rename frame_register_read into deprecated_frame_register_read.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs can share line table entries with CUs or other TUs, and there can be
261 a lot more TUs than unique line tables, so we maintain a separate table
262 of all line table entries to support the sharing. */
263 htab_t quick_file_names_table;
264
265 /* Set during partial symbol reading, to prevent queueing of full
266 symbols. */
267 int reading_partial_symbols;
268
269 /* Table mapping type DIEs to their struct type *.
270 This is NULL if not allocated yet.
271 The mapping is done via (CU/TU signature + DIE offset) -> type. */
272 htab_t die_type_hash;
273
274 /* The CUs we recently read. */
275 VEC (dwarf2_per_cu_ptr) *just_read_cus;
276 };
277
278 static struct dwarf2_per_objfile *dwarf2_per_objfile;
279
280 /* Default names of the debugging sections. */
281
282 /* Note that if the debugging section has been compressed, it might
283 have a name like .zdebug_info. */
284
285 static const struct dwarf2_debug_sections dwarf2_elf_names =
286 {
287 { ".debug_info", ".zdebug_info" },
288 { ".debug_abbrev", ".zdebug_abbrev" },
289 { ".debug_line", ".zdebug_line" },
290 { ".debug_loc", ".zdebug_loc" },
291 { ".debug_macinfo", ".zdebug_macinfo" },
292 { ".debug_macro", ".zdebug_macro" },
293 { ".debug_str", ".zdebug_str" },
294 { ".debug_ranges", ".zdebug_ranges" },
295 { ".debug_types", ".zdebug_types" },
296 { ".debug_addr", ".zdebug_addr" },
297 { ".debug_frame", ".zdebug_frame" },
298 { ".eh_frame", NULL },
299 { ".gdb_index", ".zgdb_index" },
300 23
301 };
302
303 /* List of DWO/DWP sections. */
304
305 static const struct dwop_section_names
306 {
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
311 struct dwarf2_section_names macinfo_dwo;
312 struct dwarf2_section_names macro_dwo;
313 struct dwarf2_section_names str_dwo;
314 struct dwarf2_section_names str_offsets_dwo;
315 struct dwarf2_section_names types_dwo;
316 struct dwarf2_section_names cu_index;
317 struct dwarf2_section_names tu_index;
318 }
319 dwop_section_names =
320 {
321 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
322 { ".debug_info.dwo", ".zdebug_info.dwo" },
323 { ".debug_line.dwo", ".zdebug_line.dwo" },
324 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
325 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
326 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
327 { ".debug_str.dwo", ".zdebug_str.dwo" },
328 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
329 { ".debug_types.dwo", ".zdebug_types.dwo" },
330 { ".debug_cu_index", ".zdebug_cu_index" },
331 { ".debug_tu_index", ".zdebug_tu_index" },
332 };
333
334 /* local data types */
335
336 /* The data in a compilation unit header, after target2host
337 translation, looks like this. */
338 struct comp_unit_head
339 {
340 unsigned int length;
341 short version;
342 unsigned char addr_size;
343 unsigned char signed_addr_p;
344 sect_offset abbrev_offset;
345
346 /* Size of file offsets; either 4 or 8. */
347 unsigned int offset_size;
348
349 /* Size of the length field; either 4 or 12. */
350 unsigned int initial_length_size;
351
352 /* Offset to the first byte of this compilation unit header in the
353 .debug_info section, for resolving relative reference dies. */
354 sect_offset offset;
355
356 /* Offset to first die in this cu from the start of the cu.
357 This will be the first byte following the compilation unit header. */
358 cu_offset first_die_offset;
359 };
360
361 /* Type used for delaying computation of method physnames.
362 See comments for compute_delayed_physnames. */
363 struct delayed_method_info
364 {
365 /* The type to which the method is attached, i.e., its parent class. */
366 struct type *type;
367
368 /* The index of the method in the type's function fieldlists. */
369 int fnfield_index;
370
371 /* The index of the method in the fieldlist. */
372 int index;
373
374 /* The name of the DIE. */
375 const char *name;
376
377 /* The DIE associated with this method. */
378 struct die_info *die;
379 };
380
381 typedef struct delayed_method_info delayed_method_info;
382 DEF_VEC_O (delayed_method_info);
383
384 /* Internal state when decoding a particular compilation unit. */
385 struct dwarf2_cu
386 {
387 /* The objfile containing this compilation unit. */
388 struct objfile *objfile;
389
390 /* The header of the compilation unit. */
391 struct comp_unit_head header;
392
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address;
395
396 /* Non-zero if base_address has been set. */
397 int base_known;
398
399 /* The language we are debugging. */
400 enum language language;
401 const struct language_defn *language_defn;
402
403 const char *producer;
404
405 /* The generic symbol table building routines have separate lists for
406 file scope symbols and all all other scopes (local scopes). So
407 we need to select the right one to pass to add_symbol_to_list().
408 We do it by keeping a pointer to the correct list in list_in_scope.
409
410 FIXME: The original dwarf code just treated the file scope as the
411 first local scope, and all other local scopes as nested local
412 scopes, and worked fine. Check to see if we really need to
413 distinguish these in buildsym.c. */
414 struct pending **list_in_scope;
415
416 /* The abbrev table for this CU.
417 Normally this points to the abbrev table in the objfile.
418 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
419 struct abbrev_table *abbrev_table;
420
421 /* Hash table holding all the loaded partial DIEs
422 with partial_die->offset.SECT_OFF as hash. */
423 htab_t partial_dies;
424
425 /* Storage for things with the same lifetime as this read-in compilation
426 unit, including partial DIEs. */
427 struct obstack comp_unit_obstack;
428
429 /* When multiple dwarf2_cu structures are living in memory, this field
430 chains them all together, so that they can be released efficiently.
431 We will probably also want a generation counter so that most-recently-used
432 compilation units are cached... */
433 struct dwarf2_per_cu_data *read_in_chain;
434
435 /* Backchain to our per_cu entry if the tree has been built. */
436 struct dwarf2_per_cu_data *per_cu;
437
438 /* How many compilation units ago was this CU last referenced? */
439 int last_used;
440
441 /* A hash table of DIE cu_offset for following references with
442 die_info->offset.sect_off as hash. */
443 htab_t die_hash;
444
445 /* Full DIEs if read in. */
446 struct die_info *dies;
447
448 /* A set of pointers to dwarf2_per_cu_data objects for compilation
449 units referenced by this one. Only set during full symbol processing;
450 partial symbol tables do not have dependencies. */
451 htab_t dependencies;
452
453 /* Header data from the line table, during full symbol processing. */
454 struct line_header *line_header;
455
456 /* A list of methods which need to have physnames computed
457 after all type information has been read. */
458 VEC (delayed_method_info) *method_list;
459
460 /* To be copied to symtab->call_site_htab. */
461 htab_t call_site_htab;
462
463 /* Non-NULL if this CU came from a DWO file.
464 There is an invariant here that is important to remember:
465 Except for attributes copied from the top level DIE in the "main"
466 (or "stub") file in preparation for reading the DWO file
467 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
468 Either there isn't a DWO file (in which case this is NULL and the point
469 is moot), or there is and either we're not going to read it (in which
470 case this is NULL) or there is and we are reading it (in which case this
471 is non-NULL). */
472 struct dwo_unit *dwo_unit;
473
474 /* The DW_AT_addr_base attribute if present, zero otherwise
475 (zero is a valid value though).
476 Note this value comes from the stub CU/TU's DIE. */
477 ULONGEST addr_base;
478
479 /* The DW_AT_ranges_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE.
482 Also note that the value is zero in the non-DWO case so this value can
483 be used without needing to know whether DWO files are in use or not. */
484 ULONGEST ranges_base;
485
486 /* Mark used when releasing cached dies. */
487 unsigned int mark : 1;
488
489 /* This CU references .debug_loc. See the symtab->locations_valid field.
490 This test is imperfect as there may exist optimized debug code not using
491 any location list and still facing inlining issues if handled as
492 unoptimized code. For a future better test see GCC PR other/32998. */
493 unsigned int has_loclist : 1;
494
495 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
496 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
497 are valid. This information is cached because profiling CU expansion
498 showed excessive time spent in producer_is_gxx_lt_4_6. */
499 unsigned int checked_producer : 1;
500 unsigned int producer_is_gxx_lt_4_6 : 1;
501 unsigned int producer_is_icc : 1;
502 };
503
504 /* Persistent data held for a compilation unit, even when not
505 processing it. We put a pointer to this structure in the
506 read_symtab_private field of the psymtab. */
507
508 struct dwarf2_per_cu_data
509 {
510 /* The start offset and length of this compilation unit.
511 NOTE: Unlike comp_unit_head.length, this length includes
512 initial_length_size.
513 If the DIE refers to a DWO file, this is always of the original die,
514 not the DWO file. */
515 sect_offset offset;
516 unsigned int length;
517
518 /* Flag indicating this compilation unit will be read in before
519 any of the current compilation units are processed. */
520 unsigned int queued : 1;
521
522 /* This flag will be set when reading partial DIEs if we need to load
523 absolutely all DIEs for this compilation unit, instead of just the ones
524 we think are interesting. It gets set if we look for a DIE in the
525 hash table and don't find it. */
526 unsigned int load_all_dies : 1;
527
528 /* Non-zero if this CU is from .debug_types. */
529 unsigned int is_debug_types : 1;
530
531 /* Non-zero if this CU is from the .dwz file. */
532 unsigned int is_dwz : 1;
533
534 /* The section this CU/TU lives in.
535 If the DIE refers to a DWO file, this is always the original die,
536 not the DWO file. */
537 struct dwarf2_section_info *info_or_types_section;
538
539 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
540 of the CU cache it gets reset to NULL again. */
541 struct dwarf2_cu *cu;
542
543 /* The corresponding objfile.
544 Normally we can get the objfile from dwarf2_per_objfile.
545 However we can enter this file with just a "per_cu" handle. */
546 struct objfile *objfile;
547
548 /* When using partial symbol tables, the 'psymtab' field is active.
549 Otherwise the 'quick' field is active. */
550 union
551 {
552 /* The partial symbol table associated with this compilation unit,
553 or NULL for unread partial units. */
554 struct partial_symtab *psymtab;
555
556 /* Data needed by the "quick" functions. */
557 struct dwarf2_per_cu_quick_data *quick;
558 } v;
559
560 union
561 {
562 /* The CUs we import using DW_TAG_imported_unit. This is filled in
563 while reading psymtabs, used to compute the psymtab dependencies,
564 and then cleared. Then it is filled in again while reading full
565 symbols, and only deleted when the objfile is destroyed. */
566 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
567
568 /* Type units are grouped by their DW_AT_stmt_list entry so that they
569 can share them. If this is a TU, this points to the containing
570 symtab. */
571 struct type_unit_group *type_unit_group;
572 } s;
573 };
574
575 /* Entry in the signatured_types hash table. */
576
577 struct signatured_type
578 {
579 /* The "per_cu" object of this type.
580 N.B.: This is the first member so that it's easy to convert pointers
581 between them. */
582 struct dwarf2_per_cu_data per_cu;
583
584 /* The type's signature. */
585 ULONGEST signature;
586
587 /* Offset in the TU of the type's DIE, as read from the TU header.
588 If the definition lives in a DWO file, this value is unusable. */
589 cu_offset type_offset_in_tu;
590
591 /* Offset in the section of the type's DIE.
592 If the definition lives in a DWO file, this is the offset in the
593 .debug_types.dwo section.
594 The value is zero until the actual value is known.
595 Zero is otherwise not a valid section offset. */
596 sect_offset type_offset_in_section;
597 };
598
599 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
600 This includes type_unit_group and quick_file_names. */
601
602 struct stmt_list_hash
603 {
604 /* The DWO unit this table is from or NULL if there is none. */
605 struct dwo_unit *dwo_unit;
606
607 /* Offset in .debug_line or .debug_line.dwo. */
608 sect_offset line_offset;
609 };
610
611 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
612 an object of this type. */
613
614 struct type_unit_group
615 {
616 /* dwarf2read.c's main "handle" on the symtab.
617 To simplify things we create an artificial CU that "includes" all the
618 type units using this stmt_list so that the rest of the code still has
619 a "per_cu" handle on the symtab.
620 This PER_CU is recognized by having no section. */
621 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
622 struct dwarf2_per_cu_data per_cu;
623
624 union
625 {
626 /* The TUs that share this DW_AT_stmt_list entry.
627 This is added to while parsing type units to build partial symtabs,
628 and is deleted afterwards and not used again. */
629 VEC (dwarf2_per_cu_ptr) *tus;
630
631 /* When reading the line table in "quick" functions, we need a real TU.
632 Any will do, we know they all share the same DW_AT_stmt_list entry.
633 For simplicity's sake, we pick the first one. */
634 struct dwarf2_per_cu_data *first_tu;
635 } t;
636
637 /* The primary symtab.
638 Type units in a group needn't all be defined in the same source file,
639 so we create an essentially anonymous symtab as the primary symtab. */
640 struct symtab *primary_symtab;
641
642 /* The data used to construct the hash key. */
643 struct stmt_list_hash hash;
644
645 /* The number of symtabs from the line header.
646 The value here must match line_header.num_file_names. */
647 unsigned int num_symtabs;
648
649 /* The symbol tables for this TU (obtained from the files listed in
650 DW_AT_stmt_list).
651 WARNING: The order of entries here must match the order of entries
652 in the line header. After the first TU using this type_unit_group, the
653 line header for the subsequent TUs is recreated from this. This is done
654 because we need to use the same symtabs for each TU using the same
655 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
656 there's no guarantee the line header doesn't have duplicate entries. */
657 struct symtab **symtabs;
658 };
659
660 /* These sections are what may appear in a DWO file. */
661
662 struct dwo_sections
663 {
664 struct dwarf2_section_info abbrev;
665 struct dwarf2_section_info line;
666 struct dwarf2_section_info loc;
667 struct dwarf2_section_info macinfo;
668 struct dwarf2_section_info macro;
669 struct dwarf2_section_info str;
670 struct dwarf2_section_info str_offsets;
671 /* In the case of a virtual DWO file, these two are unused. */
672 struct dwarf2_section_info info;
673 VEC (dwarf2_section_info_def) *types;
674 };
675
676 /* Common bits of DWO CUs/TUs. */
677
678 struct dwo_unit
679 {
680 /* Backlink to the containing struct dwo_file. */
681 struct dwo_file *dwo_file;
682
683 /* The "id" that distinguishes this CU/TU.
684 .debug_info calls this "dwo_id", .debug_types calls this "signature".
685 Since signatures came first, we stick with it for consistency. */
686 ULONGEST signature;
687
688 /* The section this CU/TU lives in, in the DWO file. */
689 struct dwarf2_section_info *info_or_types_section;
690
691 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
692 sect_offset offset;
693 unsigned int length;
694
695 /* For types, offset in the type's DIE of the type defined by this TU. */
696 cu_offset type_offset_in_tu;
697 };
698
699 /* Data for one DWO file.
700 This includes virtual DWO files that have been packaged into a
701 DWP file. */
702
703 struct dwo_file
704 {
705 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
706 For virtual DWO files the name is constructed from the section offsets
707 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
708 from related CU+TUs. */
709 const char *name;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 bfd *dbfd;
714
715 /* Section info for this file. */
716 struct dwo_sections sections;
717
718 /* Table of CUs in the file.
719 Each element is a struct dwo_unit. */
720 htab_t cus;
721
722 /* Table of TUs in the file.
723 Each element is a struct dwo_unit. */
724 htab_t tus;
725 };
726
727 /* These sections are what may appear in a DWP file. */
728
729 struct dwp_sections
730 {
731 struct dwarf2_section_info str;
732 struct dwarf2_section_info cu_index;
733 struct dwarf2_section_info tu_index;
734 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
735 by section number. We don't need to record them here. */
736 };
737
738 /* These sections are what may appear in a virtual DWO file. */
739
740 struct virtual_dwo_sections
741 {
742 struct dwarf2_section_info abbrev;
743 struct dwarf2_section_info line;
744 struct dwarf2_section_info loc;
745 struct dwarf2_section_info macinfo;
746 struct dwarf2_section_info macro;
747 struct dwarf2_section_info str_offsets;
748 /* Each DWP hash table entry records one CU or one TU.
749 That is recorded here, and copied to dwo_unit.info_or_types_section. */
750 struct dwarf2_section_info info_or_types;
751 };
752
753 /* Contents of DWP hash tables. */
754
755 struct dwp_hash_table
756 {
757 uint32_t nr_units, nr_slots;
758 const gdb_byte *hash_table, *unit_table, *section_pool;
759 };
760
761 /* Data for one DWP file. */
762
763 struct dwp_file
764 {
765 /* Name of the file. */
766 const char *name;
767
768 /* The bfd, when the file is open. Otherwise this is NULL. */
769 bfd *dbfd;
770
771 /* Section info for this file. */
772 struct dwp_sections sections;
773
774 /* Table of CUs in the file. */
775 const struct dwp_hash_table *cus;
776
777 /* Table of TUs in the file. */
778 const struct dwp_hash_table *tus;
779
780 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
781 htab_t loaded_cutus;
782
783 /* Table to map ELF section numbers to their sections. */
784 unsigned int num_sections;
785 asection **elf_sections;
786 };
787
788 /* This represents a '.dwz' file. */
789
790 struct dwz_file
791 {
792 /* A dwz file can only contain a few sections. */
793 struct dwarf2_section_info abbrev;
794 struct dwarf2_section_info info;
795 struct dwarf2_section_info str;
796 struct dwarf2_section_info line;
797 struct dwarf2_section_info macro;
798 struct dwarf2_section_info gdb_index;
799
800 /* The dwz's BFD. */
801 bfd *dwz_bfd;
802 };
803
804 /* Struct used to pass misc. parameters to read_die_and_children, et
805 al. which are used for both .debug_info and .debug_types dies.
806 All parameters here are unchanging for the life of the call. This
807 struct exists to abstract away the constant parameters of die reading. */
808
809 struct die_reader_specs
810 {
811 /* die_section->asection->owner. */
812 bfd* abfd;
813
814 /* The CU of the DIE we are parsing. */
815 struct dwarf2_cu *cu;
816
817 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
818 struct dwo_file *dwo_file;
819
820 /* The section the die comes from.
821 This is either .debug_info or .debug_types, or the .dwo variants. */
822 struct dwarf2_section_info *die_section;
823
824 /* die_section->buffer. */
825 gdb_byte *buffer;
826
827 /* The end of the buffer. */
828 const gdb_byte *buffer_end;
829 };
830
831 /* Type of function passed to init_cutu_and_read_dies, et.al. */
832 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
833 gdb_byte *info_ptr,
834 struct die_info *comp_unit_die,
835 int has_children,
836 void *data);
837
838 /* The line number information for a compilation unit (found in the
839 .debug_line section) begins with a "statement program header",
840 which contains the following information. */
841 struct line_header
842 {
843 unsigned int total_length;
844 unsigned short version;
845 unsigned int header_length;
846 unsigned char minimum_instruction_length;
847 unsigned char maximum_ops_per_instruction;
848 unsigned char default_is_stmt;
849 int line_base;
850 unsigned char line_range;
851 unsigned char opcode_base;
852
853 /* standard_opcode_lengths[i] is the number of operands for the
854 standard opcode whose value is i. This means that
855 standard_opcode_lengths[0] is unused, and the last meaningful
856 element is standard_opcode_lengths[opcode_base - 1]. */
857 unsigned char *standard_opcode_lengths;
858
859 /* The include_directories table. NOTE! These strings are not
860 allocated with xmalloc; instead, they are pointers into
861 debug_line_buffer. If you try to free them, `free' will get
862 indigestion. */
863 unsigned int num_include_dirs, include_dirs_size;
864 char **include_dirs;
865
866 /* The file_names table. NOTE! These strings are not allocated
867 with xmalloc; instead, they are pointers into debug_line_buffer.
868 Don't try to free them directly. */
869 unsigned int num_file_names, file_names_size;
870 struct file_entry
871 {
872 char *name;
873 unsigned int dir_index;
874 unsigned int mod_time;
875 unsigned int length;
876 int included_p; /* Non-zero if referenced by the Line Number Program. */
877 struct symtab *symtab; /* The associated symbol table, if any. */
878 } *file_names;
879
880 /* The start and end of the statement program following this
881 header. These point into dwarf2_per_objfile->line_buffer. */
882 gdb_byte *statement_program_start, *statement_program_end;
883 };
884
885 /* When we construct a partial symbol table entry we only
886 need this much information. */
887 struct partial_die_info
888 {
889 /* Offset of this DIE. */
890 sect_offset offset;
891
892 /* DWARF-2 tag for this DIE. */
893 ENUM_BITFIELD(dwarf_tag) tag : 16;
894
895 /* Assorted flags describing the data found in this DIE. */
896 unsigned int has_children : 1;
897 unsigned int is_external : 1;
898 unsigned int is_declaration : 1;
899 unsigned int has_type : 1;
900 unsigned int has_specification : 1;
901 unsigned int has_pc_info : 1;
902 unsigned int may_be_inlined : 1;
903
904 /* Flag set if the SCOPE field of this structure has been
905 computed. */
906 unsigned int scope_set : 1;
907
908 /* Flag set if the DIE has a byte_size attribute. */
909 unsigned int has_byte_size : 1;
910
911 /* Flag set if any of the DIE's children are template arguments. */
912 unsigned int has_template_arguments : 1;
913
914 /* Flag set if fixup_partial_die has been called on this die. */
915 unsigned int fixup_called : 1;
916
917 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
918 unsigned int is_dwz : 1;
919
920 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
921 unsigned int spec_is_dwz : 1;
922
923 /* The name of this DIE. Normally the value of DW_AT_name, but
924 sometimes a default name for unnamed DIEs. */
925 char *name;
926
927 /* The linkage name, if present. */
928 const char *linkage_name;
929
930 /* The scope to prepend to our children. This is generally
931 allocated on the comp_unit_obstack, so will disappear
932 when this compilation unit leaves the cache. */
933 char *scope;
934
935 /* Some data associated with the partial DIE. The tag determines
936 which field is live. */
937 union
938 {
939 /* The location description associated with this DIE, if any. */
940 struct dwarf_block *locdesc;
941 /* The offset of an import, for DW_TAG_imported_unit. */
942 sect_offset offset;
943 } d;
944
945 /* If HAS_PC_INFO, the PC range associated with this DIE. */
946 CORE_ADDR lowpc;
947 CORE_ADDR highpc;
948
949 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
950 DW_AT_sibling, if any. */
951 /* NOTE: This member isn't strictly necessary, read_partial_die could
952 return DW_AT_sibling values to its caller load_partial_dies. */
953 gdb_byte *sibling;
954
955 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
956 DW_AT_specification (or DW_AT_abstract_origin or
957 DW_AT_extension). */
958 sect_offset spec_offset;
959
960 /* Pointers to this DIE's parent, first child, and next sibling,
961 if any. */
962 struct partial_die_info *die_parent, *die_child, *die_sibling;
963 };
964
965 /* This data structure holds the information of an abbrev. */
966 struct abbrev_info
967 {
968 unsigned int number; /* number identifying abbrev */
969 enum dwarf_tag tag; /* dwarf tag */
970 unsigned short has_children; /* boolean */
971 unsigned short num_attrs; /* number of attributes */
972 struct attr_abbrev *attrs; /* an array of attribute descriptions */
973 struct abbrev_info *next; /* next in chain */
974 };
975
976 struct attr_abbrev
977 {
978 ENUM_BITFIELD(dwarf_attribute) name : 16;
979 ENUM_BITFIELD(dwarf_form) form : 16;
980 };
981
982 /* Size of abbrev_table.abbrev_hash_table. */
983 #define ABBREV_HASH_SIZE 121
984
985 /* Top level data structure to contain an abbreviation table. */
986
987 struct abbrev_table
988 {
989 /* Where the abbrev table came from.
990 This is used as a sanity check when the table is used. */
991 sect_offset offset;
992
993 /* Storage for the abbrev table. */
994 struct obstack abbrev_obstack;
995
996 /* Hash table of abbrevs.
997 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
998 It could be statically allocated, but the previous code didn't so we
999 don't either. */
1000 struct abbrev_info **abbrevs;
1001 };
1002
1003 /* Attributes have a name and a value. */
1004 struct attribute
1005 {
1006 ENUM_BITFIELD(dwarf_attribute) name : 16;
1007 ENUM_BITFIELD(dwarf_form) form : 15;
1008
1009 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1010 field should be in u.str (existing only for DW_STRING) but it is kept
1011 here for better struct attribute alignment. */
1012 unsigned int string_is_canonical : 1;
1013
1014 union
1015 {
1016 char *str;
1017 struct dwarf_block *blk;
1018 ULONGEST unsnd;
1019 LONGEST snd;
1020 CORE_ADDR addr;
1021 struct signatured_type *signatured_type;
1022 }
1023 u;
1024 };
1025
1026 /* This data structure holds a complete die structure. */
1027 struct die_info
1028 {
1029 /* DWARF-2 tag for this DIE. */
1030 ENUM_BITFIELD(dwarf_tag) tag : 16;
1031
1032 /* Number of attributes */
1033 unsigned char num_attrs;
1034
1035 /* True if we're presently building the full type name for the
1036 type derived from this DIE. */
1037 unsigned char building_fullname : 1;
1038
1039 /* Abbrev number */
1040 unsigned int abbrev;
1041
1042 /* Offset in .debug_info or .debug_types section. */
1043 sect_offset offset;
1044
1045 /* The dies in a compilation unit form an n-ary tree. PARENT
1046 points to this die's parent; CHILD points to the first child of
1047 this node; and all the children of a given node are chained
1048 together via their SIBLING fields. */
1049 struct die_info *child; /* Its first child, if any. */
1050 struct die_info *sibling; /* Its next sibling, if any. */
1051 struct die_info *parent; /* Its parent, if any. */
1052
1053 /* An array of attributes, with NUM_ATTRS elements. There may be
1054 zero, but it's not common and zero-sized arrays are not
1055 sufficiently portable C. */
1056 struct attribute attrs[1];
1057 };
1058
1059 /* Get at parts of an attribute structure. */
1060
1061 #define DW_STRING(attr) ((attr)->u.str)
1062 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1063 #define DW_UNSND(attr) ((attr)->u.unsnd)
1064 #define DW_BLOCK(attr) ((attr)->u.blk)
1065 #define DW_SND(attr) ((attr)->u.snd)
1066 #define DW_ADDR(attr) ((attr)->u.addr)
1067 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1068
1069 /* Blocks are a bunch of untyped bytes. */
1070 struct dwarf_block
1071 {
1072 size_t size;
1073
1074 /* Valid only if SIZE is not zero. */
1075 gdb_byte *data;
1076 };
1077
1078 #ifndef ATTR_ALLOC_CHUNK
1079 #define ATTR_ALLOC_CHUNK 4
1080 #endif
1081
1082 /* Allocate fields for structs, unions and enums in this size. */
1083 #ifndef DW_FIELD_ALLOC_CHUNK
1084 #define DW_FIELD_ALLOC_CHUNK 4
1085 #endif
1086
1087 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1088 but this would require a corresponding change in unpack_field_as_long
1089 and friends. */
1090 static int bits_per_byte = 8;
1091
1092 /* The routines that read and process dies for a C struct or C++ class
1093 pass lists of data member fields and lists of member function fields
1094 in an instance of a field_info structure, as defined below. */
1095 struct field_info
1096 {
1097 /* List of data member and baseclasses fields. */
1098 struct nextfield
1099 {
1100 struct nextfield *next;
1101 int accessibility;
1102 int virtuality;
1103 struct field field;
1104 }
1105 *fields, *baseclasses;
1106
1107 /* Number of fields (including baseclasses). */
1108 int nfields;
1109
1110 /* Number of baseclasses. */
1111 int nbaseclasses;
1112
1113 /* Set if the accesibility of one of the fields is not public. */
1114 int non_public_fields;
1115
1116 /* Member function fields array, entries are allocated in the order they
1117 are encountered in the object file. */
1118 struct nextfnfield
1119 {
1120 struct nextfnfield *next;
1121 struct fn_field fnfield;
1122 }
1123 *fnfields;
1124
1125 /* Member function fieldlist array, contains name of possibly overloaded
1126 member function, number of overloaded member functions and a pointer
1127 to the head of the member function field chain. */
1128 struct fnfieldlist
1129 {
1130 char *name;
1131 int length;
1132 struct nextfnfield *head;
1133 }
1134 *fnfieldlists;
1135
1136 /* Number of entries in the fnfieldlists array. */
1137 int nfnfields;
1138
1139 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1140 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1141 struct typedef_field_list
1142 {
1143 struct typedef_field field;
1144 struct typedef_field_list *next;
1145 }
1146 *typedef_field_list;
1147 unsigned typedef_field_list_count;
1148 };
1149
1150 /* One item on the queue of compilation units to read in full symbols
1151 for. */
1152 struct dwarf2_queue_item
1153 {
1154 struct dwarf2_per_cu_data *per_cu;
1155 enum language pretend_language;
1156 struct dwarf2_queue_item *next;
1157 };
1158
1159 /* The current queue. */
1160 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1161
1162 /* Loaded secondary compilation units are kept in memory until they
1163 have not been referenced for the processing of this many
1164 compilation units. Set this to zero to disable caching. Cache
1165 sizes of up to at least twenty will improve startup time for
1166 typical inter-CU-reference binaries, at an obvious memory cost. */
1167 static int dwarf2_max_cache_age = 5;
1168 static void
1169 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1170 struct cmd_list_element *c, const char *value)
1171 {
1172 fprintf_filtered (file, _("The upper bound on the age of cached "
1173 "dwarf2 compilation units is %s.\n"),
1174 value);
1175 }
1176
1177
1178 /* Various complaints about symbol reading that don't abort the process. */
1179
1180 static void
1181 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1182 {
1183 complaint (&symfile_complaints,
1184 _("statement list doesn't fit in .debug_line section"));
1185 }
1186
1187 static void
1188 dwarf2_debug_line_missing_file_complaint (void)
1189 {
1190 complaint (&symfile_complaints,
1191 _(".debug_line section has line data without a file"));
1192 }
1193
1194 static void
1195 dwarf2_debug_line_missing_end_sequence_complaint (void)
1196 {
1197 complaint (&symfile_complaints,
1198 _(".debug_line section has line "
1199 "program sequence without an end"));
1200 }
1201
1202 static void
1203 dwarf2_complex_location_expr_complaint (void)
1204 {
1205 complaint (&symfile_complaints, _("location expression too complex"));
1206 }
1207
1208 static void
1209 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1210 int arg3)
1211 {
1212 complaint (&symfile_complaints,
1213 _("const value length mismatch for '%s', got %d, expected %d"),
1214 arg1, arg2, arg3);
1215 }
1216
1217 static void
1218 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1219 {
1220 complaint (&symfile_complaints,
1221 _("debug info runs off end of %s section"
1222 " [in module %s]"),
1223 section->asection->name,
1224 bfd_get_filename (section->asection->owner));
1225 }
1226
1227 static void
1228 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1229 {
1230 complaint (&symfile_complaints,
1231 _("macro debug info contains a "
1232 "malformed macro definition:\n`%s'"),
1233 arg1);
1234 }
1235
1236 static void
1237 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1238 {
1239 complaint (&symfile_complaints,
1240 _("invalid attribute class or form for '%s' in '%s'"),
1241 arg1, arg2);
1242 }
1243
1244 /* local function prototypes */
1245
1246 static void dwarf2_locate_sections (bfd *, asection *, void *);
1247
1248 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1249 struct objfile *);
1250
1251 static void dwarf2_find_base_address (struct die_info *die,
1252 struct dwarf2_cu *cu);
1253
1254 static void dwarf2_build_psymtabs_hard (struct objfile *);
1255
1256 static void scan_partial_symbols (struct partial_die_info *,
1257 CORE_ADDR *, CORE_ADDR *,
1258 int, struct dwarf2_cu *);
1259
1260 static void add_partial_symbol (struct partial_die_info *,
1261 struct dwarf2_cu *);
1262
1263 static void add_partial_namespace (struct partial_die_info *pdi,
1264 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1265 int need_pc, struct dwarf2_cu *cu);
1266
1267 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1268 CORE_ADDR *highpc, int need_pc,
1269 struct dwarf2_cu *cu);
1270
1271 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1272 struct dwarf2_cu *cu);
1273
1274 static void add_partial_subprogram (struct partial_die_info *pdi,
1275 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1276 int need_pc, struct dwarf2_cu *cu);
1277
1278 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1279
1280 static void psymtab_to_symtab_1 (struct partial_symtab *);
1281
1282 static struct abbrev_info *abbrev_table_lookup_abbrev
1283 (const struct abbrev_table *, unsigned int);
1284
1285 static struct abbrev_table *abbrev_table_read_table
1286 (struct dwarf2_section_info *, sect_offset);
1287
1288 static void abbrev_table_free (struct abbrev_table *);
1289
1290 static void abbrev_table_free_cleanup (void *);
1291
1292 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1293 struct dwarf2_section_info *);
1294
1295 static void dwarf2_free_abbrev_table (void *);
1296
1297 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1298
1299 static struct partial_die_info *load_partial_dies
1300 (const struct die_reader_specs *, gdb_byte *, int);
1301
1302 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1303 struct partial_die_info *,
1304 struct abbrev_info *,
1305 unsigned int,
1306 gdb_byte *);
1307
1308 static struct partial_die_info *find_partial_die (sect_offset, int,
1309 struct dwarf2_cu *);
1310
1311 static void fixup_partial_die (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
1314 static gdb_byte *read_attribute (const struct die_reader_specs *,
1315 struct attribute *, struct attr_abbrev *,
1316 gdb_byte *);
1317
1318 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1319
1320 static int read_1_signed_byte (bfd *, const gdb_byte *);
1321
1322 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1323
1324 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1325
1326 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1327
1328 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1329 unsigned int *);
1330
1331 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1332
1333 static LONGEST read_checked_initial_length_and_offset
1334 (bfd *, gdb_byte *, const struct comp_unit_head *,
1335 unsigned int *, unsigned int *);
1336
1337 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1338 unsigned int *);
1339
1340 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1341
1342 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1343 sect_offset);
1344
1345 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1346
1347 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1348
1349 static char *read_indirect_string (bfd *, gdb_byte *,
1350 const struct comp_unit_head *,
1351 unsigned int *);
1352
1353 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1354
1355 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1356
1357 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1358
1359 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1360 unsigned int *);
1361
1362 static char *read_str_index (const struct die_reader_specs *reader,
1363 struct dwarf2_cu *cu, ULONGEST str_index);
1364
1365 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1366
1367 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1368 struct dwarf2_cu *);
1369
1370 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1371 unsigned int);
1372
1373 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1374 struct dwarf2_cu *cu);
1375
1376 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1377
1378 static struct die_info *die_specification (struct die_info *die,
1379 struct dwarf2_cu **);
1380
1381 static void free_line_header (struct line_header *lh);
1382
1383 static void add_file_name (struct line_header *, char *, unsigned int,
1384 unsigned int, unsigned int);
1385
1386 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1387 struct dwarf2_cu *cu);
1388
1389 static void dwarf_decode_lines (struct line_header *, const char *,
1390 struct dwarf2_cu *, struct partial_symtab *,
1391 int);
1392
1393 static void dwarf2_start_subfile (char *, const char *, const char *);
1394
1395 static void dwarf2_start_symtab (struct dwarf2_cu *,
1396 char *, char *, CORE_ADDR);
1397
1398 static struct symbol *new_symbol (struct die_info *, struct type *,
1399 struct dwarf2_cu *);
1400
1401 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1402 struct dwarf2_cu *, struct symbol *);
1403
1404 static void dwarf2_const_value (struct attribute *, struct symbol *,
1405 struct dwarf2_cu *);
1406
1407 static void dwarf2_const_value_attr (struct attribute *attr,
1408 struct type *type,
1409 const char *name,
1410 struct obstack *obstack,
1411 struct dwarf2_cu *cu, LONGEST *value,
1412 gdb_byte **bytes,
1413 struct dwarf2_locexpr_baton **baton);
1414
1415 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1416
1417 static int need_gnat_info (struct dwarf2_cu *);
1418
1419 static struct type *die_descriptive_type (struct die_info *,
1420 struct dwarf2_cu *);
1421
1422 static void set_descriptive_type (struct type *, struct die_info *,
1423 struct dwarf2_cu *);
1424
1425 static struct type *die_containing_type (struct die_info *,
1426 struct dwarf2_cu *);
1427
1428 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1429 struct dwarf2_cu *);
1430
1431 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1432
1433 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1434
1435 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1436
1437 static char *typename_concat (struct obstack *obs, const char *prefix,
1438 const char *suffix, int physname,
1439 struct dwarf2_cu *cu);
1440
1441 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1442
1443 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1444
1445 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1446
1447 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1448
1449 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1450
1451 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1452 struct dwarf2_cu *, struct partial_symtab *);
1453
1454 static int dwarf2_get_pc_bounds (struct die_info *,
1455 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1456 struct partial_symtab *);
1457
1458 static void get_scope_pc_bounds (struct die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 struct dwarf2_cu *);
1461
1462 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1463 CORE_ADDR, struct dwarf2_cu *);
1464
1465 static void dwarf2_add_field (struct field_info *, struct die_info *,
1466 struct dwarf2_cu *);
1467
1468 static void dwarf2_attach_fields_to_type (struct field_info *,
1469 struct type *, struct dwarf2_cu *);
1470
1471 static void dwarf2_add_member_fn (struct field_info *,
1472 struct die_info *, struct type *,
1473 struct dwarf2_cu *);
1474
1475 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1476 struct type *,
1477 struct dwarf2_cu *);
1478
1479 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1480
1481 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1482
1483 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1484
1485 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1486
1487 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1488
1489 static struct type *read_module_type (struct die_info *die,
1490 struct dwarf2_cu *cu);
1491
1492 static const char *namespace_name (struct die_info *die,
1493 int *is_anonymous, struct dwarf2_cu *);
1494
1495 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1496
1497 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1498
1499 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1500 struct dwarf2_cu *);
1501
1502 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1503 gdb_byte *info_ptr,
1504 gdb_byte **new_info_ptr,
1505 struct die_info *parent);
1506
1507 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1508 gdb_byte *info_ptr,
1509 gdb_byte **new_info_ptr,
1510 struct die_info *parent);
1511
1512 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1513 struct die_info **, gdb_byte *, int *, int);
1514
1515 static gdb_byte *read_full_die (const struct die_reader_specs *,
1516 struct die_info **, gdb_byte *, int *);
1517
1518 static void process_die (struct die_info *, struct dwarf2_cu *);
1519
1520 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1521 struct obstack *);
1522
1523 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1524
1525 static const char *dwarf2_full_name (char *name,
1526 struct die_info *die,
1527 struct dwarf2_cu *cu);
1528
1529 static struct die_info *dwarf2_extension (struct die_info *die,
1530 struct dwarf2_cu **);
1531
1532 static const char *dwarf_tag_name (unsigned int);
1533
1534 static const char *dwarf_attr_name (unsigned int);
1535
1536 static const char *dwarf_form_name (unsigned int);
1537
1538 static char *dwarf_bool_name (unsigned int);
1539
1540 static const char *dwarf_type_encoding_name (unsigned int);
1541
1542 static struct die_info *sibling_die (struct die_info *);
1543
1544 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1545
1546 static void dump_die_for_error (struct die_info *);
1547
1548 static void dump_die_1 (struct ui_file *, int level, int max_level,
1549 struct die_info *);
1550
1551 /*static*/ void dump_die (struct die_info *, int max_level);
1552
1553 static void store_in_ref_table (struct die_info *,
1554 struct dwarf2_cu *);
1555
1556 static int is_ref_attr (struct attribute *);
1557
1558 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1559
1560 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1561
1562 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1563 struct attribute *,
1564 struct dwarf2_cu **);
1565
1566 static struct die_info *follow_die_ref (struct die_info *,
1567 struct attribute *,
1568 struct dwarf2_cu **);
1569
1570 static struct die_info *follow_die_sig (struct die_info *,
1571 struct attribute *,
1572 struct dwarf2_cu **);
1573
1574 static struct signatured_type *lookup_signatured_type_at_offset
1575 (struct objfile *objfile,
1576 struct dwarf2_section_info *section, sect_offset offset);
1577
1578 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1579
1580 static void read_signatured_type (struct signatured_type *);
1581
1582 static struct type_unit_group *get_type_unit_group
1583 (struct dwarf2_cu *, struct attribute *);
1584
1585 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1586
1587 /* memory allocation interface */
1588
1589 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1590
1591 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1592
1593 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1594 char *, int);
1595
1596 static int attr_form_is_block (struct attribute *);
1597
1598 static int attr_form_is_section_offset (struct attribute *);
1599
1600 static int attr_form_is_constant (struct attribute *);
1601
1602 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1603 struct dwarf2_loclist_baton *baton,
1604 struct attribute *attr);
1605
1606 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1607 struct symbol *sym,
1608 struct dwarf2_cu *cu);
1609
1610 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1611 gdb_byte *info_ptr,
1612 struct abbrev_info *abbrev);
1613
1614 static void free_stack_comp_unit (void *);
1615
1616 static hashval_t partial_die_hash (const void *item);
1617
1618 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1619
1620 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1621 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1622
1623 static void init_one_comp_unit (struct dwarf2_cu *cu,
1624 struct dwarf2_per_cu_data *per_cu);
1625
1626 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1627 struct die_info *comp_unit_die,
1628 enum language pretend_language);
1629
1630 static void free_heap_comp_unit (void *);
1631
1632 static void free_cached_comp_units (void *);
1633
1634 static void age_cached_comp_units (void);
1635
1636 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1637
1638 static struct type *set_die_type (struct die_info *, struct type *,
1639 struct dwarf2_cu *);
1640
1641 static void create_all_comp_units (struct objfile *);
1642
1643 static int create_all_type_units (struct objfile *);
1644
1645 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1646 enum language);
1647
1648 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1649 enum language);
1650
1651 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1652 enum language);
1653
1654 static void dwarf2_add_dependence (struct dwarf2_cu *,
1655 struct dwarf2_per_cu_data *);
1656
1657 static void dwarf2_mark (struct dwarf2_cu *);
1658
1659 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1660
1661 static struct type *get_die_type_at_offset (sect_offset,
1662 struct dwarf2_per_cu_data *per_cu);
1663
1664 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1665
1666 static void dwarf2_release_queue (void *dummy);
1667
1668 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1669 enum language pretend_language);
1670
1671 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1672 struct dwarf2_per_cu_data *per_cu,
1673 enum language pretend_language);
1674
1675 static void process_queue (void);
1676
1677 static void find_file_and_directory (struct die_info *die,
1678 struct dwarf2_cu *cu,
1679 char **name, char **comp_dir);
1680
1681 static char *file_full_name (int file, struct line_header *lh,
1682 const char *comp_dir);
1683
1684 static gdb_byte *read_and_check_comp_unit_head
1685 (struct comp_unit_head *header,
1686 struct dwarf2_section_info *section,
1687 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1688 int is_debug_types_section);
1689
1690 static void init_cutu_and_read_dies
1691 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1692 int use_existing_cu, int keep,
1693 die_reader_func_ftype *die_reader_func, void *data);
1694
1695 static void init_cutu_and_read_dies_simple
1696 (struct dwarf2_per_cu_data *this_cu,
1697 die_reader_func_ftype *die_reader_func, void *data);
1698
1699 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1700
1701 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1702
1703 static struct dwo_unit *lookup_dwo_comp_unit
1704 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1705
1706 static struct dwo_unit *lookup_dwo_type_unit
1707 (struct signatured_type *, const char *, const char *);
1708
1709 static void free_dwo_file_cleanup (void *);
1710
1711 static void process_cu_includes (void);
1712
1713 #if WORDS_BIGENDIAN
1714
1715 /* Convert VALUE between big- and little-endian. */
1716 static offset_type
1717 byte_swap (offset_type value)
1718 {
1719 offset_type result;
1720
1721 result = (value & 0xff) << 24;
1722 result |= (value & 0xff00) << 8;
1723 result |= (value & 0xff0000) >> 8;
1724 result |= (value & 0xff000000) >> 24;
1725 return result;
1726 }
1727
1728 #define MAYBE_SWAP(V) byte_swap (V)
1729
1730 #else
1731 #define MAYBE_SWAP(V) (V)
1732 #endif /* WORDS_BIGENDIAN */
1733
1734 /* The suffix for an index file. */
1735 #define INDEX_SUFFIX ".gdb-index"
1736
1737 static const char *dwarf2_physname (char *name, struct die_info *die,
1738 struct dwarf2_cu *cu);
1739
1740 /* Try to locate the sections we need for DWARF 2 debugging
1741 information and return true if we have enough to do something.
1742 NAMES points to the dwarf2 section names, or is NULL if the standard
1743 ELF names are used. */
1744
1745 int
1746 dwarf2_has_info (struct objfile *objfile,
1747 const struct dwarf2_debug_sections *names)
1748 {
1749 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1750 if (!dwarf2_per_objfile)
1751 {
1752 /* Initialize per-objfile state. */
1753 struct dwarf2_per_objfile *data
1754 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1755
1756 memset (data, 0, sizeof (*data));
1757 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1758 dwarf2_per_objfile = data;
1759
1760 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1761 (void *) names);
1762 dwarf2_per_objfile->objfile = objfile;
1763 }
1764 return (dwarf2_per_objfile->info.asection != NULL
1765 && dwarf2_per_objfile->abbrev.asection != NULL);
1766 }
1767
1768 /* When loading sections, we look either for uncompressed section or for
1769 compressed section names. */
1770
1771 static int
1772 section_is_p (const char *section_name,
1773 const struct dwarf2_section_names *names)
1774 {
1775 if (names->normal != NULL
1776 && strcmp (section_name, names->normal) == 0)
1777 return 1;
1778 if (names->compressed != NULL
1779 && strcmp (section_name, names->compressed) == 0)
1780 return 1;
1781 return 0;
1782 }
1783
1784 /* This function is mapped across the sections and remembers the
1785 offset and size of each of the debugging sections we are interested
1786 in. */
1787
1788 static void
1789 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1790 {
1791 const struct dwarf2_debug_sections *names;
1792 flagword aflag = bfd_get_section_flags (abfd, sectp);
1793
1794 if (vnames == NULL)
1795 names = &dwarf2_elf_names;
1796 else
1797 names = (const struct dwarf2_debug_sections *) vnames;
1798
1799 if ((aflag & SEC_HAS_CONTENTS) == 0)
1800 {
1801 }
1802 else if (section_is_p (sectp->name, &names->info))
1803 {
1804 dwarf2_per_objfile->info.asection = sectp;
1805 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1806 }
1807 else if (section_is_p (sectp->name, &names->abbrev))
1808 {
1809 dwarf2_per_objfile->abbrev.asection = sectp;
1810 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1811 }
1812 else if (section_is_p (sectp->name, &names->line))
1813 {
1814 dwarf2_per_objfile->line.asection = sectp;
1815 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1816 }
1817 else if (section_is_p (sectp->name, &names->loc))
1818 {
1819 dwarf2_per_objfile->loc.asection = sectp;
1820 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1821 }
1822 else if (section_is_p (sectp->name, &names->macinfo))
1823 {
1824 dwarf2_per_objfile->macinfo.asection = sectp;
1825 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1826 }
1827 else if (section_is_p (sectp->name, &names->macro))
1828 {
1829 dwarf2_per_objfile->macro.asection = sectp;
1830 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1831 }
1832 else if (section_is_p (sectp->name, &names->str))
1833 {
1834 dwarf2_per_objfile->str.asection = sectp;
1835 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1836 }
1837 else if (section_is_p (sectp->name, &names->addr))
1838 {
1839 dwarf2_per_objfile->addr.asection = sectp;
1840 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1841 }
1842 else if (section_is_p (sectp->name, &names->frame))
1843 {
1844 dwarf2_per_objfile->frame.asection = sectp;
1845 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1846 }
1847 else if (section_is_p (sectp->name, &names->eh_frame))
1848 {
1849 dwarf2_per_objfile->eh_frame.asection = sectp;
1850 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1851 }
1852 else if (section_is_p (sectp->name, &names->ranges))
1853 {
1854 dwarf2_per_objfile->ranges.asection = sectp;
1855 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1856 }
1857 else if (section_is_p (sectp->name, &names->types))
1858 {
1859 struct dwarf2_section_info type_section;
1860
1861 memset (&type_section, 0, sizeof (type_section));
1862 type_section.asection = sectp;
1863 type_section.size = bfd_get_section_size (sectp);
1864
1865 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1866 &type_section);
1867 }
1868 else if (section_is_p (sectp->name, &names->gdb_index))
1869 {
1870 dwarf2_per_objfile->gdb_index.asection = sectp;
1871 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1872 }
1873
1874 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1875 && bfd_section_vma (abfd, sectp) == 0)
1876 dwarf2_per_objfile->has_section_at_zero = 1;
1877 }
1878
1879 /* A helper function that decides whether a section is empty,
1880 or not present. */
1881
1882 static int
1883 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1884 {
1885 return info->asection == NULL || info->size == 0;
1886 }
1887
1888 /* Read the contents of the section INFO.
1889 OBJFILE is the main object file, but not necessarily the file where
1890 the section comes from. E.g., for DWO files INFO->asection->owner
1891 is the bfd of the DWO file.
1892 If the section is compressed, uncompress it before returning. */
1893
1894 static void
1895 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1896 {
1897 asection *sectp = info->asection;
1898 bfd *abfd;
1899 gdb_byte *buf, *retbuf;
1900 unsigned char header[4];
1901
1902 if (info->readin)
1903 return;
1904 info->buffer = NULL;
1905 info->readin = 1;
1906
1907 if (dwarf2_section_empty_p (info))
1908 return;
1909
1910 abfd = sectp->owner;
1911
1912 /* If the section has relocations, we must read it ourselves.
1913 Otherwise we attach it to the BFD. */
1914 if ((sectp->flags & SEC_RELOC) == 0)
1915 {
1916 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1917
1918 /* We have to cast away const here for historical reasons.
1919 Fixing dwarf2read to be const-correct would be quite nice. */
1920 info->buffer = (gdb_byte *) bytes;
1921 return;
1922 }
1923
1924 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1925 info->buffer = buf;
1926
1927 /* When debugging .o files, we may need to apply relocations; see
1928 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1929 We never compress sections in .o files, so we only need to
1930 try this when the section is not compressed. */
1931 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1932 if (retbuf != NULL)
1933 {
1934 info->buffer = retbuf;
1935 return;
1936 }
1937
1938 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1939 || bfd_bread (buf, info->size, abfd) != info->size)
1940 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1941 bfd_get_filename (abfd));
1942 }
1943
1944 /* A helper function that returns the size of a section in a safe way.
1945 If you are positive that the section has been read before using the
1946 size, then it is safe to refer to the dwarf2_section_info object's
1947 "size" field directly. In other cases, you must call this
1948 function, because for compressed sections the size field is not set
1949 correctly until the section has been read. */
1950
1951 static bfd_size_type
1952 dwarf2_section_size (struct objfile *objfile,
1953 struct dwarf2_section_info *info)
1954 {
1955 if (!info->readin)
1956 dwarf2_read_section (objfile, info);
1957 return info->size;
1958 }
1959
1960 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1961 SECTION_NAME. */
1962
1963 void
1964 dwarf2_get_section_info (struct objfile *objfile,
1965 enum dwarf2_section_enum sect,
1966 asection **sectp, gdb_byte **bufp,
1967 bfd_size_type *sizep)
1968 {
1969 struct dwarf2_per_objfile *data
1970 = objfile_data (objfile, dwarf2_objfile_data_key);
1971 struct dwarf2_section_info *info;
1972
1973 /* We may see an objfile without any DWARF, in which case we just
1974 return nothing. */
1975 if (data == NULL)
1976 {
1977 *sectp = NULL;
1978 *bufp = NULL;
1979 *sizep = 0;
1980 return;
1981 }
1982 switch (sect)
1983 {
1984 case DWARF2_DEBUG_FRAME:
1985 info = &data->frame;
1986 break;
1987 case DWARF2_EH_FRAME:
1988 info = &data->eh_frame;
1989 break;
1990 default:
1991 gdb_assert_not_reached ("unexpected section");
1992 }
1993
1994 dwarf2_read_section (objfile, info);
1995
1996 *sectp = info->asection;
1997 *bufp = info->buffer;
1998 *sizep = info->size;
1999 }
2000
2001 /* A helper function to find the sections for a .dwz file. */
2002
2003 static void
2004 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2005 {
2006 struct dwz_file *dwz_file = arg;
2007
2008 /* Note that we only support the standard ELF names, because .dwz
2009 is ELF-only (at the time of writing). */
2010 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2011 {
2012 dwz_file->abbrev.asection = sectp;
2013 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2014 }
2015 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2016 {
2017 dwz_file->info.asection = sectp;
2018 dwz_file->info.size = bfd_get_section_size (sectp);
2019 }
2020 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2021 {
2022 dwz_file->str.asection = sectp;
2023 dwz_file->str.size = bfd_get_section_size (sectp);
2024 }
2025 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2026 {
2027 dwz_file->line.asection = sectp;
2028 dwz_file->line.size = bfd_get_section_size (sectp);
2029 }
2030 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2031 {
2032 dwz_file->macro.asection = sectp;
2033 dwz_file->macro.size = bfd_get_section_size (sectp);
2034 }
2035 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2036 {
2037 dwz_file->gdb_index.asection = sectp;
2038 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2039 }
2040 }
2041
2042 /* Open the separate '.dwz' debug file, if needed. Error if the file
2043 cannot be found. */
2044
2045 static struct dwz_file *
2046 dwarf2_get_dwz_file (void)
2047 {
2048 bfd *abfd, *dwz_bfd;
2049 asection *section;
2050 gdb_byte *data;
2051 struct cleanup *cleanup;
2052 const char *filename;
2053 struct dwz_file *result;
2054
2055 if (dwarf2_per_objfile->dwz_file != NULL)
2056 return dwarf2_per_objfile->dwz_file;
2057
2058 abfd = dwarf2_per_objfile->objfile->obfd;
2059 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2060 if (section == NULL)
2061 error (_("could not find '.gnu_debugaltlink' section"));
2062 if (!bfd_malloc_and_get_section (abfd, section, &data))
2063 error (_("could not read '.gnu_debugaltlink' section: %s"),
2064 bfd_errmsg (bfd_get_error ()));
2065 cleanup = make_cleanup (xfree, data);
2066
2067 filename = data;
2068 if (!IS_ABSOLUTE_PATH (filename))
2069 {
2070 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2071 char *rel;
2072
2073 make_cleanup (xfree, abs);
2074 abs = ldirname (abs);
2075 make_cleanup (xfree, abs);
2076
2077 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2078 make_cleanup (xfree, rel);
2079 filename = rel;
2080 }
2081
2082 /* The format is just a NUL-terminated file name, followed by the
2083 build-id. For now, though, we ignore the build-id. */
2084 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2085 if (dwz_bfd == NULL)
2086 error (_("could not read '%s': %s"), filename,
2087 bfd_errmsg (bfd_get_error ()));
2088
2089 if (!bfd_check_format (dwz_bfd, bfd_object))
2090 {
2091 gdb_bfd_unref (dwz_bfd);
2092 error (_("file '%s' was not usable: %s"), filename,
2093 bfd_errmsg (bfd_get_error ()));
2094 }
2095
2096 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2097 struct dwz_file);
2098 result->dwz_bfd = dwz_bfd;
2099
2100 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2101
2102 do_cleanups (cleanup);
2103
2104 return result;
2105 }
2106 \f
2107 /* DWARF quick_symbols_functions support. */
2108
2109 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2110 unique line tables, so we maintain a separate table of all .debug_line
2111 derived entries to support the sharing.
2112 All the quick functions need is the list of file names. We discard the
2113 line_header when we're done and don't need to record it here. */
2114 struct quick_file_names
2115 {
2116 /* The data used to construct the hash key. */
2117 struct stmt_list_hash hash;
2118
2119 /* The number of entries in file_names, real_names. */
2120 unsigned int num_file_names;
2121
2122 /* The file names from the line table, after being run through
2123 file_full_name. */
2124 const char **file_names;
2125
2126 /* The file names from the line table after being run through
2127 gdb_realpath. These are computed lazily. */
2128 const char **real_names;
2129 };
2130
2131 /* When using the index (and thus not using psymtabs), each CU has an
2132 object of this type. This is used to hold information needed by
2133 the various "quick" methods. */
2134 struct dwarf2_per_cu_quick_data
2135 {
2136 /* The file table. This can be NULL if there was no file table
2137 or it's currently not read in.
2138 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2139 struct quick_file_names *file_names;
2140
2141 /* The corresponding symbol table. This is NULL if symbols for this
2142 CU have not yet been read. */
2143 struct symtab *symtab;
2144
2145 /* A temporary mark bit used when iterating over all CUs in
2146 expand_symtabs_matching. */
2147 unsigned int mark : 1;
2148
2149 /* True if we've tried to read the file table and found there isn't one.
2150 There will be no point in trying to read it again next time. */
2151 unsigned int no_file_data : 1;
2152 };
2153
2154 /* Utility hash function for a stmt_list_hash. */
2155
2156 static hashval_t
2157 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2158 {
2159 hashval_t v = 0;
2160
2161 if (stmt_list_hash->dwo_unit != NULL)
2162 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2163 v += stmt_list_hash->line_offset.sect_off;
2164 return v;
2165 }
2166
2167 /* Utility equality function for a stmt_list_hash. */
2168
2169 static int
2170 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2171 const struct stmt_list_hash *rhs)
2172 {
2173 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2174 return 0;
2175 if (lhs->dwo_unit != NULL
2176 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2177 return 0;
2178
2179 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2180 }
2181
2182 /* Hash function for a quick_file_names. */
2183
2184 static hashval_t
2185 hash_file_name_entry (const void *e)
2186 {
2187 const struct quick_file_names *file_data = e;
2188
2189 return hash_stmt_list_entry (&file_data->hash);
2190 }
2191
2192 /* Equality function for a quick_file_names. */
2193
2194 static int
2195 eq_file_name_entry (const void *a, const void *b)
2196 {
2197 const struct quick_file_names *ea = a;
2198 const struct quick_file_names *eb = b;
2199
2200 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2201 }
2202
2203 /* Delete function for a quick_file_names. */
2204
2205 static void
2206 delete_file_name_entry (void *e)
2207 {
2208 struct quick_file_names *file_data = e;
2209 int i;
2210
2211 for (i = 0; i < file_data->num_file_names; ++i)
2212 {
2213 xfree ((void*) file_data->file_names[i]);
2214 if (file_data->real_names)
2215 xfree ((void*) file_data->real_names[i]);
2216 }
2217
2218 /* The space for the struct itself lives on objfile_obstack,
2219 so we don't free it here. */
2220 }
2221
2222 /* Create a quick_file_names hash table. */
2223
2224 static htab_t
2225 create_quick_file_names_table (unsigned int nr_initial_entries)
2226 {
2227 return htab_create_alloc (nr_initial_entries,
2228 hash_file_name_entry, eq_file_name_entry,
2229 delete_file_name_entry, xcalloc, xfree);
2230 }
2231
2232 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2233 have to be created afterwards. You should call age_cached_comp_units after
2234 processing PER_CU->CU. dw2_setup must have been already called. */
2235
2236 static void
2237 load_cu (struct dwarf2_per_cu_data *per_cu)
2238 {
2239 if (per_cu->is_debug_types)
2240 load_full_type_unit (per_cu);
2241 else
2242 load_full_comp_unit (per_cu, language_minimal);
2243
2244 gdb_assert (per_cu->cu != NULL);
2245
2246 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2247 }
2248
2249 /* Read in the symbols for PER_CU. */
2250
2251 static void
2252 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2253 {
2254 struct cleanup *back_to;
2255
2256 /* Skip type_unit_groups, reading the type units they contain
2257 is handled elsewhere. */
2258 if (IS_TYPE_UNIT_GROUP (per_cu))
2259 return;
2260
2261 back_to = make_cleanup (dwarf2_release_queue, NULL);
2262
2263 if (dwarf2_per_objfile->using_index
2264 ? per_cu->v.quick->symtab == NULL
2265 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2266 {
2267 queue_comp_unit (per_cu, language_minimal);
2268 load_cu (per_cu);
2269 }
2270
2271 process_queue ();
2272
2273 /* Age the cache, releasing compilation units that have not
2274 been used recently. */
2275 age_cached_comp_units ();
2276
2277 do_cleanups (back_to);
2278 }
2279
2280 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2281 the objfile from which this CU came. Returns the resulting symbol
2282 table. */
2283
2284 static struct symtab *
2285 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2286 {
2287 gdb_assert (dwarf2_per_objfile->using_index);
2288 if (!per_cu->v.quick->symtab)
2289 {
2290 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2291 increment_reading_symtab ();
2292 dw2_do_instantiate_symtab (per_cu);
2293 process_cu_includes ();
2294 do_cleanups (back_to);
2295 }
2296 return per_cu->v.quick->symtab;
2297 }
2298
2299 /* Return the CU given its index.
2300
2301 This is intended for loops like:
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_units); ++i)
2305 {
2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2307
2308 ...;
2309 }
2310 */
2311
2312 static struct dwarf2_per_cu_data *
2313 dw2_get_cu (int index)
2314 {
2315 if (index >= dwarf2_per_objfile->n_comp_units)
2316 {
2317 index -= dwarf2_per_objfile->n_comp_units;
2318 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2319 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2320 }
2321
2322 return dwarf2_per_objfile->all_comp_units[index];
2323 }
2324
2325 /* Return the primary CU given its index.
2326 The difference between this function and dw2_get_cu is in the handling
2327 of type units (TUs). Here we return the type_unit_group object.
2328
2329 This is intended for loops like:
2330
2331 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2332 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2333 {
2334 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2335
2336 ...;
2337 }
2338 */
2339
2340 static struct dwarf2_per_cu_data *
2341 dw2_get_primary_cu (int index)
2342 {
2343 if (index >= dwarf2_per_objfile->n_comp_units)
2344 {
2345 index -= dwarf2_per_objfile->n_comp_units;
2346 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2347 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2348 }
2349
2350 return dwarf2_per_objfile->all_comp_units[index];
2351 }
2352
2353 /* A helper function that knows how to read a 64-bit value in a way
2354 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2355 otherwise. */
2356
2357 static int
2358 extract_cu_value (const char *bytes, ULONGEST *result)
2359 {
2360 if (sizeof (ULONGEST) < 8)
2361 {
2362 int i;
2363
2364 /* Ignore the upper 4 bytes if they are all zero. */
2365 for (i = 0; i < 4; ++i)
2366 if (bytes[i + 4] != 0)
2367 return 0;
2368
2369 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2370 }
2371 else
2372 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2373 return 1;
2374 }
2375
2376 /* A helper for create_cus_from_index that handles a given list of
2377 CUs. */
2378
2379 static int
2380 create_cus_from_index_list (struct objfile *objfile,
2381 const gdb_byte *cu_list, offset_type n_elements,
2382 struct dwarf2_section_info *section,
2383 int is_dwz,
2384 int base_offset)
2385 {
2386 offset_type i;
2387
2388 for (i = 0; i < n_elements; i += 2)
2389 {
2390 struct dwarf2_per_cu_data *the_cu;
2391 ULONGEST offset, length;
2392
2393 if (!extract_cu_value (cu_list, &offset)
2394 || !extract_cu_value (cu_list + 8, &length))
2395 return 0;
2396 cu_list += 2 * 8;
2397
2398 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_data);
2400 the_cu->offset.sect_off = offset;
2401 the_cu->length = length;
2402 the_cu->objfile = objfile;
2403 the_cu->info_or_types_section = section;
2404 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2406 the_cu->is_dwz = is_dwz;
2407 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2408 }
2409
2410 return 1;
2411 }
2412
2413 /* Read the CU list from the mapped index, and use it to create all
2414 the CU objects for this objfile. Return 0 if something went wrong,
2415 1 if everything went ok. */
2416
2417 static int
2418 create_cus_from_index (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type cu_list_elements,
2420 const gdb_byte *dwz_list, offset_type dwz_elements)
2421 {
2422 struct dwz_file *dwz;
2423
2424 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2425 dwarf2_per_objfile->all_comp_units
2426 = obstack_alloc (&objfile->objfile_obstack,
2427 dwarf2_per_objfile->n_comp_units
2428 * sizeof (struct dwarf2_per_cu_data *));
2429
2430 if (!create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2431 &dwarf2_per_objfile->info, 0, 0))
2432 return 0;
2433
2434 if (dwz_elements == 0)
2435 return 1;
2436
2437 dwz = dwarf2_get_dwz_file ();
2438 return create_cus_from_index_list (objfile, dwz_list, dwz_elements,
2439 &dwz->info, 1, cu_list_elements / 2);
2440 }
2441
2442 /* Create the signatured type hash table from the index. */
2443
2444 static int
2445 create_signatured_type_table_from_index (struct objfile *objfile,
2446 struct dwarf2_section_info *section,
2447 const gdb_byte *bytes,
2448 offset_type elements)
2449 {
2450 offset_type i;
2451 htab_t sig_types_hash;
2452
2453 dwarf2_per_objfile->n_type_units = elements / 3;
2454 dwarf2_per_objfile->all_type_units
2455 = obstack_alloc (&objfile->objfile_obstack,
2456 dwarf2_per_objfile->n_type_units
2457 * sizeof (struct signatured_type *));
2458
2459 sig_types_hash = allocate_signatured_type_table (objfile);
2460
2461 for (i = 0; i < elements; i += 3)
2462 {
2463 struct signatured_type *sig_type;
2464 ULONGEST offset, type_offset_in_tu, signature;
2465 void **slot;
2466
2467 if (!extract_cu_value (bytes, &offset)
2468 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
2469 return 0;
2470 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 bytes += 3 * 8;
2472
2473 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2474 struct signatured_type);
2475 sig_type->signature = signature;
2476 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2477 sig_type->per_cu.is_debug_types = 1;
2478 sig_type->per_cu.info_or_types_section = section;
2479 sig_type->per_cu.offset.sect_off = offset;
2480 sig_type->per_cu.objfile = objfile;
2481 sig_type->per_cu.v.quick
2482 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2483 struct dwarf2_per_cu_quick_data);
2484
2485 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2486 *slot = sig_type;
2487
2488 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2489 }
2490
2491 dwarf2_per_objfile->signatured_types = sig_types_hash;
2492
2493 return 1;
2494 }
2495
2496 /* Read the address map data from the mapped index, and use it to
2497 populate the objfile's psymtabs_addrmap. */
2498
2499 static void
2500 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2501 {
2502 const gdb_byte *iter, *end;
2503 struct obstack temp_obstack;
2504 struct addrmap *mutable_map;
2505 struct cleanup *cleanup;
2506 CORE_ADDR baseaddr;
2507
2508 obstack_init (&temp_obstack);
2509 cleanup = make_cleanup_obstack_free (&temp_obstack);
2510 mutable_map = addrmap_create_mutable (&temp_obstack);
2511
2512 iter = index->address_table;
2513 end = iter + index->address_table_size;
2514
2515 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2516
2517 while (iter < end)
2518 {
2519 ULONGEST hi, lo, cu_index;
2520 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2521 iter += 8;
2522 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2523 iter += 8;
2524 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2525 iter += 4;
2526
2527 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2528 dw2_get_cu (cu_index));
2529 }
2530
2531 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2532 &objfile->objfile_obstack);
2533 do_cleanups (cleanup);
2534 }
2535
2536 /* The hash function for strings in the mapped index. This is the same as
2537 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2538 implementation. This is necessary because the hash function is tied to the
2539 format of the mapped index file. The hash values do not have to match with
2540 SYMBOL_HASH_NEXT.
2541
2542 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2543
2544 static hashval_t
2545 mapped_index_string_hash (int index_version, const void *p)
2546 {
2547 const unsigned char *str = (const unsigned char *) p;
2548 hashval_t r = 0;
2549 unsigned char c;
2550
2551 while ((c = *str++) != 0)
2552 {
2553 if (index_version >= 5)
2554 c = tolower (c);
2555 r = r * 67 + c - 113;
2556 }
2557
2558 return r;
2559 }
2560
2561 /* Find a slot in the mapped index INDEX for the object named NAME.
2562 If NAME is found, set *VEC_OUT to point to the CU vector in the
2563 constant pool and return 1. If NAME cannot be found, return 0. */
2564
2565 static int
2566 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2567 offset_type **vec_out)
2568 {
2569 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2570 offset_type hash;
2571 offset_type slot, step;
2572 int (*cmp) (const char *, const char *);
2573
2574 if (current_language->la_language == language_cplus
2575 || current_language->la_language == language_java
2576 || current_language->la_language == language_fortran)
2577 {
2578 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2579 not contain any. */
2580 const char *paren = strchr (name, '(');
2581
2582 if (paren)
2583 {
2584 char *dup;
2585
2586 dup = xmalloc (paren - name + 1);
2587 memcpy (dup, name, paren - name);
2588 dup[paren - name] = 0;
2589
2590 make_cleanup (xfree, dup);
2591 name = dup;
2592 }
2593 }
2594
2595 /* Index version 4 did not support case insensitive searches. But the
2596 indices for case insensitive languages are built in lowercase, therefore
2597 simulate our NAME being searched is also lowercased. */
2598 hash = mapped_index_string_hash ((index->version == 4
2599 && case_sensitivity == case_sensitive_off
2600 ? 5 : index->version),
2601 name);
2602
2603 slot = hash & (index->symbol_table_slots - 1);
2604 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2605 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2606
2607 for (;;)
2608 {
2609 /* Convert a slot number to an offset into the table. */
2610 offset_type i = 2 * slot;
2611 const char *str;
2612 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2613 {
2614 do_cleanups (back_to);
2615 return 0;
2616 }
2617
2618 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2619 if (!cmp (name, str))
2620 {
2621 *vec_out = (offset_type *) (index->constant_pool
2622 + MAYBE_SWAP (index->symbol_table[i + 1]));
2623 do_cleanups (back_to);
2624 return 1;
2625 }
2626
2627 slot = (slot + step) & (index->symbol_table_slots - 1);
2628 }
2629 }
2630
2631 /* A helper function that reads the .gdb_index from SECTION and fills
2632 in MAP. FILENAME is the name of the file containing the section;
2633 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2634 ok to use deprecated sections.
2635
2636 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2637 out parameters that are filled in with information about the CU and
2638 TU lists in the section.
2639
2640 Returns 1 if all went well, 0 otherwise. */
2641
2642 static int
2643 read_index_from_section (struct objfile *objfile,
2644 const char *filename,
2645 int deprecated_ok,
2646 struct dwarf2_section_info *section,
2647 struct mapped_index *map,
2648 const gdb_byte **cu_list,
2649 offset_type *cu_list_elements,
2650 const gdb_byte **types_list,
2651 offset_type *types_list_elements)
2652 {
2653 char *addr;
2654 offset_type version;
2655 offset_type *metadata;
2656 int i;
2657
2658 if (dwarf2_section_empty_p (section))
2659 return 0;
2660
2661 /* Older elfutils strip versions could keep the section in the main
2662 executable while splitting it for the separate debug info file. */
2663 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2664 return 0;
2665
2666 dwarf2_read_section (objfile, section);
2667
2668 addr = section->buffer;
2669 /* Version check. */
2670 version = MAYBE_SWAP (*(offset_type *) addr);
2671 /* Versions earlier than 3 emitted every copy of a psymbol. This
2672 causes the index to behave very poorly for certain requests. Version 3
2673 contained incomplete addrmap. So, it seems better to just ignore such
2674 indices. */
2675 if (version < 4)
2676 {
2677 static int warning_printed = 0;
2678 if (!warning_printed)
2679 {
2680 warning (_("Skipping obsolete .gdb_index section in %s."),
2681 filename);
2682 warning_printed = 1;
2683 }
2684 return 0;
2685 }
2686 /* Index version 4 uses a different hash function than index version
2687 5 and later.
2688
2689 Versions earlier than 6 did not emit psymbols for inlined
2690 functions. Using these files will cause GDB not to be able to
2691 set breakpoints on inlined functions by name, so we ignore these
2692 indices unless the user has done
2693 "set use-deprecated-index-sections on". */
2694 if (version < 6 && !deprecated_ok)
2695 {
2696 static int warning_printed = 0;
2697 if (!warning_printed)
2698 {
2699 warning (_("\
2700 Skipping deprecated .gdb_index section in %s.\n\
2701 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2702 to use the section anyway."),
2703 filename);
2704 warning_printed = 1;
2705 }
2706 return 0;
2707 }
2708 /* Indexes with higher version than the one supported by GDB may be no
2709 longer backward compatible. */
2710 if (version > 7)
2711 return 0;
2712
2713 map->version = version;
2714 map->total_size = section->size;
2715
2716 metadata = (offset_type *) (addr + sizeof (offset_type));
2717
2718 i = 0;
2719 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2720 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2721 / 8);
2722 ++i;
2723
2724 *types_list = addr + MAYBE_SWAP (metadata[i]);
2725 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2726 - MAYBE_SWAP (metadata[i]))
2727 / 8);
2728 ++i;
2729
2730 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2731 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2732 - MAYBE_SWAP (metadata[i]));
2733 ++i;
2734
2735 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2736 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2737 - MAYBE_SWAP (metadata[i]))
2738 / (2 * sizeof (offset_type)));
2739 ++i;
2740
2741 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2742
2743 return 1;
2744 }
2745
2746
2747 /* Read the index file. If everything went ok, initialize the "quick"
2748 elements of all the CUs and return 1. Otherwise, return 0. */
2749
2750 static int
2751 dwarf2_read_index (struct objfile *objfile)
2752 {
2753 struct mapped_index local_map, *map;
2754 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2755 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2756
2757 if (!read_index_from_section (objfile, objfile->name,
2758 use_deprecated_index_sections,
2759 &dwarf2_per_objfile->gdb_index, &local_map,
2760 &cu_list, &cu_list_elements,
2761 &types_list, &types_list_elements))
2762 return 0;
2763
2764 /* Don't use the index if it's empty. */
2765 if (local_map.symbol_table_slots == 0)
2766 return 0;
2767
2768 /* If there is a .dwz file, read it so we can get its CU list as
2769 well. */
2770 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2771 {
2772 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2773 struct mapped_index dwz_map;
2774 const gdb_byte *dwz_types_ignore;
2775 offset_type dwz_types_elements_ignore;
2776
2777 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2778 1,
2779 &dwz->gdb_index, &dwz_map,
2780 &dwz_list, &dwz_list_elements,
2781 &dwz_types_ignore,
2782 &dwz_types_elements_ignore))
2783 {
2784 warning (_("could not read '.gdb_index' section from %s; skipping"),
2785 bfd_get_filename (dwz->dwz_bfd));
2786 return 0;
2787 }
2788 }
2789
2790 if (!create_cus_from_index (objfile, cu_list, cu_list_elements,
2791 dwz_list, dwz_list_elements))
2792 return 0;
2793
2794 if (types_list_elements)
2795 {
2796 struct dwarf2_section_info *section;
2797
2798 /* We can only handle a single .debug_types when we have an
2799 index. */
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2801 return 0;
2802
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2805
2806 if (!create_signatured_type_table_from_index (objfile, section,
2807 types_list,
2808 types_list_elements))
2809 return 0;
2810 }
2811
2812 create_addrmap_from_index (objfile, &local_map);
2813
2814 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2815 *map = local_map;
2816
2817 dwarf2_per_objfile->index_table = map;
2818 dwarf2_per_objfile->using_index = 1;
2819 dwarf2_per_objfile->quick_file_names_table =
2820 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2821
2822 return 1;
2823 }
2824
2825 /* A helper for the "quick" functions which sets the global
2826 dwarf2_per_objfile according to OBJFILE. */
2827
2828 static void
2829 dw2_setup (struct objfile *objfile)
2830 {
2831 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2832 gdb_assert (dwarf2_per_objfile);
2833 }
2834
2835 /* Reader function for dw2_build_type_unit_groups. */
2836
2837 static void
2838 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2839 gdb_byte *info_ptr,
2840 struct die_info *type_unit_die,
2841 int has_children,
2842 void *data)
2843 {
2844 struct dwarf2_cu *cu = reader->cu;
2845 struct attribute *attr;
2846 struct type_unit_group *tu_group;
2847
2848 gdb_assert (data == NULL);
2849
2850 if (! has_children)
2851 return;
2852
2853 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2854 /* Call this for its side-effect of creating the associated
2855 struct type_unit_group if it doesn't already exist. */
2856 tu_group = get_type_unit_group (cu, attr);
2857 }
2858
2859 /* Build dwarf2_per_objfile->type_unit_groups.
