an unknown
21194 opcode. Returns an updated pointer to the macro data buffer; or,
21195 on error, issues a complaint and returns NULL. */
21196
21197 static const gdb_byte *
21198 skip_unknown_opcode (unsigned int opcode,
21199 const gdb_byte **opcode_definitions,
21200 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21201 bfd *abfd,
21202 unsigned int offset_size,
21203 struct dwarf2_section_info *section)
21204 {
21205 unsigned int bytes_read, i;
21206 unsigned long arg;
21207 const gdb_byte *defn;
21208
21209 if (opcode_definitions[opcode] == NULL)
21210 {
21211 complaint (&symfile_complaints,
21212 _("unrecognized DW_MACFINO opcode 0x%x"),
21213 opcode);
21214 return NULL;
21215 }
21216
21217 defn = opcode_definitions[opcode];
21218 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21219 defn += bytes_read;
21220
21221 for (i = 0; i < arg; ++i)
21222 {
21223 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21224 (enum dwarf_form) defn[i], offset_size,
21225 section);
21226 if (mac_ptr == NULL)
21227 {
21228 /* skip_form_bytes already issued the complaint. */
21229 return NULL;
21230 }
21231 }
21232
21233 return mac_ptr;
21234 }
21235
21236 /* A helper function which parses the header of a macro section.
21237 If the macro section is the extended (for now called "GNU") type,
21238 then this updates *OFFSET_SIZE. Returns a pointer to just after
21239 the header, or issues a complaint and returns NULL on error. */
21240
21241 static const gdb_byte *
21242 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21243 bfd *abfd,
21244 const gdb_byte *mac_ptr,
21245 unsigned int *offset_size,
21246 int section_is_gnu)
21247 {
21248 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21249
21250 if (section_is_gnu)
21251 {
21252 unsigned int version, flags;
21253
21254 version = read_2_bytes (abfd, mac_ptr);
21255 if (version != 4)
21256 {
21257 complaint (&symfile_complaints,
21258 _("unrecognized version `%d' in .debug_macro section"),
21259 version);
21260 return NULL;
21261 }
21262 mac_ptr += 2;
21263
21264 flags = read_1_byte (abfd, mac_ptr);
21265 ++mac_ptr;
21266 *offset_size = (flags & 1) ? 8 : 4;
21267
21268 if ((flags & 2) != 0)
21269 /* We don't need the line table offset. */
21270 mac_ptr += *offset_size;
21271
21272 /* Vendor opcode descriptions. */
21273 if ((flags & 4) != 0)
21274 {
21275 unsigned int i, count;
21276
21277 count = read_1_byte (abfd, mac_ptr);
21278 ++mac_ptr;
21279 for (i = 0; i < count; ++i)
21280 {
21281 unsigned int opcode, bytes_read;
21282 unsigned long arg;
21283
21284 opcode = read_1_byte (abfd, mac_ptr);
21285 ++mac_ptr;
21286 opcode_definitions[opcode] = mac_ptr;
21287 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21288 mac_ptr += bytes_read;
21289 mac_ptr += arg;
21290 }
21291 }
21292 }
21293
21294 return mac_ptr;
21295 }
21296
21297 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21298 including DW_MACRO_GNU_transparent_include. */
21299
21300 static void
21301 dwarf_decode_macro_bytes (bfd *abfd,
21302 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21303 struct macro_source_file *current_file,
21304 struct line_header *lh,
21305 struct dwarf2_section_info *section,
21306 int section_is_gnu, int section_is_dwz,
21307 unsigned int offset_size,
21308 htab_t include_hash)
21309 {
21310 struct objfile *objfile = dwarf2_per_objfile->objfile;
21311 enum dwarf_macro_record_type macinfo_type;
21312 int at_commandline;
21313 const gdb_byte *opcode_definitions[256];
21314
21315 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21316 &offset_size, section_is_gnu);
21317 if (mac_ptr == NULL)
21318 {
21319 /* We already issued a complaint. */
21320 return;
21321 }
21322
21323 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21324 GDB is still reading the definitions from command line. First
21325 DW_MACINFO_start_file will need to be ignored as it was already executed
21326 to create CURRENT_FILE for the main source holding also the command line
21327 definitions. On first met DW_MACINFO_start_file this flag is reset to
21328 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21329
21330 at_commandline = 1;
21331
21332 do
21333 {
21334 /* Do we at least have room for a macinfo type byte? */
21335 if (mac_ptr >= mac_end)
21336 {
21337 dwarf2_section_buffer_overflow_complaint (section);
21338 break;
21339 }
21340
21341 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21342 mac_ptr++;
21343
21344 /* Note that we rely on the fact that the corresponding GNU and
21345 DWARF constants are the same. */
21346 switch (macinfo_type)
21347 {
21348 /* A zero macinfo type indicates the end of the macro
21349 information. */
21350 case 0:
21351 break;
21352
21353 case DW_MACRO_GNU_define:
21354 case DW_MACRO_GNU_undef:
21355 case DW_MACRO_GNU_define_indirect:
21356 case DW_MACRO_GNU_undef_indirect:
21357 case DW_MACRO_GNU_define_indirect_alt:
21358 case DW_MACRO_GNU_undef_indirect_alt:
21359 {
21360 unsigned int bytes_read;
21361 int line;
21362 const char *body;
21363 int is_define;
21364
21365 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21366 mac_ptr += bytes_read;
21367
21368 if (macinfo_type == DW_MACRO_GNU_define
21369 || macinfo_type == DW_MACRO_GNU_undef)
21370 {
21371 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21372 mac_ptr += bytes_read;
21373 }
21374 else
21375 {
21376 LONGEST str_offset;
21377
21378 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21379 mac_ptr += offset_size;
21380
21381 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21382 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21383 || section_is_dwz)
21384 {
21385 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21386
21387 body = read_indirect_string_from_dwz (dwz, str_offset);
21388 }
21389 else
21390 body = read_indirect_string_at_offset (abfd, str_offset);
21391 }
21392
21393 is_define = (macinfo_type == DW_MACRO_GNU_define
21394 || macinfo_type == DW_MACRO_GNU_define_indirect
21395 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21396 if (! current_file)
21397 {
21398 /* DWARF violation as no main source is present. */
21399 complaint (&symfile_complaints,
21400 _("debug info with no main source gives macro %s "
21401 "on line %d: %s"),
21402 is_define ? _("definition") : _("undefinition"),
21403 line, body);
21404 break;
21405 }
21406 if ((line == 0 && !at_commandline)
21407 || (line != 0 && at_commandline))
21408 complaint (&symfile_complaints,
21409 _("debug info gives %s macro %s with %s line %d: %s"),
21410 at_commandline ? _("command-line") : _("in-file"),
21411 is_define ? _("definition") : _("undefinition"),
21412 line == 0 ? _("zero") : _("non-zero"), line, body);
21413
21414 if (is_define)
21415 parse_macro_definition (current_file, line, body);
21416 else
21417 {
21418 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21419 || macinfo_type == DW_MACRO_GNU_undef_indirect
21420 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21421 macro_undef (current_file, line, body);
21422 }
21423 }
21424 break;
21425
21426 case DW_MACRO_GNU_start_file:
21427 {
21428 unsigned int bytes_read;
21429 int line, file;
21430
21431 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21432 mac_ptr += bytes_read;
21433 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21434 mac_ptr += bytes_read;
21435
21436 if ((line == 0 && !at_commandline)
21437 || (line != 0 && at_commandline))
21438 complaint (&symfile_complaints,
21439 _("debug info gives source %d included "
21440 "from %s at %s line %d"),
21441 file, at_commandline ? _("command-line") : _("file"),
21442 line == 0 ? _("zero") : _("non-zero"), line);
21443
21444 if (at_commandline)
21445 {
21446 /* This DW_MACRO_GNU_start_file was executed in the
21447 pass one. */
21448 at_commandline = 0;
21449 }
21450 else
21451 current_file = macro_start_file (file, line, current_file, lh);
21452 }
21453 break;
21454
21455 case DW_MACRO_GNU_end_file:
21456 if (! current_file)
21457 complaint (&symfile_complaints,
21458 _("macro debug info has an unmatched "
21459 "`close_file' directive"));
21460 else
21461 {
21462 current_file = current_file->included_by;
21463 if (! current_file)
21464 {
21465 enum dwarf_macro_record_type next_type;
21466
21467 /* GCC circa March 2002 doesn't produce the zero
21468 type byte marking the end of the compilation
21469 unit. Complain if it's not there, but exit no
21470 matter what. */
21471
21472 /* Do we at least have room for a macinfo type byte? */
21473 if (mac_ptr >= mac_end)
21474 {
21475 dwarf2_section_buffer_overflow_complaint (section);
21476 return;
21477 }
21478
21479 /* We don't increment mac_ptr here, so this is just
21480 a look-ahead. */
21481 next_type
21482 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21483 mac_ptr);
21484 if (next_type != 0)
21485 complaint (&symfile_complaints,
21486 _("no terminating 0-type entry for "
21487 "macros in `.debug_macinfo' section"));
21488
21489 return;
21490 }
21491 }
21492 break;
21493
21494 case DW_MACRO_GNU_transparent_include:
21495 case DW_MACRO_GNU_transparent_include_alt:
21496 {
21497 LONGEST offset;
21498 void **slot;
21499 bfd *include_bfd = abfd;
21500 struct dwarf2_section_info *include_section = section;
