9aa33bfec8f67265282ba668cacdccf0a70a80ed
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 bool mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 bool has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 bool checked_producer : 1;
552 bool producer_is_gxx_lt_4_6 : 1;
553 bool producer_is_gcc_lt_4_3 : 1;
554 bool producer_is_icc : 1;
555 bool producer_is_icc_lt_14 : 1;
556 bool producer_is_codewarrior : 1;
557
558 /* When true, the file that we're processing is known to have
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
562 bool processing_has_namespace_info : 1;
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
565 };
566
567 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570 struct stmt_list_hash
571 {
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
576 sect_offset line_sect_off;
577 };
578
579 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582 struct type_unit_group
583 {
584 /* dwarf2read.c's main "handle" on a TU symtab.
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
589 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
590 struct dwarf2_per_cu_data per_cu;
591
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
596
597 /* The compunit symtab.
598 Type units in a group needn't all be defined in the same source file,
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
601
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618 };
619
620 /* These sections are what may appear in a (real or virtual) DWO file. */
621
622 struct dwo_sections
623 {
624 struct dwarf2_section_info abbrev;
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
627 struct dwarf2_section_info loclists;
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
634 VEC (dwarf2_section_info_def) *types;
635 };
636
637 /* CUs/TUs in DWP/DWO files. */
638
639 struct dwo_unit
640 {
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
650 struct dwarf2_section_info *section;
651
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658 };
659
660 /* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664 enum dwp_v2_section_ids
665 {
666 DW_SECT_MIN = 1
667 };
668
669 /* Data for one DWO file.
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
679
680 struct dwo_file
681 {
682 /* The DW_AT_GNU_dwo_name attribute.
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
690
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
694
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
698 struct dwo_sections sections;
699
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709 };
710
711 /* These sections are what may appear in a DWP file. */
712
713 struct dwp_sections
714 {
715 /* These are used by both DWP version 1 and 2. */
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
736 };
737
738 /* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
740
741 struct virtual_v1_dwo_sections
742 {
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
750 That is recorded here, and copied to dwo_unit.section. */
751 struct dwarf2_section_info info_or_types;
752 };
753
754 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759 struct virtual_v2_dwo_sections
760 {
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783 };
784
785 /* Contents of DWP hash tables. */
786
787 struct dwp_hash_table
788 {
789 uint32_t version, nr_columns;
790 uint32_t nr_units, nr_slots;
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802 #define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
814 };
815
816 /* Data for one DWP file. */
817
818 struct dwp_file
819 {
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
826 /* Name of the file. */
827 const char *name;
828
829 /* File format version. */
830 int version = 0;
831
832 /* The bfd. */
833 gdb_bfd_ref_ptr dbfd;
834
835 /* Section info for this file. */
836 struct dwp_sections sections {};
837
838 /* Table of CUs in the file. */
839 const struct dwp_hash_table *cus = nullptr;
840
841 /* Table of TUs in the file. */
842 const struct dwp_hash_table *tus = nullptr;
843
844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
847
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
852 };
853
854 /* This represents a '.dwz' file. */
855
856 struct dwz_file
857 {
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
863 /* A dwz file can only contain a few sections. */
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
871
872 /* The dwz's BFD. */
873 gdb_bfd_ref_ptr dwz_bfd;
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
911 };
912
913 /* Type of function passed to init_cutu_and_read_dies, et.al. */
914 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
915 const gdb_byte *info_ptr,
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
920 /* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923 enum class dir_index : unsigned int {};
924
925 /* Likewise, a 1-based file name index. */
926 enum class file_name_index : unsigned int {};
927
928 struct file_entry
929 {
930 file_entry () = default;
931
932 file_entry (const char *name_, dir_index d_index_,
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
935 d_index (d_index_),
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
942 const char *include_dir (const line_header *lh) const;
943
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
948 /* The directory index (1-based). */
949 dir_index d_index {};
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
958 /* The associated symbol table, if any. */
959 struct symtab *symtab {};
960 };
961
962 /* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965 struct line_header
966 {
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
975 void add_file_name (const char *name, dir_index d_index,
976 unsigned int mod_time, unsigned int length);
977
978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
979 is out of bounds. */
980 const char *include_dir_at (dir_index index) const
981 {
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
987 return NULL;
988 return include_dirs[vec_index];
989 }
990
991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
992 is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
1000 return NULL;
1001 return &file_names[vec_index];
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
1012 /* Offset of line number information in .debug_line section. */
1013 sect_offset sect_off {};
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1033
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
1037
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
1040
1041 /* The start and end of the statement program following this
1042 header. These point into dwarf2_per_objfile->line_buffer. */
1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
1044 };
1045
1046 typedef std::unique_ptr<line_header> line_header_up;
1047
1048 const char *
1049 file_entry::include_dir (const line_header *lh) const
1050 {
1051 return lh->include_dir_at (d_index);
1052 }
1053
1054 /* When we construct a partial symbol table entry we only
1055 need this much information. */
1056 struct partial_die_info : public allocate_on_obstack
1057 {
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
1075 /* Offset of this DIE. */
1076 const sect_offset sect_off;
1077
1078 /* DWARF-2 tag for this DIE. */
1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1080
1081 /* Assorted flags describing the data found in this DIE. */
1082 const unsigned int has_children : 1;
1083
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name = nullptr;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name = nullptr;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope = nullptr;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset sect_off;
1136 } d {};
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling = nullptr;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset {};
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
1188 };
1189
1190 /* This data structure holds the information of an abbrev. */
1191 struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201 struct attr_abbrev
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
1208 };
1209
1210 /* Size of abbrev_table.abbrev_hash_table. */
1211 #define ABBREV_HASH_SIZE 121
1212
1213 /* Top level data structure to contain an abbreviation table. */
1214
1215 struct abbrev_table
1216 {
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
1220 m_abbrevs =
1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
1242 const sect_offset sect_off;
1243
1244 /* Storage for the abbrev table. */
1245 auto_obstack abbrev_obstack;
1246
1247 private:
1248
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
1253 struct abbrev_info **m_abbrevs;
1254 };
1255
1256 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
1258 /* Attributes have a name and a value. */
1259 struct attribute
1260 {
1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
1269 union
1270 {
1271 const char *str;
1272 struct dwarf_block *blk;
1273 ULONGEST unsnd;
1274 LONGEST snd;
1275 CORE_ADDR addr;
1276 ULONGEST signature;
1277 }
1278 u;
1279 };
1280
1281 /* This data structure holds a complete die structure. */
1282 struct die_info
1283 {
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
1293
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
1300 /* Offset in .debug_info or .debug_types section. */
1301 sect_offset sect_off;
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
1306 together via their SIBLING fields. */
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
1310
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
1315 };
1316
1317 /* Get at parts of an attribute structure. */
1318
1319 #define DW_STRING(attr) ((attr)->u.str)
1320 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1321 #define DW_UNSND(attr) ((attr)->u.unsnd)
1322 #define DW_BLOCK(attr) ((attr)->u.blk)
1323 #define DW_SND(attr) ((attr)->u.snd)
1324 #define DW_ADDR(attr) ((attr)->u.addr)
1325 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1326
1327 /* Blocks are a bunch of untyped bytes. */
1328 struct dwarf_block
1329 {
1330 size_t size;
1331
1332 /* Valid only if SIZE is not zero. */
1333 const gdb_byte *data;
1334 };
1335
1336 #ifndef ATTR_ALLOC_CHUNK
1337 #define ATTR_ALLOC_CHUNK 4
1338 #endif
1339
1340 /* Allocate fields for structs, unions and enums in this size. */
1341 #ifndef DW_FIELD_ALLOC_CHUNK
1342 #define DW_FIELD_ALLOC_CHUNK 4
1343 #endif
1344
1345 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348 static int bits_per_byte = 8;
1349
1350 /* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354 struct variant_field
1355 {
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365 };
1366
1367 struct nextfield
1368 {
1369 int accessibility = 0;
1370 int virtuality = 0;
1371 /* Extra information to describe a variant or variant part. */
1372 struct variant_field variant {};
1373 struct field field {};
1374 };
1375
1376 struct fnfieldlist
1377 {
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
1380 };
1381
1382 /* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385 struct field_info
1386 {
1387 /* List of data member and baseclasses fields. */
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
1390
1391 /* Number of fields (including baseclasses). */
1392 int nfields = 0;
1393
1394 /* Set if the accesibility of one of the fields is not public. */
1395 int non_public_fields = 0;
1396
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
1400 std::vector<struct fnfieldlist> fnfieldlists;
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1404 std::vector<struct decl_field> typedef_field_list;
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
1408 std::vector<struct decl_field> nested_types_list;
1409 };
1410
1411 /* One item on the queue of compilation units to read in full symbols
1412 for. */
1413 struct dwarf2_queue_item
1414 {
1415 struct dwarf2_per_cu_data *per_cu;
1416 enum language pretend_language;
1417 struct dwarf2_queue_item *next;
1418 };
1419
1420 /* The current queue. */
1421 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
1423 /* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
1428 static int dwarf_max_cache_age = 5;
1429 static void
1430 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
1432 {
1433 fprintf_filtered (file, _("The upper bound on the age of cached "
1434 "DWARF compilation units is %s.\n"),
1435 value);
1436 }
1437 \f
1438 /* local function prototypes */
1439
1440 static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442 static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
1444 static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
1447 static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
1450 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
1455 static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1457
1458 static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 int, struct dwarf2_cu *);
1461
1462 static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
1464
1465 static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int set_addrmap, struct dwarf2_cu *cu);
1468
1469 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1470 CORE_ADDR *highpc, int set_addrmap,
1471 struct dwarf2_cu *cu);
1472
1473 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
1475
1476 static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1478 int need_pc, struct dwarf2_cu *cu);
1479
1480 static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
1482
1483 static void psymtab_to_symtab_1 (struct partial_symtab *);
1484
1485 static abbrev_table_up abbrev_table_read_table
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
1488
1489 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1490
1491 static struct partial_die_info *load_partial_dies
1492 (const struct die_reader_specs *, const gdb_byte *, int);
1493
1494 static struct partial_die_info *find_partial_die (sect_offset, int,
1495 struct dwarf2_cu *);
1496
1497 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
1500
1501 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1502
1503 static int read_1_signed_byte (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1506
1507 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1508
1509 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1510
1511 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1512 unsigned int *);
1513
1514 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static LONGEST read_checked_initial_length_and_offset
1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1518 unsigned int *, unsigned int *);
1519
1520 static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
1522 unsigned int *);
1523
1524 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1525
1526 static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
1529
1530 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1531
1532 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1533
1534 static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
1537
1538 static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
1541
1542 static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
1545
1546 static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
1548
1549 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
1553 unsigned int *);
1554
1555 static const char *read_str_index (const struct die_reader_specs *reader,
1556 ULONGEST str_index);
1557
1558 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1559
1560 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
1562
1563 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1564 unsigned int);
1565
1566 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
1569 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
1572 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1573
1574 static struct die_info *die_specification (struct die_info *die,
1575 struct dwarf2_cu **);
1576
1577 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1578 struct dwarf2_cu *cu);
1579
1580 static void dwarf_decode_lines (struct line_header *, const char *,
1581 struct dwarf2_cu *, struct partial_symtab *,
1582 CORE_ADDR, int decode_mapping);
1583
1584 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
1586
1587 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
1590
1591 static struct symbol *new_symbol (struct die_info *, struct type *,
1592 struct dwarf2_cu *, struct symbol * = NULL);
1593
1594 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_const_value_attr (const struct attribute *attr,
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
1601 struct dwarf2_cu *cu, LONGEST *value,
1602 const gdb_byte **bytes,
1603 struct dwarf2_locexpr_baton **baton);
1604
1605 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1606
1607 static int need_gnat_info (struct dwarf2_cu *);
1608
1609 static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
1611
1612 static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1622
1623 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
1625 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1626
1627 static char *typename_concat (struct obstack *obs, const char *prefix,
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
1630
1631 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1638
1639 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
1643 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
1646 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1647 values. Keep the items ordered with increasing constraints compliance. */
1648 enum pc_bounds_kind
1649 {
1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1651 PC_BOUNDS_NOT_PRESENT,
1652
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662 };
1663
1664 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
1668
1669 static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
1676 static void dwarf2_add_field (struct field_info *, struct die_info *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fields_to_type (struct field_info *,
1680 struct type *, struct dwarf2_cu *);
1681
1682 static void dwarf2_add_member_fn (struct field_info *,
1683 struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1687 struct type *,
1688 struct dwarf2_cu *);
1689
1690 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1693
1694 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1695
1696 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
1698 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1699
1700 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
1702 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
1704 static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
1707 static const char *namespace_name (struct die_info *die,
1708 int *is_anonymous, struct dwarf2_cu *);
1709
1710 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1711
1712 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1713
1714 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct die_info *read_die_and_siblings_1
1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1719 struct die_info *);
1720
1721 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
1724 struct die_info *parent);
1725
1726 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
1729
1730 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
1733
1734 static void process_die (struct die_info *, struct dwarf2_cu *);
1735
1736 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
1738
1739 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1740
1741 static const char *dwarf2_full_name (const char *name,
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
1745 static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748 static struct die_info *dwarf2_extension (struct die_info *die,
1749 struct dwarf2_cu **);
1750
1751 static const char *dwarf_tag_name (unsigned int);
1752
1753 static const char *dwarf_attr_name (unsigned int);
1754
1755 static const char *dwarf_form_name (unsigned int);
1756
1757 static const char *dwarf_bool_name (unsigned int);
1758
1759 static const char *dwarf_type_encoding_name (unsigned int);
1760
1761 static struct die_info *sibling_die (struct die_info *);
1762
1763 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765 static void dump_die_for_error (struct die_info *);
1766
1767 static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
1769
1770 /*static*/ void dump_die (struct die_info *, int max_level);
1771
1772 static void store_in_ref_table (struct die_info *,
1773 struct dwarf2_cu *);
1774
1775 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1776
1777 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1778
1779 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1780 const struct attribute *,
1781 struct dwarf2_cu **);
1782
1783 static struct die_info *follow_die_ref (struct die_info *,
1784 const struct attribute *,
1785 struct dwarf2_cu **);
1786
1787 static struct die_info *follow_die_sig (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu **);
1790
1791 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794 static struct type *get_DW_AT_signature_type (struct die_info *,
1795 const struct attribute *,
1796 struct dwarf2_cu *);
1797
1798 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1799
1800 static void read_signatured_type (struct signatured_type *);
1801
1802 static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
1806 /* memory allocation interface */
1807
1808 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1809
1810 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1811
1812 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1813
1814 static int attr_form_is_block (const struct attribute *);
1815
1816 static int attr_form_is_section_offset (const struct attribute *);
1817
1818 static int attr_form_is_constant (const struct attribute *);
1819
1820 static int attr_form_is_ref (const struct attribute *);
1821
1822 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
1824 const struct attribute *attr);
1825
1826 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1827 struct symbol *sym,
1828 struct dwarf2_cu *cu,
1829 int is_block);
1830
1831 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
1834
1835 static hashval_t partial_die_hash (const void *item);
1836
1837 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
1839 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
1842
1843 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
1846
1847 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1850
1851 static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1853
1854 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1859 enum language);
1860
1861 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
1863
1864 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
1867 static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
1870 static void dwarf2_mark (struct dwarf2_cu *);
1871
1872 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
1874 static struct type *get_die_type_at_offset (sect_offset,
1875 struct dwarf2_per_cu_data *);
1876
1877 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1878
1879 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
1882 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 /* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889 class dwarf2_queue_guard
1890 {
1891 public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919 };
1920
1921 /* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924 struct file_and_directory
1925 {
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938 };
1939
1940 static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
1942
1943 static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
1946 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947 enum class rcuh_kind { COMPILE, TYPE };
1948
1949 static const gdb_byte *read_and_check_comp_unit_head
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
1952 struct dwarf2_section_info *section,
1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1954 rcuh_kind section_kind);
1955
1956 static void init_cutu_and_read_dies
1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1958 int use_existing_cu, int keep, bool skip_partial,
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
1961 static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
1964
1965 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1966
1967 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
1969 static struct dwo_unit *lookup_dwo_unit_in_dwp
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
1972 ULONGEST signature, int is_debug_types);
1973
1974 static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1976
1977 static struct dwo_unit *lookup_dwo_comp_unit
1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1979
1980 static struct dwo_unit *lookup_dwo_type_unit
1981 (struct signatured_type *, const char *, const char *);
1982
1983 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
1985 static void free_dwo_file (struct dwo_file *);
1986
1987 /* A unique_ptr helper to free a dwo_file. */
1988
1989 struct dwo_file_deleter
1990 {
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
1995 };
1996
1997 /* A unique pointer to a dwo_file. */
1998
1999 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
2001 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2002
2003 static void check_producer (struct dwarf2_cu *cu);
2004
2005 static void free_line_header_voidp (void *arg);
2006 \f
2007 /* Various complaints about symbol reading that don't abort the process. */
2008
2009 static void
2010 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011 {
2012 complaint (_("statement list doesn't fit in .debug_line section"));
2013 }
2014
2015 static void
2016 dwarf2_debug_line_missing_file_complaint (void)
2017 {
2018 complaint (_(".debug_line section has line data without a file"));
2019 }
2020
2021 static void
2022 dwarf2_debug_line_missing_end_sequence_complaint (void)
2023 {
2024 complaint (_(".debug_line section has line "
2025 "program sequence without an end"));
2026 }
2027
2028 static void
2029 dwarf2_complex_location_expr_complaint (void)
2030 {
2031 complaint (_("location expression too complex"));
2032 }
2033
2034 static void
2035 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037 {
2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2039 arg1, arg2, arg3);
2040 }
2041
2042 static void
2043 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044 {
2045 complaint (_("debug info runs off end of %s section"
2046 " [in module %s]"),
2047 get_section_name (section),
2048 get_section_file_name (section));
2049 }
2050
2051 static void
2052 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053 {
2054 complaint (_("macro debug info contains a "
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057 }
2058
2059 static void
2060 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061 {
2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2063 arg1, arg2);
2064 }
2065
2066 /* Hash function for line_header_hash. */
2067
2068 static hashval_t
2069 line_header_hash (const struct line_header *ofs)
2070 {
2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2072 }
2073
2074 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076 static hashval_t
2077 line_header_hash_voidp (const void *item)
2078 {
2079 const struct line_header *ofs = (const struct line_header *) item;
2080
2081 return line_header_hash (ofs);
2082 }
2083
2084 /* Equality function for line_header_hash. */
2085
2086 static int
2087 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088 {
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2091
2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094 }
2095
2096 \f
2097
2098 /* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101 static CORE_ADDR
2102 attr_value_as_address (struct attribute *attr)
2103 {
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126 }
2127
2128 /* See declaration. */
2129
2130 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133 {
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141 }
2142
2143 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
2166
2167 /* Everything else should be on the objfile obstack. */
2168 }
2169
2170 /* See declaration. */
2171
2172 void
2173 dwarf2_per_objfile::free_cached_comp_units ()
2174 {
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
2181 delete per_cu->cu;
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185 }
2186
2187 /* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190 class free_cached_comp_units
2191 {
2192 public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206 private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209 };
2210
2211 /* Try to locate the sections we need for DWARF 2 debugging
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
2215
2216 int
2217 dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
2219 {
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
2227 {
2228 /* Initialize per-objfile state. */
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2233 }
2234 return (!dwarf2_per_objfile->info.is_virtual
2235 && dwarf2_per_objfile->info.s.section != NULL
2236 && !dwarf2_per_objfile->abbrev.is_virtual
2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
2238 }
2239
2240 /* Return the containing section of virtual section SECTION. */
2241
2242 static struct dwarf2_section_info *
2243 get_containing_section (const struct dwarf2_section_info *section)
2244 {
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
2247 }
2248
2249 /* Return the bfd owner of SECTION. */
2250
2251 static struct bfd *
2252 get_section_bfd_owner (const struct dwarf2_section_info *section)
2253 {
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
2259 return section->s.section->owner;
2260 }
2261
2262 /* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265 static asection *
2266 get_section_bfd_section (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section;
2274 }
2275
2276 /* Return the name of SECTION. */
2277
2278 static const char *
2279 get_section_name (const struct dwarf2_section_info *section)
2280 {
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285 }
2286
2287 /* Return the name of the file SECTION is in. */
2288
2289 static const char *
2290 get_section_file_name (const struct dwarf2_section_info *section)
2291 {
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295 }
2296
2297 /* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300 static int
2301 get_section_id (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308 }
2309
2310 /* Return the flags of SECTION.
2311 SECTION (or containing section if this is a virtual section) must exist. */
2312
2313 static int
2314 get_section_flags (const struct dwarf2_section_info *section)
2315 {
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320 }
2321
2322 /* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
2324
2325 static int
2326 section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
2328 {
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
2336 }
2337
2338 /* See declaration. */
2339
2340 void
2341 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
2343 {
2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
2345
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
2349 else if (section_is_p (sectp->name, &names.info))
2350 {
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
2353 }
2354 else if (section_is_p (sectp->name, &names.abbrev))
2355 {
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
2358 }
2359 else if (section_is_p (sectp->name, &names.line))
2360 {
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
2363 }
2364 else if (section_is_p (sectp->name, &names.loc))
2365 {
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
2368 }
2369 else if (section_is_p (sectp->name, &names.loclists))
2370 {
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
2373 }
2374 else if (section_is_p (sectp->name, &names.macinfo))
2375 {
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
2378 }
2379 else if (section_is_p (sectp->name, &names.macro))
2380 {
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
2383 }
2384 else if (section_is_p (sectp->name, &names.str))
2385 {
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
2388 }
2389 else if (section_is_p (sectp->name, &names.line_str))
2390 {
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
2393 }
2394 else if (section_is_p (sectp->name, &names.addr))
2395 {
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
2398 }
2399 else if (section_is_p (sectp->name, &names.frame))
2400 {
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.eh_frame))
2405 {
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
2408 }
2409 else if (section_is_p (sectp->name, &names.ranges))
2410 {
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
2413 }
2414 else if (section_is_p (sectp->name, &names.rnglists))
2415 {
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
2418 }
2419 else if (section_is_p (sectp->name, &names.types))
2420 {
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
2424 type_section.s.section = sectp;
2425 type_section.size = bfd_get_section_size (sectp);
2426
2427 VEC_safe_push (dwarf2_section_info_def, this->types,
2428 &type_section);
2429 }
2430 else if (section_is_p (sectp->name, &names.gdb_index))
2431 {
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
2445
2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2447 && bfd_section_vma (abfd, sectp) == 0)
2448 this->has_section_at_zero = true;
2449 }
2450
2451 /* A helper function that decides whether a section is empty,
2452 or not present. */
2453
2454 static int
2455 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2456 {
2457 if (section->is_virtual)
2458 return section->size == 0;
2459 return section->s.section == NULL || section->size == 0;
2460 }
2461
2462 /* See dwarf2read.h. */
2463
2464 void
2465 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2466 {
2467 asection *sectp;
2468 bfd *abfd;
2469 gdb_byte *buf, *retbuf;
2470
2471 if (info->readin)
2472 return;
2473 info->buffer = NULL;
2474 info->readin = 1;
2475
2476 if (dwarf2_section_empty_p (info))
2477 return;
2478
2479 sectp = get_section_bfd_section (info);
2480
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
2509 {
2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2511 return;
2512 }
2513
2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 info->buffer = buf;
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
2538 }
2539
2540 /* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547 static bfd_size_type
2548 dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550 {
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554 }
2555
2556 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2557 SECTION_NAME. */
2558
2559 void
2560 dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
2562 asection **sectp, const gdb_byte **bufp,
2563 bfd_size_type *sizep)
2564 {
2565 struct dwarf2_per_objfile *data
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
2568 struct dwarf2_section_info *info;
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
2590
2591 dwarf2_read_section (objfile, info);
2592
2593 *sectp = get_section_bfd_section (info);
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596 }
2597
2598 /* A helper function to find the sections for a .dwz file. */
2599
2600 static void
2601 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602 {
2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
2609 dwz_file->abbrev.s.section = sectp;
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
2614 dwz_file->info.s.section = sectp;
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
2619 dwz_file->str.s.section = sectp;
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
2624 dwz_file->line.s.section = sectp;
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
2629 dwz_file->macro.s.section = sectp;
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
2634 dwz_file->gdb_index.s.section = sectp;
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
2642 }
2643
2644 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
2647
2648 static struct dwz_file *
2649 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2650 {
2651 const char *filename;
2652 bfd_size_type buildid_len_arg;
2653 size_t buildid_len;
2654 bfd_byte *buildid;
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
2657 return dwarf2_per_objfile->dwz_file.get ();
2658
2659 bfd_set_error (bfd_error_no_error);
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2672
2673 buildid_len = (size_t) buildid_len_arg;
2674
2675 filename = data.get ();
2676
2677 std::string abs_storage;
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2682
2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2684 filename = abs_storage.c_str ();
2685 }
2686
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2690 if (dwz_bfd != NULL)
2691 {
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
2694 }
2695
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
2705
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
2708
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
2713 }
2714 \f
2715 /* DWARF quick_symbols_functions support. */
2716
2717 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722 struct quick_file_names
2723 {
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737 };
2738
2739 /* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742 struct dwarf2_per_cu_quick_data
2743 {
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
2751 struct compunit_symtab *compunit_symtab;
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760 };
2761
2762 /* Utility hash function for a stmt_list_hash. */
2763
2764 static hashval_t
2765 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766 {
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2771 v += to_underlying (stmt_list_hash->line_sect_off);
2772 return v;
2773 }
2774
2775 /* Utility equality function for a stmt_list_hash. */
2776
2777 static int
2778 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780 {
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
2787 return lhs->line_sect_off == rhs->line_sect_off;
2788 }
2789
2790 /* Hash function for a quick_file_names. */
2791
2792 static hashval_t
2793 hash_file_name_entry (const void *e)
2794 {
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
2797
2798 return hash_stmt_list_entry (&file_data->hash);
2799 }
2800
2801 /* Equality function for a quick_file_names. */
2802
2803 static int
2804 eq_file_name_entry (const void *a, const void *b)
2805 {
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2808
2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2810 }
2811
2812 /* Delete function for a quick_file_names. */
2813
2814 static void
2815 delete_file_name_entry (void *e)
2816 {
2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829 }
2830
2831 /* Create a quick_file_names hash table. */
2832
2833 static htab_t
2834 create_quick_file_names_table (unsigned int nr_initial_entries)
2835 {
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839 }
2840
2841 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845 static void
2846 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2847 {
2848 if (per_cu->is_debug_types)
2849 load_full_type_unit (per_cu);
2850 else
2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2852
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2857 }
2858
2859 /* Read in the symbols for PER_CU. */
2860
2861 static void
2862 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2863 {
2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2865
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
2875
2876 if (dwarf2_per_objfile->using_index
2877 ? per_cu->v.quick->compunit_symtab == NULL
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
2881 load_cu (per_cu, skip_partial);
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
2887 && per_cu->cu != NULL
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
2893 queue_and_load_all_dwo_tus (per_cu);
2894 }
2895
2896 process_queue (dwarf2_per_objfile);
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
2900 age_cached_comp_units (dwarf2_per_objfile);
2901 }
2902
2903 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2906
2907 static struct compunit_symtab *
2908 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2909 {
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
2912 gdb_assert (dwarf2_per_objfile->using_index);
2913 if (!per_cu->v.quick->compunit_symtab)
2914 {
2915 free_cached_comp_units freer (dwarf2_per_objfile);
2916 scoped_restore decrementer = increment_reading_symtab ();
2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
2918 process_cu_includes (dwarf2_per_objfile);
2919 }
2920
2921 return per_cu->v.quick->compunit_symtab;
2922 }
2923
2924 /* See declaration. */
2925
2926 dwarf2_per_cu_data *
2927 dwarf2_per_objfile::get_cutu (int index)
2928 {
2929 if (index >= this->all_comp_units.size ())
2930 {
2931 index -= this->all_comp_units.size ();
2932 gdb_assert (index < this->all_type_units.size ());
2933 return &this->all_type_units[index]->per_cu;
2934 }
2935
2936 return this->all_comp_units[index];
2937 }
2938
2939 /* See declaration. */
2940
2941 dwarf2_per_cu_data *
2942 dwarf2_per_objfile::get_cu (int index)
2943 {
2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2945
2946 return this->all_comp_units[index];
2947 }
2948
2949 /* See declaration. */
2950
2951 signatured_type *
2952 dwarf2_per_objfile::get_tu (int index)
2953 {
2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2955
2956 return this->all_type_units[index];
2957 }
2958
2959 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963 static dwarf2_per_cu_data *
2964 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968 {
2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981 }
2982
2983 /* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2985
2986 static void
2987 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
2990 int is_dwz)
2991 {
2992 for (offset_type i = 0; i < n_elements; i += 2)
2993 {
2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2999 cu_list += 2 * 8;
3000
3001 dwarf2_per_cu_data *per_cu
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3005 }
3006 }
3007
3008 /* Read the CU list from the mapped index, and use it to create all
3009 the CU objects for this objfile. */
3010
3011 static void
3012 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015 {
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
3019
3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3021 &dwarf2_per_objfile->info, 0);
3022
3023 if (dwz_elements == 0)
3024 return;
3025
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3028 &dwz->info, 1);
3029 }
3030
3031 /* Create the signatured type hash table from the index. */
3032
3033 static void
3034 create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
3039 {
3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
3041
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3044
3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3046
3047 for (offset_type i = 0; i < elements; i += 3)
3048 {
3049 struct signatured_type *sig_type;
3050 ULONGEST signature;
3051 void **slot;
3052 cu_offset type_offset_in_tu;
3053
3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3064 struct signatured_type);
3065 sig_type->signature = signature;
3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3067 sig_type->per_cu.is_debug_types = 1;
3068 sig_type->per_cu.section = section;
3069 sig_type->per_cu.sect_off = sect_off;
3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3071 sig_type->per_cu.v.quick
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
3077
3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3079 }
3080
3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
3082 }
3083
3084 /* Create the signatured type hash table from .debug_names. */
3085
3086 static void
3087 create_signatured_type_table_from_debug_names
3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092 {
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
3106 void **slot;
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139 }
3140
3141 /* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
3143
3144 static void
3145 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
3147 {
3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3150 const gdb_byte *iter, *end;
3151 struct addrmap *mutable_map;
3152 CORE_ADDR baseaddr;
3153
3154 auto_obstack temp_obstack;
3155
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
3172
3173 if (lo > hi)
3174 {
3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3176 hex_string (lo), hex_string (hi));
3177 continue;
3178 }
3179
3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3181 {
3182 complaint (_(".gdb_index address table has invalid CU number %u"),
3183 (unsigned) cu_index);
3184 continue;
3185 }
3186
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3189 addrmap_set_empty (mutable_map, lo, hi - 1,
3190 dwarf2_per_objfile->get_cu (cu_index));
3191 }
3192
3193 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3194 &objfile->objfile_obstack);
3195 }
3196
3197 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200 static void
3201 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3202 struct dwarf2_section_info *section)
3203 {
3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3218 {
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3355 &objfile->objfile_obstack);
3356 }
3357
3358 /* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
3362
3363 static bool
3364 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366 {
3367 offset_type hash;
3368 offset_type slot, step;
3369 int (*cmp) (const char *, const char *);
3370
3371 gdb::unique_xmalloc_ptr<char> without_params;
3372 if (current_language->la_language == language_cplus
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
3378
3379 if (strchr (name, '(') != NULL)
3380 {
3381 without_params = cp_remove_params (name);
3382
3383 if (without_params != NULL)
3384 name = without_params.get ();
3385 }
3386 }
3387
3388 /* Index version 4 did not support case insensitive searches. But the
3389 indices for case insensitive languages are built in lowercase, therefore
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3399
3400 for (;;)
3401 {
3402 const char *str;
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
3406 return false;
3407
3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3409 if (!cmp (name, str))
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
3412 + MAYBE_SWAP (bucket.vec));
3413 return true;
3414 }
3415
3416 slot = (slot + step) & (index->symbol_table.size () - 1);
3417 }
3418 }
3419
3420 /* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
3422 it is used for error reporting. DEPRECATED_OK is true if it is
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
3429 Returns true if all went well, false otherwise. */
3430
3431 static bool
3432 read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441 {
3442 const gdb_byte *addr = &buffer[0];
3443
3444 /* Version check. */
3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 int i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Callback types for dwarf2_read_gdb_index. */
3532
3533 typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536 typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
3540 /* Read .gdb_index. If everything went ok, initialize the "quick"
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543 static int
3544 dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3548 {
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3551 struct dwz_file *dwz;
3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
3553
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
3566 return 0;
3567
3568 /* Don't use the index if it's empty. */
3569 if (map->symbol_table.empty ())
3570 return 0;
3571
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3575 if (dwz != NULL)
3576 {
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
3602
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
3617 }
3618
3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3620
3621 dwarf2_per_objfile->index_table = std::move (map);
3622 dwarf2_per_objfile->using_index = 1;
3623 dwarf2_per_objfile->quick_file_names_table =
3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3625
3626 return 1;
3627 }
3628
3629 /* die_reader_func for dw2_get_file_names. */
3630
3631 static void
3632 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3633 const gdb_byte *info_ptr,
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
3637 {
3638 struct dwarf2_cu *cu = reader->cu;
3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
3643 struct dwarf2_per_cu_data *lh_cu;
3644 struct attribute *attr;
3645 int i;
3646 void **slot;
3647 struct quick_file_names *qfn;
3648
3649 gdb_assert (! this_cu->is_debug_types);
3650
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
3659 lh_cu = this_cu;
3660 slot = NULL;
3661
3662 line_header_up lh;
3663 sect_offset line_offset {};
3664
3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3666 if (attr)
3667 {
3668 struct quick_file_names find_entry;
3669
3670 line_offset = (sect_offset) DW_UNSND (attr);
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
3674 find_entry.hash.dwo_unit = cu->dwo_unit;
3675 find_entry.hash.line_sect_off = line_offset;
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3681 return;
3682 }
3683
3684 lh = dwarf_decode_line_header (line_offset, cu);
3685 }
3686 if (lh == NULL)
3687 {
3688 lh_cu->v.quick->no_file_data = 1;
3689 return;
3690 }
3691
3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3693 qfn->hash.dwo_unit = cu->dwo_unit;
3694 qfn->hash.line_sect_off = line_offset;
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
3697
3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3699
3700 qfn->num_file_names = lh->file_names.size ();
3701 qfn->file_names =
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3705 qfn->real_names = NULL;
3706
3707 lh_cu->v.quick->file_names = qfn;
3708 }
3709
3710 /* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713 static struct quick_file_names *
3714 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3715 {
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3720
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
3732 }
3733
3734 /* A helper for the "quick" functions which computes and caches the
3735 real path for a given file name from the line table. */
3736
3737 static const char *
3738 dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
3740 {
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3743 qfn->num_file_names, const char *);
3744
3745 if (qfn->real_names[index] == NULL)
3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3747
3748 return qfn->real_names[index];
3749 }
3750
3751 static struct symtab *
3752 dw2_find_last_source_symtab (struct objfile *objfile)
3753 {
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3758
3759 if (cust == NULL)
3760 return NULL;
3761
3762 return compunit_primary_filetab (cust);
3763 }
3764
3765 /* Traversal function for dw2_forget_cached_source_info. */
3766
3767 static int
3768 dw2_free_cached_file_names (void **slot, void *info)
3769 {
3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3771
3772 if (file_data->real_names)
3773 {
3774 int i;
3775
3776 for (i = 0; i < file_data->num_file_names; ++i)
3777 {
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
3780 }
3781 }
3782
3783 return 1;
3784 }
3785
3786 static void
3787 dw2_forget_cached_source_info (struct objfile *objfile)
3788 {
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
3794 }
3795
3796 /* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799 static int
3800 dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
3802 const char *name, const char *real_path,
3803 gdb::function_view<bool (symtab *)> callback)
3804 {
3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3806
3807 /* Don't visit already-expanded CUs. */
3808 if (per_cu->v.quick->compunit_symtab)
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
3813 dw2_instantiate_symtab (per_cu, false);
3814
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
3817 }
3818
3819 /* Implementation of the map_symtabs_matching_filename method. */
3820
3821 static bool
3822 dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
3825 {
3826 const char *name_basename = lbasename (name);
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
3829
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
3832
3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3834 {
3835 /* We only need to look at symtabs not already expanded. */
3836 if (per_cu->v.quick->compunit_symtab)
3837 continue;
3838
3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
3840 if (file_data == NULL)
3841 continue;
3842
3843 for (int j = 0; j < file_data->num_file_names; ++j)
3844 {
3845 const char *this_name = file_data->file_names[j];
3846 const char *this_real_name;
3847
3848 if (compare_filenames_for_search (this_name, name))
3849 {
3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3851 callback))
3852 return true;
3853 continue;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870
3871 if (real_path != NULL)
3872 {
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
3875 if (this_real_name != NULL
3876 && FILENAME_CMP (real_path, this_real_name) == 0)
3877 {
3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3879 callback))
3880 return true;
3881 continue;
3882 }
3883 }
3884 }
3885 }
3886
3887 return false;
3888 }
3889
3890 /* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892 struct dw2_symtab_iterator
3893 {
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
3915 };
3916
3917 /* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3920
3921 static void
3922 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928 {
3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
3934 iter->global_seen = 0;
3935
3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946 }
3947
3948 /* Return the next matching CU or NULL if there are no more. */
3949
3950 static struct dwarf2_per_cu_data *
3951 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952 {
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
3970 (dwarf2_per_objfile->index_table->version >= 7
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3973 /* Don't crash on bad data. */
3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3975 + dwarf2_per_objfile->all_type_units.size ()))
3976 {
3977 complaint (_(".gdb_index entry has bad CU index"
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3980 continue;
3981 }
3982
3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3984
3985 /* Skip if already read in. */
3986 if (per_cu->v.quick->compunit_symtab)
3987 continue;
3988
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032 }
4033
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
4037 {
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4041
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4046
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4048
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4055
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
4059
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4063
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
4070
4071 /* Keep looking through other CUs. */
4072 }
4073
4074 return stab_best;
4075 }
4076
4077 static void
4078 dw2_print_stats (struct objfile *objfile)
4079 {
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4084 int count = 0;
4085
4086 for (int i = 0; i < total; ++i)
4087 {
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4089
4090 if (!per_cu->v.quick->compunit_symtab)
4091 ++count;
4092 }
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 }
4096
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
4102 static void
4103 dw2_dump (struct objfile *objfile)
4104 {
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4118 }
4119
4120 static void
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123 {
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4126
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4129
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
4133
4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4135 dw2_instantiate_symtab (per_cu, false);
4136
4137 }
4138
4139 static void
4140 dw2_expand_all_symtabs (struct objfile *objfile)
4141 {
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4145 + dwarf2_per_objfile->all_type_units.size ());
4146
4147 for (int i = 0; i < total_units; ++i)
4148 {
4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4150
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
4157 }
4158 }
4159
4160 static void
4161 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
4163 {
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4173 {
4174 /* We only need to look at symtabs not already expanded. */
4175 if (per_cu->v.quick->compunit_symtab)
4176 continue;
4177
4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
4179 if (file_data == NULL)
4180 continue;
4181
4182 for (int j = 0; j < file_data->num_file_names; ++j)
4183 {
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
4187 {
4188 dw2_instantiate_symtab (per_cu, false);
4189 break;
4190 }
4191 }
4192 }
4193 }
4194
4195 static void
4196 dw2_map_matching_symbols (struct objfile *objfile,
4197 const char * name, domain_enum domain,
4198 int global,
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
4201 void *data, symbol_name_match_type match,
4202 symbol_compare_ftype *ordered_compare)
4203 {
4204 /* Currently unimplemented; used for Ada. The function can be called if the
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
4207 }
4208
4209 /* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232 */
4233 class gdb_index_symbol_name_matcher
4234 {
4235 public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243 private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250 };
4251
4252 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255 {
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
4268 symbol_name_matcher_ftype *name_matcher
4269 = get_symbol_name_matcher (lang, m_lookup_name);
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
4283 }
4284 }
4285
4286 bool
4287 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288 {
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294 }
4295
4296 /* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301 static std::string
4302 make_sort_after_prefix_name (const char *search_name)
4303 {
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367 }
4368
4369 /* See declaration. */
4370
4371 std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
4373 mapped_index_base::find_name_components_bounds
4374 (const lookup_name_info &lookup_name_without_params) const
4375 {
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4378
4379 const char *cplus
4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4381
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
4417 if (lookup_name_without_params.completion_mode ())
4418 {
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
4432 return end;
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
4440 return {lower, upper};
4441 }
4442
4443 /* See declaration. */
4444
4445 void
4446 mapped_index_base::build_name_components ()
4447 {
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
4464 {
4465 if (this->symbol_name_slot_invalid (idx))
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501 }
4502
4503 /* Helper for dw2_expand_symtabs_matching that works with a
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
4508 symbol's index in the mapped_index_base symbol table. */
4509
4510 static void
4511 dw2_expand_symtabs_matching_symbol
4512 (mapped_index_base &index,
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517 {
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
4540 matches.reserve (std::distance (bounds.first, bounds.second));
4541
4542 for (; bounds.first != bounds.second; ++bounds.first)
4543 {
4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4548 continue;
4549
4550 matches.push_back (bounds.first->idx);
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569 }
4570
4571 #if GDB_SELF_TEST
4572
4573 namespace selftests { namespace dw2_expand_symtabs_matching {
4574
4575 /* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579 class mock_mapped_index : public mapped_index_base
4580 {
4581 public:
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
4584 {}
4585
4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4587
4588 /* Return the number of names in the symbol table. */
4589 size_t symbol_name_count () const override
4590 {
4591 return m_symbol_table.size ();
4592 }
4593
4594 /* Get the name of the symbol at IDX in the symbol table. */
4595 const char *symbol_name_at (offset_type idx) const override
4596 {
4597 return m_symbol_table[idx];
4598 }
4599
4600 private:
4601 gdb::array_view<const char *> m_symbol_table;
4602 };
4603
4604 /* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607 static const char *
4608 string_or_null (const char *str)
4609 {
4610 return str != NULL ? str : "<null>";
4611 }
4612
4613 /* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620 static bool
4621 check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626 {
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
4650 const char *matched_name = mock_index.symbol_name_at (idx);
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664 }
4665
4666 /* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668 static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
4679
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702 #define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708 };
4709
4710 /* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
4713
4714 static bool
4715 check_find_bounds_finds (mapped_index_base &index,
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718 {
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737 }
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
4742 static void
4743 test_mapped_index_find_name_component_bounds ()
4744 {
4745 mock_mapped_index mock_index (test_symbols);
4746
4747 mock_index.build_name_components ();
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
4755 };
4756
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
4768 SELF_CHECK (check_find_bounds_finds (mock_index,
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
4774 SELF_CHECK (check_find_bounds_finds (mock_index,
4775 "\377\377", expected_syms2));
4776 }
4777 }
4778
4779 /* Test dw2_expand_symtabs_matching_symbol. */
4780
4781 static void
4782 test_dw2_expand_symtabs_matching_symbol ()
4783 {
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793 #define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
4979 SELF_CHECK (!any_mismatch);
4980
4981 #undef EXPECT
4982 #undef CHECK_MATCH
4983 }
4984
4985 static void
4986 run_test ()
4987 {
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990 }
4991
4992 }} // namespace selftests::dw2_expand_symtabs_matching
4993
4994 #endif /* GDB_SELF_TEST */
4995
4996 /* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001 static void
5002 dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006 {
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
5012 dw2_instantiate_symtab (per_cu, false);
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019 }
5020
5021 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025 static void
5026 dw2_expand_marked_cus
5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031 {
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
5034 mapped_index &index = *dwarf2_per_objfile->index_table;
5035
5036 vec = (offset_type *) (index.constant_pool
5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
5057 {
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
5063
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
5068 {
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5075 continue;
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
5083 }
5084 }
5085
5086 /* Don't crash on bad data. */
5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5088 + dwarf2_per_objfile->all_type_units.size ()))
5089 {
5090 complaint (_(".gdb_index entry has bad CU index"
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
5093 continue;
5094 }
5095
5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
5099 }
5100 }
5101
5102 /* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
5106 static void
5107 dw_expand_symtabs_matching_file_matcher
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5110 {
5111 if (file_matcher == NULL)
5112 return;
5113
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
5122
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
5125
5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5127 {
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
5148 for (int j = 0; j < file_data->num_file_names; ++j)
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
5177 *slot = file_data;
5178 }
5179 }
5180
5181 static void
5182 dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189 {
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5206 expansion_notify, kind);
5207 });
5208 }
5209
5210 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213 static struct compunit_symtab *
5214 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216 {
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236 }
5237
5238 static struct compunit_symtab *
5239 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244 {
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
5248 if (!objfile->psymtabs_addrmap)
5249 return NULL;
5250
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
5253 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5254 pc - baseaddr);
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268 }
5269
5270 static void
5271 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273 {
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5290 {
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5302 {
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
5308 if (file_data == NULL)
5309 continue;
5310
5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335 }
5336
5337 static int
5338 dw2_has_symbols (struct objfile *objfile)
5339 {
5340 return 1;
5341 }
5342
5343 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344 {
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360 };
5361
5362 /* DWARF-5 debug_names reader. */
5363
5364 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367 /* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373 static bool
5374 read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378 {
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548 }
5549
5550 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553 static void
5554 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
5557 bool is_dwz)
5558 {
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
5576 dwarf2_per_cu_data *per_cu
5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5578 sect_off_prev, length);
5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583 }
5584
5585 /* Read the CU list from the mapped index, and use it to create all
5586 the CU objects for this dwarf2_per_objfile. */
5587
5588 static void
5589 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592 {
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5595
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
5598 false /* is_dwz */);
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5605 true /* is_dwz */);
5606 }
5607
5608 /* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611 static bool
5612 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5613 {
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
5621 *map))
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
5625 if (map->name_count == 0)
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5644
5645 if (map->tu_count != 0)
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5657 }
5658
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
5661
5662 dwarf2_per_objfile->debug_names_table = std::move (map);
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5666
5667 return true;
5668 }
5669
5670 /* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673 class dw2_debug_names_iterator
5674 {
5675 public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697 private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721 };
5722
5723 const char *
5724 mapped_debug_names::namei_to_name (uint32_t namei) const
5725 {
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5733 }
5734
5735 /* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739 const gdb_byte *
5740 dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742 {
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5778 "[in module %s]"),
5779 namei, map.name_count,
5780 objfile_name (map.dwarf2_per_objfile->objfile));
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797 #if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
5800 complaint (_("Wrong .debug_names hash for string at index %u "
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805 #endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821 }
5822
5823 const gdb_byte *
5824 dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826 {
5827 if (namei >= map.name_count)
5828 {
5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5830 "[in module %s]"),
5831 namei, map.name_count,
5832 objfile_name (map.dwarf2_per_objfile->objfile));
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842
5843 /* See dw2_debug_names_iterator. */
5844
5845 dwarf2_per_cu_data *
5846 dw2_debug_names_iterator::next ()
5847 {
5848 if (m_addr == NULL)
5849 return NULL;
5850
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
5867 "[in module %s]"),
5868 pulongest (abbrev), objfile_name (objfile));
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5892 dwarf_form_name (attr.form),
5893 objfile_name (objfile));
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5901 {
5902 complaint (_(".debug_names entry has bad CU index %s"
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
5909 break;
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5913 {
5914 complaint (_(".debug_names entry has bad TU index %s"
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5921 break;
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
5993 {
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
5996 {
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
6010 }
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
6024 }
6025
6026 return per_cu;
6027 }
6028
6029 static struct compunit_symtab *
6030 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
6032 {
6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
6036
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
6039 {
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
6044
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
6047
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6056
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
6060
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
6064
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
6071
6072 /* Keep looking through other CUs. */
6073 }
6074
6075 return stab_best;
6076 }
6077
6078 /* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
6081
6082 static void
6083 dw2_debug_names_dump (struct objfile *objfile)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
6095 }
6096
6097 static void
6098 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
6100 {
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
6103
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
6106 {
6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6108
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6112
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
6115 dw2_instantiate_symtab (per_cu, false);
6116 }
6117 }
6118
6119 static void
6120 dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
6134
6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6136
6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6138
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
6142 {
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
6146
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
6151 });
6152 }
6153
6154 const struct quick_symbol_functions dwarf2_debug_names_functions =
6155 {
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
6159 dw2_map_symtabs_matching_filename,
6160 dw2_debug_names_lookup_symbol,
6161 dw2_print_stats,
6162 dw2_debug_names_dump,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176 template <typename T>
6177 static gdb::array_view<const gdb_byte>
6178 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179 {
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
6192 /* dwarf2_section_info::size is a bfd_size_type, while
6193 gdb::array_view works with size_t. On 32-bit hosts, with
6194 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6195 is 32-bit. So we need an explicit narrowing conversion here.
6196 This is fine, because it's impossible to allocate or mmap an
6197 array/buffer larger than what size_t can represent. */
6198 return gdb::make_array_view (section->buffer, section->size);
6199 }
6200
6201 /* Lookup the index cache for the contents of the index associated to
6202 DWARF2_OBJ. */
6203
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6206 {
6207 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6208 if (build_id == nullptr)
6209 return {};
6210
6211 return global_index_cache.lookup_gdb_index (build_id,
6212 &dwarf2_obj->index_cache_res);
6213 }
6214
6215 /* Same as the above, but for DWZ. */
6216
6217 static gdb::array_view<const gdb_byte>
6218 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6219 {
6220 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6221 if (build_id == nullptr)
6222 return {};
6223
6224 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6225 }
6226
6227 /* See symfile.h. */
6228
6229 bool
6230 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 /* If we're about to read full symbols, don't bother with the
6236 indices. In this case we also don't care if some other debug
6237 format is making psymtabs, because they are all about to be
6238 expanded anyway. */
6239 if ((objfile->flags & OBJF_READNOW))
6240 {
6241 dwarf2_per_objfile->using_index = 1;
6242 create_all_comp_units (dwarf2_per_objfile);
6243 create_all_type_units (dwarf2_per_objfile);
6244 dwarf2_per_objfile->quick_file_names_table
6245 = create_quick_file_names_table
6246 (dwarf2_per_objfile->all_comp_units.size ());
6247
6248 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6249 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6250 {
6251 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6252
6253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6254 struct dwarf2_per_cu_quick_data);
6255 }
6256
6257 /* Return 1 so that gdb sees the "quick" functions. However,
6258 these functions will be no-ops because we will have expanded
6259 all symtabs. */
6260 *index_kind = dw_index_kind::GDB_INDEX;
6261 return true;
6262 }
6263
6264 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6265 {
6266 *index_kind = dw_index_kind::DEBUG_NAMES;
6267 return true;
6268 }
6269
6270 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6271 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6272 get_gdb_index_contents_from_section<dwz_file>))
6273 {
6274 *index_kind = dw_index_kind::GDB_INDEX;
6275 return true;
6276 }
6277
6278 /* ... otherwise, try to find the index in the index cache. */
6279 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6280 get_gdb_index_contents_from_cache,
6281 get_gdb_index_contents_from_cache_dwz))
6282 {
6283 global_index_cache.hit ();
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 global_index_cache.miss ();
6289 return false;
6290 }
6291
6292 \f
6293
6294 /* Build a partial symbol table. */
6295
6296 void
6297 dwarf2_build_psymtabs (struct objfile *objfile)
6298 {
6299 struct dwarf2_per_objfile *dwarf2_per_objfile
6300 = get_dwarf2_per_objfile (objfile);
6301
6302 init_psymbol_list (objfile, 1024);
6303
6304 TRY
6305 {
6306 /* This isn't really ideal: all the data we allocate on the
6307 objfile's obstack is still uselessly kept around. However,
6308 freeing it seems unsafe. */
6309 psymtab_discarder psymtabs (objfile);
6310 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6311 psymtabs.keep ();
6312
6313 /* (maybe) store an index in the cache. */
6314 global_index_cache.store (dwarf2_per_objfile);
6315 }
6316 CATCH (except, RETURN_MASK_ERROR)
6317 {
6318 exception_print (gdb_stderr, except);
6319 }
6320 END_CATCH
6321 }
6322
6323 /* Return the total length of the CU described by HEADER. */
6324
6325 static unsigned int
6326 get_cu_length (const struct comp_unit_head *header)
6327 {
6328 return header->initial_length_size + header->length;
6329 }
6330
6331 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6332
6333 static inline bool
6334 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6335 {
6336 sect_offset bottom = cu_header->sect_off;
6337 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6338
6339 return sect_off >= bottom && sect_off < top;
6340 }
6341
6342 /* Find the base address of the compilation unit for range lists and
6343 location lists. It will normally be specified by DW_AT_low_pc.
6344 In DWARF-3 draft 4, the base address could be overridden by
6345 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6346 compilation units with discontinuous ranges. */
6347
6348 static void
6349 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6350 {
6351 struct attribute *attr;
6352
6353 cu->base_known = 0;
6354 cu->base_address = 0;
6355
6356 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6357 if (attr)
6358 {
6359 cu->base_address = attr_value_as_address (attr);
6360 cu->base_known = 1;
6361 }
6362 else
6363 {
6364 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6365 if (attr)
6366 {
6367 cu->base_address = attr_value_as_address (attr);
6368 cu->base_known = 1;
6369 }
6370 }
6371 }
6372
6373 /* Read in the comp unit header information from the debug_info at info_ptr.
6374 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6375 NOTE: This leaves members offset, first_die_offset to be filled in
6376 by the caller. */
6377
6378 static const gdb_byte *
6379 read_comp_unit_head (struct comp_unit_head *cu_header,
6380 const gdb_byte *info_ptr,
6381 struct dwarf2_section_info *section,
6382 rcuh_kind section_kind)
6383 {
6384 int signed_addr;
6385 unsigned int bytes_read;
6386 const char *filename = get_section_file_name (section);
6387 bfd *abfd = get_section_bfd_owner (section);
6388
6389 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6390 cu_header->initial_length_size = bytes_read;
6391 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6392 info_ptr += bytes_read;
6393 cu_header->version = read_2_bytes (abfd, info_ptr);
6394 if (cu_header->version < 2 || cu_header->version > 5)
6395 error (_("Dwarf Error: wrong version in compilation unit header "
6396 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6397 cu_header->version, filename);
6398 info_ptr += 2;
6399 if (cu_header->version < 5)
6400 switch (section_kind)
6401 {
6402 case rcuh_kind::COMPILE:
6403 cu_header->unit_type = DW_UT_compile;
6404 break;
6405 case rcuh_kind::TYPE:
6406 cu_header->unit_type = DW_UT_type;
6407 break;
6408 default:
6409 internal_error (__FILE__, __LINE__,
6410 _("read_comp_unit_head: invalid section_kind"));
6411 }
6412 else
6413 {
6414 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6415 (read_1_byte (abfd, info_ptr));
6416 info_ptr += 1;
6417 switch (cu_header->unit_type)
6418 {
6419 case DW_UT_compile:
6420 if (section_kind != rcuh_kind::COMPILE)
6421 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6422 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6423 filename);
6424 break;
6425 case DW_UT_type:
6426 section_kind = rcuh_kind::TYPE;
6427 break;
6428 default:
6429 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6430 "(is %d, should be %d or %d) [in module %s]"),
6431 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6432 }
6433
6434 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6435 info_ptr += 1;
6436 }
6437 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6438 cu_header,
6439 &bytes_read);
6440 info_ptr += bytes_read;
6441 if (cu_header->version < 5)
6442 {
6443 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6444 info_ptr += 1;
6445 }
6446 signed_addr = bfd_get_sign_extend_vma (abfd);
6447 if (signed_addr < 0)
6448 internal_error (__FILE__, __LINE__,
6449 _("read_comp_unit_head: dwarf from non elf file"));
6450 cu_header->signed_addr_p = signed_addr;
6451
6452 if (section_kind == rcuh_kind::TYPE)
6453 {
6454 LONGEST type_offset;
6455
6456 cu_header->signature = read_8_bytes (abfd, info_ptr);
6457 info_ptr += 8;
6458
6459 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6460 info_ptr += bytes_read;
6461 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6462 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6463 error (_("Dwarf Error: Too big type_offset in compilation unit "
6464 "header (is %s) [in module %s]"), plongest (type_offset),
6465 filename);
6466 }
6467
6468 return info_ptr;
6469 }
6470
6471 /* Helper function that returns the proper abbrev section for
6472 THIS_CU. */
6473
6474 static struct dwarf2_section_info *
6475 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6476 {
6477 struct dwarf2_section_info *abbrev;
6478 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6479
6480 if (this_cu->is_dwz)
6481 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6482 else
6483 abbrev = &dwarf2_per_objfile->abbrev;
6484
6485 return abbrev;
6486 }
6487
6488 /* Subroutine of read_and_check_comp_unit_head and
6489 read_and_check_type_unit_head to simplify them.
6490 Perform various error checking on the header. */
6491
6492 static void
6493 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6494 struct comp_unit_head *header,
6495 struct dwarf2_section_info *section,
6496 struct dwarf2_section_info *abbrev_section)
6497 {
6498 const char *filename = get_section_file_name (section);
6499
6500 if (to_underlying (header->abbrev_sect_off)
6501 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6502 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6503 "(offset %s + 6) [in module %s]"),
6504 sect_offset_str (header->abbrev_sect_off),
6505 sect_offset_str (header->sect_off),
6506 filename);
6507
6508 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6509 avoid potential 32-bit overflow. */
6510 if (((ULONGEST) header->sect_off + get_cu_length (header))
6511 > section->size)
6512 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6513 "(offset %s + 0) [in module %s]"),
6514 header->length, sect_offset_str (header->sect_off),
6515 filename);
6516 }
6517
6518 /* Read in a CU/TU header and perform some basic error checking.
6519 The contents of the header are stored in HEADER.
6520 The result is a pointer to the start of the first DIE. */
6521
6522 static const gdb_byte *
6523 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6524 struct comp_unit_head *header,
6525 struct dwarf2_section_info *section,
6526 struct dwarf2_section_info *abbrev_section,
6527 const gdb_byte *info_ptr,
6528 rcuh_kind section_kind)
6529 {
6530 const gdb_byte *beg_of_comp_unit = info_ptr;
6531
6532 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6533
6534 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6535
6536 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6537
6538 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6539 abbrev_section);
6540
6541 return info_ptr;
6542 }
6543
6544 /* Fetch the abbreviation table offset from a comp or type unit header. */
6545
6546 static sect_offset
6547 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6548 struct dwarf2_section_info *section,
6549 sect_offset sect_off)
6550 {
6551 bfd *abfd = get_section_bfd_owner (section);
6552 const gdb_byte *info_ptr;
6553 unsigned int initial_length_size, offset_size;
6554 uint16_t version;
6555
6556 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6557 info_ptr = section->buffer + to_underlying (sect_off);
6558 read_initial_length (abfd, info_ptr, &initial_length_size);
6559 offset_size = initial_length_size == 4 ? 4 : 8;
6560 info_ptr += initial_length_size;
6561
6562 version = read_2_bytes (abfd, info_ptr);
6563 info_ptr += 2;
6564 if (version >= 5)
6565 {
6566 /* Skip unit type and address size. */
6567 info_ptr += 2;
6568 }
6569
6570 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6571 }
6572
6573 /* Allocate a new partial symtab for file named NAME and mark this new
6574 partial symtab as being an include of PST. */
6575
6576 static void
6577 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6578 struct objfile *objfile)
6579 {
6580 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6581
6582 if (!IS_ABSOLUTE_PATH (subpst->filename))
6583 {
6584 /* It shares objfile->objfile_obstack. */
6585 subpst->dirname = pst->dirname;
6586 }
6587
6588 subpst->dependencies
6589 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6590 subpst->dependencies[0] = pst;
6591 subpst->number_of_dependencies = 1;
6592
6593 subpst->read_symtab = pst->read_symtab;
6594
6595 /* No private part is necessary for include psymtabs. This property
6596 can be used to differentiate between such include psymtabs and
6597 the regular ones. */
6598 subpst->read_symtab_private = NULL;
6599 }
6600
6601 /* Read the Line Number Program data and extract the list of files
6602 included by the source file represented by PST. Build an include
6603 partial symtab for each of these included files. */
6604
6605 static void
6606 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6607 struct die_info *die,
6608 struct partial_symtab *pst)
6609 {
6610 line_header_up lh;
6611 struct attribute *attr;
6612
6613 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6614 if (attr)
6615 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6616 if (lh == NULL)
6617 return; /* No linetable, so no includes. */
6618
6619 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6620 that we pass in the raw text_low here; that is ok because we're
6621 only decoding the line table to make include partial symtabs, and
6622 so the addresses aren't really used. */
6623 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6624 pst->raw_text_low (), 1);
6625 }
6626
6627 static hashval_t
6628 hash_signatured_type (const void *item)
6629 {
6630 const struct signatured_type *sig_type
6631 = (const struct signatured_type *) item;
6632
6633 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6634 return sig_type->signature;
6635 }
6636
6637 static int
6638 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6639 {
6640 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6641 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6642
6643 return lhs->signature == rhs->signature;
6644 }
6645
6646 /* Allocate a hash table for signatured types. */
6647
6648 static htab_t
6649 allocate_signatured_type_table (struct objfile *objfile)
6650 {
6651 return htab_create_alloc_ex (41,
6652 hash_signatured_type,
6653 eq_signatured_type,
6654 NULL,
6655 &objfile->objfile_obstack,
6656 hashtab_obstack_allocate,
6657 dummy_obstack_deallocate);
6658 }
6659
6660 /* A helper function to add a signatured type CU to a table. */
6661
6662 static int
6663 add_signatured_type_cu_to_table (void **slot, void *datum)
6664 {
6665 struct signatured_type *sigt = (struct signatured_type *) *slot;
6666 std::vector<signatured_type *> *all_type_units
6667 = (std::vector<signatured_type *> *) datum;
6668
6669 all_type_units->push_back (sigt);
6670
6671 return 1;
6672 }
6673
6674 /* A helper for create_debug_types_hash_table. Read types from SECTION
6675 and fill them into TYPES_HTAB. It will process only type units,
6676 therefore DW_UT_type. */
6677
6678 static void
6679 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6680 struct dwo_file *dwo_file,
6681 dwarf2_section_info *section, htab_t &types_htab,
6682 rcuh_kind section_kind)
6683 {
6684 struct objfile *objfile = dwarf2_per_objfile->objfile;
6685 struct dwarf2_section_info *abbrev_section;
6686 bfd *abfd;
6687 const gdb_byte *info_ptr, *end_ptr;
6688
6689 abbrev_section = (dwo_file != NULL
6690 ? &dwo_file->sections.abbrev
6691 : &dwarf2_per_objfile->abbrev);
6692
6693 if (dwarf_read_debug)
6694 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6695 get_section_name (section),
6696 get_section_file_name (abbrev_section));
6697
6698 dwarf2_read_section (objfile, section);
6699 info_ptr = section->buffer;
6700
6701 if (info_ptr == NULL)
6702 return;
6703
6704 /* We can't set abfd until now because the section may be empty or
6705 not present, in which case the bfd is unknown. */
6706 abfd = get_section_bfd_owner (section);
6707
6708 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6709 because we don't need to read any dies: the signature is in the
6710 header. */
6711
6712 end_ptr = info_ptr + section->size;
6713 while (info_ptr < end_ptr)
6714 {
6715 struct signatured_type *sig_type;
6716 struct dwo_unit *dwo_tu;
6717 void **slot;
6718 const gdb_byte *ptr = info_ptr;
6719 struct comp_unit_head header;
6720 unsigned int length;
6721
6722 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6723
6724 /* Initialize it due to a false compiler warning. */
6725 header.signature = -1;
6726 header.type_cu_offset_in_tu = (cu_offset) -1;
6727
6728 /* We need to read the type's signature in order to build the hash
6729 table, but we don't need anything else just yet. */
6730
6731 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6732 abbrev_section, ptr, section_kind);
6733
6734 length = get_cu_length (&header);
6735
6736 /* Skip dummy type units. */
6737 if (ptr >= info_ptr + length
6738 || peek_abbrev_code (abfd, ptr) == 0
6739 || header.unit_type != DW_UT_type)
6740 {
6741 info_ptr += length;
6742 continue;
6743 }
6744
6745 if (types_htab == NULL)
6746 {
6747 if (dwo_file)
6748 types_htab = allocate_dwo_unit_table (objfile);
6749 else
6750 types_htab = allocate_signatured_type_table (objfile);
6751 }
6752
6753 if (dwo_file)
6754 {
6755 sig_type = NULL;
6756 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6757 struct dwo_unit);
6758 dwo_tu->dwo_file = dwo_file;
6759 dwo_tu->signature = header.signature;
6760 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6761 dwo_tu->section = section;
6762 dwo_tu->sect_off = sect_off;
6763 dwo_tu->length = length;
6764 }
6765 else
6766 {
6767 /* N.B.: type_offset is not usable if this type uses a DWO file.