2860 This function may be called multiple times. */
2861
2862 static void
2863 dw2_build_type_unit_groups (void)
2864 {
2865 if (dwarf2_per_objfile->type_unit_groups == NULL)
2866 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2867 }
2868
2869 /* die_reader_func for dw2_get_file_names. */
2870
2871 static void
2872 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2873 gdb_byte *info_ptr,
2874 struct die_info *comp_unit_die,
2875 int has_children,
2876 void *data)
2877 {
2878 struct dwarf2_cu *cu = reader->cu;
2879 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2880 struct objfile *objfile = dwarf2_per_objfile->objfile;
2881 struct dwarf2_per_cu_data *lh_cu;
2882 struct line_header *lh;
2883 struct attribute *attr;
2884 int i;
2885 char *name, *comp_dir;
2886 void **slot;
2887 struct quick_file_names *qfn;
2888 unsigned int line_offset;
2889
2890 /* Our callers never want to match partial units -- instead they
2891 will match the enclosing full CU. */
2892 if (comp_unit_die->tag == DW_TAG_partial_unit)
2893 {
2894 this_cu->v.quick->no_file_data = 1;
2895 return;
2896 }
2897
2898 /* If we're reading the line header for TUs, store it in the "per_cu"
2899 for tu_group. */
2900 if (this_cu->is_debug_types)
2901 {
2902 struct type_unit_group *tu_group = data;
2903
2904 gdb_assert (tu_group != NULL);
2905 lh_cu = &tu_group->per_cu;
2906 }
2907 else
2908 lh_cu = this_cu;
2909
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
2929 lh_cu->v.quick->file_names = *slot;
2930 return;
2931 }
2932
2933 lh = dwarf_decode_line_header (line_offset, cu);
2934 }
2935 if (lh == NULL)
2936 {
2937 lh_cu->v.quick->no_file_data = 1;
2938 return;
2939 }
2940
2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
2946
2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2948
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
2952 for (i = 0; i < lh->num_file_names; ++i)
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
2955
2956 free_line_header (lh);
2957
2958 lh_cu->v.quick->file_names = qfn;
2959 }
2960
2961 /* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964 static struct quick_file_names *
2965 dw2_get_file_names (struct objfile *objfile,
2966 struct dwarf2_per_cu_data *this_cu)
2967 {
2968 /* For TUs this should only be called on the parent group. */
2969 if (this_cu->is_debug_types)
2970 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2971
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
2978 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2979 in the stub for CUs, there's is no need to lookup the DWO file.
2980 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2981 DWO file. */
2982 if (this_cu->is_debug_types)
2983 {
2984 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2985
2986 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2987 dw2_get_file_names_reader, tu_group);
2988 }
2989 else
2990 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2991
2992 if (this_cu->v.quick->no_file_data)
2993 return NULL;
2994 return this_cu->v.quick->file_names;
2995 }
2996
2997 /* A helper for the "quick" functions which computes and caches the
2998 real path for a given file name from the line table. */
2999
3000 static const char *
3001 dw2_get_real_path (struct objfile *objfile,
3002 struct quick_file_names *qfn, int index)
3003 {
3004 if (qfn->real_names == NULL)
3005 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3006 qfn->num_file_names, sizeof (char *));
3007
3008 if (qfn->real_names[index] == NULL)
3009 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3010
3011 return qfn->real_names[index];
3012 }
3013
3014 static struct symtab *
3015 dw2_find_last_source_symtab (struct objfile *objfile)
3016 {
3017 int index;
3018
3019 dw2_setup (objfile);
3020 index = dwarf2_per_objfile->n_comp_units - 1;
3021 return dw2_instantiate_symtab (dw2_get_cu (index));
3022 }
3023
3024 /* Traversal function for dw2_forget_cached_source_info. */
3025
3026 static int
3027 dw2_free_cached_file_names (void **slot, void *info)
3028 {
3029 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3030
3031 if (file_data->real_names)
3032 {
3033 int i;
3034
3035 for (i = 0; i < file_data->num_file_names; ++i)
3036 {
3037 xfree ((void*) file_data->real_names[i]);
3038 file_data->real_names[i] = NULL;
3039 }
3040 }
3041
3042 return 1;
3043 }
3044
3045 static void
3046 dw2_forget_cached_source_info (struct objfile *objfile)
3047 {
3048 dw2_setup (objfile);
3049
3050 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3051 dw2_free_cached_file_names, NULL);
3052 }
3053
3054 /* Helper function for dw2_map_symtabs_matching_filename that expands
3055 the symtabs and calls the iterator. */
3056
3057 static int
3058 dw2_map_expand_apply (struct objfile *objfile,
3059 struct dwarf2_per_cu_data *per_cu,
3060 const char *name,
3061 const char *full_path, const char *real_path,
3062 int (*callback) (struct symtab *, void *),
3063 void *data)
3064 {
3065 struct symtab *last_made = objfile->symtabs;
3066
3067 /* Don't visit already-expanded CUs. */
3068 if (per_cu->v.quick->symtab)
3069 return 0;
3070
3071 /* This may expand more than one symtab, and we want to iterate over
3072 all of them. */
3073 dw2_instantiate_symtab (per_cu);
3074
3075 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3076 objfile->symtabs, last_made);
3077 }
3078
3079 /* Implementation of the map_symtabs_matching_filename method. */
3080
3081 static int
3082 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3083 const char *full_path, const char *real_path,
3084 int (*callback) (struct symtab *, void *),
3085 void *data)
3086 {
3087 int i;
3088 const char *name_basename = lbasename (name);
3089 int name_len = strlen (name);
3090 int is_abs = IS_ABSOLUTE_PATH (name);
3091
3092 dw2_setup (objfile);
3093
3094 dw2_build_type_unit_groups ();
3095
3096 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3097 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3098 {
3099 int j;
3100 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3101 struct quick_file_names *file_data;
3102
3103 /* We only need to look at symtabs not already expanded. */
3104 if (per_cu->v.quick->symtab)
3105 continue;
3106
3107 file_data = dw2_get_file_names (objfile, per_cu);
3108 if (file_data == NULL)
3109 continue;
3110
3111 for (j = 0; j < file_data->num_file_names; ++j)
3112 {
3113 const char *this_name = file_data->file_names[j];
3114
3115 if (FILENAME_CMP (name, this_name) == 0
3116 || (!is_abs && compare_filenames_for_search (this_name,
3117 name, name_len)))
3118 {
3119 if (dw2_map_expand_apply (objfile, per_cu,
3120 name, full_path, real_path,
3121 callback, data))
3122 return 1;
3123 }
3124
3125 /* Before we invoke realpath, which can get expensive when many
3126 files are involved, do a quick comparison of the basenames. */
3127 if (! basenames_may_differ
3128 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3129 continue;
3130
3131 if (full_path != NULL)
3132 {
3133 const char *this_real_name = dw2_get_real_path (objfile,
3134 file_data, j);
3135
3136 if (this_real_name != NULL
3137 && (FILENAME_CMP (full_path, this_real_name) == 0
3138 || (!is_abs
3139 && compare_filenames_for_search (this_real_name,
3140 name, name_len))))
3141 {
3142 if (dw2_map_expand_apply (objfile, per_cu,
3143 name, full_path, real_path,
3144 callback, data))
3145 return 1;
3146 }
3147 }
3148
3149 if (real_path != NULL)
3150 {
3151 const char *this_real_name = dw2_get_real_path (objfile,
3152 file_data, j);
3153
3154 if (this_real_name != NULL
3155 && (FILENAME_CMP (real_path, this_real_name) == 0
3156 || (!is_abs
3157 && compare_filenames_for_search (this_real_name,
3158 name, name_len))))
3159 {
3160 if (dw2_map_expand_apply (objfile, per_cu,
3161 name, full_path, real_path,
3162 callback, data))
3163 return 1;
3164 }
3165 }
3166 }
3167 }
3168
3169 return 0;
3170 }
3171
3172 static struct symtab *
3173 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3174 const char *name, domain_enum domain)
3175 {
3176 /* We do all the work in the pre_expand_symtabs_matching hook
3177 instead. */
3178 return NULL;
3179 }
3180
3181 /* A helper function that expands all symtabs that hold an object
3182 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3183 symbols in block BLOCK_KIND. */
3184
3185 static void
3186 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3187 int want_specific_block,
3188 enum block_enum block_kind,
3189 const char *name, domain_enum domain)
3190 {
3191 struct mapped_index *index;
3192
3193 dw2_setup (objfile);
3194
3195 index = dwarf2_per_objfile->index_table;
3196
3197 /* index_table is NULL if OBJF_READNOW. */
3198 if (index)
3199 {
3200 offset_type *vec;
3201
3202 if (find_slot_in_mapped_hash (index, name, &vec))
3203 {
3204 offset_type i, len = MAYBE_SWAP (*vec);
3205 for (i = 0; i < len; ++i)
3206 {
3207 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3208 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3209 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3210 int want_static = block_kind != GLOBAL_BLOCK;
3211 /* This value is only valid for index versions >= 7. */
3212 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3213 gdb_index_symbol_kind symbol_kind =
3214 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3215 /* Only check the symbol attributes if they're present.
3216 Indices prior to version 7 don't record them,
3217 and indices >= 7 may elide them for certain symbols
3218 (gold does this). */
3219 int attrs_valid =
3220 (index->version >= 7
3221 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3222
3223 if (attrs_valid
3224 && want_specific_block
3225 && want_static != is_static)
3226 continue;
3227
3228 /* Only check the symbol's kind if it has one. */
3229 if (attrs_valid)
3230 {
3231 switch (domain)
3232 {
3233 case VAR_DOMAIN:
3234 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3235 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3236 /* Some types are also in VAR_DOMAIN. */
3237 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3238 continue;
3239 break;
3240 case STRUCT_DOMAIN:
3241 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3242 continue;
3243 break;
3244 case LABEL_DOMAIN:
3245 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3246 continue;
3247 break;
3248 default:
3249 break;
3250 }
3251 }
3252
3253 dw2_instantiate_symtab (per_cu);
3254 }
3255 }
3256 }
3257 }
3258
3259 static void
3260 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3261 enum block_enum block_kind, const char *name,
3262 domain_enum domain)
3263 {
3264 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3265 }
3266
3267 static void
3268 dw2_print_stats (struct objfile *objfile)
3269 {
3270 int i, count;
3271
3272 dw2_setup (objfile);
3273 count = 0;
3274 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3275 + dwarf2_per_objfile->n_type_units); ++i)
3276 {
3277 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3278
3279 if (!per_cu->v.quick->symtab)
3280 ++count;
3281 }
3282 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3283 }
3284
3285 static void
3286 dw2_dump (struct objfile *objfile)
3287 {
3288 /* Nothing worth printing. */
3289 }
3290
3291 static void
3292 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3293 struct section_offsets *delta)
3294 {
3295 /* There's nothing to relocate here. */
3296 }
3297
3298 static void
3299 dw2_expand_symtabs_for_function (struct objfile *objfile,
3300 const char *func_name)
3301 {
3302 /* Note: It doesn't matter what we pass for block_kind here. */
3303 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3304 VAR_DOMAIN);
3305 }
3306
3307 static void
3308 dw2_expand_all_symtabs (struct objfile *objfile)
3309 {
3310 int i;
3311
3312 dw2_setup (objfile);
3313
3314 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3315 + dwarf2_per_objfile->n_type_units); ++i)
3316 {
3317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3318
3319 dw2_instantiate_symtab (per_cu);
3320 }
3321 }
3322
3323 static void
3324 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3325 const char *filename)
3326 {
3327 int i;
3328
3329 dw2_setup (objfile);
3330
3331 /* We don't need to consider type units here.
3332 This is only called for examining code, e.g. expand_line_sal.
3333 There can be an order of magnitude (or more) more type units
3334 than comp units, and we avoid them if we can. */
3335
3336 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3337 {
3338 int j;
3339 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3340 struct quick_file_names *file_data;
3341
3342 /* We only need to look at symtabs not already expanded. */
3343 if (per_cu->v.quick->symtab)
3344 continue;
3345
3346 file_data = dw2_get_file_names (objfile, per_cu);
3347 if (file_data == NULL)
3348 continue;
3349
3350 for (j = 0; j < file_data->num_file_names; ++j)
3351 {
3352 const char *this_name = file_data->file_names[j];
3353 if (FILENAME_CMP (this_name, filename) == 0)
3354 {
3355 dw2_instantiate_symtab (per_cu);
3356 break;
3357 }
3358 }
3359 }
3360 }
3361
3362 /* A helper function for dw2_find_symbol_file that finds the primary
3363 file name for a given CU. This is a die_reader_func. */
3364
3365 static void
3366 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3367 gdb_byte *info_ptr,
3368 struct die_info *comp_unit_die,
3369 int has_children,
3370 void *data)
3371 {
3372 const char **result_ptr = data;
3373 struct dwarf2_cu *cu = reader->cu;
3374 struct attribute *attr;
3375
3376 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3377 if (attr == NULL)
3378 *result_ptr = NULL;
3379 else
3380 *result_ptr = DW_STRING (attr);
3381 }
3382
3383 static const char *
3384 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3385 {
3386 struct dwarf2_per_cu_data *per_cu;
3387 offset_type *vec;
3388 struct quick_file_names *file_data;
3389 const char *filename;
3390
3391 dw2_setup (objfile);
3392
3393 /* index_table is NULL if OBJF_READNOW. */
3394 if (!dwarf2_per_objfile->index_table)
3395 {
3396 struct symtab *s;
3397
3398 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3399 {
3400 struct blockvector *bv = BLOCKVECTOR (s);
3401 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3402 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3403
3404 if (sym)
3405 return sym->symtab->filename;
3406 }
3407 return NULL;
3408 }
3409
3410 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3411 name, &vec))
3412 return NULL;
3413
3414 /* Note that this just looks at the very first one named NAME -- but
3415 actually we are looking for a function. find_main_filename
3416 should be rewritten so that it doesn't require a custom hook. It
3417 could just use the ordinary symbol tables. */
3418 /* vec[0] is the length, which must always be >0. */
3419 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3420
3421 if (per_cu->v.quick->symtab != NULL)
3422 return per_cu->v.quick->symtab->filename;
3423
3424 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3425 dw2_get_primary_filename_reader, &filename);
3426
3427 return filename;
3428 }
3429
3430 static void
3431 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3432 struct objfile *objfile, int global,
3433 int (*callback) (struct block *,
3434 struct symbol *, void *),
3435 void *data, symbol_compare_ftype *match,
3436 symbol_compare_ftype *ordered_compare)
3437 {
3438 /* Currently unimplemented; used for Ada. The function can be called if the
3439 current language is Ada for a non-Ada objfile using GNU index. As Ada
3440 does not look for non-Ada symbols this function should just return. */
3441 }
3442
3443 static void
3444 dw2_expand_symtabs_matching
3445 (struct objfile *objfile,
3446 int (*file_matcher) (const char *, void *),
3447 int (*name_matcher) (const char *, void *),
3448 enum search_domain kind,
3449 void *data)
3450 {
3451 int i;
3452 offset_type iter;
3453 struct mapped_index *index;
3454
3455 dw2_setup (objfile);
3456
3457 /* index_table is NULL if OBJF_READNOW. */
3458 if (!dwarf2_per_objfile->index_table)
3459 return;
3460 index = dwarf2_per_objfile->index_table;
3461
3462 if (file_matcher != NULL)
3463 {
3464 struct cleanup *cleanup;
3465 htab_t visited_found, visited_not_found;
3466
3467 dw2_build_type_unit_groups ();
3468
3469 visited_found = htab_create_alloc (10,
3470 htab_hash_pointer, htab_eq_pointer,
3471 NULL, xcalloc, xfree);
3472 cleanup = make_cleanup_htab_delete (visited_found);
3473 visited_not_found = htab_create_alloc (10,
3474 htab_hash_pointer, htab_eq_pointer,
3475 NULL, xcalloc, xfree);
3476 make_cleanup_htab_delete (visited_not_found);
3477
3478 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3479 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3480 {
3481 int j;
3482 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3483 struct quick_file_names *file_data;
3484 void **slot;
3485
3486 per_cu->v.quick->mark = 0;
3487
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->symtab)
3490 continue;
3491
3492 file_data = dw2_get_file_names (objfile, per_cu);
3493 if (file_data == NULL)
3494 continue;
3495
3496 if (htab_find (visited_not_found, file_data) != NULL)
3497 continue;
3498 else if (htab_find (visited_found, file_data) != NULL)
3499 {
3500 per_cu->v.quick->mark = 1;
3501 continue;
3502 }
3503
3504 for (j = 0; j < file_data->num_file_names; ++j)
3505 {
3506 if (file_matcher (file_data->file_names[j], data))
3507 {
3508 per_cu->v.quick->mark = 1;
3509 break;
3510 }
3511 }
3512
3513 slot = htab_find_slot (per_cu->v.quick->mark
3514 ? visited_found
3515 : visited_not_found,
3516 file_data, INSERT);
3517 *slot = file_data;
3518 }
3519
3520 do_cleanups (cleanup);
3521 }
3522
3523 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3524 {
3525 offset_type idx = 2 * iter;
3526 const char *name;
3527 offset_type *vec, vec_len, vec_idx;
3528
3529 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3530 continue;
3531
3532 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3533
3534 if (! (*name_matcher) (name, data))
3535 continue;
3536
3537 /* The name was matched, now expand corresponding CUs that were
3538 marked. */
3539 vec = (offset_type *) (index->constant_pool
3540 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3541 vec_len = MAYBE_SWAP (vec[0]);
3542 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3543 {
3544 struct dwarf2_per_cu_data *per_cu;
3545 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3546 gdb_index_symbol_kind symbol_kind =
3547 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3548 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3549
3550 /* Don't crash on bad data. */
3551 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3552 + dwarf2_per_objfile->n_type_units))
3553 continue;
3554
3555 /* Only check the symbol's kind if it has one.
3556 Indices prior to version 7 don't record it. */
3557 if (index->version >= 7)
3558 {
3559 switch (kind)
3560 {
3561 case VARIABLES_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3563 continue;
3564 break;
3565 case FUNCTIONS_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3567 continue;
3568 break;
3569 case TYPES_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3571 continue;
3572 break;
3573 default:
3574 break;
3575 }
3576 }
3577
3578 per_cu = dw2_get_cu (cu_index);
3579 if (file_matcher == NULL || per_cu->v.quick->mark)
3580 dw2_instantiate_symtab (per_cu);
3581 }
3582 }
3583 }
3584
3585 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3586 symtab. */
3587
3588 static struct symtab *
3589 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3590 {
3591 int i;
3592
3593 if (BLOCKVECTOR (symtab) != NULL
3594 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3595 return symtab;
3596
3597 if (symtab->includes == NULL)
3598 return NULL;
3599
3600 for (i = 0; symtab->includes[i]; ++i)
3601 {
3602 struct symtab *s = symtab->includes[i];
3603
3604 s = recursively_find_pc_sect_symtab (s, pc);
3605 if (s != NULL)
3606 return s;
3607 }
3608
3609 return NULL;
3610 }
3611
3612 static struct symtab *
3613 dw2_find_pc_sect_symtab (struct objfile *objfile,
3614 struct minimal_symbol *msymbol,
3615 CORE_ADDR pc,
3616 struct obj_section *section,
3617 int warn_if_readin)
3618 {
3619 struct dwarf2_per_cu_data *data;
3620 struct symtab *result;
3621
3622 dw2_setup (objfile);
3623
3624 if (!objfile->psymtabs_addrmap)
3625 return NULL;
3626
3627 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3628 if (!data)
3629 return NULL;
3630
3631 if (warn_if_readin && data->v.quick->symtab)
3632 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3633 paddress (get_objfile_arch (objfile), pc));
3634
3635 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3636 gdb_assert (result != NULL);
3637 return result;
3638 }
3639
3640 static void
3641 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3642 void *data, int need_fullname)
3643 {
3644 int i;
3645 struct cleanup *cleanup;
3646 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3647 NULL, xcalloc, xfree);
3648
3649 cleanup = make_cleanup_htab_delete (visited);
3650 dw2_setup (objfile);
3651
3652 dw2_build_type_unit_groups ();
3653
3654 /* We can ignore file names coming from already-expanded CUs. */
3655 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3656 + dwarf2_per_objfile->n_type_units); ++i)
3657 {
3658 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3659
3660 if (per_cu->v.quick->symtab)
3661 {
3662 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3663 INSERT);
3664
3665 *slot = per_cu->v.quick->file_names;
3666 }
3667 }
3668
3669 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3670 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3671 {
3672 int j;
3673 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3674 struct quick_file_names *file_data;
3675 void **slot;
3676
3677 /* We only need to look at symtabs not already expanded. */
3678 if (per_cu->v.quick->symtab)
3679 continue;
3680
3681 file_data = dw2_get_file_names (objfile, per_cu);
3682 if (file_data == NULL)
3683 continue;
3684
3685 slot = htab_find_slot (visited, file_data, INSERT);
3686 if (*slot)
3687 {
3688 /* Already visited. */
3689 continue;
3690 }
3691 *slot = file_data;
3692
3693 for (j = 0; j < file_data->num_file_names; ++j)
3694 {
3695 const char *this_real_name;
3696
3697 if (need_fullname)
3698 this_real_name = dw2_get_real_path (objfile, file_data, j);
3699 else
3700 this_real_name = NULL;
3701 (*fun) (file_data->file_names[j], this_real_name, data);
3702 }
3703 }
3704
3705 do_cleanups (cleanup);
3706 }
3707
3708 static int
3709 dw2_has_symbols (struct objfile *objfile)
3710 {
3711 return 1;
3712 }
3713
3714 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3715 {
3716 dw2_has_symbols,
3717 dw2_find_last_source_symtab,
3718 dw2_forget_cached_source_info,
3719 dw2_map_symtabs_matching_filename,
3720 dw2_lookup_symbol,
3721 dw2_pre_expand_symtabs_matching,
3722 dw2_print_stats,
3723 dw2_dump,
3724 dw2_relocate,
3725 dw2_expand_symtabs_for_function,
3726 dw2_expand_all_symtabs,
3727 dw2_expand_symtabs_with_filename,
3728 dw2_find_symbol_file,
3729 dw2_map_matching_symbols,
3730 dw2_expand_symtabs_matching,
3731 dw2_find_pc_sect_symtab,
3732 dw2_map_symbol_filenames
3733 };
3734
3735 /* Initialize for reading DWARF for this objfile. Return 0 if this
3736 file will use psymtabs, or 1 if using the GNU index. */
3737
3738 int
3739 dwarf2_initialize_objfile (struct objfile *objfile)
3740 {
3741 /* If we're about to read full symbols, don't bother with the
3742 indices. In this case we also don't care if some other debug
3743 format is making psymtabs, because they are all about to be
3744 expanded anyway. */
3745 if ((objfile->flags & OBJF_READNOW))
3746 {
3747 int i;
3748
3749 dwarf2_per_objfile->using_index = 1;
3750 create_all_comp_units (objfile);
3751 create_all_type_units (objfile);
3752 dwarf2_per_objfile->quick_file_names_table =
3753 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3754
3755 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3756 + dwarf2_per_objfile->n_type_units); ++i)
3757 {
3758 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3759
3760 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3761 struct dwarf2_per_cu_quick_data);
3762 }
3763
3764 /* Return 1 so that gdb sees the "quick" functions. However,
3765 these functions will be no-ops because we will have expanded
3766 all symtabs. */
3767 return 1;
3768 }
3769
3770 if (dwarf2_read_index (objfile))
3771 return 1;
3772
3773 return 0;
3774 }
3775
3776 \f
3777
3778 /* Build a partial symbol table. */
3779
3780 void
3781 dwarf2_build_psymtabs (struct objfile *objfile)
3782 {
3783 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3784 {
3785 init_psymbol_list (objfile, 1024);
3786 }
3787
3788 dwarf2_build_psymtabs_hard (objfile);
3789 }
3790
3791 /* Return the total length of the CU described by HEADER. */
3792
3793 static unsigned int
3794 get_cu_length (const struct comp_unit_head *header)
3795 {
3796 return header->initial_length_size + header->length;
3797 }
3798
3799 /* Return TRUE if OFFSET is within CU_HEADER. */
3800
3801 static inline int
3802 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3803 {
3804 sect_offset bottom = { cu_header->offset.sect_off };
3805 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3806
3807 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3808 }
3809
3810 /* Find the base address of the compilation unit for range lists and
3811 location lists. It will normally be specified by DW_AT_low_pc.
3812 In DWARF-3 draft 4, the base address could be overridden by
3813 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3814 compilation units with discontinuous ranges. */
3815
3816 static void
3817 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3818 {
3819 struct attribute *attr;
3820
3821 cu->base_known = 0;
3822 cu->base_address = 0;
3823
3824 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3825 if (attr)
3826 {
3827 cu->base_address = DW_ADDR (attr);
3828 cu->base_known = 1;
3829 }
3830 else
3831 {
3832 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3833 if (attr)
3834 {
3835 cu->base_address = DW_ADDR (attr);
3836 cu->base_known = 1;
3837 }
3838 }
3839 }
3840
3841 /* Read in the comp unit header information from the debug_info at info_ptr.
3842 NOTE: This leaves members offset, first_die_offset to be filled in
3843 by the caller. */
3844
3845 static gdb_byte *
3846 read_comp_unit_head (struct comp_unit_head *cu_header,
3847 gdb_byte *info_ptr, bfd *abfd)
3848 {
3849 int signed_addr;
3850 unsigned int bytes_read;
3851
3852 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3853 cu_header->initial_length_size = bytes_read;
3854 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3855 info_ptr += bytes_read;
3856 cu_header->version = read_2_bytes (abfd, info_ptr);
3857 info_ptr += 2;
3858 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3859 &bytes_read);
3860 info_ptr += bytes_read;
3861 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3862 info_ptr += 1;
3863 signed_addr = bfd_get_sign_extend_vma (abfd);
3864 if (signed_addr < 0)
3865 internal_error (__FILE__, __LINE__,
3866 _("read_comp_unit_head: dwarf from non elf file"));
3867 cu_header->signed_addr_p = signed_addr;
3868
3869 return info_ptr;
3870 }
3871
3872 /* Helper function that returns the proper abbrev section for
3873 THIS_CU. */
3874
3875 static struct dwarf2_section_info *
3876 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3877 {
3878 struct dwarf2_section_info *abbrev;
3879
3880 if (this_cu->is_dwz)
3881 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3882 else
3883 abbrev = &dwarf2_per_objfile->abbrev;
3884
3885 return abbrev;
3886 }
3887
3888 /* Subroutine of read_and_check_comp_unit_head and
3889 read_and_check_type_unit_head to simplify them.
3890 Perform various error checking on the header. */
3891
3892 static void
3893 error_check_comp_unit_head (struct comp_unit_head *header,
3894 struct dwarf2_section_info *section,
3895 struct dwarf2_section_info *abbrev_section)
3896 {
3897 bfd *abfd = section->asection->owner;
3898 const char *filename = bfd_get_filename (abfd);
3899
3900 if (header->version != 2 && header->version != 3 && header->version != 4)
3901 error (_("Dwarf Error: wrong version in compilation unit header "
3902 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3903 filename);
3904
3905 if (header->abbrev_offset.sect_off
3906 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3907 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3908 "(offset 0x%lx + 6) [in module %s]"),
3909 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3910 filename);
3911
3912 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3913 avoid potential 32-bit overflow. */
3914 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3915 > section->size)
3916 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3917 "(offset 0x%lx + 0) [in module %s]"),
3918 (long) header->length, (long) header->offset.sect_off,
3919 filename);
3920 }
3921
3922 /* Read in a CU/TU header and perform some basic error checking.
3923 The contents of the header are stored in HEADER.
3924 The result is a pointer to the start of the first DIE. */
3925
3926 static gdb_byte *
3927 read_and_check_comp_unit_head (struct comp_unit_head *header,
3928 struct dwarf2_section_info *section,
3929 struct dwarf2_section_info *abbrev_section,
3930 gdb_byte *info_ptr,
3931 int is_debug_types_section)
3932 {
3933 gdb_byte *beg_of_comp_unit = info_ptr;
3934 bfd *abfd = section->asection->owner;
3935
3936 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3937
3938 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3939
3940 /* If we're reading a type unit, skip over the signature and
3941 type_offset fields. */
3942 if (is_debug_types_section)
3943 info_ptr += 8 /*signature*/ + header->offset_size;
3944
3945 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3946
3947 error_check_comp_unit_head (header, section, abbrev_section);
3948
3949 return info_ptr;
3950 }
3951
3952 /* Read in the types comp unit header information from .debug_types entry at
3953 types_ptr. The result is a pointer to one past the end of the header. */
3954
3955 static gdb_byte *
3956 read_and_check_type_unit_head (struct comp_unit_head *header,
3957 struct dwarf2_section_info *section,
3958 struct dwarf2_section_info *abbrev_section,
3959 gdb_byte *info_ptr,
3960 ULONGEST *signature,
3961 cu_offset *type_offset_in_tu)
3962 {
3963 gdb_byte *beg_of_comp_unit = info_ptr;
3964 bfd *abfd = section->asection->owner;
3965
3966 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3967
3968 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3969
3970 /* If we're reading a type unit, skip over the signature and
3971 type_offset fields. */
3972 if (signature != NULL)
3973 *signature = read_8_bytes (abfd, info_ptr);
3974 info_ptr += 8;
3975 if (type_offset_in_tu != NULL)
3976 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3977 header->offset_size);
3978 info_ptr += header->offset_size;
3979
3980 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3981
3982 error_check_comp_unit_head (header, section, abbrev_section);
3983
3984 return info_ptr;
3985 }
3986
3987 /* Fetch the abbreviation table offset from a comp or type unit header. */
3988
3989 static sect_offset
3990 read_abbrev_offset (struct dwarf2_section_info *section,
3991 sect_offset offset)
3992 {
3993 bfd *abfd = section->asection->owner;
3994 gdb_byte *info_ptr;
3995 unsigned int length, initial_length_size, offset_size;
3996 sect_offset abbrev_offset;
3997
3998 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3999 info_ptr = section->buffer + offset.sect_off;
4000 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4001 offset_size = initial_length_size == 4 ? 4 : 8;
4002 info_ptr += initial_length_size + 2 /*version*/;
4003 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4004 return abbrev_offset;
4005 }
4006
4007 /* Allocate a new partial symtab for file named NAME and mark this new
4008 partial symtab as being an include of PST. */
4009
4010 static void
4011 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4012 struct objfile *objfile)
4013 {
4014 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4015
4016 subpst->section_offsets = pst->section_offsets;
4017 subpst->textlow = 0;
4018 subpst->texthigh = 0;
4019
4020 subpst->dependencies = (struct partial_symtab **)
4021 obstack_alloc (&objfile->objfile_obstack,
4022 sizeof (struct partial_symtab *));
4023 subpst->dependencies[0] = pst;
4024 subpst->number_of_dependencies = 1;
4025
4026 subpst->globals_offset = 0;
4027 subpst->n_global_syms = 0;
4028 subpst->statics_offset = 0;
4029 subpst->n_static_syms = 0;
4030 subpst->symtab = NULL;
4031 subpst->read_symtab = pst->read_symtab;
4032 subpst->readin = 0;
4033
4034 /* No private part is necessary for include psymtabs. This property
4035 can be used to differentiate between such include psymtabs and
4036 the regular ones. */
4037 subpst->read_symtab_private = NULL;
4038 }
4039
4040 /* Read the Line Number Program data and extract the list of files
4041 included by the source file represented by PST. Build an include
4042 partial symtab for each of these included files. */
4043
4044 static void
4045 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4046 struct die_info *die,
4047 struct partial_symtab *pst)
4048 {
4049 struct line_header *lh = NULL;
4050 struct attribute *attr;
4051
4052 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4053 if (attr)
4054 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4055 if (lh == NULL)
4056 return; /* No linetable, so no includes. */
4057
4058 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4059 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4060
4061 free_line_header (lh);
4062 }
4063
4064 static hashval_t
4065 hash_signatured_type (const void *item)
4066 {
4067 const struct signatured_type *sig_type = item;
4068
4069 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4070 return sig_type->signature;
4071 }
4072
4073 static int
4074 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4075 {
4076 const struct signatured_type *lhs = item_lhs;
4077 const struct signatured_type *rhs = item_rhs;
4078
4079 return lhs->signature == rhs->signature;
4080 }
4081
4082 /* Allocate a hash table for signatured types. */
4083
4084 static htab_t
4085 allocate_signatured_type_table (struct objfile *objfile)
4086 {
4087 return htab_create_alloc_ex (41,
4088 hash_signatured_type,
4089 eq_signatured_type,
4090 NULL,
4091 &objfile->objfile_obstack,
4092 hashtab_obstack_allocate,
4093 dummy_obstack_deallocate);
4094 }
4095
4096 /* A helper function to add a signatured type CU to a table. */
4097
4098 static int
4099 add_signatured_type_cu_to_table (void **slot, void *datum)
4100 {
4101 struct signatured_type *sigt = *slot;
4102 struct signatured_type ***datap = datum;
4103
4104 **datap = sigt;
4105 ++*datap;
4106
4107 return 1;
4108 }
4109
4110 /* Create the hash table of all entries in the .debug_types section.
4111 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4112 NULL otherwise.
4113 Note: This function processes DWO files only, not DWP files.
4114 The result is a pointer to the hash table or NULL if there are
4115 no types. */
4116
4117 static htab_t
4118 create_debug_types_hash_table (struct dwo_file *dwo_file,
4119 VEC (dwarf2_section_info_def) *types)
4120 {
4121 struct objfile *objfile = dwarf2_per_objfile->objfile;
4122 htab_t types_htab = NULL;
4123 int ix;
4124 struct dwarf2_section_info *section;
4125 struct dwarf2_section_info *abbrev_section;
4126
4127 if (VEC_empty (dwarf2_section_info_def, types))
4128 return NULL;
4129
4130 abbrev_section = (dwo_file != NULL
4131 ? &dwo_file->sections.abbrev
4132 : &dwarf2_per_objfile->abbrev);
4133
4134 if (dwarf2_read_debug)
4135 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4136 dwo_file ? ".dwo" : "",
4137 bfd_get_filename (abbrev_section->asection->owner));
4138
4139 for (ix = 0;
4140 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4141 ++ix)
4142 {
4143 bfd *abfd;
4144 gdb_byte *info_ptr, *end_ptr;
4145 struct dwarf2_section_info *abbrev_section;
4146
4147 dwarf2_read_section (objfile, section);
4148 info_ptr = section->buffer;
4149
4150 if (info_ptr == NULL)
4151 continue;
4152
4153 /* We can't set abfd until now because the section may be empty or
4154 not present, in which case section->asection will be NULL. */
4155 abfd = section->asection->owner;
4156
4157 if (dwo_file)
4158 abbrev_section = &dwo_file->sections.abbrev;
4159 else
4160 abbrev_section = &dwarf2_per_objfile->abbrev;
4161
4162 if (types_htab == NULL)
4163 {
4164 if (dwo_file)
4165 types_htab = allocate_dwo_unit_table (objfile);
4166 else
4167 types_htab = allocate_signatured_type_table (objfile);
4168 }
4169
4170 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4171 because we don't need to read any dies: the signature is in the
4172 header. */
4173
4174 end_ptr = info_ptr + section->size;
4175 while (info_ptr < end_ptr)
4176 {
4177 sect_offset offset;
4178 cu_offset type_offset_in_tu;
4179 ULONGEST signature;
4180 struct signatured_type *sig_type;
4181 struct dwo_unit *dwo_tu;
4182 void **slot;
4183 gdb_byte *ptr = info_ptr;
4184 struct comp_unit_head header;
4185 unsigned int length;
4186
4187 offset.sect_off = ptr - section->buffer;
4188
4189 /* We need to read the type's signature in order to build the hash
4190 table, but we don't need anything else just yet. */
4191
4192 ptr = read_and_check_type_unit_head (&header, section,
4193 abbrev_section, ptr,
4194 &signature, &type_offset_in_tu);
4195
4196 length = get_cu_length (&header);
4197
4198 /* Skip dummy type units. */
4199 if (ptr >= info_ptr + length
4200 || peek_abbrev_code (abfd, ptr) == 0)
4201 {
4202 info_ptr += length;
4203 continue;
4204 }
4205
4206 if (dwo_file)
4207 {
4208 sig_type = NULL;
4209 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4210 struct dwo_unit);
4211 dwo_tu->dwo_file = dwo_file;
4212 dwo_tu->signature = signature;
4213 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4214 dwo_tu->info_or_types_section = section;
4215 dwo_tu->offset = offset;
4216 dwo_tu->length = length;
4217 }
4218 else
4219 {
4220 /* N.B.: type_offset is not usable if this type uses a DWO file.
4221 The real type_offset is in the DWO file. */
4222 dwo_tu = NULL;
4223 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4224 struct signatured_type);
4225 sig_type->signature = signature;
4226 sig_type->type_offset_in_tu = type_offset_in_tu;
4227 sig_type->per_cu.objfile = objfile;
4228 sig_type->per_cu.is_debug_types = 1;
4229 sig_type->per_cu.info_or_types_section = section;
4230 sig_type->per_cu.offset = offset;
4231 sig_type->per_cu.length = length;
4232 }
4233
4234 slot = htab_find_slot (types_htab,
4235 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4236 INSERT);
4237 gdb_assert (slot != NULL);
4238 if (*slot != NULL)
4239 {
4240 sect_offset dup_offset;
4241
4242 if (dwo_file)
4243 {
4244 const struct dwo_unit *dup_tu = *slot;
4245
4246 dup_offset = dup_tu->offset;
4247 }
4248 else
4249 {
4250 const struct signatured_type *dup_tu = *slot;
4251
4252 dup_offset = dup_tu->per_cu.offset;
4253 }
4254
4255 complaint (&symfile_complaints,
4256 _("debug type entry at offset 0x%x is duplicate to the "
4257 "entry at offset 0x%x, signature 0x%s"),
4258 offset.sect_off, dup_offset.sect_off,
4259 phex (signature, sizeof (signature)));
4260 }
4261 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4262
4263 if (dwarf2_read_debug)
4264 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4265 offset.sect_off,
4266 phex (signature, sizeof (signature)));
4267
4268 info_ptr += length;
4269 }
4270 }
4271
4272 return types_htab;
4273 }
4274
4275 /* Create the hash table of all entries in the .debug_types section,
4276 and initialize all_type_units.
4277 The result is zero if there is an error (e.g. missing .debug_types section),
4278 otherwise non-zero. */
4279
4280 static int
4281 create_all_type_units (struct objfile *objfile)
4282 {
4283 htab_t types_htab;
4284 struct signatured_type **iter;
4285
4286 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4287 if (types_htab == NULL)
4288 {
4289 dwarf2_per_objfile->signatured_types = NULL;
4290 return 0;
4291 }
4292
4293 dwarf2_per_objfile->signatured_types = types_htab;
4294
4295 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4296 dwarf2_per_objfile->all_type_units
4297 = obstack_alloc (&objfile->objfile_obstack,
4298 dwarf2_per_objfile->n_type_units
4299 * sizeof (struct signatured_type *));
4300 iter = &dwarf2_per_objfile->all_type_units[0];
4301 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4302 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4303 == dwarf2_per_objfile->n_type_units);
4304
4305 return 1;
4306 }
4307
4308 /* Lookup a signature based type for DW_FORM_ref_sig8.
4309 Returns NULL if signature SIG is not present in the table. */
4310
4311 static struct signatured_type *
4312 lookup_signatured_type (ULONGEST sig)
4313 {
4314 struct signatured_type find_entry, *entry;
4315
4316 if (dwarf2_per_objfile->signatured_types == NULL)
4317 {
4318 complaint (&symfile_complaints,
4319 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4320 return NULL;
4321 }
4322
4323 find_entry.signature = sig;
4324 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4325 return entry;
4326 }
4327 \f
4328 /* Low level DIE reading support. */
4329
4330 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4331
4332 static void
4333 init_cu_die_reader (struct die_reader_specs *reader,
4334 struct dwarf2_cu *cu,
4335 struct dwarf2_section_info *section,
4336 struct dwo_file *dwo_file)
4337 {
4338 gdb_assert (section->readin && section->buffer != NULL);
4339 reader->abfd = section->asection->owner;
4340 reader->cu = cu;
4341 reader->dwo_file = dwo_file;
4342 reader->die_section = section;
4343 reader->buffer = section->buffer;
4344 reader->buffer_end = section->buffer + section->size;
4345 }
4346
4347 /* Initialize a CU (or TU) and read its DIEs.
4348 If the CU defers to a DWO file, read the DWO file as well.
4349
4350 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4351 Otherwise the table specified in the comp unit header is read in and used.
4352 This is an optimization for when we already have the abbrev table.
4353
4354 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4355 Otherwise, a new CU is allocated with xmalloc.
4356
4357 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4358 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4359
4360 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4361 linker) then DIE_READER_FUNC will not get called. */
4362
4363 static void
4364 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4365 struct abbrev_table *abbrev_table,
4366 int use_existing_cu, int keep,
4367 die_reader_func_ftype *die_reader_func,
4368 void *data)
4369 {
4370 struct objfile *objfile = dwarf2_per_objfile->objfile;
4371 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4372 bfd *abfd = section->asection->owner;
4373 struct dwarf2_cu *cu;
4374 gdb_byte *begin_info_ptr, *info_ptr;
4375 struct die_reader_specs reader;
4376 struct die_info *comp_unit_die;
4377 int has_children;
4378 struct attribute *attr;
4379 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4380 struct signatured_type *sig_type = NULL;
4381 struct dwarf2_section_info *abbrev_section;
4382 /* Non-zero if CU currently points to a DWO file and we need to
4383 reread it. When this happens we need to reread the skeleton die
4384 before we can reread the DWO file. */
4385 int rereading_dwo_cu = 0;
4386
4387 if (dwarf2_die_debug)
4388 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4389 this_cu->is_debug_types ? "type" : "comp",
4390 this_cu->offset.sect_off);
4391
4392 if (use_existing_cu)
4393 gdb_assert (keep);
4394
4395 cleanups = make_cleanup (null_cleanup, NULL);
4396
4397 /* This is cheap if the section is already read in. */
4398 dwarf2_read_section (objfile, section);
4399
4400 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4401
4402 abbrev_section = get_abbrev_section_for_cu (this_cu);
4403
4404 if (use_existing_cu && this_cu->cu != NULL)
4405 {
4406 cu = this_cu->cu;
4407
4408 /* If this CU is from a DWO file we need to start over, we need to
4409 refetch the attributes from the skeleton CU.
4410 This could be optimized by retrieving those attributes from when we
4411 were here the first time: the previous comp_unit_die was stored in
4412 comp_unit_obstack. But there's no data yet that we need this
4413 optimization. */
4414 if (cu->dwo_unit != NULL)
4415 rereading_dwo_cu = 1;
4416 }
4417 else
4418 {
4419 /* If !use_existing_cu, this_cu->cu must be NULL. */
4420 gdb_assert (this_cu->cu == NULL);
4421
4422 cu = xmalloc (sizeof (*cu));
4423 init_one_comp_unit (cu, this_cu);
4424
4425 /* If an error occurs while loading, release our storage. */
4426 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4427 }
4428
4429 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4430 {
4431 /* We already have the header, there's no need to read it in again. */
4432 info_ptr += cu->header.first_die_offset.cu_off;
4433 }
4434 else
4435 {
4436 if (this_cu->is_debug_types)
4437 {
4438 ULONGEST signature;
4439 cu_offset type_offset_in_tu;
4440
4441 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4442 abbrev_section, info_ptr,
4443 &signature,
4444 &type_offset_in_tu);
4445
4446 /* Since per_cu is the first member of struct signatured_type,
4447 we can go from a pointer to one to a pointer to the other. */
4448 sig_type = (struct signatured_type *) this_cu;
4449 gdb_assert (sig_type->signature == signature);
4450 gdb_assert (sig_type->type_offset_in_tu.cu_off
4451 == type_offset_in_tu.cu_off);
4452 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4453
4454 /* LENGTH has not been set yet for type units if we're
4455 using .gdb_index. */
4456 this_cu->length = get_cu_length (&cu->header);
4457
4458 /* Establish the type offset that can be used to lookup the type. */
4459 sig_type->type_offset_in_section.sect_off =
4460 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4461 }
4462 else
4463 {
4464 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4465 abbrev_section,
4466 info_ptr, 0);
4467
4468 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4469 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4470 }
4471 }
4472
4473 /* Skip dummy compilation units. */
4474 if (info_ptr >= begin_info_ptr + this_cu->length
4475 || peek_abbrev_code (abfd, info_ptr) == 0)
4476 {
4477 do_cleanups (cleanups);
4478 return;
4479 }
4480
4481 /* If we don't have them yet, read the abbrevs for this compilation unit.
4482 And if we need to read them now, make sure they're freed when we're
4483 done. Note that it's important that if the CU had an abbrev table
4484 on entry we don't free it when we're done: Somewhere up the call stack
4485 it may be in use. */
4486 if (abbrev_table != NULL)
4487 {
4488 gdb_assert (cu->abbrev_table == NULL);
4489 gdb_assert (cu->header.abbrev_offset.sect_off
4490 == abbrev_table->offset.sect_off);
4491 cu->abbrev_table = abbrev_table;
4492 }
4493 else if (cu->abbrev_table == NULL)
4494 {
4495 dwarf2_read_abbrevs (cu, abbrev_section);
4496 make_cleanup (dwarf2_free_abbrev_table, cu);
4497 }
4498 else if (rereading_dwo_cu)
4499 {
4500 dwarf2_free_abbrev_table (cu);
4501 dwarf2_read_abbrevs (cu, abbrev_section);
4502 }
4503
4504 /* Read the top level CU/TU die. */
4505 init_cu_die_reader (&reader, cu, section, NULL);
4506 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4507
4508 /* If we have a DWO stub, process it and then read in the DWO file.
4509 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4510 a DWO CU, that this test will fail. */
4511 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4512 if (attr)
4513 {
4514 char *dwo_name = DW_STRING (attr);
4515 const char *comp_dir_string;
4516 struct dwo_unit *dwo_unit;
4517 ULONGEST signature; /* Or dwo_id. */
4518 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4519 int i,num_extra_attrs;
4520 struct dwarf2_section_info *dwo_abbrev_section;
4521
4522 if (has_children)
4523 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4524 " has children (offset 0x%x) [in module %s]"),
4525 this_cu->offset.sect_off, bfd_get_filename (abfd));
4526
4527 /* These attributes aren't processed until later:
4528 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4529 However, the attribute is found in the stub which we won't have later.
4530 In order to not impose this complication on the rest of the code,
4531 we read them here and copy them to the DWO CU/TU die. */
4532
4533 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4534 DWO file. */
4535 stmt_list = NULL;
4536 if (! this_cu->is_debug_types)
4537 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4538 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4539 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4540 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4541 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4542
4543 /* There should be a DW_AT_addr_base attribute here (if needed).
4544 We need the value before we can process DW_FORM_GNU_addr_index. */
4545 cu->addr_base = 0;
4546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4547 if (attr)
4548 cu->addr_base = DW_UNSND (attr);
4549
4550 /* There should be a DW_AT_ranges_base attribute here (if needed).
4551 We need the value before we can process DW_AT_ranges. */
4552 cu->ranges_base = 0;
4553 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4554 if (attr)
4555 cu->ranges_base = DW_UNSND (attr);
4556
4557 if (this_cu->is_debug_types)
4558 {
4559 gdb_assert (sig_type != NULL);
4560 signature = sig_type->signature;
4561 }
4562 else
4563 {
4564 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4565 if (! attr)
4566 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4567 dwo_name);
4568 signature = DW_UNSND (attr);
4569 }
4570
4571 /* We may need the comp_dir in order to find the DWO file. */
4572 comp_dir_string = NULL;
4573 if (comp_dir)
4574 comp_dir_string = DW_STRING (comp_dir);
4575
4576 if (this_cu->is_debug_types)
4577 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4578 else
4579 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4580 signature);
4581
4582 if (dwo_unit == NULL)
4583 {
4584 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4585 " with ID %s [in module %s]"),
4586 this_cu->offset.sect_off,
4587 phex (signature, sizeof (signature)),
4588 objfile->name);
4589 }
4590
4591 /* Set up for reading the DWO CU/TU. */
4592 cu->dwo_unit = dwo_unit;
4593 section = dwo_unit->info_or_types_section;
4594 dwarf2_read_section (objfile, section);
4595 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4596 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4597 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4598
4599 if (this_cu->is_debug_types)
4600 {
4601 ULONGEST signature;
4602 cu_offset type_offset_in_tu;
4603
4604 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4605 dwo_abbrev_section,
4606 info_ptr,
4607 &signature,
4608 &type_offset_in_tu);
4609 gdb_assert (sig_type->signature == signature);
4610 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4611 /* For DWOs coming from DWP files, we don't know the CU length
4612 nor the type's offset in the TU until now. */
4613 dwo_unit->length = get_cu_length (&cu->header);
4614 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4615
4616 /* Establish the type offset that can be used to lookup the type.
4617 For DWO files, we don't know it until now. */
4618 sig_type->type_offset_in_section.sect_off =
4619 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4620 }
4621 else
4622 {
4623 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4624 dwo_abbrev_section,
4625 info_ptr, 0);
4626 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4627 /* For DWOs coming from DWP files, we don't know the CU length
4628 until now. */
4629 dwo_unit->length = get_cu_length (&cu->header);
4630 }
4631
4632 /* Discard the original CU's abbrev table, and read the DWO's. */
4633 if (abbrev_table == NULL)
4634 {
4635 dwarf2_free_abbrev_table (cu);
4636 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4637 }
4638 else
4639 {
4640 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4641 make_cleanup (dwarf2_free_abbrev_table, cu);
4642 }
4643
4644 /* Read in the die, but leave space to copy over the attributes
4645 from the stub. This has the benefit of simplifying the rest of
4646 the code - all the real work is done here. */
4647 num_extra_attrs = ((stmt_list != NULL)
4648 + (low_pc != NULL)
4649 + (high_pc != NULL)
4650 + (ranges != NULL)
4651 + (comp_dir != NULL));
4652 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4653 &has_children, num_extra_attrs);
4654
4655 /* Copy over the attributes from the stub to the DWO die. */
4656 i = comp_unit_die->num_attrs;
4657 if (stmt_list != NULL)
4658 comp_unit_die->attrs[i++] = *stmt_list;
4659 if (low_pc != NULL)
4660 comp_unit_die->attrs[i++] = *low_pc;
4661 if (high_pc != NULL)
4662 comp_unit_die->attrs[i++] = *high_pc;
4663 if (ranges != NULL)
4664 comp_unit_die->attrs[i++] = *ranges;
4665 if (comp_dir != NULL)
4666 comp_unit_die->attrs[i++] = *comp_dir;
4667 comp_unit_die->num_attrs += num_extra_attrs;
4668
4669 /* Skip dummy compilation units. */
4670 if (info_ptr >= begin_info_ptr + dwo_unit->length
4671 || peek_abbrev_code (abfd, info_ptr) == 0)
4672 {
4673 do_cleanups (cleanups);
4674 return;
4675 }
4676 }
4677
4678 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4679
4680 if (free_cu_cleanup != NULL)
4681 {
4682 if (keep)
4683 {
4684 /* We've successfully allocated this compilation unit. Let our
4685 caller clean it up when finished with it. */
4686 discard_cleanups (free_cu_cleanup);
4687
4688 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4689 So we have to manually free the abbrev table. */
4690 dwarf2_free_abbrev_table (cu);
4691
4692 /* Link this CU into read_in_chain. */
4693 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4694 dwarf2_per_objfile->read_in_chain = this_cu;
4695 }
4696 else
4697 do_cleanups (free_cu_cleanup);
4698 }
4699
4700 do_cleanups (cleanups);
4701 }
4702
4703 /* Read CU/TU THIS_CU in section SECTION,
4704 but do not follow DW_AT_GNU_dwo_name if present.
4705 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4706 to have already done the lookup to find the DWO/DWP file).
4707
4708 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4709 THIS_CU->is_debug_types, but nothing else.
4710
4711 We fill in THIS_CU->length.
4712
4713 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4714 linker) then DIE_READER_FUNC will not get called.
4715
4716 THIS_CU->cu is always freed when done.
4717 This is done in order to not leave THIS_CU->cu in a state where we have
4718 to care whether it refers to the "main" CU or the DWO CU. */
4719
4720 static void
4721 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4722 struct dwarf2_section_info *abbrev_section,
4723 struct dwo_file *dwo_file,
4724 die_reader_func_ftype *die_reader_func,
4725 void *data)
4726 {
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
4728 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4729 bfd *abfd = section->asection->owner;
4730 struct dwarf2_cu cu;
4731 gdb_byte *begin_info_ptr, *info_ptr;
4732 struct die_reader_specs reader;
4733 struct cleanup *cleanups;
4734 struct die_info *comp_unit_die;
4735 int has_children;
4736
4737 if (dwarf2_die_debug)
4738 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4739 this_cu->is_debug_types ? "type" : "comp",
4740 this_cu->offset.sect_off);
4741
4742 gdb_assert (this_cu->cu == NULL);
4743
4744 /* This is cheap if the section is already read in. */
4745 dwarf2_read_section (objfile, section);
4746
4747 init_one_comp_unit (&cu, this_cu);
4748
4749 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4750
4751 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4752 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4753 abbrev_section, info_ptr,
4754 this_cu->is_debug_types);
4755
4756 this_cu->length = get_cu_length (&cu.header);
4757
4758 /* Skip dummy compilation units. */
4759 if (info_ptr >= begin_info_ptr + this_cu->length
4760 || peek_abbrev_code (abfd, info_ptr) == 0)
4761 {
4762 do_cleanups (cleanups);
4763 return;
4764 }
4765
4766 dwarf2_read_abbrevs (&cu, abbrev_section);
4767 make_cleanup (dwarf2_free_abbrev_table, &cu);
4768
4769 init_cu_die_reader (&reader, &cu, section, dwo_file);
4770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4771
4772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4773
4774 do_cleanups (cleanups);
4775 }
4776
4777 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4778 does not lookup the specified DWO file.
4779 This cannot be used to read DWO files.
4780
4781 THIS_CU->cu is always freed when done.
4782 This is done in order to not leave THIS_CU->cu in a state where we have
4783 to care whether it refers to the "main" CU or the DWO CU.
4784 We can revisit this if the data shows there's a performance issue. */
4785
4786 static void
4787 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4788 die_reader_func_ftype *die_reader_func,
4789 void *data)
4790 {
4791 init_cutu_and_read_dies_no_follow (this_cu,
4792 get_abbrev_section_for_cu (this_cu),
4793 NULL,
4794 die_reader_func, data);
4795 }
4796
4797 /* Create a psymtab named NAME and assign it to PER_CU.
4798
4799 The caller must fill in the following details:
4800 dirname, textlow, texthigh. */
4801
4802 static struct partial_symtab *
4803 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4804 {
4805 struct objfile *objfile = per_cu->objfile;
4806 struct partial_symtab *pst;
4807
4808 pst = start_psymtab_common (objfile, objfile->section_offsets,
4809 name, 0,
4810 objfile->global_psymbols.next,
4811 objfile->static_psymbols.next);
4812
4813 pst->psymtabs_addrmap_supported = 1;
4814
4815 /* This is the glue that links PST into GDB's symbol API. */
4816 pst->read_symtab_private = per_cu;
4817 pst->read_symtab = dwarf2_psymtab_to_symtab;
4818 per_cu->v.psymtab = pst;
4819
4820 return pst;
4821 }
4822
4823 /* die_reader_func for process_psymtab_comp_unit. */
4824
4825 static void
4826 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4827 gdb_byte *info_ptr,
4828 struct die_info *comp_unit_die,
4829 int has_children,
4830 void *data)
4831 {
4832 struct dwarf2_cu *cu = reader->cu;
4833 struct objfile *objfile = cu->objfile;
4834 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4835 struct attribute *attr;
4836 CORE_ADDR baseaddr;
4837 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4838 struct partial_symtab *pst;
4839 int has_pc_info;
4840 const char *filename;
4841 int *want_partial_unit_ptr = data;
4842
4843 if (comp_unit_die->tag == DW_TAG_partial_unit
4844 && (want_partial_unit_ptr == NULL
4845 || !*want_partial_unit_ptr))
4846 return;
4847
4848 gdb_assert (! per_cu->is_debug_types);
4849
4850 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4851
4852 cu->list_in_scope = &file_symbols;
4853
4854 /* Allocate a new partial symbol table structure. */
4855 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4856 if (attr == NULL || !DW_STRING (attr))
4857 filename = "";
4858 else
4859 filename = DW_STRING (attr);
4860
4861 pst = create_partial_symtab (per_cu, filename);
4862
4863 /* This must be done before calling dwarf2_build_include_psymtabs. */
4864 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4865 if (attr != NULL)
4866 pst->dirname = DW_STRING (attr);
4867
4868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4869
4870 dwarf2_find_base_address (comp_unit_die, cu);
4871
4872 /* Possibly set the default values of LOWPC and HIGHPC from
4873 `DW_AT_ranges'. */
4874 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4875 &best_highpc, cu, pst);
4876 if (has_pc_info == 1 && best_lowpc < best_highpc)
4877 /* Store the contiguous range if it is not empty; it can be empty for
4878 CUs with no code. */
4879 addrmap_set_empty (objfile->psymtabs_addrmap,
4880 best_lowpc + baseaddr,
4881 best_highpc + baseaddr - 1, pst);
4882
4883 /* Check if comp unit has_children.
4884 If so, read the rest of the partial symbols from this comp unit.
4885 If not, there's no more debug_info for this comp unit. */
4886 if (has_children)
4887 {
4888 struct partial_die_info *first_die;
4889 CORE_ADDR lowpc, highpc;
4890
4891 lowpc = ((CORE_ADDR) -1);
4892 highpc = ((CORE_ADDR) 0);
4893
4894 first_die = load_partial_dies (reader, info_ptr, 1);
4895
4896 scan_partial_symbols (first_die, &lowpc, &highpc,
4897 ! has_pc_info, cu);
4898
4899 /* If we didn't find a lowpc, set it to highpc to avoid
4900 complaints from `maint check'. */
4901 if (lowpc == ((CORE_ADDR) -1))
4902 lowpc = highpc;
4903
4904 /* If the compilation unit didn't have an explicit address range,
4905 then use the information extracted from its child dies. */
4906 if (! has_pc_info)
4907 {
4908 best_lowpc = lowpc;
4909 best_highpc = highpc;
4910 }
4911 }
4912 pst->textlow = best_lowpc + baseaddr;
4913 pst->texthigh = best_highpc + baseaddr;
4914
4915 pst->n_global_syms = objfile->global_psymbols.next -
4916 (objfile->global_psymbols.list + pst->globals_offset);
4917 pst->n_static_syms = objfile->static_psymbols.next -
4918 (objfile->static_psymbols.list + pst->statics_offset);
4919 sort_pst_symbols (pst);
4920
4921 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4922 {
4923 int i;
4924 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4925 struct dwarf2_per_cu_data *iter;
4926
4927 /* Fill in 'dependencies' here; we fill in 'users' in a
4928 post-pass. */
4929 pst->number_of_dependencies = len;
4930 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4931 len * sizeof (struct symtab *));
4932 for (i = 0;
4933 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4934 i, iter);
4935 ++i)
4936 pst->dependencies[i] = iter->v.psymtab;
4937
4938 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4939 }
4940
4941 /* Get the list of files included in the current compilation unit,
4942 and build a psymtab for each of them. */
4943 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4944
4945 if (dwarf2_read_debug)
4946 {
4947 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4948
4949 fprintf_unfiltered (gdb_stdlog,
4950 "Psymtab for %s unit @0x%x: %s - %s"
4951 ", %d global, %d static syms\n",
4952 per_cu->is_debug_types ? "type" : "comp",
4953 per_cu->offset.sect_off,
4954 paddress (gdbarch, pst->textlow),
4955 paddress (gdbarch, pst->texthigh),
4956 pst->n_global_syms, pst->n_static_syms);
4957 }
4958 }
4959
4960 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4961 Process compilation unit THIS_CU for a psymtab. */
4962
4963 static void
4964 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4965 int want_partial_unit)
4966 {
4967 /* If this compilation unit was already read in, free the
4968 cached copy in order to read it in again. This is
4969 necessary because we skipped some symbols when we first
4970 read in the compilation unit (see load_partial_dies).
4971 This problem could be avoided, but the benefit is unclear. */
4972 if (this_cu->cu != NULL)
4973 free_one_cached_comp_unit (this_cu);
4974
4975 gdb_assert (! this_cu->is_debug_types);
4976 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4977 process_psymtab_comp_unit_reader,
4978 &want_partial_unit);
4979
4980 /* Age out any secondary CUs. */
4981 age_cached_comp_units ();
4982 }
4983
4984 static hashval_t
4985 hash_type_unit_group (const void *item)
4986 {
4987 const struct type_unit_group *tu_group = item;
4988
4989 return hash_stmt_list_entry (&tu_group->hash);
4990 }
4991
4992 static int
4993 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4994 {
4995 const struct type_unit_group *lhs = item_lhs;
4996 const struct type_unit_group *rhs = item_rhs;
4997
4998 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4999 }
5000
5001 /* Allocate a hash table for type unit groups. */
5002
5003 static htab_t
5004 allocate_type_unit_groups_table (void)
5005 {
5006 return htab_create_alloc_ex (3,
5007 hash_type_unit_group,
5008 eq_type_unit_group,
5009 NULL,
5010 &dwarf2_per_objfile->objfile->objfile_obstack,
5011 hashtab_obstack_allocate,
5012 dummy_obstack_deallocate);
5013 }
5014
5015 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5016 partial symtabs. We combine several TUs per psymtab to not let the size
5017 of any one psymtab grow too big. */
5018 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5019 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5020
5021 /* Helper routine for get_type_unit_group.
5022 Create the type_unit_group object used to hold one or more TUs. */
5023
5024 static struct type_unit_group *
5025 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5026 {
5027 struct objfile *objfile = dwarf2_per_objfile->objfile;
5028 struct dwarf2_per_cu_data *per_cu;
5029 struct type_unit_group *tu_group;
5030
5031 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5032 struct type_unit_group);
5033 per_cu = &tu_group->per_cu;
5034 per_cu->objfile = objfile;
5035 per_cu->is_debug_types = 1;
5036 per_cu->s.type_unit_group = tu_group;
5037
5038 if (dwarf2_per_objfile->using_index)
5039 {
5040 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5041 struct dwarf2_per_cu_quick_data);
5042 tu_group->t.first_tu = cu->per_cu;
5043 }
5044 else
5045 {
5046 unsigned int line_offset = line_offset_struct.sect_off;
5047 struct partial_symtab *pst;
5048 char *name;
5049
5050 /* Give the symtab a useful name for debug purposes. */
5051 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5052 name = xstrprintf ("<type_units_%d>",
5053 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5054 else
5055 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5056
5057 pst = create_partial_symtab (per_cu, name);
5058 pst->anonymous = 1;
5059
5060 xfree (name);
5061 }
5062
5063 tu_group->hash.dwo_unit = cu->dwo_unit;
5064 tu_group->hash.line_offset = line_offset_struct;
5065
5066 return tu_group;
5067 }
5068
5069 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5070 STMT_LIST is a DW_AT_stmt_list attribute. */
5071
5072 static struct type_unit_group *
5073 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5074 {
5075 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5076 struct type_unit_group *tu_group;
5077 void **slot;
5078 unsigned int line_offset;
5079 struct type_unit_group type_unit_group_for_lookup;
5080
5081 if (dwarf2_per_objfile->type_unit_groups == NULL)
5082 {
5083 dwarf2_per_objfile->type_unit_groups =
5084 allocate_type_unit_groups_table ();
5085 }
5086
5087 /* Do we need to create a new group, or can we use an existing one? */
5088
5089 if (stmt_list)
5090 {
5091 line_offset = DW_UNSND (stmt_list);
5092 ++tu_stats->nr_symtab_sharers;
5093 }
5094 else
5095 {
5096 /* Ugh, no stmt_list. Rare, but we have to handle it.
5097 We can do various things here like create one group per TU or
5098 spread them over multiple groups to split up the expansion work.
5099 To avoid worst case scenarios (too many groups or too large groups)
5100 we, umm, group them in bunches. */
5101 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5102 | (tu_stats->nr_stmt_less_type_units
5103 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5104 ++tu_stats->nr_stmt_less_type_units;
5105 }
5106
5107 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5108 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5109 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5110 &type_unit_group_for_lookup, INSERT);
5111 if (*slot != NULL)
5112 {
5113 tu_group = *slot;
5114 gdb_assert (tu_group != NULL);
5115 }
5116 else
5117 {
5118 sect_offset line_offset_struct;
5119
5120 line_offset_struct.sect_off = line_offset;
5121 tu_group = create_type_unit_group (cu, line_offset_struct);
5122 *slot = tu_group;
5123 ++tu_stats->nr_symtabs;
5124 }
5125
5126 return tu_group;
5127 }
5128
5129 /* Struct used to sort TUs by their abbreviation table offset. */
5130
5131 struct tu_abbrev_offset
5132 {
5133 struct signatured_type *sig_type;
5134 sect_offset abbrev_offset;
5135 };
5136
5137 /* Helper routine for build_type_unit_groups, passed to qsort. */
5138
5139 static int
5140 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5141 {
5142 const struct tu_abbrev_offset * const *a = ap;
5143 const struct tu_abbrev_offset * const *b = bp;
5144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5145 unsigned int boff = (*b)->abbrev_offset.sect_off;
5146
5147 return (aoff > boff) - (aoff < boff);
5148 }
5149
5150 /* A helper function to add a type_unit_group to a table. */
5151
5152 static int
5153 add_type_unit_group_to_table (void **slot, void *datum)
5154 {
5155 struct type_unit_group *tu_group = *slot;
5156 struct type_unit_group ***datap = datum;
5157
5158 **datap = tu_group;
5159 ++*datap;
5160
5161 return 1;
5162 }
5163
5164 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5165 each one passing FUNC,DATA.
5166
5167 The efficiency is because we sort TUs by the abbrev table they use and
5168 only read each abbrev table once. In one program there are 200K TUs
5169 sharing 8K abbrev tables.
5170
5171 The main purpose of this function is to support building the
5172 dwarf2_per_objfile->type_unit_groups table.
5173 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5174 can collapse the search space by grouping them by stmt_list.
5175 The savings can be significant, in the same program from above the 200K TUs
5176 share 8K stmt_list tables.
5177
5178 FUNC is expected to call get_type_unit_group, which will create the
5179 struct type_unit_group if necessary and add it to
5180 dwarf2_per_objfile->type_unit_groups. */
5181
5182 static void
5183 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5184 {
5185 struct objfile *objfile = dwarf2_per_objfile->objfile;
5186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5187 struct cleanup *cleanups;
5188 struct abbrev_table *abbrev_table;
5189 sect_offset abbrev_offset;
5190 struct tu_abbrev_offset *sorted_by_abbrev;
5191 struct type_unit_group **iter;
5192 int i;
5193
5194 /* It's up to the caller to not call us multiple times. */
5195 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5196
5197 if (dwarf2_per_objfile->n_type_units == 0)
5198 return;
5199
5200 /* TUs typically share abbrev tables, and there can be way more TUs than
5201 abbrev tables. Sort by abbrev table to reduce the number of times we
5202 read each abbrev table in.
5203 Alternatives are to punt or to maintain a cache of abbrev tables.
5204 This is simpler and efficient enough for now.
5205
5206 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5207 symtab to use). Typically TUs with the same abbrev offset have the same
5208 stmt_list value too so in practice this should work well.
5209
5210 The basic algorithm here is:
5211
5212 sort TUs by abbrev table
5213 for each TU with same abbrev table:
5214 read abbrev table if first user
5215 read TU top level DIE
5216 [IWBN if DWO skeletons had DW_AT_stmt_list]
5217 call FUNC */
5218
5219 if (dwarf2_read_debug)
5220 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5221
5222 /* Sort in a separate table to maintain the order of all_type_units
5223 for .gdb_index: TU indices directly index all_type_units. */
5224 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5225 dwarf2_per_objfile->n_type_units);
5226 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5227 {
5228 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5229
5230 sorted_by_abbrev[i].sig_type = sig_type;
5231 sorted_by_abbrev[i].abbrev_offset =
5232 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5233 sig_type->per_cu.offset);
5234 }
5235 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5236 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5237 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5238
5239 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5240 called any number of times, so we don't reset tu_stats here. */
5241
5242 abbrev_offset.sect_off = ~(unsigned) 0;
5243 abbrev_table = NULL;
5244 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5245
5246 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5247 {
5248 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5249
5250 /* Switch to the next abbrev table if necessary. */
5251 if (abbrev_table == NULL
5252 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5253 {
5254 if (abbrev_table != NULL)
5255 {
5256 abbrev_table_free (abbrev_table);
5257 /* Reset to NULL in case abbrev_table_read_table throws
5258 an error: abbrev_table_free_cleanup will get called. */
5259 abbrev_table = NULL;
5260 }
5261 abbrev_offset = tu->abbrev_offset;
5262 abbrev_table =
5263 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5264 abbrev_offset);
5265 ++tu_stats->nr_uniq_abbrev_tables;
5266 }
5267
5268 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5269 func, data);
5270 }
5271
5272 /* Create a vector of pointers to primary type units to make it easy to
5273 iterate over them and CUs. See dw2_get_primary_cu. */
5274 dwarf2_per_objfile->n_type_unit_groups =
5275 htab_elements (dwarf2_per_objfile->type_unit_groups);
5276 dwarf2_per_objfile->all_type_unit_groups =
5277 obstack_alloc (&objfile->objfile_obstack,
5278 dwarf2_per_objfile->n_type_unit_groups
5279 * sizeof (struct type_unit_group *));
5280 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5281 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5282 add_type_unit_group_to_table, &iter);
5283 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5284 == dwarf2_per_objfile->n_type_unit_groups);
5285
5286 do_cleanups (cleanups);
5287
5288 if (dwarf2_read_debug)
5289 {
5290 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5291 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5292 dwarf2_per_objfile->n_type_units);
5293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5294 tu_stats->nr_uniq_abbrev_tables);
5295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5296 tu_stats->nr_symtabs);
5297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5298 tu_stats->nr_symtab_sharers);
5299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5300 tu_stats->nr_stmt_less_type_units);
5301 }
5302 }
5303
5304 /* Reader function for build_type_psymtabs. */
5305
5306 static void
5307 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5308 gdb_byte *info_ptr,
5309 struct die_info *type_unit_die,
5310 int has_children,
5311 void *data)
5312 {
5313 struct objfile *objfile = dwarf2_per_objfile->objfile;
5314 struct dwarf2_cu *cu = reader->cu;
5315 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5316 struct type_unit_group *tu_group;
5317 struct attribute *attr;
5318 struct partial_die_info *first_die;
5319 CORE_ADDR lowpc, highpc;
5320 struct partial_symtab *pst;
5321
5322 gdb_assert (data == NULL);
5323
5324 if (! has_children)
5325 return;
5326
5327 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5328 tu_group = get_type_unit_group (cu, attr);
5329
5330 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5331
5332 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5333 cu->list_in_scope = &file_symbols;
5334 pst = create_partial_symtab (per_cu, "");
5335 pst->anonymous = 1;
5336
5337 first_die = load_partial_dies (reader, info_ptr, 1);
5338
5339 lowpc = (CORE_ADDR) -1;
5340 highpc = (CORE_ADDR) 0;
5341 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5342
5343 pst->n_global_syms = objfile->global_psymbols.next -
5344 (objfile->global_psymbols.list + pst->globals_offset);
5345 pst->n_static_syms = objfile->static_psymbols.next -
5346 (objfile->static_psymbols.list + pst->statics_offset);
5347 sort_pst_symbols (pst);
5348 }
5349
5350 /* Traversal function for build_type_psymtabs. */
5351
5352 static int
5353 build_type_psymtab_dependencies (void **slot, void *info)
5354 {
5355 struct objfile *objfile = dwarf2_per_objfile->objfile;
5356 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5357 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5358 struct partial_symtab *pst = per_cu->v.psymtab;
5359 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5360 struct dwarf2_per_cu_data *iter;
5361 int i;
5362
5363 gdb_assert (len > 0);
5364
5365 pst->number_of_dependencies = len;
5366 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5367 len * sizeof (struct psymtab *));
5368 for (i = 0;
5369 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5370 ++i)
5371 {
5372 pst->dependencies[i] = iter->v.psymtab;
5373 iter->s.type_unit_group = tu_group;
5374 }
5375
5376 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5377
5378 return 1;
5379 }
5380
5381 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5382 Build partial symbol tables for the .debug_types comp-units. */
5383
5384 static void
5385 build_type_psymtabs (struct objfile *objfile)
5386 {
5387 if (! create_all_type_units (objfile))
5388 return;
5389
5390 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5391
5392 /* Now that all TUs have been processed we can fill in the dependencies. */
5393 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5394 build_type_psymtab_dependencies, NULL);
5395 }
5396
5397 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5398
5399 static void
5400 psymtabs_addrmap_cleanup (void *o)
5401 {
5402 struct objfile *objfile = o;
5403
5404 objfile->psymtabs_addrmap = NULL;
5405 }
5406
5407 /* Compute the 'user' field for each psymtab in OBJFILE. */
5408
5409 static void
5410 set_partial_user (struct objfile *objfile)
5411 {
5412 int i;
5413
5414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5415 {
5416 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5417 struct partial_symtab *pst = per_cu->v.psymtab;
5418 int j;
5419
5420 if (pst == NULL)
5421 continue;
5422
5423 for (j = 0; j < pst->number_of_dependencies; ++j)
5424 {
5425 /* Set the 'user' field only if it is not already set. */
5426 if (pst->dependencies[j]->user == NULL)
5427 pst->dependencies[j]->user = pst;
5428 }
5429 }
5430 }
5431
5432 /* Build the partial symbol table by doing a quick pass through the
5433 .debug_info and .debug_abbrev sections. */
5434
5435 static void
5436 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5437 {
5438 struct cleanup *back_to, *addrmap_cleanup;
5439 struct obstack temp_obstack;
5440 int i;
5441
5442 if (dwarf2_read_debug)
5443 {
5444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5445 objfile->name);
5446 }
5447
5448 dwarf2_per_objfile->reading_partial_symbols = 1;
5449
5450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5451
5452 /* Any cached compilation units will be linked by the per-objfile
5453 read_in_chain. Make sure to free them when we're done. */
5454 back_to = make_cleanup (free_cached_comp_units, NULL);
5455
5456 build_type_psymtabs (objfile);
5457
5458 create_all_comp_units (objfile);
5459
5460 /* Create a temporary address map on a temporary obstack. We later
5461 copy this to the final obstack. */
5462 obstack_init (&temp_obstack);
5463 make_cleanup_obstack_free (&temp_obstack);
5464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5466
5467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5468 {
5469 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5470
5471 process_psymtab_comp_unit (per_cu, 0);
5472 }
5473
5474 set_partial_user (objfile);
5475
5476 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5477 &objfile->objfile_obstack);
5478 discard_cleanups (addrmap_cleanup);
5479
5480 do_cleanups (back_to);
5481
5482 if (dwarf2_read_debug)
5483 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5484 objfile->name);
5485 }
5486
5487 /* die_reader_func for load_partial_comp_unit. */
5488
5489 static void
5490 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5491 gdb_byte *info_ptr,
5492 struct die_info *comp_unit_die,
5493 int has_children,
5494 void *data)
5495 {
5496 struct dwarf2_cu *cu = reader->cu;
5497
5498 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5499
5500 /* Check if comp unit has_children.