21501 const gdb_byte *include_mac_end = mac_end;
21502 int is_dwz = section_is_dwz;
21503 const gdb_byte *new_mac_ptr;
21504
21505 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21506 mac_ptr += offset_size;
21507
21508 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21509 {
21510 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21511
21512 dwarf2_read_section (objfile, &dwz->macro);
21513
21514 include_section = &dwz->macro;
21515 include_bfd = get_section_bfd_owner (include_section);
21516 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21517 is_dwz = 1;
21518 }
21519
21520 new_mac_ptr = include_section->buffer + offset;
21521 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21522
21523 if (*slot != NULL)
21524 {
21525 /* This has actually happened; see
21526 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21527 complaint (&symfile_complaints,
21528 _("recursive DW_MACRO_GNU_transparent_include in "
21529 ".debug_macro section"));
21530 }
21531 else
21532 {
21533 *slot = (void *) new_mac_ptr;
21534
21535 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21536 include_mac_end, current_file, lh,
21537 section, section_is_gnu, is_dwz,
21538 offset_size, include_hash);
21539
21540 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21541 }
21542 }
21543 break;
21544
21545 case DW_MACINFO_vendor_ext:
21546 if (!section_is_gnu)
21547 {
21548 unsigned int bytes_read;
21549
21550 /* This reads the constant, but since we don't recognize
21551 any vendor extensions, we ignore it. */
21552 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21553 mac_ptr += bytes_read;
21554 read_direct_string (abfd, mac_ptr, &bytes_read);
21555 mac_ptr += bytes_read;
21556
21557 /* We don't recognize any vendor extensions. */
21558 break;
21559 }
21560 /* FALLTHROUGH */
21561
21562 default:
21563 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21564 mac_ptr, mac_end, abfd, offset_size,
21565 section);
21566 if (mac_ptr == NULL)
21567 return;
21568 break;
21569 }
21570 } while (macinfo_type != 0);
21571 }
21572
21573 static void
21574 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21575 int section_is_gnu)
21576 {
21577 struct objfile *objfile = dwarf2_per_objfile->objfile;
21578 struct line_header *lh = cu->line_header;
21579 bfd *abfd;
21580 const gdb_byte *mac_ptr, *mac_end;
21581 struct macro_source_file *current_file = 0;
21582 enum dwarf_macro_record_type macinfo_type;
21583 unsigned int offset_size = cu->header.offset_size;
21584 const gdb_byte *opcode_definitions[256];
21585 struct cleanup *cleanup;
21586 htab_t include_hash;
21587 void **slot;
21588 struct dwarf2_section_info *section;
21589 const char *section_name;
21590
21591 if (cu->dwo_unit != NULL)
21592 {
21593 if (section_is_gnu)
21594 {
21595 section = &cu->dwo_unit->dwo_file->sections.macro;
21596 section_name = ".debug_macro.dwo";
21597 }
21598 else
21599 {
21600 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21601 section_name = ".debug_macinfo.dwo";
21602 }
21603 }
21604 else
21605 {
21606 if (section_is_gnu)
21607 {
21608 section = &dwarf2_per_objfile->macro;
21609 section_name = ".debug_macro";
21610 }
21611 else
21612 {
21613 section = &dwarf2_per_objfile->macinfo;
21614 section_name = ".debug_macinfo";
21615 }
21616 }
21617
21618 dwarf2_read_section (objfile, section);
21619 if (section->buffer == NULL)
21620 {
21621 complaint (&symfile_complaints, _("missing %s section"), section_name);
21622 return;
21623 }
21624 abfd = get_section_bfd_owner (section);
21625
21626 /* First pass: Find the name of the base filename.
21627 This filename is needed in order to process all macros whose definition
21628 (or undefinition) comes from the command line. These macros are defined
21629 before the first DW_MACINFO_start_file entry, and yet still need to be
21630 associated to the base file.
21631
21632 To determine the base file name, we scan the macro definitions until we
21633 reach the first DW_MACINFO_start_file entry. We then initialize
21634 CURRENT_FILE accordingly so that any macro definition found before the
21635 first DW_MACINFO_start_file can still be associated to the base file. */
21636
21637 mac_ptr = section->buffer + offset;
21638 mac_end = section->buffer + section->size;
21639
21640 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21641 &offset_size, section_is_gnu);
21642 if (mac_ptr == NULL)
21643 {
21644 /* We already issued a complaint. */
21645 return;
21646 }
21647
21648 do
21649 {
21650 /* Do we at least have room for a macinfo type byte? */
21651 if (mac_ptr >= mac_end)
21652 {
21653 /* Complaint is printed during the second pass as GDB will probably
21654 stop the first pass earlier upon finding
21655 DW_MACINFO_start_file. */
21656 break;
21657 }
21658
21659 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21660 mac_ptr++;
21661
21662 /* Note that we rely on the fact that the corresponding GNU and
21663 DWARF constants are the same. */
21664 switch (macinfo_type)
21665 {
21666 /* A zero macinfo type indicates the end of the macro
21667 information. */
21668 case 0:
21669 break;
21670
21671 case DW_MACRO_GNU_define:
21672 case DW_MACRO_GNU_undef:
21673 /* Only skip the data by MAC_PTR. */
21674 {
21675 unsigned int bytes_read;
21676
21677 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21678 mac_ptr += bytes_read;
21679 read_direct_string (abfd, mac_ptr, &bytes_read);
21680 mac_ptr += bytes_read;
21681 }
21682 break;
21683
21684 case DW_MACRO_GNU_start_file:
21685 {
21686 unsigned int bytes_read;
21687 int line, file;
21688
21689 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21690 mac_ptr += bytes_read;
21691 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21692 mac_ptr += bytes_read;
21693
21694 current_file = macro_start_file (file, line, current_file, lh);
21695 }
21696 break;
21697
21698 case DW_MACRO_GNU_end_file:
21699 /* No data to skip by MAC_PTR. */
21700 break;
21701
21702 case DW_MACRO_GNU_define_indirect:
21703 case DW_MACRO_GNU_undef_indirect:
21704 case DW_MACRO_GNU_define_indirect_alt:
21705 case DW_MACRO_GNU_undef_indirect_alt:
21706 {
21707 unsigned int bytes_read;
21708
21709 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21710 mac_ptr += bytes_read;
21711 mac_ptr += offset_size;
21712 }
21713 break;
21714
21715 case DW_MACRO_GNU_transparent_include:
21716 case DW_MACRO_GNU_transparent_include_alt:
21717 /* Note that, according to the spec, a transparent include
21718 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21719 skip this opcode. */
21720 mac_ptr += offset_size;
21721 break;
21722
21723 case DW_MACINFO_vendor_ext:
21724 /* Only skip the data by MAC_PTR. */
21725 if (!section_is_gnu)
21726 {
21727 unsigned int bytes_read;
21728
21729 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21730 mac_ptr += bytes_read;
21731 read_direct_string (abfd, mac_ptr, &bytes_read);
21732 mac_ptr += bytes_read;
21733 }
21734 /* FALLTHROUGH */
21735
21736 default:
21737 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21738 mac_ptr, mac_end, abfd, offset_size,
21739 section);
21740 if (mac_ptr == NULL)
21741 return;
21742 break;
21743 }
21744 } while (macinfo_type != 0 && current_file == NULL);
21745
21746 /* Second pass: Process all entries.
21747
21748 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21749 command-line macro definitions/undefinitions. This flag is unset when we
21750 reach the first DW_MACINFO_start_file entry. */
21751
21752 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21753 NULL, xcalloc, xfree);
21754 cleanup = make_cleanup_htab_delete (include_hash);
21755 mac_ptr = section->buffer + offset;
21756 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21757 *slot = (void *) mac_ptr;
21758 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21759 current_file, lh, section,
21760 section_is_gnu, 0, offset_size, include_hash);
21761 do_cleanups (cleanup);
21762 }
21763
21764 /* Check if the attribute's form is a DW_FORM_block*
21765 if so return true else false. */
21766
21767 static int
21768 attr_form_is_block (const struct attribute *attr)
21769 {
21770 return (attr == NULL ? 0 :
21771 attr->form == DW_FORM_block1
21772 || attr->form == DW_FORM_block2
21773 || attr->form == DW_FORM_block4
21774 || attr->form == DW_FORM_block
21775 || attr->form == DW_FORM_exprloc);
21776 }
21777
21778 /* Return non-zero if ATTR's value is a section offset --- classes
21779 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21780 You may use DW_UNSND (attr) to retrieve such offsets.
21781
21782 Section 7.5.4, "Attribute Encodings", explains that no attribute
21783 may have a value that belongs to more than one of these classes; it
21784 would be ambiguous if we did, because we use the same forms for all
21785 of them. */
21786
21787 static int
21788 attr_form_is_section_offset (const struct attribute *attr)
21789 {
21790 return (attr->form == DW_FORM_data4
21791 || attr->form == DW_FORM_data8
21792 || attr->form == DW_FORM_sec_offset);
21793 }
21794
21795 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21796 zero otherwise. When this function returns true, you can apply
21797 dwarf2_get_attr_constant_value to it.
