Work around binutils/15021.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 /* The CUs we import using DW_TAG_imported_unit. This is filled in
570 while reading psymtabs, used to compute the psymtab dependencies,
571 and then cleared. Then it is filled in again while reading full
572 symbols, and only deleted when the objfile is destroyed.
573
574 This is also used to work around a difference between the way gold
575 generates .gdb_index version <=7 and the way gdb does. Arguably this
576 is a gold bug. For symbols coming from TUs, gold records in the index
577 the CU that includes the TU instead of the TU itself. This breaks
578 dw2_lookup_symbol: It assumes that if the index says symbol X lives
579 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
580 will find X. Alas TUs live in their own symtab, so after expanding CU Y
581 we need to look in TU Z to find X. Fortunately, this is akin to
582 DW_TAG_imported_unit, so we just use the same mechanism: For
583 .gdb_index version <=7 this also records the TUs that the CU referred
584 to. Concurrently with this change gdb was modified to emit version 8
585 indices so we only pay a price for gold generated indices. */
586 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
587
588 /* Type units are grouped by their DW_AT_stmt_list entry so that they
589 can share them. If this is a TU, this points to the containing
590 symtab. */
591 struct type_unit_group *type_unit_group;
592 };
593
594 /* Entry in the signatured_types hash table. */
595
596 struct signatured_type
597 {
598 /* The "per_cu" object of this type.
599 N.B.: This is the first member so that it's easy to convert pointers
600 between them. */
601 struct dwarf2_per_cu_data per_cu;
602
603 /* The type's signature. */
604 ULONGEST signature;
605
606 /* Offset in the TU of the type's DIE, as read from the TU header.
607 If the definition lives in a DWO file, this value is unusable. */
608 cu_offset type_offset_in_tu;
609
610 /* Offset in the section of the type's DIE.
611 If the definition lives in a DWO file, this is the offset in the
612 .debug_types.dwo section.
613 The value is zero until the actual value is known.
614 Zero is otherwise not a valid section offset. */
615 sect_offset type_offset_in_section;
616 };
617
618 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
619 This includes type_unit_group and quick_file_names. */
620
621 struct stmt_list_hash
622 {
623 /* The DWO unit this table is from or NULL if there is none. */
624 struct dwo_unit *dwo_unit;
625
626 /* Offset in .debug_line or .debug_line.dwo. */
627 sect_offset line_offset;
628 };
629
630 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
631 an object of this type. */
632
633 struct type_unit_group
634 {
635 /* dwarf2read.c's main "handle" on the symtab.
636 To simplify things we create an artificial CU that "includes" all the
637 type units using this stmt_list so that the rest of the code still has
638 a "per_cu" handle on the symtab.
639 This PER_CU is recognized by having no section. */
640 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
641 struct dwarf2_per_cu_data per_cu;
642
643 union
644 {
645 /* The TUs that share this DW_AT_stmt_list entry.
646 This is added to while parsing type units to build partial symtabs,
647 and is deleted afterwards and not used again. */
648 VEC (dwarf2_per_cu_ptr) *tus;
649
650 /* When reading the line table in "quick" functions, we need a real TU.
651 Any will do, we know they all share the same DW_AT_stmt_list entry.
652 For simplicity's sake, we pick the first one. */
653 struct dwarf2_per_cu_data *first_tu;
654 } t;
655
656 /* The primary symtab.
657 Type units in a group needn't all be defined in the same source file,
658 so we create an essentially anonymous symtab as the primary symtab. */
659 struct symtab *primary_symtab;
660
661 /* The data used to construct the hash key. */
662 struct stmt_list_hash hash;
663
664 /* The number of symtabs from the line header.
665 The value here must match line_header.num_file_names. */
666 unsigned int num_symtabs;
667
668 /* The symbol tables for this TU (obtained from the files listed in
669 DW_AT_stmt_list).
670 WARNING: The order of entries here must match the order of entries
671 in the line header. After the first TU using this type_unit_group, the
672 line header for the subsequent TUs is recreated from this. This is done
673 because we need to use the same symtabs for each TU using the same
674 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
675 there's no guarantee the line header doesn't have duplicate entries. */
676 struct symtab **symtabs;
677 };
678
679 /* These sections are what may appear in a DWO file. */
680
681 struct dwo_sections
682 {
683 struct dwarf2_section_info abbrev;
684 struct dwarf2_section_info line;
685 struct dwarf2_section_info loc;
686 struct dwarf2_section_info macinfo;
687 struct dwarf2_section_info macro;
688 struct dwarf2_section_info str;
689 struct dwarf2_section_info str_offsets;
690 /* In the case of a virtual DWO file, these two are unused. */
691 struct dwarf2_section_info info;
692 VEC (dwarf2_section_info_def) *types;
693 };
694
695 /* Common bits of DWO CUs/TUs. */
696
697 struct dwo_unit
698 {
699 /* Backlink to the containing struct dwo_file. */
700 struct dwo_file *dwo_file;
701
702 /* The "id" that distinguishes this CU/TU.
703 .debug_info calls this "dwo_id", .debug_types calls this "signature".
704 Since signatures came first, we stick with it for consistency. */
705 ULONGEST signature;
706
707 /* The section this CU/TU lives in, in the DWO file. */
708 struct dwarf2_section_info *info_or_types_section;
709
710 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
711 sect_offset offset;
712 unsigned int length;
713
714 /* For types, offset in the type's DIE of the type defined by this TU. */
715 cu_offset type_offset_in_tu;
716 };
717
718 /* Data for one DWO file.
719 This includes virtual DWO files that have been packaged into a
720 DWP file. */
721
722 struct dwo_file
723 {
724 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
725 For virtual DWO files the name is constructed from the section offsets
726 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
727 from related CU+TUs. */
728 const char *name;
729
730 /* The bfd, when the file is open. Otherwise this is NULL.
731 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
732 bfd *dbfd;
733
734 /* Section info for this file. */
735 struct dwo_sections sections;
736
737 /* Table of CUs in the file.
738 Each element is a struct dwo_unit. */
739 htab_t cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_t tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info cu_index;
752 struct dwarf2_section_info tu_index;
753 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
754 by section number. We don't need to record them here. */
755 };
756
757 /* These sections are what may appear in a virtual DWO file. */
758
759 struct virtual_dwo_sections
760 {
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
768 That is recorded here, and copied to dwo_unit.info_or_types_section. */
769 struct dwarf2_section_info info_or_types;
770 };
771
772 /* Contents of DWP hash tables. */
773
774 struct dwp_hash_table
775 {
776 uint32_t nr_units, nr_slots;
777 const gdb_byte *hash_table, *unit_table, *section_pool;
778 };
779
780 /* Data for one DWP file. */
781
782 struct dwp_file
783 {
784 /* Name of the file. */
785 const char *name;
786
787 /* The bfd, when the file is open. Otherwise this is NULL. */
788 bfd *dbfd;
789
790 /* Section info for this file. */
791 struct dwp_sections sections;
792
793 /* Table of CUs in the file. */
794 const struct dwp_hash_table *cus;
795
796 /* Table of TUs in the file. */
797 const struct dwp_hash_table *tus;
798
799 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
800 htab_t loaded_cutus;
801
802 /* Table to map ELF section numbers to their sections. */
803 unsigned int num_sections;
804 asection **elf_sections;
805 };
806
807 /* This represents a '.dwz' file. */
808
809 struct dwz_file
810 {
811 /* A dwz file can only contain a few sections. */
812 struct dwarf2_section_info abbrev;
813 struct dwarf2_section_info info;
814 struct dwarf2_section_info str;
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info macro;
817 struct dwarf2_section_info gdb_index;
818
819 /* The dwz's BFD. */
820 bfd *dwz_bfd;
821 };
822
823 /* Struct used to pass misc. parameters to read_die_and_children, et
824 al. which are used for both .debug_info and .debug_types dies.
825 All parameters here are unchanging for the life of the call. This
826 struct exists to abstract away the constant parameters of die reading. */
827
828 struct die_reader_specs
829 {
830 /* die_section->asection->owner. */
831 bfd* abfd;
832
833 /* The CU of the DIE we are parsing. */
834 struct dwarf2_cu *cu;
835
836 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
837 struct dwo_file *dwo_file;
838
839 /* The section the die comes from.
840 This is either .debug_info or .debug_types, or the .dwo variants. */
841 struct dwarf2_section_info *die_section;
842
843 /* die_section->buffer. */
844 gdb_byte *buffer;
845
846 /* The end of the buffer. */
847 const gdb_byte *buffer_end;
848 };
849
850 /* Type of function passed to init_cutu_and_read_dies, et.al. */
851 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
852 gdb_byte *info_ptr,
853 struct die_info *comp_unit_die,
854 int has_children,
855 void *data);
856
857 /* The line number information for a compilation unit (found in the
858 .debug_line section) begins with a "statement program header",
859 which contains the following information. */
860 struct line_header
861 {
862 unsigned int total_length;
863 unsigned short version;
864 unsigned int header_length;
865 unsigned char minimum_instruction_length;
866 unsigned char maximum_ops_per_instruction;
867 unsigned char default_is_stmt;
868 int line_base;
869 unsigned char line_range;
870 unsigned char opcode_base;
871
872 /* standard_opcode_lengths[i] is the number of operands for the
873 standard opcode whose value is i. This means that
874 standard_opcode_lengths[0] is unused, and the last meaningful
875 element is standard_opcode_lengths[opcode_base - 1]. */
876 unsigned char *standard_opcode_lengths;
877
878 /* The include_directories table. NOTE! These strings are not
879 allocated with xmalloc; instead, they are pointers into
880 debug_line_buffer. If you try to free them, `free' will get
881 indigestion. */
882 unsigned int num_include_dirs, include_dirs_size;
883 char **include_dirs;
884
885 /* The file_names table. NOTE! These strings are not allocated
886 with xmalloc; instead, they are pointers into debug_line_buffer.
887 Don't try to free them directly. */
888 unsigned int num_file_names, file_names_size;
889 struct file_entry
890 {
891 char *name;
892 unsigned int dir_index;
893 unsigned int mod_time;
894 unsigned int length;
895 int included_p; /* Non-zero if referenced by the Line Number Program. */
896 struct symtab *symtab; /* The associated symbol table, if any. */
897 } *file_names;
898
899 /* The start and end of the statement program following this
900 header. These point into dwarf2_per_objfile->line_buffer. */
901 gdb_byte *statement_program_start, *statement_program_end;
902 };
903
904 /* When we construct a partial symbol table entry we only
905 need this much information. */
906 struct partial_die_info
907 {
908 /* Offset of this DIE. */
909 sect_offset offset;
910
911 /* DWARF-2 tag for this DIE. */
912 ENUM_BITFIELD(dwarf_tag) tag : 16;
913
914 /* Assorted flags describing the data found in this DIE. */
915 unsigned int has_children : 1;
916 unsigned int is_external : 1;
917 unsigned int is_declaration : 1;
918 unsigned int has_type : 1;
919 unsigned int has_specification : 1;
920 unsigned int has_pc_info : 1;
921 unsigned int may_be_inlined : 1;
922
923 /* Flag set if the SCOPE field of this structure has been
924 computed. */
925 unsigned int scope_set : 1;
926
927 /* Flag set if the DIE has a byte_size attribute. */
928 unsigned int has_byte_size : 1;
929
930 /* Flag set if any of the DIE's children are template arguments. */
931 unsigned int has_template_arguments : 1;
932
933 /* Flag set if fixup_partial_die has been called on this die. */
934 unsigned int fixup_called : 1;
935
936 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
937 unsigned int is_dwz : 1;
938
939 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
940 unsigned int spec_is_dwz : 1;
941
942 /* The name of this DIE. Normally the value of DW_AT_name, but
943 sometimes a default name for unnamed DIEs. */
944 const char *name;
945
946 /* The linkage name, if present. */
947 const char *linkage_name;
948
949 /* The scope to prepend to our children. This is generally
950 allocated on the comp_unit_obstack, so will disappear
951 when this compilation unit leaves the cache. */
952 const char *scope;
953
954 /* Some data associated with the partial DIE. The tag determines
955 which field is live. */
956 union
957 {
958 /* The location description associated with this DIE, if any. */
959 struct dwarf_block *locdesc;
960 /* The offset of an import, for DW_TAG_imported_unit. */
961 sect_offset offset;
962 } d;
963
964 /* If HAS_PC_INFO, the PC range associated with this DIE. */
965 CORE_ADDR lowpc;
966 CORE_ADDR highpc;
967
968 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
969 DW_AT_sibling, if any. */
970 /* NOTE: This member isn't strictly necessary, read_partial_die could
971 return DW_AT_sibling values to its caller load_partial_dies. */
972 gdb_byte *sibling;
973
974 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
975 DW_AT_specification (or DW_AT_abstract_origin or
976 DW_AT_extension). */
977 sect_offset spec_offset;
978
979 /* Pointers to this DIE's parent, first child, and next sibling,
980 if any. */
981 struct partial_die_info *die_parent, *die_child, *die_sibling;
982 };
983
984 /* This data structure holds the information of an abbrev. */
985 struct abbrev_info
986 {
987 unsigned int number; /* number identifying abbrev */
988 enum dwarf_tag tag; /* dwarf tag */
989 unsigned short has_children; /* boolean */
990 unsigned short num_attrs; /* number of attributes */
991 struct attr_abbrev *attrs; /* an array of attribute descriptions */
992 struct abbrev_info *next; /* next in chain */
993 };
994
995 struct attr_abbrev
996 {
997 ENUM_BITFIELD(dwarf_attribute) name : 16;
998 ENUM_BITFIELD(dwarf_form) form : 16;
999 };
1000
1001 /* Size of abbrev_table.abbrev_hash_table. */
1002 #define ABBREV_HASH_SIZE 121
1003
1004 /* Top level data structure to contain an abbreviation table. */
1005
1006 struct abbrev_table
1007 {
1008 /* Where the abbrev table came from.
1009 This is used as a sanity check when the table is used. */
1010 sect_offset offset;
1011
1012 /* Storage for the abbrev table. */
1013 struct obstack abbrev_obstack;
1014
1015 /* Hash table of abbrevs.
1016 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1017 It could be statically allocated, but the previous code didn't so we
1018 don't either. */
1019 struct abbrev_info **abbrevs;
1020 };
1021
1022 /* Attributes have a name and a value. */
1023 struct attribute
1024 {
1025 ENUM_BITFIELD(dwarf_attribute) name : 16;
1026 ENUM_BITFIELD(dwarf_form) form : 15;
1027
1028 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1029 field should be in u.str (existing only for DW_STRING) but it is kept
1030 here for better struct attribute alignment. */
1031 unsigned int string_is_canonical : 1;
1032
1033 union
1034 {
1035 const char *str;
1036 struct dwarf_block *blk;
1037 ULONGEST unsnd;
1038 LONGEST snd;
1039 CORE_ADDR addr;
1040 struct signatured_type *signatured_type;
1041 }
1042 u;
1043 };
1044
1045 /* This data structure holds a complete die structure. */
1046 struct die_info
1047 {
1048 /* DWARF-2 tag for this DIE. */
1049 ENUM_BITFIELD(dwarf_tag) tag : 16;
1050
1051 /* Number of attributes */
1052 unsigned char num_attrs;
1053
1054 /* True if we're presently building the full type name for the
1055 type derived from this DIE. */
1056 unsigned char building_fullname : 1;
1057
1058 /* Abbrev number */
1059 unsigned int abbrev;
1060
1061 /* Offset in .debug_info or .debug_types section. */
1062 sect_offset offset;
1063
1064 /* The dies in a compilation unit form an n-ary tree. PARENT
1065 points to this die's parent; CHILD points to the first child of
1066 this node; and all the children of a given node are chained
1067 together via their SIBLING fields. */
1068 struct die_info *child; /* Its first child, if any. */
1069 struct die_info *sibling; /* Its next sibling, if any. */
1070 struct die_info *parent; /* Its parent, if any. */
1071
1072 /* An array of attributes, with NUM_ATTRS elements. There may be
1073 zero, but it's not common and zero-sized arrays are not
1074 sufficiently portable C. */
1075 struct attribute attrs[1];
1076 };
1077
1078 /* Get at parts of an attribute structure. */
1079
1080 #define DW_STRING(attr) ((attr)->u.str)
1081 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1082 #define DW_UNSND(attr) ((attr)->u.unsnd)
1083 #define DW_BLOCK(attr) ((attr)->u.blk)
1084 #define DW_SND(attr) ((attr)->u.snd)
1085 #define DW_ADDR(attr) ((attr)->u.addr)
1086 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1087
1088 /* Blocks are a bunch of untyped bytes. */
1089 struct dwarf_block
1090 {
1091 size_t size;
1092
1093 /* Valid only if SIZE is not zero. */
1094 gdb_byte *data;
1095 };
1096
1097 #ifndef ATTR_ALLOC_CHUNK
1098 #define ATTR_ALLOC_CHUNK 4
1099 #endif
1100
1101 /* Allocate fields for structs, unions and enums in this size. */
1102 #ifndef DW_FIELD_ALLOC_CHUNK
1103 #define DW_FIELD_ALLOC_CHUNK 4
1104 #endif
1105
1106 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1107 but this would require a corresponding change in unpack_field_as_long
1108 and friends. */
1109 static int bits_per_byte = 8;
1110
1111 /* The routines that read and process dies for a C struct or C++ class
1112 pass lists of data member fields and lists of member function fields
1113 in an instance of a field_info structure, as defined below. */
1114 struct field_info
1115 {
1116 /* List of data member and baseclasses fields. */
1117 struct nextfield
1118 {
1119 struct nextfield *next;
1120 int accessibility;
1121 int virtuality;
1122 struct field field;
1123 }
1124 *fields, *baseclasses;
1125
1126 /* Number of fields (including baseclasses). */
1127 int nfields;
1128
1129 /* Number of baseclasses. */
1130 int nbaseclasses;
1131
1132 /* Set if the accesibility of one of the fields is not public. */
1133 int non_public_fields;
1134
1135 /* Member function fields array, entries are allocated in the order they
1136 are encountered in the object file. */
1137 struct nextfnfield
1138 {
1139 struct nextfnfield *next;
1140 struct fn_field fnfield;
1141 }
1142 *fnfields;
1143
1144 /* Member function fieldlist array, contains name of possibly overloaded
1145 member function, number of overloaded member functions and a pointer
1146 to the head of the member function field chain. */
1147 struct fnfieldlist
1148 {
1149 const char *name;
1150 int length;
1151 struct nextfnfield *head;
1152 }
1153 *fnfieldlists;
1154
1155 /* Number of entries in the fnfieldlists array. */
1156 int nfnfields;
1157
1158 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1159 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1160 struct typedef_field_list
1161 {
1162 struct typedef_field field;
1163 struct typedef_field_list *next;
1164 }
1165 *typedef_field_list;
1166 unsigned typedef_field_list_count;
1167 };
1168
1169 /* One item on the queue of compilation units to read in full symbols
1170 for. */
1171 struct dwarf2_queue_item
1172 {
1173 struct dwarf2_per_cu_data *per_cu;
1174 enum language pretend_language;
1175 struct dwarf2_queue_item *next;
1176 };
1177
1178 /* The current queue. */
1179 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1180
1181 /* Loaded secondary compilation units are kept in memory until they
1182 have not been referenced for the processing of this many
1183 compilation units. Set this to zero to disable caching. Cache
1184 sizes of up to at least twenty will improve startup time for
1185 typical inter-CU-reference binaries, at an obvious memory cost. */
1186 static int dwarf2_max_cache_age = 5;
1187 static void
1188 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1189 struct cmd_list_element *c, const char *value)
1190 {
1191 fprintf_filtered (file, _("The upper bound on the age of cached "
1192 "dwarf2 compilation units is %s.\n"),
1193 value);
1194 }
1195
1196
1197 /* Various complaints about symbol reading that don't abort the process. */
1198
1199 static void
1200 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1201 {
1202 complaint (&symfile_complaints,
1203 _("statement list doesn't fit in .debug_line section"));
1204 }
1205
1206 static void
1207 dwarf2_debug_line_missing_file_complaint (void)
1208 {
1209 complaint (&symfile_complaints,
1210 _(".debug_line section has line data without a file"));
1211 }
1212
1213 static void
1214 dwarf2_debug_line_missing_end_sequence_complaint (void)
1215 {
1216 complaint (&symfile_complaints,
1217 _(".debug_line section has line "
1218 "program sequence without an end"));
1219 }
1220
1221 static void
1222 dwarf2_complex_location_expr_complaint (void)
1223 {
1224 complaint (&symfile_complaints, _("location expression too complex"));
1225 }
1226
1227 static void
1228 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1229 int arg3)
1230 {
1231 complaint (&symfile_complaints,
1232 _("const value length mismatch for '%s', got %d, expected %d"),
1233 arg1, arg2, arg3);
1234 }
1235
1236 static void
1237 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1238 {
1239 complaint (&symfile_complaints,
1240 _("debug info runs off end of %s section"
1241 " [in module %s]"),
1242 section->asection->name,
1243 bfd_get_filename (section->asection->owner));
1244 }
1245
1246 static void
1247 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1248 {
1249 complaint (&symfile_complaints,
1250 _("macro debug info contains a "
1251 "malformed macro definition:\n`%s'"),
1252 arg1);
1253 }
1254
1255 static void
1256 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1257 {
1258 complaint (&symfile_complaints,
1259 _("invalid attribute class or form for '%s' in '%s'"),
1260 arg1, arg2);
1261 }
1262
1263 /* local function prototypes */
1264
1265 static void dwarf2_locate_sections (bfd *, asection *, void *);
1266
1267 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1268 struct objfile *);
1269
1270 static void dwarf2_find_base_address (struct die_info *die,
1271 struct dwarf2_cu *cu);
1272
1273 static void dwarf2_build_psymtabs_hard (struct objfile *);
1274
1275 static void scan_partial_symbols (struct partial_die_info *,
1276 CORE_ADDR *, CORE_ADDR *,
1277 int, struct dwarf2_cu *);
1278
1279 static void add_partial_symbol (struct partial_die_info *,
1280 struct dwarf2_cu *);
1281
1282 static void add_partial_namespace (struct partial_die_info *pdi,
1283 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1284 int need_pc, struct dwarf2_cu *cu);
1285
1286 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1287 CORE_ADDR *highpc, int need_pc,
1288 struct dwarf2_cu *cu);
1289
1290 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1291 struct dwarf2_cu *cu);
1292
1293 static void add_partial_subprogram (struct partial_die_info *pdi,
1294 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1295 int need_pc, struct dwarf2_cu *cu);
1296
1297 static void dwarf2_read_symtab (struct partial_symtab *,
1298 struct objfile *);
1299
1300 static void psymtab_to_symtab_1 (struct partial_symtab *);
1301
1302 static struct abbrev_info *abbrev_table_lookup_abbrev
1303 (const struct abbrev_table *, unsigned int);
1304
1305 static struct abbrev_table *abbrev_table_read_table
1306 (struct dwarf2_section_info *, sect_offset);
1307
1308 static void abbrev_table_free (struct abbrev_table *);
1309
1310 static void abbrev_table_free_cleanup (void *);
1311
1312 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1313 struct dwarf2_section_info *);
1314
1315 static void dwarf2_free_abbrev_table (void *);
1316
1317 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1318
1319 static struct partial_die_info *load_partial_dies
1320 (const struct die_reader_specs *, gdb_byte *, int);
1321
1322 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1323 struct partial_die_info *,
1324 struct abbrev_info *,
1325 unsigned int,
1326 gdb_byte *);
1327
1328 static struct partial_die_info *find_partial_die (sect_offset, int,
1329 struct dwarf2_cu *);
1330
1331 static void fixup_partial_die (struct partial_die_info *,
1332 struct dwarf2_cu *);
1333
1334 static gdb_byte *read_attribute (const struct die_reader_specs *,
1335 struct attribute *, struct attr_abbrev *,
1336 gdb_byte *);
1337
1338 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1339
1340 static int read_1_signed_byte (bfd *, const gdb_byte *);
1341
1342 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1343
1344 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1345
1346 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1347
1348 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1349 unsigned int *);
1350
1351 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1352
1353 static LONGEST read_checked_initial_length_and_offset
1354 (bfd *, gdb_byte *, const struct comp_unit_head *,
1355 unsigned int *, unsigned int *);
1356
1357 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1358 unsigned int *);
1359
1360 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1361
1362 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1363 sect_offset);
1364
1365 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1366
1367 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1368
1369 static char *read_indirect_string (bfd *, gdb_byte *,
1370 const struct comp_unit_head *,
1371 unsigned int *);
1372
1373 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1374
1375 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1376
1377 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1378
1379 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1380 unsigned int *);
1381
1382 static char *read_str_index (const struct die_reader_specs *reader,
1383 struct dwarf2_cu *cu, ULONGEST str_index);
1384
1385 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1386
1387 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1388 struct dwarf2_cu *);
1389
1390 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1391 unsigned int);
1392
1393 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1394 struct dwarf2_cu *cu);
1395
1396 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1397
1398 static struct die_info *die_specification (struct die_info *die,
1399 struct dwarf2_cu **);
1400
1401 static void free_line_header (struct line_header *lh);
1402
1403 static void add_file_name (struct line_header *, char *, unsigned int,
1404 unsigned int, unsigned int);
1405
1406 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1407 struct dwarf2_cu *cu);
1408
1409 static void dwarf_decode_lines (struct line_header *, const char *,
1410 struct dwarf2_cu *, struct partial_symtab *,
1411 int);
1412
1413 static void dwarf2_start_subfile (char *, const char *, const char *);
1414
1415 static void dwarf2_start_symtab (struct dwarf2_cu *,
1416 const char *, const char *, CORE_ADDR);
1417
1418 static struct symbol *new_symbol (struct die_info *, struct type *,
1419 struct dwarf2_cu *);
1420
1421 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1422 struct dwarf2_cu *, struct symbol *);
1423
1424 static void dwarf2_const_value (struct attribute *, struct symbol *,
1425 struct dwarf2_cu *);
1426
1427 static void dwarf2_const_value_attr (struct attribute *attr,
1428 struct type *type,
1429 const char *name,
1430 struct obstack *obstack,
1431 struct dwarf2_cu *cu, LONGEST *value,
1432 gdb_byte **bytes,
1433 struct dwarf2_locexpr_baton **baton);
1434
1435 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1436
1437 static int need_gnat_info (struct dwarf2_cu *);
1438
1439 static struct type *die_descriptive_type (struct die_info *,
1440 struct dwarf2_cu *);
1441
1442 static void set_descriptive_type (struct type *, struct die_info *,
1443 struct dwarf2_cu *);
1444
1445 static struct type *die_containing_type (struct die_info *,
1446 struct dwarf2_cu *);
1447
1448 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1449 struct dwarf2_cu *);
1450
1451 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1452
1453 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1454
1455 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1456
1457 static char *typename_concat (struct obstack *obs, const char *prefix,
1458 const char *suffix, int physname,
1459 struct dwarf2_cu *cu);
1460
1461 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1462
1463 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1464
1465 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1466
1467 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1468
1469 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1470
1471 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1472 struct dwarf2_cu *, struct partial_symtab *);
1473
1474 static int dwarf2_get_pc_bounds (struct die_info *,
1475 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1476 struct partial_symtab *);
1477
1478 static void get_scope_pc_bounds (struct die_info *,
1479 CORE_ADDR *, CORE_ADDR *,
1480 struct dwarf2_cu *);
1481
1482 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1483 CORE_ADDR, struct dwarf2_cu *);
1484
1485 static void dwarf2_add_field (struct field_info *, struct die_info *,
1486 struct dwarf2_cu *);
1487
1488 static void dwarf2_attach_fields_to_type (struct field_info *,
1489 struct type *, struct dwarf2_cu *);
1490
1491 static void dwarf2_add_member_fn (struct field_info *,
1492 struct die_info *, struct type *,
1493 struct dwarf2_cu *);
1494
1495 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1496 struct type *,
1497 struct dwarf2_cu *);
1498
1499 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1500
1501 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1502
1503 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1504
1505 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1506
1507 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1508
1509 static struct type *read_module_type (struct die_info *die,
1510 struct dwarf2_cu *cu);
1511
1512 static const char *namespace_name (struct die_info *die,
1513 int *is_anonymous, struct dwarf2_cu *);
1514
1515 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1516
1517 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1518
1519 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1520 struct dwarf2_cu *);
1521
1522 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1523 gdb_byte *info_ptr,
1524 gdb_byte **new_info_ptr,
1525 struct die_info *parent);
1526
1527 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1528 gdb_byte *info_ptr,
1529 gdb_byte **new_info_ptr,
1530 struct die_info *parent);
1531
1532 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1533 struct die_info **, gdb_byte *, int *, int);
1534
1535 static gdb_byte *read_full_die (const struct die_reader_specs *,
1536 struct die_info **, gdb_byte *, int *);
1537
1538 static void process_die (struct die_info *, struct dwarf2_cu *);
1539
1540 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1541 struct obstack *);
1542
1543 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1544
1545 static const char *dwarf2_full_name (const char *name,
1546 struct die_info *die,
1547 struct dwarf2_cu *cu);
1548
1549 static struct die_info *dwarf2_extension (struct die_info *die,
1550 struct dwarf2_cu **);
1551
1552 static const char *dwarf_tag_name (unsigned int);
1553
1554 static const char *dwarf_attr_name (unsigned int);
1555
1556 static const char *dwarf_form_name (unsigned int);
1557
1558 static char *dwarf_bool_name (unsigned int);
1559
1560 static const char *dwarf_type_encoding_name (unsigned int);
1561
1562 static struct die_info *sibling_die (struct die_info *);
1563
1564 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1565
1566 static void dump_die_for_error (struct die_info *);
1567
1568 static void dump_die_1 (struct ui_file *, int level, int max_level,
1569 struct die_info *);
1570
1571 /*static*/ void dump_die (struct die_info *, int max_level);
1572
1573 static void store_in_ref_table (struct die_info *,
1574 struct dwarf2_cu *);
1575
1576 static int is_ref_attr (struct attribute *);
1577
1578 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1579
1580 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1581
1582 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1583 struct attribute *,
1584 struct dwarf2_cu **);
1585
1586 static struct die_info *follow_die_ref (struct die_info *,
1587 struct attribute *,
1588 struct dwarf2_cu **);
1589
1590 static struct die_info *follow_die_sig (struct die_info *,
1591 struct attribute *,
1592 struct dwarf2_cu **);
1593
1594 static struct signatured_type *lookup_signatured_type_at_offset
1595 (struct objfile *objfile,
1596 struct dwarf2_section_info *section, sect_offset offset);
1597
1598 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1599
1600 static void read_signatured_type (struct signatured_type *);
1601
1602 static struct type_unit_group *get_type_unit_group
1603 (struct dwarf2_cu *, struct attribute *);
1604
1605 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1606
1607 /* memory allocation interface */
1608
1609 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1610
1611 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1612
1613 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1614 const char *, int);
1615
1616 static int attr_form_is_block (struct attribute *);
1617
1618 static int attr_form_is_section_offset (struct attribute *);
1619
1620 static int attr_form_is_constant (struct attribute *);
1621
1622 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1623 struct dwarf2_loclist_baton *baton,
1624 struct attribute *attr);
1625
1626 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1627 struct symbol *sym,
1628 struct dwarf2_cu *cu);
1629
1630 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1631 gdb_byte *info_ptr,
1632 struct abbrev_info *abbrev);
1633
1634 static void free_stack_comp_unit (void *);
1635
1636 static hashval_t partial_die_hash (const void *item);
1637
1638 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1639
1640 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1641 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1642
1643 static void init_one_comp_unit (struct dwarf2_cu *cu,
1644 struct dwarf2_per_cu_data *per_cu);
1645
1646 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1647 struct die_info *comp_unit_die,
1648 enum language pretend_language);
1649
1650 static void free_heap_comp_unit (void *);
1651
1652 static void free_cached_comp_units (void *);
1653
1654 static void age_cached_comp_units (void);
1655
1656 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1657
1658 static struct type *set_die_type (struct die_info *, struct type *,
1659 struct dwarf2_cu *);
1660
1661 static void create_all_comp_units (struct objfile *);
1662
1663 static int create_all_type_units (struct objfile *);
1664
1665 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1666 enum language);
1667
1668 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1669 enum language);
1670
1671 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1672 enum language);
1673
1674 static void dwarf2_add_dependence (struct dwarf2_cu *,
1675 struct dwarf2_per_cu_data *);
1676
1677 static void dwarf2_mark (struct dwarf2_cu *);
1678
1679 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1680
1681 static struct type *get_die_type_at_offset (sect_offset,
1682 struct dwarf2_per_cu_data *per_cu);
1683
1684 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static void dwarf2_release_queue (void *dummy);
1687
1688 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1689 enum language pretend_language);
1690
1691 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1692 struct dwarf2_per_cu_data *per_cu,
1693 enum language pretend_language);
1694
1695 static void process_queue (void);
1696
1697 static void find_file_and_directory (struct die_info *die,
1698 struct dwarf2_cu *cu,
1699 const char **name, const char **comp_dir);
1700
1701 static char *file_full_name (int file, struct line_header *lh,
1702 const char *comp_dir);
1703
1704 static gdb_byte *read_and_check_comp_unit_head
1705 (struct comp_unit_head *header,
1706 struct dwarf2_section_info *section,
1707 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1708 int is_debug_types_section);
1709
1710 static void init_cutu_and_read_dies
1711 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1712 int use_existing_cu, int keep,
1713 die_reader_func_ftype *die_reader_func, void *data);
1714
1715 static void init_cutu_and_read_dies_simple
1716 (struct dwarf2_per_cu_data *this_cu,
1717 die_reader_func_ftype *die_reader_func, void *data);
1718
1719 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1720
1721 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1722
1723 static struct dwo_unit *lookup_dwo_comp_unit
1724 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1725
1726 static struct dwo_unit *lookup_dwo_type_unit
1727 (struct signatured_type *, const char *, const char *);
1728
1729 static void free_dwo_file_cleanup (void *);
1730
1731 static void process_cu_includes (void);
1732
1733 static void check_producer (struct dwarf2_cu *cu);
1734
1735 #if WORDS_BIGENDIAN
1736
1737 /* Convert VALUE between big- and little-endian. */
1738 static offset_type
1739 byte_swap (offset_type value)
1740 {
1741 offset_type result;
1742
1743 result = (value & 0xff) << 24;
1744 result |= (value & 0xff00) << 8;
1745 result |= (value & 0xff0000) >> 8;
1746 result |= (value & 0xff000000) >> 24;
1747 return result;
1748 }
1749
1750 #define MAYBE_SWAP(V) byte_swap (V)
1751
1752 #else
1753 #define MAYBE_SWAP(V) (V)
1754 #endif /* WORDS_BIGENDIAN */
1755
1756 /* The suffix for an index file. */
1757 #define INDEX_SUFFIX ".gdb-index"
1758
1759 static const char *dwarf2_physname (const char *name, struct die_info *die,
1760 struct dwarf2_cu *cu);
1761
1762 /* Try to locate the sections we need for DWARF 2 debugging
1763 information and return true if we have enough to do something.
1764 NAMES points to the dwarf2 section names, or is NULL if the standard
1765 ELF names are used. */
1766
1767 int
1768 dwarf2_has_info (struct objfile *objfile,
1769 const struct dwarf2_debug_sections *names)
1770 {
1771 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1772 if (!dwarf2_per_objfile)
1773 {
1774 /* Initialize per-objfile state. */
1775 struct dwarf2_per_objfile *data
1776 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1777
1778 memset (data, 0, sizeof (*data));
1779 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1780 dwarf2_per_objfile = data;
1781
1782 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1783 (void *) names);
1784 dwarf2_per_objfile->objfile = objfile;
1785 }
1786 return (dwarf2_per_objfile->info.asection != NULL
1787 && dwarf2_per_objfile->abbrev.asection != NULL);
1788 }
1789
1790 /* When loading sections, we look either for uncompressed section or for
1791 compressed section names. */
1792
1793 static int
1794 section_is_p (const char *section_name,
1795 const struct dwarf2_section_names *names)
1796 {
1797 if (names->normal != NULL
1798 && strcmp (section_name, names->normal) == 0)
1799 return 1;
1800 if (names->compressed != NULL
1801 && strcmp (section_name, names->compressed) == 0)
1802 return 1;
1803 return 0;
1804 }
1805
1806 /* This function is mapped across the sections and remembers the
1807 offset and size of each of the debugging sections we are interested
1808 in. */
1809
1810 static void
1811 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1812 {
1813 const struct dwarf2_debug_sections *names;
1814 flagword aflag = bfd_get_section_flags (abfd, sectp);
1815
1816 if (vnames == NULL)
1817 names = &dwarf2_elf_names;
1818 else
1819 names = (const struct dwarf2_debug_sections *) vnames;
1820
1821 if ((aflag & SEC_HAS_CONTENTS) == 0)
1822 {
1823 }
1824 else if (section_is_p (sectp->name, &names->info))
1825 {
1826 dwarf2_per_objfile->info.asection = sectp;
1827 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1828 }
1829 else if (section_is_p (sectp->name, &names->abbrev))
1830 {
1831 dwarf2_per_objfile->abbrev.asection = sectp;
1832 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->line))
1835 {
1836 dwarf2_per_objfile->line.asection = sectp;
1837 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->loc))
1840 {
1841 dwarf2_per_objfile->loc.asection = sectp;
1842 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->macinfo))
1845 {
1846 dwarf2_per_objfile->macinfo.asection = sectp;
1847 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->macro))
1850 {
1851 dwarf2_per_objfile->macro.asection = sectp;
1852 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->str))
1855 {
1856 dwarf2_per_objfile->str.asection = sectp;
1857 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->addr))
1860 {
1861 dwarf2_per_objfile->addr.asection = sectp;
1862 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->frame))
1865 {
1866 dwarf2_per_objfile->frame.asection = sectp;
1867 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->eh_frame))
1870 {
1871 dwarf2_per_objfile->eh_frame.asection = sectp;
1872 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1873 }
1874 else if (section_is_p (sectp->name, &names->ranges))
1875 {
1876 dwarf2_per_objfile->ranges.asection = sectp;
1877 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1878 }
1879 else if (section_is_p (sectp->name, &names->types))
1880 {
1881 struct dwarf2_section_info type_section;
1882
1883 memset (&type_section, 0, sizeof (type_section));
1884 type_section.asection = sectp;
1885 type_section.size = bfd_get_section_size (sectp);
1886
1887 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1888 &type_section);
1889 }
1890 else if (section_is_p (sectp->name, &names->gdb_index))
1891 {
1892 dwarf2_per_objfile->gdb_index.asection = sectp;
1893 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1894 }
1895
1896 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1897 && bfd_section_vma (abfd, sectp) == 0)
1898 dwarf2_per_objfile->has_section_at_zero = 1;
1899 }
1900
1901 /* A helper function that decides whether a section is empty,
1902 or not present. */
1903
1904 static int
1905 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1906 {
1907 return info->asection == NULL || info->size == 0;
1908 }
1909
1910 /* Read the contents of the section INFO.
1911 OBJFILE is the main object file, but not necessarily the file where
1912 the section comes from. E.g., for DWO files INFO->asection->owner
1913 is the bfd of the DWO file.
1914 If the section is compressed, uncompress it before returning. */
1915
1916 static void
1917 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1918 {
1919 asection *sectp = info->asection;
1920 bfd *abfd;
1921 gdb_byte *buf, *retbuf;
1922 unsigned char header[4];
1923
1924 if (info->readin)
1925 return;
1926 info->buffer = NULL;
1927 info->readin = 1;
1928
1929 if (dwarf2_section_empty_p (info))
1930 return;
1931
1932 abfd = sectp->owner;
1933
1934 /* If the section has relocations, we must read it ourselves.
1935 Otherwise we attach it to the BFD. */
1936 if ((sectp->flags & SEC_RELOC) == 0)
1937 {
1938 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1939
1940 /* We have to cast away const here for historical reasons.
1941 Fixing dwarf2read to be const-correct would be quite nice. */
1942 info->buffer = (gdb_byte *) bytes;
1943 return;
1944 }
1945
1946 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1947 info->buffer = buf;
1948
1949 /* When debugging .o files, we may need to apply relocations; see
1950 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1951 We never compress sections in .o files, so we only need to
1952 try this when the section is not compressed. */
1953 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1954 if (retbuf != NULL)
1955 {
1956 info->buffer = retbuf;
1957 return;
1958 }
1959
1960 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1961 || bfd_bread (buf, info->size, abfd) != info->size)
1962 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1963 bfd_get_filename (abfd));
1964 }
1965
1966 /* A helper function that returns the size of a section in a safe way.
1967 If you are positive that the section has been read before using the
1968 size, then it is safe to refer to the dwarf2_section_info object's
1969 "size" field directly. In other cases, you must call this
1970 function, because for compressed sections the size field is not set
1971 correctly until the section has been read. */
1972
1973 static bfd_size_type
1974 dwarf2_section_size (struct objfile *objfile,
1975 struct dwarf2_section_info *info)
1976 {
1977 if (!info->readin)
1978 dwarf2_read_section (objfile, info);
1979 return info->size;
1980 }
1981
1982 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1983 SECTION_NAME. */
1984
1985 void
1986 dwarf2_get_section_info (struct objfile *objfile,
1987 enum dwarf2_section_enum sect,
1988 asection **sectp, gdb_byte **bufp,
1989 bfd_size_type *sizep)
1990 {
1991 struct dwarf2_per_objfile *data
1992 = objfile_data (objfile, dwarf2_objfile_data_key);
1993 struct dwarf2_section_info *info;
1994
1995 /* We may see an objfile without any DWARF, in which case we just
1996 return nothing. */
1997 if (data == NULL)
1998 {
1999 *sectp = NULL;
2000 *bufp = NULL;
2001 *sizep = 0;
2002 return;
2003 }
2004 switch (sect)
2005 {
2006 case DWARF2_DEBUG_FRAME:
2007 info = &data->frame;
2008 break;
2009 case DWARF2_EH_FRAME:
2010 info = &data->eh_frame;
2011 break;
2012 default:
2013 gdb_assert_not_reached ("unexpected section");
2014 }
2015
2016 dwarf2_read_section (objfile, info);
2017
2018 *sectp = info->asection;
2019 *bufp = info->buffer;
2020 *sizep = info->size;
2021 }
2022
2023 /* A helper function to find the sections for a .dwz file. */
2024
2025 static void
2026 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2027 {
2028 struct dwz_file *dwz_file = arg;
2029
2030 /* Note that we only support the standard ELF names, because .dwz
2031 is ELF-only (at the time of writing). */
2032 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2033 {
2034 dwz_file->abbrev.asection = sectp;
2035 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2038 {
2039 dwz_file->info.asection = sectp;
2040 dwz_file->info.size = bfd_get_section_size (sectp);
2041 }
2042 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2043 {
2044 dwz_file->str.asection = sectp;
2045 dwz_file->str.size = bfd_get_section_size (sectp);
2046 }
2047 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2048 {
2049 dwz_file->line.asection = sectp;
2050 dwz_file->line.size = bfd_get_section_size (sectp);
2051 }
2052 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2053 {
2054 dwz_file->macro.asection = sectp;
2055 dwz_file->macro.size = bfd_get_section_size (sectp);
2056 }
2057 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2058 {
2059 dwz_file->gdb_index.asection = sectp;
2060 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2061 }
2062 }
2063
2064 /* Open the separate '.dwz' debug file, if needed. Error if the file
2065 cannot be found. */
2066
2067 static struct dwz_file *
2068 dwarf2_get_dwz_file (void)
2069 {
2070 bfd *abfd, *dwz_bfd;
2071 asection *section;
2072 gdb_byte *data;
2073 struct cleanup *cleanup;
2074 const char *filename;
2075 struct dwz_file *result;
2076
2077 if (dwarf2_per_objfile->dwz_file != NULL)
2078 return dwarf2_per_objfile->dwz_file;
2079
2080 abfd = dwarf2_per_objfile->objfile->obfd;
2081 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2082 if (section == NULL)
2083 error (_("could not find '.gnu_debugaltlink' section"));
2084 if (!bfd_malloc_and_get_section (abfd, section, &data))
2085 error (_("could not read '.gnu_debugaltlink' section: %s"),
2086 bfd_errmsg (bfd_get_error ()));
2087 cleanup = make_cleanup (xfree, data);
2088
2089 filename = data;
2090 if (!IS_ABSOLUTE_PATH (filename))
2091 {
2092 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2093 char *rel;
2094
2095 make_cleanup (xfree, abs);
2096 abs = ldirname (abs);
2097 make_cleanup (xfree, abs);
2098
2099 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2100 make_cleanup (xfree, rel);
2101 filename = rel;
2102 }
2103
2104 /* The format is just a NUL-terminated file name, followed by the
2105 build-id. For now, though, we ignore the build-id. */
2106 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2107 if (dwz_bfd == NULL)
2108 error (_("could not read '%s': %s"), filename,
2109 bfd_errmsg (bfd_get_error ()));
2110
2111 if (!bfd_check_format (dwz_bfd, bfd_object))
2112 {
2113 gdb_bfd_unref (dwz_bfd);
2114 error (_("file '%s' was not usable: %s"), filename,
2115 bfd_errmsg (bfd_get_error ()));
2116 }
2117
2118 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2119 struct dwz_file);
2120 result->dwz_bfd = dwz_bfd;
2121
2122 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2123
2124 do_cleanups (cleanup);
2125
2126 dwarf2_per_objfile->dwz_file = result;
2127 return result;
2128 }
2129 \f
2130 /* DWARF quick_symbols_functions support. */
2131
2132 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2133 unique line tables, so we maintain a separate table of all .debug_line
2134 derived entries to support the sharing.
2135 All the quick functions need is the list of file names. We discard the
2136 line_header when we're done and don't need to record it here. */
2137 struct quick_file_names
2138 {
2139 /* The data used to construct the hash key. */
2140 struct stmt_list_hash hash;
2141
2142 /* The number of entries in file_names, real_names. */
2143 unsigned int num_file_names;
2144
2145 /* The file names from the line table, after being run through
2146 file_full_name. */
2147 const char **file_names;
2148
2149 /* The file names from the line table after being run through
2150 gdb_realpath. These are computed lazily. */
2151 const char **real_names;
2152 };
2153
2154 /* When using the index (and thus not using psymtabs), each CU has an
2155 object of this type. This is used to hold information needed by
2156 the various "quick" methods. */
2157 struct dwarf2_per_cu_quick_data
2158 {
2159 /* The file table. This can be NULL if there was no file table
2160 or it's currently not read in.
2161 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2162 struct quick_file_names *file_names;
2163
2164 /* The corresponding symbol table. This is NULL if symbols for this
2165 CU have not yet been read. */
2166 struct symtab *symtab;
2167
2168 /* A temporary mark bit used when iterating over all CUs in
2169 expand_symtabs_matching. */
2170 unsigned int mark : 1;
2171
2172 /* True if we've tried to read the file table and found there isn't one.
2173 There will be no point in trying to read it again next time. */
2174 unsigned int no_file_data : 1;
2175 };
2176
2177 /* Utility hash function for a stmt_list_hash. */
2178
2179 static hashval_t
2180 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2181 {
2182 hashval_t v = 0;
2183
2184 if (stmt_list_hash->dwo_unit != NULL)
2185 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2186 v += stmt_list_hash->line_offset.sect_off;
2187 return v;
2188 }
2189
2190 /* Utility equality function for a stmt_list_hash. */
2191
2192 static int
2193 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2194 const struct stmt_list_hash *rhs)
2195 {
2196 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2197 return 0;
2198 if (lhs->dwo_unit != NULL
2199 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2200 return 0;
2201
2202 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2203 }
2204
2205 /* Hash function for a quick_file_names. */
2206
2207 static hashval_t
2208 hash_file_name_entry (const void *e)
2209 {
2210 const struct quick_file_names *file_data = e;
2211
2212 return hash_stmt_list_entry (&file_data->hash);
2213 }
2214
2215 /* Equality function for a quick_file_names. */
2216
2217 static int
2218 eq_file_name_entry (const void *a, const void *b)
2219 {
2220 const struct quick_file_names *ea = a;
2221 const struct quick_file_names *eb = b;
2222
2223 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2224 }
2225
2226 /* Delete function for a quick_file_names. */
2227
2228 static void
2229 delete_file_name_entry (void *e)
2230 {
2231 struct quick_file_names *file_data = e;
2232 int i;
2233
2234 for (i = 0; i < file_data->num_file_names; ++i)
2235 {
2236 xfree ((void*) file_data->file_names[i]);
2237 if (file_data->real_names)
2238 xfree ((void*) file_data->real_names[i]);
2239 }
2240
2241 /* The space for the struct itself lives on objfile_obstack,
2242 so we don't free it here. */
2243 }
2244
2245 /* Create a quick_file_names hash table. */
2246
2247 static htab_t
2248 create_quick_file_names_table (unsigned int nr_initial_entries)
2249 {
2250 return htab_create_alloc (nr_initial_entries,
2251 hash_file_name_entry, eq_file_name_entry,
2252 delete_file_name_entry, xcalloc, xfree);
2253 }
2254
2255 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2256 have to be created afterwards. You should call age_cached_comp_units after
2257 processing PER_CU->CU. dw2_setup must have been already called. */
2258
2259 static void
2260 load_cu (struct dwarf2_per_cu_data *per_cu)
2261 {
2262 if (per_cu->is_debug_types)
2263 load_full_type_unit (per_cu);
2264 else
2265 load_full_comp_unit (per_cu, language_minimal);
2266
2267 gdb_assert (per_cu->cu != NULL);
2268
2269 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2270 }
2271
2272 /* Read in the symbols for PER_CU. */
2273
2274 static void
2275 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2276 {
2277 struct cleanup *back_to;
2278
2279 /* Skip type_unit_groups, reading the type units they contain
2280 is handled elsewhere. */
2281 if (IS_TYPE_UNIT_GROUP (per_cu))
2282 return;
2283
2284 back_to = make_cleanup (dwarf2_release_queue, NULL);
2285
2286 if (dwarf2_per_objfile->using_index
2287 ? per_cu->v.quick->symtab == NULL
2288 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2289 {
2290 queue_comp_unit (per_cu, language_minimal);
2291 load_cu (per_cu);
2292 }
2293
2294 process_queue ();
2295
2296 /* Age the cache, releasing compilation units that have not
2297 been used recently. */
2298 age_cached_comp_units ();
2299
2300 do_cleanups (back_to);
2301 }
2302
2303 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2304 the objfile from which this CU came. Returns the resulting symbol
2305 table. */
2306
2307 static struct symtab *
2308 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2309 {
2310 gdb_assert (dwarf2_per_objfile->using_index);
2311 if (!per_cu->v.quick->symtab)
2312 {
2313 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2314 increment_reading_symtab ();
2315 dw2_do_instantiate_symtab (per_cu);
2316 process_cu_includes ();
2317 do_cleanups (back_to);
2318 }
2319 return per_cu->v.quick->symtab;
2320 }
2321
2322 /* Return the CU given its index.
2323
2324 This is intended for loops like:
2325
2326 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2327 + dwarf2_per_objfile->n_type_units); ++i)
2328 {
2329 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2330
2331 ...;
2332 }
2333 */
2334
2335 static struct dwarf2_per_cu_data *
2336 dw2_get_cu (int index)
2337 {
2338 if (index >= dwarf2_per_objfile->n_comp_units)
2339 {
2340 index -= dwarf2_per_objfile->n_comp_units;
2341 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2342 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2343 }
2344
2345 return dwarf2_per_objfile->all_comp_units[index];
2346 }
2347
2348 /* Return the primary CU given its index.
2349 The difference between this function and dw2_get_cu is in the handling
2350 of type units (TUs). Here we return the type_unit_group object.
2351
2352 This is intended for loops like:
2353
2354 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2355 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2356 {
2357 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2358
2359 ...;
2360 }
2361 */
2362
2363 static struct dwarf2_per_cu_data *
2364 dw2_get_primary_cu (int index)
2365 {
2366 if (index >= dwarf2_per_objfile->n_comp_units)
2367 {
2368 index -= dwarf2_per_objfile->n_comp_units;
2369 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2370 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2371 }
2372
2373 return dwarf2_per_objfile->all_comp_units[index];
2374 }
2375
2376 /* A helper for create_cus_from_index that handles a given list of
2377 CUs. */
2378
2379 static void
2380 create_cus_from_index_list (struct objfile *objfile,
2381 const gdb_byte *cu_list, offset_type n_elements,
2382 struct dwarf2_section_info *section,
2383 int is_dwz,
2384 int base_offset)
2385 {
2386 offset_type i;
2387
2388 for (i = 0; i < n_elements; i += 2)
2389 {
2390 struct dwarf2_per_cu_data *the_cu;
2391 ULONGEST offset, length;
2392
2393 gdb_static_assert (sizeof (ULONGEST) >= 8);
2394 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2395 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2396 cu_list += 2 * 8;
2397
2398 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_data);
2400 the_cu->offset.sect_off = offset;
2401 the_cu->length = length;
2402 the_cu->objfile = objfile;
2403 the_cu->info_or_types_section = section;
2404 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2406 the_cu->is_dwz = is_dwz;
2407 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2408 }
2409 }
2410
2411 /* Read the CU list from the mapped index, and use it to create all
2412 the CU objects for this objfile. */
2413
2414 static void
2415 create_cus_from_index (struct objfile *objfile,
2416 const gdb_byte *cu_list, offset_type cu_list_elements,
2417 const gdb_byte *dwz_list, offset_type dwz_elements)
2418 {
2419 struct dwz_file *dwz;
2420
2421 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2422 dwarf2_per_objfile->all_comp_units
2423 = obstack_alloc (&objfile->objfile_obstack,
2424 dwarf2_per_objfile->n_comp_units
2425 * sizeof (struct dwarf2_per_cu_data *));
2426
2427 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2428 &dwarf2_per_objfile->info, 0, 0);
2429
2430 if (dwz_elements == 0)
2431 return;
2432
2433 dwz = dwarf2_get_dwz_file ();
2434 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2435 cu_list_elements / 2);
2436 }
2437
2438 /* Create the signatured type hash table from the index. */
2439
2440 static void
2441 create_signatured_type_table_from_index (struct objfile *objfile,
2442 struct dwarf2_section_info *section,
2443 const gdb_byte *bytes,
2444 offset_type elements)
2445 {
2446 offset_type i;
2447 htab_t sig_types_hash;
2448
2449 dwarf2_per_objfile->n_type_units = elements / 3;
2450 dwarf2_per_objfile->all_type_units
2451 = obstack_alloc (&objfile->objfile_obstack,
2452 dwarf2_per_objfile->n_type_units
2453 * sizeof (struct signatured_type *));
2454
2455 sig_types_hash = allocate_signatured_type_table (objfile);
2456
2457 for (i = 0; i < elements; i += 3)
2458 {
2459 struct signatured_type *sig_type;
2460 ULONGEST offset, type_offset_in_tu, signature;
2461 void **slot;
2462
2463 gdb_static_assert (sizeof (ULONGEST) >= 8);
2464 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2465 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2466 BFD_ENDIAN_LITTLE);
2467 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2468 bytes += 3 * 8;
2469
2470 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2471 struct signatured_type);
2472 sig_type->signature = signature;
2473 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2474 sig_type->per_cu.is_debug_types = 1;
2475 sig_type->per_cu.info_or_types_section = section;
2476 sig_type->per_cu.offset.sect_off = offset;
2477 sig_type->per_cu.objfile = objfile;
2478 sig_type->per_cu.v.quick
2479 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2480 struct dwarf2_per_cu_quick_data);
2481
2482 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2483 *slot = sig_type;
2484
2485 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2486 }
2487
2488 dwarf2_per_objfile->signatured_types = sig_types_hash;
2489 }
2490
2491 /* Read the address map data from the mapped index, and use it to
2492 populate the objfile's psymtabs_addrmap. */
2493
2494 static void
2495 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2496 {
2497 const gdb_byte *iter, *end;
2498 struct obstack temp_obstack;
2499 struct addrmap *mutable_map;
2500 struct cleanup *cleanup;
2501 CORE_ADDR baseaddr;
2502
2503 obstack_init (&temp_obstack);
2504 cleanup = make_cleanup_obstack_free (&temp_obstack);
2505 mutable_map = addrmap_create_mutable (&temp_obstack);
2506
2507 iter = index->address_table;
2508 end = iter + index->address_table_size;
2509
2510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2511
2512 while (iter < end)
2513 {
2514 ULONGEST hi, lo, cu_index;
2515 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2516 iter += 8;
2517 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2518 iter += 8;
2519 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2520 iter += 4;
2521
2522 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2523 dw2_get_cu (cu_index));
2524 }
2525
2526 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2527 &objfile->objfile_obstack);
2528 do_cleanups (cleanup);
2529 }
2530
2531 /* The hash function for strings in the mapped index. This is the same as
2532 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2533 implementation. This is necessary because the hash function is tied to the
2534 format of the mapped index file. The hash values do not have to match with
2535 SYMBOL_HASH_NEXT.
2536
2537 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2538
2539 static hashval_t
2540 mapped_index_string_hash (int index_version, const void *p)
2541 {
2542 const unsigned char *str = (const unsigned char *) p;
2543 hashval_t r = 0;
2544 unsigned char c;
2545
2546 while ((c = *str++) != 0)
2547 {
2548 if (index_version >= 5)
2549 c = tolower (c);
2550 r = r * 67 + c - 113;
2551 }
2552
2553 return r;
2554 }
2555
2556 /* Find a slot in the mapped index INDEX for the object named NAME.
2557 If NAME is found, set *VEC_OUT to point to the CU vector in the
2558 constant pool and return 1. If NAME cannot be found, return 0. */
2559
2560 static int
2561 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2562 offset_type **vec_out)
2563 {
2564 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2565 offset_type hash;
2566 offset_type slot, step;
2567 int (*cmp) (const char *, const char *);
2568
2569 if (current_language->la_language == language_cplus
2570 || current_language->la_language == language_java
2571 || current_language->la_language == language_fortran)
2572 {
2573 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2574 not contain any. */
2575 const char *paren = strchr (name, '(');
2576
2577 if (paren)
2578 {
2579 char *dup;
2580
2581 dup = xmalloc (paren - name + 1);
2582 memcpy (dup, name, paren - name);
2583 dup[paren - name] = 0;
2584
2585 make_cleanup (xfree, dup);
2586 name = dup;
2587 }
2588 }
2589
2590 /* Index version 4 did not support case insensitive searches. But the
2591 indices for case insensitive languages are built in lowercase, therefore
2592 simulate our NAME being searched is also lowercased. */
2593 hash = mapped_index_string_hash ((index->version == 4
2594 && case_sensitivity == case_sensitive_off
2595 ? 5 : index->version),
2596 name);
2597
2598 slot = hash & (index->symbol_table_slots - 1);
2599 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2600 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2601
2602 for (;;)
2603 {
2604 /* Convert a slot number to an offset into the table. */
2605 offset_type i = 2 * slot;
2606 const char *str;
2607 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2608 {
2609 do_cleanups (back_to);
2610 return 0;
2611 }
2612
2613 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2614 if (!cmp (name, str))
2615 {
2616 *vec_out = (offset_type *) (index->constant_pool
2617 + MAYBE_SWAP (index->symbol_table[i + 1]));
2618 do_cleanups (back_to);
2619 return 1;
2620 }
2621
2622 slot = (slot + step) & (index->symbol_table_slots - 1);
2623 }
2624 }
2625
2626 /* A helper function that reads the .gdb_index from SECTION and fills
2627 in MAP. FILENAME is the name of the file containing the section;
2628 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2629 ok to use deprecated sections.
2630
2631 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2632 out parameters that are filled in with information about the CU and
2633 TU lists in the section.
2634
2635 Returns 1 if all went well, 0 otherwise. */
2636
2637 static int
2638 read_index_from_section (struct objfile *objfile,
2639 const char *filename,
2640 int deprecated_ok,
2641 struct dwarf2_section_info *section,
2642 struct mapped_index *map,
2643 const gdb_byte **cu_list,
2644 offset_type *cu_list_elements,
2645 const gdb_byte **types_list,
2646 offset_type *types_list_elements)
2647 {
2648 char *addr;
2649 offset_type version;
2650 offset_type *metadata;
2651 int i;
2652
2653 if (dwarf2_section_empty_p (section))
2654 return 0;
2655
2656 /* Older elfutils strip versions could keep the section in the main
2657 executable while splitting it for the separate debug info file. */
2658 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2659 return 0;
2660
2661 dwarf2_read_section (objfile, section);
2662
2663 addr = section->buffer;
2664 /* Version check. */
2665 version = MAYBE_SWAP (*(offset_type *) addr);
2666 /* Versions earlier than 3 emitted every copy of a psymbol. This
2667 causes the index to behave very poorly for certain requests. Version 3
2668 contained incomplete addrmap. So, it seems better to just ignore such
2669 indices. */
2670 if (version < 4)
2671 {
2672 static int warning_printed = 0;
2673 if (!warning_printed)
2674 {
2675 warning (_("Skipping obsolete .gdb_index section in %s."),
2676 filename);
2677 warning_printed = 1;
2678 }
2679 return 0;
2680 }
2681 /* Index version 4 uses a different hash function than index version
2682 5 and later.
2683
2684 Versions earlier than 6 did not emit psymbols for inlined
2685 functions. Using these files will cause GDB not to be able to
2686 set breakpoints on inlined functions by name, so we ignore these
2687 indices unless the user has done
2688 "set use-deprecated-index-sections on". */
2689 if (version < 6 && !deprecated_ok)
2690 {
2691 static int warning_printed = 0;
2692 if (!warning_printed)
2693 {
2694 warning (_("\
2695 Skipping deprecated .gdb_index section in %s.\n\
2696 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2697 to use the section anyway."),
2698 filename);
2699 warning_printed = 1;
2700 }
2701 return 0;
2702 }
2703 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2704 of the TU (for symbols coming from TUs). It's just a performance bug, and
2705 we can't distinguish gdb-generated indices from gold-generated ones, so
2706 nothing to do here. */
2707
2708 /* Indexes with higher version than the one supported by GDB may be no
2709 longer backward compatible. */
2710 if (version > 8)
2711 return 0;
2712
2713 map->version = version;
2714 map->total_size = section->size;
2715
2716 metadata = (offset_type *) (addr + sizeof (offset_type));
2717
2718 i = 0;
2719 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2720 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2721 / 8);
2722 ++i;
2723
2724 *types_list = addr + MAYBE_SWAP (metadata[i]);
2725 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2726 - MAYBE_SWAP (metadata[i]))
2727 / 8);
2728 ++i;
2729
2730 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2731 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2732 - MAYBE_SWAP (metadata[i]));
2733 ++i;
2734
2735 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2736 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2737 - MAYBE_SWAP (metadata[i]))
2738 / (2 * sizeof (offset_type)));
2739 ++i;
2740
2741 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2742
2743 return 1;
2744 }
2745
2746
2747 /* Read the index file. If everything went ok, initialize the "quick"
2748 elements of all the CUs and return 1. Otherwise, return 0. */
2749
2750 static int
2751 dwarf2_read_index (struct objfile *objfile)
2752 {
2753 struct mapped_index local_map, *map;
2754 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2755 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2756
2757 if (!read_index_from_section (objfile, objfile->name,
2758 use_deprecated_index_sections,
2759 &dwarf2_per_objfile->gdb_index, &local_map,
2760 &cu_list, &cu_list_elements,
2761 &types_list, &types_list_elements))
2762 return 0;
2763
2764 /* Don't use the index if it's empty. */
2765 if (local_map.symbol_table_slots == 0)
2766 return 0;
2767
2768 /* If there is a .dwz file, read it so we can get its CU list as
2769 well. */
2770 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2771 {
2772 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2773 struct mapped_index dwz_map;
2774 const gdb_byte *dwz_types_ignore;
2775 offset_type dwz_types_elements_ignore;
2776
2777 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2778 1,
2779 &dwz->gdb_index, &dwz_map,
2780 &dwz_list, &dwz_list_elements,
2781 &dwz_types_ignore,
2782 &dwz_types_elements_ignore))
2783 {
2784 warning (_("could not read '.gdb_index' section from %s; skipping"),
2785 bfd_get_filename (dwz->dwz_bfd));
2786 return 0;
2787 }
2788 }
2789
2790 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2791 dwz_list_elements);
2792
2793 if (types_list_elements)
2794 {
2795 struct dwarf2_section_info *section;
2796
2797 /* We can only handle a single .debug_types when we have an
2798 index. */
2799 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2800 return 0;
2801
2802 section = VEC_index (dwarf2_section_info_def,
2803 dwarf2_per_objfile->types, 0);
2804
2805 create_signatured_type_table_from_index (objfile, section, types_list,
2806 types_list_elements);
2807 }
2808
2809 create_addrmap_from_index (objfile, &local_map);
2810
2811 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2812 *map = local_map;
2813
2814 dwarf2_per_objfile->index_table = map;
2815 dwarf2_per_objfile->using_index = 1;
2816 dwarf2_per_objfile->quick_file_names_table =
2817 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2818
2819 return 1;
2820 }
2821
2822 /* A helper for the "quick" functions which sets the global
2823 dwarf2_per_objfile according to OBJFILE. */
2824
2825 static void
2826 dw2_setup (struct objfile *objfile)
2827 {
2828 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2829 gdb_assert (dwarf2_per_objfile);
2830 }
2831
2832 /* die_reader_func for dw2_get_file_names. */
2833
2834 static void
2835 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2836 gdb_byte *info_ptr,
2837 struct die_info *comp_unit_die,
2838 int has_children,
2839 void *data)
2840 {
2841 struct dwarf2_cu *cu = reader->cu;
2842 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2843 struct objfile *objfile = dwarf2_per_objfile->objfile;
2844 struct dwarf2_per_cu_data *lh_cu;
2845 struct line_header *lh;
2846 struct attribute *attr;
2847 int i;
2848 const char *name, *comp_dir;
2849 void **slot;
2850 struct quick_file_names *qfn;
2851 unsigned int line_offset;
2852
2853 /* Our callers never want to match partial units -- instead they
2854 will match the enclosing full CU. */
2855 if (comp_unit_die->tag == DW_TAG_partial_unit)
2856 {
2857 this_cu->v.quick->no_file_data = 1;
2858 return;
2859 }
2860
2861 /* If we're reading the line header for TUs, store it in the "per_cu"
2862 for tu_group. */
2863 if (this_cu->is_debug_types)
2864 {
2865 struct type_unit_group *tu_group = data;
2866
2867 gdb_assert (tu_group != NULL);
2868 lh_cu = &tu_group->per_cu;
2869 }
2870 else
2871 lh_cu = this_cu;
2872
2873 lh = NULL;
2874 slot = NULL;
2875 line_offset = 0;
2876
2877 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2878 if (attr)
2879 {
2880 struct quick_file_names find_entry;
2881
2882 line_offset = DW_UNSND (attr);
2883
2884 /* We may have already read in this line header (TU line header sharing).
2885 If we have we're done. */
2886 find_entry.hash.dwo_unit = cu->dwo_unit;
2887 find_entry.hash.line_offset.sect_off = line_offset;
2888 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2889 &find_entry, INSERT);
2890 if (*slot != NULL)
2891 {
2892 lh_cu->v.quick->file_names = *slot;
2893 return;
2894 }
2895
2896 lh = dwarf_decode_line_header (line_offset, cu);
2897 }
2898 if (lh == NULL)
2899 {
2900 lh_cu->v.quick->no_file_data = 1;
2901 return;
2902 }
2903
2904 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2905 qfn->hash.dwo_unit = cu->dwo_unit;
2906 qfn->hash.line_offset.sect_off = line_offset;
2907 gdb_assert (slot != NULL);
2908 *slot = qfn;
2909
2910 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2911
2912 qfn->num_file_names = lh->num_file_names;
2913 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2914 lh->num_file_names * sizeof (char *));
2915 for (i = 0; i < lh->num_file_names; ++i)
2916 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2917 qfn->real_names = NULL;
2918
2919 free_line_header (lh);
2920
2921 lh_cu->v.quick->file_names = qfn;
2922 }
2923
2924 /* A helper for the "quick" functions which attempts to read the line
2925 table for THIS_CU. */
2926
2927 static struct quick_file_names *
2928 dw2_get_file_names (struct objfile *objfile,
2929 struct dwarf2_per_cu_data *this_cu)
2930 {
2931 /* For TUs this should only be called on the parent group. */
2932 if (this_cu->is_debug_types)
2933 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2934
2935 if (this_cu->v.quick->file_names != NULL)
2936 return this_cu->v.quick->file_names;
2937 /* If we know there is no line data, no point in looking again. */
2938 if (this_cu->v.quick->no_file_data)
2939 return NULL;
2940
2941 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2942 in the stub for CUs, there's is no need to lookup the DWO file.
2943 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2944 DWO file. */
2945 if (this_cu->is_debug_types)
2946 {
2947 struct type_unit_group *tu_group = this_cu->type_unit_group;
2948
2949 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2950 dw2_get_file_names_reader, tu_group);
2951 }
2952 else
2953 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2954
2955 if (this_cu->v.quick->no_file_data)
2956 return NULL;
2957 return this_cu->v.quick->file_names;
2958 }
2959
2960 /* A helper for the "quick" functions which computes and caches the
2961 real path for a given file name from the line table. */
2962
2963 static const char *
2964 dw2_get_real_path (struct objfile *objfile,
2965 struct quick_file_names *qfn, int index)
2966 {
2967 if (qfn->real_names == NULL)
2968 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2969 qfn->num_file_names, sizeof (char *));
2970
2971 if (qfn->real_names[index] == NULL)
2972 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2973
2974 return qfn->real_names[index];
2975 }
2976
2977 static struct symtab *
2978 dw2_find_last_source_symtab (struct objfile *objfile)
2979 {
2980 int index;
2981
2982 dw2_setup (objfile);
2983 index = dwarf2_per_objfile->n_comp_units - 1;
2984 return dw2_instantiate_symtab (dw2_get_cu (index));
2985 }
2986
2987 /* Traversal function for dw2_forget_cached_source_info. */
2988
2989 static int
2990 dw2_free_cached_file_names (void **slot, void *info)
2991 {
2992 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2993
2994 if (file_data->real_names)
2995 {
2996 int i;
2997
2998 for (i = 0; i < file_data->num_file_names; ++i)
2999 {
3000 xfree ((void*) file_data->real_names[i]);
3001 file_data->real_names[i] = NULL;
3002 }
3003 }
3004
3005 return 1;
3006 }
3007
3008 static void
3009 dw2_forget_cached_source_info (struct objfile *objfile)
3010 {
3011 dw2_setup (objfile);
3012
3013 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3014 dw2_free_cached_file_names, NULL);
3015 }
3016
3017 /* Helper function for dw2_map_symtabs_matching_filename that expands
3018 the symtabs and calls the iterator. */
3019
3020 static int
3021 dw2_map_expand_apply (struct objfile *objfile,
3022 struct dwarf2_per_cu_data *per_cu,
3023 const char *name,
3024 const char *full_path, const char *real_path,
3025 int (*callback) (struct symtab *, void *),
3026 void *data)
3027 {
3028 struct symtab *last_made = objfile->symtabs;
3029
3030 /* Don't visit already-expanded CUs. */
3031 if (per_cu->v.quick->symtab)
3032 return 0;
3033
3034 /* This may expand more than one symtab, and we want to iterate over
3035 all of them. */
3036 dw2_instantiate_symtab (per_cu);
3037
3038 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3039 objfile->symtabs, last_made);
3040 }
3041
3042 /* Implementation of the map_symtabs_matching_filename method. */
3043
3044 static int
3045 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3046 const char *full_path, const char *real_path,
3047 int (*callback) (struct symtab *, void *),
3048 void *data)
3049 {
3050 int i;
3051 const char *name_basename = lbasename (name);
3052 int is_abs = IS_ABSOLUTE_PATH (name);
3053
3054 dw2_setup (objfile);
3055
3056 /* The rule is CUs specify all the files, including those used by
3057 any TU, so there's no need to scan TUs here. */
3058
3059 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3060 {
3061 int j;
3062 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3063 struct quick_file_names *file_data;
3064
3065 /* We only need to look at symtabs not already expanded. */
3066 if (per_cu->v.quick->symtab)
3067 continue;
3068
3069 file_data = dw2_get_file_names (objfile, per_cu);
3070 if (file_data == NULL)
3071 continue;
3072
3073 for (j = 0; j < file_data->num_file_names; ++j)
3074 {
3075 const char *this_name = file_data->file_names[j];
3076
3077 if (FILENAME_CMP (name, this_name) == 0
3078 || (!is_abs && compare_filenames_for_search (this_name, name)))
3079 {
3080 if (dw2_map_expand_apply (objfile, per_cu,
3081 name, full_path, real_path,
3082 callback, data))
3083 return 1;
3084 }
3085
3086 /* Before we invoke realpath, which can get expensive when many
3087 files are involved, do a quick comparison of the basenames. */
3088 if (! basenames_may_differ
3089 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3090 continue;
3091
3092 if (full_path != NULL)
3093 {
3094 const char *this_real_name = dw2_get_real_path (objfile,
3095 file_data, j);
3096
3097 if (this_real_name != NULL
3098 && (FILENAME_CMP (full_path, this_real_name) == 0
3099 || (!is_abs
3100 && compare_filenames_for_search (this_real_name,
3101 name))))
3102 {
3103 if (dw2_map_expand_apply (objfile, per_cu,
3104 name, full_path, real_path,
3105 callback, data))
3106 return 1;
3107 }
3108 }
3109
3110 if (real_path != NULL)
3111 {
3112 const char *this_real_name = dw2_get_real_path (objfile,
3113 file_data, j);
3114
3115 if (this_real_name != NULL
3116 && (FILENAME_CMP (real_path, this_real_name) == 0
3117 || (!is_abs
3118 && compare_filenames_for_search (this_real_name,
3119 name))))
3120 {
3121 if (dw2_map_expand_apply (objfile, per_cu,
3122 name, full_path, real_path,
3123 callback, data))
3124 return 1;
3125 }
3126 }
3127 }
3128 }
3129
3130 return 0;
3131 }
3132
3133 /* Struct used to manage iterating over all CUs looking for a symbol. */
3134
3135 struct dw2_symtab_iterator
3136 {
3137 /* The internalized form of .gdb_index. */
3138 struct mapped_index *index;
3139 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3140 int want_specific_block;
3141 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3142 Unused if !WANT_SPECIFIC_BLOCK. */
3143 int block_index;
3144 /* The kind of symbol we're looking for. */
3145 domain_enum domain;
3146 /* The list of CUs from the index entry of the symbol,
3147 or NULL if not found. */
3148 offset_type *vec;
3149 /* The next element in VEC to look at. */
3150 int next;
3151 /* The number of elements in VEC, or zero if there is no match. */
3152 int length;
3153 };
3154
3155 /* Initialize the index symtab iterator ITER.