5501 If so, read the rest of the partial symbols from this comp unit.
5502 If not, there's no more debug_info for this comp unit. */
5503 if (has_children)
5504 load_partial_dies (reader, info_ptr, 0);
5505 }
5506
5507 /* Load the partial DIEs for a secondary CU into memory.
5508 This is also used when rereading a primary CU with load_all_dies. */
5509
5510 static void
5511 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5512 {
5513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5514 load_partial_comp_unit_reader, NULL);
5515 }
5516
5517 static void
5518 read_comp_units_from_section (struct objfile *objfile,
5519 struct dwarf2_section_info *section,
5520 unsigned int is_dwz,
5521 int *n_allocated,
5522 int *n_comp_units,
5523 struct dwarf2_per_cu_data ***all_comp_units)
5524 {
5525 gdb_byte *info_ptr;
5526 bfd *abfd = section->asection->owner;
5527
5528 dwarf2_read_section (objfile, section);
5529
5530 info_ptr = section->buffer;
5531
5532 while (info_ptr < section->buffer + section->size)
5533 {
5534 unsigned int length, initial_length_size;
5535 struct dwarf2_per_cu_data *this_cu;
5536 sect_offset offset;
5537
5538 offset.sect_off = info_ptr - section->buffer;
5539
5540 /* Read just enough information to find out where the next
5541 compilation unit is. */
5542 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5543
5544 /* Save the compilation unit for later lookup. */
5545 this_cu = obstack_alloc (&objfile->objfile_obstack,
5546 sizeof (struct dwarf2_per_cu_data));
5547 memset (this_cu, 0, sizeof (*this_cu));
5548 this_cu->offset = offset;
5549 this_cu->length = length + initial_length_size;
5550 this_cu->is_dwz = is_dwz;
5551 this_cu->objfile = objfile;
5552 this_cu->info_or_types_section = section;
5553
5554 if (*n_comp_units == *n_allocated)
5555 {
5556 *n_allocated *= 2;
5557 *all_comp_units = xrealloc (*all_comp_units,
5558 *n_allocated
5559 * sizeof (struct dwarf2_per_cu_data *));
5560 }
5561 (*all_comp_units)[*n_comp_units] = this_cu;
5562 ++*n_comp_units;
5563
5564 info_ptr = info_ptr + this_cu->length;
5565 }
5566 }
5567
5568 /* Create a list of all compilation units in OBJFILE.
5569 This is only done for -readnow and building partial symtabs. */
5570
5571 static void
5572 create_all_comp_units (struct objfile *objfile)
5573 {
5574 int n_allocated;
5575 int n_comp_units;
5576 struct dwarf2_per_cu_data **all_comp_units;
5577
5578 n_comp_units = 0;
5579 n_allocated = 10;
5580 all_comp_units = xmalloc (n_allocated
5581 * sizeof (struct dwarf2_per_cu_data *));
5582
5583 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5584 &n_allocated, &n_comp_units, &all_comp_units);
5585
5586 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5587 {
5588 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5589
5590 read_comp_units_from_section (objfile, &dwz->info, 1,
5591 &n_allocated, &n_comp_units,
5592 &all_comp_units);
5593 }
5594
5595 dwarf2_per_objfile->all_comp_units
5596 = obstack_alloc (&objfile->objfile_obstack,
5597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5600 xfree (all_comp_units);
5601 dwarf2_per_objfile->n_comp_units = n_comp_units;
5602 }
5603
5604 /* Process all loaded DIEs for compilation unit CU, starting at
5605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5607 DW_AT_ranges). If NEED_PC is set, then this function will set
5608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5609 and record the covered ranges in the addrmap. */
5610
5611 static void
5612 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5614 {
5615 struct partial_die_info *pdi;
5616
5617 /* Now, march along the PDI's, descending into ones which have
5618 interesting children but skipping the children of the other ones,
5619 until we reach the end of the compilation unit. */
5620
5621 pdi = first_die;
5622
5623 while (pdi != NULL)
5624 {
5625 fixup_partial_die (pdi, cu);
5626
5627 /* Anonymous namespaces or modules have no name but have interesting
5628 children, so we need to look at them. Ditto for anonymous
5629 enums. */
5630
5631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5633 || pdi->tag == DW_TAG_imported_unit)
5634 {
5635 switch (pdi->tag)
5636 {
5637 case DW_TAG_subprogram:
5638 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5639 break;
5640 case DW_TAG_constant:
5641 case DW_TAG_variable:
5642 case DW_TAG_typedef:
5643 case DW_TAG_union_type:
5644 if (!pdi->is_declaration)
5645 {
5646 add_partial_symbol (pdi, cu);
5647 }
5648 break;
5649 case DW_TAG_class_type:
5650 case DW_TAG_interface_type:
5651 case DW_TAG_structure_type:
5652 if (!pdi->is_declaration)
5653 {
5654 add_partial_symbol (pdi, cu);
5655 }
5656 break;
5657 case DW_TAG_enumeration_type:
5658 if (!pdi->is_declaration)
5659 add_partial_enumeration (pdi, cu);
5660 break;
5661 case DW_TAG_base_type:
5662 case DW_TAG_subrange_type:
5663 /* File scope base type definitions are added to the partial
5664 symbol table. */
5665 add_partial_symbol (pdi, cu);
5666 break;
5667 case DW_TAG_namespace:
5668 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5669 break;
5670 case DW_TAG_module:
5671 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5672 break;
5673 case DW_TAG_imported_unit:
5674 {
5675 struct dwarf2_per_cu_data *per_cu;
5676
5677 /* For now we don't handle imported units in type units. */
5678 if (cu->per_cu->is_debug_types)
5679 {
5680 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5681 " supported in type units [in module %s]"),
5682 cu->objfile->name);
5683 }
5684
5685 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5686 pdi->is_dwz,
5687 cu->objfile);
5688
5689 /* Go read the partial unit, if needed. */
5690 if (per_cu->v.psymtab == NULL)
5691 process_psymtab_comp_unit (per_cu, 1);
5692
5693 VEC_safe_push (dwarf2_per_cu_ptr,
5694 cu->per_cu->s.imported_symtabs, per_cu);
5695 }
5696 break;
5697 default:
5698 break;
5699 }
5700 }
5701
5702 /* If the die has a sibling, skip to the sibling. */
5703
5704 pdi = pdi->die_sibling;
5705 }
5706 }
5707
5708 /* Functions used to compute the fully scoped name of a partial DIE.
5709
5710 Normally, this is simple. For C++, the parent DIE's fully scoped
5711 name is concatenated with "::" and the partial DIE's name. For
5712 Java, the same thing occurs except that "." is used instead of "::".
5713 Enumerators are an exception; they use the scope of their parent
5714 enumeration type, i.e. the name of the enumeration type is not
5715 prepended to the enumerator.
5716
5717 There are two complexities. One is DW_AT_specification; in this
5718 case "parent" means the parent of the target of the specification,
5719 instead of the direct parent of the DIE. The other is compilers
5720 which do not emit DW_TAG_namespace; in this case we try to guess
5721 the fully qualified name of structure types from their members'
5722 linkage names. This must be done using the DIE's children rather
5723 than the children of any DW_AT_specification target. We only need
5724 to do this for structures at the top level, i.e. if the target of
5725 any DW_AT_specification (if any; otherwise the DIE itself) does not
5726 have a parent. */
5727
5728 /* Compute the scope prefix associated with PDI's parent, in
5729 compilation unit CU. The result will be allocated on CU's
5730 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5731 field. NULL is returned if no prefix is necessary. */
5732 static char *
5733 partial_die_parent_scope (struct partial_die_info *pdi,
5734 struct dwarf2_cu *cu)
5735 {
5736 char *grandparent_scope;
5737 struct partial_die_info *parent, *real_pdi;
5738
5739 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5740 then this means the parent of the specification DIE. */
5741
5742 real_pdi = pdi;
5743 while (real_pdi->has_specification)
5744 real_pdi = find_partial_die (real_pdi->spec_offset,
5745 real_pdi->spec_is_dwz, cu);
5746
5747 parent = real_pdi->die_parent;
5748 if (parent == NULL)
5749 return NULL;
5750
5751 if (parent->scope_set)
5752 return parent->scope;
5753
5754 fixup_partial_die (parent, cu);
5755
5756 grandparent_scope = partial_die_parent_scope (parent, cu);
5757
5758 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5759 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5760 Work around this problem here. */
5761 if (cu->language == language_cplus
5762 && parent->tag == DW_TAG_namespace
5763 && strcmp (parent->name, "::") == 0
5764 && grandparent_scope == NULL)
5765 {
5766 parent->scope = NULL;
5767 parent->scope_set = 1;
5768 return NULL;
5769 }
5770
5771 if (pdi->tag == DW_TAG_enumerator)
5772 /* Enumerators should not get the name of the enumeration as a prefix. */
5773 parent->scope = grandparent_scope;
5774 else if (parent->tag == DW_TAG_namespace
5775 || parent->tag == DW_TAG_module
5776 || parent->tag == DW_TAG_structure_type
5777 || parent->tag == DW_TAG_class_type
5778 || parent->tag == DW_TAG_interface_type
5779 || parent->tag == DW_TAG_union_type
5780 || parent->tag == DW_TAG_enumeration_type)
5781 {
5782 if (grandparent_scope == NULL)
5783 parent->scope = parent->name;
5784 else
5785 parent->scope = typename_concat (&cu->comp_unit_obstack,
5786 grandparent_scope,
5787 parent->name, 0, cu);
5788 }
5789 else
5790 {
5791 /* FIXME drow/2004-04-01: What should we be doing with
5792 function-local names? For partial symbols, we should probably be
5793 ignoring them. */
5794 complaint (&symfile_complaints,
5795 _("unhandled containing DIE tag %d for DIE at %d"),
5796 parent->tag, pdi->offset.sect_off);
5797 parent->scope = grandparent_scope;
5798 }
5799
5800 parent->scope_set = 1;
5801 return parent->scope;
5802 }
5803
5804 /* Return the fully scoped name associated with PDI, from compilation unit
5805 CU. The result will be allocated with malloc. */
5806
5807 static char *
5808 partial_die_full_name (struct partial_die_info *pdi,
5809 struct dwarf2_cu *cu)
5810 {
5811 char *parent_scope;
5812
5813 /* If this is a template instantiation, we can not work out the
5814 template arguments from partial DIEs. So, unfortunately, we have
5815 to go through the full DIEs. At least any work we do building
5816 types here will be reused if full symbols are loaded later. */
5817 if (pdi->has_template_arguments)
5818 {
5819 fixup_partial_die (pdi, cu);
5820
5821 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5822 {
5823 struct die_info *die;
5824 struct attribute attr;
5825 struct dwarf2_cu *ref_cu = cu;
5826
5827 /* DW_FORM_ref_addr is using section offset. */
5828 attr.name = 0;
5829 attr.form = DW_FORM_ref_addr;
5830 attr.u.unsnd = pdi->offset.sect_off;
5831 die = follow_die_ref (NULL, &attr, &ref_cu);
5832
5833 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5834 }
5835 }
5836
5837 parent_scope = partial_die_parent_scope (pdi, cu);
5838 if (parent_scope == NULL)
5839 return NULL;
5840 else
5841 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5842 }
5843
5844 static void
5845 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5846 {
5847 struct objfile *objfile = cu->objfile;
5848 CORE_ADDR addr = 0;
5849 char *actual_name = NULL;
5850 CORE_ADDR baseaddr;
5851 int built_actual_name = 0;
5852
5853 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5854
5855 actual_name = partial_die_full_name (pdi, cu);
5856 if (actual_name)
5857 built_actual_name = 1;
5858
5859 if (actual_name == NULL)
5860 actual_name = pdi->name;
5861
5862 switch (pdi->tag)
5863 {
5864 case DW_TAG_subprogram:
5865 if (pdi->is_external || cu->language == language_ada)
5866 {
5867 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5868 of the global scope. But in Ada, we want to be able to access
5869 nested procedures globally. So all Ada subprograms are stored
5870 in the global scope. */
5871 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5872 mst_text, objfile); */
5873 add_psymbol_to_list (actual_name, strlen (actual_name),
5874 built_actual_name,
5875 VAR_DOMAIN, LOC_BLOCK,
5876 &objfile->global_psymbols,
5877 0, pdi->lowpc + baseaddr,
5878 cu->language, objfile);
5879 }
5880 else
5881 {
5882 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5883 mst_file_text, objfile); */
5884 add_psymbol_to_list (actual_name, strlen (actual_name),
5885 built_actual_name,
5886 VAR_DOMAIN, LOC_BLOCK,
5887 &objfile->static_psymbols,
5888 0, pdi->lowpc + baseaddr,
5889 cu->language, objfile);
5890 }
5891 break;
5892 case DW_TAG_constant:
5893 {
5894 struct psymbol_allocation_list *list;
5895
5896 if (pdi->is_external)
5897 list = &objfile->global_psymbols;
5898 else
5899 list = &objfile->static_psymbols;
5900 add_psymbol_to_list (actual_name, strlen (actual_name),
5901 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5902 list, 0, 0, cu->language, objfile);
5903 }
5904 break;
5905 case DW_TAG_variable:
5906 if (pdi->d.locdesc)
5907 addr = decode_locdesc (pdi->d.locdesc, cu);
5908
5909 if (pdi->d.locdesc
5910 && addr == 0
5911 && !dwarf2_per_objfile->has_section_at_zero)
5912 {
5913 /* A global or static variable may also have been stripped
5914 out by the linker if unused, in which case its address
5915 will be nullified; do not add such variables into partial
5916 symbol table then. */
5917 }
5918 else if (pdi->is_external)
5919 {
5920 /* Global Variable.
5921 Don't enter into the minimal symbol tables as there is
5922 a minimal symbol table entry from the ELF symbols already.
5923 Enter into partial symbol table if it has a location
5924 descriptor or a type.
5925 If the location descriptor is missing, new_symbol will create
5926 a LOC_UNRESOLVED symbol, the address of the variable will then
5927 be determined from the minimal symbol table whenever the variable
5928 is referenced.
5929 The address for the partial symbol table entry is not
5930 used by GDB, but it comes in handy for debugging partial symbol
5931 table building. */
5932
5933 if (pdi->d.locdesc || pdi->has_type)
5934 add_psymbol_to_list (actual_name, strlen (actual_name),
5935 built_actual_name,
5936 VAR_DOMAIN, LOC_STATIC,
5937 &objfile->global_psymbols,
5938 0, addr + baseaddr,
5939 cu->language, objfile);
5940 }
5941 else
5942 {
5943 /* Static Variable. Skip symbols without location descriptors. */
5944 if (pdi->d.locdesc == NULL)
5945 {
5946 if (built_actual_name)
5947 xfree (actual_name);
5948 return;
5949 }
5950 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5951 mst_file_data, objfile); */
5952 add_psymbol_to_list (actual_name, strlen (actual_name),
5953 built_actual_name,
5954 VAR_DOMAIN, LOC_STATIC,
5955 &objfile->static_psymbols,
5956 0, addr + baseaddr,
5957 cu->language, objfile);
5958 }
5959 break;
5960 case DW_TAG_typedef:
5961 case DW_TAG_base_type:
5962 case DW_TAG_subrange_type:
5963 add_psymbol_to_list (actual_name, strlen (actual_name),
5964 built_actual_name,
5965 VAR_DOMAIN, LOC_TYPEDEF,
5966 &objfile->static_psymbols,
5967 0, (CORE_ADDR) 0, cu->language, objfile);
5968 break;
5969 case DW_TAG_namespace:
5970 add_psymbol_to_list (actual_name, strlen (actual_name),
5971 built_actual_name,
5972 VAR_DOMAIN, LOC_TYPEDEF,
5973 &objfile->global_psymbols,
5974 0, (CORE_ADDR) 0, cu->language, objfile);
5975 break;
5976 case DW_TAG_class_type:
5977 case DW_TAG_interface_type:
5978 case DW_TAG_structure_type:
5979 case DW_TAG_union_type:
5980 case DW_TAG_enumeration_type:
5981 /* Skip external references. The DWARF standard says in the section
5982 about "Structure, Union, and Class Type Entries": "An incomplete
5983 structure, union or class type is represented by a structure,
5984 union or class entry that does not have a byte size attribute
5985 and that has a DW_AT_declaration attribute." */
5986 if (!pdi->has_byte_size && pdi->is_declaration)
5987 {
5988 if (built_actual_name)
5989 xfree (actual_name);
5990 return;
5991 }
5992
5993 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5994 static vs. global. */
5995 add_psymbol_to_list (actual_name, strlen (actual_name),
5996 built_actual_name,
5997 STRUCT_DOMAIN, LOC_TYPEDEF,
5998 (cu->language == language_cplus
5999 || cu->language == language_java)
6000 ? &objfile->global_psymbols
6001 : &objfile->static_psymbols,
6002 0, (CORE_ADDR) 0, cu->language, objfile);
6003
6004 break;
6005 case DW_TAG_enumerator:
6006 add_psymbol_to_list (actual_name, strlen (actual_name),
6007 built_actual_name,
6008 VAR_DOMAIN, LOC_CONST,
6009 (cu->language == language_cplus
6010 || cu->language == language_java)
6011 ? &objfile->global_psymbols
6012 : &objfile->static_psymbols,
6013 0, (CORE_ADDR) 0, cu->language, objfile);
6014 break;
6015 default:
6016 break;
6017 }
6018
6019 if (built_actual_name)
6020 xfree (actual_name);
6021 }
6022
6023 /* Read a partial die corresponding to a namespace; also, add a symbol
6024 corresponding to that namespace to the symbol table. NAMESPACE is
6025 the name of the enclosing namespace. */
6026
6027 static void
6028 add_partial_namespace (struct partial_die_info *pdi,
6029 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6030 int need_pc, struct dwarf2_cu *cu)
6031 {
6032 /* Add a symbol for the namespace. */
6033
6034 add_partial_symbol (pdi, cu);
6035
6036 /* Now scan partial symbols in that namespace. */
6037
6038 if (pdi->has_children)
6039 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6040 }
6041
6042 /* Read a partial die corresponding to a Fortran module. */
6043
6044 static void
6045 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6046 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6047 {
6048 /* Now scan partial symbols in that module. */
6049
6050 if (pdi->has_children)
6051 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6052 }
6053
6054 /* Read a partial die corresponding to a subprogram and create a partial
6055 symbol for that subprogram. When the CU language allows it, this
6056 routine also defines a partial symbol for each nested subprogram
6057 that this subprogram contains.
6058
6059 DIE my also be a lexical block, in which case we simply search
6060 recursively for suprograms defined inside that lexical block.
6061 Again, this is only performed when the CU language allows this
6062 type of definitions. */
6063
6064 static void
6065 add_partial_subprogram (struct partial_die_info *pdi,
6066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6067 int need_pc, struct dwarf2_cu *cu)
6068 {
6069 if (pdi->tag == DW_TAG_subprogram)
6070 {
6071 if (pdi->has_pc_info)
6072 {
6073 if (pdi->lowpc < *lowpc)
6074 *lowpc = pdi->lowpc;
6075 if (pdi->highpc > *highpc)
6076 *highpc = pdi->highpc;
6077 if (need_pc)
6078 {
6079 CORE_ADDR baseaddr;
6080 struct objfile *objfile = cu->objfile;
6081
6082 baseaddr = ANOFFSET (objfile->section_offsets,
6083 SECT_OFF_TEXT (objfile));
6084 addrmap_set_empty (objfile->psymtabs_addrmap,
6085 pdi->lowpc + baseaddr,
6086 pdi->highpc - 1 + baseaddr,
6087 cu->per_cu->v.psymtab);
6088 }
6089 }
6090
6091 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6092 {
6093 if (!pdi->is_declaration)
6094 /* Ignore subprogram DIEs that do not have a name, they are
6095 illegal. Do not emit a complaint at this point, we will
6096 do so when we convert this psymtab into a symtab. */
6097 if (pdi->name)
6098 add_partial_symbol (pdi, cu);
6099 }
6100 }
6101
6102 if (! pdi->has_children)
6103 return;
6104
6105 if (cu->language == language_ada)
6106 {
6107 pdi = pdi->die_child;
6108 while (pdi != NULL)
6109 {
6110 fixup_partial_die (pdi, cu);
6111 if (pdi->tag == DW_TAG_subprogram
6112 || pdi->tag == DW_TAG_lexical_block)
6113 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6114 pdi = pdi->die_sibling;
6115 }
6116 }
6117 }
6118
6119 /* Read a partial die corresponding to an enumeration type. */
6120
6121 static void
6122 add_partial_enumeration (struct partial_die_info *enum_pdi,
6123 struct dwarf2_cu *cu)
6124 {
6125 struct partial_die_info *pdi;
6126
6127 if (enum_pdi->name != NULL)
6128 add_partial_symbol (enum_pdi, cu);
6129
6130 pdi = enum_pdi->die_child;
6131 while (pdi)
6132 {
6133 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6134 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6135 else
6136 add_partial_symbol (pdi, cu);
6137 pdi = pdi->die_sibling;
6138 }
6139 }
6140
6141 /* Return the initial uleb128 in the die at INFO_PTR. */
6142
6143 static unsigned int
6144 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6145 {
6146 unsigned int bytes_read;
6147
6148 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6149 }
6150
6151 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6152 Return the corresponding abbrev, or NULL if the number is zero (indicating
6153 an empty DIE). In either case *BYTES_READ will be set to the length of
6154 the initial number. */
6155
6156 static struct abbrev_info *
6157 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6158 struct dwarf2_cu *cu)
6159 {
6160 bfd *abfd = cu->objfile->obfd;
6161 unsigned int abbrev_number;
6162 struct abbrev_info *abbrev;
6163
6164 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6165
6166 if (abbrev_number == 0)
6167 return NULL;
6168
6169 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6170 if (!abbrev)
6171 {
6172 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6173 abbrev_number, bfd_get_filename (abfd));
6174 }
6175
6176 return abbrev;
6177 }
6178
6179 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6180 Returns a pointer to the end of a series of DIEs, terminated by an empty
6181 DIE. Any children of the skipped DIEs will also be skipped. */
6182
6183 static gdb_byte *
6184 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6185 {
6186 struct dwarf2_cu *cu = reader->cu;
6187 struct abbrev_info *abbrev;
6188 unsigned int bytes_read;
6189
6190 while (1)
6191 {
6192 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6193 if (abbrev == NULL)
6194 return info_ptr + bytes_read;
6195 else
6196 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6197 }
6198 }
6199
6200 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6201 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6202 abbrev corresponding to that skipped uleb128 should be passed in
6203 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6204 children. */
6205
6206 static gdb_byte *
6207 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6208 struct abbrev_info *abbrev)
6209 {
6210 unsigned int bytes_read;
6211 struct attribute attr;
6212 bfd *abfd = reader->abfd;
6213 struct dwarf2_cu *cu = reader->cu;
6214 gdb_byte *buffer = reader->buffer;
6215 const gdb_byte *buffer_end = reader->buffer_end;
6216 gdb_byte *start_info_ptr = info_ptr;
6217 unsigned int form, i;
6218
6219 for (i = 0; i < abbrev->num_attrs; i++)
6220 {
6221 /* The only abbrev we care about is DW_AT_sibling. */
6222 if (abbrev->attrs[i].name == DW_AT_sibling)
6223 {
6224 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6225 if (attr.form == DW_FORM_ref_addr)
6226 complaint (&symfile_complaints,
6227 _("ignoring absolute DW_AT_sibling"));
6228 else
6229 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6230 }
6231
6232 /* If it isn't DW_AT_sibling, skip this attribute. */
6233 form = abbrev->attrs[i].form;
6234 skip_attribute:
6235 switch (form)
6236 {
6237 case DW_FORM_ref_addr:
6238 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6239 and later it is offset sized. */
6240 if (cu->header.version == 2)
6241 info_ptr += cu->header.addr_size;
6242 else
6243 info_ptr += cu->header.offset_size;
6244 break;
6245 case DW_FORM_GNU_ref_alt:
6246 info_ptr += cu->header.offset_size;
6247 break;
6248 case DW_FORM_addr:
6249 info_ptr += cu->header.addr_size;
6250 break;
6251 case DW_FORM_data1:
6252 case DW_FORM_ref1:
6253 case DW_FORM_flag:
6254 info_ptr += 1;
6255 break;
6256 case DW_FORM_flag_present:
6257 break;
6258 case DW_FORM_data2:
6259 case DW_FORM_ref2:
6260 info_ptr += 2;
6261 break;
6262 case DW_FORM_data4:
6263 case DW_FORM_ref4:
6264 info_ptr += 4;
6265 break;
6266 case DW_FORM_data8:
6267 case DW_FORM_ref8:
6268 case DW_FORM_ref_sig8:
6269 info_ptr += 8;
6270 break;
6271 case DW_FORM_string:
6272 read_direct_string (abfd, info_ptr, &bytes_read);
6273 info_ptr += bytes_read;
6274 break;
6275 case DW_FORM_sec_offset:
6276 case DW_FORM_strp:
6277 case DW_FORM_GNU_strp_alt:
6278 info_ptr += cu->header.offset_size;
6279 break;
6280 case DW_FORM_exprloc:
6281 case DW_FORM_block:
6282 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6283 info_ptr += bytes_read;
6284 break;
6285 case DW_FORM_block1:
6286 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6287 break;
6288 case DW_FORM_block2:
6289 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6290 break;
6291 case DW_FORM_block4:
6292 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6293 break;
6294 case DW_FORM_sdata:
6295 case DW_FORM_udata:
6296 case DW_FORM_ref_udata:
6297 case DW_FORM_GNU_addr_index:
6298 case DW_FORM_GNU_str_index:
6299 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6300 break;
6301 case DW_FORM_indirect:
6302 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6303 info_ptr += bytes_read;
6304 /* We need to continue parsing from here, so just go back to
6305 the top. */
6306 goto skip_attribute;
6307
6308 default:
6309 error (_("Dwarf Error: Cannot handle %s "
6310 "in DWARF reader [in module %s]"),
6311 dwarf_form_name (form),
6312 bfd_get_filename (abfd));
6313 }
6314 }
6315
6316 if (abbrev->has_children)
6317 return skip_children (reader, info_ptr);
6318 else
6319 return info_ptr;
6320 }
6321
6322 /* Locate ORIG_PDI's sibling.
6323 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6324
6325 static gdb_byte *
6326 locate_pdi_sibling (const struct die_reader_specs *reader,
6327 struct partial_die_info *orig_pdi,
6328 gdb_byte *info_ptr)
6329 {
6330 /* Do we know the sibling already? */
6331
6332 if (orig_pdi->sibling)
6333 return orig_pdi->sibling;
6334
6335 /* Are there any children to deal with? */
6336
6337 if (!orig_pdi->has_children)
6338 return info_ptr;
6339
6340 /* Skip the children the long way. */
6341
6342 return skip_children (reader, info_ptr);
6343 }
6344
6345 /* Expand this partial symbol table into a full symbol table. */
6346
6347 static void
6348 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
6349 {
6350 if (pst != NULL)
6351 {
6352 if (pst->readin)
6353 {
6354 warning (_("bug: psymtab for %s is already read in."),
6355 pst->filename);
6356 }
6357 else
6358 {
6359 if (info_verbose)
6360 {
6361 printf_filtered (_("Reading in symbols for %s..."),
6362 pst->filename);
6363 gdb_flush (gdb_stdout);
6364 }
6365
6366 /* Restore our global data. */
6367 dwarf2_per_objfile = objfile_data (pst->objfile,
6368 dwarf2_objfile_data_key);
6369
6370 /* If this psymtab is constructed from a debug-only objfile, the
6371 has_section_at_zero flag will not necessarily be correct. We
6372 can get the correct value for this flag by looking at the data
6373 associated with the (presumably stripped) associated objfile. */
6374 if (pst->objfile->separate_debug_objfile_backlink)
6375 {
6376 struct dwarf2_per_objfile *dpo_backlink
6377 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6378 dwarf2_objfile_data_key);
6379
6380 dwarf2_per_objfile->has_section_at_zero
6381 = dpo_backlink->has_section_at_zero;
6382 }
6383
6384 dwarf2_per_objfile->reading_partial_symbols = 0;
6385
6386 psymtab_to_symtab_1 (pst);
6387
6388 /* Finish up the debug error message. */
6389 if (info_verbose)
6390 printf_filtered (_("done.\n"));
6391 }
6392 }
6393
6394 process_cu_includes ();
6395 }
6396 \f
6397 /* Reading in full CUs. */
6398
6399 /* Add PER_CU to the queue. */
6400
6401 static void
6402 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6403 enum language pretend_language)
6404 {
6405 struct dwarf2_queue_item *item;
6406
6407 per_cu->queued = 1;
6408 item = xmalloc (sizeof (*item));
6409 item->per_cu = per_cu;
6410 item->pretend_language = pretend_language;
6411 item->next = NULL;
6412
6413 if (dwarf2_queue == NULL)
6414 dwarf2_queue = item;
6415 else
6416 dwarf2_queue_tail->next = item;
6417
6418 dwarf2_queue_tail = item;
6419 }
6420
6421 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6422 unit and add it to our queue.
6423 The result is non-zero if PER_CU was queued, otherwise the result is zero
6424 meaning either PER_CU is already queued or it is already loaded. */
6425
6426 static int
6427 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6428 struct dwarf2_per_cu_data *per_cu,
6429 enum language pretend_language)
6430 {
6431 /* We may arrive here during partial symbol reading, if we need full
6432 DIEs to process an unusual case (e.g. template arguments). Do
6433 not queue PER_CU, just tell our caller to load its DIEs. */
6434 if (dwarf2_per_objfile->reading_partial_symbols)
6435 {
6436 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6437 return 1;
6438 return 0;
6439 }
6440
6441 /* Mark the dependence relation so that we don't flush PER_CU
6442 too early. */
6443 dwarf2_add_dependence (this_cu, per_cu);
6444
6445 /* If it's already on the queue, we have nothing to do. */
6446 if (per_cu->queued)
6447 return 0;
6448
6449 /* If the compilation unit is already loaded, just mark it as
6450 used. */
6451 if (per_cu->cu != NULL)
6452 {
6453 per_cu->cu->last_used = 0;
6454 return 0;
6455 }
6456
6457 /* Add it to the queue. */
6458 queue_comp_unit (per_cu, pretend_language);
6459
6460 return 1;
6461 }
6462
6463 /* Process the queue. */
6464
6465 static void
6466 process_queue (void)
6467 {
6468 struct dwarf2_queue_item *item, *next_item;
6469
6470 if (dwarf2_read_debug)
6471 {
6472 fprintf_unfiltered (gdb_stdlog,
6473 "Expanding one or more symtabs of objfile %s ...\n",
6474 dwarf2_per_objfile->objfile->name);
6475 }
6476
6477 /* The queue starts out with one item, but following a DIE reference
6478 may load a new CU, adding it to the end of the queue. */
6479 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6480 {
6481 if (dwarf2_per_objfile->using_index
6482 ? !item->per_cu->v.quick->symtab
6483 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6484 {
6485 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6486
6487 if (dwarf2_read_debug)
6488 {
6489 fprintf_unfiltered (gdb_stdlog,
6490 "Expanding symtab of %s at offset 0x%x\n",
6491 per_cu->is_debug_types ? "TU" : "CU",
6492 per_cu->offset.sect_off);
6493 }
6494
6495 if (per_cu->is_debug_types)
6496 process_full_type_unit (per_cu, item->pretend_language);
6497 else
6498 process_full_comp_unit (per_cu, item->pretend_language);
6499
6500 if (dwarf2_read_debug)
6501 {
6502 fprintf_unfiltered (gdb_stdlog,
6503 "Done expanding %s at offset 0x%x\n",
6504 per_cu->is_debug_types ? "TU" : "CU",
6505 per_cu->offset.sect_off);
6506 }
6507 }
6508
6509 item->per_cu->queued = 0;
6510 next_item = item->next;
6511 xfree (item);
6512 }
6513
6514 dwarf2_queue_tail = NULL;
6515
6516 if (dwarf2_read_debug)
6517 {
6518 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6519 dwarf2_per_objfile->objfile->name);
6520 }
6521 }
6522
6523 /* Free all allocated queue entries. This function only releases anything if
6524 an error was thrown; if the queue was processed then it would have been
6525 freed as we went along. */
6526
6527 static void
6528 dwarf2_release_queue (void *dummy)
6529 {
6530 struct dwarf2_queue_item *item, *last;
6531
6532 item = dwarf2_queue;
6533 while (item)
6534 {
6535 /* Anything still marked queued is likely to be in an
6536 inconsistent state, so discard it. */
6537 if (item->per_cu->queued)
6538 {
6539 if (item->per_cu->cu != NULL)
6540 free_one_cached_comp_unit (item->per_cu);
6541 item->per_cu->queued = 0;
6542 }
6543
6544 last = item;
6545 item = item->next;
6546 xfree (last);
6547 }
6548
6549 dwarf2_queue = dwarf2_queue_tail = NULL;
6550 }
6551
6552 /* Read in full symbols for PST, and anything it depends on. */
6553
6554 static void
6555 psymtab_to_symtab_1 (struct partial_symtab *pst)
6556 {
6557 struct dwarf2_per_cu_data *per_cu;
6558 int i;
6559
6560 if (pst->readin)
6561 return;
6562
6563 for (i = 0; i < pst->number_of_dependencies; i++)
6564 if (!pst->dependencies[i]->readin
6565 && pst->dependencies[i]->user == NULL)
6566 {
6567 /* Inform about additional files that need to be read in. */
6568 if (info_verbose)
6569 {
6570 /* FIXME: i18n: Need to make this a single string. */
6571 fputs_filtered (" ", gdb_stdout);
6572 wrap_here ("");
6573 fputs_filtered ("and ", gdb_stdout);
6574 wrap_here ("");
6575 printf_filtered ("%s...", pst->dependencies[i]->filename);
6576 wrap_here (""); /* Flush output. */
6577 gdb_flush (gdb_stdout);
6578 }
6579 psymtab_to_symtab_1 (pst->dependencies[i]);
6580 }
6581
6582 per_cu = pst->read_symtab_private;
6583
6584 if (per_cu == NULL)
6585 {
6586 /* It's an include file, no symbols to read for it.
6587 Everything is in the parent symtab. */
6588 pst->readin = 1;
6589 return;
6590 }
6591
6592 dw2_do_instantiate_symtab (per_cu);
6593 }
6594
6595 /* Trivial hash function for die_info: the hash value of a DIE
6596 is its offset in .debug_info for this objfile. */
6597
6598 static hashval_t
6599 die_hash (const void *item)
6600 {
6601 const struct die_info *die = item;
6602
6603 return die->offset.sect_off;
6604 }
6605
6606 /* Trivial comparison function for die_info structures: two DIEs
6607 are equal if they have the same offset. */
6608
6609 static int
6610 die_eq (const void *item_lhs, const void *item_rhs)
6611 {
6612 const struct die_info *die_lhs = item_lhs;
6613 const struct die_info *die_rhs = item_rhs;
6614
6615 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6616 }
6617
6618 /* die_reader_func for load_full_comp_unit.
6619 This is identical to read_signatured_type_reader,
6620 but is kept separate for now. */
6621
6622 static void
6623 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6624 gdb_byte *info_ptr,
6625 struct die_info *comp_unit_die,
6626 int has_children,
6627 void *data)
6628 {
6629 struct dwarf2_cu *cu = reader->cu;
6630 enum language *language_ptr = data;
6631
6632 gdb_assert (cu->die_hash == NULL);
6633 cu->die_hash =
6634 htab_create_alloc_ex (cu->header.length / 12,
6635 die_hash,
6636 die_eq,
6637 NULL,
6638 &cu->comp_unit_obstack,
6639 hashtab_obstack_allocate,
6640 dummy_obstack_deallocate);
6641
6642 if (has_children)
6643 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6644 &info_ptr, comp_unit_die);
6645 cu->dies = comp_unit_die;
6646 /* comp_unit_die is not stored in die_hash, no need. */
6647
6648 /* We try not to read any attributes in this function, because not
6649 all CUs needed for references have been loaded yet, and symbol
6650 table processing isn't initialized. But we have to set the CU language,
6651 or we won't be able to build types correctly.
6652 Similarly, if we do not read the producer, we can not apply
6653 producer-specific interpretation. */
6654 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6655 }
6656
6657 /* Load the DIEs associated with PER_CU into memory. */
6658
6659 static void
6660 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6661 enum language pretend_language)
6662 {
6663 gdb_assert (! this_cu->is_debug_types);
6664
6665 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6666 load_full_comp_unit_reader, &pretend_language);
6667 }
6668
6669 /* Add a DIE to the delayed physname list. */
6670
6671 static void
6672 add_to_method_list (struct type *type, int fnfield_index, int index,
6673 const char *name, struct die_info *die,
6674 struct dwarf2_cu *cu)
6675 {
6676 struct delayed_method_info mi;
6677 mi.type = type;
6678 mi.fnfield_index = fnfield_index;
6679 mi.index = index;
6680 mi.name = name;
6681 mi.die = die;
6682 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6683 }
6684
6685 /* A cleanup for freeing the delayed method list. */
6686
6687 static void
6688 free_delayed_list (void *ptr)
6689 {
6690 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6691 if (cu->method_list != NULL)
6692 {
6693 VEC_free (delayed_method_info, cu->method_list);
6694 cu->method_list = NULL;
6695 }
6696 }
6697
6698 /* Compute the physnames of any methods on the CU's method list.
6699
6700 The computation of method physnames is delayed in order to avoid the
6701 (bad) condition that one of the method's formal parameters is of an as yet
6702 incomplete type. */
6703
6704 static void
6705 compute_delayed_physnames (struct dwarf2_cu *cu)
6706 {
6707 int i;
6708 struct delayed_method_info *mi;
6709 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6710 {
6711 const char *physname;
6712 struct fn_fieldlist *fn_flp
6713 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6714 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6715 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6716 }
6717 }
6718
6719 /* Go objects should be embedded in a DW_TAG_module DIE,
6720 and it's not clear if/how imported objects will appear.
6721 To keep Go support simple until that's worked out,
6722 go back through what we've read and create something usable.
6723 We could do this while processing each DIE, and feels kinda cleaner,
6724 but that way is more invasive.
6725 This is to, for example, allow the user to type "p var" or "b main"
6726 without having to specify the package name, and allow lookups
6727 of module.object to work in contexts that use the expression
6728 parser. */
6729
6730 static void
6731 fixup_go_packaging (struct dwarf2_cu *cu)
6732 {
6733 char *package_name = NULL;
6734 struct pending *list;
6735 int i;
6736
6737 for (list = global_symbols; list != NULL; list = list->next)
6738 {
6739 for (i = 0; i < list->nsyms; ++i)
6740 {
6741 struct symbol *sym = list->symbol[i];
6742
6743 if (SYMBOL_LANGUAGE (sym) == language_go
6744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6745 {
6746 char *this_package_name = go_symbol_package_name (sym);
6747
6748 if (this_package_name == NULL)
6749 continue;
6750 if (package_name == NULL)
6751 package_name = this_package_name;
6752 else
6753 {
6754 if (strcmp (package_name, this_package_name) != 0)
6755 complaint (&symfile_complaints,
6756 _("Symtab %s has objects from two different Go packages: %s and %s"),
6757 (sym->symtab && sym->symtab->filename
6758 ? sym->symtab->filename
6759 : cu->objfile->name),
6760 this_package_name, package_name);
6761 xfree (this_package_name);
6762 }
6763 }
6764 }
6765 }
6766
6767 if (package_name != NULL)
6768 {
6769 struct objfile *objfile = cu->objfile;
6770 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6771 package_name, objfile);
6772 struct symbol *sym;
6773
6774 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6775
6776 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6777 SYMBOL_SET_LANGUAGE (sym, language_go);
6778 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6779 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6780 e.g., "main" finds the "main" module and not C's main(). */
6781 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6782 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6783 SYMBOL_TYPE (sym) = type;
6784
6785 add_symbol_to_list (sym, &global_symbols);
6786
6787 xfree (package_name);
6788 }
6789 }
6790
6791 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6792
6793 /* Return the symtab for PER_CU. This works properly regardless of
6794 whether we're using the index or psymtabs. */
6795
6796 static struct symtab *
6797 get_symtab (struct dwarf2_per_cu_data *per_cu)
6798 {
6799 return (dwarf2_per_objfile->using_index
6800 ? per_cu->v.quick->symtab
6801 : per_cu->v.psymtab->symtab);
6802 }
6803
6804 /* A helper function for computing the list of all symbol tables
6805 included by PER_CU. */
6806
6807 static void
6808 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6809 htab_t all_children,
6810 struct dwarf2_per_cu_data *per_cu)
6811 {
6812 void **slot;
6813 int ix;
6814 struct dwarf2_per_cu_data *iter;
6815
6816 slot = htab_find_slot (all_children, per_cu, INSERT);
6817 if (*slot != NULL)
6818 {
6819 /* This inclusion and its children have been processed. */
6820 return;
6821 }
6822
6823 *slot = per_cu;
6824 /* Only add a CU if it has a symbol table. */
6825 if (get_symtab (per_cu) != NULL)
6826 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6827
6828 for (ix = 0;
6829 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6830 ++ix)
6831 recursively_compute_inclusions (result, all_children, iter);
6832 }
6833
6834 /* Compute the symtab 'includes' fields for the symtab related to
6835 PER_CU. */
6836
6837 static void
6838 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6839 {
6840 gdb_assert (! per_cu->is_debug_types);
6841
6842 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6843 {
6844 int ix, len;
6845 struct dwarf2_per_cu_data *iter;
6846 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6847 htab_t all_children;
6848 struct symtab *symtab = get_symtab (per_cu);
6849
6850 /* If we don't have a symtab, we can just skip this case. */
6851 if (symtab == NULL)
6852 return;
6853
6854 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6855 NULL, xcalloc, xfree);
6856
6857 for (ix = 0;
6858 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6859 ix, iter);
6860 ++ix)
6861 recursively_compute_inclusions (&result_children, all_children, iter);
6862
6863 /* Now we have a transitive closure of all the included CUs, so
6864 we can convert it to a list of symtabs. */
6865 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6866 symtab->includes
6867 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6868 (len + 1) * sizeof (struct symtab *));
6869 for (ix = 0;
6870 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6871 ++ix)
6872 symtab->includes[ix] = get_symtab (iter);
6873 symtab->includes[len] = NULL;
6874
6875 VEC_free (dwarf2_per_cu_ptr, result_children);
6876 htab_delete (all_children);
6877 }
6878 }
6879
6880 /* Compute the 'includes' field for the symtabs of all the CUs we just
6881 read. */
6882
6883 static void
6884 process_cu_includes (void)
6885 {
6886 int ix;
6887 struct dwarf2_per_cu_data *iter;
6888
6889 for (ix = 0;
6890 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6891 ix, iter);
6892 ++ix)
6893 {
6894 if (! iter->is_debug_types)
6895 compute_symtab_includes (iter);
6896 }
6897
6898 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6899 }
6900
6901 /* Generate full symbol information for PER_CU, whose DIEs have
6902 already been loaded into memory. */
6903
6904 static void
6905 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6906 enum language pretend_language)
6907 {
6908 struct dwarf2_cu *cu = per_cu->cu;
6909 struct objfile *objfile = per_cu->objfile;
6910 CORE_ADDR lowpc, highpc;
6911 struct symtab *symtab;
6912 struct cleanup *back_to, *delayed_list_cleanup;
6913 CORE_ADDR baseaddr;
6914 struct block *static_block;
6915
6916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6917
6918 buildsym_init ();
6919 back_to = make_cleanup (really_free_pendings, NULL);
6920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6921
6922 cu->list_in_scope = &file_symbols;
6923
6924 cu->language = pretend_language;
6925 cu->language_defn = language_def (cu->language);
6926
6927 /* Do line number decoding in read_file_scope () */
6928 process_die (cu->dies, cu);
6929
6930 /* For now fudge the Go package. */
6931 if (cu->language == language_go)
6932 fixup_go_packaging (cu);
6933
6934 /* Now that we have processed all the DIEs in the CU, all the types
6935 should be complete, and it should now be safe to compute all of the
6936 physnames. */
6937 compute_delayed_physnames (cu);
6938 do_cleanups (delayed_list_cleanup);
6939
6940 /* Some compilers don't define a DW_AT_high_pc attribute for the
6941 compilation unit. If the DW_AT_high_pc is missing, synthesize
6942 it, by scanning the DIE's below the compilation unit. */
6943 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6944
6945 static_block
6946 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6947 per_cu->s.imported_symtabs != NULL);
6948
6949 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6950 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6951 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6952 addrmap to help ensure it has an accurate map of pc values belonging to
6953 this comp unit. */
6954 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6955
6956 symtab = end_symtab_from_static_block (static_block, objfile,
6957 SECT_OFF_TEXT (objfile), 0);
6958
6959 if (symtab != NULL)
6960 {
6961 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6962
6963 /* Set symtab language to language from DW_AT_language. If the
6964 compilation is from a C file generated by language preprocessors, do
6965 not set the language if it was already deduced by start_subfile. */
6966 if (!(cu->language == language_c && symtab->language != language_c))
6967 symtab->language = cu->language;
6968
6969 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6970 produce DW_AT_location with location lists but it can be possibly
6971 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6972 there were bugs in prologue debug info, fixed later in GCC-4.5
6973 by "unwind info for epilogues" patch (which is not directly related).
6974
6975 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6976 needed, it would be wrong due to missing DW_AT_producer there.
6977
6978 Still one can confuse GDB by using non-standard GCC compilation
6979 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6980 */
6981 if (cu->has_loclist && gcc_4_minor >= 5)
6982 symtab->locations_valid = 1;
6983
6984 if (gcc_4_minor >= 5)
6985 symtab->epilogue_unwind_valid = 1;
6986
6987 symtab->call_site_htab = cu->call_site_htab;
6988 }
6989
6990 if (dwarf2_per_objfile->using_index)
6991 per_cu->v.quick->symtab = symtab;
6992 else
6993 {
6994 struct partial_symtab *pst = per_cu->v.psymtab;
6995 pst->symtab = symtab;
6996 pst->readin = 1;
6997 }
6998
6999 /* Push it for inclusion processing later. */
7000 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7001
7002 do_cleanups (back_to);
7003 }
7004
7005 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7006 already been loaded into memory. */
7007
7008 static void
7009 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7010 enum language pretend_language)
7011 {
7012 struct dwarf2_cu *cu = per_cu->cu;
7013 struct objfile *objfile = per_cu->objfile;
7014 struct symtab *symtab;
7015 struct cleanup *back_to, *delayed_list_cleanup;
7016
7017 buildsym_init ();
7018 back_to = make_cleanup (really_free_pendings, NULL);
7019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7020
7021 cu->list_in_scope = &file_symbols;
7022
7023 cu->language = pretend_language;
7024 cu->language_defn = language_def (cu->language);
7025
7026 /* The symbol tables are set up in read_type_unit_scope. */
7027 process_die (cu->dies, cu);
7028
7029 /* For now fudge the Go package. */
7030 if (cu->language == language_go)
7031 fixup_go_packaging (cu);
7032
7033 /* Now that we have processed all the DIEs in the CU, all the types
7034 should be complete, and it should now be safe to compute all of the
7035 physnames. */
7036 compute_delayed_physnames (cu);
7037 do_cleanups (delayed_list_cleanup);
7038
7039 /* TUs share symbol tables.
7040 If this is the first TU to use this symtab, complete the construction
7041 of it with end_expandable_symtab. Otherwise, complete the addition of
7042 this TU's symbols to the existing symtab. */
7043 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7044 {
7045 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7046 per_cu->s.type_unit_group->primary_symtab = symtab;
7047
7048 if (symtab != NULL)
7049 {
7050 /* Set symtab language to language from DW_AT_language. If the
7051 compilation is from a C file generated by language preprocessors,
7052 do not set the language if it was already deduced by
7053 start_subfile. */
7054 if (!(cu->language == language_c && symtab->language != language_c))
7055 symtab->language = cu->language;
7056 }
7057 }
7058 else
7059 {
7060 augment_type_symtab (objfile,
7061 per_cu->s.type_unit_group->primary_symtab);
7062 symtab = per_cu->s.type_unit_group->primary_symtab;
7063 }
7064
7065 if (dwarf2_per_objfile->using_index)
7066 per_cu->v.quick->symtab = symtab;
7067 else
7068 {
7069 struct partial_symtab *pst = per_cu->v.psymtab;
7070 pst->symtab = symtab;
7071 pst->readin = 1;
7072 }
7073
7074 do_cleanups (back_to);
7075 }
7076
7077 /* Process an imported unit DIE. */
7078
7079 static void
7080 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7081 {
7082 struct attribute *attr;
7083
7084 /* For now we don't handle imported units in type units. */
7085 if (cu->per_cu->is_debug_types)
7086 {
7087 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7088 " supported in type units [in module %s]"),
7089 cu->objfile->name);
7090 }
7091
7092 attr = dwarf2_attr (die, DW_AT_import, cu);
7093 if (attr != NULL)
7094 {
7095 struct dwarf2_per_cu_data *per_cu;
7096 struct symtab *imported_symtab;
7097 sect_offset offset;
7098 int is_dwz;
7099
7100 offset = dwarf2_get_ref_die_offset (attr);
7101 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7102 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7103
7104 /* Queue the unit, if needed. */
7105 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7106 load_full_comp_unit (per_cu, cu->language);
7107
7108 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7109 per_cu);
7110 }
7111 }
7112
7113 /* Process a die and its children. */
7114
7115 static void
7116 process_die (struct die_info *die, struct dwarf2_cu *cu)
7117 {
7118 switch (die->tag)
7119 {
7120 case DW_TAG_padding:
7121 break;
7122 case DW_TAG_compile_unit:
7123 case DW_TAG_partial_unit:
7124 read_file_scope (die, cu);
7125 break;
7126 case DW_TAG_type_unit:
7127 read_type_unit_scope (die, cu);
7128 break;
7129 case DW_TAG_subprogram:
7130 case DW_TAG_inlined_subroutine:
7131 read_func_scope (die, cu);
7132 break;
7133 case DW_TAG_lexical_block:
7134 case DW_TAG_try_block:
7135 case DW_TAG_catch_block:
7136 read_lexical_block_scope (die, cu);
7137 break;
7138 case DW_TAG_GNU_call_site:
7139 read_call_site_scope (die, cu);
7140 break;
7141 case DW_TAG_class_type:
7142 case DW_TAG_interface_type:
7143 case DW_TAG_structure_type:
7144 case DW_TAG_union_type:
7145 process_structure_scope (die, cu);
7146 break;
7147 case DW_TAG_enumeration_type:
7148 process_enumeration_scope (die, cu);
7149 break;
7150
7151 /* These dies have a type, but processing them does not create
7152 a symbol or recurse to process the children. Therefore we can
7153 read them on-demand through read_type_die. */
7154 case DW_TAG_subroutine_type:
7155 case DW_TAG_set_type:
7156 case DW_TAG_array_type:
7157 case DW_TAG_pointer_type:
7158 case DW_TAG_ptr_to_member_type:
7159 case DW_TAG_reference_type:
7160 case DW_TAG_string_type:
7161 break;
7162
7163 case DW_TAG_base_type:
7164 case DW_TAG_subrange_type:
7165 case DW_TAG_typedef:
7166 /* Add a typedef symbol for the type definition, if it has a
7167 DW_AT_name. */
7168 new_symbol (die, read_type_die (die, cu), cu);
7169 break;
7170 case DW_TAG_common_block:
7171 read_common_block (die, cu);
7172 break;
7173 case DW_TAG_common_inclusion:
7174 break;
7175 case DW_TAG_namespace:
7176 processing_has_namespace_info = 1;
7177 read_namespace (die, cu);
7178 break;
7179 case DW_TAG_module:
7180 processing_has_namespace_info = 1;
7181 read_module (die, cu);
7182 break;
7183 case DW_TAG_imported_declaration:
7184 case DW_TAG_imported_module:
7185 processing_has_namespace_info = 1;
7186 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7187 || cu->language != language_fortran))
7188 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7189 dwarf_tag_name (die->tag));
7190 read_import_statement (die, cu);
7191 break;
7192
7193 case DW_TAG_imported_unit:
7194 process_imported_unit_die (die, cu);
7195 break;
7196
7197 default:
7198 new_symbol (die, NULL, cu);
7199 break;
7200 }
7201 }
7202
7203 /* A helper function for dwarf2_compute_name which determines whether DIE
7204 needs to have the name of the scope prepended to the name listed in the
7205 die. */
7206
7207 static int
7208 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7209 {
7210 struct attribute *attr;
7211
7212 switch (die->tag)
7213 {
7214 case DW_TAG_namespace:
7215 case DW_TAG_typedef:
7216 case DW_TAG_class_type:
7217 case DW_TAG_interface_type:
7218 case DW_TAG_structure_type:
7219 case DW_TAG_union_type:
7220 case DW_TAG_enumeration_type:
7221 case DW_TAG_enumerator:
7222 case DW_TAG_subprogram:
7223 case DW_TAG_member:
7224 return 1;
7225
7226 case DW_TAG_variable:
7227 case DW_TAG_constant:
7228 /* We only need to prefix "globally" visible variables. These include
7229 any variable marked with DW_AT_external or any variable that
7230 lives in a namespace. [Variables in anonymous namespaces
7231 require prefixing, but they are not DW_AT_external.] */
7232
7233 if (dwarf2_attr (die, DW_AT_specification, cu))
7234 {
7235 struct dwarf2_cu *spec_cu = cu;
7236
7237 return die_needs_namespace (die_specification (die, &spec_cu),
7238 spec_cu);
7239 }
7240
7241 attr = dwarf2_attr (die, DW_AT_external, cu);
7242 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7243 && die->parent->tag != DW_TAG_module)
7244 return 0;
7245 /* A variable in a lexical block of some kind does not need a
7246 namespace, even though in C++ such variables may be external
7247 and have a mangled name. */
7248 if (die->parent->tag == DW_TAG_lexical_block
7249 || die->parent->tag == DW_TAG_try_block
7250 || die->parent->tag == DW_TAG_catch_block
7251 || die->parent->tag == DW_TAG_subprogram)
7252 return 0;
7253 return 1;
7254
7255 default:
7256 return 0;
7257 }
7258 }
7259
7260 /* Retrieve the last character from a mem_file. */
7261
7262 static void
7263 do_ui_file_peek_last (void *object, const char *buffer, long length)
7264 {
7265 char *last_char_p = (char *) object;
7266
7267 if (length > 0)
7268 *last_char_p = buffer[length - 1];
7269 }
7270
7271 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7272 compute the physname for the object, which include a method's:
7273 - formal parameters (C++/Java),
7274 - receiver type (Go),
7275 - return type (Java).
7276
7277 The term "physname" is a bit confusing.
7278 For C++, for example, it is the demangled name.
7279 For Go, for example, it's the mangled name.
7280
7281 For Ada, return the DIE's linkage name rather than the fully qualified
7282 name. PHYSNAME is ignored..
7283
7284 The result is allocated on the objfile_obstack and canonicalized. */
7285
7286 static const char *
7287 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7288 int physname)
7289 {
7290 struct objfile *objfile = cu->objfile;
7291
7292 if (name == NULL)
7293 name = dwarf2_name (die, cu);
7294
7295 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7296 compute it by typename_concat inside GDB. */
7297 if (cu->language == language_ada
7298 || (cu->language == language_fortran && physname))
7299 {
7300 /* For Ada unit, we prefer the linkage name over the name, as
7301 the former contains the exported name, which the user expects
7302 to be able to reference. Ideally, we want the user to be able
7303 to reference this entity using either natural or linkage name,
7304 but we haven't started looking at this enhancement yet. */
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7308 if (attr == NULL)
7309 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7310 if (attr && DW_STRING (attr))
7311 return DW_STRING (attr);
7312 }
7313
7314 /* These are the only languages we know how to qualify names in. */
7315 if (name != NULL
7316 && (cu->language == language_cplus || cu->language == language_java
7317 || cu->language == language_fortran))
7318 {
7319 if (die_needs_namespace (die, cu))
7320 {
7321 long length;
7322 const char *prefix;
7323 struct ui_file *buf;
7324
7325 prefix = determine_prefix (die, cu);
7326 buf = mem_fileopen ();
7327 if (*prefix != '\0')
7328 {
7329 char *prefixed_name = typename_concat (NULL, prefix, name,
7330 physname, cu);
7331
7332 fputs_unfiltered (prefixed_name, buf);
7333 xfree (prefixed_name);
7334 }
7335 else
7336 fputs_unfiltered (name, buf);
7337
7338 /* Template parameters may be specified in the DIE's DW_AT_name, or
7339 as children with DW_TAG_template_type_param or
7340 DW_TAG_value_type_param. If the latter, add them to the name
7341 here. If the name already has template parameters, then
7342 skip this step; some versions of GCC emit both, and
7343 it is more efficient to use the pre-computed name.
7344
7345 Something to keep in mind about this process: it is very
7346 unlikely, or in some cases downright impossible, to produce
7347 something that will match the mangled name of a function.
7348 If the definition of the function has the same debug info,
7349 we should be able to match up with it anyway. But fallbacks
7350 using the minimal symbol, for instance to find a method
7351 implemented in a stripped copy of libstdc++, will not work.
7352 If we do not have debug info for the definition, we will have to
7353 match them up some other way.
7354
7355 When we do name matching there is a related problem with function
7356 templates; two instantiated function templates are allowed to
7357 differ only by their return types, which we do not add here. */
7358
7359 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7360 {
7361 struct attribute *attr;
7362 struct die_info *child;
7363 int first = 1;
7364
7365 die->building_fullname = 1;
7366
7367 for (child = die->child; child != NULL; child = child->sibling)
7368 {
7369 struct type *type;
7370 LONGEST value;
7371 gdb_byte *bytes;
7372 struct dwarf2_locexpr_baton *baton;
7373 struct value *v;
7374
7375 if (child->tag != DW_TAG_template_type_param
7376 && child->tag != DW_TAG_template_value_param)
7377 continue;
7378
7379 if (first)
7380 {
7381 fputs_unfiltered ("<", buf);
7382 first = 0;
7383 }
7384 else
7385 fputs_unfiltered (", ", buf);
7386
7387 attr = dwarf2_attr (child, DW_AT_type, cu);
7388 if (attr == NULL)
7389 {
7390 complaint (&symfile_complaints,
7391 _("template parameter missing DW_AT_type"));
7392 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7393 continue;
7394 }
7395 type = die_type (child, cu);
7396
7397 if (child->tag == DW_TAG_template_type_param)
7398 {
7399 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7400 continue;
7401 }
7402
7403 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7404 if (attr == NULL)
7405 {
7406 complaint (&symfile_complaints,
7407 _("template parameter missing "
7408 "DW_AT_const_value"));
7409 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7410 continue;
7411 }
7412
7413 dwarf2_const_value_attr (attr, type, name,
7414 &cu->comp_unit_obstack, cu,
7415 &value, &bytes, &baton);
7416
7417 if (TYPE_NOSIGN (type))
7418 /* GDB prints characters as NUMBER 'CHAR'. If that's
7419 changed, this can use value_print instead. */
7420 c_printchar (value, type, buf);
7421 else
7422 {
7423 struct value_print_options opts;
7424
7425 if (baton != NULL)
7426 v = dwarf2_evaluate_loc_desc (type, NULL,
7427 baton->data,
7428 baton->size,
7429 baton->per_cu);
7430 else if (bytes != NULL)
7431 {
7432 v = allocate_value (type);
7433 memcpy (value_contents_writeable (v), bytes,
7434 TYPE_LENGTH (type));
7435 }
7436 else
7437 v = value_from_longest (type, value);
7438
7439 /* Specify decimal so that we do not depend on
7440 the radix. */
7441 get_formatted_print_options (&opts, 'd');
7442 opts.raw = 1;
7443 value_print (v, buf, &opts);
7444 release_value (v);
7445 value_free (v);
7446 }
7447 }
7448
7449 die->building_fullname = 0;
7450
7451 if (!first)
7452 {
7453 /* Close the argument list, with a space if necessary
7454 (nested templates). */
7455 char last_char = '\0';
7456 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7457 if (last_char == '>')
7458 fputs_unfiltered (" >", buf);
7459 else
7460 fputs_unfiltered (">", buf);
7461 }
7462 }
7463
7464 /* For Java and C++ methods, append formal parameter type
7465 information, if PHYSNAME. */
7466
7467 if (physname && die->tag == DW_TAG_subprogram
7468 && (cu->language == language_cplus
7469 || cu->language == language_java))
7470 {
7471 struct type *type = read_type_die (die, cu);
7472
7473 c_type_print_args (type, buf, 1, cu->language,
7474 &type_print_raw_options);
7475
7476 if (cu->language == language_java)
7477 {
7478 /* For java, we must append the return type to method
7479 names. */
7480 if (die->tag == DW_TAG_subprogram)
7481 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7482 0, 0, &type_print_raw_options);
7483 }
7484 else if (cu->language == language_cplus)
7485 {
7486 /* Assume that an artificial first parameter is
7487 "this", but do not crash if it is not. RealView
7488 marks unnamed (and thus unused) parameters as
7489 artificial; there is no way to differentiate
7490 the two cases. */
7491 if (TYPE_NFIELDS (type) > 0
7492 && TYPE_FIELD_ARTIFICIAL (type, 0)
7493 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7494 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7495 0))))
7496 fputs_unfiltered (" const", buf);
7497 }
7498 }
7499
7500 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7501 &length);
7502 ui_file_delete (buf);
7503
7504 if (cu->language == language_cplus)
7505 {
7506 char *cname
7507 = dwarf2_canonicalize_name (name, cu,
7508 &objfile->objfile_obstack);
7509
7510 if (cname != NULL)
7511 name = cname;
7512 }
7513 }
7514 }
7515
7516 return name;
7517 }
7518
7519 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7520 If scope qualifiers are appropriate they will be added. The result
7521 will be allocated on the objfile_obstack, or NULL if the DIE does
7522 not have a name. NAME may either be from a previous call to
7523 dwarf2_name or NULL.
7524
7525 The output string will be canonicalized (if C++/Java). */
7526
7527 static const char *
7528 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7529 {
7530 return dwarf2_compute_name (name, die, cu, 0);
7531 }
7532
7533 /* Construct a physname for the given DIE in CU. NAME may either be
7534 from a previous call to dwarf2_name or NULL. The result will be
7535 allocated on the objfile_objstack or NULL if the DIE does not have a
7536 name.
7537
7538 The output string will be canonicalized (if C++/Java). */
7539
7540 static const char *
7541 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7542 {
7543 struct objfile *objfile = cu->objfile;
7544 struct attribute *attr;
7545 const char *retval, *mangled = NULL, *canon = NULL;
7546 struct cleanup *back_to;
7547 int need_copy = 1;
7548
7549 /* In this case dwarf2_compute_name is just a shortcut not building anything
7550 on its own. */
7551 if (!die_needs_namespace (die, cu))
7552 return dwarf2_compute_name (name, die, cu, 1);
7553
7554 back_to = make_cleanup (null_cleanup, NULL);
7555
7556 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7557 if (!attr)
7558 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7559
7560 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7561 has computed. */
7562 if (attr && DW_STRING (attr))
7563 {
7564 char *demangled;
7565
7566 mangled = DW_STRING (attr);
7567
7568 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7569 type. It is easier for GDB users to search for such functions as
7570 `name(params)' than `long name(params)'. In such case the minimal
7571 symbol names do not match the full symbol names but for template
7572 functions there is never a need to look up their definition from their
7573 declaration so the only disadvantage remains the minimal symbol
7574 variant `long name(params)' does not have the proper inferior type.
7575 */
7576
7577 if (cu->language == language_go)
7578 {
7579 /* This is a lie, but we already lie to the caller new_symbol_full.
7580 new_symbol_full assumes we return the mangled name.
7581 This just undoes that lie until things are cleaned up. */
7582 demangled = NULL;
7583 }
7584 else
7585 {
7586 demangled = cplus_demangle (mangled,
7587 (DMGL_PARAMS | DMGL_ANSI
7588 | (cu->language == language_java
7589 ? DMGL_JAVA | DMGL_RET_POSTFIX
7590 : DMGL_RET_DROP)));
7591 }
7592 if (demangled)
7593 {
7594 make_cleanup (xfree, demangled);
7595 canon = demangled;
7596 }
7597 else
7598 {
7599 canon = mangled;
7600 need_copy = 0;
7601 }
7602 }
7603
7604 if (canon == NULL || check_physname)
7605 {
7606 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7607
7608 if (canon != NULL && strcmp (physname, canon) != 0)
7609 {
7610 /* It may not mean a bug in GDB. The compiler could also
7611 compute DW_AT_linkage_name incorrectly. But in such case
7612 GDB would need to be bug-to-bug compatible. */
7613
7614 complaint (&symfile_complaints,
7615 _("Computed physname <%s> does not match demangled <%s> "
7616 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7617 physname, canon, mangled, die->offset.sect_off, objfile->name);
7618
7619 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7620 is available here - over computed PHYSNAME. It is safer
7621 against both buggy GDB and buggy compilers. */
7622
7623 retval = canon;
7624 }
7625 else
7626 {
7627 retval = physname;
7628 need_copy = 0;
7629 }
7630 }
7631 else
7632 retval = canon;
7633
7634 if (need_copy)
7635 retval = obsavestring (retval, strlen (retval),
7636 &objfile->objfile_obstack);
7637
7638 do_cleanups (back_to);
7639 return retval;
7640 }
7641
7642 /* Read the import statement specified by the given die and record it. */
7643
7644 static void
7645 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7646 {
7647 struct objfile *objfile = cu->objfile;
7648 struct attribute *import_attr;
7649 struct die_info *imported_die, *child_die;
7650 struct dwarf2_cu *imported_cu;
7651 const char *imported_name;
7652 const char *imported_name_prefix;
7653 const char *canonical_name;
7654 const char *import_alias;
7655 const char *imported_declaration = NULL;
7656 const char *import_prefix;
7657 VEC (const_char_ptr) *excludes = NULL;
7658 struct cleanup *cleanups;
7659
7660 char *temp;
7661
7662 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7663 if (import_attr == NULL)
7664 {
7665 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7666 dwarf_tag_name (die->tag));
7667 return;
7668 }
7669
7670 imported_cu = cu;
7671 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7672 imported_name = dwarf2_name (imported_die, imported_cu);
7673 if (imported_name == NULL)
7674 {
7675 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7676
7677 The import in the following code:
7678 namespace A
7679 {
7680 typedef int B;
7681 }
7682
7683 int main ()
7684 {
7685 using A::B;
7686 B b;
7687 return b;
7688 }
7689
7690 ...
7691 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7692 <52> DW_AT_decl_file : 1
7693 <53> DW_AT_decl_line : 6
7694 <54> DW_AT_import : <0x75>
7695 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7696 <59> DW_AT_name : B
7697 <5b> DW_AT_decl_file : 1
7698 <5c> DW_AT_decl_line : 2
7699 <5d> DW_AT_type : <0x6e>
7700 ...
7701 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7702 <76> DW_AT_byte_size : 4
7703 <77> DW_AT_encoding : 5 (signed)
7704
7705 imports the wrong die ( 0x75 instead of 0x58 ).
7706 This case will be ignored until the gcc bug is fixed. */
7707 return;
7708 }
7709
7710 /* Figure out the local name after import. */
7711 import_alias = dwarf2_name (die, cu);
7712
7713 /* Figure out where the statement is being imported to. */
7714 import_prefix = determine_prefix (die, cu);
7715
7716 /* Figure out what the scope of the imported die is and prepend it
7717 to the name of the imported die. */
7718 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7719
7720 if (imported_die->tag != DW_TAG_namespace
7721 && imported_die->tag != DW_TAG_module)
7722 {
7723 imported_declaration = imported_name;
7724 canonical_name = imported_name_prefix;
7725 }
7726 else if (strlen (imported_name_prefix) > 0)
7727 {
7728 temp = alloca (strlen (imported_name_prefix)
7729 + 2 + strlen (imported_name) + 1);
7730 strcpy (temp, imported_name_prefix);
7731 strcat (temp, "::");
7732 strcat (temp, imported_name);
7733 canonical_name = temp;
7734 }
7735 else
7736 canonical_name = imported_name;
7737
7738 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7739
7740 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7741 for (child_die = die->child; child_die && child_die->tag;
7742 child_die = sibling_die (child_die))
7743 {
7744 /* DWARF-4: A Fortran use statement with a “rename list” may be
7745 represented by an imported module entry with an import attribute
7746 referring to the module and owned entries corresponding to those
7747 entities that are renamed as part of being imported. */
7748
7749 if (child_die->tag != DW_TAG_imported_declaration)
7750 {
7751 complaint (&symfile_complaints,
7752 _("child DW_TAG_imported_declaration expected "
7753 "- DIE at 0x%x [in module %s]"),
7754 child_die->offset.sect_off, objfile->name);
7755 continue;
7756 }
7757
7758 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7759 if (import_attr == NULL)
7760 {
7761 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7762 dwarf_tag_name (child_die->tag));
7763 continue;
7764 }
7765
7766 imported_cu = cu;
7767 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7768 &imported_cu);
7769 imported_name = dwarf2_name (imported_die, imported_cu);
7770 if (imported_name == NULL)
7771 {
7772 complaint (&symfile_complaints,
7773 _("child DW_TAG_imported_declaration has unknown "
7774 "imported name - DIE at 0x%x [in module %s]"),
7775 child_die->offset.sect_off, objfile->name);
7776 continue;
7777 }
7778
7779 VEC_safe_push (const_char_ptr, excludes, imported_name);
7780
7781 process_die (child_die, cu);
7782 }
7783
7784 cp_add_using_directive (import_prefix,
7785 canonical_name,
7786 import_alias,
7787 imported_declaration,
7788 excludes,
7789 &objfile->objfile_obstack);
7790
7791 do_cleanups (cleanups);
7792 }
7793
7794 /* Cleanup function for handle_DW_AT_stmt_list. */
7795
7796 static void
7797 free_cu_line_header (void *arg)
7798 {
7799 struct dwarf2_cu *cu = arg;
7800
7801 free_line_header (cu->line_header);
7802 cu->line_header = NULL;
7803 }
7804
7805 static void
7806 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7807 char **name, char **comp_dir)
7808 {
7809 struct attribute *attr;
7810
7811 *name = NULL;
7812 *comp_dir = NULL;
7813
7814 /* Find the filename. Do not use dwarf2_name here, since the filename
7815 is not a source language identifier. */
7816 attr = dwarf2_attr (die, DW_AT_name, cu);
7817 if (attr)
7818 {
7819 *name = DW_STRING (attr);
7820 }
7821
7822 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7823 if (attr)
7824 *comp_dir = DW_STRING (attr);
7825 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7826 {
7827 *comp_dir = ldirname (*name);
7828 if (*comp_dir != NULL)
7829 make_cleanup (xfree, *comp_dir);
7830 }
7831 if (*comp_dir != NULL)
7832 {
7833 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7834 directory, get rid of it. */
7835 char *cp = strchr (*comp_dir, ':');
7836
7837 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7838 *comp_dir = cp + 1;
7839 }
7840
7841 if (*name == NULL)
7842 *name = "<unknown>";
7843 }
7844
7845 /* Handle DW_AT_stmt_list for a compilation unit.
7846 DIE is the DW_TAG_compile_unit die for CU.
7847 COMP_DIR is the compilation directory.
7848 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7849
7850 static void
7851 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7852 const char *comp_dir)
7853 {
7854 struct attribute *attr;
7855
7856 gdb_assert (! cu->per_cu->is_debug_types);
7857
7858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7859 if (attr)
7860 {
7861 unsigned int line_offset = DW_UNSND (attr);
7862 struct line_header *line_header
7863 = dwarf_decode_line_header (line_offset, cu);
7864
7865 if (line_header)
7866 {
7867 cu->line_header = line_header;
7868 make_cleanup (free_cu_line_header, cu);
7869 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7870 }
7871 }
7872 }
7873
7874 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7875
7876 static void
7877 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7878 {
7879 struct objfile *objfile = dwarf2_per_objfile->objfile;
7880 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7881 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7882 CORE_ADDR highpc = ((CORE_ADDR) 0);
7883 struct attribute *attr;
7884 char *name = NULL;
7885 char *comp_dir = NULL;
7886 struct die_info *child_die;
7887 bfd *abfd = objfile->obfd;
7888 CORE_ADDR baseaddr;
7889
7890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7891
7892 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7893
7894 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7895 from finish_block. */
7896 if (lowpc == ((CORE_ADDR) -1))
7897 lowpc = highpc;
7898 lowpc += baseaddr;
7899 highpc += baseaddr;
7900
7901 find_file_and_directory (die, cu, &name, &comp_dir);
7902
7903 prepare_one_comp_unit (cu, die, cu->language);
7904
7905 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7906 standardised yet. As a workaround for the language detection we fall
7907 back to the DW_AT_producer string. */
7908 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7909 cu->language = language_opencl;
7910
7911 /* Similar hack for Go. */
7912 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7913 set_cu_language (DW_LANG_Go, cu);
7914
7915 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7916
7917 /* Decode line number information if present. We do this before
7918 processing child DIEs, so that the line header table is available
7919 for DW_AT_decl_file. */
7920 handle_DW_AT_stmt_list (die, cu, comp_dir);
7921
7922 /* Process all dies in compilation unit. */
7923 if (die->child != NULL)
7924 {
7925 child_die = die->child;
7926 while (child_die && child_die->tag)
7927 {
7928 process_die (child_die, cu);
7929 child_die = sibling_die (child_die);
7930 }
7931 }
7932
7933 /* Decode macro information, if present. Dwarf 2 macro information
7934 refers to information in the line number info statement program
7935 header, so we can only read it if we've read the header
7936 successfully. */
7937 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7938 if (attr && cu->line_header)
7939 {
7940 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7941 complaint (&symfile_complaints,
7942 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7943
7944 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7945 }
7946 else
7947 {
7948 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7949 if (attr && cu->line_header)
7950 {
7951 unsigned int macro_offset = DW_UNSND (attr);
7952
7953 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7954 }
7955 }
7956
7957 do_cleanups (back_to);
7958 }
7959
7960 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7961 Create the set of symtabs used by this TU, or if this TU is sharing
7962 symtabs with another TU and the symtabs have already been created
7963 then restore those symtabs in the line header.