21798
21799 However, note that for some attributes you must check
21800 attr_form_is_section_offset before using this test. DW_FORM_data4
21801 and DW_FORM_data8 are members of both the constant class, and of
21802 the classes that contain offsets into other debug sections
21803 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21804 that, if an attribute's can be either a constant or one of the
21805 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21806 taken as section offsets, not constants. */
21807
21808 static int
21809 attr_form_is_constant (const struct attribute *attr)
21810 {
21811 switch (attr->form)
21812 {
21813 case DW_FORM_sdata:
21814 case DW_FORM_udata:
21815 case DW_FORM_data1:
21816 case DW_FORM_data2:
21817 case DW_FORM_data4:
21818 case DW_FORM_data8:
21819 return 1;
21820 default:
21821 return 0;
21822 }
21823 }
21824
21825
21826 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21827 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21828
21829 static int
21830 attr_form_is_ref (const struct attribute *attr)
21831 {
21832 switch (attr->form)
21833 {
21834 case DW_FORM_ref_addr:
21835 case DW_FORM_ref1:
21836 case DW_FORM_ref2:
21837 case DW_FORM_ref4:
21838 case DW_FORM_ref8:
21839 case DW_FORM_ref_udata:
21840 case DW_FORM_GNU_ref_alt:
21841 return 1;
21842 default:
21843 return 0;
21844 }
21845 }
21846
21847 /* Return the .debug_loc section to use for CU.
21848 For DWO files use .debug_loc.dwo. */
21849
21850 static struct dwarf2_section_info *
21851 cu_debug_loc_section (struct dwarf2_cu *cu)
21852 {
21853 if (cu->dwo_unit)
21854 return &cu->dwo_unit->dwo_file->sections.loc;
21855 return &dwarf2_per_objfile->loc;
21856 }
21857
21858 /* A helper function that fills in a dwarf2_loclist_baton. */
21859
21860 static void
21861 fill_in_loclist_baton (struct dwarf2_cu *cu,
21862 struct dwarf2_loclist_baton *baton,
21863 const struct attribute *attr)
21864 {
21865 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21866
21867 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21868
21869 baton->per_cu = cu->per_cu;
21870 gdb_assert (baton->per_cu);
21871 /* We don't know how long the location list is, but make sure we
21872 don't run off the edge of the section. */
21873 baton->size = section->size - DW_UNSND (attr);
21874 baton->data = section->buffer + DW_UNSND (attr);
21875 baton->base_address = cu->base_address;
21876 baton->from_dwo = cu->dwo_unit != NULL;
21877 }
21878
21879 static void
21880 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21881 struct dwarf2_cu *cu, int is_block)
21882 {
21883 struct objfile *objfile = dwarf2_per_objfile->objfile;
21884 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21885
21886 if (attr_form_is_section_offset (attr)
21887 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21888 the section. If so, fall through to the complaint in the
21889 other branch. */
21890 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21891 {
21892 struct dwarf2_loclist_baton *baton;
21893
21894 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21895
21896 fill_in_loclist_baton (cu, baton, attr);
21897
21898 if (cu->base_known == 0)
21899 complaint (&symfile_complaints,
21900 _("Location list used without "
21901 "specifying the CU base address."));
21902
21903 SYMBOL_ACLASS_INDEX (sym) = (is_block
21904 ? dwarf2_loclist_block_index
21905 : dwarf2_loclist_index);
21906 SYMBOL_LOCATION_BATON (sym) = baton;
21907 }
21908 else
21909 {
21910 struct dwarf2_locexpr_baton *baton;
21911
21912 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21913 baton->per_cu = cu->per_cu;
21914 gdb_assert (baton->per_cu);
21915
21916 if (attr_form_is_block (attr))
21917 {
21918 /* Note that we're just copying the block's data pointer
21919 here, not the actual data. We're still pointing into the
21920 info_buffer for SYM's objfile; right now we never release
21921 that buffer, but when we do clean up properly this may
21922 need to change. */
21923 baton->size = DW_BLOCK (attr)->size;
21924 baton->data = DW_BLOCK (attr)->data;
21925 }
21926 else
21927 {
21928 dwarf2_invalid_attrib_class_complaint ("location description",
21929 SYMBOL_NATURAL_NAME (sym));
21930 baton->size = 0;
21931 }
21932
21933 SYMBOL_ACLASS_INDEX (sym) = (is_block
21934 ? dwarf2_locexpr_block_index
21935 : dwarf2_locexpr_index);
21936 SYMBOL_LOCATION_BATON (sym) = baton;
21937 }
21938 }
21939
21940 /* Return the OBJFILE associated with the compilation unit CU. If CU
21941 came from a separate debuginfo file, then the master objfile is
21942 returned. */
21943
21944 struct objfile *
21945 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21946 {
21947 struct objfile *objfile = per_cu->objfile;
21948
21949 /* Return the master objfile, so that we can report and look up the
21950 correct file containing this variable. */
21951 if (objfile->separate_debug_objfile_backlink)
21952 objfile = objfile->separate_debug_objfile_backlink;
21953
21954 return objfile;
21955 }
21956
21957 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21958 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21959 CU_HEADERP first. */
21960
21961 static const struct comp_unit_head *
21962 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21963 struct dwarf2_per_cu_data *per_cu)
21964 {
21965 const gdb_byte *info_ptr;
21966
21967 if (per_cu->cu)
21968 return &per_cu->cu->header;
21969
21970 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21971
21972 memset (cu_headerp, 0, sizeof (*cu_headerp));
21973 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21974
21975 return cu_headerp;
21976 }
21977
21978 /* Return the address size given in the compilation unit header for CU. */
21979
21980 int
21981 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21982 {
21983 struct comp_unit_head cu_header_local;
21984 const struct comp_unit_head *cu_headerp;
21985
21986 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21987
21988 return cu_headerp->addr_size;
21989 }
21990
21991 /* Return the offset size given in the compilation unit header for CU. */
21992
21993 int
21994 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21995 {
21996 struct comp_unit_head cu_header_local;
21997 const struct comp_unit_head *cu_headerp;
21998
21999 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22000
22001 return cu_headerp->offset_size;
22002 }
22003
22004 /* See its dwarf2loc.h declaration. */
22005
22006 int
22007 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22008 {
22009 struct comp_unit_head cu_header_local;
22010 const struct comp_unit_head *cu_headerp;
22011
22012 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22013
22014 if (cu_headerp->version == 2)
22015 return cu_headerp->addr_size;
22016 else
22017 return cu_headerp->offset_size;
22018 }
22019
22020 /* Return the text offset of the CU. The returned offset comes from
22021 this CU's objfile. If this objfile came from a separate debuginfo
22022 file, then the offset may be different from the corresponding
22023 offset in the parent objfile. */
22024
22025 CORE_ADDR
22026 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22027 {
22028 struct objfile *objfile = per_cu->objfile;
22029
22030 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22031 }
22032
22033 /* Locate the .debug_info compilation unit from CU's objfile which contains
22034 the DIE at OFFSET. Raises an error on failure. */
22035
22036 static struct dwarf2_per_cu_data *
22037 dwarf2_find_containing_comp_unit (sect_offset offset,
22038 unsigned int offset_in_dwz,
22039 struct objfile *objfile)
22040 {
22041 struct dwarf2_per_cu_data *this_cu;
22042 int low, high;
22043 const sect_offset *cu_off;
22044
22045 low = 0;
22046 high = dwarf2_per_objfile->n_comp_units - 1;
22047 while (high > low)
22048 {
22049 struct dwarf2_per_cu_data *mid_cu;
22050 int mid = low + (high - low) / 2;
22051
22052 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22053 cu_off = &mid_cu->offset;
22054 if (mid_cu->is_dwz > offset_in_dwz
22055 || (mid_cu->is_dwz == offset_in_dwz
22056 && cu_off->sect_off >= offset.sect_off))
22057 high = mid;
22058 else
22059 low = mid + 1;
22060 }
22061 gdb_assert (low == high);
22062 this_cu = dwarf2_per_objfile->all_comp_units[low];
22063 cu_off = &this_cu->offset;
22064 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22065 {
22066 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22067 error (_("Dwarf Error: could not find partial DIE containing "
22068 "offset 0x%lx [in module %s]"),
22069 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22070
22071 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22072 <= offset.sect_off);
22073 return dwarf2_per_objfile->all_comp_units[low-1];
22074 }
22075 else
22076 {
22077 this_cu = dwarf2_per_objfile->all_comp_units[low];
22078 if (low == dwarf2_per_objfile->n_comp_units - 1
22079 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22080 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22081 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22082 return this_cu;
22083 }
22084 }
22085
22086 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22087
22088 static void
22089 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22090 {
22091 memset (cu, 0, sizeof (*cu));
22092 per_cu->cu = cu;
22093 cu->per_cu = per_cu;
22094 cu->objfile = per_cu->objfile;
22095 obstack_init (&cu->comp_unit_obstack);
22096 }
22097
22098 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22099
22100 static void
22101 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22102 enum language pretend_language)
22103 {
22104 struct attribute *attr;
22105
22106 /* Set the language we're debugging. */
22107 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22108 if (attr)
22109 set_cu_language (DW_UNSND (attr), cu);
22110 else
22111 {
22112 cu->language = pretend_language;
22113 cu->language_defn = language_def (cu->language);
22114 }
22115
22116 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22117 }
22118
22119 /* Release one cached compilation unit, CU. We unlink it from the tree
22120 of compilation units, but we don't remove it from the read_in_chain;
22121 the caller is responsible for that.