6768 The real type_offset is in the DWO file. */
6769 dwo_tu = NULL;
6770 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6771 struct signatured_type);
6772 sig_type->signature = header.signature;
6773 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6774 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6775 sig_type->per_cu.is_debug_types = 1;
6776 sig_type->per_cu.section = section;
6777 sig_type->per_cu.sect_off = sect_off;
6778 sig_type->per_cu.length = length;
6779 }
6780
6781 slot = htab_find_slot (types_htab,
6782 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6783 INSERT);
6784 gdb_assert (slot != NULL);
6785 if (*slot != NULL)
6786 {
6787 sect_offset dup_sect_off;
6788
6789 if (dwo_file)
6790 {
6791 const struct dwo_unit *dup_tu
6792 = (const struct dwo_unit *) *slot;
6793
6794 dup_sect_off = dup_tu->sect_off;
6795 }
6796 else
6797 {
6798 const struct signatured_type *dup_tu
6799 = (const struct signatured_type *) *slot;
6800
6801 dup_sect_off = dup_tu->per_cu.sect_off;
6802 }
6803
6804 complaint (_("debug type entry at offset %s is duplicate to"
6805 " the entry at offset %s, signature %s"),
6806 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6807 hex_string (header.signature));
6808 }
6809 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6810
6811 if (dwarf_read_debug > 1)
6812 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6813 sect_offset_str (sect_off),
6814 hex_string (header.signature));
6815
6816 info_ptr += length;
6817 }
6818 }
6819
6820 /* Create the hash table of all entries in the .debug_types
6821 (or .debug_types.dwo) section(s).
6822 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6823 otherwise it is NULL.
6824
6825 The result is a pointer to the hash table or NULL if there are no types.
6826
6827 Note: This function processes DWO files only, not DWP files. */
6828
6829 static void
6830 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6831 struct dwo_file *dwo_file,
6832 VEC (dwarf2_section_info_def) *types,
6833 htab_t &types_htab)
6834 {
6835 int ix;
6836 struct dwarf2_section_info *section;
6837
6838 if (VEC_empty (dwarf2_section_info_def, types))
6839 return;
6840
6841 for (ix = 0;
6842 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6843 ++ix)
6844 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6845 types_htab, rcuh_kind::TYPE);
6846 }
6847
6848 /* Create the hash table of all entries in the .debug_types section,
6849 and initialize all_type_units.
6850 The result is zero if there is an error (e.g. missing .debug_types section),
6851 otherwise non-zero. */
6852
6853 static int
6854 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6855 {
6856 htab_t types_htab = NULL;
6857
6858 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6859 &dwarf2_per_objfile->info, types_htab,
6860 rcuh_kind::COMPILE);
6861 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6862 dwarf2_per_objfile->types, types_htab);
6863 if (types_htab == NULL)
6864 {
6865 dwarf2_per_objfile->signatured_types = NULL;
6866 return 0;
6867 }
6868
6869 dwarf2_per_objfile->signatured_types = types_htab;
6870
6871 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6872 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6873
6874 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6875 &dwarf2_per_objfile->all_type_units);
6876
6877 return 1;
6878 }
6879
6880 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6881 If SLOT is non-NULL, it is the entry to use in the hash table.
6882 Otherwise we find one. */
6883
6884 static struct signatured_type *
6885 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6886 void **slot)
6887 {
6888 struct objfile *objfile = dwarf2_per_objfile->objfile;
6889
6890 if (dwarf2_per_objfile->all_type_units.size ()
6891 == dwarf2_per_objfile->all_type_units.capacity ())
6892 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6893
6894 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6895 struct signatured_type);
6896
6897 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6898 sig_type->signature = sig;
6899 sig_type->per_cu.is_debug_types = 1;
6900 if (dwarf2_per_objfile->using_index)
6901 {
6902 sig_type->per_cu.v.quick =
6903 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6904 struct dwarf2_per_cu_quick_data);
6905 }
6906
6907 if (slot == NULL)
6908 {
6909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6910 sig_type, INSERT);
6911 }
6912 gdb_assert (*slot == NULL);
6913 *slot = sig_type;
6914 /* The rest of sig_type must be filled in by the caller. */
6915 return sig_type;
6916 }
6917
6918 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6919 Fill in SIG_ENTRY with DWO_ENTRY. */
6920
6921 static void
6922 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6923 struct signatured_type *sig_entry,
6924 struct dwo_unit *dwo_entry)
6925 {
6926 /* Make sure we're not clobbering something we don't expect to. */
6927 gdb_assert (! sig_entry->per_cu.queued);
6928 gdb_assert (sig_entry->per_cu.cu == NULL);
6929 if (dwarf2_per_objfile->using_index)
6930 {
6931 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6932 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6933 }
6934 else
6935 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6936 gdb_assert (sig_entry->signature == dwo_entry->signature);
6937 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6938 gdb_assert (sig_entry->type_unit_group == NULL);
6939 gdb_assert (sig_entry->dwo_unit == NULL);
6940
6941 sig_entry->per_cu.section = dwo_entry->section;
6942 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6943 sig_entry->per_cu.length = dwo_entry->length;
6944 sig_entry->per_cu.reading_dwo_directly = 1;
6945 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6946 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6947 sig_entry->dwo_unit = dwo_entry;
6948 }
6949
6950 /* Subroutine of lookup_signatured_type.
6951 If we haven't read the TU yet, create the signatured_type data structure
6952 for a TU to be read in directly from a DWO file, bypassing the stub.
6953 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6954 using .gdb_index, then when reading a CU we want to stay in the DWO file
6955 containing that CU. Otherwise we could end up reading several other DWO
6956 files (due to comdat folding) to process the transitive closure of all the
6957 mentioned TUs, and that can be slow. The current DWO file will have every
6958 type signature that it needs.
6959 We only do this for .gdb_index because in the psymtab case we already have
6960 to read all the DWOs to build the type unit groups. */
6961
6962 static struct signatured_type *
6963 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6964 {
6965 struct dwarf2_per_objfile *dwarf2_per_objfile
6966 = cu->per_cu->dwarf2_per_objfile;
6967 struct objfile *objfile = dwarf2_per_objfile->objfile;
6968 struct dwo_file *dwo_file;
6969 struct dwo_unit find_dwo_entry, *dwo_entry;
6970 struct signatured_type find_sig_entry, *sig_entry;
6971 void **slot;
6972
6973 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6974
6975 /* If TU skeletons have been removed then we may not have read in any
6976 TUs yet. */
6977 if (dwarf2_per_objfile->signatured_types == NULL)
6978 {
6979 dwarf2_per_objfile->signatured_types
6980 = allocate_signatured_type_table (objfile);
6981 }
6982
6983 /* We only ever need to read in one copy of a signatured type.
6984 Use the global signatured_types array to do our own comdat-folding
6985 of types. If this is the first time we're reading this TU, and
6986 the TU has an entry in .gdb_index, replace the recorded data from
6987 .gdb_index with this TU. */
6988
6989 find_sig_entry.signature = sig;
6990 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6991 &find_sig_entry, INSERT);
6992 sig_entry = (struct signatured_type *) *slot;
6993
6994 /* We can get here with the TU already read, *or* in the process of being
6995 read. Don't reassign the global entry to point to this DWO if that's
6996 the case. Also note that if the TU is already being read, it may not
6997 have come from a DWO, the program may be a mix of Fission-compiled
6998 code and non-Fission-compiled code. */
6999
7000 /* Have we already tried to read this TU?
7001 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7002 needn't exist in the global table yet). */
7003 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7004 return sig_entry;
7005
7006 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7007 dwo_unit of the TU itself. */
7008 dwo_file = cu->dwo_unit->dwo_file;
7009
7010 /* Ok, this is the first time we're reading this TU. */
7011 if (dwo_file->tus == NULL)
7012 return NULL;
7013 find_dwo_entry.signature = sig;
7014 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7015 if (dwo_entry == NULL)
7016 return NULL;
7017
7018 /* If the global table doesn't have an entry for this TU, add one. */
7019 if (sig_entry == NULL)
7020 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7021
7022 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7023 sig_entry->per_cu.tu_read = 1;
7024 return sig_entry;
7025 }
7026
7027 /* Subroutine of lookup_signatured_type.
7028 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7029 then try the DWP file. If the TU stub (skeleton) has been removed then
7030 it won't be in .gdb_index. */
7031
7032 static struct signatured_type *
7033 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7034 {
7035 struct dwarf2_per_objfile *dwarf2_per_objfile
7036 = cu->per_cu->dwarf2_per_objfile;
7037 struct objfile *objfile = dwarf2_per_objfile->objfile;
7038 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7039 struct dwo_unit *dwo_entry;
7040 struct signatured_type find_sig_entry, *sig_entry;
7041 void **slot;
7042
7043 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7044 gdb_assert (dwp_file != NULL);
7045
7046 /* If TU skeletons have been removed then we may not have read in any
7047 TUs yet. */
7048 if (dwarf2_per_objfile->signatured_types == NULL)
7049 {
7050 dwarf2_per_objfile->signatured_types
7051 = allocate_signatured_type_table (objfile);
7052 }
7053
7054 find_sig_entry.signature = sig;
7055 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7056 &find_sig_entry, INSERT);
7057 sig_entry = (struct signatured_type *) *slot;
7058
7059 /* Have we already tried to read this TU?
7060 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7061 needn't exist in the global table yet). */
7062 if (sig_entry != NULL)
7063 return sig_entry;
7064
7065 if (dwp_file->tus == NULL)
7066 return NULL;
7067 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7068 sig, 1 /* is_debug_types */);
7069 if (dwo_entry == NULL)
7070 return NULL;
7071
7072 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7073 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7074
7075 return sig_entry;
7076 }
7077
7078 /* Lookup a signature based type for DW_FORM_ref_sig8.
7079 Returns NULL if signature SIG is not present in the table.
7080 It is up to the caller to complain about this. */
7081
7082 static struct signatured_type *
7083 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7084 {
7085 struct dwarf2_per_objfile *dwarf2_per_objfile
7086 = cu->per_cu->dwarf2_per_objfile;
7087
7088 if (cu->dwo_unit
7089 && dwarf2_per_objfile->using_index)
7090 {
7091 /* We're in a DWO/DWP file, and we're using .gdb_index.
7092 These cases require special processing. */
7093 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7094 return lookup_dwo_signatured_type (cu, sig);
7095 else
7096 return lookup_dwp_signatured_type (cu, sig);
7097 }
7098 else
7099 {
7100 struct signatured_type find_entry, *entry;
7101
7102 if (dwarf2_per_objfile->signatured_types == NULL)
7103 return NULL;
7104 find_entry.signature = sig;
7105 entry = ((struct signatured_type *)
7106 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7107 return entry;
7108 }
7109 }
7110 \f
7111 /* Low level DIE reading support. */
7112
7113 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7114
7115 static void
7116 init_cu_die_reader (struct die_reader_specs *reader,
7117 struct dwarf2_cu *cu,
7118 struct dwarf2_section_info *section,
7119 struct dwo_file *dwo_file,
7120 struct abbrev_table *abbrev_table)
7121 {
7122 gdb_assert (section->readin && section->buffer != NULL);
7123 reader->abfd = get_section_bfd_owner (section);
7124 reader->cu = cu;
7125 reader->dwo_file = dwo_file;
7126 reader->die_section = section;
7127 reader->buffer = section->buffer;
7128 reader->buffer_end = section->buffer + section->size;
7129 reader->comp_dir = NULL;
7130 reader->abbrev_table = abbrev_table;
7131 }
7132
7133 /* Subroutine of init_cutu_and_read_dies to simplify it.
7134 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7135 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7136 already.
7137
7138 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7139 from it to the DIE in the DWO. If NULL we are skipping the stub.
7140 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7141 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7142 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7143 STUB_COMP_DIR may be non-NULL.
7144 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7145 are filled in with the info of the DIE from the DWO file.
7146 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7147 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7148 kept around for at least as long as *RESULT_READER.
7149
7150 The result is non-zero if a valid (non-dummy) DIE was found. */
7151
7152 static int
7153 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7154 struct dwo_unit *dwo_unit,
7155 struct die_info *stub_comp_unit_die,
7156 const char *stub_comp_dir,
7157 struct die_reader_specs *result_reader,
7158 const gdb_byte **result_info_ptr,
7159 struct die_info **result_comp_unit_die,
7160 int *result_has_children,
7161 abbrev_table_up *result_dwo_abbrev_table)
7162 {
7163 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7164 struct objfile *objfile = dwarf2_per_objfile->objfile;
7165 struct dwarf2_cu *cu = this_cu->cu;
7166 bfd *abfd;
7167 const gdb_byte *begin_info_ptr, *info_ptr;
7168 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7169 int i,num_extra_attrs;
7170 struct dwarf2_section_info *dwo_abbrev_section;
7171 struct attribute *attr;
7172 struct die_info *comp_unit_die;
7173
7174 /* At most one of these may be provided. */
7175 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7176
7177 /* These attributes aren't processed until later:
7178 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7179 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7180 referenced later. However, these attributes are found in the stub
7181 which we won't have later. In order to not impose this complication
7182 on the rest of the code, we read them here and copy them to the
7183 DWO CU/TU die. */
7184
7185 stmt_list = NULL;
7186 low_pc = NULL;
7187 high_pc = NULL;
7188 ranges = NULL;
7189 comp_dir = NULL;
7190
7191 if (stub_comp_unit_die != NULL)
7192 {
7193 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7194 DWO file. */
7195 if (! this_cu->is_debug_types)
7196 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7197 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7198 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7199 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7200 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7201
7202 /* There should be a DW_AT_addr_base attribute here (if needed).
7203 We need the value before we can process DW_FORM_GNU_addr_index. */
7204 cu->addr_base = 0;
7205 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7206 if (attr)
7207 cu->addr_base = DW_UNSND (attr);
7208
7209 /* There should be a DW_AT_ranges_base attribute here (if needed).
7210 We need the value before we can process DW_AT_ranges. */
7211 cu->ranges_base = 0;
7212 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7213 if (attr)
7214 cu->ranges_base = DW_UNSND (attr);
7215 }
7216 else if (stub_comp_dir != NULL)
7217 {
7218 /* Reconstruct the comp_dir attribute to simplify the code below. */
7219 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7220 comp_dir->name = DW_AT_comp_dir;
7221 comp_dir->form = DW_FORM_string;
7222 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7223 DW_STRING (comp_dir) = stub_comp_dir;
7224 }
7225
7226 /* Set up for reading the DWO CU/TU. */
7227 cu->dwo_unit = dwo_unit;
7228 dwarf2_section_info *section = dwo_unit->section;
7229 dwarf2_read_section (objfile, section);
7230 abfd = get_section_bfd_owner (section);
7231 begin_info_ptr = info_ptr = (section->buffer
7232 + to_underlying (dwo_unit->sect_off));
7233 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7234
7235 if (this_cu->is_debug_types)
7236 {
7237 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7238
7239 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7240 &cu->header, section,
7241 dwo_abbrev_section,
7242 info_ptr, rcuh_kind::TYPE);
7243 /* This is not an assert because it can be caused by bad debug info. */
7244 if (sig_type->signature != cu->header.signature)
7245 {
7246 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7247 " TU at offset %s [in module %s]"),
7248 hex_string (sig_type->signature),
7249 hex_string (cu->header.signature),
7250 sect_offset_str (dwo_unit->sect_off),
7251 bfd_get_filename (abfd));
7252 }
7253 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7254 /* For DWOs coming from DWP files, we don't know the CU length
7255 nor the type's offset in the TU until now. */
7256 dwo_unit->length = get_cu_length (&cu->header);
7257 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7258
7259 /* Establish the type offset that can be used to lookup the type.
7260 For DWO files, we don't know it until now. */
7261 sig_type->type_offset_in_section
7262 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7263 }
7264 else
7265 {
7266 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7267 &cu->header, section,
7268 dwo_abbrev_section,
7269 info_ptr, rcuh_kind::COMPILE);
7270 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7271 /* For DWOs coming from DWP files, we don't know the CU length
7272 until now. */
7273 dwo_unit->length = get_cu_length (&cu->header);
7274 }
7275
7276 *result_dwo_abbrev_table
7277 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7278 cu->header.abbrev_sect_off);
7279 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7280 result_dwo_abbrev_table->get ());
7281
7282 /* Read in the die, but leave space to copy over the attributes
7283 from the stub. This has the benefit of simplifying the rest of
7284 the code - all the work to maintain the illusion of a single
7285 DW_TAG_{compile,type}_unit DIE is done here. */
7286 num_extra_attrs = ((stmt_list != NULL)
7287 + (low_pc != NULL)
7288 + (high_pc != NULL)
7289 + (ranges != NULL)
7290 + (comp_dir != NULL));
7291 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7292 result_has_children, num_extra_attrs);
7293
7294 /* Copy over the attributes from the stub to the DIE we just read in. */
7295 comp_unit_die = *result_comp_unit_die;
7296 i = comp_unit_die->num_attrs;
7297 if (stmt_list != NULL)
7298 comp_unit_die->attrs[i++] = *stmt_list;
7299 if (low_pc != NULL)
7300 comp_unit_die->attrs[i++] = *low_pc;
7301 if (high_pc != NULL)
7302 comp_unit_die->attrs[i++] = *high_pc;
7303 if (ranges != NULL)
7304 comp_unit_die->attrs[i++] = *ranges;
7305 if (comp_dir != NULL)
7306 comp_unit_die->attrs[i++] = *comp_dir;
7307 comp_unit_die->num_attrs += num_extra_attrs;
7308
7309 if (dwarf_die_debug)
7310 {
7311 fprintf_unfiltered (gdb_stdlog,
7312 "Read die from %s@0x%x of %s:\n",
7313 get_section_name (section),
7314 (unsigned) (begin_info_ptr - section->buffer),
7315 bfd_get_filename (abfd));
7316 dump_die (comp_unit_die, dwarf_die_debug);
7317 }
7318
7319 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7320 TUs by skipping the stub and going directly to the entry in the DWO file.
7321 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7322 to get it via circuitous means. Blech. */
7323 if (comp_dir != NULL)
7324 result_reader->comp_dir = DW_STRING (comp_dir);
7325
7326 /* Skip dummy compilation units. */
7327 if (info_ptr >= begin_info_ptr + dwo_unit->length
7328 || peek_abbrev_code (abfd, info_ptr) == 0)
7329 return 0;
7330
7331 *result_info_ptr = info_ptr;
7332 return 1;
7333 }
7334
7335 /* Subroutine of init_cutu_and_read_dies to simplify it.
7336 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7337 Returns NULL if the specified DWO unit cannot be found. */
7338
7339 static struct dwo_unit *
7340 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7341 struct die_info *comp_unit_die)
7342 {
7343 struct dwarf2_cu *cu = this_cu->cu;
7344 ULONGEST signature;
7345 struct dwo_unit *dwo_unit;
7346 const char *comp_dir, *dwo_name;
7347
7348 gdb_assert (cu != NULL);
7349
7350 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7351 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7352 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7353
7354 if (this_cu->is_debug_types)
7355 {
7356 struct signatured_type *sig_type;
7357
7358 /* Since this_cu is the first member of struct signatured_type,
7359 we can go from a pointer to one to a pointer to the other. */
7360 sig_type = (struct signatured_type *) this_cu;
7361 signature = sig_type->signature;
7362 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7363 }
7364 else
7365 {
7366 struct attribute *attr;
7367
7368 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7369 if (! attr)
7370 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7371 " [in module %s]"),
7372 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7373 signature = DW_UNSND (attr);
7374 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7375 signature);
7376 }
7377
7378 return dwo_unit;
7379 }
7380
7381 /* Subroutine of init_cutu_and_read_dies to simplify it.
7382 See it for a description of the parameters.
7383 Read a TU directly from a DWO file, bypassing the stub. */
7384
7385 static void
7386 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7387 int use_existing_cu, int keep,
7388 die_reader_func_ftype *die_reader_func,
7389 void *data)
7390 {
7391 std::unique_ptr<dwarf2_cu> new_cu;
7392 struct signatured_type *sig_type;
7393 struct die_reader_specs reader;
7394 const gdb_byte *info_ptr;
7395 struct die_info *comp_unit_die;
7396 int has_children;
7397 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7398
7399 /* Verify we can do the following downcast, and that we have the
7400 data we need. */
7401 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7402 sig_type = (struct signatured_type *) this_cu;
7403 gdb_assert (sig_type->dwo_unit != NULL);
7404
7405 if (use_existing_cu && this_cu->cu != NULL)
7406 {
7407 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7408 /* There's no need to do the rereading_dwo_cu handling that
7409 init_cutu_and_read_dies does since we don't read the stub. */
7410 }
7411 else
7412 {
7413 /* If !use_existing_cu, this_cu->cu must be NULL. */
7414 gdb_assert (this_cu->cu == NULL);
7415 new_cu.reset (new dwarf2_cu (this_cu));
7416 }
7417
7418 /* A future optimization, if needed, would be to use an existing
7419 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7420 could share abbrev tables. */
7421
7422 /* The abbreviation table used by READER, this must live at least as long as
7423 READER. */
7424 abbrev_table_up dwo_abbrev_table;
7425
7426 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7427 NULL /* stub_comp_unit_die */,
7428 sig_type->dwo_unit->dwo_file->comp_dir,
7429 &reader, &info_ptr,
7430 &comp_unit_die, &has_children,
7431 &dwo_abbrev_table) == 0)
7432 {
7433 /* Dummy die. */
7434 return;
7435 }
7436
7437 /* All the "real" work is done here. */
7438 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7439
7440 /* This duplicates the code in init_cutu_and_read_dies,
7441 but the alternative is making the latter more complex.
7442 This function is only for the special case of using DWO files directly:
7443 no point in overly complicating the general case just to handle this. */
7444 if (new_cu != NULL && keep)
7445 {
7446 /* Link this CU into read_in_chain. */
7447 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7448 dwarf2_per_objfile->read_in_chain = this_cu;
7449 /* The chain owns it now. */
7450 new_cu.release ();
7451 }
7452 }
7453
7454 /* Initialize a CU (or TU) and read its DIEs.
7455 If the CU defers to a DWO file, read the DWO file as well.
7456
7457 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7458 Otherwise the table specified in the comp unit header is read in and used.
7459 This is an optimization for when we already have the abbrev table.
7460
7461 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7462 Otherwise, a new CU is allocated with xmalloc.
7463
7464 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7465 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7466
7467 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7468 linker) then DIE_READER_FUNC will not get called. */
7469
7470 static void
7471 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7472 struct abbrev_table *abbrev_table,
7473 int use_existing_cu, int keep,
7474 bool skip_partial,
7475 die_reader_func_ftype *die_reader_func,
7476 void *data)
7477 {
7478 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7479 struct objfile *objfile = dwarf2_per_objfile->objfile;
7480 struct dwarf2_section_info *section = this_cu->section;
7481 bfd *abfd = get_section_bfd_owner (section);
7482 struct dwarf2_cu *cu;
7483 const gdb_byte *begin_info_ptr, *info_ptr;
7484 struct die_reader_specs reader;
7485 struct die_info *comp_unit_die;
7486 int has_children;
7487 struct attribute *attr;
7488 struct signatured_type *sig_type = NULL;
7489 struct dwarf2_section_info *abbrev_section;
7490 /* Non-zero if CU currently points to a DWO file and we need to
7491 reread it. When this happens we need to reread the skeleton die
7492 before we can reread the DWO file (this only applies to CUs, not TUs). */
7493 int rereading_dwo_cu = 0;
7494
7495 if (dwarf_die_debug)
7496 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7497 this_cu->is_debug_types ? "type" : "comp",
7498 sect_offset_str (this_cu->sect_off));
7499
7500 if (use_existing_cu)
7501 gdb_assert (keep);
7502
7503 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7504 file (instead of going through the stub), short-circuit all of this. */
7505 if (this_cu->reading_dwo_directly)
7506 {
7507 /* Narrow down the scope of possibilities to have to understand. */
7508 gdb_assert (this_cu->is_debug_types);
7509 gdb_assert (abbrev_table == NULL);
7510 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7511 die_reader_func, data);
7512 return;
7513 }
7514
7515 /* This is cheap if the section is already read in. */
7516 dwarf2_read_section (objfile, section);
7517
7518 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7519
7520 abbrev_section = get_abbrev_section_for_cu (this_cu);
7521
7522 std::unique_ptr<dwarf2_cu> new_cu;
7523 if (use_existing_cu && this_cu->cu != NULL)
7524 {
7525 cu = this_cu->cu;
7526 /* If this CU is from a DWO file we need to start over, we need to
7527 refetch the attributes from the skeleton CU.
7528 This could be optimized by retrieving those attributes from when we
7529 were here the first time: the previous comp_unit_die was stored in
7530 comp_unit_obstack. But there's no data yet that we need this
7531 optimization. */
7532 if (cu->dwo_unit != NULL)
7533 rereading_dwo_cu = 1;
7534 }
7535 else
7536 {
7537 /* If !use_existing_cu, this_cu->cu must be NULL. */
7538 gdb_assert (this_cu->cu == NULL);
7539 new_cu.reset (new dwarf2_cu (this_cu));
7540 cu = new_cu.get ();
7541 }
7542
7543 /* Get the header. */
7544 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7545 {
7546 /* We already have the header, there's no need to read it in again. */
7547 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7548 }
7549 else
7550 {
7551 if (this_cu->is_debug_types)
7552 {
7553 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7554 &cu->header, section,
7555 abbrev_section, info_ptr,
7556 rcuh_kind::TYPE);
7557
7558 /* Since per_cu is the first member of struct signatured_type,
7559 we can go from a pointer to one to a pointer to the other. */
7560 sig_type = (struct signatured_type *) this_cu;
7561 gdb_assert (sig_type->signature == cu->header.signature);
7562 gdb_assert (sig_type->type_offset_in_tu
7563 == cu->header.type_cu_offset_in_tu);
7564 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7565
7566 /* LENGTH has not been set yet for type units if we're
7567 using .gdb_index. */
7568 this_cu->length = get_cu_length (&cu->header);
7569
7570 /* Establish the type offset that can be used to lookup the type. */
7571 sig_type->type_offset_in_section =
7572 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7573
7574 this_cu->dwarf_version = cu->header.version;
7575 }
7576 else
7577 {
7578 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7579 &cu->header, section,
7580 abbrev_section,
7581 info_ptr,
7582 rcuh_kind::COMPILE);
7583
7584 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7585 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7586 this_cu->dwarf_version = cu->header.version;
7587 }
7588 }
7589
7590 /* Skip dummy compilation units. */
7591 if (info_ptr >= begin_info_ptr + this_cu->length
7592 || peek_abbrev_code (abfd, info_ptr) == 0)
7593 return;
7594
7595 /* If we don't have them yet, read the abbrevs for this compilation unit.
7596 And if we need to read them now, make sure they're freed when we're
7597 done (own the table through ABBREV_TABLE_HOLDER). */
7598 abbrev_table_up abbrev_table_holder;
7599 if (abbrev_table != NULL)
7600 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7601 else
7602 {
7603 abbrev_table_holder
7604 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7605 cu->header.abbrev_sect_off);
7606 abbrev_table = abbrev_table_holder.get ();
7607 }
7608
7609 /* Read the top level CU/TU die. */
7610 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7611 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7612
7613 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7614 return;
7615
7616 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7617 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7618 table from the DWO file and pass the ownership over to us. It will be
7619 referenced from READER, so we must make sure to free it after we're done
7620 with READER.
7621
7622 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7623 DWO CU, that this test will fail (the attribute will not be present). */
7624 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7625 abbrev_table_up dwo_abbrev_table;
7626 if (attr)
7627 {
7628 struct dwo_unit *dwo_unit;
7629 struct die_info *dwo_comp_unit_die;
7630
7631 if (has_children)
7632 {
7633 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7634 " has children (offset %s) [in module %s]"),
7635 sect_offset_str (this_cu->sect_off),
7636 bfd_get_filename (abfd));
7637 }
7638 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7639 if (dwo_unit != NULL)
7640 {
7641 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7642 comp_unit_die, NULL,
7643 &reader, &info_ptr,
7644 &dwo_comp_unit_die, &has_children,
7645 &dwo_abbrev_table) == 0)
7646 {
7647 /* Dummy die. */
7648 return;
7649 }
7650 comp_unit_die = dwo_comp_unit_die;
7651 }
7652 else
7653 {
7654 /* Yikes, we couldn't find the rest of the DIE, we only have
7655 the stub. A complaint has already been logged. There's
7656 not much more we can do except pass on the stub DIE to
7657 die_reader_func. We don't want to throw an error on bad
7658 debug info. */
7659 }
7660 }
7661
7662 /* All of the above is setup for this call. Yikes. */
7663 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7664
7665 /* Done, clean up. */
7666 if (new_cu != NULL && keep)
7667 {
7668 /* Link this CU into read_in_chain. */
7669 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7670 dwarf2_per_objfile->read_in_chain = this_cu;
7671 /* The chain owns it now. */
7672 new_cu.release ();
7673 }
7674 }
7675
7676 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7677 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7678 to have already done the lookup to find the DWO file).
7679
7680 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7681 THIS_CU->is_debug_types, but nothing else.
7682
7683 We fill in THIS_CU->length.
7684
7685 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7686 linker) then DIE_READER_FUNC will not get called.
7687
7688 THIS_CU->cu is always freed when done.
7689 This is done in order to not leave THIS_CU->cu in a state where we have
7690 to care whether it refers to the "main" CU or the DWO CU. */
7691
7692 static void
7693 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7694 struct dwo_file *dwo_file,
7695 die_reader_func_ftype *die_reader_func,
7696 void *data)
7697 {
7698 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7699 struct objfile *objfile = dwarf2_per_objfile->objfile;
7700 struct dwarf2_section_info *section = this_cu->section;
7701 bfd *abfd = get_section_bfd_owner (section);
7702 struct dwarf2_section_info *abbrev_section;
7703 const gdb_byte *begin_info_ptr, *info_ptr;
7704 struct die_reader_specs reader;
7705 struct die_info *comp_unit_die;
7706 int has_children;
7707
7708 if (dwarf_die_debug)
7709 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7710 this_cu->is_debug_types ? "type" : "comp",
7711 sect_offset_str (this_cu->sect_off));
7712
7713 gdb_assert (this_cu->cu == NULL);
7714
7715 abbrev_section = (dwo_file != NULL
7716 ? &dwo_file->sections.abbrev
7717 : get_abbrev_section_for_cu (this_cu));
7718
7719 /* This is cheap if the section is already read in. */
7720 dwarf2_read_section (objfile, section);
7721
7722 struct dwarf2_cu cu (this_cu);
7723
7724 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7725 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7726 &cu.header, section,
7727 abbrev_section, info_ptr,
7728 (this_cu->is_debug_types
7729 ? rcuh_kind::TYPE
7730 : rcuh_kind::COMPILE));
7731
7732 this_cu->length = get_cu_length (&cu.header);
7733
7734 /* Skip dummy compilation units. */
7735 if (info_ptr >= begin_info_ptr + this_cu->length
7736 || peek_abbrev_code (abfd, info_ptr) == 0)
7737 return;
7738
7739 abbrev_table_up abbrev_table
7740 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7741 cu.header.abbrev_sect_off);
7742
7743 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7744 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7745
7746 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7747 }
7748
7749 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7750 does not lookup the specified DWO file.
7751 This cannot be used to read DWO files.
7752
7753 THIS_CU->cu is always freed when done.
7754 This is done in order to not leave THIS_CU->cu in a state where we have
7755 to care whether it refers to the "main" CU or the DWO CU.
7756 We can revisit this if the data shows there's a performance issue. */
7757
7758 static void
7759 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7760 die_reader_func_ftype *die_reader_func,
7761 void *data)
7762 {
7763 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7764 }
7765 \f
7766 /* Type Unit Groups.
7767
7768 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7769 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7770 so that all types coming from the same compilation (.o file) are grouped
7771 together. A future step could be to put the types in the same symtab as
7772 the CU the types ultimately came from. */
7773
7774 static hashval_t
7775 hash_type_unit_group (const void *item)
7776 {
7777 const struct type_unit_group *tu_group
7778 = (const struct type_unit_group *) item;
7779
7780 return hash_stmt_list_entry (&tu_group->hash);
7781 }
7782
7783 static int
7784 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7785 {
7786 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7787 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7788
7789 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7790 }
7791
7792 /* Allocate a hash table for type unit groups. */
7793
7794 static htab_t
7795 allocate_type_unit_groups_table (struct objfile *objfile)
7796 {
7797 return htab_create_alloc_ex (3,
7798 hash_type_unit_group,
7799 eq_type_unit_group,
7800 NULL,
7801 &objfile->objfile_obstack,
7802 hashtab_obstack_allocate,
7803 dummy_obstack_deallocate);
7804 }
7805
7806 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7807 partial symtabs. We combine several TUs per psymtab to not let the size
7808 of any one psymtab grow too big. */
7809 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7811
7812 /* Helper routine for get_type_unit_group.
7813 Create the type_unit_group object used to hold one or more TUs. */
7814
7815 static struct type_unit_group *
7816 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7817 {
7818 struct dwarf2_per_objfile *dwarf2_per_objfile
7819 = cu->per_cu->dwarf2_per_objfile;
7820 struct objfile *objfile = dwarf2_per_objfile->objfile;
7821 struct dwarf2_per_cu_data *per_cu;
7822 struct type_unit_group *tu_group;
7823
7824 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7825 struct type_unit_group);
7826 per_cu = &tu_group->per_cu;
7827 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7828
7829 if (dwarf2_per_objfile->using_index)
7830 {
7831 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7832 struct dwarf2_per_cu_quick_data);
7833 }
7834 else
7835 {
7836 unsigned int line_offset = to_underlying (line_offset_struct);
7837 struct partial_symtab *pst;
7838 std::string name;
7839
7840 /* Give the symtab a useful name for debug purposes. */
7841 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7842 name = string_printf ("<type_units_%d>",
7843 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7844 else
7845 name = string_printf ("<type_units_at_0x%x>", line_offset);
7846
7847 pst = create_partial_symtab (per_cu, name.c_str ());
7848 pst->anonymous = 1;
7849 }
7850
7851 tu_group->hash.dwo_unit = cu->dwo_unit;
7852 tu_group->hash.line_sect_off = line_offset_struct;
7853
7854 return tu_group;
7855 }
7856
7857 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7858 STMT_LIST is a DW_AT_stmt_list attribute. */
7859
7860 static struct type_unit_group *
7861 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7862 {
7863 struct dwarf2_per_objfile *dwarf2_per_objfile
7864 = cu->per_cu->dwarf2_per_objfile;
7865 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7866 struct type_unit_group *tu_group;
7867 void **slot;
7868 unsigned int line_offset;
7869 struct type_unit_group type_unit_group_for_lookup;
7870
7871 if (dwarf2_per_objfile->type_unit_groups == NULL)
7872 {
7873 dwarf2_per_objfile->type_unit_groups =
7874 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7875 }
7876
7877 /* Do we need to create a new group, or can we use an existing one? */
7878
7879 if (stmt_list)
7880 {
7881 line_offset = DW_UNSND (stmt_list);
7882 ++tu_stats->nr_symtab_sharers;
7883 }
7884 else
7885 {
7886 /* Ugh, no stmt_list. Rare, but we have to handle it.
7887 We can do various things here like create one group per TU or
7888 spread them over multiple groups to split up the expansion work.
7889 To avoid worst case scenarios (too many groups or too large groups)
7890 we, umm, group them in bunches. */
7891 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7892 | (tu_stats->nr_stmt_less_type_units
7893 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7894 ++tu_stats->nr_stmt_less_type_units;
7895 }
7896
7897 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7898 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7899 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7900 &type_unit_group_for_lookup, INSERT);
7901 if (*slot != NULL)
7902 {
7903 tu_group = (struct type_unit_group *) *slot;
7904 gdb_assert (tu_group != NULL);
7905 }
7906 else
7907 {
7908 sect_offset line_offset_struct = (sect_offset) line_offset;
7909 tu_group = create_type_unit_group (cu, line_offset_struct);
7910 *slot = tu_group;
7911 ++tu_stats->nr_symtabs;
7912 }
7913
7914 return tu_group;
7915 }
7916 \f
7917 /* Partial symbol tables. */
7918
7919 /* Create a psymtab named NAME and assign it to PER_CU.
7920
7921 The caller must fill in the following details:
7922 dirname, textlow, texthigh. */
7923
7924 static struct partial_symtab *
7925 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7926 {
7927 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7928 struct partial_symtab *pst;
7929
7930 pst = start_psymtab_common (objfile, name, 0);
7931
7932 pst->psymtabs_addrmap_supported = 1;
7933
7934 /* This is the glue that links PST into GDB's symbol API. */
7935 pst->read_symtab_private = per_cu;
7936 pst->read_symtab = dwarf2_read_symtab;
7937 per_cu->v.psymtab = pst;
7938
7939 return pst;
7940 }
7941
7942 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7943 type. */
7944
7945 struct process_psymtab_comp_unit_data
7946 {
7947 /* True if we are reading a DW_TAG_partial_unit. */
7948
7949 int want_partial_unit;
7950
7951 /* The "pretend" language that is used if the CU doesn't declare a
7952 language. */
7953
7954 enum language pretend_language;
7955 };
7956
7957 /* die_reader_func for process_psymtab_comp_unit. */
7958
7959 static void
7960 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7961 const gdb_byte *info_ptr,
7962 struct die_info *comp_unit_die,
7963 int has_children,
7964 void *data)
7965 {
7966 struct dwarf2_cu *cu = reader->cu;
7967 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7968 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7970 CORE_ADDR baseaddr;
7971 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7972 struct partial_symtab *pst;
7973 enum pc_bounds_kind cu_bounds_kind;
7974 const char *filename;
7975 struct process_psymtab_comp_unit_data *info
7976 = (struct process_psymtab_comp_unit_data *) data;
7977
7978 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7979 return;
7980
7981 gdb_assert (! per_cu->is_debug_types);
7982
7983 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7984
7985 /* Allocate a new partial symbol table structure. */
7986 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7987 if (filename == NULL)
7988 filename = "";
7989
7990 pst = create_partial_symtab (per_cu, filename);
7991
7992 /* This must be done before calling dwarf2_build_include_psymtabs. */
7993 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7994
7995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7996
7997 dwarf2_find_base_address (comp_unit_die, cu);
7998
7999 /* Possibly set the default values of LOWPC and HIGHPC from
8000 `DW_AT_ranges'. */
8001 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8002 &best_highpc, cu, pst);
8003 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8004 {
8005 CORE_ADDR low
8006 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8007 - baseaddr);
8008 CORE_ADDR high
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8010 - baseaddr - 1);
8011 /* Store the contiguous range if it is not empty; it can be
8012 empty for CUs with no code. */
8013 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8014 }
8015
8016 /* Check if comp unit has_children.
8017 If so, read the rest of the partial symbols from this comp unit.
8018 If not, there's no more debug_info for this comp unit. */
8019 if (has_children)
8020 {
8021 struct partial_die_info *first_die;
8022 CORE_ADDR lowpc, highpc;
8023
8024 lowpc = ((CORE_ADDR) -1);
8025 highpc = ((CORE_ADDR) 0);
8026
8027 first_die = load_partial_dies (reader, info_ptr, 1);
8028
8029 scan_partial_symbols (first_die, &lowpc, &highpc,
8030 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8031
8032 /* If we didn't find a lowpc, set it to highpc to avoid
8033 complaints from `maint check'. */
8034 if (lowpc == ((CORE_ADDR) -1))
8035 lowpc = highpc;
8036
8037 /* If the compilation unit didn't have an explicit address range,
8038 then use the information extracted from its child dies. */
8039 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8040 {
8041 best_lowpc = lowpc;
8042 best_highpc = highpc;
8043 }
8044 }
8045 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8046 best_lowpc + baseaddr)
8047 - baseaddr);
8048 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_highpc + baseaddr)
8050 - baseaddr);
8051
8052 end_psymtab_common (objfile, pst);
8053
8054 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8055 {
8056 int i;
8057 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8058 struct dwarf2_per_cu_data *iter;
8059
8060 /* Fill in 'dependencies' here; we fill in 'users' in a
8061 post-pass. */
8062 pst->number_of_dependencies = len;
8063 pst->dependencies =
8064 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8065 for (i = 0;
8066 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8067 i, iter);
8068 ++i)
8069 pst->dependencies[i] = iter->v.psymtab;
8070
8071 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8072 }
8073
8074 /* Get the list of files included in the current compilation unit,
8075 and build a psymtab for each of them. */
8076 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8077
8078 if (dwarf_read_debug)
8079 fprintf_unfiltered (gdb_stdlog,
8080 "Psymtab for %s unit @%s: %s - %s"
8081 ", %d global, %d static syms\n",
8082 per_cu->is_debug_types ? "type" : "comp",
8083 sect_offset_str (per_cu->sect_off),
8084 paddress (gdbarch, pst->text_low (objfile)),
8085 paddress (gdbarch, pst->text_high (objfile)),
8086 pst->n_global_syms, pst->n_static_syms);
8087 }
8088
8089 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8090 Process compilation unit THIS_CU for a psymtab. */
8091
8092 static void
8093 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8094 int want_partial_unit,
8095 enum language pretend_language)
8096 {
8097 /* If this compilation unit was already read in, free the
8098 cached copy in order to read it in again. This is
8099 necessary because we skipped some symbols when we first
8100 read in the compilation unit (see load_partial_dies).
8101 This problem could be avoided, but the benefit is unclear. */
8102 if (this_cu->cu != NULL)
8103 free_one_cached_comp_unit (this_cu);
8104
8105 if (this_cu->is_debug_types)
8106 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8107 build_type_psymtabs_reader, NULL);
8108 else
8109 {
8110 process_psymtab_comp_unit_data info;
8111 info.want_partial_unit = want_partial_unit;
8112 info.pretend_language = pretend_language;
8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8114 process_psymtab_comp_unit_reader, &info);
8115 }
8116
8117 /* Age out any secondary CUs. */
8118 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8119 }
8120
8121 /* Reader function for build_type_psymtabs. */
8122
8123 static void
8124 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8125 const gdb_byte *info_ptr,
8126 struct die_info *type_unit_die,
8127 int has_children,
8128 void *data)
8129 {
8130 struct dwarf2_per_objfile *dwarf2_per_objfile
8131 = reader->cu->per_cu->dwarf2_per_objfile;
8132 struct objfile *objfile = dwarf2_per_objfile->objfile;
8133 struct dwarf2_cu *cu = reader->cu;
8134 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8135 struct signatured_type *sig_type;
8136 struct type_unit_group *tu_group;
8137 struct attribute *attr;
8138 struct partial_die_info *first_die;
8139 CORE_ADDR lowpc, highpc;
8140 struct partial_symtab *pst;
8141
8142 gdb_assert (data == NULL);
8143 gdb_assert (per_cu->is_debug_types);
8144 sig_type = (struct signatured_type *) per_cu;
8145
8146 if (! has_children)
8147 return;
8148
8149 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8150 tu_group = get_type_unit_group (cu, attr);
8151
8152 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8153
8154 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8155 pst = create_partial_symtab (per_cu, "");
8156 pst->anonymous = 1;
8157
8158 first_die = load_partial_dies (reader, info_ptr, 1);
8159
8160 lowpc = (CORE_ADDR) -1;
8161 highpc = (CORE_ADDR) 0;
8162 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8163
8164 end_psymtab_common (objfile, pst);
8165 }
8166
8167 /* Struct used to sort TUs by their abbreviation table offset. */
8168
8169 struct tu_abbrev_offset
8170 {
8171 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8172 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8173 {}
8174
8175 signatured_type *sig_type;
8176 sect_offset abbrev_offset;
8177 };
8178
8179 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8180
8181 static bool
8182 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8183 const struct tu_abbrev_offset &b)
8184 {
8185 return a.abbrev_offset < b.abbrev_offset;
8186 }
8187
8188 /* Efficiently read all the type units.
8189 This does the bulk of the work for build_type_psymtabs.
8190
8191 The efficiency is because we sort TUs by the abbrev table they use and
8192 only read each abbrev table once. In one program there are 200K TUs
8193 sharing 8K abbrev tables.
8194
8195 The main purpose of this function is to support building the
8196 dwarf2_per_objfile->type_unit_groups table.
8197 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8198 can collapse the search space by grouping them by stmt_list.
8199 The savings can be significant, in the same program from above the 200K TUs
8200 share 8K stmt_list tables.
8201
8202 FUNC is expected to call get_type_unit_group, which will create the
8203 struct type_unit_group if necessary and add it to
8204 dwarf2_per_objfile->type_unit_groups. */
8205
8206 static void
8207 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8208 {
8209 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8210 abbrev_table_up abbrev_table;
8211 sect_offset abbrev_offset;
8212
8213 /* It's up to the caller to not call us multiple times. */
8214 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8215
8216 if (dwarf2_per_objfile->all_type_units.empty ())
8217 return;
8218
8219 /* TUs typically share abbrev tables, and there can be way more TUs than
8220 abbrev tables. Sort by abbrev table to reduce the number of times we
8221 read each abbrev table in.
8222 Alternatives are to punt or to maintain a cache of abbrev tables.
8223 This is simpler and efficient enough for now.
8224
8225 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8226 symtab to use). Typically TUs with the same abbrev offset have the same
8227 stmt_list value too so in practice this should work well.
8228
8229 The basic algorithm here is:
8230
8231 sort TUs by abbrev table
8232 for each TU with same abbrev table:
8233 read abbrev table if first user
8234 read TU top level DIE
8235 [IWBN if DWO skeletons had DW_AT_stmt_list]
8236 call FUNC */
8237
8238 if (dwarf_read_debug)
8239 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8240
8241 /* Sort in a separate table to maintain the order of all_type_units
8242 for .gdb_index: TU indices directly index all_type_units. */
8243 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8244 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8245
8246 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8247 sorted_by_abbrev.emplace_back
8248 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8249 sig_type->per_cu.section,
8250 sig_type->per_cu.sect_off));
8251
8252 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8253 sort_tu_by_abbrev_offset);
8254
8255 abbrev_offset = (sect_offset) ~(unsigned) 0;
8256
8257 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8258 {
8259 /* Switch to the next abbrev table if necessary. */
8260 if (abbrev_table == NULL
8261 || tu.abbrev_offset != abbrev_offset)
8262 {
8263 abbrev_offset = tu.abbrev_offset;
8264 abbrev_table =
8265 abbrev_table_read_table (dwarf2_per_objfile,
8266 &dwarf2_per_objfile->abbrev,
8267 abbrev_offset);
8268 ++tu_stats->nr_uniq_abbrev_tables;
8269 }
8270
8271 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8272 0, 0, false, build_type_psymtabs_reader, NULL);
8273 }
8274 }
8275
8276 /* Print collected type unit statistics. */
8277
8278 static void
8279 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8280 {
8281 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8282
8283 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8284 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8285 dwarf2_per_objfile->all_type_units.size ());
8286 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8287 tu_stats->nr_uniq_abbrev_tables);
8288 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8289 tu_stats->nr_symtabs);
8290 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8291 tu_stats->nr_symtab_sharers);
8292 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8293 tu_stats->nr_stmt_less_type_units);
8294 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8295 tu_stats->nr_all_type_units_reallocs);
8296 }
8297
8298 /* Traversal function for build_type_psymtabs. */
8299
8300 static int
8301 build_type_psymtab_dependencies (void **slot, void *info)
8302 {
8303 struct dwarf2_per_objfile *dwarf2_per_objfile
8304 = (struct dwarf2_per_objfile *) info;
8305 struct objfile *objfile = dwarf2_per_objfile->objfile;
8306 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8307 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8308 struct partial_symtab *pst = per_cu->v.psymtab;
8309 int len = VEC_length (sig_type_ptr, tu_group->tus);
8310 struct signatured_type *iter;
8311 int i;
8312
8313 gdb_assert (len > 0);
8314 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8315
8316 pst->number_of_dependencies = len;
8317 pst->dependencies =
8318 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8319 for (i = 0;
8320 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8321 ++i)
8322 {
8323 gdb_assert (iter->per_cu.is_debug_types);
8324 pst->dependencies[i] = iter->per_cu.v.psymtab;
8325 iter->type_unit_group = tu_group;
8326 }
8327
8328 VEC_free (sig_type_ptr, tu_group->tus);
8329
8330 return 1;
8331 }
8332
8333 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8334 Build partial symbol tables for the .debug_types comp-units. */
8335
8336 static void
8337 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8338 {
8339 if (! create_all_type_units (dwarf2_per_objfile))
8340 return;
8341
8342 build_type_psymtabs_1 (dwarf2_per_objfile);
8343 }
8344
8345 /* Traversal function for process_skeletonless_type_unit.
8346 Read a TU in a DWO file and build partial symbols for it. */
8347
8348 static int
8349 process_skeletonless_type_unit (void **slot, void *info)
8350 {
8351 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8352 struct dwarf2_per_objfile *dwarf2_per_objfile
8353 = (struct dwarf2_per_objfile *) info;
8354 struct signatured_type find_entry, *entry;
8355
8356 /* If this TU doesn't exist in the global table, add it and read it in. */
8357
8358 if (dwarf2_per_objfile->signatured_types == NULL)
8359 {
8360 dwarf2_per_objfile->signatured_types
8361 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8362 }
8363
8364 find_entry.signature = dwo_unit->signature;
8365 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8366 INSERT);
8367 /* If we've already seen this type there's nothing to do. What's happening
8368 is we're doing our own version of comdat-folding here. */
8369 if (*slot != NULL)
8370 return 1;
8371
8372 /* This does the job that create_all_type_units would have done for
8373 this TU. */
8374 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8375 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8376 *slot = entry;
8377
8378 /* This does the job that build_type_psymtabs_1 would have done. */
8379 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8380 build_type_psymtabs_reader, NULL);
8381
8382 return 1;
8383 }
8384
8385 /* Traversal function for process_skeletonless_type_units. */
8386
8387 static int
8388 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8389 {
8390 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8391
8392 if (dwo_file->tus != NULL)
8393 {
8394 htab_traverse_noresize (dwo_file->tus,
8395 process_skeletonless_type_unit, info);
8396 }
8397
8398 return 1;
8399 }
8400
8401 /* Scan all TUs of DWO files, verifying we've processed them.
8402 This is needed in case a TU was emitted without its skeleton.
8403 Note: This can't be done until we know what all the DWO files are. */
8404
8405 static void
8406 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8407 {
8408 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8409 if (get_dwp_file (dwarf2_per_objfile) == NULL
8410 && dwarf2_per_objfile->dwo_files != NULL)
8411 {
8412 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8413 process_dwo_file_for_skeletonless_type_units,
8414 dwarf2_per_objfile);
8415 }
8416 }
8417
8418 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8419
8420 static void
8421 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8422 {
8423 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8424 {
8425 struct partial_symtab *pst = per_cu->v.psymtab;
8426
8427 if (pst == NULL)
8428 continue;
8429
8430 for (int j = 0; j < pst->number_of_dependencies; ++j)
8431 {
8432 /* Set the 'user' field only if it is not already set. */
8433 if (pst->dependencies[j]->user == NULL)
8434 pst->dependencies[j]->user = pst;
8435 }
8436 }
8437 }
8438
8439 /* Build the partial symbol table by doing a quick pass through the
8440 .debug_info and .debug_abbrev sections. */
8441
8442 static void
8443 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8444 {
8445 struct objfile *objfile = dwarf2_per_objfile->objfile;
8446
8447 if (dwarf_read_debug)
8448 {
8449 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8450 objfile_name (objfile));
8451 }
8452
8453 dwarf2_per_objfile->reading_partial_symbols = 1;
8454
8455 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8456
8457 /* Any cached compilation units will be linked by the per-objfile
8458 read_in_chain. Make sure to free them when we're done. */
8459 free_cached_comp_units freer (dwarf2_per_objfile);
8460
8461 build_type_psymtabs (dwarf2_per_objfile);
8462
8463 create_all_comp_units (dwarf2_per_objfile);
8464
8465 /* Create a temporary address map on a temporary obstack. We later
8466 copy this to the final obstack. */
8467 auto_obstack temp_obstack;
8468
8469 scoped_restore save_psymtabs_addrmap
8470 = make_scoped_restore (&objfile->psymtabs_addrmap,
8471 addrmap_create_mutable (&temp_obstack));
8472
8473 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8474 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8475
8476 /* This has to wait until we read the CUs, we need the list of DWOs. */
8477 process_skeletonless_type_units (dwarf2_per_objfile);
8478
8479 /* Now that all TUs have been processed we can fill in the dependencies. */
8480 if (dwarf2_per_objfile->type_unit_groups != NULL)
8481 {
8482 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8483 build_type_psymtab_dependencies, dwarf2_per_objfile);
8484 }
8485
8486 if (dwarf_read_debug)
8487 print_tu_stats (dwarf2_per_objfile);
8488
8489 set_partial_user (dwarf2_per_objfile);
8490
8491 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8492 &objfile->objfile_obstack);
8493 /* At this point we want to keep the address map. */
8494 save_psymtabs_addrmap.release ();
8495
8496 if (dwarf_read_debug)
8497 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8498 objfile_name (objfile));
8499 }
8500
8501 /* die_reader_func for load_partial_comp_unit. */
8502
8503 static void
8504 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8505 const gdb_byte *info_ptr,
8506 struct die_info *comp_unit_die,
8507 int has_children,
8508 void *data)
8509 {
8510 struct dwarf2_cu *cu = reader->cu;
8511
8512 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8513
8514 /* Check if comp unit has_children.
8515 If so, read the rest of the partial symbols from this comp unit.
8516 If not, there's no more debug_info for this comp unit. */
8517 if (has_children)
8518 load_partial_dies (reader, info_ptr, 0);
8519 }
8520
8521 /* Load the partial DIEs for a secondary CU into memory.
8522 This is also used when rereading a primary CU with load_all_dies. */
8523
8524 static void
8525 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8526 {
8527 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8528 load_partial_comp_unit_reader, NULL);
8529 }
8530
8531 static void
8532 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8533 struct dwarf2_section_info *section,
8534 struct dwarf2_section_info *abbrev_section,
8535 unsigned int is_dwz)
8536 {
8537 const gdb_byte *info_ptr;
8538 struct objfile *objfile = dwarf2_per_objfile->objfile;
8539
8540 if (dwarf_read_debug)
8541 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8542 get_section_name (section),
8543 get_section_file_name (section));
8544
8545 dwarf2_read_section (objfile, section);
8546
8547 info_ptr = section->buffer;
8548
8549 while (info_ptr < section->buffer + section->size)
8550 {
8551 struct dwarf2_per_cu_data *this_cu;
8552
8553 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8554
8555 comp_unit_head cu_header;
8556 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8557 abbrev_section, info_ptr,
8558 rcuh_kind::COMPILE);
8559
8560 /* Save the compilation unit for later lookup. */
8561 if (cu_header.unit_type != DW_UT_type)
8562 {
8563 this_cu = XOBNEW (&objfile->objfile_obstack,
8564 struct dwarf2_per_cu_data);
8565 memset (this_cu, 0, sizeof (*this_cu));
8566 }
8567 else
8568 {
8569 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8570 struct signatured_type);
8571 memset (sig_type, 0, sizeof (*sig_type));
8572 sig_type->signature = cu_header.signature;
8573 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8574 this_cu = &sig_type->per_cu;
8575 }
8576 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8577 this_cu->sect_off = sect_off;
8578 this_cu->length = cu_header.length + cu_header.initial_length_size;
8579 this_cu->is_dwz = is_dwz;
8580 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8581 this_cu->section = section;
8582
8583 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8584
8585 info_ptr = info_ptr + this_cu->length;
8586 }
8587 }
8588
8589 /* Create a list of all compilation units in OBJFILE.
8590 This is only done for -readnow and building partial symtabs. */
8591
8592 static void
8593 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8594 {
8595 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8596 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8597 &dwarf2_per_objfile->abbrev, 0);
8598
8599 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8600 if (dwz != NULL)
8601 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8602 1);
8603 }
8604
8605 /* Process all loaded DIEs for compilation unit CU, starting at
8606 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8607 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8608 DW_AT_ranges). See the comments of add_partial_subprogram on how
8609 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8610
8611 static void
8612 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8613 CORE_ADDR *highpc, int set_addrmap,
8614 struct dwarf2_cu *cu)
8615 {
8616 struct partial_die_info *pdi;
8617
8618 /* Now, march along the PDI's, descending into ones which have
8619 interesting children but skipping the children of the other ones,
8620 until we reach the end of the compilation unit. */
8621
8622 pdi = first_die;
8623
8624 while (pdi != NULL)
8625 {
8626 pdi->fixup (cu);
8627
8628 /* Anonymous namespaces or modules have no name but have interesting
8629 children, so we need to look at them. Ditto for anonymous
8630 enums. */
8631
8632 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8633 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8634 || pdi->tag == DW_TAG_imported_unit
8635 || pdi->tag == DW_TAG_inlined_subroutine)
8636 {
8637 switch (pdi->tag)
8638 {
8639 case DW_TAG_subprogram:
8640 case DW_TAG_inlined_subroutine:
8641 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8642 break;
8643 case DW_TAG_constant:
8644 case DW_TAG_variable:
8645 case DW_TAG_typedef:
8646 case DW_TAG_union_type:
8647 if (!pdi->is_declaration)
8648 {
8649 add_partial_symbol (pdi, cu);
8650 }
8651 break;
8652 case DW_TAG_class_type:
8653 case DW_TAG_interface_type:
8654 case DW_TAG_structure_type:
8655 if (!pdi->is_declaration)
8656 {
8657 add_partial_symbol (pdi, cu);
8658 }
8659 if ((cu->language == language_rust
8660 || cu->language == language_cplus) && pdi->has_children)
8661 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8662 set_addrmap, cu);
8663 break;
8664 case DW_TAG_enumeration_type:
8665 if (!pdi->is_declaration)
8666 add_partial_enumeration (pdi, cu);
8667 break;
8668 case DW_TAG_base_type:
8669 case DW_TAG_subrange_type:
8670 /* File scope base type definitions are added to the partial
8671 symbol table. */
8672 add_partial_symbol (pdi, cu);
8673 break;
8674 case DW_TAG_namespace:
8675 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8676 break;
8677 case DW_TAG_module:
8678 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8679 break;
8680 case DW_TAG_imported_unit:
8681 {
8682 struct dwarf2_per_cu_data *per_cu;
8683
8684 /* For now we don't handle imported units in type units. */
8685 if (cu->per_cu->is_debug_types)
8686 {
8687 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8688 " supported in type units [in module %s]"),
8689 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8690 }
8691
8692 per_cu = dwarf2_find_containing_comp_unit
8693 (pdi->d.sect_off, pdi->is_dwz,
8694 cu->per_cu->dwarf2_per_objfile);
8695
8696 /* Go read the partial unit, if needed. */
8697 if (per_cu->v.psymtab == NULL)
8698 process_psymtab_comp_unit (per_cu, 1, cu->language);
8699
8700 VEC_safe_push (dwarf2_per_cu_ptr,
8701 cu->per_cu->imported_symtabs, per_cu);
8702 }
8703 break;
8704 case DW_TAG_imported_declaration:
8705 add_partial_symbol (pdi, cu);
8706 break;
8707 default:
8708 break;
8709 }
8710 }
8711
8712 /* If the die has a sibling, skip to the sibling. */
8713
8714 pdi = pdi->die_sibling;
8715 }
8716 }
8717
8718 /* Functions used to compute the fully scoped name of a partial DIE.
8719
8720 Normally, this is simple. For C++, the parent DIE's fully scoped
8721 name is concatenated with "::" and the partial DIE's name.
8722 Enumerators are an exception; they use the scope of their parent
8723 enumeration type, i.e. the name of the enumeration type is not
8724 prepended to the enumerator.