7964 We don't need the pc/line-number mapping for type units. */
7965
7966 static void
7967 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7968 {
7969 struct objfile *objfile = dwarf2_per_objfile->objfile;
7970 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7971 struct type_unit_group *tu_group;
7972 int first_time;
7973 struct line_header *lh;
7974 struct attribute *attr;
7975 unsigned int i, line_offset;
7976
7977 gdb_assert (per_cu->is_debug_types);
7978
7979 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7980
7981 /* If we're using .gdb_index (includes -readnow) then
7982 per_cu->s.type_unit_group may not have been set up yet. */
7983 if (per_cu->s.type_unit_group == NULL)
7984 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7985 tu_group = per_cu->s.type_unit_group;
7986
7987 /* If we've already processed this stmt_list there's no real need to
7988 do it again, we could fake it and just recreate the part we need
7989 (file name,index -> symtab mapping). If data shows this optimization
7990 is useful we can do it then. */
7991 first_time = tu_group->primary_symtab == NULL;
7992
7993 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7994 debug info. */
7995 lh = NULL;
7996 if (attr != NULL)
7997 {
7998 line_offset = DW_UNSND (attr);
7999 lh = dwarf_decode_line_header (line_offset, cu);
8000 }
8001 if (lh == NULL)
8002 {
8003 if (first_time)
8004 dwarf2_start_symtab (cu, "", NULL, 0);
8005 else
8006 {
8007 gdb_assert (tu_group->symtabs == NULL);
8008 restart_symtab (0);
8009 }
8010 /* Note: The primary symtab will get allocated at the end. */
8011 return;
8012 }
8013
8014 cu->line_header = lh;
8015 make_cleanup (free_cu_line_header, cu);
8016
8017 if (first_time)
8018 {
8019 dwarf2_start_symtab (cu, "", NULL, 0);
8020
8021 tu_group->num_symtabs = lh->num_file_names;
8022 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8023
8024 for (i = 0; i < lh->num_file_names; ++i)
8025 {
8026 char *dir = NULL;
8027 struct file_entry *fe = &lh->file_names[i];
8028
8029 if (fe->dir_index)
8030 dir = lh->include_dirs[fe->dir_index - 1];
8031 dwarf2_start_subfile (fe->name, dir, NULL);
8032
8033 /* Note: We don't have to watch for the main subfile here, type units
8034 don't have DW_AT_name. */
8035
8036 if (current_subfile->symtab == NULL)
8037 {
8038 /* NOTE: start_subfile will recognize when it's been passed
8039 a file it has already seen. So we can't assume there's a
8040 simple mapping from lh->file_names to subfiles,
8041 lh->file_names may contain dups. */
8042 current_subfile->symtab = allocate_symtab (current_subfile->name,
8043 objfile);
8044 }
8045
8046 fe->symtab = current_subfile->symtab;
8047 tu_group->symtabs[i] = fe->symtab;
8048 }
8049 }
8050 else
8051 {
8052 restart_symtab (0);
8053
8054 for (i = 0; i < lh->num_file_names; ++i)
8055 {
8056 struct file_entry *fe = &lh->file_names[i];
8057
8058 fe->symtab = tu_group->symtabs[i];
8059 }
8060 }
8061
8062 /* The main symtab is allocated last. Type units don't have DW_AT_name
8063 so they don't have a "real" (so to speak) symtab anyway.
8064 There is later code that will assign the main symtab to all symbols
8065 that don't have one. We need to handle the case of a symbol with a
8066 missing symtab (DW_AT_decl_file) anyway. */
8067 }
8068
8069 /* Process DW_TAG_type_unit.
8070 For TUs we want to skip the first top level sibling if it's not the
8071 actual type being defined by this TU. In this case the first top
8072 level sibling is there to provide context only. */
8073
8074 static void
8075 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8076 {
8077 struct die_info *child_die;
8078
8079 prepare_one_comp_unit (cu, die, language_minimal);
8080
8081 /* Initialize (or reinitialize) the machinery for building symtabs.
8082 We do this before processing child DIEs, so that the line header table
8083 is available for DW_AT_decl_file. */
8084 setup_type_unit_groups (die, cu);
8085
8086 if (die->child != NULL)
8087 {
8088 child_die = die->child;
8089 while (child_die && child_die->tag)
8090 {
8091 process_die (child_die, cu);
8092 child_die = sibling_die (child_die);
8093 }
8094 }
8095 }
8096 \f
8097 /* DWO/DWP files.
8098
8099 http://gcc.gnu.org/wiki/DebugFission
8100 http://gcc.gnu.org/wiki/DebugFissionDWP
8101
8102 To simplify handling of both DWO files ("object" files with the DWARF info)
8103 and DWP files (a file with the DWOs packaged up into one file), we treat
8104 DWP files as having a collection of virtual DWO files. */
8105
8106 static hashval_t
8107 hash_dwo_file (const void *item)
8108 {
8109 const struct dwo_file *dwo_file = item;
8110
8111 return htab_hash_string (dwo_file->name);
8112 }
8113
8114 static int
8115 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8116 {
8117 const struct dwo_file *lhs = item_lhs;
8118 const struct dwo_file *rhs = item_rhs;
8119
8120 return strcmp (lhs->name, rhs->name) == 0;
8121 }
8122
8123 /* Allocate a hash table for DWO files. */
8124
8125 static htab_t
8126 allocate_dwo_file_hash_table (void)
8127 {
8128 struct objfile *objfile = dwarf2_per_objfile->objfile;
8129
8130 return htab_create_alloc_ex (41,
8131 hash_dwo_file,
8132 eq_dwo_file,
8133 NULL,
8134 &objfile->objfile_obstack,
8135 hashtab_obstack_allocate,
8136 dummy_obstack_deallocate);
8137 }
8138
8139 /* Lookup DWO file DWO_NAME. */
8140
8141 static void **
8142 lookup_dwo_file_slot (const char *dwo_name)
8143 {
8144 struct dwo_file find_entry;
8145 void **slot;
8146
8147 if (dwarf2_per_objfile->dwo_files == NULL)
8148 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8149
8150 memset (&find_entry, 0, sizeof (find_entry));
8151 find_entry.name = dwo_name;
8152 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8153
8154 return slot;
8155 }
8156
8157 static hashval_t
8158 hash_dwo_unit (const void *item)
8159 {
8160 const struct dwo_unit *dwo_unit = item;
8161
8162 /* This drops the top 32 bits of the id, but is ok for a hash. */
8163 return dwo_unit->signature;
8164 }
8165
8166 static int
8167 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8168 {
8169 const struct dwo_unit *lhs = item_lhs;
8170 const struct dwo_unit *rhs = item_rhs;
8171
8172 /* The signature is assumed to be unique within the DWO file.
8173 So while object file CU dwo_id's always have the value zero,
8174 that's OK, assuming each object file DWO file has only one CU,
8175 and that's the rule for now. */
8176 return lhs->signature == rhs->signature;
8177 }
8178
8179 /* Allocate a hash table for DWO CUs,TUs.
8180 There is one of these tables for each of CUs,TUs for each DWO file. */
8181
8182 static htab_t
8183 allocate_dwo_unit_table (struct objfile *objfile)
8184 {
8185 /* Start out with a pretty small number.
8186 Generally DWO files contain only one CU and maybe some TUs. */
8187 return htab_create_alloc_ex (3,
8188 hash_dwo_unit,
8189 eq_dwo_unit,
8190 NULL,
8191 &objfile->objfile_obstack,
8192 hashtab_obstack_allocate,
8193 dummy_obstack_deallocate);
8194 }
8195
8196 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8197
8198 struct create_dwo_info_table_data
8199 {
8200 struct dwo_file *dwo_file;
8201 htab_t cu_htab;
8202 };
8203
8204 /* die_reader_func for create_dwo_debug_info_hash_table. */
8205
8206 static void
8207 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8208 gdb_byte *info_ptr,
8209 struct die_info *comp_unit_die,
8210 int has_children,
8211 void *datap)
8212 {
8213 struct dwarf2_cu *cu = reader->cu;
8214 struct objfile *objfile = dwarf2_per_objfile->objfile;
8215 sect_offset offset = cu->per_cu->offset;
8216 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8217 struct create_dwo_info_table_data *data = datap;
8218 struct dwo_file *dwo_file = data->dwo_file;
8219 htab_t cu_htab = data->cu_htab;
8220 void **slot;
8221 struct attribute *attr;
8222 struct dwo_unit *dwo_unit;
8223
8224 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8225 if (attr == NULL)
8226 {
8227 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8228 " its dwo_id [in module %s]"),
8229 offset.sect_off, dwo_file->name);
8230 return;
8231 }
8232
8233 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8234 dwo_unit->dwo_file = dwo_file;
8235 dwo_unit->signature = DW_UNSND (attr);
8236 dwo_unit->info_or_types_section = section;
8237 dwo_unit->offset = offset;
8238 dwo_unit->length = cu->per_cu->length;
8239
8240 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8241 gdb_assert (slot != NULL);
8242 if (*slot != NULL)
8243 {
8244 const struct dwo_unit *dup_dwo_unit = *slot;
8245
8246 complaint (&symfile_complaints,
8247 _("debug entry at offset 0x%x is duplicate to the entry at"
8248 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8249 offset.sect_off, dup_dwo_unit->offset.sect_off,
8250 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8251 dwo_file->name);
8252 }
8253 else
8254 *slot = dwo_unit;
8255
8256 if (dwarf2_read_debug)
8257 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8258 offset.sect_off,
8259 phex (dwo_unit->signature,
8260 sizeof (dwo_unit->signature)));
8261 }
8262
8263 /* Create a hash table to map DWO IDs to their CU entry in
8264 .debug_info.dwo in DWO_FILE.
8265 Note: This function processes DWO files only, not DWP files. */
8266
8267 static htab_t
8268 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8269 {
8270 struct objfile *objfile = dwarf2_per_objfile->objfile;
8271 struct dwarf2_section_info *section = &dwo_file->sections.info;
8272 bfd *abfd;
8273 htab_t cu_htab;
8274 gdb_byte *info_ptr, *end_ptr;
8275 struct create_dwo_info_table_data create_dwo_info_table_data;
8276
8277 dwarf2_read_section (objfile, section);
8278 info_ptr = section->buffer;
8279
8280 if (info_ptr == NULL)
8281 return NULL;
8282
8283 /* We can't set abfd until now because the section may be empty or
8284 not present, in which case section->asection will be NULL. */
8285 abfd = section->asection->owner;
8286
8287 if (dwarf2_read_debug)
8288 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8289 bfd_get_filename (abfd));
8290
8291 cu_htab = allocate_dwo_unit_table (objfile);
8292
8293 create_dwo_info_table_data.dwo_file = dwo_file;
8294 create_dwo_info_table_data.cu_htab = cu_htab;
8295
8296 end_ptr = info_ptr + section->size;
8297 while (info_ptr < end_ptr)
8298 {
8299 struct dwarf2_per_cu_data per_cu;
8300
8301 memset (&per_cu, 0, sizeof (per_cu));
8302 per_cu.objfile = objfile;
8303 per_cu.is_debug_types = 0;
8304 per_cu.offset.sect_off = info_ptr - section->buffer;
8305 per_cu.info_or_types_section = section;
8306
8307 init_cutu_and_read_dies_no_follow (&per_cu,
8308 &dwo_file->sections.abbrev,
8309 dwo_file,
8310 create_dwo_debug_info_hash_table_reader,
8311 &create_dwo_info_table_data);
8312
8313 info_ptr += per_cu.length;
8314 }
8315
8316 return cu_htab;
8317 }
8318
8319 /* DWP file .debug_{cu,tu}_index section format:
8320 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8321
8322 Both index sections have the same format, and serve to map a 64-bit
8323 signature to a set of section numbers. Each section begins with a header,
8324 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8325 indexes, and a pool of 32-bit section numbers. The index sections will be
8326 aligned at 8-byte boundaries in the file.
8327
8328 The index section header contains two unsigned 32-bit values (using the
8329 byte order of the application binary):
8330
8331 N, the number of compilation units or type units in the index
8332 M, the number of slots in the hash table
8333
8334 (We assume that N and M will not exceed 2^32 - 1.)
8335
8336 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8337
8338 The hash table begins at offset 8 in the section, and consists of an array
8339 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8340 order of the application binary). Unused slots in the hash table are 0.
8341 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8342
8343 The parallel table begins immediately after the hash table
8344 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8345 array of 32-bit indexes (using the byte order of the application binary),
8346 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8347 table contains a 32-bit index into the pool of section numbers. For unused
8348 hash table slots, the corresponding entry in the parallel table will be 0.
8349
8350 Given a 64-bit compilation unit signature or a type signature S, an entry
8351 in the hash table is located as follows:
8352
8353 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8354 the low-order k bits all set to 1.
8355
8356 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8357
8358 3) If the hash table entry at index H matches the signature, use that
8359 entry. If the hash table entry at index H is unused (all zeroes),
8360 terminate the search: the signature is not present in the table.
8361
8362 4) Let H = (H + H') modulo M. Repeat at Step 3.
8363
8364 Because M > N and H' and M are relatively prime, the search is guaranteed
8365 to stop at an unused slot or find the match.
8366
8367 The pool of section numbers begins immediately following the hash table
8368 (at offset 8 + 12 * M from the beginning of the section). The pool of
8369 section numbers consists of an array of 32-bit words (using the byte order
8370 of the application binary). Each item in the array is indexed starting
8371 from 0. The hash table entry provides the index of the first section
8372 number in the set. Additional section numbers in the set follow, and the
8373 set is terminated by a 0 entry (section number 0 is not used in ELF).
8374
8375 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8376 section must be the first entry in the set, and the .debug_abbrev.dwo must
8377 be the second entry. Other members of the set may follow in any order. */
8378
8379 /* Create a hash table to map DWO IDs to their CU/TU entry in
8380 .debug_{info,types}.dwo in DWP_FILE.
8381 Returns NULL if there isn't one.
8382 Note: This function processes DWP files only, not DWO files. */
8383
8384 static struct dwp_hash_table *
8385 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8386 {
8387 struct objfile *objfile = dwarf2_per_objfile->objfile;
8388 bfd *dbfd = dwp_file->dbfd;
8389 char *index_ptr, *index_end;
8390 struct dwarf2_section_info *index;
8391 uint32_t version, nr_units, nr_slots;
8392 struct dwp_hash_table *htab;
8393
8394 if (is_debug_types)
8395 index = &dwp_file->sections.tu_index;
8396 else
8397 index = &dwp_file->sections.cu_index;
8398
8399 if (dwarf2_section_empty_p (index))
8400 return NULL;
8401 dwarf2_read_section (objfile, index);
8402
8403 index_ptr = index->buffer;
8404 index_end = index_ptr + index->size;
8405
8406 version = read_4_bytes (dbfd, index_ptr);
8407 index_ptr += 8; /* Skip the unused word. */
8408 nr_units = read_4_bytes (dbfd, index_ptr);
8409 index_ptr += 4;
8410 nr_slots = read_4_bytes (dbfd, index_ptr);
8411 index_ptr += 4;
8412
8413 if (version != 1)
8414 {
8415 error (_("Dwarf Error: unsupported DWP file version (%u)"
8416 " [in module %s]"),
8417 version, dwp_file->name);
8418 }
8419 if (nr_slots != (nr_slots & -nr_slots))
8420 {
8421 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8422 " is not power of 2 [in module %s]"),
8423 nr_slots, dwp_file->name);
8424 }
8425
8426 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8427 htab->nr_units = nr_units;
8428 htab->nr_slots = nr_slots;
8429 htab->hash_table = index_ptr;
8430 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8431 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8432
8433 return htab;
8434 }
8435
8436 /* Update SECTIONS with the data from SECTP.
8437
8438 This function is like the other "locate" section routines that are
8439 passed to bfd_map_over_sections, but in this context the sections to
8440 read comes from the DWP hash table, not the full ELF section table.
8441
8442 The result is non-zero for success, or zero if an error was found. */
8443
8444 static int
8445 locate_virtual_dwo_sections (asection *sectp,
8446 struct virtual_dwo_sections *sections)
8447 {
8448 const struct dwop_section_names *names = &dwop_section_names;
8449
8450 if (section_is_p (sectp->name, &names->abbrev_dwo))
8451 {
8452 /* There can be only one. */
8453 if (sections->abbrev.asection != NULL)
8454 return 0;
8455 sections->abbrev.asection = sectp;
8456 sections->abbrev.size = bfd_get_section_size (sectp);
8457 }
8458 else if (section_is_p (sectp->name, &names->info_dwo)
8459 || section_is_p (sectp->name, &names->types_dwo))
8460 {
8461 /* There can be only one. */
8462 if (sections->info_or_types.asection != NULL)
8463 return 0;
8464 sections->info_or_types.asection = sectp;
8465 sections->info_or_types.size = bfd_get_section_size (sectp);
8466 }
8467 else if (section_is_p (sectp->name, &names->line_dwo))
8468 {
8469 /* There can be only one. */
8470 if (sections->line.asection != NULL)
8471 return 0;
8472 sections->line.asection = sectp;
8473 sections->line.size = bfd_get_section_size (sectp);
8474 }
8475 else if (section_is_p (sectp->name, &names->loc_dwo))
8476 {
8477 /* There can be only one. */
8478 if (sections->loc.asection != NULL)
8479 return 0;
8480 sections->loc.asection = sectp;
8481 sections->loc.size = bfd_get_section_size (sectp);
8482 }
8483 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8484 {
8485 /* There can be only one. */
8486 if (sections->macinfo.asection != NULL)
8487 return 0;
8488 sections->macinfo.asection = sectp;
8489 sections->macinfo.size = bfd_get_section_size (sectp);
8490 }
8491 else if (section_is_p (sectp->name, &names->macro_dwo))
8492 {
8493 /* There can be only one. */
8494 if (sections->macro.asection != NULL)
8495 return 0;
8496 sections->macro.asection = sectp;
8497 sections->macro.size = bfd_get_section_size (sectp);
8498 }
8499 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8500 {
8501 /* There can be only one. */
8502 if (sections->str_offsets.asection != NULL)
8503 return 0;
8504 sections->str_offsets.asection = sectp;
8505 sections->str_offsets.size = bfd_get_section_size (sectp);
8506 }
8507 else
8508 {
8509 /* No other kind of section is valid. */
8510 return 0;
8511 }
8512
8513 return 1;
8514 }
8515
8516 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8517 HTAB is the hash table from the DWP file.
8518 SECTION_INDEX is the index of the DWO in HTAB. */
8519
8520 static struct dwo_unit *
8521 create_dwo_in_dwp (struct dwp_file *dwp_file,
8522 const struct dwp_hash_table *htab,
8523 uint32_t section_index,
8524 ULONGEST signature, int is_debug_types)
8525 {
8526 struct objfile *objfile = dwarf2_per_objfile->objfile;
8527 bfd *dbfd = dwp_file->dbfd;
8528 const char *kind = is_debug_types ? "TU" : "CU";
8529 struct dwo_file *dwo_file;
8530 struct dwo_unit *dwo_unit;
8531 struct virtual_dwo_sections sections;
8532 void **dwo_file_slot;
8533 char *virtual_dwo_name;
8534 struct dwarf2_section_info *cutu;
8535 struct cleanup *cleanups;
8536 int i;
8537
8538 if (dwarf2_read_debug)
8539 {
8540 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8541 kind,
8542 section_index, phex (signature, sizeof (signature)),
8543 dwp_file->name);
8544 }
8545
8546 /* Fetch the sections of this DWO.
8547 Put a limit on the number of sections we look for so that bad data
8548 doesn't cause us to loop forever. */
8549
8550 #define MAX_NR_DWO_SECTIONS \
8551 (1 /* .debug_info or .debug_types */ \
8552 + 1 /* .debug_abbrev */ \
8553 + 1 /* .debug_line */ \
8554 + 1 /* .debug_loc */ \
8555 + 1 /* .debug_str_offsets */ \
8556 + 1 /* .debug_macro */ \
8557 + 1 /* .debug_macinfo */ \
8558 + 1 /* trailing zero */)
8559
8560 memset (&sections, 0, sizeof (sections));
8561 cleanups = make_cleanup (null_cleanup, 0);
8562
8563 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8564 {
8565 asection *sectp;
8566 uint32_t section_nr =
8567 read_4_bytes (dbfd,
8568 htab->section_pool
8569 + (section_index + i) * sizeof (uint32_t));
8570
8571 if (section_nr == 0)
8572 break;
8573 if (section_nr >= dwp_file->num_sections)
8574 {
8575 error (_("Dwarf Error: bad DWP hash table, section number too large"
8576 " [in module %s]"),
8577 dwp_file->name);
8578 }
8579
8580 sectp = dwp_file->elf_sections[section_nr];
8581 if (! locate_virtual_dwo_sections (sectp, &sections))
8582 {
8583 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8584 " [in module %s]"),
8585 dwp_file->name);
8586 }
8587 }
8588
8589 if (i < 2
8590 || sections.info_or_types.asection == NULL
8591 || sections.abbrev.asection == NULL)
8592 {
8593 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8594 " [in module %s]"),
8595 dwp_file->name);
8596 }
8597 if (i == MAX_NR_DWO_SECTIONS)
8598 {
8599 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8600 " [in module %s]"),
8601 dwp_file->name);
8602 }
8603
8604 /* It's easier for the rest of the code if we fake a struct dwo_file and
8605 have dwo_unit "live" in that. At least for now.
8606
8607 The DWP file can be made up of a random collection of CUs and TUs.
8608 However, for each CU + set of TUs that came from the same original
8609 DWO file, we want combine them back into a virtual DWO file to save space
8610 (fewer struct dwo_file objects to allocated). Remember that for really
8611 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8612
8613 xasprintf (&virtual_dwo_name, "virtual-dwo/%d-%d-%d-%d",
8614 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8615 sections.line.asection ? sections.line.asection->id : 0,
8616 sections.loc.asection ? sections.loc.asection->id : 0,
8617 (sections.str_offsets.asection
8618 ? sections.str_offsets.asection->id
8619 : 0));
8620 make_cleanup (xfree, virtual_dwo_name);
8621 /* Can we use an existing virtual DWO file? */
8622 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8623 /* Create one if necessary. */
8624 if (*dwo_file_slot == NULL)
8625 {
8626 if (dwarf2_read_debug)
8627 {
8628 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8629 virtual_dwo_name);
8630 }
8631 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8632 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8633 virtual_dwo_name,
8634 strlen (virtual_dwo_name));
8635 dwo_file->sections.abbrev = sections.abbrev;
8636 dwo_file->sections.line = sections.line;
8637 dwo_file->sections.loc = sections.loc;
8638 dwo_file->sections.macinfo = sections.macinfo;
8639 dwo_file->sections.macro = sections.macro;
8640 dwo_file->sections.str_offsets = sections.str_offsets;
8641 /* The "str" section is global to the entire DWP file. */
8642 dwo_file->sections.str = dwp_file->sections.str;
8643 /* The info or types section is assigned later to dwo_unit,
8644 there's no need to record it in dwo_file.
8645 Also, we can't simply record type sections in dwo_file because
8646 we record a pointer into the vector in dwo_unit. As we collect more
8647 types we'll grow the vector and eventually have to reallocate space
8648 for it, invalidating all the pointers into the current copy. */
8649 *dwo_file_slot = dwo_file;
8650 }
8651 else
8652 {
8653 if (dwarf2_read_debug)
8654 {
8655 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8656 virtual_dwo_name);
8657 }
8658 dwo_file = *dwo_file_slot;
8659 }
8660 do_cleanups (cleanups);
8661
8662 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8663 dwo_unit->dwo_file = dwo_file;
8664 dwo_unit->signature = signature;
8665 dwo_unit->info_or_types_section =
8666 obstack_alloc (&objfile->objfile_obstack,
8667 sizeof (struct dwarf2_section_info));
8668 *dwo_unit->info_or_types_section = sections.info_or_types;
8669 /* offset, length, type_offset_in_tu are set later. */
8670
8671 return dwo_unit;
8672 }
8673
8674 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8675
8676 static struct dwo_unit *
8677 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8678 const struct dwp_hash_table *htab,
8679 ULONGEST signature, int is_debug_types)
8680 {
8681 bfd *dbfd = dwp_file->dbfd;
8682 uint32_t mask = htab->nr_slots - 1;
8683 uint32_t hash = signature & mask;
8684 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8685 unsigned int i;
8686 void **slot;
8687 struct dwo_unit find_dwo_cu, *dwo_cu;
8688
8689 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8690 find_dwo_cu.signature = signature;
8691 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8692
8693 if (*slot != NULL)
8694 return *slot;
8695
8696 /* Use a for loop so that we don't loop forever on bad debug info. */
8697 for (i = 0; i < htab->nr_slots; ++i)
8698 {
8699 ULONGEST signature_in_table;
8700
8701 signature_in_table =
8702 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8703 if (signature_in_table == signature)
8704 {
8705 uint32_t section_index =
8706 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8707
8708 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8709 signature, is_debug_types);
8710 return *slot;
8711 }
8712 if (signature_in_table == 0)
8713 return NULL;
8714 hash = (hash + hash2) & mask;
8715 }
8716
8717 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8718 " [in module %s]"),
8719 dwp_file->name);
8720 }
8721
8722 /* Subroutine of open_dwop_file to simplify it.
8723 Open the file specified by FILE_NAME and hand it off to BFD for
8724 preliminary analysis. Return a newly initialized bfd *, which
8725 includes a canonicalized copy of FILE_NAME.
8726 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8727 In case of trouble, return NULL.
8728 NOTE: This function is derived from symfile_bfd_open. */
8729
8730 static bfd *
8731 try_open_dwop_file (const char *file_name, int is_dwp)
8732 {
8733 bfd *sym_bfd;
8734 int desc, flags;
8735 char *absolute_name;
8736
8737 flags = OPF_TRY_CWD_FIRST;
8738 if (is_dwp)
8739 flags |= OPF_SEARCH_IN_PATH;
8740 desc = openp (debug_file_directory, flags, file_name,
8741 O_RDONLY | O_BINARY, &absolute_name);
8742 if (desc < 0)
8743 return NULL;
8744
8745 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8746 if (!sym_bfd)
8747 {
8748 xfree (absolute_name);
8749 return NULL;
8750 }
8751 xfree (absolute_name);
8752 bfd_set_cacheable (sym_bfd, 1);
8753
8754 if (!bfd_check_format (sym_bfd, bfd_object))
8755 {
8756 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8757 return NULL;
8758 }
8759
8760 return sym_bfd;
8761 }
8762
8763 /* Try to open DWO/DWP file FILE_NAME.
8764 COMP_DIR is the DW_AT_comp_dir attribute.
8765 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8766 The result is the bfd handle of the file.
8767 If there is a problem finding or opening the file, return NULL.
8768 Upon success, the canonicalized path of the file is stored in the bfd,
8769 same as symfile_bfd_open. */
8770
8771 static bfd *
8772 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8773 {
8774 bfd *abfd;
8775
8776 if (IS_ABSOLUTE_PATH (file_name))
8777 return try_open_dwop_file (file_name, is_dwp);
8778
8779 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8780
8781 if (comp_dir != NULL)
8782 {
8783 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8784
8785 /* NOTE: If comp_dir is a relative path, this will also try the
8786 search path, which seems useful. */
8787 abfd = try_open_dwop_file (path_to_try, is_dwp);
8788 xfree (path_to_try);
8789 if (abfd != NULL)
8790 return abfd;
8791 }
8792
8793 /* That didn't work, try debug-file-directory, which, despite its name,
8794 is a list of paths. */
8795
8796 if (*debug_file_directory == '\0')
8797 return NULL;
8798
8799 return try_open_dwop_file (file_name, is_dwp);
8800 }
8801
8802 /* This function is mapped across the sections and remembers the offset and
8803 size of each of the DWO debugging sections we are interested in. */
8804
8805 static void
8806 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8807 {
8808 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8809 const struct dwop_section_names *names = &dwop_section_names;
8810
8811 if (section_is_p (sectp->name, &names->abbrev_dwo))
8812 {
8813 dwo_sections->abbrev.asection = sectp;
8814 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8815 }
8816 else if (section_is_p (sectp->name, &names->info_dwo))
8817 {
8818 dwo_sections->info.asection = sectp;
8819 dwo_sections->info.size = bfd_get_section_size (sectp);
8820 }
8821 else if (section_is_p (sectp->name, &names->line_dwo))
8822 {
8823 dwo_sections->line.asection = sectp;
8824 dwo_sections->line.size = bfd_get_section_size (sectp);
8825 }
8826 else if (section_is_p (sectp->name, &names->loc_dwo))
8827 {
8828 dwo_sections->loc.asection = sectp;
8829 dwo_sections->loc.size = bfd_get_section_size (sectp);
8830 }
8831 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8832 {
8833 dwo_sections->macinfo.asection = sectp;
8834 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8835 }
8836 else if (section_is_p (sectp->name, &names->macro_dwo))
8837 {
8838 dwo_sections->macro.asection = sectp;
8839 dwo_sections->macro.size = bfd_get_section_size (sectp);
8840 }
8841 else if (section_is_p (sectp->name, &names->str_dwo))
8842 {
8843 dwo_sections->str.asection = sectp;
8844 dwo_sections->str.size = bfd_get_section_size (sectp);
8845 }
8846 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8847 {
8848 dwo_sections->str_offsets.asection = sectp;
8849 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8850 }
8851 else if (section_is_p (sectp->name, &names->types_dwo))
8852 {
8853 struct dwarf2_section_info type_section;
8854
8855 memset (&type_section, 0, sizeof (type_section));
8856 type_section.asection = sectp;
8857 type_section.size = bfd_get_section_size (sectp);
8858 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8859 &type_section);
8860 }
8861 }
8862
8863 /* Initialize the use of the DWO file specified by DWO_NAME.
8864 The result is NULL if DWO_NAME can't be found. */
8865
8866 static struct dwo_file *
8867 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8868 {
8869 struct objfile *objfile = dwarf2_per_objfile->objfile;
8870 struct dwo_file *dwo_file;
8871 bfd *dbfd;
8872 struct cleanup *cleanups;
8873
8874 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8875 if (dbfd == NULL)
8876 {
8877 if (dwarf2_read_debug)
8878 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8879 return NULL;
8880 }
8881 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8882 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8883 dwo_name, strlen (dwo_name));
8884 dwo_file->dbfd = dbfd;
8885
8886 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8887
8888 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8889
8890 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8891
8892 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8893 dwo_file->sections.types);
8894
8895 discard_cleanups (cleanups);
8896
8897 if (dwarf2_read_debug)
8898 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8899
8900 return dwo_file;
8901 }
8902
8903 /* This function is mapped across the sections and remembers the offset and
8904 size of each of the DWP debugging sections we are interested in. */
8905
8906 static void
8907 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8908 {
8909 struct dwp_file *dwp_file = dwp_file_ptr;
8910 const struct dwop_section_names *names = &dwop_section_names;
8911 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8912
8913 /* Record the ELF section number for later lookup: this is what the
8914 .debug_cu_index,.debug_tu_index tables use. */
8915 gdb_assert (elf_section_nr < dwp_file->num_sections);
8916 dwp_file->elf_sections[elf_section_nr] = sectp;
8917
8918 /* Look for specific sections that we need. */
8919 if (section_is_p (sectp->name, &names->str_dwo))
8920 {
8921 dwp_file->sections.str.asection = sectp;
8922 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8923 }
8924 else if (section_is_p (sectp->name, &names->cu_index))
8925 {
8926 dwp_file->sections.cu_index.asection = sectp;
8927 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8928 }
8929 else if (section_is_p (sectp->name, &names->tu_index))
8930 {
8931 dwp_file->sections.tu_index.asection = sectp;
8932 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8933 }
8934 }
8935
8936 /* Hash function for dwp_file loaded CUs/TUs. */
8937
8938 static hashval_t
8939 hash_dwp_loaded_cutus (const void *item)
8940 {
8941 const struct dwo_unit *dwo_unit = item;
8942
8943 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8944 return dwo_unit->signature;
8945 }
8946
8947 /* Equality function for dwp_file loaded CUs/TUs. */
8948
8949 static int
8950 eq_dwp_loaded_cutus (const void *a, const void *b)
8951 {
8952 const struct dwo_unit *dua = a;
8953 const struct dwo_unit *dub = b;
8954
8955 return dua->signature == dub->signature;
8956 }
8957
8958 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
8959
8960 static htab_t
8961 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8962 {
8963 return htab_create_alloc_ex (3,
8964 hash_dwp_loaded_cutus,
8965 eq_dwp_loaded_cutus,
8966 NULL,
8967 &objfile->objfile_obstack,
8968 hashtab_obstack_allocate,
8969 dummy_obstack_deallocate);
8970 }
8971
8972 /* Initialize the use of the DWP file for the current objfile.
8973 By convention the name of the DWP file is ${objfile}.dwp.
8974 The result is NULL if it can't be found. */
8975
8976 static struct dwp_file *
8977 open_and_init_dwp_file (const char *comp_dir)
8978 {
8979 struct objfile *objfile = dwarf2_per_objfile->objfile;
8980 struct dwp_file *dwp_file;
8981 char *dwp_name;
8982 bfd *dbfd;
8983 struct cleanup *cleanups;
8984
8985 xasprintf (&dwp_name, "%s.dwp", dwarf2_per_objfile->objfile->name);
8986 cleanups = make_cleanup (xfree, dwp_name);
8987
8988 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8989 if (dbfd == NULL)
8990 {
8991 if (dwarf2_read_debug)
8992 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8993 do_cleanups (cleanups);
8994 return NULL;
8995 }
8996 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8997 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8998 dwp_name, strlen (dwp_name));
8999 dwp_file->dbfd = dbfd;
9000 do_cleanups (cleanups);
9001
9002 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9003
9004 /* +1: section 0 is unused */
9005 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9006 dwp_file->elf_sections =
9007 OBSTACK_CALLOC (&objfile->objfile_obstack,
9008 dwp_file->num_sections, asection *);
9009
9010 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9011
9012 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9013
9014 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9015
9016 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9017
9018 discard_cleanups (cleanups);
9019
9020 if (dwarf2_read_debug)
9021 {
9022 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9023 fprintf_unfiltered (gdb_stdlog,
9024 " %u CUs, %u TUs\n",
9025 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9026 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9027 }
9028
9029 return dwp_file;
9030 }
9031
9032 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9033 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9034 or in the DWP file for the objfile, referenced by THIS_UNIT.
9035 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9036 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9037
9038 This is called, for example, when wanting to read a variable with a
9039 complex location. Therefore we don't want to do file i/o for every call.
9040 Therefore we don't want to look for a DWO file on every call.
9041 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9042 then we check if we've already seen DWO_NAME, and only THEN do we check
9043 for a DWO file.
9044
9045 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9046 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9047
9048 static struct dwo_unit *
9049 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9050 const char *dwo_name, const char *comp_dir,
9051 ULONGEST signature, int is_debug_types)
9052 {
9053 struct objfile *objfile = dwarf2_per_objfile->objfile;
9054 const char *kind = is_debug_types ? "TU" : "CU";
9055 void **dwo_file_slot;
9056 struct dwo_file *dwo_file;
9057 struct dwp_file *dwp_file;
9058
9059 /* Have we already read SIGNATURE from a DWP file? */
9060
9061 if (! dwarf2_per_objfile->dwp_checked)
9062 {
9063 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9064 dwarf2_per_objfile->dwp_checked = 1;
9065 }
9066 dwp_file = dwarf2_per_objfile->dwp_file;
9067
9068 if (dwp_file != NULL)
9069 {
9070 const struct dwp_hash_table *dwp_htab =
9071 is_debug_types ? dwp_file->tus : dwp_file->cus;
9072
9073 if (dwp_htab != NULL)
9074 {
9075 struct dwo_unit *dwo_cutu =
9076 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9077
9078 if (dwo_cutu != NULL)
9079 {
9080 if (dwarf2_read_debug)
9081 {
9082 fprintf_unfiltered (gdb_stdlog,
9083 "Virtual DWO %s %s found: @%s\n",
9084 kind, hex_string (signature),
9085 host_address_to_string (dwo_cutu));
9086 }
9087 return dwo_cutu;
9088 }
9089 }
9090 }
9091
9092 /* Have we already seen DWO_NAME? */
9093
9094 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9095 if (*dwo_file_slot == NULL)
9096 {
9097 /* Read in the file and build a table of the DWOs it contains. */
9098 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9099 }
9100 /* NOTE: This will be NULL if unable to open the file. */
9101 dwo_file = *dwo_file_slot;
9102
9103 if (dwo_file != NULL)
9104 {
9105 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9106
9107 if (htab != NULL)
9108 {
9109 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9110
9111 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9112 find_dwo_cutu.signature = signature;
9113 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9114
9115 if (dwo_cutu != NULL)
9116 {
9117 if (dwarf2_read_debug)
9118 {
9119 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9120 kind, dwo_name, hex_string (signature),
9121 host_address_to_string (dwo_cutu));
9122 }
9123 return dwo_cutu;
9124 }
9125 }
9126 }
9127
9128 /* We didn't find it. This could mean a dwo_id mismatch, or
9129 someone deleted the DWO/DWP file, or the search path isn't set up
9130 correctly to find the file. */
9131
9132 if (dwarf2_read_debug)
9133 {
9134 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9135 kind, dwo_name, hex_string (signature));
9136 }
9137
9138 complaint (&symfile_complaints,
9139 _("Could not find DWO CU referenced by CU at offset 0x%x"
9140 " [in module %s]"),
9141 this_unit->offset.sect_off, objfile->name);
9142 return NULL;
9143 }
9144
9145 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9146 See lookup_dwo_cutu_unit for details. */
9147
9148 static struct dwo_unit *
9149 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9150 const char *dwo_name, const char *comp_dir,
9151 ULONGEST signature)
9152 {
9153 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9154 }
9155
9156 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9157 See lookup_dwo_cutu_unit for details. */
9158
9159 static struct dwo_unit *
9160 lookup_dwo_type_unit (struct signatured_type *this_tu,
9161 const char *dwo_name, const char *comp_dir)
9162 {
9163 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9164 }
9165
9166 /* Free all resources associated with DWO_FILE.
9167 Close the DWO file and munmap the sections.
9168 All memory should be on the objfile obstack. */
9169
9170 static void
9171 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9172 {
9173 int ix;
9174 struct dwarf2_section_info *section;
9175
9176 gdb_assert (dwo_file->dbfd != objfile->obfd);
9177 gdb_bfd_unref (dwo_file->dbfd);
9178
9179 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9180 }
9181
9182 /* Wrapper for free_dwo_file for use in cleanups. */
9183
9184 static void
9185 free_dwo_file_cleanup (void *arg)
9186 {
9187 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9188 struct objfile *objfile = dwarf2_per_objfile->objfile;
9189
9190 free_dwo_file (dwo_file, objfile);
9191 }
9192
9193 /* Traversal function for free_dwo_files. */
9194
9195 static int
9196 free_dwo_file_from_slot (void **slot, void *info)
9197 {
9198 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9199 struct objfile *objfile = (struct objfile *) info;
9200
9201 free_dwo_file (dwo_file, objfile);
9202
9203 return 1;
9204 }
9205
9206 /* Free all resources associated with DWO_FILES. */
9207
9208 static void
9209 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9210 {
9211 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9212 }
9213 \f
9214 /* Read in various DIEs. */
9215
9216 /* qsort helper for inherit_abstract_dies. */
9217
9218 static int
9219 unsigned_int_compar (const void *ap, const void *bp)
9220 {
9221 unsigned int a = *(unsigned int *) ap;
9222 unsigned int b = *(unsigned int *) bp;
9223
9224 return (a > b) - (b > a);
9225 }
9226
9227 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9228 Inherit only the children of the DW_AT_abstract_origin DIE not being
9229 already referenced by DW_AT_abstract_origin from the children of the
9230 current DIE. */
9231
9232 static void
9233 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9234 {
9235 struct die_info *child_die;
9236 unsigned die_children_count;
9237 /* CU offsets which were referenced by children of the current DIE. */
9238 sect_offset *offsets;
9239 sect_offset *offsets_end, *offsetp;
9240 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9241 struct die_info *origin_die;
9242 /* Iterator of the ORIGIN_DIE children. */
9243 struct die_info *origin_child_die;
9244 struct cleanup *cleanups;
9245 struct attribute *attr;
9246 struct dwarf2_cu *origin_cu;
9247 struct pending **origin_previous_list_in_scope;
9248
9249 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9250 if (!attr)
9251 return;
9252
9253 /* Note that following die references may follow to a die in a
9254 different cu. */
9255
9256 origin_cu = cu;
9257 origin_die = follow_die_ref (die, attr, &origin_cu);
9258
9259 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9260 symbols in. */
9261 origin_previous_list_in_scope = origin_cu->list_in_scope;
9262 origin_cu->list_in_scope = cu->list_in_scope;
9263
9264 if (die->tag != origin_die->tag
9265 && !(die->tag == DW_TAG_inlined_subroutine
9266 && origin_die->tag == DW_TAG_subprogram))
9267 complaint (&symfile_complaints,
9268 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9269 die->offset.sect_off, origin_die->offset.sect_off);
9270
9271 child_die = die->child;
9272 die_children_count = 0;
9273 while (child_die && child_die->tag)
9274 {
9275 child_die = sibling_die (child_die);
9276 die_children_count++;
9277 }
9278 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9279 cleanups = make_cleanup (xfree, offsets);
9280
9281 offsets_end = offsets;
9282 child_die = die->child;
9283 while (child_die && child_die->tag)
9284 {
9285 /* For each CHILD_DIE, find the corresponding child of
9286 ORIGIN_DIE. If there is more than one layer of
9287 DW_AT_abstract_origin, follow them all; there shouldn't be,
9288 but GCC versions at least through 4.4 generate this (GCC PR
9289 40573). */
9290 struct die_info *child_origin_die = child_die;
9291 struct dwarf2_cu *child_origin_cu = cu;
9292
9293 while (1)
9294 {
9295 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9296 child_origin_cu);
9297 if (attr == NULL)
9298 break;
9299 child_origin_die = follow_die_ref (child_origin_die, attr,
9300 &child_origin_cu);
9301 }
9302
9303 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9304 counterpart may exist. */
9305 if (child_origin_die != child_die)
9306 {
9307 if (child_die->tag != child_origin_die->tag
9308 && !(child_die->tag == DW_TAG_inlined_subroutine
9309 && child_origin_die->tag == DW_TAG_subprogram))
9310 complaint (&symfile_complaints,
9311 _("Child DIE 0x%x and its abstract origin 0x%x have "
9312 "different tags"), child_die->offset.sect_off,
9313 child_origin_die->offset.sect_off);
9314 if (child_origin_die->parent != origin_die)
9315 complaint (&symfile_complaints,
9316 _("Child DIE 0x%x and its abstract origin 0x%x have "
9317 "different parents"), child_die->offset.sect_off,
9318 child_origin_die->offset.sect_off);
9319 else
9320 *offsets_end++ = child_origin_die->offset;
9321 }
9322 child_die = sibling_die (child_die);
9323 }
9324 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9325 unsigned_int_compar);
9326 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9327 if (offsetp[-1].sect_off == offsetp->sect_off)
9328 complaint (&symfile_complaints,
9329 _("Multiple children of DIE 0x%x refer "
9330 "to DIE 0x%x as their abstract origin"),
9331 die->offset.sect_off, offsetp->sect_off);
9332
9333 offsetp = offsets;
9334 origin_child_die = origin_die->child;
9335 while (origin_child_die && origin_child_die->tag)
9336 {
9337 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9338 while (offsetp < offsets_end
9339 && offsetp->sect_off < origin_child_die->offset.sect_off)
9340 offsetp++;
9341 if (offsetp >= offsets_end
9342 || offsetp->sect_off > origin_child_die->offset.sect_off)
9343 {
9344 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9345 process_die (origin_child_die, origin_cu);
9346 }
9347 origin_child_die = sibling_die (origin_child_die);
9348 }
9349 origin_cu->list_in_scope = origin_previous_list_in_scope;
9350
9351 do_cleanups (cleanups);
9352 }
9353
9354 static void
9355 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9356 {
9357 struct objfile *objfile = cu->objfile;
9358 struct context_stack *new;
9359 CORE_ADDR lowpc;
9360 CORE_ADDR highpc;
9361 struct die_info *child_die;
9362 struct attribute *attr, *call_line, *call_file;
9363 char *name;
9364 CORE_ADDR baseaddr;
9365 struct block *block;
9366 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9367 VEC (symbolp) *template_args = NULL;
9368 struct template_symbol *templ_func = NULL;
9369
9370 if (inlined_func)
9371 {
9372 /* If we do not have call site information, we can't show the
9373 caller of this inlined function. That's too confusing, so
9374 only use the scope for local variables. */
9375 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9376 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9377 if (call_line == NULL || call_file == NULL)
9378 {
9379 read_lexical_block_scope (die, cu);
9380 return;
9381 }
9382 }
9383
9384 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9385
9386 name = dwarf2_name (die, cu);
9387
9388 /* Ignore functions with missing or empty names. These are actually
9389 illegal according to the DWARF standard. */
9390 if (name == NULL)
9391 {
9392 complaint (&symfile_complaints,
9393 _("missing name for subprogram DIE at %d"),
9394 die->offset.sect_off);
9395 return;
9396 }
9397
9398 /* Ignore functions with missing or invalid low and high pc attributes. */
9399 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9400 {
9401 attr = dwarf2_attr (die, DW_AT_external, cu);
9402 if (!attr || !DW_UNSND (attr))
9403 complaint (&symfile_complaints,
9404 _("cannot get low and high bounds "
9405 "for subprogram DIE at %d"),
9406 die->offset.sect_off);
9407 return;
9408 }
9409
9410 lowpc += baseaddr;
9411 highpc += baseaddr;
9412
9413 /* If we have any template arguments, then we must allocate a
9414 different sort of symbol. */
9415 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9416 {
9417 if (child_die->tag == DW_TAG_template_type_param
9418 || child_die->tag == DW_TAG_template_value_param)
9419 {
9420 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9421 struct template_symbol);
9422 templ_func->base.is_cplus_template_function = 1;
9423 break;
9424 }
9425 }
9426
9427 new = push_context (0, lowpc);
9428 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9429 (struct symbol *) templ_func);
9430
9431 /* If there is a location expression for DW_AT_frame_base, record
9432 it. */
9433 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9434 if (attr)
9435 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9436 expression is being recorded directly in the function's symbol
9437 and not in a separate frame-base object. I guess this hack is
9438 to avoid adding some sort of frame-base adjunct/annex to the
9439 function's symbol :-(. The problem with doing this is that it
9440 results in a function symbol with a location expression that
9441 has nothing to do with the location of the function, ouch! The
9442 relationship should be: a function's symbol has-a frame base; a
9443 frame-base has-a location expression. */
9444 dwarf2_symbol_mark_computed (attr, new->name, cu);
9445
9446 cu->list_in_scope = &local_symbols;
9447
9448 if (die->child != NULL)
9449 {
9450 child_die = die->child;
9451 while (child_die && child_die->tag)
9452 {
9453 if (child_die->tag == DW_TAG_template_type_param
9454 || child_die->tag == DW_TAG_template_value_param)
9455 {
9456 struct symbol *arg = new_symbol (child_die, NULL, cu);
9457
9458 if (arg != NULL)
9459 VEC_safe_push (symbolp, template_args, arg);
9460 }
9461 else
9462 process_die (child_die, cu);
9463 child_die = sibling_die (child_die);
9464 }
9465 }
9466
9467 inherit_abstract_dies (die, cu);
9468
9469 /* If we have a DW_AT_specification, we might need to import using
9470 directives from the context of the specification DIE. See the
9471 comment in determine_prefix. */
9472 if (cu->language == language_cplus
9473 && dwarf2_attr (die, DW_AT_specification, cu))
9474 {
9475 struct dwarf2_cu *spec_cu = cu;
9476 struct die_info *spec_die = die_specification (die, &spec_cu);
9477
9478 while (spec_die)
9479 {
9480 child_die = spec_die->child;
9481 while (child_die && child_die->tag)
9482 {
9483 if (child_die->tag == DW_TAG_imported_module)
9484 process_die (child_die, spec_cu);
9485 child_die = sibling_die (child_die);
9486 }
9487
9488 /* In some cases, GCC generates specification DIEs that
9489 themselves contain DW_AT_specification attributes. */
9490 spec_die = die_specification (spec_die, &spec_cu);
9491 }
9492 }
9493
9494 new = pop_context ();
9495 /* Make a block for the local symbols within. */
9496 block = finish_block (new->name, &local_symbols, new->old_blocks,
9497 lowpc, highpc, objfile);
9498
9499 /* For C++, set the block's scope. */
9500 if (cu->language == language_cplus || cu->language == language_fortran)
9501 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9502 determine_prefix (die, cu),
9503 processing_has_namespace_info);
9504
9505 /* If we have address ranges, record them. */
9506 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9507
9508 /* Attach template arguments to function. */
9509 if (! VEC_empty (symbolp, template_args))
9510 {
9511 gdb_assert (templ_func != NULL);
9512
9513 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9514 templ_func->template_arguments
9515 = obstack_alloc (&objfile->objfile_obstack,
9516 (templ_func->n_template_arguments
9517 * sizeof (struct symbol *)));
9518 memcpy (templ_func->template_arguments,
9519 VEC_address (symbolp, template_args),
9520 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9521 VEC_free (symbolp, template_args);
9522 }
9523
9524 /* In C++, we can have functions nested inside functions (e.g., when
9525 a function declares a class that has methods). This means that
9526 when we finish processing a function scope, we may need to go
9527 back to building a containing block's symbol lists. */
9528 local_symbols = new->locals;
9529 using_directives = new->using_directives;
9530
9531 /* If we've finished processing a top-level function, subsequent
9532 symbols go in the file symbol list. */
9533 if (outermost_context_p ())
9534 cu->list_in_scope = &file_symbols;
9535 }
9536
9537 /* Process all the DIES contained within a lexical block scope. Start
9538 a new scope, process the dies, and then close the scope. */
9539
9540 static void
9541 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9542 {
9543 struct objfile *objfile = cu->objfile;
9544 struct context_stack *new;
9545 CORE_ADDR lowpc, highpc;
9546 struct die_info *child_die;
9547 CORE_ADDR baseaddr;
9548
9549 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9550
9551 /* Ignore blocks with missing or invalid low and high pc attributes. */
9552 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9553 as multiple lexical blocks? Handling children in a sane way would
9554 be nasty. Might be easier to properly extend generic blocks to
9555 describe ranges. */
9556 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9557 return;
9558 lowpc += baseaddr;
9559 highpc += baseaddr;
9560
9561 push_context (0, lowpc);
9562 if (die->child != NULL)
9563 {
9564 child_die = die->child;
9565 while (child_die && child_die->tag)
9566 {
9567 process_die (child_die, cu);
9568 child_die = sibling_die (child_die);
9569 }
9570 }
9571 new = pop_context ();
9572
9573 if (local_symbols != NULL || using_directives != NULL)
9574 {
9575 struct block *block
9576 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9577 highpc, objfile);
9578
9579 /* Note that recording ranges after traversing children, as we
9580 do here, means that recording a parent's ranges entails
9581 walking across all its children's ranges as they appear in
9582 the address map, which is quadratic behavior.
9583
9584 It would be nicer to record the parent's ranges before
9585 traversing its children, simply overriding whatever you find
9586 there. But since we don't even decide whether to create a
9587 block until after we've traversed its children, that's hard
9588 to do. */
9589 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9590 }
9591 local_symbols = new->locals;
9592 using_directives = new->using_directives;
9593 }
9594
9595 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9596
9597 static void
9598 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9599 {
9600 struct objfile *objfile = cu->objfile;
9601 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9602 CORE_ADDR pc, baseaddr;
9603 struct attribute *attr;
9604 struct call_site *call_site, call_site_local;
9605 void **slot;
9606 int nparams;
9607 struct die_info *child_die;
9608
9609 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9610
9611 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9612 if (!attr)
9613 {
9614 complaint (&symfile_complaints,
9615 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9616 "DIE 0x%x [in module %s]"),
9617 die->offset.sect_off, objfile->name);
9618 return;
9619 }
9620 pc = DW_ADDR (attr) + baseaddr;
9621
9622 if (cu->call_site_htab == NULL)
9623 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9624 NULL, &objfile->objfile_obstack,
9625 hashtab_obstack_allocate, NULL);
9626 call_site_local.pc = pc;
9627 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9628 if (*slot != NULL)
9629 {
9630 complaint (&symfile_complaints,
9631 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9632 "DIE 0x%x [in module %s]"),
9633 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9634 return;
9635 }
9636
9637 /* Count parameters at the caller. */
9638
9639 nparams = 0;
9640 for (child_die = die->child; child_die && child_die->tag;
9641 child_die = sibling_die (child_die))
9642 {
9643 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9644 {
9645 complaint (&symfile_complaints,
9646 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9647 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9648 child_die->tag, child_die->offset.sect_off, objfile->name);
9649 continue;
9650 }
9651
9652 nparams++;
9653 }
9654
9655 call_site = obstack_alloc (&objfile->objfile_obstack,
9656 (sizeof (*call_site)
9657 + (sizeof (*call_site->parameter)
9658 * (nparams - 1))));
9659 *slot = call_site;
9660 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9661 call_site->pc = pc;
9662
9663 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9664 {
9665 struct die_info *func_die;
9666
9667 /* Skip also over DW_TAG_inlined_subroutine. */
9668 for (func_die = die->parent;
9669 func_die && func_die->tag != DW_TAG_subprogram
9670 && func_die->tag != DW_TAG_subroutine_type;
9671 func_die = func_die->parent);
9672
9673 /* DW_AT_GNU_all_call_sites is a superset
9674 of DW_AT_GNU_all_tail_call_sites. */
9675 if (func_die
9676 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9677 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9678 {
9679 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9680 not complete. But keep CALL_SITE for look ups via call_site_htab,
9681 both the initial caller containing the real return address PC and
9682 the final callee containing the current PC of a chain of tail
9683 calls do not need to have the tail call list complete. But any
9684 function candidate for a virtual tail call frame searched via
9685 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9686 determined unambiguously. */
9687 }
9688 else
9689 {
9690 struct type *func_type = NULL;
9691
9692 if (func_die)
9693 func_type = get_die_type (func_die, cu);
9694 if (func_type != NULL)
9695 {
9696 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9697
9698 /* Enlist this call site to the function. */
9699 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9700 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9701 }
9702 else
9703 complaint (&symfile_complaints,
9704 _("Cannot find function owning DW_TAG_GNU_call_site "
9705 "DIE 0x%x [in module %s]"),
9706 die->offset.sect_off, objfile->name);
9707 }
9708 }
9709
9710 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9711 if (attr == NULL)
9712 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9713 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9714 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9715 /* Keep NULL DWARF_BLOCK. */;
9716 else if (attr_form_is_block (attr))
9717 {
9718 struct dwarf2_locexpr_baton *dlbaton;
9719
9720 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9721 dlbaton->data = DW_BLOCK (attr)->data;
9722 dlbaton->size = DW_BLOCK (attr)->size;
9723 dlbaton->per_cu = cu->per_cu;
9724
9725 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9726 }
9727 else if (is_ref_attr (attr))
9728 {
9729 struct dwarf2_cu *target_cu = cu;
9730 struct die_info *target_die;
9731
9732 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9733 gdb_assert (target_cu->objfile == objfile);
9734 if (die_is_declaration (target_die, target_cu))
9735 {
9736 const char *target_physname;
9737
9738 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9739 if (target_physname == NULL)
9740 complaint (&symfile_complaints,
9741 _("DW_AT_GNU_call_site_target target DIE has invalid "
9742 "physname, for referencing DIE 0x%x [in module %s]"),
9743 die->offset.sect_off, objfile->name);
9744 else
9745 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9746 }
9747 else
9748 {
9749 CORE_ADDR lowpc;
9750
9751 /* DW_AT_entry_pc should be preferred. */
9752 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9753 complaint (&symfile_complaints,
9754 _("DW_AT_GNU_call_site_target target DIE has invalid "
9755 "low pc, for referencing DIE 0x%x [in module %s]"),
9756 die->offset.sect_off, objfile->name);
9757 else
9758 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9759 }
9760 }
9761 else
9762 complaint (&symfile_complaints,
9763 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9764 "block nor reference, for DIE 0x%x [in module %s]"),
9765 die->offset.sect_off, objfile->name);
9766
9767 call_site->per_cu = cu->per_cu;
9768
9769 for (child_die = die->child;
9770 child_die && child_die->tag;
9771 child_die = sibling_die (child_die))
9772 {
9773 struct call_site_parameter *parameter;
9774 struct attribute *loc, *origin;
9775
9776 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9777 {
9778 /* Already printed the complaint above. */
9779 continue;
9780 }
9781
9782 gdb_assert (call_site->parameter_count < nparams);
9783 parameter = &call_site->parameter[call_site->parameter_count];
9784
9785 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9786 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9787 register is contained in DW_AT_GNU_call_site_value. */
9788
9789 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9790 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9791 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9792 {
9793 sect_offset offset;
9794
9795 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9796 offset = dwarf2_get_ref_die_offset (origin);
9797 if (!offset_in_cu_p (&cu->header, offset))
9798 {
9799 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9800 binding can be done only inside one CU. Such referenced DIE
9801 therefore cannot be even moved to DW_TAG_partial_unit. */
9802 complaint (&symfile_complaints,
9803 _("DW_AT_abstract_origin offset is not in CU for "
9804 "DW_TAG_GNU_call_site child DIE 0x%x "
9805 "[in module %s]"),
9806 child_die->offset.sect_off, objfile->name);
9807 continue;
9808 }
9809 parameter->u.param_offset.cu_off = (offset.sect_off
9810 - cu->header.offset.sect_off);
9811 }
9812 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9813 {
9814 complaint (&symfile_complaints,
9815 _("No DW_FORM_block* DW_AT_location for "
9816 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9817 child_die->offset.sect_off, objfile->name);
9818 continue;
9819 }
9820 else
9821 {
9822 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9823 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9824 if (parameter->u.dwarf_reg != -1)
9825 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9826 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9827 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9828 &parameter->u.fb_offset))
9829 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9830 else
9831 {
9832 complaint (&symfile_complaints,
9833 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9834 "for DW_FORM_block* DW_AT_location is supported for "
9835 "DW_TAG_GNU_call_site child DIE 0x%x "
9836 "[in module %s]"),
9837 child_die->offset.sect_off, objfile->name);
9838 continue;
9839 }
9840 }
9841
9842 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9843 if (!attr_form_is_block (attr))
9844 {
9845 complaint (&symfile_complaints,
9846 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9847 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9848 child_die->offset.sect_off, objfile->name);
9849 continue;
9850 }
9851 parameter->value = DW_BLOCK (attr)->data;
9852 parameter->value_size = DW_BLOCK (attr)->size;
9853
9854 /* Parameters are not pre-cleared by memset above. */
9855 parameter->data_value = NULL;
9856 parameter->data_value_size = 0;
9857 call_site->parameter_count++;
9858
9859 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9860 if (attr)
9861 {
9862 if (!attr_form_is_block (attr))
9863 complaint (&symfile_complaints,
9864 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9865 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9866 child_die->offset.sect_off, objfile->name);
9867 else
9868 {
9869 parameter->data_value = DW_BLOCK (attr)->data;
9870 parameter->data_value_size = DW_BLOCK (attr)->size;
9871 }
9872 }
9873 }
9874 }
9875
9876 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9877 Return 1 if the attributes are present and valid, otherwise, return 0.
9878 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9879
9880 static int
9881 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9882 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9883 struct partial_symtab *ranges_pst)
9884 {
9885 struct objfile *objfile = cu->objfile;
9886 struct comp_unit_head *cu_header = &cu->header;
9887 bfd *obfd = objfile->obfd;
9888 unsigned int addr_size = cu_header->addr_size;
9889 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9890 /* Base address selection entry. */
9891 CORE_ADDR base;
9892 int found_base;
9893 unsigned int dummy;
9894 gdb_byte *buffer;
9895 CORE_ADDR marker;
9896 int low_set;
9897 CORE_ADDR low = 0;
9898 CORE_ADDR high = 0;
9899 CORE_ADDR baseaddr;
9900
9901 found_base = cu->base_known;
9902 base = cu->base_address;
9903
9904 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9905 if (offset >= dwarf2_per_objfile->ranges.size)
9906 {
9907 complaint (&symfile_complaints,
9908 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9909 offset);
9910 return 0;
9911 }
9912 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9913
9914 /* Read in the largest possible address. */
9915 marker = read_address (obfd, buffer, cu, &dummy);
9916 if ((marker & mask) == mask)
9917 {
9918 /* If we found the largest possible address, then
9919 read the base address. */
9920 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9921 buffer += 2 * addr_size;
9922 offset += 2 * addr_size;
9923 found_base = 1;
9924 }
9925
9926 low_set = 0;
9927
9928 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9929
9930 while (1)
9931 {
9932 CORE_ADDR range_beginning, range_end;
9933
9934 range_beginning = read_address (obfd, buffer, cu, &dummy);
9935 buffer += addr_size;
9936 range_end = read_address (obfd, buffer, cu, &dummy);
9937 buffer += addr_size;
9938 offset += 2 * addr_size;
9939
9940 /* An end of list marker is a pair of zero addresses. */
9941 if (range_beginning == 0 && range_end == 0)
9942 /* Found the end of list entry. */
9943 break;
9944
9945 /* Each base address selection entry is a pair of 2 values.
9946 The first is the largest possible address, the second is
9947 the base address. Check for a base address here. */
9948 if ((range_beginning & mask) == mask)
9949 {
9950 /* If we found the largest possible address, then
9951 read the base address. */
9952 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9953 found_base = 1;
9954 continue;
9955 }
9956
9957 if (!found_base)
9958 {
9959 /* We have no valid base address for the ranges
9960 data. */
9961 complaint (&symfile_complaints,
9962 _("Invalid .debug_ranges data (no base address)"));
9963 return 0;
9964 }
9965
9966 if (range_beginning > range_end)
9967 {
9968 /* Inverted range entries are invalid. */
9969 complaint (&symfile_complaints,
9970 _("Invalid .debug_ranges data (inverted range)"));
9971 return 0;
9972 }
9973
9974 /* Empty range entries have no effect. */
9975 if (range_beginning == range_end)
9976 continue;
9977
9978 range_beginning += base;
9979 range_end += base;
9980
9981 /* A not-uncommon case of bad debug info.
9982 Don't pollute the addrmap with bad data. */
9983 if (range_beginning + baseaddr == 0
9984 && !dwarf2_per_objfile->has_section_at_zero)
9985 {
9986 complaint (&symfile_complaints,
9987 _(".debug_ranges entry has start address of zero"
9988 " [in module %s]"), objfile->name);
9989 continue;
9990 }
9991
9992 if (ranges_pst != NULL)
9993 addrmap_set_empty (objfile->psymtabs_addrmap,
9994 range_beginning + baseaddr,
9995 range_end - 1 + baseaddr,
9996 ranges_pst);
9997
9998 /* FIXME: This is recording everything as a low-high
9999 segment of consecutive addresses. We should have a
10000 data structure for discontiguous block ranges
10001 instead. */
10002 if (! low_set)
10003 {
10004 low = range_beginning;
10005 high = range_end;
10006 low_set = 1;
10007 }
10008 else
10009 {
10010 if (range_beginning < low)
10011 low = range_beginning;
10012 if (range_end > high)
10013 high = range_end;
10014 }
10015 }
10016
10017 if (! low_set)
10018 /* If the first entry is an end-of-list marker, the range
10019 describes an empty scope, i.e. no instructions. */
10020 return 0;
10021
10022 if (low_return)
10023 *low_return = low;
10024 if (high_return)
10025 *high_return = high;
10026 return 1;
10027 }
10028
10029 /* Get low and high pc attributes from a die. Return 1 if the attributes
10030 are present and valid, otherwise, return 0. Return -1 if the range is
10031 discontinuous, i.e. derived from DW_AT_ranges information. */
10032
10033 static int
10034 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10035 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10036 struct partial_symtab *pst)
10037 {
10038 struct attribute *attr;
10039 struct attribute *attr_high;
10040 CORE_ADDR low = 0;
10041 CORE_ADDR high = 0;
10042 int ret = 0;
10043
10044 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10045 if (attr_high)
10046 {
10047 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10048 if (attr)
10049 {
10050 low = DW_ADDR (attr);
10051 if (attr_high->form == DW_FORM_addr
10052 || attr_high->form == DW_FORM_GNU_addr_index)
10053 high = DW_ADDR (attr_high);
10054 else
10055 high = low + DW_UNSND (attr_high);
10056 }
10057 else
10058 /* Found high w/o low attribute. */
10059 return 0;
10060
10061 /* Found consecutive range of addresses. */
10062 ret = 1;
10063 }
10064 else
10065 {
10066 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10067 if (attr != NULL)
10068 {
10069 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
10070
10071 /* Value of the DW_AT_ranges attribute is the offset in the
10072 .debug_ranges section. */
10073 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10074 return 0;
10075 /* Found discontinuous range of addresses. */
10076 ret = -1;
10077 }
10078 }
10079
10080 /* read_partial_die has also the strict LOW < HIGH requirement. */
10081 if (high <= low)
10082 return 0;
10083
10084 /* When using the GNU linker, .gnu.linkonce. sections are used to
10085 eliminate duplicate copies of functions and vtables and such.
10086 The linker will arbitrarily choose one and discard the others.
10087 The AT_*_pc values for such functions refer to local labels in
10088 these sections. If the section from that file was discarded, the
10089 labels are not in the output, so the relocs get a value of 0.
10090 If this is a discarded function, mark the pc bounds as invalid,
10091 so that GDB will ignore it. */
10092 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10093 return 0;
10094
10095 *lowpc = low;
10096 if (highpc)
10097 *highpc = high;
10098 return ret;
10099 }
10100
10101 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10102 its low and high PC addresses. Do nothing if these addresses could not
10103 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10104 and HIGHPC to the high address if greater than HIGHPC. */
10105
10106 static void
10107 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10108 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10109 struct dwarf2_cu *cu)
10110 {
10111 CORE_ADDR low, high;
10112 struct die_info *child = die->child;
10113
10114 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10115 {
10116 *lowpc = min (*lowpc, low);
10117 *highpc = max (*highpc, high);
10118 }
10119
10120 /* If the language does not allow nested subprograms (either inside
10121 subprograms or lexical blocks), we're done. */
10122 if (cu->language != language_ada)
10123 return;
10124
10125 /* Check all the children of the given DIE. If it contains nested
10126 subprograms, then check their pc bounds. Likewise, we need to
10127 check lexical blocks as well, as they may also contain subprogram
10128 definitions. */
10129 while (child && child->tag)
10130 {
10131 if (child->tag == DW_TAG_subprogram
10132 || child->tag == DW_TAG_lexical_block)
10133 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10134 child = sibling_die (child);
10135 }
10136 }
10137
10138 /* Get the low and high pc's represented by the scope DIE, and store
10139 them in *LOWPC and *HIGHPC. If the correct values can't be
10140 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10141
10142 static void
10143 get_scope_pc_bounds (struct die_info *die,
10144 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10145 struct dwarf2_cu *cu)
10146 {
10147 CORE_ADDR best_low = (CORE_ADDR) -1;
10148 CORE_ADDR best_high = (CORE_ADDR) 0;
10149 CORE_ADDR current_low, current_high;
10150
10151 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10152 {
10153 best_low = current_low;
10154 best_high = current_high;
10155 }
10156 else
10157 {
10158 struct die_info *child = die->child;
10159
10160 while (child && child->tag)
10161 {
10162 switch (child->tag) {
10163 case DW_TAG_subprogram:
10164 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10165 break;
10166 case DW_TAG_namespace:
10167 case DW_TAG_module:
10168 /* FIXME: carlton/2004-01-16: Should we do this for
10169 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10170 that current GCC's always emit the DIEs corresponding
10171 to definitions of methods of classes as children of a
10172 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10173 the DIEs giving the declarations, which could be
10174 anywhere). But I don't see any reason why the
10175 standards says that they have to be there. */
10176 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10177
10178 if (current_low != ((CORE_ADDR) -1))
10179 {
10180 best_low = min (best_low, current_low);
10181 best_high = max (best_high, current_high);
10182 }
10183 break;
10184 default:
10185 /* Ignore. */
10186 break;
10187 }
10188
10189 child = sibling_die (child);
10190 }
10191 }
10192
10193 *lowpc = best_low;
10194 *highpc = best_high;
10195 }
10196
10197 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10198 in DIE. */
10199
10200 static void
10201 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10202 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10203 {
10204 struct objfile *objfile = cu->objfile;
10205 struct attribute *attr;
10206 struct attribute *attr_high;
10207
10208 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10209 if (attr_high)
10210 {
10211 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10212 if (attr)
10213 {
10214 CORE_ADDR low = DW_ADDR (attr);
10215 CORE_ADDR high;
10216 if (attr_high->form == DW_FORM_addr
10217 || attr_high->form == DW_FORM_GNU_addr_index)
10218 high = DW_ADDR (attr_high);
10219 else
10220 high = low + DW_UNSND (attr_high);
10221
10222 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10223 }
10224 }
10225
10226 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10227 if (attr)
10228 {
10229 bfd *obfd = objfile->obfd;
10230
10231 /* The value of the DW_AT_ranges attribute is the offset of the
10232 address range list in the .debug_ranges section. */
10233 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
10234 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10235
10236 /* For some target architectures, but not others, the
10237 read_address function sign-extends the addresses it returns.
10238 To recognize base address selection entries, we need a
10239 mask. */
10240 unsigned int addr_size = cu->header.addr_size;
10241 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10242
10243 /* The base address, to which the next pair is relative. Note
10244 that this 'base' is a DWARF concept: most entries in a range
10245 list are relative, to reduce the number of relocs against the
10246 debugging information. This is separate from this function's
10247 'baseaddr' argument, which GDB uses to relocate debugging
10248 information from a shared library based on the address at
10249 which the library was loaded. */
10250 CORE_ADDR base = cu->base_address;
10251 int base_known = cu->base_known;
10252
10253 gdb_assert (dwarf2_per_objfile->ranges.readin);
10254 if (offset >= dwarf2_per_objfile->ranges.size)
10255 {
10256 complaint (&symfile_complaints,
10257 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10258 offset);
10259 return;
10260 }
10261
10262 for (;;)
10263 {
10264 unsigned int bytes_read;
10265 CORE_ADDR start, end;
10266
10267 start = read_address (obfd, buffer, cu, &bytes_read);
10268 buffer += bytes_read;
10269 end = read_address (obfd, buffer, cu, &bytes_read);
10270 buffer += bytes_read;
10271
10272 /* Did we find the end of the range list? */
10273 if (start == 0 && end == 0)
10274 break;
10275
10276 /* Did we find a base address selection entry? */
10277 else if ((start & base_select_mask) == base_select_mask)
10278 {
10279 base = end;
10280 base_known = 1;
10281 }
10282
10283 /* We found an ordinary address range. */
10284 else
10285 {
10286 if (!base_known)
10287 {
10288 complaint (&symfile_complaints,
10289 _("Invalid .debug_ranges data "
10290 "(no base address)"));
10291 return;
10292 }
10293
10294 if (start > end)
10295 {
10296 /* Inverted range entries are invalid. */
10297 complaint (&symfile_complaints,
10298 _("Invalid .debug_ranges data "
10299 "(inverted range)"));
10300 return;
10301 }
10302
10303 /* Empty range entries have no effect. */
10304 if (start == end)
10305 continue;
10306
10307 start += base + baseaddr;
10308 end += base + baseaddr;
10309
10310 /* A not-uncommon case of bad debug info.
10311 Don't pollute the addrmap with bad data. */
10312 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10313 {
10314 complaint (&symfile_complaints,
10315 _(".debug_ranges entry has start address of zero"
10316 " [in module %s]"), objfile->name);
10317 continue;
10318 }
10319
10320 record_block_range (block, start, end - 1);
10321 }
10322 }
10323 }
10324 }
10325
10326 /* Check whether the producer field indicates either of GCC < 4.6, or the
10327 Intel C/C++ compiler, and cache the result in CU. */
10328
10329 static void
10330 check_producer (struct dwarf2_cu *cu)
10331 {
10332 const char *cs;
10333 int major, minor, release;
10334
10335 if (cu->producer == NULL)
10336 {
10337 /* For unknown compilers expect their behavior is DWARF version
10338 compliant.
10339
10340 GCC started to support .debug_types sections by -gdwarf-4 since
10341 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10342 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10343 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10344 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10345 }
10346 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10347 {
10348 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10349
10350 cs = &cu->producer[strlen ("GNU ")];
10351 while (*cs && !isdigit (*cs))
10352 cs++;
10353 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10354 {
10355 /* Not recognized as GCC. */
10356 }
10357 else
10358 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10359 }
10360 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10361 cu->producer_is_icc = 1;
10362 else
10363 {
10364 /* For other non-GCC compilers, expect their behavior is DWARF version
10365 compliant. */
10366 }
10367
10368 cu->checked_producer = 1;
10369 }
10370
10371 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10372 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10373 during 4.6.0 experimental. */
10374
10375 static int
10376 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10377 {
10378 if (!cu->checked_producer)
10379 check_producer (cu);
10380
10381 return cu->producer_is_gxx_lt_4_6;
10382 }
10383
10384 /* Return the default accessibility type if it is not overriden by
10385 DW_AT_accessibility. */
10386
10387 static enum dwarf_access_attribute
10388 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10389 {
10390 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10391 {
10392 /* The default DWARF 2 accessibility for members is public, the default
10393 accessibility for inheritance is private. */
10394
10395 if (die->tag != DW_TAG_inheritance)
10396 return DW_ACCESS_public;
10397 else
10398 return DW_ACCESS_private;
10399 }
10400 else
10401 {
10402 /* DWARF 3+ defines the default accessibility a different way. The same
10403 rules apply now for DW_TAG_inheritance as for the members and it only
10404 depends on the container kind. */
10405
10406 if (die->parent->tag == DW_TAG_class_type)
10407 return DW_ACCESS_private;
10408 else
10409 return DW_ACCESS_public;
10410 }
10411 }
10412
10413 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10414 offset. If the attribute was not found return 0, otherwise return
10415 1. If it was found but could not properly be handled, set *OFFSET
10416 to 0. */
10417
10418 static int
10419 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10420 LONGEST *offset)
10421 {
10422 struct attribute *attr;
10423
10424 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10425 if (attr != NULL)
10426 {
10427 *offset = 0;
10428
10429 /* Note that we do not check for a section offset first here.