22122 NOTE: DATA is a void * because this function is also used as a
22123 cleanup routine. */
22124
22125 static void
22126 free_heap_comp_unit (void *data)
22127 {
22128 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22129
22130 gdb_assert (cu->per_cu != NULL);
22131 cu->per_cu->cu = NULL;
22132 cu->per_cu = NULL;
22133
22134 obstack_free (&cu->comp_unit_obstack, NULL);
22135
22136 xfree (cu);
22137 }
22138
22139 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22140 when we're finished with it. We can't free the pointer itself, but be
22141 sure to unlink it from the cache. Also release any associated storage. */
22142
22143 static void
22144 free_stack_comp_unit (void *data)
22145 {
22146 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22147
22148 gdb_assert (cu->per_cu != NULL);
22149 cu->per_cu->cu = NULL;
22150 cu->per_cu = NULL;
22151
22152 obstack_free (&cu->comp_unit_obstack, NULL);
22153 cu->partial_dies = NULL;
22154 }
22155
22156 /* Free all cached compilation units. */
22157
22158 static void
22159 free_cached_comp_units (void *data)
22160 {
22161 struct dwarf2_per_cu_data *per_cu, **last_chain;
22162
22163 per_cu = dwarf2_per_objfile->read_in_chain;
22164 last_chain = &dwarf2_per_objfile->read_in_chain;
22165 while (per_cu != NULL)
22166 {
22167 struct dwarf2_per_cu_data *next_cu;
22168
22169 next_cu = per_cu->cu->read_in_chain;
22170
22171 free_heap_comp_unit (per_cu->cu);
22172 *last_chain = next_cu;
22173
22174 per_cu = next_cu;
22175 }
22176 }
22177
22178 /* Increase the age counter on each cached compilation unit, and free
22179 any that are too old. */
22180
22181 static void
22182 age_cached_comp_units (void)
22183 {
22184 struct dwarf2_per_cu_data *per_cu, **last_chain;
22185
22186 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22187 per_cu = dwarf2_per_objfile->read_in_chain;
22188 while (per_cu != NULL)
22189 {
22190 per_cu->cu->last_used ++;
22191 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22192 dwarf2_mark (per_cu->cu);
22193 per_cu = per_cu->cu->read_in_chain;
22194 }
22195
22196 per_cu = dwarf2_per_objfile->read_in_chain;
22197 last_chain = &dwarf2_per_objfile->read_in_chain;
22198 while (per_cu != NULL)
22199 {
22200 struct dwarf2_per_cu_data *next_cu;
22201
22202 next_cu = per_cu->cu->read_in_chain;
22203
22204 if (!per_cu->cu->mark)
22205 {
22206 free_heap_comp_unit (per_cu->cu);
22207 *last_chain = next_cu;
22208 }
22209 else
22210 last_chain = &per_cu->cu->read_in_chain;
22211
22212 per_cu = next_cu;
22213 }
22214 }
22215
22216 /* Remove a single compilation unit from the cache. */
22217
22218 static void
22219 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22220 {
22221 struct dwarf2_per_cu_data *per_cu, **last_chain;
22222
22223 per_cu = dwarf2_per_objfile->read_in_chain;
22224 last_chain = &dwarf2_per_objfile->read_in_chain;
22225 while (per_cu != NULL)
22226 {
22227 struct dwarf2_per_cu_data *next_cu;
22228
22229 next_cu = per_cu->cu->read_in_chain;
22230
22231 if (per_cu == target_per_cu)
22232 {
22233 free_heap_comp_unit (per_cu->cu);
22234 per_cu->cu = NULL;
22235 *last_chain = next_cu;
22236 break;
22237 }
22238 else
22239 last_chain = &per_cu->cu->read_in_chain;
22240
22241 per_cu = next_cu;
22242 }
22243 }
22244
22245 /* Release all extra memory associated with OBJFILE. */
22246
22247 void
22248 dwarf2_free_objfile (struct objfile *objfile)
22249 {
22250 dwarf2_per_objfile
22251 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22252 dwarf2_objfile_data_key);
22253
22254 if (dwarf2_per_objfile == NULL)
22255 return;
22256
22257 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22258 free_cached_comp_units (NULL);
22259
22260 if (dwarf2_per_objfile->quick_file_names_table)
22261 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22262
22263 if (dwarf2_per_objfile->line_header_hash)
22264 htab_delete (dwarf2_per_objfile->line_header_hash);
22265
22266 /* Everything else should be on the objfile obstack. */
22267 }
22268
22269 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22270 We store these in a hash table separate from the DIEs, and preserve them
22271 when the DIEs are flushed out of cache.
22272
22273 The CU "per_cu" pointer is needed because offset alone is not enough to
22274 uniquely identify the type. A file may have multiple .debug_types sections,
22275 or the type may come from a DWO file. Furthermore, while it's more logical
22276 to use per_cu->section+offset, with Fission the section with the data is in
22277 the DWO file but we don't know that section at the point we need it.
22278 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22279 because we can enter the lookup routine, get_die_type_at_offset, from
22280 outside this file, and thus won't necessarily have PER_CU->cu.
22281 Fortunately, PER_CU is stable for the life of the objfile. */
22282
22283 struct dwarf2_per_cu_offset_and_type
22284 {
22285 const struct dwarf2_per_cu_data *per_cu;
22286 sect_offset offset;
22287 struct type *type;
22288 };
22289
22290 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22291
22292 static hashval_t
22293 per_cu_offset_and_type_hash (const void *item)
22294 {
22295 const struct dwarf2_per_cu_offset_and_type *ofs
22296 = (const struct dwarf2_per_cu_offset_and_type *) item;
22297
22298 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22299 }
22300
22301 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22302
22303 static int
22304 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22305 {
22306 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22307 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22308 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22309 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22310
22311 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22312 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22313 }
22314
22315 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22316 table if necessary. For convenience, return TYPE.
22317
22318 The DIEs reading must have careful ordering to:
22319 * Not cause infite loops trying to read in DIEs as a prerequisite for
22320 reading current DIE.
22321 * Not trying to dereference contents of still incompletely read in types
22322 while reading in other DIEs.
22323 * Enable referencing still incompletely read in types just by a pointer to
22324 the type without accessing its fields.
22325
22326 Therefore caller should follow these rules:
22327 * Try to fetch any prerequisite types we may need to build this DIE type
22328 before building the type and calling set_die_type.
22329 * After building type call set_die_type for current DIE as soon as
22330 possible before fetching more types to complete the current type.
22331 * Make the type as complete as possible before fetching more types. */
22332
22333 static struct type *
22334 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22335 {
22336 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22337 struct objfile *objfile = cu->objfile;
22338 struct attribute *attr;
22339 struct dynamic_prop prop;
22340
22341 /* For Ada types, make sure that the gnat-specific data is always
22342 initialized (if not already set). There are a few types where
22343 we should not be doing so, because the type-specific area is
22344 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22345 where the type-specific area is used to store the floatformat).