3156 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3157 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3158
3159 static void
3160 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3161 struct mapped_index *index,
3162 int want_specific_block,
3163 int block_index,
3164 domain_enum domain,
3165 const char *name)
3166 {
3167 iter->index = index;
3168 iter->want_specific_block = want_specific_block;
3169 iter->block_index = block_index;
3170 iter->domain = domain;
3171 iter->next = 0;
3172
3173 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3174 iter->length = MAYBE_SWAP (*iter->vec);
3175 else
3176 {
3177 iter->vec = NULL;
3178 iter->length = 0;
3179 }
3180 }
3181
3182 /* Return the next matching CU or NULL if there are no more. */
3183
3184 static struct dwarf2_per_cu_data *
3185 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3186 {
3187 for ( ; iter->next < iter->length; ++iter->next)
3188 {
3189 offset_type cu_index_and_attrs =
3190 MAYBE_SWAP (iter->vec[iter->next + 1]);
3191 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3192 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3193 int want_static = iter->block_index != GLOBAL_BLOCK;
3194 /* This value is only valid for index versions >= 7. */
3195 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3196 gdb_index_symbol_kind symbol_kind =
3197 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3198 /* Only check the symbol attributes if they're present.
3199 Indices prior to version 7 don't record them,
3200 and indices >= 7 may elide them for certain symbols
3201 (gold does this). */
3202 int attrs_valid =
3203 (iter->index->version >= 7
3204 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3205
3206 /* Skip if already read in. */
3207 if (per_cu->v.quick->symtab)
3208 continue;
3209
3210 if (attrs_valid
3211 && iter->want_specific_block
3212 && want_static != is_static)
3213 continue;
3214
3215 /* Only check the symbol's kind if it has one. */
3216 if (attrs_valid)
3217 {
3218 switch (iter->domain)
3219 {
3220 case VAR_DOMAIN:
3221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3222 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3223 /* Some types are also in VAR_DOMAIN. */
3224 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3225 continue;
3226 break;
3227 case STRUCT_DOMAIN:
3228 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3229 continue;
3230 break;
3231 case LABEL_DOMAIN:
3232 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3233 continue;
3234 break;
3235 default:
3236 break;
3237 }
3238 }
3239
3240 ++iter->next;
3241 return per_cu;
3242 }
3243
3244 return NULL;
3245 }
3246
3247 static struct symtab *
3248 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3249 const char *name, domain_enum domain)
3250 {
3251 struct symtab *stab_best = NULL;
3252 struct mapped_index *index;
3253
3254 dw2_setup (objfile);
3255
3256 index = dwarf2_per_objfile->index_table;
3257
3258 /* index is NULL if OBJF_READNOW. */
3259 if (index)
3260 {
3261 struct dw2_symtab_iterator iter;
3262 struct dwarf2_per_cu_data *per_cu;
3263
3264 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3265
3266 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3267 {
3268 struct symbol *sym = NULL;
3269 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3270
3271 /* Some caution must be observed with overloaded functions
3272 and methods, since the index will not contain any overload
3273 information (but NAME might contain it). */
3274 if (stab->primary)
3275 {
3276 struct blockvector *bv = BLOCKVECTOR (stab);
3277 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3278
3279 sym = lookup_block_symbol (block, name, domain);
3280 }
3281
3282 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3283 {
3284 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3285 return stab;
3286
3287 stab_best = stab;
3288 }
3289
3290 /* Keep looking through other CUs. */
3291 }
3292 }
3293
3294 return stab_best;
3295 }
3296
3297 static void
3298 dw2_print_stats (struct objfile *objfile)
3299 {
3300 int i, count;
3301
3302 dw2_setup (objfile);
3303 count = 0;
3304 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3305 + dwarf2_per_objfile->n_type_units); ++i)
3306 {
3307 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3308
3309 if (!per_cu->v.quick->symtab)
3310 ++count;
3311 }
3312 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3313 }
3314
3315 static void
3316 dw2_dump (struct objfile *objfile)
3317 {
3318 /* Nothing worth printing. */
3319 }
3320
3321 static void
3322 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3323 struct section_offsets *delta)
3324 {
3325 /* There's nothing to relocate here. */
3326 }
3327
3328 static void
3329 dw2_expand_symtabs_for_function (struct objfile *objfile,
3330 const char *func_name)
3331 {
3332 struct mapped_index *index;
3333
3334 dw2_setup (objfile);
3335
3336 index = dwarf2_per_objfile->index_table;
3337
3338 /* index is NULL if OBJF_READNOW. */
3339 if (index)
3340 {
3341 struct dw2_symtab_iterator iter;
3342 struct dwarf2_per_cu_data *per_cu;
3343
3344 /* Note: It doesn't matter what we pass for block_index here. */
3345 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3346 func_name);
3347
3348 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3349 dw2_instantiate_symtab (per_cu);
3350 }
3351 }
3352
3353 static void
3354 dw2_expand_all_symtabs (struct objfile *objfile)
3355 {
3356 int i;
3357
3358 dw2_setup (objfile);
3359
3360 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3361 + dwarf2_per_objfile->n_type_units); ++i)
3362 {
3363 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3364
3365 dw2_instantiate_symtab (per_cu);
3366 }
3367 }
3368
3369 static void
3370 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3371 const char *filename)
3372 {
3373 int i;
3374
3375 dw2_setup (objfile);
3376
3377 /* We don't need to consider type units here.
3378 This is only called for examining code, e.g. expand_line_sal.
3379 There can be an order of magnitude (or more) more type units
3380 than comp units, and we avoid them if we can. */
3381
3382 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3383 {
3384 int j;
3385 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3386 struct quick_file_names *file_data;
3387
3388 /* We only need to look at symtabs not already expanded. */
3389 if (per_cu->v.quick->symtab)
3390 continue;
3391
3392 file_data = dw2_get_file_names (objfile, per_cu);
3393 if (file_data == NULL)
3394 continue;
3395
3396 for (j = 0; j < file_data->num_file_names; ++j)
3397 {
3398 const char *this_name = file_data->file_names[j];
3399 if (FILENAME_CMP (this_name, filename) == 0)
3400 {
3401 dw2_instantiate_symtab (per_cu);
3402 break;
3403 }
3404 }
3405 }
3406 }
3407
3408 /* A helper function for dw2_find_symbol_file that finds the primary
3409 file name for a given CU. This is a die_reader_func. */
3410
3411 static void
3412 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3413 gdb_byte *info_ptr,
3414 struct die_info *comp_unit_die,
3415 int has_children,
3416 void *data)
3417 {
3418 const char **result_ptr = data;
3419 struct dwarf2_cu *cu = reader->cu;
3420 struct attribute *attr;
3421
3422 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3423 if (attr == NULL)
3424 *result_ptr = NULL;
3425 else
3426 *result_ptr = DW_STRING (attr);
3427 }
3428
3429 static const char *
3430 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3431 {
3432 struct dwarf2_per_cu_data *per_cu;
3433 offset_type *vec;
3434 const char *filename;
3435
3436 dw2_setup (objfile);
3437
3438 /* index_table is NULL if OBJF_READNOW. */
3439 if (!dwarf2_per_objfile->index_table)
3440 {
3441 struct symtab *s;
3442
3443 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3444 {
3445 struct blockvector *bv = BLOCKVECTOR (s);
3446 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3447 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3448
3449 if (sym)
3450 return SYMBOL_SYMTAB (sym)->filename;
3451 }
3452 return NULL;
3453 }
3454
3455 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3456 name, &vec))
3457 return NULL;
3458
3459 /* Note that this just looks at the very first one named NAME -- but
3460 actually we are looking for a function. find_main_filename
3461 should be rewritten so that it doesn't require a custom hook. It
3462 could just use the ordinary symbol tables. */
3463 /* vec[0] is the length, which must always be >0. */
3464 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3465
3466 if (per_cu->v.quick->symtab != NULL)
3467 return per_cu->v.quick->symtab->filename;
3468
3469 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3470 dw2_get_primary_filename_reader, &filename);
3471
3472 return filename;
3473 }
3474
3475 static void
3476 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3477 struct objfile *objfile, int global,
3478 int (*callback) (struct block *,
3479 struct symbol *, void *),
3480 void *data, symbol_compare_ftype *match,
3481 symbol_compare_ftype *ordered_compare)
3482 {
3483 /* Currently unimplemented; used for Ada. The function can be called if the
3484 current language is Ada for a non-Ada objfile using GNU index. As Ada
3485 does not look for non-Ada symbols this function should just return. */
3486 }
3487
3488 static void
3489 dw2_expand_symtabs_matching
3490 (struct objfile *objfile,
3491 int (*file_matcher) (const char *, void *),
3492 int (*name_matcher) (const char *, void *),
3493 enum search_domain kind,
3494 void *data)
3495 {
3496 int i;
3497 offset_type iter;
3498 struct mapped_index *index;
3499
3500 dw2_setup (objfile);
3501
3502 /* index_table is NULL if OBJF_READNOW. */
3503 if (!dwarf2_per_objfile->index_table)
3504 return;
3505 index = dwarf2_per_objfile->index_table;
3506
3507 if (file_matcher != NULL)
3508 {
3509 struct cleanup *cleanup;
3510 htab_t visited_found, visited_not_found;
3511
3512 visited_found = htab_create_alloc (10,
3513 htab_hash_pointer, htab_eq_pointer,
3514 NULL, xcalloc, xfree);
3515 cleanup = make_cleanup_htab_delete (visited_found);
3516 visited_not_found = htab_create_alloc (10,
3517 htab_hash_pointer, htab_eq_pointer,
3518 NULL, xcalloc, xfree);
3519 make_cleanup_htab_delete (visited_not_found);
3520
3521 /* The rule is CUs specify all the files, including those used by
3522 any TU, so there's no need to scan TUs here. */
3523
3524 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3525 {
3526 int j;
3527 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3528 struct quick_file_names *file_data;
3529 void **slot;
3530
3531 per_cu->v.quick->mark = 0;
3532
3533 /* We only need to look at symtabs not already expanded. */
3534 if (per_cu->v.quick->symtab)
3535 continue;
3536
3537 file_data = dw2_get_file_names (objfile, per_cu);
3538 if (file_data == NULL)
3539 continue;
3540
3541 if (htab_find (visited_not_found, file_data) != NULL)
3542 continue;
3543 else if (htab_find (visited_found, file_data) != NULL)
3544 {
3545 per_cu->v.quick->mark = 1;
3546 continue;
3547 }
3548
3549 for (j = 0; j < file_data->num_file_names; ++j)
3550 {
3551 if (file_matcher (file_data->file_names[j], data))
3552 {
3553 per_cu->v.quick->mark = 1;
3554 break;
3555 }
3556 }
3557
3558 slot = htab_find_slot (per_cu->v.quick->mark
3559 ? visited_found
3560 : visited_not_found,
3561 file_data, INSERT);
3562 *slot = file_data;
3563 }
3564
3565 do_cleanups (cleanup);
3566 }
3567
3568 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3569 {
3570 offset_type idx = 2 * iter;
3571 const char *name;
3572 offset_type *vec, vec_len, vec_idx;
3573
3574 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3575 continue;
3576
3577 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3578
3579 if (! (*name_matcher) (name, data))
3580 continue;
3581
3582 /* The name was matched, now expand corresponding CUs that were
3583 marked. */
3584 vec = (offset_type *) (index->constant_pool
3585 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3586 vec_len = MAYBE_SWAP (vec[0]);
3587 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3588 {
3589 struct dwarf2_per_cu_data *per_cu;
3590 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3591 gdb_index_symbol_kind symbol_kind =
3592 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3593 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3594
3595 /* Don't crash on bad data. */
3596 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3597 + dwarf2_per_objfile->n_type_units))
3598 continue;
3599
3600 /* Only check the symbol's kind if it has one.
3601 Indices prior to version 7 don't record it. */
3602 if (index->version >= 7)
3603 {
3604 switch (kind)
3605 {
3606 case VARIABLES_DOMAIN:
3607 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3608 continue;
3609 break;
3610 case FUNCTIONS_DOMAIN:
3611 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3612 continue;
3613 break;
3614 case TYPES_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3616 continue;
3617 break;
3618 default:
3619 break;
3620 }
3621 }
3622
3623 per_cu = dw2_get_cu (cu_index);
3624 if (file_matcher == NULL || per_cu->v.quick->mark)
3625 dw2_instantiate_symtab (per_cu);
3626 }
3627 }
3628 }
3629
3630 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3631 symtab. */
3632
3633 static struct symtab *
3634 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3635 {
3636 int i;
3637
3638 if (BLOCKVECTOR (symtab) != NULL
3639 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3640 return symtab;
3641
3642 if (symtab->includes == NULL)
3643 return NULL;
3644
3645 for (i = 0; symtab->includes[i]; ++i)
3646 {
3647 struct symtab *s = symtab->includes[i];
3648
3649 s = recursively_find_pc_sect_symtab (s, pc);
3650 if (s != NULL)
3651 return s;
3652 }
3653
3654 return NULL;
3655 }
3656
3657 static struct symtab *
3658 dw2_find_pc_sect_symtab (struct objfile *objfile,
3659 struct minimal_symbol *msymbol,
3660 CORE_ADDR pc,
3661 struct obj_section *section,
3662 int warn_if_readin)
3663 {
3664 struct dwarf2_per_cu_data *data;
3665 struct symtab *result;
3666
3667 dw2_setup (objfile);
3668
3669 if (!objfile->psymtabs_addrmap)
3670 return NULL;
3671
3672 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3673 if (!data)
3674 return NULL;
3675
3676 if (warn_if_readin && data->v.quick->symtab)
3677 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3678 paddress (get_objfile_arch (objfile), pc));
3679
3680 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3681 gdb_assert (result != NULL);
3682 return result;
3683 }
3684
3685 static void
3686 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3687 void *data, int need_fullname)
3688 {
3689 int i;
3690 struct cleanup *cleanup;
3691 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3692 NULL, xcalloc, xfree);
3693
3694 cleanup = make_cleanup_htab_delete (visited);
3695 dw2_setup (objfile);
3696
3697 /* The rule is CUs specify all the files, including those used by
3698 any TU, so there's no need to scan TUs here.
3699 We can ignore file names coming from already-expanded CUs. */
3700
3701 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3702 {
3703 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3704
3705 if (per_cu->v.quick->symtab)
3706 {
3707 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3708 INSERT);
3709
3710 *slot = per_cu->v.quick->file_names;
3711 }
3712 }
3713
3714 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3715 {
3716 int j;
3717 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3718 struct quick_file_names *file_data;
3719 void **slot;
3720
3721 /* We only need to look at symtabs not already expanded. */
3722 if (per_cu->v.quick->symtab)
3723 continue;
3724
3725 file_data = dw2_get_file_names (objfile, per_cu);
3726 if (file_data == NULL)
3727 continue;
3728
3729 slot = htab_find_slot (visited, file_data, INSERT);
3730 if (*slot)
3731 {
3732 /* Already visited. */
3733 continue;
3734 }
3735 *slot = file_data;
3736
3737 for (j = 0; j < file_data->num_file_names; ++j)
3738 {
3739 const char *this_real_name;
3740
3741 if (need_fullname)
3742 this_real_name = dw2_get_real_path (objfile, file_data, j);
3743 else
3744 this_real_name = NULL;
3745 (*fun) (file_data->file_names[j], this_real_name, data);
3746 }
3747 }
3748
3749 do_cleanups (cleanup);
3750 }
3751
3752 static int
3753 dw2_has_symbols (struct objfile *objfile)
3754 {
3755 return 1;
3756 }
3757
3758 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3759 {
3760 dw2_has_symbols,
3761 dw2_find_last_source_symtab,
3762 dw2_forget_cached_source_info,
3763 dw2_map_symtabs_matching_filename,
3764 dw2_lookup_symbol,
3765 dw2_print_stats,
3766 dw2_dump,
3767 dw2_relocate,
3768 dw2_expand_symtabs_for_function,
3769 dw2_expand_all_symtabs,
3770 dw2_expand_symtabs_with_filename,
3771 dw2_find_symbol_file,
3772 dw2_map_matching_symbols,
3773 dw2_expand_symtabs_matching,
3774 dw2_find_pc_sect_symtab,
3775 dw2_map_symbol_filenames
3776 };
3777
3778 /* Initialize for reading DWARF for this objfile. Return 0 if this
3779 file will use psymtabs, or 1 if using the GNU index. */
3780
3781 int
3782 dwarf2_initialize_objfile (struct objfile *objfile)
3783 {
3784 /* If we're about to read full symbols, don't bother with the
3785 indices. In this case we also don't care if some other debug
3786 format is making psymtabs, because they are all about to be
3787 expanded anyway. */
3788 if ((objfile->flags & OBJF_READNOW))
3789 {
3790 int i;
3791
3792 dwarf2_per_objfile->using_index = 1;
3793 create_all_comp_units (objfile);
3794 create_all_type_units (objfile);
3795 dwarf2_per_objfile->quick_file_names_table =
3796 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3797
3798 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3799 + dwarf2_per_objfile->n_type_units); ++i)
3800 {
3801 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3802
3803 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3804 struct dwarf2_per_cu_quick_data);
3805 }
3806
3807 /* Return 1 so that gdb sees the "quick" functions. However,
3808 these functions will be no-ops because we will have expanded
3809 all symtabs. */
3810 return 1;
3811 }
3812
3813 if (dwarf2_read_index (objfile))
3814 return 1;
3815
3816 return 0;
3817 }
3818
3819 \f
3820
3821 /* Build a partial symbol table. */
3822
3823 void
3824 dwarf2_build_psymtabs (struct objfile *objfile)
3825 {
3826 volatile struct gdb_exception except;
3827
3828 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3829 {
3830 init_psymbol_list (objfile, 1024);
3831 }
3832
3833 TRY_CATCH (except, RETURN_MASK_ERROR)
3834 {
3835 /* This isn't really ideal: all the data we allocate on the
3836 objfile's obstack is still uselessly kept around. However,
3837 freeing it seems unsafe. */
3838 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3839
3840 dwarf2_build_psymtabs_hard (objfile);
3841 discard_cleanups (cleanups);
3842 }
3843 if (except.reason < 0)
3844 exception_print (gdb_stderr, except);
3845 }
3846
3847 /* Return the total length of the CU described by HEADER. */
3848
3849 static unsigned int
3850 get_cu_length (const struct comp_unit_head *header)
3851 {
3852 return header->initial_length_size + header->length;
3853 }
3854
3855 /* Return TRUE if OFFSET is within CU_HEADER. */
3856
3857 static inline int
3858 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3859 {
3860 sect_offset bottom = { cu_header->offset.sect_off };
3861 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3862
3863 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3864 }
3865
3866 /* Find the base address of the compilation unit for range lists and
3867 location lists. It will normally be specified by DW_AT_low_pc.
3868 In DWARF-3 draft 4, the base address could be overridden by
3869 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3870 compilation units with discontinuous ranges. */
3871
3872 static void
3873 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3874 {
3875 struct attribute *attr;
3876
3877 cu->base_known = 0;
3878 cu->base_address = 0;
3879
3880 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3881 if (attr)
3882 {
3883 cu->base_address = DW_ADDR (attr);
3884 cu->base_known = 1;
3885 }
3886 else
3887 {
3888 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3889 if (attr)
3890 {
3891 cu->base_address = DW_ADDR (attr);
3892 cu->base_known = 1;
3893 }
3894 }
3895 }
3896
3897 /* Read in the comp unit header information from the debug_info at info_ptr.
3898 NOTE: This leaves members offset, first_die_offset to be filled in
3899 by the caller. */
3900
3901 static gdb_byte *
3902 read_comp_unit_head (struct comp_unit_head *cu_header,
3903 gdb_byte *info_ptr, bfd *abfd)
3904 {
3905 int signed_addr;
3906 unsigned int bytes_read;
3907
3908 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3909 cu_header->initial_length_size = bytes_read;
3910 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3911 info_ptr += bytes_read;
3912 cu_header->version = read_2_bytes (abfd, info_ptr);
3913 info_ptr += 2;
3914 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3915 &bytes_read);
3916 info_ptr += bytes_read;
3917 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3918 info_ptr += 1;
3919 signed_addr = bfd_get_sign_extend_vma (abfd);
3920 if (signed_addr < 0)
3921 internal_error (__FILE__, __LINE__,
3922 _("read_comp_unit_head: dwarf from non elf file"));
3923 cu_header->signed_addr_p = signed_addr;
3924
3925 return info_ptr;
3926 }
3927
3928 /* Helper function that returns the proper abbrev section for
3929 THIS_CU. */
3930
3931 static struct dwarf2_section_info *
3932 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3933 {
3934 struct dwarf2_section_info *abbrev;
3935
3936 if (this_cu->is_dwz)
3937 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3938 else
3939 abbrev = &dwarf2_per_objfile->abbrev;
3940
3941 return abbrev;
3942 }
3943
3944 /* Subroutine of read_and_check_comp_unit_head and
3945 read_and_check_type_unit_head to simplify them.
3946 Perform various error checking on the header. */
3947
3948 static void
3949 error_check_comp_unit_head (struct comp_unit_head *header,
3950 struct dwarf2_section_info *section,
3951 struct dwarf2_section_info *abbrev_section)
3952 {
3953 bfd *abfd = section->asection->owner;
3954 const char *filename = bfd_get_filename (abfd);
3955
3956 if (header->version != 2 && header->version != 3 && header->version != 4)
3957 error (_("Dwarf Error: wrong version in compilation unit header "
3958 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3959 filename);
3960
3961 if (header->abbrev_offset.sect_off
3962 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3963 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3964 "(offset 0x%lx + 6) [in module %s]"),
3965 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3966 filename);
3967
3968 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3969 avoid potential 32-bit overflow. */
3970 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3971 > section->size)
3972 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3973 "(offset 0x%lx + 0) [in module %s]"),
3974 (long) header->length, (long) header->offset.sect_off,
3975 filename);
3976 }
3977
3978 /* Read in a CU/TU header and perform some basic error checking.
3979 The contents of the header are stored in HEADER.
3980 The result is a pointer to the start of the first DIE. */
3981
3982 static gdb_byte *
3983 read_and_check_comp_unit_head (struct comp_unit_head *header,
3984 struct dwarf2_section_info *section,
3985 struct dwarf2_section_info *abbrev_section,
3986 gdb_byte *info_ptr,
3987 int is_debug_types_section)
3988 {
3989 gdb_byte *beg_of_comp_unit = info_ptr;
3990 bfd *abfd = section->asection->owner;
3991
3992 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3993
3994 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3995
3996 /* If we're reading a type unit, skip over the signature and
3997 type_offset fields. */
3998 if (is_debug_types_section)
3999 info_ptr += 8 /*signature*/ + header->offset_size;
4000
4001 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4002
4003 error_check_comp_unit_head (header, section, abbrev_section);
4004
4005 return info_ptr;
4006 }
4007
4008 /* Read in the types comp unit header information from .debug_types entry at
4009 types_ptr. The result is a pointer to one past the end of the header. */
4010
4011 static gdb_byte *
4012 read_and_check_type_unit_head (struct comp_unit_head *header,
4013 struct dwarf2_section_info *section,
4014 struct dwarf2_section_info *abbrev_section,
4015 gdb_byte *info_ptr,
4016 ULONGEST *signature,
4017 cu_offset *type_offset_in_tu)
4018 {
4019 gdb_byte *beg_of_comp_unit = info_ptr;
4020 bfd *abfd = section->asection->owner;
4021
4022 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4023
4024 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4025
4026 /* If we're reading a type unit, skip over the signature and
4027 type_offset fields. */
4028 if (signature != NULL)
4029 *signature = read_8_bytes (abfd, info_ptr);
4030 info_ptr += 8;
4031 if (type_offset_in_tu != NULL)
4032 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4033 header->offset_size);
4034 info_ptr += header->offset_size;
4035
4036 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4037
4038 error_check_comp_unit_head (header, section, abbrev_section);
4039
4040 return info_ptr;
4041 }
4042
4043 /* Fetch the abbreviation table offset from a comp or type unit header. */
4044
4045 static sect_offset
4046 read_abbrev_offset (struct dwarf2_section_info *section,
4047 sect_offset offset)
4048 {
4049 bfd *abfd = section->asection->owner;
4050 gdb_byte *info_ptr;
4051 unsigned int length, initial_length_size, offset_size;
4052 sect_offset abbrev_offset;
4053
4054 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4055 info_ptr = section->buffer + offset.sect_off;
4056 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4057 offset_size = initial_length_size == 4 ? 4 : 8;
4058 info_ptr += initial_length_size + 2 /*version*/;
4059 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4060 return abbrev_offset;
4061 }
4062
4063 /* Allocate a new partial symtab for file named NAME and mark this new
4064 partial symtab as being an include of PST. */
4065
4066 static void
4067 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4068 struct objfile *objfile)
4069 {
4070 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4071
4072 subpst->section_offsets = pst->section_offsets;
4073 subpst->textlow = 0;
4074 subpst->texthigh = 0;
4075
4076 subpst->dependencies = (struct partial_symtab **)
4077 obstack_alloc (&objfile->objfile_obstack,
4078 sizeof (struct partial_symtab *));
4079 subpst->dependencies[0] = pst;
4080 subpst->number_of_dependencies = 1;
4081
4082 subpst->globals_offset = 0;
4083 subpst->n_global_syms = 0;
4084 subpst->statics_offset = 0;
4085 subpst->n_static_syms = 0;
4086 subpst->symtab = NULL;
4087 subpst->read_symtab = pst->read_symtab;
4088 subpst->readin = 0;
4089
4090 /* No private part is necessary for include psymtabs. This property
4091 can be used to differentiate between such include psymtabs and
4092 the regular ones. */
4093 subpst->read_symtab_private = NULL;
4094 }
4095
4096 /* Read the Line Number Program data and extract the list of files
4097 included by the source file represented by PST. Build an include
4098 partial symtab for each of these included files. */
4099
4100 static void
4101 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4102 struct die_info *die,
4103 struct partial_symtab *pst)
4104 {
4105 struct line_header *lh = NULL;
4106 struct attribute *attr;
4107
4108 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4109 if (attr)
4110 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4111 if (lh == NULL)
4112 return; /* No linetable, so no includes. */
4113
4114 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4115 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4116
4117 free_line_header (lh);
4118 }
4119
4120 static hashval_t
4121 hash_signatured_type (const void *item)
4122 {
4123 const struct signatured_type *sig_type = item;
4124
4125 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4126 return sig_type->signature;
4127 }
4128
4129 static int
4130 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4131 {
4132 const struct signatured_type *lhs = item_lhs;
4133 const struct signatured_type *rhs = item_rhs;
4134
4135 return lhs->signature == rhs->signature;
4136 }
4137
4138 /* Allocate a hash table for signatured types. */
4139
4140 static htab_t
4141 allocate_signatured_type_table (struct objfile *objfile)
4142 {
4143 return htab_create_alloc_ex (41,
4144 hash_signatured_type,
4145 eq_signatured_type,
4146 NULL,
4147 &objfile->objfile_obstack,
4148 hashtab_obstack_allocate,
4149 dummy_obstack_deallocate);
4150 }
4151
4152 /* A helper function to add a signatured type CU to a table. */
4153
4154 static int
4155 add_signatured_type_cu_to_table (void **slot, void *datum)
4156 {
4157 struct signatured_type *sigt = *slot;
4158 struct signatured_type ***datap = datum;
4159
4160 **datap = sigt;
4161 ++*datap;
4162
4163 return 1;
4164 }
4165
4166 /* Create the hash table of all entries in the .debug_types section.
4167 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4168 NULL otherwise.
4169 Note: This function processes DWO files only, not DWP files.
4170 The result is a pointer to the hash table or NULL if there are
4171 no types. */
4172
4173 static htab_t
4174 create_debug_types_hash_table (struct dwo_file *dwo_file,
4175 VEC (dwarf2_section_info_def) *types)
4176 {
4177 struct objfile *objfile = dwarf2_per_objfile->objfile;
4178 htab_t types_htab = NULL;
4179 int ix;
4180 struct dwarf2_section_info *section;
4181 struct dwarf2_section_info *abbrev_section;
4182
4183 if (VEC_empty (dwarf2_section_info_def, types))
4184 return NULL;
4185
4186 abbrev_section = (dwo_file != NULL
4187 ? &dwo_file->sections.abbrev
4188 : &dwarf2_per_objfile->abbrev);
4189
4190 if (dwarf2_read_debug)
4191 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4192 dwo_file ? ".dwo" : "",
4193 bfd_get_filename (abbrev_section->asection->owner));
4194
4195 for (ix = 0;
4196 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4197 ++ix)
4198 {
4199 bfd *abfd;
4200 gdb_byte *info_ptr, *end_ptr;
4201 struct dwarf2_section_info *abbrev_section;
4202
4203 dwarf2_read_section (objfile, section);
4204 info_ptr = section->buffer;
4205
4206 if (info_ptr == NULL)
4207 continue;
4208
4209 /* We can't set abfd until now because the section may be empty or
4210 not present, in which case section->asection will be NULL. */
4211 abfd = section->asection->owner;
4212
4213 if (dwo_file)
4214 abbrev_section = &dwo_file->sections.abbrev;
4215 else
4216 abbrev_section = &dwarf2_per_objfile->abbrev;
4217
4218 if (types_htab == NULL)
4219 {
4220 if (dwo_file)
4221 types_htab = allocate_dwo_unit_table (objfile);
4222 else
4223 types_htab = allocate_signatured_type_table (objfile);
4224 }
4225
4226 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4227 because we don't need to read any dies: the signature is in the
4228 header. */
4229
4230 end_ptr = info_ptr + section->size;
4231 while (info_ptr < end_ptr)
4232 {
4233 sect_offset offset;
4234 cu_offset type_offset_in_tu;
4235 ULONGEST signature;
4236 struct signatured_type *sig_type;
4237 struct dwo_unit *dwo_tu;
4238 void **slot;
4239 gdb_byte *ptr = info_ptr;
4240 struct comp_unit_head header;
4241 unsigned int length;
4242
4243 offset.sect_off = ptr - section->buffer;
4244
4245 /* We need to read the type's signature in order to build the hash
4246 table, but we don't need anything else just yet. */
4247
4248 ptr = read_and_check_type_unit_head (&header, section,
4249 abbrev_section, ptr,
4250 &signature, &type_offset_in_tu);
4251
4252 length = get_cu_length (&header);
4253
4254 /* Skip dummy type units. */
4255 if (ptr >= info_ptr + length
4256 || peek_abbrev_code (abfd, ptr) == 0)
4257 {
4258 info_ptr += length;
4259 continue;
4260 }
4261
4262 if (dwo_file)
4263 {
4264 sig_type = NULL;
4265 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4266 struct dwo_unit);
4267 dwo_tu->dwo_file = dwo_file;
4268 dwo_tu->signature = signature;
4269 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4270 dwo_tu->info_or_types_section = section;
4271 dwo_tu->offset = offset;
4272 dwo_tu->length = length;
4273 }
4274 else
4275 {
4276 /* N.B.: type_offset is not usable if this type uses a DWO file.
4277 The real type_offset is in the DWO file. */
4278 dwo_tu = NULL;
4279 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4280 struct signatured_type);
4281 sig_type->signature = signature;
4282 sig_type->type_offset_in_tu = type_offset_in_tu;
4283 sig_type->per_cu.objfile = objfile;
4284 sig_type->per_cu.is_debug_types = 1;
4285 sig_type->per_cu.info_or_types_section = section;
4286 sig_type->per_cu.offset = offset;
4287 sig_type->per_cu.length = length;
4288 }
4289
4290 slot = htab_find_slot (types_htab,
4291 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4292 INSERT);
4293 gdb_assert (slot != NULL);
4294 if (*slot != NULL)
4295 {
4296 sect_offset dup_offset;
4297
4298 if (dwo_file)
4299 {
4300 const struct dwo_unit *dup_tu = *slot;
4301
4302 dup_offset = dup_tu->offset;
4303 }
4304 else
4305 {
4306 const struct signatured_type *dup_tu = *slot;
4307
4308 dup_offset = dup_tu->per_cu.offset;
4309 }
4310
4311 complaint (&symfile_complaints,
4312 _("debug type entry at offset 0x%x is duplicate to the "
4313 "entry at offset 0x%x, signature 0x%s"),
4314 offset.sect_off, dup_offset.sect_off,
4315 phex (signature, sizeof (signature)));
4316 }
4317 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4318
4319 if (dwarf2_read_debug)
4320 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4321 offset.sect_off,
4322 phex (signature, sizeof (signature)));
4323
4324 info_ptr += length;
4325 }
4326 }
4327
4328 return types_htab;
4329 }
4330
4331 /* Create the hash table of all entries in the .debug_types section,
4332 and initialize all_type_units.
4333 The result is zero if there is an error (e.g. missing .debug_types section),
4334 otherwise non-zero. */
4335
4336 static int
4337 create_all_type_units (struct objfile *objfile)
4338 {
4339 htab_t types_htab;
4340 struct signatured_type **iter;
4341
4342 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4343 if (types_htab == NULL)
4344 {
4345 dwarf2_per_objfile->signatured_types = NULL;
4346 return 0;
4347 }
4348
4349 dwarf2_per_objfile->signatured_types = types_htab;
4350
4351 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4352 dwarf2_per_objfile->all_type_units
4353 = obstack_alloc (&objfile->objfile_obstack,
4354 dwarf2_per_objfile->n_type_units
4355 * sizeof (struct signatured_type *));
4356 iter = &dwarf2_per_objfile->all_type_units[0];
4357 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4358 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4359 == dwarf2_per_objfile->n_type_units);
4360
4361 return 1;
4362 }
4363
4364 /* Lookup a signature based type for DW_FORM_ref_sig8.
4365 Returns NULL if signature SIG is not present in the table. */
4366
4367 static struct signatured_type *
4368 lookup_signatured_type (ULONGEST sig)
4369 {
4370 struct signatured_type find_entry, *entry;
4371
4372 if (dwarf2_per_objfile->signatured_types == NULL)
4373 {
4374 complaint (&symfile_complaints,
4375 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4376 return NULL;
4377 }
4378
4379 find_entry.signature = sig;
4380 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4381 return entry;
4382 }
4383 \f
4384 /* Low level DIE reading support. */
4385
4386 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4387
4388 static void
4389 init_cu_die_reader (struct die_reader_specs *reader,
4390 struct dwarf2_cu *cu,
4391 struct dwarf2_section_info *section,
4392 struct dwo_file *dwo_file)
4393 {
4394 gdb_assert (section->readin && section->buffer != NULL);
4395 reader->abfd = section->asection->owner;
4396 reader->cu = cu;
4397 reader->dwo_file = dwo_file;
4398 reader->die_section = section;
4399 reader->buffer = section->buffer;
4400 reader->buffer_end = section->buffer + section->size;
4401 }
4402
4403 /* Initialize a CU (or TU) and read its DIEs.
4404 If the CU defers to a DWO file, read the DWO file as well.
4405
4406 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4407 Otherwise the table specified in the comp unit header is read in and used.
4408 This is an optimization for when we already have the abbrev table.
4409
4410 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4411 Otherwise, a new CU is allocated with xmalloc.
4412
4413 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4414 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4415
4416 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4417 linker) then DIE_READER_FUNC will not get called. */
4418
4419 static void
4420 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4421 struct abbrev_table *abbrev_table,
4422 int use_existing_cu, int keep,
4423 die_reader_func_ftype *die_reader_func,
4424 void *data)
4425 {
4426 struct objfile *objfile = dwarf2_per_objfile->objfile;
4427 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4428 bfd *abfd = section->asection->owner;
4429 struct dwarf2_cu *cu;
4430 gdb_byte *begin_info_ptr, *info_ptr;
4431 struct die_reader_specs reader;
4432 struct die_info *comp_unit_die;
4433 int has_children;
4434 struct attribute *attr;
4435 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4436 struct signatured_type *sig_type = NULL;
4437 struct dwarf2_section_info *abbrev_section;
4438 /* Non-zero if CU currently points to a DWO file and we need to
4439 reread it. When this happens we need to reread the skeleton die
4440 before we can reread the DWO file. */
4441 int rereading_dwo_cu = 0;
4442
4443 if (dwarf2_die_debug)
4444 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4445 this_cu->is_debug_types ? "type" : "comp",
4446 this_cu->offset.sect_off);
4447
4448 if (use_existing_cu)
4449 gdb_assert (keep);
4450
4451 cleanups = make_cleanup (null_cleanup, NULL);
4452
4453 /* This is cheap if the section is already read in. */
4454 dwarf2_read_section (objfile, section);
4455
4456 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4457
4458 abbrev_section = get_abbrev_section_for_cu (this_cu);
4459
4460 if (use_existing_cu && this_cu->cu != NULL)
4461 {
4462 cu = this_cu->cu;
4463
4464 /* If this CU is from a DWO file we need to start over, we need to
4465 refetch the attributes from the skeleton CU.
4466 This could be optimized by retrieving those attributes from when we
4467 were here the first time: the previous comp_unit_die was stored in
4468 comp_unit_obstack. But there's no data yet that we need this
4469 optimization. */
4470 if (cu->dwo_unit != NULL)
4471 rereading_dwo_cu = 1;
4472 }
4473 else
4474 {
4475 /* If !use_existing_cu, this_cu->cu must be NULL. */
4476 gdb_assert (this_cu->cu == NULL);
4477
4478 cu = xmalloc (sizeof (*cu));
4479 init_one_comp_unit (cu, this_cu);
4480
4481 /* If an error occurs while loading, release our storage. */
4482 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4483 }
4484
4485 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4486 {
4487 /* We already have the header, there's no need to read it in again. */
4488 info_ptr += cu->header.first_die_offset.cu_off;
4489 }
4490 else
4491 {
4492 if (this_cu->is_debug_types)
4493 {
4494 ULONGEST signature;
4495 cu_offset type_offset_in_tu;
4496
4497 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4498 abbrev_section, info_ptr,
4499 &signature,
4500 &type_offset_in_tu);
4501
4502 /* Since per_cu is the first member of struct signatured_type,
4503 we can go from a pointer to one to a pointer to the other. */
4504 sig_type = (struct signatured_type *) this_cu;
4505 gdb_assert (sig_type->signature == signature);
4506 gdb_assert (sig_type->type_offset_in_tu.cu_off
4507 == type_offset_in_tu.cu_off);
4508 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4509
4510 /* LENGTH has not been set yet for type units if we're
4511 using .gdb_index. */
4512 this_cu->length = get_cu_length (&cu->header);
4513
4514 /* Establish the type offset that can be used to lookup the type. */
4515 sig_type->type_offset_in_section.sect_off =
4516 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4517 }
4518 else
4519 {
4520 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4521 abbrev_section,
4522 info_ptr, 0);
4523
4524 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4525 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4526 }
4527 }
4528
4529 /* Skip dummy compilation units. */
4530 if (info_ptr >= begin_info_ptr + this_cu->length
4531 || peek_abbrev_code (abfd, info_ptr) == 0)
4532 {
4533 do_cleanups (cleanups);
4534 return;
4535 }
4536
4537 /* If we don't have them yet, read the abbrevs for this compilation unit.
4538 And if we need to read them now, make sure they're freed when we're
4539 done. Note that it's important that if the CU had an abbrev table
4540 on entry we don't free it when we're done: Somewhere up the call stack
4541 it may be in use. */
4542 if (abbrev_table != NULL)
4543 {
4544 gdb_assert (cu->abbrev_table == NULL);
4545 gdb_assert (cu->header.abbrev_offset.sect_off
4546 == abbrev_table->offset.sect_off);
4547 cu->abbrev_table = abbrev_table;
4548 }
4549 else if (cu->abbrev_table == NULL)
4550 {
4551 dwarf2_read_abbrevs (cu, abbrev_section);
4552 make_cleanup (dwarf2_free_abbrev_table, cu);
4553 }
4554 else if (rereading_dwo_cu)
4555 {
4556 dwarf2_free_abbrev_table (cu);
4557 dwarf2_read_abbrevs (cu, abbrev_section);
4558 }
4559
4560 /* Read the top level CU/TU die. */
4561 init_cu_die_reader (&reader, cu, section, NULL);
4562 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4563
4564 /* If we have a DWO stub, process it and then read in the DWO file.
4565 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4566 a DWO CU, that this test will fail. */
4567 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4568 if (attr)
4569 {
4570 const char *dwo_name = DW_STRING (attr);
4571 const char *comp_dir_string;
4572 struct dwo_unit *dwo_unit;
4573 ULONGEST signature; /* Or dwo_id. */
4574 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4575 int i,num_extra_attrs;
4576 struct dwarf2_section_info *dwo_abbrev_section;
4577
4578 if (has_children)
4579 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4580 " has children (offset 0x%x) [in module %s]"),
4581 this_cu->offset.sect_off, bfd_get_filename (abfd));
4582
4583 /* These attributes aren't processed until later:
4584 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4585 However, the attribute is found in the stub which we won't have later.
4586 In order to not impose this complication on the rest of the code,
4587 we read them here and copy them to the DWO CU/TU die. */
4588
4589 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4590 DWO file. */
4591 stmt_list = NULL;
4592 if (! this_cu->is_debug_types)
4593 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4594 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4595 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4596 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4597 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4598
4599 /* There should be a DW_AT_addr_base attribute here (if needed).
4600 We need the value before we can process DW_FORM_GNU_addr_index. */
4601 cu->addr_base = 0;
4602 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4603 if (attr)
4604 cu->addr_base = DW_UNSND (attr);
4605
4606 /* There should be a DW_AT_ranges_base attribute here (if needed).
4607 We need the value before we can process DW_AT_ranges. */
4608 cu->ranges_base = 0;
4609 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4610 if (attr)
4611 cu->ranges_base = DW_UNSND (attr);
4612
4613 if (this_cu->is_debug_types)
4614 {
4615 gdb_assert (sig_type != NULL);
4616 signature = sig_type->signature;
4617 }
4618 else
4619 {
4620 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4621 if (! attr)
4622 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4623 dwo_name);
4624 signature = DW_UNSND (attr);
4625 }
4626
4627 /* We may need the comp_dir in order to find the DWO file. */
4628 comp_dir_string = NULL;
4629 if (comp_dir)
4630 comp_dir_string = DW_STRING (comp_dir);
4631
4632 if (this_cu->is_debug_types)
4633 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4634 else
4635 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4636 signature);
4637
4638 if (dwo_unit == NULL)
4639 {
4640 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4641 " with ID %s [in module %s]"),
4642 this_cu->offset.sect_off,
4643 phex (signature, sizeof (signature)),
4644 objfile->name);
4645 }
4646
4647 /* Set up for reading the DWO CU/TU. */
4648 cu->dwo_unit = dwo_unit;
4649 section = dwo_unit->info_or_types_section;
4650 dwarf2_read_section (objfile, section);
4651 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4652 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4653 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4654
4655 if (this_cu->is_debug_types)
4656 {
4657 ULONGEST signature;
4658 cu_offset type_offset_in_tu;
4659
4660 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4661 dwo_abbrev_section,
4662 info_ptr,
4663 &signature,
4664 &type_offset_in_tu);
4665 gdb_assert (sig_type->signature == signature);
4666 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4667 /* For DWOs coming from DWP files, we don't know the CU length
4668 nor the type's offset in the TU until now. */
4669 dwo_unit->length = get_cu_length (&cu->header);
4670 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4671
4672 /* Establish the type offset that can be used to lookup the type.
4673 For DWO files, we don't know it until now. */
4674 sig_type->type_offset_in_section.sect_off =
4675 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4676 }
4677 else
4678 {
4679 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4680 dwo_abbrev_section,
4681 info_ptr, 0);
4682 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4683 /* For DWOs coming from DWP files, we don't know the CU length
4684 until now. */
4685 dwo_unit->length = get_cu_length (&cu->header);
4686 }
4687
4688 /* Discard the original CU's abbrev table, and read the DWO's. */
4689 if (abbrev_table == NULL)
4690 {
4691 dwarf2_free_abbrev_table (cu);
4692 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4693 }
4694 else
4695 {
4696 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4697 make_cleanup (dwarf2_free_abbrev_table, cu);
4698 }
4699
4700 /* Read in the die, but leave space to copy over the attributes
4701 from the stub. This has the benefit of simplifying the rest of
4702 the code - all the real work is done here. */
4703 num_extra_attrs = ((stmt_list != NULL)
4704 + (low_pc != NULL)
4705 + (high_pc != NULL)
4706 + (ranges != NULL)
4707 + (comp_dir != NULL));
4708 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4709 &has_children, num_extra_attrs);
4710
4711 /* Copy over the attributes from the stub to the DWO die. */
4712 i = comp_unit_die->num_attrs;
4713 if (stmt_list != NULL)
4714 comp_unit_die->attrs[i++] = *stmt_list;
4715 if (low_pc != NULL)
4716 comp_unit_die->attrs[i++] = *low_pc;
4717 if (high_pc != NULL)
4718 comp_unit_die->attrs[i++] = *high_pc;
4719 if (ranges != NULL)
4720 comp_unit_die->attrs[i++] = *ranges;
4721 if (comp_dir != NULL)
4722 comp_unit_die->attrs[i++] = *comp_dir;
4723 comp_unit_die->num_attrs += num_extra_attrs;
4724
4725 /* Skip dummy compilation units. */
4726 if (info_ptr >= begin_info_ptr + dwo_unit->length
4727 || peek_abbrev_code (abfd, info_ptr) == 0)
4728 {
4729 do_cleanups (cleanups);
4730 return;
4731 }
4732 }
4733
4734 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4735
4736 if (free_cu_cleanup != NULL)
4737 {
4738 if (keep)
4739 {
4740 /* We've successfully allocated this compilation unit. Let our
4741 caller clean it up when finished with it. */
4742 discard_cleanups (free_cu_cleanup);
4743
4744 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4745 So we have to manually free the abbrev table. */
4746 dwarf2_free_abbrev_table (cu);
4747
4748 /* Link this CU into read_in_chain. */
4749 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4750 dwarf2_per_objfile->read_in_chain = this_cu;
4751 }
4752 else
4753 do_cleanups (free_cu_cleanup);
4754 }
4755
4756 do_cleanups (cleanups);
4757 }
4758
4759 /* Read CU/TU THIS_CU in section SECTION,
4760 but do not follow DW_AT_GNU_dwo_name if present.
4761 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4762 to have already done the lookup to find the DWO/DWP file).
4763
4764 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4765 THIS_CU->is_debug_types, but nothing else.
4766
4767 We fill in THIS_CU->length.
4768
4769 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4770 linker) then DIE_READER_FUNC will not get called.
4771
4772 THIS_CU->cu is always freed when done.
4773 This is done in order to not leave THIS_CU->cu in a state where we have
4774 to care whether it refers to the "main" CU or the DWO CU. */
4775
4776 static void
4777 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4778 struct dwarf2_section_info *abbrev_section,
4779 struct dwo_file *dwo_file,
4780 die_reader_func_ftype *die_reader_func,
4781 void *data)
4782 {
4783 struct objfile *objfile = dwarf2_per_objfile->objfile;
4784 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4785 bfd *abfd = section->asection->owner;
4786 struct dwarf2_cu cu;
4787 gdb_byte *begin_info_ptr, *info_ptr;
4788 struct die_reader_specs reader;
4789 struct cleanup *cleanups;
4790 struct die_info *comp_unit_die;
4791 int has_children;
4792
4793 if (dwarf2_die_debug)
4794 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4795 this_cu->is_debug_types ? "type" : "comp",
4796 this_cu->offset.sect_off);
4797
4798 gdb_assert (this_cu->cu == NULL);
4799
4800 /* This is cheap if the section is already read in. */
4801 dwarf2_read_section (objfile, section);
4802
4803 init_one_comp_unit (&cu, this_cu);
4804
4805 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4806
4807 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4808 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4809 abbrev_section, info_ptr,
4810 this_cu->is_debug_types);
4811
4812 this_cu->length = get_cu_length (&cu.header);
4813
4814 /* Skip dummy compilation units. */
4815 if (info_ptr >= begin_info_ptr + this_cu->length
4816 || peek_abbrev_code (abfd, info_ptr) == 0)
4817 {
4818 do_cleanups (cleanups);
4819 return;
4820 }
4821
4822 dwarf2_read_abbrevs (&cu, abbrev_section);
4823 make_cleanup (dwarf2_free_abbrev_table, &cu);
4824
4825 init_cu_die_reader (&reader, &cu, section, dwo_file);
4826 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4827
4828 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4829
4830 do_cleanups (cleanups);
4831 }
4832
4833 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4834 does not lookup the specified DWO file.
4835 This cannot be used to read DWO files.
4836
4837 THIS_CU->cu is always freed when done.
4838 This is done in order to not leave THIS_CU->cu in a state where we have
4839 to care whether it refers to the "main" CU or the DWO CU.
4840 We can revisit this if the data shows there's a performance issue. */
4841
4842 static void
4843 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4844 die_reader_func_ftype *die_reader_func,
4845 void *data)
4846 {
4847 init_cutu_and_read_dies_no_follow (this_cu,
4848 get_abbrev_section_for_cu (this_cu),
4849 NULL,
4850 die_reader_func, data);
4851 }
4852
4853 /* Create a psymtab named NAME and assign it to PER_CU.
4854
4855 The caller must fill in the following details:
4856 dirname, textlow, texthigh. */
4857
4858 static struct partial_symtab *
4859 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4860 {
4861 struct objfile *objfile = per_cu->objfile;
4862 struct partial_symtab *pst;
4863
4864 pst = start_psymtab_common (objfile, objfile->section_offsets,
4865 name, 0,
4866 objfile->global_psymbols.next,
4867 objfile->static_psymbols.next);
4868
4869 pst->psymtabs_addrmap_supported = 1;
4870
4871 /* This is the glue that links PST into GDB's symbol API. */
4872 pst->read_symtab_private = per_cu;
4873 pst->read_symtab = dwarf2_read_symtab;
4874 per_cu->v.psymtab = pst;
4875
4876 return pst;
4877 }
4878
4879 /* die_reader_func for process_psymtab_comp_unit. */
4880
4881 static void
4882 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4883 gdb_byte *info_ptr,
4884 struct die_info *comp_unit_die,
4885 int has_children,
4886 void *data)
4887 {
4888 struct dwarf2_cu *cu = reader->cu;
4889 struct objfile *objfile = cu->objfile;
4890 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4891 struct attribute *attr;
4892 CORE_ADDR baseaddr;
4893 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4894 struct partial_symtab *pst;
4895 int has_pc_info;
4896 const char *filename;
4897 int *want_partial_unit_ptr = data;
4898
4899 if (comp_unit_die->tag == DW_TAG_partial_unit
4900 && (want_partial_unit_ptr == NULL
4901 || !*want_partial_unit_ptr))
4902 return;
4903
4904 gdb_assert (! per_cu->is_debug_types);
4905
4906 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4907
4908 cu->list_in_scope = &file_symbols;
4909
4910 /* Allocate a new partial symbol table structure. */
4911 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4912 if (attr == NULL || !DW_STRING (attr))
4913 filename = "";
4914 else
4915 filename = DW_STRING (attr);
4916
4917 pst = create_partial_symtab (per_cu, filename);
4918
4919 /* This must be done before calling dwarf2_build_include_psymtabs. */
4920 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4921 if (attr != NULL)
4922 pst->dirname = DW_STRING (attr);
4923
4924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4925
4926 dwarf2_find_base_address (comp_unit_die, cu);
4927
4928 /* Possibly set the default values of LOWPC and HIGHPC from
4929 `DW_AT_ranges'. */
4930 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4931 &best_highpc, cu, pst);
4932 if (has_pc_info == 1 && best_lowpc < best_highpc)
4933 /* Store the contiguous range if it is not empty; it can be empty for
4934 CUs with no code. */
4935 addrmap_set_empty (objfile->psymtabs_addrmap,
4936 best_lowpc + baseaddr,
4937 best_highpc + baseaddr - 1, pst);
4938
4939 /* Check if comp unit has_children.
4940 If so, read the rest of the partial symbols from this comp unit.
4941 If not, there's no more debug_info for this comp unit. */
4942 if (has_children)
4943 {
4944 struct partial_die_info *first_die;
4945 CORE_ADDR lowpc, highpc;
4946
4947 lowpc = ((CORE_ADDR) -1);
4948 highpc = ((CORE_ADDR) 0);
4949
4950 first_die = load_partial_dies (reader, info_ptr, 1);
4951
4952 scan_partial_symbols (first_die, &lowpc, &highpc,
4953 ! has_pc_info, cu);
4954
4955 /* If we didn't find a lowpc, set it to highpc to avoid
4956 complaints from `maint check'. */
4957 if (lowpc == ((CORE_ADDR) -1))
4958 lowpc = highpc;
4959
4960 /* If the compilation unit didn't have an explicit address range,
4961 then use the information extracted from its child dies. */
4962 if (! has_pc_info)
4963 {
4964 best_lowpc = lowpc;
4965 best_highpc = highpc;
4966 }
4967 }
4968 pst->textlow = best_lowpc + baseaddr;
4969 pst->texthigh = best_highpc + baseaddr;
4970
4971 pst->n_global_syms = objfile->global_psymbols.next -
4972 (objfile->global_psymbols.list + pst->globals_offset);
4973 pst->n_static_syms = objfile->static_psymbols.next -
4974 (objfile->static_psymbols.list + pst->statics_offset);
4975 sort_pst_symbols (objfile, pst);
4976
4977 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4978 {
4979 int i;
4980 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4981 struct dwarf2_per_cu_data *iter;
4982
4983 /* Fill in 'dependencies' here; we fill in 'users' in a
4984 post-pass. */
4985 pst->number_of_dependencies = len;
4986 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4987 len * sizeof (struct symtab *));
4988 for (i = 0;
4989 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4990 i, iter);
4991 ++i)
4992 pst->dependencies[i] = iter->v.psymtab;
4993
4994 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4995 }
4996
4997 /* Get the list of files included in the current compilation unit,
4998 and build a psymtab for each of them. */
4999 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5000
5001 if (dwarf2_read_debug)
5002 {
5003 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5004
5005 fprintf_unfiltered (gdb_stdlog,
5006 "Psymtab for %s unit @0x%x: %s - %s"
5007 ", %d global, %d static syms\n",
5008 per_cu->is_debug_types ? "type" : "comp",
5009 per_cu->offset.sect_off,
5010 paddress (gdbarch, pst->textlow),
5011 paddress (gdbarch, pst->texthigh),
5012 pst->n_global_syms, pst->n_static_syms);
5013 }
5014 }
5015
5016 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5017 Process compilation unit THIS_CU for a psymtab. */
5018
5019 static void
5020 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5021 int want_partial_unit)
5022 {
5023 /* If this compilation unit was already read in, free the
5024 cached copy in order to read it in again. This is
5025 necessary because we skipped some symbols when we first
5026 read in the compilation unit (see load_partial_dies).
5027 This problem could be avoided, but the benefit is unclear. */
5028 if (this_cu->cu != NULL)
5029 free_one_cached_comp_unit (this_cu);
5030
5031 gdb_assert (! this_cu->is_debug_types);
5032 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5033 process_psymtab_comp_unit_reader,
5034 &want_partial_unit);
5035
5036 /* Age out any secondary CUs. */
5037 age_cached_comp_units ();
5038 }
5039
5040 static hashval_t
5041 hash_type_unit_group (const void *item)
5042 {
5043 const struct type_unit_group *tu_group = item;
5044
5045 return hash_stmt_list_entry (&tu_group->hash);
5046 }
5047
5048 static int
5049 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5050 {
5051 const struct type_unit_group *lhs = item_lhs;
5052 const struct type_unit_group *rhs = item_rhs;
5053
5054 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5055 }
5056
5057 /* Allocate a hash table for type unit groups. */
5058
5059 static htab_t
5060 allocate_type_unit_groups_table (void)
5061 {
5062 return htab_create_alloc_ex (3,
5063 hash_type_unit_group,
5064 eq_type_unit_group,
5065 NULL,
5066 &dwarf2_per_objfile->objfile->objfile_obstack,
5067 hashtab_obstack_allocate,
5068 dummy_obstack_deallocate);
5069 }
5070
5071 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5072 partial symtabs. We combine several TUs per psymtab to not let the size
5073 of any one psymtab grow too big. */
5074 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5075 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5076
5077 /* Helper routine for get_type_unit_group.
5078 Create the type_unit_group object used to hold one or more TUs. */
5079
5080 static struct type_unit_group *
5081 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5082 {
5083 struct objfile *objfile = dwarf2_per_objfile->objfile;
5084 struct dwarf2_per_cu_data *per_cu;
5085 struct type_unit_group *tu_group;
5086
5087 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5088 struct type_unit_group);
5089 per_cu = &tu_group->per_cu;
5090 per_cu->objfile = objfile;
5091 per_cu->is_debug_types = 1;
5092 per_cu->type_unit_group = tu_group;
5093
5094 if (dwarf2_per_objfile->using_index)
5095 {
5096 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5097 struct dwarf2_per_cu_quick_data);
5098 tu_group->t.first_tu = cu->per_cu;
5099 }
5100 else
5101 {
5102 unsigned int line_offset = line_offset_struct.sect_off;
5103 struct partial_symtab *pst;
5104 char *name;
5105
5106 /* Give the symtab a useful name for debug purposes. */
5107 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5108 name = xstrprintf ("<type_units_%d>",
5109 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5110 else
5111 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5112
5113 pst = create_partial_symtab (per_cu, name);
5114 pst->anonymous = 1;
5115
5116 xfree (name);
5117 }
5118
5119 tu_group->hash.dwo_unit = cu->dwo_unit;
5120 tu_group->hash.line_offset = line_offset_struct;
5121
5122 return tu_group;
5123 }
5124
5125 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5126 STMT_LIST is a DW_AT_stmt_list attribute. */
5127
5128 static struct type_unit_group *
5129 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5130 {
5131 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5132 struct type_unit_group *tu_group;
5133 void **slot;
5134 unsigned int line_offset;
5135 struct type_unit_group type_unit_group_for_lookup;
5136
5137 if (dwarf2_per_objfile->type_unit_groups == NULL)
5138 {
5139 dwarf2_per_objfile->type_unit_groups =
5140 allocate_type_unit_groups_table ();
5141 }
5142
5143 /* Do we need to create a new group, or can we use an existing one? */
5144
5145 if (stmt_list)
5146 {
5147 line_offset = DW_UNSND (stmt_list);
5148 ++tu_stats->nr_symtab_sharers;
5149 }
5150 else
5151 {
5152 /* Ugh, no stmt_list. Rare, but we have to handle it.
5153 We can do various things here like create one group per TU or
5154 spread them over multiple groups to split up the expansion work.
5155 To avoid worst case scenarios (too many groups or too large groups)
5156 we, umm, group them in bunches. */
5157 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5158 | (tu_stats->nr_stmt_less_type_units
5159 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5160 ++tu_stats->nr_stmt_less_type_units;
5161 }
5162
5163 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5164 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5165 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5166 &type_unit_group_for_lookup, INSERT);
5167 if (*slot != NULL)
5168 {
5169 tu_group = *slot;
5170 gdb_assert (tu_group != NULL);
5171 }
5172 else
5173 {
5174 sect_offset line_offset_struct;
5175
5176 line_offset_struct.sect_off = line_offset;
5177 tu_group = create_type_unit_group (cu, line_offset_struct);
5178 *slot = tu_group;
5179 ++tu_stats->nr_symtabs;
5180 }
5181
5182 return tu_group;
5183 }
5184
5185 /* Struct used to sort TUs by their abbreviation table offset. */
5186
5187 struct tu_abbrev_offset
5188 {
5189 struct signatured_type *sig_type;
5190 sect_offset abbrev_offset;
5191 };
5192
5193 /* Helper routine for build_type_unit_groups, passed to qsort. */
5194
5195 static int
5196 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5197 {
5198 const struct tu_abbrev_offset * const *a = ap;
5199 const struct tu_abbrev_offset * const *b = bp;
5200 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5201 unsigned int boff = (*b)->abbrev_offset.sect_off;
5202
5203 return (aoff > boff) - (aoff < boff);
5204 }
5205
5206 /* A helper function to add a type_unit_group to a table. */
5207
5208 static int
5209 add_type_unit_group_to_table (void **slot, void *datum)
5210 {
5211 struct type_unit_group *tu_group = *slot;
5212 struct type_unit_group ***datap = datum;
5213
5214 **datap = tu_group;
5215 ++*datap;
5216
5217 return 1;
5218 }
5219
5220 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5221 each one passing FUNC,DATA.
5222
5223 The efficiency is because we sort TUs by the abbrev table they use and
5224 only read each abbrev table once. In one program there are 200K TUs
5225 sharing 8K abbrev tables.
5226
5227 The main purpose of this function is to support building the
5228 dwarf2_per_objfile->type_unit_groups table.
5229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5230 can collapse the search space by grouping them by stmt_list.
5231 The savings can be significant, in the same program from above the 200K TUs
5232 share 8K stmt_list tables.
5233
5234 FUNC is expected to call get_type_unit_group, which will create the
5235 struct type_unit_group if necessary and add it to
5236 dwarf2_per_objfile->type_unit_groups. */
5237
5238 static void
5239 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5240 {
5241 struct objfile *objfile = dwarf2_per_objfile->objfile;
5242 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5243 struct cleanup *cleanups;
5244 struct abbrev_table *abbrev_table;
5245 sect_offset abbrev_offset;
5246 struct tu_abbrev_offset *sorted_by_abbrev;
5247 struct type_unit_group **iter;
5248 int i;
5249
5250 /* It's up to the caller to not call us multiple times. */
5251 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5252
5253 if (dwarf2_per_objfile->n_type_units == 0)
5254 return;
5255
5256 /* TUs typically share abbrev tables, and there can be way more TUs than
5257 abbrev tables. Sort by abbrev table to reduce the number of times we
5258 read each abbrev table in.
5259 Alternatives are to punt or to maintain a cache of abbrev tables.
5260 This is simpler and efficient enough for now.
5261
5262 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5263 symtab to use). Typically TUs with the same abbrev offset have the same
5264 stmt_list value too so in practice this should work well.
5265
5266 The basic algorithm here is:
5267
5268 sort TUs by abbrev table
5269 for each TU with same abbrev table:
5270 read abbrev table if first user
5271 read TU top level DIE
5272 [IWBN if DWO skeletons had DW_AT_stmt_list]
5273 call FUNC */
5274
5275 if (dwarf2_read_debug)
5276 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5277
5278 /* Sort in a separate table to maintain the order of all_type_units
5279 for .gdb_index: TU indices directly index all_type_units. */
5280 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5281 dwarf2_per_objfile->n_type_units);
5282 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5283 {
5284 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5285
5286 sorted_by_abbrev[i].sig_type = sig_type;
5287 sorted_by_abbrev[i].abbrev_offset =
5288 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5289 sig_type->per_cu.offset);
5290 }
5291 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5292 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5293 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5294
5295 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5296 called any number of times, so we don't reset tu_stats here. */
5297
5298 abbrev_offset.sect_off = ~(unsigned) 0;
5299 abbrev_table = NULL;
5300 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5301
5302 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5303 {
5304 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5305
5306 /* Switch to the next abbrev table if necessary. */
5307 if (abbrev_table == NULL
5308 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5309 {
5310 if (abbrev_table != NULL)
5311 {
5312 abbrev_table_free (abbrev_table);
5313 /* Reset to NULL in case abbrev_table_read_table throws
5314 an error: abbrev_table_free_cleanup will get called. */
5315 abbrev_table = NULL;
5316 }
5317 abbrev_offset = tu->abbrev_offset;
5318 abbrev_table =
5319 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5320 abbrev_offset);
5321 ++tu_stats->nr_uniq_abbrev_tables;
5322 }
5323
5324 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5325 func, data);
5326 }
5327
5328 /* Create a vector of pointers to primary type units to make it easy to
5329 iterate over them and CUs. See dw2_get_primary_cu. */
5330 dwarf2_per_objfile->n_type_unit_groups =
5331 htab_elements (dwarf2_per_objfile->type_unit_groups);
5332 dwarf2_per_objfile->all_type_unit_groups =
5333 obstack_alloc (&objfile->objfile_obstack,
5334 dwarf2_per_objfile->n_type_unit_groups
5335 * sizeof (struct type_unit_group *));
5336 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5337 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5338 add_type_unit_group_to_table, &iter);
5339 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5340 == dwarf2_per_objfile->n_type_unit_groups);
5341
5342 do_cleanups (cleanups);
5343
5344 if (dwarf2_read_debug)
5345 {
5346 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5347 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5348 dwarf2_per_objfile->n_type_units);
5349 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5350 tu_stats->nr_uniq_abbrev_tables);
5351 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5352 tu_stats->nr_symtabs);
5353 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5354 tu_stats->nr_symtab_sharers);
5355 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5356 tu_stats->nr_stmt_less_type_units);
5357 }
5358 }
5359
5360 /* Reader function for build_type_psymtabs. */
5361
5362 static void
5363 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5364 gdb_byte *info_ptr,
5365 struct die_info *type_unit_die,
5366 int has_children,
5367 void *data)
5368 {
5369 struct objfile *objfile = dwarf2_per_objfile->objfile;
5370 struct dwarf2_cu *cu = reader->cu;
5371 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5372 struct type_unit_group *tu_group;
5373 struct attribute *attr;
5374 struct partial_die_info *first_die;
5375 CORE_ADDR lowpc, highpc;
5376 struct partial_symtab *pst;
5377
5378 gdb_assert (data == NULL);
5379
5380 if (! has_children)
5381 return;
5382
5383 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5384 tu_group = get_type_unit_group (cu, attr);
5385
5386 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5387
5388 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5389 cu->list_in_scope = &file_symbols;
5390 pst = create_partial_symtab (per_cu, "");
5391 pst->anonymous = 1;
5392
5393 first_die = load_partial_dies (reader, info_ptr, 1);
5394
5395 lowpc = (CORE_ADDR) -1;
5396 highpc = (CORE_ADDR) 0;
5397 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5398
5399 pst->n_global_syms = objfile->global_psymbols.next -
5400 (objfile->global_psymbols.list + pst->globals_offset);
5401 pst->n_static_syms = objfile->static_psymbols.next -
5402 (objfile->static_psymbols.list + pst->statics_offset);
5403 sort_pst_symbols (objfile, pst);
5404 }
5405
5406 /* Traversal function for build_type_psymtabs. */
5407
5408 static int
5409 build_type_psymtab_dependencies (void **slot, void *info)
5410 {
5411 struct objfile *objfile = dwarf2_per_objfile->objfile;
5412 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5413 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5414 struct partial_symtab *pst = per_cu->v.psymtab;
5415 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5416 struct dwarf2_per_cu_data *iter;
5417 int i;
5418
5419 gdb_assert (len > 0);
5420
5421 pst->number_of_dependencies = len;
5422 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5423 len * sizeof (struct psymtab *));
5424 for (i = 0;
5425 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5426 ++i)
5427 {
5428 pst->dependencies[i] = iter->v.psymtab;
5429 iter->type_unit_group = tu_group;
5430 }
5431
5432 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5433
5434 return 1;
5435 }
5436
5437 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5438 Build partial symbol tables for the .debug_types comp-units. */
5439
5440 static void
5441 build_type_psymtabs (struct objfile *objfile)
5442 {
5443 if (! create_all_type_units (objfile))
5444 return;
5445
5446 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5447
5448 /* Now that all TUs have been processed we can fill in the dependencies. */
5449 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5450 build_type_psymtab_dependencies, NULL);
5451 }
5452
5453 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5454
5455 static void
5456 psymtabs_addrmap_cleanup (void *o)
5457 {
5458 struct objfile *objfile = o;
5459
5460 objfile->psymtabs_addrmap = NULL;
5461 }
5462
5463 /* Compute the 'user' field for each psymtab in OBJFILE. */
5464
5465 static void
5466 set_partial_user (struct objfile *objfile)
5467 {
5468 int i;
5469
5470 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5471 {
5472 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5473 struct partial_symtab *pst = per_cu->v.psymtab;
5474 int j;
5475
5476 if (pst == NULL)
5477 continue;
5478
5479 for (j = 0; j < pst->number_of_dependencies; ++j)
5480 {
5481 /* Set the 'user' field only if it is not already set. */
5482 if (pst->dependencies[j]->user == NULL)
5483 pst->dependencies[j]->user = pst;
5484 }
5485 }
5486 }
5487
5488 /* Build the partial symbol table by doing a quick pass through the
5489 .debug_info and .debug_abbrev sections. */
5490
5491 static void
5492 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5493 {
5494 struct cleanup *back_to, *addrmap_cleanup;
5495 struct obstack temp_obstack;
5496 int i;
5497
5498 if (dwarf2_read_debug)
5499 {
5500 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5501 objfile->name);
5502 }
5503
5504 dwarf2_per_objfile->reading_partial_symbols = 1;
5505
5506 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5507
5508 /* Any cached compilation units will be linked by the per-objfile
5509 read_in_chain. Make sure to free them when we're done. */
5510 back_to = make_cleanup (free_cached_comp_units, NULL);
5511
5512 build_type_psymtabs (objfile);
5513
5514 create_all_comp_units (objfile);
5515
5516 /* Create a temporary address map on a temporary obstack. We later
5517 copy this to the final obstack. */
5518 obstack_init (&temp_obstack);
5519 make_cleanup_obstack_free (&temp_obstack);
5520 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5521 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5522
5523 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5524 {
5525 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5526
5527 process_psymtab_comp_unit (per_cu, 0);
5528 }
5529
5530 set_partial_user (objfile);
5531
5532 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5533 &objfile->objfile_obstack);
5534 discard_cleanups (addrmap_cleanup);
5535
5536 do_cleanups (back_to);
5537
5538 if (dwarf2_read_debug)
5539 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5540 objfile->name);
5541 }
5542
5543 /* die_reader_func for load_partial_comp_unit. */
5544
5545 static void
5546 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5547 gdb_byte *info_ptr,
5548 struct die_info *comp_unit_die,
5549 int has_children,
5550 void *data)
5551 {
5552 struct dwarf2_cu *cu = reader->cu;
5553
5554 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5555
5556 /* Check if comp unit has_children.
5557 If so, read the rest of the partial symbols from this comp unit.
5558 If not, there's no more debug_info for this comp unit. */
5559 if (has_children)
5560 load_partial_dies (reader, info_ptr, 0);
5561 }
5562
5563 /* Load the partial DIEs for a secondary CU into memory.
5564 This is also used when rereading a primary CU with load_all_dies. */
5565
5566 static void
5567 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5568 {
5569 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5570 load_partial_comp_unit_reader, NULL);
5571 }
5572
5573 static void
5574 read_comp_units_from_section (struct objfile *objfile,
5575 struct dwarf2_section_info *section,
5576 unsigned int is_dwz,
5577 int *n_allocated,
5578 int *n_comp_units,
5579 struct dwarf2_per_cu_data ***all_comp_units)
5580 {
5581 gdb_byte *info_ptr;
5582 bfd *abfd = section->asection->owner;
5583
5584 dwarf2_read_section (objfile, section);
5585
5586 info_ptr = section->buffer;
5587
5588 while (info_ptr < section->buffer + section->size)
5589 {
5590 unsigned int length, initial_length_size;
5591 struct dwarf2_per_cu_data *this_cu;
5592 sect_offset offset;
5593
5594 offset.sect_off = info_ptr - section->buffer;
5595
5596 /* Read just enough information to find out where the next
5597 compilation unit is. */
5598 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5599
5600 /* Save the compilation unit for later lookup. */
5601 this_cu = obstack_alloc (&objfile->objfile_obstack,
5602 sizeof (struct dwarf2_per_cu_data));
5603 memset (this_cu, 0, sizeof (*this_cu));
5604 this_cu->offset = offset;
5605 this_cu->length = length + initial_length_size;
5606 this_cu->is_dwz = is_dwz;
5607 this_cu->objfile = objfile;
5608 this_cu->info_or_types_section = section;
5609
5610 if (*n_comp_units == *n_allocated)
5611 {
5612 *n_allocated *= 2;
5613 *all_comp_units = xrealloc (*all_comp_units,
5614 *n_allocated
5615 * sizeof (struct dwarf2_per_cu_data *));
5616 }
5617 (*all_comp_units)[*n_comp_units] = this_cu;
5618 ++*n_comp_units;
5619
5620 info_ptr = info_ptr + this_cu->length;
5621 }
5622 }
5623
5624 /* Create a list of all compilation units in OBJFILE.
5625 This is only done for -readnow and building partial symtabs. */
5626
5627 static void
5628 create_all_comp_units (struct objfile *objfile)
5629 {
5630 int n_allocated;
5631 int n_comp_units;
5632 struct dwarf2_per_cu_data **all_comp_units;
5633
5634 n_comp_units = 0;
5635 n_allocated = 10;
5636 all_comp_units = xmalloc (n_allocated
5637 * sizeof (struct dwarf2_per_cu_data *));
5638
5639 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5640 &n_allocated, &n_comp_units, &all_comp_units);
5641
5642 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5643 {
5644 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5645
5646 read_comp_units_from_section (objfile, &dwz->info, 1,
5647 &n_allocated, &n_comp_units,
5648 &all_comp_units);
5649 }
5650
5651 dwarf2_per_objfile->all_comp_units
5652 = obstack_alloc (&objfile->objfile_obstack,
5653 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5654 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5655 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5656 xfree (all_comp_units);
5657 dwarf2_per_objfile->n_comp_units = n_comp_units;
5658 }
5659
5660 /* Process all loaded DIEs for compilation unit CU, starting at
5661 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5662 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5663 DW_AT_ranges). If NEED_PC is set, then this function will set
5664 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5665 and record the covered ranges in the addrmap. */
5666
5667 static void
5668 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5669 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5670 {
5671 struct partial_die_info *pdi;
5672
5673 /* Now, march along the PDI's, descending into ones which have
5674 interesting children but skipping the children of the other ones,
5675 until we reach the end of the compilation unit. */
5676
5677 pdi = first_die;
5678
5679 while (pdi != NULL)
5680 {
5681 fixup_partial_die (pdi, cu);
5682
5683 /* Anonymous namespaces or modules have no name but have interesting
5684 children, so we need to look at them. Ditto for anonymous
5685 enums. */
5686
5687 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5688 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5689 || pdi->tag == DW_TAG_imported_unit)
5690 {
5691 switch (pdi->tag)
5692 {
5693 case DW_TAG_subprogram:
5694 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5695 break;
5696 case DW_TAG_constant:
5697 case DW_TAG_variable:
5698 case DW_TAG_typedef:
5699 case DW_TAG_union_type:
5700 if (!pdi->is_declaration)
5701 {
5702 add_partial_symbol (pdi, cu);
5703 }
5704 break;
5705 case DW_TAG_class_type:
5706 case DW_TAG_interface_type:
5707 case DW_TAG_structure_type:
5708 if (!pdi->is_declaration)
5709 {
5710 add_partial_symbol (pdi, cu);
5711 }
5712 break;
5713 case DW_TAG_enumeration_type:
5714 if (!pdi->is_declaration)
5715 add_partial_enumeration (pdi, cu);
5716 break;
5717 case DW_TAG_base_type:
5718 case DW_TAG_subrange_type:
5719 /* File scope base type definitions are added to the partial
5720 symbol table. */
5721 add_partial_symbol (pdi, cu);
5722 break;
5723 case DW_TAG_namespace:
5724 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5725 break;
5726 case DW_TAG_module:
5727 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5728 break;
5729 case DW_TAG_imported_unit:
5730 {
5731 struct dwarf2_per_cu_data *per_cu;
5732
5733 /* For now we don't handle imported units in type units. */
5734 if (cu->per_cu->is_debug_types)
5735 {
5736 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5737 " supported in type units [in module %s]"),
5738 cu->objfile->name);
5739 }
5740
5741 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5742 pdi->is_dwz,
5743 cu->objfile);
5744
5745 /* Go read the partial unit, if needed. */
5746 if (per_cu->v.psymtab == NULL)
5747 process_psymtab_comp_unit (per_cu, 1);
5748
5749 VEC_safe_push (dwarf2_per_cu_ptr,
5750 cu->per_cu->imported_symtabs, per_cu);
5751 }
5752 break;
5753 default:
5754 break;
5755 }
5756 }
5757
5758 /* If the die has a sibling, skip to the sibling. */
5759
5760 pdi = pdi->die_sibling;
5761 }
5762 }
5763
5764 /* Functions used to compute the fully scoped name of a partial DIE.