10430 This is because DW_AT_data_member_location is new in DWARF 4,
10431 so if we see it, we can assume that a constant form is really
10432 a constant and not a section offset. */
10433 if (attr_form_is_constant (attr))
10434 *offset = dwarf2_get_attr_constant_value (attr, 0);
10435 else if (attr_form_is_section_offset (attr))
10436 dwarf2_complex_location_expr_complaint ();
10437 else if (attr_form_is_block (attr))
10438 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10439 else
10440 dwarf2_complex_location_expr_complaint ();
10441
10442 return 1;
10443 }
10444
10445 return 0;
10446 }
10447
10448 /* Add an aggregate field to the field list. */
10449
10450 static void
10451 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10452 struct dwarf2_cu *cu)
10453 {
10454 struct objfile *objfile = cu->objfile;
10455 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10456 struct nextfield *new_field;
10457 struct attribute *attr;
10458 struct field *fp;
10459 char *fieldname = "";
10460
10461 /* Allocate a new field list entry and link it in. */
10462 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10463 make_cleanup (xfree, new_field);
10464 memset (new_field, 0, sizeof (struct nextfield));
10465
10466 if (die->tag == DW_TAG_inheritance)
10467 {
10468 new_field->next = fip->baseclasses;
10469 fip->baseclasses = new_field;
10470 }
10471 else
10472 {
10473 new_field->next = fip->fields;
10474 fip->fields = new_field;
10475 }
10476 fip->nfields++;
10477
10478 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10479 if (attr)
10480 new_field->accessibility = DW_UNSND (attr);
10481 else
10482 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10483 if (new_field->accessibility != DW_ACCESS_public)
10484 fip->non_public_fields = 1;
10485
10486 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10487 if (attr)
10488 new_field->virtuality = DW_UNSND (attr);
10489 else
10490 new_field->virtuality = DW_VIRTUALITY_none;
10491
10492 fp = &new_field->field;
10493
10494 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10495 {
10496 LONGEST offset;
10497
10498 /* Data member other than a C++ static data member. */
10499
10500 /* Get type of field. */
10501 fp->type = die_type (die, cu);
10502
10503 SET_FIELD_BITPOS (*fp, 0);
10504
10505 /* Get bit size of field (zero if none). */
10506 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10507 if (attr)
10508 {
10509 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10510 }
10511 else
10512 {
10513 FIELD_BITSIZE (*fp) = 0;
10514 }
10515
10516 /* Get bit offset of field. */
10517 if (handle_data_member_location (die, cu, &offset))
10518 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10519 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10520 if (attr)
10521 {
10522 if (gdbarch_bits_big_endian (gdbarch))
10523 {
10524 /* For big endian bits, the DW_AT_bit_offset gives the
10525 additional bit offset from the MSB of the containing
10526 anonymous object to the MSB of the field. We don't
10527 have to do anything special since we don't need to
10528 know the size of the anonymous object. */
10529 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10530 }
10531 else
10532 {
10533 /* For little endian bits, compute the bit offset to the
10534 MSB of the anonymous object, subtract off the number of
10535 bits from the MSB of the field to the MSB of the
10536 object, and then subtract off the number of bits of
10537 the field itself. The result is the bit offset of
10538 the LSB of the field. */
10539 int anonymous_size;
10540 int bit_offset = DW_UNSND (attr);
10541
10542 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10543 if (attr)
10544 {
10545 /* The size of the anonymous object containing
10546 the bit field is explicit, so use the
10547 indicated size (in bytes). */
10548 anonymous_size = DW_UNSND (attr);
10549 }
10550 else
10551 {
10552 /* The size of the anonymous object containing
10553 the bit field must be inferred from the type
10554 attribute of the data member containing the
10555 bit field. */
10556 anonymous_size = TYPE_LENGTH (fp->type);
10557 }
10558 SET_FIELD_BITPOS (*fp,
10559 (FIELD_BITPOS (*fp)
10560 + anonymous_size * bits_per_byte
10561 - bit_offset - FIELD_BITSIZE (*fp)));
10562 }
10563 }
10564
10565 /* Get name of field. */
10566 fieldname = dwarf2_name (die, cu);
10567 if (fieldname == NULL)
10568 fieldname = "";
10569
10570 /* The name is already allocated along with this objfile, so we don't
10571 need to duplicate it for the type. */
10572 fp->name = fieldname;
10573
10574 /* Change accessibility for artificial fields (e.g. virtual table
10575 pointer or virtual base class pointer) to private. */
10576 if (dwarf2_attr (die, DW_AT_artificial, cu))
10577 {
10578 FIELD_ARTIFICIAL (*fp) = 1;
10579 new_field->accessibility = DW_ACCESS_private;
10580 fip->non_public_fields = 1;
10581 }
10582 }
10583 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10584 {
10585 /* C++ static member. */
10586
10587 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10588 is a declaration, but all versions of G++ as of this writing
10589 (so through at least 3.2.1) incorrectly generate
10590 DW_TAG_variable tags. */
10591
10592 const char *physname;
10593
10594 /* Get name of field. */
10595 fieldname = dwarf2_name (die, cu);
10596 if (fieldname == NULL)
10597 return;
10598
10599 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10600 if (attr
10601 /* Only create a symbol if this is an external value.
10602 new_symbol checks this and puts the value in the global symbol
10603 table, which we want. If it is not external, new_symbol
10604 will try to put the value in cu->list_in_scope which is wrong. */
10605 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10606 {
10607 /* A static const member, not much different than an enum as far as
10608 we're concerned, except that we can support more types. */
10609 new_symbol (die, NULL, cu);
10610 }
10611
10612 /* Get physical name. */
10613 physname = dwarf2_physname (fieldname, die, cu);
10614
10615 /* The name is already allocated along with this objfile, so we don't
10616 need to duplicate it for the type. */
10617 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10618 FIELD_TYPE (*fp) = die_type (die, cu);
10619 FIELD_NAME (*fp) = fieldname;
10620 }
10621 else if (die->tag == DW_TAG_inheritance)
10622 {
10623 LONGEST offset;
10624
10625 /* C++ base class field. */
10626 if (handle_data_member_location (die, cu, &offset))
10627 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10628 FIELD_BITSIZE (*fp) = 0;
10629 FIELD_TYPE (*fp) = die_type (die, cu);
10630 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10631 fip->nbaseclasses++;
10632 }
10633 }
10634
10635 /* Add a typedef defined in the scope of the FIP's class. */
10636
10637 static void
10638 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10639 struct dwarf2_cu *cu)
10640 {
10641 struct objfile *objfile = cu->objfile;
10642 struct typedef_field_list *new_field;
10643 struct attribute *attr;
10644 struct typedef_field *fp;
10645 char *fieldname = "";
10646
10647 /* Allocate a new field list entry and link it in. */
10648 new_field = xzalloc (sizeof (*new_field));
10649 make_cleanup (xfree, new_field);
10650
10651 gdb_assert (die->tag == DW_TAG_typedef);
10652
10653 fp = &new_field->field;
10654
10655 /* Get name of field. */
10656 fp->name = dwarf2_name (die, cu);
10657 if (fp->name == NULL)
10658 return;
10659
10660 fp->type = read_type_die (die, cu);
10661
10662 new_field->next = fip->typedef_field_list;
10663 fip->typedef_field_list = new_field;
10664 fip->typedef_field_list_count++;
10665 }
10666
10667 /* Create the vector of fields, and attach it to the type. */
10668
10669 static void
10670 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10671 struct dwarf2_cu *cu)
10672 {
10673 int nfields = fip->nfields;
10674
10675 /* Record the field count, allocate space for the array of fields,
10676 and create blank accessibility bitfields if necessary. */
10677 TYPE_NFIELDS (type) = nfields;
10678 TYPE_FIELDS (type) = (struct field *)
10679 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10680 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10681
10682 if (fip->non_public_fields && cu->language != language_ada)
10683 {
10684 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10685
10686 TYPE_FIELD_PRIVATE_BITS (type) =
10687 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10688 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10689
10690 TYPE_FIELD_PROTECTED_BITS (type) =
10691 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10692 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10693
10694 TYPE_FIELD_IGNORE_BITS (type) =
10695 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10696 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10697 }
10698
10699 /* If the type has baseclasses, allocate and clear a bit vector for
10700 TYPE_FIELD_VIRTUAL_BITS. */
10701 if (fip->nbaseclasses && cu->language != language_ada)
10702 {
10703 int num_bytes = B_BYTES (fip->nbaseclasses);
10704 unsigned char *pointer;
10705
10706 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10707 pointer = TYPE_ALLOC (type, num_bytes);
10708 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10709 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10710 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10711 }
10712
10713 /* Copy the saved-up fields into the field vector. Start from the head of
10714 the list, adding to the tail of the field array, so that they end up in
10715 the same order in the array in which they were added to the list. */
10716 while (nfields-- > 0)
10717 {
10718 struct nextfield *fieldp;
10719
10720 if (fip->fields)
10721 {
10722 fieldp = fip->fields;
10723 fip->fields = fieldp->next;
10724 }
10725 else
10726 {
10727 fieldp = fip->baseclasses;
10728 fip->baseclasses = fieldp->next;
10729 }
10730
10731 TYPE_FIELD (type, nfields) = fieldp->field;
10732 switch (fieldp->accessibility)
10733 {
10734 case DW_ACCESS_private:
10735 if (cu->language != language_ada)
10736 SET_TYPE_FIELD_PRIVATE (type, nfields);
10737 break;
10738
10739 case DW_ACCESS_protected:
10740 if (cu->language != language_ada)
10741 SET_TYPE_FIELD_PROTECTED (type, nfields);
10742 break;
10743
10744 case DW_ACCESS_public:
10745 break;
10746
10747 default:
10748 /* Unknown accessibility. Complain and treat it as public. */
10749 {
10750 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10751 fieldp->accessibility);
10752 }
10753 break;
10754 }
10755 if (nfields < fip->nbaseclasses)
10756 {
10757 switch (fieldp->virtuality)
10758 {
10759 case DW_VIRTUALITY_virtual:
10760 case DW_VIRTUALITY_pure_virtual:
10761 if (cu->language == language_ada)
10762 error (_("unexpected virtuality in component of Ada type"));
10763 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10764 break;
10765 }
10766 }
10767 }
10768 }
10769
10770 /* Add a member function to the proper fieldlist. */
10771
10772 static void
10773 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10774 struct type *type, struct dwarf2_cu *cu)
10775 {
10776 struct objfile *objfile = cu->objfile;
10777 struct attribute *attr;
10778 struct fnfieldlist *flp;
10779 int i;
10780 struct fn_field *fnp;
10781 char *fieldname;
10782 struct nextfnfield *new_fnfield;
10783 struct type *this_type;
10784 enum dwarf_access_attribute accessibility;
10785
10786 if (cu->language == language_ada)
10787 error (_("unexpected member function in Ada type"));
10788
10789 /* Get name of member function. */
10790 fieldname = dwarf2_name (die, cu);
10791 if (fieldname == NULL)
10792 return;
10793
10794 /* Look up member function name in fieldlist. */
10795 for (i = 0; i < fip->nfnfields; i++)
10796 {
10797 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10798 break;
10799 }
10800
10801 /* Create new list element if necessary. */
10802 if (i < fip->nfnfields)
10803 flp = &fip->fnfieldlists[i];
10804 else
10805 {
10806 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10807 {
10808 fip->fnfieldlists = (struct fnfieldlist *)
10809 xrealloc (fip->fnfieldlists,
10810 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10811 * sizeof (struct fnfieldlist));
10812 if (fip->nfnfields == 0)
10813 make_cleanup (free_current_contents, &fip->fnfieldlists);
10814 }
10815 flp = &fip->fnfieldlists[fip->nfnfields];
10816 flp->name = fieldname;
10817 flp->length = 0;
10818 flp->head = NULL;
10819 i = fip->nfnfields++;
10820 }
10821
10822 /* Create a new member function field and chain it to the field list
10823 entry. */
10824 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10825 make_cleanup (xfree, new_fnfield);
10826 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10827 new_fnfield->next = flp->head;
10828 flp->head = new_fnfield;
10829 flp->length++;
10830
10831 /* Fill in the member function field info. */
10832 fnp = &new_fnfield->fnfield;
10833
10834 /* Delay processing of the physname until later. */
10835 if (cu->language == language_cplus || cu->language == language_java)
10836 {
10837 add_to_method_list (type, i, flp->length - 1, fieldname,
10838 die, cu);
10839 }
10840 else
10841 {
10842 const char *physname = dwarf2_physname (fieldname, die, cu);
10843 fnp->physname = physname ? physname : "";
10844 }
10845
10846 fnp->type = alloc_type (objfile);
10847 this_type = read_type_die (die, cu);
10848 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10849 {
10850 int nparams = TYPE_NFIELDS (this_type);
10851
10852 /* TYPE is the domain of this method, and THIS_TYPE is the type
10853 of the method itself (TYPE_CODE_METHOD). */
10854 smash_to_method_type (fnp->type, type,
10855 TYPE_TARGET_TYPE (this_type),
10856 TYPE_FIELDS (this_type),
10857 TYPE_NFIELDS (this_type),
10858 TYPE_VARARGS (this_type));
10859
10860 /* Handle static member functions.
10861 Dwarf2 has no clean way to discern C++ static and non-static
10862 member functions. G++ helps GDB by marking the first
10863 parameter for non-static member functions (which is the this
10864 pointer) as artificial. We obtain this information from
10865 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10866 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10867 fnp->voffset = VOFFSET_STATIC;
10868 }
10869 else
10870 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10871 dwarf2_full_name (fieldname, die, cu));
10872
10873 /* Get fcontext from DW_AT_containing_type if present. */
10874 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10875 fnp->fcontext = die_containing_type (die, cu);
10876
10877 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10878 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10879
10880 /* Get accessibility. */
10881 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10882 if (attr)
10883 accessibility = DW_UNSND (attr);
10884 else
10885 accessibility = dwarf2_default_access_attribute (die, cu);
10886 switch (accessibility)
10887 {
10888 case DW_ACCESS_private:
10889 fnp->is_private = 1;
10890 break;
10891 case DW_ACCESS_protected:
10892 fnp->is_protected = 1;
10893 break;
10894 }
10895
10896 /* Check for artificial methods. */
10897 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10898 if (attr && DW_UNSND (attr) != 0)
10899 fnp->is_artificial = 1;
10900
10901 /* Get index in virtual function table if it is a virtual member
10902 function. For older versions of GCC, this is an offset in the
10903 appropriate virtual table, as specified by DW_AT_containing_type.
10904 For everyone else, it is an expression to be evaluated relative
10905 to the object address. */
10906
10907 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10908 if (attr)
10909 {
10910 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10911 {
10912 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10913 {
10914 /* Old-style GCC. */
10915 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10916 }
10917 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10918 || (DW_BLOCK (attr)->size > 1
10919 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10920 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10921 {
10922 struct dwarf_block blk;
10923 int offset;
10924
10925 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10926 ? 1 : 2);
10927 blk.size = DW_BLOCK (attr)->size - offset;
10928 blk.data = DW_BLOCK (attr)->data + offset;
10929 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10930 if ((fnp->voffset % cu->header.addr_size) != 0)
10931 dwarf2_complex_location_expr_complaint ();
10932 else
10933 fnp->voffset /= cu->header.addr_size;
10934 fnp->voffset += 2;
10935 }
10936 else
10937 dwarf2_complex_location_expr_complaint ();
10938
10939 if (!fnp->fcontext)
10940 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10941 }
10942 else if (attr_form_is_section_offset (attr))
10943 {
10944 dwarf2_complex_location_expr_complaint ();
10945 }
10946 else
10947 {
10948 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10949 fieldname);
10950 }
10951 }
10952 else
10953 {
10954 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10955 if (attr && DW_UNSND (attr))
10956 {
10957 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10958 complaint (&symfile_complaints,
10959 _("Member function \"%s\" (offset %d) is virtual "
10960 "but the vtable offset is not specified"),
10961 fieldname, die->offset.sect_off);
10962 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10963 TYPE_CPLUS_DYNAMIC (type) = 1;
10964 }
10965 }
10966 }
10967
10968 /* Create the vector of member function fields, and attach it to the type. */
10969
10970 static void
10971 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
10972 struct dwarf2_cu *cu)
10973 {
10974 struct fnfieldlist *flp;
10975 int i;
10976
10977 if (cu->language == language_ada)
10978 error (_("unexpected member functions in Ada type"));
10979
10980 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10981 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10982 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10983
10984 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10985 {
10986 struct nextfnfield *nfp = flp->head;
10987 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10988 int k;
10989
10990 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10991 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10992 fn_flp->fn_fields = (struct fn_field *)
10993 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10994 for (k = flp->length; (k--, nfp); nfp = nfp->next)
10995 fn_flp->fn_fields[k] = nfp->fnfield;
10996 }
10997
10998 TYPE_NFN_FIELDS (type) = fip->nfnfields;
10999 }
11000
11001 /* Returns non-zero if NAME is the name of a vtable member in CU's
11002 language, zero otherwise. */
11003 static int
11004 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11005 {
11006 static const char vptr[] = "_vptr";
11007 static const char vtable[] = "vtable";
11008
11009 /* Look for the C++ and Java forms of the vtable. */
11010 if ((cu->language == language_java
11011 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11012 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11013 && is_cplus_marker (name[sizeof (vptr) - 1])))
11014 return 1;
11015
11016 return 0;
11017 }
11018
11019 /* GCC outputs unnamed structures that are really pointers to member
11020 functions, with the ABI-specified layout. If TYPE describes
11021 such a structure, smash it into a member function type.
11022
11023 GCC shouldn't do this; it should just output pointer to member DIEs.
11024 This is GCC PR debug/28767. */
11025
11026 static void
11027 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11028 {
11029 struct type *pfn_type, *domain_type, *new_type;
11030
11031 /* Check for a structure with no name and two children. */
11032 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11033 return;
11034
11035 /* Check for __pfn and __delta members. */
11036 if (TYPE_FIELD_NAME (type, 0) == NULL
11037 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11038 || TYPE_FIELD_NAME (type, 1) == NULL
11039 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11040 return;
11041
11042 /* Find the type of the method. */
11043 pfn_type = TYPE_FIELD_TYPE (type, 0);
11044 if (pfn_type == NULL
11045 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11046 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11047 return;
11048
11049 /* Look for the "this" argument. */
11050 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11051 if (TYPE_NFIELDS (pfn_type) == 0
11052 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11053 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11054 return;
11055
11056 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11057 new_type = alloc_type (objfile);
11058 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11059 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11060 TYPE_VARARGS (pfn_type));
11061 smash_to_methodptr_type (type, new_type);
11062 }
11063
11064 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11065 (icc). */
11066
11067 static int
11068 producer_is_icc (struct dwarf2_cu *cu)
11069 {
11070 if (!cu->checked_producer)
11071 check_producer (cu);
11072
11073 return cu->producer_is_icc;
11074 }
11075
11076 /* Called when we find the DIE that starts a structure or union scope
11077 (definition) to create a type for the structure or union. Fill in
11078 the type's name and general properties; the members will not be
11079 processed until process_structure_type.
11080
11081 NOTE: we need to call these functions regardless of whether or not the
11082 DIE has a DW_AT_name attribute, since it might be an anonymous
11083 structure or union. This gets the type entered into our set of
11084 user defined types.
11085
11086 However, if the structure is incomplete (an opaque struct/union)
11087 then suppress creating a symbol table entry for it since gdb only
11088 wants to find the one with the complete definition. Note that if
11089 it is complete, we just call new_symbol, which does it's own
11090 checking about whether the struct/union is anonymous or not (and
11091 suppresses creating a symbol table entry itself). */
11092
11093 static struct type *
11094 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11095 {
11096 struct objfile *objfile = cu->objfile;
11097 struct type *type;
11098 struct attribute *attr;
11099 char *name;
11100
11101 /* If the definition of this type lives in .debug_types, read that type.
11102 Don't follow DW_AT_specification though, that will take us back up
11103 the chain and we want to go down. */
11104 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11105 if (attr)
11106 {
11107 struct dwarf2_cu *type_cu = cu;
11108 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11109
11110 /* We could just recurse on read_structure_type, but we need to call
11111 get_die_type to ensure only one type for this DIE is created.
11112 This is important, for example, because for c++ classes we need
11113 TYPE_NAME set which is only done by new_symbol. Blech. */
11114 type = read_type_die (type_die, type_cu);
11115
11116 /* TYPE_CU may not be the same as CU.
11117 Ensure TYPE is recorded in CU's type_hash table. */
11118 return set_die_type (die, type, cu);
11119 }
11120
11121 type = alloc_type (objfile);
11122 INIT_CPLUS_SPECIFIC (type);
11123
11124 name = dwarf2_name (die, cu);
11125 if (name != NULL)
11126 {
11127 if (cu->language == language_cplus
11128 || cu->language == language_java)
11129 {
11130 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11131
11132 /* dwarf2_full_name might have already finished building the DIE's
11133 type. If so, there is no need to continue. */
11134 if (get_die_type (die, cu) != NULL)
11135 return get_die_type (die, cu);
11136
11137 TYPE_TAG_NAME (type) = full_name;
11138 if (die->tag == DW_TAG_structure_type
11139 || die->tag == DW_TAG_class_type)
11140 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11141 }
11142 else
11143 {
11144 /* The name is already allocated along with this objfile, so
11145 we don't need to duplicate it for the type. */
11146 TYPE_TAG_NAME (type) = (char *) name;
11147 if (die->tag == DW_TAG_class_type)
11148 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11149 }
11150 }
11151
11152 if (die->tag == DW_TAG_structure_type)
11153 {
11154 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11155 }
11156 else if (die->tag == DW_TAG_union_type)
11157 {
11158 TYPE_CODE (type) = TYPE_CODE_UNION;
11159 }
11160 else
11161 {
11162 TYPE_CODE (type) = TYPE_CODE_CLASS;
11163 }
11164
11165 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11166 TYPE_DECLARED_CLASS (type) = 1;
11167
11168 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11169 if (attr)
11170 {
11171 TYPE_LENGTH (type) = DW_UNSND (attr);
11172 }
11173 else
11174 {
11175 TYPE_LENGTH (type) = 0;
11176 }
11177
11178 if (producer_is_icc (cu))
11179 {
11180 /* ICC does not output the required DW_AT_declaration
11181 on incomplete types, but gives them a size of zero. */
11182 }
11183 else
11184 TYPE_STUB_SUPPORTED (type) = 1;
11185
11186 if (die_is_declaration (die, cu))
11187 TYPE_STUB (type) = 1;
11188 else if (attr == NULL && die->child == NULL
11189 && producer_is_realview (cu->producer))
11190 /* RealView does not output the required DW_AT_declaration
11191 on incomplete types. */
11192 TYPE_STUB (type) = 1;
11193
11194 /* We need to add the type field to the die immediately so we don't
11195 infinitely recurse when dealing with pointers to the structure
11196 type within the structure itself. */
11197 set_die_type (die, type, cu);
11198
11199 /* set_die_type should be already done. */
11200 set_descriptive_type (type, die, cu);
11201
11202 return type;
11203 }
11204
11205 /* Finish creating a structure or union type, including filling in
11206 its members and creating a symbol for it. */
11207
11208 static void
11209 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11210 {
11211 struct objfile *objfile = cu->objfile;
11212 struct die_info *child_die = die->child;
11213 struct type *type;
11214
11215 type = get_die_type (die, cu);
11216 if (type == NULL)
11217 type = read_structure_type (die, cu);
11218
11219 if (die->child != NULL && ! die_is_declaration (die, cu))
11220 {
11221 struct field_info fi;
11222 struct die_info *child_die;
11223 VEC (symbolp) *template_args = NULL;
11224 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11225
11226 memset (&fi, 0, sizeof (struct field_info));
11227
11228 child_die = die->child;
11229
11230 while (child_die && child_die->tag)
11231 {
11232 if (child_die->tag == DW_TAG_member
11233 || child_die->tag == DW_TAG_variable)
11234 {
11235 /* NOTE: carlton/2002-11-05: A C++ static data member
11236 should be a DW_TAG_member that is a declaration, but
11237 all versions of G++ as of this writing (so through at
11238 least 3.2.1) incorrectly generate DW_TAG_variable
11239 tags for them instead. */
11240 dwarf2_add_field (&fi, child_die, cu);
11241 }
11242 else if (child_die->tag == DW_TAG_subprogram)
11243 {
11244 /* C++ member function. */
11245 dwarf2_add_member_fn (&fi, child_die, type, cu);
11246 }
11247 else if (child_die->tag == DW_TAG_inheritance)
11248 {
11249 /* C++ base class field. */
11250 dwarf2_add_field (&fi, child_die, cu);
11251 }
11252 else if (child_die->tag == DW_TAG_typedef)
11253 dwarf2_add_typedef (&fi, child_die, cu);
11254 else if (child_die->tag == DW_TAG_template_type_param
11255 || child_die->tag == DW_TAG_template_value_param)
11256 {
11257 struct symbol *arg = new_symbol (child_die, NULL, cu);
11258
11259 if (arg != NULL)
11260 VEC_safe_push (symbolp, template_args, arg);
11261 }
11262
11263 child_die = sibling_die (child_die);
11264 }
11265
11266 /* Attach template arguments to type. */
11267 if (! VEC_empty (symbolp, template_args))
11268 {
11269 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11270 TYPE_N_TEMPLATE_ARGUMENTS (type)
11271 = VEC_length (symbolp, template_args);
11272 TYPE_TEMPLATE_ARGUMENTS (type)
11273 = obstack_alloc (&objfile->objfile_obstack,
11274 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11275 * sizeof (struct symbol *)));
11276 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11277 VEC_address (symbolp, template_args),
11278 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11279 * sizeof (struct symbol *)));
11280 VEC_free (symbolp, template_args);
11281 }
11282
11283 /* Attach fields and member functions to the type. */
11284 if (fi.nfields)
11285 dwarf2_attach_fields_to_type (&fi, type, cu);
11286 if (fi.nfnfields)
11287 {
11288 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11289
11290 /* Get the type which refers to the base class (possibly this
11291 class itself) which contains the vtable pointer for the current
11292 class from the DW_AT_containing_type attribute. This use of
11293 DW_AT_containing_type is a GNU extension. */
11294
11295 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11296 {
11297 struct type *t = die_containing_type (die, cu);
11298
11299 TYPE_VPTR_BASETYPE (type) = t;
11300 if (type == t)
11301 {
11302 int i;
11303
11304 /* Our own class provides vtbl ptr. */
11305 for (i = TYPE_NFIELDS (t) - 1;
11306 i >= TYPE_N_BASECLASSES (t);
11307 --i)
11308 {
11309 const char *fieldname = TYPE_FIELD_NAME (t, i);
11310
11311 if (is_vtable_name (fieldname, cu))
11312 {
11313 TYPE_VPTR_FIELDNO (type) = i;
11314 break;
11315 }
11316 }
11317
11318 /* Complain if virtual function table field not found. */
11319 if (i < TYPE_N_BASECLASSES (t))
11320 complaint (&symfile_complaints,
11321 _("virtual function table pointer "
11322 "not found when defining class '%s'"),
11323 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11324 "");
11325 }
11326 else
11327 {
11328 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11329 }
11330 }
11331 else if (cu->producer
11332 && strncmp (cu->producer,
11333 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11334 {
11335 /* The IBM XLC compiler does not provide direct indication
11336 of the containing type, but the vtable pointer is
11337 always named __vfp. */
11338
11339 int i;
11340
11341 for (i = TYPE_NFIELDS (type) - 1;
11342 i >= TYPE_N_BASECLASSES (type);
11343 --i)
11344 {
11345 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11346 {
11347 TYPE_VPTR_FIELDNO (type) = i;
11348 TYPE_VPTR_BASETYPE (type) = type;
11349 break;
11350 }
11351 }
11352 }
11353 }
11354
11355 /* Copy fi.typedef_field_list linked list elements content into the
11356 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11357 if (fi.typedef_field_list)
11358 {
11359 int i = fi.typedef_field_list_count;
11360
11361 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11362 TYPE_TYPEDEF_FIELD_ARRAY (type)
11363 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11364 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11365
11366 /* Reverse the list order to keep the debug info elements order. */
11367 while (--i >= 0)
11368 {
11369 struct typedef_field *dest, *src;
11370
11371 dest = &TYPE_TYPEDEF_FIELD (type, i);
11372 src = &fi.typedef_field_list->field;
11373 fi.typedef_field_list = fi.typedef_field_list->next;
11374 *dest = *src;
11375 }
11376 }
11377
11378 do_cleanups (back_to);
11379
11380 if (HAVE_CPLUS_STRUCT (type))
11381 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11382 }
11383
11384 quirk_gcc_member_function_pointer (type, objfile);
11385
11386 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11387 snapshots) has been known to create a die giving a declaration
11388 for a class that has, as a child, a die giving a definition for a
11389 nested class. So we have to process our children even if the
11390 current die is a declaration. Normally, of course, a declaration
11391 won't have any children at all. */
11392
11393 while (child_die != NULL && child_die->tag)
11394 {
11395 if (child_die->tag == DW_TAG_member
11396 || child_die->tag == DW_TAG_variable
11397 || child_die->tag == DW_TAG_inheritance
11398 || child_die->tag == DW_TAG_template_value_param
11399 || child_die->tag == DW_TAG_template_type_param)
11400 {
11401 /* Do nothing. */
11402 }
11403 else
11404 process_die (child_die, cu);
11405
11406 child_die = sibling_die (child_die);
11407 }
11408
11409 /* Do not consider external references. According to the DWARF standard,
11410 these DIEs are identified by the fact that they have no byte_size
11411 attribute, and a declaration attribute. */
11412 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11413 || !die_is_declaration (die, cu))
11414 new_symbol (die, type, cu);
11415 }
11416
11417 /* Given a DW_AT_enumeration_type die, set its type. We do not
11418 complete the type's fields yet, or create any symbols. */
11419
11420 static struct type *
11421 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11422 {
11423 struct objfile *objfile = cu->objfile;
11424 struct type *type;
11425 struct attribute *attr;
11426 const char *name;
11427
11428 /* If the definition of this type lives in .debug_types, read that type.
11429 Don't follow DW_AT_specification though, that will take us back up
11430 the chain and we want to go down. */
11431 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11432 if (attr)
11433 {
11434 struct dwarf2_cu *type_cu = cu;
11435 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11436
11437 type = read_type_die (type_die, type_cu);
11438
11439 /* TYPE_CU may not be the same as CU.
11440 Ensure TYPE is recorded in CU's type_hash table. */
11441 return set_die_type (die, type, cu);
11442 }
11443
11444 type = alloc_type (objfile);
11445
11446 TYPE_CODE (type) = TYPE_CODE_ENUM;
11447 name = dwarf2_full_name (NULL, die, cu);
11448 if (name != NULL)
11449 TYPE_TAG_NAME (type) = (char *) name;
11450
11451 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11452 if (attr)
11453 {
11454 TYPE_LENGTH (type) = DW_UNSND (attr);
11455 }
11456 else
11457 {
11458 TYPE_LENGTH (type) = 0;
11459 }
11460
11461 /* The enumeration DIE can be incomplete. In Ada, any type can be
11462 declared as private in the package spec, and then defined only
11463 inside the package body. Such types are known as Taft Amendment
11464 Types. When another package uses such a type, an incomplete DIE
11465 may be generated by the compiler. */
11466 if (die_is_declaration (die, cu))
11467 TYPE_STUB (type) = 1;
11468
11469 return set_die_type (die, type, cu);
11470 }
11471
11472 /* Given a pointer to a die which begins an enumeration, process all
11473 the dies that define the members of the enumeration, and create the
11474 symbol for the enumeration type.
11475
11476 NOTE: We reverse the order of the element list. */
11477
11478 static void
11479 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11480 {
11481 struct type *this_type;
11482
11483 this_type = get_die_type (die, cu);
11484 if (this_type == NULL)
11485 this_type = read_enumeration_type (die, cu);
11486
11487 if (die->child != NULL)
11488 {
11489 struct die_info *child_die;
11490 struct symbol *sym;
11491 struct field *fields = NULL;
11492 int num_fields = 0;
11493 int unsigned_enum = 1;
11494 char *name;
11495 int flag_enum = 1;
11496 ULONGEST mask = 0;
11497
11498 child_die = die->child;
11499 while (child_die && child_die->tag)
11500 {
11501 if (child_die->tag != DW_TAG_enumerator)
11502 {
11503 process_die (child_die, cu);
11504 }
11505 else
11506 {
11507 name = dwarf2_name (child_die, cu);
11508 if (name)
11509 {
11510 sym = new_symbol (child_die, this_type, cu);
11511 if (SYMBOL_VALUE (sym) < 0)
11512 {
11513 unsigned_enum = 0;
11514 flag_enum = 0;
11515 }
11516 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11517 flag_enum = 0;
11518 else
11519 mask |= SYMBOL_VALUE (sym);
11520
11521 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11522 {
11523 fields = (struct field *)
11524 xrealloc (fields,
11525 (num_fields + DW_FIELD_ALLOC_CHUNK)
11526 * sizeof (struct field));
11527 }
11528
11529 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11530 FIELD_TYPE (fields[num_fields]) = NULL;
11531 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11532 FIELD_BITSIZE (fields[num_fields]) = 0;
11533
11534 num_fields++;
11535 }
11536 }
11537
11538 child_die = sibling_die (child_die);
11539 }
11540
11541 if (num_fields)
11542 {
11543 TYPE_NFIELDS (this_type) = num_fields;
11544 TYPE_FIELDS (this_type) = (struct field *)
11545 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11546 memcpy (TYPE_FIELDS (this_type), fields,
11547 sizeof (struct field) * num_fields);
11548 xfree (fields);
11549 }
11550 if (unsigned_enum)
11551 TYPE_UNSIGNED (this_type) = 1;
11552 if (flag_enum)
11553 TYPE_FLAG_ENUM (this_type) = 1;
11554 }
11555
11556 /* If we are reading an enum from a .debug_types unit, and the enum
11557 is a declaration, and the enum is not the signatured type in the
11558 unit, then we do not want to add a symbol for it. Adding a
11559 symbol would in some cases obscure the true definition of the
11560 enum, giving users an incomplete type when the definition is
11561 actually available. Note that we do not want to do this for all
11562 enums which are just declarations, because C++0x allows forward
11563 enum declarations. */
11564 if (cu->per_cu->is_debug_types
11565 && die_is_declaration (die, cu))
11566 {
11567 struct signatured_type *sig_type;
11568
11569 sig_type
11570 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11571 cu->per_cu->info_or_types_section,
11572 cu->per_cu->offset);
11573 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11574 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11575 return;
11576 }
11577
11578 new_symbol (die, this_type, cu);
11579 }
11580
11581 /* Extract all information from a DW_TAG_array_type DIE and put it in
11582 the DIE's type field. For now, this only handles one dimensional
11583 arrays. */
11584
11585 static struct type *
11586 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11587 {
11588 struct objfile *objfile = cu->objfile;
11589 struct die_info *child_die;
11590 struct type *type;
11591 struct type *element_type, *range_type, *index_type;
11592 struct type **range_types = NULL;
11593 struct attribute *attr;
11594 int ndim = 0;
11595 struct cleanup *back_to;
11596 char *name;
11597
11598 element_type = die_type (die, cu);
11599
11600 /* The die_type call above may have already set the type for this DIE. */
11601 type = get_die_type (die, cu);
11602 if (type)
11603 return type;
11604
11605 /* Irix 6.2 native cc creates array types without children for
11606 arrays with unspecified length. */
11607 if (die->child == NULL)
11608 {
11609 index_type = objfile_type (objfile)->builtin_int;
11610 range_type = create_range_type (NULL, index_type, 0, -1);
11611 type = create_array_type (NULL, element_type, range_type);
11612 return set_die_type (die, type, cu);
11613 }
11614
11615 back_to = make_cleanup (null_cleanup, NULL);
11616 child_die = die->child;
11617 while (child_die && child_die->tag)
11618 {
11619 if (child_die->tag == DW_TAG_subrange_type)
11620 {
11621 struct type *child_type = read_type_die (child_die, cu);
11622
11623 if (child_type != NULL)
11624 {
11625 /* The range type was succesfully read. Save it for the
11626 array type creation. */
11627 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11628 {
11629 range_types = (struct type **)
11630 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11631 * sizeof (struct type *));
11632 if (ndim == 0)
11633 make_cleanup (free_current_contents, &range_types);
11634 }
11635 range_types[ndim++] = child_type;
11636 }
11637 }
11638 child_die = sibling_die (child_die);
11639 }
11640
11641 /* Dwarf2 dimensions are output from left to right, create the
11642 necessary array types in backwards order. */
11643
11644 type = element_type;
11645
11646 if (read_array_order (die, cu) == DW_ORD_col_major)
11647 {
11648 int i = 0;
11649
11650 while (i < ndim)
11651 type = create_array_type (NULL, type, range_types[i++]);
11652 }
11653 else
11654 {
11655 while (ndim-- > 0)
11656 type = create_array_type (NULL, type, range_types[ndim]);
11657 }
11658
11659 /* Understand Dwarf2 support for vector types (like they occur on
11660 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11661 array type. This is not part of the Dwarf2/3 standard yet, but a
11662 custom vendor extension. The main difference between a regular
11663 array and the vector variant is that vectors are passed by value
11664 to functions. */
11665 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11666 if (attr)
11667 make_vector_type (type);
11668
11669 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11670 implementation may choose to implement triple vectors using this
11671 attribute. */
11672 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11673 if (attr)
11674 {
11675 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11676 TYPE_LENGTH (type) = DW_UNSND (attr);
11677 else
11678 complaint (&symfile_complaints,
11679 _("DW_AT_byte_size for array type smaller "
11680 "than the total size of elements"));
11681 }
11682
11683 name = dwarf2_name (die, cu);
11684 if (name)
11685 TYPE_NAME (type) = name;
11686
11687 /* Install the type in the die. */
11688 set_die_type (die, type, cu);
11689
11690 /* set_die_type should be already done. */
11691 set_descriptive_type (type, die, cu);
11692
11693 do_cleanups (back_to);
11694
11695 return type;
11696 }
11697
11698 static enum dwarf_array_dim_ordering
11699 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11700 {
11701 struct attribute *attr;
11702
11703 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11704
11705 if (attr) return DW_SND (attr);
11706
11707 /* GNU F77 is a special case, as at 08/2004 array type info is the
11708 opposite order to the dwarf2 specification, but data is still
11709 laid out as per normal fortran.
11710
11711 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11712 version checking. */
11713
11714 if (cu->language == language_fortran
11715 && cu->producer && strstr (cu->producer, "GNU F77"))
11716 {
11717 return DW_ORD_row_major;
11718 }
11719
11720 switch (cu->language_defn->la_array_ordering)
11721 {
11722 case array_column_major:
11723 return DW_ORD_col_major;
11724 case array_row_major:
11725 default:
11726 return DW_ORD_row_major;
11727 };
11728 }
11729
11730 /* Extract all information from a DW_TAG_set_type DIE and put it in
11731 the DIE's type field. */
11732
11733 static struct type *
11734 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11735 {
11736 struct type *domain_type, *set_type;
11737 struct attribute *attr;
11738
11739 domain_type = die_type (die, cu);
11740
11741 /* The die_type call above may have already set the type for this DIE. */
11742 set_type = get_die_type (die, cu);
11743 if (set_type)
11744 return set_type;
11745
11746 set_type = create_set_type (NULL, domain_type);
11747
11748 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11749 if (attr)
11750 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11751
11752 return set_die_type (die, set_type, cu);
11753 }
11754
11755 /* A helper for read_common_block that creates a locexpr baton.
11756 SYM is the symbol which we are marking as computed.
11757 COMMON_DIE is the DIE for the common block.
11758 COMMON_LOC is the location expression attribute for the common
11759 block itself.
11760 MEMBER_LOC is the location expression attribute for the particular
11761 member of the common block that we are processing.
11762 CU is the CU from which the above come. */
11763
11764 static void
11765 mark_common_block_symbol_computed (struct symbol *sym,
11766 struct die_info *common_die,
11767 struct attribute *common_loc,
11768 struct attribute *member_loc,
11769 struct dwarf2_cu *cu)
11770 {
11771 struct objfile *objfile = dwarf2_per_objfile->objfile;
11772 struct dwarf2_locexpr_baton *baton;
11773 gdb_byte *ptr;
11774 unsigned int cu_off;
11775 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11776 LONGEST offset = 0;
11777
11778 gdb_assert (common_loc && member_loc);
11779 gdb_assert (attr_form_is_block (common_loc));
11780 gdb_assert (attr_form_is_block (member_loc)
11781 || attr_form_is_constant (member_loc));
11782
11783 baton = obstack_alloc (&objfile->objfile_obstack,
11784 sizeof (struct dwarf2_locexpr_baton));
11785 baton->per_cu = cu->per_cu;
11786 gdb_assert (baton->per_cu);
11787
11788 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11789
11790 if (attr_form_is_constant (member_loc))
11791 {
11792 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11793 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11794 }
11795 else
11796 baton->size += DW_BLOCK (member_loc)->size;
11797
11798 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11799 baton->data = ptr;
11800
11801 *ptr++ = DW_OP_call4;
11802 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11803 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11804 ptr += 4;
11805
11806 if (attr_form_is_constant (member_loc))
11807 {
11808 *ptr++ = DW_OP_addr;
11809 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11810 ptr += cu->header.addr_size;
11811 }
11812 else
11813 {
11814 /* We have to copy the data here, because DW_OP_call4 will only
11815 use a DW_AT_location attribute. */
11816 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11817 ptr += DW_BLOCK (member_loc)->size;
11818 }
11819
11820 *ptr++ = DW_OP_plus;
11821 gdb_assert (ptr - baton->data == baton->size);
11822
11823 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11824 SYMBOL_LOCATION_BATON (sym) = baton;
11825 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11826 }
11827
11828 /* Create appropriate locally-scoped variables for all the
11829 DW_TAG_common_block entries. Also create a struct common_block
11830 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11831 is used to sepate the common blocks name namespace from regular
11832 variable names. */
11833
11834 static void
11835 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11836 {
11837 struct attribute *attr;
11838
11839 attr = dwarf2_attr (die, DW_AT_location, cu);
11840 if (attr)
11841 {
11842 /* Support the .debug_loc offsets. */
11843 if (attr_form_is_block (attr))
11844 {
11845 /* Ok. */
11846 }
11847 else if (attr_form_is_section_offset (attr))
11848 {
11849 dwarf2_complex_location_expr_complaint ();
11850 attr = NULL;
11851 }
11852 else
11853 {
11854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11855 "common block member");
11856 attr = NULL;
11857 }
11858 }
11859
11860 if (die->child != NULL)
11861 {
11862 struct objfile *objfile = cu->objfile;
11863 struct die_info *child_die;
11864 size_t n_entries = 0, size;
11865 struct common_block *common_block;
11866 struct symbol *sym;
11867
11868 for (child_die = die->child;
11869 child_die && child_die->tag;
11870 child_die = sibling_die (child_die))
11871 ++n_entries;
11872
11873 size = (sizeof (struct common_block)
11874 + (n_entries - 1) * sizeof (struct symbol *));
11875 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11876 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11877 common_block->n_entries = 0;
11878
11879 for (child_die = die->child;
11880 child_die && child_die->tag;
11881 child_die = sibling_die (child_die))
11882 {
11883 /* Create the symbol in the DW_TAG_common_block block in the current
11884 symbol scope. */
11885 sym = new_symbol (child_die, NULL, cu);
11886 if (sym != NULL)
11887 {
11888 struct attribute *member_loc;
11889
11890 common_block->contents[common_block->n_entries++] = sym;
11891
11892 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11893 cu);
11894 if (member_loc)
11895 {
11896 /* GDB has handled this for a long time, but it is
11897 not specified by DWARF. It seems to have been
11898 emitted by gfortran at least as recently as:
11899 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11900 complaint (&symfile_complaints,
11901 _("Variable in common block has "
11902 "DW_AT_data_member_location "
11903 "- DIE at 0x%x [in module %s]"),
11904 child_die->offset.sect_off, cu->objfile->name);
11905
11906 if (attr_form_is_section_offset (member_loc))
11907 dwarf2_complex_location_expr_complaint ();
11908 else if (attr_form_is_constant (member_loc)
11909 || attr_form_is_block (member_loc))
11910 {
11911 if (attr)
11912 mark_common_block_symbol_computed (sym, die, attr,
11913 member_loc, cu);
11914 }
11915 else
11916 dwarf2_complex_location_expr_complaint ();
11917 }
11918 }
11919 }
11920
11921 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11922 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
11923 }
11924 }
11925
11926 /* Create a type for a C++ namespace. */
11927
11928 static struct type *
11929 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11930 {
11931 struct objfile *objfile = cu->objfile;
11932 const char *previous_prefix, *name;
11933 int is_anonymous;
11934 struct type *type;
11935
11936 /* For extensions, reuse the type of the original namespace. */
11937 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11938 {
11939 struct die_info *ext_die;
11940 struct dwarf2_cu *ext_cu = cu;
11941
11942 ext_die = dwarf2_extension (die, &ext_cu);
11943 type = read_type_die (ext_die, ext_cu);
11944
11945 /* EXT_CU may not be the same as CU.
11946 Ensure TYPE is recorded in CU's type_hash table. */
11947 return set_die_type (die, type, cu);
11948 }
11949
11950 name = namespace_name (die, &is_anonymous, cu);
11951
11952 /* Now build the name of the current namespace. */
11953
11954 previous_prefix = determine_prefix (die, cu);
11955 if (previous_prefix[0] != '\0')
11956 name = typename_concat (&objfile->objfile_obstack,
11957 previous_prefix, name, 0, cu);
11958
11959 /* Create the type. */
11960 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11961 objfile);
11962 TYPE_NAME (type) = (char *) name;
11963 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11964
11965 return set_die_type (die, type, cu);
11966 }
11967
11968 /* Read a C++ namespace. */
11969
11970 static void
11971 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11972 {
11973 struct objfile *objfile = cu->objfile;
11974 int is_anonymous;
11975
11976 /* Add a symbol associated to this if we haven't seen the namespace
11977 before. Also, add a using directive if it's an anonymous
11978 namespace. */
11979
11980 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
11981 {
11982 struct type *type;
11983
11984 type = read_type_die (die, cu);
11985 new_symbol (die, type, cu);
11986
11987 namespace_name (die, &is_anonymous, cu);
11988 if (is_anonymous)
11989 {
11990 const char *previous_prefix = determine_prefix (die, cu);
11991
11992 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
11993 NULL, NULL, &objfile->objfile_obstack);
11994 }
11995 }
11996
11997 if (die->child != NULL)
11998 {
11999 struct die_info *child_die = die->child;
12000
12001 while (child_die && child_die->tag)
12002 {
12003 process_die (child_die, cu);
12004 child_die = sibling_die (child_die);
12005 }
12006 }
12007 }
12008
12009 /* Read a Fortran module as type. This DIE can be only a declaration used for
12010 imported module. Still we need that type as local Fortran "use ... only"
12011 declaration imports depend on the created type in determine_prefix. */
12012
12013 static struct type *
12014 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12015 {
12016 struct objfile *objfile = cu->objfile;
12017 char *module_name;
12018 struct type *type;
12019
12020 module_name = dwarf2_name (die, cu);
12021 if (!module_name)
12022 complaint (&symfile_complaints,
12023 _("DW_TAG_module has no name, offset 0x%x"),
12024 die->offset.sect_off);
12025 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12026
12027 /* determine_prefix uses TYPE_TAG_NAME. */
12028 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12029
12030 return set_die_type (die, type, cu);
12031 }
12032
12033 /* Read a Fortran module. */
12034
12035 static void
12036 read_module (struct die_info *die, struct dwarf2_cu *cu)
12037 {
12038 struct die_info *child_die = die->child;
12039
12040 while (child_die && child_die->tag)
12041 {
12042 process_die (child_die, cu);
12043 child_die = sibling_die (child_die);
12044 }
12045 }
12046
12047 /* Return the name of the namespace represented by DIE. Set
12048 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12049 namespace. */
12050
12051 static const char *
12052 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12053 {
12054 struct die_info *current_die;
12055 const char *name = NULL;
12056
12057 /* Loop through the extensions until we find a name. */
12058
12059 for (current_die = die;
12060 current_die != NULL;
12061 current_die = dwarf2_extension (die, &cu))
12062 {
12063 name = dwarf2_name (current_die, cu);
12064 if (name != NULL)
12065 break;
12066 }
12067
12068 /* Is it an anonymous namespace? */
12069
12070 *is_anonymous = (name == NULL);
12071 if (*is_anonymous)
12072 name = CP_ANONYMOUS_NAMESPACE_STR;
12073
12074 return name;
12075 }
12076
12077 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12078 the user defined type vector. */
12079
12080 static struct type *
12081 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12082 {
12083 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12084 struct comp_unit_head *cu_header = &cu->header;
12085 struct type *type;
12086 struct attribute *attr_byte_size;
12087 struct attribute *attr_address_class;
12088 int byte_size, addr_class;
12089 struct type *target_type;
12090
12091 target_type = die_type (die, cu);
12092
12093 /* The die_type call above may have already set the type for this DIE. */
12094 type = get_die_type (die, cu);
12095 if (type)
12096 return type;
12097
12098 type = lookup_pointer_type (target_type);
12099
12100 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12101 if (attr_byte_size)
12102 byte_size = DW_UNSND (attr_byte_size);
12103 else
12104 byte_size = cu_header->addr_size;
12105
12106 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12107 if (attr_address_class)
12108 addr_class = DW_UNSND (attr_address_class);
12109 else
12110 addr_class = DW_ADDR_none;
12111
12112 /* If the pointer size or address class is different than the
12113 default, create a type variant marked as such and set the
12114 length accordingly. */
12115 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12116 {
12117 if (gdbarch_address_class_type_flags_p (gdbarch))
12118 {
12119 int type_flags;
12120
12121 type_flags = gdbarch_address_class_type_flags
12122 (gdbarch, byte_size, addr_class);
12123 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12124 == 0);
12125 type = make_type_with_address_space (type, type_flags);
12126 }
12127 else if (TYPE_LENGTH (type) != byte_size)
12128 {
12129 complaint (&symfile_complaints,
12130 _("invalid pointer size %d"), byte_size);
12131 }
12132 else
12133 {
12134 /* Should we also complain about unhandled address classes? */
12135 }
12136 }
12137
12138 TYPE_LENGTH (type) = byte_size;
12139 return set_die_type (die, type, cu);
12140 }
12141
12142 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12143 the user defined type vector. */
12144
12145 static struct type *
12146 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12147 {
12148 struct type *type;
12149 struct type *to_type;
12150 struct type *domain;
12151
12152 to_type = die_type (die, cu);
12153 domain = die_containing_type (die, cu);
12154
12155 /* The calls above may have already set the type for this DIE. */
12156 type = get_die_type (die, cu);
12157 if (type)
12158 return type;
12159
12160 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12161 type = lookup_methodptr_type (to_type);
12162 else
12163 type = lookup_memberptr_type (to_type, domain);
12164
12165 return set_die_type (die, type, cu);
12166 }
12167
12168 /* Extract all information from a DW_TAG_reference_type DIE and add to
12169 the user defined type vector. */
12170
12171 static struct type *
12172 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12173 {
12174 struct comp_unit_head *cu_header = &cu->header;
12175 struct type *type, *target_type;
12176 struct attribute *attr;
12177
12178 target_type = die_type (die, cu);
12179
12180 /* The die_type call above may have already set the type for this DIE. */
12181 type = get_die_type (die, cu);
12182 if (type)
12183 return type;
12184
12185 type = lookup_reference_type (target_type);
12186 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12187 if (attr)
12188 {
12189 TYPE_LENGTH (type) = DW_UNSND (attr);
12190 }
12191 else
12192 {
12193 TYPE_LENGTH (type) = cu_header->addr_size;
12194 }
12195 return set_die_type (die, type, cu);
12196 }
12197
12198 static struct type *
12199 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12200 {
12201 struct type *base_type, *cv_type;
12202
12203 base_type = die_type (die, cu);
12204
12205 /* The die_type call above may have already set the type for this DIE. */
12206 cv_type = get_die_type (die, cu);
12207 if (cv_type)
12208 return cv_type;
12209
12210 /* In case the const qualifier is applied to an array type, the element type
12211 is so qualified, not the array type (section 6.7.3 of C99). */
12212 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12213 {
12214 struct type *el_type, *inner_array;
12215
12216 base_type = copy_type (base_type);
12217 inner_array = base_type;
12218
12219 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12220 {
12221 TYPE_TARGET_TYPE (inner_array) =
12222 copy_type (TYPE_TARGET_TYPE (inner_array));
12223 inner_array = TYPE_TARGET_TYPE (inner_array);
12224 }
12225
12226 el_type = TYPE_TARGET_TYPE (inner_array);
12227 TYPE_TARGET_TYPE (inner_array) =
12228 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12229
12230 return set_die_type (die, base_type, cu);
12231 }
12232
12233 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12234 return set_die_type (die, cv_type, cu);
12235 }
12236
12237 static struct type *
12238 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12239 {
12240 struct type *base_type, *cv_type;
12241
12242 base_type = die_type (die, cu);
12243
12244 /* The die_type call above may have already set the type for this DIE. */
12245 cv_type = get_die_type (die, cu);
12246 if (cv_type)
12247 return cv_type;
12248
12249 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12250 return set_die_type (die, cv_type, cu);
12251 }
12252
12253 /* Extract all information from a DW_TAG_string_type DIE and add to
12254 the user defined type vector. It isn't really a user defined type,
12255 but it behaves like one, with other DIE's using an AT_user_def_type
12256 attribute to reference it. */
12257
12258 static struct type *
12259 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12260 {
12261 struct objfile *objfile = cu->objfile;
12262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12263 struct type *type, *range_type, *index_type, *char_type;
12264 struct attribute *attr;
12265 unsigned int length;
12266
12267 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12268 if (attr)
12269 {
12270 length = DW_UNSND (attr);
12271 }
12272 else
12273 {
12274 /* Check for the DW_AT_byte_size attribute. */
12275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12276 if (attr)
12277 {
12278 length = DW_UNSND (attr);
12279 }
12280 else
12281 {
12282 length = 1;
12283 }
12284 }
12285
12286 index_type = objfile_type (objfile)->builtin_int;
12287 range_type = create_range_type (NULL, index_type, 1, length);
12288 char_type = language_string_char_type (cu->language_defn, gdbarch);
12289 type = create_string_type (NULL, char_type, range_type);
12290
12291 return set_die_type (die, type, cu);
12292 }
12293
12294 /* Handle DIES due to C code like:
12295
12296 struct foo
12297 {
12298 int (*funcp)(int a, long l);
12299 int b;
12300 };
12301
12302 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12303
12304 static struct type *
12305 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12306 {
12307 struct objfile *objfile = cu->objfile;
12308 struct type *type; /* Type that this function returns. */
12309 struct type *ftype; /* Function that returns above type. */
12310 struct attribute *attr;
12311
12312 type = die_type (die, cu);
12313
12314 /* The die_type call above may have already set the type for this DIE. */
12315 ftype = get_die_type (die, cu);
12316 if (ftype)
12317 return ftype;
12318
12319 ftype = lookup_function_type (type);
12320
12321 /* All functions in C++, Pascal and Java have prototypes. */
12322 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12323 if ((attr && (DW_UNSND (attr) != 0))
12324 || cu->language == language_cplus
12325 || cu->language == language_java
12326 || cu->language == language_pascal)
12327 TYPE_PROTOTYPED (ftype) = 1;
12328 else if (producer_is_realview (cu->producer))
12329 /* RealView does not emit DW_AT_prototyped. We can not
12330 distinguish prototyped and unprototyped functions; default to
12331 prototyped, since that is more common in modern code (and
12332 RealView warns about unprototyped functions). */
12333 TYPE_PROTOTYPED (ftype) = 1;
12334
12335 /* Store the calling convention in the type if it's available in
12336 the subroutine die. Otherwise set the calling convention to
12337 the default value DW_CC_normal. */
12338 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12339 if (attr)
12340 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12341 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12342 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12343 else
12344 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12345
12346 /* We need to add the subroutine type to the die immediately so
12347 we don't infinitely recurse when dealing with parameters
12348 declared as the same subroutine type. */
12349 set_die_type (die, ftype, cu);
12350
12351 if (die->child != NULL)
12352 {
12353 struct type *void_type = objfile_type (objfile)->builtin_void;
12354 struct die_info *child_die;
12355 int nparams, iparams;
12356
12357 /* Count the number of parameters.
12358 FIXME: GDB currently ignores vararg functions, but knows about
12359 vararg member functions. */
12360 nparams = 0;
12361 child_die = die->child;
12362 while (child_die && child_die->tag)
12363 {
12364 if (child_die->tag == DW_TAG_formal_parameter)
12365 nparams++;
12366 else if (child_die->tag == DW_TAG_unspecified_parameters)
12367 TYPE_VARARGS (ftype) = 1;
12368 child_die = sibling_die (child_die);
12369 }
12370
12371 /* Allocate storage for parameters and fill them in. */
12372 TYPE_NFIELDS (ftype) = nparams;
12373 TYPE_FIELDS (ftype) = (struct field *)
12374 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12375
12376 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12377 even if we error out during the parameters reading below. */
12378 for (iparams = 0; iparams < nparams; iparams++)
12379 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12380
12381 iparams = 0;
12382 child_die = die->child;
12383 while (child_die && child_die->tag)
12384 {
12385 if (child_die->tag == DW_TAG_formal_parameter)
12386 {
12387 struct type *arg_type;
12388
12389 /* DWARF version 2 has no clean way to discern C++
12390 static and non-static member functions. G++ helps
12391 GDB by marking the first parameter for non-static
12392 member functions (which is the this pointer) as
12393 artificial. We pass this information to
12394 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12395
12396 DWARF version 3 added DW_AT_object_pointer, which GCC
12397 4.5 does not yet generate. */
12398 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12399 if (attr)
12400 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12401 else
12402 {
12403 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12404
12405 /* GCC/43521: In java, the formal parameter
12406 "this" is sometimes not marked with DW_AT_artificial. */
12407 if (cu->language == language_java)
12408 {
12409 const char *name = dwarf2_name (child_die, cu);
12410
12411 if (name && !strcmp (name, "this"))
12412 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12413 }
12414 }
12415 arg_type = die_type (child_die, cu);
12416
12417 /* RealView does not mark THIS as const, which the testsuite
12418 expects. GCC marks THIS as const in method definitions,
12419 but not in the class specifications (GCC PR 43053). */
12420 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12421 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12422 {
12423 int is_this = 0;
12424 struct dwarf2_cu *arg_cu = cu;
12425 const char *name = dwarf2_name (child_die, cu);
12426
12427 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12428 if (attr)
12429 {
12430 /* If the compiler emits this, use it. */
12431 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12432 is_this = 1;
12433 }
12434 else if (name && strcmp (name, "this") == 0)
12435 /* Function definitions will have the argument names. */
12436 is_this = 1;
12437 else if (name == NULL && iparams == 0)
12438 /* Declarations may not have the names, so like
12439 elsewhere in GDB, assume an artificial first
12440 argument is "this". */
12441 is_this = 1;
12442
12443 if (is_this)
12444 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12445 arg_type, 0);
12446 }
12447
12448 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12449 iparams++;
12450 }
12451 child_die = sibling_die (child_die);
12452 }
12453 }
12454
12455 return ftype;
12456 }
12457
12458 static struct type *
12459 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12460 {
12461 struct objfile *objfile = cu->objfile;
12462 const char *name = NULL;
12463 struct type *this_type, *target_type;
12464
12465 name = dwarf2_full_name (NULL, die, cu);
12466 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12467 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12468 TYPE_NAME (this_type) = (char *) name;
12469 set_die_type (die, this_type, cu);
12470 target_type = die_type (die, cu);
12471 if (target_type != this_type)
12472 TYPE_TARGET_TYPE (this_type) = target_type;
12473 else
12474 {
12475 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12476 spec and cause infinite loops in GDB. */
12477 complaint (&symfile_complaints,
12478 _("Self-referential DW_TAG_typedef "
12479 "- DIE at 0x%x [in module %s]"),
12480 die->offset.sect_off, objfile->name);
12481 TYPE_TARGET_TYPE (this_type) = NULL;
12482 }
12483 return this_type;
12484 }
12485
12486 /* Find a representation of a given base type and install
12487 it in the TYPE field of the die. */
12488
12489 static struct type *
12490 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12491 {
12492 struct objfile *objfile = cu->objfile;
12493 struct type *type;
12494 struct attribute *attr;
12495 int encoding = 0, size = 0;
12496 char *name;
12497 enum type_code code = TYPE_CODE_INT;
12498 int type_flags = 0;
12499 struct type *target_type = NULL;
12500
12501 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12502 if (attr)
12503 {
12504 encoding = DW_UNSND (attr);
12505 }
12506 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12507 if (attr)
12508 {
12509 size = DW_UNSND (attr);
12510 }
12511 name = dwarf2_name (die, cu);
12512 if (!name)
12513 {
12514 complaint (&symfile_complaints,
12515 _("DW_AT_name missing from DW_TAG_base_type"));
12516 }
12517
12518 switch (encoding)
12519 {
12520 case DW_ATE_address:
12521 /* Turn DW_ATE_address into a void * pointer. */
12522 code = TYPE_CODE_PTR;
12523 type_flags |= TYPE_FLAG_UNSIGNED;
12524 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12525 break;
12526 case DW_ATE_boolean:
12527 code = TYPE_CODE_BOOL;
12528 type_flags |= TYPE_FLAG_UNSIGNED;
12529 break;
12530 case DW_ATE_complex_float:
12531 code = TYPE_CODE_COMPLEX;
12532 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12533 break;
12534 case DW_ATE_decimal_float:
12535 code = TYPE_CODE_DECFLOAT;
12536 break;
12537 case DW_ATE_float:
12538 code = TYPE_CODE_FLT;
12539 break;
12540 case DW_ATE_signed:
12541 break;
12542 case DW_ATE_unsigned:
12543 type_flags |= TYPE_FLAG_UNSIGNED;
12544 if (cu->language == language_fortran
12545 && name
12546 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12547 code = TYPE_CODE_CHAR;
12548 break;
12549 case DW_ATE_signed_char:
12550 if (cu->language == language_ada || cu->language == language_m2
12551 || cu->language == language_pascal
12552 || cu->language == language_fortran)
12553 code = TYPE_CODE_CHAR;
12554 break;
12555 case DW_ATE_unsigned_char:
12556 if (cu->language == language_ada || cu->language == language_m2
12557 || cu->language == language_pascal
12558 || cu->language == language_fortran)
12559 code = TYPE_CODE_CHAR;
12560 type_flags |= TYPE_FLAG_UNSIGNED;
12561 break;
12562 case DW_ATE_UTF:
12563 /* We just treat this as an integer and then recognize the
12564 type by name elsewhere. */
12565 break;
12566
12567 default:
12568 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12569 dwarf_type_encoding_name (encoding));
12570 break;
12571 }
12572
12573 type = init_type (code, size, type_flags, NULL, objfile);
12574 TYPE_NAME (type) = name;
12575 TYPE_TARGET_TYPE (type) = target_type;
12576
12577 if (name && strcmp (name, "char") == 0)
12578 TYPE_NOSIGN (type) = 1;
12579
12580 return set_die_type (die, type, cu);
12581 }
12582
12583 /* Read the given DW_AT_subrange DIE. */
12584
12585 static struct type *
12586 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12587 {
12588 struct type *base_type;
12589 struct type *range_type;
12590 struct attribute *attr;
12591 LONGEST low, high;
12592 int low_default_is_valid;
12593 char *name;
12594 LONGEST negative_mask;
12595
12596 base_type = die_type (die, cu);
12597 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12598 check_typedef (base_type);
12599
12600 /* The die_type call above may have already set the type for this DIE. */
12601 range_type = get_die_type (die, cu);
12602 if (range_type)
12603 return range_type;
12604
12605 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12606 omitting DW_AT_lower_bound. */
12607 switch (cu->language)
12608 {
12609 case language_c:
12610 case language_cplus:
12611 low = 0;
12612 low_default_is_valid = 1;
12613 break;
12614 case language_fortran:
12615 low = 1;
12616 low_default_is_valid = 1;
12617 break;
12618 case language_d:
12619 case language_java:
12620 case language_objc:
12621 low = 0;
12622 low_default_is_valid = (cu->header.version >= 4);
12623 break;
12624 case language_ada:
12625 case language_m2:
12626 case language_pascal:
12627 low = 1;
12628 low_default_is_valid = (cu->header.version >= 4);
12629 break;
12630 default:
12631 low = 0;
12632 low_default_is_valid = 0;
12633 break;
12634 }
12635
12636 /* FIXME: For variable sized arrays either of these could be
12637 a variable rather than a constant value. We'll allow it,
12638 but we don't know how to handle it. */
12639 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12640 if (attr)
12641 low = dwarf2_get_attr_constant_value (attr, low);
12642 else if (!low_default_is_valid)
12643 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12644 "- DIE at 0x%x [in module %s]"),
12645 die->offset.sect_off, cu->objfile->name);
12646
12647 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12648 if (attr)
12649 {
12650 if (attr_form_is_block (attr) || is_ref_attr (attr))
12651 {
12652 /* GCC encodes arrays with unspecified or dynamic length
12653 with a DW_FORM_block1 attribute or a reference attribute.
12654 FIXME: GDB does not yet know how to handle dynamic
12655 arrays properly, treat them as arrays with unspecified
12656 length for now.
12657
12658 FIXME: jimb/2003-09-22: GDB does not really know
12659 how to handle arrays of unspecified length
12660 either; we just represent them as zero-length
12661 arrays. Choose an appropriate upper bound given
12662 the lower bound we've computed above. */
12663 high = low - 1;
12664 }
12665 else
12666 high = dwarf2_get_attr_constant_value (attr, 1);
12667 }
12668 else
12669 {
12670 attr = dwarf2_attr (die, DW_AT_count, cu);
12671 if (attr)
12672 {
12673 int count = dwarf2_get_attr_constant_value (attr, 1);
12674 high = low + count - 1;
12675 }
12676 else
12677 {
12678 /* Unspecified array length. */
12679 high = low - 1;
12680 }
12681 }
12682
12683 /* Dwarf-2 specifications explicitly allows to create subrange types
12684 without specifying a base type.
12685 In that case, the base type must be set to the type of
12686 the lower bound, upper bound or count, in that order, if any of these
12687 three attributes references an object that has a type.
12688 If no base type is found, the Dwarf-2 specifications say that
12689 a signed integer type of size equal to the size of an address should
12690 be used.
12691 For the following C code: `extern char gdb_int [];'
12692 GCC produces an empty range DIE.
12693 FIXME: muller/2010-05-28: Possible references to object for low bound,
12694 high bound or count are not yet handled by this code. */
12695 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12696 {
12697 struct objfile *objfile = cu->objfile;
12698 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12699 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12700 struct type *int_type = objfile_type (objfile)->builtin_int;
12701
12702 /* Test "int", "long int", and "long long int" objfile types,
12703 and select the first one having a size above or equal to the
12704 architecture address size. */
12705 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12706 base_type = int_type;
12707 else
12708 {
12709 int_type = objfile_type (objfile)->builtin_long;
12710 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12711 base_type = int_type;
12712 else
12713 {
12714 int_type = objfile_type (objfile)->builtin_long_long;
12715 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12716 base_type = int_type;
12717 }
12718 }
12719 }
12720
12721 negative_mask =
12722 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12723 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12724 low |= negative_mask;
12725 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12726 high |= negative_mask;
12727
12728 range_type = create_range_type (NULL, base_type, low, high);
12729
12730 /* Mark arrays with dynamic length at least as an array of unspecified
12731 length. GDB could check the boundary but before it gets implemented at
12732 least allow accessing the array elements. */
12733 if (attr && attr_form_is_block (attr))
12734 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12735
12736 /* Ada expects an empty array on no boundary attributes. */
12737 if (attr == NULL && cu->language != language_ada)
12738 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12739
12740 name = dwarf2_name (die, cu);
12741 if (name)
12742 TYPE_NAME (range_type) = name;
12743
12744 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12745 if (attr)
12746 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12747
12748 set_die_type (die, range_type, cu);
12749
12750 /* set_die_type should be already done. */
12751 set_descriptive_type (range_type, die, cu);
12752
12753 return range_type;
12754 }
12755
12756 static struct type *
12757 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12758 {
12759 struct type *type;
12760
12761 /* For now, we only support the C meaning of an unspecified type: void. */
12762
12763 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12764 TYPE_NAME (type) = dwarf2_name (die, cu);
12765
12766 return set_die_type (die, type, cu);
12767 }
12768
12769 /* Read a single die and all its descendents. Set the die's sibling
12770 field to NULL; set other fields in the die correctly, and set all
12771 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12772 location of the info_ptr after reading all of those dies. PARENT
12773 is the parent of the die in question. */
12774
12775 static struct die_info *
12776 read_die_and_children (const struct die_reader_specs *reader,
12777 gdb_byte *info_ptr,
12778 gdb_byte **new_info_ptr,
12779 struct die_info *parent)
12780 {
12781 struct die_info *die;
12782 gdb_byte *cur_ptr;
12783 int has_children;
12784
12785 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12786 if (die == NULL)
12787 {
12788 *new_info_ptr = cur_ptr;
12789 return NULL;
12790 }
12791 store_in_ref_table (die, reader->cu);
12792
12793 if (has_children)
12794 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12795 else
12796 {
12797 die->child = NULL;
12798 *new_info_ptr = cur_ptr;
12799 }
12800
12801 die->sibling = NULL;
12802 die->parent = parent;
12803 return die;
12804 }
12805
12806 /* Read a die, all of its descendents, and all of its siblings; set
12807 all of the fields of all of the dies correctly. Arguments are as
12808 in read_die_and_children. */
12809
12810 static struct die_info *
12811 read_die_and_siblings (const struct die_reader_specs *reader,
12812 gdb_byte *info_ptr,
12813 gdb_byte **new_info_ptr,
12814 struct die_info *parent)
12815 {
12816 struct die_info *first_die, *last_sibling;
12817 gdb_byte *cur_ptr;
12818
12819 cur_ptr = info_ptr;
12820 first_die = last_sibling = NULL;
12821
12822 while (1)
12823 {
12824 struct die_info *die
12825 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12826
12827 if (die == NULL)
12828 {
12829 *new_info_ptr = cur_ptr;
12830 return first_die;
12831 }
12832
12833 if (!first_die)
12834 first_die = die;
12835 else
12836 last_sibling->sibling = die;
12837
12838 last_sibling = die;
12839 }
12840 }
12841
12842 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12843 attributes.
12844 The caller is responsible for filling in the extra attributes
12845 and updating (*DIEP)->num_attrs.
12846 Set DIEP to point to a newly allocated die with its information,
12847 except for its child, sibling, and parent fields.
12848 Set HAS_CHILDREN to tell whether the die has children or not. */
12849
12850 static gdb_byte *
12851 read_full_die_1 (const struct die_reader_specs *reader,
12852 struct die_info **diep, gdb_byte *info_ptr,
12853 int *has_children, int num_extra_attrs)
12854 {
12855 unsigned int abbrev_number, bytes_read, i;
12856 sect_offset offset;
12857 struct abbrev_info *abbrev;
12858 struct die_info *die;
12859 struct dwarf2_cu *cu = reader->cu;
12860 bfd *abfd = reader->abfd;
12861
12862 offset.sect_off = info_ptr - reader->buffer;
12863 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12864 info_ptr += bytes_read;
12865 if (!abbrev_number)
12866 {
12867 *diep = NULL;
12868 *has_children = 0;
12869 return info_ptr;
12870 }
12871
12872 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12873 if (!abbrev)
12874 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12875 abbrev_number,
12876 bfd_get_filename (abfd));
12877
12878 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12879 die->offset = offset;
12880 die->tag = abbrev->tag;
12881 die->abbrev = abbrev_number;
12882
12883 /* Make the result usable.
12884 The caller needs to update num_attrs after adding the extra
12885 attributes. */
12886 die->num_attrs = abbrev->num_attrs;
12887
12888 for (i = 0; i < abbrev->num_attrs; ++i)
12889 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12890 info_ptr);
12891
12892 *diep = die;
12893 *has_children = abbrev->has_children;
12894 return info_ptr;
12895 }
12896
12897 /* Read a die and all its attributes.
12898 Set DIEP to point to a newly allocated die with its information,
12899 except for its child, sibling, and parent fields.
12900 Set HAS_CHILDREN to tell whether the die has children or not. */
12901
12902 static gdb_byte *
12903 read_full_die (const struct die_reader_specs *reader,
12904 struct die_info **diep, gdb_byte *info_ptr,
12905 int *has_children)
12906 {
12907 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12908 }
12909 \f
12910 /* Abbreviation tables.
12911
12912 In DWARF version 2, the description of the debugging information is
12913 stored in a separate .debug_abbrev section. Before we read any
12914 dies from a section we read in all abbreviations and install them
12915 in a hash table. */
12916
12917 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12918
12919 static struct abbrev_info *
12920 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12921 {
12922 struct abbrev_info *abbrev;
12923
12924 abbrev = (struct abbrev_info *)
12925 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12926 memset (abbrev, 0, sizeof (struct abbrev_info));
12927 return abbrev;
12928 }
12929
12930 /* Add an abbreviation to the table. */
12931
12932 static void
12933 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12934 unsigned int abbrev_number,
12935 struct abbrev_info *abbrev)
12936 {
12937 unsigned int hash_number;
12938
12939 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12940 abbrev->next = abbrev_table->abbrevs[hash_number];
12941 abbrev_table->abbrevs[hash_number] = abbrev;
12942 }
12943
12944 /* Look up an abbrev in the table.
12945 Returns NULL if the abbrev is not found. */
12946
12947 static struct abbrev_info *
12948 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12949 unsigned int abbrev_number)
12950 {
12951 unsigned int hash_number;
12952 struct abbrev_info *abbrev;
12953
12954 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12955 abbrev = abbrev_table->abbrevs[hash_number];
12956
12957 while (abbrev)
12958 {
12959 if (abbrev->number == abbrev_number)
12960 return abbrev;
12961 abbrev = abbrev->next;
12962 }
12963 return NULL;
12964 }
12965
12966 /* Read in an abbrev table. */
12967
12968 static struct abbrev_table *
12969 abbrev_table_read_table (struct dwarf2_section_info *section,
12970 sect_offset offset)
12971 {
12972 struct objfile *objfile = dwarf2_per_objfile->objfile;
12973 bfd *abfd = section->asection->owner;
12974 struct abbrev_table *abbrev_table;
12975 gdb_byte *abbrev_ptr;
12976 struct abbrev_info *cur_abbrev;
12977 unsigned int abbrev_number, bytes_read, abbrev_name;
12978 unsigned int abbrev_form;
12979 struct attr_abbrev *cur_attrs;
12980 unsigned int allocated_attrs;
12981
12982 abbrev_table = XMALLOC (struct abbrev_table);
12983 abbrev_table->offset = offset;
12984 obstack_init (&abbrev_table->abbrev_obstack);
12985 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12986 (ABBREV_HASH_SIZE
12987 * sizeof (struct abbrev_info *)));
12988 memset (abbrev_table->abbrevs, 0,
12989 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
12990
12991 dwarf2_read_section (objfile, section);
12992 abbrev_ptr = section->buffer + offset.sect_off;
12993 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12994 abbrev_ptr += bytes_read;
12995
12996 allocated_attrs = ATTR_ALLOC_CHUNK;
12997 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
12998
12999 /* Loop until we reach an abbrev number of 0. */
13000 while (abbrev_number)
13001 {
13002 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13003
13004 /* read in abbrev header */
13005 cur_abbrev->number = abbrev_number;
13006 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13007 abbrev_ptr += bytes_read;
13008 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13009 abbrev_ptr += 1;
13010
13011 /* now read in declarations */
13012 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13013 abbrev_ptr += bytes_read;
13014 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13015 abbrev_ptr += bytes_read;
13016 while (abbrev_name)
13017 {
13018 if (cur_abbrev->num_attrs == allocated_attrs)
13019 {
13020 allocated_attrs += ATTR_ALLOC_CHUNK;
13021 cur_attrs
13022 = xrealloc (cur_attrs, (allocated_attrs
13023 * sizeof (struct attr_abbrev)));
13024 }
13025
13026 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13027 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13028 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13029 abbrev_ptr += bytes_read;
13030 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13031 abbrev_ptr += bytes_read;
13032 }
13033
13034 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13035 (cur_abbrev->num_attrs
13036 * sizeof (struct attr_abbrev)));
13037 memcpy (cur_abbrev->attrs, cur_attrs,
13038 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13039
13040 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13041
13042 /* Get next abbreviation.
13043 Under Irix6 the abbreviations for a compilation unit are not
13044 always properly terminated with an abbrev number of 0.
13045 Exit loop if we encounter an abbreviation which we have
13046 already read (which means we are about to read the abbreviations
13047 for the next compile unit) or if the end of the abbreviation
13048 table is reached. */
13049 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13050 break;
13051 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13052 abbrev_ptr += bytes_read;
13053 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13054 break;
13055 }
13056
13057 xfree (cur_attrs);
13058 return abbrev_table;
13059 }
13060
13061 /* Free the resources held by ABBREV_TABLE. */
13062
13063 static void
13064 abbrev_table_free (struct abbrev_table *abbrev_table)
13065 {
13066 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13067 xfree (abbrev_table);
13068 }
13069
13070 /* Same as abbrev_table_free but as a cleanup.