8725
8726 There are two complexities. One is DW_AT_specification; in this
8727 case "parent" means the parent of the target of the specification,
8728 instead of the direct parent of the DIE. The other is compilers
8729 which do not emit DW_TAG_namespace; in this case we try to guess
8730 the fully qualified name of structure types from their members'
8731 linkage names. This must be done using the DIE's children rather
8732 than the children of any DW_AT_specification target. We only need
8733 to do this for structures at the top level, i.e. if the target of
8734 any DW_AT_specification (if any; otherwise the DIE itself) does not
8735 have a parent. */
8736
8737 /* Compute the scope prefix associated with PDI's parent, in
8738 compilation unit CU. The result will be allocated on CU's
8739 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8740 field. NULL is returned if no prefix is necessary. */
8741 static const char *
8742 partial_die_parent_scope (struct partial_die_info *pdi,
8743 struct dwarf2_cu *cu)
8744 {
8745 const char *grandparent_scope;
8746 struct partial_die_info *parent, *real_pdi;
8747
8748 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8749 then this means the parent of the specification DIE. */
8750
8751 real_pdi = pdi;
8752 while (real_pdi->has_specification)
8753 real_pdi = find_partial_die (real_pdi->spec_offset,
8754 real_pdi->spec_is_dwz, cu);
8755
8756 parent = real_pdi->die_parent;
8757 if (parent == NULL)
8758 return NULL;
8759
8760 if (parent->scope_set)
8761 return parent->scope;
8762
8763 parent->fixup (cu);
8764
8765 grandparent_scope = partial_die_parent_scope (parent, cu);
8766
8767 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8768 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8769 Work around this problem here. */
8770 if (cu->language == language_cplus
8771 && parent->tag == DW_TAG_namespace
8772 && strcmp (parent->name, "::") == 0
8773 && grandparent_scope == NULL)
8774 {
8775 parent->scope = NULL;
8776 parent->scope_set = 1;
8777 return NULL;
8778 }
8779
8780 if (pdi->tag == DW_TAG_enumerator)
8781 /* Enumerators should not get the name of the enumeration as a prefix. */
8782 parent->scope = grandparent_scope;
8783 else if (parent->tag == DW_TAG_namespace
8784 || parent->tag == DW_TAG_module
8785 || parent->tag == DW_TAG_structure_type
8786 || parent->tag == DW_TAG_class_type
8787 || parent->tag == DW_TAG_interface_type
8788 || parent->tag == DW_TAG_union_type
8789 || parent->tag == DW_TAG_enumeration_type)
8790 {
8791 if (grandparent_scope == NULL)
8792 parent->scope = parent->name;
8793 else
8794 parent->scope = typename_concat (&cu->comp_unit_obstack,
8795 grandparent_scope,
8796 parent->name, 0, cu);
8797 }
8798 else
8799 {
8800 /* FIXME drow/2004-04-01: What should we be doing with
8801 function-local names? For partial symbols, we should probably be
8802 ignoring them. */
8803 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8804 parent->tag, sect_offset_str (pdi->sect_off));
8805 parent->scope = grandparent_scope;
8806 }
8807
8808 parent->scope_set = 1;
8809 return parent->scope;
8810 }
8811
8812 /* Return the fully scoped name associated with PDI, from compilation unit
8813 CU. The result will be allocated with malloc. */
8814
8815 static char *
8816 partial_die_full_name (struct partial_die_info *pdi,
8817 struct dwarf2_cu *cu)
8818 {
8819 const char *parent_scope;
8820
8821 /* If this is a template instantiation, we can not work out the
8822 template arguments from partial DIEs. So, unfortunately, we have
8823 to go through the full DIEs. At least any work we do building
8824 types here will be reused if full symbols are loaded later. */
8825 if (pdi->has_template_arguments)
8826 {
8827 pdi->fixup (cu);
8828
8829 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8830 {
8831 struct die_info *die;
8832 struct attribute attr;
8833 struct dwarf2_cu *ref_cu = cu;
8834
8835 /* DW_FORM_ref_addr is using section offset. */
8836 attr.name = (enum dwarf_attribute) 0;
8837 attr.form = DW_FORM_ref_addr;
8838 attr.u.unsnd = to_underlying (pdi->sect_off);
8839 die = follow_die_ref (NULL, &attr, &ref_cu);
8840
8841 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8842 }
8843 }
8844
8845 parent_scope = partial_die_parent_scope (pdi, cu);
8846 if (parent_scope == NULL)
8847 return NULL;
8848 else
8849 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8850 }
8851
8852 static void
8853 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8854 {
8855 struct dwarf2_per_objfile *dwarf2_per_objfile
8856 = cu->per_cu->dwarf2_per_objfile;
8857 struct objfile *objfile = dwarf2_per_objfile->objfile;
8858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8859 CORE_ADDR addr = 0;
8860 const char *actual_name = NULL;
8861 CORE_ADDR baseaddr;
8862 char *built_actual_name;
8863
8864 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8865
8866 built_actual_name = partial_die_full_name (pdi, cu);
8867 if (built_actual_name != NULL)
8868 actual_name = built_actual_name;
8869
8870 if (actual_name == NULL)
8871 actual_name = pdi->name;
8872
8873 switch (pdi->tag)
8874 {
8875 case DW_TAG_inlined_subroutine:
8876 case DW_TAG_subprogram:
8877 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8878 - baseaddr);
8879 if (pdi->is_external || cu->language == language_ada)
8880 {
8881 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8882 of the global scope. But in Ada, we want to be able to access
8883 nested procedures globally. So all Ada subprograms are stored
8884 in the global scope. */
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_BLOCK,
8888 SECT_OFF_TEXT (objfile),
8889 psymbol_placement::GLOBAL,
8890 addr,
8891 cu->language, objfile);
8892 }
8893 else
8894 {
8895 add_psymbol_to_list (actual_name, strlen (actual_name),
8896 built_actual_name != NULL,
8897 VAR_DOMAIN, LOC_BLOCK,
8898 SECT_OFF_TEXT (objfile),
8899 psymbol_placement::STATIC,
8900 addr, cu->language, objfile);
8901 }
8902
8903 if (pdi->main_subprogram && actual_name != NULL)
8904 set_objfile_main_name (objfile, actual_name, cu->language);
8905 break;
8906 case DW_TAG_constant:
8907 add_psymbol_to_list (actual_name, strlen (actual_name),
8908 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8909 -1, (pdi->is_external
8910 ? psymbol_placement::GLOBAL
8911 : psymbol_placement::STATIC),
8912 0, cu->language, objfile);
8913 break;
8914 case DW_TAG_variable:
8915 if (pdi->d.locdesc)
8916 addr = decode_locdesc (pdi->d.locdesc, cu);
8917
8918 if (pdi->d.locdesc
8919 && addr == 0
8920 && !dwarf2_per_objfile->has_section_at_zero)
8921 {
8922 /* A global or static variable may also have been stripped
8923 out by the linker if unused, in which case its address
8924 will be nullified; do not add such variables into partial
8925 symbol table then. */
8926 }
8927 else if (pdi->is_external)
8928 {
8929 /* Global Variable.
8930 Don't enter into the minimal symbol tables as there is
8931 a minimal symbol table entry from the ELF symbols already.
8932 Enter into partial symbol table if it has a location
8933 descriptor or a type.
8934 If the location descriptor is missing, new_symbol will create
8935 a LOC_UNRESOLVED symbol, the address of the variable will then
8936 be determined from the minimal symbol table whenever the variable
8937 is referenced.
8938 The address for the partial symbol table entry is not
8939 used by GDB, but it comes in handy for debugging partial symbol
8940 table building. */
8941
8942 if (pdi->d.locdesc || pdi->has_type)
8943 add_psymbol_to_list (actual_name, strlen (actual_name),
8944 built_actual_name != NULL,
8945 VAR_DOMAIN, LOC_STATIC,
8946 SECT_OFF_TEXT (objfile),
8947 psymbol_placement::GLOBAL,
8948 addr, cu->language, objfile);
8949 }
8950 else
8951 {
8952 int has_loc = pdi->d.locdesc != NULL;
8953
8954 /* Static Variable. Skip symbols whose value we cannot know (those
8955 without location descriptors or constant values). */
8956 if (!has_loc && !pdi->has_const_value)
8957 {
8958 xfree (built_actual_name);
8959 return;
8960 }
8961
8962 add_psymbol_to_list (actual_name, strlen (actual_name),
8963 built_actual_name != NULL,
8964 VAR_DOMAIN, LOC_STATIC,
8965 SECT_OFF_TEXT (objfile),
8966 psymbol_placement::STATIC,
8967 has_loc ? addr : 0,
8968 cu->language, objfile);
8969 }
8970 break;
8971 case DW_TAG_typedef:
8972 case DW_TAG_base_type:
8973 case DW_TAG_subrange_type:
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_TYPEDEF, -1,
8977 psymbol_placement::STATIC,
8978 0, cu->language, objfile);
8979 break;
8980 case DW_TAG_imported_declaration:
8981 case DW_TAG_namespace:
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 VAR_DOMAIN, LOC_TYPEDEF, -1,
8985 psymbol_placement::GLOBAL,
8986 0, cu->language, objfile);
8987 break;
8988 case DW_TAG_module:
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
8991 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8992 psymbol_placement::GLOBAL,
8993 0, cu->language, objfile);
8994 break;
8995 case DW_TAG_class_type:
8996 case DW_TAG_interface_type:
8997 case DW_TAG_structure_type:
8998 case DW_TAG_union_type:
8999 case DW_TAG_enumeration_type:
9000 /* Skip external references. The DWARF standard says in the section
9001 about "Structure, Union, and Class Type Entries": "An incomplete
9002 structure, union or class type is represented by a structure,
9003 union or class entry that does not have a byte size attribute
9004 and that has a DW_AT_declaration attribute." */
9005 if (!pdi->has_byte_size && pdi->is_declaration)
9006 {
9007 xfree (built_actual_name);
9008 return;
9009 }
9010
9011 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9012 static vs. global. */
9013 add_psymbol_to_list (actual_name, strlen (actual_name),
9014 built_actual_name != NULL,
9015 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9016 cu->language == language_cplus
9017 ? psymbol_placement::GLOBAL
9018 : psymbol_placement::STATIC,
9019 0, cu->language, objfile);
9020
9021 break;
9022 case DW_TAG_enumerator:
9023 add_psymbol_to_list (actual_name, strlen (actual_name),
9024 built_actual_name != NULL,
9025 VAR_DOMAIN, LOC_CONST, -1,
9026 cu->language == language_cplus
9027 ? psymbol_placement::GLOBAL
9028 : psymbol_placement::STATIC,
9029 0, cu->language, objfile);
9030 break;
9031 default:
9032 break;
9033 }
9034
9035 xfree (built_actual_name);
9036 }
9037
9038 /* Read a partial die corresponding to a namespace; also, add a symbol
9039 corresponding to that namespace to the symbol table. NAMESPACE is
9040 the name of the enclosing namespace. */
9041
9042 static void
9043 add_partial_namespace (struct partial_die_info *pdi,
9044 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9045 int set_addrmap, struct dwarf2_cu *cu)
9046 {
9047 /* Add a symbol for the namespace. */
9048
9049 add_partial_symbol (pdi, cu);
9050
9051 /* Now scan partial symbols in that namespace. */
9052
9053 if (pdi->has_children)
9054 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9055 }
9056
9057 /* Read a partial die corresponding to a Fortran module. */
9058
9059 static void
9060 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9061 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9062 {
9063 /* Add a symbol for the namespace. */
9064
9065 add_partial_symbol (pdi, cu);
9066
9067 /* Now scan partial symbols in that module. */
9068
9069 if (pdi->has_children)
9070 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9071 }
9072
9073 /* Read a partial die corresponding to a subprogram or an inlined
9074 subprogram and create a partial symbol for that subprogram.
9075 When the CU language allows it, this routine also defines a partial
9076 symbol for each nested subprogram that this subprogram contains.
9077 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9078 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9079
9080 PDI may also be a lexical block, in which case we simply search
9081 recursively for subprograms defined inside that lexical block.
9082 Again, this is only performed when the CU language allows this
9083 type of definitions. */
9084
9085 static void
9086 add_partial_subprogram (struct partial_die_info *pdi,
9087 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9088 int set_addrmap, struct dwarf2_cu *cu)
9089 {
9090 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9091 {
9092 if (pdi->has_pc_info)
9093 {
9094 if (pdi->lowpc < *lowpc)
9095 *lowpc = pdi->lowpc;
9096 if (pdi->highpc > *highpc)
9097 *highpc = pdi->highpc;
9098 if (set_addrmap)
9099 {
9100 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9101 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9102 CORE_ADDR baseaddr;
9103 CORE_ADDR this_highpc;
9104 CORE_ADDR this_lowpc;
9105
9106 baseaddr = ANOFFSET (objfile->section_offsets,
9107 SECT_OFF_TEXT (objfile));
9108 this_lowpc
9109 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9110 pdi->lowpc + baseaddr)
9111 - baseaddr);
9112 this_highpc
9113 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9114 pdi->highpc + baseaddr)
9115 - baseaddr);
9116 addrmap_set_empty (objfile->psymtabs_addrmap,
9117 this_lowpc, this_highpc - 1,
9118 cu->per_cu->v.psymtab);
9119 }
9120 }
9121
9122 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9123 {
9124 if (!pdi->is_declaration)
9125 /* Ignore subprogram DIEs that do not have a name, they are
9126 illegal. Do not emit a complaint at this point, we will
9127 do so when we convert this psymtab into a symtab. */
9128 if (pdi->name)
9129 add_partial_symbol (pdi, cu);
9130 }
9131 }
9132
9133 if (! pdi->has_children)
9134 return;
9135
9136 if (cu->language == language_ada)
9137 {
9138 pdi = pdi->die_child;
9139 while (pdi != NULL)
9140 {
9141 pdi->fixup (cu);
9142 if (pdi->tag == DW_TAG_subprogram
9143 || pdi->tag == DW_TAG_inlined_subroutine
9144 || pdi->tag == DW_TAG_lexical_block)
9145 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9146 pdi = pdi->die_sibling;
9147 }
9148 }
9149 }
9150
9151 /* Read a partial die corresponding to an enumeration type. */
9152
9153 static void
9154 add_partial_enumeration (struct partial_die_info *enum_pdi,
9155 struct dwarf2_cu *cu)
9156 {
9157 struct partial_die_info *pdi;
9158
9159 if (enum_pdi->name != NULL)
9160 add_partial_symbol (enum_pdi, cu);
9161
9162 pdi = enum_pdi->die_child;
9163 while (pdi)
9164 {
9165 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9166 complaint (_("malformed enumerator DIE ignored"));
9167 else
9168 add_partial_symbol (pdi, cu);
9169 pdi = pdi->die_sibling;
9170 }
9171 }
9172
9173 /* Return the initial uleb128 in the die at INFO_PTR. */
9174
9175 static unsigned int
9176 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9177 {
9178 unsigned int bytes_read;
9179
9180 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9181 }
9182
9183 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9184 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9185
9186 Return the corresponding abbrev, or NULL if the number is zero (indicating
9187 an empty DIE). In either case *BYTES_READ will be set to the length of
9188 the initial number. */
9189
9190 static struct abbrev_info *
9191 peek_die_abbrev (const die_reader_specs &reader,
9192 const gdb_byte *info_ptr, unsigned int *bytes_read)
9193 {
9194 dwarf2_cu *cu = reader.cu;
9195 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9196 unsigned int abbrev_number
9197 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9198
9199 if (abbrev_number == 0)
9200 return NULL;
9201
9202 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9203 if (!abbrev)
9204 {
9205 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9206 " at offset %s [in module %s]"),
9207 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9208 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9209 }
9210
9211 return abbrev;
9212 }
9213
9214 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9215 Returns a pointer to the end of a series of DIEs, terminated by an empty
9216 DIE. Any children of the skipped DIEs will also be skipped. */
9217
9218 static const gdb_byte *
9219 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9220 {
9221 while (1)
9222 {
9223 unsigned int bytes_read;
9224 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9225
9226 if (abbrev == NULL)
9227 return info_ptr + bytes_read;
9228 else
9229 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9230 }
9231 }
9232
9233 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9234 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9235 abbrev corresponding to that skipped uleb128 should be passed in
9236 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9237 children. */
9238
9239 static const gdb_byte *
9240 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9241 struct abbrev_info *abbrev)
9242 {
9243 unsigned int bytes_read;
9244 struct attribute attr;
9245 bfd *abfd = reader->abfd;
9246 struct dwarf2_cu *cu = reader->cu;
9247 const gdb_byte *buffer = reader->buffer;
9248 const gdb_byte *buffer_end = reader->buffer_end;
9249 unsigned int form, i;
9250
9251 for (i = 0; i < abbrev->num_attrs; i++)
9252 {
9253 /* The only abbrev we care about is DW_AT_sibling. */
9254 if (abbrev->attrs[i].name == DW_AT_sibling)
9255 {
9256 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9257 if (attr.form == DW_FORM_ref_addr)
9258 complaint (_("ignoring absolute DW_AT_sibling"));
9259 else
9260 {
9261 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9262 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9263
9264 if (sibling_ptr < info_ptr)
9265 complaint (_("DW_AT_sibling points backwards"));
9266 else if (sibling_ptr > reader->buffer_end)
9267 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9268 else
9269 return sibling_ptr;
9270 }
9271 }
9272
9273 /* If it isn't DW_AT_sibling, skip this attribute. */
9274 form = abbrev->attrs[i].form;
9275 skip_attribute:
9276 switch (form)
9277 {
9278 case DW_FORM_ref_addr:
9279 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9280 and later it is offset sized. */
9281 if (cu->header.version == 2)
9282 info_ptr += cu->header.addr_size;
9283 else
9284 info_ptr += cu->header.offset_size;
9285 break;
9286 case DW_FORM_GNU_ref_alt:
9287 info_ptr += cu->header.offset_size;
9288 break;
9289 case DW_FORM_addr:
9290 info_ptr += cu->header.addr_size;
9291 break;
9292 case DW_FORM_data1:
9293 case DW_FORM_ref1:
9294 case DW_FORM_flag:
9295 info_ptr += 1;
9296 break;
9297 case DW_FORM_flag_present:
9298 case DW_FORM_implicit_const:
9299 break;
9300 case DW_FORM_data2:
9301 case DW_FORM_ref2:
9302 info_ptr += 2;
9303 break;
9304 case DW_FORM_data4:
9305 case DW_FORM_ref4:
9306 info_ptr += 4;
9307 break;
9308 case DW_FORM_data8:
9309 case DW_FORM_ref8:
9310 case DW_FORM_ref_sig8:
9311 info_ptr += 8;
9312 break;
9313 case DW_FORM_data16:
9314 info_ptr += 16;
9315 break;
9316 case DW_FORM_string:
9317 read_direct_string (abfd, info_ptr, &bytes_read);
9318 info_ptr += bytes_read;
9319 break;
9320 case DW_FORM_sec_offset:
9321 case DW_FORM_strp:
9322 case DW_FORM_GNU_strp_alt:
9323 info_ptr += cu->header.offset_size;
9324 break;
9325 case DW_FORM_exprloc:
9326 case DW_FORM_block:
9327 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9328 info_ptr += bytes_read;
9329 break;
9330 case DW_FORM_block1:
9331 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9332 break;
9333 case DW_FORM_block2:
9334 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9335 break;
9336 case DW_FORM_block4:
9337 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9338 break;
9339 case DW_FORM_sdata:
9340 case DW_FORM_udata:
9341 case DW_FORM_ref_udata:
9342 case DW_FORM_GNU_addr_index:
9343 case DW_FORM_GNU_str_index:
9344 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9345 break;
9346 case DW_FORM_indirect:
9347 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9348 info_ptr += bytes_read;
9349 /* We need to continue parsing from here, so just go back to
9350 the top. */
9351 goto skip_attribute;
9352
9353 default:
9354 error (_("Dwarf Error: Cannot handle %s "
9355 "in DWARF reader [in module %s]"),
9356 dwarf_form_name (form),
9357 bfd_get_filename (abfd));
9358 }
9359 }
9360
9361 if (abbrev->has_children)
9362 return skip_children (reader, info_ptr);
9363 else
9364 return info_ptr;
9365 }
9366
9367 /* Locate ORIG_PDI's sibling.
9368 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9369
9370 static const gdb_byte *
9371 locate_pdi_sibling (const struct die_reader_specs *reader,
9372 struct partial_die_info *orig_pdi,
9373 const gdb_byte *info_ptr)
9374 {
9375 /* Do we know the sibling already? */
9376
9377 if (orig_pdi->sibling)
9378 return orig_pdi->sibling;
9379
9380 /* Are there any children to deal with? */
9381
9382 if (!orig_pdi->has_children)
9383 return info_ptr;
9384
9385 /* Skip the children the long way. */
9386
9387 return skip_children (reader, info_ptr);
9388 }
9389
9390 /* Expand this partial symbol table into a full symbol table. SELF is
9391 not NULL. */
9392
9393 static void
9394 dwarf2_read_symtab (struct partial_symtab *self,
9395 struct objfile *objfile)
9396 {
9397 struct dwarf2_per_objfile *dwarf2_per_objfile
9398 = get_dwarf2_per_objfile (objfile);
9399
9400 if (self->readin)
9401 {
9402 warning (_("bug: psymtab for %s is already read in."),
9403 self->filename);
9404 }
9405 else
9406 {
9407 if (info_verbose)
9408 {
9409 printf_filtered (_("Reading in symbols for %s..."),
9410 self->filename);
9411 gdb_flush (gdb_stdout);
9412 }
9413
9414 /* If this psymtab is constructed from a debug-only objfile, the
9415 has_section_at_zero flag will not necessarily be correct. We
9416 can get the correct value for this flag by looking at the data
9417 associated with the (presumably stripped) associated objfile. */
9418 if (objfile->separate_debug_objfile_backlink)
9419 {
9420 struct dwarf2_per_objfile *dpo_backlink
9421 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9422
9423 dwarf2_per_objfile->has_section_at_zero
9424 = dpo_backlink->has_section_at_zero;
9425 }
9426
9427 dwarf2_per_objfile->reading_partial_symbols = 0;
9428
9429 psymtab_to_symtab_1 (self);
9430
9431 /* Finish up the debug error message. */
9432 if (info_verbose)
9433 printf_filtered (_("done.\n"));
9434 }
9435
9436 process_cu_includes (dwarf2_per_objfile);
9437 }
9438 \f
9439 /* Reading in full CUs. */
9440
9441 /* Add PER_CU to the queue. */
9442
9443 static void
9444 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9445 enum language pretend_language)
9446 {
9447 struct dwarf2_queue_item *item;
9448
9449 per_cu->queued = 1;
9450 item = XNEW (struct dwarf2_queue_item);
9451 item->per_cu = per_cu;
9452 item->pretend_language = pretend_language;
9453 item->next = NULL;
9454
9455 if (dwarf2_queue == NULL)
9456 dwarf2_queue = item;
9457 else
9458 dwarf2_queue_tail->next = item;
9459
9460 dwarf2_queue_tail = item;
9461 }
9462
9463 /* If PER_CU is not yet queued, add it to the queue.
9464 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9465 dependency.
9466 The result is non-zero if PER_CU was queued, otherwise the result is zero
9467 meaning either PER_CU is already queued or it is already loaded.
9468
9469 N.B. There is an invariant here that if a CU is queued then it is loaded.
9470 The caller is required to load PER_CU if we return non-zero. */
9471
9472 static int
9473 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9474 struct dwarf2_per_cu_data *per_cu,
9475 enum language pretend_language)
9476 {
9477 /* We may arrive here during partial symbol reading, if we need full
9478 DIEs to process an unusual case (e.g. template arguments). Do
9479 not queue PER_CU, just tell our caller to load its DIEs. */
9480 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9481 {
9482 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9483 return 1;
9484 return 0;
9485 }
9486
9487 /* Mark the dependence relation so that we don't flush PER_CU
9488 too early. */
9489 if (dependent_cu != NULL)
9490 dwarf2_add_dependence (dependent_cu, per_cu);
9491
9492 /* If it's already on the queue, we have nothing to do. */
9493 if (per_cu->queued)
9494 return 0;
9495
9496 /* If the compilation unit is already loaded, just mark it as
9497 used. */
9498 if (per_cu->cu != NULL)
9499 {
9500 per_cu->cu->last_used = 0;
9501 return 0;
9502 }
9503
9504 /* Add it to the queue. */
9505 queue_comp_unit (per_cu, pretend_language);
9506
9507 return 1;
9508 }
9509
9510 /* Process the queue. */
9511
9512 static void
9513 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9514 {
9515 struct dwarf2_queue_item *item, *next_item;
9516
9517 if (dwarf_read_debug)
9518 {
9519 fprintf_unfiltered (gdb_stdlog,
9520 "Expanding one or more symtabs of objfile %s ...\n",
9521 objfile_name (dwarf2_per_objfile->objfile));
9522 }
9523
9524 /* The queue starts out with one item, but following a DIE reference
9525 may load a new CU, adding it to the end of the queue. */
9526 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9527 {
9528 if ((dwarf2_per_objfile->using_index
9529 ? !item->per_cu->v.quick->compunit_symtab
9530 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9531 /* Skip dummy CUs. */
9532 && item->per_cu->cu != NULL)
9533 {
9534 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9535 unsigned int debug_print_threshold;
9536 char buf[100];
9537
9538 if (per_cu->is_debug_types)
9539 {
9540 struct signatured_type *sig_type =
9541 (struct signatured_type *) per_cu;
9542
9543 sprintf (buf, "TU %s at offset %s",
9544 hex_string (sig_type->signature),
9545 sect_offset_str (per_cu->sect_off));
9546 /* There can be 100s of TUs.
9547 Only print them in verbose mode. */
9548 debug_print_threshold = 2;
9549 }
9550 else
9551 {
9552 sprintf (buf, "CU at offset %s",
9553 sect_offset_str (per_cu->sect_off));
9554 debug_print_threshold = 1;
9555 }
9556
9557 if (dwarf_read_debug >= debug_print_threshold)
9558 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9559
9560 if (per_cu->is_debug_types)
9561 process_full_type_unit (per_cu, item->pretend_language);
9562 else
9563 process_full_comp_unit (per_cu, item->pretend_language);
9564
9565 if (dwarf_read_debug >= debug_print_threshold)
9566 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9567 }
9568
9569 item->per_cu->queued = 0;
9570 next_item = item->next;
9571 xfree (item);
9572 }
9573
9574 dwarf2_queue_tail = NULL;
9575
9576 if (dwarf_read_debug)
9577 {
9578 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9579 objfile_name (dwarf2_per_objfile->objfile));
9580 }
9581 }
9582
9583 /* Read in full symbols for PST, and anything it depends on. */
9584
9585 static void
9586 psymtab_to_symtab_1 (struct partial_symtab *pst)
9587 {
9588 struct dwarf2_per_cu_data *per_cu;
9589 int i;
9590
9591 if (pst->readin)
9592 return;
9593
9594 for (i = 0; i < pst->number_of_dependencies; i++)
9595 if (!pst->dependencies[i]->readin
9596 && pst->dependencies[i]->user == NULL)
9597 {
9598 /* Inform about additional files that need to be read in. */
9599 if (info_verbose)
9600 {
9601 /* FIXME: i18n: Need to make this a single string. */
9602 fputs_filtered (" ", gdb_stdout);
9603 wrap_here ("");
9604 fputs_filtered ("and ", gdb_stdout);
9605 wrap_here ("");
9606 printf_filtered ("%s...", pst->dependencies[i]->filename);
9607 wrap_here (""); /* Flush output. */
9608 gdb_flush (gdb_stdout);
9609 }
9610 psymtab_to_symtab_1 (pst->dependencies[i]);
9611 }
9612
9613 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9614
9615 if (per_cu == NULL)
9616 {
9617 /* It's an include file, no symbols to read for it.
9618 Everything is in the parent symtab. */
9619 pst->readin = 1;
9620 return;
9621 }
9622
9623 dw2_do_instantiate_symtab (per_cu, false);
9624 }
9625
9626 /* Trivial hash function for die_info: the hash value of a DIE
9627 is its offset in .debug_info for this objfile. */
9628
9629 static hashval_t
9630 die_hash (const void *item)
9631 {
9632 const struct die_info *die = (const struct die_info *) item;
9633
9634 return to_underlying (die->sect_off);
9635 }
9636
9637 /* Trivial comparison function for die_info structures: two DIEs
9638 are equal if they have the same offset. */
9639
9640 static int
9641 die_eq (const void *item_lhs, const void *item_rhs)
9642 {
9643 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9644 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9645
9646 return die_lhs->sect_off == die_rhs->sect_off;
9647 }
9648
9649 /* die_reader_func for load_full_comp_unit.
9650 This is identical to read_signatured_type_reader,
9651 but is kept separate for now. */
9652
9653 static void
9654 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9655 const gdb_byte *info_ptr,
9656 struct die_info *comp_unit_die,
9657 int has_children,
9658 void *data)
9659 {
9660 struct dwarf2_cu *cu = reader->cu;
9661 enum language *language_ptr = (enum language *) data;
9662
9663 gdb_assert (cu->die_hash == NULL);
9664 cu->die_hash =
9665 htab_create_alloc_ex (cu->header.length / 12,
9666 die_hash,
9667 die_eq,
9668 NULL,
9669 &cu->comp_unit_obstack,
9670 hashtab_obstack_allocate,
9671 dummy_obstack_deallocate);
9672
9673 if (has_children)
9674 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9675 &info_ptr, comp_unit_die);
9676 cu->dies = comp_unit_die;
9677 /* comp_unit_die is not stored in die_hash, no need. */
9678
9679 /* We try not to read any attributes in this function, because not
9680 all CUs needed for references have been loaded yet, and symbol
9681 table processing isn't initialized. But we have to set the CU language,
9682 or we won't be able to build types correctly.
9683 Similarly, if we do not read the producer, we can not apply
9684 producer-specific interpretation. */
9685 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9686 }
9687
9688 /* Load the DIEs associated with PER_CU into memory. */
9689
9690 static void
9691 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9692 bool skip_partial,
9693 enum language pretend_language)
9694 {
9695 gdb_assert (! this_cu->is_debug_types);
9696
9697 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9698 load_full_comp_unit_reader, &pretend_language);
9699 }
9700
9701 /* Add a DIE to the delayed physname list. */
9702
9703 static void
9704 add_to_method_list (struct type *type, int fnfield_index, int index,
9705 const char *name, struct die_info *die,
9706 struct dwarf2_cu *cu)
9707 {
9708 struct delayed_method_info mi;
9709 mi.type = type;
9710 mi.fnfield_index = fnfield_index;
9711 mi.index = index;
9712 mi.name = name;
9713 mi.die = die;
9714 cu->method_list.push_back (mi);
9715 }
9716
9717 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9718 "const" / "volatile". If so, decrements LEN by the length of the
9719 modifier and return true. Otherwise return false. */
9720
9721 template<size_t N>
9722 static bool
9723 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9724 {
9725 size_t mod_len = sizeof (mod) - 1;
9726 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9727 {
9728 len -= mod_len;
9729 return true;
9730 }
9731 return false;
9732 }
9733
9734 /* Compute the physnames of any methods on the CU's method list.
9735
9736 The computation of method physnames is delayed in order to avoid the
9737 (bad) condition that one of the method's formal parameters is of an as yet
9738 incomplete type. */
9739
9740 static void
9741 compute_delayed_physnames (struct dwarf2_cu *cu)
9742 {
9743 /* Only C++ delays computing physnames. */
9744 if (cu->method_list.empty ())
9745 return;
9746 gdb_assert (cu->language == language_cplus);
9747
9748 for (const delayed_method_info &mi : cu->method_list)
9749 {
9750 const char *physname;
9751 struct fn_fieldlist *fn_flp
9752 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9753 physname = dwarf2_physname (mi.name, mi.die, cu);
9754 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9755 = physname ? physname : "";
9756
9757 /* Since there's no tag to indicate whether a method is a
9758 const/volatile overload, extract that information out of the
9759 demangled name. */
9760 if (physname != NULL)
9761 {
9762 size_t len = strlen (physname);
9763
9764 while (1)
9765 {
9766 if (physname[len] == ')') /* shortcut */
9767 break;
9768 else if (check_modifier (physname, len, " const"))
9769 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9770 else if (check_modifier (physname, len, " volatile"))
9771 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9772 else
9773 break;
9774 }
9775 }
9776 }
9777
9778 /* The list is no longer needed. */
9779 cu->method_list.clear ();
9780 }
9781
9782 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9783 the same as all other symbols in LISTHEAD. If a new symbol is added
9784 with a different language, this function asserts. */
9785
9786 static inline void
9787 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9788 {
9789 /* Only assert if LISTHEAD already contains symbols of a different
9790 language (dict_create_hashed/insert_symbol_hashed requires that all
9791 symbols in this list are of the same language). */
9792 gdb_assert ((*listhead) == NULL
9793 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9794 == SYMBOL_LANGUAGE (symbol)));
9795
9796 add_symbol_to_list (symbol, listhead);
9797 }
9798
9799 /* Go objects should be embedded in a DW_TAG_module DIE,
9800 and it's not clear if/how imported objects will appear.
9801 To keep Go support simple until that's worked out,
9802 go back through what we've read and create something usable.
9803 We could do this while processing each DIE, and feels kinda cleaner,
9804 but that way is more invasive.
9805 This is to, for example, allow the user to type "p var" or "b main"
9806 without having to specify the package name, and allow lookups
9807 of module.object to work in contexts that use the expression
9808 parser. */
9809
9810 static void
9811 fixup_go_packaging (struct dwarf2_cu *cu)
9812 {
9813 char *package_name = NULL;
9814 struct pending *list;
9815 int i;
9816
9817 for (list = *cu->builder->get_global_symbols ();
9818 list != NULL;
9819 list = list->next)
9820 {
9821 for (i = 0; i < list->nsyms; ++i)
9822 {
9823 struct symbol *sym = list->symbol[i];
9824
9825 if (SYMBOL_LANGUAGE (sym) == language_go
9826 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9827 {
9828 char *this_package_name = go_symbol_package_name (sym);
9829
9830 if (this_package_name == NULL)
9831 continue;
9832 if (package_name == NULL)
9833 package_name = this_package_name;
9834 else
9835 {
9836 struct objfile *objfile
9837 = cu->per_cu->dwarf2_per_objfile->objfile;
9838 if (strcmp (package_name, this_package_name) != 0)
9839 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9840 (symbol_symtab (sym) != NULL
9841 ? symtab_to_filename_for_display
9842 (symbol_symtab (sym))
9843 : objfile_name (objfile)),
9844 this_package_name, package_name);
9845 xfree (this_package_name);
9846 }
9847 }
9848 }
9849 }
9850
9851 if (package_name != NULL)
9852 {
9853 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9854 const char *saved_package_name
9855 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9856 package_name,
9857 strlen (package_name));
9858 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9859 saved_package_name);
9860 struct symbol *sym;
9861
9862 sym = allocate_symbol (objfile);
9863 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9864 SYMBOL_SET_NAMES (sym, saved_package_name,
9865 strlen (saved_package_name), 0, objfile);
9866 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9867 e.g., "main" finds the "main" module and not C's main(). */
9868 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9869 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9870 SYMBOL_TYPE (sym) = type;
9871
9872 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9873
9874 xfree (package_name);
9875 }
9876 }
9877
9878 /* Allocate a fully-qualified name consisting of the two parts on the
9879 obstack. */
9880
9881 static const char *
9882 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9883 {
9884 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9885 }
9886
9887 /* A helper that allocates a struct discriminant_info to attach to a
9888 union type. */
9889
9890 static struct discriminant_info *
9891 alloc_discriminant_info (struct type *type, int discriminant_index,
9892 int default_index)
9893 {
9894 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9895 gdb_assert (discriminant_index == -1
9896 || (discriminant_index >= 0
9897 && discriminant_index < TYPE_NFIELDS (type)));
9898 gdb_assert (default_index == -1
9899 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9900
9901 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9902
9903 struct discriminant_info *disc
9904 = ((struct discriminant_info *)
9905 TYPE_ZALLOC (type,
9906 offsetof (struct discriminant_info, discriminants)
9907 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9908 disc->default_index = default_index;
9909 disc->discriminant_index = discriminant_index;
9910
9911 struct dynamic_prop prop;
9912 prop.kind = PROP_UNDEFINED;
9913 prop.data.baton = disc;
9914
9915 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9916
9917 return disc;
9918 }
9919
9920 /* Some versions of rustc emitted enums in an unusual way.
9921
9922 Ordinary enums were emitted as unions. The first element of each
9923 structure in the union was named "RUST$ENUM$DISR". This element
9924 held the discriminant.
9925
9926 These versions of Rust also implemented the "non-zero"
9927 optimization. When the enum had two values, and one is empty and
9928 the other holds a pointer that cannot be zero, the pointer is used
9929 as the discriminant, with a zero value meaning the empty variant.
9930 Here, the union's first member is of the form
9931 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9932 where the fieldnos are the indices of the fields that should be
9933 traversed in order to find the field (which may be several fields deep)
9934 and the variantname is the name of the variant of the case when the
9935 field is zero.
9936
9937 This function recognizes whether TYPE is of one of these forms,
9938 and, if so, smashes it to be a variant type. */
9939
9940 static void
9941 quirk_rust_enum (struct type *type, struct objfile *objfile)
9942 {
9943 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9944
9945 /* We don't need to deal with empty enums. */
9946 if (TYPE_NFIELDS (type) == 0)
9947 return;
9948
9949 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9950 if (TYPE_NFIELDS (type) == 1
9951 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9952 {
9953 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9954
9955 /* Decode the field name to find the offset of the
9956 discriminant. */
9957 ULONGEST bit_offset = 0;
9958 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9959 while (name[0] >= '0' && name[0] <= '9')
9960 {
9961 char *tail;
9962 unsigned long index = strtoul (name, &tail, 10);
9963 name = tail;
9964 if (*name != '$'
9965 || index >= TYPE_NFIELDS (field_type)
9966 || (TYPE_FIELD_LOC_KIND (field_type, index)
9967 != FIELD_LOC_KIND_BITPOS))
9968 {
9969 complaint (_("Could not parse Rust enum encoding string \"%s\""
9970 "[in module %s]"),
9971 TYPE_FIELD_NAME (type, 0),
9972 objfile_name (objfile));
9973 return;
9974 }
9975 ++name;
9976
9977 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9978 field_type = TYPE_FIELD_TYPE (field_type, index);
9979 }
9980
9981 /* Make a union to hold the variants. */
9982 struct type *union_type = alloc_type (objfile);
9983 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9984 TYPE_NFIELDS (union_type) = 3;
9985 TYPE_FIELDS (union_type)
9986 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9987 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9988 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9989
9990 /* Put the discriminant must at index 0. */
9991 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9992 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9993 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9994 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9995
9996 /* The order of fields doesn't really matter, so put the real
9997 field at index 1 and the data-less field at index 2. */
9998 struct discriminant_info *disc
9999 = alloc_discriminant_info (union_type, 0, 1);
10000 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10001 TYPE_FIELD_NAME (union_type, 1)
10002 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10003 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10004 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10005 TYPE_FIELD_NAME (union_type, 1));
10006
10007 const char *dataless_name
10008 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10009 name);
10010 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10011 dataless_name);
10012 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10013 /* NAME points into the original discriminant name, which
10014 already has the correct lifetime. */
10015 TYPE_FIELD_NAME (union_type, 2) = name;
10016 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10017 disc->discriminants[2] = 0;
10018
10019 /* Smash this type to be a structure type. We have to do this
10020 because the type has already been recorded. */
10021 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10022 TYPE_NFIELDS (type) = 1;
10023 TYPE_FIELDS (type)
10024 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10025
10026 /* Install the variant part. */
10027 TYPE_FIELD_TYPE (type, 0) = union_type;
10028 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10029 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10030 }
10031 else if (TYPE_NFIELDS (type) == 1)
10032 {
10033 /* We assume that a union with a single field is a univariant
10034 enum. */
10035 /* Smash this type to be a structure type. We have to do this
10036 because the type has already been recorded. */
10037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10038
10039 /* Make a union to hold the variants. */
10040 struct type *union_type = alloc_type (objfile);
10041 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10042 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10043 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10044 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10045 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10046
10047 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10048 const char *variant_name
10049 = rust_last_path_segment (TYPE_NAME (field_type));
10050 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10051 TYPE_NAME (field_type)
10052 = rust_fully_qualify (&objfile->objfile_obstack,
10053 TYPE_NAME (type), variant_name);
10054
10055 /* Install the union in the outer struct type. */
10056 TYPE_NFIELDS (type) = 1;
10057 TYPE_FIELDS (type)
10058 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10059 TYPE_FIELD_TYPE (type, 0) = union_type;
10060 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10061 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10062
10063 alloc_discriminant_info (union_type, -1, 0);
10064 }
10065 else
10066 {
10067 struct type *disr_type = nullptr;
10068 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10069 {
10070 disr_type = TYPE_FIELD_TYPE (type, i);
10071
10072 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10073 {
10074 /* All fields of a true enum will be structs. */
10075 return;
10076 }
10077 else if (TYPE_NFIELDS (disr_type) == 0)
10078 {
10079 /* Could be data-less variant, so keep going. */
10080 disr_type = nullptr;
10081 }
10082 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10083 "RUST$ENUM$DISR") != 0)
10084 {
10085 /* Not a Rust enum. */
10086 return;
10087 }
10088 else
10089 {
10090 /* Found one. */
10091 break;
10092 }
10093 }
10094
10095 /* If we got here without a discriminant, then it's probably
10096 just a union. */
10097 if (disr_type == nullptr)
10098 return;
10099
10100 /* Smash this type to be a structure type. We have to do this
10101 because the type has already been recorded. */
10102 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10103
10104 /* Make a union to hold the variants. */
10105 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10106 struct type *union_type = alloc_type (objfile);
10107 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10108 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10109 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10110 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10111 TYPE_FIELDS (union_type)
10112 = (struct field *) TYPE_ZALLOC (union_type,
10113 (TYPE_NFIELDS (union_type)
10114 * sizeof (struct field)));
10115
10116 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10117 TYPE_NFIELDS (type) * sizeof (struct field));
10118
10119 /* Install the discriminant at index 0 in the union. */
10120 TYPE_FIELD (union_type, 0) = *disr_field;
10121 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10122 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10123
10124 /* Install the union in the outer struct type. */
10125 TYPE_FIELD_TYPE (type, 0) = union_type;
10126 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10127 TYPE_NFIELDS (type) = 1;
10128
10129 /* Set the size and offset of the union type. */
10130 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10131
10132 /* We need a way to find the correct discriminant given a
10133 variant name. For convenience we build a map here. */
10134 struct type *enum_type = FIELD_TYPE (*disr_field);
10135 std::unordered_map<std::string, ULONGEST> discriminant_map;
10136 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10137 {
10138 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10139 {
10140 const char *name
10141 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10142 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10143 }
10144 }
10145
10146 int n_fields = TYPE_NFIELDS (union_type);
10147 struct discriminant_info *disc
10148 = alloc_discriminant_info (union_type, 0, -1);
10149 /* Skip the discriminant here. */
10150 for (int i = 1; i < n_fields; ++i)
10151 {
10152 /* Find the final word in the name of this variant's type.
10153 That name can be used to look up the correct
10154 discriminant. */
10155 const char *variant_name
10156 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10157 i)));
10158
10159 auto iter = discriminant_map.find (variant_name);
10160 if (iter != discriminant_map.end ())
10161 disc->discriminants[i] = iter->second;
10162
10163 /* Remove the discriminant field, if it exists. */
10164 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10165 if (TYPE_NFIELDS (sub_type) > 0)
10166 {
10167 --TYPE_NFIELDS (sub_type);
10168 ++TYPE_FIELDS (sub_type);
10169 }
10170 TYPE_FIELD_NAME (union_type, i) = variant_name;
10171 TYPE_NAME (sub_type)
10172 = rust_fully_qualify (&objfile->objfile_obstack,
10173 TYPE_NAME (type), variant_name);
10174 }
10175 }
10176 }
10177
10178 /* Rewrite some Rust unions to be structures with variants parts. */
10179
10180 static void
10181 rust_union_quirks (struct dwarf2_cu *cu)
10182 {
10183 gdb_assert (cu->language == language_rust);
10184 for (type *type_ : cu->rust_unions)
10185 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10186 /* We don't need this any more. */
10187 cu->rust_unions.clear ();
10188 }
10189
10190 /* Return the symtab for PER_CU. This works properly regardless of
10191 whether we're using the index or psymtabs. */
10192
10193 static struct compunit_symtab *
10194 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10195 {
10196 return (per_cu->dwarf2_per_objfile->using_index
10197 ? per_cu->v.quick->compunit_symtab
10198 : per_cu->v.psymtab->compunit_symtab);
10199 }
10200
10201 /* A helper function for computing the list of all symbol tables
10202 included by PER_CU. */
10203
10204 static void
10205 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10206 htab_t all_children, htab_t all_type_symtabs,
10207 struct dwarf2_per_cu_data *per_cu,
10208 struct compunit_symtab *immediate_parent)
10209 {
10210 void **slot;
10211 int ix;
10212 struct compunit_symtab *cust;
10213 struct dwarf2_per_cu_data *iter;
10214
10215 slot = htab_find_slot (all_children, per_cu, INSERT);
10216 if (*slot != NULL)
10217 {
10218 /* This inclusion and its children have been processed. */
10219 return;
10220 }
10221
10222 *slot = per_cu;
10223 /* Only add a CU if it has a symbol table. */
10224 cust = get_compunit_symtab (per_cu);
10225 if (cust != NULL)
10226 {
10227 /* If this is a type unit only add its symbol table if we haven't
10228 seen it yet (type unit per_cu's can share symtabs). */
10229 if (per_cu->is_debug_types)
10230 {
10231 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10232 if (*slot == NULL)
10233 {
10234 *slot = cust;
10235 result->push_back (cust);
10236 if (cust->user == NULL)
10237 cust->user = immediate_parent;
10238 }
10239 }
10240 else
10241 {
10242 result->push_back (cust);
10243 if (cust->user == NULL)
10244 cust->user = immediate_parent;
10245 }
10246 }
10247
10248 for (ix = 0;
10249 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10250 ++ix)
10251 {
10252 recursively_compute_inclusions (result, all_children,
10253 all_type_symtabs, iter, cust);
10254 }
10255 }
10256
10257 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10258 PER_CU. */
10259
10260 static void
10261 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10262 {
10263 gdb_assert (! per_cu->is_debug_types);
10264
10265 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10266 {
10267 int ix, len;
10268 struct dwarf2_per_cu_data *per_cu_iter;
10269 std::vector<compunit_symtab *> result_symtabs;
10270 htab_t all_children, all_type_symtabs;
10271 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10272
10273 /* If we don't have a symtab, we can just skip this case. */
10274 if (cust == NULL)
10275 return;
10276
10277 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10278 NULL, xcalloc, xfree);
10279 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10280 NULL, xcalloc, xfree);
10281
10282 for (ix = 0;
10283 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10284 ix, per_cu_iter);
10285 ++ix)
10286 {
10287 recursively_compute_inclusions (&result_symtabs, all_children,
10288 all_type_symtabs, per_cu_iter,
10289 cust);
10290 }
10291
10292 /* Now we have a transitive closure of all the included symtabs. */
10293 len = result_symtabs.size ();
10294 cust->includes
10295 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10296 struct compunit_symtab *, len + 1);
10297 memcpy (cust->includes, result_symtabs.data (),
10298 len * sizeof (compunit_symtab *));
10299 cust->includes[len] = NULL;
10300
10301 htab_delete (all_children);
10302 htab_delete (all_type_symtabs);
10303 }
10304 }
10305
10306 /* Compute the 'includes' field for the symtabs of all the CUs we just
10307 read. */
10308
10309 static void
10310 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10311 {
10312 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10313 {
10314 if (! iter->is_debug_types)
10315 compute_compunit_symtab_includes (iter);
10316 }
10317
10318 dwarf2_per_objfile->just_read_cus.clear ();
10319 }
10320
10321 /* Generate full symbol information for PER_CU, whose DIEs have
10322 already been loaded into memory. */
10323
10324 static void
10325 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10326 enum language pretend_language)
10327 {
10328 struct dwarf2_cu *cu = per_cu->cu;
10329 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10330 struct objfile *objfile = dwarf2_per_objfile->objfile;
10331 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10332 CORE_ADDR lowpc, highpc;
10333 struct compunit_symtab *cust;
10334 CORE_ADDR baseaddr;
10335 struct block *static_block;
10336 CORE_ADDR addr;
10337
10338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10339
10340 /* Clear the list here in case something was left over. */
10341 cu->method_list.clear ();
10342
10343 cu->language = pretend_language;
10344 cu->language_defn = language_def (cu->language);
10345
10346 /* Do line number decoding in read_file_scope () */
10347 process_die (cu->dies, cu);
10348
10349 /* For now fudge the Go package. */
10350 if (cu->language == language_go)
10351 fixup_go_packaging (cu);
10352
10353 /* Now that we have processed all the DIEs in the CU, all the types
10354 should be complete, and it should now be safe to compute all of the
10355 physnames. */
10356 compute_delayed_physnames (cu);
10357
10358 if (cu->language == language_rust)
10359 rust_union_quirks (cu);
10360
10361 /* Some compilers don't define a DW_AT_high_pc attribute for the
10362 compilation unit. If the DW_AT_high_pc is missing, synthesize
10363 it, by scanning the DIE's below the compilation unit. */
10364 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10365
10366 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10367 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10368
10369 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10370 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10371 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10372 addrmap to help ensure it has an accurate map of pc values belonging to
10373 this comp unit. */
10374 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10375
10376 cust = cu->builder->end_symtab_from_static_block (static_block,
10377 SECT_OFF_TEXT (objfile),
10378 0);
10379
10380 if (cust != NULL)
10381 {
10382 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10383
10384 /* Set symtab language to language from DW_AT_language. If the
10385 compilation is from a C file generated by language preprocessors, do
10386 not set the language if it was already deduced by start_subfile. */
10387 if (!(cu->language == language_c
10388 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10389 COMPUNIT_FILETABS (cust)->language = cu->language;
10390
10391 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10392 produce DW_AT_location with location lists but it can be possibly
10393 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10394 there were bugs in prologue debug info, fixed later in GCC-4.5
10395 by "unwind info for epilogues" patch (which is not directly related).
10396
10397 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10398 needed, it would be wrong due to missing DW_AT_producer there.
10399
10400 Still one can confuse GDB by using non-standard GCC compilation
10401 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10402 */
10403 if (cu->has_loclist && gcc_4_minor >= 5)
10404 cust->locations_valid = 1;
10405
10406 if (gcc_4_minor >= 5)
10407 cust->epilogue_unwind_valid = 1;
10408
10409 cust->call_site_htab = cu->call_site_htab;
10410 }
10411
10412 if (dwarf2_per_objfile->using_index)
10413 per_cu->v.quick->compunit_symtab = cust;
10414 else
10415 {
10416 struct partial_symtab *pst = per_cu->v.psymtab;
10417 pst->compunit_symtab = cust;
10418 pst->readin = 1;
10419 }
10420
10421 /* Push it for inclusion processing later. */
10422 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10423
10424 /* Not needed any more. */
10425 cu->builder.reset ();
10426 }
10427
10428 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10429 already been loaded into memory. */
10430
10431 static void
10432 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10433 enum language pretend_language)
10434 {
10435 struct dwarf2_cu *cu = per_cu->cu;
10436 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
10438 struct compunit_symtab *cust;
10439 struct signatured_type *sig_type;
10440
10441 gdb_assert (per_cu->is_debug_types);
10442 sig_type = (struct signatured_type *) per_cu;
10443
10444 /* Clear the list here in case something was left over. */
10445 cu->method_list.clear ();
10446
10447 cu->language = pretend_language;
10448 cu->language_defn = language_def (cu->language);
10449
10450 /* The symbol tables are set up in read_type_unit_scope. */
10451 process_die (cu->dies, cu);
10452
10453 /* For now fudge the Go package. */
10454 if (cu->language == language_go)
10455 fixup_go_packaging (cu);
10456
10457 /* Now that we have processed all the DIEs in the CU, all the types
10458 should be complete, and it should now be safe to compute all of the
10459 physnames. */
10460 compute_delayed_physnames (cu);
10461
10462 if (cu->language == language_rust)
10463 rust_union_quirks (cu);
10464
10465 /* TUs share symbol tables.
10466 If this is the first TU to use this symtab, complete the construction
10467 of it with end_expandable_symtab. Otherwise, complete the addition of
10468 this TU's symbols to the existing symtab. */
10469 if (sig_type->type_unit_group->compunit_symtab == NULL)
10470 {
10471 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10472 sig_type->type_unit_group->compunit_symtab = cust;
10473
10474 if (cust != NULL)
10475 {
10476 /* Set symtab language to language from DW_AT_language. If the
10477 compilation is from a C file generated by language preprocessors,
10478 do not set the language if it was already deduced by
10479 start_subfile. */
10480 if (!(cu->language == language_c
10481 && COMPUNIT_FILETABS (cust)->language != language_c))
10482 COMPUNIT_FILETABS (cust)->language = cu->language;
10483 }
10484 }
10485 else
10486 {
10487 cu->builder->augment_type_symtab ();
10488 cust = sig_type->type_unit_group->compunit_symtab;
10489 }
10490
10491 if (dwarf2_per_objfile->using_index)
10492 per_cu->v.quick->compunit_symtab = cust;
10493 else
10494 {
10495 struct partial_symtab *pst = per_cu->v.psymtab;
10496 pst->compunit_symtab = cust;
10497 pst->readin = 1;
10498 }
10499
10500 /* Not needed any more. */
10501 cu->builder.reset ();
10502 }
10503
10504 /* Process an imported unit DIE. */
10505
10506 static void
10507 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10508 {
10509 struct attribute *attr;
10510
10511 /* For now we don't handle imported units in type units. */
10512 if (cu->per_cu->is_debug_types)
10513 {
10514 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10515 " supported in type units [in module %s]"),
10516 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10517 }
10518
10519 attr = dwarf2_attr (die, DW_AT_import, cu);
10520 if (attr != NULL)
10521 {
10522 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10523 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10524 dwarf2_per_cu_data *per_cu
10525 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10526 cu->per_cu->dwarf2_per_objfile);
10527
10528 /* If necessary, add it to the queue and load its DIEs. */
10529 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10530 load_full_comp_unit (per_cu, false, cu->language);
10531
10532 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10533 per_cu);
10534 }
10535 }
10536
10537 /* RAII object that represents a process_die scope: i.e.,
10538 starts/finishes processing a DIE. */
10539 class process_die_scope
10540 {
10541 public:
10542 process_die_scope (die_info *die, dwarf2_cu *cu)
10543 : m_die (die), m_cu (cu)
10544 {
10545 /* We should only be processing DIEs not already in process. */
10546 gdb_assert (!m_die->in_process);
10547 m_die->in_process = true;
10548 }
10549
10550 ~process_die_scope ()
10551 {
10552 m_die->in_process = false;
10553
10554 /* If we're done processing the DIE for the CU that owns the line
10555 header, we don't need the line header anymore. */
10556 if (m_cu->line_header_die_owner == m_die)
10557 {
10558 delete m_cu->line_header;
10559 m_cu->line_header = NULL;
10560 m_cu->line_header_die_owner = NULL;
10561 }
10562 }
10563
10564 private:
10565 die_info *m_die;
10566 dwarf2_cu *m_cu;
10567 };
10568
10569 /* Process a die and its children. */
10570
10571 static void
10572 process_die (struct die_info *die, struct dwarf2_cu *cu)
10573 {
10574 process_die_scope scope (die, cu);
10575
10576 switch (die->tag)
10577 {
10578 case DW_TAG_padding:
10579 break;
10580 case DW_TAG_compile_unit:
10581 case DW_TAG_partial_unit:
10582 read_file_scope (die, cu);
10583 break;
10584 case DW_TAG_type_unit:
10585 read_type_unit_scope (die, cu);
10586 break;
10587 case DW_TAG_subprogram:
10588 case DW_TAG_inlined_subroutine:
10589 read_func_scope (die, cu);
10590 break;
10591 case DW_TAG_lexical_block:
10592 case DW_TAG_try_block:
10593 case DW_TAG_catch_block:
10594 read_lexical_block_scope (die, cu);
10595 break;
10596 case DW_TAG_call_site:
10597 case DW_TAG_GNU_call_site:
10598 read_call_site_scope (die, cu);
10599 break;
10600 case DW_TAG_class_type:
10601 case DW_TAG_interface_type:
10602 case DW_TAG_structure_type:
10603 case DW_TAG_union_type:
10604 process_structure_scope (die, cu);
10605 break;
10606 case DW_TAG_enumeration_type:
10607 process_enumeration_scope (die, cu);
10608 break;
10609
10610 /* These dies have a type, but processing them does not create
10611 a symbol or recurse to process the children. Therefore we can
10612 read them on-demand through read_type_die. */
10613 case DW_TAG_subroutine_type:
10614 case DW_TAG_set_type:
10615 case DW_TAG_array_type:
10616 case DW_TAG_pointer_type:
10617 case DW_TAG_ptr_to_member_type:
10618 case DW_TAG_reference_type:
10619 case DW_TAG_rvalue_reference_type:
10620 case DW_TAG_string_type:
10621 break;
10622
10623 case DW_TAG_base_type:
10624 case DW_TAG_subrange_type:
10625 case DW_TAG_typedef:
10626 /* Add a typedef symbol for the type definition, if it has a
10627 DW_AT_name. */
10628 new_symbol (die, read_type_die (die, cu), cu);
10629 break;
10630 case DW_TAG_common_block:
10631 read_common_block (die, cu);
10632 break;
10633 case DW_TAG_common_inclusion:
10634 break;
10635 case DW_TAG_namespace:
10636 cu->processing_has_namespace_info = true;
10637 read_namespace (die, cu);
10638 break;
10639 case DW_TAG_module:
10640 cu->processing_has_namespace_info = true;
10641 read_module (die, cu);
10642 break;
10643 case DW_TAG_imported_declaration:
10644 cu->processing_has_namespace_info = true;
10645 if (read_namespace_alias (die, cu))
10646 break;
10647 /* The declaration is not a global namespace alias. */
10648 /* Fall through. */
10649 case DW_TAG_imported_module:
10650 cu->processing_has_namespace_info = true;
10651 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10652 || cu->language != language_fortran))
10653 complaint (_("Tag '%s' has unexpected children"),
10654 dwarf_tag_name (die->tag));
10655 read_import_statement (die, cu);
10656 break;
10657
10658 case DW_TAG_imported_unit:
10659 process_imported_unit_die (die, cu);
10660 break;
10661
10662 case DW_TAG_variable:
10663 read_variable (die, cu);
10664 break;
10665
10666 default:
10667 new_symbol (die, NULL, cu);
10668 break;
10669 }
10670 }
10671 \f
10672 /* DWARF name computation. */
10673
10674 /* A helper function for dwarf2_compute_name which determines whether DIE
10675 needs to have the name of the scope prepended to the name listed in the
10676 die. */
10677
10678 static int
10679 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10680 {
10681 struct attribute *attr;
10682
10683 switch (die->tag)
10684 {
10685 case DW_TAG_namespace:
10686 case DW_TAG_typedef:
10687 case DW_TAG_class_type:
10688 case DW_TAG_interface_type:
10689 case DW_TAG_structure_type:
10690 case DW_TAG_union_type:
10691 case DW_TAG_enumeration_type:
10692 case DW_TAG_enumerator:
10693 case DW_TAG_subprogram:
10694 case DW_TAG_inlined_subroutine:
10695 case DW_TAG_member:
10696 case DW_TAG_imported_declaration:
10697 return 1;
10698
10699 case DW_TAG_variable:
10700 case DW_TAG_constant:
10701 /* We only need to prefix "globally" visible variables. These include
10702 any variable marked with DW_AT_external or any variable that
10703 lives in a namespace. [Variables in anonymous namespaces
10704 require prefixing, but they are not DW_AT_external.] */
10705
10706 if (dwarf2_attr (die, DW_AT_specification, cu))
10707 {
10708 struct dwarf2_cu *spec_cu = cu;
10709
10710 return die_needs_namespace (die_specification (die, &spec_cu),
10711 spec_cu);
10712 }
10713
10714 attr = dwarf2_attr (die, DW_AT_external, cu);
10715 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10716 && die->parent->tag != DW_TAG_module)
10717 return 0;
10718 /* A variable in a lexical block of some kind does not need a
10719 namespace, even though in C++ such variables may be external
10720 and have a mangled name. */
10721 if (die->parent->tag == DW_TAG_lexical_block
10722 || die->parent->tag == DW_TAG_try_block
10723 || die->parent->tag == DW_TAG_catch_block
10724 || die->parent->tag == DW_TAG_subprogram)
10725 return 0;
10726 return 1;
10727
10728 default:
10729 return 0;
10730 }
10731 }
10732
10733 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10734 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10735 defined for the given DIE. */
10736
10737 static struct attribute *
10738 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10739 {
10740 struct attribute *attr;
10741
10742 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10743 if (attr == NULL)
10744 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10745
10746 return attr;
10747 }
10748
10749 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10750 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10751 defined for the given DIE. */
10752
10753 static const char *
10754 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10755 {
10756 const char *linkage_name;
10757
10758 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10759 if (linkage_name == NULL)
10760 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10761
10762 return linkage_name;
10763 }
10764
10765 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10766 compute the physname for the object, which include a method's:
10767 - formal parameters (C++),
10768 - receiver type (Go),
10769
10770 The term "physname" is a bit confusing.
10771 For C++, for example, it is the demangled name.
10772 For Go, for example, it's the mangled name.
10773
10774 For Ada, return the DIE's linkage name rather than the fully qualified
10775 name. PHYSNAME is ignored..
10776
10777 The result is allocated on the objfile_obstack and canonicalized. */
10778
10779 static const char *
10780 dwarf2_compute_name (const char *name,
10781 struct die_info *die, struct dwarf2_cu *cu,
10782 int physname)
10783 {
10784 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10785
10786 if (name == NULL)
10787 name = dwarf2_name (die, cu);
10788
10789 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10790 but otherwise compute it by typename_concat inside GDB.
10791 FIXME: Actually this is not really true, or at least not always true.
10792 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10793 Fortran names because there is no mangling standard. So new_symbol
10794 will set the demangled name to the result of dwarf2_full_name, and it is
10795 the demangled name that GDB uses if it exists. */
10796 if (cu->language == language_ada
10797 || (cu->language == language_fortran && physname))
10798 {
10799 /* For Ada unit, we prefer the linkage name over the name, as
10800 the former contains the exported name, which the user expects
10801 to be able to reference. Ideally, we want the user to be able
10802 to reference this entity using either natural or linkage name,
10803 but we haven't started looking at this enhancement yet. */
10804 const char *linkage_name = dw2_linkage_name (die, cu);
10805
10806 if (linkage_name != NULL)
10807 return linkage_name;
10808 }
10809
10810 /* These are the only languages we know how to qualify names in. */
10811 if (name != NULL
10812 && (cu->language == language_cplus
10813 || cu->language == language_fortran || cu->language == language_d
10814 || cu->language == language_rust))
10815 {
10816 if (die_needs_namespace (die, cu))
10817 {
10818 const char *prefix;
10819 const char *canonical_name = NULL;
10820
10821 string_file buf;
10822
10823 prefix = determine_prefix (die, cu);
10824 if (*prefix != '\0')
10825 {
10826 char *prefixed_name = typename_concat (NULL, prefix, name,
10827 physname, cu);
10828
10829 buf.puts (prefixed_name);
10830 xfree (prefixed_name);
10831 }
10832 else
10833 buf.puts (name);
10834
10835 /* Template parameters may be specified in the DIE's DW_AT_name, or
10836 as children with DW_TAG_template_type_param or
10837 DW_TAG_value_type_param. If the latter, add them to the name
10838 here. If the name already has template parameters, then
10839 skip this step; some versions of GCC emit both, and
10840 it is more efficient to use the pre-computed name.
10841
10842 Something to keep in mind about this process: it is very
10843 unlikely, or in some cases downright impossible, to produce
10844 something that will match the mangled name of a function.
10845 If the definition of the function has the same debug info,
10846 we should be able to match up with it anyway. But fallbacks
10847 using the minimal symbol, for instance to find a method
10848 implemented in a stripped copy of libstdc++, will not work.
10849 If we do not have debug info for the definition, we will have to
10850 match them up some other way.