22346 But this is not a problem, because the gnat-specific information
22347 is actually not needed for these types. */
22348 if (need_gnat_info (cu)
22349 && TYPE_CODE (type) != TYPE_CODE_FUNC
22350 && TYPE_CODE (type) != TYPE_CODE_FLT
22351 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22352 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22353 && TYPE_CODE (type) != TYPE_CODE_METHOD
22354 && !HAVE_GNAT_AUX_INFO (type))
22355 INIT_GNAT_SPECIFIC (type);
22356
22357 /* Read DW_AT_allocated and set in type. */
22358 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22359 if (attr_form_is_block (attr))
22360 {
22361 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22362 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22363 }
22364 else if (attr != NULL)
22365 {
22366 complaint (&symfile_complaints,
22367 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22368 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22369 die->offset.sect_off);
22370 }
22371
22372 /* Read DW_AT_associated and set in type. */
22373 attr = dwarf2_attr (die, DW_AT_associated, cu);
22374 if (attr_form_is_block (attr))
22375 {
22376 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22377 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22378 }
22379 else if (attr != NULL)
22380 {
22381 complaint (&symfile_complaints,
22382 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22383 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22384 die->offset.sect_off);
22385 }
22386
22387 /* Read DW_AT_data_location and set in type. */
22388 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22389 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22390 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22391
22392 if (dwarf2_per_objfile->die_type_hash == NULL)
22393 {
22394 dwarf2_per_objfile->die_type_hash =
22395 htab_create_alloc_ex (127,
22396 per_cu_offset_and_type_hash,
22397 per_cu_offset_and_type_eq,
22398 NULL,
22399 &objfile->objfile_obstack,
22400 hashtab_obstack_allocate,
22401 dummy_obstack_deallocate);
22402 }
22403
22404 ofs.per_cu = cu->per_cu;
22405 ofs.offset = die->offset;
22406 ofs.type = type;
22407 slot = (struct dwarf2_per_cu_offset_and_type **)
22408 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22409 if (*slot)
22410 complaint (&symfile_complaints,
22411 _("A problem internal to GDB: DIE 0x%x has type already set"),
22412 die->offset.sect_off);
22413 *slot = XOBNEW (&objfile->objfile_obstack,
22414 struct dwarf2_per_cu_offset_and_type);
22415 **slot = ofs;
22416 return type;
22417 }
22418
22419 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22420 or return NULL if the die does not have a saved type. */
22421
22422 static struct type *
22423 get_die_type_at_offset (sect_offset offset,
22424 struct dwarf2_per_cu_data *per_cu)
22425 {
22426 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22427
22428 if (dwarf2_per_objfile->die_type_hash == NULL)
22429 return NULL;
22430
22431 ofs.per_cu = per_cu;
22432 ofs.offset = offset;
22433 slot = ((struct dwarf2_per_cu_offset_and_type *)
22434 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22435 if (slot)
22436 return slot->type;
22437 else
22438 return NULL;
22439 }
22440
22441 /* Look up the type for DIE in CU in die_type_hash,
22442 or return NULL if DIE does not have a saved type. */
22443
22444 static struct type *
22445 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22446 {
22447 return get_die_type_at_offset (die->offset, cu->per_cu);
22448 }
22449
22450 /* Add a dependence relationship from CU to REF_PER_CU. */
22451
22452 static void
22453 dwarf2_add_dependence (struct dwarf2_cu *cu,
22454 struct dwarf2_per_cu_data *ref_per_cu)
22455 {
22456 void **slot;
22457
22458 if (cu->dependencies == NULL)
22459 cu->dependencies
22460 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22461 NULL, &cu->comp_unit_obstack,
22462 hashtab_obstack_allocate,
22463 dummy_obstack_deallocate);
22464
22465 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22466 if (*slot == NULL)
22467 *slot = ref_per_cu;
22468 }
22469
22470 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22471 Set the mark field in every compilation unit in the
22472 cache that we must keep because we are keeping CU. */
22473
22474 static int
22475 dwarf2_mark_helper (void **slot, void *data)
22476 {
22477 struct dwarf2_per_cu_data *per_cu;
22478
22479 per_cu = (struct dwarf2_per_cu_data *) *slot;
22480
22481 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22482 reading of the chain. As such dependencies remain valid it is not much
22483 useful to track and undo them during QUIT cleanups. */
22484 if (per_cu->cu == NULL)
22485 return 1;
22486
22487 if (per_cu->cu->mark)
22488 return 1;
22489 per_cu->cu->mark = 1;
22490
22491 if (per_cu->cu->dependencies != NULL)
22492 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22493
22494 return 1;
22495 }
22496
22497 /* Set the mark field in CU and in every other compilation unit in the
22498 cache that we must keep because we are keeping CU. */
22499
22500 static void
22501 dwarf2_mark (struct dwarf2_cu *cu)
22502 {
22503 if (cu->mark)
22504 return;
22505 cu->mark = 1;
22506 if (cu->dependencies != NULL)
22507 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22508 }
22509
22510 static void
22511 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22512 {
22513 while (per_cu)
22514 {
22515 per_cu->cu->mark = 0;
22516 per_cu = per_cu->cu->read_in_chain;
22517 }
22518 }
22519
22520 /* Trivial hash function for partial_die_info: the hash value of a DIE
22521 is its offset in .debug_info for this objfile. */
22522
22523 static hashval_t
22524 partial_die_hash (const void *item)
22525 {
22526 const struct partial_die_info *part_die
22527 = (const struct partial_die_info *) item;
22528
22529 return part_die->offset.sect_off;
22530 }
22531
22532 /* Trivial comparison function for partial_die_info structures: two DIEs
22533 are equal if they have the same offset. */
22534
22535 static int
22536 partial_die_eq (const void *item_lhs, const void *item_rhs)
22537 {
22538 const struct partial_die_info *part_die_lhs
22539 = (const struct partial_die_info *) item_lhs;
22540 const struct partial_die_info *part_die_rhs
22541 = (const struct partial_die_info *) item_rhs;
22542
22543 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22544 }
22545
22546 static struct cmd_list_element *set_dwarf_cmdlist;
22547 static struct cmd_list_element *show_dwarf_cmdlist;
22548
22549 static void
22550 set_dwarf_cmd (char *args, int from_tty)
22551 {
22552 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22553 gdb_stdout);
22554 }
22555
22556 static void
22557 show_dwarf_cmd (char *args, int from_tty)
22558 {
22559 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22560 }
22561
22562 /* Free data associated with OBJFILE, if necessary. */
22563
22564 static void
22565 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22566 {
22567 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22568 int ix;
22569
22570 /* Make sure we don't accidentally use dwarf2_per_objfile while
22571 cleaning up. */
22572 dwarf2_per_objfile = NULL;
22573
22574 for (ix = 0; ix < data->n_comp_units; ++ix)
22575 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22576
22577 for (ix = 0; ix < data->n_type_units; ++ix)
22578 VEC_free (dwarf2_per_cu_ptr,
22579 data->all_type_units[ix]->per_cu.imported_symtabs);
22580 xfree (data->all_type_units);
22581
22582 VEC_free (dwarf2_section_info_def, data->types);
22583
22584 if (data->dwo_files)
22585 free_dwo_files (data->dwo_files, objfile);
22586 if (data->dwp_file)
22587 gdb_bfd_unref (data->dwp_file->dbfd);
22588
22589 if (data->dwz_file && data->dwz_file->dwz_bfd)
22590 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22591 }
22592
22593 \f
22594 /* The "save gdb-index" command. */
22595
22596 /* The contents of the hash table we create when building the string
22597 table. */
22598 struct strtab_entry
22599 {
22600 offset_type offset;
22601 const char *str;
22602 };
22603
22604 /* Hash function for a strtab_entry.
22605
22606 Function is used only during write_hash_table so no index format backward
22607 compatibility is needed. */
22608
22609 static hashval_t
22610 hash_strtab_entry (const void *e)
22611 {
22612 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22613 return mapped_index_string_hash (INT_MAX, entry->str);
22614 }
22615
22616 /* Equality function for a strtab_entry. */
22617
22618 static int
22619 eq_strtab_entry (const void *a, const void *b)
22620 {
22621 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22622 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22623 return !strcmp (ea->str, eb->str);
22624 }
22625
22626 /* Create a strtab_entry hash table. */
22627
22628 static htab_t
22629 create_strtab (void)
22630 {
22631 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22632 xfree, xcalloc, xfree);
22633 }
22634
22635 /* Add a string to the constant pool. Return the string's offset in
22636 host order. */
22637
22638 static offset_type
22639 add_string (htab_t table, struct obstack *cpool, const char *str)
22640 {
22641 void **slot;
22642 struct strtab_entry entry;
22643 struct strtab_entry *result;
22644
22645 entry.str = str;
22646 slot = htab_find_slot (table, &entry, INSERT);
22647 if (*slot)
22648 result = (struct strtab_entry *) *slot;
22649 else
22650 {
22651 result = XNEW (struct strtab_entry);
22652 result->offset = obstack_object_size (cpool);
22653 result->str = str;
22654 obstack_grow_str0 (cpool, str);
22655 *slot = result;
22656 }
22657 return result->offset;
22658 }
22659
22660 /* An entry in the symbol table. */
22661 struct symtab_index_entry
22662 {
22663 /* The name of the symbol. */
22664 const char *name;
22665 /* The offset of the name in the constant pool. */
22666 offset_type index_offset;
22667 /* A sorted vector of the indices of all the CUs that hold an object
22668 of this name. */
22669 VEC (offset_type) *cu_indices;
22670 };
22671
22672 /* The symbol table. This is a power-of-2-sized hash table. */
22673 struct mapped_symtab
22674 {
22675 offset_type n_elements;
22676 offset_type size;
22677 struct symtab_index_entry **data;
22678 };
22679
22680 /* Hash function for a symtab_index_entry. */
22681
22682 static hashval_t
22683 hash_symtab_entry (const void *e)
22684 {
22685 const struct symtab_index_entry *entry
22686 = (const struct symtab_index_entry *) e;
22687 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22688 sizeof (offset_type) * VEC_length (offset_type,
22689 entry->cu_indices),
22690 0);
22691 }
22692
22693 /* Equality function for a symtab_index_entry. */
22694
22695 static int
22696 eq_symtab_entry (const void *a, const void *b)
22697 {
22698 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22699 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22700 int len = VEC_length (offset_type, ea->cu_indices);
22701 if (len != VEC_length (offset_type, eb->cu_indices))
22702 return 0;
22703 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22704 VEC_address (offset_type, eb->cu_indices),
22705 sizeof (offset_type) * len);
22706 }
22707
22708 /* Destroy a symtab_index_entry. */
22709
22710 static void
22711 delete_symtab_entry (void *p)
22712 {
22713 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22714 VEC_free (offset_type, entry->cu_indices);
22715 xfree (entry);
22716 }
22717
22718 /* Create a hash table holding symtab_index_entry objects. */
22719
22720 static htab_t
22721 create_symbol_hash_table (void)
22722 {
22723 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22724 delete_symtab_entry, xcalloc, xfree);
22725 }
22726
22727 /* Create a new mapped symtab object. */
22728
22729 static struct mapped_symtab *
22730 create_mapped_symtab (void)
22731 {
22732 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22733 symtab->n_elements = 0;
22734 symtab->size = 1024;
22735 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22736 return symtab;
22737 }
22738
22739 /* Destroy a mapped_symtab. */
22740
22741 static void
22742 cleanup_mapped_symtab (void *p)
22743 {
22744 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22745 /* The contents of the array are freed when the other hash table is
22746 destroyed. */
22747 xfree (symtab->data);
22748 xfree (symtab);
22749 }
22750
22751 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22752 the slot.