5765
5766 Normally, this is simple. For C++, the parent DIE's fully scoped
5767 name is concatenated with "::" and the partial DIE's name. For
5768 Java, the same thing occurs except that "." is used instead of "::".
5769 Enumerators are an exception; they use the scope of their parent
5770 enumeration type, i.e. the name of the enumeration type is not
5771 prepended to the enumerator.
5772
5773 There are two complexities. One is DW_AT_specification; in this
5774 case "parent" means the parent of the target of the specification,
5775 instead of the direct parent of the DIE. The other is compilers
5776 which do not emit DW_TAG_namespace; in this case we try to guess
5777 the fully qualified name of structure types from their members'
5778 linkage names. This must be done using the DIE's children rather
5779 than the children of any DW_AT_specification target. We only need
5780 to do this for structures at the top level, i.e. if the target of
5781 any DW_AT_specification (if any; otherwise the DIE itself) does not
5782 have a parent. */
5783
5784 /* Compute the scope prefix associated with PDI's parent, in
5785 compilation unit CU. The result will be allocated on CU's
5786 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5787 field. NULL is returned if no prefix is necessary. */
5788 static const char *
5789 partial_die_parent_scope (struct partial_die_info *pdi,
5790 struct dwarf2_cu *cu)
5791 {
5792 const char *grandparent_scope;
5793 struct partial_die_info *parent, *real_pdi;
5794
5795 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5796 then this means the parent of the specification DIE. */
5797
5798 real_pdi = pdi;
5799 while (real_pdi->has_specification)
5800 real_pdi = find_partial_die (real_pdi->spec_offset,
5801 real_pdi->spec_is_dwz, cu);
5802
5803 parent = real_pdi->die_parent;
5804 if (parent == NULL)
5805 return NULL;
5806
5807 if (parent->scope_set)
5808 return parent->scope;
5809
5810 fixup_partial_die (parent, cu);
5811
5812 grandparent_scope = partial_die_parent_scope (parent, cu);
5813
5814 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5815 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5816 Work around this problem here. */
5817 if (cu->language == language_cplus
5818 && parent->tag == DW_TAG_namespace
5819 && strcmp (parent->name, "::") == 0
5820 && grandparent_scope == NULL)
5821 {
5822 parent->scope = NULL;
5823 parent->scope_set = 1;
5824 return NULL;
5825 }
5826
5827 if (pdi->tag == DW_TAG_enumerator)
5828 /* Enumerators should not get the name of the enumeration as a prefix. */
5829 parent->scope = grandparent_scope;
5830 else if (parent->tag == DW_TAG_namespace
5831 || parent->tag == DW_TAG_module
5832 || parent->tag == DW_TAG_structure_type
5833 || parent->tag == DW_TAG_class_type
5834 || parent->tag == DW_TAG_interface_type
5835 || parent->tag == DW_TAG_union_type
5836 || parent->tag == DW_TAG_enumeration_type)
5837 {
5838 if (grandparent_scope == NULL)
5839 parent->scope = parent->name;
5840 else
5841 parent->scope = typename_concat (&cu->comp_unit_obstack,
5842 grandparent_scope,
5843 parent->name, 0, cu);
5844 }
5845 else
5846 {
5847 /* FIXME drow/2004-04-01: What should we be doing with
5848 function-local names? For partial symbols, we should probably be
5849 ignoring them. */
5850 complaint (&symfile_complaints,
5851 _("unhandled containing DIE tag %d for DIE at %d"),
5852 parent->tag, pdi->offset.sect_off);
5853 parent->scope = grandparent_scope;
5854 }
5855
5856 parent->scope_set = 1;
5857 return parent->scope;
5858 }
5859
5860 /* Return the fully scoped name associated with PDI, from compilation unit
5861 CU. The result will be allocated with malloc. */
5862
5863 static char *
5864 partial_die_full_name (struct partial_die_info *pdi,
5865 struct dwarf2_cu *cu)
5866 {
5867 const char *parent_scope;
5868
5869 /* If this is a template instantiation, we can not work out the
5870 template arguments from partial DIEs. So, unfortunately, we have
5871 to go through the full DIEs. At least any work we do building
5872 types here will be reused if full symbols are loaded later. */
5873 if (pdi->has_template_arguments)
5874 {
5875 fixup_partial_die (pdi, cu);
5876
5877 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5878 {
5879 struct die_info *die;
5880 struct attribute attr;
5881 struct dwarf2_cu *ref_cu = cu;
5882
5883 /* DW_FORM_ref_addr is using section offset. */
5884 attr.name = 0;
5885 attr.form = DW_FORM_ref_addr;
5886 attr.u.unsnd = pdi->offset.sect_off;
5887 die = follow_die_ref (NULL, &attr, &ref_cu);
5888
5889 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5890 }
5891 }
5892
5893 parent_scope = partial_die_parent_scope (pdi, cu);
5894 if (parent_scope == NULL)
5895 return NULL;
5896 else
5897 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5898 }
5899
5900 static void
5901 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5902 {
5903 struct objfile *objfile = cu->objfile;
5904 CORE_ADDR addr = 0;
5905 const char *actual_name = NULL;
5906 CORE_ADDR baseaddr;
5907 char *built_actual_name;
5908
5909 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5910
5911 built_actual_name = partial_die_full_name (pdi, cu);
5912 if (built_actual_name != NULL)
5913 actual_name = built_actual_name;
5914
5915 if (actual_name == NULL)
5916 actual_name = pdi->name;
5917
5918 switch (pdi->tag)
5919 {
5920 case DW_TAG_subprogram:
5921 if (pdi->is_external || cu->language == language_ada)
5922 {
5923 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5924 of the global scope. But in Ada, we want to be able to access
5925 nested procedures globally. So all Ada subprograms are stored
5926 in the global scope. */
5927 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5928 mst_text, objfile); */
5929 add_psymbol_to_list (actual_name, strlen (actual_name),
5930 built_actual_name != NULL,
5931 VAR_DOMAIN, LOC_BLOCK,
5932 &objfile->global_psymbols,
5933 0, pdi->lowpc + baseaddr,
5934 cu->language, objfile);
5935 }
5936 else
5937 {
5938 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5939 mst_file_text, objfile); */
5940 add_psymbol_to_list (actual_name, strlen (actual_name),
5941 built_actual_name != NULL,
5942 VAR_DOMAIN, LOC_BLOCK,
5943 &objfile->static_psymbols,
5944 0, pdi->lowpc + baseaddr,
5945 cu->language, objfile);
5946 }
5947 break;
5948 case DW_TAG_constant:
5949 {
5950 struct psymbol_allocation_list *list;
5951
5952 if (pdi->is_external)
5953 list = &objfile->global_psymbols;
5954 else
5955 list = &objfile->static_psymbols;
5956 add_psymbol_to_list (actual_name, strlen (actual_name),
5957 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5958 list, 0, 0, cu->language, objfile);
5959 }
5960 break;
5961 case DW_TAG_variable:
5962 if (pdi->d.locdesc)
5963 addr = decode_locdesc (pdi->d.locdesc, cu);
5964
5965 if (pdi->d.locdesc
5966 && addr == 0
5967 && !dwarf2_per_objfile->has_section_at_zero)
5968 {
5969 /* A global or static variable may also have been stripped
5970 out by the linker if unused, in which case its address
5971 will be nullified; do not add such variables into partial
5972 symbol table then. */
5973 }
5974 else if (pdi->is_external)
5975 {
5976 /* Global Variable.
5977 Don't enter into the minimal symbol tables as there is
5978 a minimal symbol table entry from the ELF symbols already.
5979 Enter into partial symbol table if it has a location
5980 descriptor or a type.
5981 If the location descriptor is missing, new_symbol will create
5982 a LOC_UNRESOLVED symbol, the address of the variable will then
5983 be determined from the minimal symbol table whenever the variable
5984 is referenced.
5985 The address for the partial symbol table entry is not
5986 used by GDB, but it comes in handy for debugging partial symbol
5987 table building. */
5988
5989 if (pdi->d.locdesc || pdi->has_type)
5990 add_psymbol_to_list (actual_name, strlen (actual_name),
5991 built_actual_name != NULL,
5992 VAR_DOMAIN, LOC_STATIC,
5993 &objfile->global_psymbols,
5994 0, addr + baseaddr,
5995 cu->language, objfile);
5996 }
5997 else
5998 {
5999 /* Static Variable. Skip symbols without location descriptors. */
6000 if (pdi->d.locdesc == NULL)
6001 {
6002 xfree (built_actual_name);
6003 return;
6004 }
6005 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6006 mst_file_data, objfile); */
6007 add_psymbol_to_list (actual_name, strlen (actual_name),
6008 built_actual_name != NULL,
6009 VAR_DOMAIN, LOC_STATIC,
6010 &objfile->static_psymbols,
6011 0, addr + baseaddr,
6012 cu->language, objfile);
6013 }
6014 break;
6015 case DW_TAG_typedef:
6016 case DW_TAG_base_type:
6017 case DW_TAG_subrange_type:
6018 add_psymbol_to_list (actual_name, strlen (actual_name),
6019 built_actual_name != NULL,
6020 VAR_DOMAIN, LOC_TYPEDEF,
6021 &objfile->static_psymbols,
6022 0, (CORE_ADDR) 0, cu->language, objfile);
6023 break;
6024 case DW_TAG_namespace:
6025 add_psymbol_to_list (actual_name, strlen (actual_name),
6026 built_actual_name != NULL,
6027 VAR_DOMAIN, LOC_TYPEDEF,
6028 &objfile->global_psymbols,
6029 0, (CORE_ADDR) 0, cu->language, objfile);
6030 break;
6031 case DW_TAG_class_type:
6032 case DW_TAG_interface_type:
6033 case DW_TAG_structure_type:
6034 case DW_TAG_union_type:
6035 case DW_TAG_enumeration_type:
6036 /* Skip external references. The DWARF standard says in the section
6037 about "Structure, Union, and Class Type Entries": "An incomplete
6038 structure, union or class type is represented by a structure,
6039 union or class entry that does not have a byte size attribute
6040 and that has a DW_AT_declaration attribute." */
6041 if (!pdi->has_byte_size && pdi->is_declaration)
6042 {
6043 xfree (built_actual_name);
6044 return;
6045 }
6046
6047 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6048 static vs. global. */
6049 add_psymbol_to_list (actual_name, strlen (actual_name),
6050 built_actual_name != NULL,
6051 STRUCT_DOMAIN, LOC_TYPEDEF,
6052 (cu->language == language_cplus
6053 || cu->language == language_java)
6054 ? &objfile->global_psymbols
6055 : &objfile->static_psymbols,
6056 0, (CORE_ADDR) 0, cu->language, objfile);
6057
6058 break;
6059 case DW_TAG_enumerator:
6060 add_psymbol_to_list (actual_name, strlen (actual_name),
6061 built_actual_name != NULL,
6062 VAR_DOMAIN, LOC_CONST,
6063 (cu->language == language_cplus
6064 || cu->language == language_java)
6065 ? &objfile->global_psymbols
6066 : &objfile->static_psymbols,
6067 0, (CORE_ADDR) 0, cu->language, objfile);
6068 break;
6069 default:
6070 break;
6071 }
6072
6073 xfree (built_actual_name);
6074 }
6075
6076 /* Read a partial die corresponding to a namespace; also, add a symbol
6077 corresponding to that namespace to the symbol table. NAMESPACE is
6078 the name of the enclosing namespace. */
6079
6080 static void
6081 add_partial_namespace (struct partial_die_info *pdi,
6082 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6083 int need_pc, struct dwarf2_cu *cu)
6084 {
6085 /* Add a symbol for the namespace. */
6086
6087 add_partial_symbol (pdi, cu);
6088
6089 /* Now scan partial symbols in that namespace. */
6090
6091 if (pdi->has_children)
6092 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6093 }
6094
6095 /* Read a partial die corresponding to a Fortran module. */
6096
6097 static void
6098 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6099 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6100 {
6101 /* Now scan partial symbols in that module. */
6102
6103 if (pdi->has_children)
6104 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6105 }
6106
6107 /* Read a partial die corresponding to a subprogram and create a partial
6108 symbol for that subprogram. When the CU language allows it, this
6109 routine also defines a partial symbol for each nested subprogram
6110 that this subprogram contains.
6111
6112 DIE my also be a lexical block, in which case we simply search
6113 recursively for suprograms defined inside that lexical block.
6114 Again, this is only performed when the CU language allows this
6115 type of definitions. */
6116
6117 static void
6118 add_partial_subprogram (struct partial_die_info *pdi,
6119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6120 int need_pc, struct dwarf2_cu *cu)
6121 {
6122 if (pdi->tag == DW_TAG_subprogram)
6123 {
6124 if (pdi->has_pc_info)
6125 {
6126 if (pdi->lowpc < *lowpc)
6127 *lowpc = pdi->lowpc;
6128 if (pdi->highpc > *highpc)
6129 *highpc = pdi->highpc;
6130 if (need_pc)
6131 {
6132 CORE_ADDR baseaddr;
6133 struct objfile *objfile = cu->objfile;
6134
6135 baseaddr = ANOFFSET (objfile->section_offsets,
6136 SECT_OFF_TEXT (objfile));
6137 addrmap_set_empty (objfile->psymtabs_addrmap,
6138 pdi->lowpc + baseaddr,
6139 pdi->highpc - 1 + baseaddr,
6140 cu->per_cu->v.psymtab);
6141 }
6142 }
6143
6144 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6145 {
6146 if (!pdi->is_declaration)
6147 /* Ignore subprogram DIEs that do not have a name, they are
6148 illegal. Do not emit a complaint at this point, we will
6149 do so when we convert this psymtab into a symtab. */
6150 if (pdi->name)
6151 add_partial_symbol (pdi, cu);
6152 }
6153 }
6154
6155 if (! pdi->has_children)
6156 return;
6157
6158 if (cu->language == language_ada)
6159 {
6160 pdi = pdi->die_child;
6161 while (pdi != NULL)
6162 {
6163 fixup_partial_die (pdi, cu);
6164 if (pdi->tag == DW_TAG_subprogram
6165 || pdi->tag == DW_TAG_lexical_block)
6166 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6167 pdi = pdi->die_sibling;
6168 }
6169 }
6170 }
6171
6172 /* Read a partial die corresponding to an enumeration type. */
6173
6174 static void
6175 add_partial_enumeration (struct partial_die_info *enum_pdi,
6176 struct dwarf2_cu *cu)
6177 {
6178 struct partial_die_info *pdi;
6179
6180 if (enum_pdi->name != NULL)
6181 add_partial_symbol (enum_pdi, cu);
6182
6183 pdi = enum_pdi->die_child;
6184 while (pdi)
6185 {
6186 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6187 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6188 else
6189 add_partial_symbol (pdi, cu);
6190 pdi = pdi->die_sibling;
6191 }
6192 }
6193
6194 /* Return the initial uleb128 in the die at INFO_PTR. */
6195
6196 static unsigned int
6197 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6198 {
6199 unsigned int bytes_read;
6200
6201 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6202 }
6203
6204 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6205 Return the corresponding abbrev, or NULL if the number is zero (indicating
6206 an empty DIE). In either case *BYTES_READ will be set to the length of
6207 the initial number. */
6208
6209 static struct abbrev_info *
6210 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6211 struct dwarf2_cu *cu)
6212 {
6213 bfd *abfd = cu->objfile->obfd;
6214 unsigned int abbrev_number;
6215 struct abbrev_info *abbrev;
6216
6217 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6218
6219 if (abbrev_number == 0)
6220 return NULL;
6221
6222 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6223 if (!abbrev)
6224 {
6225 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6226 abbrev_number, bfd_get_filename (abfd));
6227 }
6228
6229 return abbrev;
6230 }
6231
6232 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6233 Returns a pointer to the end of a series of DIEs, terminated by an empty
6234 DIE. Any children of the skipped DIEs will also be skipped. */
6235
6236 static gdb_byte *
6237 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6238 {
6239 struct dwarf2_cu *cu = reader->cu;
6240 struct abbrev_info *abbrev;
6241 unsigned int bytes_read;
6242
6243 while (1)
6244 {
6245 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6246 if (abbrev == NULL)
6247 return info_ptr + bytes_read;
6248 else
6249 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6250 }
6251 }
6252
6253 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6254 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6255 abbrev corresponding to that skipped uleb128 should be passed in
6256 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6257 children. */
6258
6259 static gdb_byte *
6260 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6261 struct abbrev_info *abbrev)
6262 {
6263 unsigned int bytes_read;
6264 struct attribute attr;
6265 bfd *abfd = reader->abfd;
6266 struct dwarf2_cu *cu = reader->cu;
6267 gdb_byte *buffer = reader->buffer;
6268 const gdb_byte *buffer_end = reader->buffer_end;
6269 gdb_byte *start_info_ptr = info_ptr;
6270 unsigned int form, i;
6271
6272 for (i = 0; i < abbrev->num_attrs; i++)
6273 {
6274 /* The only abbrev we care about is DW_AT_sibling. */
6275 if (abbrev->attrs[i].name == DW_AT_sibling)
6276 {
6277 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6278 if (attr.form == DW_FORM_ref_addr)
6279 complaint (&symfile_complaints,
6280 _("ignoring absolute DW_AT_sibling"));
6281 else
6282 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6283 }
6284
6285 /* If it isn't DW_AT_sibling, skip this attribute. */
6286 form = abbrev->attrs[i].form;
6287 skip_attribute:
6288 switch (form)
6289 {
6290 case DW_FORM_ref_addr:
6291 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6292 and later it is offset sized. */
6293 if (cu->header.version == 2)
6294 info_ptr += cu->header.addr_size;
6295 else
6296 info_ptr += cu->header.offset_size;
6297 break;
6298 case DW_FORM_GNU_ref_alt:
6299 info_ptr += cu->header.offset_size;
6300 break;
6301 case DW_FORM_addr:
6302 info_ptr += cu->header.addr_size;
6303 break;
6304 case DW_FORM_data1:
6305 case DW_FORM_ref1:
6306 case DW_FORM_flag:
6307 info_ptr += 1;
6308 break;
6309 case DW_FORM_flag_present:
6310 break;
6311 case DW_FORM_data2:
6312 case DW_FORM_ref2:
6313 info_ptr += 2;
6314 break;
6315 case DW_FORM_data4:
6316 case DW_FORM_ref4:
6317 info_ptr += 4;
6318 break;
6319 case DW_FORM_data8:
6320 case DW_FORM_ref8:
6321 case DW_FORM_ref_sig8:
6322 info_ptr += 8;
6323 break;
6324 case DW_FORM_string:
6325 read_direct_string (abfd, info_ptr, &bytes_read);
6326 info_ptr += bytes_read;
6327 break;
6328 case DW_FORM_sec_offset:
6329 case DW_FORM_strp:
6330 case DW_FORM_GNU_strp_alt:
6331 info_ptr += cu->header.offset_size;
6332 break;
6333 case DW_FORM_exprloc:
6334 case DW_FORM_block:
6335 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6336 info_ptr += bytes_read;
6337 break;
6338 case DW_FORM_block1:
6339 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6340 break;
6341 case DW_FORM_block2:
6342 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6343 break;
6344 case DW_FORM_block4:
6345 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6346 break;
6347 case DW_FORM_sdata:
6348 case DW_FORM_udata:
6349 case DW_FORM_ref_udata:
6350 case DW_FORM_GNU_addr_index:
6351 case DW_FORM_GNU_str_index:
6352 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6353 break;
6354 case DW_FORM_indirect:
6355 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6356 info_ptr += bytes_read;
6357 /* We need to continue parsing from here, so just go back to
6358 the top. */
6359 goto skip_attribute;
6360
6361 default:
6362 error (_("Dwarf Error: Cannot handle %s "
6363 "in DWARF reader [in module %s]"),
6364 dwarf_form_name (form),
6365 bfd_get_filename (abfd));
6366 }
6367 }
6368
6369 if (abbrev->has_children)
6370 return skip_children (reader, info_ptr);
6371 else
6372 return info_ptr;
6373 }
6374
6375 /* Locate ORIG_PDI's sibling.
6376 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6377
6378 static gdb_byte *
6379 locate_pdi_sibling (const struct die_reader_specs *reader,
6380 struct partial_die_info *orig_pdi,
6381 gdb_byte *info_ptr)
6382 {
6383 /* Do we know the sibling already? */
6384
6385 if (orig_pdi->sibling)
6386 return orig_pdi->sibling;
6387
6388 /* Are there any children to deal with? */
6389
6390 if (!orig_pdi->has_children)
6391 return info_ptr;
6392
6393 /* Skip the children the long way. */
6394
6395 return skip_children (reader, info_ptr);
6396 }
6397
6398 /* Expand this partial symbol table into a full symbol table. SELF is
6399 not NULL. */
6400
6401 static void
6402 dwarf2_read_symtab (struct partial_symtab *self,
6403 struct objfile *objfile)
6404 {
6405 if (self->readin)
6406 {
6407 warning (_("bug: psymtab for %s is already read in."),
6408 self->filename);
6409 }
6410 else
6411 {
6412 if (info_verbose)
6413 {
6414 printf_filtered (_("Reading in symbols for %s..."),
6415 self->filename);
6416 gdb_flush (gdb_stdout);
6417 }
6418
6419 /* Restore our global data. */
6420 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6421
6422 /* If this psymtab is constructed from a debug-only objfile, the
6423 has_section_at_zero flag will not necessarily be correct. We
6424 can get the correct value for this flag by looking at the data
6425 associated with the (presumably stripped) associated objfile. */
6426 if (objfile->separate_debug_objfile_backlink)
6427 {
6428 struct dwarf2_per_objfile *dpo_backlink
6429 = objfile_data (objfile->separate_debug_objfile_backlink,
6430 dwarf2_objfile_data_key);
6431
6432 dwarf2_per_objfile->has_section_at_zero
6433 = dpo_backlink->has_section_at_zero;
6434 }
6435
6436 dwarf2_per_objfile->reading_partial_symbols = 0;
6437
6438 psymtab_to_symtab_1 (self);
6439
6440 /* Finish up the debug error message. */
6441 if (info_verbose)
6442 printf_filtered (_("done.\n"));
6443 }
6444
6445 process_cu_includes ();
6446 }
6447 \f
6448 /* Reading in full CUs. */
6449
6450 /* Add PER_CU to the queue. */
6451
6452 static void
6453 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6454 enum language pretend_language)
6455 {
6456 struct dwarf2_queue_item *item;
6457
6458 per_cu->queued = 1;
6459 item = xmalloc (sizeof (*item));
6460 item->per_cu = per_cu;
6461 item->pretend_language = pretend_language;
6462 item->next = NULL;
6463
6464 if (dwarf2_queue == NULL)
6465 dwarf2_queue = item;
6466 else
6467 dwarf2_queue_tail->next = item;
6468
6469 dwarf2_queue_tail = item;
6470 }
6471
6472 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6473 unit and add it to our queue.
6474 The result is non-zero if PER_CU was queued, otherwise the result is zero
6475 meaning either PER_CU is already queued or it is already loaded. */
6476
6477 static int
6478 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6479 struct dwarf2_per_cu_data *per_cu,
6480 enum language pretend_language)
6481 {
6482 /* We may arrive here during partial symbol reading, if we need full
6483 DIEs to process an unusual case (e.g. template arguments). Do
6484 not queue PER_CU, just tell our caller to load its DIEs. */
6485 if (dwarf2_per_objfile->reading_partial_symbols)
6486 {
6487 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6488 return 1;
6489 return 0;
6490 }
6491
6492 /* Mark the dependence relation so that we don't flush PER_CU
6493 too early. */
6494 dwarf2_add_dependence (this_cu, per_cu);
6495
6496 /* If it's already on the queue, we have nothing to do. */
6497 if (per_cu->queued)
6498 return 0;
6499
6500 /* If the compilation unit is already loaded, just mark it as
6501 used. */
6502 if (per_cu->cu != NULL)
6503 {
6504 per_cu->cu->last_used = 0;
6505 return 0;
6506 }
6507
6508 /* Add it to the queue. */
6509 queue_comp_unit (per_cu, pretend_language);
6510
6511 return 1;
6512 }
6513
6514 /* Process the queue. */
6515
6516 static void
6517 process_queue (void)
6518 {
6519 struct dwarf2_queue_item *item, *next_item;
6520
6521 if (dwarf2_read_debug)
6522 {
6523 fprintf_unfiltered (gdb_stdlog,
6524 "Expanding one or more symtabs of objfile %s ...\n",
6525 dwarf2_per_objfile->objfile->name);
6526 }
6527
6528 /* The queue starts out with one item, but following a DIE reference
6529 may load a new CU, adding it to the end of the queue. */
6530 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6531 {
6532 if (dwarf2_per_objfile->using_index
6533 ? !item->per_cu->v.quick->symtab
6534 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6535 {
6536 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6537
6538 if (dwarf2_read_debug)
6539 {
6540 fprintf_unfiltered (gdb_stdlog,
6541 "Expanding symtab of %s at offset 0x%x\n",
6542 per_cu->is_debug_types ? "TU" : "CU",
6543 per_cu->offset.sect_off);
6544 }
6545
6546 if (per_cu->is_debug_types)
6547 process_full_type_unit (per_cu, item->pretend_language);
6548 else
6549 process_full_comp_unit (per_cu, item->pretend_language);
6550
6551 if (dwarf2_read_debug)
6552 {
6553 fprintf_unfiltered (gdb_stdlog,
6554 "Done expanding %s at offset 0x%x\n",
6555 per_cu->is_debug_types ? "TU" : "CU",
6556 per_cu->offset.sect_off);
6557 }
6558 }
6559
6560 item->per_cu->queued = 0;
6561 next_item = item->next;
6562 xfree (item);
6563 }
6564
6565 dwarf2_queue_tail = NULL;
6566
6567 if (dwarf2_read_debug)
6568 {
6569 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6570 dwarf2_per_objfile->objfile->name);
6571 }
6572 }
6573
6574 /* Free all allocated queue entries. This function only releases anything if
6575 an error was thrown; if the queue was processed then it would have been
6576 freed as we went along. */
6577
6578 static void
6579 dwarf2_release_queue (void *dummy)
6580 {
6581 struct dwarf2_queue_item *item, *last;
6582
6583 item = dwarf2_queue;
6584 while (item)
6585 {
6586 /* Anything still marked queued is likely to be in an
6587 inconsistent state, so discard it. */
6588 if (item->per_cu->queued)
6589 {
6590 if (item->per_cu->cu != NULL)
6591 free_one_cached_comp_unit (item->per_cu);
6592 item->per_cu->queued = 0;
6593 }
6594
6595 last = item;
6596 item = item->next;
6597 xfree (last);
6598 }
6599
6600 dwarf2_queue = dwarf2_queue_tail = NULL;
6601 }
6602
6603 /* Read in full symbols for PST, and anything it depends on. */
6604
6605 static void
6606 psymtab_to_symtab_1 (struct partial_symtab *pst)
6607 {
6608 struct dwarf2_per_cu_data *per_cu;
6609 int i;
6610
6611 if (pst->readin)
6612 return;
6613
6614 for (i = 0; i < pst->number_of_dependencies; i++)
6615 if (!pst->dependencies[i]->readin
6616 && pst->dependencies[i]->user == NULL)
6617 {
6618 /* Inform about additional files that need to be read in. */
6619 if (info_verbose)
6620 {
6621 /* FIXME: i18n: Need to make this a single string. */
6622 fputs_filtered (" ", gdb_stdout);
6623 wrap_here ("");
6624 fputs_filtered ("and ", gdb_stdout);
6625 wrap_here ("");
6626 printf_filtered ("%s...", pst->dependencies[i]->filename);
6627 wrap_here (""); /* Flush output. */
6628 gdb_flush (gdb_stdout);
6629 }
6630 psymtab_to_symtab_1 (pst->dependencies[i]);
6631 }
6632
6633 per_cu = pst->read_symtab_private;
6634
6635 if (per_cu == NULL)
6636 {
6637 /* It's an include file, no symbols to read for it.
6638 Everything is in the parent symtab. */
6639 pst->readin = 1;
6640 return;
6641 }
6642
6643 dw2_do_instantiate_symtab (per_cu);
6644 }
6645
6646 /* Trivial hash function for die_info: the hash value of a DIE
6647 is its offset in .debug_info for this objfile. */
6648
6649 static hashval_t
6650 die_hash (const void *item)
6651 {
6652 const struct die_info *die = item;
6653
6654 return die->offset.sect_off;
6655 }
6656
6657 /* Trivial comparison function for die_info structures: two DIEs
6658 are equal if they have the same offset. */
6659
6660 static int
6661 die_eq (const void *item_lhs, const void *item_rhs)
6662 {
6663 const struct die_info *die_lhs = item_lhs;
6664 const struct die_info *die_rhs = item_rhs;
6665
6666 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6667 }
6668
6669 /* die_reader_func for load_full_comp_unit.
6670 This is identical to read_signatured_type_reader,
6671 but is kept separate for now. */
6672
6673 static void
6674 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6675 gdb_byte *info_ptr,
6676 struct die_info *comp_unit_die,
6677 int has_children,
6678 void *data)
6679 {
6680 struct dwarf2_cu *cu = reader->cu;
6681 enum language *language_ptr = data;
6682
6683 gdb_assert (cu->die_hash == NULL);
6684 cu->die_hash =
6685 htab_create_alloc_ex (cu->header.length / 12,
6686 die_hash,
6687 die_eq,
6688 NULL,
6689 &cu->comp_unit_obstack,
6690 hashtab_obstack_allocate,
6691 dummy_obstack_deallocate);
6692
6693 if (has_children)
6694 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6695 &info_ptr, comp_unit_die);
6696 cu->dies = comp_unit_die;
6697 /* comp_unit_die is not stored in die_hash, no need. */
6698
6699 /* We try not to read any attributes in this function, because not
6700 all CUs needed for references have been loaded yet, and symbol
6701 table processing isn't initialized. But we have to set the CU language,
6702 or we won't be able to build types correctly.
6703 Similarly, if we do not read the producer, we can not apply
6704 producer-specific interpretation. */
6705 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6706 }
6707
6708 /* Load the DIEs associated with PER_CU into memory. */
6709
6710 static void
6711 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6712 enum language pretend_language)
6713 {
6714 gdb_assert (! this_cu->is_debug_types);
6715
6716 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6717 load_full_comp_unit_reader, &pretend_language);
6718 }
6719
6720 /* Add a DIE to the delayed physname list. */
6721
6722 static void
6723 add_to_method_list (struct type *type, int fnfield_index, int index,
6724 const char *name, struct die_info *die,
6725 struct dwarf2_cu *cu)
6726 {
6727 struct delayed_method_info mi;
6728 mi.type = type;
6729 mi.fnfield_index = fnfield_index;
6730 mi.index = index;
6731 mi.name = name;
6732 mi.die = die;
6733 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6734 }
6735
6736 /* A cleanup for freeing the delayed method list. */
6737
6738 static void
6739 free_delayed_list (void *ptr)
6740 {
6741 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6742 if (cu->method_list != NULL)
6743 {
6744 VEC_free (delayed_method_info, cu->method_list);
6745 cu->method_list = NULL;
6746 }
6747 }
6748
6749 /* Compute the physnames of any methods on the CU's method list.
6750
6751 The computation of method physnames is delayed in order to avoid the
6752 (bad) condition that one of the method's formal parameters is of an as yet
6753 incomplete type. */
6754
6755 static void
6756 compute_delayed_physnames (struct dwarf2_cu *cu)
6757 {
6758 int i;
6759 struct delayed_method_info *mi;
6760 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6761 {
6762 const char *physname;
6763 struct fn_fieldlist *fn_flp
6764 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6765 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6766 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6767 }
6768 }
6769
6770 /* Go objects should be embedded in a DW_TAG_module DIE,
6771 and it's not clear if/how imported objects will appear.
6772 To keep Go support simple until that's worked out,
6773 go back through what we've read and create something usable.
6774 We could do this while processing each DIE, and feels kinda cleaner,
6775 but that way is more invasive.
6776 This is to, for example, allow the user to type "p var" or "b main"
6777 without having to specify the package name, and allow lookups
6778 of module.object to work in contexts that use the expression
6779 parser. */
6780
6781 static void
6782 fixup_go_packaging (struct dwarf2_cu *cu)
6783 {
6784 char *package_name = NULL;
6785 struct pending *list;
6786 int i;
6787
6788 for (list = global_symbols; list != NULL; list = list->next)
6789 {
6790 for (i = 0; i < list->nsyms; ++i)
6791 {
6792 struct symbol *sym = list->symbol[i];
6793
6794 if (SYMBOL_LANGUAGE (sym) == language_go
6795 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6796 {
6797 char *this_package_name = go_symbol_package_name (sym);
6798
6799 if (this_package_name == NULL)
6800 continue;
6801 if (package_name == NULL)
6802 package_name = this_package_name;
6803 else
6804 {
6805 if (strcmp (package_name, this_package_name) != 0)
6806 complaint (&symfile_complaints,
6807 _("Symtab %s has objects from two different Go packages: %s and %s"),
6808 (SYMBOL_SYMTAB (sym)
6809 ? SYMBOL_SYMTAB (sym)->filename
6810 : cu->objfile->name),
6811 this_package_name, package_name);
6812 xfree (this_package_name);
6813 }
6814 }
6815 }
6816 }
6817
6818 if (package_name != NULL)
6819 {
6820 struct objfile *objfile = cu->objfile;
6821 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6822 package_name,
6823 strlen (package_name));
6824 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6825 saved_package_name, objfile);
6826 struct symbol *sym;
6827
6828 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6829
6830 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6831 SYMBOL_SET_LANGUAGE (sym, language_go);
6832 SYMBOL_SET_NAMES (sym, saved_package_name,
6833 strlen (saved_package_name), 0, objfile);
6834 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6835 e.g., "main" finds the "main" module and not C's main(). */
6836 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6837 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6838 SYMBOL_TYPE (sym) = type;
6839
6840 add_symbol_to_list (sym, &global_symbols);
6841
6842 xfree (package_name);
6843 }
6844 }
6845
6846 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6847
6848 /* Return the symtab for PER_CU. This works properly regardless of
6849 whether we're using the index or psymtabs. */
6850
6851 static struct symtab *
6852 get_symtab (struct dwarf2_per_cu_data *per_cu)
6853 {
6854 return (dwarf2_per_objfile->using_index
6855 ? per_cu->v.quick->symtab
6856 : per_cu->v.psymtab->symtab);
6857 }
6858
6859 /* A helper function for computing the list of all symbol tables
6860 included by PER_CU. */
6861
6862 static void
6863 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6864 htab_t all_children,
6865 struct dwarf2_per_cu_data *per_cu)
6866 {
6867 void **slot;
6868 int ix;
6869 struct dwarf2_per_cu_data *iter;
6870
6871 slot = htab_find_slot (all_children, per_cu, INSERT);
6872 if (*slot != NULL)
6873 {
6874 /* This inclusion and its children have been processed. */
6875 return;
6876 }
6877
6878 *slot = per_cu;
6879 /* Only add a CU if it has a symbol table. */
6880 if (get_symtab (per_cu) != NULL)
6881 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6882
6883 for (ix = 0;
6884 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6885 ++ix)
6886 recursively_compute_inclusions (result, all_children, iter);
6887 }
6888
6889 /* Compute the symtab 'includes' fields for the symtab related to
6890 PER_CU. */
6891
6892 static void
6893 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6894 {
6895 gdb_assert (! per_cu->is_debug_types);
6896
6897 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6898 {
6899 int ix, len;
6900 struct dwarf2_per_cu_data *iter;
6901 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6902 htab_t all_children;
6903 struct symtab *symtab = get_symtab (per_cu);
6904
6905 /* If we don't have a symtab, we can just skip this case. */
6906 if (symtab == NULL)
6907 return;
6908
6909 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6910 NULL, xcalloc, xfree);
6911
6912 for (ix = 0;
6913 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6914 ix, iter);
6915 ++ix)
6916 recursively_compute_inclusions (&result_children, all_children, iter);
6917
6918 /* Now we have a transitive closure of all the included CUs, and
6919 for .gdb_index version 7 the included TUs, so we can convert it
6920 to a list of symtabs. */
6921 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6922 symtab->includes
6923 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6924 (len + 1) * sizeof (struct symtab *));
6925 for (ix = 0;
6926 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6927 ++ix)
6928 symtab->includes[ix] = get_symtab (iter);
6929 symtab->includes[len] = NULL;
6930
6931 VEC_free (dwarf2_per_cu_ptr, result_children);
6932 htab_delete (all_children);
6933 }
6934 }
6935
6936 /* Compute the 'includes' field for the symtabs of all the CUs we just
6937 read. */
6938
6939 static void
6940 process_cu_includes (void)
6941 {
6942 int ix;
6943 struct dwarf2_per_cu_data *iter;
6944
6945 for (ix = 0;
6946 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6947 ix, iter);
6948 ++ix)
6949 {
6950 if (! iter->is_debug_types)
6951 compute_symtab_includes (iter);
6952 }
6953
6954 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6955 }
6956
6957 /* Generate full symbol information for PER_CU, whose DIEs have
6958 already been loaded into memory. */
6959
6960 static void
6961 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6962 enum language pretend_language)
6963 {
6964 struct dwarf2_cu *cu = per_cu->cu;
6965 struct objfile *objfile = per_cu->objfile;
6966 CORE_ADDR lowpc, highpc;
6967 struct symtab *symtab;
6968 struct cleanup *back_to, *delayed_list_cleanup;
6969 CORE_ADDR baseaddr;
6970 struct block *static_block;
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6973
6974 buildsym_init ();
6975 back_to = make_cleanup (really_free_pendings, NULL);
6976 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6977
6978 cu->list_in_scope = &file_symbols;
6979
6980 cu->language = pretend_language;
6981 cu->language_defn = language_def (cu->language);
6982
6983 /* Do line number decoding in read_file_scope () */
6984 process_die (cu->dies, cu);
6985
6986 /* For now fudge the Go package. */
6987 if (cu->language == language_go)
6988 fixup_go_packaging (cu);
6989
6990 /* Now that we have processed all the DIEs in the CU, all the types
6991 should be complete, and it should now be safe to compute all of the
6992 physnames. */
6993 compute_delayed_physnames (cu);
6994 do_cleanups (delayed_list_cleanup);
6995
6996 /* Some compilers don't define a DW_AT_high_pc attribute for the
6997 compilation unit. If the DW_AT_high_pc is missing, synthesize
6998 it, by scanning the DIE's below the compilation unit. */
6999 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7000
7001 static_block
7002 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7003 per_cu->imported_symtabs != NULL);
7004
7005 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7006 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7007 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7008 addrmap to help ensure it has an accurate map of pc values belonging to
7009 this comp unit. */
7010 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7011
7012 symtab = end_symtab_from_static_block (static_block, objfile,
7013 SECT_OFF_TEXT (objfile), 0);
7014
7015 if (symtab != NULL)
7016 {
7017 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7018
7019 /* Set symtab language to language from DW_AT_language. If the
7020 compilation is from a C file generated by language preprocessors, do
7021 not set the language if it was already deduced by start_subfile. */
7022 if (!(cu->language == language_c && symtab->language != language_c))
7023 symtab->language = cu->language;
7024
7025 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7026 produce DW_AT_location with location lists but it can be possibly
7027 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7028 there were bugs in prologue debug info, fixed later in GCC-4.5
7029 by "unwind info for epilogues" patch (which is not directly related).
7030
7031 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7032 needed, it would be wrong due to missing DW_AT_producer there.
7033
7034 Still one can confuse GDB by using non-standard GCC compilation
7035 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7036 */
7037 if (cu->has_loclist && gcc_4_minor >= 5)
7038 symtab->locations_valid = 1;
7039
7040 if (gcc_4_minor >= 5)
7041 symtab->epilogue_unwind_valid = 1;
7042
7043 symtab->call_site_htab = cu->call_site_htab;
7044 }
7045
7046 if (dwarf2_per_objfile->using_index)
7047 per_cu->v.quick->symtab = symtab;
7048 else
7049 {
7050 struct partial_symtab *pst = per_cu->v.psymtab;
7051 pst->symtab = symtab;
7052 pst->readin = 1;
7053 }
7054
7055 /* Push it for inclusion processing later. */
7056 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7057
7058 do_cleanups (back_to);
7059 }
7060
7061 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7062 already been loaded into memory. */
7063
7064 static void
7065 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7066 enum language pretend_language)
7067 {
7068 struct dwarf2_cu *cu = per_cu->cu;
7069 struct objfile *objfile = per_cu->objfile;
7070 struct symtab *symtab;
7071 struct cleanup *back_to, *delayed_list_cleanup;
7072
7073 buildsym_init ();
7074 back_to = make_cleanup (really_free_pendings, NULL);
7075 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7076
7077 cu->list_in_scope = &file_symbols;
7078
7079 cu->language = pretend_language;
7080 cu->language_defn = language_def (cu->language);
7081
7082 /* The symbol tables are set up in read_type_unit_scope. */
7083 process_die (cu->dies, cu);
7084
7085 /* For now fudge the Go package. */
7086 if (cu->language == language_go)
7087 fixup_go_packaging (cu);
7088
7089 /* Now that we have processed all the DIEs in the CU, all the types
7090 should be complete, and it should now be safe to compute all of the
7091 physnames. */
7092 compute_delayed_physnames (cu);
7093 do_cleanups (delayed_list_cleanup);
7094
7095 /* TUs share symbol tables.
7096 If this is the first TU to use this symtab, complete the construction
7097 of it with end_expandable_symtab. Otherwise, complete the addition of
7098 this TU's symbols to the existing symtab. */
7099 if (per_cu->type_unit_group->primary_symtab == NULL)
7100 {
7101 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7102 per_cu->type_unit_group->primary_symtab = symtab;
7103
7104 if (symtab != NULL)
7105 {
7106 /* Set symtab language to language from DW_AT_language. If the
7107 compilation is from a C file generated by language preprocessors,
7108 do not set the language if it was already deduced by
7109 start_subfile. */
7110 if (!(cu->language == language_c && symtab->language != language_c))
7111 symtab->language = cu->language;
7112 }
7113 }
7114 else
7115 {
7116 augment_type_symtab (objfile,
7117 per_cu->type_unit_group->primary_symtab);
7118 symtab = per_cu->type_unit_group->primary_symtab;
7119 }
7120
7121 if (dwarf2_per_objfile->using_index)
7122 per_cu->v.quick->symtab = symtab;
7123 else
7124 {
7125 struct partial_symtab *pst = per_cu->v.psymtab;
7126 pst->symtab = symtab;
7127 pst->readin = 1;
7128 }
7129
7130 do_cleanups (back_to);
7131 }
7132
7133 /* Process an imported unit DIE. */
7134
7135 static void
7136 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7137 {
7138 struct attribute *attr;
7139
7140 /* For now we don't handle imported units in type units. */
7141 if (cu->per_cu->is_debug_types)
7142 {
7143 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7144 " supported in type units [in module %s]"),
7145 cu->objfile->name);
7146 }
7147
7148 attr = dwarf2_attr (die, DW_AT_import, cu);
7149 if (attr != NULL)
7150 {
7151 struct dwarf2_per_cu_data *per_cu;
7152 struct symtab *imported_symtab;
7153 sect_offset offset;
7154 int is_dwz;
7155
7156 offset = dwarf2_get_ref_die_offset (attr);
7157 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7158 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7159
7160 /* Queue the unit, if needed. */
7161 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7162 load_full_comp_unit (per_cu, cu->language);
7163
7164 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7165 per_cu);
7166 }
7167 }
7168
7169 /* Process a die and its children. */
7170
7171 static void
7172 process_die (struct die_info *die, struct dwarf2_cu *cu)
7173 {
7174 switch (die->tag)
7175 {
7176 case DW_TAG_padding:
7177 break;
7178 case DW_TAG_compile_unit:
7179 case DW_TAG_partial_unit:
7180 read_file_scope (die, cu);
7181 break;
7182 case DW_TAG_type_unit:
7183 read_type_unit_scope (die, cu);
7184 break;
7185 case DW_TAG_subprogram:
7186 case DW_TAG_inlined_subroutine:
7187 read_func_scope (die, cu);
7188 break;
7189 case DW_TAG_lexical_block:
7190 case DW_TAG_try_block:
7191 case DW_TAG_catch_block:
7192 read_lexical_block_scope (die, cu);
7193 break;
7194 case DW_TAG_GNU_call_site:
7195 read_call_site_scope (die, cu);
7196 break;
7197 case DW_TAG_class_type:
7198 case DW_TAG_interface_type:
7199 case DW_TAG_structure_type:
7200 case DW_TAG_union_type:
7201 process_structure_scope (die, cu);
7202 break;
7203 case DW_TAG_enumeration_type:
7204 process_enumeration_scope (die, cu);
7205 break;
7206
7207 /* These dies have a type, but processing them does not create
7208 a symbol or recurse to process the children. Therefore we can
7209 read them on-demand through read_type_die. */
7210 case DW_TAG_subroutine_type:
7211 case DW_TAG_set_type:
7212 case DW_TAG_array_type:
7213 case DW_TAG_pointer_type:
7214 case DW_TAG_ptr_to_member_type:
7215 case DW_TAG_reference_type:
7216 case DW_TAG_string_type:
7217 break;
7218
7219 case DW_TAG_base_type:
7220 case DW_TAG_subrange_type:
7221 case DW_TAG_typedef:
7222 /* Add a typedef symbol for the type definition, if it has a
7223 DW_AT_name. */
7224 new_symbol (die, read_type_die (die, cu), cu);
7225 break;
7226 case DW_TAG_common_block:
7227 read_common_block (die, cu);
7228 break;
7229 case DW_TAG_common_inclusion:
7230 break;
7231 case DW_TAG_namespace:
7232 processing_has_namespace_info = 1;
7233 read_namespace (die, cu);
7234 break;
7235 case DW_TAG_module:
7236 processing_has_namespace_info = 1;
7237 read_module (die, cu);
7238 break;
7239 case DW_TAG_imported_declaration:
7240 case DW_TAG_imported_module:
7241 processing_has_namespace_info = 1;
7242 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7243 || cu->language != language_fortran))
7244 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7245 dwarf_tag_name (die->tag));
7246 read_import_statement (die, cu);
7247 break;
7248
7249 case DW_TAG_imported_unit:
7250 process_imported_unit_die (die, cu);
7251 break;
7252
7253 default:
7254 new_symbol (die, NULL, cu);
7255 break;
7256 }
7257 }
7258
7259 /* A helper function for dwarf2_compute_name which determines whether DIE
7260 needs to have the name of the scope prepended to the name listed in the
7261 die. */
7262
7263 static int
7264 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7265 {
7266 struct attribute *attr;
7267
7268 switch (die->tag)
7269 {
7270 case DW_TAG_namespace:
7271 case DW_TAG_typedef:
7272 case DW_TAG_class_type:
7273 case DW_TAG_interface_type:
7274 case DW_TAG_structure_type:
7275 case DW_TAG_union_type:
7276 case DW_TAG_enumeration_type:
7277 case DW_TAG_enumerator:
7278 case DW_TAG_subprogram:
7279 case DW_TAG_member:
7280 return 1;
7281
7282 case DW_TAG_variable:
7283 case DW_TAG_constant:
7284 /* We only need to prefix "globally" visible variables. These include
7285 any variable marked with DW_AT_external or any variable that
7286 lives in a namespace. [Variables in anonymous namespaces
7287 require prefixing, but they are not DW_AT_external.] */
7288
7289 if (dwarf2_attr (die, DW_AT_specification, cu))
7290 {
7291 struct dwarf2_cu *spec_cu = cu;
7292
7293 return die_needs_namespace (die_specification (die, &spec_cu),
7294 spec_cu);
7295 }
7296
7297 attr = dwarf2_attr (die, DW_AT_external, cu);
7298 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7299 && die->parent->tag != DW_TAG_module)
7300 return 0;
7301 /* A variable in a lexical block of some kind does not need a
7302 namespace, even though in C++ such variables may be external
7303 and have a mangled name. */
7304 if (die->parent->tag == DW_TAG_lexical_block
7305 || die->parent->tag == DW_TAG_try_block
7306 || die->parent->tag == DW_TAG_catch_block
7307 || die->parent->tag == DW_TAG_subprogram)
7308 return 0;
7309 return 1;
7310
7311 default:
7312 return 0;
7313 }
7314 }
7315
7316 /* Retrieve the last character from a mem_file. */
7317
7318 static void
7319 do_ui_file_peek_last (void *object, const char *buffer, long length)
7320 {
7321 char *last_char_p = (char *) object;
7322
7323 if (length > 0)
7324 *last_char_p = buffer[length - 1];
7325 }
7326
7327 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7328 compute the physname for the object, which include a method's:
7329 - formal parameters (C++/Java),
7330 - receiver type (Go),
7331 - return type (Java).
7332
7333 The term "physname" is a bit confusing.
7334 For C++, for example, it is the demangled name.
7335 For Go, for example, it's the mangled name.
7336
7337 For Ada, return the DIE's linkage name rather than the fully qualified
7338 name. PHYSNAME is ignored..
7339
7340 The result is allocated on the objfile_obstack and canonicalized. */
7341
7342 static const char *
7343 dwarf2_compute_name (const char *name,
7344 struct die_info *die, struct dwarf2_cu *cu,
7345 int physname)
7346 {
7347 struct objfile *objfile = cu->objfile;
7348
7349 if (name == NULL)
7350 name = dwarf2_name (die, cu);
7351
7352 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7353 compute it by typename_concat inside GDB. */
7354 if (cu->language == language_ada
7355 || (cu->language == language_fortran && physname))
7356 {
7357 /* For Ada unit, we prefer the linkage name over the name, as
7358 the former contains the exported name, which the user expects
7359 to be able to reference. Ideally, we want the user to be able
7360 to reference this entity using either natural or linkage name,
7361 but we haven't started looking at this enhancement yet. */
7362 struct attribute *attr;
7363
7364 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7365 if (attr == NULL)
7366 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7367 if (attr && DW_STRING (attr))
7368 return DW_STRING (attr);
7369 }
7370
7371 /* These are the only languages we know how to qualify names in. */
7372 if (name != NULL
7373 && (cu->language == language_cplus || cu->language == language_java
7374 || cu->language == language_fortran))
7375 {
7376 if (die_needs_namespace (die, cu))
7377 {
7378 long length;
7379 const char *prefix;
7380 struct ui_file *buf;
7381
7382 prefix = determine_prefix (die, cu);
7383 buf = mem_fileopen ();
7384 if (*prefix != '\0')
7385 {
7386 char *prefixed_name = typename_concat (NULL, prefix, name,
7387 physname, cu);
7388
7389 fputs_unfiltered (prefixed_name, buf);
7390 xfree (prefixed_name);
7391 }
7392 else
7393 fputs_unfiltered (name, buf);
7394
7395 /* Template parameters may be specified in the DIE's DW_AT_name, or
7396 as children with DW_TAG_template_type_param or
7397 DW_TAG_value_type_param. If the latter, add them to the name
7398 here. If the name already has template parameters, then
7399 skip this step; some versions of GCC emit both, and
7400 it is more efficient to use the pre-computed name.
7401
7402 Something to keep in mind about this process: it is very
7403 unlikely, or in some cases downright impossible, to produce
7404 something that will match the mangled name of a function.
7405 If the definition of the function has the same debug info,
7406 we should be able to match up with it anyway. But fallbacks
7407 using the minimal symbol, for instance to find a method
7408 implemented in a stripped copy of libstdc++, will not work.
7409 If we do not have debug info for the definition, we will have to
7410 match them up some other way.
7411
7412 When we do name matching there is a related problem with function
7413 templates; two instantiated function templates are allowed to
7414 differ only by their return types, which we do not add here. */
7415
7416 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7417 {
7418 struct attribute *attr;
7419 struct die_info *child;
7420 int first = 1;
7421
7422 die->building_fullname = 1;
7423
7424 for (child = die->child; child != NULL; child = child->sibling)
7425 {
7426 struct type *type;
7427 LONGEST value;
7428 gdb_byte *bytes;
7429 struct dwarf2_locexpr_baton *baton;
7430 struct value *v;
7431
7432 if (child->tag != DW_TAG_template_type_param
7433 && child->tag != DW_TAG_template_value_param)
7434 continue;
7435
7436 if (first)
7437 {
7438 fputs_unfiltered ("<", buf);
7439 first = 0;
7440 }
7441 else
7442 fputs_unfiltered (", ", buf);
7443
7444 attr = dwarf2_attr (child, DW_AT_type, cu);
7445 if (attr == NULL)
7446 {
7447 complaint (&symfile_complaints,
7448 _("template parameter missing DW_AT_type"));
7449 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7450 continue;
7451 }
7452 type = die_type (child, cu);
7453
7454 if (child->tag == DW_TAG_template_type_param)
7455 {
7456 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7457 continue;
7458 }
7459
7460 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7461 if (attr == NULL)
7462 {
7463 complaint (&symfile_complaints,
7464 _("template parameter missing "
7465 "DW_AT_const_value"));
7466 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7467 continue;
7468 }
7469
7470 dwarf2_const_value_attr (attr, type, name,
7471 &cu->comp_unit_obstack, cu,
7472 &value, &bytes, &baton);
7473
7474 if (TYPE_NOSIGN (type))
7475 /* GDB prints characters as NUMBER 'CHAR'. If that's
7476 changed, this can use value_print instead. */
7477 c_printchar (value, type, buf);
7478 else
7479 {
7480 struct value_print_options opts;
7481
7482 if (baton != NULL)
7483 v = dwarf2_evaluate_loc_desc (type, NULL,
7484 baton->data,
7485 baton->size,
7486 baton->per_cu);
7487 else if (bytes != NULL)
7488 {
7489 v = allocate_value (type);
7490 memcpy (value_contents_writeable (v), bytes,
7491 TYPE_LENGTH (type));
7492 }
7493 else
7494 v = value_from_longest (type, value);
7495
7496 /* Specify decimal so that we do not depend on
7497 the radix. */
7498 get_formatted_print_options (&opts, 'd');
7499 opts.raw = 1;
7500 value_print (v, buf, &opts);
7501 release_value (v);
7502 value_free (v);
7503 }
7504 }
7505
7506 die->building_fullname = 0;
7507
7508 if (!first)
7509 {
7510 /* Close the argument list, with a space if necessary
7511 (nested templates). */
7512 char last_char = '\0';
7513 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7514 if (last_char == '>')
7515 fputs_unfiltered (" >", buf);
7516 else
7517 fputs_unfiltered (">", buf);
7518 }
7519 }
7520
7521 /* For Java and C++ methods, append formal parameter type
7522 information, if PHYSNAME. */
7523
7524 if (physname && die->tag == DW_TAG_subprogram
7525 && (cu->language == language_cplus
7526 || cu->language == language_java))
7527 {
7528 struct type *type = read_type_die (die, cu);
7529
7530 c_type_print_args (type, buf, 1, cu->language,
7531 &type_print_raw_options);
7532
7533 if (cu->language == language_java)
7534 {
7535 /* For java, we must append the return type to method
7536 names. */
7537 if (die->tag == DW_TAG_subprogram)
7538 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7539 0, 0, &type_print_raw_options);
7540 }
7541 else if (cu->language == language_cplus)
7542 {
7543 /* Assume that an artificial first parameter is
7544 "this", but do not crash if it is not. RealView
7545 marks unnamed (and thus unused) parameters as
7546 artificial; there is no way to differentiate
7547 the two cases. */
7548 if (TYPE_NFIELDS (type) > 0
7549 && TYPE_FIELD_ARTIFICIAL (type, 0)
7550 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7551 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7552 0))))
7553 fputs_unfiltered (" const", buf);
7554 }
7555 }
7556
7557 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7558 &length);
7559 ui_file_delete (buf);
7560
7561 if (cu->language == language_cplus)
7562 {
7563 const char *cname
7564 = dwarf2_canonicalize_name (name, cu,
7565 &objfile->objfile_obstack);
7566
7567 if (cname != NULL)
7568 name = cname;
7569 }
7570 }
7571 }
7572
7573 return name;
7574 }
7575
7576 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7577 If scope qualifiers are appropriate they will be added. The result
7578 will be allocated on the objfile_obstack, or NULL if the DIE does
7579 not have a name. NAME may either be from a previous call to
7580 dwarf2_name or NULL.
7581
7582 The output string will be canonicalized (if C++/Java). */
7583
7584 static const char *
7585 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7586 {
7587 return dwarf2_compute_name (name, die, cu, 0);
7588 }
7589
7590 /* Construct a physname for the given DIE in CU. NAME may either be
7591 from a previous call to dwarf2_name or NULL. The result will be
7592 allocated on the objfile_objstack or NULL if the DIE does not have a
7593 name.
7594
7595 The output string will be canonicalized (if C++/Java). */
7596
7597 static const char *
7598 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7599 {
7600 struct objfile *objfile = cu->objfile;
7601 struct attribute *attr;
7602 const char *retval, *mangled = NULL, *canon = NULL;
7603 struct cleanup *back_to;
7604 int need_copy = 1;
7605
7606 /* In this case dwarf2_compute_name is just a shortcut not building anything
7607 on its own. */
7608 if (!die_needs_namespace (die, cu))
7609 return dwarf2_compute_name (name, die, cu, 1);
7610
7611 back_to = make_cleanup (null_cleanup, NULL);
7612
7613 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7614 if (!attr)
7615 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7616
7617 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7618 has computed. */
7619 if (attr && DW_STRING (attr))
7620 {
7621 char *demangled;
7622
7623 mangled = DW_STRING (attr);
7624
7625 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7626 type. It is easier for GDB users to search for such functions as
7627 `name(params)' than `long name(params)'. In such case the minimal
7628 symbol names do not match the full symbol names but for template
7629 functions there is never a need to look up their definition from their
7630 declaration so the only disadvantage remains the minimal symbol
7631 variant `long name(params)' does not have the proper inferior type.
7632 */
7633
7634 if (cu->language == language_go)
7635 {
7636 /* This is a lie, but we already lie to the caller new_symbol_full.
7637 new_symbol_full assumes we return the mangled name.
7638 This just undoes that lie until things are cleaned up. */
7639 demangled = NULL;
7640 }
7641 else
7642 {
7643 demangled = cplus_demangle (mangled,
7644 (DMGL_PARAMS | DMGL_ANSI
7645 | (cu->language == language_java
7646 ? DMGL_JAVA | DMGL_RET_POSTFIX
7647 : DMGL_RET_DROP)));
7648 }
7649 if (demangled)
7650 {
7651 make_cleanup (xfree, demangled);
7652 canon = demangled;
7653 }
7654 else
7655 {
7656 canon = mangled;
7657 need_copy = 0;
7658 }
7659 }
7660
7661 if (canon == NULL || check_physname)
7662 {
7663 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7664
7665 if (canon != NULL && strcmp (physname, canon) != 0)
7666 {
7667 /* It may not mean a bug in GDB. The compiler could also
7668 compute DW_AT_linkage_name incorrectly. But in such case
7669 GDB would need to be bug-to-bug compatible. */
7670
7671 complaint (&symfile_complaints,
7672 _("Computed physname <%s> does not match demangled <%s> "
7673 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7674 physname, canon, mangled, die->offset.sect_off, objfile->name);
7675
7676 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7677 is available here - over computed PHYSNAME. It is safer
7678 against both buggy GDB and buggy compilers. */
7679
7680 retval = canon;
7681 }
7682 else
7683 {
7684 retval = physname;
7685 need_copy = 0;
7686 }
7687 }
7688 else
7689 retval = canon;
7690
7691 if (need_copy)
7692 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7693
7694 do_cleanups (back_to);
7695 return retval;
7696 }
7697
7698 /* Read the import statement specified by the given die and record it. */
7699
7700 static void
7701 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7702 {
7703 struct objfile *objfile = cu->objfile;
7704 struct attribute *import_attr;
7705 struct die_info *imported_die, *child_die;
7706 struct dwarf2_cu *imported_cu;
7707 const char *imported_name;
7708 const char *imported_name_prefix;
7709 const char *canonical_name;
7710 const char *import_alias;
7711 const char *imported_declaration = NULL;
7712 const char *import_prefix;
7713 VEC (const_char_ptr) *excludes = NULL;
7714 struct cleanup *cleanups;
7715
7716 char *temp;
7717
7718 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7719 if (import_attr == NULL)
7720 {
7721 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7722 dwarf_tag_name (die->tag));
7723 return;
7724 }
7725
7726 imported_cu = cu;
7727 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7728 imported_name = dwarf2_name (imported_die, imported_cu);
7729 if (imported_name == NULL)
7730 {
7731 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7732
7733 The import in the following code:
7734 namespace A
7735 {
7736 typedef int B;
7737 }
7738
7739 int main ()
7740 {
7741 using A::B;
7742 B b;
7743 return b;
7744 }
7745
7746 ...
7747 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7748 <52> DW_AT_decl_file : 1
7749 <53> DW_AT_decl_line : 6
7750 <54> DW_AT_import : <0x75>
7751 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7752 <59> DW_AT_name : B
7753 <5b> DW_AT_decl_file : 1
7754 <5c> DW_AT_decl_line : 2
7755 <5d> DW_AT_type : <0x6e>
7756 ...
7757 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7758 <76> DW_AT_byte_size : 4
7759 <77> DW_AT_encoding : 5 (signed)
7760
7761 imports the wrong die ( 0x75 instead of 0x58 ).
7762 This case will be ignored until the gcc bug is fixed. */
7763 return;
7764 }
7765
7766 /* Figure out the local name after import. */
7767 import_alias = dwarf2_name (die, cu);
7768
7769 /* Figure out where the statement is being imported to. */
7770 import_prefix = determine_prefix (die, cu);
7771
7772 /* Figure out what the scope of the imported die is and prepend it
7773 to the name of the imported die. */
7774 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7775
7776 if (imported_die->tag != DW_TAG_namespace
7777 && imported_die->tag != DW_TAG_module)
7778 {
7779 imported_declaration = imported_name;
7780 canonical_name = imported_name_prefix;
7781 }
7782 else if (strlen (imported_name_prefix) > 0)
7783 {
7784 temp = alloca (strlen (imported_name_prefix)
7785 + 2 + strlen (imported_name) + 1);
7786 strcpy (temp, imported_name_prefix);
7787 strcat (temp, "::");
7788 strcat (temp, imported_name);
7789 canonical_name = temp;
7790 }
7791 else
7792 canonical_name = imported_name;
7793
7794 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7795
7796 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7797 for (child_die = die->child; child_die && child_die->tag;
7798 child_die = sibling_die (child_die))
7799 {
7800 /* DWARF-4: A Fortran use statement with a “rename list” may be
7801 represented by an imported module entry with an import attribute
7802 referring to the module and owned entries corresponding to those
7803 entities that are renamed as part of being imported. */
7804
7805 if (child_die->tag != DW_TAG_imported_declaration)
7806 {
7807 complaint (&symfile_complaints,
7808 _("child DW_TAG_imported_declaration expected "
7809 "- DIE at 0x%x [in module %s]"),
7810 child_die->offset.sect_off, objfile->name);
7811 continue;
7812 }
7813
7814 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7815 if (import_attr == NULL)
7816 {
7817 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7818 dwarf_tag_name (child_die->tag));
7819 continue;
7820 }
7821
7822 imported_cu = cu;
7823 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7824 &imported_cu);
7825 imported_name = dwarf2_name (imported_die, imported_cu);
7826 if (imported_name == NULL)
7827 {
7828 complaint (&symfile_complaints,
7829 _("child DW_TAG_imported_declaration has unknown "
7830 "imported name - DIE at 0x%x [in module %s]"),
7831 child_die->offset.sect_off, objfile->name);
7832 continue;
7833 }
7834
7835 VEC_safe_push (const_char_ptr, excludes, imported_name);
7836
7837 process_die (child_die, cu);
7838 }
7839
7840 cp_add_using_directive (import_prefix,
7841 canonical_name,
7842 import_alias,
7843 imported_declaration,
7844 excludes,
7845 &objfile->objfile_obstack);
7846
7847 do_cleanups (cleanups);
7848 }
7849
7850 /* Cleanup function for handle_DW_AT_stmt_list. */
7851
7852 static void
7853 free_cu_line_header (void *arg)
7854 {
7855 struct dwarf2_cu *cu = arg;
7856
7857 free_line_header (cu->line_header);
7858 cu->line_header = NULL;
7859 }
7860
7861 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7862 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7863 this, it was first present in GCC release 4.3.0. */
7864
7865 static int
7866 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7867 {
7868 if (!cu->checked_producer)
7869 check_producer (cu);
7870
7871 return cu->producer_is_gcc_lt_4_3;
7872 }
7873
7874 static void
7875 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7876 const char **name, const char **comp_dir)
7877 {
7878 struct attribute *attr;
7879
7880 *name = NULL;
7881 *comp_dir = NULL;
7882
7883 /* Find the filename. Do not use dwarf2_name here, since the filename
7884 is not a source language identifier. */
7885 attr = dwarf2_attr (die, DW_AT_name, cu);
7886 if (attr)
7887 {
7888 *name = DW_STRING (attr);
7889 }
7890
7891 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7892 if (attr)
7893 *comp_dir = DW_STRING (attr);
7894 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7895 && IS_ABSOLUTE_PATH (*name))
7896 {
7897 char *d = ldirname (*name);
7898
7899 *comp_dir = d;
7900 if (d != NULL)
7901 make_cleanup (xfree, d);
7902 }
7903 if (*comp_dir != NULL)
7904 {
7905 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7906 directory, get rid of it. */
7907 char *cp = strchr (*comp_dir, ':');
7908
7909 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7910 *comp_dir = cp + 1;
7911 }
7912
7913 if (*name == NULL)
7914 *name = "<unknown>";
7915 }
7916
7917 /* Handle DW_AT_stmt_list for a compilation unit.
7918 DIE is the DW_TAG_compile_unit die for CU.
7919 COMP_DIR is the compilation directory.
7920 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7921
7922 static void
7923 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7924 const char *comp_dir)
7925 {
7926 struct attribute *attr;
7927
7928 gdb_assert (! cu->per_cu->is_debug_types);
7929
7930 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7931 if (attr)
7932 {
7933 unsigned int line_offset = DW_UNSND (attr);
7934 struct line_header *line_header
7935 = dwarf_decode_line_header (line_offset, cu);
7936
7937 if (line_header)
7938 {
7939 cu->line_header = line_header;
7940 make_cleanup (free_cu_line_header, cu);
7941 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7942 }
7943 }
7944 }
7945
7946 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7947
7948 static void
7949 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7950 {
7951 struct objfile *objfile = dwarf2_per_objfile->objfile;
7952 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7953 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7954 CORE_ADDR highpc = ((CORE_ADDR) 0);
7955 struct attribute *attr;
7956 const char *name = NULL;
7957 const char *comp_dir = NULL;
7958 struct die_info *child_die;
7959 bfd *abfd = objfile->obfd;
7960 CORE_ADDR baseaddr;
7961
7962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7963
7964 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7965
7966 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7967 from finish_block. */
7968 if (lowpc == ((CORE_ADDR) -1))
7969 lowpc = highpc;
7970 lowpc += baseaddr;
7971 highpc += baseaddr;
7972
7973 find_file_and_directory (die, cu, &name, &comp_dir);
7974
7975 prepare_one_comp_unit (cu, die, cu->language);
7976
7977 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7978 standardised yet. As a workaround for the language detection we fall
7979 back to the DW_AT_producer string. */
7980 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7981 cu->language = language_opencl;
7982
7983 /* Similar hack for Go. */
7984 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7985 set_cu_language (DW_LANG_Go, cu);
7986
7987 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7988
7989 /* Decode line number information if present. We do this before
7990 processing child DIEs, so that the line header table is available
7991 for DW_AT_decl_file. */
7992 handle_DW_AT_stmt_list (die, cu, comp_dir);
7993
7994 /* Process all dies in compilation unit. */
7995 if (die->child != NULL)
7996 {
7997 child_die = die->child;
7998 while (child_die && child_die->tag)
7999 {
8000 process_die (child_die, cu);
8001 child_die = sibling_die (child_die);
8002 }
8003 }
8004
8005 /* Decode macro information, if present. Dwarf 2 macro information
8006 refers to information in the line number info statement program
8007 header, so we can only read it if we've read the header
8008 successfully. */
8009 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8010 if (attr && cu->line_header)
8011 {
8012 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8013 complaint (&symfile_complaints,
8014 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8015
8016 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8017 }
8018 else
8019 {
8020 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8021 if (attr && cu->line_header)
8022 {
8023 unsigned int macro_offset = DW_UNSND (attr);
8024
8025 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8026 }
8027 }
8028
8029 do_cleanups (back_to);
8030 }
8031
8032 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8033 Create the set of symtabs used by this TU, or if this TU is sharing
8034 symtabs with another TU and the symtabs have already been created
8035 then restore those symtabs in the line header.
8036 We don't need the pc/line-number mapping for type units. */
8037
8038 static void
8039 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8040 {
8041 struct objfile *objfile = dwarf2_per_objfile->objfile;
8042 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8043 struct type_unit_group *tu_group;
8044 int first_time;
8045 struct line_header *lh;
8046 struct attribute *attr;
8047 unsigned int i, line_offset;
8048
8049 gdb_assert (per_cu->is_debug_types);
8050
8051 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8052
8053 /* If we're using .gdb_index (includes -readnow) then
8054 per_cu->s.type_unit_group may not have been set up yet. */
8055 if (per_cu->type_unit_group == NULL)
8056 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8057 tu_group = per_cu->type_unit_group;
8058
8059 /* If we've already processed this stmt_list there's no real need to
8060 do it again, we could fake it and just recreate the part we need
8061 (file name,index -> symtab mapping). If data shows this optimization
8062 is useful we can do it then. */
8063 first_time = tu_group->primary_symtab == NULL;
8064
8065 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8066 debug info. */
8067 lh = NULL;
8068 if (attr != NULL)
8069 {
8070 line_offset = DW_UNSND (attr);
8071 lh = dwarf_decode_line_header (line_offset, cu);
8072 }
8073 if (lh == NULL)
8074 {
8075 if (first_time)
8076 dwarf2_start_symtab (cu, "", NULL, 0);
8077 else
8078 {
8079 gdb_assert (tu_group->symtabs == NULL);
8080 restart_symtab (0);
8081 }
8082 /* Note: The primary symtab will get allocated at the end. */
8083 return;
8084 }
8085
8086 cu->line_header = lh;
8087 make_cleanup (free_cu_line_header, cu);
8088
8089 if (first_time)
8090 {
8091 dwarf2_start_symtab (cu, "", NULL, 0);
8092
8093 tu_group->num_symtabs = lh->num_file_names;
8094 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8095
8096 for (i = 0; i < lh->num_file_names; ++i)
8097 {
8098 char *dir = NULL;
8099 struct file_entry *fe = &lh->file_names[i];
8100
8101 if (fe->dir_index)
8102 dir = lh->include_dirs[fe->dir_index - 1];
8103 dwarf2_start_subfile (fe->name, dir, NULL);
8104
8105 /* Note: We don't have to watch for the main subfile here, type units
8106 don't have DW_AT_name. */
8107
8108 if (current_subfile->symtab == NULL)
8109 {
8110 /* NOTE: start_subfile will recognize when it's been passed
8111 a file it has already seen. So we can't assume there's a
8112 simple mapping from lh->file_names to subfiles,
8113 lh->file_names may contain dups. */
8114 current_subfile->symtab = allocate_symtab (current_subfile->name,
8115 objfile);
8116 }
8117
8118 fe->symtab = current_subfile->symtab;
8119 tu_group->symtabs[i] = fe->symtab;
8120 }
8121 }
8122 else
8123 {
8124 restart_symtab (0);
8125
8126 for (i = 0; i < lh->num_file_names; ++i)
8127 {
8128 struct file_entry *fe = &lh->file_names[i];
8129
8130 fe->symtab = tu_group->symtabs[i];
8131 }
8132 }
8133
8134 /* The main symtab is allocated last. Type units don't have DW_AT_name
8135 so they don't have a "real" (so to speak) symtab anyway.
8136 There is later code that will assign the main symtab to all symbols
8137 that don't have one. We need to handle the case of a symbol with a
8138 missing symtab (DW_AT_decl_file) anyway. */
8139 }
8140
8141 /* Process DW_TAG_type_unit.
8142 For TUs we want to skip the first top level sibling if it's not the
8143 actual type being defined by this TU. In this case the first top
8144 level sibling is there to provide context only. */
8145
8146 static void
8147 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8148 {
8149 struct die_info *child_die;
8150
8151 prepare_one_comp_unit (cu, die, language_minimal);
8152
8153 /* Initialize (or reinitialize) the machinery for building symtabs.
8154 We do this before processing child DIEs, so that the line header table
8155 is available for DW_AT_decl_file. */
8156 setup_type_unit_groups (die, cu);
8157
8158 if (die->child != NULL)
8159 {
8160 child_die = die->child;
8161 while (child_die && child_die->tag)
8162 {
8163 process_die (child_die, cu);
8164 child_die = sibling_die (child_die);
8165 }
8166 }
8167 }
8168 \f
8169 /* DWO/DWP files.
8170
8171 http://gcc.gnu.org/wiki/DebugFission
8172 http://gcc.gnu.org/wiki/DebugFissionDWP
8173
8174 To simplify handling of both DWO files ("object" files with the DWARF info)
8175 and DWP files (a file with the DWOs packaged up into one file), we treat
8176 DWP files as having a collection of virtual DWO files. */
8177
8178 static hashval_t
8179 hash_dwo_file (const void *item)
8180 {
8181 const struct dwo_file *dwo_file = item;
8182
8183 return htab_hash_string (dwo_file->name);
8184 }
8185
8186 static int
8187 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8188 {
8189 const struct dwo_file *lhs = item_lhs;
8190 const struct dwo_file *rhs = item_rhs;
8191
8192 return strcmp (lhs->name, rhs->name) == 0;
8193 }
8194
8195 /* Allocate a hash table for DWO files. */
8196
8197 static htab_t
8198 allocate_dwo_file_hash_table (void)
8199 {
8200 struct objfile *objfile = dwarf2_per_objfile->objfile;
8201
8202 return htab_create_alloc_ex (41,
8203 hash_dwo_file,
8204 eq_dwo_file,
8205 NULL,
8206 &objfile->objfile_obstack,
8207 hashtab_obstack_allocate,
8208 dummy_obstack_deallocate);
8209 }
8210
8211 /* Lookup DWO file DWO_NAME. */
8212
8213 static void **
8214 lookup_dwo_file_slot (const char *dwo_name)
8215 {
8216 struct dwo_file find_entry;
8217 void **slot;
8218
8219 if (dwarf2_per_objfile->dwo_files == NULL)
8220 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8221
8222 memset (&find_entry, 0, sizeof (find_entry));
8223 find_entry.name = dwo_name;
8224 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8225
8226 return slot;
8227 }
8228
8229 static hashval_t
8230 hash_dwo_unit (const void *item)
8231 {
8232 const struct dwo_unit *dwo_unit = item;
8233
8234 /* This drops the top 32 bits of the id, but is ok for a hash. */
8235 return dwo_unit->signature;
8236 }
8237
8238 static int
8239 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8240 {
8241 const struct dwo_unit *lhs = item_lhs;
8242 const struct dwo_unit *rhs = item_rhs;
8243
8244 /* The signature is assumed to be unique within the DWO file.