13071 We pass in a pointer to the pointer to the table so that we can
13072 set the pointer to NULL when we're done. It also simplifies
13073 build_type_unit_groups. */
13074
13075 static void
13076 abbrev_table_free_cleanup (void *table_ptr)
13077 {
13078 struct abbrev_table **abbrev_table_ptr = table_ptr;
13079
13080 if (*abbrev_table_ptr != NULL)
13081 abbrev_table_free (*abbrev_table_ptr);
13082 *abbrev_table_ptr = NULL;
13083 }
13084
13085 /* Read the abbrev table for CU from ABBREV_SECTION. */
13086
13087 static void
13088 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13089 struct dwarf2_section_info *abbrev_section)
13090 {
13091 cu->abbrev_table =
13092 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13093 }
13094
13095 /* Release the memory used by the abbrev table for a compilation unit. */
13096
13097 static void
13098 dwarf2_free_abbrev_table (void *ptr_to_cu)
13099 {
13100 struct dwarf2_cu *cu = ptr_to_cu;
13101
13102 abbrev_table_free (cu->abbrev_table);
13103 /* Set this to NULL so that we SEGV if we try to read it later,
13104 and also because free_comp_unit verifies this is NULL. */
13105 cu->abbrev_table = NULL;
13106 }
13107 \f
13108 /* Returns nonzero if TAG represents a type that we might generate a partial
13109 symbol for. */
13110
13111 static int
13112 is_type_tag_for_partial (int tag)
13113 {
13114 switch (tag)
13115 {
13116 #if 0
13117 /* Some types that would be reasonable to generate partial symbols for,
13118 that we don't at present. */
13119 case DW_TAG_array_type:
13120 case DW_TAG_file_type:
13121 case DW_TAG_ptr_to_member_type:
13122 case DW_TAG_set_type:
13123 case DW_TAG_string_type:
13124 case DW_TAG_subroutine_type:
13125 #endif
13126 case DW_TAG_base_type:
13127 case DW_TAG_class_type:
13128 case DW_TAG_interface_type:
13129 case DW_TAG_enumeration_type:
13130 case DW_TAG_structure_type:
13131 case DW_TAG_subrange_type:
13132 case DW_TAG_typedef:
13133 case DW_TAG_union_type:
13134 return 1;
13135 default:
13136 return 0;
13137 }
13138 }
13139
13140 /* Load all DIEs that are interesting for partial symbols into memory. */
13141
13142 static struct partial_die_info *
13143 load_partial_dies (const struct die_reader_specs *reader,
13144 gdb_byte *info_ptr, int building_psymtab)
13145 {
13146 struct dwarf2_cu *cu = reader->cu;
13147 struct objfile *objfile = cu->objfile;
13148 struct partial_die_info *part_die;
13149 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13150 struct abbrev_info *abbrev;
13151 unsigned int bytes_read;
13152 unsigned int load_all = 0;
13153 int nesting_level = 1;
13154
13155 parent_die = NULL;
13156 last_die = NULL;
13157
13158 gdb_assert (cu->per_cu != NULL);
13159 if (cu->per_cu->load_all_dies)
13160 load_all = 1;
13161
13162 cu->partial_dies
13163 = htab_create_alloc_ex (cu->header.length / 12,
13164 partial_die_hash,
13165 partial_die_eq,
13166 NULL,
13167 &cu->comp_unit_obstack,
13168 hashtab_obstack_allocate,
13169 dummy_obstack_deallocate);
13170
13171 part_die = obstack_alloc (&cu->comp_unit_obstack,
13172 sizeof (struct partial_die_info));
13173
13174 while (1)
13175 {
13176 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13177
13178 /* A NULL abbrev means the end of a series of children. */
13179 if (abbrev == NULL)
13180 {
13181 if (--nesting_level == 0)
13182 {
13183 /* PART_DIE was probably the last thing allocated on the
13184 comp_unit_obstack, so we could call obstack_free
13185 here. We don't do that because the waste is small,
13186 and will be cleaned up when we're done with this
13187 compilation unit. This way, we're also more robust
13188 against other users of the comp_unit_obstack. */
13189 return first_die;
13190 }
13191 info_ptr += bytes_read;
13192 last_die = parent_die;
13193 parent_die = parent_die->die_parent;
13194 continue;
13195 }
13196
13197 /* Check for template arguments. We never save these; if
13198 they're seen, we just mark the parent, and go on our way. */
13199 if (parent_die != NULL
13200 && cu->language == language_cplus
13201 && (abbrev->tag == DW_TAG_template_type_param
13202 || abbrev->tag == DW_TAG_template_value_param))
13203 {
13204 parent_die->has_template_arguments = 1;
13205
13206 if (!load_all)
13207 {
13208 /* We don't need a partial DIE for the template argument. */
13209 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13210 continue;
13211 }
13212 }
13213
13214 /* We only recurse into c++ subprograms looking for template arguments.
13215 Skip their other children. */
13216 if (!load_all
13217 && cu->language == language_cplus
13218 && parent_die != NULL
13219 && parent_die->tag == DW_TAG_subprogram)
13220 {
13221 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13222 continue;
13223 }
13224
13225 /* Check whether this DIE is interesting enough to save. Normally
13226 we would not be interested in members here, but there may be
13227 later variables referencing them via DW_AT_specification (for
13228 static members). */
13229 if (!load_all
13230 && !is_type_tag_for_partial (abbrev->tag)
13231 && abbrev->tag != DW_TAG_constant
13232 && abbrev->tag != DW_TAG_enumerator
13233 && abbrev->tag != DW_TAG_subprogram
13234 && abbrev->tag != DW_TAG_lexical_block
13235 && abbrev->tag != DW_TAG_variable
13236 && abbrev->tag != DW_TAG_namespace
13237 && abbrev->tag != DW_TAG_module
13238 && abbrev->tag != DW_TAG_member
13239 && abbrev->tag != DW_TAG_imported_unit)
13240 {
13241 /* Otherwise we skip to the next sibling, if any. */
13242 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13243 continue;
13244 }
13245
13246 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13247 info_ptr);
13248
13249 /* This two-pass algorithm for processing partial symbols has a
13250 high cost in cache pressure. Thus, handle some simple cases
13251 here which cover the majority of C partial symbols. DIEs
13252 which neither have specification tags in them, nor could have
13253 specification tags elsewhere pointing at them, can simply be
13254 processed and discarded.
13255
13256 This segment is also optional; scan_partial_symbols and
13257 add_partial_symbol will handle these DIEs if we chain
13258 them in normally. When compilers which do not emit large
13259 quantities of duplicate debug information are more common,
13260 this code can probably be removed. */
13261
13262 /* Any complete simple types at the top level (pretty much all
13263 of them, for a language without namespaces), can be processed
13264 directly. */
13265 if (parent_die == NULL
13266 && part_die->has_specification == 0
13267 && part_die->is_declaration == 0
13268 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13269 || part_die->tag == DW_TAG_base_type
13270 || part_die->tag == DW_TAG_subrange_type))
13271 {
13272 if (building_psymtab && part_die->name != NULL)
13273 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13274 VAR_DOMAIN, LOC_TYPEDEF,
13275 &objfile->static_psymbols,
13276 0, (CORE_ADDR) 0, cu->language, objfile);
13277 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13278 continue;
13279 }
13280
13281 /* The exception for DW_TAG_typedef with has_children above is
13282 a workaround of GCC PR debug/47510. In the case of this complaint
13283 type_name_no_tag_or_error will error on such types later.
13284
13285 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13286 it could not find the child DIEs referenced later, this is checked
13287 above. In correct DWARF DW_TAG_typedef should have no children. */
13288
13289 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13290 complaint (&symfile_complaints,
13291 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13292 "- DIE at 0x%x [in module %s]"),
13293 part_die->offset.sect_off, objfile->name);
13294
13295 /* If we're at the second level, and we're an enumerator, and
13296 our parent has no specification (meaning possibly lives in a
13297 namespace elsewhere), then we can add the partial symbol now
13298 instead of queueing it. */
13299 if (part_die->tag == DW_TAG_enumerator
13300 && parent_die != NULL
13301 && parent_die->die_parent == NULL
13302 && parent_die->tag == DW_TAG_enumeration_type
13303 && parent_die->has_specification == 0)
13304 {
13305 if (part_die->name == NULL)
13306 complaint (&symfile_complaints,
13307 _("malformed enumerator DIE ignored"));
13308 else if (building_psymtab)
13309 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13310 VAR_DOMAIN, LOC_CONST,
13311 (cu->language == language_cplus
13312 || cu->language == language_java)
13313 ? &objfile->global_psymbols
13314 : &objfile->static_psymbols,
13315 0, (CORE_ADDR) 0, cu->language, objfile);
13316
13317 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13318 continue;
13319 }
13320
13321 /* We'll save this DIE so link it in. */
13322 part_die->die_parent = parent_die;
13323 part_die->die_sibling = NULL;
13324 part_die->die_child = NULL;
13325
13326 if (last_die && last_die == parent_die)
13327 last_die->die_child = part_die;
13328 else if (last_die)
13329 last_die->die_sibling = part_die;
13330
13331 last_die = part_die;
13332
13333 if (first_die == NULL)
13334 first_die = part_die;
13335
13336 /* Maybe add the DIE to the hash table. Not all DIEs that we
13337 find interesting need to be in the hash table, because we
13338 also have the parent/sibling/child chains; only those that we
13339 might refer to by offset later during partial symbol reading.
13340
13341 For now this means things that might have be the target of a
13342 DW_AT_specification, DW_AT_abstract_origin, or
13343 DW_AT_extension. DW_AT_extension will refer only to
13344 namespaces; DW_AT_abstract_origin refers to functions (and
13345 many things under the function DIE, but we do not recurse
13346 into function DIEs during partial symbol reading) and
13347 possibly variables as well; DW_AT_specification refers to
13348 declarations. Declarations ought to have the DW_AT_declaration
13349 flag. It happens that GCC forgets to put it in sometimes, but
13350 only for functions, not for types.
13351
13352 Adding more things than necessary to the hash table is harmless
13353 except for the performance cost. Adding too few will result in
13354 wasted time in find_partial_die, when we reread the compilation
13355 unit with load_all_dies set. */
13356
13357 if (load_all
13358 || abbrev->tag == DW_TAG_constant
13359 || abbrev->tag == DW_TAG_subprogram
13360 || abbrev->tag == DW_TAG_variable
13361 || abbrev->tag == DW_TAG_namespace
13362 || part_die->is_declaration)
13363 {
13364 void **slot;
13365
13366 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13367 part_die->offset.sect_off, INSERT);
13368 *slot = part_die;
13369 }
13370
13371 part_die = obstack_alloc (&cu->comp_unit_obstack,
13372 sizeof (struct partial_die_info));
13373
13374 /* For some DIEs we want to follow their children (if any). For C
13375 we have no reason to follow the children of structures; for other
13376 languages we have to, so that we can get at method physnames
13377 to infer fully qualified class names, for DW_AT_specification,
13378 and for C++ template arguments. For C++, we also look one level
13379 inside functions to find template arguments (if the name of the
13380 function does not already contain the template arguments).
13381
13382 For Ada, we need to scan the children of subprograms and lexical
13383 blocks as well because Ada allows the definition of nested
13384 entities that could be interesting for the debugger, such as
13385 nested subprograms for instance. */
13386 if (last_die->has_children
13387 && (load_all
13388 || last_die->tag == DW_TAG_namespace
13389 || last_die->tag == DW_TAG_module
13390 || last_die->tag == DW_TAG_enumeration_type
13391 || (cu->language == language_cplus
13392 && last_die->tag == DW_TAG_subprogram
13393 && (last_die->name == NULL
13394 || strchr (last_die->name, '<') == NULL))
13395 || (cu->language != language_c
13396 && (last_die->tag == DW_TAG_class_type
13397 || last_die->tag == DW_TAG_interface_type
13398 || last_die->tag == DW_TAG_structure_type
13399 || last_die->tag == DW_TAG_union_type))
13400 || (cu->language == language_ada
13401 && (last_die->tag == DW_TAG_subprogram
13402 || last_die->tag == DW_TAG_lexical_block))))
13403 {
13404 nesting_level++;
13405 parent_die = last_die;
13406 continue;
13407 }
13408
13409 /* Otherwise we skip to the next sibling, if any. */
13410 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13411
13412 /* Back to the top, do it again. */
13413 }
13414 }
13415
13416 /* Read a minimal amount of information into the minimal die structure. */
13417
13418 static gdb_byte *
13419 read_partial_die (const struct die_reader_specs *reader,
13420 struct partial_die_info *part_die,
13421 struct abbrev_info *abbrev, unsigned int abbrev_len,
13422 gdb_byte *info_ptr)
13423 {
13424 struct dwarf2_cu *cu = reader->cu;
13425 struct objfile *objfile = cu->objfile;
13426 gdb_byte *buffer = reader->buffer;
13427 unsigned int i;
13428 struct attribute attr;
13429 int has_low_pc_attr = 0;
13430 int has_high_pc_attr = 0;
13431 int high_pc_relative = 0;
13432
13433 memset (part_die, 0, sizeof (struct partial_die_info));
13434
13435 part_die->offset.sect_off = info_ptr - buffer;
13436
13437 info_ptr += abbrev_len;
13438
13439 if (abbrev == NULL)
13440 return info_ptr;
13441
13442 part_die->tag = abbrev->tag;
13443 part_die->has_children = abbrev->has_children;
13444
13445 for (i = 0; i < abbrev->num_attrs; ++i)
13446 {
13447 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13448
13449 /* Store the data if it is of an attribute we want to keep in a
13450 partial symbol table. */
13451 switch (attr.name)
13452 {
13453 case DW_AT_name:
13454 switch (part_die->tag)
13455 {
13456 case DW_TAG_compile_unit:
13457 case DW_TAG_partial_unit:
13458 case DW_TAG_type_unit:
13459 /* Compilation units have a DW_AT_name that is a filename, not
13460 a source language identifier. */
13461 case DW_TAG_enumeration_type:
13462 case DW_TAG_enumerator:
13463 /* These tags always have simple identifiers already; no need
13464 to canonicalize them. */
13465 part_die->name = DW_STRING (&attr);
13466 break;
13467 default:
13468 part_die->name
13469 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13470 &objfile->objfile_obstack);
13471 break;
13472 }
13473 break;
13474 case DW_AT_linkage_name:
13475 case DW_AT_MIPS_linkage_name:
13476 /* Note that both forms of linkage name might appear. We
13477 assume they will be the same, and we only store the last
13478 one we see. */
13479 if (cu->language == language_ada)
13480 part_die->name = DW_STRING (&attr);
13481 part_die->linkage_name = DW_STRING (&attr);
13482 break;
13483 case DW_AT_low_pc:
13484 has_low_pc_attr = 1;
13485 part_die->lowpc = DW_ADDR (&attr);
13486 break;
13487 case DW_AT_high_pc:
13488 has_high_pc_attr = 1;
13489 if (attr.form == DW_FORM_addr
13490 || attr.form == DW_FORM_GNU_addr_index)
13491 part_die->highpc = DW_ADDR (&attr);
13492 else
13493 {
13494 high_pc_relative = 1;
13495 part_die->highpc = DW_UNSND (&attr);
13496 }
13497 break;
13498 case DW_AT_location:
13499 /* Support the .debug_loc offsets. */
13500 if (attr_form_is_block (&attr))
13501 {
13502 part_die->d.locdesc = DW_BLOCK (&attr);
13503 }
13504 else if (attr_form_is_section_offset (&attr))
13505 {
13506 dwarf2_complex_location_expr_complaint ();
13507 }
13508 else
13509 {
13510 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13511 "partial symbol information");
13512 }
13513 break;
13514 case DW_AT_external:
13515 part_die->is_external = DW_UNSND (&attr);
13516 break;
13517 case DW_AT_declaration:
13518 part_die->is_declaration = DW_UNSND (&attr);
13519 break;
13520 case DW_AT_type:
13521 part_die->has_type = 1;
13522 break;
13523 case DW_AT_abstract_origin:
13524 case DW_AT_specification:
13525 case DW_AT_extension:
13526 part_die->has_specification = 1;
13527 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13528 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13529 || cu->per_cu->is_dwz);
13530 break;
13531 case DW_AT_sibling:
13532 /* Ignore absolute siblings, they might point outside of
13533 the current compile unit. */
13534 if (attr.form == DW_FORM_ref_addr)
13535 complaint (&symfile_complaints,
13536 _("ignoring absolute DW_AT_sibling"));
13537 else
13538 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13539 break;
13540 case DW_AT_byte_size:
13541 part_die->has_byte_size = 1;
13542 break;
13543 case DW_AT_calling_convention:
13544 /* DWARF doesn't provide a way to identify a program's source-level
13545 entry point. DW_AT_calling_convention attributes are only meant
13546 to describe functions' calling conventions.
13547
13548 However, because it's a necessary piece of information in
13549 Fortran, and because DW_CC_program is the only piece of debugging
13550 information whose definition refers to a 'main program' at all,
13551 several compilers have begun marking Fortran main programs with
13552 DW_CC_program --- even when those functions use the standard
13553 calling conventions.
13554
13555 So until DWARF specifies a way to provide this information and
13556 compilers pick up the new representation, we'll support this
13557 practice. */
13558 if (DW_UNSND (&attr) == DW_CC_program
13559 && cu->language == language_fortran)
13560 {
13561 set_main_name (part_die->name);
13562
13563 /* As this DIE has a static linkage the name would be difficult
13564 to look up later. */
13565 language_of_main = language_fortran;
13566 }
13567 break;
13568 case DW_AT_inline:
13569 if (DW_UNSND (&attr) == DW_INL_inlined
13570 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13571 part_die->may_be_inlined = 1;
13572 break;
13573
13574 case DW_AT_import:
13575 if (part_die->tag == DW_TAG_imported_unit)
13576 {
13577 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13578 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13579 || cu->per_cu->is_dwz);
13580 }
13581 break;
13582
13583 default:
13584 break;
13585 }
13586 }
13587
13588 if (high_pc_relative)
13589 part_die->highpc += part_die->lowpc;
13590
13591 if (has_low_pc_attr && has_high_pc_attr)
13592 {
13593 /* When using the GNU linker, .gnu.linkonce. sections are used to
13594 eliminate duplicate copies of functions and vtables and such.
13595 The linker will arbitrarily choose one and discard the others.
13596 The AT_*_pc values for such functions refer to local labels in
13597 these sections. If the section from that file was discarded, the
13598 labels are not in the output, so the relocs get a value of 0.
13599 If this is a discarded function, mark the pc bounds as invalid,
13600 so that GDB will ignore it. */
13601 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13602 {
13603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13604
13605 complaint (&symfile_complaints,
13606 _("DW_AT_low_pc %s is zero "
13607 "for DIE at 0x%x [in module %s]"),
13608 paddress (gdbarch, part_die->lowpc),
13609 part_die->offset.sect_off, objfile->name);
13610 }
13611 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13612 else if (part_die->lowpc >= part_die->highpc)
13613 {
13614 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13615
13616 complaint (&symfile_complaints,
13617 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13618 "for DIE at 0x%x [in module %s]"),
13619 paddress (gdbarch, part_die->lowpc),
13620 paddress (gdbarch, part_die->highpc),
13621 part_die->offset.sect_off, objfile->name);
13622 }
13623 else
13624 part_die->has_pc_info = 1;
13625 }
13626
13627 return info_ptr;
13628 }
13629
13630 /* Find a cached partial DIE at OFFSET in CU. */
13631
13632 static struct partial_die_info *
13633 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13634 {
13635 struct partial_die_info *lookup_die = NULL;
13636 struct partial_die_info part_die;
13637
13638 part_die.offset = offset;
13639 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13640 offset.sect_off);
13641
13642 return lookup_die;
13643 }
13644
13645 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13646 except in the case of .debug_types DIEs which do not reference
13647 outside their CU (they do however referencing other types via
13648 DW_FORM_ref_sig8). */
13649
13650 static struct partial_die_info *
13651 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13652 {
13653 struct objfile *objfile = cu->objfile;
13654 struct dwarf2_per_cu_data *per_cu = NULL;
13655 struct partial_die_info *pd = NULL;
13656
13657 if (offset_in_dwz == cu->per_cu->is_dwz
13658 && offset_in_cu_p (&cu->header, offset))
13659 {
13660 pd = find_partial_die_in_comp_unit (offset, cu);
13661 if (pd != NULL)
13662 return pd;
13663 /* We missed recording what we needed.
13664 Load all dies and try again. */
13665 per_cu = cu->per_cu;
13666 }
13667 else
13668 {
13669 /* TUs don't reference other CUs/TUs (except via type signatures). */
13670 if (cu->per_cu->is_debug_types)
13671 {
13672 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13673 " external reference to offset 0x%lx [in module %s].\n"),
13674 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13675 bfd_get_filename (objfile->obfd));
13676 }
13677 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13678 objfile);
13679
13680 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13681 load_partial_comp_unit (per_cu);
13682
13683 per_cu->cu->last_used = 0;
13684 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13685 }
13686
13687 /* If we didn't find it, and not all dies have been loaded,
13688 load them all and try again. */
13689
13690 if (pd == NULL && per_cu->load_all_dies == 0)
13691 {
13692 per_cu->load_all_dies = 1;
13693
13694 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13695 THIS_CU->cu may already be in use. So we can't just free it and
13696 replace its DIEs with the ones we read in. Instead, we leave those
13697 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13698 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13699 set. */
13700 load_partial_comp_unit (per_cu);
13701
13702 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13703 }
13704
13705 if (pd == NULL)
13706 internal_error (__FILE__, __LINE__,
13707 _("could not find partial DIE 0x%x "
13708 "in cache [from module %s]\n"),
13709 offset.sect_off, bfd_get_filename (objfile->obfd));
13710 return pd;
13711 }
13712
13713 /* See if we can figure out if the class lives in a namespace. We do
13714 this by looking for a member function; its demangled name will
13715 contain namespace info, if there is any. */
13716
13717 static void
13718 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13719 struct dwarf2_cu *cu)
13720 {
13721 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13722 what template types look like, because the demangler
13723 frequently doesn't give the same name as the debug info. We
13724 could fix this by only using the demangled name to get the
13725 prefix (but see comment in read_structure_type). */
13726
13727 struct partial_die_info *real_pdi;
13728 struct partial_die_info *child_pdi;
13729
13730 /* If this DIE (this DIE's specification, if any) has a parent, then
13731 we should not do this. We'll prepend the parent's fully qualified
13732 name when we create the partial symbol. */
13733
13734 real_pdi = struct_pdi;
13735 while (real_pdi->has_specification)
13736 real_pdi = find_partial_die (real_pdi->spec_offset,
13737 real_pdi->spec_is_dwz, cu);
13738
13739 if (real_pdi->die_parent != NULL)
13740 return;
13741
13742 for (child_pdi = struct_pdi->die_child;
13743 child_pdi != NULL;
13744 child_pdi = child_pdi->die_sibling)
13745 {
13746 if (child_pdi->tag == DW_TAG_subprogram
13747 && child_pdi->linkage_name != NULL)
13748 {
13749 char *actual_class_name
13750 = language_class_name_from_physname (cu->language_defn,
13751 child_pdi->linkage_name);
13752 if (actual_class_name != NULL)
13753 {
13754 struct_pdi->name
13755 = obsavestring (actual_class_name,
13756 strlen (actual_class_name),
13757 &cu->objfile->objfile_obstack);
13758 xfree (actual_class_name);
13759 }
13760 break;
13761 }
13762 }
13763 }
13764
13765 /* Adjust PART_DIE before generating a symbol for it. This function
13766 may set the is_external flag or change the DIE's name. */
13767
13768 static void
13769 fixup_partial_die (struct partial_die_info *part_die,
13770 struct dwarf2_cu *cu)
13771 {
13772 /* Once we've fixed up a die, there's no point in doing so again.
13773 This also avoids a memory leak if we were to call
13774 guess_partial_die_structure_name multiple times. */
13775 if (part_die->fixup_called)
13776 return;
13777
13778 /* If we found a reference attribute and the DIE has no name, try
13779 to find a name in the referred to DIE. */
13780
13781 if (part_die->name == NULL && part_die->has_specification)
13782 {
13783 struct partial_die_info *spec_die;
13784
13785 spec_die = find_partial_die (part_die->spec_offset,
13786 part_die->spec_is_dwz, cu);
13787
13788 fixup_partial_die (spec_die, cu);
13789
13790 if (spec_die->name)
13791 {
13792 part_die->name = spec_die->name;
13793
13794 /* Copy DW_AT_external attribute if it is set. */
13795 if (spec_die->is_external)
13796 part_die->is_external = spec_die->is_external;
13797 }
13798 }
13799
13800 /* Set default names for some unnamed DIEs. */
13801
13802 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13803 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13804
13805 /* If there is no parent die to provide a namespace, and there are
13806 children, see if we can determine the namespace from their linkage
13807 name. */
13808 if (cu->language == language_cplus
13809 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13810 && part_die->die_parent == NULL
13811 && part_die->has_children
13812 && (part_die->tag == DW_TAG_class_type
13813 || part_die->tag == DW_TAG_structure_type
13814 || part_die->tag == DW_TAG_union_type))
13815 guess_partial_die_structure_name (part_die, cu);
13816
13817 /* GCC might emit a nameless struct or union that has a linkage
13818 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13819 if (part_die->name == NULL
13820 && (part_die->tag == DW_TAG_class_type
13821 || part_die->tag == DW_TAG_interface_type
13822 || part_die->tag == DW_TAG_structure_type
13823 || part_die->tag == DW_TAG_union_type)
13824 && part_die->linkage_name != NULL)
13825 {
13826 char *demangled;
13827
13828 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13829 if (demangled)
13830 {
13831 const char *base;
13832
13833 /* Strip any leading namespaces/classes, keep only the base name.
13834 DW_AT_name for named DIEs does not contain the prefixes. */
13835 base = strrchr (demangled, ':');
13836 if (base && base > demangled && base[-1] == ':')
13837 base++;
13838 else
13839 base = demangled;
13840
13841 part_die->name = obsavestring (base, strlen (base),
13842 &cu->objfile->objfile_obstack);
13843 xfree (demangled);
13844 }
13845 }
13846
13847 part_die->fixup_called = 1;
13848 }
13849
13850 /* Read an attribute value described by an attribute form. */
13851
13852 static gdb_byte *
13853 read_attribute_value (const struct die_reader_specs *reader,
13854 struct attribute *attr, unsigned form,
13855 gdb_byte *info_ptr)
13856 {
13857 struct dwarf2_cu *cu = reader->cu;
13858 bfd *abfd = reader->abfd;
13859 struct comp_unit_head *cu_header = &cu->header;
13860 unsigned int bytes_read;
13861 struct dwarf_block *blk;
13862
13863 attr->form = form;
13864 switch (form)
13865 {
13866 case DW_FORM_ref_addr:
13867 if (cu->header.version == 2)
13868 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13869 else
13870 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13871 &cu->header, &bytes_read);
13872 info_ptr += bytes_read;
13873 break;
13874 case DW_FORM_GNU_ref_alt:
13875 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13876 info_ptr += bytes_read;
13877 break;
13878 case DW_FORM_addr:
13879 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13880 info_ptr += bytes_read;
13881 break;
13882 case DW_FORM_block2:
13883 blk = dwarf_alloc_block (cu);
13884 blk->size = read_2_bytes (abfd, info_ptr);
13885 info_ptr += 2;
13886 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13887 info_ptr += blk->size;
13888 DW_BLOCK (attr) = blk;
13889 break;
13890 case DW_FORM_block4:
13891 blk = dwarf_alloc_block (cu);
13892 blk->size = read_4_bytes (abfd, info_ptr);
13893 info_ptr += 4;
13894 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13895 info_ptr += blk->size;
13896 DW_BLOCK (attr) = blk;
13897 break;
13898 case DW_FORM_data2:
13899 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13900 info_ptr += 2;
13901 break;
13902 case DW_FORM_data4:
13903 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13904 info_ptr += 4;
13905 break;
13906 case DW_FORM_data8:
13907 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13908 info_ptr += 8;
13909 break;
13910 case DW_FORM_sec_offset:
13911 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13912 info_ptr += bytes_read;
13913 break;
13914 case DW_FORM_string:
13915 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13916 DW_STRING_IS_CANONICAL (attr) = 0;
13917 info_ptr += bytes_read;
13918 break;
13919 case DW_FORM_strp:
13920 if (!cu->per_cu->is_dwz)
13921 {
13922 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13923 &bytes_read);
13924 DW_STRING_IS_CANONICAL (attr) = 0;
13925 info_ptr += bytes_read;
13926 break;
13927 }
13928 /* FALLTHROUGH */
13929 case DW_FORM_GNU_strp_alt:
13930 {
13931 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13932 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13933 &bytes_read);
13934
13935 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13936 DW_STRING_IS_CANONICAL (attr) = 0;
13937 info_ptr += bytes_read;
13938 }
13939 break;
13940 case DW_FORM_exprloc:
13941 case DW_FORM_block:
13942 blk = dwarf_alloc_block (cu);
13943 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13944 info_ptr += bytes_read;
13945 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13946 info_ptr += blk->size;
13947 DW_BLOCK (attr) = blk;
13948 break;
13949 case DW_FORM_block1:
13950 blk = dwarf_alloc_block (cu);
13951 blk->size = read_1_byte (abfd, info_ptr);
13952 info_ptr += 1;
13953 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13954 info_ptr += blk->size;
13955 DW_BLOCK (attr) = blk;
13956 break;
13957 case DW_FORM_data1:
13958 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13959 info_ptr += 1;
13960 break;
13961 case DW_FORM_flag:
13962 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13963 info_ptr += 1;
13964 break;
13965 case DW_FORM_flag_present:
13966 DW_UNSND (attr) = 1;
13967 break;
13968 case DW_FORM_sdata:
13969 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13970 info_ptr += bytes_read;
13971 break;
13972 case DW_FORM_udata:
13973 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13974 info_ptr += bytes_read;
13975 break;
13976 case DW_FORM_ref1:
13977 DW_UNSND (attr) = (cu->header.offset.sect_off
13978 + read_1_byte (abfd, info_ptr));
13979 info_ptr += 1;
13980 break;
13981 case DW_FORM_ref2:
13982 DW_UNSND (attr) = (cu->header.offset.sect_off
13983 + read_2_bytes (abfd, info_ptr));
13984 info_ptr += 2;
13985 break;
13986 case DW_FORM_ref4:
13987 DW_UNSND (attr) = (cu->header.offset.sect_off
13988 + read_4_bytes (abfd, info_ptr));
13989 info_ptr += 4;
13990 break;
13991 case DW_FORM_ref8:
13992 DW_UNSND (attr) = (cu->header.offset.sect_off
13993 + read_8_bytes (abfd, info_ptr));
13994 info_ptr += 8;
13995 break;
13996 case DW_FORM_ref_sig8:
13997 /* Convert the signature to something we can record in DW_UNSND
13998 for later lookup.
13999 NOTE: This is NULL if the type wasn't found. */
14000 DW_SIGNATURED_TYPE (attr) =
14001 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14002 info_ptr += 8;
14003 break;
14004 case DW_FORM_ref_udata:
14005 DW_UNSND (attr) = (cu->header.offset.sect_off
14006 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14007 info_ptr += bytes_read;
14008 break;
14009 case DW_FORM_indirect:
14010 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14011 info_ptr += bytes_read;
14012 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14013 break;
14014 case DW_FORM_GNU_addr_index:
14015 if (reader->dwo_file == NULL)
14016 {
14017 /* For now flag a hard error.
14018 Later we can turn this into a complaint. */
14019 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14020 dwarf_form_name (form),
14021 bfd_get_filename (abfd));
14022 }
14023 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14024 info_ptr += bytes_read;
14025 break;
14026 case DW_FORM_GNU_str_index:
14027 if (reader->dwo_file == NULL)
14028 {
14029 /* For now flag a hard error.
14030 Later we can turn this into a complaint if warranted. */
14031 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14032 dwarf_form_name (form),
14033 bfd_get_filename (abfd));
14034 }
14035 {
14036 ULONGEST str_index =
14037 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14038
14039 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14040 DW_STRING_IS_CANONICAL (attr) = 0;
14041 info_ptr += bytes_read;
14042 }
14043 break;
14044 default:
14045 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14046 dwarf_form_name (form),
14047 bfd_get_filename (abfd));
14048 }
14049
14050 /* Super hack. */
14051 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14052 attr->form = DW_FORM_GNU_ref_alt;
14053
14054 /* We have seen instances where the compiler tried to emit a byte
14055 size attribute of -1 which ended up being encoded as an unsigned
14056 0xffffffff. Although 0xffffffff is technically a valid size value,
14057 an object of this size seems pretty unlikely so we can relatively
14058 safely treat these cases as if the size attribute was invalid and
14059 treat them as zero by default. */
14060 if (attr->name == DW_AT_byte_size
14061 && form == DW_FORM_data4
14062 && DW_UNSND (attr) >= 0xffffffff)
14063 {
14064 complaint
14065 (&symfile_complaints,
14066 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14067 hex_string (DW_UNSND (attr)));
14068 DW_UNSND (attr) = 0;
14069 }
14070
14071 return info_ptr;
14072 }
14073
14074 /* Read an attribute described by an abbreviated attribute. */
14075
14076 static gdb_byte *
14077 read_attribute (const struct die_reader_specs *reader,
14078 struct attribute *attr, struct attr_abbrev *abbrev,
14079 gdb_byte *info_ptr)
14080 {
14081 attr->name = abbrev->name;
14082 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14083 }
14084
14085 /* Read dwarf information from a buffer. */
14086
14087 static unsigned int
14088 read_1_byte (bfd *abfd, const gdb_byte *buf)
14089 {
14090 return bfd_get_8 (abfd, buf);
14091 }
14092
14093 static int
14094 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14095 {
14096 return bfd_get_signed_8 (abfd, buf);
14097 }
14098
14099 static unsigned int
14100 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14101 {
14102 return bfd_get_16 (abfd, buf);
14103 }
14104
14105 static int
14106 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14107 {
14108 return bfd_get_signed_16 (abfd, buf);
14109 }
14110
14111 static unsigned int
14112 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14113 {
14114 return bfd_get_32 (abfd, buf);
14115 }
14116
14117 static int
14118 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14119 {
14120 return bfd_get_signed_32 (abfd, buf);
14121 }
14122
14123 static ULONGEST
14124 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14125 {
14126 return bfd_get_64 (abfd, buf);
14127 }
14128
14129 static CORE_ADDR
14130 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14131 unsigned int *bytes_read)
14132 {
14133 struct comp_unit_head *cu_header = &cu->header;
14134 CORE_ADDR retval = 0;
14135
14136 if (cu_header->signed_addr_p)
14137 {
14138 switch (cu_header->addr_size)
14139 {
14140 case 2:
14141 retval = bfd_get_signed_16 (abfd, buf);
14142 break;
14143 case 4:
14144 retval = bfd_get_signed_32 (abfd, buf);
14145 break;
14146 case 8:
14147 retval = bfd_get_signed_64 (abfd, buf);
14148 break;
14149 default:
14150 internal_error (__FILE__, __LINE__,
14151 _("read_address: bad switch, signed [in module %s]"),
14152 bfd_get_filename (abfd));
14153 }
14154 }
14155 else
14156 {
14157 switch (cu_header->addr_size)
14158 {
14159 case 2:
14160 retval = bfd_get_16 (abfd, buf);
14161 break;
14162 case 4:
14163 retval = bfd_get_32 (abfd, buf);
14164 break;
14165 case 8:
14166 retval = bfd_get_64 (abfd, buf);
14167 break;
14168 default:
14169 internal_error (__FILE__, __LINE__,
14170 _("read_address: bad switch, "
14171 "unsigned [in module %s]"),
14172 bfd_get_filename (abfd));
14173 }
14174 }
14175
14176 *bytes_read = cu_header->addr_size;
14177 return retval;
14178 }
14179
14180 /* Read the initial length from a section. The (draft) DWARF 3
14181 specification allows the initial length to take up either 4 bytes
14182 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14183 bytes describe the length and all offsets will be 8 bytes in length
14184 instead of 4.
14185
14186 An older, non-standard 64-bit format is also handled by this
14187 function. The older format in question stores the initial length
14188 as an 8-byte quantity without an escape value. Lengths greater
14189 than 2^32 aren't very common which means that the initial 4 bytes
14190 is almost always zero. Since a length value of zero doesn't make
14191 sense for the 32-bit format, this initial zero can be considered to
14192 be an escape value which indicates the presence of the older 64-bit
14193 format. As written, the code can't detect (old format) lengths
14194 greater than 4GB. If it becomes necessary to handle lengths
14195 somewhat larger than 4GB, we could allow other small values (such
14196 as the non-sensical values of 1, 2, and 3) to also be used as
14197 escape values indicating the presence of the old format.
14198
14199 The value returned via bytes_read should be used to increment the
14200 relevant pointer after calling read_initial_length().
14201
14202 [ Note: read_initial_length() and read_offset() are based on the
14203 document entitled "DWARF Debugging Information Format", revision
14204 3, draft 8, dated November 19, 2001. This document was obtained
14205 from:
14206
14207 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14208
14209 This document is only a draft and is subject to change. (So beware.)
14210
14211 Details regarding the older, non-standard 64-bit format were
14212 determined empirically by examining 64-bit ELF files produced by
14213 the SGI toolchain on an IRIX 6.5 machine.
14214
14215 - Kevin, July 16, 2002
14216 ] */
14217
14218 static LONGEST
14219 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14220 {
14221 LONGEST length = bfd_get_32 (abfd, buf);
14222
14223 if (length == 0xffffffff)
14224 {
14225 length = bfd_get_64 (abfd, buf + 4);
14226 *bytes_read = 12;
14227 }
14228 else if (length == 0)
14229 {
14230 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14231 length = bfd_get_64 (abfd, buf);
14232 *bytes_read = 8;
14233 }
14234 else
14235 {
14236 *bytes_read = 4;
14237 }
14238
14239 return length;
14240 }
14241
14242 /* Cover function for read_initial_length.
14243 Returns the length of the object at BUF, and stores the size of the
14244 initial length in *BYTES_READ and stores the size that offsets will be in
14245 *OFFSET_SIZE.
14246 If the initial length size is not equivalent to that specified in
14247 CU_HEADER then issue a complaint.
14248 This is useful when reading non-comp-unit headers. */
14249
14250 static LONGEST
14251 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14252 const struct comp_unit_head *cu_header,
14253 unsigned int *bytes_read,
14254 unsigned int *offset_size)
14255 {
14256 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14257
14258 gdb_assert (cu_header->initial_length_size == 4
14259 || cu_header->initial_length_size == 8
14260 || cu_header->initial_length_size == 12);
14261
14262 if (cu_header->initial_length_size != *bytes_read)
14263 complaint (&symfile_complaints,
14264 _("intermixed 32-bit and 64-bit DWARF sections"));
14265
14266 *offset_size = (*bytes_read == 4) ? 4 : 8;
14267 return length;
14268 }
14269
14270 /* Read an offset from the data stream. The size of the offset is
14271 given by cu_header->offset_size. */
14272
14273 static LONGEST
14274 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14275 unsigned int *bytes_read)
14276 {
14277 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14278
14279 *bytes_read = cu_header->offset_size;
14280 return offset;
14281 }
14282
14283 /* Read an offset from the data stream. */
14284
14285 static LONGEST
14286 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14287 {
14288 LONGEST retval = 0;
14289
14290 switch (offset_size)
14291 {
14292 case 4:
14293 retval = bfd_get_32 (abfd, buf);
14294 break;
14295 case 8:
14296 retval = bfd_get_64 (abfd, buf);
14297 break;
14298 default:
14299 internal_error (__FILE__, __LINE__,
14300 _("read_offset_1: bad switch [in module %s]"),
14301 bfd_get_filename (abfd));
14302 }
14303
14304 return retval;
14305 }
14306
14307 static gdb_byte *
14308 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14309 {
14310 /* If the size of a host char is 8 bits, we can return a pointer
14311 to the buffer, otherwise we have to copy the data to a buffer
14312 allocated on the temporary obstack. */
14313 gdb_assert (HOST_CHAR_BIT == 8);
14314 return buf;
14315 }
14316
14317 static char *
14318 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14319 {
14320 /* If the size of a host char is 8 bits, we can return a pointer
14321 to the string, otherwise we have to copy the string to a buffer
14322 allocated on the temporary obstack. */
14323 gdb_assert (HOST_CHAR_BIT == 8);
14324 if (*buf == '\0')
14325 {
14326 *bytes_read_ptr = 1;
14327 return NULL;
14328 }
14329 *bytes_read_ptr = strlen ((char *) buf) + 1;
14330 return (char *) buf;
14331 }
14332
14333 static char *
14334 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14335 {
14336 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14337 if (dwarf2_per_objfile->str.buffer == NULL)
14338 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14339 bfd_get_filename (abfd));
14340 if (str_offset >= dwarf2_per_objfile->str.size)
14341 error (_("DW_FORM_strp pointing outside of "
14342 ".debug_str section [in module %s]"),
14343 bfd_get_filename (abfd));
14344 gdb_assert (HOST_CHAR_BIT == 8);
14345 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14346 return NULL;
14347 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14348 }
14349
14350 /* Read a string at offset STR_OFFSET in the .debug_str section from
14351 the .dwz file DWZ. Throw an error if the offset is too large. If
14352 the string consists of a single NUL byte, return NULL; otherwise
14353 return a pointer to the string. */
14354
14355 static char *
14356 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14357 {
14358 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14359
14360 if (dwz->str.buffer == NULL)
14361 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14362 "section [in module %s]"),
14363 bfd_get_filename (dwz->dwz_bfd));
14364 if (str_offset >= dwz->str.size)
14365 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14366 ".debug_str section [in module %s]"),
14367 bfd_get_filename (dwz->dwz_bfd));
14368 gdb_assert (HOST_CHAR_BIT == 8);
14369 if (dwz->str.buffer[str_offset] == '\0')
14370 return NULL;
14371 return (char *) (dwz->str.buffer + str_offset);
14372 }
14373
14374 static char *
14375 read_indirect_string (bfd *abfd, gdb_byte *buf,
14376 const struct comp_unit_head *cu_header,
14377 unsigned int *bytes_read_ptr)
14378 {
14379 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14380
14381 return read_indirect_string_at_offset (abfd, str_offset);
14382 }
14383
14384 static ULONGEST
14385 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14386 {
14387 ULONGEST result;
14388 unsigned int num_read;
14389 int i, shift;
14390 unsigned char byte;
14391
14392 result = 0;
14393 shift = 0;
14394 num_read = 0;
14395 i = 0;
14396 while (1)
14397 {
14398 byte = bfd_get_8 (abfd, buf);
14399 buf++;
14400 num_read++;
14401 result |= ((ULONGEST) (byte & 127) << shift);
14402 if ((byte & 128) == 0)
14403 {
14404 break;
14405 }
14406 shift += 7;
14407 }
14408 *bytes_read_ptr = num_read;
14409 return result;
14410 }
14411
14412 static LONGEST
14413 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14414 {
14415 LONGEST result;
14416 int i, shift, num_read;
14417 unsigned char byte;
14418
14419 result = 0;
14420 shift = 0;
14421 num_read = 0;
14422 i = 0;
14423 while (1)
14424 {
14425 byte = bfd_get_8 (abfd, buf);
14426 buf++;
14427 num_read++;
14428 result |= ((LONGEST) (byte & 127) << shift);
14429 shift += 7;
14430 if ((byte & 128) == 0)
14431 {
14432 break;
14433 }
14434 }
14435 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14436 result |= -(((LONGEST) 1) << shift);
14437 *bytes_read_ptr = num_read;
14438 return result;
14439 }
14440
14441 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14442 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14443 ADDR_SIZE is the size of addresses from the CU header. */
14444
14445 static CORE_ADDR
14446 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14447 {
14448 struct objfile *objfile = dwarf2_per_objfile->objfile;
14449 bfd *abfd = objfile->obfd;
14450 const gdb_byte *info_ptr;
14451
14452 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14453 if (dwarf2_per_objfile->addr.buffer == NULL)
14454 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14455 objfile->name);
14456 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14457 error (_("DW_FORM_addr_index pointing outside of "
14458 ".debug_addr section [in module %s]"),
14459 objfile->name);
14460 info_ptr = (dwarf2_per_objfile->addr.buffer
14461 + addr_base + addr_index * addr_size);
14462 if (addr_size == 4)
14463 return bfd_get_32 (abfd, info_ptr);
14464 else
14465 return bfd_get_64 (abfd, info_ptr);
14466 }
14467
14468 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14469
14470 static CORE_ADDR
14471 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14472 {
14473 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14474 }
14475
14476 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14477
14478 static CORE_ADDR
14479 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14480 unsigned int *bytes_read)
14481 {
14482 bfd *abfd = cu->objfile->obfd;
14483 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14484
14485 return read_addr_index (cu, addr_index);
14486 }
14487
14488 /* Data structure to pass results from dwarf2_read_addr_index_reader
14489 back to dwarf2_read_addr_index. */
14490
14491 struct dwarf2_read_addr_index_data
14492 {
14493 ULONGEST addr_base;
14494 int addr_size;
14495 };
14496
14497 /* die_reader_func for dwarf2_read_addr_index. */
14498
14499 static void
14500 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14501 gdb_byte *info_ptr,
14502 struct die_info *comp_unit_die,
14503 int has_children,
14504 void *data)
14505 {
14506 struct dwarf2_cu *cu = reader->cu;
14507 struct dwarf2_read_addr_index_data *aidata =
14508 (struct dwarf2_read_addr_index_data *) data;
14509
14510 aidata->addr_base = cu->addr_base;
14511 aidata->addr_size = cu->header.addr_size;
14512 }
14513
14514 /* Given an index in .debug_addr, fetch the value.
14515 NOTE: This can be called during dwarf expression evaluation,
14516 long after the debug information has been read, and thus per_cu->cu
14517 may no longer exist. */
14518
14519 CORE_ADDR
14520 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14521 unsigned int addr_index)
14522 {
14523 struct objfile *objfile = per_cu->objfile;
14524 struct dwarf2_cu *cu = per_cu->cu;
14525 ULONGEST addr_base;
14526 int addr_size;
14527
14528 /* This is intended to be called from outside this file. */
14529 dw2_setup (objfile);
14530
14531 /* We need addr_base and addr_size.
14532 If we don't have PER_CU->cu, we have to get it.
14533 Nasty, but the alternative is storing the needed info in PER_CU,
14534 which at this point doesn't seem justified: it's not clear how frequently
14535 it would get used and it would increase the size of every PER_CU.
14536 Entry points like dwarf2_per_cu_addr_size do a similar thing
14537 so we're not in uncharted territory here.
14538 Alas we need to be a bit more complicated as addr_base is contained
14539 in the DIE.
14540
14541 We don't need to read the entire CU(/TU).
14542 We just need the header and top level die.
14543
14544 IWBN to use the aging mechanism to let us lazily later discard the CU.
14545 For now we skip this optimization. */
14546
14547 if (cu != NULL)
14548 {
14549 addr_base = cu->addr_base;
14550 addr_size = cu->header.addr_size;
14551 }
14552 else
14553 {
14554 struct dwarf2_read_addr_index_data aidata;
14555
14556 /* Note: We can't use init_cutu_and_read_dies_simple here,
14557 we need addr_base. */
14558 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14559 dwarf2_read_addr_index_reader, &aidata);
14560 addr_base = aidata.addr_base;
14561 addr_size = aidata.addr_size;
14562 }
14563
14564 return read_addr_index_1 (addr_index, addr_base, addr_size);
14565 }
14566
14567 /* Given a DW_AT_str_index, fetch the string. */
14568
14569 static char *
14570 read_str_index (const struct die_reader_specs *reader,
14571 struct dwarf2_cu *cu, ULONGEST str_index)
14572 {
14573 struct objfile *objfile = dwarf2_per_objfile->objfile;
14574 const char *dwo_name = objfile->name;
14575 bfd *abfd = objfile->obfd;
14576 struct dwo_sections *sections = &reader->dwo_file->sections;
14577 gdb_byte *info_ptr;
14578 ULONGEST str_offset;
14579
14580 dwarf2_read_section (objfile, &sections->str);
14581 dwarf2_read_section (objfile, &sections->str_offsets);
14582 if (sections->str.buffer == NULL)
14583 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14584 " in CU at offset 0x%lx [in module %s]"),
14585 (long) cu->header.offset.sect_off, dwo_name);
14586 if (sections->str_offsets.buffer == NULL)
14587 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14588 " in CU at offset 0x%lx [in module %s]"),
14589 (long) cu->header.offset.sect_off, dwo_name);
14590 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14591 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14592 " section in CU at offset 0x%lx [in module %s]"),
14593 (long) cu->header.offset.sect_off, dwo_name);
14594 info_ptr = (sections->str_offsets.buffer
14595 + str_index * cu->header.offset_size);
14596 if (cu->header.offset_size == 4)
14597 str_offset = bfd_get_32 (abfd, info_ptr);
14598 else
14599 str_offset = bfd_get_64 (abfd, info_ptr);
14600 if (str_offset >= sections->str.size)
14601 error (_("Offset from DW_FORM_str_index pointing outside of"
14602 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14603 (long) cu->header.offset.sect_off, dwo_name);
14604 return (char *) (sections->str.buffer + str_offset);
14605 }
14606
14607 /* Return the length of an LEB128 number in BUF. */
14608
14609 static int
14610 leb128_size (const gdb_byte *buf)
14611 {
14612 const gdb_byte *begin = buf;
14613 gdb_byte byte;
14614
14615 while (1)
14616 {
14617 byte = *buf++;
14618 if ((byte & 128) == 0)
14619 return buf - begin;
14620 }
14621 }
14622
14623 static void
14624 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14625 {
14626 switch (lang)
14627 {
14628 case DW_LANG_C89:
14629 case DW_LANG_C99:
14630 case DW_LANG_C:
14631 cu->language = language_c;
14632 break;
14633 case DW_LANG_C_plus_plus:
14634 cu->language = language_cplus;
14635 break;
14636 case DW_LANG_D:
14637 cu->language = language_d;
14638 break;
14639 case DW_LANG_Fortran77:
14640 case DW_LANG_Fortran90:
14641 case DW_LANG_Fortran95:
14642 cu->language = language_fortran;
14643 break;
14644 case DW_LANG_Go:
14645 cu->language = language_go;
14646 break;
14647 case DW_LANG_Mips_Assembler:
14648 cu->language = language_asm;
14649 break;
14650 case DW_LANG_Java:
14651 cu->language = language_java;
14652 break;
14653 case DW_LANG_Ada83:
14654 case DW_LANG_Ada95:
14655 cu->language = language_ada;
14656 break;
14657 case DW_LANG_Modula2:
14658 cu->language = language_m2;
14659 break;
14660 case DW_LANG_Pascal83:
14661 cu->language = language_pascal;
14662 break;
14663 case DW_LANG_ObjC:
14664 cu->language = language_objc;
14665 break;
14666 case DW_LANG_Cobol74:
14667 case DW_LANG_Cobol85:
14668 default:
14669 cu->language = language_minimal;
14670 break;
14671 }
14672 cu->language_defn = language_def (cu->language);
14673 }
14674
14675 /* Return the named attribute or NULL if not there. */
14676
14677 static struct attribute *
14678 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14679 {
14680 for (;;)
14681 {
14682 unsigned int i;
14683 struct attribute *spec = NULL;
14684
14685 for (i = 0; i < die->num_attrs; ++i)
14686 {
14687 if (die->attrs[i].name == name)
14688 return &die->attrs[i];
14689 if (die->attrs[i].name == DW_AT_specification
14690 || die->attrs[i].name == DW_AT_abstract_origin)
14691 spec = &die->attrs[i];
14692 }
14693
14694 if (!spec)
14695 break;
14696
14697 die = follow_die_ref (die, spec, &cu);
14698 }
14699
14700 return NULL;
14701 }
14702
14703 /* Return the named attribute or NULL if not there,
14704 but do not follow DW_AT_specification, etc.
14705 This is for use in contexts where we're reading .debug_types dies.
14706 Following DW_AT_specification, DW_AT_abstract_origin will take us
14707 back up the chain, and we want to go down. */
14708
14709 static struct attribute *
14710 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14711 {
14712 unsigned int i;
14713
14714 for (i = 0; i < die->num_attrs; ++i)
14715 if (die->attrs[i].name == name)
14716 return &die->attrs[i];
14717
14718 return NULL;
14719 }
14720
14721 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14722 and holds a non-zero value. This function should only be used for
14723 DW_FORM_flag or DW_FORM_flag_present attributes. */
14724
14725 static int
14726 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14727 {
14728 struct attribute *attr = dwarf2_attr (die, name, cu);
14729
14730 return (attr && DW_UNSND (attr));
14731 }
14732
14733 static int
14734 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14735 {
14736 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14737 which value is non-zero. However, we have to be careful with
14738 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14739 (via dwarf2_flag_true_p) follows this attribute. So we may
14740 end up accidently finding a declaration attribute that belongs
14741 to a different DIE referenced by the specification attribute,
14742 even though the given DIE does not have a declaration attribute. */
14743 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14744 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14745 }
14746
14747 /* Return the die giving the specification for DIE, if there is
14748 one. *SPEC_CU is the CU containing DIE on input, and the CU
14749 containing the return value on output. If there is no
14750 specification, but there is an abstract origin, that is
14751 returned. */
14752
14753 static struct die_info *
14754 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14755 {
14756 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14757 *spec_cu);
14758
14759 if (spec_attr == NULL)
14760 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14761
14762 if (spec_attr == NULL)
14763 return NULL;
14764 else
14765 return follow_die_ref (die, spec_attr, spec_cu);
14766 }
14767
14768 /* Free the line_header structure *LH, and any arrays and strings it
14769 refers to.
14770 NOTE: This is also used as a "cleanup" function. */
14771
14772 static void
14773 free_line_header (struct line_header *lh)
14774 {
14775 if (lh->standard_opcode_lengths)
14776 xfree (lh->standard_opcode_lengths);
14777
14778 /* Remember that all the lh->file_names[i].name pointers are
14779 pointers into debug_line_buffer, and don't need to be freed. */
14780 if (lh->file_names)
14781 xfree (lh->file_names);
14782
14783 /* Similarly for the include directory names. */
14784 if (lh->include_dirs)
14785 xfree (lh->include_dirs);
14786
14787 xfree (lh);
14788 }
14789
14790 /* Add an entry to LH's include directory table. */
14791
14792 static void
14793 add_include_dir (struct line_header *lh, char *include_dir)
14794 {
14795 /* Grow the array if necessary. */
14796 if (lh->include_dirs_size == 0)
14797 {
14798 lh->include_dirs_size = 1; /* for testing */
14799 lh->include_dirs = xmalloc (lh->include_dirs_size
14800 * sizeof (*lh->include_dirs));
14801 }
14802 else if (lh->num_include_dirs >= lh->include_dirs_size)
14803 {
14804 lh->include_dirs_size *= 2;
14805 lh->include_dirs = xrealloc (lh->include_dirs,
14806 (lh->include_dirs_size
14807 * sizeof (*lh->include_dirs)));
14808 }
14809
14810 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14811 }
14812
14813 /* Add an entry to LH's file name table. */
14814
14815 static void
14816 add_file_name (struct line_header *lh,
14817 char *name,
14818 unsigned int dir_index,
14819 unsigned int mod_time,
14820 unsigned int length)
14821 {
14822 struct file_entry *fe;
14823
14824 /* Grow the array if necessary. */
14825 if (lh->file_names_size == 0)
14826 {
14827 lh->file_names_size = 1; /* for testing */
14828 lh->file_names = xmalloc (lh->file_names_size
14829 * sizeof (*lh->file_names));
14830 }
14831 else if (lh->num_file_names >= lh->file_names_size)
14832 {
14833 lh->file_names_size *= 2;
14834 lh->file_names = xrealloc (lh->file_names,
14835 (lh->file_names_size
14836 * sizeof (*lh->file_names)));
14837 }
14838
14839 fe = &lh->file_names[lh->num_file_names++];
14840 fe->name = name;
14841 fe->dir_index = dir_index;
14842 fe->mod_time = mod_time;
14843 fe->length = length;
14844 fe->included_p = 0;
14845 fe->symtab = NULL;
14846 }
14847
14848 /* A convenience function to find the proper .debug_line section for a
14849 CU. */
14850
14851 static struct dwarf2_section_info *
14852 get_debug_line_section (struct dwarf2_cu *cu)
14853 {
14854 struct dwarf2_section_info *section;
14855
14856 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14857 DWO file. */
14858 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14859 section = &cu->dwo_unit->dwo_file->sections.line;
14860 else if (cu->per_cu->is_dwz)
14861 {
14862 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14863
14864 section = &dwz->line;
14865 }
14866 else
14867 section = &dwarf2_per_objfile->line;
14868
14869 return section;
14870 }
14871
14872 /* Read the statement program header starting at OFFSET in
14873 .debug_line, or .debug_line.dwo. Return a pointer
14874 to a struct line_header, allocated using xmalloc.
14875
14876 NOTE: the strings in the include directory and file name tables of
14877 the returned object point into the dwarf line section buffer,
14878 and must not be freed. */
14879
14880 static struct line_header *
14881 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14882 {
14883 struct cleanup *back_to;
14884 struct line_header *lh;
14885 gdb_byte *line_ptr;
14886 unsigned int bytes_read, offset_size;
14887 int i;
14888 char *cur_dir, *cur_file;
14889 struct dwarf2_section_info *section;
14890 bfd *abfd;
14891
14892 section = get_debug_line_section (cu);
14893 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14894 if (section->buffer == NULL)
14895 {
14896 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14897 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14898 else
14899 complaint (&symfile_complaints, _("missing .debug_line section"));
14900 return 0;
14901 }
14902
14903 /* We can't do this until we know the section is non-empty.
14904 Only then do we know we have such a section. */
14905 abfd = section->asection->owner;
14906
14907 /* Make sure that at least there's room for the total_length field.
14908 That could be 12 bytes long, but we're just going to fudge that. */
14909 if (offset + 4 >= section->size)
14910 {
14911 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14912 return 0;
14913 }
14914
14915 lh = xmalloc (sizeof (*lh));
14916 memset (lh, 0, sizeof (*lh));
14917 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14918 (void *) lh);
14919
14920 line_ptr = section->buffer + offset;
14921
14922 /* Read in the header. */
14923 lh->total_length =
14924 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14925 &bytes_read, &offset_size);
14926 line_ptr += bytes_read;
14927 if (line_ptr + lh->total_length > (section->buffer + section->size))
14928 {
14929 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14930 return 0;
14931 }
14932 lh->statement_program_end = line_ptr + lh->total_length;
14933 lh->version = read_2_bytes (abfd, line_ptr);
14934 line_ptr += 2;
14935 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14936 line_ptr += offset_size;
14937 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14938 line_ptr += 1;
14939 if (lh->version >= 4)
14940 {
14941 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14942 line_ptr += 1;
14943 }
14944 else
14945 lh->maximum_ops_per_instruction = 1;
14946
14947 if (lh->maximum_ops_per_instruction == 0)
14948 {
14949 lh->maximum_ops_per_instruction = 1;
14950 complaint (&symfile_complaints,
14951 _("invalid maximum_ops_per_instruction "
14952 "in `.debug_line' section"));
14953 }
14954
14955 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14956 line_ptr += 1;
14957 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14958 line_ptr += 1;
14959 lh->line_range = read_1_byte (abfd, line_ptr);
14960 line_ptr += 1;
14961 lh->opcode_base = read_1_byte (abfd, line_ptr);
14962 line_ptr += 1;
14963 lh->standard_opcode_lengths
14964 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
14965
14966 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14967 for (i = 1; i < lh->opcode_base; ++i)
14968 {
14969 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14970 line_ptr += 1;
14971 }
14972
14973 /* Read directory table. */
14974 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14975 {
14976 line_ptr += bytes_read;
14977 add_include_dir (lh, cur_dir);
14978 }
14979 line_ptr += bytes_read;
14980
14981 /* Read file name table. */
14982 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
14983 {
14984 unsigned int dir_index, mod_time, length;
14985
14986 line_ptr += bytes_read;
14987 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14988 line_ptr += bytes_read;
14989 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14990 line_ptr += bytes_read;
14991 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14992 line_ptr += bytes_read;
14993
14994 add_file_name (lh, cur_file, dir_index, mod_time, length);
14995 }
14996 line_ptr += bytes_read;
14997 lh->statement_program_start = line_ptr;
14998
14999 if (line_ptr > (section->buffer + section->size))
15000 complaint (&symfile_complaints,
15001 _("line number info header doesn't "
15002 "fit in `.debug_line' section"));
15003
15004 discard_cleanups (back_to);
15005 return lh;
15006 }
15007
15008 /* Subroutine of dwarf_decode_lines to simplify it.
15009 Return the file name of the psymtab for included file FILE_INDEX
15010 in line header LH of PST.
15011 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15012 If space for the result is malloc'd, it will be freed by a cleanup.
15013 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15014
15015 static char *
15016 psymtab_include_file_name (const struct line_header *lh, int file_index,
15017 const struct partial_symtab *pst,
15018 const char *comp_dir)
15019 {
15020 const struct file_entry fe = lh->file_names [file_index];
15021 char *include_name = fe.name;
15022 char *include_name_to_compare = include_name;
15023 char *dir_name = NULL;
15024 const char *pst_filename;
15025 char *copied_name = NULL;
15026 int file_is_pst;
15027
15028 if (fe.dir_index)
15029 dir_name = lh->include_dirs[fe.dir_index - 1];
15030
15031 if (!IS_ABSOLUTE_PATH (include_name)
15032 && (dir_name != NULL || comp_dir != NULL))
15033 {
15034 /* Avoid creating a duplicate psymtab for PST.
15035 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15036 Before we do the comparison, however, we need to account
15037 for DIR_NAME and COMP_DIR.
15038 First prepend dir_name (if non-NULL). If we still don't
15039 have an absolute path prepend comp_dir (if non-NULL).
15040 However, the directory we record in the include-file's
15041 psymtab does not contain COMP_DIR (to match the
15042 corresponding symtab(s)).
15043
15044 Example:
15045
15046 bash$ cd /tmp
15047 bash$ gcc -g ./hello.c
15048 include_name = "hello.c"
15049 dir_name = "."
15050 DW_AT_comp_dir = comp_dir = "/tmp"
15051 DW_AT_name = "./hello.c" */
15052
15053 if (dir_name != NULL)
15054 {
15055 include_name = concat (dir_name, SLASH_STRING,
15056 include_name, (char *)NULL);
15057 include_name_to_compare = include_name;
15058 make_cleanup (xfree, include_name);
15059 }
15060 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15061 {
15062 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15063 include_name, (char *)NULL);
15064 }
15065 }
15066
15067 pst_filename = pst->filename;
15068 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15069 {
15070 copied_name = concat (pst->dirname, SLASH_STRING,
15071 pst_filename, (char *)NULL);
15072 pst_filename = copied_name;
15073 }
15074
15075 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15076
15077 if (include_name_to_compare != include_name)
15078 xfree (include_name_to_compare);
15079 if (copied_name != NULL)
15080 xfree (copied_name);
15081
15082 if (file_is_pst)
15083 return NULL;
15084 return include_name;
15085 }
15086
15087 /* Ignore this record_line request. */
15088
15089 static void
15090 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15091 {
15092 return;
15093 }
15094
15095 /* Subroutine of dwarf_decode_lines to simplify it.
15096 Process the line number information in LH. */
15097
15098 static void
15099 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15100 struct dwarf2_cu *cu, struct partial_symtab *pst)
15101 {
15102 gdb_byte *line_ptr, *extended_end;
15103 gdb_byte *line_end;
15104 unsigned int bytes_read, extended_len;
15105 unsigned char op_code, extended_op, adj_opcode;
15106 CORE_ADDR baseaddr;
15107 struct objfile *objfile = cu->objfile;
15108 bfd *abfd = objfile->obfd;
15109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15110 const int decode_for_pst_p = (pst != NULL);
15111 struct subfile *last_subfile = NULL;
15112 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15113 = record_line;
15114
15115 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15116
15117 line_ptr = lh->statement_program_start;
15118 line_end = lh->statement_program_end;
15119
15120 /* Read the statement sequences until there's nothing left. */
15121 while (line_ptr < line_end)
15122 {
15123 /* state machine registers */
15124 CORE_ADDR address = 0;
15125 unsigned int file = 1;
15126 unsigned int line = 1;
15127 unsigned int column = 0;
15128 int is_stmt = lh->default_is_stmt;
15129 int basic_block = 0;
15130 int end_sequence = 0;
15131 CORE_ADDR addr;
15132 unsigned char op_index = 0;
15133
15134 if (!decode_for_pst_p && lh->num_file_names >= file)
15135 {
15136 /* Start a subfile for the current file of the state machine. */
15137 /* lh->include_dirs and lh->file_names are 0-based, but the
15138 directory and file name numbers in the statement program
15139 are 1-based. */
15140 struct file_entry *fe = &lh->file_names[file - 1];
15141 char *dir = NULL;
15142
15143 if (fe->dir_index)
15144 dir = lh->include_dirs[fe->dir_index - 1];
15145
15146 dwarf2_start_subfile (fe->name, dir, comp_dir);
15147 }
15148
15149 /* Decode the table. */
15150 while (!end_sequence)
15151 {
15152 op_code = read_1_byte (abfd, line_ptr);
15153 line_ptr += 1;
15154 if (line_ptr > line_end)
15155 {
15156 dwarf2_debug_line_missing_end_sequence_complaint ();
15157 break;
15158 }
15159
15160 if (op_code >= lh->opcode_base)
15161 {
15162 /* Special operand. */
15163 adj_opcode = op_code - lh->opcode_base;
15164 address += (((op_index + (adj_opcode / lh->line_range))
15165 / lh->maximum_ops_per_instruction)
15166 * lh->minimum_instruction_length);
15167 op_index = ((op_index + (adj_opcode / lh->line_range))
15168 % lh->maximum_ops_per_instruction);
15169 line += lh->line_base + (adj_opcode % lh->line_range);
15170 if (lh->num_file_names < file || file == 0)
15171 dwarf2_debug_line_missing_file_complaint ();
15172 /* For now we ignore lines not starting on an
15173 instruction boundary. */
15174 else if (op_index == 0)
15175 {
15176 lh->file_names[file - 1].included_p = 1;
15177 if (!decode_for_pst_p && is_stmt)
15178 {
15179 if (last_subfile != current_subfile)
15180 {
15181 addr = gdbarch_addr_bits_remove (gdbarch, address);
15182 if (last_subfile)
15183 (*p_record_line) (last_subfile, 0, addr);
15184 last_subfile = current_subfile;
15185 }
15186 /* Append row to matrix using current values. */
15187 addr = gdbarch_addr_bits_remove (gdbarch, address);
15188 (*p_record_line) (current_subfile, line, addr);
15189 }
15190 }
15191 basic_block = 0;
15192 }
15193 else switch (op_code)
15194 {
15195 case DW_LNS_extended_op:
15196 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15197 &bytes_read);
15198 line_ptr += bytes_read;
15199 extended_end = line_ptr + extended_len;
15200 extended_op = read_1_byte (abfd, line_ptr);
15201 line_ptr += 1;
15202 switch (extended_op)
15203 {
15204 case DW_LNE_end_sequence:
15205 p_record_line = record_line;
15206 end_sequence = 1;
15207 break;
15208 case DW_LNE_set_address:
15209 address = read_address (abfd, line_ptr, cu, &bytes_read);
15210
15211 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15212 {
15213 /* This line table is for a function which has been
15214 GCd by the linker. Ignore it. PR gdb/12528 */
15215
15216 long line_offset
15217 = line_ptr - get_debug_line_section (cu)->buffer;
15218
15219 complaint (&symfile_complaints,
15220 _(".debug_line address at offset 0x%lx is 0 "
15221 "[in module %s]"),
15222 line_offset, objfile->name);
15223 p_record_line = noop_record_line;
15224 }
15225
15226 op_index = 0;
15227 line_ptr += bytes_read;
15228 address += baseaddr;
15229 break;
15230 case DW_LNE_define_file:
15231 {
15232 char *cur_file;
15233 unsigned int dir_index, mod_time, length;
15234
15235 cur_file = read_direct_string (abfd, line_ptr,
15236 &bytes_read);
15237 line_ptr += bytes_read;
15238 dir_index =
15239 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15240 line_ptr += bytes_read;
15241 mod_time =
15242 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15243 line_ptr += bytes_read;
15244 length =
15245 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15246 line_ptr += bytes_read;
15247 add_file_name (lh, cur_file, dir_index, mod_time, length);
15248 }
15249 break;
15250 case DW_LNE_set_discriminator:
15251 /* The discriminator is not interesting to the debugger;
15252 just ignore it. */
15253 line_ptr = extended_end;
15254 break;
15255 default:
15256 complaint (&symfile_complaints,
15257 _("mangled .debug_line section"));
15258 return;
15259 }
15260 /* Make sure that we parsed the extended op correctly. If e.g.
15261 we expected a different address size than the producer used,
15262 we may have read the wrong number of bytes. */
15263 if (line_ptr != extended_end)
15264 {
15265 complaint (&symfile_complaints,
15266 _("mangled .debug_line section"));
15267 return;
15268 }
15269 break;
15270 case DW_LNS_copy:
15271 if (lh->num_file_names < file || file == 0)
15272 dwarf2_debug_line_missing_file_complaint ();
15273 else
15274 {
15275 lh->file_names[file - 1].included_p = 1;
15276 if (!decode_for_pst_p && is_stmt)
15277 {
15278 if (last_subfile != current_subfile)
15279 {
15280 addr = gdbarch_addr_bits_remove (gdbarch, address);
15281 if (last_subfile)
15282 (*p_record_line) (last_subfile, 0, addr);
15283 last_subfile = current_subfile;
15284 }
15285 addr = gdbarch_addr_bits_remove (gdbarch, address);
15286 (*p_record_line) (current_subfile, line, addr);
15287 }
15288 }
15289 basic_block = 0;
15290 break;
15291 case DW_LNS_advance_pc:
15292 {
15293 CORE_ADDR adjust
15294 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15295
15296 address += (((op_index + adjust)
15297 / lh->maximum_ops_per_instruction)
15298 * lh->minimum_instruction_length);
15299 op_index = ((op_index + adjust)
15300 % lh->maximum_ops_per_instruction);
15301 line_ptr += bytes_read;
15302 }
15303 break;
15304 case DW_LNS_advance_line:
15305 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15306 line_ptr += bytes_read;
15307 break;
15308 case DW_LNS_set_file:
15309 {
15310 /* The arrays lh->include_dirs and lh->file_names are
15311 0-based, but the directory and file name numbers in
15312 the statement program are 1-based. */
15313 struct file_entry *fe;
15314 char *dir = NULL;
15315
15316 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15317 line_ptr += bytes_read;
15318 if (lh->num_file_names < file || file == 0)
15319 dwarf2_debug_line_missing_file_complaint ();
15320 else
15321 {
15322 fe = &lh->file_names[file - 1];
15323 if (fe->dir_index)
15324 dir = lh->include_dirs[fe->dir_index - 1];
15325 if (!decode_for_pst_p)
15326 {
15327 last_subfile = current_subfile;
15328 dwarf2_start_subfile (fe->name, dir, comp_dir);
15329 }
15330 }
15331 }
15332 break;
15333 case DW_LNS_set_column:
15334 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15335 line_ptr += bytes_read;
15336 break;
15337 case DW_LNS_negate_stmt:
15338 is_stmt = (!is_stmt);
15339 break;
15340 case DW_LNS_set_basic_block:
15341 basic_block = 1;
15342 break;
15343 /* Add to the address register of the state machine the
15344 address increment value corresponding to special opcode
15345 255. I.e., this value is scaled by the minimum
15346 instruction length since special opcode 255 would have
15347 scaled the increment. */
15348 case DW_LNS_const_add_pc:
15349 {
15350 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15351
15352 address += (((op_index + adjust)
15353 / lh->maximum_ops_per_instruction)
15354 * lh->minimum_instruction_length);
15355 op_index = ((op_index + adjust)
15356 % lh->maximum_ops_per_instruction);
15357 }
15358 break;
15359 case DW_LNS_fixed_advance_pc:
15360 address += read_2_bytes (abfd, line_ptr);
15361 op_index = 0;
15362 line_ptr += 2;
15363 break;
15364 default:
15365 {
15366 /* Unknown standard opcode, ignore it. */
15367 int i;
15368
15369 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15370 {
15371 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15372 line_ptr += bytes_read;
15373 }
15374 }
15375 }
15376 }
15377 if (lh->num_file_names < file || file == 0)
15378 dwarf2_debug_line_missing_file_complaint ();
15379 else
15380 {
15381 lh->file_names[file - 1].included_p = 1;
15382 if (!decode_for_pst_p)
15383 {
15384 addr = gdbarch_addr_bits_remove (gdbarch, address);
15385 (*p_record_line) (current_subfile, 0, addr);
15386 }
15387 }
15388 }
15389 }
15390
15391 /* Decode the Line Number Program (LNP) for the given line_header
15392 structure and CU. The actual information extracted and the type
15393 of structures created from the LNP depends on the value of PST.
15394
15395 1. If PST is NULL, then this procedure uses the data from the program
15396 to create all necessary symbol tables, and their linetables.
15397
15398 2. If PST is not NULL, this procedure reads the program to determine
15399 the list of files included by the unit represented by PST, and
15400 builds all the associated partial symbol tables.
15401
15402 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15403 It is used for relative paths in the line table.
15404 NOTE: When processing partial symtabs (pst != NULL),
15405 comp_dir == pst->dirname.
15406
15407 NOTE: It is important that psymtabs have the same file name (via strcmp)
15408 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15409 symtab we don't use it in the name of the psymtabs we create.
15410 E.g. expand_line_sal requires this when finding psymtabs to expand.
15411 A good testcase for this is mb-inline.exp. */
15412
15413 static void
15414 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15415 struct dwarf2_cu *cu, struct partial_symtab *pst,
15416 int want_line_info)
15417 {
15418 struct objfile *objfile = cu->objfile;
15419 const int decode_for_pst_p = (pst != NULL);
15420 struct subfile *first_subfile = current_subfile;
15421
15422 if (want_line_info)
15423 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15424
15425 if (decode_for_pst_p)
15426 {
15427 int file_index;
15428
15429 /* Now that we're done scanning the Line Header Program, we can
15430 create the psymtab of each included file. */
15431 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15432 if (lh->file_names[file_index].included_p == 1)
15433 {
15434 char *include_name =
15435 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15436 if (include_name != NULL)
15437 dwarf2_create_include_psymtab (include_name, pst, objfile);
15438 }
15439 }
15440 else
15441 {
15442 /* Make sure a symtab is created for every file, even files
15443 which contain only variables (i.e. no code with associated
15444 line numbers). */
15445 int i;
15446
15447 for (i = 0; i < lh->num_file_names; i++)
15448 {
15449 char *dir = NULL;
15450 struct file_entry *fe;
15451
15452 fe = &lh->file_names[i];
15453 if (fe->dir_index)
15454 dir = lh->include_dirs[fe->dir_index - 1];
15455 dwarf2_start_subfile (fe->name, dir, comp_dir);
15456
15457 /* Skip the main file; we don't need it, and it must be
15458 allocated last, so that it will show up before the
15459 non-primary symtabs in the objfile's symtab list. */
15460 if (current_subfile == first_subfile)
15461 continue;
15462
15463 if (current_subfile->symtab == NULL)
15464 current_subfile->symtab = allocate_symtab (current_subfile->name,
15465 objfile);
15466 fe->symtab = current_subfile->symtab;
15467 }
15468 }
15469 }
15470
15471 /* Start a subfile for DWARF. FILENAME is the name of the file and
15472 DIRNAME the name of the source directory which contains FILENAME
15473 or NULL if not known. COMP_DIR is the compilation directory for the
15474 linetable's compilation unit or NULL if not known.