22753
22754 Function is used only during write_hash_table so no index format backward
22755 compatibility is needed. */
22756
22757 static struct symtab_index_entry **
22758 find_slot (struct mapped_symtab *symtab, const char *name)
22759 {
22760 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22761
22762 index = hash & (symtab->size - 1);
22763 step = ((hash * 17) & (symtab->size - 1)) | 1;
22764
22765 for (;;)
22766 {
22767 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22768 return &symtab->data[index];
22769 index = (index + step) & (symtab->size - 1);
22770 }
22771 }
22772
22773 /* Expand SYMTAB's hash table. */
22774
22775 static void
22776 hash_expand (struct mapped_symtab *symtab)
22777 {
22778 offset_type old_size = symtab->size;
22779 offset_type i;
22780 struct symtab_index_entry **old_entries = symtab->data;
22781
22782 symtab->size *= 2;
22783 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22784
22785 for (i = 0; i < old_size; ++i)
22786 {
22787 if (old_entries[i])
22788 {
22789 struct symtab_index_entry **slot = find_slot (symtab,
22790 old_entries[i]->name);
22791 *slot = old_entries[i];
22792 }
22793 }
22794
22795 xfree (old_entries);
22796 }
22797
22798 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22799 CU_INDEX is the index of the CU in which the symbol appears.
22800 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22801
22802 static void
22803 add_index_entry (struct mapped_symtab *symtab, const char *name,
22804 int is_static, gdb_index_symbol_kind kind,
22805 offset_type cu_index)
22806 {
22807 struct symtab_index_entry **slot;
22808 offset_type cu_index_and_attrs;
22809
22810 ++symtab->n_elements;
22811 if (4 * symtab->n_elements / 3 >= symtab->size)
22812 hash_expand (symtab);
22813
22814 slot = find_slot (symtab, name);
22815 if (!*slot)
22816 {
22817 *slot = XNEW (struct symtab_index_entry);
22818 (*slot)->name = name;
22819 /* index_offset is set later. */
22820 (*slot)->cu_indices = NULL;
22821 }
22822
22823 cu_index_and_attrs = 0;
22824 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22825 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22826 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22827
22828 /* We don't want to record an index value twice as we want to avoid the
22829 duplication.
22830 We process all global symbols and then all static symbols
22831 (which would allow us to avoid the duplication by only having to check
22832 the last entry pushed), but a symbol could have multiple kinds in one CU.
22833 To keep things simple we don't worry about the duplication here and
22834 sort and uniqufy the list after we've processed all symbols. */
22835 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22836 }
22837
22838 /* qsort helper routine for uniquify_cu_indices. */
22839
22840 static int
22841 offset_type_compare (const void *ap, const void *bp)
22842 {
22843 offset_type a = *(offset_type *) ap;
22844 offset_type b = *(offset_type *) bp;
22845
22846 return (a > b) - (b > a);
22847 }
22848
22849 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22850
22851 static void
22852 uniquify_cu_indices (struct mapped_symtab *symtab)
22853 {
22854 int i;
22855
22856 for (i = 0; i < symtab->size; ++i)
22857 {
22858 struct symtab_index_entry *entry = symtab->data[i];
22859
22860 if (entry
22861 && entry->cu_indices != NULL)
22862 {
22863 unsigned int next_to_insert, next_to_check;
22864 offset_type last_value;
22865
22866 qsort (VEC_address (offset_type, entry->cu_indices),
22867 VEC_length (offset_type, entry->cu_indices),
22868 sizeof (offset_type), offset_type_compare);
22869
22870 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22871 next_to_insert = 1;
22872 for (next_to_check = 1;
22873 next_to_check < VEC_length (offset_type, entry->cu_indices);
22874 ++next_to_check)
22875 {
22876 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22877 != last_value)
22878 {
22879 last_value = VEC_index (offset_type, entry->cu_indices,
22880 next_to_check);
22881 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22882 last_value);
22883 ++next_to_insert;
22884 }
22885 }
22886 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22887 }
22888 }
22889 }
22890
22891 /* Add a vector of indices to the constant pool. */
22892
22893 static offset_type
22894 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22895 struct symtab_index_entry *entry)
22896 {
22897 void **slot;
22898
22899 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22900 if (!*slot)
22901 {
22902 offset_type len = VEC_length (offset_type, entry->cu_indices);
22903 offset_type val = MAYBE_SWAP (len);
22904 offset_type iter;
22905 int i;
22906
22907 *slot = entry;
22908 entry->index_offset = obstack_object_size (cpool);
22909
22910 obstack_grow (cpool, &val, sizeof (val));
22911 for (i = 0;
22912 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22913 ++i)
22914 {
22915 val = MAYBE_SWAP (iter);
22916 obstack_grow (cpool, &val, sizeof (val));
22917 }
22918 }
22919 else
22920 {
22921 struct symtab_index_entry *old_entry
22922 = (struct symtab_index_entry *) *slot;
22923 entry->index_offset = old_entry->index_offset;
22924 entry = old_entry;
22925 }
22926 return entry->index_offset;
22927 }
22928
22929 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22930 constant pool entries going into the obstack CPOOL. */
22931
22932 static void
22933 write_hash_table (struct mapped_symtab *symtab,
22934 struct obstack *output, struct obstack *cpool)
22935 {
22936 offset_type i;
22937 htab_t symbol_hash_table;
22938 htab_t str_table;
22939
22940 symbol_hash_table = create_symbol_hash_table ();
22941 str_table = create_strtab ();
22942
22943 /* We add all the index vectors to the constant pool first, to
22944 ensure alignment is ok. */
22945 for (i = 0; i < symtab->size; ++i)
22946 {
22947 if (symtab->data[i])
22948 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22949 }
22950
22951 /* Now write out the hash table. */
22952 for (i = 0; i < symtab->size; ++i)
22953 {
22954 offset_type str_off, vec_off;
22955
22956 if (symtab->data[i])
22957 {
22958 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22959 vec_off = symtab->data[i]->index_offset;
22960 }
22961 else
22962 {
22963 /* While 0 is a valid constant pool index, it is not valid
22964 to have 0 for both offsets. */
22965 str_off = 0;
22966 vec_off = 0;
22967 }
22968
22969 str_off = MAYBE_SWAP (str_off);
22970 vec_off = MAYBE_SWAP (vec_off);
22971
22972 obstack_grow (output, &str_off, sizeof (str_off));
22973 obstack_grow (output, &vec_off, sizeof (vec_off));
22974 }
22975
22976 htab_delete (str_table);
22977 htab_delete (symbol_hash_table);
22978 }
22979
22980 /* Struct to map psymtab to CU index in the index file. */
22981 struct psymtab_cu_index_map
22982 {
22983 struct partial_symtab *psymtab;
22984 unsigned int cu_index;
22985 };
22986
22987 static hashval_t
22988 hash_psymtab_cu_index (const void *item)
22989 {
22990 const struct psymtab_cu_index_map *map
22991 = (const struct psymtab_cu_index_map *) item;
22992
22993 return htab_hash_pointer (map->psymtab);
22994 }
22995
22996 static int
22997 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22998 {
22999 const struct psymtab_cu_index_map *lhs
23000 = (const struct psymtab_cu_index_map *) item_lhs;
23001 const struct psymtab_cu_index_map *rhs
23002 = (const struct psymtab_cu_index_map *) item_rhs;
23003
23004 return lhs->psymtab == rhs->psymtab;
23005 }
23006
23007 /* Helper struct for building the address table. */
23008 struct addrmap_index_data
23009 {
23010 struct objfile *objfile;
23011 struct obstack *addr_obstack;
23012 htab_t cu_index_htab;
23013
23014 /* Non-zero if the previous_* fields are valid.
23015 We can't write an entry until we see the next entry (since it is only then
23016 that we know the end of the entry). */
23017 int previous_valid;
23018 /* Index of the CU in the table of all CUs in the index file. */
23019 unsigned int previous_cu_index;
23020 /* Start address of the CU. */
23021 CORE_ADDR previous_cu_start;
23022 };
23023
23024 /* Write an address entry to OBSTACK. */
23025
23026 static void
23027 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23028 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23029 {
23030 offset_type cu_index_to_write;
23031 gdb_byte addr[8];
23032 CORE_ADDR baseaddr;
23033
23034 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23035
23036 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23037 obstack_grow (obstack, addr, 8);
23038 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23039 obstack_grow (obstack, addr, 8);
23040 cu_index_to_write = MAYBE_SWAP (cu_index);
23041 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23042 }
23043
23044 /* Worker function for traversing an addrmap to build the address table. */
23045
23046 static int
23047 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23048 {
23049 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23050 struct partial_symtab *pst = (struct partial_symtab *) obj;
23051
23052 if (data->previous_valid)
23053 add_address_entry (data->objfile, data->addr_obstack,
23054 data->previous_cu_start, start_addr,
23055 data->previous_cu_index);
23056
23057 data->previous_cu_start = start_addr;
23058 if (pst != NULL)
23059 {
23060 struct psymtab_cu_index_map find_map, *map;
23061 find_map.psymtab = pst;
23062 map = ((struct psymtab_cu_index_map *)
23063 htab_find (data->cu_index_htab, &find_map));
23064 gdb_assert (map != NULL);
23065 data->previous_cu_index = map->cu_index;
23066 data->previous_valid = 1;
23067 }
23068 else
23069 data->previous_valid = 0;
23070
23071 return 0;
23072 }
23073
23074 /* Write OBJFILE's address map to OBSTACK.