8245 So while object file CU dwo_id's always have the value zero,
8246 that's OK, assuming each object file DWO file has only one CU,
8247 and that's the rule for now. */
8248 return lhs->signature == rhs->signature;
8249 }
8250
8251 /* Allocate a hash table for DWO CUs,TUs.
8252 There is one of these tables for each of CUs,TUs for each DWO file. */
8253
8254 static htab_t
8255 allocate_dwo_unit_table (struct objfile *objfile)
8256 {
8257 /* Start out with a pretty small number.
8258 Generally DWO files contain only one CU and maybe some TUs. */
8259 return htab_create_alloc_ex (3,
8260 hash_dwo_unit,
8261 eq_dwo_unit,
8262 NULL,
8263 &objfile->objfile_obstack,
8264 hashtab_obstack_allocate,
8265 dummy_obstack_deallocate);
8266 }
8267
8268 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8269
8270 struct create_dwo_info_table_data
8271 {
8272 struct dwo_file *dwo_file;
8273 htab_t cu_htab;
8274 };
8275
8276 /* die_reader_func for create_dwo_debug_info_hash_table. */
8277
8278 static void
8279 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8280 gdb_byte *info_ptr,
8281 struct die_info *comp_unit_die,
8282 int has_children,
8283 void *datap)
8284 {
8285 struct dwarf2_cu *cu = reader->cu;
8286 struct objfile *objfile = dwarf2_per_objfile->objfile;
8287 sect_offset offset = cu->per_cu->offset;
8288 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8289 struct create_dwo_info_table_data *data = datap;
8290 struct dwo_file *dwo_file = data->dwo_file;
8291 htab_t cu_htab = data->cu_htab;
8292 void **slot;
8293 struct attribute *attr;
8294 struct dwo_unit *dwo_unit;
8295
8296 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8297 if (attr == NULL)
8298 {
8299 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8300 " its dwo_id [in module %s]"),
8301 offset.sect_off, dwo_file->name);
8302 return;
8303 }
8304
8305 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8306 dwo_unit->dwo_file = dwo_file;
8307 dwo_unit->signature = DW_UNSND (attr);
8308 dwo_unit->info_or_types_section = section;
8309 dwo_unit->offset = offset;
8310 dwo_unit->length = cu->per_cu->length;
8311
8312 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8313 gdb_assert (slot != NULL);
8314 if (*slot != NULL)
8315 {
8316 const struct dwo_unit *dup_dwo_unit = *slot;
8317
8318 complaint (&symfile_complaints,
8319 _("debug entry at offset 0x%x is duplicate to the entry at"
8320 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8321 offset.sect_off, dup_dwo_unit->offset.sect_off,
8322 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8323 dwo_file->name);
8324 }
8325 else
8326 *slot = dwo_unit;
8327
8328 if (dwarf2_read_debug)
8329 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8330 offset.sect_off,
8331 phex (dwo_unit->signature,
8332 sizeof (dwo_unit->signature)));
8333 }
8334
8335 /* Create a hash table to map DWO IDs to their CU entry in
8336 .debug_info.dwo in DWO_FILE.
8337 Note: This function processes DWO files only, not DWP files. */
8338
8339 static htab_t
8340 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8341 {
8342 struct objfile *objfile = dwarf2_per_objfile->objfile;
8343 struct dwarf2_section_info *section = &dwo_file->sections.info;
8344 bfd *abfd;
8345 htab_t cu_htab;
8346 gdb_byte *info_ptr, *end_ptr;
8347 struct create_dwo_info_table_data create_dwo_info_table_data;
8348
8349 dwarf2_read_section (objfile, section);
8350 info_ptr = section->buffer;
8351
8352 if (info_ptr == NULL)
8353 return NULL;
8354
8355 /* We can't set abfd until now because the section may be empty or
8356 not present, in which case section->asection will be NULL. */
8357 abfd = section->asection->owner;
8358
8359 if (dwarf2_read_debug)
8360 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8361 bfd_get_filename (abfd));
8362
8363 cu_htab = allocate_dwo_unit_table (objfile);
8364
8365 create_dwo_info_table_data.dwo_file = dwo_file;
8366 create_dwo_info_table_data.cu_htab = cu_htab;
8367
8368 end_ptr = info_ptr + section->size;
8369 while (info_ptr < end_ptr)
8370 {
8371 struct dwarf2_per_cu_data per_cu;
8372
8373 memset (&per_cu, 0, sizeof (per_cu));
8374 per_cu.objfile = objfile;
8375 per_cu.is_debug_types = 0;
8376 per_cu.offset.sect_off = info_ptr - section->buffer;
8377 per_cu.info_or_types_section = section;
8378
8379 init_cutu_and_read_dies_no_follow (&per_cu,
8380 &dwo_file->sections.abbrev,
8381 dwo_file,
8382 create_dwo_debug_info_hash_table_reader,
8383 &create_dwo_info_table_data);
8384
8385 info_ptr += per_cu.length;
8386 }
8387
8388 return cu_htab;
8389 }
8390
8391 /* DWP file .debug_{cu,tu}_index section format:
8392 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8393
8394 Both index sections have the same format, and serve to map a 64-bit
8395 signature to a set of section numbers. Each section begins with a header,
8396 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8397 indexes, and a pool of 32-bit section numbers. The index sections will be
8398 aligned at 8-byte boundaries in the file.
8399
8400 The index section header contains two unsigned 32-bit values (using the
8401 byte order of the application binary):
8402
8403 N, the number of compilation units or type units in the index
8404 M, the number of slots in the hash table
8405
8406 (We assume that N and M will not exceed 2^32 - 1.)
8407
8408 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8409
8410 The hash table begins at offset 8 in the section, and consists of an array
8411 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8412 order of the application binary). Unused slots in the hash table are 0.
8413 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8414
8415 The parallel table begins immediately after the hash table
8416 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8417 array of 32-bit indexes (using the byte order of the application binary),
8418 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8419 table contains a 32-bit index into the pool of section numbers. For unused
8420 hash table slots, the corresponding entry in the parallel table will be 0.
8421
8422 Given a 64-bit compilation unit signature or a type signature S, an entry
8423 in the hash table is located as follows:
8424
8425 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8426 the low-order k bits all set to 1.
8427
8428 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8429
8430 3) If the hash table entry at index H matches the signature, use that
8431 entry. If the hash table entry at index H is unused (all zeroes),
8432 terminate the search: the signature is not present in the table.
8433
8434 4) Let H = (H + H') modulo M. Repeat at Step 3.
8435
8436 Because M > N and H' and M are relatively prime, the search is guaranteed
8437 to stop at an unused slot or find the match.
8438
8439 The pool of section numbers begins immediately following the hash table
8440 (at offset 8 + 12 * M from the beginning of the section). The pool of
8441 section numbers consists of an array of 32-bit words (using the byte order
8442 of the application binary). Each item in the array is indexed starting
8443 from 0. The hash table entry provides the index of the first section
8444 number in the set. Additional section numbers in the set follow, and the
8445 set is terminated by a 0 entry (section number 0 is not used in ELF).
8446
8447 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8448 section must be the first entry in the set, and the .debug_abbrev.dwo must
8449 be the second entry. Other members of the set may follow in any order. */
8450
8451 /* Create a hash table to map DWO IDs to their CU/TU entry in
8452 .debug_{info,types}.dwo in DWP_FILE.
8453 Returns NULL if there isn't one.
8454 Note: This function processes DWP files only, not DWO files. */
8455
8456 static struct dwp_hash_table *
8457 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8458 {
8459 struct objfile *objfile = dwarf2_per_objfile->objfile;
8460 bfd *dbfd = dwp_file->dbfd;
8461 char *index_ptr, *index_end;
8462 struct dwarf2_section_info *index;
8463 uint32_t version, nr_units, nr_slots;
8464 struct dwp_hash_table *htab;
8465
8466 if (is_debug_types)
8467 index = &dwp_file->sections.tu_index;
8468 else
8469 index = &dwp_file->sections.cu_index;
8470
8471 if (dwarf2_section_empty_p (index))
8472 return NULL;
8473 dwarf2_read_section (objfile, index);
8474
8475 index_ptr = index->buffer;
8476 index_end = index_ptr + index->size;
8477
8478 version = read_4_bytes (dbfd, index_ptr);
8479 index_ptr += 8; /* Skip the unused word. */
8480 nr_units = read_4_bytes (dbfd, index_ptr);
8481 index_ptr += 4;
8482 nr_slots = read_4_bytes (dbfd, index_ptr);
8483 index_ptr += 4;
8484
8485 if (version != 1)
8486 {
8487 error (_("Dwarf Error: unsupported DWP file version (%u)"
8488 " [in module %s]"),
8489 version, dwp_file->name);
8490 }
8491 if (nr_slots != (nr_slots & -nr_slots))
8492 {
8493 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8494 " is not power of 2 [in module %s]"),
8495 nr_slots, dwp_file->name);
8496 }
8497
8498 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8499 htab->nr_units = nr_units;
8500 htab->nr_slots = nr_slots;
8501 htab->hash_table = index_ptr;
8502 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8503 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8504
8505 return htab;
8506 }
8507
8508 /* Update SECTIONS with the data from SECTP.
8509
8510 This function is like the other "locate" section routines that are
8511 passed to bfd_map_over_sections, but in this context the sections to
8512 read comes from the DWP hash table, not the full ELF section table.
8513
8514 The result is non-zero for success, or zero if an error was found. */
8515
8516 static int
8517 locate_virtual_dwo_sections (asection *sectp,
8518 struct virtual_dwo_sections *sections)
8519 {
8520 const struct dwop_section_names *names = &dwop_section_names;
8521
8522 if (section_is_p (sectp->name, &names->abbrev_dwo))
8523 {
8524 /* There can be only one. */
8525 if (sections->abbrev.asection != NULL)
8526 return 0;
8527 sections->abbrev.asection = sectp;
8528 sections->abbrev.size = bfd_get_section_size (sectp);
8529 }
8530 else if (section_is_p (sectp->name, &names->info_dwo)
8531 || section_is_p (sectp->name, &names->types_dwo))
8532 {
8533 /* There can be only one. */
8534 if (sections->info_or_types.asection != NULL)
8535 return 0;
8536 sections->info_or_types.asection = sectp;
8537 sections->info_or_types.size = bfd_get_section_size (sectp);
8538 }
8539 else if (section_is_p (sectp->name, &names->line_dwo))
8540 {
8541 /* There can be only one. */
8542 if (sections->line.asection != NULL)
8543 return 0;
8544 sections->line.asection = sectp;
8545 sections->line.size = bfd_get_section_size (sectp);
8546 }
8547 else if (section_is_p (sectp->name, &names->loc_dwo))
8548 {
8549 /* There can be only one. */
8550 if (sections->loc.asection != NULL)
8551 return 0;
8552 sections->loc.asection = sectp;
8553 sections->loc.size = bfd_get_section_size (sectp);
8554 }
8555 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8556 {
8557 /* There can be only one. */
8558 if (sections->macinfo.asection != NULL)
8559 return 0;
8560 sections->macinfo.asection = sectp;
8561 sections->macinfo.size = bfd_get_section_size (sectp);
8562 }
8563 else if (section_is_p (sectp->name, &names->macro_dwo))
8564 {
8565 /* There can be only one. */
8566 if (sections->macro.asection != NULL)
8567 return 0;
8568 sections->macro.asection = sectp;
8569 sections->macro.size = bfd_get_section_size (sectp);
8570 }
8571 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8572 {
8573 /* There can be only one. */
8574 if (sections->str_offsets.asection != NULL)
8575 return 0;
8576 sections->str_offsets.asection = sectp;
8577 sections->str_offsets.size = bfd_get_section_size (sectp);
8578 }
8579 else
8580 {
8581 /* No other kind of section is valid. */
8582 return 0;
8583 }
8584
8585 return 1;
8586 }
8587
8588 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8589 HTAB is the hash table from the DWP file.
8590 SECTION_INDEX is the index of the DWO in HTAB. */
8591
8592 static struct dwo_unit *
8593 create_dwo_in_dwp (struct dwp_file *dwp_file,
8594 const struct dwp_hash_table *htab,
8595 uint32_t section_index,
8596 ULONGEST signature, int is_debug_types)
8597 {
8598 struct objfile *objfile = dwarf2_per_objfile->objfile;
8599 bfd *dbfd = dwp_file->dbfd;
8600 const char *kind = is_debug_types ? "TU" : "CU";
8601 struct dwo_file *dwo_file;
8602 struct dwo_unit *dwo_unit;
8603 struct virtual_dwo_sections sections;
8604 void **dwo_file_slot;
8605 char *virtual_dwo_name;
8606 struct dwarf2_section_info *cutu;
8607 struct cleanup *cleanups;
8608 int i;
8609
8610 if (dwarf2_read_debug)
8611 {
8612 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8613 kind,
8614 section_index, phex (signature, sizeof (signature)),
8615 dwp_file->name);
8616 }
8617
8618 /* Fetch the sections of this DWO.
8619 Put a limit on the number of sections we look for so that bad data
8620 doesn't cause us to loop forever. */
8621
8622 #define MAX_NR_DWO_SECTIONS \
8623 (1 /* .debug_info or .debug_types */ \
8624 + 1 /* .debug_abbrev */ \
8625 + 1 /* .debug_line */ \
8626 + 1 /* .debug_loc */ \
8627 + 1 /* .debug_str_offsets */ \
8628 + 1 /* .debug_macro */ \
8629 + 1 /* .debug_macinfo */ \
8630 + 1 /* trailing zero */)
8631
8632 memset (&sections, 0, sizeof (sections));
8633 cleanups = make_cleanup (null_cleanup, 0);
8634
8635 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8636 {
8637 asection *sectp;
8638 uint32_t section_nr =
8639 read_4_bytes (dbfd,
8640 htab->section_pool
8641 + (section_index + i) * sizeof (uint32_t));
8642
8643 if (section_nr == 0)
8644 break;
8645 if (section_nr >= dwp_file->num_sections)
8646 {
8647 error (_("Dwarf Error: bad DWP hash table, section number too large"
8648 " [in module %s]"),
8649 dwp_file->name);
8650 }
8651
8652 sectp = dwp_file->elf_sections[section_nr];
8653 if (! locate_virtual_dwo_sections (sectp, &sections))
8654 {
8655 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8656 " [in module %s]"),
8657 dwp_file->name);
8658 }
8659 }
8660
8661 if (i < 2
8662 || sections.info_or_types.asection == NULL
8663 || sections.abbrev.asection == NULL)
8664 {
8665 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8666 " [in module %s]"),
8667 dwp_file->name);
8668 }
8669 if (i == MAX_NR_DWO_SECTIONS)
8670 {
8671 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8672 " [in module %s]"),
8673 dwp_file->name);
8674 }
8675
8676 /* It's easier for the rest of the code if we fake a struct dwo_file and
8677 have dwo_unit "live" in that. At least for now.
8678
8679 The DWP file can be made up of a random collection of CUs and TUs.
8680 However, for each CU + set of TUs that came from the same original DWO
8681 file, we want to combine them back into a virtual DWO file to save space
8682 (fewer struct dwo_file objects to allocated). Remember that for really
8683 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8684
8685 virtual_dwo_name =
8686 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8687 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8688 sections.line.asection ? sections.line.asection->id : 0,
8689 sections.loc.asection ? sections.loc.asection->id : 0,
8690 (sections.str_offsets.asection
8691 ? sections.str_offsets.asection->id
8692 : 0));
8693 make_cleanup (xfree, virtual_dwo_name);
8694 /* Can we use an existing virtual DWO file? */
8695 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8696 /* Create one if necessary. */
8697 if (*dwo_file_slot == NULL)
8698 {
8699 if (dwarf2_read_debug)
8700 {
8701 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8702 virtual_dwo_name);
8703 }
8704 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8705 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8706 virtual_dwo_name,
8707 strlen (virtual_dwo_name));
8708 dwo_file->sections.abbrev = sections.abbrev;
8709 dwo_file->sections.line = sections.line;
8710 dwo_file->sections.loc = sections.loc;
8711 dwo_file->sections.macinfo = sections.macinfo;
8712 dwo_file->sections.macro = sections.macro;
8713 dwo_file->sections.str_offsets = sections.str_offsets;
8714 /* The "str" section is global to the entire DWP file. */
8715 dwo_file->sections.str = dwp_file->sections.str;
8716 /* The info or types section is assigned later to dwo_unit,
8717 there's no need to record it in dwo_file.
8718 Also, we can't simply record type sections in dwo_file because
8719 we record a pointer into the vector in dwo_unit. As we collect more
8720 types we'll grow the vector and eventually have to reallocate space
8721 for it, invalidating all the pointers into the current copy. */
8722 *dwo_file_slot = dwo_file;
8723 }
8724 else
8725 {
8726 if (dwarf2_read_debug)
8727 {
8728 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8729 virtual_dwo_name);
8730 }
8731 dwo_file = *dwo_file_slot;
8732 }
8733 do_cleanups (cleanups);
8734
8735 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8736 dwo_unit->dwo_file = dwo_file;
8737 dwo_unit->signature = signature;
8738 dwo_unit->info_or_types_section =
8739 obstack_alloc (&objfile->objfile_obstack,
8740 sizeof (struct dwarf2_section_info));
8741 *dwo_unit->info_or_types_section = sections.info_or_types;
8742 /* offset, length, type_offset_in_tu are set later. */
8743
8744 return dwo_unit;
8745 }
8746
8747 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8748
8749 static struct dwo_unit *
8750 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8751 const struct dwp_hash_table *htab,
8752 ULONGEST signature, int is_debug_types)
8753 {
8754 bfd *dbfd = dwp_file->dbfd;
8755 uint32_t mask = htab->nr_slots - 1;
8756 uint32_t hash = signature & mask;
8757 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8758 unsigned int i;
8759 void **slot;
8760 struct dwo_unit find_dwo_cu, *dwo_cu;
8761
8762 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8763 find_dwo_cu.signature = signature;
8764 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8765
8766 if (*slot != NULL)
8767 return *slot;
8768
8769 /* Use a for loop so that we don't loop forever on bad debug info. */
8770 for (i = 0; i < htab->nr_slots; ++i)
8771 {
8772 ULONGEST signature_in_table;
8773
8774 signature_in_table =
8775 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8776 if (signature_in_table == signature)
8777 {
8778 uint32_t section_index =
8779 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8780
8781 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8782 signature, is_debug_types);
8783 return *slot;
8784 }
8785 if (signature_in_table == 0)
8786 return NULL;
8787 hash = (hash + hash2) & mask;
8788 }
8789
8790 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8791 " [in module %s]"),
8792 dwp_file->name);
8793 }
8794
8795 /* Subroutine of open_dwop_file to simplify it.
8796 Open the file specified by FILE_NAME and hand it off to BFD for
8797 preliminary analysis. Return a newly initialized bfd *, which
8798 includes a canonicalized copy of FILE_NAME.
8799 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8800 In case of trouble, return NULL.
8801 NOTE: This function is derived from symfile_bfd_open. */
8802
8803 static bfd *
8804 try_open_dwop_file (const char *file_name, int is_dwp)
8805 {
8806 bfd *sym_bfd;
8807 int desc, flags;
8808 char *absolute_name;
8809
8810 flags = OPF_TRY_CWD_FIRST;
8811 if (is_dwp)
8812 flags |= OPF_SEARCH_IN_PATH;
8813 desc = openp (debug_file_directory, flags, file_name,
8814 O_RDONLY | O_BINARY, &absolute_name);
8815 if (desc < 0)
8816 return NULL;
8817
8818 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8819 if (!sym_bfd)
8820 {
8821 xfree (absolute_name);
8822 return NULL;
8823 }
8824 xfree (absolute_name);
8825 bfd_set_cacheable (sym_bfd, 1);
8826
8827 if (!bfd_check_format (sym_bfd, bfd_object))
8828 {
8829 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8830 return NULL;
8831 }
8832
8833 return sym_bfd;
8834 }
8835
8836 /* Try to open DWO/DWP file FILE_NAME.
8837 COMP_DIR is the DW_AT_comp_dir attribute.
8838 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8839 The result is the bfd handle of the file.
8840 If there is a problem finding or opening the file, return NULL.
8841 Upon success, the canonicalized path of the file is stored in the bfd,
8842 same as symfile_bfd_open. */
8843
8844 static bfd *
8845 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8846 {
8847 bfd *abfd;
8848
8849 if (IS_ABSOLUTE_PATH (file_name))
8850 return try_open_dwop_file (file_name, is_dwp);
8851
8852 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8853
8854 if (comp_dir != NULL)
8855 {
8856 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8857
8858 /* NOTE: If comp_dir is a relative path, this will also try the
8859 search path, which seems useful. */
8860 abfd = try_open_dwop_file (path_to_try, is_dwp);
8861 xfree (path_to_try);
8862 if (abfd != NULL)
8863 return abfd;
8864 }
8865
8866 /* That didn't work, try debug-file-directory, which, despite its name,
8867 is a list of paths. */
8868
8869 if (*debug_file_directory == '\0')
8870 return NULL;
8871
8872 return try_open_dwop_file (file_name, is_dwp);
8873 }
8874
8875 /* This function is mapped across the sections and remembers the offset and
8876 size of each of the DWO debugging sections we are interested in. */
8877
8878 static void
8879 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8880 {
8881 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8882 const struct dwop_section_names *names = &dwop_section_names;
8883
8884 if (section_is_p (sectp->name, &names->abbrev_dwo))
8885 {
8886 dwo_sections->abbrev.asection = sectp;
8887 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8888 }
8889 else if (section_is_p (sectp->name, &names->info_dwo))
8890 {
8891 dwo_sections->info.asection = sectp;
8892 dwo_sections->info.size = bfd_get_section_size (sectp);
8893 }
8894 else if (section_is_p (sectp->name, &names->line_dwo))
8895 {
8896 dwo_sections->line.asection = sectp;
8897 dwo_sections->line.size = bfd_get_section_size (sectp);
8898 }
8899 else if (section_is_p (sectp->name, &names->loc_dwo))
8900 {
8901 dwo_sections->loc.asection = sectp;
8902 dwo_sections->loc.size = bfd_get_section_size (sectp);
8903 }
8904 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8905 {
8906 dwo_sections->macinfo.asection = sectp;
8907 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8908 }
8909 else if (section_is_p (sectp->name, &names->macro_dwo))
8910 {
8911 dwo_sections->macro.asection = sectp;
8912 dwo_sections->macro.size = bfd_get_section_size (sectp);
8913 }
8914 else if (section_is_p (sectp->name, &names->str_dwo))
8915 {
8916 dwo_sections->str.asection = sectp;
8917 dwo_sections->str.size = bfd_get_section_size (sectp);
8918 }
8919 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8920 {
8921 dwo_sections->str_offsets.asection = sectp;
8922 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8923 }
8924 else if (section_is_p (sectp->name, &names->types_dwo))
8925 {
8926 struct dwarf2_section_info type_section;
8927
8928 memset (&type_section, 0, sizeof (type_section));
8929 type_section.asection = sectp;
8930 type_section.size = bfd_get_section_size (sectp);
8931 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8932 &type_section);
8933 }
8934 }
8935
8936 /* Initialize the use of the DWO file specified by DWO_NAME.
8937 The result is NULL if DWO_NAME can't be found. */
8938
8939 static struct dwo_file *
8940 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8941 {
8942 struct objfile *objfile = dwarf2_per_objfile->objfile;
8943 struct dwo_file *dwo_file;
8944 bfd *dbfd;
8945 struct cleanup *cleanups;
8946
8947 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8948 if (dbfd == NULL)
8949 {
8950 if (dwarf2_read_debug)
8951 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8952 return NULL;
8953 }
8954 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8955 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8956 dwo_name, strlen (dwo_name));
8957 dwo_file->dbfd = dbfd;
8958
8959 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8960
8961 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8962
8963 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8964
8965 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8966 dwo_file->sections.types);
8967
8968 discard_cleanups (cleanups);
8969
8970 if (dwarf2_read_debug)
8971 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8972
8973 return dwo_file;
8974 }
8975
8976 /* This function is mapped across the sections and remembers the offset and
8977 size of each of the DWP debugging sections we are interested in. */
8978
8979 static void
8980 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8981 {
8982 struct dwp_file *dwp_file = dwp_file_ptr;
8983 const struct dwop_section_names *names = &dwop_section_names;
8984 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8985
8986 /* Record the ELF section number for later lookup: this is what the
8987 .debug_cu_index,.debug_tu_index tables use. */
8988 gdb_assert (elf_section_nr < dwp_file->num_sections);
8989 dwp_file->elf_sections[elf_section_nr] = sectp;
8990
8991 /* Look for specific sections that we need. */
8992 if (section_is_p (sectp->name, &names->str_dwo))
8993 {
8994 dwp_file->sections.str.asection = sectp;
8995 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8996 }
8997 else if (section_is_p (sectp->name, &names->cu_index))
8998 {
8999 dwp_file->sections.cu_index.asection = sectp;
9000 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9001 }
9002 else if (section_is_p (sectp->name, &names->tu_index))
9003 {
9004 dwp_file->sections.tu_index.asection = sectp;
9005 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9006 }
9007 }
9008
9009 /* Hash function for dwp_file loaded CUs/TUs. */
9010
9011 static hashval_t
9012 hash_dwp_loaded_cutus (const void *item)
9013 {
9014 const struct dwo_unit *dwo_unit = item;
9015
9016 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9017 return dwo_unit->signature;
9018 }
9019
9020 /* Equality function for dwp_file loaded CUs/TUs. */
9021
9022 static int
9023 eq_dwp_loaded_cutus (const void *a, const void *b)
9024 {
9025 const struct dwo_unit *dua = a;
9026 const struct dwo_unit *dub = b;
9027
9028 return dua->signature == dub->signature;
9029 }
9030
9031 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9032
9033 static htab_t
9034 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9035 {
9036 return htab_create_alloc_ex (3,
9037 hash_dwp_loaded_cutus,
9038 eq_dwp_loaded_cutus,
9039 NULL,
9040 &objfile->objfile_obstack,
9041 hashtab_obstack_allocate,
9042 dummy_obstack_deallocate);
9043 }
9044
9045 /* Initialize the use of the DWP file for the current objfile.
9046 By convention the name of the DWP file is ${objfile}.dwp.
9047 The result is NULL if it can't be found. */
9048
9049 static struct dwp_file *
9050 open_and_init_dwp_file (const char *comp_dir)
9051 {
9052 struct objfile *objfile = dwarf2_per_objfile->objfile;
9053 struct dwp_file *dwp_file;
9054 char *dwp_name;
9055 bfd *dbfd;
9056 struct cleanup *cleanups;
9057
9058 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9059 cleanups = make_cleanup (xfree, dwp_name);
9060
9061 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9062 if (dbfd == NULL)
9063 {
9064 if (dwarf2_read_debug)
9065 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9066 do_cleanups (cleanups);
9067 return NULL;
9068 }
9069 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9070 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9071 dwp_name, strlen (dwp_name));
9072 dwp_file->dbfd = dbfd;
9073 do_cleanups (cleanups);
9074
9075 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9076
9077 /* +1: section 0 is unused */
9078 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9079 dwp_file->elf_sections =
9080 OBSTACK_CALLOC (&objfile->objfile_obstack,
9081 dwp_file->num_sections, asection *);
9082
9083 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9084
9085 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9086
9087 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9088
9089 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9090
9091 discard_cleanups (cleanups);
9092
9093 if (dwarf2_read_debug)
9094 {
9095 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9096 fprintf_unfiltered (gdb_stdlog,
9097 " %u CUs, %u TUs\n",
9098 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9099 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9100 }
9101
9102 return dwp_file;
9103 }
9104
9105 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9106 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9107 or in the DWP file for the objfile, referenced by THIS_UNIT.
9108 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9109 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9110
9111 This is called, for example, when wanting to read a variable with a
9112 complex location. Therefore we don't want to do file i/o for every call.
9113 Therefore we don't want to look for a DWO file on every call.
9114 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9115 then we check if we've already seen DWO_NAME, and only THEN do we check
9116 for a DWO file.
9117
9118 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9119 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9120
9121 static struct dwo_unit *
9122 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9123 const char *dwo_name, const char *comp_dir,
9124 ULONGEST signature, int is_debug_types)
9125 {
9126 struct objfile *objfile = dwarf2_per_objfile->objfile;
9127 const char *kind = is_debug_types ? "TU" : "CU";
9128 void **dwo_file_slot;
9129 struct dwo_file *dwo_file;
9130 struct dwp_file *dwp_file;
9131
9132 /* Have we already read SIGNATURE from a DWP file? */
9133
9134 if (! dwarf2_per_objfile->dwp_checked)
9135 {
9136 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9137 dwarf2_per_objfile->dwp_checked = 1;
9138 }
9139 dwp_file = dwarf2_per_objfile->dwp_file;
9140
9141 if (dwp_file != NULL)
9142 {
9143 const struct dwp_hash_table *dwp_htab =
9144 is_debug_types ? dwp_file->tus : dwp_file->cus;
9145
9146 if (dwp_htab != NULL)
9147 {
9148 struct dwo_unit *dwo_cutu =
9149 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9150
9151 if (dwo_cutu != NULL)
9152 {
9153 if (dwarf2_read_debug)
9154 {
9155 fprintf_unfiltered (gdb_stdlog,
9156 "Virtual DWO %s %s found: @%s\n",
9157 kind, hex_string (signature),
9158 host_address_to_string (dwo_cutu));
9159 }
9160 return dwo_cutu;
9161 }
9162 }
9163 }
9164
9165 /* Have we already seen DWO_NAME? */
9166
9167 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9168 if (*dwo_file_slot == NULL)
9169 {
9170 /* Read in the file and build a table of the DWOs it contains. */
9171 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9172 }
9173 /* NOTE: This will be NULL if unable to open the file. */
9174 dwo_file = *dwo_file_slot;
9175
9176 if (dwo_file != NULL)
9177 {
9178 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9179
9180 if (htab != NULL)
9181 {
9182 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9183
9184 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9185 find_dwo_cutu.signature = signature;
9186 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9187
9188 if (dwo_cutu != NULL)
9189 {
9190 if (dwarf2_read_debug)
9191 {
9192 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9193 kind, dwo_name, hex_string (signature),
9194 host_address_to_string (dwo_cutu));
9195 }
9196 return dwo_cutu;
9197 }
9198 }
9199 }
9200
9201 /* We didn't find it. This could mean a dwo_id mismatch, or
9202 someone deleted the DWO/DWP file, or the search path isn't set up
9203 correctly to find the file. */
9204
9205 if (dwarf2_read_debug)
9206 {
9207 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9208 kind, dwo_name, hex_string (signature));
9209 }
9210
9211 complaint (&symfile_complaints,
9212 _("Could not find DWO CU referenced by CU at offset 0x%x"
9213 " [in module %s]"),
9214 this_unit->offset.sect_off, objfile->name);
9215 return NULL;
9216 }
9217
9218 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9219 See lookup_dwo_cutu_unit for details. */
9220
9221 static struct dwo_unit *
9222 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9223 const char *dwo_name, const char *comp_dir,
9224 ULONGEST signature)
9225 {
9226 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9227 }
9228
9229 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9230 See lookup_dwo_cutu_unit for details. */
9231
9232 static struct dwo_unit *
9233 lookup_dwo_type_unit (struct signatured_type *this_tu,
9234 const char *dwo_name, const char *comp_dir)
9235 {
9236 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9237 }
9238
9239 /* Free all resources associated with DWO_FILE.
9240 Close the DWO file and munmap the sections.
9241 All memory should be on the objfile obstack. */
9242
9243 static void
9244 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9245 {
9246 int ix;
9247 struct dwarf2_section_info *section;
9248
9249 gdb_assert (dwo_file->dbfd != objfile->obfd);
9250 gdb_bfd_unref (dwo_file->dbfd);
9251
9252 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9253 }
9254
9255 /* Wrapper for free_dwo_file for use in cleanups. */
9256
9257 static void
9258 free_dwo_file_cleanup (void *arg)
9259 {
9260 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262
9263 free_dwo_file (dwo_file, objfile);
9264 }
9265
9266 /* Traversal function for free_dwo_files. */
9267
9268 static int
9269 free_dwo_file_from_slot (void **slot, void *info)
9270 {
9271 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9272 struct objfile *objfile = (struct objfile *) info;
9273
9274 free_dwo_file (dwo_file, objfile);
9275
9276 return 1;
9277 }
9278
9279 /* Free all resources associated with DWO_FILES. */
9280
9281 static void
9282 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9283 {
9284 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9285 }
9286 \f
9287 /* Read in various DIEs. */
9288
9289 /* qsort helper for inherit_abstract_dies. */
9290
9291 static int
9292 unsigned_int_compar (const void *ap, const void *bp)
9293 {
9294 unsigned int a = *(unsigned int *) ap;
9295 unsigned int b = *(unsigned int *) bp;
9296
9297 return (a > b) - (b > a);
9298 }
9299
9300 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9301 Inherit only the children of the DW_AT_abstract_origin DIE not being
9302 already referenced by DW_AT_abstract_origin from the children of the
9303 current DIE. */
9304
9305 static void
9306 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9307 {
9308 struct die_info *child_die;
9309 unsigned die_children_count;
9310 /* CU offsets which were referenced by children of the current DIE. */
9311 sect_offset *offsets;
9312 sect_offset *offsets_end, *offsetp;
9313 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9314 struct die_info *origin_die;
9315 /* Iterator of the ORIGIN_DIE children. */
9316 struct die_info *origin_child_die;
9317 struct cleanup *cleanups;
9318 struct attribute *attr;
9319 struct dwarf2_cu *origin_cu;
9320 struct pending **origin_previous_list_in_scope;
9321
9322 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9323 if (!attr)
9324 return;
9325
9326 /* Note that following die references may follow to a die in a
9327 different cu. */
9328
9329 origin_cu = cu;
9330 origin_die = follow_die_ref (die, attr, &origin_cu);
9331
9332 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9333 symbols in. */
9334 origin_previous_list_in_scope = origin_cu->list_in_scope;
9335 origin_cu->list_in_scope = cu->list_in_scope;
9336
9337 if (die->tag != origin_die->tag
9338 && !(die->tag == DW_TAG_inlined_subroutine
9339 && origin_die->tag == DW_TAG_subprogram))
9340 complaint (&symfile_complaints,
9341 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9342 die->offset.sect_off, origin_die->offset.sect_off);
9343
9344 child_die = die->child;
9345 die_children_count = 0;
9346 while (child_die && child_die->tag)
9347 {
9348 child_die = sibling_die (child_die);
9349 die_children_count++;
9350 }
9351 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9352 cleanups = make_cleanup (xfree, offsets);
9353
9354 offsets_end = offsets;
9355 child_die = die->child;
9356 while (child_die && child_die->tag)
9357 {
9358 /* For each CHILD_DIE, find the corresponding child of
9359 ORIGIN_DIE. If there is more than one layer of
9360 DW_AT_abstract_origin, follow them all; there shouldn't be,
9361 but GCC versions at least through 4.4 generate this (GCC PR
9362 40573). */
9363 struct die_info *child_origin_die = child_die;
9364 struct dwarf2_cu *child_origin_cu = cu;
9365
9366 while (1)
9367 {
9368 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9369 child_origin_cu);
9370 if (attr == NULL)
9371 break;
9372 child_origin_die = follow_die_ref (child_origin_die, attr,
9373 &child_origin_cu);
9374 }
9375
9376 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9377 counterpart may exist. */
9378 if (child_origin_die != child_die)
9379 {
9380 if (child_die->tag != child_origin_die->tag
9381 && !(child_die->tag == DW_TAG_inlined_subroutine
9382 && child_origin_die->tag == DW_TAG_subprogram))
9383 complaint (&symfile_complaints,
9384 _("Child DIE 0x%x and its abstract origin 0x%x have "
9385 "different tags"), child_die->offset.sect_off,
9386 child_origin_die->offset.sect_off);
9387 if (child_origin_die->parent != origin_die)
9388 complaint (&symfile_complaints,
9389 _("Child DIE 0x%x and its abstract origin 0x%x have "
9390 "different parents"), child_die->offset.sect_off,
9391 child_origin_die->offset.sect_off);
9392 else
9393 *offsets_end++ = child_origin_die->offset;
9394 }
9395 child_die = sibling_die (child_die);
9396 }
9397 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9398 unsigned_int_compar);
9399 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9400 if (offsetp[-1].sect_off == offsetp->sect_off)
9401 complaint (&symfile_complaints,
9402 _("Multiple children of DIE 0x%x refer "
9403 "to DIE 0x%x as their abstract origin"),
9404 die->offset.sect_off, offsetp->sect_off);
9405
9406 offsetp = offsets;
9407 origin_child_die = origin_die->child;
9408 while (origin_child_die && origin_child_die->tag)
9409 {
9410 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9411 while (offsetp < offsets_end
9412 && offsetp->sect_off < origin_child_die->offset.sect_off)
9413 offsetp++;
9414 if (offsetp >= offsets_end
9415 || offsetp->sect_off > origin_child_die->offset.sect_off)
9416 {
9417 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9418 process_die (origin_child_die, origin_cu);
9419 }
9420 origin_child_die = sibling_die (origin_child_die);
9421 }
9422 origin_cu->list_in_scope = origin_previous_list_in_scope;
9423
9424 do_cleanups (cleanups);
9425 }
9426
9427 static void
9428 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9429 {
9430 struct objfile *objfile = cu->objfile;
9431 struct context_stack *new;
9432 CORE_ADDR lowpc;
9433 CORE_ADDR highpc;
9434 struct die_info *child_die;
9435 struct attribute *attr, *call_line, *call_file;
9436 const char *name;
9437 CORE_ADDR baseaddr;
9438 struct block *block;
9439 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9440 VEC (symbolp) *template_args = NULL;
9441 struct template_symbol *templ_func = NULL;
9442
9443 if (inlined_func)
9444 {
9445 /* If we do not have call site information, we can't show the
9446 caller of this inlined function. That's too confusing, so
9447 only use the scope for local variables. */
9448 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9449 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9450 if (call_line == NULL || call_file == NULL)
9451 {
9452 read_lexical_block_scope (die, cu);
9453 return;
9454 }
9455 }
9456
9457 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9458
9459 name = dwarf2_name (die, cu);
9460
9461 /* Ignore functions with missing or empty names. These are actually
9462 illegal according to the DWARF standard. */
9463 if (name == NULL)
9464 {
9465 complaint (&symfile_complaints,
9466 _("missing name for subprogram DIE at %d"),
9467 die->offset.sect_off);
9468 return;
9469 }
9470
9471 /* Ignore functions with missing or invalid low and high pc attributes. */
9472 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9473 {
9474 attr = dwarf2_attr (die, DW_AT_external, cu);
9475 if (!attr || !DW_UNSND (attr))
9476 complaint (&symfile_complaints,
9477 _("cannot get low and high bounds "
9478 "for subprogram DIE at %d"),
9479 die->offset.sect_off);
9480 return;
9481 }
9482
9483 lowpc += baseaddr;
9484 highpc += baseaddr;
9485
9486 /* If we have any template arguments, then we must allocate a
9487 different sort of symbol. */
9488 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9489 {
9490 if (child_die->tag == DW_TAG_template_type_param
9491 || child_die->tag == DW_TAG_template_value_param)
9492 {
9493 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9494 struct template_symbol);
9495 templ_func->base.is_cplus_template_function = 1;
9496 break;
9497 }
9498 }
9499
9500 new = push_context (0, lowpc);
9501 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9502 (struct symbol *) templ_func);
9503
9504 /* If there is a location expression for DW_AT_frame_base, record
9505 it. */
9506 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9507 if (attr)
9508 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9509 expression is being recorded directly in the function's symbol
9510 and not in a separate frame-base object. I guess this hack is
9511 to avoid adding some sort of frame-base adjunct/annex to the
9512 function's symbol :-(. The problem with doing this is that it
9513 results in a function symbol with a location expression that
9514 has nothing to do with the location of the function, ouch! The
9515 relationship should be: a function's symbol has-a frame base; a
9516 frame-base has-a location expression. */
9517 dwarf2_symbol_mark_computed (attr, new->name, cu);
9518
9519 cu->list_in_scope = &local_symbols;
9520
9521 if (die->child != NULL)
9522 {
9523 child_die = die->child;
9524 while (child_die && child_die->tag)
9525 {
9526 if (child_die->tag == DW_TAG_template_type_param
9527 || child_die->tag == DW_TAG_template_value_param)
9528 {
9529 struct symbol *arg = new_symbol (child_die, NULL, cu);
9530
9531 if (arg != NULL)
9532 VEC_safe_push (symbolp, template_args, arg);
9533 }
9534 else
9535 process_die (child_die, cu);
9536 child_die = sibling_die (child_die);
9537 }
9538 }
9539
9540 inherit_abstract_dies (die, cu);
9541
9542 /* If we have a DW_AT_specification, we might need to import using
9543 directives from the context of the specification DIE. See the
9544 comment in determine_prefix. */
9545 if (cu->language == language_cplus
9546 && dwarf2_attr (die, DW_AT_specification, cu))
9547 {
9548 struct dwarf2_cu *spec_cu = cu;
9549 struct die_info *spec_die = die_specification (die, &spec_cu);
9550
9551 while (spec_die)
9552 {
9553 child_die = spec_die->child;
9554 while (child_die && child_die->tag)
9555 {
9556 if (child_die->tag == DW_TAG_imported_module)
9557 process_die (child_die, spec_cu);
9558 child_die = sibling_die (child_die);
9559 }
9560
9561 /* In some cases, GCC generates specification DIEs that
9562 themselves contain DW_AT_specification attributes. */
9563 spec_die = die_specification (spec_die, &spec_cu);
9564 }
9565 }
9566
9567 new = pop_context ();
9568 /* Make a block for the local symbols within. */
9569 block = finish_block (new->name, &local_symbols, new->old_blocks,
9570 lowpc, highpc, objfile);
9571
9572 /* For C++, set the block's scope. */
9573 if (cu->language == language_cplus || cu->language == language_fortran)
9574 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9575 determine_prefix (die, cu),
9576 processing_has_namespace_info);
9577
9578 /* If we have address ranges, record them. */
9579 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9580
9581 /* Attach template arguments to function. */
9582 if (! VEC_empty (symbolp, template_args))
9583 {
9584 gdb_assert (templ_func != NULL);
9585
9586 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9587 templ_func->template_arguments
9588 = obstack_alloc (&objfile->objfile_obstack,
9589 (templ_func->n_template_arguments
9590 * sizeof (struct symbol *)));
9591 memcpy (templ_func->template_arguments,
9592 VEC_address (symbolp, template_args),
9593 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9594 VEC_free (symbolp, template_args);
9595 }
9596
9597 /* In C++, we can have functions nested inside functions (e.g., when
9598 a function declares a class that has methods). This means that
9599 when we finish processing a function scope, we may need to go
9600 back to building a containing block's symbol lists. */
9601 local_symbols = new->locals;
9602 using_directives = new->using_directives;
9603
9604 /* If we've finished processing a top-level function, subsequent
9605 symbols go in the file symbol list. */
9606 if (outermost_context_p ())
9607 cu->list_in_scope = &file_symbols;
9608 }
9609
9610 /* Process all the DIES contained within a lexical block scope. Start
9611 a new scope, process the dies, and then close the scope. */
9612
9613 static void
9614 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9615 {
9616 struct objfile *objfile = cu->objfile;
9617 struct context_stack *new;
9618 CORE_ADDR lowpc, highpc;
9619 struct die_info *child_die;
9620 CORE_ADDR baseaddr;
9621
9622 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9623
9624 /* Ignore blocks with missing or invalid low and high pc attributes. */
9625 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9626 as multiple lexical blocks? Handling children in a sane way would
9627 be nasty. Might be easier to properly extend generic blocks to
9628 describe ranges. */
9629 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9630 return;
9631 lowpc += baseaddr;
9632 highpc += baseaddr;
9633
9634 push_context (0, lowpc);
9635 if (die->child != NULL)
9636 {
9637 child_die = die->child;
9638 while (child_die && child_die->tag)
9639 {
9640 process_die (child_die, cu);
9641 child_die = sibling_die (child_die);
9642 }
9643 }
9644 new = pop_context ();
9645
9646 if (local_symbols != NULL || using_directives != NULL)
9647 {
9648 struct block *block
9649 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9650 highpc, objfile);
9651
9652 /* Note that recording ranges after traversing children, as we
9653 do here, means that recording a parent's ranges entails
9654 walking across all its children's ranges as they appear in
9655 the address map, which is quadratic behavior.
9656
9657 It would be nicer to record the parent's ranges before
9658 traversing its children, simply overriding whatever you find
9659 there. But since we don't even decide whether to create a
9660 block until after we've traversed its children, that's hard
9661 to do. */
9662 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9663 }
9664 local_symbols = new->locals;
9665 using_directives = new->using_directives;
9666 }
9667
9668 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9669
9670 static void
9671 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9672 {
9673 struct objfile *objfile = cu->objfile;
9674 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9675 CORE_ADDR pc, baseaddr;
9676 struct attribute *attr;
9677 struct call_site *call_site, call_site_local;
9678 void **slot;
9679 int nparams;
9680 struct die_info *child_die;
9681
9682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9683
9684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9685 if (!attr)
9686 {
9687 complaint (&symfile_complaints,
9688 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9689 "DIE 0x%x [in module %s]"),
9690 die->offset.sect_off, objfile->name);
9691 return;
9692 }
9693 pc = DW_ADDR (attr) + baseaddr;
9694
9695 if (cu->call_site_htab == NULL)
9696 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9697 NULL, &objfile->objfile_obstack,
9698 hashtab_obstack_allocate, NULL);
9699 call_site_local.pc = pc;
9700 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9701 if (*slot != NULL)
9702 {
9703 complaint (&symfile_complaints,
9704 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9705 "DIE 0x%x [in module %s]"),
9706 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9707 return;
9708 }
9709
9710 /* Count parameters at the caller. */
9711
9712 nparams = 0;
9713 for (child_die = die->child; child_die && child_die->tag;
9714 child_die = sibling_die (child_die))
9715 {
9716 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9717 {
9718 complaint (&symfile_complaints,
9719 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9720 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9721 child_die->tag, child_die->offset.sect_off, objfile->name);
9722 continue;
9723 }
9724
9725 nparams++;
9726 }
9727
9728 call_site = obstack_alloc (&objfile->objfile_obstack,
9729 (sizeof (*call_site)
9730 + (sizeof (*call_site->parameter)
9731 * (nparams - 1))));
9732 *slot = call_site;
9733 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9734 call_site->pc = pc;
9735
9736 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9737 {
9738 struct die_info *func_die;
9739
9740 /* Skip also over DW_TAG_inlined_subroutine. */
9741 for (func_die = die->parent;
9742 func_die && func_die->tag != DW_TAG_subprogram
9743 && func_die->tag != DW_TAG_subroutine_type;
9744 func_die = func_die->parent);
9745
9746 /* DW_AT_GNU_all_call_sites is a superset
9747 of DW_AT_GNU_all_tail_call_sites. */
9748 if (func_die
9749 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9750 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9751 {
9752 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9753 not complete. But keep CALL_SITE for look ups via call_site_htab,
9754 both the initial caller containing the real return address PC and
9755 the final callee containing the current PC of a chain of tail
9756 calls do not need to have the tail call list complete. But any
9757 function candidate for a virtual tail call frame searched via
9758 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9759 determined unambiguously. */
9760 }
9761 else
9762 {
9763 struct type *func_type = NULL;
9764
9765 if (func_die)
9766 func_type = get_die_type (func_die, cu);
9767 if (func_type != NULL)
9768 {
9769 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9770
9771 /* Enlist this call site to the function. */
9772 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9773 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9774 }
9775 else
9776 complaint (&symfile_complaints,
9777 _("Cannot find function owning DW_TAG_GNU_call_site "
9778 "DIE 0x%x [in module %s]"),
9779 die->offset.sect_off, objfile->name);
9780 }
9781 }
9782
9783 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9784 if (attr == NULL)
9785 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9786 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9787 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9788 /* Keep NULL DWARF_BLOCK. */;
9789 else if (attr_form_is_block (attr))
9790 {
9791 struct dwarf2_locexpr_baton *dlbaton;
9792
9793 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9794 dlbaton->data = DW_BLOCK (attr)->data;
9795 dlbaton->size = DW_BLOCK (attr)->size;
9796 dlbaton->per_cu = cu->per_cu;
9797
9798 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9799 }
9800 else if (is_ref_attr (attr))
9801 {
9802 struct dwarf2_cu *target_cu = cu;
9803 struct die_info *target_die;
9804
9805 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9806 gdb_assert (target_cu->objfile == objfile);
9807 if (die_is_declaration (target_die, target_cu))
9808 {
9809 const char *target_physname;
9810
9811 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9812 if (target_physname == NULL)
9813 complaint (&symfile_complaints,
9814 _("DW_AT_GNU_call_site_target target DIE has invalid "
9815 "physname, for referencing DIE 0x%x [in module %s]"),
9816 die->offset.sect_off, objfile->name);
9817 else
9818 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9819 }
9820 else
9821 {
9822 CORE_ADDR lowpc;
9823
9824 /* DW_AT_entry_pc should be preferred. */
9825 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9826 complaint (&symfile_complaints,
9827 _("DW_AT_GNU_call_site_target target DIE has invalid "
9828 "low pc, for referencing DIE 0x%x [in module %s]"),
9829 die->offset.sect_off, objfile->name);
9830 else
9831 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9832 }
9833 }
9834 else
9835 complaint (&symfile_complaints,
9836 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9837 "block nor reference, for DIE 0x%x [in module %s]"),
9838 die->offset.sect_off, objfile->name);
9839
9840 call_site->per_cu = cu->per_cu;
9841
9842 for (child_die = die->child;
9843 child_die && child_die->tag;
9844 child_die = sibling_die (child_die))
9845 {
9846 struct call_site_parameter *parameter;
9847 struct attribute *loc, *origin;
9848
9849 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9850 {
9851 /* Already printed the complaint above. */
9852 continue;
9853 }
9854
9855 gdb_assert (call_site->parameter_count < nparams);
9856 parameter = &call_site->parameter[call_site->parameter_count];
9857
9858 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9859 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9860 register is contained in DW_AT_GNU_call_site_value. */
9861
9862 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9863 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9864 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9865 {
9866 sect_offset offset;
9867
9868 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9869 offset = dwarf2_get_ref_die_offset (origin);
9870 if (!offset_in_cu_p (&cu->header, offset))
9871 {
9872 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9873 binding can be done only inside one CU. Such referenced DIE
9874 therefore cannot be even moved to DW_TAG_partial_unit. */
9875 complaint (&symfile_complaints,
9876 _("DW_AT_abstract_origin offset is not in CU for "
9877 "DW_TAG_GNU_call_site child DIE 0x%x "
9878 "[in module %s]"),
9879 child_die->offset.sect_off, objfile->name);
9880 continue;
9881 }
9882 parameter->u.param_offset.cu_off = (offset.sect_off
9883 - cu->header.offset.sect_off);
9884 }
9885 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9886 {
9887 complaint (&symfile_complaints,
9888 _("No DW_FORM_block* DW_AT_location for "
9889 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9890 child_die->offset.sect_off, objfile->name);
9891 continue;
9892 }
9893 else
9894 {
9895 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9896 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9897 if (parameter->u.dwarf_reg != -1)
9898 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9899 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9900 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9901 &parameter->u.fb_offset))
9902 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9903 else
9904 {
9905 complaint (&symfile_complaints,
9906 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9907 "for DW_FORM_block* DW_AT_location is supported for "
9908 "DW_TAG_GNU_call_site child DIE 0x%x "
9909 "[in module %s]"),
9910 child_die->offset.sect_off, objfile->name);
9911 continue;
9912 }
9913 }
9914
9915 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9916 if (!attr_form_is_block (attr))
9917 {
9918 complaint (&symfile_complaints,
9919 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9920 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9921 child_die->offset.sect_off, objfile->name);
9922 continue;
9923 }
9924 parameter->value = DW_BLOCK (attr)->data;
9925 parameter->value_size = DW_BLOCK (attr)->size;
9926
9927 /* Parameters are not pre-cleared by memset above. */
9928 parameter->data_value = NULL;
9929 parameter->data_value_size = 0;
9930 call_site->parameter_count++;
9931
9932 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9933 if (attr)
9934 {
9935 if (!attr_form_is_block (attr))
9936 complaint (&symfile_complaints,
9937 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9938 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9939 child_die->offset.sect_off, objfile->name);
9940 else
9941 {
9942 parameter->data_value = DW_BLOCK (attr)->data;
9943 parameter->data_value_size = DW_BLOCK (attr)->size;
9944 }
9945 }
9946 }
9947 }
9948
9949 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9950 Return 1 if the attributes are present and valid, otherwise, return 0.
9951 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9952
9953 static int
9954 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9955 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9956 struct partial_symtab *ranges_pst)
9957 {
9958 struct objfile *objfile = cu->objfile;
9959 struct comp_unit_head *cu_header = &cu->header;
9960 bfd *obfd = objfile->obfd;
9961 unsigned int addr_size = cu_header->addr_size;
9962 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9963 /* Base address selection entry. */
9964 CORE_ADDR base;
9965 int found_base;
9966 unsigned int dummy;
9967 gdb_byte *buffer;
9968 CORE_ADDR marker;
9969 int low_set;
9970 CORE_ADDR low = 0;
9971 CORE_ADDR high = 0;
9972 CORE_ADDR baseaddr;
9973
9974 found_base = cu->base_known;
9975 base = cu->base_address;
9976
9977 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9978 if (offset >= dwarf2_per_objfile->ranges.size)
9979 {
9980 complaint (&symfile_complaints,
9981 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9982 offset);
9983 return 0;
9984 }
9985 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9986
9987 /* Read in the largest possible address. */
9988 marker = read_address (obfd, buffer, cu, &dummy);
9989 if ((marker & mask) == mask)
9990 {
9991 /* If we found the largest possible address, then
9992 read the base address. */
9993 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9994 buffer += 2 * addr_size;
9995 offset += 2 * addr_size;
9996 found_base = 1;
9997 }
9998
9999 low_set = 0;
10000
10001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10002
10003 while (1)
10004 {
10005 CORE_ADDR range_beginning, range_end;
10006
10007 range_beginning = read_address (obfd, buffer, cu, &dummy);
10008 buffer += addr_size;
10009 range_end = read_address (obfd, buffer, cu, &dummy);
10010 buffer += addr_size;
10011 offset += 2 * addr_size;
10012
10013 /* An end of list marker is a pair of zero addresses. */
10014 if (range_beginning == 0 && range_end == 0)
10015 /* Found the end of list entry. */
10016 break;
10017
10018 /* Each base address selection entry is a pair of 2 values.
10019 The first is the largest possible address, the second is
10020 the base address. Check for a base address here. */
10021 if ((range_beginning & mask) == mask)
10022 {
10023 /* If we found the largest possible address, then
10024 read the base address. */
10025 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10026 found_base = 1;
10027 continue;
10028 }
10029
10030 if (!found_base)
10031 {
10032 /* We have no valid base address for the ranges
10033 data. */
10034 complaint (&symfile_complaints,
10035 _("Invalid .debug_ranges data (no base address)"));
10036 return 0;
10037 }
10038
10039 if (range_beginning > range_end)
10040 {
10041 /* Inverted range entries are invalid. */
10042 complaint (&symfile_complaints,
10043 _("Invalid .debug_ranges data (inverted range)"));
10044 return 0;
10045 }
10046
10047 /* Empty range entries have no effect. */
10048 if (range_beginning == range_end)
10049 continue;
10050
10051 range_beginning += base;
10052 range_end += base;
10053
10054 /* A not-uncommon case of bad debug info.
10055 Don't pollute the addrmap with bad data. */
10056 if (range_beginning + baseaddr == 0
10057 && !dwarf2_per_objfile->has_section_at_zero)
10058 {
10059 complaint (&symfile_complaints,
10060 _(".debug_ranges entry has start address of zero"
10061 " [in module %s]"), objfile->name);
10062 continue;
10063 }
10064
10065 if (ranges_pst != NULL)
10066 addrmap_set_empty (objfile->psymtabs_addrmap,
10067 range_beginning + baseaddr,
10068 range_end - 1 + baseaddr,
10069 ranges_pst);
10070
10071 /* FIXME: This is recording everything as a low-high
10072 segment of consecutive addresses. We should have a
10073 data structure for discontiguous block ranges
10074 instead. */
10075 if (! low_set)
10076 {
10077 low = range_beginning;
10078 high = range_end;
10079 low_set = 1;
10080 }
10081 else
10082 {
10083 if (range_beginning < low)
10084 low = range_beginning;
10085 if (range_end > high)
10086 high = range_end;
10087 }
10088 }
10089
10090 if (! low_set)
10091 /* If the first entry is an end-of-list marker, the range
10092 describes an empty scope, i.e. no instructions. */
10093 return 0;
10094
10095 if (low_return)
10096 *low_return = low;
10097 if (high_return)
10098 *high_return = high;
10099 return 1;
10100 }
10101
10102 /* Get low and high pc attributes from a die. Return 1 if the attributes
10103 are present and valid, otherwise, return 0. Return -1 if the range is
10104 discontinuous, i.e. derived from DW_AT_ranges information. */
10105
10106 static int
10107 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10108 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10109 struct partial_symtab *pst)
10110 {
10111 struct attribute *attr;
10112 struct attribute *attr_high;
10113 CORE_ADDR low = 0;
10114 CORE_ADDR high = 0;
10115 int ret = 0;
10116
10117 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10118 if (attr_high)
10119 {
10120 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10121 if (attr)
10122 {
10123 low = DW_ADDR (attr);
10124 if (attr_high->form == DW_FORM_addr
10125 || attr_high->form == DW_FORM_GNU_addr_index)
10126 high = DW_ADDR (attr_high);
10127 else
10128 high = low + DW_UNSND (attr_high);
10129 }
10130 else
10131 /* Found high w/o low attribute. */
10132 return 0;
10133
10134 /* Found consecutive range of addresses. */
10135 ret = 1;
10136 }
10137 else
10138 {
10139 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10140 if (attr != NULL)
10141 {
10142 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10143 We take advantage of the fact that DW_AT_ranges does not appear
10144 in DW_TAG_compile_unit of DWO files. */
10145 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10146 unsigned int ranges_offset = (DW_UNSND (attr)
10147 + (need_ranges_base
10148 ? cu->ranges_base
10149 : 0));
10150
10151 /* Value of the DW_AT_ranges attribute is the offset in the
10152 .debug_ranges section. */
10153 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10154 return 0;
10155 /* Found discontinuous range of addresses. */
10156 ret = -1;
10157 }
10158 }
10159
10160 /* read_partial_die has also the strict LOW < HIGH requirement. */
10161 if (high <= low)
10162 return 0;
10163
10164 /* When using the GNU linker, .gnu.linkonce. sections are used to
10165 eliminate duplicate copies of functions and vtables and such.
10166 The linker will arbitrarily choose one and discard the others.
10167 The AT_*_pc values for such functions refer to local labels in
10168 these sections. If the section from that file was discarded, the
10169 labels are not in the output, so the relocs get a value of 0.
10170 If this is a discarded function, mark the pc bounds as invalid,
10171 so that GDB will ignore it. */
10172 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10173 return 0;
10174
10175 *lowpc = low;
10176 if (highpc)
10177 *highpc = high;
10178 return ret;
10179 }
10180
10181 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10182 its low and high PC addresses. Do nothing if these addresses could not
10183 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10184 and HIGHPC to the high address if greater than HIGHPC. */
10185
10186 static void
10187 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10188 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10189 struct dwarf2_cu *cu)
10190 {
10191 CORE_ADDR low, high;
10192 struct die_info *child = die->child;
10193
10194 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10195 {
10196 *lowpc = min (*lowpc, low);
10197 *highpc = max (*highpc, high);
10198 }
10199
10200 /* If the language does not allow nested subprograms (either inside
10201 subprograms or lexical blocks), we're done. */
10202 if (cu->language != language_ada)
10203 return;
10204
10205 /* Check all the children of the given DIE. If it contains nested
10206 subprograms, then check their pc bounds. Likewise, we need to
10207 check lexical blocks as well, as they may also contain subprogram
10208 definitions. */
10209 while (child && child->tag)
10210 {
10211 if (child->tag == DW_TAG_subprogram
10212 || child->tag == DW_TAG_lexical_block)
10213 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10214 child = sibling_die (child);
10215 }
10216 }
10217
10218 /* Get the low and high pc's represented by the scope DIE, and store
10219 them in *LOWPC and *HIGHPC. If the correct values can't be
10220 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10221
10222 static void
10223 get_scope_pc_bounds (struct die_info *die,
10224 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10225 struct dwarf2_cu *cu)
10226 {
10227 CORE_ADDR best_low = (CORE_ADDR) -1;
10228 CORE_ADDR best_high = (CORE_ADDR) 0;
10229 CORE_ADDR current_low, current_high;
10230
10231 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10232 {
10233 best_low = current_low;
10234 best_high = current_high;
10235 }
10236 else
10237 {
10238 struct die_info *child = die->child;
10239
10240 while (child && child->tag)
10241 {
10242 switch (child->tag) {
10243 case DW_TAG_subprogram:
10244 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10245 break;
10246 case DW_TAG_namespace:
10247 case DW_TAG_module:
10248 /* FIXME: carlton/2004-01-16: Should we do this for
10249 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10250 that current GCC's always emit the DIEs corresponding
10251 to definitions of methods of classes as children of a
10252 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10253 the DIEs giving the declarations, which could be
10254 anywhere). But I don't see any reason why the
10255 standards says that they have to be there. */
10256 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10257
10258 if (current_low != ((CORE_ADDR) -1))
10259 {
10260 best_low = min (best_low, current_low);
10261 best_high = max (best_high, current_high);
10262 }
10263 break;
10264 default:
10265 /* Ignore. */
10266 break;
10267 }
10268
10269 child = sibling_die (child);
10270 }
10271 }
10272
10273 *lowpc = best_low;
10274 *highpc = best_high;
10275 }
10276
10277 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10278 in DIE. */
10279
10280 static void
10281 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10282 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10283 {
10284 struct objfile *objfile = cu->objfile;
10285 struct attribute *attr;
10286 struct attribute *attr_high;
10287
10288 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10289 if (attr_high)
10290 {
10291 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10292 if (attr)
10293 {
10294 CORE_ADDR low = DW_ADDR (attr);
10295 CORE_ADDR high;
10296 if (attr_high->form == DW_FORM_addr
10297 || attr_high->form == DW_FORM_GNU_addr_index)
10298 high = DW_ADDR (attr_high);
10299 else
10300 high = low + DW_UNSND (attr_high);
10301
10302 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10303 }
10304 }
10305
10306 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10307 if (attr)
10308 {
10309 bfd *obfd = objfile->obfd;
10310 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10311 We take advantage of the fact that DW_AT_ranges does not appear
10312 in DW_TAG_compile_unit of DWO files. */
10313 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10314
10315 /* The value of the DW_AT_ranges attribute is the offset of the
10316 address range list in the .debug_ranges section. */
10317 unsigned long offset = (DW_UNSND (attr)
10318 + (need_ranges_base ? cu->ranges_base : 0));
10319 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10320
10321 /* For some target architectures, but not others, the
10322 read_address function sign-extends the addresses it returns.
10323 To recognize base address selection entries, we need a
10324 mask. */
10325 unsigned int addr_size = cu->header.addr_size;
10326 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10327
10328 /* The base address, to which the next pair is relative. Note
10329 that this 'base' is a DWARF concept: most entries in a range
10330 list are relative, to reduce the number of relocs against the
10331 debugging information. This is separate from this function's
10332 'baseaddr' argument, which GDB uses to relocate debugging
10333 information from a shared library based on the address at
10334 which the library was loaded. */
10335 CORE_ADDR base = cu->base_address;
10336 int base_known = cu->base_known;
10337
10338 gdb_assert (dwarf2_per_objfile->ranges.readin);
10339 if (offset >= dwarf2_per_objfile->ranges.size)
10340 {
10341 complaint (&symfile_complaints,
10342 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10343 offset);
10344 return;
10345 }
10346
10347 for (;;)
10348 {
10349 unsigned int bytes_read;
10350 CORE_ADDR start, end;
10351
10352 start = read_address (obfd, buffer, cu, &bytes_read);
10353 buffer += bytes_read;
10354 end = read_address (obfd, buffer, cu, &bytes_read);
10355 buffer += bytes_read;
10356
10357 /* Did we find the end of the range list? */
10358 if (start == 0 && end == 0)
10359 break;
10360
10361 /* Did we find a base address selection entry? */
10362 else if ((start & base_select_mask) == base_select_mask)
10363 {
10364 base = end;
10365 base_known = 1;
10366 }
10367
10368 /* We found an ordinary address range. */
10369 else
10370 {
10371 if (!base_known)
10372 {
10373 complaint (&symfile_complaints,
10374 _("Invalid .debug_ranges data "
10375 "(no base address)"));
10376 return;
10377 }
10378
10379 if (start > end)
10380 {
10381 /* Inverted range entries are invalid. */
10382 complaint (&symfile_complaints,
10383 _("Invalid .debug_ranges data "
10384 "(inverted range)"));
10385 return;
10386 }
10387
10388 /* Empty range entries have no effect. */
10389 if (start == end)
10390 continue;
10391
10392 start += base + baseaddr;
10393 end += base + baseaddr;
10394
10395 /* A not-uncommon case of bad debug info.
10396 Don't pollute the addrmap with bad data. */
10397 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10398 {
10399 complaint (&symfile_complaints,
10400 _(".debug_ranges entry has start address of zero"
10401 " [in module %s]"), objfile->name);
10402 continue;
10403 }
10404
10405 record_block_range (block, start, end - 1);
10406 }
10407 }
10408 }
10409 }
10410
10411 /* Check whether the producer field indicates either of GCC < 4.6, or the
10412 Intel C/C++ compiler, and cache the result in CU. */
10413
10414 static void
10415 check_producer (struct dwarf2_cu *cu)
10416 {
10417 const char *cs;
10418 int major, minor, release;
10419
10420 if (cu->producer == NULL)
10421 {
10422 /* For unknown compilers expect their behavior is DWARF version
10423 compliant.
10424
10425 GCC started to support .debug_types sections by -gdwarf-4 since
10426 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10427 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10428 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10429 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10430 }
10431 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10432 {
10433 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10434
10435 cs = &cu->producer[strlen ("GNU ")];
10436 while (*cs && !isdigit (*cs))
10437 cs++;
10438 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10439 {
10440 /* Not recognized as GCC. */
10441 }
10442 else
10443 {
10444 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10445 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10446 }
10447 }
10448 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10449 cu->producer_is_icc = 1;
10450 else
10451 {
10452 /* For other non-GCC compilers, expect their behavior is DWARF version
10453 compliant. */
10454 }
10455
10456 cu->checked_producer = 1;
10457 }
10458
10459 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10460 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10461 during 4.6.0 experimental. */
10462
10463 static int
10464 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10465 {
10466 if (!cu->checked_producer)
10467 check_producer (cu);
10468
10469 return cu->producer_is_gxx_lt_4_6;
10470 }
10471
10472 /* Return the default accessibility type if it is not overriden by
10473 DW_AT_accessibility. */
10474
10475 static enum dwarf_access_attribute
10476 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10477 {
10478 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10479 {
10480 /* The default DWARF 2 accessibility for members is public, the default
10481 accessibility for inheritance is private. */
10482
10483 if (die->tag != DW_TAG_inheritance)
10484 return DW_ACCESS_public;
10485 else
10486 return DW_ACCESS_private;
10487 }
10488 else
10489 {
10490 /* DWARF 3+ defines the default accessibility a different way. The same
10491 rules apply now for DW_TAG_inheritance as for the members and it only
10492 depends on the container kind. */
10493
10494 if (die->parent->tag == DW_TAG_class_type)
10495 return DW_ACCESS_private;
10496 else
10497 return DW_ACCESS_public;
10498 }
10499 }
10500
10501 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10502 offset. If the attribute was not found return 0, otherwise return
10503 1. If it was found but could not properly be handled, set *OFFSET
10504 to 0. */
10505
10506 static int
10507 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10508 LONGEST *offset)
10509 {
10510 struct attribute *attr;
10511
10512 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10513 if (attr != NULL)
10514 {
10515 *offset = 0;
10516
10517 /* Note that we do not check for a section offset first here.
10518 This is because DW_AT_data_member_location is new in DWARF 4,
10519 so if we see it, we can assume that a constant form is really
10520 a constant and not a section offset. */
10521 if (attr_form_is_constant (attr))
10522 *offset = dwarf2_get_attr_constant_value (attr, 0);
10523 else if (attr_form_is_section_offset (attr))
10524 dwarf2_complex_location_expr_complaint ();
10525 else if (attr_form_is_block (attr))
10526 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10527 else
10528 dwarf2_complex_location_expr_complaint ();
10529
10530 return 1;
10531 }
10532
10533 return 0;
10534 }
10535
10536 /* Add an aggregate field to the field list. */
10537
10538 static void
10539 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10540 struct dwarf2_cu *cu)
10541 {
10542 struct objfile *objfile = cu->objfile;
10543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10544 struct nextfield *new_field;
10545 struct attribute *attr;
10546 struct field *fp;
10547 const char *fieldname = "";
10548
10549 /* Allocate a new field list entry and link it in. */
10550 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10551 make_cleanup (xfree, new_field);
10552 memset (new_field, 0, sizeof (struct nextfield));
10553
10554 if (die->tag == DW_TAG_inheritance)
10555 {
10556 new_field->next = fip->baseclasses;
10557 fip->baseclasses = new_field;
10558 }
10559 else
10560 {
10561 new_field->next = fip->fields;
10562 fip->fields = new_field;
10563 }
10564 fip->nfields++;
10565
10566 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10567 if (attr)
10568 new_field->accessibility = DW_UNSND (attr);
10569 else
10570 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10571 if (new_field->accessibility != DW_ACCESS_public)
10572 fip->non_public_fields = 1;
10573
10574 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10575 if (attr)
10576 new_field->virtuality = DW_UNSND (attr);
10577 else
10578 new_field->virtuality = DW_VIRTUALITY_none;
10579
10580 fp = &new_field->field;
10581
10582 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10583 {
10584 LONGEST offset;
10585
10586 /* Data member other than a C++ static data member. */
10587
10588 /* Get type of field. */
10589 fp->type = die_type (die, cu);
10590
10591 SET_FIELD_BITPOS (*fp, 0);
10592
10593 /* Get bit size of field (zero if none). */
10594 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10595 if (attr)
10596 {
10597 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10598 }
10599 else
10600 {
10601 FIELD_BITSIZE (*fp) = 0;
10602 }
10603
10604 /* Get bit offset of field. */
10605 if (handle_data_member_location (die, cu, &offset))
10606 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10607 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10608 if (attr)
10609 {
10610 if (gdbarch_bits_big_endian (gdbarch))
10611 {
10612 /* For big endian bits, the DW_AT_bit_offset gives the
10613 additional bit offset from the MSB of the containing
10614 anonymous object to the MSB of the field. We don't
10615 have to do anything special since we don't need to
10616 know the size of the anonymous object. */
10617 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10618 }
10619 else
10620 {
10621 /* For little endian bits, compute the bit offset to the
10622 MSB of the anonymous object, subtract off the number of
10623 bits from the MSB of the field to the MSB of the
10624 object, and then subtract off the number of bits of
10625 the field itself. The result is the bit offset of
10626 the LSB of the field. */
10627 int anonymous_size;
10628 int bit_offset = DW_UNSND (attr);
10629
10630 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10631 if (attr)
10632 {
10633 /* The size of the anonymous object containing
10634 the bit field is explicit, so use the
10635 indicated size (in bytes). */
10636 anonymous_size = DW_UNSND (attr);
10637 }
10638 else
10639 {
10640 /* The size of the anonymous object containing
10641 the bit field must be inferred from the type
10642 attribute of the data member containing the
10643 bit field. */
10644 anonymous_size = TYPE_LENGTH (fp->type);
10645 }
10646 SET_FIELD_BITPOS (*fp,
10647 (FIELD_BITPOS (*fp)
10648 + anonymous_size * bits_per_byte
10649 - bit_offset - FIELD_BITSIZE (*fp)));
10650 }
10651 }
10652
10653 /* Get name of field. */
10654 fieldname = dwarf2_name (die, cu);
10655 if (fieldname == NULL)
10656 fieldname = "";
10657
10658 /* The name is already allocated along with this objfile, so we don't
10659 need to duplicate it for the type. */
10660 fp->name = fieldname;
10661
10662 /* Change accessibility for artificial fields (e.g. virtual table
10663 pointer or virtual base class pointer) to private. */
10664 if (dwarf2_attr (die, DW_AT_artificial, cu))
10665 {
10666 FIELD_ARTIFICIAL (*fp) = 1;
10667 new_field->accessibility = DW_ACCESS_private;
10668 fip->non_public_fields = 1;
10669 }
10670 }
10671 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10672 {
10673 /* C++ static member. */
10674
10675 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10676 is a declaration, but all versions of G++ as of this writing
10677 (so through at least 3.2.1) incorrectly generate
10678 DW_TAG_variable tags. */
10679
10680 const char *physname;
10681
10682 /* Get name of field. */
10683 fieldname = dwarf2_name (die, cu);
10684 if (fieldname == NULL)
10685 return;
10686
10687 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10688 if (attr
10689 /* Only create a symbol if this is an external value.