10851
10852 When we do name matching there is a related problem with function
10853 templates; two instantiated function templates are allowed to
10854 differ only by their return types, which we do not add here. */
10855
10856 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10857 {
10858 struct attribute *attr;
10859 struct die_info *child;
10860 int first = 1;
10861
10862 die->building_fullname = 1;
10863
10864 for (child = die->child; child != NULL; child = child->sibling)
10865 {
10866 struct type *type;
10867 LONGEST value;
10868 const gdb_byte *bytes;
10869 struct dwarf2_locexpr_baton *baton;
10870 struct value *v;
10871
10872 if (child->tag != DW_TAG_template_type_param
10873 && child->tag != DW_TAG_template_value_param)
10874 continue;
10875
10876 if (first)
10877 {
10878 buf.puts ("<");
10879 first = 0;
10880 }
10881 else
10882 buf.puts (", ");
10883
10884 attr = dwarf2_attr (child, DW_AT_type, cu);
10885 if (attr == NULL)
10886 {
10887 complaint (_("template parameter missing DW_AT_type"));
10888 buf.puts ("UNKNOWN_TYPE");
10889 continue;
10890 }
10891 type = die_type (child, cu);
10892
10893 if (child->tag == DW_TAG_template_type_param)
10894 {
10895 c_print_type (type, "", &buf, -1, 0, cu->language,
10896 &type_print_raw_options);
10897 continue;
10898 }
10899
10900 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10901 if (attr == NULL)
10902 {
10903 complaint (_("template parameter missing "
10904 "DW_AT_const_value"));
10905 buf.puts ("UNKNOWN_VALUE");
10906 continue;
10907 }
10908
10909 dwarf2_const_value_attr (attr, type, name,
10910 &cu->comp_unit_obstack, cu,
10911 &value, &bytes, &baton);
10912
10913 if (TYPE_NOSIGN (type))
10914 /* GDB prints characters as NUMBER 'CHAR'. If that's
10915 changed, this can use value_print instead. */
10916 c_printchar (value, type, &buf);
10917 else
10918 {
10919 struct value_print_options opts;
10920
10921 if (baton != NULL)
10922 v = dwarf2_evaluate_loc_desc (type, NULL,
10923 baton->data,
10924 baton->size,
10925 baton->per_cu);
10926 else if (bytes != NULL)
10927 {
10928 v = allocate_value (type);
10929 memcpy (value_contents_writeable (v), bytes,
10930 TYPE_LENGTH (type));
10931 }
10932 else
10933 v = value_from_longest (type, value);
10934
10935 /* Specify decimal so that we do not depend on
10936 the radix. */
10937 get_formatted_print_options (&opts, 'd');
10938 opts.raw = 1;
10939 value_print (v, &buf, &opts);
10940 release_value (v);
10941 }
10942 }
10943
10944 die->building_fullname = 0;
10945
10946 if (!first)
10947 {
10948 /* Close the argument list, with a space if necessary
10949 (nested templates). */
10950 if (!buf.empty () && buf.string ().back () == '>')
10951 buf.puts (" >");
10952 else
10953 buf.puts (">");
10954 }
10955 }
10956
10957 /* For C++ methods, append formal parameter type
10958 information, if PHYSNAME. */
10959
10960 if (physname && die->tag == DW_TAG_subprogram
10961 && cu->language == language_cplus)
10962 {
10963 struct type *type = read_type_die (die, cu);
10964
10965 c_type_print_args (type, &buf, 1, cu->language,
10966 &type_print_raw_options);
10967
10968 if (cu->language == language_cplus)
10969 {
10970 /* Assume that an artificial first parameter is
10971 "this", but do not crash if it is not. RealView
10972 marks unnamed (and thus unused) parameters as
10973 artificial; there is no way to differentiate
10974 the two cases. */
10975 if (TYPE_NFIELDS (type) > 0
10976 && TYPE_FIELD_ARTIFICIAL (type, 0)
10977 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10978 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10979 0))))
10980 buf.puts (" const");
10981 }
10982 }
10983
10984 const std::string &intermediate_name = buf.string ();
10985
10986 if (cu->language == language_cplus)
10987 canonical_name
10988 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10989 &objfile->per_bfd->storage_obstack);
10990
10991 /* If we only computed INTERMEDIATE_NAME, or if
10992 INTERMEDIATE_NAME is already canonical, then we need to
10993 copy it to the appropriate obstack. */
10994 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10995 name = ((const char *)
10996 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10997 intermediate_name.c_str (),
10998 intermediate_name.length ()));
10999 else
11000 name = canonical_name;
11001 }
11002 }
11003
11004 return name;
11005 }
11006
11007 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11008 If scope qualifiers are appropriate they will be added. The result
11009 will be allocated on the storage_obstack, or NULL if the DIE does
11010 not have a name. NAME may either be from a previous call to
11011 dwarf2_name or NULL.
11012
11013 The output string will be canonicalized (if C++). */
11014
11015 static const char *
11016 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11017 {
11018 return dwarf2_compute_name (name, die, cu, 0);
11019 }
11020
11021 /* Construct a physname for the given DIE in CU. NAME may either be
11022 from a previous call to dwarf2_name or NULL. The result will be
11023 allocated on the objfile_objstack or NULL if the DIE does not have a
11024 name.
11025
11026 The output string will be canonicalized (if C++). */
11027
11028 static const char *
11029 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11030 {
11031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11032 const char *retval, *mangled = NULL, *canon = NULL;
11033 int need_copy = 1;
11034
11035 /* In this case dwarf2_compute_name is just a shortcut not building anything
11036 on its own. */
11037 if (!die_needs_namespace (die, cu))
11038 return dwarf2_compute_name (name, die, cu, 1);
11039
11040 mangled = dw2_linkage_name (die, cu);
11041
11042 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11043 See https://github.com/rust-lang/rust/issues/32925. */
11044 if (cu->language == language_rust && mangled != NULL
11045 && strchr (mangled, '{') != NULL)
11046 mangled = NULL;
11047
11048 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11049 has computed. */
11050 gdb::unique_xmalloc_ptr<char> demangled;
11051 if (mangled != NULL)
11052 {
11053
11054 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11055 {
11056 /* Do nothing (do not demangle the symbol name). */
11057 }
11058 else if (cu->language == language_go)
11059 {
11060 /* This is a lie, but we already lie to the caller new_symbol.
11061 new_symbol assumes we return the mangled name.
11062 This just undoes that lie until things are cleaned up. */
11063 }
11064 else
11065 {
11066 /* Use DMGL_RET_DROP for C++ template functions to suppress
11067 their return type. It is easier for GDB users to search
11068 for such functions as `name(params)' than `long name(params)'.
11069 In such case the minimal symbol names do not match the full
11070 symbol names but for template functions there is never a need
11071 to look up their definition from their declaration so
11072 the only disadvantage remains the minimal symbol variant
11073 `long name(params)' does not have the proper inferior type. */
11074 demangled.reset (gdb_demangle (mangled,
11075 (DMGL_PARAMS | DMGL_ANSI
11076 | DMGL_RET_DROP)));
11077 }
11078 if (demangled)
11079 canon = demangled.get ();
11080 else
11081 {
11082 canon = mangled;
11083 need_copy = 0;
11084 }
11085 }
11086
11087 if (canon == NULL || check_physname)
11088 {
11089 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11090
11091 if (canon != NULL && strcmp (physname, canon) != 0)
11092 {
11093 /* It may not mean a bug in GDB. The compiler could also
11094 compute DW_AT_linkage_name incorrectly. But in such case
11095 GDB would need to be bug-to-bug compatible. */
11096
11097 complaint (_("Computed physname <%s> does not match demangled <%s> "
11098 "(from linkage <%s>) - DIE at %s [in module %s]"),
11099 physname, canon, mangled, sect_offset_str (die->sect_off),
11100 objfile_name (objfile));
11101
11102 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11103 is available here - over computed PHYSNAME. It is safer
11104 against both buggy GDB and buggy compilers. */
11105
11106 retval = canon;
11107 }
11108 else
11109 {
11110 retval = physname;
11111 need_copy = 0;
11112 }
11113 }
11114 else
11115 retval = canon;
11116
11117 if (need_copy)
11118 retval = ((const char *)
11119 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11120 retval, strlen (retval)));
11121
11122 return retval;
11123 }
11124
11125 /* Inspect DIE in CU for a namespace alias. If one exists, record
11126 a new symbol for it.
11127
11128 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11129
11130 static int
11131 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11132 {
11133 struct attribute *attr;
11134
11135 /* If the die does not have a name, this is not a namespace
11136 alias. */
11137 attr = dwarf2_attr (die, DW_AT_name, cu);
11138 if (attr != NULL)
11139 {
11140 int num;
11141 struct die_info *d = die;
11142 struct dwarf2_cu *imported_cu = cu;
11143
11144 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11145 keep inspecting DIEs until we hit the underlying import. */
11146 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11147 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11148 {
11149 attr = dwarf2_attr (d, DW_AT_import, cu);
11150 if (attr == NULL)
11151 break;
11152
11153 d = follow_die_ref (d, attr, &imported_cu);
11154 if (d->tag != DW_TAG_imported_declaration)
11155 break;
11156 }
11157
11158 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11159 {
11160 complaint (_("DIE at %s has too many recursively imported "
11161 "declarations"), sect_offset_str (d->sect_off));
11162 return 0;
11163 }
11164
11165 if (attr != NULL)
11166 {
11167 struct type *type;
11168 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11169
11170 type = get_die_type_at_offset (sect_off, cu->per_cu);
11171 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11172 {
11173 /* This declaration is a global namespace alias. Add
11174 a symbol for it whose type is the aliased namespace. */
11175 new_symbol (die, type, cu);
11176 return 1;
11177 }
11178 }
11179 }
11180
11181 return 0;
11182 }
11183
11184 /* Return the using directives repository (global or local?) to use in the
11185 current context for CU.
11186
11187 For Ada, imported declarations can materialize renamings, which *may* be
11188 global. However it is impossible (for now?) in DWARF to distinguish
11189 "external" imported declarations and "static" ones. As all imported
11190 declarations seem to be static in all other languages, make them all CU-wide
11191 global only in Ada. */
11192
11193 static struct using_direct **
11194 using_directives (struct dwarf2_cu *cu)
11195 {
11196 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11197 return cu->builder->get_global_using_directives ();
11198 else
11199 return cu->builder->get_local_using_directives ();
11200 }
11201
11202 /* Read the import statement specified by the given die and record it. */
11203
11204 static void
11205 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11206 {
11207 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11208 struct attribute *import_attr;
11209 struct die_info *imported_die, *child_die;
11210 struct dwarf2_cu *imported_cu;
11211 const char *imported_name;
11212 const char *imported_name_prefix;
11213 const char *canonical_name;
11214 const char *import_alias;
11215 const char *imported_declaration = NULL;
11216 const char *import_prefix;
11217 std::vector<const char *> excludes;
11218
11219 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11220 if (import_attr == NULL)
11221 {
11222 complaint (_("Tag '%s' has no DW_AT_import"),
11223 dwarf_tag_name (die->tag));
11224 return;
11225 }
11226
11227 imported_cu = cu;
11228 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11229 imported_name = dwarf2_name (imported_die, imported_cu);
11230 if (imported_name == NULL)
11231 {
11232 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11233
11234 The import in the following code:
11235 namespace A
11236 {
11237 typedef int B;
11238 }
11239
11240 int main ()
11241 {
11242 using A::B;
11243 B b;
11244 return b;
11245 }
11246
11247 ...
11248 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11249 <52> DW_AT_decl_file : 1
11250 <53> DW_AT_decl_line : 6
11251 <54> DW_AT_import : <0x75>
11252 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11253 <59> DW_AT_name : B
11254 <5b> DW_AT_decl_file : 1
11255 <5c> DW_AT_decl_line : 2
11256 <5d> DW_AT_type : <0x6e>
11257 ...
11258 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11259 <76> DW_AT_byte_size : 4
11260 <77> DW_AT_encoding : 5 (signed)
11261
11262 imports the wrong die ( 0x75 instead of 0x58 ).
11263 This case will be ignored until the gcc bug is fixed. */
11264 return;
11265 }
11266
11267 /* Figure out the local name after import. */
11268 import_alias = dwarf2_name (die, cu);
11269
11270 /* Figure out where the statement is being imported to. */
11271 import_prefix = determine_prefix (die, cu);
11272
11273 /* Figure out what the scope of the imported die is and prepend it
11274 to the name of the imported die. */
11275 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11276
11277 if (imported_die->tag != DW_TAG_namespace
11278 && imported_die->tag != DW_TAG_module)
11279 {
11280 imported_declaration = imported_name;
11281 canonical_name = imported_name_prefix;
11282 }
11283 else if (strlen (imported_name_prefix) > 0)
11284 canonical_name = obconcat (&objfile->objfile_obstack,
11285 imported_name_prefix,
11286 (cu->language == language_d ? "." : "::"),
11287 imported_name, (char *) NULL);
11288 else
11289 canonical_name = imported_name;
11290
11291 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11292 for (child_die = die->child; child_die && child_die->tag;
11293 child_die = sibling_die (child_die))
11294 {
11295 /* DWARF-4: A Fortran use statement with a “rename list” may be
11296 represented by an imported module entry with an import attribute
11297 referring to the module and owned entries corresponding to those
11298 entities that are renamed as part of being imported. */
11299
11300 if (child_die->tag != DW_TAG_imported_declaration)
11301 {
11302 complaint (_("child DW_TAG_imported_declaration expected "
11303 "- DIE at %s [in module %s]"),
11304 sect_offset_str (child_die->sect_off),
11305 objfile_name (objfile));
11306 continue;
11307 }
11308
11309 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11310 if (import_attr == NULL)
11311 {
11312 complaint (_("Tag '%s' has no DW_AT_import"),
11313 dwarf_tag_name (child_die->tag));
11314 continue;
11315 }
11316
11317 imported_cu = cu;
11318 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11319 &imported_cu);
11320 imported_name = dwarf2_name (imported_die, imported_cu);
11321 if (imported_name == NULL)
11322 {
11323 complaint (_("child DW_TAG_imported_declaration has unknown "
11324 "imported name - DIE at %s [in module %s]"),
11325 sect_offset_str (child_die->sect_off),
11326 objfile_name (objfile));
11327 continue;
11328 }
11329
11330 excludes.push_back (imported_name);
11331
11332 process_die (child_die, cu);
11333 }
11334
11335 add_using_directive (using_directives (cu),
11336 import_prefix,
11337 canonical_name,
11338 import_alias,
11339 imported_declaration,
11340 excludes,
11341 0,
11342 &objfile->objfile_obstack);
11343 }
11344
11345 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11346 types, but gives them a size of zero. Starting with version 14,
11347 ICC is compatible with GCC. */
11348
11349 static bool
11350 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11351 {
11352 if (!cu->checked_producer)
11353 check_producer (cu);
11354
11355 return cu->producer_is_icc_lt_14;
11356 }
11357
11358 /* ICC generates a DW_AT_type for C void functions. This was observed on
11359 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11360 which says that void functions should not have a DW_AT_type. */
11361
11362 static bool
11363 producer_is_icc (struct dwarf2_cu *cu)
11364 {
11365 if (!cu->checked_producer)
11366 check_producer (cu);
11367
11368 return cu->producer_is_icc;
11369 }
11370
11371 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11372 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11373 this, it was first present in GCC release 4.3.0. */
11374
11375 static bool
11376 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11377 {
11378 if (!cu->checked_producer)
11379 check_producer (cu);
11380
11381 return cu->producer_is_gcc_lt_4_3;
11382 }
11383
11384 static file_and_directory
11385 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11386 {
11387 file_and_directory res;
11388
11389 /* Find the filename. Do not use dwarf2_name here, since the filename
11390 is not a source language identifier. */
11391 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11392 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11393
11394 if (res.comp_dir == NULL
11395 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11396 && IS_ABSOLUTE_PATH (res.name))
11397 {
11398 res.comp_dir_storage = ldirname (res.name);
11399 if (!res.comp_dir_storage.empty ())
11400 res.comp_dir = res.comp_dir_storage.c_str ();
11401 }
11402 if (res.comp_dir != NULL)
11403 {
11404 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11405 directory, get rid of it. */
11406 const char *cp = strchr (res.comp_dir, ':');
11407
11408 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11409 res.comp_dir = cp + 1;
11410 }
11411
11412 if (res.name == NULL)
11413 res.name = "<unknown>";
11414
11415 return res;
11416 }
11417
11418 /* Handle DW_AT_stmt_list for a compilation unit.
11419 DIE is the DW_TAG_compile_unit die for CU.
11420 COMP_DIR is the compilation directory. LOWPC is passed to
11421 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11422
11423 static void
11424 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11425 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11426 {
11427 struct dwarf2_per_objfile *dwarf2_per_objfile
11428 = cu->per_cu->dwarf2_per_objfile;
11429 struct objfile *objfile = dwarf2_per_objfile->objfile;
11430 struct attribute *attr;
11431 struct line_header line_header_local;
11432 hashval_t line_header_local_hash;
11433 void **slot;
11434 int decode_mapping;
11435
11436 gdb_assert (! cu->per_cu->is_debug_types);
11437
11438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11439 if (attr == NULL)
11440 return;
11441
11442 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11443
11444 /* The line header hash table is only created if needed (it exists to
11445 prevent redundant reading of the line table for partial_units).
11446 If we're given a partial_unit, we'll need it. If we're given a
11447 compile_unit, then use the line header hash table if it's already
11448 created, but don't create one just yet. */
11449
11450 if (dwarf2_per_objfile->line_header_hash == NULL
11451 && die->tag == DW_TAG_partial_unit)
11452 {
11453 dwarf2_per_objfile->line_header_hash
11454 = htab_create_alloc_ex (127, line_header_hash_voidp,
11455 line_header_eq_voidp,
11456 free_line_header_voidp,
11457 &objfile->objfile_obstack,
11458 hashtab_obstack_allocate,
11459 dummy_obstack_deallocate);
11460 }
11461
11462 line_header_local.sect_off = line_offset;
11463 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11464 line_header_local_hash = line_header_hash (&line_header_local);
11465 if (dwarf2_per_objfile->line_header_hash != NULL)
11466 {
11467 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11468 &line_header_local,
11469 line_header_local_hash, NO_INSERT);
11470
11471 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11472 is not present in *SLOT (since if there is something in *SLOT then
11473 it will be for a partial_unit). */
11474 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11475 {
11476 gdb_assert (*slot != NULL);
11477 cu->line_header = (struct line_header *) *slot;
11478 return;
11479 }
11480 }
11481
11482 /* dwarf_decode_line_header does not yet provide sufficient information.
11483 We always have to call also dwarf_decode_lines for it. */
11484 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11485 if (lh == NULL)
11486 return;
11487
11488 cu->line_header = lh.release ();
11489 cu->line_header_die_owner = die;
11490
11491 if (dwarf2_per_objfile->line_header_hash == NULL)
11492 slot = NULL;
11493 else
11494 {
11495 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11496 &line_header_local,
11497 line_header_local_hash, INSERT);
11498 gdb_assert (slot != NULL);
11499 }
11500 if (slot != NULL && *slot == NULL)
11501 {
11502 /* This newly decoded line number information unit will be owned
11503 by line_header_hash hash table. */
11504 *slot = cu->line_header;
11505 cu->line_header_die_owner = NULL;
11506 }
11507 else
11508 {
11509 /* We cannot free any current entry in (*slot) as that struct line_header
11510 may be already used by multiple CUs. Create only temporary decoded
11511 line_header for this CU - it may happen at most once for each line
11512 number information unit. And if we're not using line_header_hash
11513 then this is what we want as well. */
11514 gdb_assert (die->tag != DW_TAG_partial_unit);
11515 }
11516 decode_mapping = (die->tag != DW_TAG_partial_unit);
11517 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11518 decode_mapping);
11519
11520 }
11521
11522 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11523
11524 static void
11525 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11526 {
11527 struct dwarf2_per_objfile *dwarf2_per_objfile
11528 = cu->per_cu->dwarf2_per_objfile;
11529 struct objfile *objfile = dwarf2_per_objfile->objfile;
11530 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11531 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11532 CORE_ADDR highpc = ((CORE_ADDR) 0);
11533 struct attribute *attr;
11534 struct die_info *child_die;
11535 CORE_ADDR baseaddr;
11536
11537 prepare_one_comp_unit (cu, die, cu->language);
11538 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11539
11540 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11541
11542 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11543 from finish_block. */
11544 if (lowpc == ((CORE_ADDR) -1))
11545 lowpc = highpc;
11546 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11547
11548 file_and_directory fnd = find_file_and_directory (die, cu);
11549
11550 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11551 standardised yet. As a workaround for the language detection we fall
11552 back to the DW_AT_producer string. */
11553 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11554 cu->language = language_opencl;
11555
11556 /* Similar hack for Go. */
11557 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11558 set_cu_language (DW_LANG_Go, cu);
11559
11560 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11561
11562 /* Decode line number information if present. We do this before
11563 processing child DIEs, so that the line header table is available
11564 for DW_AT_decl_file. */
11565 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11566
11567 /* Process all dies in compilation unit. */
11568 if (die->child != NULL)
11569 {
11570 child_die = die->child;
11571 while (child_die && child_die->tag)
11572 {
11573 process_die (child_die, cu);
11574 child_die = sibling_die (child_die);
11575 }
11576 }
11577
11578 /* Decode macro information, if present. Dwarf 2 macro information
11579 refers to information in the line number info statement program
11580 header, so we can only read it if we've read the header
11581 successfully. */
11582 attr = dwarf2_attr (die, DW_AT_macros, cu);
11583 if (attr == NULL)
11584 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11585 if (attr && cu->line_header)
11586 {
11587 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11588 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11589
11590 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11591 }
11592 else
11593 {
11594 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11595 if (attr && cu->line_header)
11596 {
11597 unsigned int macro_offset = DW_UNSND (attr);
11598
11599 dwarf_decode_macros (cu, macro_offset, 0);
11600 }
11601 }
11602 }
11603
11604 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11605 Create the set of symtabs used by this TU, or if this TU is sharing
11606 symtabs with another TU and the symtabs have already been created
11607 then restore those symtabs in the line header.
11608 We don't need the pc/line-number mapping for type units. */
11609
11610 static void
11611 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11612 {
11613 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11614 struct type_unit_group *tu_group;
11615 int first_time;
11616 struct attribute *attr;
11617 unsigned int i;
11618 struct signatured_type *sig_type;
11619
11620 gdb_assert (per_cu->is_debug_types);
11621 sig_type = (struct signatured_type *) per_cu;
11622
11623 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11624
11625 /* If we're using .gdb_index (includes -readnow) then
11626 per_cu->type_unit_group may not have been set up yet. */
11627 if (sig_type->type_unit_group == NULL)
11628 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11629 tu_group = sig_type->type_unit_group;
11630
11631 /* If we've already processed this stmt_list there's no real need to
11632 do it again, we could fake it and just recreate the part we need
11633 (file name,index -> symtab mapping). If data shows this optimization
11634 is useful we can do it then. */
11635 first_time = tu_group->compunit_symtab == NULL;
11636
11637 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11638 debug info. */
11639 line_header_up lh;
11640 if (attr != NULL)
11641 {
11642 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11643 lh = dwarf_decode_line_header (line_offset, cu);
11644 }
11645 if (lh == NULL)
11646 {
11647 if (first_time)
11648 dwarf2_start_symtab (cu, "", NULL, 0);
11649 else
11650 {
11651 gdb_assert (tu_group->symtabs == NULL);
11652 gdb_assert (cu->builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 cu->builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
11659 }
11660 return;
11661 }
11662
11663 cu->line_header = lh.release ();
11664 cu->line_header_die_owner = die;
11665
11666 if (first_time)
11667 {
11668 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11669
11670 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11671 still initializing it, and our caller (a few levels up)
11672 process_full_type_unit still needs to know if this is the first
11673 time. */
11674
11675 tu_group->num_symtabs = cu->line_header->file_names.size ();
11676 tu_group->symtabs = XNEWVEC (struct symtab *,
11677 cu->line_header->file_names.size ());
11678
11679 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11680 {
11681 file_entry &fe = cu->line_header->file_names[i];
11682
11683 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11684
11685 if (cu->builder->get_current_subfile ()->symtab == NULL)
11686 {
11687 /* NOTE: start_subfile will recognize when it's been
11688 passed a file it has already seen. So we can't
11689 assume there's a simple mapping from
11690 cu->line_header->file_names to subfiles, plus
11691 cu->line_header->file_names may contain dups. */
11692 cu->builder->get_current_subfile ()->symtab
11693 = allocate_symtab (cust,
11694 cu->builder->get_current_subfile ()->name);
11695 }
11696
11697 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11698 tu_group->symtabs[i] = fe.symtab;
11699 }
11700 }
11701 else
11702 {
11703 gdb_assert (cu->builder == nullptr);
11704 struct compunit_symtab *cust = tu_group->compunit_symtab;
11705 cu->builder.reset (new struct buildsym_compunit
11706 (COMPUNIT_OBJFILE (cust), "",
11707 COMPUNIT_DIRNAME (cust),
11708 compunit_language (cust),
11709 0, cust));
11710
11711 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11712 {
11713 file_entry &fe = cu->line_header->file_names[i];
11714
11715 fe.symtab = tu_group->symtabs[i];
11716 }
11717 }
11718
11719 /* The main symtab is allocated last. Type units don't have DW_AT_name
11720 so they don't have a "real" (so to speak) symtab anyway.
11721 There is later code that will assign the main symtab to all symbols
11722 that don't have one. We need to handle the case of a symbol with a
11723 missing symtab (DW_AT_decl_file) anyway. */
11724 }
11725
11726 /* Process DW_TAG_type_unit.
11727 For TUs we want to skip the first top level sibling if it's not the
11728 actual type being defined by this TU. In this case the first top
11729 level sibling is there to provide context only. */
11730
11731 static void
11732 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11733 {
11734 struct die_info *child_die;
11735
11736 prepare_one_comp_unit (cu, die, language_minimal);
11737
11738 /* Initialize (or reinitialize) the machinery for building symtabs.
11739 We do this before processing child DIEs, so that the line header table
11740 is available for DW_AT_decl_file. */
11741 setup_type_unit_groups (die, cu);
11742
11743 if (die->child != NULL)
11744 {
11745 child_die = die->child;
11746 while (child_die && child_die->tag)
11747 {
11748 process_die (child_die, cu);
11749 child_die = sibling_die (child_die);
11750 }
11751 }
11752 }
11753 \f
11754 /* DWO/DWP files.
11755
11756 http://gcc.gnu.org/wiki/DebugFission
11757 http://gcc.gnu.org/wiki/DebugFissionDWP
11758
11759 To simplify handling of both DWO files ("object" files with the DWARF info)
11760 and DWP files (a file with the DWOs packaged up into one file), we treat
11761 DWP files as having a collection of virtual DWO files. */
11762
11763 static hashval_t
11764 hash_dwo_file (const void *item)
11765 {
11766 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11767 hashval_t hash;
11768
11769 hash = htab_hash_string (dwo_file->dwo_name);
11770 if (dwo_file->comp_dir != NULL)
11771 hash += htab_hash_string (dwo_file->comp_dir);
11772 return hash;
11773 }
11774
11775 static int
11776 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11777 {
11778 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11779 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11780
11781 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11782 return 0;
11783 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11784 return lhs->comp_dir == rhs->comp_dir;
11785 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11786 }
11787
11788 /* Allocate a hash table for DWO files. */
11789
11790 static htab_t
11791 allocate_dwo_file_hash_table (struct objfile *objfile)
11792 {
11793 return htab_create_alloc_ex (41,
11794 hash_dwo_file,
11795 eq_dwo_file,
11796 NULL,
11797 &objfile->objfile_obstack,
11798 hashtab_obstack_allocate,
11799 dummy_obstack_deallocate);
11800 }
11801
11802 /* Lookup DWO file DWO_NAME. */
11803
11804 static void **
11805 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11806 const char *dwo_name,
11807 const char *comp_dir)
11808 {
11809 struct dwo_file find_entry;
11810 void **slot;
11811
11812 if (dwarf2_per_objfile->dwo_files == NULL)
11813 dwarf2_per_objfile->dwo_files
11814 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11815
11816 memset (&find_entry, 0, sizeof (find_entry));
11817 find_entry.dwo_name = dwo_name;
11818 find_entry.comp_dir = comp_dir;
11819 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11820
11821 return slot;
11822 }
11823
11824 static hashval_t
11825 hash_dwo_unit (const void *item)
11826 {
11827 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11828
11829 /* This drops the top 32 bits of the id, but is ok for a hash. */
11830 return dwo_unit->signature;
11831 }
11832
11833 static int
11834 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11835 {
11836 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11837 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11838
11839 /* The signature is assumed to be unique within the DWO file.
11840 So while object file CU dwo_id's always have the value zero,
11841 that's OK, assuming each object file DWO file has only one CU,
11842 and that's the rule for now. */
11843 return lhs->signature == rhs->signature;
11844 }
11845
11846 /* Allocate a hash table for DWO CUs,TUs.
11847 There is one of these tables for each of CUs,TUs for each DWO file. */
11848
11849 static htab_t
11850 allocate_dwo_unit_table (struct objfile *objfile)
11851 {
11852 /* Start out with a pretty small number.
11853 Generally DWO files contain only one CU and maybe some TUs. */
11854 return htab_create_alloc_ex (3,
11855 hash_dwo_unit,
11856 eq_dwo_unit,
11857 NULL,
11858 &objfile->objfile_obstack,
11859 hashtab_obstack_allocate,
11860 dummy_obstack_deallocate);
11861 }
11862
11863 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11864
11865 struct create_dwo_cu_data
11866 {
11867 struct dwo_file *dwo_file;
11868 struct dwo_unit dwo_unit;
11869 };
11870
11871 /* die_reader_func for create_dwo_cu. */
11872
11873 static void
11874 create_dwo_cu_reader (const struct die_reader_specs *reader,
11875 const gdb_byte *info_ptr,
11876 struct die_info *comp_unit_die,
11877 int has_children,
11878 void *datap)
11879 {
11880 struct dwarf2_cu *cu = reader->cu;
11881 sect_offset sect_off = cu->per_cu->sect_off;
11882 struct dwarf2_section_info *section = cu->per_cu->section;
11883 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11884 struct dwo_file *dwo_file = data->dwo_file;
11885 struct dwo_unit *dwo_unit = &data->dwo_unit;
11886 struct attribute *attr;
11887
11888 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11889 if (attr == NULL)
11890 {
11891 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11892 " its dwo_id [in module %s]"),
11893 sect_offset_str (sect_off), dwo_file->dwo_name);
11894 return;
11895 }
11896
11897 dwo_unit->dwo_file = dwo_file;
11898 dwo_unit->signature = DW_UNSND (attr);
11899 dwo_unit->section = section;
11900 dwo_unit->sect_off = sect_off;
11901 dwo_unit->length = cu->per_cu->length;
11902
11903 if (dwarf_read_debug)
11904 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11905 sect_offset_str (sect_off),
11906 hex_string (dwo_unit->signature));
11907 }
11908
11909 /* Create the dwo_units for the CUs in a DWO_FILE.
11910 Note: This function processes DWO files only, not DWP files. */
11911
11912 static void
11913 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11914 struct dwo_file &dwo_file, dwarf2_section_info &section,
11915 htab_t &cus_htab)
11916 {
11917 struct objfile *objfile = dwarf2_per_objfile->objfile;
11918 const gdb_byte *info_ptr, *end_ptr;
11919
11920 dwarf2_read_section (objfile, &section);
11921 info_ptr = section.buffer;
11922
11923 if (info_ptr == NULL)
11924 return;
11925
11926 if (dwarf_read_debug)
11927 {
11928 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11929 get_section_name (&section),
11930 get_section_file_name (&section));
11931 }
11932
11933 end_ptr = info_ptr + section.size;
11934 while (info_ptr < end_ptr)
11935 {
11936 struct dwarf2_per_cu_data per_cu;
11937 struct create_dwo_cu_data create_dwo_cu_data;
11938 struct dwo_unit *dwo_unit;
11939 void **slot;
11940 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11941
11942 memset (&create_dwo_cu_data.dwo_unit, 0,
11943 sizeof (create_dwo_cu_data.dwo_unit));
11944 memset (&per_cu, 0, sizeof (per_cu));
11945 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11946 per_cu.is_debug_types = 0;
11947 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11948 per_cu.section = &section;
11949 create_dwo_cu_data.dwo_file = &dwo_file;
11950
11951 init_cutu_and_read_dies_no_follow (
11952 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11953 info_ptr += per_cu.length;
11954
11955 // If the unit could not be parsed, skip it.
11956 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11957 continue;
11958
11959 if (cus_htab == NULL)
11960 cus_htab = allocate_dwo_unit_table (objfile);
11961
11962 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11963 *dwo_unit = create_dwo_cu_data.dwo_unit;
11964 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11965 gdb_assert (slot != NULL);
11966 if (*slot != NULL)
11967 {
11968 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11969 sect_offset dup_sect_off = dup_cu->sect_off;
11970
11971 complaint (_("debug cu entry at offset %s is duplicate to"
11972 " the entry at offset %s, signature %s"),
11973 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11974 hex_string (dwo_unit->signature));
11975 }
11976 *slot = (void *)dwo_unit;
11977 }
11978 }
11979
11980 /* DWP file .debug_{cu,tu}_index section format:
11981 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11982
11983 DWP Version 1:
11984
11985 Both index sections have the same format, and serve to map a 64-bit
11986 signature to a set of section numbers. Each section begins with a header,
11987 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11988 indexes, and a pool of 32-bit section numbers. The index sections will be
11989 aligned at 8-byte boundaries in the file.
11990
11991 The index section header consists of:
11992
11993 V, 32 bit version number
11994 -, 32 bits unused
11995 N, 32 bit number of compilation units or type units in the index
11996 M, 32 bit number of slots in the hash table
11997
11998 Numbers are recorded using the byte order of the application binary.
11999
12000 The hash table begins at offset 16 in the section, and consists of an array
12001 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12002 order of the application binary). Unused slots in the hash table are 0.
12003 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12004
12005 The parallel table begins immediately after the hash table
12006 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12007 array of 32-bit indexes (using the byte order of the application binary),
12008 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12009 table contains a 32-bit index into the pool of section numbers. For unused
12010 hash table slots, the corresponding entry in the parallel table will be 0.
12011
12012 The pool of section numbers begins immediately following the hash table
12013 (at offset 16 + 12 * M from the beginning of the section). The pool of
12014 section numbers consists of an array of 32-bit words (using the byte order
12015 of the application binary). Each item in the array is indexed starting
12016 from 0. The hash table entry provides the index of the first section
12017 number in the set. Additional section numbers in the set follow, and the
12018 set is terminated by a 0 entry (section number 0 is not used in ELF).
12019
12020 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12021 section must be the first entry in the set, and the .debug_abbrev.dwo must
12022 be the second entry. Other members of the set may follow in any order.
12023
12024 ---
12025
12026 DWP Version 2:
12027
12028 DWP Version 2 combines all the .debug_info, etc. sections into one,
12029 and the entries in the index tables are now offsets into these sections.
12030 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12031 section.
12032
12033 Index Section Contents:
12034 Header
12035 Hash Table of Signatures dwp_hash_table.hash_table
12036 Parallel Table of Indices dwp_hash_table.unit_table
12037 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12038 Table of Section Sizes dwp_hash_table.v2.sizes
12039
12040 The index section header consists of:
12041
12042 V, 32 bit version number
12043 L, 32 bit number of columns in the table of section offsets
12044 N, 32 bit number of compilation units or type units in the index
12045 M, 32 bit number of slots in the hash table
12046
12047 Numbers are recorded using the byte order of the application binary.
12048
12049 The hash table has the same format as version 1.
12050 The parallel table of indices has the same format as version 1,
12051 except that the entries are origin-1 indices into the table of sections
12052 offsets and the table of section sizes.
12053
12054 The table of offsets begins immediately following the parallel table
12055 (at offset 16 + 12 * M from the beginning of the section). The table is
12056 a two-dimensional array of 32-bit words (using the byte order of the
12057 application binary), with L columns and N+1 rows, in row-major order.
12058 Each row in the array is indexed starting from 0. The first row provides
12059 a key to the remaining rows: each column in this row provides an identifier
12060 for a debug section, and the offsets in the same column of subsequent rows
12061 refer to that section. The section identifiers are:
12062
12063 DW_SECT_INFO 1 .debug_info.dwo
12064 DW_SECT_TYPES 2 .debug_types.dwo
12065 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12066 DW_SECT_LINE 4 .debug_line.dwo
12067 DW_SECT_LOC 5 .debug_loc.dwo
12068 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12069 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12070 DW_SECT_MACRO 8 .debug_macro.dwo
12071
12072 The offsets provided by the CU and TU index sections are the base offsets
12073 for the contributions made by each CU or TU to the corresponding section
12074 in the package file. Each CU and TU header contains an abbrev_offset
12075 field, used to find the abbreviations table for that CU or TU within the
12076 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12077 be interpreted as relative to the base offset given in the index section.
12078 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12079 should be interpreted as relative to the base offset for .debug_line.dwo,
12080 and offsets into other debug sections obtained from DWARF attributes should
12081 also be interpreted as relative to the corresponding base offset.
12082
12083 The table of sizes begins immediately following the table of offsets.
12084 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12085 with L columns and N rows, in row-major order. Each row in the array is
12086 indexed starting from 1 (row 0 is shared by the two tables).
12087
12088 ---
12089
12090 Hash table lookup is handled the same in version 1 and 2:
12091
12092 We assume that N and M will not exceed 2^32 - 1.
12093 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12094
12095 Given a 64-bit compilation unit signature or a type signature S, an entry
12096 in the hash table is located as follows:
12097
12098 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12099 the low-order k bits all set to 1.
12100
12101 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12102
12103 3) If the hash table entry at index H matches the signature, use that
12104 entry. If the hash table entry at index H is unused (all zeroes),
12105 terminate the search: the signature is not present in the table.
12106
12107 4) Let H = (H + H') modulo M. Repeat at Step 3.
12108
12109 Because M > N and H' and M are relatively prime, the search is guaranteed
12110 to stop at an unused slot or find the match. */
12111
12112 /* Create a hash table to map DWO IDs to their CU/TU entry in
12113 .debug_{info,types}.dwo in DWP_FILE.
12114 Returns NULL if there isn't one.
12115 Note: This function processes DWP files only, not DWO files. */
12116
12117 static struct dwp_hash_table *
12118 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12119 struct dwp_file *dwp_file, int is_debug_types)
12120 {
12121 struct objfile *objfile = dwarf2_per_objfile->objfile;
12122 bfd *dbfd = dwp_file->dbfd.get ();
12123 const gdb_byte *index_ptr, *index_end;
12124 struct dwarf2_section_info *index;
12125 uint32_t version, nr_columns, nr_units, nr_slots;
12126 struct dwp_hash_table *htab;
12127
12128 if (is_debug_types)
12129 index = &dwp_file->sections.tu_index;
12130 else
12131 index = &dwp_file->sections.cu_index;
12132
12133 if (dwarf2_section_empty_p (index))
12134 return NULL;
12135 dwarf2_read_section (objfile, index);
12136
12137 index_ptr = index->buffer;
12138 index_end = index_ptr + index->size;
12139
12140 version = read_4_bytes (dbfd, index_ptr);
12141 index_ptr += 4;
12142 if (version == 2)
12143 nr_columns = read_4_bytes (dbfd, index_ptr);
12144 else
12145 nr_columns = 0;
12146 index_ptr += 4;
12147 nr_units = read_4_bytes (dbfd, index_ptr);
12148 index_ptr += 4;
12149 nr_slots = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151
12152 if (version != 1 && version != 2)
12153 {
12154 error (_("Dwarf Error: unsupported DWP file version (%s)"
12155 " [in module %s]"),
12156 pulongest (version), dwp_file->name);
12157 }
12158 if (nr_slots != (nr_slots & -nr_slots))
12159 {
12160 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12161 " is not power of 2 [in module %s]"),
12162 pulongest (nr_slots), dwp_file->name);
12163 }
12164
12165 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12166 htab->version = version;
12167 htab->nr_columns = nr_columns;
12168 htab->nr_units = nr_units;
12169 htab->nr_slots = nr_slots;
12170 htab->hash_table = index_ptr;
12171 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12172
12173 /* Exit early if the table is empty. */
12174 if (nr_slots == 0 || nr_units == 0
12175 || (version == 2 && nr_columns == 0))
12176 {
12177 /* All must be zero. */
12178 if (nr_slots != 0 || nr_units != 0
12179 || (version == 2 && nr_columns != 0))
12180 {
12181 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12182 " all zero [in modules %s]"),
12183 dwp_file->name);
12184 }
12185 return htab;
12186 }
12187
12188 if (version == 1)
12189 {
12190 htab->section_pool.v1.indices =
12191 htab->unit_table + sizeof (uint32_t) * nr_slots;
12192 /* It's harder to decide whether the section is too small in v1.
12193 V1 is deprecated anyway so we punt. */
12194 }
12195 else
12196 {
12197 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12198 int *ids = htab->section_pool.v2.section_ids;
12199 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
12216 memset (ids, 255, sizeof_ids);
12217 memset (ids_seen, 255, sizeof (ids_seen));
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
12266
12267 return htab;
12268 }
12269
12270 /* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
12274 read comes from the DWP V1 hash table, not the full ELF section table.
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278 static int
12279 locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
12281 {
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
12287 if (sections->abbrev.s.section != NULL)
12288 return 0;
12289 sections->abbrev.s.section = sectp;
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->info_or_types.s.section != NULL)
12297 return 0;
12298 sections->info_or_types.s.section = sectp;
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
12304 if (sections->line.s.section != NULL)
12305 return 0;
12306 sections->line.s.section = sectp;
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
12312 if (sections->loc.s.section != NULL)
12313 return 0;
12314 sections->loc.s.section = sectp;
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
12320 if (sections->macinfo.s.section != NULL)
12321 return 0;
12322 sections->macinfo.s.section = sectp;
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
12328 if (sections->macro.s.section != NULL)
12329 return 0;
12330 sections->macro.s.section = sectp;
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
12336 if (sections->str_offsets.s.section != NULL)
12337 return 0;
12338 sections->str_offsets.s.section = sectp;
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348 }
12349
12350 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
12354
12355 static struct dwo_unit *
12356 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
12361 {
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
12365 bfd *dbfd = dwp_file->dbfd.get ();
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
12369 struct virtual_v1_dwo_sections sections;
12370 void **dwo_file_slot;
12371 int i;
12372
12373 gdb_assert (dwp_file->version == 1);
12374
12375 if (dwarf_read_debug)
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12378 kind,
12379 pulongest (unit_index), hex_string (signature),
12380 dwp_file->name);
12381 }
12382
12383 /* Fetch the sections of this DWO unit.
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12386
12387 #define MAX_NR_V1_DWO_SECTIONS \
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
12393 + 1 /* .debug_macro or .debug_macinfo */ \
12394 + 1 /* trailing zero */)
12395
12396 memset (&sections, 0, sizeof (sections));
12397
12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12399 {
12400 asection *sectp;
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
12405
12406 if (section_nr == 0)
12407 break;
12408 if (section_nr >= dwp_file->num_sections)
12409 {
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12412 dwp_file->name);
12413 }
12414
12415 sectp = dwp_file->elf_sections[section_nr];
12416 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12417 {
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12420 dwp_file->name);
12421 }
12422 }
12423
12424 if (i < 2
12425 || dwarf2_section_empty_p (&sections.info_or_types)
12426 || dwarf2_section_empty_p (&sections.abbrev))
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432 if (i == MAX_NR_V1_DWO_SECTIONS)
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12441
12442 The DWP file can be made up of a random collection of CUs and TUs.
12443 However, for each CU + set of TUs that came from the same original DWO
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12447
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (&sections.abbrev),
12451 get_section_id (&sections.line),
12452 get_section_id (&sections.loc),
12453 get_section_id (&sections.str_offsets));
12454 /* Can we use an existing virtual DWO file? */
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12457 comp_dir);
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12460 {
12461 if (dwarf_read_debug)
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12464 virtual_dwo_name.c_str ());
12465 }
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12467 dwo_file->dwo_name
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
12471 dwo_file->comp_dir = comp_dir;
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
12480 /* The info or types section is assigned below to dwo_unit,
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
12485 for it, invalidating all copies of pointers into the previous
12486 contents. */
12487 *dwo_file_slot = dwo_file;
12488 }
12489 else
12490 {
12491 if (dwarf_read_debug)
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12494 virtual_dwo_name.c_str ());
12495 }
12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
12497 }
12498
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12504 *dwo_unit->section = sections.info_or_types;
12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12506
12507 return dwo_unit;
12508 }
12509
12510 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12514
12515 static struct dwarf2_section_info
12516 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
12518 bfd_size_type offset, bfd_size_type size)
12519 {
12520 struct dwarf2_section_info result;
12521 asection *sectp;
12522
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12525
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12529
12530 if (size == 0)
12531 return result;
12532
12533 sectp = get_section_bfd_section (section);
12534
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12538 if (sectp == NULL
12539 || offset + size > bfd_get_section_size (sectp))
12540 {
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12545 }
12546
12547 result.virtual_offset = offset;
12548 result.size = size;
12549 return result;
12550 }
12551
12552 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12556
12557 static struct dwo_unit *
12558 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563 {
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
12567 bfd *dbfd = dwp_file->dbfd.get ();
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
12573 int i;
12574
12575 gdb_assert (dwp_file->version == 2);
12576
12577 if (dwarf_read_debug)
12578 {
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12580 kind,
12581 pulongest (unit_index), hex_string (signature),
12582 dwp_file->name);
12583 }
12584
12585 /* Fetch the section offsets of this DWO unit. */
12586
12587 memset (&sections, 0, sizeof (sections));
12588
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12590 {
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12599 + i)
12600 * sizeof (uint32_t)));
12601
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12603 {
12604 case DW_SECT_INFO:
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12608 break;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12612 break;
12613 case DW_SECT_LINE:
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12616 break;
12617 case DW_SECT_LOC:
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12620 break;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12624 break;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12628 break;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12632 break;
12633 }
12634 }
12635
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12638
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12644
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
12652 /* Can we use an existing virtual DWO file? */
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12655 comp_dir);
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12658 {
12659 if (dwarf_read_debug)
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12662 virtual_dwo_name.c_str ());
12663 }
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12665 dwo_file->dwo_name
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12698 contents. */
12699 *dwo_file_slot = dwo_file;
12700 }
12701 else
12702 {
12703 if (dwarf_read_debug)
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12706 virtual_dwo_name.c_str ());
12707 }
12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
12709 }
12710
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12717 is_debug_types
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12723
12724 return dwo_unit;
12725 }
12726
12727 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
12729
12730 static struct dwo_unit *
12731 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
12733 ULONGEST signature, int is_debug_types)
12734 {
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
12737 bfd *dbfd = dwp_file->dbfd.get ();
12738 uint32_t mask = dwp_htab->nr_slots - 1;
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12741 unsigned int i;
12742 void **slot;
12743 struct dwo_unit find_dwo_cu;
12744
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
12751
12752 if (*slot != NULL)
12753 return (struct dwo_unit *) *slot;
12754
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
12757 {
12758 ULONGEST signature_in_table;
12759
12760 signature_in_table =
12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12762 if (signature_in_table == signature)
12763 {
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
12767
12768 if (dwp_file->version == 1)
12769 {
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
12772 comp_dir, signature,
12773 is_debug_types);
12774 }
12775 else
12776 {
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
12782 return (struct dwo_unit *) *slot;
12783 }
12784 if (signature_in_table == 0)
12785 return NULL;
12786 hash = (hash + hash2) & mask;
12787 }
12788
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12791 dwp_file->name);
12792 }
12793
12794 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
12803 If unable to find/open the file, return NULL.
12804 NOTE: This function is derived from symfile_bfd_open. */
12805
12806 static gdb_bfd_ref_ptr
12807 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
12809 {
12810 int desc;
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
12814 const char *search_path;
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12816
12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
12818 if (search_cwd)
12819 {
12820 if (*debug_file_directory != '\0')
12821 {
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12824 (char *) NULL));
12825 search_path = search_path_holder.get ();
12826 }
12827 else
12828 search_path = ".";
12829 }
12830 else
12831 search_path = debug_file_directory;
12832
12833 openp_flags flags = OPF_RETURN_REALPATH;
12834 if (is_dwp)
12835 flags |= OPF_SEARCH_IN_PATH;
12836
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
12838 desc = openp (search_path, flags, file_name,
12839 O_RDONLY | O_BINARY, &absolute_name);
12840 if (desc < 0)
12841 return NULL;
12842
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12844 gnutarget, desc));
12845 if (sym_bfd == NULL)
12846 return NULL;
12847 bfd_set_cacheable (sym_bfd.get (), 1);
12848
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12850 return NULL;
12851
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12857
12858 return sym_bfd;
12859 }
12860
12861 /* Try to open DWO file FILE_NAME.
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12867
12868 static gdb_bfd_ref_ptr
12869 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
12871 {
12872 if (IS_ABSOLUTE_PATH (file_name))
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
12875
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12877
12878 if (comp_dir != NULL)
12879 {
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
12882
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12886 path_to_try,
12887 0 /*is_dwp*/,
12888 1 /*search_cwd*/));
12889 xfree (path_to_try);
12890 if (abfd != NULL)
12891 return abfd;
12892 }
12893
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12896
12897 if (*debug_file_directory == '\0')
12898 return NULL;
12899
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
12902 }
12903
12904 /* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12906
12907 static void
12908 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12909 {
12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12911 const struct dwop_section_names *names = &dwop_section_names;
12912
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12914 {
12915 dwo_sections->abbrev.s.section = sectp;
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12919 {
12920 dwo_sections->info.s.section = sectp;
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12924 {
12925 dwo_sections->line.s.section = sectp;
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12929 {
12930 dwo_sections->loc.s.section = sectp;
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12934 {
12935 dwo_sections->macinfo.s.section = sectp;
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12939 {
12940 dwo_sections->macro.s.section = sectp;
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12944 {
12945 dwo_sections->str.s.section = sectp;
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12949 {
12950 dwo_sections->str_offsets.s.section = sectp;
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12954 {
12955 struct dwarf2_section_info type_section;
12956
12957 memset (&type_section, 0, sizeof (type_section));
12958 type_section.s.section = sectp;
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12961 &type_section);
12962 }
12963 }
12964
12965 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12966 by PER_CU. This is for the non-DWP case.
12967 The result is NULL if DWO_NAME can't be found. */
12968
12969 static struct dwo_file *
12970 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
12972 {
12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
12975
12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12977 if (dbfd == NULL)
12978 {
12979 if (dwarf_read_debug)
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12981 return NULL;
12982 }
12983
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12987 struct dwo_file));
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
12990 dwo_file->dbfd = dbfd.release ();
12991
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
12994
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12996 dwo_file->cus);
12997
12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12999 dwo_file->sections.types, dwo_file->tus);
13000
13001 if (dwarf_read_debug)
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
13004 return dwo_file.release ();
13005 }
13006
13007 /* This function is mapped across the sections and remembers the offset and
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
13010
13011 static void
13012 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
13014 {
13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13018
13019 /* Record the ELF section number for later lookup: this is what the
13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
13023
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
13027 dwp_file->sections.str.s.section = sectp;
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
13032 dwp_file->sections.cu_index.s.section = sectp;
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
13037 dwp_file->sections.tu_index.s.section = sectp;
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040 }
13041
13042 /* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047 static void
13048 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049 {
13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
13062 dwp_file->sections.abbrev.s.section = sectp;
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
13067 dwp_file->sections.info.s.section = sectp;
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
13072 dwp_file->sections.line.s.section = sectp;
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
13077 dwp_file->sections.loc.s.section = sectp;
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
13082 dwp_file->sections.macinfo.s.section = sectp;
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
13087 dwp_file->sections.macro.s.section = sectp;
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
13092 dwp_file->sections.str_offsets.s.section = sectp;
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
13097 dwp_file->sections.types.s.section = sectp;
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100 }
13101
13102 /* Hash function for dwp_file loaded CUs/TUs. */
13103
13104 static hashval_t
13105 hash_dwp_loaded_cutus (const void *item)
13106 {
13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13108
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
13111 }
13112
13113 /* Equality function for dwp_file loaded CUs/TUs. */
13114
13115 static int
13116 eq_dwp_loaded_cutus (const void *a, const void *b)
13117 {
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13120
13121 return dua->signature == dub->signature;
13122 }
13123
13124 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13125
13126 static htab_t
13127 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128 {
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136 }
13137
13138 /* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
13144 static gdb_bfd_ref_ptr
13145 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
13147 {
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
13150 1 /*search_cwd*/));
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
13173 }
13174
13175 /* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
13178
13179 static std::unique_ptr<struct dwp_file>
13180 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13181 {
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
13183
13184 /* Try to find first .dwp for the binary file before any symbolic links
13185 resolving. */
13186
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
13189 std::string dwp_name;
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13191 {
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
13194
13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13196 }
13197 else
13198 dwp_name = objfile->original_name;
13199
13200 dwp_name += ".dwp";
13201
13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13203 if (dbfd == NULL
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13205 {
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13210 }
13211
13212 if (dbfd == NULL)
13213 {
13214 if (dwarf_read_debug)
13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13216 return std::unique_ptr<dwp_file> ();
13217 }
13218
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
13222
13223 /* +1: section 0 is unused */
13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13231 dwp_file.get ());
13232
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13234 0);
13235
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 1);
13238
13239 /* The DWP file version is stored in the hash table. Oh well. */
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
13242 {
13243 /* Technically speaking, we should try to limp along, but this is
13244 pretty bizarre. We use pulongest here because that's the established
13245 portability solution (e.g, we cannot use %u for uint32_t). */
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13250 }
13251
13252 if (dwp_file->cus)
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13256 else
13257 dwp_file->version = 2;
13258
13259 if (dwp_file->version == 2)
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13262 dwp_file.get ());
13263
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13266
13267 if (dwarf_read_debug)
13268 {
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13274 }
13275
13276 return dwp_file;
13277 }
13278
13279 /* Wrapper around open_and_init_dwp_file, only open it once. */
13280
13281 static struct dwp_file *
13282 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13283 {
13284 if (! dwarf2_per_objfile->dwp_checked)
13285 {
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
13288 dwarf2_per_objfile->dwp_checked = 1;
13289 }
13290 return dwarf2_per_objfile->dwp_file.get ();
13291 }
13292
13293 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13298
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13304 for a DWO file.
13305
13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13308
13309 static struct dwo_unit *
13310 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
13313 {
13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
13318 struct dwo_file *dwo_file;
13319 struct dwp_file *dwp_file;
13320
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
13325
13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
13327 if (dwp_file != NULL)
13328 {
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13331
13332 if (dwp_htab != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu =
13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13336 signature, is_debug_types);
13337
13338 if (dwo_cutu != NULL)
13339 {
13340 if (dwarf_read_debug)
13341 {
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13346 }
13347 return dwo_cutu;
13348 }
13349 }
13350 }
13351 else
13352 {
13353 /* No DWP file, look for the DWO file. */
13354
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
13357 if (*dwo_file_slot == NULL)
13358 {
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13361 }
13362 /* NOTE: This will be NULL if unable to open the file. */
13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
13364
13365 if (dwo_file != NULL)
13366 {
13367 struct dwo_unit *dwo_cutu = NULL;
13368
13369 if (is_debug_types && dwo_file->tus)
13370 {
13371 struct dwo_unit find_dwo_cutu;
13372
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
13375 dwo_cutu
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13377 }
13378 else if (!is_debug_types && dwo_file->cus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13385 &find_dwo_cutu);
13386 }
13387
13388 if (dwo_cutu != NULL)
13389 {
13390 if (dwarf_read_debug)
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13395 }
13396 return dwo_cutu;
13397 }
13398 }
13399 }
13400
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13404
13405 if (dwarf_read_debug)
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13409 }
13410
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
13413 {
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
13416 std::string dwp_text;
13417
13418 if (dwp_file != NULL)
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
13421
13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
13425 dwp_text.c_str (),
13426 this_unit->is_debug_types ? "TU" : "CU",
13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13428 }
13429 return NULL;
13430 }
13431
13432 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13434
13435 static struct dwo_unit *
13436 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13439 {
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13441 }
13442
13443 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446 static struct dwo_unit *
13447 lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13449 {
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13451 }
13452
13453 /* Traversal function for queue_and_load_all_dwo_tus. */
13454
13455 static int
13456 queue_and_load_dwo_tu (void **slot, void *info)
13457 {
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13463
13464 if (sig_type != NULL)
13465 {
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13467
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13474 }
13475
13476 return 1;
13477 }
13478
13479 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13483
13484 static void
13485 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13486 {
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13489
13490 gdb_assert (!per_cu->is_debug_types);
13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13492 gdb_assert (per_cu->cu != NULL);
13493
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13496
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13500 }
13501
13502 /* Free all resources associated with DWO_FILE.
13503 Close the DWO file and munmap the sections. */
13504
13505 static void
13506 free_dwo_file (struct dwo_file *dwo_file)
13507 {
13508 /* Note: dbfd is NULL for virtual DWO files. */
13509 gdb_bfd_unref (dwo_file->dbfd);
13510
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13512 }
13513
13514 /* Traversal function for free_dwo_files. */
13515
13516 static int
13517 free_dwo_file_from_slot (void **slot, void *info)
13518 {
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13520
13521 free_dwo_file (dwo_file);
13522
13523 return 1;
13524 }
13525
13526 /* Free all resources associated with DWO_FILES. */
13527
13528 static void
13529 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13530 {
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13532 }
13533 \f
13534 /* Read in various DIEs. */
13535
13536 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13539 current DIE. */
13540
13541 static void
13542 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13543 {
13544 struct die_info *child_die;
13545 sect_offset *offsetp;
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
13550 struct attribute *attr;
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
13553
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13555 if (!attr)
13556 return;
13557
13558 /* Note that following die references may follow to a die in a
13559 different cu. */
13560
13561 origin_cu = cu;
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13563
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13565 symbols in. */
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13568
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
13575
13576 std::vector<sect_offset> offsets;
13577
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13581 {
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13584
13585 /* We are trying to process concrete instance entries:
13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13589 one. */
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
13592 continue;
13593
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13598 40573). */
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
13601 while (1)
13602 {
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13604 child_origin_cu);
13605 if (attr == NULL)
13606 break;
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13608 &child_origin_cu);
13609 }
13610
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
13613 if (child_origin_die != child_die)
13614 {
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
13618 complaint (_("Child DIE %s and its abstract origin %s have "
13619 "different tags"),
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
13622 if (child_origin_die->parent != origin_die)
13623 complaint (_("Child DIE %s and its abstract origin %s have "
13624 "different parents"),
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
13627 else
13628 offsets.push_back (child_origin_die->sect_off);
13629 }
13630 }
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13634 if (offsetp[-1] == *offsetp)
13635 complaint (_("Multiple children of DIE %s refer "
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13638
13639 offsetp = offsets.data ();
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13642 {
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13644 while (offsetp < offsets_end
13645 && *offsetp < origin_child_die->sect_off)
13646 offsetp++;
13647 if (offsetp >= offsets_end
13648 || *offsetp > origin_child_die->sect_off)
13649 {
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13653 PR 16581. */
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
13656 }
13657 origin_child_die = sibling_die (origin_child_die);
13658 }
13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
13660 }
13661
13662 static void
13663 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13667 struct context_stack *newobj;
13668 CORE_ADDR lowpc;
13669 CORE_ADDR highpc;
13670 struct die_info *child_die;
13671 struct attribute *attr, *call_line, *call_file;
13672 const char *name;
13673 CORE_ADDR baseaddr;
13674 struct block *block;
13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13676 std::vector<struct symbol *> template_args;
13677 struct template_symbol *templ_func = NULL;
13678
13679 if (inlined_func)
13680 {
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13687 {
13688 read_lexical_block_scope (die, cu);
13689 return;
13690 }
13691 }
13692
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13694
13695 name = dwarf2_name (die, cu);
13696
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13699 if (name == NULL)
13700 {
13701 complaint (_("missing name for subprogram DIE at %s"),
13702 sect_offset_str (die->sect_off));
13703 return;
13704 }
13705
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13708 <= PC_BOUNDS_INVALID)
13709 {
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
13712 complaint (_("cannot get low and high bounds "
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
13715 return;
13716 }
13717
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13720
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13724 {
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13727 {
13728 templ_func = allocate_template_symbol (objfile);
13729 templ_func->subclass = SYMBOL_TEMPLATE;
13730 break;
13731 }
13732 }
13733
13734 newobj = cu->builder->push_context (0, lowpc);
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
13737
13738 /* If there is a location expression for DW_AT_frame_base, record
13739 it. */
13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13741 if (attr)
13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13743
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13747 if (attr)
13748 {
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13752 }
13753
13754 cu->list_in_scope = cu->builder->get_local_symbols ();
13755
13756 if (die->child != NULL)
13757 {
13758 child_die = die->child;
13759 while (child_die && child_die->tag)
13760 {
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
13766 if (arg != NULL)
13767 template_args.push_back (arg);
13768 }
13769 else
13770 process_die (child_die, cu);
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
13775 inherit_abstract_dies (die, cu);
13776
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
13802 struct context_stack cstk = cu->builder->pop_context ();
13803 /* Make a block for the local symbols within. */
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
13806
13807 /* For C++, set the block's scope. */
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
13810 || cu->language == language_d
13811 || cu->language == language_rust)
13812 && cu->processing_has_namespace_info)
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
13815
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13818
13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13820
13821 /* Attach template arguments to function. */
13822 if (!template_args.empty ())
13823 {
13824 gdb_assert (templ_func != NULL);
13825
13826 templ_func->n_template_arguments = template_args.size ();
13827 templ_func->template_arguments
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
13830 memcpy (templ_func->template_arguments,
13831 template_args.data (),
13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
13838 for (symbol *sym : template_args)
13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
13840 }
13841
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
13848
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
13853 }
13854
13855 /* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858 static void
13859 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
13872 be nasty. Might be easier to properly extend generic blocks to
13873 describe ranges. */
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13890
13891 cu->builder->push_context (0, lowpc);
13892 if (die->child != NULL)
13893 {
13894 child_die = die->child;
13895 while (child_die && child_die->tag)
13896 {
13897 process_die (child_die, cu);
13898 child_die = sibling_die (child_die);
13899 }
13900 }
13901 inherit_abstract_dies (die, cu);
13902 struct context_stack cstk = cu->builder->pop_context ();
13903
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
13906 {
13907 struct block *block
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13922 }
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
13925 }
13926
13927 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13928
13929 static void
13930 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931 {
13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
13950 if (!attr)
13951 {
13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
13955 return;
13956 }
13957 pc = attr_value_as_address (attr) + baseaddr;
13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13971 objfile_name (objfile));
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13983 {
13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
13987 objfile_name (objfile));
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
14016 if (func_die
14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
14046 complaint (_("Cannot find function owning DW_TAG_call_site "
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
14049 }
14050 }
14051
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14057 if (attr == NULL)
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
14076 else if (attr_form_is_ref (attr))
14077 {
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
14081 target_die = follow_die_ref (die, attr, &target_cu);
14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14083 if (die_is_declaration (target_die, target_cu))
14084 {
14085 const char *target_physname;
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
14088 target_physname = dw2_linkage_name (target_die, target_cu);
14089 if (target_physname == NULL)
14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14091 if (target_physname == NULL)
14092 complaint (_("DW_AT_call_target target DIE has invalid "
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
14095 else
14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14104 <= PC_BOUNDS_INVALID)
14105 complaint (_("DW_AT_call_target target DIE has invalid "
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
14108 else
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
14113 }
14114 }
14115 else
14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
14126 struct call_site_parameter *parameter;
14127 struct attribute *loc, *origin;
14128
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14141 register is contained in DW_AT_call_value. */
14142
14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14152 {
14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
14165 objfile_name (objfile));
14166 continue;
14167 }
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14172 {
14173 complaint (_("No DW_FORM_block* DW_AT_location for "
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14176 continue;
14177 }
14178 else
14179 {
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14191 "for DW_FORM_block* DW_AT_location is supported for "
14192 "DW_TAG_call_site child DIE %s "
14193 "[in module %s]"),
14194 sect_offset_str (child_die->sect_off),
14195 objfile_name (objfile));
14196 continue;
14197 }
14198 }
14199
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14203 if (!attr_form_is_block (attr))
14204 {
14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
14208 objfile_name (objfile));
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
14228 objfile_name (objfile));
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236 }
14237
14238 /* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242 static struct type *
14243 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261 }
14262
14263 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265 static void
14266 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267 {
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
14282 storage->subclass = SYMBOL_RUST_VTABLE;
14283 }
14284 }
14285
14286 struct symbol *res = new_symbol (die, NULL, cu, storage);
14287 struct attribute *abstract_origin
14288 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14289 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14290 if (res == NULL && loc && abstract_origin)
14291 {
14292 /* We have a variable without a name, but with a location and an abstract
14293 origin. This may be a concrete instance of an abstract variable
14294 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14295 later. */
14296 struct dwarf2_cu *origin_cu = cu;
14297 struct die_info *origin_die
14298 = follow_die_ref (die, abstract_origin, &origin_cu);
14299 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14300 dpo->abstract_to_concrete[origin_die].push_back (die);
14301 }
14302 }
14303
14304 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14305 reading .debug_rnglists.