23075 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23076 in the index file. */
23077
23078 static void
23079 write_address_map (struct objfile *objfile, struct obstack *obstack,
23080 htab_t cu_index_htab)
23081 {
23082 struct addrmap_index_data addrmap_index_data;
23083
23084 /* When writing the address table, we have to cope with the fact that
23085 the addrmap iterator only provides the start of a region; we have to
23086 wait until the next invocation to get the start of the next region. */
23087
23088 addrmap_index_data.objfile = objfile;
23089 addrmap_index_data.addr_obstack = obstack;
23090 addrmap_index_data.cu_index_htab = cu_index_htab;
23091 addrmap_index_data.previous_valid = 0;
23092
23093 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23094 &addrmap_index_data);
23095
23096 /* It's highly unlikely the last entry (end address = 0xff...ff)
23097 is valid, but we should still handle it.
23098 The end address is recorded as the start of the next region, but that
23099 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23100 anyway. */
23101 if (addrmap_index_data.previous_valid)
23102 add_address_entry (objfile, obstack,
23103 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23104 addrmap_index_data.previous_cu_index);
23105 }
23106
23107 /* Return the symbol kind of PSYM. */
23108
23109 static gdb_index_symbol_kind
23110 symbol_kind (struct partial_symbol *psym)
23111 {
23112 domain_enum domain = PSYMBOL_DOMAIN (psym);
23113 enum address_class aclass = PSYMBOL_CLASS (psym);
23114
23115 switch (domain)
23116 {
23117 case VAR_DOMAIN:
23118 switch (aclass)
23119 {
23120 case LOC_BLOCK:
23121 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23122 case LOC_TYPEDEF:
23123 return GDB_INDEX_SYMBOL_KIND_TYPE;
23124 case LOC_COMPUTED:
23125 case LOC_CONST_BYTES:
23126 case LOC_OPTIMIZED_OUT:
23127 case LOC_STATIC:
23128 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23129 case LOC_CONST:
23130 /* Note: It's currently impossible to recognize psyms as enum values
23131 short of reading the type info. For now punt. */
23132 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23133 default:
23134 /* There are other LOC_FOO values that one might want to classify
23135 as variables, but dwarf2read.c doesn't currently use them. */
23136 return GDB_INDEX_SYMBOL_KIND_OTHER;
23137 }
23138 case STRUCT_DOMAIN:
23139 return GDB_INDEX_SYMBOL_KIND_TYPE;
23140 default:
23141 return GDB_INDEX_SYMBOL_KIND_OTHER;
23142 }
23143 }
23144
23145 /* Add a list of partial symbols to SYMTAB. */
23146
23147 static void
23148 write_psymbols (struct mapped_symtab *symtab,
23149 htab_t psyms_seen,
23150 struct partial_symbol **psymp,
23151 int count,
23152 offset_type cu_index,
23153 int is_static)
23154 {
23155 for (; count-- > 0; ++psymp)
23156 {
23157 struct partial_symbol *psym = *psymp;
23158 void **slot;
23159
23160 if (SYMBOL_LANGUAGE (psym) == language_ada)
23161 error (_("Ada is not currently supported by the index"));
23162
23163 /* Only add a given psymbol once. */
23164 slot = htab_find_slot (psyms_seen, psym, INSERT);
23165 if (!*slot)
23166 {
23167 gdb_index_symbol_kind kind = symbol_kind (psym);
23168
23169 *slot = psym;
23170 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23171 is_static, kind, cu_index);
23172 }
23173 }
23174 }
23175
23176 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23177 exception if there is an error. */
23178
23179 static void
23180 write_obstack (FILE *file, struct obstack *obstack)
23181 {
23182 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23183 file)
23184 != obstack_object_size (obstack))
23185 error (_("couldn't data write to file"));
23186 }
23187
23188 /* Unlink a file if the argument is not NULL. */
23189
23190 static void
23191 unlink_if_set (void *p)
23192 {
23193 char **filename = (char **) p;
23194 if (*filename)
23195 unlink (*filename);
23196 }
23197
23198 /* A helper struct used when iterating over debug_types. */
23199 struct signatured_type_index_data
23200 {
23201 struct objfile *objfile;
23202 struct mapped_symtab *symtab;
23203 struct obstack *types_list;
23204 htab_t psyms_seen;
23205 int cu_index;
23206 };
23207
23208 /* A helper function that writes a single signatured_type to an
23209 obstack. */
23210
23211 static int
23212 write_one_signatured_type (void **slot, void *d)
23213 {
23214 struct signatured_type_index_data *info
23215 = (struct signatured_type_index_data *) d;
23216 struct signatured_type *entry = (struct signatured_type *) *slot;
23217 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23218 gdb_byte val[8];
23219
23220 write_psymbols (info->symtab,
23221 info->psyms_seen,
23222 info->objfile->global_psymbols.list
23223 + psymtab->globals_offset,
23224 psymtab->n_global_syms, info->cu_index,
23225 0);
23226 write_psymbols (info->symtab,
23227 info->psyms_seen,
23228 info->objfile->static_psymbols.list
23229 + psymtab->statics_offset,
23230 psymtab->n_static_syms, info->cu_index,
23231 1);
23232
23233 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23234 entry->per_cu.offset.sect_off);
23235 obstack_grow (info->types_list, val, 8);
23236 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23237 entry->type_offset_in_tu.cu_off);
23238 obstack_grow (info->types_list, val, 8);
23239 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23240 obstack_grow (info->types_list, val, 8);
23241
23242 ++info->cu_index;
23243
23244 return 1;
23245 }
23246
23247 /* Recurse into all "included" dependencies and write their symbols as
23248 if they appeared in this psymtab. */
23249
23250 static void
23251 recursively_write_psymbols (struct objfile *objfile,
23252 struct partial_symtab *psymtab,
23253 struct mapped_symtab *symtab,
23254 htab_t psyms_seen,
23255 offset_type cu_index)
23256 {
23257 int i;
23258
23259 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23260 if (psymtab->dependencies[i]->user != NULL)
23261 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23262 symtab, psyms_seen, cu_index);
23263
23264 write_psymbols (symtab,
23265 psyms_seen,
23266 objfile->global_psymbols.list + psymtab->globals_offset,
23267 psymtab->n_global_syms, cu_index,
23268 0);
23269 write_psymbols (symtab,
23270 psyms_seen,
23271 objfile->static_psymbols.list + psymtab->statics_offset,
23272 psymtab->n_static_syms, cu_index,
23273 1);
23274 }
23275
23276 /* Create an index file for OBJFILE in the directory DIR. */
23277
23278 static void
23279 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23280 {
23281 struct cleanup *cleanup;
23282 char *filename, *cleanup_filename;
23283 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23284 struct obstack cu_list, types_cu_list;
23285 int i;
23286 FILE *out_file;
23287 struct mapped_symtab *symtab;
23288 offset_type val, size_of_contents, total_len;
23289 struct stat st;
23290 htab_t psyms_seen;
23291 htab_t cu_index_htab;
23292 struct psymtab_cu_index_map *psymtab_cu_index_map;
23293
23294 if (dwarf2_per_objfile->using_index)
23295 error (_("Cannot use an index to create the index"));
23296
23297 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23298 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23299
23300 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23301 return;
23302
23303 if (stat (objfile_name (objfile), &st) < 0)
23304 perror_with_name (objfile_name (objfile));
23305
23306 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23307 INDEX_SUFFIX, (char *) NULL);
23308 cleanup = make_cleanup (xfree, filename);
23309
23310 out_file = gdb_fopen_cloexec (filename, "wb");
23311 if (!out_file)
23312 error (_("Can't open `%s' for writing"), filename);
23313
23314 cleanup_filename = filename;
23315 make_cleanup (unlink_if_set, &cleanup_filename);
23316
23317 symtab = create_mapped_symtab ();
23318 make_cleanup (cleanup_mapped_symtab, symtab);
23319
23320 obstack_init (&addr_obstack);
23321 make_cleanup_obstack_free (&addr_obstack);
23322
23323 obstack_init (&cu_list);
23324 make_cleanup_obstack_free (&cu_list);
23325
23326 obstack_init (&types_cu_list);
23327 make_cleanup_obstack_free (&types_cu_list);
23328
23329 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23330 NULL, xcalloc, xfree);
23331 make_cleanup_htab_delete (psyms_seen);
23332
23333 /* While we're scanning CU's create a table that maps a psymtab pointer
23334 (which is what addrmap records) to its index (which is what is recorded
23335 in the index file). This will later be needed to write the address
23336 table. */
23337 cu_index_htab = htab_create_alloc (100,
23338 hash_psymtab_cu_index,
23339 eq_psymtab_cu_index,
23340 NULL, xcalloc, xfree);
23341 make_cleanup_htab_delete (cu_index_htab);
23342 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23343 dwarf2_per_objfile->n_comp_units);
23344 make_cleanup (xfree, psymtab_cu_index_map);
23345
23346 /* The CU list is already sorted, so we don't need to do additional
23347 work here. Also, the debug_types entries do not appear in
23348 all_comp_units, but only in their own hash table. */
23349 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23350 {
23351 struct dwarf2_per_cu_data *per_cu
23352 = dwarf2_per_objfile->all_comp_units[i];
23353 struct partial_symtab *psymtab = per_cu->v.psymtab;
23354 gdb_byte val[8];
23355 struct psymtab_cu_index_map *map;
23356 void **slot;
23357
23358 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23359 It may be referenced from a local scope but in such case it does not
23360 need to be present in .gdb_index. */
23361 if (psymtab == NULL)
23362 continue;
23363
23364 if (psymtab->user == NULL)
23365 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23366
23367 map = &psymtab_cu_index_map[i];
23368 map->psymtab = psymtab;