10690 new_symbol checks this and puts the value in the global symbol
10691 table, which we want. If it is not external, new_symbol
10692 will try to put the value in cu->list_in_scope which is wrong. */
10693 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10694 {
10695 /* A static const member, not much different than an enum as far as
10696 we're concerned, except that we can support more types. */
10697 new_symbol (die, NULL, cu);
10698 }
10699
10700 /* Get physical name. */
10701 physname = dwarf2_physname (fieldname, die, cu);
10702
10703 /* The name is already allocated along with this objfile, so we don't
10704 need to duplicate it for the type. */
10705 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10706 FIELD_TYPE (*fp) = die_type (die, cu);
10707 FIELD_NAME (*fp) = fieldname;
10708 }
10709 else if (die->tag == DW_TAG_inheritance)
10710 {
10711 LONGEST offset;
10712
10713 /* C++ base class field. */
10714 if (handle_data_member_location (die, cu, &offset))
10715 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10716 FIELD_BITSIZE (*fp) = 0;
10717 FIELD_TYPE (*fp) = die_type (die, cu);
10718 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10719 fip->nbaseclasses++;
10720 }
10721 }
10722
10723 /* Add a typedef defined in the scope of the FIP's class. */
10724
10725 static void
10726 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10727 struct dwarf2_cu *cu)
10728 {
10729 struct objfile *objfile = cu->objfile;
10730 struct typedef_field_list *new_field;
10731 struct attribute *attr;
10732 struct typedef_field *fp;
10733 char *fieldname = "";
10734
10735 /* Allocate a new field list entry and link it in. */
10736 new_field = xzalloc (sizeof (*new_field));
10737 make_cleanup (xfree, new_field);
10738
10739 gdb_assert (die->tag == DW_TAG_typedef);
10740
10741 fp = &new_field->field;
10742
10743 /* Get name of field. */
10744 fp->name = dwarf2_name (die, cu);
10745 if (fp->name == NULL)
10746 return;
10747
10748 fp->type = read_type_die (die, cu);
10749
10750 new_field->next = fip->typedef_field_list;
10751 fip->typedef_field_list = new_field;
10752 fip->typedef_field_list_count++;
10753 }
10754
10755 /* Create the vector of fields, and attach it to the type. */
10756
10757 static void
10758 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10759 struct dwarf2_cu *cu)
10760 {
10761 int nfields = fip->nfields;
10762
10763 /* Record the field count, allocate space for the array of fields,
10764 and create blank accessibility bitfields if necessary. */
10765 TYPE_NFIELDS (type) = nfields;
10766 TYPE_FIELDS (type) = (struct field *)
10767 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10768 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10769
10770 if (fip->non_public_fields && cu->language != language_ada)
10771 {
10772 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10773
10774 TYPE_FIELD_PRIVATE_BITS (type) =
10775 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10776 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10777
10778 TYPE_FIELD_PROTECTED_BITS (type) =
10779 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10780 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10781
10782 TYPE_FIELD_IGNORE_BITS (type) =
10783 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10784 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10785 }
10786
10787 /* If the type has baseclasses, allocate and clear a bit vector for
10788 TYPE_FIELD_VIRTUAL_BITS. */
10789 if (fip->nbaseclasses && cu->language != language_ada)
10790 {
10791 int num_bytes = B_BYTES (fip->nbaseclasses);
10792 unsigned char *pointer;
10793
10794 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10795 pointer = TYPE_ALLOC (type, num_bytes);
10796 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10797 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10798 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10799 }
10800
10801 /* Copy the saved-up fields into the field vector. Start from the head of
10802 the list, adding to the tail of the field array, so that they end up in
10803 the same order in the array in which they were added to the list. */
10804 while (nfields-- > 0)
10805 {
10806 struct nextfield *fieldp;
10807
10808 if (fip->fields)
10809 {
10810 fieldp = fip->fields;
10811 fip->fields = fieldp->next;
10812 }
10813 else
10814 {
10815 fieldp = fip->baseclasses;
10816 fip->baseclasses = fieldp->next;
10817 }
10818
10819 TYPE_FIELD (type, nfields) = fieldp->field;
10820 switch (fieldp->accessibility)
10821 {
10822 case DW_ACCESS_private:
10823 if (cu->language != language_ada)
10824 SET_TYPE_FIELD_PRIVATE (type, nfields);
10825 break;
10826
10827 case DW_ACCESS_protected:
10828 if (cu->language != language_ada)
10829 SET_TYPE_FIELD_PROTECTED (type, nfields);
10830 break;
10831
10832 case DW_ACCESS_public:
10833 break;
10834
10835 default:
10836 /* Unknown accessibility. Complain and treat it as public. */
10837 {
10838 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10839 fieldp->accessibility);
10840 }
10841 break;
10842 }
10843 if (nfields < fip->nbaseclasses)
10844 {
10845 switch (fieldp->virtuality)
10846 {
10847 case DW_VIRTUALITY_virtual:
10848 case DW_VIRTUALITY_pure_virtual:
10849 if (cu->language == language_ada)
10850 error (_("unexpected virtuality in component of Ada type"));
10851 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10852 break;
10853 }
10854 }
10855 }
10856 }
10857
10858 /* Return true if this member function is a constructor, false
10859 otherwise. */
10860
10861 static int
10862 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10863 {
10864 const char *fieldname;
10865 const char *typename;
10866 int len;
10867
10868 if (die->parent == NULL)
10869 return 0;
10870
10871 if (die->parent->tag != DW_TAG_structure_type
10872 && die->parent->tag != DW_TAG_union_type
10873 && die->parent->tag != DW_TAG_class_type)
10874 return 0;
10875
10876 fieldname = dwarf2_name (die, cu);
10877 typename = dwarf2_name (die->parent, cu);
10878 if (fieldname == NULL || typename == NULL)
10879 return 0;
10880
10881 len = strlen (fieldname);
10882 return (strncmp (fieldname, typename, len) == 0
10883 && (typename[len] == '\0' || typename[len] == '<'));
10884 }
10885
10886 /* Add a member function to the proper fieldlist. */
10887
10888 static void
10889 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10890 struct type *type, struct dwarf2_cu *cu)
10891 {
10892 struct objfile *objfile = cu->objfile;
10893 struct attribute *attr;
10894 struct fnfieldlist *flp;
10895 int i;
10896 struct fn_field *fnp;
10897 const char *fieldname;
10898 struct nextfnfield *new_fnfield;
10899 struct type *this_type;
10900 enum dwarf_access_attribute accessibility;
10901
10902 if (cu->language == language_ada)
10903 error (_("unexpected member function in Ada type"));
10904
10905 /* Get name of member function. */
10906 fieldname = dwarf2_name (die, cu);
10907 if (fieldname == NULL)
10908 return;
10909
10910 /* Look up member function name in fieldlist. */
10911 for (i = 0; i < fip->nfnfields; i++)
10912 {
10913 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10914 break;
10915 }
10916
10917 /* Create new list element if necessary. */
10918 if (i < fip->nfnfields)
10919 flp = &fip->fnfieldlists[i];
10920 else
10921 {
10922 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10923 {
10924 fip->fnfieldlists = (struct fnfieldlist *)
10925 xrealloc (fip->fnfieldlists,
10926 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10927 * sizeof (struct fnfieldlist));
10928 if (fip->nfnfields == 0)
10929 make_cleanup (free_current_contents, &fip->fnfieldlists);
10930 }
10931 flp = &fip->fnfieldlists[fip->nfnfields];
10932 flp->name = fieldname;
10933 flp->length = 0;
10934 flp->head = NULL;
10935 i = fip->nfnfields++;
10936 }
10937
10938 /* Create a new member function field and chain it to the field list
10939 entry. */
10940 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10941 make_cleanup (xfree, new_fnfield);
10942 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10943 new_fnfield->next = flp->head;
10944 flp->head = new_fnfield;
10945 flp->length++;
10946
10947 /* Fill in the member function field info. */
10948 fnp = &new_fnfield->fnfield;
10949
10950 /* Delay processing of the physname until later. */
10951 if (cu->language == language_cplus || cu->language == language_java)
10952 {
10953 add_to_method_list (type, i, flp->length - 1, fieldname,
10954 die, cu);
10955 }
10956 else
10957 {
10958 const char *physname = dwarf2_physname (fieldname, die, cu);
10959 fnp->physname = physname ? physname : "";
10960 }
10961
10962 fnp->type = alloc_type (objfile);
10963 this_type = read_type_die (die, cu);
10964 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10965 {
10966 int nparams = TYPE_NFIELDS (this_type);
10967
10968 /* TYPE is the domain of this method, and THIS_TYPE is the type
10969 of the method itself (TYPE_CODE_METHOD). */
10970 smash_to_method_type (fnp->type, type,
10971 TYPE_TARGET_TYPE (this_type),
10972 TYPE_FIELDS (this_type),
10973 TYPE_NFIELDS (this_type),
10974 TYPE_VARARGS (this_type));
10975
10976 /* Handle static member functions.
10977 Dwarf2 has no clean way to discern C++ static and non-static
10978 member functions. G++ helps GDB by marking the first
10979 parameter for non-static member functions (which is the this
10980 pointer) as artificial. We obtain this information from
10981 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10982 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10983 fnp->voffset = VOFFSET_STATIC;
10984 }
10985 else
10986 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10987 dwarf2_full_name (fieldname, die, cu));
10988
10989 /* Get fcontext from DW_AT_containing_type if present. */
10990 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10991 fnp->fcontext = die_containing_type (die, cu);
10992
10993 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10994 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10995
10996 /* Get accessibility. */
10997 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10998 if (attr)
10999 accessibility = DW_UNSND (attr);
11000 else
11001 accessibility = dwarf2_default_access_attribute (die, cu);
11002 switch (accessibility)
11003 {
11004 case DW_ACCESS_private:
11005 fnp->is_private = 1;
11006 break;
11007 case DW_ACCESS_protected:
11008 fnp->is_protected = 1;
11009 break;
11010 }
11011
11012 /* Check for artificial methods. */
11013 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11014 if (attr && DW_UNSND (attr) != 0)
11015 fnp->is_artificial = 1;
11016
11017 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11018
11019 /* Get index in virtual function table if it is a virtual member
11020 function. For older versions of GCC, this is an offset in the
11021 appropriate virtual table, as specified by DW_AT_containing_type.
11022 For everyone else, it is an expression to be evaluated relative
11023 to the object address. */
11024
11025 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11026 if (attr)
11027 {
11028 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11029 {
11030 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11031 {
11032 /* Old-style GCC. */
11033 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11034 }
11035 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11036 || (DW_BLOCK (attr)->size > 1
11037 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11038 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11039 {
11040 struct dwarf_block blk;
11041 int offset;
11042
11043 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11044 ? 1 : 2);
11045 blk.size = DW_BLOCK (attr)->size - offset;
11046 blk.data = DW_BLOCK (attr)->data + offset;
11047 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11048 if ((fnp->voffset % cu->header.addr_size) != 0)
11049 dwarf2_complex_location_expr_complaint ();
11050 else
11051 fnp->voffset /= cu->header.addr_size;
11052 fnp->voffset += 2;
11053 }
11054 else
11055 dwarf2_complex_location_expr_complaint ();
11056
11057 if (!fnp->fcontext)
11058 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11059 }
11060 else if (attr_form_is_section_offset (attr))
11061 {
11062 dwarf2_complex_location_expr_complaint ();
11063 }
11064 else
11065 {
11066 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11067 fieldname);
11068 }
11069 }
11070 else
11071 {
11072 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11073 if (attr && DW_UNSND (attr))
11074 {
11075 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11076 complaint (&symfile_complaints,
11077 _("Member function \"%s\" (offset %d) is virtual "
11078 "but the vtable offset is not specified"),
11079 fieldname, die->offset.sect_off);
11080 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11081 TYPE_CPLUS_DYNAMIC (type) = 1;
11082 }
11083 }
11084 }
11085
11086 /* Create the vector of member function fields, and attach it to the type. */
11087
11088 static void
11089 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11090 struct dwarf2_cu *cu)
11091 {
11092 struct fnfieldlist *flp;
11093 int i;
11094
11095 if (cu->language == language_ada)
11096 error (_("unexpected member functions in Ada type"));
11097
11098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11099 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11100 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11101
11102 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11103 {
11104 struct nextfnfield *nfp = flp->head;
11105 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11106 int k;
11107
11108 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11109 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11110 fn_flp->fn_fields = (struct fn_field *)
11111 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11112 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11113 fn_flp->fn_fields[k] = nfp->fnfield;
11114 }
11115
11116 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11117 }
11118
11119 /* Returns non-zero if NAME is the name of a vtable member in CU's
11120 language, zero otherwise. */
11121 static int
11122 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11123 {
11124 static const char vptr[] = "_vptr";
11125 static const char vtable[] = "vtable";
11126
11127 /* Look for the C++ and Java forms of the vtable. */
11128 if ((cu->language == language_java
11129 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11130 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11131 && is_cplus_marker (name[sizeof (vptr) - 1])))
11132 return 1;
11133
11134 return 0;
11135 }
11136
11137 /* GCC outputs unnamed structures that are really pointers to member
11138 functions, with the ABI-specified layout. If TYPE describes
11139 such a structure, smash it into a member function type.
11140
11141 GCC shouldn't do this; it should just output pointer to member DIEs.
11142 This is GCC PR debug/28767. */
11143
11144 static void
11145 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11146 {
11147 struct type *pfn_type, *domain_type, *new_type;
11148
11149 /* Check for a structure with no name and two children. */
11150 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11151 return;
11152
11153 /* Check for __pfn and __delta members. */
11154 if (TYPE_FIELD_NAME (type, 0) == NULL
11155 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11156 || TYPE_FIELD_NAME (type, 1) == NULL
11157 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11158 return;
11159
11160 /* Find the type of the method. */
11161 pfn_type = TYPE_FIELD_TYPE (type, 0);
11162 if (pfn_type == NULL
11163 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11164 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11165 return;
11166
11167 /* Look for the "this" argument. */
11168 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11169 if (TYPE_NFIELDS (pfn_type) == 0
11170 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11171 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11172 return;
11173
11174 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11175 new_type = alloc_type (objfile);
11176 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11177 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11178 TYPE_VARARGS (pfn_type));
11179 smash_to_methodptr_type (type, new_type);
11180 }
11181
11182 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11183 (icc). */
11184
11185 static int
11186 producer_is_icc (struct dwarf2_cu *cu)
11187 {
11188 if (!cu->checked_producer)
11189 check_producer (cu);
11190
11191 return cu->producer_is_icc;
11192 }
11193
11194 /* Called when we find the DIE that starts a structure or union scope
11195 (definition) to create a type for the structure or union. Fill in
11196 the type's name and general properties; the members will not be
11197 processed until process_structure_type.
11198
11199 NOTE: we need to call these functions regardless of whether or not the
11200 DIE has a DW_AT_name attribute, since it might be an anonymous
11201 structure or union. This gets the type entered into our set of
11202 user defined types.
11203
11204 However, if the structure is incomplete (an opaque struct/union)
11205 then suppress creating a symbol table entry for it since gdb only
11206 wants to find the one with the complete definition. Note that if
11207 it is complete, we just call new_symbol, which does it's own
11208 checking about whether the struct/union is anonymous or not (and
11209 suppresses creating a symbol table entry itself). */
11210
11211 static struct type *
11212 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11213 {
11214 struct objfile *objfile = cu->objfile;
11215 struct type *type;
11216 struct attribute *attr;
11217 const char *name;
11218
11219 /* If the definition of this type lives in .debug_types, read that type.
11220 Don't follow DW_AT_specification though, that will take us back up
11221 the chain and we want to go down. */
11222 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11223 if (attr)
11224 {
11225 struct dwarf2_cu *type_cu = cu;
11226 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11227
11228 /* We could just recurse on read_structure_type, but we need to call
11229 get_die_type to ensure only one type for this DIE is created.
11230 This is important, for example, because for c++ classes we need
11231 TYPE_NAME set which is only done by new_symbol. Blech. */
11232 type = read_type_die (type_die, type_cu);
11233
11234 /* TYPE_CU may not be the same as CU.
11235 Ensure TYPE is recorded in CU's type_hash table. */
11236 return set_die_type (die, type, cu);
11237 }
11238
11239 type = alloc_type (objfile);
11240 INIT_CPLUS_SPECIFIC (type);
11241
11242 name = dwarf2_name (die, cu);
11243 if (name != NULL)
11244 {
11245 if (cu->language == language_cplus
11246 || cu->language == language_java)
11247 {
11248 const char *full_name = dwarf2_full_name (name, die, cu);
11249
11250 /* dwarf2_full_name might have already finished building the DIE's
11251 type. If so, there is no need to continue. */
11252 if (get_die_type (die, cu) != NULL)
11253 return get_die_type (die, cu);
11254
11255 TYPE_TAG_NAME (type) = full_name;
11256 if (die->tag == DW_TAG_structure_type
11257 || die->tag == DW_TAG_class_type)
11258 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11259 }
11260 else
11261 {
11262 /* The name is already allocated along with this objfile, so
11263 we don't need to duplicate it for the type. */
11264 TYPE_TAG_NAME (type) = (char *) name;
11265 if (die->tag == DW_TAG_class_type)
11266 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11267 }
11268 }
11269
11270 if (die->tag == DW_TAG_structure_type)
11271 {
11272 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11273 }
11274 else if (die->tag == DW_TAG_union_type)
11275 {
11276 TYPE_CODE (type) = TYPE_CODE_UNION;
11277 }
11278 else
11279 {
11280 TYPE_CODE (type) = TYPE_CODE_CLASS;
11281 }
11282
11283 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11284 TYPE_DECLARED_CLASS (type) = 1;
11285
11286 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11287 if (attr)
11288 {
11289 TYPE_LENGTH (type) = DW_UNSND (attr);
11290 }
11291 else
11292 {
11293 TYPE_LENGTH (type) = 0;
11294 }
11295
11296 if (producer_is_icc (cu))
11297 {
11298 /* ICC does not output the required DW_AT_declaration
11299 on incomplete types, but gives them a size of zero. */
11300 }
11301 else
11302 TYPE_STUB_SUPPORTED (type) = 1;
11303
11304 if (die_is_declaration (die, cu))
11305 TYPE_STUB (type) = 1;
11306 else if (attr == NULL && die->child == NULL
11307 && producer_is_realview (cu->producer))
11308 /* RealView does not output the required DW_AT_declaration
11309 on incomplete types. */
11310 TYPE_STUB (type) = 1;
11311
11312 /* We need to add the type field to the die immediately so we don't
11313 infinitely recurse when dealing with pointers to the structure
11314 type within the structure itself. */
11315 set_die_type (die, type, cu);
11316
11317 /* set_die_type should be already done. */
11318 set_descriptive_type (type, die, cu);
11319
11320 return type;
11321 }
11322
11323 /* Finish creating a structure or union type, including filling in
11324 its members and creating a symbol for it. */
11325
11326 static void
11327 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11328 {
11329 struct objfile *objfile = cu->objfile;
11330 struct die_info *child_die = die->child;
11331 struct type *type;
11332
11333 type = get_die_type (die, cu);
11334 if (type == NULL)
11335 type = read_structure_type (die, cu);
11336
11337 if (die->child != NULL && ! die_is_declaration (die, cu))
11338 {
11339 struct field_info fi;
11340 struct die_info *child_die;
11341 VEC (symbolp) *template_args = NULL;
11342 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11343
11344 memset (&fi, 0, sizeof (struct field_info));
11345
11346 child_die = die->child;
11347
11348 while (child_die && child_die->tag)
11349 {
11350 if (child_die->tag == DW_TAG_member
11351 || child_die->tag == DW_TAG_variable)
11352 {
11353 /* NOTE: carlton/2002-11-05: A C++ static data member
11354 should be a DW_TAG_member that is a declaration, but
11355 all versions of G++ as of this writing (so through at
11356 least 3.2.1) incorrectly generate DW_TAG_variable
11357 tags for them instead. */
11358 dwarf2_add_field (&fi, child_die, cu);
11359 }
11360 else if (child_die->tag == DW_TAG_subprogram)
11361 {
11362 /* C++ member function. */
11363 dwarf2_add_member_fn (&fi, child_die, type, cu);
11364 }
11365 else if (child_die->tag == DW_TAG_inheritance)
11366 {
11367 /* C++ base class field. */
11368 dwarf2_add_field (&fi, child_die, cu);
11369 }
11370 else if (child_die->tag == DW_TAG_typedef)
11371 dwarf2_add_typedef (&fi, child_die, cu);
11372 else if (child_die->tag == DW_TAG_template_type_param
11373 || child_die->tag == DW_TAG_template_value_param)
11374 {
11375 struct symbol *arg = new_symbol (child_die, NULL, cu);
11376
11377 if (arg != NULL)
11378 VEC_safe_push (symbolp, template_args, arg);
11379 }
11380
11381 child_die = sibling_die (child_die);
11382 }
11383
11384 /* Attach template arguments to type. */
11385 if (! VEC_empty (symbolp, template_args))
11386 {
11387 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11388 TYPE_N_TEMPLATE_ARGUMENTS (type)
11389 = VEC_length (symbolp, template_args);
11390 TYPE_TEMPLATE_ARGUMENTS (type)
11391 = obstack_alloc (&objfile->objfile_obstack,
11392 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11393 * sizeof (struct symbol *)));
11394 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11395 VEC_address (symbolp, template_args),
11396 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11397 * sizeof (struct symbol *)));
11398 VEC_free (symbolp, template_args);
11399 }
11400
11401 /* Attach fields and member functions to the type. */
11402 if (fi.nfields)
11403 dwarf2_attach_fields_to_type (&fi, type, cu);
11404 if (fi.nfnfields)
11405 {
11406 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11407
11408 /* Get the type which refers to the base class (possibly this
11409 class itself) which contains the vtable pointer for the current
11410 class from the DW_AT_containing_type attribute. This use of
11411 DW_AT_containing_type is a GNU extension. */
11412
11413 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11414 {
11415 struct type *t = die_containing_type (die, cu);
11416
11417 TYPE_VPTR_BASETYPE (type) = t;
11418 if (type == t)
11419 {
11420 int i;
11421
11422 /* Our own class provides vtbl ptr. */
11423 for (i = TYPE_NFIELDS (t) - 1;
11424 i >= TYPE_N_BASECLASSES (t);
11425 --i)
11426 {
11427 const char *fieldname = TYPE_FIELD_NAME (t, i);
11428
11429 if (is_vtable_name (fieldname, cu))
11430 {
11431 TYPE_VPTR_FIELDNO (type) = i;
11432 break;
11433 }
11434 }
11435
11436 /* Complain if virtual function table field not found. */
11437 if (i < TYPE_N_BASECLASSES (t))
11438 complaint (&symfile_complaints,
11439 _("virtual function table pointer "
11440 "not found when defining class '%s'"),
11441 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11442 "");
11443 }
11444 else
11445 {
11446 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11447 }
11448 }
11449 else if (cu->producer
11450 && strncmp (cu->producer,
11451 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11452 {
11453 /* The IBM XLC compiler does not provide direct indication
11454 of the containing type, but the vtable pointer is
11455 always named __vfp. */
11456
11457 int i;
11458
11459 for (i = TYPE_NFIELDS (type) - 1;
11460 i >= TYPE_N_BASECLASSES (type);
11461 --i)
11462 {
11463 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11464 {
11465 TYPE_VPTR_FIELDNO (type) = i;
11466 TYPE_VPTR_BASETYPE (type) = type;
11467 break;
11468 }
11469 }
11470 }
11471 }
11472
11473 /* Copy fi.typedef_field_list linked list elements content into the
11474 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11475 if (fi.typedef_field_list)
11476 {
11477 int i = fi.typedef_field_list_count;
11478
11479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11480 TYPE_TYPEDEF_FIELD_ARRAY (type)
11481 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11482 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11483
11484 /* Reverse the list order to keep the debug info elements order. */
11485 while (--i >= 0)
11486 {
11487 struct typedef_field *dest, *src;
11488
11489 dest = &TYPE_TYPEDEF_FIELD (type, i);
11490 src = &fi.typedef_field_list->field;
11491 fi.typedef_field_list = fi.typedef_field_list->next;
11492 *dest = *src;
11493 }
11494 }
11495
11496 do_cleanups (back_to);
11497
11498 if (HAVE_CPLUS_STRUCT (type))
11499 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11500 }
11501
11502 quirk_gcc_member_function_pointer (type, objfile);
11503
11504 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11505 snapshots) has been known to create a die giving a declaration
11506 for a class that has, as a child, a die giving a definition for a
11507 nested class. So we have to process our children even if the
11508 current die is a declaration. Normally, of course, a declaration
11509 won't have any children at all. */
11510
11511 while (child_die != NULL && child_die->tag)
11512 {
11513 if (child_die->tag == DW_TAG_member
11514 || child_die->tag == DW_TAG_variable
11515 || child_die->tag == DW_TAG_inheritance
11516 || child_die->tag == DW_TAG_template_value_param
11517 || child_die->tag == DW_TAG_template_type_param)
11518 {
11519 /* Do nothing. */
11520 }
11521 else
11522 process_die (child_die, cu);
11523
11524 child_die = sibling_die (child_die);
11525 }
11526
11527 /* Do not consider external references. According to the DWARF standard,
11528 these DIEs are identified by the fact that they have no byte_size
11529 attribute, and a declaration attribute. */
11530 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11531 || !die_is_declaration (die, cu))
11532 new_symbol (die, type, cu);
11533 }
11534
11535 /* Given a DW_AT_enumeration_type die, set its type. We do not
11536 complete the type's fields yet, or create any symbols. */
11537
11538 static struct type *
11539 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11540 {
11541 struct objfile *objfile = cu->objfile;
11542 struct type *type;
11543 struct attribute *attr;
11544 const char *name;
11545
11546 /* If the definition of this type lives in .debug_types, read that type.
11547 Don't follow DW_AT_specification though, that will take us back up
11548 the chain and we want to go down. */
11549 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11550 if (attr)
11551 {
11552 struct dwarf2_cu *type_cu = cu;
11553 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11554
11555 type = read_type_die (type_die, type_cu);
11556
11557 /* TYPE_CU may not be the same as CU.
11558 Ensure TYPE is recorded in CU's type_hash table. */
11559 return set_die_type (die, type, cu);
11560 }
11561
11562 type = alloc_type (objfile);
11563
11564 TYPE_CODE (type) = TYPE_CODE_ENUM;
11565 name = dwarf2_full_name (NULL, die, cu);
11566 if (name != NULL)
11567 TYPE_TAG_NAME (type) = (char *) name;
11568
11569 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11570 if (attr)
11571 {
11572 TYPE_LENGTH (type) = DW_UNSND (attr);
11573 }
11574 else
11575 {
11576 TYPE_LENGTH (type) = 0;
11577 }
11578
11579 /* The enumeration DIE can be incomplete. In Ada, any type can be
11580 declared as private in the package spec, and then defined only
11581 inside the package body. Such types are known as Taft Amendment
11582 Types. When another package uses such a type, an incomplete DIE
11583 may be generated by the compiler. */
11584 if (die_is_declaration (die, cu))
11585 TYPE_STUB (type) = 1;
11586
11587 return set_die_type (die, type, cu);
11588 }
11589
11590 /* Given a pointer to a die which begins an enumeration, process all
11591 the dies that define the members of the enumeration, and create the
11592 symbol for the enumeration type.
11593
11594 NOTE: We reverse the order of the element list. */
11595
11596 static void
11597 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11598 {
11599 struct type *this_type;
11600
11601 this_type = get_die_type (die, cu);
11602 if (this_type == NULL)
11603 this_type = read_enumeration_type (die, cu);
11604
11605 if (die->child != NULL)
11606 {
11607 struct die_info *child_die;
11608 struct symbol *sym;
11609 struct field *fields = NULL;
11610 int num_fields = 0;
11611 int unsigned_enum = 1;
11612 const char *name;
11613 int flag_enum = 1;
11614 ULONGEST mask = 0;
11615
11616 child_die = die->child;
11617 while (child_die && child_die->tag)
11618 {
11619 if (child_die->tag != DW_TAG_enumerator)
11620 {
11621 process_die (child_die, cu);
11622 }
11623 else
11624 {
11625 name = dwarf2_name (child_die, cu);
11626 if (name)
11627 {
11628 sym = new_symbol (child_die, this_type, cu);
11629 if (SYMBOL_VALUE (sym) < 0)
11630 {
11631 unsigned_enum = 0;
11632 flag_enum = 0;
11633 }
11634 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11635 flag_enum = 0;
11636 else
11637 mask |= SYMBOL_VALUE (sym);
11638
11639 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11640 {
11641 fields = (struct field *)
11642 xrealloc (fields,
11643 (num_fields + DW_FIELD_ALLOC_CHUNK)
11644 * sizeof (struct field));
11645 }
11646
11647 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11648 FIELD_TYPE (fields[num_fields]) = NULL;
11649 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11650 FIELD_BITSIZE (fields[num_fields]) = 0;
11651
11652 num_fields++;
11653 }
11654 }
11655
11656 child_die = sibling_die (child_die);
11657 }
11658
11659 if (num_fields)
11660 {
11661 TYPE_NFIELDS (this_type) = num_fields;
11662 TYPE_FIELDS (this_type) = (struct field *)
11663 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11664 memcpy (TYPE_FIELDS (this_type), fields,
11665 sizeof (struct field) * num_fields);
11666 xfree (fields);
11667 }
11668 if (unsigned_enum)
11669 TYPE_UNSIGNED (this_type) = 1;
11670 if (flag_enum)
11671 TYPE_FLAG_ENUM (this_type) = 1;
11672 }
11673
11674 /* If we are reading an enum from a .debug_types unit, and the enum
11675 is a declaration, and the enum is not the signatured type in the
11676 unit, then we do not want to add a symbol for it. Adding a
11677 symbol would in some cases obscure the true definition of the
11678 enum, giving users an incomplete type when the definition is
11679 actually available. Note that we do not want to do this for all
11680 enums which are just declarations, because C++0x allows forward
11681 enum declarations. */
11682 if (cu->per_cu->is_debug_types
11683 && die_is_declaration (die, cu))
11684 {
11685 struct signatured_type *sig_type;
11686
11687 sig_type
11688 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11689 cu->per_cu->info_or_types_section,
11690 cu->per_cu->offset);
11691 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11692 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11693 return;
11694 }
11695
11696 new_symbol (die, this_type, cu);
11697 }
11698
11699 /* Extract all information from a DW_TAG_array_type DIE and put it in
11700 the DIE's type field. For now, this only handles one dimensional
11701 arrays. */
11702
11703 static struct type *
11704 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11705 {
11706 struct objfile *objfile = cu->objfile;
11707 struct die_info *child_die;
11708 struct type *type;
11709 struct type *element_type, *range_type, *index_type;
11710 struct type **range_types = NULL;
11711 struct attribute *attr;
11712 int ndim = 0;
11713 struct cleanup *back_to;
11714 const char *name;
11715
11716 element_type = die_type (die, cu);
11717
11718 /* The die_type call above may have already set the type for this DIE. */
11719 type = get_die_type (die, cu);
11720 if (type)
11721 return type;
11722
11723 /* Irix 6.2 native cc creates array types without children for
11724 arrays with unspecified length. */
11725 if (die->child == NULL)
11726 {
11727 index_type = objfile_type (objfile)->builtin_int;
11728 range_type = create_range_type (NULL, index_type, 0, -1);
11729 type = create_array_type (NULL, element_type, range_type);
11730 return set_die_type (die, type, cu);
11731 }
11732
11733 back_to = make_cleanup (null_cleanup, NULL);
11734 child_die = die->child;
11735 while (child_die && child_die->tag)
11736 {
11737 if (child_die->tag == DW_TAG_subrange_type)
11738 {
11739 struct type *child_type = read_type_die (child_die, cu);
11740
11741 if (child_type != NULL)
11742 {
11743 /* The range type was succesfully read. Save it for the
11744 array type creation. */
11745 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11746 {
11747 range_types = (struct type **)
11748 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11749 * sizeof (struct type *));
11750 if (ndim == 0)
11751 make_cleanup (free_current_contents, &range_types);
11752 }
11753 range_types[ndim++] = child_type;
11754 }
11755 }
11756 child_die = sibling_die (child_die);
11757 }
11758
11759 /* Dwarf2 dimensions are output from left to right, create the
11760 necessary array types in backwards order. */
11761
11762 type = element_type;
11763
11764 if (read_array_order (die, cu) == DW_ORD_col_major)
11765 {
11766 int i = 0;
11767
11768 while (i < ndim)
11769 type = create_array_type (NULL, type, range_types[i++]);
11770 }
11771 else
11772 {
11773 while (ndim-- > 0)
11774 type = create_array_type (NULL, type, range_types[ndim]);
11775 }
11776
11777 /* Understand Dwarf2 support for vector types (like they occur on
11778 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11779 array type. This is not part of the Dwarf2/3 standard yet, but a
11780 custom vendor extension. The main difference between a regular
11781 array and the vector variant is that vectors are passed by value
11782 to functions. */
11783 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11784 if (attr)
11785 make_vector_type (type);
11786
11787 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11788 implementation may choose to implement triple vectors using this
11789 attribute. */
11790 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11791 if (attr)
11792 {
11793 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11794 TYPE_LENGTH (type) = DW_UNSND (attr);
11795 else
11796 complaint (&symfile_complaints,
11797 _("DW_AT_byte_size for array type smaller "
11798 "than the total size of elements"));
11799 }
11800
11801 name = dwarf2_name (die, cu);
11802 if (name)
11803 TYPE_NAME (type) = name;
11804
11805 /* Install the type in the die. */
11806 set_die_type (die, type, cu);
11807
11808 /* set_die_type should be already done. */
11809 set_descriptive_type (type, die, cu);
11810
11811 do_cleanups (back_to);
11812
11813 return type;
11814 }
11815
11816 static enum dwarf_array_dim_ordering
11817 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11818 {
11819 struct attribute *attr;
11820
11821 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11822
11823 if (attr) return DW_SND (attr);
11824
11825 /* GNU F77 is a special case, as at 08/2004 array type info is the
11826 opposite order to the dwarf2 specification, but data is still
11827 laid out as per normal fortran.
11828
11829 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11830 version checking. */
11831
11832 if (cu->language == language_fortran
11833 && cu->producer && strstr (cu->producer, "GNU F77"))
11834 {
11835 return DW_ORD_row_major;
11836 }
11837
11838 switch (cu->language_defn->la_array_ordering)
11839 {
11840 case array_column_major:
11841 return DW_ORD_col_major;
11842 case array_row_major:
11843 default:
11844 return DW_ORD_row_major;
11845 };
11846 }
11847
11848 /* Extract all information from a DW_TAG_set_type DIE and put it in
11849 the DIE's type field. */
11850
11851 static struct type *
11852 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11853 {
11854 struct type *domain_type, *set_type;
11855 struct attribute *attr;
11856
11857 domain_type = die_type (die, cu);
11858
11859 /* The die_type call above may have already set the type for this DIE. */
11860 set_type = get_die_type (die, cu);
11861 if (set_type)
11862 return set_type;
11863
11864 set_type = create_set_type (NULL, domain_type);
11865
11866 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11867 if (attr)
11868 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11869
11870 return set_die_type (die, set_type, cu);
11871 }
11872
11873 /* A helper for read_common_block that creates a locexpr baton.
11874 SYM is the symbol which we are marking as computed.
11875 COMMON_DIE is the DIE for the common block.
11876 COMMON_LOC is the location expression attribute for the common
11877 block itself.
11878 MEMBER_LOC is the location expression attribute for the particular
11879 member of the common block that we are processing.
11880 CU is the CU from which the above come. */
11881
11882 static void
11883 mark_common_block_symbol_computed (struct symbol *sym,
11884 struct die_info *common_die,
11885 struct attribute *common_loc,
11886 struct attribute *member_loc,
11887 struct dwarf2_cu *cu)
11888 {
11889 struct objfile *objfile = dwarf2_per_objfile->objfile;
11890 struct dwarf2_locexpr_baton *baton;
11891 gdb_byte *ptr;
11892 unsigned int cu_off;
11893 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11894 LONGEST offset = 0;
11895
11896 gdb_assert (common_loc && member_loc);
11897 gdb_assert (attr_form_is_block (common_loc));
11898 gdb_assert (attr_form_is_block (member_loc)
11899 || attr_form_is_constant (member_loc));
11900
11901 baton = obstack_alloc (&objfile->objfile_obstack,
11902 sizeof (struct dwarf2_locexpr_baton));
11903 baton->per_cu = cu->per_cu;
11904 gdb_assert (baton->per_cu);
11905
11906 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11907
11908 if (attr_form_is_constant (member_loc))
11909 {
11910 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11911 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11912 }
11913 else
11914 baton->size += DW_BLOCK (member_loc)->size;
11915
11916 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11917 baton->data = ptr;
11918
11919 *ptr++ = DW_OP_call4;
11920 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11921 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11922 ptr += 4;
11923
11924 if (attr_form_is_constant (member_loc))
11925 {
11926 *ptr++ = DW_OP_addr;
11927 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11928 ptr += cu->header.addr_size;
11929 }
11930 else
11931 {
11932 /* We have to copy the data here, because DW_OP_call4 will only
11933 use a DW_AT_location attribute. */
11934 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11935 ptr += DW_BLOCK (member_loc)->size;
11936 }
11937
11938 *ptr++ = DW_OP_plus;
11939 gdb_assert (ptr - baton->data == baton->size);
11940
11941 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11942 SYMBOL_LOCATION_BATON (sym) = baton;
11943 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11944 }
11945
11946 /* Create appropriate locally-scoped variables for all the
11947 DW_TAG_common_block entries. Also create a struct common_block
11948 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11949 is used to sepate the common blocks name namespace from regular
11950 variable names. */
11951
11952 static void
11953 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11954 {
11955 struct attribute *attr;
11956
11957 attr = dwarf2_attr (die, DW_AT_location, cu);
11958 if (attr)
11959 {
11960 /* Support the .debug_loc offsets. */
11961 if (attr_form_is_block (attr))
11962 {
11963 /* Ok. */
11964 }
11965 else if (attr_form_is_section_offset (attr))
11966 {
11967 dwarf2_complex_location_expr_complaint ();
11968 attr = NULL;
11969 }
11970 else
11971 {
11972 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11973 "common block member");
11974 attr = NULL;
11975 }
11976 }
11977
11978 if (die->child != NULL)
11979 {
11980 struct objfile *objfile = cu->objfile;
11981 struct die_info *child_die;
11982 size_t n_entries = 0, size;
11983 struct common_block *common_block;
11984 struct symbol *sym;
11985
11986 for (child_die = die->child;
11987 child_die && child_die->tag;
11988 child_die = sibling_die (child_die))
11989 ++n_entries;
11990
11991 size = (sizeof (struct common_block)
11992 + (n_entries - 1) * sizeof (struct symbol *));
11993 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11994 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11995 common_block->n_entries = 0;
11996
11997 for (child_die = die->child;
11998 child_die && child_die->tag;
11999 child_die = sibling_die (child_die))
12000 {
12001 /* Create the symbol in the DW_TAG_common_block block in the current
12002 symbol scope. */
12003 sym = new_symbol (child_die, NULL, cu);
12004 if (sym != NULL)
12005 {
12006 struct attribute *member_loc;
12007
12008 common_block->contents[common_block->n_entries++] = sym;
12009
12010 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12011 cu);
12012 if (member_loc)
12013 {
12014 /* GDB has handled this for a long time, but it is
12015 not specified by DWARF. It seems to have been
12016 emitted by gfortran at least as recently as:
12017 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12018 complaint (&symfile_complaints,
12019 _("Variable in common block has "
12020 "DW_AT_data_member_location "
12021 "- DIE at 0x%x [in module %s]"),
12022 child_die->offset.sect_off, cu->objfile->name);
12023
12024 if (attr_form_is_section_offset (member_loc))
12025 dwarf2_complex_location_expr_complaint ();
12026 else if (attr_form_is_constant (member_loc)
12027 || attr_form_is_block (member_loc))
12028 {
12029 if (attr)
12030 mark_common_block_symbol_computed (sym, die, attr,
12031 member_loc, cu);
12032 }
12033 else
12034 dwarf2_complex_location_expr_complaint ();
12035 }
12036 }
12037 }
12038
12039 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12040 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12041 }
12042 }
12043
12044 /* Create a type for a C++ namespace. */
12045
12046 static struct type *
12047 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12048 {
12049 struct objfile *objfile = cu->objfile;
12050 const char *previous_prefix, *name;
12051 int is_anonymous;
12052 struct type *type;
12053
12054 /* For extensions, reuse the type of the original namespace. */
12055 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12056 {
12057 struct die_info *ext_die;
12058 struct dwarf2_cu *ext_cu = cu;
12059
12060 ext_die = dwarf2_extension (die, &ext_cu);
12061 type = read_type_die (ext_die, ext_cu);
12062
12063 /* EXT_CU may not be the same as CU.
12064 Ensure TYPE is recorded in CU's type_hash table. */
12065 return set_die_type (die, type, cu);
12066 }
12067
12068 name = namespace_name (die, &is_anonymous, cu);
12069
12070 /* Now build the name of the current namespace. */
12071
12072 previous_prefix = determine_prefix (die, cu);
12073 if (previous_prefix[0] != '\0')
12074 name = typename_concat (&objfile->objfile_obstack,
12075 previous_prefix, name, 0, cu);
12076
12077 /* Create the type. */
12078 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12079 objfile);
12080 TYPE_NAME (type) = (char *) name;
12081 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12082
12083 return set_die_type (die, type, cu);
12084 }
12085
12086 /* Read a C++ namespace. */
12087
12088 static void
12089 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12090 {
12091 struct objfile *objfile = cu->objfile;
12092 int is_anonymous;
12093
12094 /* Add a symbol associated to this if we haven't seen the namespace
12095 before. Also, add a using directive if it's an anonymous
12096 namespace. */
12097
12098 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12099 {
12100 struct type *type;
12101
12102 type = read_type_die (die, cu);
12103 new_symbol (die, type, cu);
12104
12105 namespace_name (die, &is_anonymous, cu);
12106 if (is_anonymous)
12107 {
12108 const char *previous_prefix = determine_prefix (die, cu);
12109
12110 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12111 NULL, NULL, &objfile->objfile_obstack);
12112 }
12113 }
12114
12115 if (die->child != NULL)
12116 {
12117 struct die_info *child_die = die->child;
12118
12119 while (child_die && child_die->tag)
12120 {
12121 process_die (child_die, cu);
12122 child_die = sibling_die (child_die);
12123 }
12124 }
12125 }
12126
12127 /* Read a Fortran module as type. This DIE can be only a declaration used for
12128 imported module. Still we need that type as local Fortran "use ... only"
12129 declaration imports depend on the created type in determine_prefix. */
12130
12131 static struct type *
12132 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12133 {
12134 struct objfile *objfile = cu->objfile;
12135 const char *module_name;
12136 struct type *type;
12137
12138 module_name = dwarf2_name (die, cu);
12139 if (!module_name)
12140 complaint (&symfile_complaints,
12141 _("DW_TAG_module has no name, offset 0x%x"),
12142 die->offset.sect_off);
12143 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12144
12145 /* determine_prefix uses TYPE_TAG_NAME. */
12146 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12147
12148 return set_die_type (die, type, cu);
12149 }
12150
12151 /* Read a Fortran module. */
12152
12153 static void
12154 read_module (struct die_info *die, struct dwarf2_cu *cu)
12155 {
12156 struct die_info *child_die = die->child;
12157
12158 while (child_die && child_die->tag)
12159 {
12160 process_die (child_die, cu);
12161 child_die = sibling_die (child_die);
12162 }
12163 }
12164
12165 /* Return the name of the namespace represented by DIE. Set
12166 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12167 namespace. */
12168
12169 static const char *
12170 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12171 {
12172 struct die_info *current_die;
12173 const char *name = NULL;
12174
12175 /* Loop through the extensions until we find a name. */
12176
12177 for (current_die = die;
12178 current_die != NULL;
12179 current_die = dwarf2_extension (die, &cu))
12180 {
12181 name = dwarf2_name (current_die, cu);
12182 if (name != NULL)
12183 break;
12184 }
12185
12186 /* Is it an anonymous namespace? */
12187
12188 *is_anonymous = (name == NULL);
12189 if (*is_anonymous)
12190 name = CP_ANONYMOUS_NAMESPACE_STR;
12191
12192 return name;
12193 }
12194
12195 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12196 the user defined type vector. */
12197
12198 static struct type *
12199 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12200 {
12201 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12202 struct comp_unit_head *cu_header = &cu->header;
12203 struct type *type;
12204 struct attribute *attr_byte_size;
12205 struct attribute *attr_address_class;
12206 int byte_size, addr_class;
12207 struct type *target_type;
12208
12209 target_type = die_type (die, cu);
12210
12211 /* The die_type call above may have already set the type for this DIE. */
12212 type = get_die_type (die, cu);
12213 if (type)
12214 return type;
12215
12216 type = lookup_pointer_type (target_type);
12217
12218 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12219 if (attr_byte_size)
12220 byte_size = DW_UNSND (attr_byte_size);
12221 else
12222 byte_size = cu_header->addr_size;
12223
12224 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12225 if (attr_address_class)
12226 addr_class = DW_UNSND (attr_address_class);
12227 else
12228 addr_class = DW_ADDR_none;
12229
12230 /* If the pointer size or address class is different than the
12231 default, create a type variant marked as such and set the
12232 length accordingly. */
12233 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12234 {
12235 if (gdbarch_address_class_type_flags_p (gdbarch))
12236 {
12237 int type_flags;
12238
12239 type_flags = gdbarch_address_class_type_flags
12240 (gdbarch, byte_size, addr_class);
12241 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12242 == 0);
12243 type = make_type_with_address_space (type, type_flags);
12244 }
12245 else if (TYPE_LENGTH (type) != byte_size)
12246 {
12247 complaint (&symfile_complaints,
12248 _("invalid pointer size %d"), byte_size);
12249 }
12250 else
12251 {
12252 /* Should we also complain about unhandled address classes? */
12253 }
12254 }
12255
12256 TYPE_LENGTH (type) = byte_size;
12257 return set_die_type (die, type, cu);
12258 }
12259
12260 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12261 the user defined type vector. */
12262
12263 static struct type *
12264 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12265 {
12266 struct type *type;
12267 struct type *to_type;
12268 struct type *domain;
12269
12270 to_type = die_type (die, cu);
12271 domain = die_containing_type (die, cu);
12272
12273 /* The calls above may have already set the type for this DIE. */
12274 type = get_die_type (die, cu);
12275 if (type)
12276 return type;
12277
12278 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12279 type = lookup_methodptr_type (to_type);
12280 else
12281 type = lookup_memberptr_type (to_type, domain);
12282
12283 return set_die_type (die, type, cu);
12284 }
12285
12286 /* Extract all information from a DW_TAG_reference_type DIE and add to
12287 the user defined type vector. */
12288
12289 static struct type *
12290 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12291 {
12292 struct comp_unit_head *cu_header = &cu->header;
12293 struct type *type, *target_type;
12294 struct attribute *attr;
12295
12296 target_type = die_type (die, cu);
12297
12298 /* The die_type call above may have already set the type for this DIE. */
12299 type = get_die_type (die, cu);
12300 if (type)
12301 return type;
12302
12303 type = lookup_reference_type (target_type);
12304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12305 if (attr)
12306 {
12307 TYPE_LENGTH (type) = DW_UNSND (attr);
12308 }
12309 else
12310 {
12311 TYPE_LENGTH (type) = cu_header->addr_size;
12312 }
12313 return set_die_type (die, type, cu);
12314 }
12315
12316 static struct type *
12317 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12318 {
12319 struct type *base_type, *cv_type;
12320
12321 base_type = die_type (die, cu);
12322
12323 /* The die_type call above may have already set the type for this DIE. */
12324 cv_type = get_die_type (die, cu);
12325 if (cv_type)
12326 return cv_type;
12327
12328 /* In case the const qualifier is applied to an array type, the element type
12329 is so qualified, not the array type (section 6.7.3 of C99). */
12330 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12331 {
12332 struct type *el_type, *inner_array;
12333
12334 base_type = copy_type (base_type);
12335 inner_array = base_type;
12336
12337 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12338 {
12339 TYPE_TARGET_TYPE (inner_array) =
12340 copy_type (TYPE_TARGET_TYPE (inner_array));
12341 inner_array = TYPE_TARGET_TYPE (inner_array);
12342 }
12343
12344 el_type = TYPE_TARGET_TYPE (inner_array);
12345 TYPE_TARGET_TYPE (inner_array) =
12346 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12347
12348 return set_die_type (die, base_type, cu);
12349 }
12350
12351 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12352 return set_die_type (die, cv_type, cu);
12353 }
12354
12355 static struct type *
12356 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12357 {
12358 struct type *base_type, *cv_type;
12359
12360 base_type = die_type (die, cu);
12361
12362 /* The die_type call above may have already set the type for this DIE. */
12363 cv_type = get_die_type (die, cu);
12364 if (cv_type)
12365 return cv_type;
12366
12367 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12368 return set_die_type (die, cv_type, cu);
12369 }
12370
12371 /* Handle DW_TAG_restrict_type. */
12372
12373 static struct type *
12374 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12375 {
12376 struct type *base_type, *cv_type;
12377
12378 base_type = die_type (die, cu);
12379
12380 /* The die_type call above may have already set the type for this DIE. */
12381 cv_type = get_die_type (die, cu);
12382 if (cv_type)
12383 return cv_type;
12384
12385 cv_type = make_restrict_type (base_type);
12386 return set_die_type (die, cv_type, cu);
12387 }
12388
12389 /* Extract all information from a DW_TAG_string_type DIE and add to
12390 the user defined type vector. It isn't really a user defined type,
12391 but it behaves like one, with other DIE's using an AT_user_def_type
12392 attribute to reference it. */
12393
12394 static struct type *
12395 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12396 {
12397 struct objfile *objfile = cu->objfile;
12398 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12399 struct type *type, *range_type, *index_type, *char_type;
12400 struct attribute *attr;
12401 unsigned int length;
12402
12403 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12404 if (attr)
12405 {
12406 length = DW_UNSND (attr);
12407 }
12408 else
12409 {
12410 /* Check for the DW_AT_byte_size attribute. */
12411 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12412 if (attr)
12413 {
12414 length = DW_UNSND (attr);
12415 }
12416 else
12417 {
12418 length = 1;
12419 }
12420 }
12421
12422 index_type = objfile_type (objfile)->builtin_int;
12423 range_type = create_range_type (NULL, index_type, 1, length);
12424 char_type = language_string_char_type (cu->language_defn, gdbarch);
12425 type = create_string_type (NULL, char_type, range_type);
12426
12427 return set_die_type (die, type, cu);
12428 }
12429
12430 /* Handle DIES due to C code like:
12431
12432 struct foo
12433 {
12434 int (*funcp)(int a, long l);
12435 int b;
12436 };
12437
12438 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12439
12440 static struct type *
12441 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12442 {
12443 struct objfile *objfile = cu->objfile;
12444 struct type *type; /* Type that this function returns. */
12445 struct type *ftype; /* Function that returns above type. */
12446 struct attribute *attr;
12447
12448 type = die_type (die, cu);
12449
12450 /* The die_type call above may have already set the type for this DIE. */
12451 ftype = get_die_type (die, cu);
12452 if (ftype)
12453 return ftype;
12454
12455 ftype = lookup_function_type (type);
12456
12457 /* All functions in C++, Pascal and Java have prototypes. */
12458 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12459 if ((attr && (DW_UNSND (attr) != 0))
12460 || cu->language == language_cplus
12461 || cu->language == language_java
12462 || cu->language == language_pascal)
12463 TYPE_PROTOTYPED (ftype) = 1;
12464 else if (producer_is_realview (cu->producer))
12465 /* RealView does not emit DW_AT_prototyped. We can not
12466 distinguish prototyped and unprototyped functions; default to
12467 prototyped, since that is more common in modern code (and
12468 RealView warns about unprototyped functions). */
12469 TYPE_PROTOTYPED (ftype) = 1;
12470
12471 /* Store the calling convention in the type if it's available in
12472 the subroutine die. Otherwise set the calling convention to
12473 the default value DW_CC_normal. */
12474 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12475 if (attr)
12476 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12477 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12478 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12479 else
12480 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12481
12482 /* We need to add the subroutine type to the die immediately so
12483 we don't infinitely recurse when dealing with parameters
12484 declared as the same subroutine type. */
12485 set_die_type (die, ftype, cu);
12486
12487 if (die->child != NULL)
12488 {
12489 struct type *void_type = objfile_type (objfile)->builtin_void;
12490 struct die_info *child_die;
12491 int nparams, iparams;
12492
12493 /* Count the number of parameters.
12494 FIXME: GDB currently ignores vararg functions, but knows about
12495 vararg member functions. */
12496 nparams = 0;
12497 child_die = die->child;
12498 while (child_die && child_die->tag)
12499 {
12500 if (child_die->tag == DW_TAG_formal_parameter)
12501 nparams++;
12502 else if (child_die->tag == DW_TAG_unspecified_parameters)
12503 TYPE_VARARGS (ftype) = 1;
12504 child_die = sibling_die (child_die);
12505 }
12506
12507 /* Allocate storage for parameters and fill them in. */
12508 TYPE_NFIELDS (ftype) = nparams;
12509 TYPE_FIELDS (ftype) = (struct field *)
12510 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12511
12512 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12513 even if we error out during the parameters reading below. */
12514 for (iparams = 0; iparams < nparams; iparams++)
12515 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12516
12517 iparams = 0;
12518 child_die = die->child;
12519 while (child_die && child_die->tag)
12520 {
12521 if (child_die->tag == DW_TAG_formal_parameter)
12522 {
12523 struct type *arg_type;
12524
12525 /* DWARF version 2 has no clean way to discern C++
12526 static and non-static member functions. G++ helps
12527 GDB by marking the first parameter for non-static
12528 member functions (which is the this pointer) as
12529 artificial. We pass this information to
12530 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12531
12532 DWARF version 3 added DW_AT_object_pointer, which GCC
12533 4.5 does not yet generate. */
12534 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12535 if (attr)
12536 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12537 else
12538 {
12539 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12540
12541 /* GCC/43521: In java, the formal parameter
12542 "this" is sometimes not marked with DW_AT_artificial. */
12543 if (cu->language == language_java)
12544 {
12545 const char *name = dwarf2_name (child_die, cu);
12546
12547 if (name && !strcmp (name, "this"))
12548 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12549 }
12550 }
12551 arg_type = die_type (child_die, cu);
12552
12553 /* RealView does not mark THIS as const, which the testsuite
12554 expects. GCC marks THIS as const in method definitions,
12555 but not in the class specifications (GCC PR 43053). */
12556 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12557 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12558 {
12559 int is_this = 0;
12560 struct dwarf2_cu *arg_cu = cu;
12561 const char *name = dwarf2_name (child_die, cu);
12562
12563 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12564 if (attr)
12565 {
12566 /* If the compiler emits this, use it. */
12567 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12568 is_this = 1;
12569 }
12570 else if (name && strcmp (name, "this") == 0)
12571 /* Function definitions will have the argument names. */
12572 is_this = 1;
12573 else if (name == NULL && iparams == 0)
12574 /* Declarations may not have the names, so like
12575 elsewhere in GDB, assume an artificial first
12576 argument is "this". */
12577 is_this = 1;
12578
12579 if (is_this)
12580 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12581 arg_type, 0);
12582 }
12583
12584 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12585 iparams++;
12586 }
12587 child_die = sibling_die (child_die);
12588 }
12589 }
12590
12591 return ftype;
12592 }
12593
12594 static struct type *
12595 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12596 {
12597 struct objfile *objfile = cu->objfile;
12598 const char *name = NULL;
12599 struct type *this_type, *target_type;
12600
12601 name = dwarf2_full_name (NULL, die, cu);
12602 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12603 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12604 TYPE_NAME (this_type) = (char *) name;
12605 set_die_type (die, this_type, cu);
12606 target_type = die_type (die, cu);
12607 if (target_type != this_type)
12608 TYPE_TARGET_TYPE (this_type) = target_type;
12609 else
12610 {
12611 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12612 spec and cause infinite loops in GDB. */
12613 complaint (&symfile_complaints,
12614 _("Self-referential DW_TAG_typedef "
12615 "- DIE at 0x%x [in module %s]"),
12616 die->offset.sect_off, objfile->name);
12617 TYPE_TARGET_TYPE (this_type) = NULL;
12618 }
12619 return this_type;
12620 }
12621
12622 /* Find a representation of a given base type and install
12623 it in the TYPE field of the die. */
12624
12625 static struct type *
12626 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12627 {
12628 struct objfile *objfile = cu->objfile;
12629 struct type *type;
12630 struct attribute *attr;
12631 int encoding = 0, size = 0;
12632 const char *name;
12633 enum type_code code = TYPE_CODE_INT;
12634 int type_flags = 0;
12635 struct type *target_type = NULL;
12636
12637 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12638 if (attr)
12639 {
12640 encoding = DW_UNSND (attr);
12641 }
12642 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12643 if (attr)
12644 {
12645 size = DW_UNSND (attr);
12646 }
12647 name = dwarf2_name (die, cu);
12648 if (!name)
12649 {
12650 complaint (&symfile_complaints,
12651 _("DW_AT_name missing from DW_TAG_base_type"));
12652 }
12653
12654 switch (encoding)
12655 {
12656 case DW_ATE_address:
12657 /* Turn DW_ATE_address into a void * pointer. */
12658 code = TYPE_CODE_PTR;
12659 type_flags |= TYPE_FLAG_UNSIGNED;
12660 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12661 break;
12662 case DW_ATE_boolean:
12663 code = TYPE_CODE_BOOL;
12664 type_flags |= TYPE_FLAG_UNSIGNED;
12665 break;
12666 case DW_ATE_complex_float:
12667 code = TYPE_CODE_COMPLEX;
12668 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12669 break;
12670 case DW_ATE_decimal_float:
12671 code = TYPE_CODE_DECFLOAT;
12672 break;
12673 case DW_ATE_float:
12674 code = TYPE_CODE_FLT;
12675 break;
12676 case DW_ATE_signed:
12677 break;
12678 case DW_ATE_unsigned:
12679 type_flags |= TYPE_FLAG_UNSIGNED;
12680 if (cu->language == language_fortran
12681 && name
12682 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12683 code = TYPE_CODE_CHAR;
12684 break;
12685 case DW_ATE_signed_char:
12686 if (cu->language == language_ada || cu->language == language_m2
12687 || cu->language == language_pascal
12688 || cu->language == language_fortran)
12689 code = TYPE_CODE_CHAR;
12690 break;
12691 case DW_ATE_unsigned_char:
12692 if (cu->language == language_ada || cu->language == language_m2
12693 || cu->language == language_pascal
12694 || cu->language == language_fortran)
12695 code = TYPE_CODE_CHAR;
12696 type_flags |= TYPE_FLAG_UNSIGNED;
12697 break;
12698 case DW_ATE_UTF:
12699 /* We just treat this as an integer and then recognize the
12700 type by name elsewhere. */
12701 break;
12702
12703 default:
12704 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12705 dwarf_type_encoding_name (encoding));
12706 break;
12707 }
12708
12709 type = init_type (code, size, type_flags, NULL, objfile);
12710 TYPE_NAME (type) = name;
12711 TYPE_TARGET_TYPE (type) = target_type;
12712
12713 if (name && strcmp (name, "char") == 0)
12714 TYPE_NOSIGN (type) = 1;
12715
12716 return set_die_type (die, type, cu);
12717 }
12718
12719 /* Read the given DW_AT_subrange DIE. */
12720
12721 static struct type *
12722 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12723 {
12724 struct type *base_type;
12725 struct type *range_type;
12726 struct attribute *attr;
12727 LONGEST low, high;
12728 int low_default_is_valid;
12729 const char *name;
12730 LONGEST negative_mask;
12731
12732 base_type = die_type (die, cu);
12733 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12734 check_typedef (base_type);
12735
12736 /* The die_type call above may have already set the type for this DIE. */
12737 range_type = get_die_type (die, cu);
12738 if (range_type)
12739 return range_type;
12740
12741 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12742 omitting DW_AT_lower_bound. */
12743 switch (cu->language)
12744 {
12745 case language_c:
12746 case language_cplus:
12747 low = 0;
12748 low_default_is_valid = 1;
12749 break;
12750 case language_fortran:
12751 low = 1;
12752 low_default_is_valid = 1;
12753 break;
12754 case language_d:
12755 case language_java:
12756 case language_objc:
12757 low = 0;
12758 low_default_is_valid = (cu->header.version >= 4);
12759 break;
12760 case language_ada:
12761 case language_m2:
12762 case language_pascal:
12763 low = 1;
12764 low_default_is_valid = (cu->header.version >= 4);
12765 break;
12766 default:
12767 low = 0;
12768 low_default_is_valid = 0;
12769 break;
12770 }
12771
12772 /* FIXME: For variable sized arrays either of these could be
12773 a variable rather than a constant value. We'll allow it,
12774 but we don't know how to handle it. */
12775 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12776 if (attr)
12777 low = dwarf2_get_attr_constant_value (attr, low);
12778 else if (!low_default_is_valid)
12779 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12780 "- DIE at 0x%x [in module %s]"),
12781 die->offset.sect_off, cu->objfile->name);
12782
12783 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12784 if (attr)
12785 {
12786 if (attr_form_is_block (attr) || is_ref_attr (attr))
12787 {
12788 /* GCC encodes arrays with unspecified or dynamic length
12789 with a DW_FORM_block1 attribute or a reference attribute.
12790 FIXME: GDB does not yet know how to handle dynamic
12791 arrays properly, treat them as arrays with unspecified
12792 length for now.
12793
12794 FIXME: jimb/2003-09-22: GDB does not really know
12795 how to handle arrays of unspecified length
12796 either; we just represent them as zero-length
12797 arrays. Choose an appropriate upper bound given
12798 the lower bound we've computed above. */
12799 high = low - 1;
12800 }
12801 else
12802 high = dwarf2_get_attr_constant_value (attr, 1);
12803 }
12804 else
12805 {
12806 attr = dwarf2_attr (die, DW_AT_count, cu);
12807 if (attr)
12808 {
12809 int count = dwarf2_get_attr_constant_value (attr, 1);
12810 high = low + count - 1;
12811 }
12812 else
12813 {
12814 /* Unspecified array length. */
12815 high = low - 1;
12816 }
12817 }
12818
12819 /* Dwarf-2 specifications explicitly allows to create subrange types
12820 without specifying a base type.
12821 In that case, the base type must be set to the type of
12822 the lower bound, upper bound or count, in that order, if any of these
12823 three attributes references an object that has a type.
12824 If no base type is found, the Dwarf-2 specifications say that
12825 a signed integer type of size equal to the size of an address should
12826 be used.
12827 For the following C code: `extern char gdb_int [];'
12828 GCC produces an empty range DIE.
12829 FIXME: muller/2010-05-28: Possible references to object for low bound,
12830 high bound or count are not yet handled by this code. */
12831 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12832 {
12833 struct objfile *objfile = cu->objfile;
12834 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12835 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12836 struct type *int_type = objfile_type (objfile)->builtin_int;
12837
12838 /* Test "int", "long int", and "long long int" objfile types,
12839 and select the first one having a size above or equal to the
12840 architecture address size. */
12841 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12842 base_type = int_type;
12843 else
12844 {
12845 int_type = objfile_type (objfile)->builtin_long;
12846 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12847 base_type = int_type;
12848 else
12849 {
12850 int_type = objfile_type (objfile)->builtin_long_long;
12851 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12852 base_type = int_type;
12853 }
12854 }
12855 }
12856
12857 negative_mask =
12858 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12859 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12860 low |= negative_mask;
12861 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12862 high |= negative_mask;
12863
12864 range_type = create_range_type (NULL, base_type, low, high);
12865
12866 /* Mark arrays with dynamic length at least as an array of unspecified
12867 length. GDB could check the boundary but before it gets implemented at
12868 least allow accessing the array elements. */
12869 if (attr && attr_form_is_block (attr))
12870 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12871
12872 /* Ada expects an empty array on no boundary attributes. */
12873 if (attr == NULL && cu->language != language_ada)
12874 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12875
12876 name = dwarf2_name (die, cu);
12877 if (name)
12878 TYPE_NAME (range_type) = name;
12879
12880 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12881 if (attr)
12882 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12883
12884 set_die_type (die, range_type, cu);
12885
12886 /* set_die_type should be already done. */
12887 set_descriptive_type (range_type, die, cu);
12888
12889 return range_type;
12890 }
12891
12892 static struct type *
12893 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12894 {
12895 struct type *type;
12896
12897 /* For now, we only support the C meaning of an unspecified type: void. */
12898
12899 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12900 TYPE_NAME (type) = dwarf2_name (die, cu);
12901
12902 return set_die_type (die, type, cu);
12903 }
12904
12905 /* Read a single die and all its descendents. Set the die's sibling
12906 field to NULL; set other fields in the die correctly, and set all
12907 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12908 location of the info_ptr after reading all of those dies. PARENT
12909 is the parent of the die in question. */
12910
12911 static struct die_info *
12912 read_die_and_children (const struct die_reader_specs *reader,
12913 gdb_byte *info_ptr,
12914 gdb_byte **new_info_ptr,
12915 struct die_info *parent)
12916 {
12917 struct die_info *die;
12918 gdb_byte *cur_ptr;
12919 int has_children;
12920
12921 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12922 if (die == NULL)
12923 {
12924 *new_info_ptr = cur_ptr;
12925 return NULL;
12926 }
12927 store_in_ref_table (die, reader->cu);
12928
12929 if (has_children)
12930 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12931 else
12932 {
12933 die->child = NULL;
12934 *new_info_ptr = cur_ptr;
12935 }
12936
12937 die->sibling = NULL;
12938 die->parent = parent;
12939 return die;
12940 }
12941
12942 /* Read a die, all of its descendents, and all of its siblings; set
12943 all of the fields of all of the dies correctly. Arguments are as
12944 in read_die_and_children. */
12945
12946 static struct die_info *
12947 read_die_and_siblings (const struct die_reader_specs *reader,
12948 gdb_byte *info_ptr,
12949 gdb_byte **new_info_ptr,
12950 struct die_info *parent)
12951 {
12952 struct die_info *first_die, *last_sibling;
12953 gdb_byte *cur_ptr;
12954
12955 cur_ptr = info_ptr;
12956 first_die = last_sibling = NULL;
12957
12958 while (1)
12959 {
12960 struct die_info *die
12961 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12962
12963 if (die == NULL)
12964 {
12965 *new_info_ptr = cur_ptr;
12966 return first_die;
12967 }
12968
12969 if (!first_die)
12970 first_die = die;
12971 else
12972 last_sibling->sibling = die;
12973
12974 last_sibling = die;
12975 }
12976 }
12977
12978 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12979 attributes.
12980 The caller is responsible for filling in the extra attributes
12981 and updating (*DIEP)->num_attrs.
12982 Set DIEP to point to a newly allocated die with its information,
12983 except for its child, sibling, and parent fields.
12984 Set HAS_CHILDREN to tell whether the die has children or not. */
12985
12986 static gdb_byte *
12987 read_full_die_1 (const struct die_reader_specs *reader,
12988 struct die_info **diep, gdb_byte *info_ptr,
12989 int *has_children, int num_extra_attrs)
12990 {
12991 unsigned int abbrev_number, bytes_read, i;
12992 sect_offset offset;
12993 struct abbrev_info *abbrev;
12994 struct die_info *die;
12995 struct dwarf2_cu *cu = reader->cu;
12996 bfd *abfd = reader->abfd;
12997
12998 offset.sect_off = info_ptr - reader->buffer;
12999 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13000 info_ptr += bytes_read;
13001 if (!abbrev_number)
13002 {
13003 *diep = NULL;
13004 *has_children = 0;
13005 return info_ptr;
13006 }
13007
13008 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13009 if (!abbrev)
13010 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13011 abbrev_number,
13012 bfd_get_filename (abfd));
13013
13014 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13015 die->offset = offset;
13016 die->tag = abbrev->tag;
13017 die->abbrev = abbrev_number;
13018
13019 /* Make the result usable.
13020 The caller needs to update num_attrs after adding the extra
13021 attributes. */
13022 die->num_attrs = abbrev->num_attrs;
13023
13024 for (i = 0; i < abbrev->num_attrs; ++i)
13025 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13026 info_ptr);
13027
13028 *diep = die;
13029 *has_children = abbrev->has_children;
13030 return info_ptr;
13031 }
13032
13033 /* Read a die and all its attributes.
13034 Set DIEP to point to a newly allocated die with its information,
13035 except for its child, sibling, and parent fields.
13036 Set HAS_CHILDREN to tell whether the die has children or not. */
13037
13038 static gdb_byte *
13039 read_full_die (const struct die_reader_specs *reader,
13040 struct die_info **diep, gdb_byte *info_ptr,
13041 int *has_children)
13042 {
13043 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13044 }
13045 \f
13046 /* Abbreviation tables.
13047
13048 In DWARF version 2, the description of the debugging information is
13049 stored in a separate .debug_abbrev section. Before we read any
13050 dies from a section we read in all abbreviations and install them
13051 in a hash table. */
13052
13053 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13054
13055 static struct abbrev_info *
13056 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13057 {
13058 struct abbrev_info *abbrev;
13059
13060 abbrev = (struct abbrev_info *)
13061 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13062 memset (abbrev, 0, sizeof (struct abbrev_info));
13063 return abbrev;
13064 }
13065
13066 /* Add an abbreviation to the table. */
13067
13068 static void
13069 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13070 unsigned int abbrev_number,
13071 struct abbrev_info *abbrev)
13072 {
13073 unsigned int hash_number;
13074
13075 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13076 abbrev->next = abbrev_table->abbrevs[hash_number];
13077 abbrev_table->abbrevs[hash_number] = abbrev;
13078 }
13079
13080 /* Look up an abbrev in the table.
13081 Returns NULL if the abbrev is not found. */
13082
13083 static struct abbrev_info *
13084 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13085 unsigned int abbrev_number)
13086 {
13087 unsigned int hash_number;
13088 struct abbrev_info *abbrev;
13089
13090 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13091 abbrev = abbrev_table->abbrevs[hash_number];
13092
13093 while (abbrev)
13094 {
13095 if (abbrev->number == abbrev_number)
13096 return abbrev;
13097 abbrev = abbrev->next;
13098 }
13099 return NULL;
13100 }
13101
13102 /* Read in an abbrev table. */
13103
13104 static struct abbrev_table *
13105 abbrev_table_read_table (struct dwarf2_section_info *section,
13106 sect_offset offset)
13107 {
13108 struct objfile *objfile = dwarf2_per_objfile->objfile;
13109 bfd *abfd = section->asection->owner;
13110 struct abbrev_table *abbrev_table;
13111 gdb_byte *abbrev_ptr;
13112 struct abbrev_info *cur_abbrev;
13113 unsigned int abbrev_number, bytes_read, abbrev_name;
13114 unsigned int abbrev_form;
13115 struct attr_abbrev *cur_attrs;
13116 unsigned int allocated_attrs;
13117
13118 abbrev_table = XMALLOC (struct abbrev_table);
13119 abbrev_table->offset = offset;
13120 obstack_init (&abbrev_table->abbrev_obstack);
13121 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13122 (ABBREV_HASH_SIZE
13123 * sizeof (struct abbrev_info *)));
13124 memset (abbrev_table->abbrevs, 0,
13125 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13126
13127 dwarf2_read_section (objfile, section);
13128 abbrev_ptr = section->buffer + offset.sect_off;
13129 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13130 abbrev_ptr += bytes_read;
13131
13132 allocated_attrs = ATTR_ALLOC_CHUNK;
13133 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13134
13135 /* Loop until we reach an abbrev number of 0. */
13136 while (abbrev_number)
13137 {
13138 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13139
13140 /* read in abbrev header */
13141 cur_abbrev->number = abbrev_number;
13142 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13143 abbrev_ptr += bytes_read;
13144 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13145 abbrev_ptr += 1;
13146
13147 /* now read in declarations */
13148 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13149 abbrev_ptr += bytes_read;
13150 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13151 abbrev_ptr += bytes_read;
13152 while (abbrev_name)
13153 {
13154 if (cur_abbrev->num_attrs == allocated_attrs)
13155 {
13156 allocated_attrs += ATTR_ALLOC_CHUNK;
13157 cur_attrs
13158 = xrealloc (cur_attrs, (allocated_attrs
13159 * sizeof (struct attr_abbrev)));
13160 }
13161
13162 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13163 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13164 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13165 abbrev_ptr += bytes_read;
13166 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13167 abbrev_ptr += bytes_read;
13168 }
13169
13170 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13171 (cur_abbrev->num_attrs
13172 * sizeof (struct attr_abbrev)));
13173 memcpy (cur_abbrev->attrs, cur_attrs,
13174 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13175
13176 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13177
13178 /* Get next abbreviation.
13179 Under Irix6 the abbreviations for a compilation unit are not
13180 always properly terminated with an abbrev number of 0.
13181 Exit loop if we encounter an abbreviation which we have
13182 already read (which means we are about to read the abbreviations
13183 for the next compile unit) or if the end of the abbreviation
13184 table is reached. */
13185 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13186 break;
13187 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13188 abbrev_ptr += bytes_read;
13189 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13190 break;
13191 }
13192
13193 xfree (cur_attrs);
13194 return abbrev_table;
13195 }
13196
13197 /* Free the resources held by ABBREV_TABLE. */
13198
13199 static void
13200 abbrev_table_free (struct abbrev_table *abbrev_table)
13201 {
13202 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13203 xfree (abbrev_table);
13204 }
13205
13206 /* Same as abbrev_table_free but as a cleanup.
13207 We pass in a pointer to the pointer to the table so that we can
13208 set the pointer to NULL when we're done. It also simplifies
13209 build_type_unit_groups. */
13210
13211 static void
13212 abbrev_table_free_cleanup (void *table_ptr)
13213 {
13214 struct abbrev_table **abbrev_table_ptr = table_ptr;
13215
13216 if (*abbrev_table_ptr != NULL)
13217 abbrev_table_free (*abbrev_table_ptr);
13218 *abbrev_table_ptr = NULL;
13219 }
13220
13221 /* Read the abbrev table for CU from ABBREV_SECTION. */
13222
13223 static void
13224 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13225 struct dwarf2_section_info *abbrev_section)
13226 {
13227 cu->abbrev_table =
13228 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13229 }
13230
13231 /* Release the memory used by the abbrev table for a compilation unit. */
13232
13233 static void
13234 dwarf2_free_abbrev_table (void *ptr_to_cu)
13235 {
13236 struct dwarf2_cu *cu = ptr_to_cu;
13237
13238 abbrev_table_free (cu->abbrev_table);
13239 /* Set this to NULL so that we SEGV if we try to read it later,
13240 and also because free_comp_unit verifies this is NULL. */
13241 cu->abbrev_table = NULL;
13242 }
13243 \f
13244 /* Returns nonzero if TAG represents a type that we might generate a partial
13245 symbol for. */
13246
13247 static int
13248 is_type_tag_for_partial (int tag)
13249 {
13250 switch (tag)
13251 {
13252 #if 0
13253 /* Some types that would be reasonable to generate partial symbols for,
13254 that we don't at present. */
13255 case DW_TAG_array_type:
13256 case DW_TAG_file_type:
13257 case DW_TAG_ptr_to_member_type:
13258 case DW_TAG_set_type:
13259 case DW_TAG_string_type:
13260 case DW_TAG_subroutine_type:
13261 #endif
13262 case DW_TAG_base_type:
13263 case DW_TAG_class_type:
13264 case DW_TAG_interface_type:
13265 case DW_TAG_enumeration_type:
13266 case DW_TAG_structure_type:
13267 case DW_TAG_subrange_type:
13268 case DW_TAG_typedef:
13269 case DW_TAG_union_type:
13270 return 1;
13271 default:
13272 return 0;
13273 }
13274 }
13275
13276 /* Load all DIEs that are interesting for partial symbols into memory. */
13277
13278 static struct partial_die_info *
13279 load_partial_dies (const struct die_reader_specs *reader,
13280 gdb_byte *info_ptr, int building_psymtab)
13281 {
13282 struct dwarf2_cu *cu = reader->cu;
13283 struct objfile *objfile = cu->objfile;
13284 struct partial_die_info *part_die;
13285 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13286 struct abbrev_info *abbrev;
13287 unsigned int bytes_read;
13288 unsigned int load_all = 0;
13289 int nesting_level = 1;
13290
13291 parent_die = NULL;
13292 last_die = NULL;
13293
13294 gdb_assert (cu->per_cu != NULL);
13295 if (cu->per_cu->load_all_dies)
13296 load_all = 1;
13297
13298 cu->partial_dies
13299 = htab_create_alloc_ex (cu->header.length / 12,
13300 partial_die_hash,
13301 partial_die_eq,
13302 NULL,
13303 &cu->comp_unit_obstack,
13304 hashtab_obstack_allocate,
13305 dummy_obstack_deallocate);
13306
13307 part_die = obstack_alloc (&cu->comp_unit_obstack,
13308 sizeof (struct partial_die_info));
13309
13310 while (1)
13311 {
13312 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13313
13314 /* A NULL abbrev means the end of a series of children. */
13315 if (abbrev == NULL)
13316 {
13317 if (--nesting_level == 0)
13318 {
13319 /* PART_DIE was probably the last thing allocated on the
13320 comp_unit_obstack, so we could call obstack_free
13321 here. We don't do that because the waste is small,
13322 and will be cleaned up when we're done with this
13323 compilation unit. This way, we're also more robust
13324 against other users of the comp_unit_obstack. */
13325 return first_die;
13326 }
13327 info_ptr += bytes_read;
13328 last_die = parent_die;
13329 parent_die = parent_die->die_parent;
13330 continue;
13331 }
13332
13333 /* Check for template arguments. We never save these; if
13334 they're seen, we just mark the parent, and go on our way. */
13335 if (parent_die != NULL
13336 && cu->language == language_cplus
13337 && (abbrev->tag == DW_TAG_template_type_param
13338 || abbrev->tag == DW_TAG_template_value_param))
13339 {
13340 parent_die->has_template_arguments = 1;
13341
13342 if (!load_all)
13343 {
13344 /* We don't need a partial DIE for the template argument. */
13345 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13346 continue;
13347 }
13348 }
13349
13350 /* We only recurse into c++ subprograms looking for template arguments.