14306 Callback's type should be:
14307 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14308 Return true if the attributes are present and valid, otherwise,
14309 return false. */
14310
14311 template <typename Callback>
14312 static bool
14313 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14314 Callback &&callback)
14315 {
14316 struct dwarf2_per_objfile *dwarf2_per_objfile
14317 = cu->per_cu->dwarf2_per_objfile;
14318 struct objfile *objfile = dwarf2_per_objfile->objfile;
14319 bfd *obfd = objfile->obfd;
14320 /* Base address selection entry. */
14321 CORE_ADDR base;
14322 int found_base;
14323 const gdb_byte *buffer;
14324 CORE_ADDR baseaddr;
14325 bool overflow = false;
14326
14327 found_base = cu->base_known;
14328 base = cu->base_address;
14329
14330 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14331 if (offset >= dwarf2_per_objfile->rnglists.size)
14332 {
14333 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14334 offset);
14335 return false;
14336 }
14337 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14338
14339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14340
14341 while (1)
14342 {
14343 /* Initialize it due to a false compiler warning. */
14344 CORE_ADDR range_beginning = 0, range_end = 0;
14345 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14346 + dwarf2_per_objfile->rnglists.size);
14347 unsigned int bytes_read;
14348
14349 if (buffer == buf_end)
14350 {
14351 overflow = true;
14352 break;
14353 }
14354 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14355 switch (rlet)
14356 {
14357 case DW_RLE_end_of_list:
14358 break;
14359 case DW_RLE_base_address:
14360 if (buffer + cu->header.addr_size > buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 base = read_address (obfd, buffer, cu, &bytes_read);
14366 found_base = 1;
14367 buffer += bytes_read;
14368 break;
14369 case DW_RLE_start_length:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14377 range_end = (range_beginning
14378 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 break;
14386 case DW_RLE_offset_pair:
14387 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14395 buffer += bytes_read;
14396 if (buffer > buf_end)
14397 {
14398 overflow = true;
14399 break;
14400 }
14401 break;
14402 case DW_RLE_start_end:
14403 if (buffer + 2 * cu->header.addr_size > buf_end)
14404 {
14405 overflow = true;
14406 break;
14407 }
14408 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 range_end = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 break;
14413 default:
14414 complaint (_("Invalid .debug_rnglists data (no base address)"));
14415 return false;
14416 }
14417 if (rlet == DW_RLE_end_of_list || overflow)
14418 break;
14419 if (rlet == DW_RLE_base_address)
14420 continue;
14421
14422 if (!found_base)
14423 {
14424 /* We have no valid base address for the ranges
14425 data. */
14426 complaint (_("Invalid .debug_rnglists data (no base address)"));
14427 return false;
14428 }
14429
14430 if (range_beginning > range_end)
14431 {
14432 /* Inverted range entries are invalid. */
14433 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14434 return false;
14435 }
14436
14437 /* Empty range entries have no effect. */
14438 if (range_beginning == range_end)
14439 continue;
14440
14441 range_beginning += base;
14442 range_end += base;
14443
14444 /* A not-uncommon case of bad debug info.
14445 Don't pollute the addrmap with bad data. */
14446 if (range_beginning + baseaddr == 0
14447 && !dwarf2_per_objfile->has_section_at_zero)
14448 {
14449 complaint (_(".debug_rnglists entry has start address of zero"
14450 " [in module %s]"), objfile_name (objfile));
14451 continue;
14452 }
14453
14454 callback (range_beginning, range_end);
14455 }
14456
14457 if (overflow)
14458 {
14459 complaint (_("Offset %d is not terminated "
14460 "for DW_AT_ranges attribute"),
14461 offset);
14462 return false;
14463 }
14464
14465 return true;
14466 }
14467
14468 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14469 Callback's type should be:
14470 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14471 Return 1 if the attributes are present and valid, otherwise, return 0. */
14472
14473 template <typename Callback>
14474 static int
14475 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14476 Callback &&callback)
14477 {
14478 struct dwarf2_per_objfile *dwarf2_per_objfile
14479 = cu->per_cu->dwarf2_per_objfile;
14480 struct objfile *objfile = dwarf2_per_objfile->objfile;
14481 struct comp_unit_head *cu_header = &cu->header;
14482 bfd *obfd = objfile->obfd;
14483 unsigned int addr_size = cu_header->addr_size;
14484 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14485 /* Base address selection entry. */
14486 CORE_ADDR base;
14487 int found_base;
14488 unsigned int dummy;
14489 const gdb_byte *buffer;
14490 CORE_ADDR baseaddr;
14491
14492 if (cu_header->version >= 5)
14493 return dwarf2_rnglists_process (offset, cu, callback);
14494
14495 found_base = cu->base_known;
14496 base = cu->base_address;
14497
14498 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14499 if (offset >= dwarf2_per_objfile->ranges.size)
14500 {
14501 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14502 offset);
14503 return 0;
14504 }
14505 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14506
14507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14508
14509 while (1)
14510 {
14511 CORE_ADDR range_beginning, range_end;
14512
14513 range_beginning = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 range_end = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 offset += 2 * addr_size;
14518
14519 /* An end of list marker is a pair of zero addresses. */
14520 if (range_beginning == 0 && range_end == 0)
14521 /* Found the end of list entry. */
14522 break;
14523
14524 /* Each base address selection entry is a pair of 2 values.
14525 The first is the largest possible address, the second is
14526 the base address. Check for a base address here. */
14527 if ((range_beginning & mask) == mask)
14528 {
14529 /* If we found the largest possible address, then we already
14530 have the base address in range_end. */
14531 base = range_end;
14532 found_base = 1;
14533 continue;
14534 }
14535
14536 if (!found_base)
14537 {
14538 /* We have no valid base address for the ranges
14539 data. */
14540 complaint (_("Invalid .debug_ranges data (no base address)"));
14541 return 0;
14542 }
14543
14544 if (range_beginning > range_end)
14545 {
14546 /* Inverted range entries are invalid. */
14547 complaint (_("Invalid .debug_ranges data (inverted range)"));
14548 return 0;
14549 }
14550
14551 /* Empty range entries have no effect. */
14552 if (range_beginning == range_end)
14553 continue;
14554
14555 range_beginning += base;
14556 range_end += base;
14557
14558 /* A not-uncommon case of bad debug info.
14559 Don't pollute the addrmap with bad data. */
14560 if (range_beginning + baseaddr == 0
14561 && !dwarf2_per_objfile->has_section_at_zero)
14562 {
14563 complaint (_(".debug_ranges entry has start address of zero"
14564 " [in module %s]"), objfile_name (objfile));
14565 continue;
14566 }
14567
14568 callback (range_beginning, range_end);
14569 }
14570
14571 return 1;
14572 }
14573
14574 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14575 Return 1 if the attributes are present and valid, otherwise, return 0.
14576 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14577
14578 static int
14579 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14580 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14581 struct partial_symtab *ranges_pst)
14582 {
14583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14585 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14586 SECT_OFF_TEXT (objfile));
14587 int low_set = 0;
14588 CORE_ADDR low = 0;
14589 CORE_ADDR high = 0;
14590 int retval;
14591
14592 retval = dwarf2_ranges_process (offset, cu,
14593 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14594 {
14595 if (ranges_pst != NULL)
14596 {
14597 CORE_ADDR lowpc;
14598 CORE_ADDR highpc;
14599
14600 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14601 range_beginning + baseaddr)
14602 - baseaddr);
14603 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_end + baseaddr)
14605 - baseaddr);
14606 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14607 ranges_pst);
14608 }
14609
14610 /* FIXME: This is recording everything as a low-high
14611 segment of consecutive addresses. We should have a
14612 data structure for discontiguous block ranges
14613 instead. */
14614 if (! low_set)
14615 {
14616 low = range_beginning;
14617 high = range_end;
14618 low_set = 1;
14619 }
14620 else
14621 {
14622 if (range_beginning < low)
14623 low = range_beginning;
14624 if (range_end > high)
14625 high = range_end;
14626 }
14627 });
14628 if (!retval)
14629 return 0;
14630
14631 if (! low_set)
14632 /* If the first entry is an end-of-list marker, the range
14633 describes an empty scope, i.e. no instructions. */
14634 return 0;
14635
14636 if (low_return)
14637 *low_return = low;
14638 if (high_return)
14639 *high_return = high;
14640 return 1;
14641 }
14642
14643 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14644 definition for the return value. *LOWPC and *HIGHPC are set iff
14645 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14646
14647 static enum pc_bounds_kind
14648 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14649 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14650 struct partial_symtab *pst)
14651 {
14652 struct dwarf2_per_objfile *dwarf2_per_objfile
14653 = cu->per_cu->dwarf2_per_objfile;
14654 struct attribute *attr;
14655 struct attribute *attr_high;
14656 CORE_ADDR low = 0;
14657 CORE_ADDR high = 0;
14658 enum pc_bounds_kind ret;
14659
14660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14661 if (attr_high)
14662 {
14663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14664 if (attr)
14665 {
14666 low = attr_value_as_address (attr);
14667 high = attr_value_as_address (attr_high);
14668 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14669 high += low;
14670 }
14671 else
14672 /* Found high w/o low attribute. */
14673 return PC_BOUNDS_INVALID;
14674
14675 /* Found consecutive range of addresses. */
14676 ret = PC_BOUNDS_HIGH_LOW;
14677 }
14678 else
14679 {
14680 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14681 if (attr != NULL)
14682 {
14683 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14684 We take advantage of the fact that DW_AT_ranges does not appear
14685 in DW_TAG_compile_unit of DWO files. */
14686 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14687 unsigned int ranges_offset = (DW_UNSND (attr)
14688 + (need_ranges_base
14689 ? cu->ranges_base
14690 : 0));
14691
14692 /* Value of the DW_AT_ranges attribute is the offset in the
14693 .debug_ranges section. */
14694 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14695 return PC_BOUNDS_INVALID;
14696 /* Found discontinuous range of addresses. */
14697 ret = PC_BOUNDS_RANGES;
14698 }
14699 else
14700 return PC_BOUNDS_NOT_PRESENT;
14701 }
14702
14703 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14704 if (high <= low)
14705 return PC_BOUNDS_INVALID;
14706
14707 /* When using the GNU linker, .gnu.linkonce. sections are used to
14708 eliminate duplicate copies of functions and vtables and such.
14709 The linker will arbitrarily choose one and discard the others.
14710 The AT_*_pc values for such functions refer to local labels in
14711 these sections. If the section from that file was discarded, the
14712 labels are not in the output, so the relocs get a value of 0.
14713 If this is a discarded function, mark the pc bounds as invalid,
14714 so that GDB will ignore it. */
14715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14716 return PC_BOUNDS_INVALID;
14717
14718 *lowpc = low;
14719 if (highpc)
14720 *highpc = high;
14721 return ret;
14722 }
14723
14724 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14725 its low and high PC addresses. Do nothing if these addresses could not
14726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14727 and HIGHPC to the high address if greater than HIGHPC. */
14728
14729 static void
14730 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14732 struct dwarf2_cu *cu)
14733 {
14734 CORE_ADDR low, high;
14735 struct die_info *child = die->child;
14736
14737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14738 {
14739 *lowpc = std::min (*lowpc, low);
14740 *highpc = std::max (*highpc, high);
14741 }
14742
14743 /* If the language does not allow nested subprograms (either inside
14744 subprograms or lexical blocks), we're done. */
14745 if (cu->language != language_ada)
14746 return;
14747
14748 /* Check all the children of the given DIE. If it contains nested
14749 subprograms, then check their pc bounds. Likewise, we need to
14750 check lexical blocks as well, as they may also contain subprogram
14751 definitions. */
14752 while (child && child->tag)
14753 {
14754 if (child->tag == DW_TAG_subprogram
14755 || child->tag == DW_TAG_lexical_block)
14756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14757 child = sibling_die (child);
14758 }
14759 }
14760
14761 /* Get the low and high pc's represented by the scope DIE, and store
14762 them in *LOWPC and *HIGHPC. If the correct values can't be
14763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14764
14765 static void
14766 get_scope_pc_bounds (struct die_info *die,
14767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14768 struct dwarf2_cu *cu)
14769 {
14770 CORE_ADDR best_low = (CORE_ADDR) -1;
14771 CORE_ADDR best_high = (CORE_ADDR) 0;
14772 CORE_ADDR current_low, current_high;
14773
14774 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14775 >= PC_BOUNDS_RANGES)
14776 {
14777 best_low = current_low;
14778 best_high = current_high;
14779 }
14780 else
14781 {
14782 struct die_info *child = die->child;
14783
14784 while (child && child->tag)
14785 {
14786 switch (child->tag) {
14787 case DW_TAG_subprogram:
14788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14789 break;
14790 case DW_TAG_namespace:
14791 case DW_TAG_module:
14792 /* FIXME: carlton/2004-01-16: Should we do this for
14793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14794 that current GCC's always emit the DIEs corresponding
14795 to definitions of methods of classes as children of a
14796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14797 the DIEs giving the declarations, which could be
14798 anywhere). But I don't see any reason why the
14799 standards says that they have to be there. */
14800 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14801
14802 if (current_low != ((CORE_ADDR) -1))
14803 {
14804 best_low = std::min (best_low, current_low);
14805 best_high = std::max (best_high, current_high);
14806 }
14807 break;
14808 default:
14809 /* Ignore. */
14810 break;
14811 }
14812
14813 child = sibling_die (child);
14814 }
14815 }
14816
14817 *lowpc = best_low;
14818 *highpc = best_high;
14819 }
14820
14821 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14822 in DIE. */
14823
14824 static void
14825 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14827 {
14828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14830 struct attribute *attr;
14831 struct attribute *attr_high;
14832
14833 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14834 if (attr_high)
14835 {
14836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14837 if (attr)
14838 {
14839 CORE_ADDR low = attr_value_as_address (attr);
14840 CORE_ADDR high = attr_value_as_address (attr_high);
14841
14842 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14843 high += low;
14844
14845 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14846 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14847 cu->builder->record_block_range (block, low, high - 1);
14848 }
14849 }
14850
14851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14852 if (attr)
14853 {
14854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14855 We take advantage of the fact that DW_AT_ranges does not appear
14856 in DW_TAG_compile_unit of DWO files. */
14857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14858
14859 /* The value of the DW_AT_ranges attribute is the offset of the
14860 address range list in the .debug_ranges section. */
14861 unsigned long offset = (DW_UNSND (attr)
14862 + (need_ranges_base ? cu->ranges_base : 0));
14863
14864 std::vector<blockrange> blockvec;
14865 dwarf2_ranges_process (offset, cu,
14866 [&] (CORE_ADDR start, CORE_ADDR end)
14867 {
14868 start += baseaddr;
14869 end += baseaddr;
14870 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14871 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14872 cu->builder->record_block_range (block, start, end - 1);
14873 blockvec.emplace_back (start, end);
14874 });
14875
14876 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14877 }
14878 }
14879
14880 /* Check whether the producer field indicates either of GCC < 4.6, or the
14881 Intel C/C++ compiler, and cache the result in CU. */
14882
14883 static void
14884 check_producer (struct dwarf2_cu *cu)
14885 {
14886 int major, minor;
14887
14888 if (cu->producer == NULL)
14889 {
14890 /* For unknown compilers expect their behavior is DWARF version
14891 compliant.
14892
14893 GCC started to support .debug_types sections by -gdwarf-4 since
14894 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14895 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14896 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14897 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14898 }
14899 else if (producer_is_gcc (cu->producer, &major, &minor))
14900 {
14901 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14902 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14903 }
14904 else if (producer_is_icc (cu->producer, &major, &minor))
14905 {
14906 cu->producer_is_icc = true;
14907 cu->producer_is_icc_lt_14 = major < 14;
14908 }
14909 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14910 cu->producer_is_codewarrior = true;
14911 else
14912 {
14913 /* For other non-GCC compilers, expect their behavior is DWARF version
14914 compliant. */
14915 }
14916
14917 cu->checked_producer = true;
14918 }
14919
14920 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14921 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14922 during 4.6.0 experimental. */
14923
14924 static bool
14925 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14926 {
14927 if (!cu->checked_producer)
14928 check_producer (cu);
14929
14930 return cu->producer_is_gxx_lt_4_6;
14931 }
14932
14933
14934 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14935 with incorrect is_stmt attributes. */
14936
14937 static bool
14938 producer_is_codewarrior (struct dwarf2_cu *cu)
14939 {
14940 if (!cu->checked_producer)
14941 check_producer (cu);
14942
14943 return cu->producer_is_codewarrior;
14944 }
14945
14946 /* Return the default accessibility type if it is not overriden by
14947 DW_AT_accessibility. */
14948
14949 static enum dwarf_access_attribute
14950 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14951 {
14952 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14953 {
14954 /* The default DWARF 2 accessibility for members is public, the default
14955 accessibility for inheritance is private. */
14956
14957 if (die->tag != DW_TAG_inheritance)
14958 return DW_ACCESS_public;
14959 else
14960 return DW_ACCESS_private;
14961 }
14962 else
14963 {
14964 /* DWARF 3+ defines the default accessibility a different way. The same
14965 rules apply now for DW_TAG_inheritance as for the members and it only
14966 depends on the container kind. */
14967
14968 if (die->parent->tag == DW_TAG_class_type)
14969 return DW_ACCESS_private;
14970 else
14971 return DW_ACCESS_public;
14972 }
14973 }
14974
14975 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14976 offset. If the attribute was not found return 0, otherwise return
14977 1. If it was found but could not properly be handled, set *OFFSET
14978 to 0. */
14979
14980 static int
14981 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14982 LONGEST *offset)
14983 {
14984 struct attribute *attr;
14985
14986 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14987 if (attr != NULL)
14988 {
14989 *offset = 0;
14990
14991 /* Note that we do not check for a section offset first here.
14992 This is because DW_AT_data_member_location is new in DWARF 4,
14993 so if we see it, we can assume that a constant form is really
14994 a constant and not a section offset. */
14995 if (attr_form_is_constant (attr))
14996 *offset = dwarf2_get_attr_constant_value (attr, 0);
14997 else if (attr_form_is_section_offset (attr))
14998 dwarf2_complex_location_expr_complaint ();
14999 else if (attr_form_is_block (attr))
15000 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15001 else
15002 dwarf2_complex_location_expr_complaint ();
15003
15004 return 1;
15005 }
15006
15007 return 0;
15008 }
15009
15010 /* Add an aggregate field to the field list. */
15011
15012 static void
15013 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15014 struct dwarf2_cu *cu)
15015 {
15016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15018 struct nextfield *new_field;
15019 struct attribute *attr;
15020 struct field *fp;
15021 const char *fieldname = "";
15022
15023 if (die->tag == DW_TAG_inheritance)
15024 {
15025 fip->baseclasses.emplace_back ();
15026 new_field = &fip->baseclasses.back ();
15027 }
15028 else
15029 {
15030 fip->fields.emplace_back ();
15031 new_field = &fip->fields.back ();
15032 }
15033
15034 fip->nfields++;
15035
15036 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15037 if (attr)
15038 new_field->accessibility = DW_UNSND (attr);
15039 else
15040 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15041 if (new_field->accessibility != DW_ACCESS_public)
15042 fip->non_public_fields = 1;
15043
15044 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15045 if (attr)
15046 new_field->virtuality = DW_UNSND (attr);
15047 else
15048 new_field->virtuality = DW_VIRTUALITY_none;
15049
15050 fp = &new_field->field;
15051
15052 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15053 {
15054 LONGEST offset;
15055
15056 /* Data member other than a C++ static data member. */
15057
15058 /* Get type of field. */
15059 fp->type = die_type (die, cu);
15060
15061 SET_FIELD_BITPOS (*fp, 0);
15062
15063 /* Get bit size of field (zero if none). */
15064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15065 if (attr)
15066 {
15067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15068 }
15069 else
15070 {
15071 FIELD_BITSIZE (*fp) = 0;
15072 }
15073
15074 /* Get bit offset of field. */
15075 if (handle_data_member_location (die, cu, &offset))
15076 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15077 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15078 if (attr)
15079 {
15080 if (gdbarch_bits_big_endian (gdbarch))
15081 {
15082 /* For big endian bits, the DW_AT_bit_offset gives the
15083 additional bit offset from the MSB of the containing
15084 anonymous object to the MSB of the field. We don't
15085 have to do anything special since we don't need to
15086 know the size of the anonymous object. */
15087 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15088 }
15089 else
15090 {
15091 /* For little endian bits, compute the bit offset to the
15092 MSB of the anonymous object, subtract off the number of
15093 bits from the MSB of the field to the MSB of the
15094 object, and then subtract off the number of bits of
15095 the field itself. The result is the bit offset of
15096 the LSB of the field. */
15097 int anonymous_size;
15098 int bit_offset = DW_UNSND (attr);
15099
15100 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15101 if (attr)
15102 {
15103 /* The size of the anonymous object containing
15104 the bit field is explicit, so use the
15105 indicated size (in bytes). */
15106 anonymous_size = DW_UNSND (attr);
15107 }
15108 else
15109 {
15110 /* The size of the anonymous object containing
15111 the bit field must be inferred from the type
15112 attribute of the data member containing the
15113 bit field. */
15114 anonymous_size = TYPE_LENGTH (fp->type);
15115 }
15116 SET_FIELD_BITPOS (*fp,
15117 (FIELD_BITPOS (*fp)
15118 + anonymous_size * bits_per_byte
15119 - bit_offset - FIELD_BITSIZE (*fp)));
15120 }
15121 }
15122 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15123 if (attr != NULL)
15124 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15125 + dwarf2_get_attr_constant_value (attr, 0)));
15126
15127 /* Get name of field. */
15128 fieldname = dwarf2_name (die, cu);
15129 if (fieldname == NULL)
15130 fieldname = "";
15131
15132 /* The name is already allocated along with this objfile, so we don't
15133 need to duplicate it for the type. */
15134 fp->name = fieldname;
15135
15136 /* Change accessibility for artificial fields (e.g. virtual table
15137 pointer or virtual base class pointer) to private. */
15138 if (dwarf2_attr (die, DW_AT_artificial, cu))
15139 {
15140 FIELD_ARTIFICIAL (*fp) = 1;
15141 new_field->accessibility = DW_ACCESS_private;
15142 fip->non_public_fields = 1;
15143 }
15144 }
15145 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15146 {
15147 /* C++ static member. */
15148
15149 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15150 is a declaration, but all versions of G++ as of this writing
15151 (so through at least 3.2.1) incorrectly generate
15152 DW_TAG_variable tags. */
15153
15154 const char *physname;
15155
15156 /* Get name of field. */
15157 fieldname = dwarf2_name (die, cu);
15158 if (fieldname == NULL)
15159 return;
15160
15161 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15162 if (attr
15163 /* Only create a symbol if this is an external value.
15164 new_symbol checks this and puts the value in the global symbol
15165 table, which we want. If it is not external, new_symbol
15166 will try to put the value in cu->list_in_scope which is wrong. */
15167 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15168 {
15169 /* A static const member, not much different than an enum as far as
15170 we're concerned, except that we can support more types. */
15171 new_symbol (die, NULL, cu);
15172 }
15173
15174 /* Get physical name. */
15175 physname = dwarf2_physname (fieldname, die, cu);
15176
15177 /* The name is already allocated along with this objfile, so we don't
15178 need to duplicate it for the type. */
15179 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15180 FIELD_TYPE (*fp) = die_type (die, cu);
15181 FIELD_NAME (*fp) = fieldname;
15182 }
15183 else if (die->tag == DW_TAG_inheritance)
15184 {
15185 LONGEST offset;
15186
15187 /* C++ base class field. */
15188 if (handle_data_member_location (die, cu, &offset))
15189 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15190 FIELD_BITSIZE (*fp) = 0;
15191 FIELD_TYPE (*fp) = die_type (die, cu);
15192 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15193 }
15194 else if (die->tag == DW_TAG_variant_part)
15195 {
15196 /* process_structure_scope will treat this DIE as a union. */
15197 process_structure_scope (die, cu);
15198
15199 /* The variant part is relative to the start of the enclosing
15200 structure. */
15201 SET_FIELD_BITPOS (*fp, 0);
15202 fp->type = get_die_type (die, cu);
15203 fp->artificial = 1;
15204 fp->name = "<<variant>>";
15205
15206 /* Normally a DW_TAG_variant_part won't have a size, but our
15207 representation requires one, so set it to the maximum of the
15208 child sizes. */
15209 if (TYPE_LENGTH (fp->type) == 0)
15210 {
15211 unsigned max = 0;
15212 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15213 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15214 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15215 TYPE_LENGTH (fp->type) = max;
15216 }
15217 }
15218 else
15219 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15220 }
15221
15222 /* Can the type given by DIE define another type? */
15223
15224 static bool
15225 type_can_define_types (const struct die_info *die)
15226 {
15227 switch (die->tag)
15228 {
15229 case DW_TAG_typedef:
15230 case DW_TAG_class_type:
15231 case DW_TAG_structure_type:
15232 case DW_TAG_union_type:
15233 case DW_TAG_enumeration_type:
15234 return true;
15235
15236 default:
15237 return false;
15238 }
15239 }
15240
15241 /* Add a type definition defined in the scope of the FIP's class. */
15242
15243 static void
15244 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15245 struct dwarf2_cu *cu)
15246 {
15247 struct decl_field fp;
15248 memset (&fp, 0, sizeof (fp));
15249
15250 gdb_assert (type_can_define_types (die));
15251
15252 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15253 fp.name = dwarf2_name (die, cu);
15254 fp.type = read_type_die (die, cu);
15255
15256 /* Save accessibility. */
15257 enum dwarf_access_attribute accessibility;
15258 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15259 if (attr != NULL)
15260 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15261 else
15262 accessibility = dwarf2_default_access_attribute (die, cu);
15263 switch (accessibility)
15264 {
15265 case DW_ACCESS_public:
15266 /* The assumed value if neither private nor protected. */
15267 break;
15268 case DW_ACCESS_private:
15269 fp.is_private = 1;
15270 break;
15271 case DW_ACCESS_protected:
15272 fp.is_protected = 1;
15273 break;
15274 default:
15275 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15276 }
15277
15278 if (die->tag == DW_TAG_typedef)
15279 fip->typedef_field_list.push_back (fp);
15280 else
15281 fip->nested_types_list.push_back (fp);
15282 }
15283
15284 /* Create the vector of fields, and attach it to the type. */
15285
15286 static void
15287 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15288 struct dwarf2_cu *cu)
15289 {
15290 int nfields = fip->nfields;
15291
15292 /* Record the field count, allocate space for the array of fields,
15293 and create blank accessibility bitfields if necessary. */
15294 TYPE_NFIELDS (type) = nfields;
15295 TYPE_FIELDS (type) = (struct field *)
15296 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15297
15298 if (fip->non_public_fields && cu->language != language_ada)
15299 {
15300 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15301
15302 TYPE_FIELD_PRIVATE_BITS (type) =
15303 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15304 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15305
15306 TYPE_FIELD_PROTECTED_BITS (type) =
15307 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15308 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15309
15310 TYPE_FIELD_IGNORE_BITS (type) =
15311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15312 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15313 }
15314
15315 /* If the type has baseclasses, allocate and clear a bit vector for
15316 TYPE_FIELD_VIRTUAL_BITS. */
15317 if (!fip->baseclasses.empty () && cu->language != language_ada)
15318 {
15319 int num_bytes = B_BYTES (fip->baseclasses.size ());
15320 unsigned char *pointer;
15321
15322 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15323 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15324 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15325 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15326 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15327 }
15328
15329 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15330 {
15331 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15332
15333 for (int index = 0; index < nfields; ++index)
15334 {
15335 struct nextfield &field = fip->fields[index];
15336
15337 if (field.variant.is_discriminant)
15338 di->discriminant_index = index;
15339 else if (field.variant.default_branch)
15340 di->default_index = index;
15341 else
15342 di->discriminants[index] = field.variant.discriminant_value;
15343 }
15344 }
15345
15346 /* Copy the saved-up fields into the field vector. */
15347 for (int i = 0; i < nfields; ++i)
15348 {
15349 struct nextfield &field
15350 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15351 : fip->fields[i - fip->baseclasses.size ()]);
15352
15353 TYPE_FIELD (type, i) = field.field;
15354 switch (field.accessibility)
15355 {
15356 case DW_ACCESS_private:
15357 if (cu->language != language_ada)
15358 SET_TYPE_FIELD_PRIVATE (type, i);
15359 break;
15360
15361 case DW_ACCESS_protected:
15362 if (cu->language != language_ada)
15363 SET_TYPE_FIELD_PROTECTED (type, i);
15364 break;
15365
15366 case DW_ACCESS_public:
15367 break;
15368
15369 default:
15370 /* Unknown accessibility. Complain and treat it as public. */
15371 {
15372 complaint (_("unsupported accessibility %d"),
15373 field.accessibility);
15374 }
15375 break;
15376 }
15377 if (i < fip->baseclasses.size ())
15378 {
15379 switch (field.virtuality)
15380 {
15381 case DW_VIRTUALITY_virtual:
15382 case DW_VIRTUALITY_pure_virtual:
15383 if (cu->language == language_ada)
15384 error (_("unexpected virtuality in component of Ada type"));
15385 SET_TYPE_FIELD_VIRTUAL (type, i);
15386 break;
15387 }
15388 }
15389 }
15390 }
15391
15392 /* Return true if this member function is a constructor, false
15393 otherwise. */
15394
15395 static int
15396 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15397 {
15398 const char *fieldname;
15399 const char *type_name;
15400 int len;
15401
15402 if (die->parent == NULL)
15403 return 0;
15404
15405 if (die->parent->tag != DW_TAG_structure_type
15406 && die->parent->tag != DW_TAG_union_type
15407 && die->parent->tag != DW_TAG_class_type)
15408 return 0;
15409
15410 fieldname = dwarf2_name (die, cu);
15411 type_name = dwarf2_name (die->parent, cu);
15412 if (fieldname == NULL || type_name == NULL)
15413 return 0;
15414
15415 len = strlen (fieldname);
15416 return (strncmp (fieldname, type_name, len) == 0
15417 && (type_name[len] == '\0' || type_name[len] == '<'));
15418 }
15419
15420 /* Add a member function to the proper fieldlist. */
15421
15422 static void
15423 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15424 struct type *type, struct dwarf2_cu *cu)
15425 {
15426 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15427 struct attribute *attr;
15428 int i;
15429 struct fnfieldlist *flp = nullptr;
15430 struct fn_field *fnp;
15431 const char *fieldname;
15432 struct type *this_type;
15433 enum dwarf_access_attribute accessibility;
15434
15435 if (cu->language == language_ada)
15436 error (_("unexpected member function in Ada type"));
15437
15438 /* Get name of member function. */
15439 fieldname = dwarf2_name (die, cu);
15440 if (fieldname == NULL)
15441 return;
15442
15443 /* Look up member function name in fieldlist. */
15444 for (i = 0; i < fip->fnfieldlists.size (); i++)
15445 {
15446 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15447 {
15448 flp = &fip->fnfieldlists[i];
15449 break;
15450 }
15451 }
15452
15453 /* Create a new fnfieldlist if necessary. */
15454 if (flp == nullptr)
15455 {
15456 fip->fnfieldlists.emplace_back ();
15457 flp = &fip->fnfieldlists.back ();
15458 flp->name = fieldname;
15459 i = fip->fnfieldlists.size () - 1;
15460 }
15461
15462 /* Create a new member function field and add it to the vector of
15463 fnfieldlists. */
15464 flp->fnfields.emplace_back ();
15465 fnp = &flp->fnfields.back ();
15466
15467 /* Delay processing of the physname until later. */
15468 if (cu->language == language_cplus)
15469 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15470 die, cu);
15471 else
15472 {
15473 const char *physname = dwarf2_physname (fieldname, die, cu);
15474 fnp->physname = physname ? physname : "";
15475 }
15476
15477 fnp->type = alloc_type (objfile);
15478 this_type = read_type_die (die, cu);
15479 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15480 {
15481 int nparams = TYPE_NFIELDS (this_type);
15482
15483 /* TYPE is the domain of this method, and THIS_TYPE is the type
15484 of the method itself (TYPE_CODE_METHOD). */
15485 smash_to_method_type (fnp->type, type,
15486 TYPE_TARGET_TYPE (this_type),
15487 TYPE_FIELDS (this_type),
15488 TYPE_NFIELDS (this_type),
15489 TYPE_VARARGS (this_type));
15490
15491 /* Handle static member functions.
15492 Dwarf2 has no clean way to discern C++ static and non-static
15493 member functions. G++ helps GDB by marking the first
15494 parameter for non-static member functions (which is the this
15495 pointer) as artificial. We obtain this information from
15496 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15497 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15498 fnp->voffset = VOFFSET_STATIC;
15499 }
15500 else
15501 complaint (_("member function type missing for '%s'"),
15502 dwarf2_full_name (fieldname, die, cu));
15503
15504 /* Get fcontext from DW_AT_containing_type if present. */
15505 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15506 fnp->fcontext = die_containing_type (die, cu);
15507
15508 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15509 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15510
15511 /* Get accessibility. */
15512 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15513 if (attr)
15514 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15515 else
15516 accessibility = dwarf2_default_access_attribute (die, cu);
15517 switch (accessibility)
15518 {
15519 case DW_ACCESS_private:
15520 fnp->is_private = 1;
15521 break;
15522 case DW_ACCESS_protected:
15523 fnp->is_protected = 1;
15524 break;
15525 }
15526
15527 /* Check for artificial methods. */
15528 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15529 if (attr && DW_UNSND (attr) != 0)
15530 fnp->is_artificial = 1;
15531
15532 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15533
15534 /* Get index in virtual function table if it is a virtual member
15535 function. For older versions of GCC, this is an offset in the
15536 appropriate virtual table, as specified by DW_AT_containing_type.
15537 For everyone else, it is an expression to be evaluated relative
15538 to the object address. */
15539
15540 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15541 if (attr)
15542 {
15543 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15544 {
15545 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15546 {
15547 /* Old-style GCC. */
15548 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15549 }
15550 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15551 || (DW_BLOCK (attr)->size > 1
15552 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15553 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15554 {
15555 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15556 if ((fnp->voffset % cu->header.addr_size) != 0)
15557 dwarf2_complex_location_expr_complaint ();
15558 else
15559 fnp->voffset /= cu->header.addr_size;
15560 fnp->voffset += 2;
15561 }
15562 else
15563 dwarf2_complex_location_expr_complaint ();
15564
15565 if (!fnp->fcontext)
15566 {
15567 /* If there is no `this' field and no DW_AT_containing_type,
15568 we cannot actually find a base class context for the
15569 vtable! */
15570 if (TYPE_NFIELDS (this_type) == 0
15571 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15572 {
15573 complaint (_("cannot determine context for virtual member "
15574 "function \"%s\" (offset %s)"),
15575 fieldname, sect_offset_str (die->sect_off));
15576 }
15577 else
15578 {
15579 fnp->fcontext
15580 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15581 }
15582 }
15583 }
15584 else if (attr_form_is_section_offset (attr))
15585 {
15586 dwarf2_complex_location_expr_complaint ();
15587 }
15588 else
15589 {
15590 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15591 fieldname);
15592 }
15593 }
15594 else
15595 {
15596 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15597 if (attr && DW_UNSND (attr))
15598 {
15599 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15600 complaint (_("Member function \"%s\" (offset %s) is virtual "
15601 "but the vtable offset is not specified"),
15602 fieldname, sect_offset_str (die->sect_off));
15603 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15604 TYPE_CPLUS_DYNAMIC (type) = 1;
15605 }
15606 }
15607 }
15608
15609 /* Create the vector of member function fields, and attach it to the type. */
15610
15611 static void
15612 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15613 struct dwarf2_cu *cu)
15614 {
15615 if (cu->language == language_ada)
15616 error (_("unexpected member functions in Ada type"));
15617
15618 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15619 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15620 TYPE_ALLOC (type,
15621 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15622
15623 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15624 {
15625 struct fnfieldlist &nf = fip->fnfieldlists[i];
15626 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15627
15628 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15629 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15630 fn_flp->fn_fields = (struct fn_field *)
15631 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15632
15633 for (int k = 0; k < nf.fnfields.size (); ++k)
15634 fn_flp->fn_fields[k] = nf.fnfields[k];
15635 }
15636
15637 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15638 }
15639
15640 /* Returns non-zero if NAME is the name of a vtable member in CU's
15641 language, zero otherwise. */
15642 static int
15643 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15644 {
15645 static const char vptr[] = "_vptr";
15646
15647 /* Look for the C++ form of the vtable. */
15648 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15649 return 1;
15650
15651 return 0;
15652 }
15653
15654 /* GCC outputs unnamed structures that are really pointers to member
15655 functions, with the ABI-specified layout. If TYPE describes
15656 such a structure, smash it into a member function type.
15657
15658 GCC shouldn't do this; it should just output pointer to member DIEs.
15659 This is GCC PR debug/28767. */
15660
15661 static void
15662 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15663 {
15664 struct type *pfn_type, *self_type, *new_type;
15665
15666 /* Check for a structure with no name and two children. */
15667 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15668 return;
15669
15670 /* Check for __pfn and __delta members. */
15671 if (TYPE_FIELD_NAME (type, 0) == NULL
15672 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15673 || TYPE_FIELD_NAME (type, 1) == NULL
15674 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15675 return;
15676
15677 /* Find the type of the method. */
15678 pfn_type = TYPE_FIELD_TYPE (type, 0);
15679 if (pfn_type == NULL
15680 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15681 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15682 return;
15683
15684 /* Look for the "this" argument. */
15685 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15686 if (TYPE_NFIELDS (pfn_type) == 0
15687 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15688 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15689 return;
15690
15691 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15692 new_type = alloc_type (objfile);
15693 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15694 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15695 TYPE_VARARGS (pfn_type));
15696 smash_to_methodptr_type (type, new_type);
15697 }
15698
15699 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15700 appropriate error checking and issuing complaints if there is a
15701 problem. */
15702
15703 static ULONGEST
15704 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15705 {
15706 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15707
15708 if (attr == nullptr)
15709 return 0;
15710
15711 if (!attr_form_is_constant (attr))
15712 {
15713 complaint (_("DW_AT_alignment must have constant form"
15714 " - DIE at %s [in module %s]"),
15715 sect_offset_str (die->sect_off),
15716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15717 return 0;
15718 }
15719
15720 ULONGEST align;
15721 if (attr->form == DW_FORM_sdata)
15722 {
15723 LONGEST val = DW_SND (attr);
15724 if (val < 0)
15725 {
15726 complaint (_("DW_AT_alignment value must not be negative"
15727 " - DIE at %s [in module %s]"),
15728 sect_offset_str (die->sect_off),
15729 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15730 return 0;
15731 }
15732 align = val;
15733 }
15734 else
15735 align = DW_UNSND (attr);
15736
15737 if (align == 0)
15738 {
15739 complaint (_("DW_AT_alignment value must not be zero"
15740 " - DIE at %s [in module %s]"),
15741 sect_offset_str (die->sect_off),
15742 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15743 return 0;
15744 }
15745 if ((align & (align - 1)) != 0)
15746 {
15747 complaint (_("DW_AT_alignment value must be a power of 2"
15748 " - DIE at %s [in module %s]"),
15749 sect_offset_str (die->sect_off),
15750 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15751 return 0;
15752 }
15753
15754 return align;
15755 }
15756
15757 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15758 the alignment for TYPE. */
15759
15760 static void
15761 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15762 struct type *type)
15763 {
15764 if (!set_type_align (type, get_alignment (cu, die)))
15765 complaint (_("DW_AT_alignment value too large"
15766 " - DIE at %s [in module %s]"),
15767 sect_offset_str (die->sect_off),
15768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15769 }
15770
15771 /* Called when we find the DIE that starts a structure or union scope
15772 (definition) to create a type for the structure or union. Fill in
15773 the type's name and general properties; the members will not be
15774 processed until process_structure_scope. A symbol table entry for
15775 the type will also not be done until process_structure_scope (assuming
15776 the type has a name).
15777
15778 NOTE: we need to call these functions regardless of whether or not the
15779 DIE has a DW_AT_name attribute, since it might be an anonymous
15780 structure or union. This gets the type entered into our set of
15781 user defined types. */
15782
15783 static struct type *
15784 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15785 {
15786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15787 struct type *type;
15788 struct attribute *attr;
15789 const char *name;
15790
15791 /* If the definition of this type lives in .debug_types, read that type.
15792 Don't follow DW_AT_specification though, that will take us back up
15793 the chain and we want to go down. */
15794 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15795 if (attr)
15796 {
15797 type = get_DW_AT_signature_type (die, attr, cu);
15798
15799 /* The type's CU may not be the same as CU.
15800 Ensure TYPE is recorded with CU in die_type_hash. */
15801 return set_die_type (die, type, cu);
15802 }
15803
15804 type = alloc_type (objfile);
15805 INIT_CPLUS_SPECIFIC (type);
15806
15807 name = dwarf2_name (die, cu);
15808 if (name != NULL)
15809 {
15810 if (cu->language == language_cplus
15811 || cu->language == language_d
15812 || cu->language == language_rust)
15813 {
15814 const char *full_name = dwarf2_full_name (name, die, cu);
15815
15816 /* dwarf2_full_name might have already finished building the DIE's
15817 type. If so, there is no need to continue. */
15818 if (get_die_type (die, cu) != NULL)
15819 return get_die_type (die, cu);
15820
15821 TYPE_NAME (type) = full_name;
15822 }
15823 else
15824 {
15825 /* The name is already allocated along with this objfile, so
15826 we don't need to duplicate it for the type. */
15827 TYPE_NAME (type) = name;
15828 }
15829 }
15830
15831 if (die->tag == DW_TAG_structure_type)
15832 {
15833 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15834 }
15835 else if (die->tag == DW_TAG_union_type)
15836 {
15837 TYPE_CODE (type) = TYPE_CODE_UNION;
15838 }
15839 else if (die->tag == DW_TAG_variant_part)
15840 {
15841 TYPE_CODE (type) = TYPE_CODE_UNION;
15842 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15843 }
15844 else
15845 {
15846 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15847 }
15848
15849 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15850 TYPE_DECLARED_CLASS (type) = 1;
15851
15852 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15853 if (attr)
15854 {
15855 if (attr_form_is_constant (attr))
15856 TYPE_LENGTH (type) = DW_UNSND (attr);
15857 else
15858 {
15859 /* For the moment, dynamic type sizes are not supported
15860 by GDB's struct type. The actual size is determined
15861 on-demand when resolving the type of a given object,
15862 so set the type's length to zero for now. Otherwise,
15863 we record an expression as the length, and that expression
15864 could lead to a very large value, which could eventually
15865 lead to us trying to allocate that much memory when creating
15866 a value of that type. */
15867 TYPE_LENGTH (type) = 0;
15868 }
15869 }
15870 else
15871 {
15872 TYPE_LENGTH (type) = 0;
15873 }
15874
15875 maybe_set_alignment (cu, die, type);
15876
15877 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15878 {
15879 /* ICC<14 does not output the required DW_AT_declaration on
15880 incomplete types, but gives them a size of zero. */
15881 TYPE_STUB (type) = 1;
15882 }
15883 else
15884 TYPE_STUB_SUPPORTED (type) = 1;
15885
15886 if (die_is_declaration (die, cu))
15887 TYPE_STUB (type) = 1;
15888 else if (attr == NULL && die->child == NULL
15889 && producer_is_realview (cu->producer))
15890 /* RealView does not output the required DW_AT_declaration
15891 on incomplete types. */
15892 TYPE_STUB (type) = 1;
15893
15894 /* We need to add the type field to the die immediately so we don't
15895 infinitely recurse when dealing with pointers to the structure
15896 type within the structure itself. */
15897 set_die_type (die, type, cu);
15898
15899 /* set_die_type should be already done. */
15900 set_descriptive_type (type, die, cu);
15901
15902 return type;
15903 }
15904
15905 /* A helper for process_structure_scope that handles a single member
15906 DIE. */
15907
15908 static void
15909 handle_struct_member_die (struct die_info *child_die, struct type *type,
15910 struct field_info *fi,
15911 std::vector<struct symbol *> *template_args,
15912 struct dwarf2_cu *cu)
15913 {
15914 if (child_die->tag == DW_TAG_member
15915 || child_die->tag == DW_TAG_variable
15916 || child_die->tag == DW_TAG_variant_part)
15917 {
15918 /* NOTE: carlton/2002-11-05: A C++ static data member
15919 should be a DW_TAG_member that is a declaration, but
15920 all versions of G++ as of this writing (so through at
15921 least 3.2.1) incorrectly generate DW_TAG_variable
15922 tags for them instead. */
15923 dwarf2_add_field (fi, child_die, cu);
15924 }
15925 else if (child_die->tag == DW_TAG_subprogram)
15926 {
15927 /* Rust doesn't have member functions in the C++ sense.
15928 However, it does emit ordinary functions as children
15929 of a struct DIE. */
15930 if (cu->language == language_rust)
15931 read_func_scope (child_die, cu);
15932 else
15933 {
15934 /* C++ member function. */
15935 dwarf2_add_member_fn (fi, child_die, type, cu);
15936 }
15937 }
15938 else if (child_die->tag == DW_TAG_inheritance)
15939 {
15940 /* C++ base class field. */
15941 dwarf2_add_field (fi, child_die, cu);
15942 }
15943 else if (type_can_define_types (child_die))
15944 dwarf2_add_type_defn (fi, child_die, cu);
15945 else if (child_die->tag == DW_TAG_template_type_param
15946 || child_die->tag == DW_TAG_template_value_param)
15947 {
15948 struct symbol *arg = new_symbol (child_die, NULL, cu);
15949
15950 if (arg != NULL)
15951 template_args->push_back (arg);
15952 }
15953 else if (child_die->tag == DW_TAG_variant)
15954 {
15955 /* In a variant we want to get the discriminant and also add a
15956 field for our sole member child. */
15957 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15958
15959 for (struct die_info *variant_child = child_die->child;
15960 variant_child != NULL;
15961 variant_child = sibling_die (variant_child))
15962 {
15963 if (variant_child->tag == DW_TAG_member)
15964 {
15965 handle_struct_member_die (variant_child, type, fi,
15966 template_args, cu);
15967 /* Only handle the one. */
15968 break;
15969 }
15970 }
15971
15972 /* We don't handle this but we might as well report it if we see
15973 it. */
15974 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15975 complaint (_("DW_AT_discr_list is not supported yet"
15976 " - DIE at %s [in module %s]"),
15977 sect_offset_str (child_die->sect_off),
15978 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15979
15980 /* The first field was just added, so we can stash the
15981 discriminant there. */
15982 gdb_assert (!fi->fields.empty ());
15983 if (discr == NULL)
15984 fi->fields.back ().variant.default_branch = true;
15985 else
15986 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15987 }
15988 }
15989
15990 /* Finish creating a structure or union type, including filling in
15991 its members and creating a symbol for it. */
15992
15993 static void
15994 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15995 {
15996 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15997 struct die_info *child_die;
15998 struct type *type;
15999
16000 type = get_die_type (die, cu);
16001 if (type == NULL)
16002 type = read_structure_type (die, cu);
16003
16004 /* When reading a DW_TAG_variant_part, we need to notice when we
16005 read the discriminant member, so we can record it later in the
16006 discriminant_info. */
16007 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16008 sect_offset discr_offset;
16009 bool has_template_parameters = false;
16010
16011 if (is_variant_part)
16012 {
16013 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16014 if (discr == NULL)
16015 {
16016 /* Maybe it's a univariant form, an extension we support.
16017 In this case arrange not to check the offset. */
16018 is_variant_part = false;
16019 }
16020 else if (attr_form_is_ref (discr))
16021 {
16022 struct dwarf2_cu *target_cu = cu;
16023 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16024
16025 discr_offset = target_die->sect_off;
16026 }
16027 else
16028 {
16029 complaint (_("DW_AT_discr does not have DIE reference form"
16030 " - DIE at %s [in module %s]"),
16031 sect_offset_str (die->sect_off),
16032 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16033 is_variant_part = false;
16034 }
16035 }
16036
16037 if (die->child != NULL && ! die_is_declaration (die, cu))
16038 {
16039 struct field_info fi;
16040 std::vector<struct symbol *> template_args;
16041
16042 child_die = die->child;
16043
16044 while (child_die && child_die->tag)
16045 {
16046 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16047
16048 if (is_variant_part && discr_offset == child_die->sect_off)
16049 fi.fields.back ().variant.is_discriminant = true;
16050
16051 child_die = sibling_die (child_die);
16052 }
16053
16054 /* Attach template arguments to type. */
16055 if (!template_args.empty ())
16056 {
16057 has_template_parameters = true;
16058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16059 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16060 TYPE_TEMPLATE_ARGUMENTS (type)
16061 = XOBNEWVEC (&objfile->objfile_obstack,
16062 struct symbol *,
16063 TYPE_N_TEMPLATE_ARGUMENTS (type));
16064 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16065 template_args.data (),
16066 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16067 * sizeof (struct symbol *)));
16068 }
16069
16070 /* Attach fields and member functions to the type. */
16071 if (fi.nfields)
16072 dwarf2_attach_fields_to_type (&fi, type, cu);
16073 if (!fi.fnfieldlists.empty ())
16074 {
16075 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16076
16077 /* Get the type which refers to the base class (possibly this
16078 class itself) which contains the vtable pointer for the current
16079 class from the DW_AT_containing_type attribute. This use of
16080 DW_AT_containing_type is a GNU extension. */
16081
16082 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16083 {
16084 struct type *t = die_containing_type (die, cu);
16085
16086 set_type_vptr_basetype (type, t);
16087 if (type == t)
16088 {
16089 int i;
16090
16091 /* Our own class provides vtbl ptr. */
16092 for (i = TYPE_NFIELDS (t) - 1;
16093 i >= TYPE_N_BASECLASSES (t);
16094 --i)
16095 {
16096 const char *fieldname = TYPE_FIELD_NAME (t, i);
16097
16098 if (is_vtable_name (fieldname, cu))
16099 {
16100 set_type_vptr_fieldno (type, i);
16101 break;
16102 }
16103 }
16104
16105 /* Complain if virtual function table field not found. */
16106 if (i < TYPE_N_BASECLASSES (t))
16107 complaint (_("virtual function table pointer "
16108 "not found when defining class '%s'"),
16109 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16110 }
16111 else
16112 {
16113 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16114 }
16115 }
16116 else if (cu->producer
16117 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16118 {
16119 /* The IBM XLC compiler does not provide direct indication
16120 of the containing type, but the vtable pointer is
16121 always named __vfp. */
16122
16123 int i;
16124
16125 for (i = TYPE_NFIELDS (type) - 1;
16126 i >= TYPE_N_BASECLASSES (type);
16127 --i)
16128 {
16129 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16130 {
16131 set_type_vptr_fieldno (type, i);
16132 set_type_vptr_basetype (type, type);
16133 break;
16134 }
16135 }
16136 }
16137 }
16138
16139 /* Copy fi.typedef_field_list linked list elements content into the
16140 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16141 if (!fi.typedef_field_list.empty ())
16142 {
16143 int count = fi.typedef_field_list.size ();
16144
16145 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16146 TYPE_TYPEDEF_FIELD_ARRAY (type)
16147 = ((struct decl_field *)
16148 TYPE_ALLOC (type,
16149 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16150 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16151
16152 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16153 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16154 }
16155
16156 /* Copy fi.nested_types_list linked list elements content into the
16157 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16158 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16159 {
16160 int count = fi.nested_types_list.size ();
16161
16162 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16163 TYPE_NESTED_TYPES_ARRAY (type)
16164 = ((struct decl_field *)
16165 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16166 TYPE_NESTED_TYPES_COUNT (type) = count;
16167
16168 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16169 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16170 }
16171 }
16172
16173 quirk_gcc_member_function_pointer (type, objfile);
16174 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16175 cu->rust_unions.push_back (type);
16176
16177 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16178 snapshots) has been known to create a die giving a declaration
16179 for a class that has, as a child, a die giving a definition for a
16180 nested class. So we have to process our children even if the
16181 current die is a declaration. Normally, of course, a declaration
16182 won't have any children at all. */
16183
16184 child_die = die->child;
16185
16186 while (child_die != NULL && child_die->tag)
16187 {
16188 if (child_die->tag == DW_TAG_member
16189 || child_die->tag == DW_TAG_variable
16190 || child_die->tag == DW_TAG_inheritance
16191 || child_die->tag == DW_TAG_template_value_param
16192 || child_die->tag == DW_TAG_template_type_param)
16193 {
16194 /* Do nothing. */
16195 }
16196 else
16197 process_die (child_die, cu);
16198
16199 child_die = sibling_die (child_die);
16200 }
16201
16202 /* Do not consider external references. According to the DWARF standard,
16203 these DIEs are identified by the fact that they have no byte_size
16204 attribute, and a declaration attribute. */
16205 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16206 || !die_is_declaration (die, cu))
16207 {
16208 struct symbol *sym = new_symbol (die, type, cu);
16209
16210 if (has_template_parameters)
16211 {
16212 /* Make sure that the symtab is set on the new symbols.
16213 Even though they don't appear in this symtab directly,
16214 other parts of gdb assume that symbols do, and this is
16215 reasonably true. */
16216 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16217 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16218 symbol_symtab (sym));
16219 }
16220 }
16221 }
16222
16223 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16224 update TYPE using some information only available in DIE's children. */
16225
16226 static void
16227 update_enumeration_type_from_children (struct die_info *die,
16228 struct type *type,
16229 struct dwarf2_cu *cu)
16230 {
16231 struct die_info *child_die;
16232 int unsigned_enum = 1;
16233 int flag_enum = 1;
16234 ULONGEST mask = 0;
16235
16236 auto_obstack obstack;
16237
16238 for (child_die = die->child;
16239 child_die != NULL && child_die->tag;
16240 child_die = sibling_die (child_die))
16241 {
16242 struct attribute *attr;
16243 LONGEST value;
16244 const gdb_byte *bytes;
16245 struct dwarf2_locexpr_baton *baton;
16246 const char *name;
16247
16248 if (child_die->tag != DW_TAG_enumerator)
16249 continue;
16250
16251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16252 if (attr == NULL)
16253 continue;
16254
16255 name = dwarf2_name (child_die, cu);
16256 if (name == NULL)
16257 name = "<anonymous enumerator>";
16258
16259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16260 &value, &bytes, &baton);
16261 if (value < 0)
16262 {
16263 unsigned_enum = 0;
16264 flag_enum = 0;
16265 }
16266 else if ((mask & value) != 0)
16267 flag_enum = 0;
16268 else
16269 mask |= value;
16270
16271 /* If we already know that the enum type is neither unsigned, nor
16272 a flag type, no need to look at the rest of the enumerates. */
16273 if (!unsigned_enum && !flag_enum)
16274 break;
16275 }
16276
16277 if (unsigned_enum)
16278 TYPE_UNSIGNED (type) = 1;
16279 if (flag_enum)
16280 TYPE_FLAG_ENUM (type) = 1;
16281 }
16282
16283 /* Given a DW_AT_enumeration_type die, set its type. We do not
16284 complete the type's fields yet, or create any symbols. */
16285
16286 static struct type *
16287 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16288 {
16289 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16290 struct type *type;
16291 struct attribute *attr;
16292 const char *name;
16293
16294 /* If the definition of this type lives in .debug_types, read that type.
16295 Don't follow DW_AT_specification though, that will take us back up
16296 the chain and we want to go down. */
16297 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16298 if (attr)
16299 {
16300 type = get_DW_AT_signature_type (die, attr, cu);
16301
16302 /* The type's CU may not be the same as CU.
16303 Ensure TYPE is recorded with CU in die_type_hash. */
16304 return set_die_type (die, type, cu);
16305 }
16306
16307 type = alloc_type (objfile);
16308
16309 TYPE_CODE (type) = TYPE_CODE_ENUM;
16310 name = dwarf2_full_name (NULL, die, cu);
16311 if (name != NULL)
16312 TYPE_NAME (type) = name;
16313
16314 attr = dwarf2_attr (die, DW_AT_type, cu);
16315 if (attr != NULL)
16316 {
16317 struct type *underlying_type = die_type (die, cu);
16318
16319 TYPE_TARGET_TYPE (type) = underlying_type;
16320 }
16321
16322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16323 if (attr)
16324 {
16325 TYPE_LENGTH (type) = DW_UNSND (attr);
16326 }
16327 else
16328 {
16329 TYPE_LENGTH (type) = 0;
16330 }
16331
16332 maybe_set_alignment (cu, die, type);
16333
16334 /* The enumeration DIE can be incomplete. In Ada, any type can be
16335 declared as private in the package spec, and then defined only
16336 inside the package body. Such types are known as Taft Amendment
16337 Types. When another package uses such a type, an incomplete DIE
16338 may be generated by the compiler. */
16339 if (die_is_declaration (die, cu))
16340 TYPE_STUB (type) = 1;
16341
16342 /* Finish the creation of this type by using the enum's children.
16343 We must call this even when the underlying type has been provided
16344 so that we can determine if we're looking at a "flag" enum. */
16345 update_enumeration_type_from_children (die, type, cu);
16346
16347 /* If this type has an underlying type that is not a stub, then we
16348 may use its attributes. We always use the "unsigned" attribute
16349 in this situation, because ordinarily we guess whether the type
16350 is unsigned -- but the guess can be wrong and the underlying type
16351 can tell us the reality. However, we defer to a local size
16352 attribute if one exists, because this lets the compiler override
16353 the underlying type if needed. */
16354 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16355 {
16356 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16357 if (TYPE_LENGTH (type) == 0)
16358 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16359 if (TYPE_RAW_ALIGN (type) == 0
16360 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16361 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16362 }
16363
16364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16365
16366 return set_die_type (die, type, cu);
16367 }
16368
16369 /* Given a pointer to a die which begins an enumeration, process all
16370 the dies that define the members of the enumeration, and create the
16371 symbol for the enumeration type.
16372
16373 NOTE: We reverse the order of the element list. */
16374
16375 static void
16376 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16377 {
16378 struct type *this_type;
16379
16380 this_type = get_die_type (die, cu);
16381 if (this_type == NULL)
16382 this_type = read_enumeration_type (die, cu);
16383
16384 if (die->child != NULL)
16385 {
16386 struct die_info *child_die;
16387 struct symbol *sym;
16388 struct field *fields = NULL;
16389 int num_fields = 0;
16390 const char *name;
16391
16392 child_die = die->child;
16393 while (child_die && child_die->tag)
16394 {
16395 if (child_die->tag != DW_TAG_enumerator)
16396 {
16397 process_die (child_die, cu);
16398 }
16399 else
16400 {
16401 name = dwarf2_name (child_die, cu);
16402 if (name)
16403 {
16404 sym = new_symbol (child_die, this_type, cu);
16405
16406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16407 {
16408 fields = (struct field *)
16409 xrealloc (fields,
16410 (num_fields + DW_FIELD_ALLOC_CHUNK)
16411 * sizeof (struct field));
16412 }
16413
16414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16415 FIELD_TYPE (fields[num_fields]) = NULL;
16416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16417 FIELD_BITSIZE (fields[num_fields]) = 0;
16418
16419 num_fields++;
16420 }
16421 }
16422
16423 child_die = sibling_die (child_die);
16424 }
16425
16426 if (num_fields)
16427 {
16428 TYPE_NFIELDS (this_type) = num_fields;
16429 TYPE_FIELDS (this_type) = (struct field *)
16430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16431 memcpy (TYPE_FIELDS (this_type), fields,
16432 sizeof (struct field) * num_fields);
16433 xfree (fields);
16434 }
16435 }
16436
16437 /* If we are reading an enum from a .debug_types unit, and the enum
16438 is a declaration, and the enum is not the signatured type in the
16439 unit, then we do not want to add a symbol for it. Adding a
16440 symbol would in some cases obscure the true definition of the
16441 enum, giving users an incomplete type when the definition is
16442 actually available. Note that we do not want to do this for all
16443 enums which are just declarations, because C++0x allows forward
16444 enum declarations. */
16445 if (cu->per_cu->is_debug_types
16446 && die_is_declaration (die, cu))
16447 {
16448 struct signatured_type *sig_type;
16449
16450 sig_type = (struct signatured_type *) cu->per_cu;
16451 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16452 if (sig_type->type_offset_in_section != die->sect_off)
16453 return;
16454 }
16455
16456 new_symbol (die, this_type, cu);
16457 }
16458
16459 /* Extract all information from a DW_TAG_array_type DIE and put it in
16460 the DIE's type field. For now, this only handles one dimensional
16461 arrays. */
16462
16463 static struct type *
16464 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16465 {
16466 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16467 struct die_info *child_die;
16468 struct type *type;
16469 struct type *element_type, *range_type, *index_type;
16470 struct attribute *attr;
16471 const char *name;
16472 struct dynamic_prop *byte_stride_prop = NULL;
16473 unsigned int bit_stride = 0;
16474
16475 element_type = die_type (die, cu);
16476
16477 /* The die_type call above may have already set the type for this DIE. */
16478 type = get_die_type (die, cu);
16479 if (type)
16480 return type;
16481
16482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16483 if (attr != NULL)
16484 {
16485 int stride_ok;
16486
16487 byte_stride_prop
16488 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16489 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16490 if (!stride_ok)
16491 {
16492 complaint (_("unable to read array DW_AT_byte_stride "
16493 " - DIE at %s [in module %s]"),
16494 sect_offset_str (die->sect_off),
16495 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16496 /* Ignore this attribute. We will likely not be able to print
16497 arrays of this type correctly, but there is little we can do
16498 to help if we cannot read the attribute's value. */
16499 byte_stride_prop = NULL;
16500 }
16501 }
16502
16503 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16504 if (attr != NULL)
16505 bit_stride = DW_UNSND (attr);
16506
16507 /* Irix 6.2 native cc creates array types without children for
16508 arrays with unspecified length. */
16509 if (die->child == NULL)
16510 {
16511 index_type = objfile_type (objfile)->builtin_int;
16512 range_type = create_static_range_type (NULL, index_type, 0, -1);
16513 type = create_array_type_with_stride (NULL, element_type, range_type,
16514 byte_stride_prop, bit_stride);
16515 return set_die_type (die, type, cu);
16516 }
16517
16518 std::vector<struct type *> range_types;
16519 child_die = die->child;
16520 while (child_die && child_die->tag)
16521 {
16522 if (child_die->tag == DW_TAG_subrange_type)
16523 {
16524 struct type *child_type = read_type_die (child_die, cu);
16525
16526 if (child_type != NULL)
16527 {
16528 /* The range type was succesfully read. Save it for the
16529 array type creation. */
16530 range_types.push_back (child_type);
16531 }
16532 }
16533 child_die = sibling_die (child_die);
16534 }
16535
16536 /* Dwarf2 dimensions are output from left to right, create the
16537 necessary array types in backwards order. */
16538
16539 type = element_type;
16540
16541 if (read_array_order (die, cu) == DW_ORD_col_major)
16542 {
16543 int i = 0;
16544
16545 while (i < range_types.size ())
16546 type = create_array_type_with_stride (NULL, type, range_types[i++],
16547 byte_stride_prop, bit_stride);
16548 }
16549 else
16550 {
16551 size_t ndim = range_types.size ();
16552 while (ndim-- > 0)
16553 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16554 byte_stride_prop, bit_stride);
16555 }
16556
16557 /* Understand Dwarf2 support for vector types (like they occur on
16558 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16559 array type. This is not part of the Dwarf2/3 standard yet, but a
16560 custom vendor extension. The main difference between a regular
16561 array and the vector variant is that vectors are passed by value
16562 to functions. */
16563 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16564 if (attr)
16565 make_vector_type (type);
16566
16567 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16568 implementation may choose to implement triple vectors using this
16569 attribute. */
16570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16571 if (attr)
16572 {
16573 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16574 TYPE_LENGTH (type) = DW_UNSND (attr);
16575 else
16576 complaint (_("DW_AT_byte_size for array type smaller "
16577 "than the total size of elements"));
16578 }
16579
16580 name = dwarf2_name (die, cu);
16581 if (name)
16582 TYPE_NAME (type) = name;
16583
16584 maybe_set_alignment (cu, die, type);
16585
16586 /* Install the type in the die. */
16587 set_die_type (die, type, cu);
16588
16589 /* set_die_type should be already done. */
16590 set_descriptive_type (type, die, cu);
16591
16592 return type;
16593 }
16594
16595 static enum dwarf_array_dim_ordering
16596 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16597 {
16598 struct attribute *attr;
16599
16600 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16601
16602 if (attr)
16603 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16604
16605 /* GNU F77 is a special case, as at 08/2004 array type info is the
16606 opposite order to the dwarf2 specification, but data is still
16607 laid out as per normal fortran.