15475 This routine tries to keep line numbers from identical absolute and
15476 relative file names in a common subfile.
15477
15478 Using the `list' example from the GDB testsuite, which resides in
15479 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15480 of /srcdir/list0.c yields the following debugging information for list0.c:
15481
15482 DW_AT_name: /srcdir/list0.c
15483 DW_AT_comp_dir: /compdir
15484 files.files[0].name: list0.h
15485 files.files[0].dir: /srcdir
15486 files.files[1].name: list0.c
15487 files.files[1].dir: /srcdir
15488
15489 The line number information for list0.c has to end up in a single
15490 subfile, so that `break /srcdir/list0.c:1' works as expected.
15491 start_subfile will ensure that this happens provided that we pass the
15492 concatenation of files.files[1].dir and files.files[1].name as the
15493 subfile's name. */
15494
15495 static void
15496 dwarf2_start_subfile (char *filename, const char *dirname,
15497 const char *comp_dir)
15498 {
15499 char *fullname;
15500
15501 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15502 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15503 second argument to start_subfile. To be consistent, we do the
15504 same here. In order not to lose the line information directory,
15505 we concatenate it to the filename when it makes sense.
15506 Note that the Dwarf3 standard says (speaking of filenames in line
15507 information): ``The directory index is ignored for file names
15508 that represent full path names''. Thus ignoring dirname in the
15509 `else' branch below isn't an issue. */
15510
15511 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15512 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15513 else
15514 fullname = filename;
15515
15516 start_subfile (fullname, comp_dir);
15517
15518 if (fullname != filename)
15519 xfree (fullname);
15520 }
15521
15522 /* Start a symtab for DWARF.
15523 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15524
15525 static void
15526 dwarf2_start_symtab (struct dwarf2_cu *cu,
15527 char *name, char *comp_dir, CORE_ADDR low_pc)
15528 {
15529 start_symtab (name, comp_dir, low_pc);
15530 record_debugformat ("DWARF 2");
15531 record_producer (cu->producer);
15532
15533 /* We assume that we're processing GCC output. */
15534 processing_gcc_compilation = 2;
15535
15536 processing_has_namespace_info = 0;
15537 }
15538
15539 static void
15540 var_decode_location (struct attribute *attr, struct symbol *sym,
15541 struct dwarf2_cu *cu)
15542 {
15543 struct objfile *objfile = cu->objfile;
15544 struct comp_unit_head *cu_header = &cu->header;
15545
15546 /* NOTE drow/2003-01-30: There used to be a comment and some special
15547 code here to turn a symbol with DW_AT_external and a
15548 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15549 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15550 with some versions of binutils) where shared libraries could have
15551 relocations against symbols in their debug information - the
15552 minimal symbol would have the right address, but the debug info
15553 would not. It's no longer necessary, because we will explicitly
15554 apply relocations when we read in the debug information now. */
15555
15556 /* A DW_AT_location attribute with no contents indicates that a
15557 variable has been optimized away. */
15558 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15559 {
15560 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15561 return;
15562 }
15563
15564 /* Handle one degenerate form of location expression specially, to
15565 preserve GDB's previous behavior when section offsets are
15566 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15567 then mark this symbol as LOC_STATIC. */
15568
15569 if (attr_form_is_block (attr)
15570 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15571 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15572 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15573 && (DW_BLOCK (attr)->size
15574 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15575 {
15576 unsigned int dummy;
15577
15578 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15579 SYMBOL_VALUE_ADDRESS (sym) =
15580 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15581 else
15582 SYMBOL_VALUE_ADDRESS (sym) =
15583 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15584 SYMBOL_CLASS (sym) = LOC_STATIC;
15585 fixup_symbol_section (sym, objfile);
15586 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15587 SYMBOL_SECTION (sym));
15588 return;
15589 }
15590
15591 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15592 expression evaluator, and use LOC_COMPUTED only when necessary
15593 (i.e. when the value of a register or memory location is
15594 referenced, or a thread-local block, etc.). Then again, it might
15595 not be worthwhile. I'm assuming that it isn't unless performance
15596 or memory numbers show me otherwise. */
15597
15598 dwarf2_symbol_mark_computed (attr, sym, cu);
15599 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15600
15601 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15602 cu->has_loclist = 1;
15603 }
15604
15605 /* Given a pointer to a DWARF information entry, figure out if we need
15606 to make a symbol table entry for it, and if so, create a new entry
15607 and return a pointer to it.
15608 If TYPE is NULL, determine symbol type from the die, otherwise
15609 used the passed type.
15610 If SPACE is not NULL, use it to hold the new symbol. If it is
15611 NULL, allocate a new symbol on the objfile's obstack. */
15612
15613 static struct symbol *
15614 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15615 struct symbol *space)
15616 {
15617 struct objfile *objfile = cu->objfile;
15618 struct symbol *sym = NULL;
15619 char *name;
15620 struct attribute *attr = NULL;
15621 struct attribute *attr2 = NULL;
15622 CORE_ADDR baseaddr;
15623 struct pending **list_to_add = NULL;
15624
15625 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15626
15627 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15628
15629 name = dwarf2_name (die, cu);
15630 if (name)
15631 {
15632 const char *linkagename;
15633 int suppress_add = 0;
15634
15635 if (space)
15636 sym = space;
15637 else
15638 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15639 OBJSTAT (objfile, n_syms++);
15640
15641 /* Cache this symbol's name and the name's demangled form (if any). */
15642 SYMBOL_SET_LANGUAGE (sym, cu->language);
15643 linkagename = dwarf2_physname (name, die, cu);
15644 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15645
15646 /* Fortran does not have mangling standard and the mangling does differ
15647 between gfortran, iFort etc. */
15648 if (cu->language == language_fortran
15649 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15650 symbol_set_demangled_name (&(sym->ginfo),
15651 (char *) dwarf2_full_name (name, die, cu),
15652 NULL);
15653
15654 /* Default assumptions.
15655 Use the passed type or decode it from the die. */
15656 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15657 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15658 if (type != NULL)
15659 SYMBOL_TYPE (sym) = type;
15660 else
15661 SYMBOL_TYPE (sym) = die_type (die, cu);
15662 attr = dwarf2_attr (die,
15663 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15664 cu);
15665 if (attr)
15666 {
15667 SYMBOL_LINE (sym) = DW_UNSND (attr);
15668 }
15669
15670 attr = dwarf2_attr (die,
15671 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15672 cu);
15673 if (attr)
15674 {
15675 int file_index = DW_UNSND (attr);
15676
15677 if (cu->line_header == NULL
15678 || file_index > cu->line_header->num_file_names)
15679 complaint (&symfile_complaints,
15680 _("file index out of range"));
15681 else if (file_index > 0)
15682 {
15683 struct file_entry *fe;
15684
15685 fe = &cu->line_header->file_names[file_index - 1];
15686 SYMBOL_SYMTAB (sym) = fe->symtab;
15687 }
15688 }
15689
15690 switch (die->tag)
15691 {
15692 case DW_TAG_label:
15693 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15694 if (attr)
15695 {
15696 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15697 }
15698 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15699 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15700 SYMBOL_CLASS (sym) = LOC_LABEL;
15701 add_symbol_to_list (sym, cu->list_in_scope);
15702 break;
15703 case DW_TAG_subprogram:
15704 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15705 finish_block. */
15706 SYMBOL_CLASS (sym) = LOC_BLOCK;
15707 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15708 if ((attr2 && (DW_UNSND (attr2) != 0))
15709 || cu->language == language_ada)
15710 {
15711 /* Subprograms marked external are stored as a global symbol.
15712 Ada subprograms, whether marked external or not, are always
15713 stored as a global symbol, because we want to be able to
15714 access them globally. For instance, we want to be able
15715 to break on a nested subprogram without having to
15716 specify the context. */
15717 list_to_add = &global_symbols;
15718 }
15719 else
15720 {
15721 list_to_add = cu->list_in_scope;
15722 }
15723 break;
15724 case DW_TAG_inlined_subroutine:
15725 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15726 finish_block. */
15727 SYMBOL_CLASS (sym) = LOC_BLOCK;
15728 SYMBOL_INLINED (sym) = 1;
15729 list_to_add = cu->list_in_scope;
15730 break;
15731 case DW_TAG_template_value_param:
15732 suppress_add = 1;
15733 /* Fall through. */
15734 case DW_TAG_constant:
15735 case DW_TAG_variable:
15736 case DW_TAG_member:
15737 /* Compilation with minimal debug info may result in
15738 variables with missing type entries. Change the
15739 misleading `void' type to something sensible. */
15740 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15741 SYMBOL_TYPE (sym)
15742 = objfile_type (objfile)->nodebug_data_symbol;
15743
15744 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15745 /* In the case of DW_TAG_member, we should only be called for
15746 static const members. */
15747 if (die->tag == DW_TAG_member)
15748 {
15749 /* dwarf2_add_field uses die_is_declaration,
15750 so we do the same. */
15751 gdb_assert (die_is_declaration (die, cu));
15752 gdb_assert (attr);
15753 }
15754 if (attr)
15755 {
15756 dwarf2_const_value (attr, sym, cu);
15757 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15758 if (!suppress_add)
15759 {
15760 if (attr2 && (DW_UNSND (attr2) != 0))
15761 list_to_add = &global_symbols;
15762 else
15763 list_to_add = cu->list_in_scope;
15764 }
15765 break;
15766 }
15767 attr = dwarf2_attr (die, DW_AT_location, cu);
15768 if (attr)
15769 {
15770 var_decode_location (attr, sym, cu);
15771 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15772
15773 /* Fortran explicitly imports any global symbols to the local
15774 scope by DW_TAG_common_block. */
15775 if (cu->language == language_fortran && die->parent
15776 && die->parent->tag == DW_TAG_common_block)
15777 attr2 = NULL;
15778
15779 if (SYMBOL_CLASS (sym) == LOC_STATIC
15780 && SYMBOL_VALUE_ADDRESS (sym) == 0
15781 && !dwarf2_per_objfile->has_section_at_zero)
15782 {
15783 /* When a static variable is eliminated by the linker,
15784 the corresponding debug information is not stripped
15785 out, but the variable address is set to null;
15786 do not add such variables into symbol table. */
15787 }
15788 else if (attr2 && (DW_UNSND (attr2) != 0))
15789 {
15790 /* Workaround gfortran PR debug/40040 - it uses
15791 DW_AT_location for variables in -fPIC libraries which may
15792 get overriden by other libraries/executable and get
15793 a different address. Resolve it by the minimal symbol
15794 which may come from inferior's executable using copy
15795 relocation. Make this workaround only for gfortran as for
15796 other compilers GDB cannot guess the minimal symbol
15797 Fortran mangling kind. */
15798 if (cu->language == language_fortran && die->parent
15799 && die->parent->tag == DW_TAG_module
15800 && cu->producer
15801 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15802 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15803
15804 /* A variable with DW_AT_external is never static,
15805 but it may be block-scoped. */
15806 list_to_add = (cu->list_in_scope == &file_symbols
15807 ? &global_symbols : cu->list_in_scope);
15808 }
15809 else
15810 list_to_add = cu->list_in_scope;
15811 }
15812 else
15813 {
15814 /* We do not know the address of this symbol.
15815 If it is an external symbol and we have type information
15816 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15817 The address of the variable will then be determined from
15818 the minimal symbol table whenever the variable is
15819 referenced. */
15820 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15821
15822 /* Fortran explicitly imports any global symbols to the local
15823 scope by DW_TAG_common_block. */
15824 if (cu->language == language_fortran && die->parent
15825 && die->parent->tag == DW_TAG_common_block)
15826 {
15827 /* SYMBOL_CLASS doesn't matter here because
15828 read_common_block is going to reset it. */
15829 if (!suppress_add)
15830 list_to_add = cu->list_in_scope;
15831 }
15832 else if (attr2 && (DW_UNSND (attr2) != 0)
15833 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15834 {
15835 /* A variable with DW_AT_external is never static, but it
15836 may be block-scoped. */
15837 list_to_add = (cu->list_in_scope == &file_symbols
15838 ? &global_symbols : cu->list_in_scope);
15839
15840 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15841 }
15842 else if (!die_is_declaration (die, cu))
15843 {
15844 /* Use the default LOC_OPTIMIZED_OUT class. */
15845 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15846 if (!suppress_add)
15847 list_to_add = cu->list_in_scope;
15848 }
15849 }
15850 break;
15851 case DW_TAG_formal_parameter:
15852 /* If we are inside a function, mark this as an argument. If
15853 not, we might be looking at an argument to an inlined function
15854 when we do not have enough information to show inlined frames;
15855 pretend it's a local variable in that case so that the user can
15856 still see it. */
15857 if (context_stack_depth > 0
15858 && context_stack[context_stack_depth - 1].name != NULL)
15859 SYMBOL_IS_ARGUMENT (sym) = 1;
15860 attr = dwarf2_attr (die, DW_AT_location, cu);
15861 if (attr)
15862 {
15863 var_decode_location (attr, sym, cu);
15864 }
15865 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15866 if (attr)
15867 {
15868 dwarf2_const_value (attr, sym, cu);
15869 }
15870
15871 list_to_add = cu->list_in_scope;
15872 break;
15873 case DW_TAG_unspecified_parameters:
15874 /* From varargs functions; gdb doesn't seem to have any
15875 interest in this information, so just ignore it for now.
15876 (FIXME?) */
15877 break;
15878 case DW_TAG_template_type_param:
15879 suppress_add = 1;
15880 /* Fall through. */
15881 case DW_TAG_class_type:
15882 case DW_TAG_interface_type:
15883 case DW_TAG_structure_type:
15884 case DW_TAG_union_type:
15885 case DW_TAG_set_type:
15886 case DW_TAG_enumeration_type:
15887 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15888 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15889
15890 {
15891 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15892 really ever be static objects: otherwise, if you try
15893 to, say, break of a class's method and you're in a file
15894 which doesn't mention that class, it won't work unless
15895 the check for all static symbols in lookup_symbol_aux
15896 saves you. See the OtherFileClass tests in
15897 gdb.c++/namespace.exp. */
15898
15899 if (!suppress_add)
15900 {
15901 list_to_add = (cu->list_in_scope == &file_symbols
15902 && (cu->language == language_cplus
15903 || cu->language == language_java)
15904 ? &global_symbols : cu->list_in_scope);
15905
15906 /* The semantics of C++ state that "struct foo {
15907 ... }" also defines a typedef for "foo". A Java
15908 class declaration also defines a typedef for the
15909 class. */
15910 if (cu->language == language_cplus
15911 || cu->language == language_java
15912 || cu->language == language_ada)
15913 {
15914 /* The symbol's name is already allocated along
15915 with this objfile, so we don't need to
15916 duplicate it for the type. */
15917 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15918 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15919 }
15920 }
15921 }
15922 break;
15923 case DW_TAG_typedef:
15924 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15925 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15926 list_to_add = cu->list_in_scope;
15927 break;
15928 case DW_TAG_base_type:
15929 case DW_TAG_subrange_type:
15930 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15932 list_to_add = cu->list_in_scope;
15933 break;
15934 case DW_TAG_enumerator:
15935 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15936 if (attr)
15937 {
15938 dwarf2_const_value (attr, sym, cu);
15939 }
15940 {
15941 /* NOTE: carlton/2003-11-10: See comment above in the
15942 DW_TAG_class_type, etc. block. */
15943
15944 list_to_add = (cu->list_in_scope == &file_symbols
15945 && (cu->language == language_cplus
15946 || cu->language == language_java)
15947 ? &global_symbols : cu->list_in_scope);
15948 }
15949 break;
15950 case DW_TAG_namespace:
15951 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15952 list_to_add = &global_symbols;
15953 break;
15954 case DW_TAG_common_block:
15955 SYMBOL_CLASS (sym) = LOC_STATIC;
15956 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15957 add_symbol_to_list (sym, cu->list_in_scope);
15958 break;
15959 default:
15960 /* Not a tag we recognize. Hopefully we aren't processing
15961 trash data, but since we must specifically ignore things
15962 we don't recognize, there is nothing else we should do at
15963 this point. */
15964 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
15965 dwarf_tag_name (die->tag));
15966 break;
15967 }
15968
15969 if (suppress_add)
15970 {
15971 sym->hash_next = objfile->template_symbols;
15972 objfile->template_symbols = sym;
15973 list_to_add = NULL;
15974 }
15975
15976 if (list_to_add != NULL)
15977 add_symbol_to_list (sym, list_to_add);
15978
15979 /* For the benefit of old versions of GCC, check for anonymous
15980 namespaces based on the demangled name. */
15981 if (!processing_has_namespace_info
15982 && cu->language == language_cplus)
15983 cp_scan_for_anonymous_namespaces (sym, objfile);
15984 }
15985 return (sym);
15986 }
15987
15988 /* A wrapper for new_symbol_full that always allocates a new symbol. */
15989
15990 static struct symbol *
15991 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15992 {
15993 return new_symbol_full (die, type, cu, NULL);
15994 }
15995
15996 /* Given an attr with a DW_FORM_dataN value in host byte order,
15997 zero-extend it as appropriate for the symbol's type. The DWARF
15998 standard (v4) is not entirely clear about the meaning of using
15999 DW_FORM_dataN for a constant with a signed type, where the type is
16000 wider than the data. The conclusion of a discussion on the DWARF
16001 list was that this is unspecified. We choose to always zero-extend
16002 because that is the interpretation long in use by GCC. */
16003
16004 static gdb_byte *
16005 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16006 const char *name, struct obstack *obstack,
16007 struct dwarf2_cu *cu, LONGEST *value, int bits)
16008 {
16009 struct objfile *objfile = cu->objfile;
16010 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16011 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16012 LONGEST l = DW_UNSND (attr);
16013
16014 if (bits < sizeof (*value) * 8)
16015 {
16016 l &= ((LONGEST) 1 << bits) - 1;
16017 *value = l;
16018 }
16019 else if (bits == sizeof (*value) * 8)
16020 *value = l;
16021 else
16022 {
16023 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16024 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16025 return bytes;
16026 }
16027
16028 return NULL;
16029 }
16030
16031 /* Read a constant value from an attribute. Either set *VALUE, or if
16032 the value does not fit in *VALUE, set *BYTES - either already
16033 allocated on the objfile obstack, or newly allocated on OBSTACK,
16034 or, set *BATON, if we translated the constant to a location
16035 expression. */
16036
16037 static void
16038 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16039 const char *name, struct obstack *obstack,
16040 struct dwarf2_cu *cu,
16041 LONGEST *value, gdb_byte **bytes,
16042 struct dwarf2_locexpr_baton **baton)
16043 {
16044 struct objfile *objfile = cu->objfile;
16045 struct comp_unit_head *cu_header = &cu->header;
16046 struct dwarf_block *blk;
16047 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16048 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16049
16050 *value = 0;
16051 *bytes = NULL;
16052 *baton = NULL;
16053
16054 switch (attr->form)
16055 {
16056 case DW_FORM_addr:
16057 case DW_FORM_GNU_addr_index:
16058 {
16059 gdb_byte *data;
16060
16061 if (TYPE_LENGTH (type) != cu_header->addr_size)
16062 dwarf2_const_value_length_mismatch_complaint (name,
16063 cu_header->addr_size,
16064 TYPE_LENGTH (type));
16065 /* Symbols of this form are reasonably rare, so we just
16066 piggyback on the existing location code rather than writing
16067 a new implementation of symbol_computed_ops. */
16068 *baton = obstack_alloc (&objfile->objfile_obstack,
16069 sizeof (struct dwarf2_locexpr_baton));
16070 (*baton)->per_cu = cu->per_cu;
16071 gdb_assert ((*baton)->per_cu);
16072
16073 (*baton)->size = 2 + cu_header->addr_size;
16074 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16075 (*baton)->data = data;
16076
16077 data[0] = DW_OP_addr;
16078 store_unsigned_integer (&data[1], cu_header->addr_size,
16079 byte_order, DW_ADDR (attr));
16080 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16081 }
16082 break;
16083 case DW_FORM_string:
16084 case DW_FORM_strp:
16085 case DW_FORM_GNU_str_index:
16086 case DW_FORM_GNU_strp_alt:
16087 /* DW_STRING is already allocated on the objfile obstack, point
16088 directly to it. */
16089 *bytes = (gdb_byte *) DW_STRING (attr);
16090 break;
16091 case DW_FORM_block1:
16092 case DW_FORM_block2:
16093 case DW_FORM_block4:
16094 case DW_FORM_block:
16095 case DW_FORM_exprloc:
16096 blk = DW_BLOCK (attr);
16097 if (TYPE_LENGTH (type) != blk->size)
16098 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16099 TYPE_LENGTH (type));
16100 *bytes = blk->data;
16101 break;
16102
16103 /* The DW_AT_const_value attributes are supposed to carry the
16104 symbol's value "represented as it would be on the target
16105 architecture." By the time we get here, it's already been
16106 converted to host endianness, so we just need to sign- or
16107 zero-extend it as appropriate. */
16108 case DW_FORM_data1:
16109 *bytes = dwarf2_const_value_data (attr, type, name,
16110 obstack, cu, value, 8);
16111 break;
16112 case DW_FORM_data2:
16113 *bytes = dwarf2_const_value_data (attr, type, name,
16114 obstack, cu, value, 16);
16115 break;
16116 case DW_FORM_data4:
16117 *bytes = dwarf2_const_value_data (attr, type, name,
16118 obstack, cu, value, 32);
16119 break;
16120 case DW_FORM_data8:
16121 *bytes = dwarf2_const_value_data (attr, type, name,
16122 obstack, cu, value, 64);
16123 break;
16124
16125 case DW_FORM_sdata:
16126 *value = DW_SND (attr);
16127 break;
16128
16129 case DW_FORM_udata:
16130 *value = DW_UNSND (attr);
16131 break;
16132
16133 default:
16134 complaint (&symfile_complaints,
16135 _("unsupported const value attribute form: '%s'"),
16136 dwarf_form_name (attr->form));
16137 *value = 0;
16138 break;
16139 }
16140 }
16141
16142
16143 /* Copy constant value from an attribute to a symbol. */
16144
16145 static void
16146 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16147 struct dwarf2_cu *cu)
16148 {
16149 struct objfile *objfile = cu->objfile;
16150 struct comp_unit_head *cu_header = &cu->header;
16151 LONGEST value;
16152 gdb_byte *bytes;
16153 struct dwarf2_locexpr_baton *baton;
16154
16155 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16156 SYMBOL_PRINT_NAME (sym),
16157 &objfile->objfile_obstack, cu,
16158 &value, &bytes, &baton);
16159
16160 if (baton != NULL)
16161 {
16162 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16163 SYMBOL_LOCATION_BATON (sym) = baton;
16164 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16165 }
16166 else if (bytes != NULL)
16167 {
16168 SYMBOL_VALUE_BYTES (sym) = bytes;
16169 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16170 }
16171 else
16172 {
16173 SYMBOL_VALUE (sym) = value;
16174 SYMBOL_CLASS (sym) = LOC_CONST;
16175 }
16176 }
16177
16178 /* Return the type of the die in question using its DW_AT_type attribute. */
16179
16180 static struct type *
16181 die_type (struct die_info *die, struct dwarf2_cu *cu)
16182 {
16183 struct attribute *type_attr;
16184
16185 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16186 if (!type_attr)
16187 {
16188 /* A missing DW_AT_type represents a void type. */
16189 return objfile_type (cu->objfile)->builtin_void;
16190 }
16191
16192 return lookup_die_type (die, type_attr, cu);
16193 }
16194
16195 /* True iff CU's producer generates GNAT Ada auxiliary information
16196 that allows to find parallel types through that information instead
16197 of having to do expensive parallel lookups by type name. */
16198
16199 static int
16200 need_gnat_info (struct dwarf2_cu *cu)
16201 {
16202 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16203 of GNAT produces this auxiliary information, without any indication
16204 that it is produced. Part of enhancing the FSF version of GNAT
16205 to produce that information will be to put in place an indicator
16206 that we can use in order to determine whether the descriptive type
16207 info is available or not. One suggestion that has been made is
16208 to use a new attribute, attached to the CU die. For now, assume
16209 that the descriptive type info is not available. */
16210 return 0;
16211 }
16212
16213 /* Return the auxiliary type of the die in question using its
16214 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16215 attribute is not present. */
16216
16217 static struct type *
16218 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16219 {
16220 struct attribute *type_attr;
16221
16222 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16223 if (!type_attr)
16224 return NULL;
16225
16226 return lookup_die_type (die, type_attr, cu);
16227 }
16228
16229 /* If DIE has a descriptive_type attribute, then set the TYPE's
16230 descriptive type accordingly. */
16231
16232 static void
16233 set_descriptive_type (struct type *type, struct die_info *die,
16234 struct dwarf2_cu *cu)
16235 {
16236 struct type *descriptive_type = die_descriptive_type (die, cu);
16237
16238 if (descriptive_type)
16239 {
16240 ALLOCATE_GNAT_AUX_TYPE (type);
16241 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16242 }
16243 }
16244
16245 /* Return the containing type of the die in question using its
16246 DW_AT_containing_type attribute. */
16247
16248 static struct type *
16249 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16250 {
16251 struct attribute *type_attr;
16252
16253 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16254 if (!type_attr)
16255 error (_("Dwarf Error: Problem turning containing type into gdb type "
16256 "[in module %s]"), cu->objfile->name);
16257
16258 return lookup_die_type (die, type_attr, cu);
16259 }
16260
16261 /* Look up the type of DIE in CU using its type attribute ATTR.
16262 If there is no type substitute an error marker. */
16263
16264 static struct type *
16265 lookup_die_type (struct die_info *die, struct attribute *attr,
16266 struct dwarf2_cu *cu)
16267 {
16268 struct objfile *objfile = cu->objfile;
16269 struct type *this_type;
16270
16271 /* First see if we have it cached. */
16272
16273 if (attr->form == DW_FORM_GNU_ref_alt)
16274 {
16275 struct dwarf2_per_cu_data *per_cu;
16276 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16277
16278 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16279 this_type = get_die_type_at_offset (offset, per_cu);
16280 }
16281 else if (is_ref_attr (attr))
16282 {
16283 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16284
16285 this_type = get_die_type_at_offset (offset, cu->per_cu);
16286 }
16287 else if (attr->form == DW_FORM_ref_sig8)
16288 {
16289 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16290
16291 /* sig_type will be NULL if the signatured type is missing from
16292 the debug info. */
16293 if (sig_type == NULL)
16294 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16295 "at 0x%x [in module %s]"),
16296 die->offset.sect_off, objfile->name);
16297
16298 gdb_assert (sig_type->per_cu.is_debug_types);
16299 /* If we haven't filled in type_offset_in_section yet, then we
16300 haven't read the type in yet. */
16301 this_type = NULL;
16302 if (sig_type->type_offset_in_section.sect_off != 0)
16303 {
16304 this_type =
16305 get_die_type_at_offset (sig_type->type_offset_in_section,
16306 &sig_type->per_cu);
16307 }
16308 }
16309 else
16310 {
16311 dump_die_for_error (die);
16312 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16313 dwarf_attr_name (attr->name), objfile->name);
16314 }
16315
16316 /* If not cached we need to read it in. */
16317
16318 if (this_type == NULL)
16319 {
16320 struct die_info *type_die;
16321 struct dwarf2_cu *type_cu = cu;
16322
16323 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16324 /* If we found the type now, it's probably because the type came
16325 from an inter-CU reference and the type's CU got expanded before
16326 ours. */
16327 this_type = get_die_type (type_die, type_cu);
16328 if (this_type == NULL)
16329 this_type = read_type_die_1 (type_die, type_cu);
16330 }
16331
16332 /* If we still don't have a type use an error marker. */
16333
16334 if (this_type == NULL)
16335 {
16336 char *message, *saved;
16337
16338 /* read_type_die already issued a complaint. */
16339 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16340 objfile->name,
16341 cu->header.offset.sect_off,
16342 die->offset.sect_off);
16343 saved = obstack_copy0 (&objfile->objfile_obstack,
16344 message, strlen (message));
16345 xfree (message);
16346
16347 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16348 }
16349
16350 return this_type;
16351 }
16352
16353 /* Return the type in DIE, CU.
16354 Returns NULL for invalid types.
16355
16356 This first does a lookup in the appropriate type_hash table,
16357 and only reads the die in if necessary.
16358
16359 NOTE: This can be called when reading in partial or full symbols. */
16360
16361 static struct type *
16362 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16363 {
16364 struct type *this_type;
16365
16366 this_type = get_die_type (die, cu);
16367 if (this_type)
16368 return this_type;
16369
16370 return read_type_die_1 (die, cu);
16371 }
16372
16373 /* Read the type in DIE, CU.
16374 Returns NULL for invalid types. */
16375
16376 static struct type *
16377 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16378 {
16379 struct type *this_type = NULL;
16380
16381 switch (die->tag)
16382 {
16383 case DW_TAG_class_type:
16384 case DW_TAG_interface_type:
16385 case DW_TAG_structure_type:
16386 case DW_TAG_union_type:
16387 this_type = read_structure_type (die, cu);
16388 break;
16389 case DW_TAG_enumeration_type:
16390 this_type = read_enumeration_type (die, cu);
16391 break;
16392 case DW_TAG_subprogram:
16393 case DW_TAG_subroutine_type:
16394 case DW_TAG_inlined_subroutine:
16395 this_type = read_subroutine_type (die, cu);
16396 break;
16397 case DW_TAG_array_type:
16398 this_type = read_array_type (die, cu);
16399 break;
16400 case DW_TAG_set_type:
16401 this_type = read_set_type (die, cu);
16402 break;
16403 case DW_TAG_pointer_type:
16404 this_type = read_tag_pointer_type (die, cu);
16405 break;
16406 case DW_TAG_ptr_to_member_type:
16407 this_type = read_tag_ptr_to_member_type (die, cu);
16408 break;
16409 case DW_TAG_reference_type:
16410 this_type = read_tag_reference_type (die, cu);
16411 break;
16412 case DW_TAG_const_type:
16413 this_type = read_tag_const_type (die, cu);
16414 break;
16415 case DW_TAG_volatile_type:
16416 this_type = read_tag_volatile_type (die, cu);
16417 break;
16418 case DW_TAG_string_type:
16419 this_type = read_tag_string_type (die, cu);
16420 break;
16421 case DW_TAG_typedef:
16422 this_type = read_typedef (die, cu);
16423 break;
16424 case DW_TAG_subrange_type:
16425 this_type = read_subrange_type (die, cu);
16426 break;
16427 case DW_TAG_base_type:
16428 this_type = read_base_type (die, cu);
16429 break;
16430 case DW_TAG_unspecified_type:
16431 this_type = read_unspecified_type (die, cu);
16432 break;
16433 case DW_TAG_namespace:
16434 this_type = read_namespace_type (die, cu);
16435 break;
16436 case DW_TAG_module:
16437 this_type = read_module_type (die, cu);
16438 break;
16439 default:
16440 complaint (&symfile_complaints,
16441 _("unexpected tag in read_type_die: '%s'"),
16442 dwarf_tag_name (die->tag));
16443 break;
16444 }
16445
16446 return this_type;
16447 }
16448
16449 /* See if we can figure out if the class lives in a namespace. We do
16450 this by looking for a member function; its demangled name will
16451 contain namespace info, if there is any.
16452 Return the computed name or NULL.
16453 Space for the result is allocated on the objfile's obstack.
16454 This is the full-die version of guess_partial_die_structure_name.
16455 In this case we know DIE has no useful parent. */
16456
16457 static char *
16458 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16459 {
16460 struct die_info *spec_die;
16461 struct dwarf2_cu *spec_cu;
16462 struct die_info *child;
16463
16464 spec_cu = cu;
16465 spec_die = die_specification (die, &spec_cu);
16466 if (spec_die != NULL)
16467 {
16468 die = spec_die;
16469 cu = spec_cu;
16470 }
16471
16472 for (child = die->child;
16473 child != NULL;
16474 child = child->sibling)
16475 {
16476 if (child->tag == DW_TAG_subprogram)
16477 {
16478 struct attribute *attr;
16479
16480 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16481 if (attr == NULL)
16482 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16483 if (attr != NULL)
16484 {
16485 char *actual_name
16486 = language_class_name_from_physname (cu->language_defn,
16487 DW_STRING (attr));
16488 char *name = NULL;
16489
16490 if (actual_name != NULL)
16491 {
16492 char *die_name = dwarf2_name (die, cu);
16493
16494 if (die_name != NULL
16495 && strcmp (die_name, actual_name) != 0)
16496 {
16497 /* Strip off the class name from the full name.
16498 We want the prefix. */
16499 int die_name_len = strlen (die_name);
16500 int actual_name_len = strlen (actual_name);
16501
16502 /* Test for '::' as a sanity check. */
16503 if (actual_name_len > die_name_len + 2
16504 && actual_name[actual_name_len
16505 - die_name_len - 1] == ':')
16506 name =
16507 obsavestring (actual_name,
16508 actual_name_len - die_name_len - 2,
16509 &cu->objfile->objfile_obstack);
16510 }
16511 }
16512 xfree (actual_name);
16513 return name;
16514 }
16515 }
16516 }
16517
16518 return NULL;
16519 }
16520
16521 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16522 prefix part in such case. See
16523 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16524
16525 static char *
16526 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16527 {
16528 struct attribute *attr;
16529 char *base;
16530
16531 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16532 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16533 return NULL;
16534
16535 attr = dwarf2_attr (die, DW_AT_name, cu);
16536 if (attr != NULL && DW_STRING (attr) != NULL)
16537 return NULL;
16538
16539 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16540 if (attr == NULL)
16541 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16542 if (attr == NULL || DW_STRING (attr) == NULL)
16543 return NULL;
16544
16545 /* dwarf2_name had to be already called. */
16546 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16547
16548 /* Strip the base name, keep any leading namespaces/classes. */
16549 base = strrchr (DW_STRING (attr), ':');
16550 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16551 return "";
16552
16553 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16554 &cu->objfile->objfile_obstack);
16555 }
16556
16557 /* Return the name of the namespace/class that DIE is defined within,
16558 or "" if we can't tell. The caller should not xfree the result.
16559
16560 For example, if we're within the method foo() in the following
16561 code:
16562
16563 namespace N {
16564 class C {
16565 void foo () {
16566 }
16567 };
16568 }
16569
16570 then determine_prefix on foo's die will return "N::C". */
16571
16572 static const char *
16573 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16574 {
16575 struct die_info *parent, *spec_die;
16576 struct dwarf2_cu *spec_cu;
16577 struct type *parent_type;
16578 char *retval;
16579
16580 if (cu->language != language_cplus && cu->language != language_java
16581 && cu->language != language_fortran)
16582 return "";
16583
16584 retval = anonymous_struct_prefix (die, cu);
16585 if (retval)
16586 return retval;
16587
16588 /* We have to be careful in the presence of DW_AT_specification.
16589 For example, with GCC 3.4, given the code
16590
16591 namespace N {
16592 void foo() {
16593 // Definition of N::foo.
16594 }
16595 }
16596
16597 then we'll have a tree of DIEs like this:
16598
16599 1: DW_TAG_compile_unit
16600 2: DW_TAG_namespace // N
16601 3: DW_TAG_subprogram // declaration of N::foo
16602 4: DW_TAG_subprogram // definition of N::foo
16603 DW_AT_specification // refers to die #3
16604
16605 Thus, when processing die #4, we have to pretend that we're in
16606 the context of its DW_AT_specification, namely the contex of die
16607 #3. */
16608 spec_cu = cu;
16609 spec_die = die_specification (die, &spec_cu);
16610 if (spec_die == NULL)
16611 parent = die->parent;
16612 else
16613 {
16614 parent = spec_die->parent;
16615 cu = spec_cu;
16616 }
16617
16618 if (parent == NULL)
16619 return "";
16620 else if (parent->building_fullname)
16621 {
16622 const char *name;
16623 const char *parent_name;
16624
16625 /* It has been seen on RealView 2.2 built binaries,
16626 DW_TAG_template_type_param types actually _defined_ as
16627 children of the parent class:
16628
16629 enum E {};
16630 template class <class Enum> Class{};
16631 Class<enum E> class_e;
16632
16633 1: DW_TAG_class_type (Class)
16634 2: DW_TAG_enumeration_type (E)
16635 3: DW_TAG_enumerator (enum1:0)
16636 3: DW_TAG_enumerator (enum2:1)
16637 ...
16638 2: DW_TAG_template_type_param
16639 DW_AT_type DW_FORM_ref_udata (E)
16640
16641 Besides being broken debug info, it can put GDB into an
16642 infinite loop. Consider:
16643
16644 When we're building the full name for Class<E>, we'll start
16645 at Class, and go look over its template type parameters,
16646 finding E. We'll then try to build the full name of E, and
16647 reach here. We're now trying to build the full name of E,
16648 and look over the parent DIE for containing scope. In the
16649 broken case, if we followed the parent DIE of E, we'd again
16650 find Class, and once again go look at its template type
16651 arguments, etc., etc. Simply don't consider such parent die
16652 as source-level parent of this die (it can't be, the language
16653 doesn't allow it), and break the loop here. */
16654 name = dwarf2_name (die, cu);
16655 parent_name = dwarf2_name (parent, cu);
16656 complaint (&symfile_complaints,
16657 _("template param type '%s' defined within parent '%s'"),
16658 name ? name : "<unknown>",
16659 parent_name ? parent_name : "<unknown>");
16660 return "";
16661 }
16662 else
16663 switch (parent->tag)
16664 {
16665 case DW_TAG_namespace:
16666 parent_type = read_type_die (parent, cu);
16667 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16668 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16669 Work around this problem here. */
16670 if (cu->language == language_cplus
16671 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16672 return "";
16673 /* We give a name to even anonymous namespaces. */
16674 return TYPE_TAG_NAME (parent_type);
16675 case DW_TAG_class_type:
16676 case DW_TAG_interface_type:
16677 case DW_TAG_structure_type:
16678 case DW_TAG_union_type:
16679 case DW_TAG_module:
16680 parent_type = read_type_die (parent, cu);
16681 if (TYPE_TAG_NAME (parent_type) != NULL)
16682 return TYPE_TAG_NAME (parent_type);
16683 else
16684 /* An anonymous structure is only allowed non-static data
16685 members; no typedefs, no member functions, et cetera.
16686 So it does not need a prefix. */
16687 return "";
16688 case DW_TAG_compile_unit:
16689 case DW_TAG_partial_unit:
16690 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16691 if (cu->language == language_cplus
16692 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16693 && die->child != NULL
16694 && (die->tag == DW_TAG_class_type
16695 || die->tag == DW_TAG_structure_type
16696 || die->tag == DW_TAG_union_type))
16697 {
16698 char *name = guess_full_die_structure_name (die, cu);
16699 if (name != NULL)
16700 return name;
16701 }
16702 return "";
16703 default:
16704 return determine_prefix (parent, cu);
16705 }
16706 }
16707
16708 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16709 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16710 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16711 an obconcat, otherwise allocate storage for the result. The CU argument is
16712 used to determine the language and hence, the appropriate separator. */
16713
16714 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16715
16716 static char *
16717 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16718 int physname, struct dwarf2_cu *cu)
16719 {
16720 const char *lead = "";
16721 const char *sep;
16722
16723 if (suffix == NULL || suffix[0] == '\0'
16724 || prefix == NULL || prefix[0] == '\0')
16725 sep = "";
16726 else if (cu->language == language_java)
16727 sep = ".";
16728 else if (cu->language == language_fortran && physname)
16729 {
16730 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16731 DW_AT_MIPS_linkage_name is preferred and used instead. */
16732
16733 lead = "__";
16734 sep = "_MOD_";
16735 }
16736 else
16737 sep = "::";
16738
16739 if (prefix == NULL)
16740 prefix = "";
16741 if (suffix == NULL)
16742 suffix = "";
16743
16744 if (obs == NULL)
16745 {
16746 char *retval
16747 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16748
16749 strcpy (retval, lead);
16750 strcat (retval, prefix);
16751 strcat (retval, sep);
16752 strcat (retval, suffix);
16753 return retval;
16754 }
16755 else
16756 {
16757 /* We have an obstack. */
16758 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16759 }
16760 }
16761
16762 /* Return sibling of die, NULL if no sibling. */
16763
16764 static struct die_info *
16765 sibling_die (struct die_info *die)
16766 {
16767 return die->sibling;
16768 }
16769
16770 /* Get name of a die, return NULL if not found. */
16771
16772 static char *
16773 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16774 struct obstack *obstack)
16775 {
16776 if (name && cu->language == language_cplus)
16777 {
16778 char *canon_name = cp_canonicalize_string (name);
16779
16780 if (canon_name != NULL)
16781 {
16782 if (strcmp (canon_name, name) != 0)
16783 name = obsavestring (canon_name, strlen (canon_name),
16784 obstack);
16785 xfree (canon_name);
16786 }
16787 }
16788
16789 return name;
16790 }
16791
16792 /* Get name of a die, return NULL if not found. */
16793
16794 static char *
16795 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16796 {
16797 struct attribute *attr;
16798
16799 attr = dwarf2_attr (die, DW_AT_name, cu);
16800 if ((!attr || !DW_STRING (attr))
16801 && die->tag != DW_TAG_class_type
16802 && die->tag != DW_TAG_interface_type
16803 && die->tag != DW_TAG_structure_type
16804 && die->tag != DW_TAG_union_type)
16805 return NULL;
16806
16807 switch (die->tag)
16808 {
16809 case DW_TAG_compile_unit:
16810 case DW_TAG_partial_unit:
16811 /* Compilation units have a DW_AT_name that is a filename, not
16812 a source language identifier. */
16813 case DW_TAG_enumeration_type:
16814 case DW_TAG_enumerator:
16815 /* These tags always have simple identifiers already; no need
16816 to canonicalize them. */
16817 return DW_STRING (attr);
16818
16819 case DW_TAG_subprogram:
16820 /* Java constructors will all be named "<init>", so return
16821 the class name when we see this special case. */
16822 if (cu->language == language_java
16823 && DW_STRING (attr) != NULL
16824 && strcmp (DW_STRING (attr), "<init>") == 0)
16825 {
16826 struct dwarf2_cu *spec_cu = cu;
16827 struct die_info *spec_die;
16828
16829 /* GCJ will output '<init>' for Java constructor names.
16830 For this special case, return the name of the parent class. */
16831
16832 /* GCJ may output suprogram DIEs with AT_specification set.
16833 If so, use the name of the specified DIE. */
16834 spec_die = die_specification (die, &spec_cu);
16835 if (spec_die != NULL)
16836 return dwarf2_name (spec_die, spec_cu);
16837
16838 do
16839 {
16840 die = die->parent;
16841 if (die->tag == DW_TAG_class_type)
16842 return dwarf2_name (die, cu);
16843 }
16844 while (die->tag != DW_TAG_compile_unit
16845 && die->tag != DW_TAG_partial_unit);
16846 }
16847 break;
16848
16849 case DW_TAG_class_type:
16850 case DW_TAG_interface_type:
16851 case DW_TAG_structure_type:
16852 case DW_TAG_union_type:
16853 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16854 structures or unions. These were of the form "._%d" in GCC 4.1,
16855 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16856 and GCC 4.4. We work around this problem by ignoring these. */
16857 if (attr && DW_STRING (attr)
16858 && (strncmp (DW_STRING (attr), "._", 2) == 0
16859 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16860 return NULL;
16861
16862 /* GCC might emit a nameless typedef that has a linkage name. See
16863 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16864 if (!attr || DW_STRING (attr) == NULL)
16865 {
16866 char *demangled = NULL;
16867
16868 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16869 if (attr == NULL)
16870 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16871
16872 if (attr == NULL || DW_STRING (attr) == NULL)
16873 return NULL;
16874
16875 /* Avoid demangling DW_STRING (attr) the second time on a second
16876 call for the same DIE. */
16877 if (!DW_STRING_IS_CANONICAL (attr))
16878 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16879
16880 if (demangled)
16881 {
16882 char *base;
16883
16884 /* FIXME: we already did this for the partial symbol... */
16885 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16886 &cu->objfile->objfile_obstack);
16887 DW_STRING_IS_CANONICAL (attr) = 1;
16888 xfree (demangled);
16889
16890 /* Strip any leading namespaces/classes, keep only the base name.
16891 DW_AT_name for named DIEs does not contain the prefixes. */
16892 base = strrchr (DW_STRING (attr), ':');
16893 if (base && base > DW_STRING (attr) && base[-1] == ':')
16894 return &base[1];
16895 else
16896 return DW_STRING (attr);
16897 }
16898 }
16899 break;
16900
16901 default:
16902 break;
16903 }
16904
16905 if (!DW_STRING_IS_CANONICAL (attr))
16906 {
16907 DW_STRING (attr)
16908 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16909 &cu->objfile->objfile_obstack);
16910 DW_STRING_IS_CANONICAL (attr) = 1;
16911 }
16912 return DW_STRING (attr);
16913 }
16914
16915 /* Return the die that this die in an extension of, or NULL if there
16916 is none. *EXT_CU is the CU containing DIE on input, and the CU
16917 containing the return value on output. */
16918
16919 static struct die_info *
16920 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16921 {
16922 struct attribute *attr;
16923
16924 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16925 if (attr == NULL)
16926 return NULL;
16927
16928 return follow_die_ref (die, attr, ext_cu);
16929 }
16930
16931 /* Convert a DIE tag into its string name. */
16932
16933 static const char *
16934 dwarf_tag_name (unsigned tag)
16935 {
16936 const char *name = get_DW_TAG_name (tag);
16937
16938 if (name == NULL)
16939 return "DW_TAG_<unknown>";
16940
16941 return name;
16942 }
16943
16944 /* Convert a DWARF attribute code into its string name. */
16945
16946 static const char *
16947 dwarf_attr_name (unsigned attr)
16948 {
16949 const char *name;
16950
16951 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16952 if (attr == DW_AT_MIPS_fde)
16953 return "DW_AT_MIPS_fde";
16954 #else
16955 if (attr == DW_AT_HP_block_index)
16956 return "DW_AT_HP_block_index";
16957 #endif
16958
16959 name = get_DW_AT_name (attr);
16960
16961 if (name == NULL)
16962 return "DW_AT_<unknown>";
16963
16964 return name;
16965 }
16966
16967 /* Convert a DWARF value form code into its string name. */
16968
16969 static const char *
16970 dwarf_form_name (unsigned form)
16971 {
16972 const char *name = get_DW_FORM_name (form);
16973
16974 if (name == NULL)
16975 return "DW_FORM_<unknown>";
16976
16977 return name;
16978 }
16979
16980 static char *
16981 dwarf_bool_name (unsigned mybool)
16982 {
16983 if (mybool)
16984 return "TRUE";
16985 else
16986 return "FALSE";
16987 }
16988
16989 /* Convert a DWARF type code into its string name. */
16990
16991 static const char *
16992 dwarf_type_encoding_name (unsigned enc)
16993 {
16994 const char *name = get_DW_ATE_name (enc);
16995
16996 if (name == NULL)
16997 return "DW_ATE_<unknown>";
16998
16999 return name;
17000 }
17001
17002 static void
17003 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17004 {
17005 unsigned int i;
17006
17007 print_spaces (indent, f);
17008 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17009 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17010
17011 if (die->parent != NULL)
17012 {
17013 print_spaces (indent, f);
17014 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17015 die->parent->offset.sect_off);
17016 }
17017
17018 print_spaces (indent, f);
17019 fprintf_unfiltered (f, " has children: %s\n",
17020 dwarf_bool_name (die->child != NULL));
17021
17022 print_spaces (indent, f);
17023 fprintf_unfiltered (f, " attributes:\n");
17024
17025 for (i = 0; i < die->num_attrs; ++i)
17026 {
17027 print_spaces (indent, f);
17028 fprintf_unfiltered (f, " %s (%s) ",
17029 dwarf_attr_name (die->attrs[i].name),
17030 dwarf_form_name (die->attrs[i].form));
17031
17032 switch (die->attrs[i].form)
17033 {
17034 case DW_FORM_addr:
17035 case DW_FORM_GNU_addr_index:
17036 fprintf_unfiltered (f, "address: ");
17037 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17038 break;
17039 case DW_FORM_block2:
17040 case DW_FORM_block4:
17041 case DW_FORM_block:
17042 case DW_FORM_block1:
17043 fprintf_unfiltered (f, "block: size %s",
17044 pulongest (DW_BLOCK (&die->attrs[i])->size));
17045 break;
17046 case DW_FORM_exprloc:
17047 fprintf_unfiltered (f, "expression: size %s",
17048 pulongest (DW_BLOCK (&die->attrs[i])->size));
17049 break;
17050 case DW_FORM_ref_addr:
17051 fprintf_unfiltered (f, "ref address: ");
17052 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17053 break;
17054 case DW_FORM_GNU_ref_alt:
17055 fprintf_unfiltered (f, "alt ref address: ");
17056 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17057 break;
17058 case DW_FORM_ref1:
17059 case DW_FORM_ref2:
17060 case DW_FORM_ref4:
17061 case DW_FORM_ref8:
17062 case DW_FORM_ref_udata:
17063 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17064 (long) (DW_UNSND (&die->attrs[i])));
17065 break;
17066 case DW_FORM_data1:
17067 case DW_FORM_data2:
17068 case DW_FORM_data4:
17069 case DW_FORM_data8:
17070 case DW_FORM_udata:
17071 case DW_FORM_sdata:
17072 fprintf_unfiltered (f, "constant: %s",
17073 pulongest (DW_UNSND (&die->attrs[i])));
17074 break;
17075 case DW_FORM_sec_offset:
17076 fprintf_unfiltered (f, "section offset: %s",
17077 pulongest (DW_UNSND (&die->attrs[i])));
17078 break;
17079 case DW_FORM_ref_sig8:
17080 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17081 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17082 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17083 else
17084 fprintf_unfiltered (f, "signatured type, offset: unknown");
17085 break;
17086 case DW_FORM_string:
17087 case DW_FORM_strp:
17088 case DW_FORM_GNU_str_index:
17089 case DW_FORM_GNU_strp_alt:
17090 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17091 DW_STRING (&die->attrs[i])
17092 ? DW_STRING (&die->attrs[i]) : "",
17093 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17094 break;
17095 case DW_FORM_flag:
17096 if (DW_UNSND (&die->attrs[i]))
17097 fprintf_unfiltered (f, "flag: TRUE");
17098 else
17099 fprintf_unfiltered (f, "flag: FALSE");
17100 break;
17101 case DW_FORM_flag_present:
17102 fprintf_unfiltered (f, "flag: TRUE");
17103 break;
17104 case DW_FORM_indirect:
17105 /* The reader will have reduced the indirect form to
17106 the "base form" so this form should not occur. */
17107 fprintf_unfiltered (f,
17108 "unexpected attribute form: DW_FORM_indirect");
17109 break;
17110 default:
17111 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17112 die->attrs[i].form);
17113 break;
17114 }
17115 fprintf_unfiltered (f, "\n");
17116 }
17117 }
17118
17119 static void
17120 dump_die_for_error (struct die_info *die)
17121 {
17122 dump_die_shallow (gdb_stderr, 0, die);
17123 }
17124
17125 static void
17126 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17127 {
17128 int indent = level * 4;
17129
17130 gdb_assert (die != NULL);
17131
17132 if (level >= max_level)
17133 return;
17134
17135 dump_die_shallow (f, indent, die);
17136
17137 if (die->child != NULL)
17138 {
17139 print_spaces (indent, f);
17140 fprintf_unfiltered (f, " Children:");
17141 if (level + 1 < max_level)
17142 {
17143 fprintf_unfiltered (f, "\n");
17144 dump_die_1 (f, level + 1, max_level, die->child);
17145 }
17146 else
17147 {
17148 fprintf_unfiltered (f,
17149 " [not printed, max nesting level reached]\n");
17150 }
17151 }
17152
17153 if (die->sibling != NULL && level > 0)
17154 {
17155 dump_die_1 (f, level, max_level, die->sibling);
17156 }
17157 }
17158
17159 /* This is called from the pdie macro in gdbinit.in.
17160 It's not static so gcc will keep a copy callable from gdb. */
17161
17162 void
17163 dump_die (struct die_info *die, int max_level)
17164 {
17165 dump_die_1 (gdb_stdlog, 0, max_level, die);
17166 }
17167
17168 static void
17169 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17170 {
17171 void **slot;
17172
17173 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17174 INSERT);
17175
17176 *slot = die;
17177 }
17178
17179 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17180 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17181
17182 static int
17183 is_ref_attr (struct attribute *attr)
17184 {
17185 switch (attr->form)
17186 {
17187 case DW_FORM_ref_addr:
17188 case DW_FORM_ref1:
17189 case DW_FORM_ref2:
17190 case DW_FORM_ref4:
17191 case DW_FORM_ref8:
17192 case DW_FORM_ref_udata:
17193 case DW_FORM_GNU_ref_alt:
17194 return 1;
17195 default:
17196 return 0;
17197 }
17198 }
17199
17200 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17201 required kind. */
17202
17203 static sect_offset
17204 dwarf2_get_ref_die_offset (struct attribute *attr)
17205 {
17206 sect_offset retval = { DW_UNSND (attr) };
17207
17208 if (is_ref_attr (attr))
17209 return retval;
17210
17211 retval.sect_off = 0;
17212 complaint (&symfile_complaints,
17213 _("unsupported die ref attribute form: '%s'"),
17214 dwarf_form_name (attr->form));
17215 return retval;
17216 }
17217
17218 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17219 * the value held by the attribute is not constant. */
17220
17221 static LONGEST
17222 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17223 {
17224 if (attr->form == DW_FORM_sdata)
17225 return DW_SND (attr);
17226 else if (attr->form == DW_FORM_udata
17227 || attr->form == DW_FORM_data1
17228 || attr->form == DW_FORM_data2
17229 || attr->form == DW_FORM_data4
17230 || attr->form == DW_FORM_data8)
17231 return DW_UNSND (attr);
17232 else
17233 {
17234 complaint (&symfile_complaints,
17235 _("Attribute value is not a constant (%s)"),
17236 dwarf_form_name (attr->form));
17237 return default_value;
17238 }
17239 }
17240
17241 /* Follow reference or signature attribute ATTR of SRC_DIE.
17242 On entry *REF_CU is the CU of SRC_DIE.
17243 On exit *REF_CU is the CU of the result. */
17244
17245 static struct die_info *
17246 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17247 struct dwarf2_cu **ref_cu)
17248 {
17249 struct die_info *die;
17250
17251 if (is_ref_attr (attr))
17252 die = follow_die_ref (src_die, attr, ref_cu);
17253 else if (attr->form == DW_FORM_ref_sig8)
17254 die = follow_die_sig (src_die, attr, ref_cu);
17255 else
17256 {
17257 dump_die_for_error (src_die);
17258 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17259 (*ref_cu)->objfile->name);
17260 }
17261
17262 return die;
17263 }
17264
17265 /* Follow reference OFFSET.
17266 On entry *REF_CU is the CU of the source die referencing OFFSET.
17267 On exit *REF_CU is the CU of the result.
17268 Returns NULL if OFFSET is invalid. */
17269
17270 static struct die_info *
17271 follow_die_offset (sect_offset offset, int offset_in_dwz,
17272 struct dwarf2_cu **ref_cu)
17273 {
17274 struct die_info temp_die;
17275 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17276
17277 gdb_assert (cu->per_cu != NULL);
17278
17279 target_cu = cu;
17280
17281 if (cu->per_cu->is_debug_types)
17282 {
17283 /* .debug_types CUs cannot reference anything outside their CU.
17284 If they need to, they have to reference a signatured type via
17285 DW_FORM_ref_sig8. */
17286 if (! offset_in_cu_p (&cu->header, offset))
17287 return NULL;
17288 }
17289 else if (offset_in_dwz != cu->per_cu->is_dwz
17290 || ! offset_in_cu_p (&cu->header, offset))
17291 {
17292 struct dwarf2_per_cu_data *per_cu;
17293
17294 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17295 cu->objfile);
17296
17297 /* If necessary, add it to the queue and load its DIEs. */
17298 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17299 load_full_comp_unit (per_cu, cu->language);
17300
17301 target_cu = per_cu->cu;
17302 }
17303 else if (cu->dies == NULL)
17304 {
17305 /* We're loading full DIEs during partial symbol reading. */
17306 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17307 load_full_comp_unit (cu->per_cu, language_minimal);
17308 }
17309
17310 *ref_cu = target_cu;
17311 temp_die.offset = offset;
17312 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17313 }
17314
17315 /* Follow reference attribute ATTR of SRC_DIE.
17316 On entry *REF_CU is the CU of SRC_DIE.
17317 On exit *REF_CU is the CU of the result. */
17318
17319 static struct die_info *
17320 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17321 struct dwarf2_cu **ref_cu)
17322 {
17323 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17324 struct dwarf2_cu *cu = *ref_cu;
17325 struct die_info *die;
17326
17327 die = follow_die_offset (offset,
17328 (attr->form == DW_FORM_GNU_ref_alt
17329 || cu->per_cu->is_dwz),
17330 ref_cu);
17331 if (!die)
17332 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17333 "at 0x%x [in module %s]"),
17334 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17335
17336 return die;
17337 }
17338
17339 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17340 Returned value is intended for DW_OP_call*. Returned
17341 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17342
17343 struct dwarf2_locexpr_baton
17344 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
17345 struct dwarf2_per_cu_data *per_cu,
17346 CORE_ADDR (*get_frame_pc) (void *baton),
17347 void *baton)
17348 {
17349 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17350 struct dwarf2_cu *cu;
17351 struct die_info *die;
17352 struct attribute *attr;
17353 struct dwarf2_locexpr_baton retval;
17354
17355 dw2_setup (per_cu->objfile);
17356
17357 if (per_cu->cu == NULL)
17358 load_cu (per_cu);
17359 cu = per_cu->cu;
17360
17361 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17362 if (!die)
17363 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17364 offset.sect_off, per_cu->objfile->name);
17365
17366 attr = dwarf2_attr (die, DW_AT_location, cu);
17367 if (!attr)
17368 {
17369 /* DWARF: "If there is no such attribute, then there is no effect.".
17370 DATA is ignored if SIZE is 0. */
17371
17372 retval.data = NULL;
17373 retval.size = 0;
17374 }
17375 else if (attr_form_is_section_offset (attr))
17376 {
17377 struct dwarf2_loclist_baton loclist_baton;
17378 CORE_ADDR pc = (*get_frame_pc) (baton);
17379 size_t size;
17380
17381 fill_in_loclist_baton (cu, &loclist_baton, attr);
17382
17383 retval.data = dwarf2_find_location_expression (&loclist_baton,
17384 &size, pc);
17385 retval.size = size;
17386 }
17387 else
17388 {
17389 if (!attr_form_is_block (attr))
17390 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17391 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17392 offset.sect_off, per_cu->objfile->name);
17393
17394 retval.data = DW_BLOCK (attr)->data;
17395 retval.size = DW_BLOCK (attr)->size;
17396 }
17397 retval.per_cu = cu->per_cu;
17398
17399 age_cached_comp_units ();
17400
17401 return retval;
17402 }
17403
17404 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17405 PER_CU. */
17406
17407 struct type *
17408 dwarf2_get_die_type (cu_offset die_offset,
17409 struct dwarf2_per_cu_data *per_cu)
17410 {
17411 sect_offset die_offset_sect;
17412
17413 dw2_setup (per_cu->objfile);
17414
17415 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17416 return get_die_type_at_offset (die_offset_sect, per_cu);
17417 }
17418
17419 /* Follow the signature attribute ATTR in SRC_DIE.
17420 On entry *REF_CU is the CU of SRC_DIE.
17421 On exit *REF_CU is the CU of the result. */
17422
17423 static struct die_info *
17424 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17425 struct dwarf2_cu **ref_cu)
17426 {
17427 struct objfile *objfile = (*ref_cu)->objfile;
17428 struct die_info temp_die;
17429 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17430 struct dwarf2_cu *sig_cu;
17431 struct die_info *die;
17432
17433 /* sig_type will be NULL if the signatured type is missing from
17434 the debug info. */
17435 if (sig_type == NULL)
17436 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17437 "at 0x%x [in module %s]"),
17438 src_die->offset.sect_off, objfile->name);
17439
17440 /* If necessary, add it to the queue and load its DIEs. */
17441
17442 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17443 read_signatured_type (sig_type);
17444
17445 gdb_assert (sig_type->per_cu.cu != NULL);
17446
17447 sig_cu = sig_type->per_cu.cu;
17448 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17449 temp_die.offset = sig_type->type_offset_in_section;
17450 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17451 temp_die.offset.sect_off);
17452 if (die)
17453 {
17454 *ref_cu = sig_cu;
17455 return die;
17456 }
17457
17458 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17459 "from DIE at 0x%x [in module %s]"),
17460 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17461 }
17462
17463 /* Given an offset of a signatured type, return its signatured_type. */
17464
17465 static struct signatured_type *
17466 lookup_signatured_type_at_offset (struct objfile *objfile,
17467 struct dwarf2_section_info *section,
17468 sect_offset offset)
17469 {
17470 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17471 unsigned int length, initial_length_size;
17472 unsigned int sig_offset;
17473 struct signatured_type find_entry, *sig_type;
17474
17475 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17476 sig_offset = (initial_length_size
17477 + 2 /*version*/
17478 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17479 + 1 /*address_size*/);
17480 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17481 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17482
17483 /* This is only used to lookup previously recorded types.
17484 If we didn't find it, it's our bug. */
17485 gdb_assert (sig_type != NULL);
17486 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17487
17488 return sig_type;
17489 }
17490
17491 /* Load the DIEs associated with type unit PER_CU into memory. */
17492
17493 static void
17494 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17495 {
17496 struct signatured_type *sig_type;
17497
17498 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17499 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17500
17501 /* We have the per_cu, but we need the signatured_type.
17502 Fortunately this is an easy translation. */
17503 gdb_assert (per_cu->is_debug_types);
17504 sig_type = (struct signatured_type *) per_cu;
17505
17506 gdb_assert (per_cu->cu == NULL);
17507
17508 read_signatured_type (sig_type);
17509
17510 gdb_assert (per_cu->cu != NULL);
17511 }
17512
17513 /* die_reader_func for read_signatured_type.
17514 This is identical to load_full_comp_unit_reader,
17515 but is kept separate for now. */
17516
17517 static void
17518 read_signatured_type_reader (const struct die_reader_specs *reader,
17519 gdb_byte *info_ptr,
17520 struct die_info *comp_unit_die,
17521 int has_children,
17522 void *data)
17523 {
17524 struct dwarf2_cu *cu = reader->cu;
17525
17526 gdb_assert (cu->die_hash == NULL);
17527 cu->die_hash =
17528 htab_create_alloc_ex (cu->header.length / 12,
17529 die_hash,
17530 die_eq,
17531 NULL,
17532 &cu->comp_unit_obstack,
17533 hashtab_obstack_allocate,
17534 dummy_obstack_deallocate);
17535
17536 if (has_children)
17537 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17538 &info_ptr, comp_unit_die);
17539 cu->dies = comp_unit_die;
17540 /* comp_unit_die is not stored in die_hash, no need. */
17541
17542 /* We try not to read any attributes in this function, because not
17543 all CUs needed for references have been loaded yet, and symbol
17544 table processing isn't initialized. But we have to set the CU language,
17545 or we won't be able to build types correctly.
17546 Similarly, if we do not read the producer, we can not apply
17547 producer-specific interpretation. */
17548 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17549 }
17550
17551 /* Read in a signatured type and build its CU and DIEs.
17552 If the type is a stub for the real type in a DWO file,
17553 read in the real type from the DWO file as well. */
17554
17555 static void
17556 read_signatured_type (struct signatured_type *sig_type)
17557 {
17558 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17559
17560 gdb_assert (per_cu->is_debug_types);
17561 gdb_assert (per_cu->cu == NULL);
17562
17563 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17564 read_signatured_type_reader, NULL);
17565 }
17566
17567 /* Decode simple location descriptions.
17568 Given a pointer to a dwarf block that defines a location, compute
17569 the location and return the value.
17570
17571 NOTE drow/2003-11-18: This function is called in two situations
17572 now: for the address of static or global variables (partial symbols
17573 only) and for offsets into structures which are expected to be
17574 (more or less) constant. The partial symbol case should go away,
17575 and only the constant case should remain. That will let this
17576 function complain more accurately. A few special modes are allowed
17577 without complaint for global variables (for instance, global
17578 register values and thread-local values).
17579
17580 A location description containing no operations indicates that the
17581 object is optimized out. The return value is 0 for that case.
17582 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17583 callers will only want a very basic result and this can become a
17584 complaint.
17585
17586 Note that stack[0] is unused except as a default error return. */
17587
17588 static CORE_ADDR
17589 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17590 {
17591 struct objfile *objfile = cu->objfile;
17592 size_t i;
17593 size_t size = blk->size;
17594 gdb_byte *data = blk->data;
17595 CORE_ADDR stack[64];
17596 int stacki;
17597 unsigned int bytes_read, unsnd;
17598 gdb_byte op;
17599
17600 i = 0;
17601 stacki = 0;
17602 stack[stacki] = 0;
17603 stack[++stacki] = 0;
17604
17605 while (i < size)
17606 {
17607 op = data[i++];
17608 switch (op)
17609 {
17610 case DW_OP_lit0:
17611 case DW_OP_lit1:
17612 case DW_OP_lit2:
17613 case DW_OP_lit3:
17614 case DW_OP_lit4:
17615 case DW_OP_lit5:
17616 case DW_OP_lit6:
17617 case DW_OP_lit7:
17618 case DW_OP_lit8:
17619 case DW_OP_lit9:
17620 case DW_OP_lit10:
17621 case DW_OP_lit11:
17622 case DW_OP_lit12:
17623 case DW_OP_lit13:
17624 case DW_OP_lit14:
17625 case DW_OP_lit15:
17626 case DW_OP_lit16:
17627 case DW_OP_lit17:
17628 case DW_OP_lit18:
17629 case DW_OP_lit19:
17630 case DW_OP_lit20:
17631 case DW_OP_lit21:
17632 case DW_OP_lit22:
17633 case DW_OP_lit23:
17634 case DW_OP_lit24:
17635 case DW_OP_lit25:
17636 case DW_OP_lit26:
17637 case DW_OP_lit27:
17638 case DW_OP_lit28:
17639 case DW_OP_lit29:
17640 case DW_OP_lit30:
17641 case DW_OP_lit31:
17642 stack[++stacki] = op - DW_OP_lit0;
17643 break;
17644
17645 case DW_OP_reg0:
17646 case DW_OP_reg1:
17647 case DW_OP_reg2:
17648 case DW_OP_reg3:
17649 case DW_OP_reg4:
17650 case DW_OP_reg5:
17651 case DW_OP_reg6:
17652 case DW_OP_reg7:
17653 case DW_OP_reg8:
17654 case DW_OP_reg9:
17655 case DW_OP_reg10:
17656 case DW_OP_reg11:
17657 case DW_OP_reg12:
17658 case DW_OP_reg13:
17659 case DW_OP_reg14:
17660 case DW_OP_reg15:
17661 case DW_OP_reg16:
17662 case DW_OP_reg17:
17663 case DW_OP_reg18:
17664 case DW_OP_reg19:
17665 case DW_OP_reg20:
17666 case DW_OP_reg21:
17667 case DW_OP_reg22:
17668 case DW_OP_reg23:
17669 case DW_OP_reg24:
17670 case DW_OP_reg25:
17671 case DW_OP_reg26:
17672 case DW_OP_reg27:
17673 case DW_OP_reg28:
17674 case DW_OP_reg29:
17675 case DW_OP_reg30:
17676 case DW_OP_reg31:
17677 stack[++stacki] = op - DW_OP_reg0;
17678 if (i < size)
17679 dwarf2_complex_location_expr_complaint ();
17680 break;
17681
17682 case DW_OP_regx:
17683 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17684 i += bytes_read;
17685 stack[++stacki] = unsnd;
17686 if (i < size)
17687 dwarf2_complex_location_expr_complaint ();
17688 break;
17689
17690 case DW_OP_addr:
17691 stack[++stacki] = read_address (objfile->obfd, &data[i],
17692 cu, &bytes_read);
17693 i += bytes_read;
17694 break;
17695
17696 case DW_OP_const1u:
17697 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17698 i += 1;
17699 break;
17700
17701 case DW_OP_const1s:
17702 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17703 i += 1;
17704 break;
17705
17706 case DW_OP_const2u:
17707 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17708 i += 2;
17709 break;
17710
17711 case DW_OP_const2s:
17712 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17713 i += 2;
17714 break;
17715
17716 case DW_OP_const4u:
17717 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17718 i += 4;
17719 break;
17720
17721 case DW_OP_const4s:
17722 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17723 i += 4;
17724 break;
17725
17726 case DW_OP_const8u:
17727 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17728 i += 8;
17729 break;
17730
17731 case DW_OP_constu:
17732 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17733 &bytes_read);
17734 i += bytes_read;
17735 break;
17736
17737 case DW_OP_consts:
17738 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17739 i += bytes_read;
17740 break;
17741
17742 case DW_OP_dup:
17743 stack[stacki + 1] = stack[stacki];
17744 stacki++;
17745 break;
17746
17747 case DW_OP_plus:
17748 stack[stacki - 1] += stack[stacki];
17749 stacki--;
17750 break;
17751
17752 case DW_OP_plus_uconst:
17753 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17754 &bytes_read);
17755 i += bytes_read;
17756 break;
17757
17758 case DW_OP_minus:
17759 stack[stacki - 1] -= stack[stacki];
17760 stacki--;
17761 break;
17762
17763 case DW_OP_deref:
17764 /* If we're not the last op, then we definitely can't encode
17765 this using GDB's address_class enum. This is valid for partial
17766 global symbols, although the variable's address will be bogus
17767 in the psymtab. */
17768 if (i < size)
17769 dwarf2_complex_location_expr_complaint ();
17770 break;
17771
17772 case DW_OP_GNU_push_tls_address:
17773 /* The top of the stack has the offset from the beginning
17774 of the thread control block at which the variable is located. */
17775 /* Nothing should follow this operator, so the top of stack would
17776 be returned. */
17777 /* This is valid for partial global symbols, but the variable's
17778 address will be bogus in the psymtab. Make it always at least
17779 non-zero to not look as a variable garbage collected by linker
17780 which have DW_OP_addr 0. */
17781 if (i < size)
17782 dwarf2_complex_location_expr_complaint ();
17783 stack[stacki]++;
17784 break;
17785
17786 case DW_OP_GNU_uninit:
17787 break;
17788
17789 case DW_OP_GNU_addr_index:
17790 case DW_OP_GNU_const_index:
17791 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17792 &bytes_read);
17793 i += bytes_read;
17794 break;
17795
17796 default:
17797 {
17798 const char *name = get_DW_OP_name (op);
17799
17800 if (name)
17801 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17802 name);
17803 else
17804 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17805 op);
17806 }
17807
17808 return (stack[stacki]);
17809 }
17810
17811 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17812 outside of the allocated space. Also enforce minimum>0. */
17813 if (stacki >= ARRAY_SIZE (stack) - 1)
17814 {
17815 complaint (&symfile_complaints,
17816 _("location description stack overflow"));
17817 return 0;
17818 }
17819
17820 if (stacki <= 0)
17821 {
17822 complaint (&symfile_complaints,
17823 _("location description stack underflow"));
17824 return 0;
17825 }
17826 }
17827 return (stack[stacki]);
17828 }
17829
17830 /* memory allocation interface */
17831
17832 static struct dwarf_block *
17833 dwarf_alloc_block (struct dwarf2_cu *cu)
17834 {
17835 struct dwarf_block *blk;
17836
17837 blk = (struct dwarf_block *)
17838 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17839 return (blk);
17840 }
17841
17842 static struct die_info *
17843 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17844 {
17845 struct die_info *die;
17846 size_t size = sizeof (struct die_info);
17847
17848 if (num_attrs > 1)
17849 size += (num_attrs - 1) * sizeof (struct attribute);
17850
17851 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17852 memset (die, 0, sizeof (struct die_info));
17853 return (die);
17854 }
17855
17856 \f
17857 /* Macro support. */
17858
17859 /* Return the full name of file number I in *LH's file name table.
17860 Use COMP_DIR as the name of the current directory of the
17861 compilation. The result is allocated using xmalloc; the caller is
17862 responsible for freeing it. */
17863 static char *
17864 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17865 {
17866 /* Is the file number a valid index into the line header's file name
17867 table? Remember that file numbers start with one, not zero. */
17868 if (1 <= file && file <= lh->num_file_names)
17869 {
17870 struct file_entry *fe = &lh->file_names[file - 1];
17871
17872 if (IS_ABSOLUTE_PATH (fe->name))
17873 return xstrdup (fe->name);
17874 else
17875 {
17876 const char *dir;
17877 int dir_len;
17878 char *full_name;
17879
17880 if (fe->dir_index)
17881 dir = lh->include_dirs[fe->dir_index - 1];
17882 else
17883 dir = comp_dir;
17884
17885 if (dir)
17886 {
17887 dir_len = strlen (dir);
17888 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17889 strcpy (full_name, dir);
17890 full_name[dir_len] = '/';
17891 strcpy (full_name + dir_len + 1, fe->name);
17892 return full_name;
17893 }
17894 else
17895 return xstrdup (fe->name);
17896 }
17897 }
17898 else
17899 {
17900 /* The compiler produced a bogus file number. We can at least
17901 record the macro definitions made in the file, even if we
17902 won't be able to find the file by name. */
17903 char fake_name[80];
17904
17905 sprintf (fake_name, "<bad macro file number %d>", file);
17906
17907 complaint (&symfile_complaints,
17908 _("bad file number in macro information (%d)"),
17909 file);
17910
17911 return xstrdup (fake_name);
17912 }
17913 }
17914
17915
17916 static struct macro_source_file *
17917 macro_start_file (int file, int line,
17918 struct macro_source_file *current_file,
17919 const char *comp_dir,
17920 struct line_header *lh, struct objfile *objfile)
17921 {
17922 /* The full name of this source file. */
17923 char *full_name = file_full_name (file, lh, comp_dir);
17924
17925 /* We don't create a macro table for this compilation unit
17926 at all until we actually get a filename. */
17927 if (! pending_macros)
17928 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17929 objfile->per_bfd->macro_cache);
17930
17931 if (! current_file)
17932 {
17933 /* If we have no current file, then this must be the start_file
17934 directive for the compilation unit's main source file. */
17935 current_file = macro_set_main (pending_macros, full_name);
17936 macro_define_special (pending_macros);
17937 }
17938 else
17939 current_file = macro_include (current_file, line, full_name);
17940
17941 xfree (full_name);
17942
17943 return current_file;
17944 }
17945
17946
17947 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17948 followed by a null byte. */
17949 static char *
17950 copy_string (const char *buf, int len)
17951 {
17952 char *s = xmalloc (len + 1);
17953
17954 memcpy (s, buf, len);
17955 s[len] = '\0';
17956 return s;
17957 }
17958
17959
17960 static const char *
17961 consume_improper_spaces (const char *p, const char *body)
17962 {
17963 if (*p == ' ')
17964 {
17965 complaint (&symfile_complaints,
17966 _("macro definition contains spaces "
17967 "in formal argument list:\n`%s'"),
17968 body);
17969
17970 while (*p == ' ')
17971 p++;
17972 }
17973
17974 return p;
17975 }
17976
17977
17978 static void
17979 parse_macro_definition (struct macro_source_file *file, int line,
17980 const char *body)
17981 {
17982 const char *p;
17983
17984 /* The body string takes one of two forms. For object-like macro
17985 definitions, it should be:
17986
17987 <macro name> " " <definition>
17988
17989 For function-like macro definitions, it should be:
17990
17991 <macro name> "() " <definition>
17992 or
17993 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
17994
17995 Spaces may appear only where explicitly indicated, and in the
17996 <definition>.