13351 Skip their other children. */
13352 if (!load_all
13353 && cu->language == language_cplus
13354 && parent_die != NULL
13355 && parent_die->tag == DW_TAG_subprogram)
13356 {
13357 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13358 continue;
13359 }
13360
13361 /* Check whether this DIE is interesting enough to save. Normally
13362 we would not be interested in members here, but there may be
13363 later variables referencing them via DW_AT_specification (for
13364 static members). */
13365 if (!load_all
13366 && !is_type_tag_for_partial (abbrev->tag)
13367 && abbrev->tag != DW_TAG_constant
13368 && abbrev->tag != DW_TAG_enumerator
13369 && abbrev->tag != DW_TAG_subprogram
13370 && abbrev->tag != DW_TAG_lexical_block
13371 && abbrev->tag != DW_TAG_variable
13372 && abbrev->tag != DW_TAG_namespace
13373 && abbrev->tag != DW_TAG_module
13374 && abbrev->tag != DW_TAG_member
13375 && abbrev->tag != DW_TAG_imported_unit)
13376 {
13377 /* Otherwise we skip to the next sibling, if any. */
13378 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13379 continue;
13380 }
13381
13382 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13383 info_ptr);
13384
13385 /* This two-pass algorithm for processing partial symbols has a
13386 high cost in cache pressure. Thus, handle some simple cases
13387 here which cover the majority of C partial symbols. DIEs
13388 which neither have specification tags in them, nor could have
13389 specification tags elsewhere pointing at them, can simply be
13390 processed and discarded.
13391
13392 This segment is also optional; scan_partial_symbols and
13393 add_partial_symbol will handle these DIEs if we chain
13394 them in normally. When compilers which do not emit large
13395 quantities of duplicate debug information are more common,
13396 this code can probably be removed. */
13397
13398 /* Any complete simple types at the top level (pretty much all
13399 of them, for a language without namespaces), can be processed
13400 directly. */
13401 if (parent_die == NULL
13402 && part_die->has_specification == 0
13403 && part_die->is_declaration == 0
13404 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13405 || part_die->tag == DW_TAG_base_type
13406 || part_die->tag == DW_TAG_subrange_type))
13407 {
13408 if (building_psymtab && part_die->name != NULL)
13409 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13410 VAR_DOMAIN, LOC_TYPEDEF,
13411 &objfile->static_psymbols,
13412 0, (CORE_ADDR) 0, cu->language, objfile);
13413 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13414 continue;
13415 }
13416
13417 /* The exception for DW_TAG_typedef with has_children above is
13418 a workaround of GCC PR debug/47510. In the case of this complaint
13419 type_name_no_tag_or_error will error on such types later.
13420
13421 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13422 it could not find the child DIEs referenced later, this is checked
13423 above. In correct DWARF DW_TAG_typedef should have no children. */
13424
13425 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13426 complaint (&symfile_complaints,
13427 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13428 "- DIE at 0x%x [in module %s]"),
13429 part_die->offset.sect_off, objfile->name);
13430
13431 /* If we're at the second level, and we're an enumerator, and
13432 our parent has no specification (meaning possibly lives in a
13433 namespace elsewhere), then we can add the partial symbol now
13434 instead of queueing it. */
13435 if (part_die->tag == DW_TAG_enumerator
13436 && parent_die != NULL
13437 && parent_die->die_parent == NULL
13438 && parent_die->tag == DW_TAG_enumeration_type
13439 && parent_die->has_specification == 0)
13440 {
13441 if (part_die->name == NULL)
13442 complaint (&symfile_complaints,
13443 _("malformed enumerator DIE ignored"));
13444 else if (building_psymtab)
13445 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13446 VAR_DOMAIN, LOC_CONST,
13447 (cu->language == language_cplus
13448 || cu->language == language_java)
13449 ? &objfile->global_psymbols
13450 : &objfile->static_psymbols,
13451 0, (CORE_ADDR) 0, cu->language, objfile);
13452
13453 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13454 continue;
13455 }
13456
13457 /* We'll save this DIE so link it in. */
13458 part_die->die_parent = parent_die;
13459 part_die->die_sibling = NULL;
13460 part_die->die_child = NULL;
13461
13462 if (last_die && last_die == parent_die)
13463 last_die->die_child = part_die;
13464 else if (last_die)
13465 last_die->die_sibling = part_die;
13466
13467 last_die = part_die;
13468
13469 if (first_die == NULL)
13470 first_die = part_die;
13471
13472 /* Maybe add the DIE to the hash table. Not all DIEs that we
13473 find interesting need to be in the hash table, because we
13474 also have the parent/sibling/child chains; only those that we
13475 might refer to by offset later during partial symbol reading.
13476
13477 For now this means things that might have be the target of a
13478 DW_AT_specification, DW_AT_abstract_origin, or
13479 DW_AT_extension. DW_AT_extension will refer only to
13480 namespaces; DW_AT_abstract_origin refers to functions (and
13481 many things under the function DIE, but we do not recurse
13482 into function DIEs during partial symbol reading) and
13483 possibly variables as well; DW_AT_specification refers to
13484 declarations. Declarations ought to have the DW_AT_declaration
13485 flag. It happens that GCC forgets to put it in sometimes, but
13486 only for functions, not for types.
13487
13488 Adding more things than necessary to the hash table is harmless
13489 except for the performance cost. Adding too few will result in
13490 wasted time in find_partial_die, when we reread the compilation
13491 unit with load_all_dies set. */
13492
13493 if (load_all
13494 || abbrev->tag == DW_TAG_constant
13495 || abbrev->tag == DW_TAG_subprogram
13496 || abbrev->tag == DW_TAG_variable
13497 || abbrev->tag == DW_TAG_namespace
13498 || part_die->is_declaration)
13499 {
13500 void **slot;
13501
13502 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13503 part_die->offset.sect_off, INSERT);
13504 *slot = part_die;
13505 }
13506
13507 part_die = obstack_alloc (&cu->comp_unit_obstack,
13508 sizeof (struct partial_die_info));
13509
13510 /* For some DIEs we want to follow their children (if any). For C
13511 we have no reason to follow the children of structures; for other
13512 languages we have to, so that we can get at method physnames
13513 to infer fully qualified class names, for DW_AT_specification,
13514 and for C++ template arguments. For C++, we also look one level
13515 inside functions to find template arguments (if the name of the
13516 function does not already contain the template arguments).
13517
13518 For Ada, we need to scan the children of subprograms and lexical
13519 blocks as well because Ada allows the definition of nested
13520 entities that could be interesting for the debugger, such as
13521 nested subprograms for instance. */
13522 if (last_die->has_children
13523 && (load_all
13524 || last_die->tag == DW_TAG_namespace
13525 || last_die->tag == DW_TAG_module
13526 || last_die->tag == DW_TAG_enumeration_type
13527 || (cu->language == language_cplus
13528 && last_die->tag == DW_TAG_subprogram
13529 && (last_die->name == NULL
13530 || strchr (last_die->name, '<') == NULL))
13531 || (cu->language != language_c
13532 && (last_die->tag == DW_TAG_class_type
13533 || last_die->tag == DW_TAG_interface_type
13534 || last_die->tag == DW_TAG_structure_type
13535 || last_die->tag == DW_TAG_union_type))
13536 || (cu->language == language_ada
13537 && (last_die->tag == DW_TAG_subprogram
13538 || last_die->tag == DW_TAG_lexical_block))))
13539 {
13540 nesting_level++;
13541 parent_die = last_die;
13542 continue;
13543 }
13544
13545 /* Otherwise we skip to the next sibling, if any. */
13546 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13547
13548 /* Back to the top, do it again. */
13549 }
13550 }
13551
13552 /* Read a minimal amount of information into the minimal die structure. */
13553
13554 static gdb_byte *
13555 read_partial_die (const struct die_reader_specs *reader,
13556 struct partial_die_info *part_die,
13557 struct abbrev_info *abbrev, unsigned int abbrev_len,
13558 gdb_byte *info_ptr)
13559 {
13560 struct dwarf2_cu *cu = reader->cu;
13561 struct objfile *objfile = cu->objfile;
13562 gdb_byte *buffer = reader->buffer;
13563 unsigned int i;
13564 struct attribute attr;
13565 int has_low_pc_attr = 0;
13566 int has_high_pc_attr = 0;
13567 int high_pc_relative = 0;
13568
13569 memset (part_die, 0, sizeof (struct partial_die_info));
13570
13571 part_die->offset.sect_off = info_ptr - buffer;
13572
13573 info_ptr += abbrev_len;
13574
13575 if (abbrev == NULL)
13576 return info_ptr;
13577
13578 part_die->tag = abbrev->tag;
13579 part_die->has_children = abbrev->has_children;
13580
13581 for (i = 0; i < abbrev->num_attrs; ++i)
13582 {
13583 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13584
13585 /* Store the data if it is of an attribute we want to keep in a
13586 partial symbol table. */
13587 switch (attr.name)
13588 {
13589 case DW_AT_name:
13590 switch (part_die->tag)
13591 {
13592 case DW_TAG_compile_unit:
13593 case DW_TAG_partial_unit:
13594 case DW_TAG_type_unit:
13595 /* Compilation units have a DW_AT_name that is a filename, not
13596 a source language identifier. */
13597 case DW_TAG_enumeration_type:
13598 case DW_TAG_enumerator:
13599 /* These tags always have simple identifiers already; no need
13600 to canonicalize them. */
13601 part_die->name = DW_STRING (&attr);
13602 break;
13603 default:
13604 part_die->name
13605 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13606 &objfile->objfile_obstack);
13607 break;
13608 }
13609 break;
13610 case DW_AT_linkage_name:
13611 case DW_AT_MIPS_linkage_name:
13612 /* Note that both forms of linkage name might appear. We
13613 assume they will be the same, and we only store the last
13614 one we see. */
13615 if (cu->language == language_ada)
13616 part_die->name = DW_STRING (&attr);
13617 part_die->linkage_name = DW_STRING (&attr);
13618 break;
13619 case DW_AT_low_pc:
13620 has_low_pc_attr = 1;
13621 part_die->lowpc = DW_ADDR (&attr);
13622 break;
13623 case DW_AT_high_pc:
13624 has_high_pc_attr = 1;
13625 if (attr.form == DW_FORM_addr
13626 || attr.form == DW_FORM_GNU_addr_index)
13627 part_die->highpc = DW_ADDR (&attr);
13628 else
13629 {
13630 high_pc_relative = 1;
13631 part_die->highpc = DW_UNSND (&attr);
13632 }
13633 break;
13634 case DW_AT_location:
13635 /* Support the .debug_loc offsets. */
13636 if (attr_form_is_block (&attr))
13637 {
13638 part_die->d.locdesc = DW_BLOCK (&attr);
13639 }
13640 else if (attr_form_is_section_offset (&attr))
13641 {
13642 dwarf2_complex_location_expr_complaint ();
13643 }
13644 else
13645 {
13646 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13647 "partial symbol information");
13648 }
13649 break;
13650 case DW_AT_external:
13651 part_die->is_external = DW_UNSND (&attr);
13652 break;
13653 case DW_AT_declaration:
13654 part_die->is_declaration = DW_UNSND (&attr);
13655 break;
13656 case DW_AT_type:
13657 part_die->has_type = 1;
13658 break;
13659 case DW_AT_abstract_origin:
13660 case DW_AT_specification:
13661 case DW_AT_extension:
13662 part_die->has_specification = 1;
13663 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13664 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13665 || cu->per_cu->is_dwz);
13666 break;
13667 case DW_AT_sibling:
13668 /* Ignore absolute siblings, they might point outside of
13669 the current compile unit. */
13670 if (attr.form == DW_FORM_ref_addr)
13671 complaint (&symfile_complaints,
13672 _("ignoring absolute DW_AT_sibling"));
13673 else
13674 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13675 break;
13676 case DW_AT_byte_size:
13677 part_die->has_byte_size = 1;
13678 break;
13679 case DW_AT_calling_convention:
13680 /* DWARF doesn't provide a way to identify a program's source-level
13681 entry point. DW_AT_calling_convention attributes are only meant
13682 to describe functions' calling conventions.
13683
13684 However, because it's a necessary piece of information in
13685 Fortran, and because DW_CC_program is the only piece of debugging
13686 information whose definition refers to a 'main program' at all,
13687 several compilers have begun marking Fortran main programs with
13688 DW_CC_program --- even when those functions use the standard
13689 calling conventions.
13690
13691 So until DWARF specifies a way to provide this information and
13692 compilers pick up the new representation, we'll support this
13693 practice. */
13694 if (DW_UNSND (&attr) == DW_CC_program
13695 && cu->language == language_fortran)
13696 {
13697 set_main_name (part_die->name);
13698
13699 /* As this DIE has a static linkage the name would be difficult
13700 to look up later. */
13701 language_of_main = language_fortran;
13702 }
13703 break;
13704 case DW_AT_inline:
13705 if (DW_UNSND (&attr) == DW_INL_inlined
13706 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13707 part_die->may_be_inlined = 1;
13708 break;
13709
13710 case DW_AT_import:
13711 if (part_die->tag == DW_TAG_imported_unit)
13712 {
13713 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13714 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13715 || cu->per_cu->is_dwz);
13716 }
13717 break;
13718
13719 default:
13720 break;
13721 }
13722 }
13723
13724 if (high_pc_relative)
13725 part_die->highpc += part_die->lowpc;
13726
13727 if (has_low_pc_attr && has_high_pc_attr)
13728 {
13729 /* When using the GNU linker, .gnu.linkonce. sections are used to
13730 eliminate duplicate copies of functions and vtables and such.
13731 The linker will arbitrarily choose one and discard the others.
13732 The AT_*_pc values for such functions refer to local labels in
13733 these sections. If the section from that file was discarded, the
13734 labels are not in the output, so the relocs get a value of 0.
13735 If this is a discarded function, mark the pc bounds as invalid,
13736 so that GDB will ignore it. */
13737 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13738 {
13739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13740
13741 complaint (&symfile_complaints,
13742 _("DW_AT_low_pc %s is zero "
13743 "for DIE at 0x%x [in module %s]"),
13744 paddress (gdbarch, part_die->lowpc),
13745 part_die->offset.sect_off, objfile->name);
13746 }
13747 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13748 else if (part_die->lowpc >= part_die->highpc)
13749 {
13750 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13751
13752 complaint (&symfile_complaints,
13753 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13754 "for DIE at 0x%x [in module %s]"),
13755 paddress (gdbarch, part_die->lowpc),
13756 paddress (gdbarch, part_die->highpc),
13757 part_die->offset.sect_off, objfile->name);
13758 }
13759 else
13760 part_die->has_pc_info = 1;
13761 }
13762
13763 return info_ptr;
13764 }
13765
13766 /* Find a cached partial DIE at OFFSET in CU. */
13767
13768 static struct partial_die_info *
13769 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13770 {
13771 struct partial_die_info *lookup_die = NULL;
13772 struct partial_die_info part_die;
13773
13774 part_die.offset = offset;
13775 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13776 offset.sect_off);
13777
13778 return lookup_die;
13779 }
13780
13781 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13782 except in the case of .debug_types DIEs which do not reference
13783 outside their CU (they do however referencing other types via
13784 DW_FORM_ref_sig8). */
13785
13786 static struct partial_die_info *
13787 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13788 {
13789 struct objfile *objfile = cu->objfile;
13790 struct dwarf2_per_cu_data *per_cu = NULL;
13791 struct partial_die_info *pd = NULL;
13792
13793 if (offset_in_dwz == cu->per_cu->is_dwz
13794 && offset_in_cu_p (&cu->header, offset))
13795 {
13796 pd = find_partial_die_in_comp_unit (offset, cu);
13797 if (pd != NULL)
13798 return pd;
13799 /* We missed recording what we needed.
13800 Load all dies and try again. */
13801 per_cu = cu->per_cu;
13802 }
13803 else
13804 {
13805 /* TUs don't reference other CUs/TUs (except via type signatures). */
13806 if (cu->per_cu->is_debug_types)
13807 {
13808 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13809 " external reference to offset 0x%lx [in module %s].\n"),
13810 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13811 bfd_get_filename (objfile->obfd));
13812 }
13813 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13814 objfile);
13815
13816 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13817 load_partial_comp_unit (per_cu);
13818
13819 per_cu->cu->last_used = 0;
13820 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13821 }
13822
13823 /* If we didn't find it, and not all dies have been loaded,
13824 load them all and try again. */
13825
13826 if (pd == NULL && per_cu->load_all_dies == 0)
13827 {
13828 per_cu->load_all_dies = 1;
13829
13830 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13831 THIS_CU->cu may already be in use. So we can't just free it and
13832 replace its DIEs with the ones we read in. Instead, we leave those
13833 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13834 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13835 set. */
13836 load_partial_comp_unit (per_cu);
13837
13838 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13839 }
13840
13841 if (pd == NULL)
13842 internal_error (__FILE__, __LINE__,
13843 _("could not find partial DIE 0x%x "
13844 "in cache [from module %s]\n"),
13845 offset.sect_off, bfd_get_filename (objfile->obfd));
13846 return pd;
13847 }
13848
13849 /* See if we can figure out if the class lives in a namespace. We do
13850 this by looking for a member function; its demangled name will
13851 contain namespace info, if there is any. */
13852
13853 static void
13854 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13855 struct dwarf2_cu *cu)
13856 {
13857 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13858 what template types look like, because the demangler
13859 frequently doesn't give the same name as the debug info. We
13860 could fix this by only using the demangled name to get the
13861 prefix (but see comment in read_structure_type). */
13862
13863 struct partial_die_info *real_pdi;
13864 struct partial_die_info *child_pdi;
13865
13866 /* If this DIE (this DIE's specification, if any) has a parent, then
13867 we should not do this. We'll prepend the parent's fully qualified
13868 name when we create the partial symbol. */
13869
13870 real_pdi = struct_pdi;
13871 while (real_pdi->has_specification)
13872 real_pdi = find_partial_die (real_pdi->spec_offset,
13873 real_pdi->spec_is_dwz, cu);
13874
13875 if (real_pdi->die_parent != NULL)
13876 return;
13877
13878 for (child_pdi = struct_pdi->die_child;
13879 child_pdi != NULL;
13880 child_pdi = child_pdi->die_sibling)
13881 {
13882 if (child_pdi->tag == DW_TAG_subprogram
13883 && child_pdi->linkage_name != NULL)
13884 {
13885 char *actual_class_name
13886 = language_class_name_from_physname (cu->language_defn,
13887 child_pdi->linkage_name);
13888 if (actual_class_name != NULL)
13889 {
13890 struct_pdi->name
13891 = obstack_copy0 (&cu->objfile->objfile_obstack,
13892 actual_class_name,
13893 strlen (actual_class_name));
13894 xfree (actual_class_name);
13895 }
13896 break;
13897 }
13898 }
13899 }
13900
13901 /* Adjust PART_DIE before generating a symbol for it. This function
13902 may set the is_external flag or change the DIE's name. */
13903
13904 static void
13905 fixup_partial_die (struct partial_die_info *part_die,
13906 struct dwarf2_cu *cu)
13907 {
13908 /* Once we've fixed up a die, there's no point in doing so again.
13909 This also avoids a memory leak if we were to call
13910 guess_partial_die_structure_name multiple times. */
13911 if (part_die->fixup_called)
13912 return;
13913
13914 /* If we found a reference attribute and the DIE has no name, try
13915 to find a name in the referred to DIE. */
13916
13917 if (part_die->name == NULL && part_die->has_specification)
13918 {
13919 struct partial_die_info *spec_die;
13920
13921 spec_die = find_partial_die (part_die->spec_offset,
13922 part_die->spec_is_dwz, cu);
13923
13924 fixup_partial_die (spec_die, cu);
13925
13926 if (spec_die->name)
13927 {
13928 part_die->name = spec_die->name;
13929
13930 /* Copy DW_AT_external attribute if it is set. */
13931 if (spec_die->is_external)
13932 part_die->is_external = spec_die->is_external;
13933 }
13934 }
13935
13936 /* Set default names for some unnamed DIEs. */
13937
13938 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13939 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13940
13941 /* If there is no parent die to provide a namespace, and there are
13942 children, see if we can determine the namespace from their linkage
13943 name. */
13944 if (cu->language == language_cplus
13945 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13946 && part_die->die_parent == NULL
13947 && part_die->has_children
13948 && (part_die->tag == DW_TAG_class_type
13949 || part_die->tag == DW_TAG_structure_type
13950 || part_die->tag == DW_TAG_union_type))
13951 guess_partial_die_structure_name (part_die, cu);
13952
13953 /* GCC might emit a nameless struct or union that has a linkage
13954 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13955 if (part_die->name == NULL
13956 && (part_die->tag == DW_TAG_class_type
13957 || part_die->tag == DW_TAG_interface_type
13958 || part_die->tag == DW_TAG_structure_type
13959 || part_die->tag == DW_TAG_union_type)
13960 && part_die->linkage_name != NULL)
13961 {
13962 char *demangled;
13963
13964 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13965 if (demangled)
13966 {
13967 const char *base;
13968
13969 /* Strip any leading namespaces/classes, keep only the base name.
13970 DW_AT_name for named DIEs does not contain the prefixes. */
13971 base = strrchr (demangled, ':');
13972 if (base && base > demangled && base[-1] == ':')
13973 base++;
13974 else
13975 base = demangled;
13976
13977 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
13978 base, strlen (base));
13979 xfree (demangled);
13980 }
13981 }
13982
13983 part_die->fixup_called = 1;
13984 }
13985
13986 /* Read an attribute value described by an attribute form. */
13987
13988 static gdb_byte *
13989 read_attribute_value (const struct die_reader_specs *reader,
13990 struct attribute *attr, unsigned form,
13991 gdb_byte *info_ptr)
13992 {
13993 struct dwarf2_cu *cu = reader->cu;
13994 bfd *abfd = reader->abfd;
13995 struct comp_unit_head *cu_header = &cu->header;
13996 unsigned int bytes_read;
13997 struct dwarf_block *blk;
13998
13999 attr->form = form;
14000 switch (form)
14001 {
14002 case DW_FORM_ref_addr:
14003 if (cu->header.version == 2)
14004 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14005 else
14006 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14007 &cu->header, &bytes_read);
14008 info_ptr += bytes_read;
14009 break;
14010 case DW_FORM_GNU_ref_alt:
14011 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14012 info_ptr += bytes_read;
14013 break;
14014 case DW_FORM_addr:
14015 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14016 info_ptr += bytes_read;
14017 break;
14018 case DW_FORM_block2:
14019 blk = dwarf_alloc_block (cu);
14020 blk->size = read_2_bytes (abfd, info_ptr);
14021 info_ptr += 2;
14022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14023 info_ptr += blk->size;
14024 DW_BLOCK (attr) = blk;
14025 break;
14026 case DW_FORM_block4:
14027 blk = dwarf_alloc_block (cu);
14028 blk->size = read_4_bytes (abfd, info_ptr);
14029 info_ptr += 4;
14030 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14031 info_ptr += blk->size;
14032 DW_BLOCK (attr) = blk;
14033 break;
14034 case DW_FORM_data2:
14035 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14036 info_ptr += 2;
14037 break;
14038 case DW_FORM_data4:
14039 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14040 info_ptr += 4;
14041 break;
14042 case DW_FORM_data8:
14043 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14044 info_ptr += 8;
14045 break;
14046 case DW_FORM_sec_offset:
14047 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14048 info_ptr += bytes_read;
14049 break;
14050 case DW_FORM_string:
14051 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14052 DW_STRING_IS_CANONICAL (attr) = 0;
14053 info_ptr += bytes_read;
14054 break;
14055 case DW_FORM_strp:
14056 if (!cu->per_cu->is_dwz)
14057 {
14058 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14059 &bytes_read);
14060 DW_STRING_IS_CANONICAL (attr) = 0;
14061 info_ptr += bytes_read;
14062 break;
14063 }
14064 /* FALLTHROUGH */
14065 case DW_FORM_GNU_strp_alt:
14066 {
14067 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14068 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14069 &bytes_read);
14070
14071 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14072 DW_STRING_IS_CANONICAL (attr) = 0;
14073 info_ptr += bytes_read;
14074 }
14075 break;
14076 case DW_FORM_exprloc:
14077 case DW_FORM_block:
14078 blk = dwarf_alloc_block (cu);
14079 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14080 info_ptr += bytes_read;
14081 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14082 info_ptr += blk->size;
14083 DW_BLOCK (attr) = blk;
14084 break;
14085 case DW_FORM_block1:
14086 blk = dwarf_alloc_block (cu);
14087 blk->size = read_1_byte (abfd, info_ptr);
14088 info_ptr += 1;
14089 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14090 info_ptr += blk->size;
14091 DW_BLOCK (attr) = blk;
14092 break;
14093 case DW_FORM_data1:
14094 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14095 info_ptr += 1;
14096 break;
14097 case DW_FORM_flag:
14098 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14099 info_ptr += 1;
14100 break;
14101 case DW_FORM_flag_present:
14102 DW_UNSND (attr) = 1;
14103 break;
14104 case DW_FORM_sdata:
14105 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14106 info_ptr += bytes_read;
14107 break;
14108 case DW_FORM_udata:
14109 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14110 info_ptr += bytes_read;
14111 break;
14112 case DW_FORM_ref1:
14113 DW_UNSND (attr) = (cu->header.offset.sect_off
14114 + read_1_byte (abfd, info_ptr));
14115 info_ptr += 1;
14116 break;
14117 case DW_FORM_ref2:
14118 DW_UNSND (attr) = (cu->header.offset.sect_off
14119 + read_2_bytes (abfd, info_ptr));
14120 info_ptr += 2;
14121 break;
14122 case DW_FORM_ref4:
14123 DW_UNSND (attr) = (cu->header.offset.sect_off
14124 + read_4_bytes (abfd, info_ptr));
14125 info_ptr += 4;
14126 break;
14127 case DW_FORM_ref8:
14128 DW_UNSND (attr) = (cu->header.offset.sect_off
14129 + read_8_bytes (abfd, info_ptr));
14130 info_ptr += 8;
14131 break;
14132 case DW_FORM_ref_sig8:
14133 /* Convert the signature to something we can record in DW_UNSND
14134 for later lookup.
14135 NOTE: This is NULL if the type wasn't found. */
14136 DW_SIGNATURED_TYPE (attr) =
14137 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14138 info_ptr += 8;
14139 break;
14140 case DW_FORM_ref_udata:
14141 DW_UNSND (attr) = (cu->header.offset.sect_off
14142 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14143 info_ptr += bytes_read;
14144 break;
14145 case DW_FORM_indirect:
14146 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14147 info_ptr += bytes_read;
14148 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14149 break;
14150 case DW_FORM_GNU_addr_index:
14151 if (reader->dwo_file == NULL)
14152 {
14153 /* For now flag a hard error.
14154 Later we can turn this into a complaint. */
14155 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14156 dwarf_form_name (form),
14157 bfd_get_filename (abfd));
14158 }
14159 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14160 info_ptr += bytes_read;
14161 break;
14162 case DW_FORM_GNU_str_index:
14163 if (reader->dwo_file == NULL)
14164 {
14165 /* For now flag a hard error.
14166 Later we can turn this into a complaint if warranted. */
14167 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14168 dwarf_form_name (form),
14169 bfd_get_filename (abfd));
14170 }
14171 {
14172 ULONGEST str_index =
14173 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14174
14175 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14176 DW_STRING_IS_CANONICAL (attr) = 0;
14177 info_ptr += bytes_read;
14178 }
14179 break;
14180 default:
14181 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14182 dwarf_form_name (form),
14183 bfd_get_filename (abfd));
14184 }
14185
14186 /* Super hack. */
14187 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14188 attr->form = DW_FORM_GNU_ref_alt;
14189
14190 /* We have seen instances where the compiler tried to emit a byte
14191 size attribute of -1 which ended up being encoded as an unsigned
14192 0xffffffff. Although 0xffffffff is technically a valid size value,
14193 an object of this size seems pretty unlikely so we can relatively
14194 safely treat these cases as if the size attribute was invalid and
14195 treat them as zero by default. */
14196 if (attr->name == DW_AT_byte_size
14197 && form == DW_FORM_data4
14198 && DW_UNSND (attr) >= 0xffffffff)
14199 {
14200 complaint
14201 (&symfile_complaints,
14202 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14203 hex_string (DW_UNSND (attr)));
14204 DW_UNSND (attr) = 0;
14205 }
14206
14207 return info_ptr;
14208 }
14209
14210 /* Read an attribute described by an abbreviated attribute. */
14211
14212 static gdb_byte *
14213 read_attribute (const struct die_reader_specs *reader,
14214 struct attribute *attr, struct attr_abbrev *abbrev,
14215 gdb_byte *info_ptr)
14216 {
14217 attr->name = abbrev->name;
14218 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14219 }
14220
14221 /* Read dwarf information from a buffer. */
14222
14223 static unsigned int
14224 read_1_byte (bfd *abfd, const gdb_byte *buf)
14225 {
14226 return bfd_get_8 (abfd, buf);
14227 }
14228
14229 static int
14230 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14231 {
14232 return bfd_get_signed_8 (abfd, buf);
14233 }
14234
14235 static unsigned int
14236 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14237 {
14238 return bfd_get_16 (abfd, buf);
14239 }
14240
14241 static int
14242 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14243 {
14244 return bfd_get_signed_16 (abfd, buf);
14245 }
14246
14247 static unsigned int
14248 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14249 {
14250 return bfd_get_32 (abfd, buf);
14251 }
14252
14253 static int
14254 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14255 {
14256 return bfd_get_signed_32 (abfd, buf);
14257 }
14258
14259 static ULONGEST
14260 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14261 {
14262 return bfd_get_64 (abfd, buf);
14263 }
14264
14265 static CORE_ADDR
14266 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14267 unsigned int *bytes_read)
14268 {
14269 struct comp_unit_head *cu_header = &cu->header;
14270 CORE_ADDR retval = 0;
14271
14272 if (cu_header->signed_addr_p)
14273 {
14274 switch (cu_header->addr_size)
14275 {
14276 case 2:
14277 retval = bfd_get_signed_16 (abfd, buf);
14278 break;
14279 case 4:
14280 retval = bfd_get_signed_32 (abfd, buf);
14281 break;
14282 case 8:
14283 retval = bfd_get_signed_64 (abfd, buf);
14284 break;
14285 default:
14286 internal_error (__FILE__, __LINE__,
14287 _("read_address: bad switch, signed [in module %s]"),
14288 bfd_get_filename (abfd));
14289 }
14290 }
14291 else
14292 {
14293 switch (cu_header->addr_size)
14294 {
14295 case 2:
14296 retval = bfd_get_16 (abfd, buf);
14297 break;
14298 case 4:
14299 retval = bfd_get_32 (abfd, buf);
14300 break;
14301 case 8:
14302 retval = bfd_get_64 (abfd, buf);
14303 break;
14304 default:
14305 internal_error (__FILE__, __LINE__,
14306 _("read_address: bad switch, "
14307 "unsigned [in module %s]"),
14308 bfd_get_filename (abfd));
14309 }
14310 }
14311
14312 *bytes_read = cu_header->addr_size;
14313 return retval;
14314 }
14315
14316 /* Read the initial length from a section. The (draft) DWARF 3
14317 specification allows the initial length to take up either 4 bytes
14318 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14319 bytes describe the length and all offsets will be 8 bytes in length
14320 instead of 4.
14321
14322 An older, non-standard 64-bit format is also handled by this
14323 function. The older format in question stores the initial length
14324 as an 8-byte quantity without an escape value. Lengths greater
14325 than 2^32 aren't very common which means that the initial 4 bytes
14326 is almost always zero. Since a length value of zero doesn't make
14327 sense for the 32-bit format, this initial zero can be considered to
14328 be an escape value which indicates the presence of the older 64-bit
14329 format. As written, the code can't detect (old format) lengths
14330 greater than 4GB. If it becomes necessary to handle lengths
14331 somewhat larger than 4GB, we could allow other small values (such
14332 as the non-sensical values of 1, 2, and 3) to also be used as
14333 escape values indicating the presence of the old format.
14334
14335 The value returned via bytes_read should be used to increment the
14336 relevant pointer after calling read_initial_length().
14337
14338 [ Note: read_initial_length() and read_offset() are based on the
14339 document entitled "DWARF Debugging Information Format", revision
14340 3, draft 8, dated November 19, 2001. This document was obtained
14341 from:
14342
14343 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14344
14345 This document is only a draft and is subject to change. (So beware.)
14346
14347 Details regarding the older, non-standard 64-bit format were
14348 determined empirically by examining 64-bit ELF files produced by
14349 the SGI toolchain on an IRIX 6.5 machine.
14350
14351 - Kevin, July 16, 2002
14352 ] */
14353
14354 static LONGEST
14355 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14356 {
14357 LONGEST length = bfd_get_32 (abfd, buf);
14358
14359 if (length == 0xffffffff)
14360 {
14361 length = bfd_get_64 (abfd, buf + 4);
14362 *bytes_read = 12;
14363 }
14364 else if (length == 0)
14365 {
14366 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14367 length = bfd_get_64 (abfd, buf);
14368 *bytes_read = 8;
14369 }
14370 else
14371 {
14372 *bytes_read = 4;
14373 }
14374
14375 return length;
14376 }
14377
14378 /* Cover function for read_initial_length.
14379 Returns the length of the object at BUF, and stores the size of the
14380 initial length in *BYTES_READ and stores the size that offsets will be in
14381 *OFFSET_SIZE.
14382 If the initial length size is not equivalent to that specified in
14383 CU_HEADER then issue a complaint.
14384 This is useful when reading non-comp-unit headers. */
14385
14386 static LONGEST
14387 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14388 const struct comp_unit_head *cu_header,
14389 unsigned int *bytes_read,
14390 unsigned int *offset_size)
14391 {
14392 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14393
14394 gdb_assert (cu_header->initial_length_size == 4
14395 || cu_header->initial_length_size == 8
14396 || cu_header->initial_length_size == 12);
14397
14398 if (cu_header->initial_length_size != *bytes_read)
14399 complaint (&symfile_complaints,
14400 _("intermixed 32-bit and 64-bit DWARF sections"));
14401
14402 *offset_size = (*bytes_read == 4) ? 4 : 8;
14403 return length;
14404 }
14405
14406 /* Read an offset from the data stream. The size of the offset is
14407 given by cu_header->offset_size. */
14408
14409 static LONGEST
14410 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14411 unsigned int *bytes_read)
14412 {
14413 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14414
14415 *bytes_read = cu_header->offset_size;
14416 return offset;
14417 }
14418
14419 /* Read an offset from the data stream. */
14420
14421 static LONGEST
14422 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14423 {
14424 LONGEST retval = 0;
14425
14426 switch (offset_size)
14427 {
14428 case 4:
14429 retval = bfd_get_32 (abfd, buf);
14430 break;
14431 case 8:
14432 retval = bfd_get_64 (abfd, buf);
14433 break;
14434 default:
14435 internal_error (__FILE__, __LINE__,
14436 _("read_offset_1: bad switch [in module %s]"),
14437 bfd_get_filename (abfd));
14438 }
14439
14440 return retval;
14441 }
14442
14443 static gdb_byte *
14444 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14445 {
14446 /* If the size of a host char is 8 bits, we can return a pointer
14447 to the buffer, otherwise we have to copy the data to a buffer
14448 allocated on the temporary obstack. */
14449 gdb_assert (HOST_CHAR_BIT == 8);
14450 return buf;
14451 }
14452
14453 static char *
14454 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14455 {
14456 /* If the size of a host char is 8 bits, we can return a pointer
14457 to the string, otherwise we have to copy the string to a buffer
14458 allocated on the temporary obstack. */
14459 gdb_assert (HOST_CHAR_BIT == 8);
14460 if (*buf == '\0')
14461 {
14462 *bytes_read_ptr = 1;
14463 return NULL;
14464 }
14465 *bytes_read_ptr = strlen ((char *) buf) + 1;
14466 return (char *) buf;
14467 }
14468
14469 static char *
14470 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14471 {
14472 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14473 if (dwarf2_per_objfile->str.buffer == NULL)
14474 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14475 bfd_get_filename (abfd));
14476 if (str_offset >= dwarf2_per_objfile->str.size)
14477 error (_("DW_FORM_strp pointing outside of "
14478 ".debug_str section [in module %s]"),
14479 bfd_get_filename (abfd));
14480 gdb_assert (HOST_CHAR_BIT == 8);
14481 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14482 return NULL;
14483 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14484 }
14485
14486 /* Read a string at offset STR_OFFSET in the .debug_str section from
14487 the .dwz file DWZ. Throw an error if the offset is too large. If
14488 the string consists of a single NUL byte, return NULL; otherwise
14489 return a pointer to the string. */
14490
14491 static char *
14492 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14493 {
14494 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14495
14496 if (dwz->str.buffer == NULL)
14497 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14498 "section [in module %s]"),
14499 bfd_get_filename (dwz->dwz_bfd));
14500 if (str_offset >= dwz->str.size)
14501 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14502 ".debug_str section [in module %s]"),
14503 bfd_get_filename (dwz->dwz_bfd));
14504 gdb_assert (HOST_CHAR_BIT == 8);
14505 if (dwz->str.buffer[str_offset] == '\0')
14506 return NULL;
14507 return (char *) (dwz->str.buffer + str_offset);
14508 }
14509
14510 static char *
14511 read_indirect_string (bfd *abfd, gdb_byte *buf,
14512 const struct comp_unit_head *cu_header,
14513 unsigned int *bytes_read_ptr)
14514 {
14515 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14516
14517 return read_indirect_string_at_offset (abfd, str_offset);
14518 }
14519
14520 static ULONGEST
14521 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14522 {
14523 ULONGEST result;
14524 unsigned int num_read;
14525 int i, shift;
14526 unsigned char byte;
14527
14528 result = 0;
14529 shift = 0;
14530 num_read = 0;
14531 i = 0;
14532 while (1)
14533 {
14534 byte = bfd_get_8 (abfd, buf);
14535 buf++;
14536 num_read++;
14537 result |= ((ULONGEST) (byte & 127) << shift);
14538 if ((byte & 128) == 0)
14539 {
14540 break;
14541 }
14542 shift += 7;
14543 }
14544 *bytes_read_ptr = num_read;
14545 return result;
14546 }
14547
14548 static LONGEST
14549 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14550 {
14551 LONGEST result;
14552 int i, shift, num_read;
14553 unsigned char byte;
14554
14555 result = 0;
14556 shift = 0;
14557 num_read = 0;
14558 i = 0;
14559 while (1)
14560 {
14561 byte = bfd_get_8 (abfd, buf);
14562 buf++;
14563 num_read++;
14564 result |= ((LONGEST) (byte & 127) << shift);
14565 shift += 7;
14566 if ((byte & 128) == 0)
14567 {
14568 break;
14569 }
14570 }
14571 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14572 result |= -(((LONGEST) 1) << shift);
14573 *bytes_read_ptr = num_read;
14574 return result;
14575 }
14576
14577 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14578 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14579 ADDR_SIZE is the size of addresses from the CU header. */
14580
14581 static CORE_ADDR
14582 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14583 {
14584 struct objfile *objfile = dwarf2_per_objfile->objfile;
14585 bfd *abfd = objfile->obfd;
14586 const gdb_byte *info_ptr;
14587
14588 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14589 if (dwarf2_per_objfile->addr.buffer == NULL)
14590 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14591 objfile->name);
14592 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14593 error (_("DW_FORM_addr_index pointing outside of "
14594 ".debug_addr section [in module %s]"),
14595 objfile->name);
14596 info_ptr = (dwarf2_per_objfile->addr.buffer
14597 + addr_base + addr_index * addr_size);
14598 if (addr_size == 4)
14599 return bfd_get_32 (abfd, info_ptr);
14600 else
14601 return bfd_get_64 (abfd, info_ptr);
14602 }
14603
14604 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14605
14606 static CORE_ADDR
14607 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14608 {
14609 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14610 }
14611
14612 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14613
14614 static CORE_ADDR
14615 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14616 unsigned int *bytes_read)
14617 {
14618 bfd *abfd = cu->objfile->obfd;
14619 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14620
14621 return read_addr_index (cu, addr_index);
14622 }
14623
14624 /* Data structure to pass results from dwarf2_read_addr_index_reader
14625 back to dwarf2_read_addr_index. */
14626
14627 struct dwarf2_read_addr_index_data
14628 {
14629 ULONGEST addr_base;
14630 int addr_size;
14631 };
14632
14633 /* die_reader_func for dwarf2_read_addr_index. */
14634
14635 static void
14636 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14637 gdb_byte *info_ptr,
14638 struct die_info *comp_unit_die,
14639 int has_children,
14640 void *data)
14641 {
14642 struct dwarf2_cu *cu = reader->cu;
14643 struct dwarf2_read_addr_index_data *aidata =
14644 (struct dwarf2_read_addr_index_data *) data;
14645
14646 aidata->addr_base = cu->addr_base;
14647 aidata->addr_size = cu->header.addr_size;
14648 }
14649
14650 /* Given an index in .debug_addr, fetch the value.
14651 NOTE: This can be called during dwarf expression evaluation,
14652 long after the debug information has been read, and thus per_cu->cu
14653 may no longer exist. */
14654
14655 CORE_ADDR
14656 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14657 unsigned int addr_index)
14658 {
14659 struct objfile *objfile = per_cu->objfile;
14660 struct dwarf2_cu *cu = per_cu->cu;
14661 ULONGEST addr_base;
14662 int addr_size;
14663
14664 /* This is intended to be called from outside this file. */
14665 dw2_setup (objfile);
14666
14667 /* We need addr_base and addr_size.
14668 If we don't have PER_CU->cu, we have to get it.
14669 Nasty, but the alternative is storing the needed info in PER_CU,
14670 which at this point doesn't seem justified: it's not clear how frequently
14671 it would get used and it would increase the size of every PER_CU.
14672 Entry points like dwarf2_per_cu_addr_size do a similar thing
14673 so we're not in uncharted territory here.
14674 Alas we need to be a bit more complicated as addr_base is contained
14675 in the DIE.
14676
14677 We don't need to read the entire CU(/TU).
14678 We just need the header and top level die.
14679
14680 IWBN to use the aging mechanism to let us lazily later discard the CU.
14681 For now we skip this optimization. */
14682
14683 if (cu != NULL)
14684 {
14685 addr_base = cu->addr_base;
14686 addr_size = cu->header.addr_size;
14687 }
14688 else
14689 {
14690 struct dwarf2_read_addr_index_data aidata;
14691
14692 /* Note: We can't use init_cutu_and_read_dies_simple here,
14693 we need addr_base. */
14694 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14695 dwarf2_read_addr_index_reader, &aidata);
14696 addr_base = aidata.addr_base;
14697 addr_size = aidata.addr_size;
14698 }
14699
14700 return read_addr_index_1 (addr_index, addr_base, addr_size);
14701 }
14702
14703 /* Given a DW_AT_str_index, fetch the string. */
14704
14705 static char *
14706 read_str_index (const struct die_reader_specs *reader,
14707 struct dwarf2_cu *cu, ULONGEST str_index)
14708 {
14709 struct objfile *objfile = dwarf2_per_objfile->objfile;
14710 const char *dwo_name = objfile->name;
14711 bfd *abfd = objfile->obfd;
14712 struct dwo_sections *sections = &reader->dwo_file->sections;
14713 gdb_byte *info_ptr;
14714 ULONGEST str_offset;
14715
14716 dwarf2_read_section (objfile, &sections->str);
14717 dwarf2_read_section (objfile, &sections->str_offsets);
14718 if (sections->str.buffer == NULL)
14719 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14720 " in CU at offset 0x%lx [in module %s]"),
14721 (long) cu->header.offset.sect_off, dwo_name);
14722 if (sections->str_offsets.buffer == NULL)
14723 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14724 " in CU at offset 0x%lx [in module %s]"),
14725 (long) cu->header.offset.sect_off, dwo_name);
14726 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14727 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14728 " section in CU at offset 0x%lx [in module %s]"),
14729 (long) cu->header.offset.sect_off, dwo_name);
14730 info_ptr = (sections->str_offsets.buffer
14731 + str_index * cu->header.offset_size);
14732 if (cu->header.offset_size == 4)
14733 str_offset = bfd_get_32 (abfd, info_ptr);
14734 else
14735 str_offset = bfd_get_64 (abfd, info_ptr);
14736 if (str_offset >= sections->str.size)
14737 error (_("Offset from DW_FORM_str_index pointing outside of"
14738 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14739 (long) cu->header.offset.sect_off, dwo_name);
14740 return (char *) (sections->str.buffer + str_offset);
14741 }
14742
14743 /* Return the length of an LEB128 number in BUF. */
14744
14745 static int
14746 leb128_size (const gdb_byte *buf)
14747 {
14748 const gdb_byte *begin = buf;
14749 gdb_byte byte;
14750
14751 while (1)
14752 {
14753 byte = *buf++;
14754 if ((byte & 128) == 0)
14755 return buf - begin;
14756 }
14757 }
14758
14759 static void
14760 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14761 {
14762 switch (lang)
14763 {
14764 case DW_LANG_C89:
14765 case DW_LANG_C99:
14766 case DW_LANG_C:
14767 cu->language = language_c;
14768 break;
14769 case DW_LANG_C_plus_plus:
14770 cu->language = language_cplus;
14771 break;
14772 case DW_LANG_D:
14773 cu->language = language_d;
14774 break;
14775 case DW_LANG_Fortran77:
14776 case DW_LANG_Fortran90:
14777 case DW_LANG_Fortran95:
14778 cu->language = language_fortran;
14779 break;
14780 case DW_LANG_Go:
14781 cu->language = language_go;
14782 break;
14783 case DW_LANG_Mips_Assembler:
14784 cu->language = language_asm;
14785 break;
14786 case DW_LANG_Java:
14787 cu->language = language_java;
14788 break;
14789 case DW_LANG_Ada83:
14790 case DW_LANG_Ada95:
14791 cu->language = language_ada;
14792 break;
14793 case DW_LANG_Modula2:
14794 cu->language = language_m2;
14795 break;
14796 case DW_LANG_Pascal83:
14797 cu->language = language_pascal;
14798 break;
14799 case DW_LANG_ObjC:
14800 cu->language = language_objc;
14801 break;
14802 case DW_LANG_Cobol74:
14803 case DW_LANG_Cobol85:
14804 default:
14805 cu->language = language_minimal;
14806 break;
14807 }
14808 cu->language_defn = language_def (cu->language);
14809 }
14810
14811 /* Return the named attribute or NULL if not there. */
14812
14813 static struct attribute *
14814 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14815 {
14816 for (;;)
14817 {
14818 unsigned int i;
14819 struct attribute *spec = NULL;
14820
14821 for (i = 0; i < die->num_attrs; ++i)
14822 {
14823 if (die->attrs[i].name == name)
14824 return &die->attrs[i];
14825 if (die->attrs[i].name == DW_AT_specification
14826 || die->attrs[i].name == DW_AT_abstract_origin)
14827 spec = &die->attrs[i];
14828 }
14829
14830 if (!spec)
14831 break;
14832
14833 die = follow_die_ref (die, spec, &cu);
14834 }
14835
14836 return NULL;
14837 }
14838
14839 /* Return the named attribute or NULL if not there,
14840 but do not follow DW_AT_specification, etc.
14841 This is for use in contexts where we're reading .debug_types dies.
14842 Following DW_AT_specification, DW_AT_abstract_origin will take us
14843 back up the chain, and we want to go down. */
14844
14845 static struct attribute *
14846 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14847 {
14848 unsigned int i;
14849
14850 for (i = 0; i < die->num_attrs; ++i)
14851 if (die->attrs[i].name == name)
14852 return &die->attrs[i];
14853
14854 return NULL;
14855 }
14856
14857 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14858 and holds a non-zero value. This function should only be used for
14859 DW_FORM_flag or DW_FORM_flag_present attributes. */
14860
14861 static int
14862 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14863 {
14864 struct attribute *attr = dwarf2_attr (die, name, cu);
14865
14866 return (attr && DW_UNSND (attr));
14867 }
14868
14869 static int
14870 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14871 {
14872 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14873 which value is non-zero. However, we have to be careful with
14874 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14875 (via dwarf2_flag_true_p) follows this attribute. So we may
14876 end up accidently finding a declaration attribute that belongs
14877 to a different DIE referenced by the specification attribute,
14878 even though the given DIE does not have a declaration attribute. */
14879 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14880 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14881 }
14882
14883 /* Return the die giving the specification for DIE, if there is
14884 one. *SPEC_CU is the CU containing DIE on input, and the CU
14885 containing the return value on output. If there is no
14886 specification, but there is an abstract origin, that is
14887 returned. */
14888
14889 static struct die_info *
14890 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14891 {
14892 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14893 *spec_cu);
14894
14895 if (spec_attr == NULL)
14896 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14897
14898 if (spec_attr == NULL)
14899 return NULL;
14900 else
14901 return follow_die_ref (die, spec_attr, spec_cu);
14902 }
14903
14904 /* Free the line_header structure *LH, and any arrays and strings it
14905 refers to.
14906 NOTE: This is also used as a "cleanup" function. */
14907
14908 static void
14909 free_line_header (struct line_header *lh)
14910 {
14911 if (lh->standard_opcode_lengths)
14912 xfree (lh->standard_opcode_lengths);
14913
14914 /* Remember that all the lh->file_names[i].name pointers are
14915 pointers into debug_line_buffer, and don't need to be freed. */
14916 if (lh->file_names)
14917 xfree (lh->file_names);
14918
14919 /* Similarly for the include directory names. */
14920 if (lh->include_dirs)
14921 xfree (lh->include_dirs);
14922
14923 xfree (lh);
14924 }
14925
14926 /* Add an entry to LH's include directory table. */
14927
14928 static void
14929 add_include_dir (struct line_header *lh, char *include_dir)
14930 {
14931 /* Grow the array if necessary. */
14932 if (lh->include_dirs_size == 0)
14933 {
14934 lh->include_dirs_size = 1; /* for testing */
14935 lh->include_dirs = xmalloc (lh->include_dirs_size
14936 * sizeof (*lh->include_dirs));
14937 }
14938 else if (lh->num_include_dirs >= lh->include_dirs_size)
14939 {
14940 lh->include_dirs_size *= 2;
14941 lh->include_dirs = xrealloc (lh->include_dirs,
14942 (lh->include_dirs_size
14943 * sizeof (*lh->include_dirs)));
14944 }
14945
14946 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14947 }
14948
14949 /* Add an entry to LH's file name table. */
14950
14951 static void
14952 add_file_name (struct line_header *lh,
14953 char *name,
14954 unsigned int dir_index,
14955 unsigned int mod_time,
14956 unsigned int length)
14957 {
14958 struct file_entry *fe;
14959
14960 /* Grow the array if necessary. */
14961 if (lh->file_names_size == 0)
14962 {
14963 lh->file_names_size = 1; /* for testing */
14964 lh->file_names = xmalloc (lh->file_names_size
14965 * sizeof (*lh->file_names));
14966 }
14967 else if (lh->num_file_names >= lh->file_names_size)
14968 {
14969 lh->file_names_size *= 2;
14970 lh->file_names = xrealloc (lh->file_names,
14971 (lh->file_names_size
14972 * sizeof (*lh->file_names)));
14973 }
14974
14975 fe = &lh->file_names[lh->num_file_names++];
14976 fe->name = name;
14977 fe->dir_index = dir_index;
14978 fe->mod_time = mod_time;
14979 fe->length = length;
14980 fe->included_p = 0;
14981 fe->symtab = NULL;
14982 }
14983
14984 /* A convenience function to find the proper .debug_line section for a
14985 CU. */
14986
14987 static struct dwarf2_section_info *
14988 get_debug_line_section (struct dwarf2_cu *cu)
14989 {
14990 struct dwarf2_section_info *section;
14991
14992 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14993 DWO file. */
14994 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14995 section = &cu->dwo_unit->dwo_file->sections.line;
14996 else if (cu->per_cu->is_dwz)
14997 {
14998 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14999
15000 section = &dwz->line;
15001 }
15002 else
15003 section = &dwarf2_per_objfile->line;
15004
15005 return section;
15006 }
15007
15008 /* Read the statement program header starting at OFFSET in
15009 .debug_line, or .debug_line.dwo. Return a pointer
15010 to a struct line_header, allocated using xmalloc.
15011
15012 NOTE: the strings in the include directory and file name tables of
15013 the returned object point into the dwarf line section buffer,
15014 and must not be freed. */
15015
15016 static struct line_header *
15017 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15018 {
15019 struct cleanup *back_to;
15020 struct line_header *lh;
15021 gdb_byte *line_ptr;
15022 unsigned int bytes_read, offset_size;
15023 int i;
15024 char *cur_dir, *cur_file;
15025 struct dwarf2_section_info *section;
15026 bfd *abfd;
15027
15028 section = get_debug_line_section (cu);
15029 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15030 if (section->buffer == NULL)
15031 {
15032 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15033 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15034 else
15035 complaint (&symfile_complaints, _("missing .debug_line section"));
15036 return 0;
15037 }
15038
15039 /* We can't do this until we know the section is non-empty.
15040 Only then do we know we have such a section. */
15041 abfd = section->asection->owner;
15042
15043 /* Make sure that at least there's room for the total_length field.
15044 That could be 12 bytes long, but we're just going to fudge that. */
15045 if (offset + 4 >= section->size)
15046 {
15047 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15048 return 0;
15049 }
15050
15051 lh = xmalloc (sizeof (*lh));
15052 memset (lh, 0, sizeof (*lh));
15053 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15054 (void *) lh);
15055
15056 line_ptr = section->buffer + offset;
15057
15058 /* Read in the header. */
15059 lh->total_length =
15060 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15061 &bytes_read, &offset_size);
15062 line_ptr += bytes_read;
15063 if (line_ptr + lh->total_length > (section->buffer + section->size))
15064 {
15065 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15066 return 0;
15067 }
15068 lh->statement_program_end = line_ptr + lh->total_length;
15069 lh->version = read_2_bytes (abfd, line_ptr);
15070 line_ptr += 2;
15071 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15072 line_ptr += offset_size;
15073 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15074 line_ptr += 1;
15075 if (lh->version >= 4)
15076 {
15077 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15078 line_ptr += 1;
15079 }
15080 else
15081 lh->maximum_ops_per_instruction = 1;
15082
15083 if (lh->maximum_ops_per_instruction == 0)
15084 {
15085 lh->maximum_ops_per_instruction = 1;
15086 complaint (&symfile_complaints,
15087 _("invalid maximum_ops_per_instruction "
15088 "in `.debug_line' section"));
15089 }
15090
15091 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15092 line_ptr += 1;
15093 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15094 line_ptr += 1;
15095 lh->line_range = read_1_byte (abfd, line_ptr);
15096 line_ptr += 1;
15097 lh->opcode_base = read_1_byte (abfd, line_ptr);
15098 line_ptr += 1;
15099 lh->standard_opcode_lengths
15100 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15101
15102 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15103 for (i = 1; i < lh->opcode_base; ++i)
15104 {
15105 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15106 line_ptr += 1;
15107 }
15108
15109 /* Read directory table. */
15110 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15111 {
15112 line_ptr += bytes_read;
15113 add_include_dir (lh, cur_dir);
15114 }
15115 line_ptr += bytes_read;
15116
15117 /* Read file name table. */
15118 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15119 {
15120 unsigned int dir_index, mod_time, length;
15121
15122 line_ptr += bytes_read;
15123 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15124 line_ptr += bytes_read;
15125 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15126 line_ptr += bytes_read;
15127 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15128 line_ptr += bytes_read;
15129
15130 add_file_name (lh, cur_file, dir_index, mod_time, length);
15131 }
15132 line_ptr += bytes_read;
15133 lh->statement_program_start = line_ptr;
15134
15135 if (line_ptr > (section->buffer + section->size))
15136 complaint (&symfile_complaints,
15137 _("line number info header doesn't "
15138 "fit in `.debug_line' section"));
15139
15140 discard_cleanups (back_to);
15141 return lh;
15142 }
15143
15144 /* Subroutine of dwarf_decode_lines to simplify it.
15145 Return the file name of the psymtab for included file FILE_INDEX
15146 in line header LH of PST.
15147 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15148 If space for the result is malloc'd, it will be freed by a cleanup.
15149 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15150
15151 The function creates dangling cleanup registration. */
15152
15153 static char *
15154 psymtab_include_file_name (const struct line_header *lh, int file_index,
15155 const struct partial_symtab *pst,
15156 const char *comp_dir)
15157 {
15158 const struct file_entry fe = lh->file_names [file_index];
15159 char *include_name = fe.name;
15160 char *include_name_to_compare = include_name;
15161 char *dir_name = NULL;
15162 const char *pst_filename;
15163 char *copied_name = NULL;
15164 int file_is_pst;
15165
15166 if (fe.dir_index)
15167 dir_name = lh->include_dirs[fe.dir_index - 1];
15168
15169 if (!IS_ABSOLUTE_PATH (include_name)
15170 && (dir_name != NULL || comp_dir != NULL))
15171 {
15172 /* Avoid creating a duplicate psymtab for PST.
15173 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15174 Before we do the comparison, however, we need to account
15175 for DIR_NAME and COMP_DIR.
15176 First prepend dir_name (if non-NULL). If we still don't
15177 have an absolute path prepend comp_dir (if non-NULL).
15178 However, the directory we record in the include-file's
15179 psymtab does not contain COMP_DIR (to match the
15180 corresponding symtab(s)).
15181
15182 Example:
15183
15184 bash$ cd /tmp
15185 bash$ gcc -g ./hello.c
15186 include_name = "hello.c"
15187 dir_name = "."
15188 DW_AT_comp_dir = comp_dir = "/tmp"
15189 DW_AT_name = "./hello.c" */
15190
15191 if (dir_name != NULL)
15192 {
15193 include_name = concat (dir_name, SLASH_STRING,
15194 include_name, (char *)NULL);
15195 include_name_to_compare = include_name;
15196 make_cleanup (xfree, include_name);
15197 }
15198 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15199 {
15200 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15201 include_name, (char *)NULL);
15202 }
15203 }
15204
15205 pst_filename = pst->filename;
15206 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15207 {
15208 copied_name = concat (pst->dirname, SLASH_STRING,
15209 pst_filename, (char *)NULL);
15210 pst_filename = copied_name;
15211 }
15212
15213 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15214
15215 if (include_name_to_compare != include_name)
15216 xfree (include_name_to_compare);
15217 if (copied_name != NULL)
15218 xfree (copied_name);
15219
15220 if (file_is_pst)
15221 return NULL;
15222 return include_name;
15223 }
15224
15225 /* Ignore this record_line request. */
15226
15227 static void
15228 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15229 {
15230 return;
15231 }
15232
15233 /* Subroutine of dwarf_decode_lines to simplify it.
15234 Process the line number information in LH. */
15235
15236 static void
15237 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15238 struct dwarf2_cu *cu, struct partial_symtab *pst)
15239 {
15240 gdb_byte *line_ptr, *extended_end;
15241 gdb_byte *line_end;
15242 unsigned int bytes_read, extended_len;
15243 unsigned char op_code, extended_op, adj_opcode;
15244 CORE_ADDR baseaddr;
15245 struct objfile *objfile = cu->objfile;
15246 bfd *abfd = objfile->obfd;
15247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15248 const int decode_for_pst_p = (pst != NULL);
15249 struct subfile *last_subfile = NULL;
15250 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15251 = record_line;
15252
15253 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15254
15255 line_ptr = lh->statement_program_start;
15256 line_end = lh->statement_program_end;
15257
15258 /* Read the statement sequences until there's nothing left. */
15259 while (line_ptr < line_end)
15260 {
15261 /* state machine registers */
15262 CORE_ADDR address = 0;
15263 unsigned int file = 1;
15264 unsigned int line = 1;
15265 unsigned int column = 0;
15266 int is_stmt = lh->default_is_stmt;
15267 int basic_block = 0;
15268 int end_sequence = 0;
15269 CORE_ADDR addr;
15270 unsigned char op_index = 0;
15271
15272 if (!decode_for_pst_p && lh->num_file_names >= file)
15273 {
15274 /* Start a subfile for the current file of the state machine. */
15275 /* lh->include_dirs and lh->file_names are 0-based, but the
15276 directory and file name numbers in the statement program
15277 are 1-based. */
15278 struct file_entry *fe = &lh->file_names[file - 1];
15279 char *dir = NULL;
15280
15281 if (fe->dir_index)
15282 dir = lh->include_dirs[fe->dir_index - 1];
15283
15284 dwarf2_start_subfile (fe->name, dir, comp_dir);
15285 }
15286
15287 /* Decode the table. */
15288 while (!end_sequence)
15289 {
15290 op_code = read_1_byte (abfd, line_ptr);
15291 line_ptr += 1;
15292 if (line_ptr > line_end)
15293 {
15294 dwarf2_debug_line_missing_end_sequence_complaint ();
15295 break;
15296 }
15297
15298 if (op_code >= lh->opcode_base)
15299 {
15300 /* Special operand. */
15301 adj_opcode = op_code - lh->opcode_base;
15302 address += (((op_index + (adj_opcode / lh->line_range))
15303 / lh->maximum_ops_per_instruction)
15304 * lh->minimum_instruction_length);
15305 op_index = ((op_index + (adj_opcode / lh->line_range))
15306 % lh->maximum_ops_per_instruction);
15307 line += lh->line_base + (adj_opcode % lh->line_range);
15308 if (lh->num_file_names < file || file == 0)
15309 dwarf2_debug_line_missing_file_complaint ();
15310 /* For now we ignore lines not starting on an
15311 instruction boundary. */
15312 else if (op_index == 0)
15313 {
15314 lh->file_names[file - 1].included_p = 1;
15315 if (!decode_for_pst_p && is_stmt)
15316 {
15317 if (last_subfile != current_subfile)
15318 {
15319 addr = gdbarch_addr_bits_remove (gdbarch, address);
15320 if (last_subfile)
15321 (*p_record_line) (last_subfile, 0, addr);
15322 last_subfile = current_subfile;
15323 }
15324 /* Append row to matrix using current values. */
15325 addr = gdbarch_addr_bits_remove (gdbarch, address);
15326 (*p_record_line) (current_subfile, line, addr);
15327 }
15328 }
15329 basic_block = 0;
15330 }
15331 else switch (op_code)
15332 {
15333 case DW_LNS_extended_op:
15334 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15335 &bytes_read);
15336 line_ptr += bytes_read;
15337 extended_end = line_ptr + extended_len;
15338 extended_op = read_1_byte (abfd, line_ptr);
15339 line_ptr += 1;
15340 switch (extended_op)
15341 {
15342 case DW_LNE_end_sequence:
15343 p_record_line = record_line;
15344 end_sequence = 1;
15345 break;
15346 case DW_LNE_set_address:
15347 address = read_address (abfd, line_ptr, cu, &bytes_read);
15348
15349 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15350 {
15351 /* This line table is for a function which has been
15352 GCd by the linker. Ignore it. PR gdb/12528 */
15353
15354 long line_offset
15355 = line_ptr - get_debug_line_section (cu)->buffer;
15356
15357 complaint (&symfile_complaints,
15358 _(".debug_line address at offset 0x%lx is 0 "
15359 "[in module %s]"),
15360 line_offset, objfile->name);
15361 p_record_line = noop_record_line;
15362 }
15363
15364 op_index = 0;
15365 line_ptr += bytes_read;
15366 address += baseaddr;
15367 break;
15368 case DW_LNE_define_file:
15369 {
15370 char *cur_file;
15371 unsigned int dir_index, mod_time, length;
15372
15373 cur_file = read_direct_string (abfd, line_ptr,
15374 &bytes_read);
15375 line_ptr += bytes_read;
15376 dir_index =
15377 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15378 line_ptr += bytes_read;
15379 mod_time =
15380 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15381 line_ptr += bytes_read;
15382 length =
15383 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15384 line_ptr += bytes_read;
15385 add_file_name (lh, cur_file, dir_index, mod_time, length);
15386 }
15387 break;
15388 case DW_LNE_set_discriminator:
15389 /* The discriminator is not interesting to the debugger;
15390 just ignore it. */
15391 line_ptr = extended_end;
15392 break;
15393 default:
15394 complaint (&symfile_complaints,
15395 _("mangled .debug_line section"));
15396 return;
15397 }
15398 /* Make sure that we parsed the extended op correctly. If e.g.
15399 we expected a different address size than the producer used,
15400 we may have read the wrong number of bytes. */
15401 if (line_ptr != extended_end)
15402 {
15403 complaint (&symfile_complaints,
15404 _("mangled .debug_line section"));
15405 return;
15406 }
15407 break;
15408 case DW_LNS_copy:
15409 if (lh->num_file_names < file || file == 0)
15410 dwarf2_debug_line_missing_file_complaint ();
15411 else
15412 {
15413 lh->file_names[file - 1].included_p = 1;
15414 if (!decode_for_pst_p && is_stmt)
15415 {
15416 if (last_subfile != current_subfile)
15417 {
15418 addr = gdbarch_addr_bits_remove (gdbarch, address);
15419 if (last_subfile)
15420 (*p_record_line) (last_subfile, 0, addr);
15421 last_subfile = current_subfile;
15422 }
15423 addr = gdbarch_addr_bits_remove (gdbarch, address);
15424 (*p_record_line) (current_subfile, line, addr);
15425 }
15426 }
15427 basic_block = 0;
15428 break;
15429 case DW_LNS_advance_pc:
15430 {
15431 CORE_ADDR adjust
15432 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15433
15434 address += (((op_index + adjust)
15435 / lh->maximum_ops_per_instruction)
15436 * lh->minimum_instruction_length);
15437 op_index = ((op_index + adjust)
15438 % lh->maximum_ops_per_instruction);
15439 line_ptr += bytes_read;
15440 }
15441 break;
15442 case DW_LNS_advance_line:
15443 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15444 line_ptr += bytes_read;
15445 break;
15446 case DW_LNS_set_file:
15447 {
15448 /* The arrays lh->include_dirs and lh->file_names are
15449 0-based, but the directory and file name numbers in
15450 the statement program are 1-based. */
15451 struct file_entry *fe;
15452 char *dir = NULL;
15453
15454 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15455 line_ptr += bytes_read;
15456 if (lh->num_file_names < file || file == 0)
15457 dwarf2_debug_line_missing_file_complaint ();
15458 else
15459 {
15460 fe = &lh->file_names[file - 1];
15461 if (fe->dir_index)
15462 dir = lh->include_dirs[fe->dir_index - 1];
15463 if (!decode_for_pst_p)
15464 {
15465 last_subfile = current_subfile;
15466 dwarf2_start_subfile (fe->name, dir, comp_dir);
15467 }
15468 }
15469 }
15470 break;
15471 case DW_LNS_set_column:
15472 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15473 line_ptr += bytes_read;
15474 break;
15475 case DW_LNS_negate_stmt:
15476 is_stmt = (!is_stmt);
15477 break;
15478 case DW_LNS_set_basic_block:
15479 basic_block = 1;
15480 break;
15481 /* Add to the address register of the state machine the
15482 address increment value corresponding to special opcode
15483 255. I.e., this value is scaled by the minimum
15484 instruction length since special opcode 255 would have
15485 scaled the increment. */
15486 case DW_LNS_const_add_pc:
15487 {
15488 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15489
15490 address += (((op_index + adjust)
15491 / lh->maximum_ops_per_instruction)
15492 * lh->minimum_instruction_length);
15493 op_index = ((op_index + adjust)
15494 % lh->maximum_ops_per_instruction);
15495 }
15496 break;
15497 case DW_LNS_fixed_advance_pc:
15498 address += read_2_bytes (abfd, line_ptr);
15499 op_index = 0;
15500 line_ptr += 2;
15501 break;
15502 default:
15503 {
15504 /* Unknown standard opcode, ignore it. */
15505 int i;
15506
15507 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15508 {
15509 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15510 line_ptr += bytes_read;
15511 }
15512 }
15513 }
15514 }
15515 if (lh->num_file_names < file || file == 0)
15516 dwarf2_debug_line_missing_file_complaint ();
15517 else
15518 {
15519 lh->file_names[file - 1].included_p = 1;
15520 if (!decode_for_pst_p)
15521 {
15522 addr = gdbarch_addr_bits_remove (gdbarch, address);
15523 (*p_record_line) (current_subfile, 0, addr);
15524 }
15525 }
15526 }
15527 }
15528
15529 /* Decode the Line Number Program (LNP) for the given line_header
15530 structure and CU. The actual information extracted and the type
15531 of structures created from the LNP depends on the value of PST.
15532
15533 1. If PST is NULL, then this procedure uses the data from the program
15534 to create all necessary symbol tables, and their linetables.
15535
15536 2. If PST is not NULL, this procedure reads the program to determine
15537 the list of files included by the unit represented by PST, and
15538 builds all the associated partial symbol tables.
15539
15540 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15541 It is used for relative paths in the line table.
15542 NOTE: When processing partial symtabs (pst != NULL),
15543 comp_dir == pst->dirname.
15544
15545 NOTE: It is important that psymtabs have the same file name (via strcmp)
15546 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15547 symtab we don't use it in the name of the psymtabs we create.
15548 E.g. expand_line_sal requires this when finding psymtabs to expand.
15549 A good testcase for this is mb-inline.exp. */
15550
15551 static void
15552 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15553 struct dwarf2_cu *cu, struct partial_symtab *pst,
15554 int want_line_info)
15555 {
15556 struct objfile *objfile = cu->objfile;
15557 const int decode_for_pst_p = (pst != NULL);
15558 struct subfile *first_subfile = current_subfile;
15559
15560 if (want_line_info)
15561 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15562
15563 if (decode_for_pst_p)
15564 {
15565 int file_index;
15566
15567 /* Now that we're done scanning the Line Header Program, we can
15568 create the psymtab of each included file. */
15569 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15570 if (lh->file_names[file_index].included_p == 1)
15571 {
15572 char *include_name =
15573 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15574 if (include_name != NULL)
15575 dwarf2_create_include_psymtab (include_name, pst, objfile);
15576 }
15577 }
15578 else
15579 {
15580 /* Make sure a symtab is created for every file, even files
15581 which contain only variables (i.e. no code with associated
15582 line numbers). */
15583 int i;
15584
15585 for (i = 0; i < lh->num_file_names; i++)
15586 {
15587 char *dir = NULL;
15588 struct file_entry *fe;
15589
15590 fe = &lh->file_names[i];
15591 if (fe->dir_index)
15592 dir = lh->include_dirs[fe->dir_index - 1];
15593 dwarf2_start_subfile (fe->name, dir, comp_dir);
15594
15595 /* Skip the main file; we don't need it, and it must be
15596 allocated last, so that it will show up before the
15597 non-primary symtabs in the objfile's symtab list. */
15598 if (current_subfile == first_subfile)
15599 continue;
15600
15601 if (current_subfile->symtab == NULL)
15602 current_subfile->symtab = allocate_symtab (current_subfile->name,
15603 objfile);
15604 fe->symtab = current_subfile->symtab;
15605 }
15606 }
15607 }
15608
15609 /* Start a subfile for DWARF. FILENAME is the name of the file and
15610 DIRNAME the name of the source directory which contains FILENAME
15611 or NULL if not known. COMP_DIR is the compilation directory for the
15612 linetable's compilation unit or NULL if not known.
15613 This routine tries to keep line numbers from identical absolute and
15614 relative file names in a common subfile.
15615
15616 Using the `list' example from the GDB testsuite, which resides in
15617 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15618 of /srcdir/list0.c yields the following debugging information for list0.c:
15619
15620 DW_AT_name: /srcdir/list0.c
15621 DW_AT_comp_dir: /compdir
15622 files.files[0].name: list0.h
15623 files.files[0].dir: /srcdir
15624 files.files[1].name: list0.c
15625 files.files[1].dir: /srcdir
15626
15627 The line number information for list0.c has to end up in a single
15628 subfile, so that `break /srcdir/list0.c:1' works as expected.
15629 start_subfile will ensure that this happens provided that we pass the
15630 concatenation of files.files[1].dir and files.files[1].name as the
15631 subfile's name. */
15632
15633 static void
15634 dwarf2_start_subfile (char *filename, const char *dirname,
15635 const char *comp_dir)
15636 {
15637 char *fullname;
15638
15639 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15640 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15641 second argument to start_subfile. To be consistent, we do the
15642 same here. In order not to lose the line information directory,
15643 we concatenate it to the filename when it makes sense.
15644 Note that the Dwarf3 standard says (speaking of filenames in line
15645 information): ``The directory index is ignored for file names
15646 that represent full path names''. Thus ignoring dirname in the
15647 `else' branch below isn't an issue. */
15648
15649 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15650 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15651 else
15652 fullname = filename;
15653
15654 start_subfile (fullname, comp_dir);
15655
15656 if (fullname != filename)
15657 xfree (fullname);
15658 }
15659
15660 /* Start a symtab for DWARF.