16608
16609 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16610 version checking. */
16611
16612 if (cu->language == language_fortran
16613 && cu->producer && strstr (cu->producer, "GNU F77"))
16614 {
16615 return DW_ORD_row_major;
16616 }
16617
16618 switch (cu->language_defn->la_array_ordering)
16619 {
16620 case array_column_major:
16621 return DW_ORD_col_major;
16622 case array_row_major:
16623 default:
16624 return DW_ORD_row_major;
16625 };
16626 }
16627
16628 /* Extract all information from a DW_TAG_set_type DIE and put it in
16629 the DIE's type field. */
16630
16631 static struct type *
16632 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16633 {
16634 struct type *domain_type, *set_type;
16635 struct attribute *attr;
16636
16637 domain_type = die_type (die, cu);
16638
16639 /* The die_type call above may have already set the type for this DIE. */
16640 set_type = get_die_type (die, cu);
16641 if (set_type)
16642 return set_type;
16643
16644 set_type = create_set_type (NULL, domain_type);
16645
16646 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16647 if (attr)
16648 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16649
16650 maybe_set_alignment (cu, die, set_type);
16651
16652 return set_die_type (die, set_type, cu);
16653 }
16654
16655 /* A helper for read_common_block that creates a locexpr baton.
16656 SYM is the symbol which we are marking as computed.
16657 COMMON_DIE is the DIE for the common block.
16658 COMMON_LOC is the location expression attribute for the common
16659 block itself.
16660 MEMBER_LOC is the location expression attribute for the particular
16661 member of the common block that we are processing.
16662 CU is the CU from which the above come. */
16663
16664 static void
16665 mark_common_block_symbol_computed (struct symbol *sym,
16666 struct die_info *common_die,
16667 struct attribute *common_loc,
16668 struct attribute *member_loc,
16669 struct dwarf2_cu *cu)
16670 {
16671 struct dwarf2_per_objfile *dwarf2_per_objfile
16672 = cu->per_cu->dwarf2_per_objfile;
16673 struct objfile *objfile = dwarf2_per_objfile->objfile;
16674 struct dwarf2_locexpr_baton *baton;
16675 gdb_byte *ptr;
16676 unsigned int cu_off;
16677 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16678 LONGEST offset = 0;
16679
16680 gdb_assert (common_loc && member_loc);
16681 gdb_assert (attr_form_is_block (common_loc));
16682 gdb_assert (attr_form_is_block (member_loc)
16683 || attr_form_is_constant (member_loc));
16684
16685 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16686 baton->per_cu = cu->per_cu;
16687 gdb_assert (baton->per_cu);
16688
16689 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16690
16691 if (attr_form_is_constant (member_loc))
16692 {
16693 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16694 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16695 }
16696 else
16697 baton->size += DW_BLOCK (member_loc)->size;
16698
16699 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16700 baton->data = ptr;
16701
16702 *ptr++ = DW_OP_call4;
16703 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16704 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16705 ptr += 4;
16706
16707 if (attr_form_is_constant (member_loc))
16708 {
16709 *ptr++ = DW_OP_addr;
16710 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16711 ptr += cu->header.addr_size;
16712 }
16713 else
16714 {
16715 /* We have to copy the data here, because DW_OP_call4 will only
16716 use a DW_AT_location attribute. */
16717 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16718 ptr += DW_BLOCK (member_loc)->size;
16719 }
16720
16721 *ptr++ = DW_OP_plus;
16722 gdb_assert (ptr - baton->data == baton->size);
16723
16724 SYMBOL_LOCATION_BATON (sym) = baton;
16725 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16726 }
16727
16728 /* Create appropriate locally-scoped variables for all the
16729 DW_TAG_common_block entries. Also create a struct common_block
16730 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16731 is used to sepate the common blocks name namespace from regular
16732 variable names. */
16733
16734 static void
16735 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16736 {
16737 struct attribute *attr;
16738
16739 attr = dwarf2_attr (die, DW_AT_location, cu);
16740 if (attr)
16741 {
16742 /* Support the .debug_loc offsets. */
16743 if (attr_form_is_block (attr))
16744 {
16745 /* Ok. */
16746 }
16747 else if (attr_form_is_section_offset (attr))
16748 {
16749 dwarf2_complex_location_expr_complaint ();
16750 attr = NULL;
16751 }
16752 else
16753 {
16754 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16755 "common block member");
16756 attr = NULL;
16757 }
16758 }
16759
16760 if (die->child != NULL)
16761 {
16762 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16763 struct die_info *child_die;
16764 size_t n_entries = 0, size;
16765 struct common_block *common_block;
16766 struct symbol *sym;
16767
16768 for (child_die = die->child;
16769 child_die && child_die->tag;
16770 child_die = sibling_die (child_die))
16771 ++n_entries;
16772
16773 size = (sizeof (struct common_block)
16774 + (n_entries - 1) * sizeof (struct symbol *));
16775 common_block
16776 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16777 size);
16778 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16779 common_block->n_entries = 0;
16780
16781 for (child_die = die->child;
16782 child_die && child_die->tag;
16783 child_die = sibling_die (child_die))
16784 {
16785 /* Create the symbol in the DW_TAG_common_block block in the current
16786 symbol scope. */
16787 sym = new_symbol (child_die, NULL, cu);
16788 if (sym != NULL)
16789 {
16790 struct attribute *member_loc;
16791
16792 common_block->contents[common_block->n_entries++] = sym;
16793
16794 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16795 cu);
16796 if (member_loc)
16797 {
16798 /* GDB has handled this for a long time, but it is
16799 not specified by DWARF. It seems to have been
16800 emitted by gfortran at least as recently as:
16801 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16802 complaint (_("Variable in common block has "
16803 "DW_AT_data_member_location "
16804 "- DIE at %s [in module %s]"),
16805 sect_offset_str (child_die->sect_off),
16806 objfile_name (objfile));
16807
16808 if (attr_form_is_section_offset (member_loc))
16809 dwarf2_complex_location_expr_complaint ();
16810 else if (attr_form_is_constant (member_loc)
16811 || attr_form_is_block (member_loc))
16812 {
16813 if (attr)
16814 mark_common_block_symbol_computed (sym, die, attr,
16815 member_loc, cu);
16816 }
16817 else
16818 dwarf2_complex_location_expr_complaint ();
16819 }
16820 }
16821 }
16822
16823 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16824 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16825 }
16826 }
16827
16828 /* Create a type for a C++ namespace. */
16829
16830 static struct type *
16831 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16832 {
16833 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16834 const char *previous_prefix, *name;
16835 int is_anonymous;
16836 struct type *type;
16837
16838 /* For extensions, reuse the type of the original namespace. */
16839 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16840 {
16841 struct die_info *ext_die;
16842 struct dwarf2_cu *ext_cu = cu;
16843
16844 ext_die = dwarf2_extension (die, &ext_cu);
16845 type = read_type_die (ext_die, ext_cu);
16846
16847 /* EXT_CU may not be the same as CU.
16848 Ensure TYPE is recorded with CU in die_type_hash. */
16849 return set_die_type (die, type, cu);
16850 }
16851
16852 name = namespace_name (die, &is_anonymous, cu);
16853
16854 /* Now build the name of the current namespace. */
16855
16856 previous_prefix = determine_prefix (die, cu);
16857 if (previous_prefix[0] != '\0')
16858 name = typename_concat (&objfile->objfile_obstack,
16859 previous_prefix, name, 0, cu);
16860
16861 /* Create the type. */
16862 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16863
16864 return set_die_type (die, type, cu);
16865 }
16866
16867 /* Read a namespace scope. */
16868
16869 static void
16870 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16871 {
16872 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16873 int is_anonymous;
16874
16875 /* Add a symbol associated to this if we haven't seen the namespace
16876 before. Also, add a using directive if it's an anonymous
16877 namespace. */
16878
16879 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16880 {
16881 struct type *type;
16882
16883 type = read_type_die (die, cu);
16884 new_symbol (die, type, cu);
16885
16886 namespace_name (die, &is_anonymous, cu);
16887 if (is_anonymous)
16888 {
16889 const char *previous_prefix = determine_prefix (die, cu);
16890
16891 std::vector<const char *> excludes;
16892 add_using_directive (using_directives (cu),
16893 previous_prefix, TYPE_NAME (type), NULL,
16894 NULL, excludes, 0, &objfile->objfile_obstack);
16895 }
16896 }
16897
16898 if (die->child != NULL)
16899 {
16900 struct die_info *child_die = die->child;
16901
16902 while (child_die && child_die->tag)
16903 {
16904 process_die (child_die, cu);
16905 child_die = sibling_die (child_die);
16906 }
16907 }
16908 }
16909
16910 /* Read a Fortran module as type. This DIE can be only a declaration used for
16911 imported module. Still we need that type as local Fortran "use ... only"
16912 declaration imports depend on the created type in determine_prefix. */
16913
16914 static struct type *
16915 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16916 {
16917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16918 const char *module_name;
16919 struct type *type;
16920
16921 module_name = dwarf2_name (die, cu);
16922 if (!module_name)
16923 complaint (_("DW_TAG_module has no name, offset %s"),
16924 sect_offset_str (die->sect_off));
16925 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16926
16927 return set_die_type (die, type, cu);
16928 }
16929
16930 /* Read a Fortran module. */
16931
16932 static void
16933 read_module (struct die_info *die, struct dwarf2_cu *cu)
16934 {
16935 struct die_info *child_die = die->child;
16936 struct type *type;
16937
16938 type = read_type_die (die, cu);
16939 new_symbol (die, type, cu);
16940
16941 while (child_die && child_die->tag)
16942 {
16943 process_die (child_die, cu);
16944 child_die = sibling_die (child_die);
16945 }
16946 }
16947
16948 /* Return the name of the namespace represented by DIE. Set
16949 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16950 namespace. */
16951
16952 static const char *
16953 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16954 {
16955 struct die_info *current_die;
16956 const char *name = NULL;
16957
16958 /* Loop through the extensions until we find a name. */
16959
16960 for (current_die = die;
16961 current_die != NULL;
16962 current_die = dwarf2_extension (die, &cu))
16963 {
16964 /* We don't use dwarf2_name here so that we can detect the absence
16965 of a name -> anonymous namespace. */
16966 name = dwarf2_string_attr (die, DW_AT_name, cu);
16967
16968 if (name != NULL)
16969 break;
16970 }
16971
16972 /* Is it an anonymous namespace? */
16973
16974 *is_anonymous = (name == NULL);
16975 if (*is_anonymous)
16976 name = CP_ANONYMOUS_NAMESPACE_STR;
16977
16978 return name;
16979 }
16980
16981 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16982 the user defined type vector. */
16983
16984 static struct type *
16985 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16986 {
16987 struct gdbarch *gdbarch
16988 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16989 struct comp_unit_head *cu_header = &cu->header;
16990 struct type *type;
16991 struct attribute *attr_byte_size;
16992 struct attribute *attr_address_class;
16993 int byte_size, addr_class;
16994 struct type *target_type;
16995
16996 target_type = die_type (die, cu);
16997
16998 /* The die_type call above may have already set the type for this DIE. */
16999 type = get_die_type (die, cu);
17000 if (type)
17001 return type;
17002
17003 type = lookup_pointer_type (target_type);
17004
17005 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17006 if (attr_byte_size)
17007 byte_size = DW_UNSND (attr_byte_size);
17008 else
17009 byte_size = cu_header->addr_size;
17010
17011 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17012 if (attr_address_class)
17013 addr_class = DW_UNSND (attr_address_class);
17014 else
17015 addr_class = DW_ADDR_none;
17016
17017 ULONGEST alignment = get_alignment (cu, die);
17018
17019 /* If the pointer size, alignment, or address class is different
17020 than the default, create a type variant marked as such and set
17021 the length accordingly. */
17022 if (TYPE_LENGTH (type) != byte_size
17023 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17024 && alignment != TYPE_RAW_ALIGN (type))
17025 || addr_class != DW_ADDR_none)
17026 {
17027 if (gdbarch_address_class_type_flags_p (gdbarch))
17028 {
17029 int type_flags;
17030
17031 type_flags = gdbarch_address_class_type_flags
17032 (gdbarch, byte_size, addr_class);
17033 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17034 == 0);
17035 type = make_type_with_address_space (type, type_flags);
17036 }
17037 else if (TYPE_LENGTH (type) != byte_size)
17038 {
17039 complaint (_("invalid pointer size %d"), byte_size);
17040 }
17041 else if (TYPE_RAW_ALIGN (type) != alignment)
17042 {
17043 complaint (_("Invalid DW_AT_alignment"
17044 " - DIE at %s [in module %s]"),
17045 sect_offset_str (die->sect_off),
17046 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17047 }
17048 else
17049 {
17050 /* Should we also complain about unhandled address classes? */
17051 }
17052 }
17053
17054 TYPE_LENGTH (type) = byte_size;
17055 set_type_align (type, alignment);
17056 return set_die_type (die, type, cu);
17057 }
17058
17059 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17060 the user defined type vector. */
17061
17062 static struct type *
17063 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17064 {
17065 struct type *type;
17066 struct type *to_type;
17067 struct type *domain;
17068
17069 to_type = die_type (die, cu);
17070 domain = die_containing_type (die, cu);
17071
17072 /* The calls above may have already set the type for this DIE. */
17073 type = get_die_type (die, cu);
17074 if (type)
17075 return type;
17076
17077 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17078 type = lookup_methodptr_type (to_type);
17079 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17080 {
17081 struct type *new_type
17082 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17083
17084 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17085 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17086 TYPE_VARARGS (to_type));
17087 type = lookup_methodptr_type (new_type);
17088 }
17089 else
17090 type = lookup_memberptr_type (to_type, domain);
17091
17092 return set_die_type (die, type, cu);
17093 }
17094
17095 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17096 the user defined type vector. */
17097
17098 static struct type *
17099 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17100 enum type_code refcode)
17101 {
17102 struct comp_unit_head *cu_header = &cu->header;
17103 struct type *type, *target_type;
17104 struct attribute *attr;
17105
17106 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17107
17108 target_type = die_type (die, cu);
17109
17110 /* The die_type call above may have already set the type for this DIE. */
17111 type = get_die_type (die, cu);
17112 if (type)
17113 return type;
17114
17115 type = lookup_reference_type (target_type, refcode);
17116 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17117 if (attr)
17118 {
17119 TYPE_LENGTH (type) = DW_UNSND (attr);
17120 }
17121 else
17122 {
17123 TYPE_LENGTH (type) = cu_header->addr_size;
17124 }
17125 maybe_set_alignment (cu, die, type);
17126 return set_die_type (die, type, cu);
17127 }
17128
17129 /* Add the given cv-qualifiers to the element type of the array. GCC
17130 outputs DWARF type qualifiers that apply to an array, not the
17131 element type. But GDB relies on the array element type to carry
17132 the cv-qualifiers. This mimics section 6.7.3 of the C99
17133 specification. */
17134
17135 static struct type *
17136 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17137 struct type *base_type, int cnst, int voltl)
17138 {
17139 struct type *el_type, *inner_array;
17140
17141 base_type = copy_type (base_type);
17142 inner_array = base_type;
17143
17144 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17145 {
17146 TYPE_TARGET_TYPE (inner_array) =
17147 copy_type (TYPE_TARGET_TYPE (inner_array));
17148 inner_array = TYPE_TARGET_TYPE (inner_array);
17149 }
17150
17151 el_type = TYPE_TARGET_TYPE (inner_array);
17152 cnst |= TYPE_CONST (el_type);
17153 voltl |= TYPE_VOLATILE (el_type);
17154 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17155
17156 return set_die_type (die, base_type, cu);
17157 }
17158
17159 static struct type *
17160 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17161 {
17162 struct type *base_type, *cv_type;
17163
17164 base_type = die_type (die, cu);
17165
17166 /* The die_type call above may have already set the type for this DIE. */
17167 cv_type = get_die_type (die, cu);
17168 if (cv_type)
17169 return cv_type;
17170
17171 /* In case the const qualifier is applied to an array type, the element type
17172 is so qualified, not the array type (section 6.7.3 of C99). */
17173 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17174 return add_array_cv_type (die, cu, base_type, 1, 0);
17175
17176 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17177 return set_die_type (die, cv_type, cu);
17178 }
17179
17180 static struct type *
17181 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17182 {
17183 struct type *base_type, *cv_type;
17184
17185 base_type = die_type (die, cu);
17186
17187 /* The die_type call above may have already set the type for this DIE. */
17188 cv_type = get_die_type (die, cu);
17189 if (cv_type)
17190 return cv_type;
17191
17192 /* In case the volatile qualifier is applied to an array type, the
17193 element type is so qualified, not the array type (section 6.7.3
17194 of C99). */
17195 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17196 return add_array_cv_type (die, cu, base_type, 0, 1);
17197
17198 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17199 return set_die_type (die, cv_type, cu);
17200 }
17201
17202 /* Handle DW_TAG_restrict_type. */
17203
17204 static struct type *
17205 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17206 {
17207 struct type *base_type, *cv_type;
17208
17209 base_type = die_type (die, cu);
17210
17211 /* The die_type call above may have already set the type for this DIE. */
17212 cv_type = get_die_type (die, cu);
17213 if (cv_type)
17214 return cv_type;
17215
17216 cv_type = make_restrict_type (base_type);
17217 return set_die_type (die, cv_type, cu);
17218 }
17219
17220 /* Handle DW_TAG_atomic_type. */
17221
17222 static struct type *
17223 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17224 {
17225 struct type *base_type, *cv_type;
17226
17227 base_type = die_type (die, cu);
17228
17229 /* The die_type call above may have already set the type for this DIE. */
17230 cv_type = get_die_type (die, cu);
17231 if (cv_type)
17232 return cv_type;
17233
17234 cv_type = make_atomic_type (base_type);
17235 return set_die_type (die, cv_type, cu);
17236 }
17237
17238 /* Extract all information from a DW_TAG_string_type DIE and add to
17239 the user defined type vector. It isn't really a user defined type,
17240 but it behaves like one, with other DIE's using an AT_user_def_type
17241 attribute to reference it. */
17242
17243 static struct type *
17244 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17245 {
17246 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17248 struct type *type, *range_type, *index_type, *char_type;
17249 struct attribute *attr;
17250 unsigned int length;
17251
17252 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17253 if (attr)
17254 {
17255 length = DW_UNSND (attr);
17256 }
17257 else
17258 {
17259 /* Check for the DW_AT_byte_size attribute. */
17260 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17261 if (attr)
17262 {
17263 length = DW_UNSND (attr);
17264 }
17265 else
17266 {
17267 length = 1;
17268 }
17269 }
17270
17271 index_type = objfile_type (objfile)->builtin_int;
17272 range_type = create_static_range_type (NULL, index_type, 1, length);
17273 char_type = language_string_char_type (cu->language_defn, gdbarch);
17274 type = create_string_type (NULL, char_type, range_type);
17275
17276 return set_die_type (die, type, cu);
17277 }
17278
17279 /* Assuming that DIE corresponds to a function, returns nonzero
17280 if the function is prototyped. */
17281
17282 static int
17283 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17284 {
17285 struct attribute *attr;
17286
17287 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17288 if (attr && (DW_UNSND (attr) != 0))
17289 return 1;
17290
17291 /* The DWARF standard implies that the DW_AT_prototyped attribute
17292 is only meaninful for C, but the concept also extends to other
17293 languages that allow unprototyped functions (Eg: Objective C).
17294 For all other languages, assume that functions are always
17295 prototyped. */
17296 if (cu->language != language_c
17297 && cu->language != language_objc
17298 && cu->language != language_opencl)
17299 return 1;
17300
17301 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17302 prototyped and unprototyped functions; default to prototyped,
17303 since that is more common in modern code (and RealView warns
17304 about unprototyped functions). */
17305 if (producer_is_realview (cu->producer))
17306 return 1;
17307
17308 return 0;
17309 }
17310
17311 /* Handle DIES due to C code like:
17312
17313 struct foo
17314 {
17315 int (*funcp)(int a, long l);
17316 int b;
17317 };
17318
17319 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17320
17321 static struct type *
17322 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17323 {
17324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17325 struct type *type; /* Type that this function returns. */
17326 struct type *ftype; /* Function that returns above type. */
17327 struct attribute *attr;
17328
17329 type = die_type (die, cu);
17330
17331 /* The die_type call above may have already set the type for this DIE. */
17332 ftype = get_die_type (die, cu);
17333 if (ftype)
17334 return ftype;
17335
17336 ftype = lookup_function_type (type);
17337
17338 if (prototyped_function_p (die, cu))
17339 TYPE_PROTOTYPED (ftype) = 1;
17340
17341 /* Store the calling convention in the type if it's available in
17342 the subroutine die. Otherwise set the calling convention to
17343 the default value DW_CC_normal. */
17344 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17345 if (attr)
17346 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17347 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17348 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17349 else
17350 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17351
17352 /* Record whether the function returns normally to its caller or not
17353 if the DWARF producer set that information. */
17354 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17355 if (attr && (DW_UNSND (attr) != 0))
17356 TYPE_NO_RETURN (ftype) = 1;
17357
17358 /* We need to add the subroutine type to the die immediately so
17359 we don't infinitely recurse when dealing with parameters
17360 declared as the same subroutine type. */
17361 set_die_type (die, ftype, cu);
17362
17363 if (die->child != NULL)
17364 {
17365 struct type *void_type = objfile_type (objfile)->builtin_void;
17366 struct die_info *child_die;
17367 int nparams, iparams;
17368
17369 /* Count the number of parameters.
17370 FIXME: GDB currently ignores vararg functions, but knows about
17371 vararg member functions. */
17372 nparams = 0;
17373 child_die = die->child;
17374 while (child_die && child_die->tag)
17375 {
17376 if (child_die->tag == DW_TAG_formal_parameter)
17377 nparams++;
17378 else if (child_die->tag == DW_TAG_unspecified_parameters)
17379 TYPE_VARARGS (ftype) = 1;
17380 child_die = sibling_die (child_die);
17381 }
17382
17383 /* Allocate storage for parameters and fill them in. */
17384 TYPE_NFIELDS (ftype) = nparams;
17385 TYPE_FIELDS (ftype) = (struct field *)
17386 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17387
17388 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17389 even if we error out during the parameters reading below. */
17390 for (iparams = 0; iparams < nparams; iparams++)
17391 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17392
17393 iparams = 0;
17394 child_die = die->child;
17395 while (child_die && child_die->tag)
17396 {
17397 if (child_die->tag == DW_TAG_formal_parameter)
17398 {
17399 struct type *arg_type;
17400
17401 /* DWARF version 2 has no clean way to discern C++
17402 static and non-static member functions. G++ helps
17403 GDB by marking the first parameter for non-static
17404 member functions (which is the this pointer) as
17405 artificial. We pass this information to
17406 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17407
17408 DWARF version 3 added DW_AT_object_pointer, which GCC
17409 4.5 does not yet generate. */
17410 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17411 if (attr)
17412 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17413 else
17414 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17415 arg_type = die_type (child_die, cu);
17416
17417 /* RealView does not mark THIS as const, which the testsuite
17418 expects. GCC marks THIS as const in method definitions,
17419 but not in the class specifications (GCC PR 43053). */
17420 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17421 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17422 {
17423 int is_this = 0;
17424 struct dwarf2_cu *arg_cu = cu;
17425 const char *name = dwarf2_name (child_die, cu);
17426
17427 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17428 if (attr)
17429 {
17430 /* If the compiler emits this, use it. */
17431 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17432 is_this = 1;
17433 }
17434 else if (name && strcmp (name, "this") == 0)
17435 /* Function definitions will have the argument names. */
17436 is_this = 1;
17437 else if (name == NULL && iparams == 0)
17438 /* Declarations may not have the names, so like
17439 elsewhere in GDB, assume an artificial first
17440 argument is "this". */
17441 is_this = 1;
17442
17443 if (is_this)
17444 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17445 arg_type, 0);
17446 }
17447
17448 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17449 iparams++;
17450 }
17451 child_die = sibling_die (child_die);
17452 }
17453 }
17454
17455 return ftype;
17456 }
17457
17458 static struct type *
17459 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17460 {
17461 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17462 const char *name = NULL;
17463 struct type *this_type, *target_type;
17464
17465 name = dwarf2_full_name (NULL, die, cu);
17466 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17467 TYPE_TARGET_STUB (this_type) = 1;
17468 set_die_type (die, this_type, cu);
17469 target_type = die_type (die, cu);
17470 if (target_type != this_type)
17471 TYPE_TARGET_TYPE (this_type) = target_type;
17472 else
17473 {
17474 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17475 spec and cause infinite loops in GDB. */
17476 complaint (_("Self-referential DW_TAG_typedef "
17477 "- DIE at %s [in module %s]"),
17478 sect_offset_str (die->sect_off), objfile_name (objfile));
17479 TYPE_TARGET_TYPE (this_type) = NULL;
17480 }
17481 return this_type;
17482 }
17483
17484 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17485 (which may be different from NAME) to the architecture back-end to allow
17486 it to guess the correct format if necessary. */
17487
17488 static struct type *
17489 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17490 const char *name_hint)
17491 {
17492 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17493 const struct floatformat **format;
17494 struct type *type;
17495
17496 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17497 if (format)
17498 type = init_float_type (objfile, bits, name, format);
17499 else
17500 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17501
17502 return type;
17503 }
17504
17505 /* Allocate an integer type of size BITS and name NAME. */
17506
17507 static struct type *
17508 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17509 int bits, int unsigned_p, const char *name)
17510 {
17511 struct type *type;
17512
17513 /* Versions of Intel's C Compiler generate an integer type called "void"
17514 instead of using DW_TAG_unspecified_type. This has been seen on
17515 at least versions 14, 17, and 18. */
17516 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17517 && strcmp (name, "void") == 0)
17518 type = objfile_type (objfile)->builtin_void;
17519 else
17520 type = init_integer_type (objfile, bits, unsigned_p, name);
17521
17522 return type;
17523 }
17524
17525 /* Find a representation of a given base type and install
17526 it in the TYPE field of the die. */
17527
17528 static struct type *
17529 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17530 {
17531 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17532 struct type *type;
17533 struct attribute *attr;
17534 int encoding = 0, bits = 0;
17535 const char *name;
17536
17537 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17538 if (attr)
17539 {
17540 encoding = DW_UNSND (attr);
17541 }
17542 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17543 if (attr)
17544 {
17545 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17546 }
17547 name = dwarf2_name (die, cu);
17548 if (!name)
17549 {
17550 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17551 }
17552
17553 switch (encoding)
17554 {
17555 case DW_ATE_address:
17556 /* Turn DW_ATE_address into a void * pointer. */
17557 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17558 type = init_pointer_type (objfile, bits, name, type);
17559 break;
17560 case DW_ATE_boolean:
17561 type = init_boolean_type (objfile, bits, 1, name);
17562 break;
17563 case DW_ATE_complex_float:
17564 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17565 type = init_complex_type (objfile, name, type);
17566 break;
17567 case DW_ATE_decimal_float:
17568 type = init_decfloat_type (objfile, bits, name);
17569 break;
17570 case DW_ATE_float:
17571 type = dwarf2_init_float_type (objfile, bits, name, name);
17572 break;
17573 case DW_ATE_signed:
17574 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17575 break;
17576 case DW_ATE_unsigned:
17577 if (cu->language == language_fortran
17578 && name
17579 && startswith (name, "character("))
17580 type = init_character_type (objfile, bits, 1, name);
17581 else
17582 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17583 break;
17584 case DW_ATE_signed_char:
17585 if (cu->language == language_ada || cu->language == language_m2
17586 || cu->language == language_pascal
17587 || cu->language == language_fortran)
17588 type = init_character_type (objfile, bits, 0, name);
17589 else
17590 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17591 break;
17592 case DW_ATE_unsigned_char:
17593 if (cu->language == language_ada || cu->language == language_m2
17594 || cu->language == language_pascal
17595 || cu->language == language_fortran
17596 || cu->language == language_rust)
17597 type = init_character_type (objfile, bits, 1, name);
17598 else
17599 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17600 break;
17601 case DW_ATE_UTF:
17602 {
17603 gdbarch *arch = get_objfile_arch (objfile);
17604
17605 if (bits == 16)
17606 type = builtin_type (arch)->builtin_char16;
17607 else if (bits == 32)
17608 type = builtin_type (arch)->builtin_char32;
17609 else
17610 {
17611 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17612 bits);
17613 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17614 }
17615 return set_die_type (die, type, cu);
17616 }
17617 break;
17618
17619 default:
17620 complaint (_("unsupported DW_AT_encoding: '%s'"),
17621 dwarf_type_encoding_name (encoding));
17622 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17623 break;
17624 }
17625
17626 if (name && strcmp (name, "char") == 0)
17627 TYPE_NOSIGN (type) = 1;
17628
17629 maybe_set_alignment (cu, die, type);
17630
17631 return set_die_type (die, type, cu);
17632 }
17633
17634 /* Parse dwarf attribute if it's a block, reference or constant and put the
17635 resulting value of the attribute into struct bound_prop.
17636 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17637
17638 static int
17639 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17640 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17641 {
17642 struct dwarf2_property_baton *baton;
17643 struct obstack *obstack
17644 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17645
17646 if (attr == NULL || prop == NULL)
17647 return 0;
17648
17649 if (attr_form_is_block (attr))
17650 {
17651 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17652 baton->referenced_type = NULL;
17653 baton->locexpr.per_cu = cu->per_cu;
17654 baton->locexpr.size = DW_BLOCK (attr)->size;
17655 baton->locexpr.data = DW_BLOCK (attr)->data;
17656 prop->data.baton = baton;
17657 prop->kind = PROP_LOCEXPR;
17658 gdb_assert (prop->data.baton != NULL);
17659 }
17660 else if (attr_form_is_ref (attr))
17661 {
17662 struct dwarf2_cu *target_cu = cu;
17663 struct die_info *target_die;
17664 struct attribute *target_attr;
17665
17666 target_die = follow_die_ref (die, attr, &target_cu);
17667 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17668 if (target_attr == NULL)
17669 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17670 target_cu);
17671 if (target_attr == NULL)
17672 return 0;
17673
17674 switch (target_attr->name)
17675 {
17676 case DW_AT_location:
17677 if (attr_form_is_section_offset (target_attr))
17678 {
17679 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17680 baton->referenced_type = die_type (target_die, target_cu);
17681 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17682 prop->data.baton = baton;
17683 prop->kind = PROP_LOCLIST;
17684 gdb_assert (prop->data.baton != NULL);
17685 }
17686 else if (attr_form_is_block (target_attr))
17687 {
17688 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17689 baton->referenced_type = die_type (target_die, target_cu);
17690 baton->locexpr.per_cu = cu->per_cu;
17691 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17692 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17693 prop->data.baton = baton;
17694 prop->kind = PROP_LOCEXPR;
17695 gdb_assert (prop->data.baton != NULL);
17696 }
17697 else
17698 {
17699 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17700 "dynamic property");
17701 return 0;
17702 }
17703 break;
17704 case DW_AT_data_member_location:
17705 {
17706 LONGEST offset;
17707
17708 if (!handle_data_member_location (target_die, target_cu,
17709 &offset))
17710 return 0;
17711
17712 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17713 baton->referenced_type = read_type_die (target_die->parent,
17714 target_cu);
17715 baton->offset_info.offset = offset;
17716 baton->offset_info.type = die_type (target_die, target_cu);
17717 prop->data.baton = baton;
17718 prop->kind = PROP_ADDR_OFFSET;
17719 break;
17720 }
17721 }
17722 }
17723 else if (attr_form_is_constant (attr))
17724 {
17725 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17726 prop->kind = PROP_CONST;
17727 }
17728 else
17729 {
17730 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17731 dwarf2_name (die, cu));
17732 return 0;
17733 }
17734
17735 return 1;
17736 }
17737
17738 /* Read the given DW_AT_subrange DIE. */
17739
17740 static struct type *
17741 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17742 {
17743 struct type *base_type, *orig_base_type;
17744 struct type *range_type;
17745 struct attribute *attr;
17746 struct dynamic_prop low, high;
17747 int low_default_is_valid;
17748 int high_bound_is_count = 0;
17749 const char *name;
17750 ULONGEST negative_mask;
17751
17752 orig_base_type = die_type (die, cu);
17753 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17754 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17755 creating the range type, but we use the result of check_typedef
17756 when examining properties of the type. */
17757 base_type = check_typedef (orig_base_type);
17758
17759 /* The die_type call above may have already set the type for this DIE. */
17760 range_type = get_die_type (die, cu);
17761 if (range_type)
17762 return range_type;
17763
17764 low.kind = PROP_CONST;
17765 high.kind = PROP_CONST;
17766 high.data.const_val = 0;
17767
17768 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17769 omitting DW_AT_lower_bound. */
17770 switch (cu->language)
17771 {
17772 case language_c:
17773 case language_cplus:
17774 low.data.const_val = 0;
17775 low_default_is_valid = 1;
17776 break;
17777 case language_fortran:
17778 low.data.const_val = 1;
17779 low_default_is_valid = 1;
17780 break;
17781 case language_d:
17782 case language_objc:
17783 case language_rust:
17784 low.data.const_val = 0;
17785 low_default_is_valid = (cu->header.version >= 4);
17786 break;
17787 case language_ada:
17788 case language_m2:
17789 case language_pascal:
17790 low.data.const_val = 1;
17791 low_default_is_valid = (cu->header.version >= 4);
17792 break;
17793 default:
17794 low.data.const_val = 0;
17795 low_default_is_valid = 0;
17796 break;
17797 }
17798
17799 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17800 if (attr)
17801 attr_to_dynamic_prop (attr, die, cu, &low);
17802 else if (!low_default_is_valid)
17803 complaint (_("Missing DW_AT_lower_bound "
17804 "- DIE at %s [in module %s]"),
17805 sect_offset_str (die->sect_off),
17806 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17807
17808 struct attribute *attr_ub, *attr_count;
17809 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17810 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17811 {
17812 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17813 if (attr_to_dynamic_prop (attr, die, cu, &high))
17814 {
17815 /* If bounds are constant do the final calculation here. */
17816 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17817 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17818 else
17819 high_bound_is_count = 1;
17820 }
17821 else
17822 {
17823 if (attr_ub != NULL)
17824 complaint (_("Unresolved DW_AT_upper_bound "
17825 "- DIE at %s [in module %s]"),
17826 sect_offset_str (die->sect_off),
17827 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17828 if (attr_count != NULL)
17829 complaint (_("Unresolved DW_AT_count "
17830 "- DIE at %s [in module %s]"),
17831 sect_offset_str (die->sect_off),
17832 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17833 }
17834
17835 }
17836
17837 /* Dwarf-2 specifications explicitly allows to create subrange types
17838 without specifying a base type.
17839 In that case, the base type must be set to the type of
17840 the lower bound, upper bound or count, in that order, if any of these
17841 three attributes references an object that has a type.
17842 If no base type is found, the Dwarf-2 specifications say that
17843 a signed integer type of size equal to the size of an address should
17844 be used.
17845 For the following C code: `extern char gdb_int [];'
17846 GCC produces an empty range DIE.
17847 FIXME: muller/2010-05-28: Possible references to object for low bound,
17848 high bound or count are not yet handled by this code. */
17849 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17850 {
17851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17853 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17854 struct type *int_type = objfile_type (objfile)->builtin_int;
17855
17856 /* Test "int", "long int", and "long long int" objfile types,
17857 and select the first one having a size above or equal to the
17858 architecture address size. */
17859 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17860 base_type = int_type;
17861 else
17862 {
17863 int_type = objfile_type (objfile)->builtin_long;
17864 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17865 base_type = int_type;
17866 else
17867 {
17868 int_type = objfile_type (objfile)->builtin_long_long;
17869 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17870 base_type = int_type;
17871 }
17872 }
17873 }
17874
17875 /* Normally, the DWARF producers are expected to use a signed
17876 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17877 But this is unfortunately not always the case, as witnessed
17878 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17879 is used instead. To work around that ambiguity, we treat
17880 the bounds as signed, and thus sign-extend their values, when
17881 the base type is signed. */
17882 negative_mask =
17883 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17884 if (low.kind == PROP_CONST
17885 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17886 low.data.const_val |= negative_mask;
17887 if (high.kind == PROP_CONST
17888 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17889 high.data.const_val |= negative_mask;
17890
17891 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17892
17893 if (high_bound_is_count)
17894 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17895
17896 /* Ada expects an empty array on no boundary attributes. */
17897 if (attr == NULL && cu->language != language_ada)
17898 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17899
17900 name = dwarf2_name (die, cu);
17901 if (name)
17902 TYPE_NAME (range_type) = name;
17903
17904 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17905 if (attr)
17906 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17907
17908 maybe_set_alignment (cu, die, range_type);
17909
17910 set_die_type (die, range_type, cu);
17911
17912 /* set_die_type should be already done. */
17913 set_descriptive_type (range_type, die, cu);
17914
17915 return range_type;
17916 }
17917
17918 static struct type *
17919 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17920 {
17921 struct type *type;
17922
17923 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17924 NULL);
17925 TYPE_NAME (type) = dwarf2_name (die, cu);
17926
17927 /* In Ada, an unspecified type is typically used when the description
17928 of the type is defered to a different unit. When encountering
17929 such a type, we treat it as a stub, and try to resolve it later on,
17930 when needed. */
17931 if (cu->language == language_ada)
17932 TYPE_STUB (type) = 1;
17933
17934 return set_die_type (die, type, cu);
17935 }
17936
17937 /* Read a single die and all its descendents. Set the die's sibling
17938 field to NULL; set other fields in the die correctly, and set all
17939 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17940 location of the info_ptr after reading all of those dies. PARENT
17941 is the parent of the die in question. */
17942
17943 static struct die_info *
17944 read_die_and_children (const struct die_reader_specs *reader,
17945 const gdb_byte *info_ptr,
17946 const gdb_byte **new_info_ptr,
17947 struct die_info *parent)
17948 {
17949 struct die_info *die;
17950 const gdb_byte *cur_ptr;
17951 int has_children;
17952
17953 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17954 if (die == NULL)
17955 {
17956 *new_info_ptr = cur_ptr;
17957 return NULL;
17958 }
17959 store_in_ref_table (die, reader->cu);
17960
17961 if (has_children)
17962 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17963 else
17964 {
17965 die->child = NULL;
17966 *new_info_ptr = cur_ptr;
17967 }
17968
17969 die->sibling = NULL;
17970 die->parent = parent;
17971 return die;
17972 }
17973
17974 /* Read a die, all of its descendents, and all of its siblings; set
17975 all of the fields of all of the dies correctly. Arguments are as
17976 in read_die_and_children. */
17977
17978 static struct die_info *
17979 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17980 const gdb_byte *info_ptr,
17981 const gdb_byte **new_info_ptr,
17982 struct die_info *parent)
17983 {
17984 struct die_info *first_die, *last_sibling;
17985 const gdb_byte *cur_ptr;
17986
17987 cur_ptr = info_ptr;
17988 first_die = last_sibling = NULL;
17989
17990 while (1)
17991 {
17992 struct die_info *die
17993 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17994
17995 if (die == NULL)
17996 {
17997 *new_info_ptr = cur_ptr;
17998 return first_die;
17999 }
18000
18001 if (!first_die)
18002 first_die = die;
18003 else
18004 last_sibling->sibling = die;
18005
18006 last_sibling = die;
18007 }
18008 }
18009
18010 /* Read a die, all of its descendents, and all of its siblings; set
18011 all of the fields of all of the dies correctly. Arguments are as
18012 in read_die_and_children.
18013 This the main entry point for reading a DIE and all its children. */
18014
18015 static struct die_info *
18016 read_die_and_siblings (const struct die_reader_specs *reader,
18017 const gdb_byte *info_ptr,
18018 const gdb_byte **new_info_ptr,
18019 struct die_info *parent)
18020 {
18021 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18022 new_info_ptr, parent);
18023
18024 if (dwarf_die_debug)
18025 {
18026 fprintf_unfiltered (gdb_stdlog,
18027 "Read die from %s@0x%x of %s:\n",
18028 get_section_name (reader->die_section),
18029 (unsigned) (info_ptr - reader->die_section->buffer),
18030 bfd_get_filename (reader->abfd));
18031 dump_die (die, dwarf_die_debug);
18032 }
18033
18034 return die;
18035 }
18036
18037 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18038 attributes.
18039 The caller is responsible for filling in the extra attributes
18040 and updating (*DIEP)->num_attrs.
18041 Set DIEP to point to a newly allocated die with its information,
18042 except for its child, sibling, and parent fields.
18043 Set HAS_CHILDREN to tell whether the die has children or not. */
18044
18045 static const gdb_byte *
18046 read_full_die_1 (const struct die_reader_specs *reader,
18047 struct die_info **diep, const gdb_byte *info_ptr,
18048 int *has_children, int num_extra_attrs)
18049 {
18050 unsigned int abbrev_number, bytes_read, i;
18051 struct abbrev_info *abbrev;
18052 struct die_info *die;
18053 struct dwarf2_cu *cu = reader->cu;
18054 bfd *abfd = reader->abfd;
18055
18056 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18057 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18058 info_ptr += bytes_read;
18059 if (!abbrev_number)
18060 {
18061 *diep = NULL;
18062 *has_children = 0;
18063 return info_ptr;
18064 }
18065
18066 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18067 if (!abbrev)
18068 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18069 abbrev_number,
18070 bfd_get_filename (abfd));
18071
18072 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18073 die->sect_off = sect_off;
18074 die->tag = abbrev->tag;
18075 die->abbrev = abbrev_number;
18076
18077 /* Make the result usable.
18078 The caller needs to update num_attrs after adding the extra
18079 attributes. */
18080 die->num_attrs = abbrev->num_attrs;
18081
18082 for (i = 0; i < abbrev->num_attrs; ++i)
18083 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18084 info_ptr);
18085
18086 *diep = die;
18087 *has_children = abbrev->has_children;
18088 return info_ptr;
18089 }
18090
18091 /* Read a die and all its attributes.
18092 Set DIEP to point to a newly allocated die with its information,
18093 except for its child, sibling, and parent fields.
18094 Set HAS_CHILDREN to tell whether the die has children or not. */
18095
18096 static const gdb_byte *
18097 read_full_die (const struct die_reader_specs *reader,
18098 struct die_info **diep, const gdb_byte *info_ptr,
18099 int *has_children)
18100 {
18101 const gdb_byte *result;
18102
18103 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18104
18105 if (dwarf_die_debug)
18106 {
18107 fprintf_unfiltered (gdb_stdlog,
18108 "Read die from %s@0x%x of %s:\n",
18109 get_section_name (reader->die_section),
18110 (unsigned) (info_ptr - reader->die_section->buffer),
18111 bfd_get_filename (reader->abfd));
18112 dump_die (*diep, dwarf_die_debug);
18113 }
18114
18115 return result;
18116 }
18117 \f
18118 /* Abbreviation tables.
18119
18120 In DWARF version 2, the description of the debugging information is
18121 stored in a separate .debug_abbrev section. Before we read any
18122 dies from a section we read in all abbreviations and install them
18123 in a hash table. */
18124
18125 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18126
18127 struct abbrev_info *
18128 abbrev_table::alloc_abbrev ()
18129 {
18130 struct abbrev_info *abbrev;
18131
18132 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18133 memset (abbrev, 0, sizeof (struct abbrev_info));
18134
18135 return abbrev;
18136 }
18137
18138 /* Add an abbreviation to the table. */
18139
18140 void
18141 abbrev_table::add_abbrev (unsigned int abbrev_number,
18142 struct abbrev_info *abbrev)
18143 {
18144 unsigned int hash_number;
18145
18146 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18147 abbrev->next = m_abbrevs[hash_number];
18148 m_abbrevs[hash_number] = abbrev;
18149 }
18150
18151 /* Look up an abbrev in the table.
18152 Returns NULL if the abbrev is not found. */
18153
18154 struct abbrev_info *
18155 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18156 {
18157 unsigned int hash_number;
18158 struct abbrev_info *abbrev;
18159
18160 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18161 abbrev = m_abbrevs[hash_number];
18162
18163 while (abbrev)
18164 {
18165 if (abbrev->number == abbrev_number)
18166 return abbrev;
18167 abbrev = abbrev->next;
18168 }
18169 return NULL;
18170 }
18171
18172 /* Read in an abbrev table. */
18173
18174 static abbrev_table_up
18175 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18176 struct dwarf2_section_info *section,
18177 sect_offset sect_off)
18178 {
18179 struct objfile *objfile = dwarf2_per_objfile->objfile;
18180 bfd *abfd = get_section_bfd_owner (section);
18181 const gdb_byte *abbrev_ptr;
18182 struct abbrev_info *cur_abbrev;
18183 unsigned int abbrev_number, bytes_read, abbrev_name;
18184 unsigned int abbrev_form;
18185 struct attr_abbrev *cur_attrs;
18186 unsigned int allocated_attrs;
18187
18188 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18189
18190 dwarf2_read_section (objfile, section);
18191 abbrev_ptr = section->buffer + to_underlying (sect_off);
18192 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18193 abbrev_ptr += bytes_read;
18194
18195 allocated_attrs = ATTR_ALLOC_CHUNK;
18196 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18197
18198 /* Loop until we reach an abbrev number of 0. */
18199 while (abbrev_number)
18200 {
18201 cur_abbrev = abbrev_table->alloc_abbrev ();
18202
18203 /* read in abbrev header */
18204 cur_abbrev->number = abbrev_number;
18205 cur_abbrev->tag
18206 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18207 abbrev_ptr += bytes_read;
18208 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18209 abbrev_ptr += 1;
18210
18211 /* now read in declarations */
18212 for (;;)
18213 {
18214 LONGEST implicit_const;
18215
18216 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18217 abbrev_ptr += bytes_read;
18218 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18219 abbrev_ptr += bytes_read;
18220 if (abbrev_form == DW_FORM_implicit_const)
18221 {
18222 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18223 &bytes_read);
18224 abbrev_ptr += bytes_read;
18225 }
18226 else
18227 {
18228 /* Initialize it due to a false compiler warning. */
18229 implicit_const = -1;
18230 }
18231
18232 if (abbrev_name == 0)
18233 break;
18234
18235 if (cur_abbrev->num_attrs == allocated_attrs)
18236 {
18237 allocated_attrs += ATTR_ALLOC_CHUNK;
18238 cur_attrs
18239 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18240 }
18241
18242 cur_attrs[cur_abbrev->num_attrs].name
18243 = (enum dwarf_attribute) abbrev_name;
18244 cur_attrs[cur_abbrev->num_attrs].form
18245 = (enum dwarf_form) abbrev_form;
18246 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18247 ++cur_abbrev->num_attrs;
18248 }
18249
18250 cur_abbrev->attrs =
18251 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18252 cur_abbrev->num_attrs);
18253 memcpy (cur_abbrev->attrs, cur_attrs,
18254 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18255
18256 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18257
18258 /* Get next abbreviation.
18259 Under Irix6 the abbreviations for a compilation unit are not
18260 always properly terminated with an abbrev number of 0.
18261 Exit loop if we encounter an abbreviation which we have
18262 already read (which means we are about to read the abbreviations
18263 for the next compile unit) or if the end of the abbreviation
18264 table is reached. */
18265 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18266 break;
18267 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18268 abbrev_ptr += bytes_read;
18269 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18270 break;
18271 }
18272
18273 xfree (cur_attrs);
18274 return abbrev_table;
18275 }
18276
18277 /* Returns nonzero if TAG represents a type that we might generate a partial
18278 symbol for. */
18279
18280 static int
18281 is_type_tag_for_partial (int tag)
18282 {
18283 switch (tag)
18284 {
18285 #if 0
18286 /* Some types that would be reasonable to generate partial symbols for,
18287 that we don't at present. */
18288 case DW_TAG_array_type:
18289 case DW_TAG_file_type:
18290 case DW_TAG_ptr_to_member_type:
18291 case DW_TAG_set_type:
18292 case DW_TAG_string_type:
18293 case DW_TAG_subroutine_type:
18294 #endif
18295 case DW_TAG_base_type:
18296 case DW_TAG_class_type:
18297 case DW_TAG_interface_type:
18298 case DW_TAG_enumeration_type:
18299 case DW_TAG_structure_type:
18300 case DW_TAG_subrange_type:
18301 case DW_TAG_typedef:
18302 case DW_TAG_union_type:
18303 return 1;
18304 default:
18305 return 0;
18306 }
18307 }
18308
18309 /* Load all DIEs that are interesting for partial symbols into memory. */
18310
18311 static struct partial_die_info *
18312 load_partial_dies (const struct die_reader_specs *reader,
18313 const gdb_byte *info_ptr, int building_psymtab)
18314 {
18315 struct dwarf2_cu *cu = reader->cu;
18316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18317 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18318 unsigned int bytes_read;
18319 unsigned int load_all = 0;
18320 int nesting_level = 1;
18321
18322 parent_die = NULL;
18323 last_die = NULL;
18324
18325 gdb_assert (cu->per_cu != NULL);
18326 if (cu->per_cu->load_all_dies)
18327 load_all = 1;
18328
18329 cu->partial_dies
18330 = htab_create_alloc_ex (cu->header.length / 12,
18331 partial_die_hash,
18332 partial_die_eq,
18333 NULL,
18334 &cu->comp_unit_obstack,
18335 hashtab_obstack_allocate,
18336 dummy_obstack_deallocate);
18337
18338 while (1)
18339 {
18340 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18341
18342 /* A NULL abbrev means the end of a series of children. */
18343 if (abbrev == NULL)
18344 {
18345 if (--nesting_level == 0)
18346 return first_die;
18347
18348 info_ptr += bytes_read;
18349 last_die = parent_die;
18350 parent_die = parent_die->die_parent;
18351 continue;
18352 }
18353
18354 /* Check for template arguments. We never save these; if
18355 they're seen, we just mark the parent, and go on our way. */
18356 if (parent_die != NULL
18357 && cu->language == language_cplus
18358 && (abbrev->tag == DW_TAG_template_type_param
18359 || abbrev->tag == DW_TAG_template_value_param))
18360 {
18361 parent_die->has_template_arguments = 1;
18362
18363 if (!load_all)
18364 {
18365 /* We don't need a partial DIE for the template argument. */
18366 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18367 continue;
18368 }
18369 }
18370
18371 /* We only recurse into c++ subprograms looking for template arguments.
18372 Skip their other children. */
18373 if (!load_all
18374 && cu->language == language_cplus
18375 && parent_die != NULL
18376 && parent_die->tag == DW_TAG_subprogram)
18377 {
18378 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18379 continue;
18380 }
18381
18382 /* Check whether this DIE is interesting enough to save. Normally
18383 we would not be interested in members here, but there may be
18384 later variables referencing them via DW_AT_specification (for
18385 static members). */
18386 if (!load_all
18387 && !is_type_tag_for_partial (abbrev->tag)
18388 && abbrev->tag != DW_TAG_constant
18389 && abbrev->tag != DW_TAG_enumerator
18390 && abbrev->tag != DW_TAG_subprogram
18391 && abbrev->tag != DW_TAG_inlined_subroutine
18392 && abbrev->tag != DW_TAG_lexical_block
18393 && abbrev->tag != DW_TAG_variable
18394 && abbrev->tag != DW_TAG_namespace
18395 && abbrev->tag != DW_TAG_module
18396 && abbrev->tag != DW_TAG_member
18397 && abbrev->tag != DW_TAG_imported_unit
18398 && abbrev->tag != DW_TAG_imported_declaration)
18399 {
18400 /* Otherwise we skip to the next sibling, if any. */
18401 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18402 continue;
18403 }
18404
18405 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18406 abbrev);
18407
18408 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18409
18410 /* This two-pass algorithm for processing partial symbols has a
18411 high cost in cache pressure. Thus, handle some simple cases
18412 here which cover the majority of C partial symbols. DIEs
18413 which neither have specification tags in them, nor could have
18414 specification tags elsewhere pointing at them, can simply be
18415 processed and discarded.
18416
18417 This segment is also optional; scan_partial_symbols and
18418 add_partial_symbol will handle these DIEs if we chain
18419 them in normally. When compilers which do not emit large
18420 quantities of duplicate debug information are more common,
18421 this code can probably be removed. */
18422
18423 /* Any complete simple types at the top level (pretty much all
18424 of them, for a language without namespaces), can be processed
18425 directly. */
18426 if (parent_die == NULL
18427 && pdi.has_specification == 0
18428 && pdi.is_declaration == 0
18429 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18430 || pdi.tag == DW_TAG_base_type
18431 || pdi.tag == DW_TAG_subrange_type))
18432 {
18433 if (building_psymtab && pdi.name != NULL)
18434 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18435 VAR_DOMAIN, LOC_TYPEDEF, -1,
18436 psymbol_placement::STATIC,
18437 0, cu->language, objfile);
18438 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18439 continue;
18440 }
18441
18442 /* The exception for DW_TAG_typedef with has_children above is
18443 a workaround of GCC PR debug/47510. In the case of this complaint
18444 type_name_or_error will error on such types later.
18445
18446 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18447 it could not find the child DIEs referenced later, this is checked
18448 above. In correct DWARF DW_TAG_typedef should have no children. */
18449
18450 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18451 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18452 "- DIE at %s [in module %s]"),
18453 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18454
18455 /* If we're at the second level, and we're an enumerator, and
18456 our parent has no specification (meaning possibly lives in a
18457 namespace elsewhere), then we can add the partial symbol now
18458 instead of queueing it. */
18459 if (pdi.tag == DW_TAG_enumerator
18460 && parent_die != NULL
18461 && parent_die->die_parent == NULL
18462 && parent_die->tag == DW_TAG_enumeration_type
18463 && parent_die->has_specification == 0)
18464 {
18465 if (pdi.name == NULL)
18466 complaint (_("malformed enumerator DIE ignored"));
18467 else if (building_psymtab)
18468 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18469 VAR_DOMAIN, LOC_CONST, -1,
18470 cu->language == language_cplus
18471 ? psymbol_placement::GLOBAL
18472 : psymbol_placement::STATIC,
18473 0, cu->language, objfile);
18474
18475 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18476 continue;
18477 }
18478
18479 struct partial_die_info *part_die
18480 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18481
18482 /* We'll save this DIE so link it in. */
18483 part_die->die_parent = parent_die;
18484 part_die->die_sibling = NULL;
18485 part_die->die_child = NULL;
18486
18487 if (last_die && last_die == parent_die)
18488 last_die->die_child = part_die;
18489 else if (last_die)
18490 last_die->die_sibling = part_die;
18491
18492 last_die = part_die;
18493
18494 if (first_die == NULL)
18495 first_die = part_die;
18496
18497 /* Maybe add the DIE to the hash table. Not all DIEs that we
18498 find interesting need to be in the hash table, because we
18499 also have the parent/sibling/child chains; only those that we
18500 might refer to by offset later during partial symbol reading.
18501
18502 For now this means things that might have be the target of a
18503 DW_AT_specification, DW_AT_abstract_origin, or
18504 DW_AT_extension. DW_AT_extension will refer only to
18505 namespaces; DW_AT_abstract_origin refers to functions (and
18506 many things under the function DIE, but we do not recurse
18507 into function DIEs during partial symbol reading) and
18508 possibly variables as well; DW_AT_specification refers to
18509 declarations. Declarations ought to have the DW_AT_declaration
18510 flag. It happens that GCC forgets to put it in sometimes, but
18511 only for functions, not for types.
18512
18513 Adding more things than necessary to the hash table is harmless
18514 except for the performance cost. Adding too few will result in
18515 wasted time in find_partial_die, when we reread the compilation
18516 unit with load_all_dies set. */
18517
18518 if (load_all
18519 || abbrev->tag == DW_TAG_constant
18520 || abbrev->tag == DW_TAG_subprogram
18521 || abbrev->tag == DW_TAG_variable
18522 || abbrev->tag == DW_TAG_namespace
18523 || part_die->is_declaration)
18524 {
18525 void **slot;
18526
18527 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18528 to_underlying (part_die->sect_off),
18529 INSERT);
18530 *slot = part_die;
18531 }
18532
18533 /* For some DIEs we want to follow their children (if any). For C
18534 we have no reason to follow the children of structures; for other
18535 languages we have to, so that we can get at method physnames
18536 to infer fully qualified class names, for DW_AT_specification,
18537 and for C++ template arguments. For C++, we also look one level
18538 inside functions to find template arguments (if the name of the
18539 function does not already contain the template arguments).
18540
18541 For Ada, we need to scan the children of subprograms and lexical
18542 blocks as well because Ada allows the definition of nested
18543 entities that could be interesting for the debugger, such as
18544 nested subprograms for instance. */
18545 if (last_die->has_children
18546 && (load_all
18547 || last_die->tag == DW_TAG_namespace
18548 || last_die->tag == DW_TAG_module
18549 || last_die->tag == DW_TAG_enumeration_type
18550 || (cu->language == language_cplus
18551 && last_die->tag == DW_TAG_subprogram
18552 && (last_die->name == NULL
18553 || strchr (last_die->name, '<') == NULL))
18554 || (cu->language != language_c
18555 && (last_die->tag == DW_TAG_class_type
18556 || last_die->tag == DW_TAG_interface_type
18557 || last_die->tag == DW_TAG_structure_type
18558 || last_die->tag == DW_TAG_union_type))
18559 || (cu->language == language_ada
18560 && (last_die->tag == DW_TAG_subprogram
18561 || last_die->tag == DW_TAG_lexical_block))))
18562 {
18563 nesting_level++;
18564 parent_die = last_die;
18565 continue;
18566 }
18567
18568 /* Otherwise we skip to the next sibling, if any. */
18569 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18570
18571 /* Back to the top, do it again. */
18572 }
18573 }
18574
18575 partial_die_info::partial_die_info (sect_offset sect_off_,
18576 struct abbrev_info *abbrev)
18577 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18578 {
18579 }
18580
18581 /* Read a minimal amount of information into the minimal die structure.
18582 INFO_PTR should point just after the initial uleb128 of a DIE. */
18583
18584 const gdb_byte *
18585 partial_die_info::read (const struct die_reader_specs *reader,
18586 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18587 {
18588 struct dwarf2_cu *cu = reader->cu;
18589 struct dwarf2_per_objfile *dwarf2_per_objfile
18590 = cu->per_cu->dwarf2_per_objfile;
18591 unsigned int i;
18592 int has_low_pc_attr = 0;
18593 int has_high_pc_attr = 0;
18594 int high_pc_relative = 0;
18595
18596 for (i = 0; i < abbrev.num_attrs; ++i)
18597 {
18598 struct attribute attr;
18599
18600 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18601
18602 /* Store the data if it is of an attribute we want to keep in a
18603 partial symbol table. */
18604 switch (attr.name)
18605 {
18606 case DW_AT_name:
18607 switch (tag)
18608 {
18609 case DW_TAG_compile_unit:
18610 case DW_TAG_partial_unit:
18611 case DW_TAG_type_unit:
18612 /* Compilation units have a DW_AT_name that is a filename, not
18613 a source language identifier. */
18614 case DW_TAG_enumeration_type:
18615 case DW_TAG_enumerator:
18616 /* These tags always have simple identifiers already; no need
18617 to canonicalize them. */
18618 name = DW_STRING (&attr);
18619 break;
18620 default:
18621 {
18622 struct objfile *objfile = dwarf2_per_objfile->objfile;
18623
18624 name
18625 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18626 &objfile->per_bfd->storage_obstack);
18627 }
18628 break;
18629 }
18630 break;
18631 case DW_AT_linkage_name:
18632 case DW_AT_MIPS_linkage_name:
18633 /* Note that both forms of linkage name might appear. We
18634 assume they will be the same, and we only store the last
18635 one we see. */
18636 if (cu->language == language_ada)
18637 name = DW_STRING (&attr);
18638 linkage_name = DW_STRING (&attr);
18639 break;
18640 case DW_AT_low_pc:
18641 has_low_pc_attr = 1;
18642 lowpc = attr_value_as_address (&attr);
18643 break;
18644 case DW_AT_high_pc:
18645 has_high_pc_attr = 1;
18646 highpc = attr_value_as_address (&attr);
18647 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18648 high_pc_relative = 1;
18649 break;
18650 case DW_AT_location:
18651 /* Support the .debug_loc offsets. */
18652 if (attr_form_is_block (&attr))
18653 {
18654 d.locdesc = DW_BLOCK (&attr);
18655 }
18656 else if (attr_form_is_section_offset (&attr))
18657 {
18658 dwarf2_complex_location_expr_complaint ();
18659 }
18660 else
18661 {
18662 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18663 "partial symbol information");
18664 }
18665 break;
18666 case DW_AT_external:
18667 is_external = DW_UNSND (&attr);
18668 break;
18669 case DW_AT_declaration:
18670 is_declaration = DW_UNSND (&attr);
18671 break;
18672 case DW_AT_type:
18673 has_type = 1;
18674 break;
18675 case DW_AT_abstract_origin:
18676 case DW_AT_specification:
18677 case DW_AT_extension:
18678 has_specification = 1;
18679 spec_offset = dwarf2_get_ref_die_offset (&attr);
18680 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18681 || cu->per_cu->is_dwz);
18682 break;
18683 case DW_AT_sibling:
18684 /* Ignore absolute siblings, they might point outside of
18685 the current compile unit. */
18686 if (attr.form == DW_FORM_ref_addr)
18687 complaint (_("ignoring absolute DW_AT_sibling"));
18688 else
18689 {
18690 const gdb_byte *buffer = reader->buffer;
18691 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18692 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18693
18694 if (sibling_ptr < info_ptr)
18695 complaint (_("DW_AT_sibling points backwards"));
18696 else if (sibling_ptr > reader->buffer_end)
18697 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18698 else
18699 sibling = sibling_ptr;
18700 }
18701 break;
18702 case DW_AT_byte_size:
18703 has_byte_size = 1;
18704 break;
18705 case DW_AT_const_value:
18706 has_const_value = 1;
18707 break;
18708 case DW_AT_calling_convention:
18709 /* DWARF doesn't provide a way to identify a program's source-level
18710 entry point. DW_AT_calling_convention attributes are only meant
18711 to describe functions' calling conventions.
18712
18713 However, because it's a necessary piece of information in
18714 Fortran, and before DWARF 4 DW_CC_program was the only
18715 piece of debugging information whose definition refers to
18716 a 'main program' at all, several compilers marked Fortran
18717 main programs with DW_CC_program --- even when those
18718 functions use the standard calling conventions.