23369 map->cu_index = i;
23370 slot = htab_find_slot (cu_index_htab, map, INSERT);
23371 gdb_assert (slot != NULL);
23372 gdb_assert (*slot == NULL);
23373 *slot = map;
23374
23375 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23376 per_cu->offset.sect_off);
23377 obstack_grow (&cu_list, val, 8);
23378 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23379 obstack_grow (&cu_list, val, 8);
23380 }
23381
23382 /* Dump the address map. */
23383 write_address_map (objfile, &addr_obstack, cu_index_htab);
23384
23385 /* Write out the .debug_type entries, if any. */
23386 if (dwarf2_per_objfile->signatured_types)
23387 {
23388 struct signatured_type_index_data sig_data;
23389
23390 sig_data.objfile = objfile;
23391 sig_data.symtab = symtab;
23392 sig_data.types_list = &types_cu_list;
23393 sig_data.psyms_seen = psyms_seen;
23394 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23395 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23396 write_one_signatured_type, &sig_data);
23397 }
23398
23399 /* Now that we've processed all symbols we can shrink their cu_indices
23400 lists. */
23401 uniquify_cu_indices (symtab);
23402
23403 obstack_init (&constant_pool);
23404 make_cleanup_obstack_free (&constant_pool);
23405 obstack_init (&symtab_obstack);
23406 make_cleanup_obstack_free (&symtab_obstack);
23407 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23408
23409 obstack_init (&contents);
23410 make_cleanup_obstack_free (&contents);
23411 size_of_contents = 6 * sizeof (offset_type);
23412 total_len = size_of_contents;
23413
23414 /* The version number. */
23415 val = MAYBE_SWAP (8);
23416 obstack_grow (&contents, &val, sizeof (val));
23417
23418 /* The offset of the CU list from the start of the file. */
23419 val = MAYBE_SWAP (total_len);
23420 obstack_grow (&contents, &val, sizeof (val));
23421 total_len += obstack_object_size (&cu_list);
23422
23423 /* The offset of the types CU list from the start of the file. */
23424 val = MAYBE_SWAP (total_len);
23425 obstack_grow (&contents, &val, sizeof (val));
23426 total_len += obstack_object_size (&types_cu_list);
23427
23428 /* The offset of the address table from the start of the file. */
23429 val = MAYBE_SWAP (total_len);
23430 obstack_grow (&contents, &val, sizeof (val));
23431 total_len += obstack_object_size (&addr_obstack);
23432
23433 /* The offset of the symbol table from the start of the file. */
23434 val = MAYBE_SWAP (total_len);
23435 obstack_grow (&contents, &val, sizeof (val));
23436 total_len += obstack_object_size (&symtab_obstack);
23437
23438 /* The offset of the constant pool from the start of the file. */
23439 val = MAYBE_SWAP (total_len);
23440 obstack_grow (&contents, &val, sizeof (val));
23441 total_len += obstack_object_size (&constant_pool);
23442
23443 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23444
23445 write_obstack (out_file, &contents);
23446 write_obstack (out_file, &cu_list);
23447 write_obstack (out_file, &types_cu_list);
23448 write_obstack (out_file, &addr_obstack);
23449 write_obstack (out_file, &symtab_obstack);
23450 write_obstack (out_file, &constant_pool);
23451
23452 fclose (out_file);
23453
23454 /* We want to keep the file, so we set cleanup_filename to NULL
23455 here. See unlink_if_set. */
23456 cleanup_filename = NULL;
23457
23458 do_cleanups (cleanup);
23459 }
23460
23461 /* Implementation of the `save gdb-index' command.
23462
23463 Note that the file format used by this command is documented in the
23464 GDB manual. Any changes here must be documented there. */
23465
23466 static void
23467 save_gdb_index_command (char *arg, int from_tty)
23468 {
23469 struct objfile *objfile;
23470
23471 if (!arg || !*arg)
23472 error (_("usage: save gdb-index DIRECTORY"));
23473
23474 ALL_OBJFILES (objfile)
23475 {
23476 struct stat st;
23477
23478 /* If the objfile does not correspond to an actual file, skip it. */
23479 if (stat (objfile_name (objfile), &st) < 0)
23480 continue;
23481
23482 dwarf2_per_objfile
23483 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23484 dwarf2_objfile_data_key);
23485 if (dwarf2_per_objfile)
23486 {
23487
23488 TRY
23489 {
23490 write_psymtabs_to_index (objfile, arg);
23491 }
23492 CATCH (except, RETURN_MASK_ERROR)
23493 {
23494 exception_fprintf (gdb_stderr, except,
23495 _("Error while writing index for `%s': "),
23496 objfile_name (objfile));
23497 }
23498 END_CATCH
23499 }
23500 }
23501 }
23502
23503 \f
23504
23505 int dwarf_always_disassemble;
23506
23507 static void
23508 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23509 struct cmd_list_element *c, const char *value)
23510 {
23511 fprintf_filtered (file,
23512 _("Whether to always disassemble "
23513 "DWARF expressions is %s.\n"),
23514 value);
23515 }
23516
23517 static void
23518 show_check_physname (struct ui_file *file, int from_tty,
23519 struct cmd_list_element *c, const char *value)
23520 {
23521 fprintf_filtered (file,
23522 _("Whether to check \"physname\" is %s.\n"),
23523 value);
23524 }
23525
23526 void _initialize_dwarf2_read (void);
23527
23528 void
23529 _initialize_dwarf2_read (void)
23530 {
23531 struct cmd_list_element *c;
23532
23533 dwarf2_objfile_data_key
23534 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23535
23536 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23537 Set DWARF specific variables.\n\
23538 Configure DWARF variables such as the cache size"),
23539 &set_dwarf_cmdlist, "maintenance set dwarf ",
23540 0/*allow-unknown*/, &maintenance_set_cmdlist);
23541
23542 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23543 Show DWARF specific variables\n\
23544 Show DWARF variables such as the cache size"),
23545 &show_dwarf_cmdlist, "maintenance show dwarf ",
23546 0/*allow-unknown*/, &maintenance_show_cmdlist);
23547
23548 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23549 &dwarf_max_cache_age, _("\
23550 Set the upper bound on the age of cached DWARF compilation units."), _("\
23551 Show the upper bound on the age of cached DWARF compilation units."), _("\
23552 A higher limit means that cached compilation units will be stored\n\
23553 in memory longer, and more total memory will be used. Zero disables\n\
23554 caching, which can slow down startup."),
23555 NULL,
23556 show_dwarf_max_cache_age,
23557 &set_dwarf_cmdlist,
23558 &show_dwarf_cmdlist);
23559
23560 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23561 &dwarf_always_disassemble, _("\
23562 Set whether `info address' always disassembles DWARF expressions."), _("\
23563 Show whether `info address' always disassembles DWARF expressions."), _("\
23564 When enabled, DWARF expressions are always printed in an assembly-like\n\
23565 syntax. When disabled, expressions will be printed in a more\n\
23566 conversational style, when possible."),
23567 NULL,
23568 show_dwarf_always_disassemble,
23569 &set_dwarf_cmdlist,
23570 &show_dwarf_cmdlist);
23571
23572 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23573 Set debugging of the DWARF reader."), _("\
23574 Show debugging of the DWARF reader."), _("\
23575 When enabled (non-zero), debugging messages are printed during DWARF\n\
23576 reading and symtab expansion. A value of 1 (one) provides basic\n\
23577 information. A value greater than 1 provides more verbose information."),
23578 NULL,
23579 NULL,
23580 &setdebuglist, &showdebuglist);
23581
23582 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23583 Set debugging of the DWARF DIE reader."), _("\
23584 Show debugging of the DWARF DIE reader."), _("\
23585 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23586 The value is the maximum depth to print."),
23587 NULL,
23588 NULL,
23589 &setdebuglist, &showdebuglist);
23590
23591 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23592 Set debugging of the dwarf line reader."), _("\
23593 Show debugging of the dwarf line reader."), _("\
23594 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23595 A value of 1 (one) provides basic information.\n\
23596 A value greater than 1 provides more verbose information."),
23597 NULL,
23598 NULL,
23599 &setdebuglist, &showdebuglist);
23600
23601 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23602 Set cross-checking of \"physname\" code against demangler."), _("\
23603 Show cross-checking of \"physname\" code against demangler."), _("\
23604 When enabled, GDB's internal \"physname\" code is checked against\n\
23605 the demangler."),
23606 NULL, show_check_physname,
23607 &setdebuglist, &showdebuglist);
23608
23609 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23610 no_class, &use_deprecated_index_sections, _("\
23611 Set whether to use deprecated gdb_index sections."), _("\
23612 Show whether to use deprecated gdb_index sections."), _("\
23613 When enabled, deprecated .gdb_index sections are used anyway.\n\
23614 Normally they are ignored either because of a missing feature or\n\
23615 performance issue.\n\
23616 Warning: This option must be enabled before gdb reads the file."),
23617 NULL,
23618 NULL,
23619 &setlist, &showlist);
23620
23621 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23622 _("\
23623 Save a gdb-index file.\n\
23624 Usage: save gdb-index DIRECTORY"),
23625 &save_cmdlist);
23626 set_cmd_completer (c, filename_completer);
23627
23628 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23629 &dwarf2_locexpr_funcs);
23630 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23631 &dwarf2_loclist_funcs);
23632
23633 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23634 &dwarf2_block_frame_base_locexpr_funcs);
23635 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23636 &dwarf2_block_frame_base_loclist_funcs);
23637 }
This page took 0.658501 seconds and 4 git commands to generate.