15661 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15662
15663 static void
15664 dwarf2_start_symtab (struct dwarf2_cu *cu,
15665 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15666 {
15667 start_symtab (name, comp_dir, low_pc);
15668 record_debugformat ("DWARF 2");
15669 record_producer (cu->producer);
15670
15671 /* We assume that we're processing GCC output. */
15672 processing_gcc_compilation = 2;
15673
15674 processing_has_namespace_info = 0;
15675 }
15676
15677 static void
15678 var_decode_location (struct attribute *attr, struct symbol *sym,
15679 struct dwarf2_cu *cu)
15680 {
15681 struct objfile *objfile = cu->objfile;
15682 struct comp_unit_head *cu_header = &cu->header;
15683
15684 /* NOTE drow/2003-01-30: There used to be a comment and some special
15685 code here to turn a symbol with DW_AT_external and a
15686 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15687 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15688 with some versions of binutils) where shared libraries could have
15689 relocations against symbols in their debug information - the
15690 minimal symbol would have the right address, but the debug info
15691 would not. It's no longer necessary, because we will explicitly
15692 apply relocations when we read in the debug information now. */
15693
15694 /* A DW_AT_location attribute with no contents indicates that a
15695 variable has been optimized away. */
15696 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15697 {
15698 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15699 return;
15700 }
15701
15702 /* Handle one degenerate form of location expression specially, to
15703 preserve GDB's previous behavior when section offsets are
15704 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15705 then mark this symbol as LOC_STATIC. */
15706
15707 if (attr_form_is_block (attr)
15708 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15709 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15710 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15711 && (DW_BLOCK (attr)->size
15712 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15713 {
15714 unsigned int dummy;
15715
15716 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15717 SYMBOL_VALUE_ADDRESS (sym) =
15718 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15719 else
15720 SYMBOL_VALUE_ADDRESS (sym) =
15721 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15722 SYMBOL_CLASS (sym) = LOC_STATIC;
15723 fixup_symbol_section (sym, objfile);
15724 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15725 SYMBOL_SECTION (sym));
15726 return;
15727 }
15728
15729 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15730 expression evaluator, and use LOC_COMPUTED only when necessary
15731 (i.e. when the value of a register or memory location is
15732 referenced, or a thread-local block, etc.). Then again, it might
15733 not be worthwhile. I'm assuming that it isn't unless performance
15734 or memory numbers show me otherwise. */
15735
15736 dwarf2_symbol_mark_computed (attr, sym, cu);
15737 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15738
15739 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15740 cu->has_loclist = 1;
15741 }
15742
15743 /* Given a pointer to a DWARF information entry, figure out if we need
15744 to make a symbol table entry for it, and if so, create a new entry
15745 and return a pointer to it.
15746 If TYPE is NULL, determine symbol type from the die, otherwise
15747 used the passed type.
15748 If SPACE is not NULL, use it to hold the new symbol. If it is
15749 NULL, allocate a new symbol on the objfile's obstack. */
15750
15751 static struct symbol *
15752 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15753 struct symbol *space)
15754 {
15755 struct objfile *objfile = cu->objfile;
15756 struct symbol *sym = NULL;
15757 const char *name;
15758 struct attribute *attr = NULL;
15759 struct attribute *attr2 = NULL;
15760 CORE_ADDR baseaddr;
15761 struct pending **list_to_add = NULL;
15762
15763 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15764
15765 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15766
15767 name = dwarf2_name (die, cu);
15768 if (name)
15769 {
15770 const char *linkagename;
15771 int suppress_add = 0;
15772
15773 if (space)
15774 sym = space;
15775 else
15776 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15777 OBJSTAT (objfile, n_syms++);
15778
15779 /* Cache this symbol's name and the name's demangled form (if any). */
15780 SYMBOL_SET_LANGUAGE (sym, cu->language);
15781 linkagename = dwarf2_physname (name, die, cu);
15782 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15783
15784 /* Fortran does not have mangling standard and the mangling does differ
15785 between gfortran, iFort etc. */
15786 if (cu->language == language_fortran
15787 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15788 symbol_set_demangled_name (&(sym->ginfo),
15789 dwarf2_full_name (name, die, cu),
15790 NULL);
15791
15792 /* Default assumptions.
15793 Use the passed type or decode it from the die. */
15794 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15795 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15796 if (type != NULL)
15797 SYMBOL_TYPE (sym) = type;
15798 else
15799 SYMBOL_TYPE (sym) = die_type (die, cu);
15800 attr = dwarf2_attr (die,
15801 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15802 cu);
15803 if (attr)
15804 {
15805 SYMBOL_LINE (sym) = DW_UNSND (attr);
15806 }
15807
15808 attr = dwarf2_attr (die,
15809 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15810 cu);
15811 if (attr)
15812 {
15813 int file_index = DW_UNSND (attr);
15814
15815 if (cu->line_header == NULL
15816 || file_index > cu->line_header->num_file_names)
15817 complaint (&symfile_complaints,
15818 _("file index out of range"));
15819 else if (file_index > 0)
15820 {
15821 struct file_entry *fe;
15822
15823 fe = &cu->line_header->file_names[file_index - 1];
15824 SYMBOL_SYMTAB (sym) = fe->symtab;
15825 }
15826 }
15827
15828 switch (die->tag)
15829 {
15830 case DW_TAG_label:
15831 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15832 if (attr)
15833 {
15834 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15835 }
15836 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15837 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15838 SYMBOL_CLASS (sym) = LOC_LABEL;
15839 add_symbol_to_list (sym, cu->list_in_scope);
15840 break;
15841 case DW_TAG_subprogram:
15842 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15843 finish_block. */
15844 SYMBOL_CLASS (sym) = LOC_BLOCK;
15845 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15846 if ((attr2 && (DW_UNSND (attr2) != 0))
15847 || cu->language == language_ada)
15848 {
15849 /* Subprograms marked external are stored as a global symbol.
15850 Ada subprograms, whether marked external or not, are always
15851 stored as a global symbol, because we want to be able to
15852 access them globally. For instance, we want to be able
15853 to break on a nested subprogram without having to
15854 specify the context. */
15855 list_to_add = &global_symbols;
15856 }
15857 else
15858 {
15859 list_to_add = cu->list_in_scope;
15860 }
15861 break;
15862 case DW_TAG_inlined_subroutine:
15863 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15864 finish_block. */
15865 SYMBOL_CLASS (sym) = LOC_BLOCK;
15866 SYMBOL_INLINED (sym) = 1;
15867 list_to_add = cu->list_in_scope;
15868 break;
15869 case DW_TAG_template_value_param:
15870 suppress_add = 1;
15871 /* Fall through. */
15872 case DW_TAG_constant:
15873 case DW_TAG_variable:
15874 case DW_TAG_member:
15875 /* Compilation with minimal debug info may result in
15876 variables with missing type entries. Change the
15877 misleading `void' type to something sensible. */
15878 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15879 SYMBOL_TYPE (sym)
15880 = objfile_type (objfile)->nodebug_data_symbol;
15881
15882 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15883 /* In the case of DW_TAG_member, we should only be called for
15884 static const members. */
15885 if (die->tag == DW_TAG_member)
15886 {
15887 /* dwarf2_add_field uses die_is_declaration,
15888 so we do the same. */
15889 gdb_assert (die_is_declaration (die, cu));
15890 gdb_assert (attr);
15891 }
15892 if (attr)
15893 {
15894 dwarf2_const_value (attr, sym, cu);
15895 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15896 if (!suppress_add)
15897 {
15898 if (attr2 && (DW_UNSND (attr2) != 0))
15899 list_to_add = &global_symbols;
15900 else
15901 list_to_add = cu->list_in_scope;
15902 }
15903 break;
15904 }
15905 attr = dwarf2_attr (die, DW_AT_location, cu);
15906 if (attr)
15907 {
15908 var_decode_location (attr, sym, cu);
15909 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15910
15911 /* Fortran explicitly imports any global symbols to the local
15912 scope by DW_TAG_common_block. */
15913 if (cu->language == language_fortran && die->parent
15914 && die->parent->tag == DW_TAG_common_block)
15915 attr2 = NULL;
15916
15917 if (SYMBOL_CLASS (sym) == LOC_STATIC
15918 && SYMBOL_VALUE_ADDRESS (sym) == 0
15919 && !dwarf2_per_objfile->has_section_at_zero)
15920 {
15921 /* When a static variable is eliminated by the linker,
15922 the corresponding debug information is not stripped
15923 out, but the variable address is set to null;
15924 do not add such variables into symbol table. */
15925 }
15926 else if (attr2 && (DW_UNSND (attr2) != 0))
15927 {
15928 /* Workaround gfortran PR debug/40040 - it uses
15929 DW_AT_location for variables in -fPIC libraries which may
15930 get overriden by other libraries/executable and get
15931 a different address. Resolve it by the minimal symbol
15932 which may come from inferior's executable using copy
15933 relocation. Make this workaround only for gfortran as for
15934 other compilers GDB cannot guess the minimal symbol
15935 Fortran mangling kind. */
15936 if (cu->language == language_fortran && die->parent
15937 && die->parent->tag == DW_TAG_module
15938 && cu->producer
15939 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15940 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15941
15942 /* A variable with DW_AT_external is never static,
15943 but it may be block-scoped. */
15944 list_to_add = (cu->list_in_scope == &file_symbols
15945 ? &global_symbols : cu->list_in_scope);
15946 }
15947 else
15948 list_to_add = cu->list_in_scope;
15949 }
15950 else
15951 {
15952 /* We do not know the address of this symbol.
15953 If it is an external symbol and we have type information
15954 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15955 The address of the variable will then be determined from
15956 the minimal symbol table whenever the variable is
15957 referenced. */
15958 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15959
15960 /* Fortran explicitly imports any global symbols to the local
15961 scope by DW_TAG_common_block. */
15962 if (cu->language == language_fortran && die->parent
15963 && die->parent->tag == DW_TAG_common_block)
15964 {
15965 /* SYMBOL_CLASS doesn't matter here because
15966 read_common_block is going to reset it. */
15967 if (!suppress_add)
15968 list_to_add = cu->list_in_scope;
15969 }
15970 else if (attr2 && (DW_UNSND (attr2) != 0)
15971 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15972 {
15973 /* A variable with DW_AT_external is never static, but it
15974 may be block-scoped. */
15975 list_to_add = (cu->list_in_scope == &file_symbols
15976 ? &global_symbols : cu->list_in_scope);
15977
15978 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15979 }
15980 else if (!die_is_declaration (die, cu))
15981 {
15982 /* Use the default LOC_OPTIMIZED_OUT class. */
15983 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15984 if (!suppress_add)
15985 list_to_add = cu->list_in_scope;
15986 }
15987 }
15988 break;
15989 case DW_TAG_formal_parameter:
15990 /* If we are inside a function, mark this as an argument. If
15991 not, we might be looking at an argument to an inlined function
15992 when we do not have enough information to show inlined frames;
15993 pretend it's a local variable in that case so that the user can
15994 still see it. */
15995 if (context_stack_depth > 0
15996 && context_stack[context_stack_depth - 1].name != NULL)
15997 SYMBOL_IS_ARGUMENT (sym) = 1;
15998 attr = dwarf2_attr (die, DW_AT_location, cu);
15999 if (attr)
16000 {
16001 var_decode_location (attr, sym, cu);
16002 }
16003 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16004 if (attr)
16005 {
16006 dwarf2_const_value (attr, sym, cu);
16007 }
16008
16009 list_to_add = cu->list_in_scope;
16010 break;
16011 case DW_TAG_unspecified_parameters:
16012 /* From varargs functions; gdb doesn't seem to have any
16013 interest in this information, so just ignore it for now.
16014 (FIXME?) */
16015 break;
16016 case DW_TAG_template_type_param:
16017 suppress_add = 1;
16018 /* Fall through. */
16019 case DW_TAG_class_type:
16020 case DW_TAG_interface_type:
16021 case DW_TAG_structure_type:
16022 case DW_TAG_union_type:
16023 case DW_TAG_set_type:
16024 case DW_TAG_enumeration_type:
16025 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16026 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16027
16028 {
16029 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16030 really ever be static objects: otherwise, if you try
16031 to, say, break of a class's method and you're in a file
16032 which doesn't mention that class, it won't work unless
16033 the check for all static symbols in lookup_symbol_aux
16034 saves you. See the OtherFileClass tests in
16035 gdb.c++/namespace.exp. */
16036
16037 if (!suppress_add)
16038 {
16039 list_to_add = (cu->list_in_scope == &file_symbols
16040 && (cu->language == language_cplus
16041 || cu->language == language_java)
16042 ? &global_symbols : cu->list_in_scope);
16043
16044 /* The semantics of C++ state that "struct foo {
16045 ... }" also defines a typedef for "foo". A Java
16046 class declaration also defines a typedef for the
16047 class. */
16048 if (cu->language == language_cplus
16049 || cu->language == language_java
16050 || cu->language == language_ada)
16051 {
16052 /* The symbol's name is already allocated along
16053 with this objfile, so we don't need to
16054 duplicate it for the type. */
16055 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16056 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16057 }
16058 }
16059 }
16060 break;
16061 case DW_TAG_typedef:
16062 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16063 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16064 list_to_add = cu->list_in_scope;
16065 break;
16066 case DW_TAG_base_type:
16067 case DW_TAG_subrange_type:
16068 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16069 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16070 list_to_add = cu->list_in_scope;
16071 break;
16072 case DW_TAG_enumerator:
16073 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16074 if (attr)
16075 {
16076 dwarf2_const_value (attr, sym, cu);
16077 }
16078 {
16079 /* NOTE: carlton/2003-11-10: See comment above in the
16080 DW_TAG_class_type, etc. block. */
16081
16082 list_to_add = (cu->list_in_scope == &file_symbols
16083 && (cu->language == language_cplus
16084 || cu->language == language_java)
16085 ? &global_symbols : cu->list_in_scope);
16086 }
16087 break;
16088 case DW_TAG_namespace:
16089 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16090 list_to_add = &global_symbols;
16091 break;
16092 case DW_TAG_common_block:
16093 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16094 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16095 add_symbol_to_list (sym, cu->list_in_scope);
16096 break;
16097 default:
16098 /* Not a tag we recognize. Hopefully we aren't processing
16099 trash data, but since we must specifically ignore things
16100 we don't recognize, there is nothing else we should do at
16101 this point. */
16102 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16103 dwarf_tag_name (die->tag));
16104 break;
16105 }
16106
16107 if (suppress_add)
16108 {
16109 sym->hash_next = objfile->template_symbols;
16110 objfile->template_symbols = sym;
16111 list_to_add = NULL;
16112 }
16113
16114 if (list_to_add != NULL)
16115 add_symbol_to_list (sym, list_to_add);
16116
16117 /* For the benefit of old versions of GCC, check for anonymous
16118 namespaces based on the demangled name. */
16119 if (!processing_has_namespace_info
16120 && cu->language == language_cplus)
16121 cp_scan_for_anonymous_namespaces (sym, objfile);
16122 }
16123 return (sym);
16124 }
16125
16126 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16127
16128 static struct symbol *
16129 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16130 {
16131 return new_symbol_full (die, type, cu, NULL);
16132 }
16133
16134 /* Given an attr with a DW_FORM_dataN value in host byte order,
16135 zero-extend it as appropriate for the symbol's type. The DWARF
16136 standard (v4) is not entirely clear about the meaning of using
16137 DW_FORM_dataN for a constant with a signed type, where the type is
16138 wider than the data. The conclusion of a discussion on the DWARF
16139 list was that this is unspecified. We choose to always zero-extend
16140 because that is the interpretation long in use by GCC. */
16141
16142 static gdb_byte *
16143 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16144 const char *name, struct obstack *obstack,
16145 struct dwarf2_cu *cu, LONGEST *value, int bits)
16146 {
16147 struct objfile *objfile = cu->objfile;
16148 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16149 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16150 LONGEST l = DW_UNSND (attr);
16151
16152 if (bits < sizeof (*value) * 8)
16153 {
16154 l &= ((LONGEST) 1 << bits) - 1;
16155 *value = l;
16156 }
16157 else if (bits == sizeof (*value) * 8)
16158 *value = l;
16159 else
16160 {
16161 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16162 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16163 return bytes;
16164 }
16165
16166 return NULL;
16167 }
16168
16169 /* Read a constant value from an attribute. Either set *VALUE, or if
16170 the value does not fit in *VALUE, set *BYTES - either already
16171 allocated on the objfile obstack, or newly allocated on OBSTACK,
16172 or, set *BATON, if we translated the constant to a location
16173 expression. */
16174
16175 static void
16176 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16177 const char *name, struct obstack *obstack,
16178 struct dwarf2_cu *cu,
16179 LONGEST *value, gdb_byte **bytes,
16180 struct dwarf2_locexpr_baton **baton)
16181 {
16182 struct objfile *objfile = cu->objfile;
16183 struct comp_unit_head *cu_header = &cu->header;
16184 struct dwarf_block *blk;
16185 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16186 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16187
16188 *value = 0;
16189 *bytes = NULL;
16190 *baton = NULL;
16191
16192 switch (attr->form)
16193 {
16194 case DW_FORM_addr:
16195 case DW_FORM_GNU_addr_index:
16196 {
16197 gdb_byte *data;
16198
16199 if (TYPE_LENGTH (type) != cu_header->addr_size)
16200 dwarf2_const_value_length_mismatch_complaint (name,
16201 cu_header->addr_size,
16202 TYPE_LENGTH (type));
16203 /* Symbols of this form are reasonably rare, so we just
16204 piggyback on the existing location code rather than writing
16205 a new implementation of symbol_computed_ops. */
16206 *baton = obstack_alloc (&objfile->objfile_obstack,
16207 sizeof (struct dwarf2_locexpr_baton));
16208 (*baton)->per_cu = cu->per_cu;
16209 gdb_assert ((*baton)->per_cu);
16210
16211 (*baton)->size = 2 + cu_header->addr_size;
16212 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16213 (*baton)->data = data;
16214
16215 data[0] = DW_OP_addr;
16216 store_unsigned_integer (&data[1], cu_header->addr_size,
16217 byte_order, DW_ADDR (attr));
16218 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16219 }
16220 break;
16221 case DW_FORM_string:
16222 case DW_FORM_strp:
16223 case DW_FORM_GNU_str_index:
16224 case DW_FORM_GNU_strp_alt:
16225 /* DW_STRING is already allocated on the objfile obstack, point
16226 directly to it. */
16227 *bytes = (gdb_byte *) DW_STRING (attr);
16228 break;
16229 case DW_FORM_block1:
16230 case DW_FORM_block2:
16231 case DW_FORM_block4:
16232 case DW_FORM_block:
16233 case DW_FORM_exprloc:
16234 blk = DW_BLOCK (attr);
16235 if (TYPE_LENGTH (type) != blk->size)
16236 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16237 TYPE_LENGTH (type));
16238 *bytes = blk->data;
16239 break;
16240
16241 /* The DW_AT_const_value attributes are supposed to carry the
16242 symbol's value "represented as it would be on the target
16243 architecture." By the time we get here, it's already been
16244 converted to host endianness, so we just need to sign- or
16245 zero-extend it as appropriate. */
16246 case DW_FORM_data1:
16247 *bytes = dwarf2_const_value_data (attr, type, name,
16248 obstack, cu, value, 8);
16249 break;
16250 case DW_FORM_data2:
16251 *bytes = dwarf2_const_value_data (attr, type, name,
16252 obstack, cu, value, 16);
16253 break;
16254 case DW_FORM_data4:
16255 *bytes = dwarf2_const_value_data (attr, type, name,
16256 obstack, cu, value, 32);
16257 break;
16258 case DW_FORM_data8:
16259 *bytes = dwarf2_const_value_data (attr, type, name,
16260 obstack, cu, value, 64);
16261 break;
16262
16263 case DW_FORM_sdata:
16264 *value = DW_SND (attr);
16265 break;
16266
16267 case DW_FORM_udata:
16268 *value = DW_UNSND (attr);
16269 break;
16270
16271 default:
16272 complaint (&symfile_complaints,
16273 _("unsupported const value attribute form: '%s'"),
16274 dwarf_form_name (attr->form));
16275 *value = 0;
16276 break;
16277 }
16278 }
16279
16280
16281 /* Copy constant value from an attribute to a symbol. */
16282
16283 static void
16284 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16285 struct dwarf2_cu *cu)
16286 {
16287 struct objfile *objfile = cu->objfile;
16288 struct comp_unit_head *cu_header = &cu->header;
16289 LONGEST value;
16290 gdb_byte *bytes;
16291 struct dwarf2_locexpr_baton *baton;
16292
16293 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16294 SYMBOL_PRINT_NAME (sym),
16295 &objfile->objfile_obstack, cu,
16296 &value, &bytes, &baton);
16297
16298 if (baton != NULL)
16299 {
16300 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16301 SYMBOL_LOCATION_BATON (sym) = baton;
16302 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16303 }
16304 else if (bytes != NULL)
16305 {
16306 SYMBOL_VALUE_BYTES (sym) = bytes;
16307 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16308 }
16309 else
16310 {
16311 SYMBOL_VALUE (sym) = value;
16312 SYMBOL_CLASS (sym) = LOC_CONST;
16313 }
16314 }
16315
16316 /* Return the type of the die in question using its DW_AT_type attribute. */
16317
16318 static struct type *
16319 die_type (struct die_info *die, struct dwarf2_cu *cu)
16320 {
16321 struct attribute *type_attr;
16322
16323 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16324 if (!type_attr)
16325 {
16326 /* A missing DW_AT_type represents a void type. */
16327 return objfile_type (cu->objfile)->builtin_void;
16328 }
16329
16330 return lookup_die_type (die, type_attr, cu);
16331 }
16332
16333 /* True iff CU's producer generates GNAT Ada auxiliary information
16334 that allows to find parallel types through that information instead
16335 of having to do expensive parallel lookups by type name. */
16336
16337 static int
16338 need_gnat_info (struct dwarf2_cu *cu)
16339 {
16340 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16341 of GNAT produces this auxiliary information, without any indication
16342 that it is produced. Part of enhancing the FSF version of GNAT
16343 to produce that information will be to put in place an indicator
16344 that we can use in order to determine whether the descriptive type
16345 info is available or not. One suggestion that has been made is
16346 to use a new attribute, attached to the CU die. For now, assume
16347 that the descriptive type info is not available. */
16348 return 0;
16349 }
16350
16351 /* Return the auxiliary type of the die in question using its
16352 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16353 attribute is not present. */
16354
16355 static struct type *
16356 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16357 {
16358 struct attribute *type_attr;
16359
16360 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16361 if (!type_attr)
16362 return NULL;
16363
16364 return lookup_die_type (die, type_attr, cu);
16365 }
16366
16367 /* If DIE has a descriptive_type attribute, then set the TYPE's
16368 descriptive type accordingly. */
16369
16370 static void
16371 set_descriptive_type (struct type *type, struct die_info *die,
16372 struct dwarf2_cu *cu)
16373 {
16374 struct type *descriptive_type = die_descriptive_type (die, cu);
16375
16376 if (descriptive_type)
16377 {
16378 ALLOCATE_GNAT_AUX_TYPE (type);
16379 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16380 }
16381 }
16382
16383 /* Return the containing type of the die in question using its
16384 DW_AT_containing_type attribute. */
16385
16386 static struct type *
16387 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16388 {
16389 struct attribute *type_attr;
16390
16391 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16392 if (!type_attr)
16393 error (_("Dwarf Error: Problem turning containing type into gdb type "
16394 "[in module %s]"), cu->objfile->name);
16395
16396 return lookup_die_type (die, type_attr, cu);
16397 }
16398
16399 /* Look up the type of DIE in CU using its type attribute ATTR.
16400 If there is no type substitute an error marker. */
16401
16402 static struct type *
16403 lookup_die_type (struct die_info *die, struct attribute *attr,
16404 struct dwarf2_cu *cu)
16405 {
16406 struct objfile *objfile = cu->objfile;
16407 struct type *this_type;
16408
16409 /* First see if we have it cached. */
16410
16411 if (attr->form == DW_FORM_GNU_ref_alt)
16412 {
16413 struct dwarf2_per_cu_data *per_cu;
16414 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16415
16416 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16417 this_type = get_die_type_at_offset (offset, per_cu);
16418 }
16419 else if (is_ref_attr (attr))
16420 {
16421 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16422
16423 this_type = get_die_type_at_offset (offset, cu->per_cu);
16424 }
16425 else if (attr->form == DW_FORM_ref_sig8)
16426 {
16427 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16428
16429 /* sig_type will be NULL if the signatured type is missing from
16430 the debug info. */
16431 if (sig_type == NULL)
16432 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16433 "at 0x%x [in module %s]"),
16434 die->offset.sect_off, objfile->name);
16435
16436 gdb_assert (sig_type->per_cu.is_debug_types);
16437 /* If we haven't filled in type_offset_in_section yet, then we
16438 haven't read the type in yet. */
16439 this_type = NULL;
16440 if (sig_type->type_offset_in_section.sect_off != 0)
16441 {
16442 this_type =
16443 get_die_type_at_offset (sig_type->type_offset_in_section,
16444 &sig_type->per_cu);
16445 }
16446 }
16447 else
16448 {
16449 dump_die_for_error (die);
16450 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16451 dwarf_attr_name (attr->name), objfile->name);
16452 }
16453
16454 /* If not cached we need to read it in. */
16455
16456 if (this_type == NULL)
16457 {
16458 struct die_info *type_die;
16459 struct dwarf2_cu *type_cu = cu;
16460
16461 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16462 /* If we found the type now, it's probably because the type came
16463 from an inter-CU reference and the type's CU got expanded before
16464 ours. */
16465 this_type = get_die_type (type_die, type_cu);
16466 if (this_type == NULL)
16467 this_type = read_type_die_1 (type_die, type_cu);
16468 }
16469
16470 /* If we still don't have a type use an error marker. */
16471
16472 if (this_type == NULL)
16473 {
16474 char *message, *saved;
16475
16476 /* read_type_die already issued a complaint. */
16477 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16478 objfile->name,
16479 cu->header.offset.sect_off,
16480 die->offset.sect_off);
16481 saved = obstack_copy0 (&objfile->objfile_obstack,
16482 message, strlen (message));
16483 xfree (message);
16484
16485 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16486 }
16487
16488 return this_type;
16489 }
16490
16491 /* Return the type in DIE, CU.
16492 Returns NULL for invalid types.
16493
16494 This first does a lookup in the appropriate type_hash table,
16495 and only reads the die in if necessary.
16496
16497 NOTE: This can be called when reading in partial or full symbols. */
16498
16499 static struct type *
16500 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16501 {
16502 struct type *this_type;
16503
16504 this_type = get_die_type (die, cu);
16505 if (this_type)
16506 return this_type;
16507
16508 return read_type_die_1 (die, cu);
16509 }
16510
16511 /* Read the type in DIE, CU.
16512 Returns NULL for invalid types. */
16513
16514 static struct type *
16515 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16516 {
16517 struct type *this_type = NULL;
16518
16519 switch (die->tag)
16520 {
16521 case DW_TAG_class_type:
16522 case DW_TAG_interface_type:
16523 case DW_TAG_structure_type:
16524 case DW_TAG_union_type:
16525 this_type = read_structure_type (die, cu);
16526 break;
16527 case DW_TAG_enumeration_type:
16528 this_type = read_enumeration_type (die, cu);
16529 break;
16530 case DW_TAG_subprogram:
16531 case DW_TAG_subroutine_type:
16532 case DW_TAG_inlined_subroutine:
16533 this_type = read_subroutine_type (die, cu);
16534 break;
16535 case DW_TAG_array_type:
16536 this_type = read_array_type (die, cu);
16537 break;
16538 case DW_TAG_set_type:
16539 this_type = read_set_type (die, cu);
16540 break;
16541 case DW_TAG_pointer_type:
16542 this_type = read_tag_pointer_type (die, cu);
16543 break;
16544 case DW_TAG_ptr_to_member_type:
16545 this_type = read_tag_ptr_to_member_type (die, cu);
16546 break;
16547 case DW_TAG_reference_type:
16548 this_type = read_tag_reference_type (die, cu);
16549 break;
16550 case DW_TAG_const_type:
16551 this_type = read_tag_const_type (die, cu);
16552 break;
16553 case DW_TAG_volatile_type:
16554 this_type = read_tag_volatile_type (die, cu);
16555 break;
16556 case DW_TAG_restrict_type:
16557 this_type = read_tag_restrict_type (die, cu);
16558 break;
16559 case DW_TAG_string_type:
16560 this_type = read_tag_string_type (die, cu);
16561 break;
16562 case DW_TAG_typedef:
16563 this_type = read_typedef (die, cu);
16564 break;
16565 case DW_TAG_subrange_type:
16566 this_type = read_subrange_type (die, cu);
16567 break;
16568 case DW_TAG_base_type:
16569 this_type = read_base_type (die, cu);
16570 break;
16571 case DW_TAG_unspecified_type:
16572 this_type = read_unspecified_type (die, cu);
16573 break;
16574 case DW_TAG_namespace:
16575 this_type = read_namespace_type (die, cu);
16576 break;
16577 case DW_TAG_module:
16578 this_type = read_module_type (die, cu);
16579 break;
16580 default:
16581 complaint (&symfile_complaints,
16582 _("unexpected tag in read_type_die: '%s'"),
16583 dwarf_tag_name (die->tag));
16584 break;
16585 }
16586
16587 return this_type;
16588 }
16589
16590 /* See if we can figure out if the class lives in a namespace. We do
16591 this by looking for a member function; its demangled name will
16592 contain namespace info, if there is any.
16593 Return the computed name or NULL.
16594 Space for the result is allocated on the objfile's obstack.
16595 This is the full-die version of guess_partial_die_structure_name.
16596 In this case we know DIE has no useful parent. */
16597
16598 static char *
16599 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16600 {
16601 struct die_info *spec_die;
16602 struct dwarf2_cu *spec_cu;
16603 struct die_info *child;
16604
16605 spec_cu = cu;
16606 spec_die = die_specification (die, &spec_cu);
16607 if (spec_die != NULL)
16608 {
16609 die = spec_die;
16610 cu = spec_cu;
16611 }
16612
16613 for (child = die->child;
16614 child != NULL;
16615 child = child->sibling)
16616 {
16617 if (child->tag == DW_TAG_subprogram)
16618 {
16619 struct attribute *attr;
16620
16621 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16622 if (attr == NULL)
16623 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16624 if (attr != NULL)
16625 {
16626 char *actual_name
16627 = language_class_name_from_physname (cu->language_defn,
16628 DW_STRING (attr));
16629 char *name = NULL;
16630
16631 if (actual_name != NULL)
16632 {
16633 const char *die_name = dwarf2_name (die, cu);
16634
16635 if (die_name != NULL
16636 && strcmp (die_name, actual_name) != 0)
16637 {
16638 /* Strip off the class name from the full name.
16639 We want the prefix. */
16640 int die_name_len = strlen (die_name);
16641 int actual_name_len = strlen (actual_name);
16642
16643 /* Test for '::' as a sanity check. */
16644 if (actual_name_len > die_name_len + 2
16645 && actual_name[actual_name_len
16646 - die_name_len - 1] == ':')
16647 name =
16648 obstack_copy0 (&cu->objfile->objfile_obstack,
16649 actual_name,
16650 actual_name_len - die_name_len - 2);
16651 }
16652 }
16653 xfree (actual_name);
16654 return name;
16655 }
16656 }
16657 }
16658
16659 return NULL;
16660 }
16661
16662 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16663 prefix part in such case. See
16664 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16665
16666 static char *
16667 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16668 {
16669 struct attribute *attr;
16670 char *base;
16671
16672 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16673 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16674 return NULL;
16675
16676 attr = dwarf2_attr (die, DW_AT_name, cu);
16677 if (attr != NULL && DW_STRING (attr) != NULL)
16678 return NULL;
16679
16680 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16681 if (attr == NULL)
16682 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16683 if (attr == NULL || DW_STRING (attr) == NULL)
16684 return NULL;
16685
16686 /* dwarf2_name had to be already called. */
16687 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16688
16689 /* Strip the base name, keep any leading namespaces/classes. */
16690 base = strrchr (DW_STRING (attr), ':');
16691 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16692 return "";
16693
16694 return obstack_copy0 (&cu->objfile->objfile_obstack,
16695 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16696 }
16697
16698 /* Return the name of the namespace/class that DIE is defined within,
16699 or "" if we can't tell. The caller should not xfree the result.
16700
16701 For example, if we're within the method foo() in the following
16702 code:
16703
16704 namespace N {
16705 class C {
16706 void foo () {
16707 }
16708 };
16709 }
16710
16711 then determine_prefix on foo's die will return "N::C". */
16712
16713 static const char *
16714 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16715 {
16716 struct die_info *parent, *spec_die;
16717 struct dwarf2_cu *spec_cu;
16718 struct type *parent_type;
16719 char *retval;
16720
16721 if (cu->language != language_cplus && cu->language != language_java
16722 && cu->language != language_fortran)
16723 return "";
16724
16725 retval = anonymous_struct_prefix (die, cu);
16726 if (retval)
16727 return retval;
16728
16729 /* We have to be careful in the presence of DW_AT_specification.
16730 For example, with GCC 3.4, given the code
16731
16732 namespace N {
16733 void foo() {
16734 // Definition of N::foo.
16735 }
16736 }
16737
16738 then we'll have a tree of DIEs like this:
16739
16740 1: DW_TAG_compile_unit
16741 2: DW_TAG_namespace // N
16742 3: DW_TAG_subprogram // declaration of N::foo
16743 4: DW_TAG_subprogram // definition of N::foo
16744 DW_AT_specification // refers to die #3
16745
16746 Thus, when processing die #4, we have to pretend that we're in
16747 the context of its DW_AT_specification, namely the contex of die
16748 #3. */
16749 spec_cu = cu;
16750 spec_die = die_specification (die, &spec_cu);
16751 if (spec_die == NULL)
16752 parent = die->parent;
16753 else
16754 {
16755 parent = spec_die->parent;
16756 cu = spec_cu;
16757 }
16758
16759 if (parent == NULL)
16760 return "";
16761 else if (parent->building_fullname)
16762 {
16763 const char *name;
16764 const char *parent_name;
16765
16766 /* It has been seen on RealView 2.2 built binaries,
16767 DW_TAG_template_type_param types actually _defined_ as
16768 children of the parent class:
16769
16770 enum E {};
16771 template class <class Enum> Class{};
16772 Class<enum E> class_e;
16773
16774 1: DW_TAG_class_type (Class)
16775 2: DW_TAG_enumeration_type (E)
16776 3: DW_TAG_enumerator (enum1:0)
16777 3: DW_TAG_enumerator (enum2:1)
16778 ...
16779 2: DW_TAG_template_type_param
16780 DW_AT_type DW_FORM_ref_udata (E)
16781
16782 Besides being broken debug info, it can put GDB into an
16783 infinite loop. Consider:
16784
16785 When we're building the full name for Class<E>, we'll start
16786 at Class, and go look over its template type parameters,
16787 finding E. We'll then try to build the full name of E, and
16788 reach here. We're now trying to build the full name of E,
16789 and look over the parent DIE for containing scope. In the
16790 broken case, if we followed the parent DIE of E, we'd again
16791 find Class, and once again go look at its template type
16792 arguments, etc., etc. Simply don't consider such parent die
16793 as source-level parent of this die (it can't be, the language
16794 doesn't allow it), and break the loop here. */
16795 name = dwarf2_name (die, cu);
16796 parent_name = dwarf2_name (parent, cu);
16797 complaint (&symfile_complaints,
16798 _("template param type '%s' defined within parent '%s'"),
16799 name ? name : "<unknown>",
16800 parent_name ? parent_name : "<unknown>");
16801 return "";
16802 }
16803 else
16804 switch (parent->tag)
16805 {
16806 case DW_TAG_namespace:
16807 parent_type = read_type_die (parent, cu);
16808 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16809 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16810 Work around this problem here. */
16811 if (cu->language == language_cplus
16812 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16813 return "";
16814 /* We give a name to even anonymous namespaces. */
16815 return TYPE_TAG_NAME (parent_type);
16816 case DW_TAG_class_type:
16817 case DW_TAG_interface_type:
16818 case DW_TAG_structure_type:
16819 case DW_TAG_union_type:
16820 case DW_TAG_module:
16821 parent_type = read_type_die (parent, cu);
16822 if (TYPE_TAG_NAME (parent_type) != NULL)
16823 return TYPE_TAG_NAME (parent_type);
16824 else
16825 /* An anonymous structure is only allowed non-static data
16826 members; no typedefs, no member functions, et cetera.
16827 So it does not need a prefix. */
16828 return "";
16829 case DW_TAG_compile_unit:
16830 case DW_TAG_partial_unit:
16831 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16832 if (cu->language == language_cplus
16833 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16834 && die->child != NULL
16835 && (die->tag == DW_TAG_class_type
16836 || die->tag == DW_TAG_structure_type
16837 || die->tag == DW_TAG_union_type))
16838 {
16839 char *name = guess_full_die_structure_name (die, cu);
16840 if (name != NULL)
16841 return name;
16842 }
16843 return "";
16844 default:
16845 return determine_prefix (parent, cu);
16846 }
16847 }
16848
16849 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16850 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16851 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16852 an obconcat, otherwise allocate storage for the result. The CU argument is
16853 used to determine the language and hence, the appropriate separator. */
16854
16855 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16856
16857 static char *
16858 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16859 int physname, struct dwarf2_cu *cu)
16860 {
16861 const char *lead = "";
16862 const char *sep;
16863
16864 if (suffix == NULL || suffix[0] == '\0'
16865 || prefix == NULL || prefix[0] == '\0')
16866 sep = "";
16867 else if (cu->language == language_java)
16868 sep = ".";
16869 else if (cu->language == language_fortran && physname)
16870 {
16871 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16872 DW_AT_MIPS_linkage_name is preferred and used instead. */
16873
16874 lead = "__";
16875 sep = "_MOD_";
16876 }
16877 else
16878 sep = "::";
16879
16880 if (prefix == NULL)
16881 prefix = "";
16882 if (suffix == NULL)
16883 suffix = "";
16884
16885 if (obs == NULL)
16886 {
16887 char *retval
16888 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16889
16890 strcpy (retval, lead);
16891 strcat (retval, prefix);
16892 strcat (retval, sep);
16893 strcat (retval, suffix);
16894 return retval;
16895 }
16896 else
16897 {
16898 /* We have an obstack. */
16899 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16900 }
16901 }
16902
16903 /* Return sibling of die, NULL if no sibling. */
16904
16905 static struct die_info *
16906 sibling_die (struct die_info *die)
16907 {
16908 return die->sibling;
16909 }
16910
16911 /* Get name of a die, return NULL if not found. */
16912
16913 static const char *
16914 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16915 struct obstack *obstack)
16916 {
16917 if (name && cu->language == language_cplus)
16918 {
16919 char *canon_name = cp_canonicalize_string (name);
16920
16921 if (canon_name != NULL)
16922 {
16923 if (strcmp (canon_name, name) != 0)
16924 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16925 xfree (canon_name);
16926 }
16927 }
16928
16929 return name;
16930 }
16931
16932 /* Get name of a die, return NULL if not found. */
16933
16934 static const char *
16935 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16936 {
16937 struct attribute *attr;
16938
16939 attr = dwarf2_attr (die, DW_AT_name, cu);
16940 if ((!attr || !DW_STRING (attr))
16941 && die->tag != DW_TAG_class_type
16942 && die->tag != DW_TAG_interface_type
16943 && die->tag != DW_TAG_structure_type
16944 && die->tag != DW_TAG_union_type)
16945 return NULL;
16946
16947 switch (die->tag)
16948 {
16949 case DW_TAG_compile_unit:
16950 case DW_TAG_partial_unit:
16951 /* Compilation units have a DW_AT_name that is a filename, not
16952 a source language identifier. */
16953 case DW_TAG_enumeration_type:
16954 case DW_TAG_enumerator:
16955 /* These tags always have simple identifiers already; no need
16956 to canonicalize them. */
16957 return DW_STRING (attr);
16958
16959 case DW_TAG_subprogram:
16960 /* Java constructors will all be named "<init>", so return
16961 the class name when we see this special case. */
16962 if (cu->language == language_java
16963 && DW_STRING (attr) != NULL
16964 && strcmp (DW_STRING (attr), "<init>") == 0)
16965 {
16966 struct dwarf2_cu *spec_cu = cu;
16967 struct die_info *spec_die;
16968
16969 /* GCJ will output '<init>' for Java constructor names.
16970 For this special case, return the name of the parent class. */
16971
16972 /* GCJ may output suprogram DIEs with AT_specification set.
16973 If so, use the name of the specified DIE. */
16974 spec_die = die_specification (die, &spec_cu);
16975 if (spec_die != NULL)
16976 return dwarf2_name (spec_die, spec_cu);
16977
16978 do
16979 {
16980 die = die->parent;
16981 if (die->tag == DW_TAG_class_type)
16982 return dwarf2_name (die, cu);
16983 }
16984 while (die->tag != DW_TAG_compile_unit
16985 && die->tag != DW_TAG_partial_unit);
16986 }
16987 break;
16988
16989 case DW_TAG_class_type:
16990 case DW_TAG_interface_type:
16991 case DW_TAG_structure_type:
16992 case DW_TAG_union_type:
16993 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16994 structures or unions. These were of the form "._%d" in GCC 4.1,
16995 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16996 and GCC 4.4. We work around this problem by ignoring these. */
16997 if (attr && DW_STRING (attr)
16998 && (strncmp (DW_STRING (attr), "._", 2) == 0
16999 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17000 return NULL;
17001
17002 /* GCC might emit a nameless typedef that has a linkage name. See
17003 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17004 if (!attr || DW_STRING (attr) == NULL)
17005 {
17006 char *demangled = NULL;
17007
17008 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17009 if (attr == NULL)
17010 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17011
17012 if (attr == NULL || DW_STRING (attr) == NULL)
17013 return NULL;
17014
17015 /* Avoid demangling DW_STRING (attr) the second time on a second
17016 call for the same DIE. */
17017 if (!DW_STRING_IS_CANONICAL (attr))
17018 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17019
17020 if (demangled)
17021 {
17022 char *base;
17023
17024 /* FIXME: we already did this for the partial symbol... */
17025 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17026 demangled, strlen (demangled));
17027 DW_STRING_IS_CANONICAL (attr) = 1;
17028 xfree (demangled);
17029
17030 /* Strip any leading namespaces/classes, keep only the base name.
17031 DW_AT_name for named DIEs does not contain the prefixes. */
17032 base = strrchr (DW_STRING (attr), ':');
17033 if (base && base > DW_STRING (attr) && base[-1] == ':')
17034 return &base[1];
17035 else
17036 return DW_STRING (attr);
17037 }
17038 }
17039 break;
17040
17041 default:
17042 break;
17043 }
17044
17045 if (!DW_STRING_IS_CANONICAL (attr))
17046 {
17047 DW_STRING (attr)
17048 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17049 &cu->objfile->objfile_obstack);
17050 DW_STRING_IS_CANONICAL (attr) = 1;
17051 }
17052 return DW_STRING (attr);
17053 }
17054
17055 /* Return the die that this die in an extension of, or NULL if there
17056 is none. *EXT_CU is the CU containing DIE on input, and the CU
17057 containing the return value on output. */
17058
17059 static struct die_info *
17060 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17061 {
17062 struct attribute *attr;
17063
17064 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17065 if (attr == NULL)
17066 return NULL;
17067
17068 return follow_die_ref (die, attr, ext_cu);
17069 }
17070
17071 /* Convert a DIE tag into its string name. */
17072
17073 static const char *
17074 dwarf_tag_name (unsigned tag)
17075 {
17076 const char *name = get_DW_TAG_name (tag);
17077
17078 if (name == NULL)
17079 return "DW_TAG_<unknown>";
17080
17081 return name;
17082 }
17083
17084 /* Convert a DWARF attribute code into its string name. */
17085
17086 static const char *
17087 dwarf_attr_name (unsigned attr)
17088 {
17089 const char *name;
17090
17091 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17092 if (attr == DW_AT_MIPS_fde)
17093 return "DW_AT_MIPS_fde";
17094 #else
17095 if (attr == DW_AT_HP_block_index)
17096 return "DW_AT_HP_block_index";
17097 #endif
17098
17099 name = get_DW_AT_name (attr);
17100
17101 if (name == NULL)
17102 return "DW_AT_<unknown>";
17103
17104 return name;
17105 }
17106
17107 /* Convert a DWARF value form code into its string name. */
17108
17109 static const char *
17110 dwarf_form_name (unsigned form)
17111 {
17112 const char *name = get_DW_FORM_name (form);
17113
17114 if (name == NULL)
17115 return "DW_FORM_<unknown>";
17116
17117 return name;
17118 }
17119
17120 static char *
17121 dwarf_bool_name (unsigned mybool)
17122 {
17123 if (mybool)
17124 return "TRUE";
17125 else
17126 return "FALSE";
17127 }
17128
17129 /* Convert a DWARF type code into its string name. */
17130
17131 static const char *
17132 dwarf_type_encoding_name (unsigned enc)
17133 {
17134 const char *name = get_DW_ATE_name (enc);
17135
17136 if (name == NULL)
17137 return "DW_ATE_<unknown>";
17138
17139 return name;
17140 }
17141
17142 static void
17143 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17144 {
17145 unsigned int i;
17146
17147 print_spaces (indent, f);
17148 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17149 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17150
17151 if (die->parent != NULL)
17152 {
17153 print_spaces (indent, f);
17154 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17155 die->parent->offset.sect_off);
17156 }
17157
17158 print_spaces (indent, f);
17159 fprintf_unfiltered (f, " has children: %s\n",
17160 dwarf_bool_name (die->child != NULL));
17161
17162 print_spaces (indent, f);
17163 fprintf_unfiltered (f, " attributes:\n");
17164
17165 for (i = 0; i < die->num_attrs; ++i)
17166 {
17167 print_spaces (indent, f);
17168 fprintf_unfiltered (f, " %s (%s) ",
17169 dwarf_attr_name (die->attrs[i].name),
17170 dwarf_form_name (die->attrs[i].form));
17171
17172 switch (die->attrs[i].form)
17173 {
17174 case DW_FORM_addr:
17175 case DW_FORM_GNU_addr_index:
17176 fprintf_unfiltered (f, "address: ");
17177 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17178 break;
17179 case DW_FORM_block2:
17180 case DW_FORM_block4:
17181 case DW_FORM_block:
17182 case DW_FORM_block1:
17183 fprintf_unfiltered (f, "block: size %s",
17184 pulongest (DW_BLOCK (&die->attrs[i])->size));
17185 break;
17186 case DW_FORM_exprloc:
17187 fprintf_unfiltered (f, "expression: size %s",
17188 pulongest (DW_BLOCK (&die->attrs[i])->size));
17189 break;
17190 case DW_FORM_ref_addr:
17191 fprintf_unfiltered (f, "ref address: ");
17192 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17193 break;
17194 case DW_FORM_GNU_ref_alt:
17195 fprintf_unfiltered (f, "alt ref address: ");
17196 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17197 break;
17198 case DW_FORM_ref1:
17199 case DW_FORM_ref2:
17200 case DW_FORM_ref4:
17201 case DW_FORM_ref8:
17202 case DW_FORM_ref_udata:
17203 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17204 (long) (DW_UNSND (&die->attrs[i])));
17205 break;
17206 case DW_FORM_data1:
17207 case DW_FORM_data2:
17208 case DW_FORM_data4:
17209 case DW_FORM_data8:
17210 case DW_FORM_udata:
17211 case DW_FORM_sdata:
17212 fprintf_unfiltered (f, "constant: %s",
17213 pulongest (DW_UNSND (&die->attrs[i])));
17214 break;
17215 case DW_FORM_sec_offset:
17216 fprintf_unfiltered (f, "section offset: %s",
17217 pulongest (DW_UNSND (&die->attrs[i])));
17218 break;
17219 case DW_FORM_ref_sig8:
17220 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17221 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17222 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17223 else
17224 fprintf_unfiltered (f, "signatured type, offset: unknown");
17225 break;
17226 case DW_FORM_string:
17227 case DW_FORM_strp:
17228 case DW_FORM_GNU_str_index:
17229 case DW_FORM_GNU_strp_alt:
17230 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17231 DW_STRING (&die->attrs[i])
17232 ? DW_STRING (&die->attrs[i]) : "",
17233 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17234 break;
17235 case DW_FORM_flag:
17236 if (DW_UNSND (&die->attrs[i]))
17237 fprintf_unfiltered (f, "flag: TRUE");
17238 else
17239 fprintf_unfiltered (f, "flag: FALSE");
17240 break;
17241 case DW_FORM_flag_present:
17242 fprintf_unfiltered (f, "flag: TRUE");
17243 break;
17244 case DW_FORM_indirect:
17245 /* The reader will have reduced the indirect form to
17246 the "base form" so this form should not occur. */
17247 fprintf_unfiltered (f,
17248 "unexpected attribute form: DW_FORM_indirect");
17249 break;
17250 default:
17251 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17252 die->attrs[i].form);
17253 break;
17254 }
17255 fprintf_unfiltered (f, "\n");
17256 }
17257 }
17258
17259 static void
17260 dump_die_for_error (struct die_info *die)
17261 {
17262 dump_die_shallow (gdb_stderr, 0, die);
17263 }
17264
17265 static void
17266 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17267 {
17268 int indent = level * 4;
17269
17270 gdb_assert (die != NULL);
17271
17272 if (level >= max_level)
17273 return;
17274
17275 dump_die_shallow (f, indent, die);
17276
17277 if (die->child != NULL)
17278 {
17279 print_spaces (indent, f);
17280 fprintf_unfiltered (f, " Children:");
17281 if (level + 1 < max_level)
17282 {
17283 fprintf_unfiltered (f, "\n");
17284 dump_die_1 (f, level + 1, max_level, die->child);
17285 }
17286 else
17287 {
17288 fprintf_unfiltered (f,
17289 " [not printed, max nesting level reached]\n");
17290 }
17291 }
17292
17293 if (die->sibling != NULL && level > 0)
17294 {
17295 dump_die_1 (f, level, max_level, die->sibling);
17296 }
17297 }
17298
17299 /* This is called from the pdie macro in gdbinit.in.
17300 It's not static so gcc will keep a copy callable from gdb. */
17301
17302 void
17303 dump_die (struct die_info *die, int max_level)
17304 {
17305 dump_die_1 (gdb_stdlog, 0, max_level, die);
17306 }
17307
17308 static void
17309 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17310 {
17311 void **slot;
17312
17313 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17314 INSERT);
17315
17316 *slot = die;
17317 }
17318
17319 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17320 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17321
17322 static int
17323 is_ref_attr (struct attribute *attr)
17324 {
17325 switch (attr->form)
17326 {
17327 case DW_FORM_ref_addr:
17328 case DW_FORM_ref1:
17329 case DW_FORM_ref2:
17330 case DW_FORM_ref4:
17331 case DW_FORM_ref8:
17332 case DW_FORM_ref_udata:
17333 case DW_FORM_GNU_ref_alt:
17334 return 1;
17335 default:
17336 return 0;
17337 }
17338 }
17339
17340 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17341 required kind. */
17342
17343 static sect_offset
17344 dwarf2_get_ref_die_offset (struct attribute *attr)
17345 {
17346 sect_offset retval = { DW_UNSND (attr) };
17347
17348 if (is_ref_attr (attr))
17349 return retval;
17350
17351 retval.sect_off = 0;
17352 complaint (&symfile_complaints,
17353 _("unsupported die ref attribute form: '%s'"),
17354 dwarf_form_name (attr->form));
17355 return retval;
17356 }
17357
17358 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17359 * the value held by the attribute is not constant. */
17360
17361 static LONGEST
17362 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17363 {
17364 if (attr->form == DW_FORM_sdata)
17365 return DW_SND (attr);
17366 else if (attr->form == DW_FORM_udata
17367 || attr->form == DW_FORM_data1
17368 || attr->form == DW_FORM_data2
17369 || attr->form == DW_FORM_data4
17370 || attr->form == DW_FORM_data8)
17371 return DW_UNSND (attr);
17372 else
17373 {
17374 complaint (&symfile_complaints,
17375 _("Attribute value is not a constant (%s)"),
17376 dwarf_form_name (attr->form));
17377 return default_value;
17378 }
17379 }
17380
17381 /* Follow reference or signature attribute ATTR of SRC_DIE.
17382 On entry *REF_CU is the CU of SRC_DIE.
17383 On exit *REF_CU is the CU of the result. */
17384
17385 static struct die_info *
17386 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17387 struct dwarf2_cu **ref_cu)
17388 {
17389 struct die_info *die;
17390
17391 if (is_ref_attr (attr))
17392 die = follow_die_ref (src_die, attr, ref_cu);
17393 else if (attr->form == DW_FORM_ref_sig8)
17394 die = follow_die_sig (src_die, attr, ref_cu);
17395 else
17396 {
17397 dump_die_for_error (src_die);
17398 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17399 (*ref_cu)->objfile->name);
17400 }
17401
17402 return die;
17403 }
17404
17405 /* Follow reference OFFSET.
17406 On entry *REF_CU is the CU of the source die referencing OFFSET.
17407 On exit *REF_CU is the CU of the result.
17408 Returns NULL if OFFSET is invalid. */
17409
17410 static struct die_info *
17411 follow_die_offset (sect_offset offset, int offset_in_dwz,
17412 struct dwarf2_cu **ref_cu)
17413 {
17414 struct die_info temp_die;
17415 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17416
17417 gdb_assert (cu->per_cu != NULL);
17418
17419 target_cu = cu;
17420
17421 if (cu->per_cu->is_debug_types)
17422 {
17423 /* .debug_types CUs cannot reference anything outside their CU.
17424 If they need to, they have to reference a signatured type via
17425 DW_FORM_ref_sig8. */
17426 if (! offset_in_cu_p (&cu->header, offset))
17427 return NULL;
17428 }
17429 else if (offset_in_dwz != cu->per_cu->is_dwz
17430 || ! offset_in_cu_p (&cu->header, offset))
17431 {
17432 struct dwarf2_per_cu_data *per_cu;
17433
17434 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17435 cu->objfile);
17436
17437 /* If necessary, add it to the queue and load its DIEs. */
17438 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17439 load_full_comp_unit (per_cu, cu->language);
17440
17441 target_cu = per_cu->cu;
17442 }
17443 else if (cu->dies == NULL)
17444 {
17445 /* We're loading full DIEs during partial symbol reading. */
17446 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17447 load_full_comp_unit (cu->per_cu, language_minimal);
17448 }
17449
17450 *ref_cu = target_cu;
17451 temp_die.offset = offset;
17452 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17453 }
17454
17455 /* Follow reference attribute ATTR of SRC_DIE.
17456 On entry *REF_CU is the CU of SRC_DIE.
17457 On exit *REF_CU is the CU of the result. */
17458
17459 static struct die_info *
17460 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17461 struct dwarf2_cu **ref_cu)
17462 {
17463 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17464 struct dwarf2_cu *cu = *ref_cu;
17465 struct die_info *die;
17466
17467 die = follow_die_offset (offset,
17468 (attr->form == DW_FORM_GNU_ref_alt
17469 || cu->per_cu->is_dwz),
17470 ref_cu);
17471 if (!die)
17472 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17473 "at 0x%x [in module %s]"),
17474 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17475
17476 return die;
17477 }
17478
17479 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17480 Returned value is intended for DW_OP_call*. Returned
17481 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17482
17483 struct dwarf2_locexpr_baton
17484 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17485 struct dwarf2_per_cu_data *per_cu,
17486 CORE_ADDR (*get_frame_pc) (void *baton),
17487 void *baton)
17488 {
17489 struct dwarf2_cu *cu;
17490 struct die_info *die;
17491 struct attribute *attr;
17492 struct dwarf2_locexpr_baton retval;
17493
17494 dw2_setup (per_cu->objfile);
17495
17496 if (per_cu->cu == NULL)
17497 load_cu (per_cu);
17498 cu = per_cu->cu;
17499
17500 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17501 if (!die)
17502 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17503 offset.sect_off, per_cu->objfile->name);
17504
17505 attr = dwarf2_attr (die, DW_AT_location, cu);
17506 if (!attr)
17507 {
17508 /* DWARF: "If there is no such attribute, then there is no effect.".
17509 DATA is ignored if SIZE is 0. */
17510
17511 retval.data = NULL;
17512 retval.size = 0;
17513 }
17514 else if (attr_form_is_section_offset (attr))
17515 {
17516 struct dwarf2_loclist_baton loclist_baton;
17517 CORE_ADDR pc = (*get_frame_pc) (baton);
17518 size_t size;
17519
17520 fill_in_loclist_baton (cu, &loclist_baton, attr);
17521
17522 retval.data = dwarf2_find_location_expression (&loclist_baton,
17523 &size, pc);
17524 retval.size = size;
17525 }
17526 else
17527 {
17528 if (!attr_form_is_block (attr))
17529 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17530 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17531 offset.sect_off, per_cu->objfile->name);
17532
17533 retval.data = DW_BLOCK (attr)->data;
17534 retval.size = DW_BLOCK (attr)->size;
17535 }
17536 retval.per_cu = cu->per_cu;
17537
17538 age_cached_comp_units ();
17539
17540 return retval;
17541 }
17542
17543 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17544 offset. */
17545
17546 struct dwarf2_locexpr_baton
17547 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17548 struct dwarf2_per_cu_data *per_cu,
17549 CORE_ADDR (*get_frame_pc) (void *baton),
17550 void *baton)
17551 {
17552 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17553
17554 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17555 }
17556
17557 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17558 PER_CU. */
17559
17560 struct type *
17561 dwarf2_get_die_type (cu_offset die_offset,
17562 struct dwarf2_per_cu_data *per_cu)
17563 {
17564 sect_offset die_offset_sect;
17565
17566 dw2_setup (per_cu->objfile);
17567
17568 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17569 return get_die_type_at_offset (die_offset_sect, per_cu);
17570 }
17571
17572 /* Follow the signature attribute ATTR in SRC_DIE.
17573 On entry *REF_CU is the CU of SRC_DIE.
17574 On exit *REF_CU is the CU of the result. */
17575
17576 static struct die_info *
17577 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17578 struct dwarf2_cu **ref_cu)
17579 {
17580 struct objfile *objfile = (*ref_cu)->objfile;
17581 struct die_info temp_die;
17582 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17583 struct dwarf2_cu *sig_cu;
17584 struct die_info *die;
17585
17586 /* sig_type will be NULL if the signatured type is missing from
17587 the debug info. */
17588 if (sig_type == NULL)
17589 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17590 "at 0x%x [in module %s]"),
17591 src_die->offset.sect_off, objfile->name);
17592
17593 /* If necessary, add it to the queue and load its DIEs. */
17594
17595 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17596 read_signatured_type (sig_type);
17597
17598 gdb_assert (sig_type->per_cu.cu != NULL);
17599
17600 sig_cu = sig_type->per_cu.cu;
17601 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17602 temp_die.offset = sig_type->type_offset_in_section;
17603 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17604 temp_die.offset.sect_off);
17605 if (die)
17606 {
17607 /* For .gdb_index version 7 keep track of included TUs.
17608 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17609 if (dwarf2_per_objfile->index_table != NULL
17610 && dwarf2_per_objfile->index_table->version <= 7)
17611 {
17612 VEC_safe_push (dwarf2_per_cu_ptr,
17613 (*ref_cu)->per_cu->imported_symtabs,
17614 sig_cu->per_cu);
17615 }
17616
17617 *ref_cu = sig_cu;
17618 return die;
17619 }
17620
17621 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17622 "from DIE at 0x%x [in module %s]"),
17623 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17624 }
17625
17626 /* Given an offset of a signatured type, return its signatured_type. */
17627
17628 static struct signatured_type *
17629 lookup_signatured_type_at_offset (struct objfile *objfile,
17630 struct dwarf2_section_info *section,
17631 sect_offset offset)
17632 {
17633 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17634 unsigned int length, initial_length_size;
17635 unsigned int sig_offset;
17636 struct signatured_type find_entry, *sig_type;
17637
17638 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17639 sig_offset = (initial_length_size
17640 + 2 /*version*/
17641 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17642 + 1 /*address_size*/);
17643 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17644 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17645
17646 /* This is only used to lookup previously recorded types.
17647 If we didn't find it, it's our bug. */
17648 gdb_assert (sig_type != NULL);
17649 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17650
17651 return sig_type;
17652 }
17653
17654 /* Load the DIEs associated with type unit PER_CU into memory. */
17655
17656 static void
17657 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17658 {
17659 struct signatured_type *sig_type;
17660
17661 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17662 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17663
17664 /* We have the per_cu, but we need the signatured_type.
17665 Fortunately this is an easy translation. */
17666 gdb_assert (per_cu->is_debug_types);
17667 sig_type = (struct signatured_type *) per_cu;
17668
17669 gdb_assert (per_cu->cu == NULL);
17670
17671 read_signatured_type (sig_type);
17672
17673 gdb_assert (per_cu->cu != NULL);
17674 }
17675
17676 /* die_reader_func for read_signatured_type.
17677 This is identical to load_full_comp_unit_reader,
17678 but is kept separate for now. */
17679
17680 static void
17681 read_signatured_type_reader (const struct die_reader_specs *reader,
17682 gdb_byte *info_ptr,
17683 struct die_info *comp_unit_die,
17684 int has_children,
17685 void *data)
17686 {
17687 struct dwarf2_cu *cu = reader->cu;
17688
17689 gdb_assert (cu->die_hash == NULL);
17690 cu->die_hash =
17691 htab_create_alloc_ex (cu->header.length / 12,
17692 die_hash,
17693 die_eq,
17694 NULL,
17695 &cu->comp_unit_obstack,
17696 hashtab_obstack_allocate,
17697 dummy_obstack_deallocate);
17698
17699 if (has_children)
17700 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17701 &info_ptr, comp_unit_die);
17702 cu->dies = comp_unit_die;
17703 /* comp_unit_die is not stored in die_hash, no need. */
17704
17705 /* We try not to read any attributes in this function, because not
17706 all CUs needed for references have been loaded yet, and symbol
17707 table processing isn't initialized. But we have to set the CU language,
17708 or we won't be able to build types correctly.
17709 Similarly, if we do not read the producer, we can not apply
17710 producer-specific interpretation. */
17711 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17712 }
17713
17714 /* Read in a signatured type and build its CU and DIEs.
17715 If the type is a stub for the real type in a DWO file,
17716 read in the real type from the DWO file as well. */
17717
17718 static void
17719 read_signatured_type (struct signatured_type *sig_type)
17720 {
17721 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17722
17723 gdb_assert (per_cu->is_debug_types);
17724 gdb_assert (per_cu->cu == NULL);
17725
17726 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17727 read_signatured_type_reader, NULL);
17728 }
17729
17730 /* Decode simple location descriptions.
17731 Given a pointer to a dwarf block that defines a location, compute
17732 the location and return the value.
17733
17734 NOTE drow/2003-11-18: This function is called in two situations
17735 now: for the address of static or global variables (partial symbols
17736 only) and for offsets into structures which are expected to be
17737 (more or less) constant. The partial symbol case should go away,
17738 and only the constant case should remain. That will let this
17739 function complain more accurately. A few special modes are allowed
17740 without complaint for global variables (for instance, global
17741 register values and thread-local values).
17742
17743 A location description containing no operations indicates that the
17744 object is optimized out. The return value is 0 for that case.
17745 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17746 callers will only want a very basic result and this can become a
17747 complaint.
17748
17749 Note that stack[0] is unused except as a default error return. */
17750
17751 static CORE_ADDR
17752 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17753 {
17754 struct objfile *objfile = cu->objfile;
17755 size_t i;
17756 size_t size = blk->size;
17757 gdb_byte *data = blk->data;
17758 CORE_ADDR stack[64];
17759 int stacki;
17760 unsigned int bytes_read, unsnd;
17761 gdb_byte op;
17762
17763 i = 0;
17764 stacki = 0;
17765 stack[stacki] = 0;
17766 stack[++stacki] = 0;
17767
17768 while (i < size)
17769 {
17770 op = data[i++];
17771 switch (op)
17772 {
17773 case DW_OP_lit0:
17774 case DW_OP_lit1:
17775 case DW_OP_lit2:
17776 case DW_OP_lit3:
17777 case DW_OP_lit4:
17778 case DW_OP_lit5:
17779 case DW_OP_lit6:
17780 case DW_OP_lit7:
17781 case DW_OP_lit8:
17782 case DW_OP_lit9:
17783 case DW_OP_lit10:
17784 case DW_OP_lit11:
17785 case DW_OP_lit12:
17786 case DW_OP_lit13:
17787 case DW_OP_lit14:
17788 case DW_OP_lit15:
17789 case DW_OP_lit16:
17790 case DW_OP_lit17:
17791 case DW_OP_lit18:
17792 case DW_OP_lit19:
17793 case DW_OP_lit20:
17794 case DW_OP_lit21:
17795 case DW_OP_lit22:
17796 case DW_OP_lit23:
17797 case DW_OP_lit24:
17798 case DW_OP_lit25:
17799 case DW_OP_lit26:
17800 case DW_OP_lit27:
17801 case DW_OP_lit28:
17802 case DW_OP_lit29:
17803 case DW_OP_lit30:
17804 case DW_OP_lit31:
17805 stack[++stacki] = op - DW_OP_lit0;
17806 break;
17807
17808 case DW_OP_reg0:
17809 case DW_OP_reg1:
17810 case DW_OP_reg2:
17811 case DW_OP_reg3:
17812 case DW_OP_reg4:
17813 case DW_OP_reg5:
17814 case DW_OP_reg6:
17815 case DW_OP_reg7:
17816 case DW_OP_reg8:
17817 case DW_OP_reg9:
17818 case DW_OP_reg10:
17819 case DW_OP_reg11:
17820 case DW_OP_reg12:
17821 case DW_OP_reg13:
17822 case DW_OP_reg14:
17823 case DW_OP_reg15:
17824 case DW_OP_reg16:
17825 case DW_OP_reg17:
17826 case DW_OP_reg18:
17827 case DW_OP_reg19:
17828 case DW_OP_reg20:
17829 case DW_OP_reg21:
17830 case DW_OP_reg22:
17831 case DW_OP_reg23:
17832 case DW_OP_reg24:
17833 case DW_OP_reg25:
17834 case DW_OP_reg26:
17835 case DW_OP_reg27:
17836 case DW_OP_reg28:
17837 case DW_OP_reg29:
17838 case DW_OP_reg30:
17839 case DW_OP_reg31:
17840 stack[++stacki] = op - DW_OP_reg0;
17841 if (i < size)
17842 dwarf2_complex_location_expr_complaint ();
17843 break;
17844
17845 case DW_OP_regx:
17846 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17847 i += bytes_read;
17848 stack[++stacki] = unsnd;
17849 if (i < size)
17850 dwarf2_complex_location_expr_complaint ();
17851 break;
17852
17853 case DW_OP_addr:
17854 stack[++stacki] = read_address (objfile->obfd, &data[i],
17855 cu, &bytes_read);
17856 i += bytes_read;
17857 break;
17858
17859 case DW_OP_const1u:
17860 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17861 i += 1;
17862 break;
17863
17864 case DW_OP_const1s:
17865 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17866 i += 1;
17867 break;
17868
17869 case DW_OP_const2u:
17870 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17871 i += 2;
17872 break;
17873
17874 case DW_OP_const2s:
17875 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17876 i += 2;
17877 break;
17878
17879 case DW_OP_const4u:
17880 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17881 i += 4;
17882 break;
17883
17884 case DW_OP_const4s:
17885 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17886 i += 4;
17887 break;
17888
17889 case DW_OP_const8u:
17890 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17891 i += 8;
17892 break;
17893
17894 case DW_OP_constu:
17895 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17896 &bytes_read);
17897 i += bytes_read;
17898 break;
17899
17900 case DW_OP_consts:
17901 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17902 i += bytes_read;
17903 break;
17904
17905 case DW_OP_dup:
17906 stack[stacki + 1] = stack[stacki];
17907 stacki++;
17908 break;
17909
17910 case DW_OP_plus:
17911 stack[stacki - 1] += stack[stacki];
17912 stacki--;
17913 break;
17914
17915 case DW_OP_plus_uconst:
17916 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17917 &bytes_read);
17918 i += bytes_read;
17919 break;
17920
17921 case DW_OP_minus:
17922 stack[stacki - 1] -= stack[stacki];
17923 stacki--;
17924 break;
17925
17926 case DW_OP_deref:
17927 /* If we're not the last op, then we definitely can't encode
17928 this using GDB's address_class enum. This is valid for partial
17929 global symbols, although the variable's address will be bogus
17930 in the psymtab. */
17931 if (i < size)
17932 dwarf2_complex_location_expr_complaint ();
17933 break;
17934
17935 case DW_OP_GNU_push_tls_address:
17936 /* The top of the stack has the offset from the beginning
17937 of the thread control block at which the variable is located. */
17938 /* Nothing should follow this operator, so the top of stack would
17939 be returned. */
17940 /* This is valid for partial global symbols, but the variable's
17941 address will be bogus in the psymtab. Make it always at least
17942 non-zero to not look as a variable garbage collected by linker
17943 which have DW_OP_addr 0. */
17944 if (i < size)
17945 dwarf2_complex_location_expr_complaint ();
17946 stack[stacki]++;
17947 break;
17948
17949 case DW_OP_GNU_uninit:
17950 break;
17951
17952 case DW_OP_GNU_addr_index:
17953 case DW_OP_GNU_const_index:
17954 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17955 &bytes_read);
17956 i += bytes_read;
17957 break;
17958
17959 default:
17960 {
17961 const char *name = get_DW_OP_name (op);
17962
17963 if (name)
17964 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17965 name);
17966 else
17967 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17968 op);
17969 }
17970
17971 return (stack[stacki]);
17972 }
17973
17974 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17975 outside of the allocated space. Also enforce minimum>0. */
17976 if (stacki >= ARRAY_SIZE (stack) - 1)
17977 {
17978 complaint (&symfile_complaints,
17979 _("location description stack overflow"));
17980 return 0;
17981 }
17982
17983 if (stacki <= 0)
17984 {
17985 complaint (&symfile_complaints,
17986 _("location description stack underflow"));
17987 return 0;
17988 }
17989 }
17990 return (stack[stacki]);
17991 }
17992
17993 /* memory allocation interface */
17994
17995 static struct dwarf_block *
17996 dwarf_alloc_block (struct dwarf2_cu *cu)
17997 {
17998 struct dwarf_block *blk;
17999
18000 blk = (struct dwarf_block *)
18001 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18002 return (blk);
18003 }
18004
18005 static struct die_info *
18006 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18007 {
18008 struct die_info *die;
18009 size_t size = sizeof (struct die_info);
18010
18011 if (num_attrs > 1)
18012 size += (num_attrs - 1) * sizeof (struct attribute);
18013
18014 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18015 memset (die, 0, sizeof (struct die_info));
18016 return (die);
18017 }
18018
18019 \f
18020 /* Macro support. */
18021
18022 /* Return the full name of file number I in *LH's file name table.
18023 Use COMP_DIR as the name of the current directory of the
18024 compilation. The result is allocated using xmalloc; the caller is
18025 responsible for freeing it. */
18026 static char *
18027 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18028 {
18029 /* Is the file number a valid index into the line header's file name
18030 table? Remember that file numbers start with one, not zero. */
18031 if (1 <= file && file <= lh->num_file_names)
18032 {
18033 struct file_entry *fe = &lh->file_names[file - 1];
18034
18035 if (IS_ABSOLUTE_PATH (fe->name))
18036 return xstrdup (fe->name);
18037 else
18038 {
18039 const char *dir;
18040 int dir_len;
18041 char *full_name;
18042
18043 if (fe->dir_index)
18044 dir = lh->include_dirs[fe->dir_index - 1];
18045 else
18046 dir = comp_dir;
18047
18048 if (dir)
18049 {
18050 dir_len = strlen (dir);
18051 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
18052 strcpy (full_name, dir);
18053 full_name[dir_len] = '/';
18054 strcpy (full_name + dir_len + 1, fe->name);
18055 return full_name;
18056 }
18057 else
18058 return xstrdup (fe->name);
18059 }
18060 }
18061 else
18062 {
18063 /* The compiler produced a bogus file number. We can at least
18064 record the macro definitions made in the file, even if we
18065 won't be able to find the file by name. */
18066 char fake_name[80];
18067
18068 xsnprintf (fake_name, sizeof (fake_name),
18069 "<bad macro file number %d>", file);
18070
18071 complaint (&symfile_complaints,
18072 _("bad file number in macro information (%d)"),
18073 file);
18074
18075 return xstrdup (fake_name);
18076 }
18077 }
18078
18079
18080 static struct macro_source_file *
18081 macro_start_file (int file, int line,
18082 struct macro_source_file *current_file,
18083 const char *comp_dir,
18084 struct line_header *lh, struct objfile *objfile)
18085 {
18086 /* The full name of this source file. */
18087 char *full_name = file_full_name (file, lh, comp_dir);
18088
18089 /* We don't create a macro table for this compilation unit
18090 at all until we actually get a filename. */
18091 if (! pending_macros)
18092 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18093 objfile->per_bfd->macro_cache);
18094
18095 if (! current_file)
18096 {
18097 /* If we have no current file, then this must be the start_file
18098 directive for the compilation unit's main source file. */
18099 current_file = macro_set_main (pending_macros, full_name);
18100 macro_define_special (pending_macros);
18101 }
18102 else
18103 current_file = macro_include (current_file, line, full_name);
18104
18105 xfree (full_name);
18106
18107 return current_file;
18108 }
18109
18110
18111 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18112 followed by a null byte. */
18113 static char *
18114 copy_string (const char *buf, int len)
18115 {
18116 char *s = xmalloc (len + 1);
18117
18118 memcpy (s, buf, len);
18119 s[len] = '\0';
18120 return s;
18121 }
18122
18123
18124 static const char *
18125 consume_improper_spaces (const char *p, const char *body)
18126 {
18127 if (*p == ' ')
18128 {
18129 complaint (&symfile_complaints,
18130 _("macro definition contains spaces "
18131 "in formal argument list:\n`%s'"),
18132 body);
18133
18134 while (*p == ' ')
18135 p++;
18136 }
18137
18138 return p;
18139 }
18140
18141
18142 static void
18143 parse_macro_definition (struct macro_source_file *file, int line,
18144 const char *body)
18145 {
18146 const char *p;
18147
18148 /* The body string takes one of two forms. For object-like macro
18149 definitions, it should be:
18150
18151 <macro name> " " <definition>
18152
18153 For function-like macro definitions, it should be:
18154
18155 <macro name> "() " <definition>
18156 or
18157 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18158
18159 Spaces may appear only where explicitly indicated, and in the
18160 <definition>.
18161
18162 The Dwarf 2 spec says that an object-like macro's name is always
18163 followed by a space, but versions of GCC around March 2002 omit
18164 the space when the macro's definition is the empty string.