18719
18720 Although DWARF now specifies a way to provide this
18721 information, we support this practice for backward
18722 compatibility. */
18723 if (DW_UNSND (&attr) == DW_CC_program
18724 && cu->language == language_fortran)
18725 main_subprogram = 1;
18726 break;
18727 case DW_AT_inline:
18728 if (DW_UNSND (&attr) == DW_INL_inlined
18729 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18730 may_be_inlined = 1;
18731 break;
18732
18733 case DW_AT_import:
18734 if (tag == DW_TAG_imported_unit)
18735 {
18736 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18737 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18738 || cu->per_cu->is_dwz);
18739 }
18740 break;
18741
18742 case DW_AT_main_subprogram:
18743 main_subprogram = DW_UNSND (&attr);
18744 break;
18745
18746 default:
18747 break;
18748 }
18749 }
18750
18751 if (high_pc_relative)
18752 highpc += lowpc;
18753
18754 if (has_low_pc_attr && has_high_pc_attr)
18755 {
18756 /* When using the GNU linker, .gnu.linkonce. sections are used to
18757 eliminate duplicate copies of functions and vtables and such.
18758 The linker will arbitrarily choose one and discard the others.
18759 The AT_*_pc values for such functions refer to local labels in
18760 these sections. If the section from that file was discarded, the
18761 labels are not in the output, so the relocs get a value of 0.
18762 If this is a discarded function, mark the pc bounds as invalid,
18763 so that GDB will ignore it. */
18764 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18765 {
18766 struct objfile *objfile = dwarf2_per_objfile->objfile;
18767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18768
18769 complaint (_("DW_AT_low_pc %s is zero "
18770 "for DIE at %s [in module %s]"),
18771 paddress (gdbarch, lowpc),
18772 sect_offset_str (sect_off),
18773 objfile_name (objfile));
18774 }
18775 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18776 else if (lowpc >= highpc)
18777 {
18778 struct objfile *objfile = dwarf2_per_objfile->objfile;
18779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18780
18781 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18782 "for DIE at %s [in module %s]"),
18783 paddress (gdbarch, lowpc),
18784 paddress (gdbarch, highpc),
18785 sect_offset_str (sect_off),
18786 objfile_name (objfile));
18787 }
18788 else
18789 has_pc_info = 1;
18790 }
18791
18792 return info_ptr;
18793 }
18794
18795 /* Find a cached partial DIE at OFFSET in CU. */
18796
18797 struct partial_die_info *
18798 dwarf2_cu::find_partial_die (sect_offset sect_off)
18799 {
18800 struct partial_die_info *lookup_die = NULL;
18801 struct partial_die_info part_die (sect_off);
18802
18803 lookup_die = ((struct partial_die_info *)
18804 htab_find_with_hash (partial_dies, &part_die,
18805 to_underlying (sect_off)));
18806
18807 return lookup_die;
18808 }
18809
18810 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18811 except in the case of .debug_types DIEs which do not reference
18812 outside their CU (they do however referencing other types via
18813 DW_FORM_ref_sig8). */
18814
18815 static struct partial_die_info *
18816 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18817 {
18818 struct dwarf2_per_objfile *dwarf2_per_objfile
18819 = cu->per_cu->dwarf2_per_objfile;
18820 struct objfile *objfile = dwarf2_per_objfile->objfile;
18821 struct dwarf2_per_cu_data *per_cu = NULL;
18822 struct partial_die_info *pd = NULL;
18823
18824 if (offset_in_dwz == cu->per_cu->is_dwz
18825 && offset_in_cu_p (&cu->header, sect_off))
18826 {
18827 pd = cu->find_partial_die (sect_off);
18828 if (pd != NULL)
18829 return pd;
18830 /* We missed recording what we needed.
18831 Load all dies and try again. */
18832 per_cu = cu->per_cu;
18833 }
18834 else
18835 {
18836 /* TUs don't reference other CUs/TUs (except via type signatures). */
18837 if (cu->per_cu->is_debug_types)
18838 {
18839 error (_("Dwarf Error: Type Unit at offset %s contains"
18840 " external reference to offset %s [in module %s].\n"),
18841 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18842 bfd_get_filename (objfile->obfd));
18843 }
18844 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18845 dwarf2_per_objfile);
18846
18847 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18848 load_partial_comp_unit (per_cu);
18849
18850 per_cu->cu->last_used = 0;
18851 pd = per_cu->cu->find_partial_die (sect_off);
18852 }
18853
18854 /* If we didn't find it, and not all dies have been loaded,
18855 load them all and try again. */
18856
18857 if (pd == NULL && per_cu->load_all_dies == 0)
18858 {
18859 per_cu->load_all_dies = 1;
18860
18861 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18862 THIS_CU->cu may already be in use. So we can't just free it and
18863 replace its DIEs with the ones we read in. Instead, we leave those
18864 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18865 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18866 set. */
18867 load_partial_comp_unit (per_cu);
18868
18869 pd = per_cu->cu->find_partial_die (sect_off);
18870 }
18871
18872 if (pd == NULL)
18873 internal_error (__FILE__, __LINE__,
18874 _("could not find partial DIE %s "
18875 "in cache [from module %s]\n"),
18876 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18877 return pd;
18878 }
18879
18880 /* See if we can figure out if the class lives in a namespace. We do
18881 this by looking for a member function; its demangled name will
18882 contain namespace info, if there is any. */
18883
18884 static void
18885 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18886 struct dwarf2_cu *cu)
18887 {
18888 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18889 what template types look like, because the demangler
18890 frequently doesn't give the same name as the debug info. We
18891 could fix this by only using the demangled name to get the
18892 prefix (but see comment in read_structure_type). */
18893
18894 struct partial_die_info *real_pdi;
18895 struct partial_die_info *child_pdi;
18896
18897 /* If this DIE (this DIE's specification, if any) has a parent, then
18898 we should not do this. We'll prepend the parent's fully qualified
18899 name when we create the partial symbol. */
18900
18901 real_pdi = struct_pdi;
18902 while (real_pdi->has_specification)
18903 real_pdi = find_partial_die (real_pdi->spec_offset,
18904 real_pdi->spec_is_dwz, cu);
18905
18906 if (real_pdi->die_parent != NULL)
18907 return;
18908
18909 for (child_pdi = struct_pdi->die_child;
18910 child_pdi != NULL;
18911 child_pdi = child_pdi->die_sibling)
18912 {
18913 if (child_pdi->tag == DW_TAG_subprogram
18914 && child_pdi->linkage_name != NULL)
18915 {
18916 char *actual_class_name
18917 = language_class_name_from_physname (cu->language_defn,
18918 child_pdi->linkage_name);
18919 if (actual_class_name != NULL)
18920 {
18921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18922 struct_pdi->name
18923 = ((const char *)
18924 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18925 actual_class_name,
18926 strlen (actual_class_name)));
18927 xfree (actual_class_name);
18928 }
18929 break;
18930 }
18931 }
18932 }
18933
18934 void
18935 partial_die_info::fixup (struct dwarf2_cu *cu)
18936 {
18937 /* Once we've fixed up a die, there's no point in doing so again.
18938 This also avoids a memory leak if we were to call
18939 guess_partial_die_structure_name multiple times. */
18940 if (fixup_called)
18941 return;
18942
18943 /* If we found a reference attribute and the DIE has no name, try
18944 to find a name in the referred to DIE. */
18945
18946 if (name == NULL && has_specification)
18947 {
18948 struct partial_die_info *spec_die;
18949
18950 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18951
18952 spec_die->fixup (cu);
18953
18954 if (spec_die->name)
18955 {
18956 name = spec_die->name;
18957
18958 /* Copy DW_AT_external attribute if it is set. */
18959 if (spec_die->is_external)
18960 is_external = spec_die->is_external;
18961 }
18962 }
18963
18964 /* Set default names for some unnamed DIEs. */
18965
18966 if (name == NULL && tag == DW_TAG_namespace)
18967 name = CP_ANONYMOUS_NAMESPACE_STR;
18968
18969 /* If there is no parent die to provide a namespace, and there are
18970 children, see if we can determine the namespace from their linkage
18971 name. */
18972 if (cu->language == language_cplus
18973 && !VEC_empty (dwarf2_section_info_def,
18974 cu->per_cu->dwarf2_per_objfile->types)
18975 && die_parent == NULL
18976 && has_children
18977 && (tag == DW_TAG_class_type
18978 || tag == DW_TAG_structure_type
18979 || tag == DW_TAG_union_type))
18980 guess_partial_die_structure_name (this, cu);
18981
18982 /* GCC might emit a nameless struct or union that has a linkage
18983 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18984 if (name == NULL
18985 && (tag == DW_TAG_class_type
18986 || tag == DW_TAG_interface_type
18987 || tag == DW_TAG_structure_type
18988 || tag == DW_TAG_union_type)
18989 && linkage_name != NULL)
18990 {
18991 char *demangled;
18992
18993 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18994 if (demangled)
18995 {
18996 const char *base;
18997
18998 /* Strip any leading namespaces/classes, keep only the base name.
18999 DW_AT_name for named DIEs does not contain the prefixes. */
19000 base = strrchr (demangled, ':');
19001 if (base && base > demangled && base[-1] == ':')
19002 base++;
19003 else
19004 base = demangled;
19005
19006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19007 name
19008 = ((const char *)
19009 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19010 base, strlen (base)));
19011 xfree (demangled);
19012 }
19013 }
19014
19015 fixup_called = 1;
19016 }
19017
19018 /* Read an attribute value described by an attribute form. */
19019
19020 static const gdb_byte *
19021 read_attribute_value (const struct die_reader_specs *reader,
19022 struct attribute *attr, unsigned form,
19023 LONGEST implicit_const, const gdb_byte *info_ptr)
19024 {
19025 struct dwarf2_cu *cu = reader->cu;
19026 struct dwarf2_per_objfile *dwarf2_per_objfile
19027 = cu->per_cu->dwarf2_per_objfile;
19028 struct objfile *objfile = dwarf2_per_objfile->objfile;
19029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19030 bfd *abfd = reader->abfd;
19031 struct comp_unit_head *cu_header = &cu->header;
19032 unsigned int bytes_read;
19033 struct dwarf_block *blk;
19034
19035 attr->form = (enum dwarf_form) form;
19036 switch (form)
19037 {
19038 case DW_FORM_ref_addr:
19039 if (cu->header.version == 2)
19040 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19041 else
19042 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19043 &cu->header, &bytes_read);
19044 info_ptr += bytes_read;
19045 break;
19046 case DW_FORM_GNU_ref_alt:
19047 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19048 info_ptr += bytes_read;
19049 break;
19050 case DW_FORM_addr:
19051 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19052 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19053 info_ptr += bytes_read;
19054 break;
19055 case DW_FORM_block2:
19056 blk = dwarf_alloc_block (cu);
19057 blk->size = read_2_bytes (abfd, info_ptr);
19058 info_ptr += 2;
19059 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19060 info_ptr += blk->size;
19061 DW_BLOCK (attr) = blk;
19062 break;
19063 case DW_FORM_block4:
19064 blk = dwarf_alloc_block (cu);
19065 blk->size = read_4_bytes (abfd, info_ptr);
19066 info_ptr += 4;
19067 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19068 info_ptr += blk->size;
19069 DW_BLOCK (attr) = blk;
19070 break;
19071 case DW_FORM_data2:
19072 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19073 info_ptr += 2;
19074 break;
19075 case DW_FORM_data4:
19076 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19077 info_ptr += 4;
19078 break;
19079 case DW_FORM_data8:
19080 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19081 info_ptr += 8;
19082 break;
19083 case DW_FORM_data16:
19084 blk = dwarf_alloc_block (cu);
19085 blk->size = 16;
19086 blk->data = read_n_bytes (abfd, info_ptr, 16);
19087 info_ptr += 16;
19088 DW_BLOCK (attr) = blk;
19089 break;
19090 case DW_FORM_sec_offset:
19091 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19092 info_ptr += bytes_read;
19093 break;
19094 case DW_FORM_string:
19095 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19096 DW_STRING_IS_CANONICAL (attr) = 0;
19097 info_ptr += bytes_read;
19098 break;
19099 case DW_FORM_strp:
19100 if (!cu->per_cu->is_dwz)
19101 {
19102 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19103 abfd, info_ptr, cu_header,
19104 &bytes_read);
19105 DW_STRING_IS_CANONICAL (attr) = 0;
19106 info_ptr += bytes_read;
19107 break;
19108 }
19109 /* FALLTHROUGH */
19110 case DW_FORM_line_strp:
19111 if (!cu->per_cu->is_dwz)
19112 {
19113 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19114 abfd, info_ptr,
19115 cu_header, &bytes_read);
19116 DW_STRING_IS_CANONICAL (attr) = 0;
19117 info_ptr += bytes_read;
19118 break;
19119 }
19120 /* FALLTHROUGH */
19121 case DW_FORM_GNU_strp_alt:
19122 {
19123 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19124 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19125 &bytes_read);
19126
19127 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19128 dwz, str_offset);
19129 DW_STRING_IS_CANONICAL (attr) = 0;
19130 info_ptr += bytes_read;
19131 }
19132 break;
19133 case DW_FORM_exprloc:
19134 case DW_FORM_block:
19135 blk = dwarf_alloc_block (cu);
19136 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19137 info_ptr += bytes_read;
19138 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19139 info_ptr += blk->size;
19140 DW_BLOCK (attr) = blk;
19141 break;
19142 case DW_FORM_block1:
19143 blk = dwarf_alloc_block (cu);
19144 blk->size = read_1_byte (abfd, info_ptr);
19145 info_ptr += 1;
19146 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19147 info_ptr += blk->size;
19148 DW_BLOCK (attr) = blk;
19149 break;
19150 case DW_FORM_data1:
19151 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19152 info_ptr += 1;
19153 break;
19154 case DW_FORM_flag:
19155 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19156 info_ptr += 1;
19157 break;
19158 case DW_FORM_flag_present:
19159 DW_UNSND (attr) = 1;
19160 break;
19161 case DW_FORM_sdata:
19162 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19163 info_ptr += bytes_read;
19164 break;
19165 case DW_FORM_udata:
19166 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19167 info_ptr += bytes_read;
19168 break;
19169 case DW_FORM_ref1:
19170 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19171 + read_1_byte (abfd, info_ptr));
19172 info_ptr += 1;
19173 break;
19174 case DW_FORM_ref2:
19175 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19176 + read_2_bytes (abfd, info_ptr));
19177 info_ptr += 2;
19178 break;
19179 case DW_FORM_ref4:
19180 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19181 + read_4_bytes (abfd, info_ptr));
19182 info_ptr += 4;
19183 break;
19184 case DW_FORM_ref8:
19185 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19186 + read_8_bytes (abfd, info_ptr));
19187 info_ptr += 8;
19188 break;
19189 case DW_FORM_ref_sig8:
19190 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19191 info_ptr += 8;
19192 break;
19193 case DW_FORM_ref_udata:
19194 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19195 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19196 info_ptr += bytes_read;
19197 break;
19198 case DW_FORM_indirect:
19199 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19200 info_ptr += bytes_read;
19201 if (form == DW_FORM_implicit_const)
19202 {
19203 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19204 info_ptr += bytes_read;
19205 }
19206 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19207 info_ptr);
19208 break;
19209 case DW_FORM_implicit_const:
19210 DW_SND (attr) = implicit_const;
19211 break;
19212 case DW_FORM_GNU_addr_index:
19213 if (reader->dwo_file == NULL)
19214 {
19215 /* For now flag a hard error.
19216 Later we can turn this into a complaint. */
19217 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19218 dwarf_form_name (form),
19219 bfd_get_filename (abfd));
19220 }
19221 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19222 info_ptr += bytes_read;
19223 break;
19224 case DW_FORM_GNU_str_index:
19225 if (reader->dwo_file == NULL)
19226 {
19227 /* For now flag a hard error.
19228 Later we can turn this into a complaint if warranted. */
19229 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19230 dwarf_form_name (form),
19231 bfd_get_filename (abfd));
19232 }
19233 {
19234 ULONGEST str_index =
19235 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19236
19237 DW_STRING (attr) = read_str_index (reader, str_index);
19238 DW_STRING_IS_CANONICAL (attr) = 0;
19239 info_ptr += bytes_read;
19240 }
19241 break;
19242 default:
19243 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19244 dwarf_form_name (form),
19245 bfd_get_filename (abfd));
19246 }
19247
19248 /* Super hack. */
19249 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19250 attr->form = DW_FORM_GNU_ref_alt;
19251
19252 /* We have seen instances where the compiler tried to emit a byte
19253 size attribute of -1 which ended up being encoded as an unsigned
19254 0xffffffff. Although 0xffffffff is technically a valid size value,
19255 an object of this size seems pretty unlikely so we can relatively
19256 safely treat these cases as if the size attribute was invalid and
19257 treat them as zero by default. */
19258 if (attr->name == DW_AT_byte_size
19259 && form == DW_FORM_data4
19260 && DW_UNSND (attr) >= 0xffffffff)
19261 {
19262 complaint
19263 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19264 hex_string (DW_UNSND (attr)));
19265 DW_UNSND (attr) = 0;
19266 }
19267
19268 return info_ptr;
19269 }
19270
19271 /* Read an attribute described by an abbreviated attribute. */
19272
19273 static const gdb_byte *
19274 read_attribute (const struct die_reader_specs *reader,
19275 struct attribute *attr, struct attr_abbrev *abbrev,
19276 const gdb_byte *info_ptr)
19277 {
19278 attr->name = abbrev->name;
19279 return read_attribute_value (reader, attr, abbrev->form,
19280 abbrev->implicit_const, info_ptr);
19281 }
19282
19283 /* Read dwarf information from a buffer. */
19284
19285 static unsigned int
19286 read_1_byte (bfd *abfd, const gdb_byte *buf)
19287 {
19288 return bfd_get_8 (abfd, buf);
19289 }
19290
19291 static int
19292 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19293 {
19294 return bfd_get_signed_8 (abfd, buf);
19295 }
19296
19297 static unsigned int
19298 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19299 {
19300 return bfd_get_16 (abfd, buf);
19301 }
19302
19303 static int
19304 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19305 {
19306 return bfd_get_signed_16 (abfd, buf);
19307 }
19308
19309 static unsigned int
19310 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19311 {
19312 return bfd_get_32 (abfd, buf);
19313 }
19314
19315 static int
19316 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19317 {
19318 return bfd_get_signed_32 (abfd, buf);
19319 }
19320
19321 static ULONGEST
19322 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19323 {
19324 return bfd_get_64 (abfd, buf);
19325 }
19326
19327 static CORE_ADDR
19328 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19329 unsigned int *bytes_read)
19330 {
19331 struct comp_unit_head *cu_header = &cu->header;
19332 CORE_ADDR retval = 0;
19333
19334 if (cu_header->signed_addr_p)
19335 {
19336 switch (cu_header->addr_size)
19337 {
19338 case 2:
19339 retval = bfd_get_signed_16 (abfd, buf);
19340 break;
19341 case 4:
19342 retval = bfd_get_signed_32 (abfd, buf);
19343 break;
19344 case 8:
19345 retval = bfd_get_signed_64 (abfd, buf);
19346 break;
19347 default:
19348 internal_error (__FILE__, __LINE__,
19349 _("read_address: bad switch, signed [in module %s]"),
19350 bfd_get_filename (abfd));
19351 }
19352 }
19353 else
19354 {
19355 switch (cu_header->addr_size)
19356 {
19357 case 2:
19358 retval = bfd_get_16 (abfd, buf);
19359 break;
19360 case 4:
19361 retval = bfd_get_32 (abfd, buf);
19362 break;
19363 case 8:
19364 retval = bfd_get_64 (abfd, buf);
19365 break;
19366 default:
19367 internal_error (__FILE__, __LINE__,
19368 _("read_address: bad switch, "
19369 "unsigned [in module %s]"),
19370 bfd_get_filename (abfd));
19371 }
19372 }
19373
19374 *bytes_read = cu_header->addr_size;
19375 return retval;
19376 }
19377
19378 /* Read the initial length from a section. The (draft) DWARF 3
19379 specification allows the initial length to take up either 4 bytes
19380 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19381 bytes describe the length and all offsets will be 8 bytes in length
19382 instead of 4.
19383
19384 An older, non-standard 64-bit format is also handled by this
19385 function. The older format in question stores the initial length
19386 as an 8-byte quantity without an escape value. Lengths greater
19387 than 2^32 aren't very common which means that the initial 4 bytes
19388 is almost always zero. Since a length value of zero doesn't make
19389 sense for the 32-bit format, this initial zero can be considered to
19390 be an escape value which indicates the presence of the older 64-bit
19391 format. As written, the code can't detect (old format) lengths
19392 greater than 4GB. If it becomes necessary to handle lengths
19393 somewhat larger than 4GB, we could allow other small values (such
19394 as the non-sensical values of 1, 2, and 3) to also be used as
19395 escape values indicating the presence of the old format.
19396
19397 The value returned via bytes_read should be used to increment the
19398 relevant pointer after calling read_initial_length().
19399
19400 [ Note: read_initial_length() and read_offset() are based on the
19401 document entitled "DWARF Debugging Information Format", revision
19402 3, draft 8, dated November 19, 2001. This document was obtained
19403 from:
19404
19405 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19406
19407 This document is only a draft and is subject to change. (So beware.)
19408
19409 Details regarding the older, non-standard 64-bit format were
19410 determined empirically by examining 64-bit ELF files produced by
19411 the SGI toolchain on an IRIX 6.5 machine.
19412
19413 - Kevin, July 16, 2002
19414 ] */
19415
19416 static LONGEST
19417 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19418 {
19419 LONGEST length = bfd_get_32 (abfd, buf);
19420
19421 if (length == 0xffffffff)
19422 {
19423 length = bfd_get_64 (abfd, buf + 4);
19424 *bytes_read = 12;
19425 }
19426 else if (length == 0)
19427 {
19428 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19429 length = bfd_get_64 (abfd, buf);
19430 *bytes_read = 8;
19431 }
19432 else
19433 {
19434 *bytes_read = 4;
19435 }
19436
19437 return length;
19438 }
19439
19440 /* Cover function for read_initial_length.
19441 Returns the length of the object at BUF, and stores the size of the
19442 initial length in *BYTES_READ and stores the size that offsets will be in
19443 *OFFSET_SIZE.
19444 If the initial length size is not equivalent to that specified in
19445 CU_HEADER then issue a complaint.
19446 This is useful when reading non-comp-unit headers. */
19447
19448 static LONGEST
19449 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19450 const struct comp_unit_head *cu_header,
19451 unsigned int *bytes_read,
19452 unsigned int *offset_size)
19453 {
19454 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19455
19456 gdb_assert (cu_header->initial_length_size == 4
19457 || cu_header->initial_length_size == 8
19458 || cu_header->initial_length_size == 12);
19459
19460 if (cu_header->initial_length_size != *bytes_read)
19461 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19462
19463 *offset_size = (*bytes_read == 4) ? 4 : 8;
19464 return length;
19465 }
19466
19467 /* Read an offset from the data stream. The size of the offset is
19468 given by cu_header->offset_size. */
19469
19470 static LONGEST
19471 read_offset (bfd *abfd, const gdb_byte *buf,
19472 const struct comp_unit_head *cu_header,
19473 unsigned int *bytes_read)
19474 {
19475 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19476
19477 *bytes_read = cu_header->offset_size;
19478 return offset;
19479 }
19480
19481 /* Read an offset from the data stream. */
19482
19483 static LONGEST
19484 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19485 {
19486 LONGEST retval = 0;
19487
19488 switch (offset_size)
19489 {
19490 case 4:
19491 retval = bfd_get_32 (abfd, buf);
19492 break;
19493 case 8:
19494 retval = bfd_get_64 (abfd, buf);
19495 break;
19496 default:
19497 internal_error (__FILE__, __LINE__,
19498 _("read_offset_1: bad switch [in module %s]"),
19499 bfd_get_filename (abfd));
19500 }
19501
19502 return retval;
19503 }
19504
19505 static const gdb_byte *
19506 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19507 {
19508 /* If the size of a host char is 8 bits, we can return a pointer
19509 to the buffer, otherwise we have to copy the data to a buffer
19510 allocated on the temporary obstack. */
19511 gdb_assert (HOST_CHAR_BIT == 8);
19512 return buf;
19513 }
19514
19515 static const char *
19516 read_direct_string (bfd *abfd, const gdb_byte *buf,
19517 unsigned int *bytes_read_ptr)
19518 {
19519 /* If the size of a host char is 8 bits, we can return a pointer
19520 to the string, otherwise we have to copy the string to a buffer
19521 allocated on the temporary obstack. */
19522 gdb_assert (HOST_CHAR_BIT == 8);
19523 if (*buf == '\0')
19524 {
19525 *bytes_read_ptr = 1;
19526 return NULL;
19527 }
19528 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19529 return (const char *) buf;
19530 }
19531
19532 /* Return pointer to string at section SECT offset STR_OFFSET with error
19533 reporting strings FORM_NAME and SECT_NAME. */
19534
19535 static const char *
19536 read_indirect_string_at_offset_from (struct objfile *objfile,
19537 bfd *abfd, LONGEST str_offset,
19538 struct dwarf2_section_info *sect,
19539 const char *form_name,
19540 const char *sect_name)
19541 {
19542 dwarf2_read_section (objfile, sect);
19543 if (sect->buffer == NULL)
19544 error (_("%s used without %s section [in module %s]"),
19545 form_name, sect_name, bfd_get_filename (abfd));
19546 if (str_offset >= sect->size)
19547 error (_("%s pointing outside of %s section [in module %s]"),
19548 form_name, sect_name, bfd_get_filename (abfd));
19549 gdb_assert (HOST_CHAR_BIT == 8);
19550 if (sect->buffer[str_offset] == '\0')
19551 return NULL;
19552 return (const char *) (sect->buffer + str_offset);
19553 }
19554
19555 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19556
19557 static const char *
19558 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19559 bfd *abfd, LONGEST str_offset)
19560 {
19561 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19562 abfd, str_offset,
19563 &dwarf2_per_objfile->str,
19564 "DW_FORM_strp", ".debug_str");
19565 }
19566
19567 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19568
19569 static const char *
19570 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19571 bfd *abfd, LONGEST str_offset)
19572 {
19573 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19574 abfd, str_offset,
19575 &dwarf2_per_objfile->line_str,
19576 "DW_FORM_line_strp",
19577 ".debug_line_str");
19578 }
19579
19580 /* Read a string at offset STR_OFFSET in the .debug_str section from
19581 the .dwz file DWZ. Throw an error if the offset is too large. If
19582 the string consists of a single NUL byte, return NULL; otherwise
19583 return a pointer to the string. */
19584
19585 static const char *
19586 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19587 LONGEST str_offset)
19588 {
19589 dwarf2_read_section (objfile, &dwz->str);
19590
19591 if (dwz->str.buffer == NULL)
19592 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19593 "section [in module %s]"),
19594 bfd_get_filename (dwz->dwz_bfd));
19595 if (str_offset >= dwz->str.size)
19596 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19597 ".debug_str section [in module %s]"),
19598 bfd_get_filename (dwz->dwz_bfd));
19599 gdb_assert (HOST_CHAR_BIT == 8);
19600 if (dwz->str.buffer[str_offset] == '\0')
19601 return NULL;
19602 return (const char *) (dwz->str.buffer + str_offset);
19603 }
19604
19605 /* Return pointer to string at .debug_str offset as read from BUF.
19606 BUF is assumed to be in a compilation unit described by CU_HEADER.
19607 Return *BYTES_READ_PTR count of bytes read from BUF. */
19608
19609 static const char *
19610 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19611 const gdb_byte *buf,
19612 const struct comp_unit_head *cu_header,
19613 unsigned int *bytes_read_ptr)
19614 {
19615 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19616
19617 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19618 }
19619
19620 /* Return pointer to string at .debug_line_str offset as read from BUF.
19621 BUF is assumed to be in a compilation unit described by CU_HEADER.
19622 Return *BYTES_READ_PTR count of bytes read from BUF. */
19623
19624 static const char *
19625 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19626 bfd *abfd, const gdb_byte *buf,
19627 const struct comp_unit_head *cu_header,
19628 unsigned int *bytes_read_ptr)
19629 {
19630 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19631
19632 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19633 str_offset);
19634 }
19635
19636 ULONGEST
19637 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19638 unsigned int *bytes_read_ptr)
19639 {
19640 ULONGEST result;
19641 unsigned int num_read;
19642 int shift;
19643 unsigned char byte;
19644
19645 result = 0;
19646 shift = 0;
19647 num_read = 0;
19648 while (1)
19649 {
19650 byte = bfd_get_8 (abfd, buf);
19651 buf++;
19652 num_read++;
19653 result |= ((ULONGEST) (byte & 127) << shift);
19654 if ((byte & 128) == 0)
19655 {
19656 break;
19657 }
19658 shift += 7;
19659 }
19660 *bytes_read_ptr = num_read;
19661 return result;
19662 }
19663
19664 static LONGEST
19665 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19666 unsigned int *bytes_read_ptr)
19667 {
19668 ULONGEST result;
19669 int shift, num_read;
19670 unsigned char byte;
19671
19672 result = 0;
19673 shift = 0;
19674 num_read = 0;
19675 while (1)
19676 {
19677 byte = bfd_get_8 (abfd, buf);
19678 buf++;
19679 num_read++;
19680 result |= ((ULONGEST) (byte & 127) << shift);
19681 shift += 7;
19682 if ((byte & 128) == 0)
19683 {
19684 break;
19685 }
19686 }
19687 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19688 result |= -(((ULONGEST) 1) << shift);
19689 *bytes_read_ptr = num_read;
19690 return result;
19691 }
19692
19693 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19694 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19695 ADDR_SIZE is the size of addresses from the CU header. */
19696
19697 static CORE_ADDR
19698 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19699 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19700 {
19701 struct objfile *objfile = dwarf2_per_objfile->objfile;
19702 bfd *abfd = objfile->obfd;
19703 const gdb_byte *info_ptr;
19704
19705 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19706 if (dwarf2_per_objfile->addr.buffer == NULL)
19707 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19708 objfile_name (objfile));
19709 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19710 error (_("DW_FORM_addr_index pointing outside of "
19711 ".debug_addr section [in module %s]"),
19712 objfile_name (objfile));
19713 info_ptr = (dwarf2_per_objfile->addr.buffer
19714 + addr_base + addr_index * addr_size);
19715 if (addr_size == 4)
19716 return bfd_get_32 (abfd, info_ptr);
19717 else
19718 return bfd_get_64 (abfd, info_ptr);
19719 }
19720
19721 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19722
19723 static CORE_ADDR
19724 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19725 {
19726 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19727 cu->addr_base, cu->header.addr_size);
19728 }
19729
19730 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19731
19732 static CORE_ADDR
19733 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19734 unsigned int *bytes_read)
19735 {
19736 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19737 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19738
19739 return read_addr_index (cu, addr_index);
19740 }
19741
19742 /* Data structure to pass results from dwarf2_read_addr_index_reader
19743 back to dwarf2_read_addr_index. */
19744
19745 struct dwarf2_read_addr_index_data
19746 {
19747 ULONGEST addr_base;
19748 int addr_size;
19749 };
19750
19751 /* die_reader_func for dwarf2_read_addr_index. */
19752
19753 static void
19754 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19755 const gdb_byte *info_ptr,
19756 struct die_info *comp_unit_die,
19757 int has_children,
19758 void *data)
19759 {
19760 struct dwarf2_cu *cu = reader->cu;
19761 struct dwarf2_read_addr_index_data *aidata =
19762 (struct dwarf2_read_addr_index_data *) data;
19763
19764 aidata->addr_base = cu->addr_base;
19765 aidata->addr_size = cu->header.addr_size;
19766 }
19767
19768 /* Given an index in .debug_addr, fetch the value.
19769 NOTE: This can be called during dwarf expression evaluation,
19770 long after the debug information has been read, and thus per_cu->cu
19771 may no longer exist. */
19772
19773 CORE_ADDR
19774 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19775 unsigned int addr_index)
19776 {
19777 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19778 struct dwarf2_cu *cu = per_cu->cu;
19779 ULONGEST addr_base;
19780 int addr_size;
19781
19782 /* We need addr_base and addr_size.
19783 If we don't have PER_CU->cu, we have to get it.
19784 Nasty, but the alternative is storing the needed info in PER_CU,
19785 which at this point doesn't seem justified: it's not clear how frequently
19786 it would get used and it would increase the size of every PER_CU.
19787 Entry points like dwarf2_per_cu_addr_size do a similar thing
19788 so we're not in uncharted territory here.
19789 Alas we need to be a bit more complicated as addr_base is contained
19790 in the DIE.
19791
19792 We don't need to read the entire CU(/TU).
19793 We just need the header and top level die.
19794
19795 IWBN to use the aging mechanism to let us lazily later discard the CU.
19796 For now we skip this optimization. */
19797
19798 if (cu != NULL)
19799 {
19800 addr_base = cu->addr_base;
19801 addr_size = cu->header.addr_size;
19802 }
19803 else
19804 {
19805 struct dwarf2_read_addr_index_data aidata;
19806
19807 /* Note: We can't use init_cutu_and_read_dies_simple here,
19808 we need addr_base. */
19809 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19810 dwarf2_read_addr_index_reader, &aidata);
19811 addr_base = aidata.addr_base;
19812 addr_size = aidata.addr_size;
19813 }
19814
19815 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19816 addr_size);
19817 }
19818
19819 /* Given a DW_FORM_GNU_str_index, fetch the string.
19820 This is only used by the Fission support. */
19821
19822 static const char *
19823 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19824 {
19825 struct dwarf2_cu *cu = reader->cu;
19826 struct dwarf2_per_objfile *dwarf2_per_objfile
19827 = cu->per_cu->dwarf2_per_objfile;
19828 struct objfile *objfile = dwarf2_per_objfile->objfile;
19829 const char *objf_name = objfile_name (objfile);
19830 bfd *abfd = objfile->obfd;
19831 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19832 struct dwarf2_section_info *str_offsets_section =
19833 &reader->dwo_file->sections.str_offsets;
19834 const gdb_byte *info_ptr;
19835 ULONGEST str_offset;
19836 static const char form_name[] = "DW_FORM_GNU_str_index";
19837
19838 dwarf2_read_section (objfile, str_section);
19839 dwarf2_read_section (objfile, str_offsets_section);
19840 if (str_section->buffer == NULL)
19841 error (_("%s used without .debug_str.dwo section"
19842 " in CU at offset %s [in module %s]"),
19843 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19844 if (str_offsets_section->buffer == NULL)
19845 error (_("%s used without .debug_str_offsets.dwo section"
19846 " in CU at offset %s [in module %s]"),
19847 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19848 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19849 error (_("%s pointing outside of .debug_str_offsets.dwo"
19850 " section in CU at offset %s [in module %s]"),
19851 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19852 info_ptr = (str_offsets_section->buffer
19853 + str_index * cu->header.offset_size);
19854 if (cu->header.offset_size == 4)
19855 str_offset = bfd_get_32 (abfd, info_ptr);
19856 else
19857 str_offset = bfd_get_64 (abfd, info_ptr);
19858 if (str_offset >= str_section->size)
19859 error (_("Offset from %s pointing outside of"
19860 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19861 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19862 return (const char *) (str_section->buffer + str_offset);
19863 }
19864
19865 /* Return the length of an LEB128 number in BUF. */
19866
19867 static int
19868 leb128_size (const gdb_byte *buf)
19869 {
19870 const gdb_byte *begin = buf;
19871 gdb_byte byte;
19872
19873 while (1)
19874 {
19875 byte = *buf++;
19876 if ((byte & 128) == 0)
19877 return buf - begin;
19878 }
19879 }
19880
19881 static void
19882 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19883 {
19884 switch (lang)
19885 {
19886 case DW_LANG_C89:
19887 case DW_LANG_C99:
19888 case DW_LANG_C11:
19889 case DW_LANG_C:
19890 case DW_LANG_UPC:
19891 cu->language = language_c;
19892 break;
19893 case DW_LANG_Java:
19894 case DW_LANG_C_plus_plus:
19895 case DW_LANG_C_plus_plus_11:
19896 case DW_LANG_C_plus_plus_14:
19897 cu->language = language_cplus;
19898 break;
19899 case DW_LANG_D:
19900 cu->language = language_d;
19901 break;
19902 case DW_LANG_Fortran77:
19903 case DW_LANG_Fortran90:
19904 case DW_LANG_Fortran95:
19905 case DW_LANG_Fortran03:
19906 case DW_LANG_Fortran08:
19907 cu->language = language_fortran;
19908 break;
19909 case DW_LANG_Go:
19910 cu->language = language_go;
19911 break;
19912 case DW_LANG_Mips_Assembler:
19913 cu->language = language_asm;
19914 break;
19915 case DW_LANG_Ada83:
19916 case DW_LANG_Ada95:
19917 cu->language = language_ada;
19918 break;
19919 case DW_LANG_Modula2:
19920 cu->language = language_m2;
19921 break;
19922 case DW_LANG_Pascal83:
19923 cu->language = language_pascal;
19924 break;
19925 case DW_LANG_ObjC:
19926 cu->language = language_objc;
19927 break;
19928 case DW_LANG_Rust:
19929 case DW_LANG_Rust_old:
19930 cu->language = language_rust;
19931 break;
19932 case DW_LANG_Cobol74:
19933 case DW_LANG_Cobol85:
19934 default:
19935 cu->language = language_minimal;
19936 break;
19937 }
19938 cu->language_defn = language_def (cu->language);
19939 }
19940
19941 /* Return the named attribute or NULL if not there. */
19942
19943 static struct attribute *
19944 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19945 {
19946 for (;;)
19947 {
19948 unsigned int i;
19949 struct attribute *spec = NULL;
19950
19951 for (i = 0; i < die->num_attrs; ++i)
19952 {
19953 if (die->attrs[i].name == name)
19954 return &die->attrs[i];
19955 if (die->attrs[i].name == DW_AT_specification
19956 || die->attrs[i].name == DW_AT_abstract_origin)
19957 spec = &die->attrs[i];
19958 }
19959
19960 if (!spec)
19961 break;
19962
19963 die = follow_die_ref (die, spec, &cu);
19964 }
19965
19966 return NULL;
19967 }
19968
19969 /* Return the named attribute or NULL if not there,
19970 but do not follow DW_AT_specification, etc.
19971 This is for use in contexts where we're reading .debug_types dies.
19972 Following DW_AT_specification, DW_AT_abstract_origin will take us
19973 back up the chain, and we want to go down. */
19974
19975 static struct attribute *
19976 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19977 {
19978 unsigned int i;
19979
19980 for (i = 0; i < die->num_attrs; ++i)
19981 if (die->attrs[i].name == name)
19982 return &die->attrs[i];
19983
19984 return NULL;
19985 }
19986
19987 /* Return the string associated with a string-typed attribute, or NULL if it
19988 is either not found or is of an incorrect type. */
19989
19990 static const char *
19991 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19992 {
19993 struct attribute *attr;
19994 const char *str = NULL;
19995
19996 attr = dwarf2_attr (die, name, cu);
19997
19998 if (attr != NULL)
19999 {
20000 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20001 || attr->form == DW_FORM_string
20002 || attr->form == DW_FORM_GNU_str_index
20003 || attr->form == DW_FORM_GNU_strp_alt)
20004 str = DW_STRING (attr);
20005 else
20006 complaint (_("string type expected for attribute %s for "
20007 "DIE at %s in module %s"),
20008 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20009 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20010 }
20011
20012 return str;
20013 }
20014
20015 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20016 and holds a non-zero value. This function should only be used for
20017 DW_FORM_flag or DW_FORM_flag_present attributes. */
20018
20019 static int
20020 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20021 {
20022 struct attribute *attr = dwarf2_attr (die, name, cu);
20023
20024 return (attr && DW_UNSND (attr));
20025 }
20026
20027 static int
20028 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20029 {
20030 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20031 which value is non-zero. However, we have to be careful with
20032 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20033 (via dwarf2_flag_true_p) follows this attribute. So we may
20034 end up accidently finding a declaration attribute that belongs
20035 to a different DIE referenced by the specification attribute,
20036 even though the given DIE does not have a declaration attribute. */
20037 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20038 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20039 }
20040
20041 /* Return the die giving the specification for DIE, if there is
20042 one. *SPEC_CU is the CU containing DIE on input, and the CU
20043 containing the return value on output. If there is no
20044 specification, but there is an abstract origin, that is
20045 returned. */
20046
20047 static struct die_info *
20048 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20049 {
20050 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20051 *spec_cu);
20052
20053 if (spec_attr == NULL)
20054 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20055
20056 if (spec_attr == NULL)
20057 return NULL;
20058 else
20059 return follow_die_ref (die, spec_attr, spec_cu);
20060 }
20061
20062 /* Stub for free_line_header to match void * callback types. */
20063
20064 static void
20065 free_line_header_voidp (void *arg)
20066 {
20067 struct line_header *lh = (struct line_header *) arg;
20068
20069 delete lh;
20070 }
20071
20072 void
20073 line_header::add_include_dir (const char *include_dir)
20074 {
20075 if (dwarf_line_debug >= 2)
20076 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20077 include_dirs.size () + 1, include_dir);
20078
20079 include_dirs.push_back (include_dir);
20080 }
20081
20082 void
20083 line_header::add_file_name (const char *name,
20084 dir_index d_index,
20085 unsigned int mod_time,
20086 unsigned int length)
20087 {
20088 if (dwarf_line_debug >= 2)
20089 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20090 (unsigned) file_names.size () + 1, name);
20091
20092 file_names.emplace_back (name, d_index, mod_time, length);
20093 }
20094
20095 /* A convenience function to find the proper .debug_line section for a CU. */
20096
20097 static struct dwarf2_section_info *
20098 get_debug_line_section (struct dwarf2_cu *cu)
20099 {
20100 struct dwarf2_section_info *section;
20101 struct dwarf2_per_objfile *dwarf2_per_objfile
20102 = cu->per_cu->dwarf2_per_objfile;
20103
20104 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20105 DWO file. */
20106 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20107 section = &cu->dwo_unit->dwo_file->sections.line;
20108 else if (cu->per_cu->is_dwz)
20109 {
20110 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20111
20112 section = &dwz->line;
20113 }
20114 else
20115 section = &dwarf2_per_objfile->line;
20116
20117 return section;
20118 }
20119
20120 /* Read directory or file name entry format, starting with byte of
20121 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20122 entries count and the entries themselves in the described entry
20123 format. */
20124
20125 static void
20126 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20127 bfd *abfd, const gdb_byte **bufp,
20128 struct line_header *lh,
20129 const struct comp_unit_head *cu_header,
20130 void (*callback) (struct line_header *lh,
20131 const char *name,
20132 dir_index d_index,
20133 unsigned int mod_time,
20134 unsigned int length))
20135 {
20136 gdb_byte format_count, formati;
20137 ULONGEST data_count, datai;
20138 const gdb_byte *buf = *bufp;
20139 const gdb_byte *format_header_data;
20140 unsigned int bytes_read;
20141
20142 format_count = read_1_byte (abfd, buf);
20143 buf += 1;
20144 format_header_data = buf;
20145 for (formati = 0; formati < format_count; formati++)
20146 {
20147 read_unsigned_leb128 (abfd, buf, &bytes_read);
20148 buf += bytes_read;
20149 read_unsigned_leb128 (abfd, buf, &bytes_read);
20150 buf += bytes_read;
20151 }
20152
20153 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20154 buf += bytes_read;
20155 for (datai = 0; datai < data_count; datai++)
20156 {
20157 const gdb_byte *format = format_header_data;
20158 struct file_entry fe;
20159
20160 for (formati = 0; formati < format_count; formati++)
20161 {
20162 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20163 format += bytes_read;
20164
20165 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20166 format += bytes_read;
20167
20168 gdb::optional<const char *> string;
20169 gdb::optional<unsigned int> uint;
20170
20171 switch (form)
20172 {
20173 case DW_FORM_string:
20174 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20175 buf += bytes_read;
20176 break;
20177
20178 case DW_FORM_line_strp:
20179 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20180 abfd, buf,
20181 cu_header,
20182 &bytes_read));
20183 buf += bytes_read;
20184 break;
20185
20186 case DW_FORM_data1:
20187 uint.emplace (read_1_byte (abfd, buf));
20188 buf += 1;
20189 break;
20190
20191 case DW_FORM_data2:
20192 uint.emplace (read_2_bytes (abfd, buf));
20193 buf += 2;
20194 break;
20195
20196 case DW_FORM_data4:
20197 uint.emplace (read_4_bytes (abfd, buf));
20198 buf += 4;
20199 break;
20200
20201 case DW_FORM_data8:
20202 uint.emplace (read_8_bytes (abfd, buf));
20203 buf += 8;
20204 break;
20205
20206 case DW_FORM_udata:
20207 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20208 buf += bytes_read;
20209 break;
20210
20211 case DW_FORM_block:
20212 /* It is valid only for DW_LNCT_timestamp which is ignored by
20213 current GDB. */
20214 break;
20215 }
20216
20217 switch (content_type)
20218 {
20219 case DW_LNCT_path:
20220 if (string.has_value ())
20221 fe.name = *string;
20222 break;
20223 case DW_LNCT_directory_index:
20224 if (uint.has_value ())
20225 fe.d_index = (dir_index) *uint;
20226 break;
20227 case DW_LNCT_timestamp:
20228 if (uint.has_value ())
20229 fe.mod_time = *uint;
20230 break;
20231 case DW_LNCT_size:
20232 if (uint.has_value ())
20233 fe.length = *uint;
20234 break;
20235 case DW_LNCT_MD5:
20236 break;
20237 default:
20238 complaint (_("Unknown format content type %s"),
20239 pulongest (content_type));
20240 }
20241 }
20242
20243 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20244 }
20245
20246 *bufp = buf;
20247 }
20248
20249 /* Read the statement program header starting at OFFSET in
20250 .debug_line, or .debug_line.dwo. Return a pointer
20251 to a struct line_header, allocated using xmalloc.
20252 Returns NULL if there is a problem reading the header, e.g., if it
20253 has a version we don't understand.
20254
20255 NOTE: the strings in the include directory and file name tables of
20256 the returned object point into the dwarf line section buffer,
20257 and must not be freed. */
20258
20259 static line_header_up
20260 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20261 {
20262 const gdb_byte *line_ptr;
20263 unsigned int bytes_read, offset_size;
20264 int i;
20265 const char *cur_dir, *cur_file;
20266 struct dwarf2_section_info *section;
20267 bfd *abfd;
20268 struct dwarf2_per_objfile *dwarf2_per_objfile
20269 = cu->per_cu->dwarf2_per_objfile;
20270
20271 section = get_debug_line_section (cu);
20272 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20273 if (section->buffer == NULL)
20274 {
20275 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20276 complaint (_("missing .debug_line.dwo section"));
20277 else
20278 complaint (_("missing .debug_line section"));
20279 return 0;
20280 }
20281
20282 /* We can't do this until we know the section is non-empty.
20283 Only then do we know we have such a section. */
20284 abfd = get_section_bfd_owner (section);
20285
20286 /* Make sure that at least there's room for the total_length field.
20287 That could be 12 bytes long, but we're just going to fudge that. */
20288 if (to_underlying (sect_off) + 4 >= section->size)
20289 {
20290 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20291 return 0;
20292 }
20293
20294 line_header_up lh (new line_header ());
20295
20296 lh->sect_off = sect_off;
20297 lh->offset_in_dwz = cu->per_cu->is_dwz;
20298
20299 line_ptr = section->buffer + to_underlying (sect_off);
20300
20301 /* Read in the header. */
20302 lh->total_length =
20303 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20304 &bytes_read, &offset_size);
20305 line_ptr += bytes_read;
20306 if (line_ptr + lh->total_length > (section->buffer + section->size))
20307 {
20308 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20309 return 0;
20310 }
20311 lh->statement_program_end = line_ptr + lh->total_length;
20312 lh->version = read_2_bytes (abfd, line_ptr);
20313 line_ptr += 2;
20314 if (lh->version > 5)
20315 {
20316 /* This is a version we don't understand. The format could have
20317 changed in ways we don't handle properly so just punt. */
20318 complaint (_("unsupported version in .debug_line section"));
20319 return NULL;
20320 }
20321 if (lh->version >= 5)
20322 {
20323 gdb_byte segment_selector_size;
20324
20325 /* Skip address size. */
20326 read_1_byte (abfd, line_ptr);
20327 line_ptr += 1;
20328
20329 segment_selector_size = read_1_byte (abfd, line_ptr);
20330 line_ptr += 1;
20331 if (segment_selector_size != 0)
20332 {
20333 complaint (_("unsupported segment selector size %u "
20334 "in .debug_line section"),
20335 segment_selector_size);
20336 return NULL;
20337 }
20338 }
20339 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20340 line_ptr += offset_size;
20341 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20342 line_ptr += 1;
20343 if (lh->version >= 4)
20344 {
20345 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20346 line_ptr += 1;
20347 }
20348 else
20349 lh->maximum_ops_per_instruction = 1;
20350
20351 if (lh->maximum_ops_per_instruction == 0)
20352 {
20353 lh->maximum_ops_per_instruction = 1;
20354 complaint (_("invalid maximum_ops_per_instruction "
20355 "in `.debug_line' section"));
20356 }
20357
20358 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20359 line_ptr += 1;
20360 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20361 line_ptr += 1;
20362 lh->line_range = read_1_byte (abfd, line_ptr);
20363 line_ptr += 1;
20364 lh->opcode_base = read_1_byte (abfd, line_ptr);
20365 line_ptr += 1;
20366 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20367
20368 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20369 for (i = 1; i < lh->opcode_base; ++i)
20370 {
20371 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20372 line_ptr += 1;
20373 }
20374
20375 if (lh->version >= 5)
20376 {
20377 /* Read directory table. */
20378 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20379 &cu->header,
20380 [] (struct line_header *header, const char *name,
20381 dir_index d_index, unsigned int mod_time,
20382 unsigned int length)
20383 {
20384 header->add_include_dir (name);
20385 });
20386
20387 /* Read file name table. */
20388 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20389 &cu->header,
20390 [] (struct line_header *header, const char *name,
20391 dir_index d_index, unsigned int mod_time,
20392 unsigned int length)
20393 {
20394 header->add_file_name (name, d_index, mod_time, length);
20395 });
20396 }
20397 else
20398 {
20399 /* Read directory table. */
20400 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20401 {
20402 line_ptr += bytes_read;
20403 lh->add_include_dir (cur_dir);
20404 }
20405 line_ptr += bytes_read;
20406
20407 /* Read file name table. */
20408 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20409 {
20410 unsigned int mod_time, length;
20411 dir_index d_index;
20412
20413 line_ptr += bytes_read;
20414 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20415 line_ptr += bytes_read;
20416 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20417 line_ptr += bytes_read;
20418 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20419 line_ptr += bytes_read;
20420
20421 lh->add_file_name (cur_file, d_index, mod_time, length);
20422 }
20423 line_ptr += bytes_read;
20424 }
20425 lh->statement_program_start = line_ptr;
20426
20427 if (line_ptr > (section->buffer + section->size))
20428 complaint (_("line number info header doesn't "
20429 "fit in `.debug_line' section"));
20430
20431 return lh;
20432 }
20433
20434 /* Subroutine of dwarf_decode_lines to simplify it.
20435 Return the file name of the psymtab for included file FILE_INDEX
20436 in line header LH of PST.
20437 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20438 If space for the result is malloc'd, *NAME_HOLDER will be set.
20439 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20440
20441 static const char *
20442 psymtab_include_file_name (const struct line_header *lh, int file_index,
20443 const struct partial_symtab *pst,
20444 const char *comp_dir,
20445 gdb::unique_xmalloc_ptr<char> *name_holder)
20446 {
20447 const file_entry &fe = lh->file_names[file_index];
20448 const char *include_name = fe.name;
20449 const char *include_name_to_compare = include_name;
20450 const char *pst_filename;
20451 int file_is_pst;
20452
20453 const char *dir_name = fe.include_dir (lh);
20454
20455 gdb::unique_xmalloc_ptr<char> hold_compare;
20456 if (!IS_ABSOLUTE_PATH (include_name)
20457 && (dir_name != NULL || comp_dir != NULL))
20458 {
20459 /* Avoid creating a duplicate psymtab for PST.
20460 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20461 Before we do the comparison, however, we need to account
20462 for DIR_NAME and COMP_DIR.
20463 First prepend dir_name (if non-NULL). If we still don't
20464 have an absolute path prepend comp_dir (if non-NULL).
20465 However, the directory we record in the include-file's
20466 psymtab does not contain COMP_DIR (to match the
20467 corresponding symtab(s)).
20468
20469 Example:
20470
20471 bash$ cd /tmp
20472 bash$ gcc -g ./hello.c
20473 include_name = "hello.c"
20474 dir_name = "."
20475 DW_AT_comp_dir = comp_dir = "/tmp"
20476 DW_AT_name = "./hello.c"
20477
20478 */
20479
20480 if (dir_name != NULL)
20481 {
20482 name_holder->reset (concat (dir_name, SLASH_STRING,
20483 include_name, (char *) NULL));
20484 include_name = name_holder->get ();
20485 include_name_to_compare = include_name;
20486 }
20487 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20488 {
20489 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20490 include_name, (char *) NULL));
20491 include_name_to_compare = hold_compare.get ();
20492 }
20493 }
20494
20495 pst_filename = pst->filename;
20496 gdb::unique_xmalloc_ptr<char> copied_name;
20497 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20498 {
20499 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20500 pst_filename, (char *) NULL));
20501 pst_filename = copied_name.get ();
20502 }
20503
20504 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20505
20506 if (file_is_pst)
20507 return NULL;
20508 return include_name;
20509 }
20510
20511 /* State machine to track the state of the line number program. */
20512
20513 class lnp_state_machine
20514 {
20515 public:
20516 /* Initialize a machine state for the start of a line number
20517 program. */
20518 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20519 bool record_lines_p);
20520
20521 file_entry *current_file ()
20522 {
20523 /* lh->file_names is 0-based, but the file name numbers in the
20524 statement program are 1-based. */
20525 return m_line_header->file_name_at (m_file);
20526 }
20527
20528 /* Record the line in the state machine. END_SEQUENCE is true if
20529 we're processing the end of a sequence. */
20530 void record_line (bool end_sequence);
20531
20532 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20533 nop-out rest of the lines in this sequence. */
20534 void check_line_address (struct dwarf2_cu *cu,
20535 const gdb_byte *line_ptr,
20536 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20537
20538 void handle_set_discriminator (unsigned int discriminator)
20539 {
20540 m_discriminator = discriminator;
20541 m_line_has_non_zero_discriminator |= discriminator != 0;
20542 }
20543
20544 /* Handle DW_LNE_set_address. */
20545 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20546 {
20547 m_op_index = 0;
20548 address += baseaddr;
20549 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20550 }
20551
20552 /* Handle DW_LNS_advance_pc. */
20553 void handle_advance_pc (CORE_ADDR adjust);
20554
20555 /* Handle a special opcode. */
20556 void handle_special_opcode (unsigned char op_code);
20557
20558 /* Handle DW_LNS_advance_line. */
20559 void handle_advance_line (int line_delta)
20560 {
20561 advance_line (line_delta);
20562 }
20563
20564 /* Handle DW_LNS_set_file. */
20565 void handle_set_file (file_name_index file);
20566
20567 /* Handle DW_LNS_negate_stmt. */
20568 void handle_negate_stmt ()
20569 {
20570 m_is_stmt = !m_is_stmt;
20571 }
20572
20573 /* Handle DW_LNS_const_add_pc. */
20574 void handle_const_add_pc ();
20575
20576 /* Handle DW_LNS_fixed_advance_pc. */
20577 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20578 {
20579 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20580 m_op_index = 0;
20581 }
20582
20583 /* Handle DW_LNS_copy. */
20584 void handle_copy ()
20585 {
20586 record_line (false);
20587 m_discriminator = 0;
20588 }
20589
20590 /* Handle DW_LNE_end_sequence. */
20591 void handle_end_sequence ()
20592 {
20593 m_currently_recording_lines = true;
20594 }
20595
20596 private:
20597 /* Advance the line by LINE_DELTA. */
20598 void advance_line (int line_delta)
20599 {
20600 m_line += line_delta;
20601
20602 if (line_delta != 0)
20603 m_line_has_non_zero_discriminator = m_discriminator != 0;
20604 }
20605
20606 struct dwarf2_cu *m_cu;
20607
20608 gdbarch *m_gdbarch;
20609
20610 /* True if we're recording lines.
20611 Otherwise we're building partial symtabs and are just interested in
20612 finding include files mentioned by the line number program. */
20613 bool m_record_lines_p;
20614
20615 /* The line number header. */
20616 line_header *m_line_header;
20617
20618 /* These are part of the standard DWARF line number state machine,
20619 and initialized according to the DWARF spec. */
20620
20621 unsigned char m_op_index = 0;
20622 /* The line table index (1-based) of the current file. */
20623 file_name_index m_file = (file_name_index) 1;
20624 unsigned int m_line = 1;
20625
20626 /* These are initialized in the constructor. */
20627
20628 CORE_ADDR m_address;
20629 bool m_is_stmt;
20630 unsigned int m_discriminator;
20631
20632 /* Additional bits of state we need to track. */
20633
20634 /* The last file that we called dwarf2_start_subfile for.
20635 This is only used for TLLs. */
20636 unsigned int m_last_file = 0;
20637 /* The last file a line number was recorded for. */
20638 struct subfile *m_last_subfile = NULL;
20639
20640 /* When true, record the lines we decode. */
20641 bool m_currently_recording_lines = false;
20642
20643 /* The last line number that was recorded, used to coalesce
20644 consecutive entries for the same line. This can happen, for
20645 example, when discriminators are present. PR 17276. */
20646 unsigned int m_last_line = 0;
20647 bool m_line_has_non_zero_discriminator = false;
20648 };
20649
20650 void
20651 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20652 {
20653 CORE_ADDR addr_adj = (((m_op_index + adjust)
20654 / m_line_header->maximum_ops_per_instruction)
20655 * m_line_header->minimum_instruction_length);
20656 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20657 m_op_index = ((m_op_index + adjust)
20658 % m_line_header->maximum_ops_per_instruction);
20659 }
20660
20661 void
20662 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20663 {
20664 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20665 CORE_ADDR addr_adj = (((m_op_index
20666 + (adj_opcode / m_line_header->line_range))
20667 / m_line_header->maximum_ops_per_instruction)
20668 * m_line_header->minimum_instruction_length);
20669 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20670 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20671 % m_line_header->maximum_ops_per_instruction);
20672
20673 int line_delta = (m_line_header->line_base
20674 + (adj_opcode % m_line_header->line_range));
20675 advance_line (line_delta);
20676 record_line (false);
20677 m_discriminator = 0;
20678 }
20679
20680 void
20681 lnp_state_machine::handle_set_file (file_name_index file)
20682 {
20683 m_file = file;
20684
20685 const file_entry *fe = current_file ();
20686 if (fe == NULL)
20687 dwarf2_debug_line_missing_file_complaint ();
20688 else if (m_record_lines_p)
20689 {
20690 const char *dir = fe->include_dir (m_line_header);
20691
20692 m_last_subfile = m_cu->builder->get_current_subfile ();
20693 m_line_has_non_zero_discriminator = m_discriminator != 0;
20694 dwarf2_start_subfile (m_cu, fe->name, dir);
20695 }
20696 }
20697
20698 void
20699 lnp_state_machine::handle_const_add_pc ()
20700 {
20701 CORE_ADDR adjust
20702 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20703
20704 CORE_ADDR addr_adj
20705 = (((m_op_index + adjust)
20706 / m_line_header->maximum_ops_per_instruction)
20707 * m_line_header->minimum_instruction_length);
20708
20709 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20710 m_op_index = ((m_op_index + adjust)
20711 % m_line_header->maximum_ops_per_instruction);
20712 }
20713
20714 /* Return non-zero if we should add LINE to the line number table.
20715 LINE is the line to add, LAST_LINE is the last line that was added,
20716 LAST_SUBFILE is the subfile for LAST_LINE.
20717 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20718 had a non-zero discriminator.
20719
20720 We have to be careful in the presence of discriminators.
20721 E.g., for this line:
20722
20723 for (i = 0; i < 100000; i++);
20724
20725 clang can emit four line number entries for that one line,
20726 each with a different discriminator.
20727 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20728
20729 However, we want gdb to coalesce all four entries into one.
20730 Otherwise the user could stepi into the middle of the line and
20731 gdb would get confused about whether the pc really was in the
20732 middle of the line.
20733
20734 Things are further complicated by the fact that two consecutive
20735 line number entries for the same line is a heuristic used by gcc
20736 to denote the end of the prologue. So we can't just discard duplicate
20737 entries, we have to be selective about it. The heuristic we use is
20738 that we only collapse consecutive entries for the same line if at least
20739 one of those entries has a non-zero discriminator. PR 17276.
20740
20741 Note: Addresses in the line number state machine can never go backwards
20742 within one sequence, thus this coalescing is ok. */
20743
20744 static int
20745 dwarf_record_line_p (struct dwarf2_cu *cu,
20746 unsigned int line, unsigned int last_line,
20747 int line_has_non_zero_discriminator,
20748 struct subfile *last_subfile)
20749 {
20750 if (cu->builder->get_current_subfile () != last_subfile)
20751 return 1;
20752 if (line != last_line)
20753 return 1;
20754 /* Same line for the same file that we've seen already.
20755 As a last check, for pr 17276, only record the line if the line
20756 has never had a non-zero discriminator. */
20757 if (!line_has_non_zero_discriminator)
20758 return 1;
20759 return 0;
20760 }
20761
20762 /* Use the CU's builder to record line number LINE beginning at
20763 address ADDRESS in the line table of subfile SUBFILE. */
20764
20765 static void
20766 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20767 unsigned int line, CORE_ADDR address,
20768 struct dwarf2_cu *cu)
20769 {
20770 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20771
20772 if (dwarf_line_debug)
20773 {
20774 fprintf_unfiltered (gdb_stdlog,
20775 "Recording line %u, file %s, address %s\n",
20776 line, lbasename (subfile->name),
20777 paddress (gdbarch, address));
20778 }
20779
20780 if (cu != nullptr)
20781 cu->builder->record_line (subfile, line, addr);
20782 }
20783
20784 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20785 Mark the end of a set of line number records.
20786 The arguments are the same as for dwarf_record_line_1.
20787 If SUBFILE is NULL the request is ignored. */
20788
20789 static void
20790 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20791 CORE_ADDR address, struct dwarf2_cu *cu)
20792 {
20793 if (subfile == NULL)
20794 return;
20795
20796 if (dwarf_line_debug)
20797 {
20798 fprintf_unfiltered (gdb_stdlog,
20799 "Finishing current line, file %s, address %s\n",
20800 lbasename (subfile->name),
20801 paddress (gdbarch, address));
20802 }
20803
20804 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20805 }
20806
20807 void
20808 lnp_state_machine::record_line (bool end_sequence)
20809 {
20810 if (dwarf_line_debug)
20811 {
20812 fprintf_unfiltered (gdb_stdlog,
20813 "Processing actual line %u: file %u,"
20814 " address %s, is_stmt %u, discrim %u\n",
20815 m_line, to_underlying (m_file),
20816 paddress (m_gdbarch, m_address),
20817 m_is_stmt, m_discriminator);
20818 }
20819
20820 file_entry *fe = current_file ();
20821
20822 if (fe == NULL)
20823 dwarf2_debug_line_missing_file_complaint ();
20824 /* For now we ignore lines not starting on an instruction boundary.