17997
17998 The Dwarf 2 spec says that an object-like macro's name is always
17999 followed by a space, but versions of GCC around March 2002 omit
18000 the space when the macro's definition is the empty string.
18001
18002 The Dwarf 2 spec says that there should be no spaces between the
18003 formal arguments in a function-like macro's formal argument list,
18004 but versions of GCC around March 2002 include spaces after the
18005 commas. */
18006
18007
18008 /* Find the extent of the macro name. The macro name is terminated
18009 by either a space or null character (for an object-like macro) or
18010 an opening paren (for a function-like macro). */
18011 for (p = body; *p; p++)
18012 if (*p == ' ' || *p == '(')
18013 break;
18014
18015 if (*p == ' ' || *p == '\0')
18016 {
18017 /* It's an object-like macro. */
18018 int name_len = p - body;
18019 char *name = copy_string (body, name_len);
18020 const char *replacement;
18021
18022 if (*p == ' ')
18023 replacement = body + name_len + 1;
18024 else
18025 {
18026 dwarf2_macro_malformed_definition_complaint (body);
18027 replacement = body + name_len;
18028 }
18029
18030 macro_define_object (file, line, name, replacement);
18031
18032 xfree (name);
18033 }
18034 else if (*p == '(')
18035 {
18036 /* It's a function-like macro. */
18037 char *name = copy_string (body, p - body);
18038 int argc = 0;
18039 int argv_size = 1;
18040 char **argv = xmalloc (argv_size * sizeof (*argv));
18041
18042 p++;
18043
18044 p = consume_improper_spaces (p, body);
18045
18046 /* Parse the formal argument list. */
18047 while (*p && *p != ')')
18048 {
18049 /* Find the extent of the current argument name. */
18050 const char *arg_start = p;
18051
18052 while (*p && *p != ',' && *p != ')' && *p != ' ')
18053 p++;
18054
18055 if (! *p || p == arg_start)
18056 dwarf2_macro_malformed_definition_complaint (body);
18057 else
18058 {
18059 /* Make sure argv has room for the new argument. */
18060 if (argc >= argv_size)
18061 {
18062 argv_size *= 2;
18063 argv = xrealloc (argv, argv_size * sizeof (*argv));
18064 }
18065
18066 argv[argc++] = copy_string (arg_start, p - arg_start);
18067 }
18068
18069 p = consume_improper_spaces (p, body);
18070
18071 /* Consume the comma, if present. */
18072 if (*p == ',')
18073 {
18074 p++;
18075
18076 p = consume_improper_spaces (p, body);
18077 }
18078 }
18079
18080 if (*p == ')')
18081 {
18082 p++;
18083
18084 if (*p == ' ')
18085 /* Perfectly formed definition, no complaints. */
18086 macro_define_function (file, line, name,
18087 argc, (const char **) argv,
18088 p + 1);
18089 else if (*p == '\0')
18090 {
18091 /* Complain, but do define it. */
18092 dwarf2_macro_malformed_definition_complaint (body);
18093 macro_define_function (file, line, name,
18094 argc, (const char **) argv,
18095 p);
18096 }
18097 else
18098 /* Just complain. */
18099 dwarf2_macro_malformed_definition_complaint (body);
18100 }
18101 else
18102 /* Just complain. */
18103 dwarf2_macro_malformed_definition_complaint (body);
18104
18105 xfree (name);
18106 {
18107 int i;
18108
18109 for (i = 0; i < argc; i++)
18110 xfree (argv[i]);
18111 }
18112 xfree (argv);
18113 }
18114 else
18115 dwarf2_macro_malformed_definition_complaint (body);
18116 }
18117
18118 /* Skip some bytes from BYTES according to the form given in FORM.
18119 Returns the new pointer. */
18120
18121 static gdb_byte *
18122 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18123 enum dwarf_form form,
18124 unsigned int offset_size,
18125 struct dwarf2_section_info *section)
18126 {
18127 unsigned int bytes_read;
18128
18129 switch (form)
18130 {
18131 case DW_FORM_data1:
18132 case DW_FORM_flag:
18133 ++bytes;
18134 break;
18135
18136 case DW_FORM_data2:
18137 bytes += 2;
18138 break;
18139
18140 case DW_FORM_data4:
18141 bytes += 4;
18142 break;
18143
18144 case DW_FORM_data8:
18145 bytes += 8;
18146 break;
18147
18148 case DW_FORM_string:
18149 read_direct_string (abfd, bytes, &bytes_read);
18150 bytes += bytes_read;
18151 break;
18152
18153 case DW_FORM_sec_offset:
18154 case DW_FORM_strp:
18155 case DW_FORM_GNU_strp_alt:
18156 bytes += offset_size;
18157 break;
18158
18159 case DW_FORM_block:
18160 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18161 bytes += bytes_read;
18162 break;
18163
18164 case DW_FORM_block1:
18165 bytes += 1 + read_1_byte (abfd, bytes);
18166 break;
18167 case DW_FORM_block2:
18168 bytes += 2 + read_2_bytes (abfd, bytes);
18169 break;
18170 case DW_FORM_block4:
18171 bytes += 4 + read_4_bytes (abfd, bytes);
18172 break;
18173
18174 case DW_FORM_sdata:
18175 case DW_FORM_udata:
18176 case DW_FORM_GNU_addr_index:
18177 case DW_FORM_GNU_str_index:
18178 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18179 if (bytes == NULL)
18180 {
18181 dwarf2_section_buffer_overflow_complaint (section);
18182 return NULL;
18183 }
18184 break;
18185
18186 default:
18187 {
18188 complain:
18189 complaint (&symfile_complaints,
18190 _("invalid form 0x%x in `%s'"),
18191 form,
18192 section->asection->name);
18193 return NULL;
18194 }
18195 }
18196
18197 return bytes;
18198 }
18199
18200 /* A helper for dwarf_decode_macros that handles skipping an unknown
18201 opcode. Returns an updated pointer to the macro data buffer; or,
18202 on error, issues a complaint and returns NULL. */
18203
18204 static gdb_byte *
18205 skip_unknown_opcode (unsigned int opcode,
18206 gdb_byte **opcode_definitions,
18207 gdb_byte *mac_ptr, gdb_byte *mac_end,
18208 bfd *abfd,
18209 unsigned int offset_size,
18210 struct dwarf2_section_info *section)
18211 {
18212 unsigned int bytes_read, i;
18213 unsigned long arg;
18214 gdb_byte *defn;
18215
18216 if (opcode_definitions[opcode] == NULL)
18217 {
18218 complaint (&symfile_complaints,
18219 _("unrecognized DW_MACFINO opcode 0x%x"),
18220 opcode);
18221 return NULL;
18222 }
18223
18224 defn = opcode_definitions[opcode];
18225 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18226 defn += bytes_read;
18227
18228 for (i = 0; i < arg; ++i)
18229 {
18230 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18231 section);
18232 if (mac_ptr == NULL)
18233 {
18234 /* skip_form_bytes already issued the complaint. */
18235 return NULL;
18236 }
18237 }
18238
18239 return mac_ptr;
18240 }
18241
18242 /* A helper function which parses the header of a macro section.
18243 If the macro section is the extended (for now called "GNU") type,
18244 then this updates *OFFSET_SIZE. Returns a pointer to just after
18245 the header, or issues a complaint and returns NULL on error. */
18246
18247 static gdb_byte *
18248 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18249 bfd *abfd,
18250 gdb_byte *mac_ptr,
18251 unsigned int *offset_size,
18252 int section_is_gnu)
18253 {
18254 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18255
18256 if (section_is_gnu)
18257 {
18258 unsigned int version, flags;
18259
18260 version = read_2_bytes (abfd, mac_ptr);
18261 if (version != 4)
18262 {
18263 complaint (&symfile_complaints,
18264 _("unrecognized version `%d' in .debug_macro section"),
18265 version);
18266 return NULL;
18267 }
18268 mac_ptr += 2;
18269
18270 flags = read_1_byte (abfd, mac_ptr);
18271 ++mac_ptr;
18272 *offset_size = (flags & 1) ? 8 : 4;
18273
18274 if ((flags & 2) != 0)
18275 /* We don't need the line table offset. */
18276 mac_ptr += *offset_size;
18277
18278 /* Vendor opcode descriptions. */
18279 if ((flags & 4) != 0)
18280 {
18281 unsigned int i, count;
18282
18283 count = read_1_byte (abfd, mac_ptr);
18284 ++mac_ptr;
18285 for (i = 0; i < count; ++i)
18286 {
18287 unsigned int opcode, bytes_read;
18288 unsigned long arg;
18289
18290 opcode = read_1_byte (abfd, mac_ptr);
18291 ++mac_ptr;
18292 opcode_definitions[opcode] = mac_ptr;
18293 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18294 mac_ptr += bytes_read;
18295 mac_ptr += arg;
18296 }
18297 }
18298 }
18299
18300 return mac_ptr;
18301 }
18302
18303 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18304 including DW_MACRO_GNU_transparent_include. */
18305
18306 static void
18307 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18308 struct macro_source_file *current_file,
18309 struct line_header *lh, char *comp_dir,
18310 struct dwarf2_section_info *section,
18311 int section_is_gnu, int section_is_dwz,
18312 unsigned int offset_size,
18313 struct objfile *objfile,
18314 htab_t include_hash)
18315 {
18316 enum dwarf_macro_record_type macinfo_type;
18317 int at_commandline;
18318 gdb_byte *opcode_definitions[256];
18319
18320 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18321 &offset_size, section_is_gnu);
18322 if (mac_ptr == NULL)
18323 {
18324 /* We already issued a complaint. */
18325 return;
18326 }
18327
18328 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18329 GDB is still reading the definitions from command line. First
18330 DW_MACINFO_start_file will need to be ignored as it was already executed
18331 to create CURRENT_FILE for the main source holding also the command line
18332 definitions. On first met DW_MACINFO_start_file this flag is reset to
18333 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18334
18335 at_commandline = 1;
18336
18337 do
18338 {
18339 /* Do we at least have room for a macinfo type byte? */
18340 if (mac_ptr >= mac_end)
18341 {
18342 dwarf2_section_buffer_overflow_complaint (section);
18343 break;
18344 }
18345
18346 macinfo_type = read_1_byte (abfd, mac_ptr);
18347 mac_ptr++;
18348
18349 /* Note that we rely on the fact that the corresponding GNU and
18350 DWARF constants are the same. */
18351 switch (macinfo_type)
18352 {
18353 /* A zero macinfo type indicates the end of the macro
18354 information. */
18355 case 0:
18356 break;
18357
18358 case DW_MACRO_GNU_define:
18359 case DW_MACRO_GNU_undef:
18360 case DW_MACRO_GNU_define_indirect:
18361 case DW_MACRO_GNU_undef_indirect:
18362 case DW_MACRO_GNU_define_indirect_alt:
18363 case DW_MACRO_GNU_undef_indirect_alt:
18364 {
18365 unsigned int bytes_read;
18366 int line;
18367 char *body;
18368 int is_define;
18369
18370 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18371 mac_ptr += bytes_read;
18372
18373 if (macinfo_type == DW_MACRO_GNU_define
18374 || macinfo_type == DW_MACRO_GNU_undef)
18375 {
18376 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18377 mac_ptr += bytes_read;
18378 }
18379 else
18380 {
18381 LONGEST str_offset;
18382
18383 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18384 mac_ptr += offset_size;
18385
18386 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18387 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18388 || section_is_dwz)
18389 {
18390 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18391
18392 body = read_indirect_string_from_dwz (dwz, str_offset);
18393 }
18394 else
18395 body = read_indirect_string_at_offset (abfd, str_offset);
18396 }
18397
18398 is_define = (macinfo_type == DW_MACRO_GNU_define
18399 || macinfo_type == DW_MACRO_GNU_define_indirect
18400 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18401 if (! current_file)
18402 {
18403 /* DWARF violation as no main source is present. */
18404 complaint (&symfile_complaints,
18405 _("debug info with no main source gives macro %s "
18406 "on line %d: %s"),
18407 is_define ? _("definition") : _("undefinition"),
18408 line, body);
18409 break;
18410 }
18411 if ((line == 0 && !at_commandline)
18412 || (line != 0 && at_commandline))
18413 complaint (&symfile_complaints,
18414 _("debug info gives %s macro %s with %s line %d: %s"),
18415 at_commandline ? _("command-line") : _("in-file"),
18416 is_define ? _("definition") : _("undefinition"),
18417 line == 0 ? _("zero") : _("non-zero"), line, body);
18418
18419 if (is_define)
18420 parse_macro_definition (current_file, line, body);
18421 else
18422 {
18423 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18424 || macinfo_type == DW_MACRO_GNU_undef_indirect
18425 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18426 macro_undef (current_file, line, body);
18427 }
18428 }
18429 break;
18430
18431 case DW_MACRO_GNU_start_file:
18432 {
18433 unsigned int bytes_read;
18434 int line, file;
18435
18436 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18437 mac_ptr += bytes_read;
18438 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18439 mac_ptr += bytes_read;
18440
18441 if ((line == 0 && !at_commandline)
18442 || (line != 0 && at_commandline))
18443 complaint (&symfile_complaints,
18444 _("debug info gives source %d included "
18445 "from %s at %s line %d"),
18446 file, at_commandline ? _("command-line") : _("file"),
18447 line == 0 ? _("zero") : _("non-zero"), line);
18448
18449 if (at_commandline)
18450 {
18451 /* This DW_MACRO_GNU_start_file was executed in the
18452 pass one. */
18453 at_commandline = 0;
18454 }
18455 else
18456 current_file = macro_start_file (file, line,
18457 current_file, comp_dir,
18458 lh, objfile);
18459 }
18460 break;
18461
18462 case DW_MACRO_GNU_end_file:
18463 if (! current_file)
18464 complaint (&symfile_complaints,
18465 _("macro debug info has an unmatched "
18466 "`close_file' directive"));
18467 else
18468 {
18469 current_file = current_file->included_by;
18470 if (! current_file)
18471 {
18472 enum dwarf_macro_record_type next_type;
18473
18474 /* GCC circa March 2002 doesn't produce the zero
18475 type byte marking the end of the compilation
18476 unit. Complain if it's not there, but exit no
18477 matter what. */
18478
18479 /* Do we at least have room for a macinfo type byte? */
18480 if (mac_ptr >= mac_end)
18481 {
18482 dwarf2_section_buffer_overflow_complaint (section);
18483 return;
18484 }
18485
18486 /* We don't increment mac_ptr here, so this is just
18487 a look-ahead. */
18488 next_type = read_1_byte (abfd, mac_ptr);
18489 if (next_type != 0)
18490 complaint (&symfile_complaints,
18491 _("no terminating 0-type entry for "
18492 "macros in `.debug_macinfo' section"));
18493
18494 return;
18495 }
18496 }
18497 break;
18498
18499 case DW_MACRO_GNU_transparent_include:
18500 case DW_MACRO_GNU_transparent_include_alt:
18501 {
18502 LONGEST offset;
18503 void **slot;
18504 bfd *include_bfd = abfd;
18505 struct dwarf2_section_info *include_section = section;
18506 struct dwarf2_section_info alt_section;
18507 gdb_byte *include_mac_end = mac_end;
18508 int is_dwz = section_is_dwz;
18509 gdb_byte *new_mac_ptr;
18510
18511 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18512 mac_ptr += offset_size;
18513
18514 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18515 {
18516 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18517
18518 dwarf2_read_section (dwarf2_per_objfile->objfile,
18519 &dwz->macro);
18520
18521 include_bfd = dwz->macro.asection->owner;
18522 include_section = &dwz->macro;
18523 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18524 is_dwz = 1;
18525 }
18526
18527 new_mac_ptr = include_section->buffer + offset;
18528 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18529
18530 if (*slot != NULL)
18531 {
18532 /* This has actually happened; see
18533 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18534 complaint (&symfile_complaints,
18535 _("recursive DW_MACRO_GNU_transparent_include in "
18536 ".debug_macro section"));
18537 }
18538 else
18539 {
18540 *slot = new_mac_ptr;
18541
18542 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18543 include_mac_end, current_file,
18544 lh, comp_dir,
18545 section, section_is_gnu, is_dwz,
18546 offset_size, objfile, include_hash);
18547
18548 htab_remove_elt (include_hash, new_mac_ptr);
18549 }
18550 }
18551 break;
18552
18553 case DW_MACINFO_vendor_ext:
18554 if (!section_is_gnu)
18555 {
18556 unsigned int bytes_read;
18557 int constant;
18558
18559 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18560 mac_ptr += bytes_read;
18561 read_direct_string (abfd, mac_ptr, &bytes_read);
18562 mac_ptr += bytes_read;
18563
18564 /* We don't recognize any vendor extensions. */
18565 break;
18566 }
18567 /* FALLTHROUGH */
18568
18569 default:
18570 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18571 mac_ptr, mac_end, abfd, offset_size,
18572 section);
18573 if (mac_ptr == NULL)
18574 return;
18575 break;
18576 }
18577 } while (macinfo_type != 0);
18578 }
18579
18580 static void
18581 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18582 char *comp_dir, int section_is_gnu)
18583 {
18584 struct objfile *objfile = dwarf2_per_objfile->objfile;
18585 struct line_header *lh = cu->line_header;
18586 bfd *abfd;
18587 gdb_byte *mac_ptr, *mac_end;
18588 struct macro_source_file *current_file = 0;
18589 enum dwarf_macro_record_type macinfo_type;
18590 unsigned int offset_size = cu->header.offset_size;
18591 gdb_byte *opcode_definitions[256];
18592 struct cleanup *cleanup;
18593 htab_t include_hash;
18594 void **slot;
18595 struct dwarf2_section_info *section;
18596 const char *section_name;
18597
18598 if (cu->dwo_unit != NULL)
18599 {
18600 if (section_is_gnu)
18601 {
18602 section = &cu->dwo_unit->dwo_file->sections.macro;
18603 section_name = ".debug_macro.dwo";
18604 }
18605 else
18606 {
18607 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18608 section_name = ".debug_macinfo.dwo";
18609 }
18610 }
18611 else
18612 {
18613 if (section_is_gnu)
18614 {
18615 section = &dwarf2_per_objfile->macro;
18616 section_name = ".debug_macro";
18617 }
18618 else
18619 {
18620 section = &dwarf2_per_objfile->macinfo;
18621 section_name = ".debug_macinfo";
18622 }
18623 }
18624
18625 dwarf2_read_section (objfile, section);
18626 if (section->buffer == NULL)
18627 {
18628 complaint (&symfile_complaints, _("missing %s section"), section_name);
18629 return;
18630 }
18631 abfd = section->asection->owner;
18632
18633 /* First pass: Find the name of the base filename.
18634 This filename is needed in order to process all macros whose definition
18635 (or undefinition) comes from the command line. These macros are defined
18636 before the first DW_MACINFO_start_file entry, and yet still need to be
18637 associated to the base file.
18638
18639 To determine the base file name, we scan the macro definitions until we
18640 reach the first DW_MACINFO_start_file entry. We then initialize
18641 CURRENT_FILE accordingly so that any macro definition found before the
18642 first DW_MACINFO_start_file can still be associated to the base file. */
18643
18644 mac_ptr = section->buffer + offset;
18645 mac_end = section->buffer + section->size;
18646
18647 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18648 &offset_size, section_is_gnu);
18649 if (mac_ptr == NULL)
18650 {
18651 /* We already issued a complaint. */
18652 return;
18653 }
18654
18655 do
18656 {
18657 /* Do we at least have room for a macinfo type byte? */
18658 if (mac_ptr >= mac_end)
18659 {
18660 /* Complaint is printed during the second pass as GDB will probably
18661 stop the first pass earlier upon finding
18662 DW_MACINFO_start_file. */
18663 break;
18664 }
18665
18666 macinfo_type = read_1_byte (abfd, mac_ptr);
18667 mac_ptr++;
18668
18669 /* Note that we rely on the fact that the corresponding GNU and
18670 DWARF constants are the same. */
18671 switch (macinfo_type)
18672 {
18673 /* A zero macinfo type indicates the end of the macro
18674 information. */
18675 case 0:
18676 break;
18677
18678 case DW_MACRO_GNU_define:
18679 case DW_MACRO_GNU_undef:
18680 /* Only skip the data by MAC_PTR. */
18681 {
18682 unsigned int bytes_read;
18683
18684 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18685 mac_ptr += bytes_read;
18686 read_direct_string (abfd, mac_ptr, &bytes_read);
18687 mac_ptr += bytes_read;
18688 }
18689 break;
18690
18691 case DW_MACRO_GNU_start_file:
18692 {
18693 unsigned int bytes_read;
18694 int line, file;
18695
18696 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18697 mac_ptr += bytes_read;
18698 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18699 mac_ptr += bytes_read;
18700
18701 current_file = macro_start_file (file, line, current_file,
18702 comp_dir, lh, objfile);
18703 }
18704 break;
18705
18706 case DW_MACRO_GNU_end_file:
18707 /* No data to skip by MAC_PTR. */
18708 break;
18709
18710 case DW_MACRO_GNU_define_indirect:
18711 case DW_MACRO_GNU_undef_indirect:
18712 case DW_MACRO_GNU_define_indirect_alt:
18713 case DW_MACRO_GNU_undef_indirect_alt:
18714 {
18715 unsigned int bytes_read;
18716
18717 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18718 mac_ptr += bytes_read;
18719 mac_ptr += offset_size;
18720 }
18721 break;
18722
18723 case DW_MACRO_GNU_transparent_include:
18724 case DW_MACRO_GNU_transparent_include_alt:
18725 /* Note that, according to the spec, a transparent include
18726 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18727 skip this opcode. */
18728 mac_ptr += offset_size;
18729 break;
18730
18731 case DW_MACINFO_vendor_ext:
18732 /* Only skip the data by MAC_PTR. */
18733 if (!section_is_gnu)
18734 {
18735 unsigned int bytes_read;
18736
18737 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18738 mac_ptr += bytes_read;
18739 read_direct_string (abfd, mac_ptr, &bytes_read);
18740 mac_ptr += bytes_read;
18741 }
18742 /* FALLTHROUGH */
18743
18744 default:
18745 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18746 mac_ptr, mac_end, abfd, offset_size,
18747 section);
18748 if (mac_ptr == NULL)
18749 return;
18750 break;
18751 }
18752 } while (macinfo_type != 0 && current_file == NULL);
18753
18754 /* Second pass: Process all entries.
18755
18756 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18757 command-line macro definitions/undefinitions. This flag is unset when we
18758 reach the first DW_MACINFO_start_file entry. */
18759
18760 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18761 NULL, xcalloc, xfree);
18762 cleanup = make_cleanup_htab_delete (include_hash);
18763 mac_ptr = section->buffer + offset;
18764 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18765 *slot = mac_ptr;
18766 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18767 current_file, lh, comp_dir, section,
18768 section_is_gnu, 0,
18769 offset_size, objfile, include_hash);
18770 do_cleanups (cleanup);
18771 }
18772
18773 /* Check if the attribute's form is a DW_FORM_block*
18774 if so return true else false. */
18775
18776 static int
18777 attr_form_is_block (struct attribute *attr)
18778 {
18779 return (attr == NULL ? 0 :
18780 attr->form == DW_FORM_block1
18781 || attr->form == DW_FORM_block2
18782 || attr->form == DW_FORM_block4
18783 || attr->form == DW_FORM_block
18784 || attr->form == DW_FORM_exprloc);
18785 }
18786
18787 /* Return non-zero if ATTR's value is a section offset --- classes
18788 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18789 You may use DW_UNSND (attr) to retrieve such offsets.
18790
18791 Section 7.5.4, "Attribute Encodings", explains that no attribute
18792 may have a value that belongs to more than one of these classes; it
18793 would be ambiguous if we did, because we use the same forms for all
18794 of them. */
18795
18796 static int
18797 attr_form_is_section_offset (struct attribute *attr)
18798 {
18799 return (attr->form == DW_FORM_data4
18800 || attr->form == DW_FORM_data8
18801 || attr->form == DW_FORM_sec_offset);
18802 }
18803
18804 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18805 zero otherwise. When this function returns true, you can apply
18806 dwarf2_get_attr_constant_value to it.
18807
18808 However, note that for some attributes you must check
18809 attr_form_is_section_offset before using this test. DW_FORM_data4
18810 and DW_FORM_data8 are members of both the constant class, and of
18811 the classes that contain offsets into other debug sections
18812 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18813 that, if an attribute's can be either a constant or one of the
18814 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18815 taken as section offsets, not constants. */
18816
18817 static int
18818 attr_form_is_constant (struct attribute *attr)
18819 {
18820 switch (attr->form)
18821 {
18822 case DW_FORM_sdata:
18823 case DW_FORM_udata:
18824 case DW_FORM_data1:
18825 case DW_FORM_data2:
18826 case DW_FORM_data4:
18827 case DW_FORM_data8:
18828 return 1;
18829 default:
18830 return 0;
18831 }
18832 }
18833
18834 /* Return the .debug_loc section to use for CU.
18835 For DWO files use .debug_loc.dwo. */
18836
18837 static struct dwarf2_section_info *
18838 cu_debug_loc_section (struct dwarf2_cu *cu)
18839 {
18840 if (cu->dwo_unit)
18841 return &cu->dwo_unit->dwo_file->sections.loc;
18842 return &dwarf2_per_objfile->loc;
18843 }
18844
18845 /* A helper function that fills in a dwarf2_loclist_baton. */
18846
18847 static void
18848 fill_in_loclist_baton (struct dwarf2_cu *cu,
18849 struct dwarf2_loclist_baton *baton,
18850 struct attribute *attr)
18851 {
18852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18853
18854 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18855
18856 baton->per_cu = cu->per_cu;
18857 gdb_assert (baton->per_cu);
18858 /* We don't know how long the location list is, but make sure we
18859 don't run off the edge of the section. */
18860 baton->size = section->size - DW_UNSND (attr);
18861 baton->data = section->buffer + DW_UNSND (attr);
18862 baton->base_address = cu->base_address;
18863 baton->from_dwo = cu->dwo_unit != NULL;
18864 }
18865
18866 static void
18867 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18868 struct dwarf2_cu *cu)
18869 {
18870 struct objfile *objfile = dwarf2_per_objfile->objfile;
18871 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18872
18873 if (attr_form_is_section_offset (attr)
18874 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18875 the section. If so, fall through to the complaint in the
18876 other branch. */
18877 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18878 {
18879 struct dwarf2_loclist_baton *baton;
18880
18881 baton = obstack_alloc (&objfile->objfile_obstack,
18882 sizeof (struct dwarf2_loclist_baton));
18883
18884 fill_in_loclist_baton (cu, baton, attr);
18885
18886 if (cu->base_known == 0)
18887 complaint (&symfile_complaints,
18888 _("Location list used without "
18889 "specifying the CU base address."));
18890
18891 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18892 SYMBOL_LOCATION_BATON (sym) = baton;
18893 }
18894 else
18895 {
18896 struct dwarf2_locexpr_baton *baton;
18897
18898 baton = obstack_alloc (&objfile->objfile_obstack,
18899 sizeof (struct dwarf2_locexpr_baton));
18900 baton->per_cu = cu->per_cu;
18901 gdb_assert (baton->per_cu);
18902
18903 if (attr_form_is_block (attr))
18904 {
18905 /* Note that we're just copying the block's data pointer
18906 here, not the actual data. We're still pointing into the
18907 info_buffer for SYM's objfile; right now we never release
18908 that buffer, but when we do clean up properly this may
18909 need to change. */
18910 baton->size = DW_BLOCK (attr)->size;
18911 baton->data = DW_BLOCK (attr)->data;
18912 }
18913 else
18914 {
18915 dwarf2_invalid_attrib_class_complaint ("location description",
18916 SYMBOL_NATURAL_NAME (sym));
18917 baton->size = 0;
18918 }
18919
18920 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18921 SYMBOL_LOCATION_BATON (sym) = baton;
18922 }
18923 }
18924
18925 /* Return the OBJFILE associated with the compilation unit CU. If CU
18926 came from a separate debuginfo file, then the master objfile is
18927 returned. */
18928
18929 struct objfile *
18930 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18931 {
18932 struct objfile *objfile = per_cu->objfile;
18933
18934 /* Return the master objfile, so that we can report and look up the
18935 correct file containing this variable. */
18936 if (objfile->separate_debug_objfile_backlink)
18937 objfile = objfile->separate_debug_objfile_backlink;
18938
18939 return objfile;
18940 }
18941
18942 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18943 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18944 CU_HEADERP first. */
18945
18946 static const struct comp_unit_head *
18947 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18948 struct dwarf2_per_cu_data *per_cu)
18949 {
18950 gdb_byte *info_ptr;
18951
18952 if (per_cu->cu)
18953 return &per_cu->cu->header;
18954
18955 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
18956
18957 memset (cu_headerp, 0, sizeof (*cu_headerp));
18958 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
18959
18960 return cu_headerp;
18961 }
18962
18963 /* Return the address size given in the compilation unit header for CU. */
18964
18965 int
18966 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18967 {
18968 struct comp_unit_head cu_header_local;
18969 const struct comp_unit_head *cu_headerp;
18970
18971 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18972
18973 return cu_headerp->addr_size;
18974 }
18975
18976 /* Return the offset size given in the compilation unit header for CU. */
18977
18978 int
18979 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
18980 {
18981 struct comp_unit_head cu_header_local;
18982 const struct comp_unit_head *cu_headerp;
18983
18984 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18985
18986 return cu_headerp->offset_size;
18987 }
18988
18989 /* See its dwarf2loc.h declaration. */
18990
18991 int
18992 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
18993 {
18994 struct comp_unit_head cu_header_local;
18995 const struct comp_unit_head *cu_headerp;
18996
18997 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18998
18999 if (cu_headerp->version == 2)
19000 return cu_headerp->addr_size;
19001 else
19002 return cu_headerp->offset_size;
19003 }
19004
19005 /* Return the text offset of the CU. The returned offset comes from
19006 this CU's objfile. If this objfile came from a separate debuginfo
19007 file, then the offset may be different from the corresponding
19008 offset in the parent objfile. */
19009
19010 CORE_ADDR
19011 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19012 {
19013 struct objfile *objfile = per_cu->objfile;
19014
19015 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19016 }
19017
19018 /* Locate the .debug_info compilation unit from CU's objfile which contains
19019 the DIE at OFFSET. Raises an error on failure. */
19020
19021 static struct dwarf2_per_cu_data *
19022 dwarf2_find_containing_comp_unit (sect_offset offset,
19023 unsigned int offset_in_dwz,
19024 struct objfile *objfile)
19025 {
19026 struct dwarf2_per_cu_data *this_cu;
19027 int low, high;
19028 const sect_offset *cu_off;
19029
19030 low = 0;
19031 high = dwarf2_per_objfile->n_comp_units - 1;
19032 while (high > low)
19033 {
19034 struct dwarf2_per_cu_data *mid_cu;
19035 int mid = low + (high - low) / 2;
19036
19037 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19038 cu_off = &mid_cu->offset;
19039 if (mid_cu->is_dwz > offset_in_dwz
19040 || (mid_cu->is_dwz == offset_in_dwz
19041 && cu_off->sect_off >= offset.sect_off))
19042 high = mid;
19043 else
19044 low = mid + 1;
19045 }
19046 gdb_assert (low == high);
19047 this_cu = dwarf2_per_objfile->all_comp_units[low];
19048 cu_off = &this_cu->offset;
19049 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19050 {
19051 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19052 error (_("Dwarf Error: could not find partial DIE containing "
19053 "offset 0x%lx [in module %s]"),
19054 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19055
19056 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19057 <= offset.sect_off);
19058 return dwarf2_per_objfile->all_comp_units[low-1];
19059 }
19060 else
19061 {
19062 this_cu = dwarf2_per_objfile->all_comp_units[low];
19063 if (low == dwarf2_per_objfile->n_comp_units - 1
19064 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19065 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19066 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19067 return this_cu;
19068 }
19069 }
19070
19071 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19072
19073 static void
19074 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19075 {
19076 memset (cu, 0, sizeof (*cu));
19077 per_cu->cu = cu;
19078 cu->per_cu = per_cu;
19079 cu->objfile = per_cu->objfile;
19080 obstack_init (&cu->comp_unit_obstack);
19081 }
19082
19083 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19084
19085 static void
19086 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19087 enum language pretend_language)
19088 {
19089 struct attribute *attr;
19090
19091 /* Set the language we're debugging. */
19092 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19093 if (attr)
19094 set_cu_language (DW_UNSND (attr), cu);
19095 else
19096 {
19097 cu->language = pretend_language;
19098 cu->language_defn = language_def (cu->language);
19099 }
19100
19101 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19102 if (attr)
19103 cu->producer = DW_STRING (attr);
19104 }
19105
19106 /* Release one cached compilation unit, CU. We unlink it from the tree
19107 of compilation units, but we don't remove it from the read_in_chain;
19108 the caller is responsible for that.
19109 NOTE: DATA is a void * because this function is also used as a
19110 cleanup routine. */
19111
19112 static void
19113 free_heap_comp_unit (void *data)
19114 {
19115 struct dwarf2_cu *cu = data;
19116
19117 gdb_assert (cu->per_cu != NULL);
19118 cu->per_cu->cu = NULL;
19119 cu->per_cu = NULL;
19120
19121 obstack_free (&cu->comp_unit_obstack, NULL);
19122
19123 xfree (cu);
19124 }
19125
19126 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19127 when we're finished with it. We can't free the pointer itself, but be
19128 sure to unlink it from the cache. Also release any associated storage. */
19129
19130 static void
19131 free_stack_comp_unit (void *data)
19132 {
19133 struct dwarf2_cu *cu = data;
19134
19135 gdb_assert (cu->per_cu != NULL);
19136 cu->per_cu->cu = NULL;
19137 cu->per_cu = NULL;
19138
19139 obstack_free (&cu->comp_unit_obstack, NULL);
19140 cu->partial_dies = NULL;
19141 }
19142
19143 /* Free all cached compilation units. */
19144
19145 static void
19146 free_cached_comp_units (void *data)
19147 {
19148 struct dwarf2_per_cu_data *per_cu, **last_chain;
19149
19150 per_cu = dwarf2_per_objfile->read_in_chain;
19151 last_chain = &dwarf2_per_objfile->read_in_chain;
19152 while (per_cu != NULL)
19153 {
19154 struct dwarf2_per_cu_data *next_cu;
19155
19156 next_cu = per_cu->cu->read_in_chain;
19157
19158 free_heap_comp_unit (per_cu->cu);
19159 *last_chain = next_cu;
19160
19161 per_cu = next_cu;
19162 }
19163 }
19164
19165 /* Increase the age counter on each cached compilation unit, and free
19166 any that are too old. */
19167
19168 static void
19169 age_cached_comp_units (void)
19170 {
19171 struct dwarf2_per_cu_data *per_cu, **last_chain;
19172
19173 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19174 per_cu = dwarf2_per_objfile->read_in_chain;
19175 while (per_cu != NULL)
19176 {
19177 per_cu->cu->last_used ++;
19178 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19179 dwarf2_mark (per_cu->cu);
19180 per_cu = per_cu->cu->read_in_chain;
19181 }
19182
19183 per_cu = dwarf2_per_objfile->read_in_chain;
19184 last_chain = &dwarf2_per_objfile->read_in_chain;
19185 while (per_cu != NULL)
19186 {
19187 struct dwarf2_per_cu_data *next_cu;
19188
19189 next_cu = per_cu->cu->read_in_chain;
19190
19191 if (!per_cu->cu->mark)
19192 {
19193 free_heap_comp_unit (per_cu->cu);
19194 *last_chain = next_cu;
19195 }
19196 else
19197 last_chain = &per_cu->cu->read_in_chain;
19198
19199 per_cu = next_cu;
19200 }
19201 }
19202
19203 /* Remove a single compilation unit from the cache. */
19204
19205 static void
19206 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19207 {
19208 struct dwarf2_per_cu_data *per_cu, **last_chain;
19209
19210 per_cu = dwarf2_per_objfile->read_in_chain;
19211 last_chain = &dwarf2_per_objfile->read_in_chain;
19212 while (per_cu != NULL)
19213 {
19214 struct dwarf2_per_cu_data *next_cu;
19215
19216 next_cu = per_cu->cu->read_in_chain;
19217
19218 if (per_cu == target_per_cu)
19219 {
19220 free_heap_comp_unit (per_cu->cu);
19221 per_cu->cu = NULL;
19222 *last_chain = next_cu;
19223 break;
19224 }
19225 else
19226 last_chain = &per_cu->cu->read_in_chain;
19227
19228 per_cu = next_cu;
19229 }
19230 }
19231
19232 /* Release all extra memory associated with OBJFILE. */
19233
19234 void
19235 dwarf2_free_objfile (struct objfile *objfile)
19236 {
19237 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19238
19239 if (dwarf2_per_objfile == NULL)
19240 return;
19241
19242 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19243 free_cached_comp_units (NULL);
19244
19245 if (dwarf2_per_objfile->quick_file_names_table)
19246 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19247
19248 /* Everything else should be on the objfile obstack. */
19249 }
19250
19251 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19252 We store these in a hash table separate from the DIEs, and preserve them
19253 when the DIEs are flushed out of cache.
19254
19255 The CU "per_cu" pointer is needed because offset alone is not enough to
19256 uniquely identify the type. A file may have multiple .debug_types sections,
19257 or the type may come from a DWO file. We have to use something in
19258 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19259 routine, get_die_type_at_offset, from outside this file, and thus won't
19260 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19261 of the objfile. */
19262
19263 struct dwarf2_per_cu_offset_and_type
19264 {
19265 const struct dwarf2_per_cu_data *per_cu;
19266 sect_offset offset;
19267 struct type *type;
19268 };
19269
19270 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19271
19272 static hashval_t
19273 per_cu_offset_and_type_hash (const void *item)
19274 {
19275 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19276
19277 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19278 }
19279
19280 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19281
19282 static int
19283 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19284 {
19285 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19286 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19287
19288 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19289 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19290 }
19291
19292 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19293 table if necessary. For convenience, return TYPE.
19294
19295 The DIEs reading must have careful ordering to:
19296 * Not cause infite loops trying to read in DIEs as a prerequisite for
19297 reading current DIE.
19298 * Not trying to dereference contents of still incompletely read in types
19299 while reading in other DIEs.
19300 * Enable referencing still incompletely read in types just by a pointer to
19301 the type without accessing its fields.
19302
19303 Therefore caller should follow these rules:
19304 * Try to fetch any prerequisite types we may need to build this DIE type
19305 before building the type and calling set_die_type.
19306 * After building type call set_die_type for current DIE as soon as
19307 possible before fetching more types to complete the current type.
19308 * Make the type as complete as possible before fetching more types. */
19309
19310 static struct type *
19311 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19312 {
19313 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19314 struct objfile *objfile = cu->objfile;
19315
19316 /* For Ada types, make sure that the gnat-specific data is always
19317 initialized (if not already set). There are a few types where
19318 we should not be doing so, because the type-specific area is
19319 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19320 where the type-specific area is used to store the floatformat).
19321 But this is not a problem, because the gnat-specific information
19322 is actually not needed for these types. */
19323 if (need_gnat_info (cu)
19324 && TYPE_CODE (type) != TYPE_CODE_FUNC
19325 && TYPE_CODE (type) != TYPE_CODE_FLT
19326 && !HAVE_GNAT_AUX_INFO (type))
19327 INIT_GNAT_SPECIFIC (type);
19328
19329 if (dwarf2_per_objfile->die_type_hash == NULL)
19330 {
19331 dwarf2_per_objfile->die_type_hash =
19332 htab_create_alloc_ex (127,
19333 per_cu_offset_and_type_hash,
19334 per_cu_offset_and_type_eq,
19335 NULL,
19336 &objfile->objfile_obstack,
19337 hashtab_obstack_allocate,
19338 dummy_obstack_deallocate);
19339 }
19340
19341 ofs.per_cu = cu->per_cu;
19342 ofs.offset = die->offset;
19343 ofs.type = type;
19344 slot = (struct dwarf2_per_cu_offset_and_type **)
19345 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19346 if (*slot)
19347 complaint (&symfile_complaints,
19348 _("A problem internal to GDB: DIE 0x%x has type already set"),
19349 die->offset.sect_off);
19350 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19351 **slot = ofs;
19352 return type;
19353 }
19354
19355 /* Look up the type for the die at OFFSET in the appropriate type_hash
19356 table, or return NULL if the die does not have a saved type. */
19357
19358 static struct type *
19359 get_die_type_at_offset (sect_offset offset,
19360 struct dwarf2_per_cu_data *per_cu)
19361 {
19362 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19363
19364 if (dwarf2_per_objfile->die_type_hash == NULL)
19365 return NULL;
19366
19367 ofs.per_cu = per_cu;
19368 ofs.offset = offset;
19369 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19370 if (slot)
19371 return slot->type;
19372 else
19373 return NULL;
19374 }
19375
19376 /* Look up the type for DIE in the appropriate type_hash table,
19377 or return NULL if DIE does not have a saved type. */
19378
19379 static struct type *
19380 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19381 {
19382 return get_die_type_at_offset (die->offset, cu->per_cu);
19383 }
19384
19385 /* Add a dependence relationship from CU to REF_PER_CU. */
19386
19387 static void
19388 dwarf2_add_dependence (struct dwarf2_cu *cu,
19389 struct dwarf2_per_cu_data *ref_per_cu)
19390 {
19391 void **slot;
19392
19393 if (cu->dependencies == NULL)
19394 cu->dependencies
19395 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19396 NULL, &cu->comp_unit_obstack,
19397 hashtab_obstack_allocate,
19398 dummy_obstack_deallocate);
19399
19400 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19401 if (*slot == NULL)
19402 *slot = ref_per_cu;
19403 }
19404
19405 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19406 Set the mark field in every compilation unit in the
19407 cache that we must keep because we are keeping CU. */
19408
19409 static int
19410 dwarf2_mark_helper (void **slot, void *data)
19411 {
19412 struct dwarf2_per_cu_data *per_cu;
19413
19414 per_cu = (struct dwarf2_per_cu_data *) *slot;
19415
19416 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19417 reading of the chain. As such dependencies remain valid it is not much
19418 useful to track and undo them during QUIT cleanups. */
19419 if (per_cu->cu == NULL)
19420 return 1;
19421
19422 if (per_cu->cu->mark)
19423 return 1;
19424 per_cu->cu->mark = 1;
19425
19426 if (per_cu->cu->dependencies != NULL)
19427 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19428
19429 return 1;
19430 }
19431
19432 /* Set the mark field in CU and in every other compilation unit in the
19433 cache that we must keep because we are keeping CU. */
19434
19435 static void
19436 dwarf2_mark (struct dwarf2_cu *cu)
19437 {
19438 if (cu->mark)
19439 return;
19440 cu->mark = 1;
19441 if (cu->dependencies != NULL)
19442 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19443 }
19444
19445 static void
19446 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19447 {
19448 while (per_cu)
19449 {
19450 per_cu->cu->mark = 0;
19451 per_cu = per_cu->cu->read_in_chain;
19452 }
19453 }
19454
19455 /* Trivial hash function for partial_die_info: the hash value of a DIE
19456 is its offset in .debug_info for this objfile. */
19457
19458 static hashval_t
19459 partial_die_hash (const void *item)
19460 {
19461 const struct partial_die_info *part_die = item;
19462
19463 return part_die->offset.sect_off;
19464 }
19465
19466 /* Trivial comparison function for partial_die_info structures: two DIEs
19467 are equal if they have the same offset. */
19468
19469 static int
19470 partial_die_eq (const void *item_lhs, const void *item_rhs)
19471 {
19472 const struct partial_die_info *part_die_lhs = item_lhs;
19473 const struct partial_die_info *part_die_rhs = item_rhs;
19474
19475 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19476 }
19477
19478 static struct cmd_list_element *set_dwarf2_cmdlist;
19479 static struct cmd_list_element *show_dwarf2_cmdlist;
19480
19481 static void
19482 set_dwarf2_cmd (char *args, int from_tty)
19483 {
19484 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19485 }
19486
19487 static void
19488 show_dwarf2_cmd (char *args, int from_tty)
19489 {
19490 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19491 }
19492
19493 /* Free data associated with OBJFILE, if necessary. */
19494
19495 static void
19496 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19497 {
19498 struct dwarf2_per_objfile *data = d;
19499 int ix;
19500
19501 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19502 VEC_free (dwarf2_per_cu_ptr,
19503 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19504
19505 VEC_free (dwarf2_section_info_def, data->types);
19506
19507 if (data->dwo_files)
19508 free_dwo_files (data->dwo_files, objfile);
19509
19510 if (data->dwz_file && data->dwz_file->dwz_bfd)
19511 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19512 }
19513
19514 \f
19515 /* The "save gdb-index" command. */
19516
19517 /* The contents of the hash table we create when building the string
19518 table. */
19519 struct strtab_entry
19520 {
19521 offset_type offset;
19522 const char *str;
19523 };
19524
19525 /* Hash function for a strtab_entry.
19526
19527 Function is used only during write_hash_table so no index format backward
19528 compatibility is needed. */
19529
19530 static hashval_t
19531 hash_strtab_entry (const void *e)
19532 {
19533 const struct strtab_entry *entry = e;
19534 return mapped_index_string_hash (INT_MAX, entry->str);
19535 }
19536
19537 /* Equality function for a strtab_entry. */
19538
19539 static int
19540 eq_strtab_entry (const void *a, const void *b)
19541 {
19542 const struct strtab_entry *ea = a;
19543 const struct strtab_entry *eb = b;
19544 return !strcmp (ea->str, eb->str);
19545 }
19546
19547 /* Create a strtab_entry hash table. */
19548
19549 static htab_t
19550 create_strtab (void)
19551 {
19552 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19553 xfree, xcalloc, xfree);
19554 }
19555
19556 /* Add a string to the constant pool. Return the string's offset in
19557 host order. */
19558
19559 static offset_type
19560 add_string (htab_t table, struct obstack *cpool, const char *str)
19561 {
19562 void **slot;
19563 struct strtab_entry entry;
19564 struct strtab_entry *result;
19565
19566 entry.str = str;
19567 slot = htab_find_slot (table, &entry, INSERT);
19568 if (*slot)
19569 result = *slot;
19570 else
19571 {
19572 result = XNEW (struct strtab_entry);
19573 result->offset = obstack_object_size (cpool);
19574 result->str = str;
19575 obstack_grow_str0 (cpool, str);
19576 *slot = result;
19577 }
19578 return result->offset;
19579 }
19580
19581 /* An entry in the symbol table. */
19582 struct symtab_index_entry
19583 {
19584 /* The name of the symbol. */
19585 const char *name;
19586 /* The offset of the name in the constant pool. */
19587 offset_type index_offset;
19588 /* A sorted vector of the indices of all the CUs that hold an object
19589 of this name. */
19590 VEC (offset_type) *cu_indices;
19591 };
19592
19593 /* The symbol table. This is a power-of-2-sized hash table. */
19594 struct mapped_symtab
19595 {
19596 offset_type n_elements;
19597 offset_type size;
19598 struct symtab_index_entry **data;
19599 };
19600
19601 /* Hash function for a symtab_index_entry. */
19602
19603 static hashval_t
19604 hash_symtab_entry (const void *e)
19605 {
19606 const struct symtab_index_entry *entry = e;
19607 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19608 sizeof (offset_type) * VEC_length (offset_type,
19609 entry->cu_indices),
19610 0);
19611 }
19612
19613 /* Equality function for a symtab_index_entry. */
19614
19615 static int
19616 eq_symtab_entry (const void *a, const void *b)
19617 {
19618 const struct symtab_index_entry *ea = a;
19619 const struct symtab_index_entry *eb = b;
19620 int len = VEC_length (offset_type, ea->cu_indices);
19621 if (len != VEC_length (offset_type, eb->cu_indices))
19622 return 0;
19623 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19624 VEC_address (offset_type, eb->cu_indices),
19625 sizeof (offset_type) * len);
19626 }
19627
19628 /* Destroy a symtab_index_entry. */
19629
19630 static void
19631 delete_symtab_entry (void *p)
19632 {
19633 struct symtab_index_entry *entry = p;
19634 VEC_free (offset_type, entry->cu_indices);
19635 xfree (entry);
19636 }
19637
19638 /* Create a hash table holding symtab_index_entry objects. */
19639
19640 static htab_t
19641 create_symbol_hash_table (void)
19642 {
19643 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19644 delete_symtab_entry, xcalloc, xfree);
19645 }
19646
19647 /* Create a new mapped symtab object. */
19648
19649 static struct mapped_symtab *
19650 create_mapped_symtab (void)
19651 {
19652 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19653 symtab->n_elements = 0;
19654 symtab->size = 1024;
19655 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19656 return symtab;
19657 }
19658
19659 /* Destroy a mapped_symtab. */
19660
19661 static void
19662 cleanup_mapped_symtab (void *p)
19663 {
19664 struct mapped_symtab *symtab = p;
19665 /* The contents of the array are freed when the other hash table is
19666 destroyed. */
19667 xfree (symtab->data);
19668 xfree (symtab);
19669 }
19670
19671 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19672 the slot.
19673
19674 Function is used only during write_hash_table so no index format backward
19675 compatibility is needed. */
19676
19677 static struct symtab_index_entry **
19678 find_slot (struct mapped_symtab *symtab, const char *name)
19679 {
19680 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19681
19682 index = hash & (symtab->size - 1);
19683 step = ((hash * 17) & (symtab->size - 1)) | 1;
19684
19685 for (;;)
19686 {
19687 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19688 return &symtab->data[index];
19689 index = (index + step) & (symtab->size - 1);
19690 }
19691 }
19692
19693 /* Expand SYMTAB's hash table. */
19694
19695 static void
19696 hash_expand (struct mapped_symtab *symtab)
19697 {
19698 offset_type old_size = symtab->size;
19699 offset_type i;
19700 struct symtab_index_entry **old_entries = symtab->data;
19701
19702 symtab->size *= 2;
19703 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19704
19705 for (i = 0; i < old_size; ++i)
19706 {
19707 if (old_entries[i])
19708 {
19709 struct symtab_index_entry **slot = find_slot (symtab,
19710 old_entries[i]->name);
19711 *slot = old_entries[i];
19712 }
19713 }
19714
19715 xfree (old_entries);
19716 }
19717
19718 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19719 CU_INDEX is the index of the CU in which the symbol appears.
19720 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19721
19722 static void
19723 add_index_entry (struct mapped_symtab *symtab, const char *name,
19724 int is_static, gdb_index_symbol_kind kind,
19725 offset_type cu_index)
19726 {
19727 struct symtab_index_entry **slot;
19728 offset_type cu_index_and_attrs;
19729
19730 ++symtab->n_elements;
19731 if (4 * symtab->n_elements / 3 >= symtab->size)
19732 hash_expand (symtab);
19733
19734 slot = find_slot (symtab, name);
19735 if (!*slot)
19736 {
19737 *slot = XNEW (struct symtab_index_entry);
19738 (*slot)->name = name;
19739 /* index_offset is set later. */
19740 (*slot)->cu_indices = NULL;
19741 }
19742
19743 cu_index_and_attrs = 0;
19744 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19745 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19746 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19747
19748 /* We don't want to record an index value twice as we want to avoid the
19749 duplication.
19750 We process all global symbols and then all static symbols
19751 (which would allow us to avoid the duplication by only having to check
19752 the last entry pushed), but a symbol could have multiple kinds in one CU.
19753 To keep things simple we don't worry about the duplication here and
19754 sort and uniqufy the list after we've processed all symbols. */
19755 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19756 }
19757
19758 /* qsort helper routine for uniquify_cu_indices. */
19759
19760 static int
19761 offset_type_compare (const void *ap, const void *bp)
19762 {
19763 offset_type a = *(offset_type *) ap;
19764 offset_type b = *(offset_type *) bp;
19765
19766 return (a > b) - (b > a);
19767 }
19768
19769 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19770
19771 static void
19772 uniquify_cu_indices (struct mapped_symtab *symtab)
19773 {
19774 int i;
19775
19776 for (i = 0; i < symtab->size; ++i)
19777 {
19778 struct symtab_index_entry *entry = symtab->data[i];
19779
19780 if (entry
19781 && entry->cu_indices != NULL)
19782 {
19783 unsigned int next_to_insert, next_to_check;
19784 offset_type last_value;
19785
19786 qsort (VEC_address (offset_type, entry->cu_indices),
19787 VEC_length (offset_type, entry->cu_indices),
19788 sizeof (offset_type), offset_type_compare);
19789
19790 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19791 next_to_insert = 1;
19792 for (next_to_check = 1;
19793 next_to_check < VEC_length (offset_type, entry->cu_indices);
19794 ++next_to_check)
19795 {
19796 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19797 != last_value)
19798 {
19799 last_value = VEC_index (offset_type, entry->cu_indices,
19800 next_to_check);
19801 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19802 last_value);
19803 ++next_to_insert;
19804 }
19805 }
19806 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19807 }
19808 }
19809 }
19810
19811 /* Add a vector of indices to the constant pool. */
19812
19813 static offset_type
19814 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19815 struct symtab_index_entry *entry)
19816 {
19817 void **slot;
19818
19819 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19820 if (!*slot)
19821 {
19822 offset_type len = VEC_length (offset_type, entry->cu_indices);
19823 offset_type val = MAYBE_SWAP (len);
19824 offset_type iter;
19825 int i;
19826
19827 *slot = entry;
19828 entry->index_offset = obstack_object_size (cpool);
19829
19830 obstack_grow (cpool, &val, sizeof (val));
19831 for (i = 0;
19832 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19833 ++i)
19834 {
19835 val = MAYBE_SWAP (iter);
19836 obstack_grow (cpool, &val, sizeof (val));
19837 }
19838 }
19839 else
19840 {
19841 struct symtab_index_entry *old_entry = *slot;
19842 entry->index_offset = old_entry->index_offset;
19843 entry = old_entry;
19844 }
19845 return entry->index_offset;
19846 }
19847
19848 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19849 constant pool entries going into the obstack CPOOL. */
19850
19851 static void
19852 write_hash_table (struct mapped_symtab *symtab,
19853 struct obstack *output, struct obstack *cpool)
19854 {
19855 offset_type i;
19856 htab_t symbol_hash_table;
19857 htab_t str_table;
19858
19859 symbol_hash_table = create_symbol_hash_table ();
19860 str_table = create_strtab ();
19861
19862 /* We add all the index vectors to the constant pool first, to
19863 ensure alignment is ok. */
19864 for (i = 0; i < symtab->size; ++i)
19865 {
19866 if (symtab->data[i])
19867 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19868 }
19869
19870 /* Now write out the hash table. */
19871 for (i = 0; i < symtab->size; ++i)
19872 {
19873 offset_type str_off, vec_off;
19874
19875 if (symtab->data[i])
19876 {
19877 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19878 vec_off = symtab->data[i]->index_offset;
19879 }
19880 else
19881 {
19882 /* While 0 is a valid constant pool index, it is not valid
19883 to have 0 for both offsets. */
19884 str_off = 0;
19885 vec_off = 0;
19886 }
19887
19888 str_off = MAYBE_SWAP (str_off);
19889 vec_off = MAYBE_SWAP (vec_off);
19890
19891 obstack_grow (output, &str_off, sizeof (str_off));
19892 obstack_grow (output, &vec_off, sizeof (vec_off));
19893 }
19894
19895 htab_delete (str_table);
19896 htab_delete (symbol_hash_table);
19897 }
19898
19899 /* Struct to map psymtab to CU index in the index file. */
19900 struct psymtab_cu_index_map
19901 {
19902 struct partial_symtab *psymtab;
19903 unsigned int cu_index;
19904 };
19905
19906 static hashval_t
19907 hash_psymtab_cu_index (const void *item)
19908 {
19909 const struct psymtab_cu_index_map *map = item;
19910
19911 return htab_hash_pointer (map->psymtab);
19912 }
19913
19914 static int
19915 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19916 {
19917 const struct psymtab_cu_index_map *lhs = item_lhs;
19918 const struct psymtab_cu_index_map *rhs = item_rhs;
19919
19920 return lhs->psymtab == rhs->psymtab;
19921 }
19922
19923 /* Helper struct for building the address table. */
19924 struct addrmap_index_data
19925 {
19926 struct objfile *objfile;
19927 struct obstack *addr_obstack;
19928 htab_t cu_index_htab;
19929
19930 /* Non-zero if the previous_* fields are valid.
19931 We can't write an entry until we see the next entry (since it is only then
19932 that we know the end of the entry). */
19933 int previous_valid;
19934 /* Index of the CU in the table of all CUs in the index file. */
19935 unsigned int previous_cu_index;
19936 /* Start address of the CU. */
19937 CORE_ADDR previous_cu_start;
19938 };
19939
19940 /* Write an address entry to OBSTACK. */
19941
19942 static void
19943 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19944 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19945 {
19946 offset_type cu_index_to_write;
19947 char addr[8];
19948 CORE_ADDR baseaddr;
19949
19950 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19951
19952 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19953 obstack_grow (obstack, addr, 8);
19954 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19955 obstack_grow (obstack, addr, 8);
19956 cu_index_to_write = MAYBE_SWAP (cu_index);
19957 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19958 }
19959
19960 /* Worker function for traversing an addrmap to build the address table. */
19961
19962 static int
19963 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19964 {
19965 struct addrmap_index_data *data = datap;
19966 struct partial_symtab *pst = obj;
19967
19968 if (data->previous_valid)
19969 add_address_entry (data->objfile, data->addr_obstack,
19970 data->previous_cu_start, start_addr,
19971 data->previous_cu_index);
19972
19973 data->previous_cu_start = start_addr;
19974 if (pst != NULL)
19975 {
19976 struct psymtab_cu_index_map find_map, *map;
19977 find_map.psymtab = pst;
19978 map = htab_find (data->cu_index_htab, &find_map);
19979 gdb_assert (map != NULL);
19980 data->previous_cu_index = map->cu_index;
19981 data->previous_valid = 1;
19982 }
19983 else
19984 data->previous_valid = 0;
19985
19986 return 0;
19987 }
19988
19989 /* Write OBJFILE's address map to OBSTACK.
19990 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
19991 in the index file. */
19992
19993 static void
19994 write_address_map (struct objfile *objfile, struct obstack *obstack,
19995 htab_t cu_index_htab)
19996 {
19997 struct addrmap_index_data addrmap_index_data;
19998
19999 /* When writing the address table, we have to cope with the fact that
20000 the addrmap iterator only provides the start of a region; we have to
20001 wait until the next invocation to get the start of the next region. */
20002
20003 addrmap_index_data.objfile = objfile;
20004 addrmap_index_data.addr_obstack = obstack;
20005 addrmap_index_data.cu_index_htab = cu_index_htab;
20006 addrmap_index_data.previous_valid = 0;
20007
20008 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20009 &addrmap_index_data);
20010
20011 /* It's highly unlikely the last entry (end address = 0xff...ff)
20012 is valid, but we should still handle it.
20013 The end address is recorded as the start of the next region, but that
20014 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20015 anyway. */
20016 if (addrmap_index_data.previous_valid)
20017 add_address_entry (objfile, obstack,
20018 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20019 addrmap_index_data.previous_cu_index);
20020 }
20021
20022 /* Return the symbol kind of PSYM. */
20023
20024 static gdb_index_symbol_kind
20025 symbol_kind (struct partial_symbol *psym)
20026 {
20027 domain_enum domain = PSYMBOL_DOMAIN (psym);
20028 enum address_class aclass = PSYMBOL_CLASS (psym);
20029
20030 switch (domain)
20031 {
20032 case VAR_DOMAIN:
20033 switch (aclass)
20034 {
20035 case LOC_BLOCK:
20036 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20037 case LOC_TYPEDEF:
20038 return GDB_INDEX_SYMBOL_KIND_TYPE;
20039 case LOC_COMPUTED:
20040 case LOC_CONST_BYTES:
20041 case LOC_OPTIMIZED_OUT:
20042 case LOC_STATIC:
20043 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20044 case LOC_CONST:
20045 /* Note: It's currently impossible to recognize psyms as enum values
20046 short of reading the type info. For now punt. */
20047 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20048 default:
20049 /* There are other LOC_FOO values that one might want to classify
20050 as variables, but dwarf2read.c doesn't currently use them. */
20051 return GDB_INDEX_SYMBOL_KIND_OTHER;
20052 }
20053 case STRUCT_DOMAIN:
20054 return GDB_INDEX_SYMBOL_KIND_TYPE;
20055 default:
20056 return GDB_INDEX_SYMBOL_KIND_OTHER;
20057 }
20058 }
20059
20060 /* Add a list of partial symbols to SYMTAB. */
20061
20062 static void
20063 write_psymbols (struct mapped_symtab *symtab,
20064 htab_t psyms_seen,
20065 struct partial_symbol **psymp,
20066 int count,
20067 offset_type cu_index,
20068 int is_static)
20069 {
20070 for (; count-- > 0; ++psymp)
20071 {
20072 struct partial_symbol *psym = *psymp;
20073 void **slot;
20074
20075 if (SYMBOL_LANGUAGE (psym) == language_ada)
20076 error (_("Ada is not currently supported by the index"));
20077
20078 /* Only add a given psymbol once. */
20079 slot = htab_find_slot (psyms_seen, psym, INSERT);
20080 if (!*slot)
20081 {
20082 gdb_index_symbol_kind kind = symbol_kind (psym);
20083
20084 *slot = psym;
20085 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20086 is_static, kind, cu_index);
20087 }
20088 }
20089 }
20090
20091 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20092 exception if there is an error. */
20093
20094 static void
20095 write_obstack (FILE *file, struct obstack *obstack)
20096 {
20097 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20098 file)
20099 != obstack_object_size (obstack))
20100 error (_("couldn't data write to file"));
20101 }
20102
20103 /* Unlink a file if the argument is not NULL. */
20104
20105 static void
20106 unlink_if_set (void *p)
20107 {
20108 char **filename = p;
20109 if (*filename)
20110 unlink (*filename);
20111 }
20112
20113 /* A helper struct used when iterating over debug_types. */
20114 struct signatured_type_index_data
20115 {
20116 struct objfile *objfile;
20117 struct mapped_symtab *symtab;
20118 struct obstack *types_list;
20119 htab_t psyms_seen;
20120 int cu_index;
20121 };
20122
20123 /* A helper function that writes a single signatured_type to an
20124 obstack. */
20125
20126 static int
20127 write_one_signatured_type (void **slot, void *d)
20128 {
20129 struct signatured_type_index_data *info = d;
20130 struct signatured_type *entry = (struct signatured_type *) *slot;
20131 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20132 struct partial_symtab *psymtab = per_cu->v.psymtab;
20133 gdb_byte val[8];
20134
20135 write_psymbols (info->symtab,
20136 info->psyms_seen,
20137 info->objfile->global_psymbols.list
20138 + psymtab->globals_offset,
20139 psymtab->n_global_syms, info->cu_index,
20140 0);
20141 write_psymbols (info->symtab,
20142 info->psyms_seen,
20143 info->objfile->static_psymbols.list
20144 + psymtab->statics_offset,
20145 psymtab->n_static_syms, info->cu_index,
20146 1);
20147
20148 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20149 entry->per_cu.offset.sect_off);
20150 obstack_grow (info->types_list, val, 8);
20151 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20152 entry->type_offset_in_tu.cu_off);
20153 obstack_grow (info->types_list, val, 8);
20154 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20155 obstack_grow (info->types_list, val, 8);
20156
20157 ++info->cu_index;
20158
20159 return 1;
20160 }
20161
20162 /* Recurse into all "included" dependencies and write their symbols as
20163 if they appeared in this psymtab. */
20164
20165 static void
20166 recursively_write_psymbols (struct objfile *objfile,
20167 struct partial_symtab *psymtab,
20168 struct mapped_symtab *symtab,
20169 htab_t psyms_seen,
20170 offset_type cu_index)
20171 {
20172 int i;
20173
20174 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20175 if (psymtab->dependencies[i]->user != NULL)
20176 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20177 symtab, psyms_seen, cu_index);
20178
20179 write_psymbols (symtab,
20180 psyms_seen,
20181 objfile->global_psymbols.list + psymtab->globals_offset,
20182 psymtab->n_global_syms, cu_index,
20183 0);
20184 write_psymbols (symtab,
20185 psyms_seen,
20186 objfile->static_psymbols.list + psymtab->statics_offset,
20187 psymtab->n_static_syms, cu_index,
20188 1);
20189 }
20190
20191 /* Create an index file for OBJFILE in the directory DIR. */
20192
20193 static void
20194 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20195 {
20196 struct cleanup *cleanup;
20197 char *filename, *cleanup_filename;
20198 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20199 struct obstack cu_list, types_cu_list;
20200 int i;
20201 FILE *out_file;
20202 struct mapped_symtab *symtab;
20203 offset_type val, size_of_contents, total_len;
20204 struct stat st;
20205 htab_t psyms_seen;
20206 htab_t cu_index_htab;
20207 struct psymtab_cu_index_map *psymtab_cu_index_map;
20208
20209 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20210 return;
20211
20212 if (dwarf2_per_objfile->using_index)
20213 error (_("Cannot use an index to create the index"));
20214
20215 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20216 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20217
20218 if (stat (objfile->name, &st) < 0)
20219 perror_with_name (objfile->name);
20220
20221 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20222 INDEX_SUFFIX, (char *) NULL);
20223 cleanup = make_cleanup (xfree, filename);
20224
20225 out_file = fopen (filename, "wb");
20226 if (!out_file)
20227 error (_("Can't open `%s' for writing"), filename);
20228
20229 cleanup_filename = filename;
20230 make_cleanup (unlink_if_set, &cleanup_filename);
20231
20232 symtab = create_mapped_symtab ();
20233 make_cleanup (cleanup_mapped_symtab, symtab);
20234
20235 obstack_init (&addr_obstack);
20236 make_cleanup_obstack_free (&addr_obstack);
20237
20238 obstack_init (&cu_list);
20239 make_cleanup_obstack_free (&cu_list);
20240
20241 obstack_init (&types_cu_list);
20242 make_cleanup_obstack_free (&types_cu_list);
20243
20244 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20245 NULL, xcalloc, xfree);
20246 make_cleanup_htab_delete (psyms_seen);
20247
20248 /* While we're scanning CU's create a table that maps a psymtab pointer
20249 (which is what addrmap records) to its index (which is what is recorded
20250 in the index file). This will later be needed to write the address
20251 table. */
20252 cu_index_htab = htab_create_alloc (100,
20253 hash_psymtab_cu_index,
20254 eq_psymtab_cu_index,
20255 NULL, xcalloc, xfree);
20256 make_cleanup_htab_delete (cu_index_htab);
20257 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20258 xmalloc (sizeof (struct psymtab_cu_index_map)
20259 * dwarf2_per_objfile->n_comp_units);
20260 make_cleanup (xfree, psymtab_cu_index_map);
20261
20262 /* The CU list is already sorted, so we don't need to do additional
20263 work here. Also, the debug_types entries do not appear in
20264 all_comp_units, but only in their own hash table. */
20265 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20266 {
20267 struct dwarf2_per_cu_data *per_cu
20268 = dwarf2_per_objfile->all_comp_units[i];
20269 struct partial_symtab *psymtab = per_cu->v.psymtab;
20270 gdb_byte val[8];
20271 struct psymtab_cu_index_map *map;
20272 void **slot;
20273
20274 if (psymtab->user == NULL)
20275 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20276
20277 map = &psymtab_cu_index_map[i];
20278 map->psymtab = psymtab;
20279 map->cu_index = i;
20280 slot = htab_find_slot (cu_index_htab, map, INSERT);
20281 gdb_assert (slot != NULL);
20282 gdb_assert (*slot == NULL);
20283 *slot = map;
20284
20285 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20286 per_cu->offset.sect_off);
20287 obstack_grow (&cu_list, val, 8);
20288 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20289 obstack_grow (&cu_list, val, 8);
20290 }
20291
20292 /* Dump the address map. */
20293 write_address_map (objfile, &addr_obstack, cu_index_htab);
20294
20295 /* Write out the .debug_type entries, if any. */
20296 if (dwarf2_per_objfile->signatured_types)
20297 {
20298 struct signatured_type_index_data sig_data;
20299
20300 sig_data.objfile = objfile;
20301 sig_data.symtab = symtab;
20302 sig_data.types_list = &types_cu_list;
20303 sig_data.psyms_seen = psyms_seen;
20304 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20305 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20306 write_one_signatured_type, &sig_data);
20307 }
20308
20309 /* Now that we've processed all symbols we can shrink their cu_indices
20310 lists. */
20311 uniquify_cu_indices (symtab);
20312
20313 obstack_init (&constant_pool);
20314 make_cleanup_obstack_free (&constant_pool);
20315 obstack_init (&symtab_obstack);
20316 make_cleanup_obstack_free (&symtab_obstack);
20317 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20318
20319 obstack_init (&contents);
20320 make_cleanup_obstack_free (&contents);
20321 size_of_contents = 6 * sizeof (offset_type);
20322 total_len = size_of_contents;
20323
20324 /* The version number. */
20325 val = MAYBE_SWAP (7);
20326 obstack_grow (&contents, &val, sizeof (val));
20327
20328 /* The offset of the CU list from the start of the file. */
20329 val = MAYBE_SWAP (total_len);
20330 obstack_grow (&contents, &val, sizeof (val));
20331 total_len += obstack_object_size (&cu_list);
20332
20333 /* The offset of the types CU list from the start of the file. */
20334 val = MAYBE_SWAP (total_len);
20335 obstack_grow (&contents, &val, sizeof (val));
20336 total_len += obstack_object_size (&types_cu_list);
20337
20338 /* The offset of the address table from the start of the file. */
20339 val = MAYBE_SWAP (total_len);
20340 obstack_grow (&contents, &val, sizeof (val));
20341 total_len += obstack_object_size (&addr_obstack);
20342
20343 /* The offset of the symbol table from the start of the file. */
20344 val = MAYBE_SWAP (total_len);
20345 obstack_grow (&contents, &val, sizeof (val));
20346 total_len += obstack_object_size (&symtab_obstack);
20347
20348 /* The offset of the constant pool from the start of the file. */
20349 val = MAYBE_SWAP (total_len);
20350 obstack_grow (&contents, &val, sizeof (val));
20351 total_len += obstack_object_size (&constant_pool);
20352
20353 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20354
20355 write_obstack (out_file, &contents);
20356 write_obstack (out_file, &cu_list);
20357 write_obstack (out_file, &types_cu_list);
20358 write_obstack (out_file, &addr_obstack);
20359 write_obstack (out_file, &symtab_obstack);
20360 write_obstack (out_file, &constant_pool);
20361
20362 fclose (out_file);
20363
20364 /* We want to keep the file, so we set cleanup_filename to NULL
20365 here. See unlink_if_set. */
20366 cleanup_filename = NULL;
20367
20368 do_cleanups (cleanup);
20369 }
20370
20371 /* Implementation of the `save gdb-index' command.
20372
20373 Note that the file format used by this command is documented in the
20374 GDB manual. Any changes here must be documented there. */
20375
20376 static void
20377 save_gdb_index_command (char *arg, int from_tty)
20378 {
20379 struct objfile *objfile;
20380
20381 if (!arg || !*arg)
20382 error (_("usage: save gdb-index DIRECTORY"));
20383
20384 ALL_OBJFILES (objfile)
20385 {
20386 struct stat st;
20387
20388 /* If the objfile does not correspond to an actual file, skip it. */
20389 if (stat (objfile->name, &st) < 0)
20390 continue;
20391
20392 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20393 if (dwarf2_per_objfile)
20394 {
20395 volatile struct gdb_exception except;
20396
20397 TRY_CATCH (except, RETURN_MASK_ERROR)
20398 {
20399 write_psymtabs_to_index (objfile, arg);
20400 }
20401 if (except.reason < 0)
20402 exception_fprintf (gdb_stderr, except,
20403 _("Error while writing index for `%s': "),
20404 objfile->name);
20405 }
20406 }
20407 }
20408
20409 \f
20410
20411 int dwarf2_always_disassemble;
20412
20413 static void
20414 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20415 struct cmd_list_element *c, const char *value)
20416 {
20417 fprintf_filtered (file,
20418 _("Whether to always disassemble "
20419 "DWARF expressions is %s.\n"),
20420 value);
20421 }
20422
20423 static void
20424 show_check_physname (struct ui_file *file, int from_tty,
20425 struct cmd_list_element *c, const char *value)
20426 {
20427 fprintf_filtered (file,
20428 _("Whether to check \"physname\" is %s.\n"),
20429 value);
20430 }
20431
20432 void _initialize_dwarf2_read (void);
20433
20434 void
20435 _initialize_dwarf2_read (void)
20436 {
20437 struct cmd_list_element *c;
20438
20439 dwarf2_objfile_data_key
20440 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20441
20442 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20443 Set DWARF 2 specific variables.\n\
20444 Configure DWARF 2 variables such as the cache size"),
20445 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20446 0/*allow-unknown*/, &maintenance_set_cmdlist);
20447
20448 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20449 Show DWARF 2 specific variables\n\
20450 Show DWARF 2 variables such as the cache size"),
20451 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20452 0/*allow-unknown*/, &maintenance_show_cmdlist);
20453
20454 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20455 &dwarf2_max_cache_age, _("\
20456 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20457 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20458 A higher limit means that cached compilation units will be stored\n\
20459 in memory longer, and more total memory will be used. Zero disables\n\
20460 caching, which can slow down startup."),
20461 NULL,
20462 show_dwarf2_max_cache_age,
20463 &set_dwarf2_cmdlist,
20464 &show_dwarf2_cmdlist);
20465
20466 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20467 &dwarf2_always_disassemble, _("\
20468 Set whether `info address' always disassembles DWARF expressions."), _("\
20469 Show whether `info address' always disassembles DWARF expressions."), _("\
20470 When enabled, DWARF expressions are always printed in an assembly-like\n\
20471 syntax. When disabled, expressions will be printed in a more\n\
20472 conversational style, when possible."),
20473 NULL,
20474 show_dwarf2_always_disassemble,
20475 &set_dwarf2_cmdlist,
20476 &show_dwarf2_cmdlist);
20477
20478 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20479 Set debugging of the dwarf2 reader."), _("\
20480 Show debugging of the dwarf2 reader."), _("\
20481 When enabled, debugging messages are printed during dwarf2 reading\n\
20482 and symtab expansion."),
20483 NULL,
20484 NULL,
20485 &setdebuglist, &showdebuglist);
20486
20487 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20488 Set debugging of the dwarf2 DIE reader."), _("\
20489 Show debugging of the dwarf2 DIE reader."), _("\
20490 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20491 The value is the maximum depth to print."),
20492 NULL,
20493 NULL,
20494 &setdebuglist, &showdebuglist);
20495
20496 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20497 Set cross-checking of \"physname\" code against demangler."), _("\
20498 Show cross-checking of \"physname\" code against demangler."), _("\
20499 When enabled, GDB's internal \"physname\" code is checked against\n\
20500 the demangler."),
20501 NULL, show_check_physname,
20502 &setdebuglist, &showdebuglist);
20503
20504 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20505 no_class, &use_deprecated_index_sections, _("\
20506 Set whether to use deprecated gdb_index sections."), _("\
20507 Show whether to use deprecated gdb_index sections."), _("\
20508 When enabled, deprecated .gdb_index sections are used anyway.\n\
20509 Normally they are ignored either because of a missing feature or\n\
20510 performance issue.\n\
20511 Warning: This option must be enabled before gdb reads the file."),
20512 NULL,
20513 NULL,
20514 &setlist, &showlist);
20515
20516 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20517 _("\
20518 Save a gdb-index file.\n\
20519 Usage: save gdb-index DIRECTORY"),
20520 &save_cmdlist);
20521 set_cmd_completer (c, filename_completer);
20522 }
This page took 0.5389 seconds and 4 git commands to generate.