18165
18166 The Dwarf 2 spec says that there should be no spaces between the
18167 formal arguments in a function-like macro's formal argument list,
18168 but versions of GCC around March 2002 include spaces after the
18169 commas. */
18170
18171
18172 /* Find the extent of the macro name. The macro name is terminated
18173 by either a space or null character (for an object-like macro) or
18174 an opening paren (for a function-like macro). */
18175 for (p = body; *p; p++)
18176 if (*p == ' ' || *p == '(')
18177 break;
18178
18179 if (*p == ' ' || *p == '\0')
18180 {
18181 /* It's an object-like macro. */
18182 int name_len = p - body;
18183 char *name = copy_string (body, name_len);
18184 const char *replacement;
18185
18186 if (*p == ' ')
18187 replacement = body + name_len + 1;
18188 else
18189 {
18190 dwarf2_macro_malformed_definition_complaint (body);
18191 replacement = body + name_len;
18192 }
18193
18194 macro_define_object (file, line, name, replacement);
18195
18196 xfree (name);
18197 }
18198 else if (*p == '(')
18199 {
18200 /* It's a function-like macro. */
18201 char *name = copy_string (body, p - body);
18202 int argc = 0;
18203 int argv_size = 1;
18204 char **argv = xmalloc (argv_size * sizeof (*argv));
18205
18206 p++;
18207
18208 p = consume_improper_spaces (p, body);
18209
18210 /* Parse the formal argument list. */
18211 while (*p && *p != ')')
18212 {
18213 /* Find the extent of the current argument name. */
18214 const char *arg_start = p;
18215
18216 while (*p && *p != ',' && *p != ')' && *p != ' ')
18217 p++;
18218
18219 if (! *p || p == arg_start)
18220 dwarf2_macro_malformed_definition_complaint (body);
18221 else
18222 {
18223 /* Make sure argv has room for the new argument. */
18224 if (argc >= argv_size)
18225 {
18226 argv_size *= 2;
18227 argv = xrealloc (argv, argv_size * sizeof (*argv));
18228 }
18229
18230 argv[argc++] = copy_string (arg_start, p - arg_start);
18231 }
18232
18233 p = consume_improper_spaces (p, body);
18234
18235 /* Consume the comma, if present. */
18236 if (*p == ',')
18237 {
18238 p++;
18239
18240 p = consume_improper_spaces (p, body);
18241 }
18242 }
18243
18244 if (*p == ')')
18245 {
18246 p++;
18247
18248 if (*p == ' ')
18249 /* Perfectly formed definition, no complaints. */
18250 macro_define_function (file, line, name,
18251 argc, (const char **) argv,
18252 p + 1);
18253 else if (*p == '\0')
18254 {
18255 /* Complain, but do define it. */
18256 dwarf2_macro_malformed_definition_complaint (body);
18257 macro_define_function (file, line, name,
18258 argc, (const char **) argv,
18259 p);
18260 }
18261 else
18262 /* Just complain. */
18263 dwarf2_macro_malformed_definition_complaint (body);
18264 }
18265 else
18266 /* Just complain. */
18267 dwarf2_macro_malformed_definition_complaint (body);
18268
18269 xfree (name);
18270 {
18271 int i;
18272
18273 for (i = 0; i < argc; i++)
18274 xfree (argv[i]);
18275 }
18276 xfree (argv);
18277 }
18278 else
18279 dwarf2_macro_malformed_definition_complaint (body);
18280 }
18281
18282 /* Skip some bytes from BYTES according to the form given in FORM.
18283 Returns the new pointer. */
18284
18285 static gdb_byte *
18286 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18287 enum dwarf_form form,
18288 unsigned int offset_size,
18289 struct dwarf2_section_info *section)
18290 {
18291 unsigned int bytes_read;
18292
18293 switch (form)
18294 {
18295 case DW_FORM_data1:
18296 case DW_FORM_flag:
18297 ++bytes;
18298 break;
18299
18300 case DW_FORM_data2:
18301 bytes += 2;
18302 break;
18303
18304 case DW_FORM_data4:
18305 bytes += 4;
18306 break;
18307
18308 case DW_FORM_data8:
18309 bytes += 8;
18310 break;
18311
18312 case DW_FORM_string:
18313 read_direct_string (abfd, bytes, &bytes_read);
18314 bytes += bytes_read;
18315 break;
18316
18317 case DW_FORM_sec_offset:
18318 case DW_FORM_strp:
18319 case DW_FORM_GNU_strp_alt:
18320 bytes += offset_size;
18321 break;
18322
18323 case DW_FORM_block:
18324 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18325 bytes += bytes_read;
18326 break;
18327
18328 case DW_FORM_block1:
18329 bytes += 1 + read_1_byte (abfd, bytes);
18330 break;
18331 case DW_FORM_block2:
18332 bytes += 2 + read_2_bytes (abfd, bytes);
18333 break;
18334 case DW_FORM_block4:
18335 bytes += 4 + read_4_bytes (abfd, bytes);
18336 break;
18337
18338 case DW_FORM_sdata:
18339 case DW_FORM_udata:
18340 case DW_FORM_GNU_addr_index:
18341 case DW_FORM_GNU_str_index:
18342 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18343 if (bytes == NULL)
18344 {
18345 dwarf2_section_buffer_overflow_complaint (section);
18346 return NULL;
18347 }
18348 break;
18349
18350 default:
18351 {
18352 complain:
18353 complaint (&symfile_complaints,
18354 _("invalid form 0x%x in `%s'"),
18355 form,
18356 section->asection->name);
18357 return NULL;
18358 }
18359 }
18360
18361 return bytes;
18362 }
18363
18364 /* A helper for dwarf_decode_macros that handles skipping an unknown
18365 opcode. Returns an updated pointer to the macro data buffer; or,
18366 on error, issues a complaint and returns NULL. */
18367
18368 static gdb_byte *
18369 skip_unknown_opcode (unsigned int opcode,
18370 gdb_byte **opcode_definitions,
18371 gdb_byte *mac_ptr, gdb_byte *mac_end,
18372 bfd *abfd,
18373 unsigned int offset_size,
18374 struct dwarf2_section_info *section)
18375 {
18376 unsigned int bytes_read, i;
18377 unsigned long arg;
18378 gdb_byte *defn;
18379
18380 if (opcode_definitions[opcode] == NULL)
18381 {
18382 complaint (&symfile_complaints,
18383 _("unrecognized DW_MACFINO opcode 0x%x"),
18384 opcode);
18385 return NULL;
18386 }
18387
18388 defn = opcode_definitions[opcode];
18389 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18390 defn += bytes_read;
18391
18392 for (i = 0; i < arg; ++i)
18393 {
18394 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18395 section);
18396 if (mac_ptr == NULL)
18397 {
18398 /* skip_form_bytes already issued the complaint. */
18399 return NULL;
18400 }
18401 }
18402
18403 return mac_ptr;
18404 }
18405
18406 /* A helper function which parses the header of a macro section.
18407 If the macro section is the extended (for now called "GNU") type,
18408 then this updates *OFFSET_SIZE. Returns a pointer to just after
18409 the header, or issues a complaint and returns NULL on error. */
18410
18411 static gdb_byte *
18412 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18413 bfd *abfd,
18414 gdb_byte *mac_ptr,
18415 unsigned int *offset_size,
18416 int section_is_gnu)
18417 {
18418 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18419
18420 if (section_is_gnu)
18421 {
18422 unsigned int version, flags;
18423
18424 version = read_2_bytes (abfd, mac_ptr);
18425 if (version != 4)
18426 {
18427 complaint (&symfile_complaints,
18428 _("unrecognized version `%d' in .debug_macro section"),
18429 version);
18430 return NULL;
18431 }
18432 mac_ptr += 2;
18433
18434 flags = read_1_byte (abfd, mac_ptr);
18435 ++mac_ptr;
18436 *offset_size = (flags & 1) ? 8 : 4;
18437
18438 if ((flags & 2) != 0)
18439 /* We don't need the line table offset. */
18440 mac_ptr += *offset_size;
18441
18442 /* Vendor opcode descriptions. */
18443 if ((flags & 4) != 0)
18444 {
18445 unsigned int i, count;
18446
18447 count = read_1_byte (abfd, mac_ptr);
18448 ++mac_ptr;
18449 for (i = 0; i < count; ++i)
18450 {
18451 unsigned int opcode, bytes_read;
18452 unsigned long arg;
18453
18454 opcode = read_1_byte (abfd, mac_ptr);
18455 ++mac_ptr;
18456 opcode_definitions[opcode] = mac_ptr;
18457 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18458 mac_ptr += bytes_read;
18459 mac_ptr += arg;
18460 }
18461 }
18462 }
18463
18464 return mac_ptr;
18465 }
18466
18467 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18468 including DW_MACRO_GNU_transparent_include. */
18469
18470 static void
18471 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18472 struct macro_source_file *current_file,
18473 struct line_header *lh, const char *comp_dir,
18474 struct dwarf2_section_info *section,
18475 int section_is_gnu, int section_is_dwz,
18476 unsigned int offset_size,
18477 struct objfile *objfile,
18478 htab_t include_hash)
18479 {
18480 enum dwarf_macro_record_type macinfo_type;
18481 int at_commandline;
18482 gdb_byte *opcode_definitions[256];
18483
18484 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18485 &offset_size, section_is_gnu);
18486 if (mac_ptr == NULL)
18487 {
18488 /* We already issued a complaint. */
18489 return;
18490 }
18491
18492 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18493 GDB is still reading the definitions from command line. First
18494 DW_MACINFO_start_file will need to be ignored as it was already executed
18495 to create CURRENT_FILE for the main source holding also the command line
18496 definitions. On first met DW_MACINFO_start_file this flag is reset to
18497 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18498
18499 at_commandline = 1;
18500
18501 do
18502 {
18503 /* Do we at least have room for a macinfo type byte? */
18504 if (mac_ptr >= mac_end)
18505 {
18506 dwarf2_section_buffer_overflow_complaint (section);
18507 break;
18508 }
18509
18510 macinfo_type = read_1_byte (abfd, mac_ptr);
18511 mac_ptr++;
18512
18513 /* Note that we rely on the fact that the corresponding GNU and
18514 DWARF constants are the same. */
18515 switch (macinfo_type)
18516 {
18517 /* A zero macinfo type indicates the end of the macro
18518 information. */
18519 case 0:
18520 break;
18521
18522 case DW_MACRO_GNU_define:
18523 case DW_MACRO_GNU_undef:
18524 case DW_MACRO_GNU_define_indirect:
18525 case DW_MACRO_GNU_undef_indirect:
18526 case DW_MACRO_GNU_define_indirect_alt:
18527 case DW_MACRO_GNU_undef_indirect_alt:
18528 {
18529 unsigned int bytes_read;
18530 int line;
18531 char *body;
18532 int is_define;
18533
18534 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18535 mac_ptr += bytes_read;
18536
18537 if (macinfo_type == DW_MACRO_GNU_define
18538 || macinfo_type == DW_MACRO_GNU_undef)
18539 {
18540 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18541 mac_ptr += bytes_read;
18542 }
18543 else
18544 {
18545 LONGEST str_offset;
18546
18547 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18548 mac_ptr += offset_size;
18549
18550 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18551 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18552 || section_is_dwz)
18553 {
18554 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18555
18556 body = read_indirect_string_from_dwz (dwz, str_offset);
18557 }
18558 else
18559 body = read_indirect_string_at_offset (abfd, str_offset);
18560 }
18561
18562 is_define = (macinfo_type == DW_MACRO_GNU_define
18563 || macinfo_type == DW_MACRO_GNU_define_indirect
18564 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18565 if (! current_file)
18566 {
18567 /* DWARF violation as no main source is present. */
18568 complaint (&symfile_complaints,
18569 _("debug info with no main source gives macro %s "
18570 "on line %d: %s"),
18571 is_define ? _("definition") : _("undefinition"),
18572 line, body);
18573 break;
18574 }
18575 if ((line == 0 && !at_commandline)
18576 || (line != 0 && at_commandline))
18577 complaint (&symfile_complaints,
18578 _("debug info gives %s macro %s with %s line %d: %s"),
18579 at_commandline ? _("command-line") : _("in-file"),
18580 is_define ? _("definition") : _("undefinition"),
18581 line == 0 ? _("zero") : _("non-zero"), line, body);
18582
18583 if (is_define)
18584 parse_macro_definition (current_file, line, body);
18585 else
18586 {
18587 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18588 || macinfo_type == DW_MACRO_GNU_undef_indirect
18589 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18590 macro_undef (current_file, line, body);
18591 }
18592 }
18593 break;
18594
18595 case DW_MACRO_GNU_start_file:
18596 {
18597 unsigned int bytes_read;
18598 int line, file;
18599
18600 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18601 mac_ptr += bytes_read;
18602 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18603 mac_ptr += bytes_read;
18604
18605 if ((line == 0 && !at_commandline)
18606 || (line != 0 && at_commandline))
18607 complaint (&symfile_complaints,
18608 _("debug info gives source %d included "
18609 "from %s at %s line %d"),
18610 file, at_commandline ? _("command-line") : _("file"),
18611 line == 0 ? _("zero") : _("non-zero"), line);
18612
18613 if (at_commandline)
18614 {
18615 /* This DW_MACRO_GNU_start_file was executed in the
18616 pass one. */
18617 at_commandline = 0;
18618 }
18619 else
18620 current_file = macro_start_file (file, line,
18621 current_file, comp_dir,
18622 lh, objfile);
18623 }
18624 break;
18625
18626 case DW_MACRO_GNU_end_file:
18627 if (! current_file)
18628 complaint (&symfile_complaints,
18629 _("macro debug info has an unmatched "
18630 "`close_file' directive"));
18631 else
18632 {
18633 current_file = current_file->included_by;
18634 if (! current_file)
18635 {
18636 enum dwarf_macro_record_type next_type;
18637
18638 /* GCC circa March 2002 doesn't produce the zero
18639 type byte marking the end of the compilation
18640 unit. Complain if it's not there, but exit no
18641 matter what. */
18642
18643 /* Do we at least have room for a macinfo type byte? */
18644 if (mac_ptr >= mac_end)
18645 {
18646 dwarf2_section_buffer_overflow_complaint (section);
18647 return;
18648 }
18649
18650 /* We don't increment mac_ptr here, so this is just
18651 a look-ahead. */
18652 next_type = read_1_byte (abfd, mac_ptr);
18653 if (next_type != 0)
18654 complaint (&symfile_complaints,
18655 _("no terminating 0-type entry for "
18656 "macros in `.debug_macinfo' section"));
18657
18658 return;
18659 }
18660 }
18661 break;
18662
18663 case DW_MACRO_GNU_transparent_include:
18664 case DW_MACRO_GNU_transparent_include_alt:
18665 {
18666 LONGEST offset;
18667 void **slot;
18668 bfd *include_bfd = abfd;
18669 struct dwarf2_section_info *include_section = section;
18670 struct dwarf2_section_info alt_section;
18671 gdb_byte *include_mac_end = mac_end;
18672 int is_dwz = section_is_dwz;
18673 gdb_byte *new_mac_ptr;
18674
18675 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18676 mac_ptr += offset_size;
18677
18678 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18679 {
18680 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18681
18682 dwarf2_read_section (dwarf2_per_objfile->objfile,
18683 &dwz->macro);
18684
18685 include_bfd = dwz->macro.asection->owner;
18686 include_section = &dwz->macro;
18687 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18688 is_dwz = 1;
18689 }
18690
18691 new_mac_ptr = include_section->buffer + offset;
18692 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18693
18694 if (*slot != NULL)
18695 {
18696 /* This has actually happened; see
18697 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18698 complaint (&symfile_complaints,
18699 _("recursive DW_MACRO_GNU_transparent_include in "
18700 ".debug_macro section"));
18701 }
18702 else
18703 {
18704 *slot = new_mac_ptr;
18705
18706 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18707 include_mac_end, current_file,
18708 lh, comp_dir,
18709 section, section_is_gnu, is_dwz,
18710 offset_size, objfile, include_hash);
18711
18712 htab_remove_elt (include_hash, new_mac_ptr);
18713 }
18714 }
18715 break;
18716
18717 case DW_MACINFO_vendor_ext:
18718 if (!section_is_gnu)
18719 {
18720 unsigned int bytes_read;
18721 int constant;
18722
18723 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18724 mac_ptr += bytes_read;
18725 read_direct_string (abfd, mac_ptr, &bytes_read);
18726 mac_ptr += bytes_read;
18727
18728 /* We don't recognize any vendor extensions. */
18729 break;
18730 }
18731 /* FALLTHROUGH */
18732
18733 default:
18734 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18735 mac_ptr, mac_end, abfd, offset_size,
18736 section);
18737 if (mac_ptr == NULL)
18738 return;
18739 break;
18740 }
18741 } while (macinfo_type != 0);
18742 }
18743
18744 static void
18745 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18746 const char *comp_dir, int section_is_gnu)
18747 {
18748 struct objfile *objfile = dwarf2_per_objfile->objfile;
18749 struct line_header *lh = cu->line_header;
18750 bfd *abfd;
18751 gdb_byte *mac_ptr, *mac_end;
18752 struct macro_source_file *current_file = 0;
18753 enum dwarf_macro_record_type macinfo_type;
18754 unsigned int offset_size = cu->header.offset_size;
18755 gdb_byte *opcode_definitions[256];
18756 struct cleanup *cleanup;
18757 htab_t include_hash;
18758 void **slot;
18759 struct dwarf2_section_info *section;
18760 const char *section_name;
18761
18762 if (cu->dwo_unit != NULL)
18763 {
18764 if (section_is_gnu)
18765 {
18766 section = &cu->dwo_unit->dwo_file->sections.macro;
18767 section_name = ".debug_macro.dwo";
18768 }
18769 else
18770 {
18771 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18772 section_name = ".debug_macinfo.dwo";
18773 }
18774 }
18775 else
18776 {
18777 if (section_is_gnu)
18778 {
18779 section = &dwarf2_per_objfile->macro;
18780 section_name = ".debug_macro";
18781 }
18782 else
18783 {
18784 section = &dwarf2_per_objfile->macinfo;
18785 section_name = ".debug_macinfo";
18786 }
18787 }
18788
18789 dwarf2_read_section (objfile, section);
18790 if (section->buffer == NULL)
18791 {
18792 complaint (&symfile_complaints, _("missing %s section"), section_name);
18793 return;
18794 }
18795 abfd = section->asection->owner;
18796
18797 /* First pass: Find the name of the base filename.
18798 This filename is needed in order to process all macros whose definition
18799 (or undefinition) comes from the command line. These macros are defined
18800 before the first DW_MACINFO_start_file entry, and yet still need to be
18801 associated to the base file.
18802
18803 To determine the base file name, we scan the macro definitions until we
18804 reach the first DW_MACINFO_start_file entry. We then initialize
18805 CURRENT_FILE accordingly so that any macro definition found before the
18806 first DW_MACINFO_start_file can still be associated to the base file. */
18807
18808 mac_ptr = section->buffer + offset;
18809 mac_end = section->buffer + section->size;
18810
18811 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18812 &offset_size, section_is_gnu);
18813 if (mac_ptr == NULL)
18814 {
18815 /* We already issued a complaint. */
18816 return;
18817 }
18818
18819 do
18820 {
18821 /* Do we at least have room for a macinfo type byte? */
18822 if (mac_ptr >= mac_end)
18823 {
18824 /* Complaint is printed during the second pass as GDB will probably
18825 stop the first pass earlier upon finding
18826 DW_MACINFO_start_file. */
18827 break;
18828 }
18829
18830 macinfo_type = read_1_byte (abfd, mac_ptr);
18831 mac_ptr++;
18832
18833 /* Note that we rely on the fact that the corresponding GNU and
18834 DWARF constants are the same. */
18835 switch (macinfo_type)
18836 {
18837 /* A zero macinfo type indicates the end of the macro
18838 information. */
18839 case 0:
18840 break;
18841
18842 case DW_MACRO_GNU_define:
18843 case DW_MACRO_GNU_undef:
18844 /* Only skip the data by MAC_PTR. */
18845 {
18846 unsigned int bytes_read;
18847
18848 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18849 mac_ptr += bytes_read;
18850 read_direct_string (abfd, mac_ptr, &bytes_read);
18851 mac_ptr += bytes_read;
18852 }
18853 break;
18854
18855 case DW_MACRO_GNU_start_file:
18856 {
18857 unsigned int bytes_read;
18858 int line, file;
18859
18860 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18861 mac_ptr += bytes_read;
18862 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18863 mac_ptr += bytes_read;
18864
18865 current_file = macro_start_file (file, line, current_file,
18866 comp_dir, lh, objfile);
18867 }
18868 break;
18869
18870 case DW_MACRO_GNU_end_file:
18871 /* No data to skip by MAC_PTR. */
18872 break;
18873
18874 case DW_MACRO_GNU_define_indirect:
18875 case DW_MACRO_GNU_undef_indirect:
18876 case DW_MACRO_GNU_define_indirect_alt:
18877 case DW_MACRO_GNU_undef_indirect_alt:
18878 {
18879 unsigned int bytes_read;
18880
18881 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18882 mac_ptr += bytes_read;
18883 mac_ptr += offset_size;
18884 }
18885 break;
18886
18887 case DW_MACRO_GNU_transparent_include:
18888 case DW_MACRO_GNU_transparent_include_alt:
18889 /* Note that, according to the spec, a transparent include
18890 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18891 skip this opcode. */
18892 mac_ptr += offset_size;
18893 break;
18894
18895 case DW_MACINFO_vendor_ext:
18896 /* Only skip the data by MAC_PTR. */
18897 if (!section_is_gnu)
18898 {
18899 unsigned int bytes_read;
18900
18901 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18902 mac_ptr += bytes_read;
18903 read_direct_string (abfd, mac_ptr, &bytes_read);
18904 mac_ptr += bytes_read;
18905 }
18906 /* FALLTHROUGH */
18907
18908 default:
18909 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18910 mac_ptr, mac_end, abfd, offset_size,
18911 section);
18912 if (mac_ptr == NULL)
18913 return;
18914 break;
18915 }
18916 } while (macinfo_type != 0 && current_file == NULL);
18917
18918 /* Second pass: Process all entries.
18919
18920 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18921 command-line macro definitions/undefinitions. This flag is unset when we
18922 reach the first DW_MACINFO_start_file entry. */
18923
18924 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18925 NULL, xcalloc, xfree);
18926 cleanup = make_cleanup_htab_delete (include_hash);
18927 mac_ptr = section->buffer + offset;
18928 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18929 *slot = mac_ptr;
18930 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18931 current_file, lh, comp_dir, section,
18932 section_is_gnu, 0,
18933 offset_size, objfile, include_hash);
18934 do_cleanups (cleanup);
18935 }
18936
18937 /* Check if the attribute's form is a DW_FORM_block*
18938 if so return true else false. */
18939
18940 static int
18941 attr_form_is_block (struct attribute *attr)
18942 {
18943 return (attr == NULL ? 0 :
18944 attr->form == DW_FORM_block1
18945 || attr->form == DW_FORM_block2
18946 || attr->form == DW_FORM_block4
18947 || attr->form == DW_FORM_block
18948 || attr->form == DW_FORM_exprloc);
18949 }
18950
18951 /* Return non-zero if ATTR's value is a section offset --- classes
18952 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18953 You may use DW_UNSND (attr) to retrieve such offsets.
18954
18955 Section 7.5.4, "Attribute Encodings", explains that no attribute
18956 may have a value that belongs to more than one of these classes; it
18957 would be ambiguous if we did, because we use the same forms for all
18958 of them. */
18959
18960 static int
18961 attr_form_is_section_offset (struct attribute *attr)
18962 {
18963 return (attr->form == DW_FORM_data4
18964 || attr->form == DW_FORM_data8
18965 || attr->form == DW_FORM_sec_offset);
18966 }
18967
18968 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18969 zero otherwise. When this function returns true, you can apply
18970 dwarf2_get_attr_constant_value to it.
18971
18972 However, note that for some attributes you must check
18973 attr_form_is_section_offset before using this test. DW_FORM_data4
18974 and DW_FORM_data8 are members of both the constant class, and of
18975 the classes that contain offsets into other debug sections
18976 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18977 that, if an attribute's can be either a constant or one of the
18978 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18979 taken as section offsets, not constants. */
18980
18981 static int
18982 attr_form_is_constant (struct attribute *attr)
18983 {
18984 switch (attr->form)
18985 {
18986 case DW_FORM_sdata:
18987 case DW_FORM_udata:
18988 case DW_FORM_data1:
18989 case DW_FORM_data2:
18990 case DW_FORM_data4:
18991 case DW_FORM_data8:
18992 return 1;
18993 default:
18994 return 0;
18995 }
18996 }
18997
18998 /* Return the .debug_loc section to use for CU.
18999 For DWO files use .debug_loc.dwo. */
19000
19001 static struct dwarf2_section_info *
19002 cu_debug_loc_section (struct dwarf2_cu *cu)
19003 {
19004 if (cu->dwo_unit)
19005 return &cu->dwo_unit->dwo_file->sections.loc;
19006 return &dwarf2_per_objfile->loc;
19007 }
19008
19009 /* A helper function that fills in a dwarf2_loclist_baton. */
19010
19011 static void
19012 fill_in_loclist_baton (struct dwarf2_cu *cu,
19013 struct dwarf2_loclist_baton *baton,
19014 struct attribute *attr)
19015 {
19016 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19017
19018 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19019
19020 baton->per_cu = cu->per_cu;
19021 gdb_assert (baton->per_cu);
19022 /* We don't know how long the location list is, but make sure we
19023 don't run off the edge of the section. */
19024 baton->size = section->size - DW_UNSND (attr);
19025 baton->data = section->buffer + DW_UNSND (attr);
19026 baton->base_address = cu->base_address;
19027 baton->from_dwo = cu->dwo_unit != NULL;
19028 }
19029
19030 static void
19031 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19032 struct dwarf2_cu *cu)
19033 {
19034 struct objfile *objfile = dwarf2_per_objfile->objfile;
19035 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19036
19037 if (attr_form_is_section_offset (attr)
19038 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19039 the section. If so, fall through to the complaint in the
19040 other branch. */
19041 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19042 {
19043 struct dwarf2_loclist_baton *baton;
19044
19045 baton = obstack_alloc (&objfile->objfile_obstack,
19046 sizeof (struct dwarf2_loclist_baton));
19047
19048 fill_in_loclist_baton (cu, baton, attr);
19049
19050 if (cu->base_known == 0)
19051 complaint (&symfile_complaints,
19052 _("Location list used without "
19053 "specifying the CU base address."));
19054
19055 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19056 SYMBOL_LOCATION_BATON (sym) = baton;
19057 }
19058 else
19059 {
19060 struct dwarf2_locexpr_baton *baton;
19061
19062 baton = obstack_alloc (&objfile->objfile_obstack,
19063 sizeof (struct dwarf2_locexpr_baton));
19064 baton->per_cu = cu->per_cu;
19065 gdb_assert (baton->per_cu);
19066
19067 if (attr_form_is_block (attr))
19068 {
19069 /* Note that we're just copying the block's data pointer
19070 here, not the actual data. We're still pointing into the
19071 info_buffer for SYM's objfile; right now we never release
19072 that buffer, but when we do clean up properly this may
19073 need to change. */
19074 baton->size = DW_BLOCK (attr)->size;
19075 baton->data = DW_BLOCK (attr)->data;
19076 }
19077 else
19078 {
19079 dwarf2_invalid_attrib_class_complaint ("location description",
19080 SYMBOL_NATURAL_NAME (sym));
19081 baton->size = 0;
19082 }
19083
19084 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19085 SYMBOL_LOCATION_BATON (sym) = baton;
19086 }
19087 }
19088
19089 /* Return the OBJFILE associated with the compilation unit CU. If CU
19090 came from a separate debuginfo file, then the master objfile is
19091 returned. */
19092
19093 struct objfile *
19094 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19095 {
19096 struct objfile *objfile = per_cu->objfile;
19097
19098 /* Return the master objfile, so that we can report and look up the
19099 correct file containing this variable. */
19100 if (objfile->separate_debug_objfile_backlink)
19101 objfile = objfile->separate_debug_objfile_backlink;
19102
19103 return objfile;
19104 }
19105
19106 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19107 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19108 CU_HEADERP first. */
19109
19110 static const struct comp_unit_head *
19111 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19112 struct dwarf2_per_cu_data *per_cu)
19113 {
19114 gdb_byte *info_ptr;
19115
19116 if (per_cu->cu)
19117 return &per_cu->cu->header;
19118
19119 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19120
19121 memset (cu_headerp, 0, sizeof (*cu_headerp));
19122 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19123
19124 return cu_headerp;
19125 }
19126
19127 /* Return the address size given in the compilation unit header for CU. */
19128
19129 int
19130 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19131 {
19132 struct comp_unit_head cu_header_local;
19133 const struct comp_unit_head *cu_headerp;
19134
19135 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19136
19137 return cu_headerp->addr_size;
19138 }
19139
19140 /* Return the offset size given in the compilation unit header for CU. */
19141
19142 int
19143 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19144 {
19145 struct comp_unit_head cu_header_local;
19146 const struct comp_unit_head *cu_headerp;
19147
19148 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19149
19150 return cu_headerp->offset_size;
19151 }
19152
19153 /* See its dwarf2loc.h declaration. */
19154
19155 int
19156 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19157 {
19158 struct comp_unit_head cu_header_local;
19159 const struct comp_unit_head *cu_headerp;
19160
19161 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19162
19163 if (cu_headerp->version == 2)
19164 return cu_headerp->addr_size;
19165 else
19166 return cu_headerp->offset_size;
19167 }
19168
19169 /* Return the text offset of the CU. The returned offset comes from
19170 this CU's objfile. If this objfile came from a separate debuginfo
19171 file, then the offset may be different from the corresponding
19172 offset in the parent objfile. */
19173
19174 CORE_ADDR
19175 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19176 {
19177 struct objfile *objfile = per_cu->objfile;
19178
19179 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19180 }
19181
19182 /* Locate the .debug_info compilation unit from CU's objfile which contains
19183 the DIE at OFFSET. Raises an error on failure. */
19184
19185 static struct dwarf2_per_cu_data *
19186 dwarf2_find_containing_comp_unit (sect_offset offset,
19187 unsigned int offset_in_dwz,
19188 struct objfile *objfile)
19189 {
19190 struct dwarf2_per_cu_data *this_cu;
19191 int low, high;
19192 const sect_offset *cu_off;
19193
19194 low = 0;
19195 high = dwarf2_per_objfile->n_comp_units - 1;
19196 while (high > low)
19197 {
19198 struct dwarf2_per_cu_data *mid_cu;
19199 int mid = low + (high - low) / 2;
19200
19201 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19202 cu_off = &mid_cu->offset;
19203 if (mid_cu->is_dwz > offset_in_dwz
19204 || (mid_cu->is_dwz == offset_in_dwz
19205 && cu_off->sect_off >= offset.sect_off))
19206 high = mid;
19207 else
19208 low = mid + 1;
19209 }
19210 gdb_assert (low == high);
19211 this_cu = dwarf2_per_objfile->all_comp_units[low];
19212 cu_off = &this_cu->offset;
19213 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19214 {
19215 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19216 error (_("Dwarf Error: could not find partial DIE containing "
19217 "offset 0x%lx [in module %s]"),
19218 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19219
19220 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19221 <= offset.sect_off);
19222 return dwarf2_per_objfile->all_comp_units[low-1];
19223 }
19224 else
19225 {
19226 this_cu = dwarf2_per_objfile->all_comp_units[low];
19227 if (low == dwarf2_per_objfile->n_comp_units - 1
19228 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19229 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19230 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19231 return this_cu;
19232 }
19233 }
19234
19235 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19236
19237 static void
19238 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19239 {
19240 memset (cu, 0, sizeof (*cu));
19241 per_cu->cu = cu;
19242 cu->per_cu = per_cu;
19243 cu->objfile = per_cu->objfile;
19244 obstack_init (&cu->comp_unit_obstack);
19245 }
19246
19247 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19248
19249 static void
19250 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19251 enum language pretend_language)
19252 {
19253 struct attribute *attr;
19254
19255 /* Set the language we're debugging. */
19256 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19257 if (attr)
19258 set_cu_language (DW_UNSND (attr), cu);
19259 else
19260 {
19261 cu->language = pretend_language;
19262 cu->language_defn = language_def (cu->language);
19263 }
19264
19265 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19266 if (attr)
19267 cu->producer = DW_STRING (attr);
19268 }
19269
19270 /* Release one cached compilation unit, CU. We unlink it from the tree
19271 of compilation units, but we don't remove it from the read_in_chain;
19272 the caller is responsible for that.
19273 NOTE: DATA is a void * because this function is also used as a
19274 cleanup routine. */
19275
19276 static void
19277 free_heap_comp_unit (void *data)
19278 {
19279 struct dwarf2_cu *cu = data;
19280
19281 gdb_assert (cu->per_cu != NULL);
19282 cu->per_cu->cu = NULL;
19283 cu->per_cu = NULL;
19284
19285 obstack_free (&cu->comp_unit_obstack, NULL);
19286
19287 xfree (cu);
19288 }
19289
19290 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19291 when we're finished with it. We can't free the pointer itself, but be
19292 sure to unlink it from the cache. Also release any associated storage. */
19293
19294 static void
19295 free_stack_comp_unit (void *data)
19296 {
19297 struct dwarf2_cu *cu = data;
19298
19299 gdb_assert (cu->per_cu != NULL);
19300 cu->per_cu->cu = NULL;
19301 cu->per_cu = NULL;
19302
19303 obstack_free (&cu->comp_unit_obstack, NULL);
19304 cu->partial_dies = NULL;
19305 }
19306
19307 /* Free all cached compilation units. */
19308
19309 static void
19310 free_cached_comp_units (void *data)
19311 {
19312 struct dwarf2_per_cu_data *per_cu, **last_chain;
19313
19314 per_cu = dwarf2_per_objfile->read_in_chain;
19315 last_chain = &dwarf2_per_objfile->read_in_chain;
19316 while (per_cu != NULL)
19317 {
19318 struct dwarf2_per_cu_data *next_cu;
19319
19320 next_cu = per_cu->cu->read_in_chain;
19321
19322 free_heap_comp_unit (per_cu->cu);
19323 *last_chain = next_cu;
19324
19325 per_cu = next_cu;
19326 }
19327 }
19328
19329 /* Increase the age counter on each cached compilation unit, and free
19330 any that are too old. */
19331
19332 static void
19333 age_cached_comp_units (void)
19334 {
19335 struct dwarf2_per_cu_data *per_cu, **last_chain;
19336
19337 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19338 per_cu = dwarf2_per_objfile->read_in_chain;
19339 while (per_cu != NULL)
19340 {
19341 per_cu->cu->last_used ++;
19342 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19343 dwarf2_mark (per_cu->cu);
19344 per_cu = per_cu->cu->read_in_chain;
19345 }
19346
19347 per_cu = dwarf2_per_objfile->read_in_chain;
19348 last_chain = &dwarf2_per_objfile->read_in_chain;
19349 while (per_cu != NULL)
19350 {
19351 struct dwarf2_per_cu_data *next_cu;
19352
19353 next_cu = per_cu->cu->read_in_chain;
19354
19355 if (!per_cu->cu->mark)
19356 {
19357 free_heap_comp_unit (per_cu->cu);
19358 *last_chain = next_cu;
19359 }
19360 else
19361 last_chain = &per_cu->cu->read_in_chain;
19362
19363 per_cu = next_cu;
19364 }
19365 }
19366
19367 /* Remove a single compilation unit from the cache. */
19368
19369 static void
19370 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19371 {
19372 struct dwarf2_per_cu_data *per_cu, **last_chain;
19373
19374 per_cu = dwarf2_per_objfile->read_in_chain;
19375 last_chain = &dwarf2_per_objfile->read_in_chain;
19376 while (per_cu != NULL)
19377 {
19378 struct dwarf2_per_cu_data *next_cu;
19379
19380 next_cu = per_cu->cu->read_in_chain;
19381
19382 if (per_cu == target_per_cu)
19383 {
19384 free_heap_comp_unit (per_cu->cu);
19385 per_cu->cu = NULL;
19386 *last_chain = next_cu;
19387 break;
19388 }
19389 else
19390 last_chain = &per_cu->cu->read_in_chain;
19391
19392 per_cu = next_cu;
19393 }
19394 }
19395
19396 /* Release all extra memory associated with OBJFILE. */
19397
19398 void
19399 dwarf2_free_objfile (struct objfile *objfile)
19400 {
19401 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19402
19403 if (dwarf2_per_objfile == NULL)
19404 return;
19405
19406 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19407 free_cached_comp_units (NULL);
19408
19409 if (dwarf2_per_objfile->quick_file_names_table)
19410 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19411
19412 /* Everything else should be on the objfile obstack. */
19413 }
19414
19415 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19416 We store these in a hash table separate from the DIEs, and preserve them
19417 when the DIEs are flushed out of cache.
19418
19419 The CU "per_cu" pointer is needed because offset alone is not enough to
19420 uniquely identify the type. A file may have multiple .debug_types sections,
19421 or the type may come from a DWO file. We have to use something in
19422 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19423 routine, get_die_type_at_offset, from outside this file, and thus won't
19424 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19425 of the objfile. */
19426
19427 struct dwarf2_per_cu_offset_and_type
19428 {
19429 const struct dwarf2_per_cu_data *per_cu;
19430 sect_offset offset;
19431 struct type *type;
19432 };
19433
19434 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19435
19436 static hashval_t
19437 per_cu_offset_and_type_hash (const void *item)
19438 {
19439 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19440
19441 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19442 }
19443
19444 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19445
19446 static int
19447 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19448 {
19449 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19450 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19451
19452 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19453 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19454 }
19455
19456 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19457 table if necessary. For convenience, return TYPE.
19458
19459 The DIEs reading must have careful ordering to:
19460 * Not cause infite loops trying to read in DIEs as a prerequisite for
19461 reading current DIE.
19462 * Not trying to dereference contents of still incompletely read in types
19463 while reading in other DIEs.
19464 * Enable referencing still incompletely read in types just by a pointer to
19465 the type without accessing its fields.
19466
19467 Therefore caller should follow these rules:
19468 * Try to fetch any prerequisite types we may need to build this DIE type
19469 before building the type and calling set_die_type.
19470 * After building type call set_die_type for current DIE as soon as
19471 possible before fetching more types to complete the current type.
19472 * Make the type as complete as possible before fetching more types. */
19473
19474 static struct type *
19475 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19476 {
19477 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19478 struct objfile *objfile = cu->objfile;
19479
19480 /* For Ada types, make sure that the gnat-specific data is always
19481 initialized (if not already set). There are a few types where
19482 we should not be doing so, because the type-specific area is
19483 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19484 where the type-specific area is used to store the floatformat).
19485 But this is not a problem, because the gnat-specific information
19486 is actually not needed for these types. */
19487 if (need_gnat_info (cu)
19488 && TYPE_CODE (type) != TYPE_CODE_FUNC
19489 && TYPE_CODE (type) != TYPE_CODE_FLT
19490 && !HAVE_GNAT_AUX_INFO (type))
19491 INIT_GNAT_SPECIFIC (type);
19492
19493 if (dwarf2_per_objfile->die_type_hash == NULL)
19494 {
19495 dwarf2_per_objfile->die_type_hash =
19496 htab_create_alloc_ex (127,
19497 per_cu_offset_and_type_hash,
19498 per_cu_offset_and_type_eq,
19499 NULL,
19500 &objfile->objfile_obstack,
19501 hashtab_obstack_allocate,
19502 dummy_obstack_deallocate);
19503 }
19504
19505 ofs.per_cu = cu->per_cu;
19506 ofs.offset = die->offset;
19507 ofs.type = type;
19508 slot = (struct dwarf2_per_cu_offset_and_type **)
19509 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19510 if (*slot)
19511 complaint (&symfile_complaints,
19512 _("A problem internal to GDB: DIE 0x%x has type already set"),
19513 die->offset.sect_off);
19514 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19515 **slot = ofs;
19516 return type;
19517 }
19518
19519 /* Look up the type for the die at OFFSET in the appropriate type_hash
19520 table, or return NULL if the die does not have a saved type. */
19521
19522 static struct type *
19523 get_die_type_at_offset (sect_offset offset,
19524 struct dwarf2_per_cu_data *per_cu)
19525 {
19526 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19527
19528 if (dwarf2_per_objfile->die_type_hash == NULL)
19529 return NULL;
19530
19531 ofs.per_cu = per_cu;
19532 ofs.offset = offset;
19533 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19534 if (slot)
19535 return slot->type;
19536 else
19537 return NULL;
19538 }
19539
19540 /* Look up the type for DIE in the appropriate type_hash table,
19541 or return NULL if DIE does not have a saved type. */
19542
19543 static struct type *
19544 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19545 {
19546 return get_die_type_at_offset (die->offset, cu->per_cu);
19547 }
19548
19549 /* Add a dependence relationship from CU to REF_PER_CU. */
19550
19551 static void
19552 dwarf2_add_dependence (struct dwarf2_cu *cu,
19553 struct dwarf2_per_cu_data *ref_per_cu)
19554 {
19555 void **slot;
19556
19557 if (cu->dependencies == NULL)
19558 cu->dependencies
19559 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19560 NULL, &cu->comp_unit_obstack,
19561 hashtab_obstack_allocate,
19562 dummy_obstack_deallocate);
19563
19564 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19565 if (*slot == NULL)
19566 *slot = ref_per_cu;
19567 }
19568
19569 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19570 Set the mark field in every compilation unit in the
19571 cache that we must keep because we are keeping CU. */
19572
19573 static int
19574 dwarf2_mark_helper (void **slot, void *data)
19575 {
19576 struct dwarf2_per_cu_data *per_cu;
19577
19578 per_cu = (struct dwarf2_per_cu_data *) *slot;
19579
19580 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19581 reading of the chain. As such dependencies remain valid it is not much
19582 useful to track and undo them during QUIT cleanups. */
19583 if (per_cu->cu == NULL)
19584 return 1;
19585
19586 if (per_cu->cu->mark)
19587 return 1;
19588 per_cu->cu->mark = 1;
19589
19590 if (per_cu->cu->dependencies != NULL)
19591 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19592
19593 return 1;
19594 }
19595
19596 /* Set the mark field in CU and in every other compilation unit in the
19597 cache that we must keep because we are keeping CU. */
19598
19599 static void
19600 dwarf2_mark (struct dwarf2_cu *cu)
19601 {
19602 if (cu->mark)
19603 return;
19604 cu->mark = 1;
19605 if (cu->dependencies != NULL)
19606 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19607 }
19608
19609 static void
19610 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19611 {
19612 while (per_cu)
19613 {
19614 per_cu->cu->mark = 0;
19615 per_cu = per_cu->cu->read_in_chain;
19616 }
19617 }
19618
19619 /* Trivial hash function for partial_die_info: the hash value of a DIE
19620 is its offset in .debug_info for this objfile. */
19621
19622 static hashval_t
19623 partial_die_hash (const void *item)
19624 {
19625 const struct partial_die_info *part_die = item;
19626
19627 return part_die->offset.sect_off;
19628 }
19629
19630 /* Trivial comparison function for partial_die_info structures: two DIEs
19631 are equal if they have the same offset. */
19632
19633 static int
19634 partial_die_eq (const void *item_lhs, const void *item_rhs)
19635 {
19636 const struct partial_die_info *part_die_lhs = item_lhs;
19637 const struct partial_die_info *part_die_rhs = item_rhs;
19638
19639 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19640 }
19641
19642 static struct cmd_list_element *set_dwarf2_cmdlist;
19643 static struct cmd_list_element *show_dwarf2_cmdlist;
19644
19645 static void
19646 set_dwarf2_cmd (char *args, int from_tty)
19647 {
19648 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19649 }
19650
19651 static void
19652 show_dwarf2_cmd (char *args, int from_tty)
19653 {
19654 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19655 }
19656
19657 /* Free data associated with OBJFILE, if necessary. */
19658
19659 static void
19660 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19661 {
19662 struct dwarf2_per_objfile *data = d;
19663 int ix;
19664
19665 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19666 VEC_free (dwarf2_per_cu_ptr,
19667 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19668
19669 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19670 VEC_free (dwarf2_per_cu_ptr,
19671 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19672
19673 VEC_free (dwarf2_section_info_def, data->types);
19674
19675 if (data->dwo_files)
19676 free_dwo_files (data->dwo_files, objfile);
19677
19678 if (data->dwz_file && data->dwz_file->dwz_bfd)
19679 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19680 }
19681
19682 \f
19683 /* The "save gdb-index" command. */
19684
19685 /* The contents of the hash table we create when building the string
19686 table. */
19687 struct strtab_entry
19688 {
19689 offset_type offset;
19690 const char *str;
19691 };
19692
19693 /* Hash function for a strtab_entry.
19694
19695 Function is used only during write_hash_table so no index format backward
19696 compatibility is needed. */
19697
19698 static hashval_t
19699 hash_strtab_entry (const void *e)
19700 {
19701 const struct strtab_entry *entry = e;
19702 return mapped_index_string_hash (INT_MAX, entry->str);
19703 }
19704
19705 /* Equality function for a strtab_entry. */
19706
19707 static int
19708 eq_strtab_entry (const void *a, const void *b)
19709 {
19710 const struct strtab_entry *ea = a;
19711 const struct strtab_entry *eb = b;
19712 return !strcmp (ea->str, eb->str);
19713 }
19714
19715 /* Create a strtab_entry hash table. */
19716
19717 static htab_t
19718 create_strtab (void)
19719 {
19720 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19721 xfree, xcalloc, xfree);
19722 }
19723
19724 /* Add a string to the constant pool. Return the string's offset in
19725 host order. */
19726
19727 static offset_type
19728 add_string (htab_t table, struct obstack *cpool, const char *str)
19729 {
19730 void **slot;
19731 struct strtab_entry entry;
19732 struct strtab_entry *result;
19733
19734 entry.str = str;
19735 slot = htab_find_slot (table, &entry, INSERT);
19736 if (*slot)
19737 result = *slot;
19738 else
19739 {
19740 result = XNEW (struct strtab_entry);
19741 result->offset = obstack_object_size (cpool);
19742 result->str = str;
19743 obstack_grow_str0 (cpool, str);
19744 *slot = result;
19745 }
19746 return result->offset;
19747 }
19748
19749 /* An entry in the symbol table. */
19750 struct symtab_index_entry
19751 {
19752 /* The name of the symbol. */
19753 const char *name;
19754 /* The offset of the name in the constant pool. */
19755 offset_type index_offset;
19756 /* A sorted vector of the indices of all the CUs that hold an object
19757 of this name. */
19758 VEC (offset_type) *cu_indices;
19759 };
19760
19761 /* The symbol table. This is a power-of-2-sized hash table. */
19762 struct mapped_symtab
19763 {
19764 offset_type n_elements;
19765 offset_type size;
19766 struct symtab_index_entry **data;
19767 };
19768
19769 /* Hash function for a symtab_index_entry. */
19770
19771 static hashval_t
19772 hash_symtab_entry (const void *e)
19773 {
19774 const struct symtab_index_entry *entry = e;
19775 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19776 sizeof (offset_type) * VEC_length (offset_type,
19777 entry->cu_indices),
19778 0);
19779 }
19780
19781 /* Equality function for a symtab_index_entry. */
19782
19783 static int
19784 eq_symtab_entry (const void *a, const void *b)
19785 {
19786 const struct symtab_index_entry *ea = a;
19787 const struct symtab_index_entry *eb = b;
19788 int len = VEC_length (offset_type, ea->cu_indices);
19789 if (len != VEC_length (offset_type, eb->cu_indices))
19790 return 0;
19791 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19792 VEC_address (offset_type, eb->cu_indices),
19793 sizeof (offset_type) * len);
19794 }
19795
19796 /* Destroy a symtab_index_entry. */
19797
19798 static void
19799 delete_symtab_entry (void *p)
19800 {
19801 struct symtab_index_entry *entry = p;
19802 VEC_free (offset_type, entry->cu_indices);
19803 xfree (entry);
19804 }
19805
19806 /* Create a hash table holding symtab_index_entry objects. */
19807
19808 static htab_t
19809 create_symbol_hash_table (void)
19810 {
19811 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19812 delete_symtab_entry, xcalloc, xfree);
19813 }
19814
19815 /* Create a new mapped symtab object. */
19816
19817 static struct mapped_symtab *
19818 create_mapped_symtab (void)
19819 {
19820 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19821 symtab->n_elements = 0;
19822 symtab->size = 1024;
19823 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19824 return symtab;
19825 }
19826
19827 /* Destroy a mapped_symtab. */
19828
19829 static void
19830 cleanup_mapped_symtab (void *p)
19831 {
19832 struct mapped_symtab *symtab = p;
19833 /* The contents of the array are freed when the other hash table is
19834 destroyed. */
19835 xfree (symtab->data);
19836 xfree (symtab);
19837 }
19838
19839 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19840 the slot.
19841
19842 Function is used only during write_hash_table so no index format backward
19843 compatibility is needed. */
19844
19845 static struct symtab_index_entry **
19846 find_slot (struct mapped_symtab *symtab, const char *name)
19847 {
19848 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19849
19850 index = hash & (symtab->size - 1);
19851 step = ((hash * 17) & (symtab->size - 1)) | 1;
19852
19853 for (;;)
19854 {
19855 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19856 return &symtab->data[index];
19857 index = (index + step) & (symtab->size - 1);
19858 }
19859 }
19860
19861 /* Expand SYMTAB's hash table. */
19862
19863 static void
19864 hash_expand (struct mapped_symtab *symtab)
19865 {
19866 offset_type old_size = symtab->size;
19867 offset_type i;
19868 struct symtab_index_entry **old_entries = symtab->data;
19869
19870 symtab->size *= 2;
19871 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19872
19873 for (i = 0; i < old_size; ++i)
19874 {
19875 if (old_entries[i])
19876 {
19877 struct symtab_index_entry **slot = find_slot (symtab,
19878 old_entries[i]->name);
19879 *slot = old_entries[i];
19880 }
19881 }
19882
19883 xfree (old_entries);
19884 }
19885
19886 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19887 CU_INDEX is the index of the CU in which the symbol appears.
19888 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19889
19890 static void
19891 add_index_entry (struct mapped_symtab *symtab, const char *name,
19892 int is_static, gdb_index_symbol_kind kind,
19893 offset_type cu_index)
19894 {
19895 struct symtab_index_entry **slot;
19896 offset_type cu_index_and_attrs;
19897
19898 ++symtab->n_elements;
19899 if (4 * symtab->n_elements / 3 >= symtab->size)
19900 hash_expand (symtab);
19901
19902 slot = find_slot (symtab, name);
19903 if (!*slot)
19904 {
19905 *slot = XNEW (struct symtab_index_entry);
19906 (*slot)->name = name;
19907 /* index_offset is set later. */
19908 (*slot)->cu_indices = NULL;
19909 }
19910
19911 cu_index_and_attrs = 0;
19912 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19913 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19914 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19915
19916 /* We don't want to record an index value twice as we want to avoid the
19917 duplication.
19918 We process all global symbols and then all static symbols
19919 (which would allow us to avoid the duplication by only having to check
19920 the last entry pushed), but a symbol could have multiple kinds in one CU.
19921 To keep things simple we don't worry about the duplication here and
19922 sort and uniqufy the list after we've processed all symbols. */
19923 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19924 }
19925
19926 /* qsort helper routine for uniquify_cu_indices. */
19927
19928 static int
19929 offset_type_compare (const void *ap, const void *bp)
19930 {
19931 offset_type a = *(offset_type *) ap;
19932 offset_type b = *(offset_type *) bp;
19933
19934 return (a > b) - (b > a);
19935 }
19936
19937 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19938
19939 static void
19940 uniquify_cu_indices (struct mapped_symtab *symtab)
19941 {
19942 int i;
19943
19944 for (i = 0; i < symtab->size; ++i)
19945 {
19946 struct symtab_index_entry *entry = symtab->data[i];
19947
19948 if (entry
19949 && entry->cu_indices != NULL)
19950 {
19951 unsigned int next_to_insert, next_to_check;
19952 offset_type last_value;
19953
19954 qsort (VEC_address (offset_type, entry->cu_indices),
19955 VEC_length (offset_type, entry->cu_indices),
19956 sizeof (offset_type), offset_type_compare);
19957
19958 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19959 next_to_insert = 1;
19960 for (next_to_check = 1;
19961 next_to_check < VEC_length (offset_type, entry->cu_indices);
19962 ++next_to_check)
19963 {
19964 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19965 != last_value)
19966 {
19967 last_value = VEC_index (offset_type, entry->cu_indices,
19968 next_to_check);
19969 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19970 last_value);
19971 ++next_to_insert;
19972 }
19973 }
19974 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19975 }
19976 }
19977 }
19978
19979 /* Add a vector of indices to the constant pool. */
19980
19981 static offset_type
19982 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19983 struct symtab_index_entry *entry)
19984 {
19985 void **slot;
19986
19987 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19988 if (!*slot)
19989 {
19990 offset_type len = VEC_length (offset_type, entry->cu_indices);
19991 offset_type val = MAYBE_SWAP (len);
19992 offset_type iter;
19993 int i;
19994
19995 *slot = entry;
19996 entry->index_offset = obstack_object_size (cpool);
19997
19998 obstack_grow (cpool, &val, sizeof (val));
19999 for (i = 0;
20000 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20001 ++i)
20002 {
20003 val = MAYBE_SWAP (iter);
20004 obstack_grow (cpool, &val, sizeof (val));
20005 }
20006 }
20007 else
20008 {
20009 struct symtab_index_entry *old_entry = *slot;
20010 entry->index_offset = old_entry->index_offset;
20011 entry = old_entry;
20012 }
20013 return entry->index_offset;
20014 }
20015
20016 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20017 constant pool entries going into the obstack CPOOL. */
20018
20019 static void
20020 write_hash_table (struct mapped_symtab *symtab,
20021 struct obstack *output, struct obstack *cpool)
20022 {
20023 offset_type i;
20024 htab_t symbol_hash_table;
20025 htab_t str_table;
20026
20027 symbol_hash_table = create_symbol_hash_table ();
20028 str_table = create_strtab ();
20029
20030 /* We add all the index vectors to the constant pool first, to
20031 ensure alignment is ok. */
20032 for (i = 0; i < symtab->size; ++i)
20033 {
20034 if (symtab->data[i])
20035 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20036 }
20037
20038 /* Now write out the hash table. */
20039 for (i = 0; i < symtab->size; ++i)
20040 {
20041 offset_type str_off, vec_off;
20042
20043 if (symtab->data[i])
20044 {
20045 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20046 vec_off = symtab->data[i]->index_offset;
20047 }
20048 else
20049 {
20050 /* While 0 is a valid constant pool index, it is not valid
20051 to have 0 for both offsets. */
20052 str_off = 0;
20053 vec_off = 0;
20054 }
20055
20056 str_off = MAYBE_SWAP (str_off);
20057 vec_off = MAYBE_SWAP (vec_off);
20058
20059 obstack_grow (output, &str_off, sizeof (str_off));
20060 obstack_grow (output, &vec_off, sizeof (vec_off));
20061 }
20062
20063 htab_delete (str_table);
20064 htab_delete (symbol_hash_table);
20065 }
20066
20067 /* Struct to map psymtab to CU index in the index file. */
20068 struct psymtab_cu_index_map
20069 {
20070 struct partial_symtab *psymtab;
20071 unsigned int cu_index;
20072 };
20073
20074 static hashval_t
20075 hash_psymtab_cu_index (const void *item)
20076 {
20077 const struct psymtab_cu_index_map *map = item;
20078
20079 return htab_hash_pointer (map->psymtab);
20080 }
20081
20082 static int
20083 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20084 {
20085 const struct psymtab_cu_index_map *lhs = item_lhs;
20086 const struct psymtab_cu_index_map *rhs = item_rhs;
20087
20088 return lhs->psymtab == rhs->psymtab;
20089 }
20090
20091 /* Helper struct for building the address table. */
20092 struct addrmap_index_data
20093 {
20094 struct objfile *objfile;
20095 struct obstack *addr_obstack;
20096 htab_t cu_index_htab;
20097
20098 /* Non-zero if the previous_* fields are valid.
20099 We can't write an entry until we see the next entry (since it is only then
20100 that we know the end of the entry). */
20101 int previous_valid;
20102 /* Index of the CU in the table of all CUs in the index file. */
20103 unsigned int previous_cu_index;
20104 /* Start address of the CU. */
20105 CORE_ADDR previous_cu_start;
20106 };
20107
20108 /* Write an address entry to OBSTACK. */
20109
20110 static void
20111 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20112 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20113 {
20114 offset_type cu_index_to_write;
20115 char addr[8];
20116 CORE_ADDR baseaddr;
20117
20118 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20119
20120 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20121 obstack_grow (obstack, addr, 8);
20122 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20123 obstack_grow (obstack, addr, 8);
20124 cu_index_to_write = MAYBE_SWAP (cu_index);
20125 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20126 }
20127
20128 /* Worker function for traversing an addrmap to build the address table. */
20129
20130 static int
20131 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20132 {
20133 struct addrmap_index_data *data = datap;
20134 struct partial_symtab *pst = obj;
20135
20136 if (data->previous_valid)
20137 add_address_entry (data->objfile, data->addr_obstack,
20138 data->previous_cu_start, start_addr,
20139 data->previous_cu_index);
20140
20141 data->previous_cu_start = start_addr;
20142 if (pst != NULL)
20143 {
20144 struct psymtab_cu_index_map find_map, *map;
20145 find_map.psymtab = pst;
20146 map = htab_find (data->cu_index_htab, &find_map);
20147 gdb_assert (map != NULL);
20148 data->previous_cu_index = map->cu_index;
20149 data->previous_valid = 1;
20150 }
20151 else
20152 data->previous_valid = 0;
20153
20154 return 0;
20155 }
20156
20157 /* Write OBJFILE's address map to OBSTACK.
20158 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20159 in the index file. */
20160
20161 static void
20162 write_address_map (struct objfile *objfile, struct obstack *obstack,
20163 htab_t cu_index_htab)
20164 {
20165 struct addrmap_index_data addrmap_index_data;
20166
20167 /* When writing the address table, we have to cope with the fact that
20168 the addrmap iterator only provides the start of a region; we have to
20169 wait until the next invocation to get the start of the next region. */
20170
20171 addrmap_index_data.objfile = objfile;
20172 addrmap_index_data.addr_obstack = obstack;
20173 addrmap_index_data.cu_index_htab = cu_index_htab;
20174 addrmap_index_data.previous_valid = 0;
20175
20176 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20177 &addrmap_index_data);
20178
20179 /* It's highly unlikely the last entry (end address = 0xff...ff)
20180 is valid, but we should still handle it.
20181 The end address is recorded as the start of the next region, but that
20182 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20183 anyway. */
20184 if (addrmap_index_data.previous_valid)
20185 add_address_entry (objfile, obstack,
20186 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20187 addrmap_index_data.previous_cu_index);
20188 }
20189
20190 /* Return the symbol kind of PSYM. */
20191
20192 static gdb_index_symbol_kind
20193 symbol_kind (struct partial_symbol *psym)
20194 {
20195 domain_enum domain = PSYMBOL_DOMAIN (psym);
20196 enum address_class aclass = PSYMBOL_CLASS (psym);
20197
20198 switch (domain)
20199 {
20200 case VAR_DOMAIN:
20201 switch (aclass)
20202 {
20203 case LOC_BLOCK:
20204 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20205 case LOC_TYPEDEF:
20206 return GDB_INDEX_SYMBOL_KIND_TYPE;
20207 case LOC_COMPUTED:
20208 case LOC_CONST_BYTES:
20209 case LOC_OPTIMIZED_OUT:
20210 case LOC_STATIC:
20211 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20212 case LOC_CONST:
20213 /* Note: It's currently impossible to recognize psyms as enum values
20214 short of reading the type info. For now punt. */
20215 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20216 default:
20217 /* There are other LOC_FOO values that one might want to classify
20218 as variables, but dwarf2read.c doesn't currently use them. */
20219 return GDB_INDEX_SYMBOL_KIND_OTHER;
20220 }
20221 case STRUCT_DOMAIN:
20222 return GDB_INDEX_SYMBOL_KIND_TYPE;
20223 default:
20224 return GDB_INDEX_SYMBOL_KIND_OTHER;
20225 }
20226 }
20227
20228 /* Add a list of partial symbols to SYMTAB. */
20229
20230 static void
20231 write_psymbols (struct mapped_symtab *symtab,
20232 htab_t psyms_seen,
20233 struct partial_symbol **psymp,
20234 int count,
20235 offset_type cu_index,
20236 int is_static)
20237 {
20238 for (; count-- > 0; ++psymp)
20239 {
20240 struct partial_symbol *psym = *psymp;
20241 void **slot;
20242
20243 if (SYMBOL_LANGUAGE (psym) == language_ada)
20244 error (_("Ada is not currently supported by the index"));
20245
20246 /* Only add a given psymbol once. */
20247 slot = htab_find_slot (psyms_seen, psym, INSERT);
20248 if (!*slot)
20249 {
20250 gdb_index_symbol_kind kind = symbol_kind (psym);
20251
20252 *slot = psym;
20253 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20254 is_static, kind, cu_index);
20255 }
20256 }
20257 }
20258
20259 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20260 exception if there is an error. */
20261
20262 static void
20263 write_obstack (FILE *file, struct obstack *obstack)
20264 {
20265 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20266 file)
20267 != obstack_object_size (obstack))
20268 error (_("couldn't data write to file"));
20269 }
20270
20271 /* Unlink a file if the argument is not NULL. */
20272
20273 static void
20274 unlink_if_set (void *p)
20275 {
20276 char **filename = p;
20277 if (*filename)
20278 unlink (*filename);
20279 }
20280
20281 /* A helper struct used when iterating over debug_types. */
20282 struct signatured_type_index_data
20283 {
20284 struct objfile *objfile;
20285 struct mapped_symtab *symtab;
20286 struct obstack *types_list;
20287 htab_t psyms_seen;
20288 int cu_index;
20289 };
20290
20291 /* A helper function that writes a single signatured_type to an
20292 obstack. */
20293
20294 static int
20295 write_one_signatured_type (void **slot, void *d)
20296 {
20297 struct signatured_type_index_data *info = d;
20298 struct signatured_type *entry = (struct signatured_type *) *slot;
20299 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20300 struct partial_symtab *psymtab = per_cu->v.psymtab;
20301 gdb_byte val[8];
20302
20303 write_psymbols (info->symtab,
20304 info->psyms_seen,
20305 info->objfile->global_psymbols.list
20306 + psymtab->globals_offset,
20307 psymtab->n_global_syms, info->cu_index,
20308 0);
20309 write_psymbols (info->symtab,
20310 info->psyms_seen,
20311 info->objfile->static_psymbols.list
20312 + psymtab->statics_offset,
20313 psymtab->n_static_syms, info->cu_index,
20314 1);
20315
20316 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20317 entry->per_cu.offset.sect_off);
20318 obstack_grow (info->types_list, val, 8);
20319 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20320 entry->type_offset_in_tu.cu_off);
20321 obstack_grow (info->types_list, val, 8);
20322 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20323 obstack_grow (info->types_list, val, 8);
20324
20325 ++info->cu_index;
20326
20327 return 1;
20328 }
20329
20330 /* Recurse into all "included" dependencies and write their symbols as
20331 if they appeared in this psymtab. */
20332
20333 static void
20334 recursively_write_psymbols (struct objfile *objfile,
20335 struct partial_symtab *psymtab,
20336 struct mapped_symtab *symtab,
20337 htab_t psyms_seen,
20338 offset_type cu_index)
20339 {
20340 int i;
20341
20342 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20343 if (psymtab->dependencies[i]->user != NULL)
20344 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20345 symtab, psyms_seen, cu_index);
20346
20347 write_psymbols (symtab,
20348 psyms_seen,
20349 objfile->global_psymbols.list + psymtab->globals_offset,
20350 psymtab->n_global_syms, cu_index,
20351 0);
20352 write_psymbols (symtab,
20353 psyms_seen,
20354 objfile->static_psymbols.list + psymtab->statics_offset,
20355 psymtab->n_static_syms, cu_index,
20356 1);
20357 }
20358
20359 /* Create an index file for OBJFILE in the directory DIR. */
20360
20361 static void
20362 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20363 {
20364 struct cleanup *cleanup;
20365 char *filename, *cleanup_filename;
20366 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20367 struct obstack cu_list, types_cu_list;
20368 int i;
20369 FILE *out_file;
20370 struct mapped_symtab *symtab;
20371 offset_type val, size_of_contents, total_len;
20372 struct stat st;
20373 htab_t psyms_seen;
20374 htab_t cu_index_htab;
20375 struct psymtab_cu_index_map *psymtab_cu_index_map;
20376
20377 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20378 return;
20379
20380 if (dwarf2_per_objfile->using_index)
20381 error (_("Cannot use an index to create the index"));
20382
20383 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20384 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20385
20386 if (stat (objfile->name, &st) < 0)
20387 perror_with_name (objfile->name);
20388
20389 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20390 INDEX_SUFFIX, (char *) NULL);
20391 cleanup = make_cleanup (xfree, filename);
20392
20393 out_file = fopen (filename, "wb");
20394 if (!out_file)
20395 error (_("Can't open `%s' for writing"), filename);
20396
20397 cleanup_filename = filename;
20398 make_cleanup (unlink_if_set, &cleanup_filename);
20399
20400 symtab = create_mapped_symtab ();
20401 make_cleanup (cleanup_mapped_symtab, symtab);
20402
20403 obstack_init (&addr_obstack);
20404 make_cleanup_obstack_free (&addr_obstack);
20405
20406 obstack_init (&cu_list);
20407 make_cleanup_obstack_free (&cu_list);
20408
20409 obstack_init (&types_cu_list);
20410 make_cleanup_obstack_free (&types_cu_list);
20411
20412 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20413 NULL, xcalloc, xfree);
20414 make_cleanup_htab_delete (psyms_seen);
20415
20416 /* While we're scanning CU's create a table that maps a psymtab pointer
20417 (which is what addrmap records) to its index (which is what is recorded
20418 in the index file). This will later be needed to write the address
20419 table. */
20420 cu_index_htab = htab_create_alloc (100,
20421 hash_psymtab_cu_index,
20422 eq_psymtab_cu_index,
20423 NULL, xcalloc, xfree);
20424 make_cleanup_htab_delete (cu_index_htab);
20425 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20426 xmalloc (sizeof (struct psymtab_cu_index_map)
20427 * dwarf2_per_objfile->n_comp_units);
20428 make_cleanup (xfree, psymtab_cu_index_map);
20429
20430 /* The CU list is already sorted, so we don't need to do additional
20431 work here. Also, the debug_types entries do not appear in
20432 all_comp_units, but only in their own hash table. */
20433 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20434 {
20435 struct dwarf2_per_cu_data *per_cu
20436 = dwarf2_per_objfile->all_comp_units[i];
20437 struct partial_symtab *psymtab = per_cu->v.psymtab;
20438 gdb_byte val[8];
20439 struct psymtab_cu_index_map *map;
20440 void **slot;
20441
20442 if (psymtab->user == NULL)
20443 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20444
20445 map = &psymtab_cu_index_map[i];
20446 map->psymtab = psymtab;
20447 map->cu_index = i;
20448 slot = htab_find_slot (cu_index_htab, map, INSERT);
20449 gdb_assert (slot != NULL);
20450 gdb_assert (*slot == NULL);
20451 *slot = map;
20452
20453 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20454 per_cu->offset.sect_off);
20455 obstack_grow (&cu_list, val, 8);
20456 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20457 obstack_grow (&cu_list, val, 8);
20458 }
20459
20460 /* Dump the address map. */
20461 write_address_map (objfile, &addr_obstack, cu_index_htab);
20462
20463 /* Write out the .debug_type entries, if any. */
20464 if (dwarf2_per_objfile->signatured_types)
20465 {
20466 struct signatured_type_index_data sig_data;
20467
20468 sig_data.objfile = objfile;
20469 sig_data.symtab = symtab;
20470 sig_data.types_list = &types_cu_list;
20471 sig_data.psyms_seen = psyms_seen;
20472 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20473 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20474 write_one_signatured_type, &sig_data);
20475 }
20476
20477 /* Now that we've processed all symbols we can shrink their cu_indices
20478 lists. */
20479 uniquify_cu_indices (symtab);
20480
20481 obstack_init (&constant_pool);
20482 make_cleanup_obstack_free (&constant_pool);
20483 obstack_init (&symtab_obstack);
20484 make_cleanup_obstack_free (&symtab_obstack);
20485 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20486
20487 obstack_init (&contents);
20488 make_cleanup_obstack_free (&contents);
20489 size_of_contents = 6 * sizeof (offset_type);
20490 total_len = size_of_contents;
20491
20492 /* The version number. */
20493 val = MAYBE_SWAP (8);
20494 obstack_grow (&contents, &val, sizeof (val));
20495
20496 /* The offset of the CU list from the start of the file. */
20497 val = MAYBE_SWAP (total_len);
20498 obstack_grow (&contents, &val, sizeof (val));
20499 total_len += obstack_object_size (&cu_list);
20500
20501 /* The offset of the types CU list from the start of the file. */
20502 val = MAYBE_SWAP (total_len);
20503 obstack_grow (&contents, &val, sizeof (val));
20504 total_len += obstack_object_size (&types_cu_list);
20505
20506 /* The offset of the address table from the start of the file. */
20507 val = MAYBE_SWAP (total_len);
20508 obstack_grow (&contents, &val, sizeof (val));
20509 total_len += obstack_object_size (&addr_obstack);
20510
20511 /* The offset of the symbol table from the start of the file. */
20512 val = MAYBE_SWAP (total_len);
20513 obstack_grow (&contents, &val, sizeof (val));
20514 total_len += obstack_object_size (&symtab_obstack);
20515
20516 /* The offset of the constant pool from the start of the file. */
20517 val = MAYBE_SWAP (total_len);
20518 obstack_grow (&contents, &val, sizeof (val));
20519 total_len += obstack_object_size (&constant_pool);
20520
20521 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20522
20523 write_obstack (out_file, &contents);
20524 write_obstack (out_file, &cu_list);
20525 write_obstack (out_file, &types_cu_list);
20526 write_obstack (out_file, &addr_obstack);
20527 write_obstack (out_file, &symtab_obstack);
20528 write_obstack (out_file, &constant_pool);
20529
20530 fclose (out_file);
20531
20532 /* We want to keep the file, so we set cleanup_filename to NULL
20533 here. See unlink_if_set. */
20534 cleanup_filename = NULL;
20535
20536 do_cleanups (cleanup);
20537 }
20538
20539 /* Implementation of the `save gdb-index' command.
20540
20541 Note that the file format used by this command is documented in the
20542 GDB manual. Any changes here must be documented there. */
20543
20544 static void
20545 save_gdb_index_command (char *arg, int from_tty)
20546 {
20547 struct objfile *objfile;
20548
20549 if (!arg || !*arg)
20550 error (_("usage: save gdb-index DIRECTORY"));
20551
20552 ALL_OBJFILES (objfile)
20553 {
20554 struct stat st;
20555
20556 /* If the objfile does not correspond to an actual file, skip it. */
20557 if (stat (objfile->name, &st) < 0)
20558 continue;
20559
20560 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20561 if (dwarf2_per_objfile)
20562 {
20563 volatile struct gdb_exception except;
20564
20565 TRY_CATCH (except, RETURN_MASK_ERROR)
20566 {
20567 write_psymtabs_to_index (objfile, arg);
20568 }
20569 if (except.reason < 0)
20570 exception_fprintf (gdb_stderr, except,
20571 _("Error while writing index for `%s': "),
20572 objfile->name);
20573 }
20574 }
20575 }
20576
20577 \f
20578
20579 int dwarf2_always_disassemble;
20580
20581 static void
20582 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20583 struct cmd_list_element *c, const char *value)
20584 {
20585 fprintf_filtered (file,
20586 _("Whether to always disassemble "
20587 "DWARF expressions is %s.\n"),
20588 value);
20589 }
20590
20591 static void
20592 show_check_physname (struct ui_file *file, int from_tty,
20593 struct cmd_list_element *c, const char *value)
20594 {
20595 fprintf_filtered (file,
20596 _("Whether to check \"physname\" is %s.\n"),
20597 value);
20598 }
20599
20600 void _initialize_dwarf2_read (void);
20601
20602 void
20603 _initialize_dwarf2_read (void)
20604 {
20605 struct cmd_list_element *c;
20606
20607 dwarf2_objfile_data_key
20608 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20609
20610 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20611 Set DWARF 2 specific variables.\n\
20612 Configure DWARF 2 variables such as the cache size"),
20613 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20614 0/*allow-unknown*/, &maintenance_set_cmdlist);
20615
20616 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20617 Show DWARF 2 specific variables\n\
20618 Show DWARF 2 variables such as the cache size"),
20619 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20620 0/*allow-unknown*/, &maintenance_show_cmdlist);
20621
20622 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20623 &dwarf2_max_cache_age, _("\
20624 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20625 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20626 A higher limit means that cached compilation units will be stored\n\
20627 in memory longer, and more total memory will be used. Zero disables\n\
20628 caching, which can slow down startup."),
20629 NULL,
20630 show_dwarf2_max_cache_age,
20631 &set_dwarf2_cmdlist,
20632 &show_dwarf2_cmdlist);
20633
20634 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20635 &dwarf2_always_disassemble, _("\
20636 Set whether `info address' always disassembles DWARF expressions."), _("\
20637 Show whether `info address' always disassembles DWARF expressions."), _("\
20638 When enabled, DWARF expressions are always printed in an assembly-like\n\
20639 syntax. When disabled, expressions will be printed in a more\n\
20640 conversational style, when possible."),
20641 NULL,
20642 show_dwarf2_always_disassemble,
20643 &set_dwarf2_cmdlist,
20644 &show_dwarf2_cmdlist);
20645
20646 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20647 Set debugging of the dwarf2 reader."), _("\
20648 Show debugging of the dwarf2 reader."), _("\
20649 When enabled, debugging messages are printed during dwarf2 reading\n\
20650 and symtab expansion."),
20651 NULL,
20652 NULL,
20653 &setdebuglist, &showdebuglist);
20654
20655 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20656 Set debugging of the dwarf2 DIE reader."), _("\
20657 Show debugging of the dwarf2 DIE reader."), _("\
20658 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20659 The value is the maximum depth to print."),
20660 NULL,
20661 NULL,
20662 &setdebuglist, &showdebuglist);
20663
20664 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20665 Set cross-checking of \"physname\" code against demangler."), _("\
20666 Show cross-checking of \"physname\" code against demangler."), _("\
20667 When enabled, GDB's internal \"physname\" code is checked against\n\
20668 the demangler."),
20669 NULL, show_check_physname,
20670 &setdebuglist, &showdebuglist);
20671
20672 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20673 no_class, &use_deprecated_index_sections, _("\
20674 Set whether to use deprecated gdb_index sections."), _("\
20675 Show whether to use deprecated gdb_index sections."), _("\
20676 When enabled, deprecated .gdb_index sections are used anyway.\n\
20677 Normally they are ignored either because of a missing feature or\n\
20678 performance issue.\n\
20679 Warning: This option must be enabled before gdb reads the file."),
20680 NULL,
20681 NULL,
20682 &setlist, &showlist);
20683
20684 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20685 _("\
20686 Save a gdb-index file.\n\
20687 Usage: save gdb-index DIRECTORY"),
20688 &save_cmdlist);
20689 set_cmd_completer (c, filename_completer);
20690 }
This page took 0.497121 seconds and 4 git commands to generate.