20825 But not when processing end_sequence for compatibility with the
20826 previous version of the code. */
20827 else if (m_op_index == 0 || end_sequence)
20828 {
20829 fe->included_p = 1;
20830 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20831 {
20832 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20833 || end_sequence)
20834 {
20835 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20836 m_currently_recording_lines ? m_cu : nullptr);
20837 }
20838
20839 if (!end_sequence)
20840 {
20841 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20842 m_line_has_non_zero_discriminator,
20843 m_last_subfile))
20844 {
20845 dwarf_record_line_1 (m_gdbarch,
20846 m_cu->builder->get_current_subfile (),
20847 m_line, m_address,
20848 m_currently_recording_lines ? m_cu : nullptr);
20849 }
20850 m_last_subfile = m_cu->builder->get_current_subfile ();
20851 m_last_line = m_line;
20852 }
20853 }
20854 }
20855 }
20856
20857 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20858 line_header *lh, bool record_lines_p)
20859 {
20860 m_cu = cu;
20861 m_gdbarch = arch;
20862 m_record_lines_p = record_lines_p;
20863 m_line_header = lh;
20864
20865 m_currently_recording_lines = true;
20866
20867 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20868 was a line entry for it so that the backend has a chance to adjust it
20869 and also record it in case it needs it. This is currently used by MIPS
20870 code, cf. `mips_adjust_dwarf2_line'. */
20871 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20872 m_is_stmt = lh->default_is_stmt;
20873 m_discriminator = 0;
20874 }
20875
20876 void
20877 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20878 const gdb_byte *line_ptr,
20879 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20880 {
20881 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20882 the pc range of the CU. However, we restrict the test to only ADDRESS
20883 values of zero to preserve GDB's previous behaviour which is to handle
20884 the specific case of a function being GC'd by the linker. */
20885
20886 if (address == 0 && address < unrelocated_lowpc)
20887 {
20888 /* This line table is for a function which has been
20889 GCd by the linker. Ignore it. PR gdb/12528 */
20890
20891 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20892 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20893
20894 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20895 line_offset, objfile_name (objfile));
20896 m_currently_recording_lines = false;
20897 /* Note: m_currently_recording_lines is left as false until we see
20898 DW_LNE_end_sequence. */
20899 }
20900 }
20901
20902 /* Subroutine of dwarf_decode_lines to simplify it.
20903 Process the line number information in LH.
20904 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20905 program in order to set included_p for every referenced header. */
20906
20907 static void
20908 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20909 const int decode_for_pst_p, CORE_ADDR lowpc)
20910 {
20911 const gdb_byte *line_ptr, *extended_end;
20912 const gdb_byte *line_end;
20913 unsigned int bytes_read, extended_len;
20914 unsigned char op_code, extended_op;
20915 CORE_ADDR baseaddr;
20916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20917 bfd *abfd = objfile->obfd;
20918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20919 /* True if we're recording line info (as opposed to building partial
20920 symtabs and just interested in finding include files mentioned by
20921 the line number program). */
20922 bool record_lines_p = !decode_for_pst_p;
20923
20924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20925
20926 line_ptr = lh->statement_program_start;
20927 line_end = lh->statement_program_end;
20928
20929 /* Read the statement sequences until there's nothing left. */
20930 while (line_ptr < line_end)
20931 {
20932 /* The DWARF line number program state machine. Reset the state
20933 machine at the start of each sequence. */
20934 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20935 bool end_sequence = false;
20936
20937 if (record_lines_p)
20938 {
20939 /* Start a subfile for the current file of the state
20940 machine. */
20941 const file_entry *fe = state_machine.current_file ();
20942
20943 if (fe != NULL)
20944 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20945 }
20946
20947 /* Decode the table. */
20948 while (line_ptr < line_end && !end_sequence)
20949 {
20950 op_code = read_1_byte (abfd, line_ptr);
20951 line_ptr += 1;
20952
20953 if (op_code >= lh->opcode_base)
20954 {
20955 /* Special opcode. */
20956 state_machine.handle_special_opcode (op_code);
20957 }
20958 else switch (op_code)
20959 {
20960 case DW_LNS_extended_op:
20961 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20962 &bytes_read);
20963 line_ptr += bytes_read;
20964 extended_end = line_ptr + extended_len;
20965 extended_op = read_1_byte (abfd, line_ptr);
20966 line_ptr += 1;
20967 switch (extended_op)
20968 {
20969 case DW_LNE_end_sequence:
20970 state_machine.handle_end_sequence ();
20971 end_sequence = true;
20972 break;
20973 case DW_LNE_set_address:
20974 {
20975 CORE_ADDR address
20976 = read_address (abfd, line_ptr, cu, &bytes_read);
20977 line_ptr += bytes_read;
20978
20979 state_machine.check_line_address (cu, line_ptr,
20980 lowpc - baseaddr, address);
20981 state_machine.handle_set_address (baseaddr, address);
20982 }
20983 break;
20984 case DW_LNE_define_file:
20985 {
20986 const char *cur_file;
20987 unsigned int mod_time, length;
20988 dir_index dindex;
20989
20990 cur_file = read_direct_string (abfd, line_ptr,
20991 &bytes_read);
20992 line_ptr += bytes_read;
20993 dindex = (dir_index)
20994 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20995 line_ptr += bytes_read;
20996 mod_time =
20997 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20998 line_ptr += bytes_read;
20999 length =
21000 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21001 line_ptr += bytes_read;
21002 lh->add_file_name (cur_file, dindex, mod_time, length);
21003 }
21004 break;
21005 case DW_LNE_set_discriminator:
21006 {
21007 /* The discriminator is not interesting to the
21008 debugger; just ignore it. We still need to
21009 check its value though:
21010 if there are consecutive entries for the same
21011 (non-prologue) line we want to coalesce them.
21012 PR 17276. */
21013 unsigned int discr
21014 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21015 line_ptr += bytes_read;
21016
21017 state_machine.handle_set_discriminator (discr);
21018 }
21019 break;
21020 default:
21021 complaint (_("mangled .debug_line section"));
21022 return;
21023 }
21024 /* Make sure that we parsed the extended op correctly. If e.g.
21025 we expected a different address size than the producer used,
21026 we may have read the wrong number of bytes. */
21027 if (line_ptr != extended_end)
21028 {
21029 complaint (_("mangled .debug_line section"));
21030 return;
21031 }
21032 break;
21033 case DW_LNS_copy:
21034 state_machine.handle_copy ();
21035 break;
21036 case DW_LNS_advance_pc:
21037 {
21038 CORE_ADDR adjust
21039 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21040 line_ptr += bytes_read;
21041
21042 state_machine.handle_advance_pc (adjust);
21043 }
21044 break;
21045 case DW_LNS_advance_line:
21046 {
21047 int line_delta
21048 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21049 line_ptr += bytes_read;
21050
21051 state_machine.handle_advance_line (line_delta);
21052 }
21053 break;
21054 case DW_LNS_set_file:
21055 {
21056 file_name_index file
21057 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21058 &bytes_read);
21059 line_ptr += bytes_read;
21060
21061 state_machine.handle_set_file (file);
21062 }
21063 break;
21064 case DW_LNS_set_column:
21065 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21066 line_ptr += bytes_read;
21067 break;
21068 case DW_LNS_negate_stmt:
21069 state_machine.handle_negate_stmt ();
21070 break;
21071 case DW_LNS_set_basic_block:
21072 break;
21073 /* Add to the address register of the state machine the
21074 address increment value corresponding to special opcode
21075 255. I.e., this value is scaled by the minimum
21076 instruction length since special opcode 255 would have
21077 scaled the increment. */
21078 case DW_LNS_const_add_pc:
21079 state_machine.handle_const_add_pc ();
21080 break;
21081 case DW_LNS_fixed_advance_pc:
21082 {
21083 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21084 line_ptr += 2;
21085
21086 state_machine.handle_fixed_advance_pc (addr_adj);
21087 }
21088 break;
21089 default:
21090 {
21091 /* Unknown standard opcode, ignore it. */
21092 int i;
21093
21094 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21095 {
21096 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21098 }
21099 }
21100 }
21101 }
21102
21103 if (!end_sequence)
21104 dwarf2_debug_line_missing_end_sequence_complaint ();
21105
21106 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21107 in which case we still finish recording the last line). */
21108 state_machine.record_line (true);
21109 }
21110 }
21111
21112 /* Decode the Line Number Program (LNP) for the given line_header
21113 structure and CU. The actual information extracted and the type
21114 of structures created from the LNP depends on the value of PST.
21115
21116 1. If PST is NULL, then this procedure uses the data from the program
21117 to create all necessary symbol tables, and their linetables.
21118
21119 2. If PST is not NULL, this procedure reads the program to determine
21120 the list of files included by the unit represented by PST, and
21121 builds all the associated partial symbol tables.
21122
21123 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21124 It is used for relative paths in the line table.
21125 NOTE: When processing partial symtabs (pst != NULL),
21126 comp_dir == pst->dirname.
21127
21128 NOTE: It is important that psymtabs have the same file name (via strcmp)
21129 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21130 symtab we don't use it in the name of the psymtabs we create.
21131 E.g. expand_line_sal requires this when finding psymtabs to expand.
21132 A good testcase for this is mb-inline.exp.
21133
21134 LOWPC is the lowest address in CU (or 0 if not known).
21135
21136 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21137 for its PC<->lines mapping information. Otherwise only the filename
21138 table is read in. */
21139
21140 static void
21141 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21142 struct dwarf2_cu *cu, struct partial_symtab *pst,
21143 CORE_ADDR lowpc, int decode_mapping)
21144 {
21145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21146 const int decode_for_pst_p = (pst != NULL);
21147
21148 if (decode_mapping)
21149 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21150
21151 if (decode_for_pst_p)
21152 {
21153 int file_index;
21154
21155 /* Now that we're done scanning the Line Header Program, we can
21156 create the psymtab of each included file. */
21157 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21158 if (lh->file_names[file_index].included_p == 1)
21159 {
21160 gdb::unique_xmalloc_ptr<char> name_holder;
21161 const char *include_name =
21162 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21163 &name_holder);
21164 if (include_name != NULL)
21165 dwarf2_create_include_psymtab (include_name, pst, objfile);
21166 }
21167 }
21168 else
21169 {
21170 /* Make sure a symtab is created for every file, even files
21171 which contain only variables (i.e. no code with associated
21172 line numbers). */
21173 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21174 int i;
21175
21176 for (i = 0; i < lh->file_names.size (); i++)
21177 {
21178 file_entry &fe = lh->file_names[i];
21179
21180 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21181
21182 if (cu->builder->get_current_subfile ()->symtab == NULL)
21183 {
21184 cu->builder->get_current_subfile ()->symtab
21185 = allocate_symtab (cust,
21186 cu->builder->get_current_subfile ()->name);
21187 }
21188 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21189 }
21190 }
21191 }
21192
21193 /* Start a subfile for DWARF. FILENAME is the name of the file and
21194 DIRNAME the name of the source directory which contains FILENAME
21195 or NULL if not known.
21196 This routine tries to keep line numbers from identical absolute and
21197 relative file names in a common subfile.
21198
21199 Using the `list' example from the GDB testsuite, which resides in
21200 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21201 of /srcdir/list0.c yields the following debugging information for list0.c:
21202
21203 DW_AT_name: /srcdir/list0.c
21204 DW_AT_comp_dir: /compdir
21205 files.files[0].name: list0.h
21206 files.files[0].dir: /srcdir
21207 files.files[1].name: list0.c
21208 files.files[1].dir: /srcdir
21209
21210 The line number information for list0.c has to end up in a single
21211 subfile, so that `break /srcdir/list0.c:1' works as expected.
21212 start_subfile will ensure that this happens provided that we pass the
21213 concatenation of files.files[1].dir and files.files[1].name as the
21214 subfile's name. */
21215
21216 static void
21217 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21218 const char *dirname)
21219 {
21220 char *copy = NULL;
21221
21222 /* In order not to lose the line information directory,
21223 we concatenate it to the filename when it makes sense.
21224 Note that the Dwarf3 standard says (speaking of filenames in line
21225 information): ``The directory index is ignored for file names
21226 that represent full path names''. Thus ignoring dirname in the
21227 `else' branch below isn't an issue. */
21228
21229 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21230 {
21231 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21232 filename = copy;
21233 }
21234
21235 cu->builder->start_subfile (filename);
21236
21237 if (copy != NULL)
21238 xfree (copy);
21239 }
21240
21241 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21242 buildsym_compunit constructor. */
21243
21244 static struct compunit_symtab *
21245 dwarf2_start_symtab (struct dwarf2_cu *cu,
21246 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21247 {
21248 gdb_assert (cu->builder == nullptr);
21249
21250 cu->builder.reset (new struct buildsym_compunit
21251 (cu->per_cu->dwarf2_per_objfile->objfile,
21252 name, comp_dir, cu->language, low_pc));
21253
21254 cu->list_in_scope = cu->builder->get_file_symbols ();
21255
21256 cu->builder->record_debugformat ("DWARF 2");
21257 cu->builder->record_producer (cu->producer);
21258
21259 cu->processing_has_namespace_info = false;
21260
21261 return cu->builder->get_compunit_symtab ();
21262 }
21263
21264 static void
21265 var_decode_location (struct attribute *attr, struct symbol *sym,
21266 struct dwarf2_cu *cu)
21267 {
21268 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21269 struct comp_unit_head *cu_header = &cu->header;
21270
21271 /* NOTE drow/2003-01-30: There used to be a comment and some special
21272 code here to turn a symbol with DW_AT_external and a
21273 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21274 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21275 with some versions of binutils) where shared libraries could have
21276 relocations against symbols in their debug information - the
21277 minimal symbol would have the right address, but the debug info
21278 would not. It's no longer necessary, because we will explicitly
21279 apply relocations when we read in the debug information now. */
21280
21281 /* A DW_AT_location attribute with no contents indicates that a
21282 variable has been optimized away. */
21283 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21284 {
21285 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21286 return;
21287 }
21288
21289 /* Handle one degenerate form of location expression specially, to
21290 preserve GDB's previous behavior when section offsets are
21291 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21292 then mark this symbol as LOC_STATIC. */
21293
21294 if (attr_form_is_block (attr)
21295 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21296 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21297 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21298 && (DW_BLOCK (attr)->size
21299 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21300 {
21301 unsigned int dummy;
21302
21303 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21304 SYMBOL_VALUE_ADDRESS (sym) =
21305 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21306 else
21307 SYMBOL_VALUE_ADDRESS (sym) =
21308 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21309 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21310 fixup_symbol_section (sym, objfile);
21311 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21312 SYMBOL_SECTION (sym));
21313 return;
21314 }
21315
21316 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21317 expression evaluator, and use LOC_COMPUTED only when necessary
21318 (i.e. when the value of a register or memory location is
21319 referenced, or a thread-local block, etc.). Then again, it might
21320 not be worthwhile. I'm assuming that it isn't unless performance
21321 or memory numbers show me otherwise. */
21322
21323 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21324
21325 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21326 cu->has_loclist = true;
21327 }
21328
21329 /* Given a pointer to a DWARF information entry, figure out if we need
21330 to make a symbol table entry for it, and if so, create a new entry
21331 and return a pointer to it.
21332 If TYPE is NULL, determine symbol type from the die, otherwise
21333 used the passed type.
21334 If SPACE is not NULL, use it to hold the new symbol. If it is
21335 NULL, allocate a new symbol on the objfile's obstack. */
21336
21337 static struct symbol *
21338 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21339 struct symbol *space)
21340 {
21341 struct dwarf2_per_objfile *dwarf2_per_objfile
21342 = cu->per_cu->dwarf2_per_objfile;
21343 struct objfile *objfile = dwarf2_per_objfile->objfile;
21344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21345 struct symbol *sym = NULL;
21346 const char *name;
21347 struct attribute *attr = NULL;
21348 struct attribute *attr2 = NULL;
21349 CORE_ADDR baseaddr;
21350 struct pending **list_to_add = NULL;
21351
21352 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21353
21354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21355
21356 name = dwarf2_name (die, cu);
21357 if (name)
21358 {
21359 const char *linkagename;
21360 int suppress_add = 0;
21361
21362 if (space)
21363 sym = space;
21364 else
21365 sym = allocate_symbol (objfile);
21366 OBJSTAT (objfile, n_syms++);
21367
21368 /* Cache this symbol's name and the name's demangled form (if any). */
21369 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21370 linkagename = dwarf2_physname (name, die, cu);
21371 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21372
21373 /* Fortran does not have mangling standard and the mangling does differ
21374 between gfortran, iFort etc. */
21375 if (cu->language == language_fortran
21376 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21377 symbol_set_demangled_name (&(sym->ginfo),
21378 dwarf2_full_name (name, die, cu),
21379 NULL);
21380
21381 /* Default assumptions.
21382 Use the passed type or decode it from the die. */
21383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21384 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21385 if (type != NULL)
21386 SYMBOL_TYPE (sym) = type;
21387 else
21388 SYMBOL_TYPE (sym) = die_type (die, cu);
21389 attr = dwarf2_attr (die,
21390 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21391 cu);
21392 if (attr)
21393 {
21394 SYMBOL_LINE (sym) = DW_UNSND (attr);
21395 }
21396
21397 attr = dwarf2_attr (die,
21398 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21399 cu);
21400 if (attr)
21401 {
21402 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21403 struct file_entry *fe;
21404
21405 if (cu->line_header != NULL)
21406 fe = cu->line_header->file_name_at (file_index);
21407 else
21408 fe = NULL;
21409
21410 if (fe == NULL)
21411 complaint (_("file index out of range"));
21412 else
21413 symbol_set_symtab (sym, fe->symtab);
21414 }
21415
21416 switch (die->tag)
21417 {
21418 case DW_TAG_label:
21419 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21420 if (attr)
21421 {
21422 CORE_ADDR addr;
21423
21424 addr = attr_value_as_address (attr);
21425 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21426 SYMBOL_VALUE_ADDRESS (sym) = addr;
21427 }
21428 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21429 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21430 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21431 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21432 break;
21433 case DW_TAG_subprogram:
21434 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21435 finish_block. */
21436 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21437 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21438 if ((attr2 && (DW_UNSND (attr2) != 0))
21439 || cu->language == language_ada)
21440 {
21441 /* Subprograms marked external are stored as a global symbol.
21442 Ada subprograms, whether marked external or not, are always
21443 stored as a global symbol, because we want to be able to
21444 access them globally. For instance, we want to be able
21445 to break on a nested subprogram without having to
21446 specify the context. */
21447 list_to_add = cu->builder->get_global_symbols ();
21448 }
21449 else
21450 {
21451 list_to_add = cu->list_in_scope;
21452 }
21453 break;
21454 case DW_TAG_inlined_subroutine:
21455 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21456 finish_block. */
21457 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21458 SYMBOL_INLINED (sym) = 1;
21459 list_to_add = cu->list_in_scope;
21460 break;
21461 case DW_TAG_template_value_param:
21462 suppress_add = 1;
21463 /* Fall through. */
21464 case DW_TAG_constant:
21465 case DW_TAG_variable:
21466 case DW_TAG_member:
21467 /* Compilation with minimal debug info may result in
21468 variables with missing type entries. Change the
21469 misleading `void' type to something sensible. */
21470 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21471 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21472
21473 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21474 /* In the case of DW_TAG_member, we should only be called for
21475 static const members. */
21476 if (die->tag == DW_TAG_member)
21477 {
21478 /* dwarf2_add_field uses die_is_declaration,
21479 so we do the same. */
21480 gdb_assert (die_is_declaration (die, cu));
21481 gdb_assert (attr);
21482 }
21483 if (attr)
21484 {
21485 dwarf2_const_value (attr, sym, cu);
21486 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21487 if (!suppress_add)
21488 {
21489 if (attr2 && (DW_UNSND (attr2) != 0))
21490 list_to_add = cu->builder->get_global_symbols ();
21491 else
21492 list_to_add = cu->list_in_scope;
21493 }
21494 break;
21495 }
21496 attr = dwarf2_attr (die, DW_AT_location, cu);
21497 if (attr)
21498 {
21499 var_decode_location (attr, sym, cu);
21500 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21501
21502 /* Fortran explicitly imports any global symbols to the local
21503 scope by DW_TAG_common_block. */
21504 if (cu->language == language_fortran && die->parent
21505 && die->parent->tag == DW_TAG_common_block)
21506 attr2 = NULL;
21507
21508 if (SYMBOL_CLASS (sym) == LOC_STATIC
21509 && SYMBOL_VALUE_ADDRESS (sym) == 0
21510 && !dwarf2_per_objfile->has_section_at_zero)
21511 {
21512 /* When a static variable is eliminated by the linker,
21513 the corresponding debug information is not stripped
21514 out, but the variable address is set to null;
21515 do not add such variables into symbol table. */
21516 }
21517 else if (attr2 && (DW_UNSND (attr2) != 0))
21518 {
21519 /* Workaround gfortran PR debug/40040 - it uses
21520 DW_AT_location for variables in -fPIC libraries which may
21521 get overriden by other libraries/executable and get
21522 a different address. Resolve it by the minimal symbol
21523 which may come from inferior's executable using copy
21524 relocation. Make this workaround only for gfortran as for
21525 other compilers GDB cannot guess the minimal symbol
21526 Fortran mangling kind. */
21527 if (cu->language == language_fortran && die->parent
21528 && die->parent->tag == DW_TAG_module
21529 && cu->producer
21530 && startswith (cu->producer, "GNU Fortran"))
21531 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21532
21533 /* A variable with DW_AT_external is never static,
21534 but it may be block-scoped. */
21535 list_to_add
21536 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21537 ? cu->builder->get_global_symbols ()
21538 : cu->list_in_scope);
21539 }
21540 else
21541 list_to_add = cu->list_in_scope;
21542 }
21543 else
21544 {
21545 /* We do not know the address of this symbol.
21546 If it is an external symbol and we have type information
21547 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21548 The address of the variable will then be determined from
21549 the minimal symbol table whenever the variable is
21550 referenced. */
21551 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21552
21553 /* Fortran explicitly imports any global symbols to the local
21554 scope by DW_TAG_common_block. */
21555 if (cu->language == language_fortran && die->parent
21556 && die->parent->tag == DW_TAG_common_block)
21557 {
21558 /* SYMBOL_CLASS doesn't matter here because
21559 read_common_block is going to reset it. */
21560 if (!suppress_add)
21561 list_to_add = cu->list_in_scope;
21562 }
21563 else if (attr2 && (DW_UNSND (attr2) != 0)
21564 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21565 {
21566 /* A variable with DW_AT_external is never static, but it
21567 may be block-scoped. */
21568 list_to_add
21569 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21570 ? cu->builder->get_global_symbols ()
21571 : cu->list_in_scope);
21572
21573 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21574 }
21575 else if (!die_is_declaration (die, cu))
21576 {
21577 /* Use the default LOC_OPTIMIZED_OUT class. */
21578 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21579 if (!suppress_add)
21580 list_to_add = cu->list_in_scope;
21581 }
21582 }
21583 break;
21584 case DW_TAG_formal_parameter:
21585 {
21586 /* If we are inside a function, mark this as an argument. If
21587 not, we might be looking at an argument to an inlined function
21588 when we do not have enough information to show inlined frames;
21589 pretend it's a local variable in that case so that the user can
21590 still see it. */
21591 struct context_stack *curr
21592 = cu->builder->get_current_context_stack ();
21593 if (curr != nullptr && curr->name != nullptr)
21594 SYMBOL_IS_ARGUMENT (sym) = 1;
21595 attr = dwarf2_attr (die, DW_AT_location, cu);
21596 if (attr)
21597 {
21598 var_decode_location (attr, sym, cu);
21599 }
21600 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21601 if (attr)
21602 {
21603 dwarf2_const_value (attr, sym, cu);
21604 }
21605
21606 list_to_add = cu->list_in_scope;
21607 }
21608 break;
21609 case DW_TAG_unspecified_parameters:
21610 /* From varargs functions; gdb doesn't seem to have any
21611 interest in this information, so just ignore it for now.
21612 (FIXME?) */
21613 break;
21614 case DW_TAG_template_type_param:
21615 suppress_add = 1;
21616 /* Fall through. */
21617 case DW_TAG_class_type:
21618 case DW_TAG_interface_type:
21619 case DW_TAG_structure_type:
21620 case DW_TAG_union_type:
21621 case DW_TAG_set_type:
21622 case DW_TAG_enumeration_type:
21623 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21624 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21625
21626 {
21627 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21628 really ever be static objects: otherwise, if you try
21629 to, say, break of a class's method and you're in a file
21630 which doesn't mention that class, it won't work unless
21631 the check for all static symbols in lookup_symbol_aux
21632 saves you. See the OtherFileClass tests in
21633 gdb.c++/namespace.exp. */
21634
21635 if (!suppress_add)
21636 {
21637 list_to_add
21638 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21639 && cu->language == language_cplus
21640 ? cu->builder->get_global_symbols ()
21641 : cu->list_in_scope);
21642
21643 /* The semantics of C++ state that "struct foo {
21644 ... }" also defines a typedef for "foo". */
21645 if (cu->language == language_cplus
21646 || cu->language == language_ada
21647 || cu->language == language_d
21648 || cu->language == language_rust)
21649 {
21650 /* The symbol's name is already allocated along
21651 with this objfile, so we don't need to
21652 duplicate it for the type. */
21653 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21654 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21655 }
21656 }
21657 }
21658 break;
21659 case DW_TAG_typedef:
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21661 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21662 list_to_add = cu->list_in_scope;
21663 break;
21664 case DW_TAG_base_type:
21665 case DW_TAG_subrange_type:
21666 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21667 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21668 list_to_add = cu->list_in_scope;
21669 break;
21670 case DW_TAG_enumerator:
21671 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21672 if (attr)
21673 {
21674 dwarf2_const_value (attr, sym, cu);
21675 }
21676 {
21677 /* NOTE: carlton/2003-11-10: See comment above in the
21678 DW_TAG_class_type, etc. block. */
21679
21680 list_to_add
21681 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21682 && cu->language == language_cplus
21683 ? cu->builder->get_global_symbols ()
21684 : cu->list_in_scope);
21685 }
21686 break;
21687 case DW_TAG_imported_declaration:
21688 case DW_TAG_namespace:
21689 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21690 list_to_add = cu->builder->get_global_symbols ();
21691 break;
21692 case DW_TAG_module:
21693 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21694 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21695 list_to_add = cu->builder->get_global_symbols ();
21696 break;
21697 case DW_TAG_common_block:
21698 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21699 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21700 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21701 break;
21702 default:
21703 /* Not a tag we recognize. Hopefully we aren't processing
21704 trash data, but since we must specifically ignore things
21705 we don't recognize, there is nothing else we should do at
21706 this point. */
21707 complaint (_("unsupported tag: '%s'"),
21708 dwarf_tag_name (die->tag));
21709 break;
21710 }
21711
21712 if (suppress_add)
21713 {
21714 sym->hash_next = objfile->template_symbols;
21715 objfile->template_symbols = sym;
21716 list_to_add = NULL;
21717 }
21718
21719 if (list_to_add != NULL)
21720 dw2_add_symbol_to_list (sym, list_to_add);
21721
21722 /* For the benefit of old versions of GCC, check for anonymous
21723 namespaces based on the demangled name. */
21724 if (!cu->processing_has_namespace_info
21725 && cu->language == language_cplus)
21726 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21727 }
21728 return (sym);
21729 }
21730
21731 /* Given an attr with a DW_FORM_dataN value in host byte order,
21732 zero-extend it as appropriate for the symbol's type. The DWARF
21733 standard (v4) is not entirely clear about the meaning of using
21734 DW_FORM_dataN for a constant with a signed type, where the type is
21735 wider than the data. The conclusion of a discussion on the DWARF
21736 list was that this is unspecified. We choose to always zero-extend
21737 because that is the interpretation long in use by GCC. */
21738
21739 static gdb_byte *
21740 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21741 struct dwarf2_cu *cu, LONGEST *value, int bits)
21742 {
21743 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21744 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21745 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21746 LONGEST l = DW_UNSND (attr);
21747
21748 if (bits < sizeof (*value) * 8)
21749 {
21750 l &= ((LONGEST) 1 << bits) - 1;
21751 *value = l;
21752 }
21753 else if (bits == sizeof (*value) * 8)
21754 *value = l;
21755 else
21756 {
21757 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21758 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21759 return bytes;
21760 }
21761
21762 return NULL;
21763 }
21764
21765 /* Read a constant value from an attribute. Either set *VALUE, or if
21766 the value does not fit in *VALUE, set *BYTES - either already
21767 allocated on the objfile obstack, or newly allocated on OBSTACK,
21768 or, set *BATON, if we translated the constant to a location
21769 expression. */
21770
21771 static void
21772 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21773 const char *name, struct obstack *obstack,
21774 struct dwarf2_cu *cu,
21775 LONGEST *value, const gdb_byte **bytes,
21776 struct dwarf2_locexpr_baton **baton)
21777 {
21778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21779 struct comp_unit_head *cu_header = &cu->header;
21780 struct dwarf_block *blk;
21781 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21782 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21783
21784 *value = 0;
21785 *bytes = NULL;
21786 *baton = NULL;
21787
21788 switch (attr->form)
21789 {
21790 case DW_FORM_addr:
21791 case DW_FORM_GNU_addr_index:
21792 {
21793 gdb_byte *data;
21794
21795 if (TYPE_LENGTH (type) != cu_header->addr_size)
21796 dwarf2_const_value_length_mismatch_complaint (name,
21797 cu_header->addr_size,
21798 TYPE_LENGTH (type));
21799 /* Symbols of this form are reasonably rare, so we just
21800 piggyback on the existing location code rather than writing
21801 a new implementation of symbol_computed_ops. */
21802 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21803 (*baton)->per_cu = cu->per_cu;
21804 gdb_assert ((*baton)->per_cu);
21805
21806 (*baton)->size = 2 + cu_header->addr_size;
21807 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21808 (*baton)->data = data;
21809
21810 data[0] = DW_OP_addr;
21811 store_unsigned_integer (&data[1], cu_header->addr_size,
21812 byte_order, DW_ADDR (attr));
21813 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21814 }
21815 break;
21816 case DW_FORM_string:
21817 case DW_FORM_strp:
21818 case DW_FORM_GNU_str_index:
21819 case DW_FORM_GNU_strp_alt:
21820 /* DW_STRING is already allocated on the objfile obstack, point
21821 directly to it. */
21822 *bytes = (const gdb_byte *) DW_STRING (attr);
21823 break;
21824 case DW_FORM_block1:
21825 case DW_FORM_block2:
21826 case DW_FORM_block4:
21827 case DW_FORM_block:
21828 case DW_FORM_exprloc:
21829 case DW_FORM_data16:
21830 blk = DW_BLOCK (attr);
21831 if (TYPE_LENGTH (type) != blk->size)
21832 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21833 TYPE_LENGTH (type));
21834 *bytes = blk->data;
21835 break;
21836
21837 /* The DW_AT_const_value attributes are supposed to carry the
21838 symbol's value "represented as it would be on the target
21839 architecture." By the time we get here, it's already been
21840 converted to host endianness, so we just need to sign- or
21841 zero-extend it as appropriate. */
21842 case DW_FORM_data1:
21843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21844 break;
21845 case DW_FORM_data2:
21846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21847 break;
21848 case DW_FORM_data4:
21849 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21850 break;
21851 case DW_FORM_data8:
21852 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21853 break;
21854
21855 case DW_FORM_sdata:
21856 case DW_FORM_implicit_const:
21857 *value = DW_SND (attr);
21858 break;
21859
21860 case DW_FORM_udata:
21861 *value = DW_UNSND (attr);
21862 break;
21863
21864 default:
21865 complaint (_("unsupported const value attribute form: '%s'"),
21866 dwarf_form_name (attr->form));
21867 *value = 0;
21868 break;
21869 }
21870 }
21871
21872
21873 /* Copy constant value from an attribute to a symbol. */
21874
21875 static void
21876 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21877 struct dwarf2_cu *cu)
21878 {
21879 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21880 LONGEST value;
21881 const gdb_byte *bytes;
21882 struct dwarf2_locexpr_baton *baton;
21883
21884 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21885 SYMBOL_PRINT_NAME (sym),
21886 &objfile->objfile_obstack, cu,
21887 &value, &bytes, &baton);
21888
21889 if (baton != NULL)
21890 {
21891 SYMBOL_LOCATION_BATON (sym) = baton;
21892 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21893 }
21894 else if (bytes != NULL)
21895 {
21896 SYMBOL_VALUE_BYTES (sym) = bytes;
21897 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21898 }
21899 else
21900 {
21901 SYMBOL_VALUE (sym) = value;
21902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21903 }
21904 }
21905
21906 /* Return the type of the die in question using its DW_AT_type attribute. */
21907
21908 static struct type *
21909 die_type (struct die_info *die, struct dwarf2_cu *cu)
21910 {
21911 struct attribute *type_attr;
21912
21913 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21914 if (!type_attr)
21915 {
21916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21917 /* A missing DW_AT_type represents a void type. */
21918 return objfile_type (objfile)->builtin_void;
21919 }
21920
21921 return lookup_die_type (die, type_attr, cu);
21922 }
21923
21924 /* True iff CU's producer generates GNAT Ada auxiliary information
21925 that allows to find parallel types through that information instead
21926 of having to do expensive parallel lookups by type name. */
21927
21928 static int
21929 need_gnat_info (struct dwarf2_cu *cu)
21930 {
21931 /* Assume that the Ada compiler was GNAT, which always produces
21932 the auxiliary information. */
21933 return (cu->language == language_ada);
21934 }
21935
21936 /* Return the auxiliary type of the die in question using its
21937 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21938 attribute is not present. */
21939
21940 static struct type *
21941 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21942 {
21943 struct attribute *type_attr;
21944
21945 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21946 if (!type_attr)
21947 return NULL;
21948
21949 return lookup_die_type (die, type_attr, cu);
21950 }
21951
21952 /* If DIE has a descriptive_type attribute, then set the TYPE's
21953 descriptive type accordingly. */
21954
21955 static void
21956 set_descriptive_type (struct type *type, struct die_info *die,
21957 struct dwarf2_cu *cu)
21958 {
21959 struct type *descriptive_type = die_descriptive_type (die, cu);
21960
21961 if (descriptive_type)
21962 {
21963 ALLOCATE_GNAT_AUX_TYPE (type);
21964 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21965 }
21966 }
21967
21968 /* Return the containing type of the die in question using its
21969 DW_AT_containing_type attribute. */
21970
21971 static struct type *
21972 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21973 {
21974 struct attribute *type_attr;
21975 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21976
21977 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21978 if (!type_attr)
21979 error (_("Dwarf Error: Problem turning containing type into gdb type "
21980 "[in module %s]"), objfile_name (objfile));
21981
21982 return lookup_die_type (die, type_attr, cu);
21983 }
21984
21985 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21986
21987 static struct type *
21988 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21989 {
21990 struct dwarf2_per_objfile *dwarf2_per_objfile
21991 = cu->per_cu->dwarf2_per_objfile;
21992 struct objfile *objfile = dwarf2_per_objfile->objfile;
21993 char *saved;
21994
21995 std::string message
21996 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21997 objfile_name (objfile),
21998 sect_offset_str (cu->header.sect_off),
21999 sect_offset_str (die->sect_off));
22000 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22001 message.c_str (), message.length ());
22002
22003 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22004 }
22005
22006 /* Look up the type of DIE in CU using its type attribute ATTR.
22007 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22008 DW_AT_containing_type.
22009 If there is no type substitute an error marker. */
22010
22011 static struct type *
22012 lookup_die_type (struct die_info *die, const struct attribute *attr,
22013 struct dwarf2_cu *cu)
22014 {
22015 struct dwarf2_per_objfile *dwarf2_per_objfile
22016 = cu->per_cu->dwarf2_per_objfile;
22017 struct objfile *objfile = dwarf2_per_objfile->objfile;
22018 struct type *this_type;
22019
22020 gdb_assert (attr->name == DW_AT_type
22021 || attr->name == DW_AT_GNAT_descriptive_type
22022 || attr->name == DW_AT_containing_type);
22023
22024 /* First see if we have it cached. */
22025
22026 if (attr->form == DW_FORM_GNU_ref_alt)
22027 {
22028 struct dwarf2_per_cu_data *per_cu;
22029 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22030
22031 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22032 dwarf2_per_objfile);
22033 this_type = get_die_type_at_offset (sect_off, per_cu);
22034 }
22035 else if (attr_form_is_ref (attr))
22036 {
22037 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22038
22039 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22040 }
22041 else if (attr->form == DW_FORM_ref_sig8)
22042 {
22043 ULONGEST signature = DW_SIGNATURE (attr);
22044
22045 return get_signatured_type (die, signature, cu);
22046 }
22047 else
22048 {
22049 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22050 " at %s [in module %s]"),
22051 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22052 objfile_name (objfile));
22053 return build_error_marker_type (cu, die);
22054 }
22055
22056 /* If not cached we need to read it in. */
22057
22058 if (this_type == NULL)
22059 {
22060 struct die_info *type_die = NULL;
22061 struct dwarf2_cu *type_cu = cu;
22062
22063 if (attr_form_is_ref (attr))
22064 type_die = follow_die_ref (die, attr, &type_cu);
22065 if (type_die == NULL)
22066 return build_error_marker_type (cu, die);
22067 /* If we find the type now, it's probably because the type came
22068 from an inter-CU reference and the type's CU got expanded before
22069 ours. */
22070 this_type = read_type_die (type_die, type_cu);
22071 }
22072
22073 /* If we still don't have a type use an error marker. */
22074
22075 if (this_type == NULL)
22076 return build_error_marker_type (cu, die);
22077
22078 return this_type;
22079 }
22080
22081 /* Return the type in DIE, CU.
22082 Returns NULL for invalid types.
22083
22084 This first does a lookup in die_type_hash,
22085 and only reads the die in if necessary.
22086
22087 NOTE: This can be called when reading in partial or full symbols. */
22088
22089 static struct type *
22090 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22091 {
22092 struct type *this_type;
22093
22094 this_type = get_die_type (die, cu);
22095 if (this_type)
22096 return this_type;
22097
22098 return read_type_die_1 (die, cu);
22099 }
22100
22101 /* Read the type in DIE, CU.
22102 Returns NULL for invalid types. */
22103
22104 static struct type *
22105 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22106 {
22107 struct type *this_type = NULL;
22108
22109 switch (die->tag)
22110 {
22111 case DW_TAG_class_type:
22112 case DW_TAG_interface_type:
22113 case DW_TAG_structure_type:
22114 case DW_TAG_union_type:
22115 this_type = read_structure_type (die, cu);
22116 break;
22117 case DW_TAG_enumeration_type:
22118 this_type = read_enumeration_type (die, cu);
22119 break;
22120 case DW_TAG_subprogram:
22121 case DW_TAG_subroutine_type:
22122 case DW_TAG_inlined_subroutine:
22123 this_type = read_subroutine_type (die, cu);
22124 break;
22125 case DW_TAG_array_type:
22126 this_type = read_array_type (die, cu);
22127 break;
22128 case DW_TAG_set_type:
22129 this_type = read_set_type (die, cu);
22130 break;
22131 case DW_TAG_pointer_type:
22132 this_type = read_tag_pointer_type (die, cu);
22133 break;
22134 case DW_TAG_ptr_to_member_type:
22135 this_type = read_tag_ptr_to_member_type (die, cu);
22136 break;
22137 case DW_TAG_reference_type:
22138 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22139 break;
22140 case DW_TAG_rvalue_reference_type:
22141 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22142 break;
22143 case DW_TAG_const_type:
22144 this_type = read_tag_const_type (die, cu);
22145 break;
22146 case DW_TAG_volatile_type:
22147 this_type = read_tag_volatile_type (die, cu);
22148 break;
22149 case DW_TAG_restrict_type:
22150 this_type = read_tag_restrict_type (die, cu);
22151 break;
22152 case DW_TAG_string_type:
22153 this_type = read_tag_string_type (die, cu);
22154 break;
22155 case DW_TAG_typedef:
22156 this_type = read_typedef (die, cu);
22157 break;
22158 case DW_TAG_subrange_type:
22159 this_type = read_subrange_type (die, cu);
22160 break;
22161 case DW_TAG_base_type:
22162 this_type = read_base_type (die, cu);
22163 break;
22164 case DW_TAG_unspecified_type:
22165 this_type = read_unspecified_type (die, cu);
22166 break;
22167 case DW_TAG_namespace:
22168 this_type = read_namespace_type (die, cu);
22169 break;
22170 case DW_TAG_module:
22171 this_type = read_module_type (die, cu);
22172 break;
22173 case DW_TAG_atomic_type:
22174 this_type = read_tag_atomic_type (die, cu);
22175 break;
22176 default:
22177 complaint (_("unexpected tag in read_type_die: '%s'"),
22178 dwarf_tag_name (die->tag));
22179 break;
22180 }
22181
22182 return this_type;
22183 }
22184
22185 /* See if we can figure out if the class lives in a namespace. We do
22186 this by looking for a member function; its demangled name will
22187 contain namespace info, if there is any.
22188 Return the computed name or NULL.
22189 Space for the result is allocated on the objfile's obstack.
22190 This is the full-die version of guess_partial_die_structure_name.
22191 In this case we know DIE has no useful parent. */
22192
22193 static char *
22194 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22195 {
22196 struct die_info *spec_die;
22197 struct dwarf2_cu *spec_cu;
22198 struct die_info *child;
22199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22200
22201 spec_cu = cu;
22202 spec_die = die_specification (die, &spec_cu);
22203 if (spec_die != NULL)
22204 {
22205 die = spec_die;
22206 cu = spec_cu;
22207 }
22208
22209 for (child = die->child;
22210 child != NULL;
22211 child = child->sibling)
22212 {
22213 if (child->tag == DW_TAG_subprogram)
22214 {
22215 const char *linkage_name = dw2_linkage_name (child, cu);
22216
22217 if (linkage_name != NULL)
22218 {
22219 char *actual_name
22220 = language_class_name_from_physname (cu->language_defn,
22221 linkage_name);
22222 char *name = NULL;
22223
22224 if (actual_name != NULL)
22225 {
22226 const char *die_name = dwarf2_name (die, cu);
22227
22228 if (die_name != NULL
22229 && strcmp (die_name, actual_name) != 0)
22230 {
22231 /* Strip off the class name from the full name.
22232 We want the prefix. */
22233 int die_name_len = strlen (die_name);
22234 int actual_name_len = strlen (actual_name);
22235
22236 /* Test for '::' as a sanity check. */
22237 if (actual_name_len > die_name_len + 2
22238 && actual_name[actual_name_len
22239 - die_name_len - 1] == ':')
22240 name = (char *) obstack_copy0 (
22241 &objfile->per_bfd->storage_obstack,
22242 actual_name, actual_name_len - die_name_len - 2);
22243 }
22244 }
22245 xfree (actual_name);
22246 return name;
22247 }
22248 }
22249 }
22250
22251 return NULL;
22252 }
22253
22254 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22255 prefix part in such case. See
22256 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22257
22258 static const char *
22259 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22260 {
22261 struct attribute *attr;
22262 const char *base;
22263
22264 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22265 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22266 return NULL;
22267
22268 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22269 return NULL;
22270
22271 attr = dw2_linkage_name_attr (die, cu);
22272 if (attr == NULL || DW_STRING (attr) == NULL)
22273 return NULL;
22274
22275 /* dwarf2_name had to be already called. */
22276 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22277
22278 /* Strip the base name, keep any leading namespaces/classes. */
22279 base = strrchr (DW_STRING (attr), ':');
22280 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22281 return "";
22282
22283 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22284 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22285 DW_STRING (attr),
22286 &base[-1] - DW_STRING (attr));
22287 }
22288
22289 /* Return the name of the namespace/class that DIE is defined within,
22290 or "" if we can't tell. The caller should not xfree the result.
22291
22292 For example, if we're within the method foo() in the following
22293 code:
22294
22295 namespace N {
22296 class C {
22297 void foo () {
22298 }
22299 };
22300 }
22301
22302 then determine_prefix on foo's die will return "N::C". */
22303
22304 static const char *
22305 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22306 {
22307 struct dwarf2_per_objfile *dwarf2_per_objfile
22308 = cu->per_cu->dwarf2_per_objfile;
22309 struct die_info *parent, *spec_die;
22310 struct dwarf2_cu *spec_cu;
22311 struct type *parent_type;
22312 const char *retval;
22313
22314 if (cu->language != language_cplus
22315 && cu->language != language_fortran && cu->language != language_d
22316 && cu->language != language_rust)
22317 return "";
22318
22319 retval = anonymous_struct_prefix (die, cu);
22320 if (retval)
22321 return retval;
22322
22323 /* We have to be careful in the presence of DW_AT_specification.
22324 For example, with GCC 3.4, given the code
22325
22326 namespace N {
22327 void foo() {
22328 // Definition of N::foo.
22329 }
22330 }
22331
22332 then we'll have a tree of DIEs like this:
22333
22334 1: DW_TAG_compile_unit
22335 2: DW_TAG_namespace // N
22336 3: DW_TAG_subprogram // declaration of N::foo
22337 4: DW_TAG_subprogram // definition of N::foo
22338 DW_AT_specification // refers to die #3
22339
22340 Thus, when processing die #4, we have to pretend that we're in
22341 the context of its DW_AT_specification, namely the contex of die
22342 #3. */
22343 spec_cu = cu;
22344 spec_die = die_specification (die, &spec_cu);
22345 if (spec_die == NULL)
22346 parent = die->parent;
22347 else
22348 {
22349 parent = spec_die->parent;
22350 cu = spec_cu;
22351 }
22352
22353 if (parent == NULL)
22354 return "";
22355 else if (parent->building_fullname)
22356 {
22357 const char *name;
22358 const char *parent_name;
22359
22360 /* It has been seen on RealView 2.2 built binaries,
22361 DW_TAG_template_type_param types actually _defined_ as
22362 children of the parent class:
22363
22364 enum E {};
22365 template class <class Enum> Class{};
22366 Class<enum E> class_e;
22367
22368 1: DW_TAG_class_type (Class)
22369 2: DW_TAG_enumeration_type (E)
22370 3: DW_TAG_enumerator (enum1:0)
22371 3: DW_TAG_enumerator (enum2:1)
22372 ...
22373 2: DW_TAG_template_type_param
22374 DW_AT_type DW_FORM_ref_udata (E)
22375
22376 Besides being broken debug info, it can put GDB into an
22377 infinite loop. Consider:
22378
22379 When we're building the full name for Class<E>, we'll start
22380 at Class, and go look over its template type parameters,
22381 finding E. We'll then try to build the full name of E, and
22382 reach here. We're now trying to build the full name of E,
22383 and look over the parent DIE for containing scope. In the
22384 broken case, if we followed the parent DIE of E, we'd again
22385 find Class, and once again go look at its template type
22386 arguments, etc., etc. Simply don't consider such parent die
22387 as source-level parent of this die (it can't be, the language
22388 doesn't allow it), and break the loop here. */
22389 name = dwarf2_name (die, cu);
22390 parent_name = dwarf2_name (parent, cu);
22391 complaint (_("template param type '%s' defined within parent '%s'"),
22392 name ? name : "<unknown>",
22393 parent_name ? parent_name : "<unknown>");
22394 return "";
22395 }
22396 else
22397 switch (parent->tag)
22398 {
22399 case DW_TAG_namespace:
22400 parent_type = read_type_die (parent, cu);
22401 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22402 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22403 Work around this problem here. */
22404 if (cu->language == language_cplus
22405 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22406 return "";
22407 /* We give a name to even anonymous namespaces. */
22408 return TYPE_NAME (parent_type);
22409 case DW_TAG_class_type:
22410 case DW_TAG_interface_type:
22411 case DW_TAG_structure_type:
22412 case DW_TAG_union_type:
22413 case DW_TAG_module:
22414 parent_type = read_type_die (parent, cu);
22415 if (TYPE_NAME (parent_type) != NULL)
22416 return TYPE_NAME (parent_type);
22417 else
22418 /* An anonymous structure is only allowed non-static data
22419 members; no typedefs, no member functions, et cetera.
22420 So it does not need a prefix. */
22421 return "";
22422 case DW_TAG_compile_unit:
22423 case DW_TAG_partial_unit:
22424 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22425 if (cu->language == language_cplus
22426 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22427 && die->child != NULL
22428 && (die->tag == DW_TAG_class_type
22429 || die->tag == DW_TAG_structure_type
22430 || die->tag == DW_TAG_union_type))
22431 {
22432 char *name = guess_full_die_structure_name (die, cu);
22433 if (name != NULL)
22434 return name;
22435 }
22436 return "";
22437 case DW_TAG_enumeration_type:
22438 parent_type = read_type_die (parent, cu);
22439 if (TYPE_DECLARED_CLASS (parent_type))
22440 {
22441 if (TYPE_NAME (parent_type) != NULL)
22442 return TYPE_NAME (parent_type);
22443 return "";
22444 }
22445 /* Fall through. */
22446 default:
22447 return determine_prefix (parent, cu);
22448 }
22449 }
22450
22451 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22452 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22453 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22454 an obconcat, otherwise allocate storage for the result. The CU argument is
22455 used to determine the language and hence, the appropriate separator. */
22456
22457 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22458
22459 static char *
22460 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22461 int physname, struct dwarf2_cu *cu)
22462 {
22463 const char *lead = "";
22464 const char *sep;
22465
22466 if (suffix == NULL || suffix[0] == '\0'
22467 || prefix == NULL || prefix[0] == '\0')
22468 sep = "";
22469 else if (cu->language == language_d)
22470 {
22471 /* For D, the 'main' function could be defined in any module, but it
22472 should never be prefixed. */
22473 if (strcmp (suffix, "D main") == 0)
22474 {
22475 prefix = "";
22476 sep = "";
22477 }
22478 else
22479 sep = ".";
22480 }
22481 else if (cu->language == language_fortran && physname)
22482 {
22483 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22484 DW_AT_MIPS_linkage_name is preferred and used instead. */
22485
22486 lead = "__";
22487 sep = "_MOD_";
22488 }
22489 else
22490 sep = "::";
22491
22492 if (prefix == NULL)
22493 prefix = "";
22494 if (suffix == NULL)
22495 suffix = "";
22496
22497 if (obs == NULL)
22498 {
22499 char *retval
22500 = ((char *)
22501 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22502
22503 strcpy (retval, lead);
22504 strcat (retval, prefix);
22505 strcat (retval, sep);
22506 strcat (retval, suffix);
22507 return retval;
22508 }
22509 else
22510 {
22511 /* We have an obstack. */
22512 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22513 }
22514 }
22515
22516 /* Return sibling of die, NULL if no sibling. */
22517
22518 static struct die_info *
22519 sibling_die (struct die_info *die)
22520 {
22521 return die->sibling;
22522 }
22523
22524 /* Get name of a die, return NULL if not found. */
22525
22526 static const char *
22527 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22528 struct obstack *obstack)
22529 {
22530 if (name && cu->language == language_cplus)
22531 {
22532 std::string canon_name = cp_canonicalize_string (name);
22533
22534 if (!canon_name.empty ())
22535 {
22536 if (canon_name != name)
22537 name = (const char *) obstack_copy0 (obstack,
22538 canon_name.c_str (),
22539 canon_name.length ());
22540 }
22541 }
22542
22543 return name;
22544 }
22545
22546 /* Get name of a die, return NULL if not found.
22547 Anonymous namespaces are converted to their magic string. */
22548
22549 static const char *
22550 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22551 {
22552 struct attribute *attr;
22553 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22554
22555 attr = dwarf2_attr (die, DW_AT_name, cu);
22556 if ((!attr || !DW_STRING (attr))
22557 && die->tag != DW_TAG_namespace
22558 && die->tag != DW_TAG_class_type
22559 && die->tag != DW_TAG_interface_type
22560 && die->tag != DW_TAG_structure_type
22561 && die->tag != DW_TAG_union_type)
22562 return NULL;
22563
22564 switch (die->tag)
22565 {
22566 case DW_TAG_compile_unit:
22567 case DW_TAG_partial_unit:
22568 /* Compilation units have a DW_AT_name that is a filename, not
22569 a source language identifier. */
22570 case DW_TAG_enumeration_type:
22571 case DW_TAG_enumerator:
22572 /* These tags always have simple identifiers already; no need
22573 to canonicalize them. */
22574 return DW_STRING (attr);
22575
22576 case DW_TAG_namespace:
22577 if (attr != NULL && DW_STRING (attr) != NULL)
22578 return DW_STRING (attr);
22579 return CP_ANONYMOUS_NAMESPACE_STR;
22580
22581 case DW_TAG_class_type:
22582 case DW_TAG_interface_type:
22583 case DW_TAG_structure_type:
22584 case DW_TAG_union_type:
22585 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22586 structures or unions. These were of the form "._%d" in GCC 4.1,
22587 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22588 and GCC 4.4. We work around this problem by ignoring these. */
22589 if (attr && DW_STRING (attr)
22590 && (startswith (DW_STRING (attr), "._")
22591 || startswith (DW_STRING (attr), "<anonymous")))
22592 return NULL;
22593
22594 /* GCC might emit a nameless typedef that has a linkage name. See
22595 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22596 if (!attr || DW_STRING (attr) == NULL)
22597 {
22598 char *demangled = NULL;
22599
22600 attr = dw2_linkage_name_attr (die, cu);
22601 if (attr == NULL || DW_STRING (attr) == NULL)
22602 return NULL;
22603
22604 /* Avoid demangling DW_STRING (attr) the second time on a second
22605 call for the same DIE. */
22606 if (!DW_STRING_IS_CANONICAL (attr))
22607 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22608
22609 if (demangled)
22610 {
22611 const char *base;
22612
22613 /* FIXME: we already did this for the partial symbol... */
22614 DW_STRING (attr)
22615 = ((const char *)
22616 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22617 demangled, strlen (demangled)));
22618 DW_STRING_IS_CANONICAL (attr) = 1;
22619 xfree (demangled);
22620
22621 /* Strip any leading namespaces/classes, keep only the base name.
22622 DW_AT_name for named DIEs does not contain the prefixes. */
22623 base = strrchr (DW_STRING (attr), ':');
22624 if (base && base > DW_STRING (attr) && base[-1] == ':')
22625 return &base[1];
22626 else
22627 return DW_STRING (attr);
22628 }
22629 }
22630 break;
22631
22632 default:
22633 break;
22634 }
22635
22636 if (!DW_STRING_IS_CANONICAL (attr))
22637 {
22638 DW_STRING (attr)
22639 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22640 &objfile->per_bfd->storage_obstack);
22641 DW_STRING_IS_CANONICAL (attr) = 1;
22642 }
22643 return DW_STRING (attr);
22644 }
22645
22646 /* Return the die that this die in an extension of, or NULL if there
22647 is none. *EXT_CU is the CU containing DIE on input, and the CU
22648 containing the return value on output. */
22649
22650 static struct die_info *
22651 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22652 {
22653 struct attribute *attr;
22654
22655 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22656 if (attr == NULL)
22657 return NULL;
22658
22659 return follow_die_ref (die, attr, ext_cu);
22660 }
22661
22662 /* Convert a DIE tag into its string name. */
22663
22664 static const char *
22665 dwarf_tag_name (unsigned tag)
22666 {
22667 const char *name = get_DW_TAG_name (tag);
22668
22669 if (name == NULL)
22670 return "DW_TAG_<unknown>";
22671
22672 return name;
22673 }
22674
22675 /* Convert a DWARF attribute code into its string name. */
22676
22677 static const char *
22678 dwarf_attr_name (unsigned attr)
22679 {
22680 const char *name;
22681
22682 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22683 if (attr == DW_AT_MIPS_fde)
22684 return "DW_AT_MIPS_fde";
22685 #else
22686 if (attr == DW_AT_HP_block_index)
22687 return "DW_AT_HP_block_index";
22688 #endif
22689
22690 name = get_DW_AT_name (attr);
22691
22692 if (name == NULL)
22693 return "DW_AT_<unknown>";
22694
22695 return name;
22696 }
22697
22698 /* Convert a DWARF value form code into its string name. */
22699
22700 static const char *
22701 dwarf_form_name (unsigned form)
22702 {
22703 const char *name = get_DW_FORM_name (form);
22704
22705 if (name == NULL)
22706 return "DW_FORM_<unknown>";
22707
22708 return name;
22709 }
22710
22711 static const char *
22712 dwarf_bool_name (unsigned mybool)
22713 {
22714 if (mybool)
22715 return "TRUE";
22716 else
22717 return "FALSE";
22718 }
22719
22720 /* Convert a DWARF type code into its string name. */
22721
22722 static const char *
22723 dwarf_type_encoding_name (unsigned enc)
22724 {
22725 const char *name = get_DW_ATE_name (enc);
22726
22727 if (name == NULL)
22728 return "DW_ATE_<unknown>";
22729
22730 return name;
22731 }
22732
22733 static void
22734 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22735 {
22736 unsigned int i;
22737
22738 print_spaces (indent, f);
22739 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22740 dwarf_tag_name (die->tag), die->abbrev,
22741 sect_offset_str (die->sect_off));
22742
22743 if (die->parent != NULL)
22744 {
22745 print_spaces (indent, f);
22746 fprintf_unfiltered (f, " parent at offset: %s\n",
22747 sect_offset_str (die->parent->sect_off));
22748 }
22749
22750 print_spaces (indent, f);
22751 fprintf_unfiltered (f, " has children: %s\n",
22752 dwarf_bool_name (die->child != NULL));
22753
22754 print_spaces (indent, f);
22755 fprintf_unfiltered (f, " attributes:\n");
22756
22757 for (i = 0; i < die->num_attrs; ++i)
22758 {
22759 print_spaces (indent, f);
22760 fprintf_unfiltered (f, " %s (%s) ",
22761 dwarf_attr_name (die->attrs[i].name),
22762 dwarf_form_name (die->attrs[i].form));
22763
22764 switch (die->attrs[i].form)
22765 {
22766 case DW_FORM_addr:
22767 case DW_FORM_GNU_addr_index:
22768 fprintf_unfiltered (f, "address: ");
22769 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22770 break;
22771 case DW_FORM_block2:
22772 case DW_FORM_block4:
22773 case DW_FORM_block:
22774 case DW_FORM_block1:
22775 fprintf_unfiltered (f, "block: size %s",
22776 pulongest (DW_BLOCK (&die->attrs[i])->size));
22777 break;
22778 case DW_FORM_exprloc:
22779 fprintf_unfiltered (f, "expression: size %s",
22780 pulongest (DW_BLOCK (&die->attrs[i])->size));
22781 break;
22782 case DW_FORM_data16:
22783 fprintf_unfiltered (f, "constant of 16 bytes");
22784 break;
22785 case DW_FORM_ref_addr:
22786 fprintf_unfiltered (f, "ref address: ");
22787 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22788 break;
22789 case DW_FORM_GNU_ref_alt:
22790 fprintf_unfiltered (f, "alt ref address: ");
22791 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22792 break;
22793 case DW_FORM_ref1:
22794 case DW_FORM_ref2:
22795 case DW_FORM_ref4:
22796 case DW_FORM_ref8:
22797 case DW_FORM_ref_udata:
22798 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22799 (long) (DW_UNSND (&die->attrs[i])));
22800 break;
22801 case DW_FORM_data1:
22802 case DW_FORM_data2:
22803 case DW_FORM_data4:
22804 case DW_FORM_data8:
22805 case DW_FORM_udata:
22806 case DW_FORM_sdata:
22807 fprintf_unfiltered (f, "constant: %s",
22808 pulongest (DW_UNSND (&die->attrs[i])));
22809 break;
22810 case DW_FORM_sec_offset:
22811 fprintf_unfiltered (f, "section offset: %s",
22812 pulongest (DW_UNSND (&die->attrs[i])));
22813 break;
22814 case DW_FORM_ref_sig8:
22815 fprintf_unfiltered (f, "signature: %s",
22816 hex_string (DW_SIGNATURE (&die->attrs[i])));
22817 break;
22818 case DW_FORM_string:
22819 case DW_FORM_strp:
22820 case DW_FORM_line_strp:
22821 case DW_FORM_GNU_str_index:
22822 case DW_FORM_GNU_strp_alt:
22823 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22824 DW_STRING (&die->attrs[i])
22825 ? DW_STRING (&die->attrs[i]) : "",
22826 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22827 break;
22828 case DW_FORM_flag:
22829 if (DW_UNSND (&die->attrs[i]))
22830 fprintf_unfiltered (f, "flag: TRUE");
22831 else
22832 fprintf_unfiltered (f, "flag: FALSE");
22833 break;
22834 case DW_FORM_flag_present:
22835 fprintf_unfiltered (f, "flag: TRUE");
22836 break;
22837 case DW_FORM_indirect:
22838 /* The reader will have reduced the indirect form to
22839 the "base form" so this form should not occur. */
22840 fprintf_unfiltered (f,
22841 "unexpected attribute form: DW_FORM_indirect");
22842 break;
22843 case DW_FORM_implicit_const:
22844 fprintf_unfiltered (f, "constant: %s",
22845 plongest (DW_SND (&die->attrs[i])));
22846 break;
22847 default:
22848 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22849 die->attrs[i].form);
22850 break;
22851 }
22852 fprintf_unfiltered (f, "\n");
22853 }
22854 }
22855
22856 static void
22857 dump_die_for_error (struct die_info *die)
22858 {
22859 dump_die_shallow (gdb_stderr, 0, die);
22860 }
22861
22862 static void
22863 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22864 {
22865 int indent = level * 4;
22866
22867 gdb_assert (die != NULL);
22868
22869 if (level >= max_level)
22870 return;
22871
22872 dump_die_shallow (f, indent, die);
22873
22874 if (die->child != NULL)
22875 {
22876 print_spaces (indent, f);
22877 fprintf_unfiltered (f, " Children:");
22878 if (level + 1 < max_level)
22879 {
22880 fprintf_unfiltered (f, "\n");
22881 dump_die_1 (f, level + 1, max_level, die->child);
22882 }
22883 else
22884 {
22885 fprintf_unfiltered (f,
22886 " [not printed, max nesting level reached]\n");
22887 }
22888 }
22889
22890 if (die->sibling != NULL && level > 0)
22891 {
22892 dump_die_1 (f, level, max_level, die->sibling);
22893 }
22894 }
22895
22896 /* This is called from the pdie macro in gdbinit.in.
22897 It's not static so gcc will keep a copy callable from gdb. */
22898
22899 void
22900 dump_die (struct die_info *die, int max_level)
22901 {
22902 dump_die_1 (gdb_stdlog, 0, max_level, die);
22903 }
22904
22905 static void
22906 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22907 {
22908 void **slot;
22909
22910 slot = htab_find_slot_with_hash (cu->die_hash, die,
22911 to_underlying (die->sect_off),
22912 INSERT);
22913
22914 *slot = die;
22915 }
22916
22917 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22918 required kind. */
22919
22920 static sect_offset
22921 dwarf2_get_ref_die_offset (const struct attribute *attr)
22922 {
22923 if (attr_form_is_ref (attr))
22924 return (sect_offset) DW_UNSND (attr);
22925
22926 complaint (_("unsupported die ref attribute form: '%s'"),
22927 dwarf_form_name (attr->form));
22928 return {};
22929 }
22930
22931 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22932 * the value held by the attribute is not constant. */
22933
22934 static LONGEST
22935 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22936 {
22937 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22938 return DW_SND (attr);
22939 else if (attr->form == DW_FORM_udata
22940 || attr->form == DW_FORM_data1
22941 || attr->form == DW_FORM_data2
22942 || attr->form == DW_FORM_data4
22943 || attr->form == DW_FORM_data8)
22944 return DW_UNSND (attr);
22945 else
22946 {
22947 /* For DW_FORM_data16 see attr_form_is_constant. */
22948 complaint (_("Attribute value is not a constant (%s)"),
22949 dwarf_form_name (attr->form));
22950 return default_value;
22951 }
22952 }
22953
22954 /* Follow reference or signature attribute ATTR of SRC_DIE.
22955 On entry *REF_CU is the CU of SRC_DIE.
22956 On exit *REF_CU is the CU of the result. */
22957
22958 static struct die_info *
22959 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22960 struct dwarf2_cu **ref_cu)
22961 {
22962 struct die_info *die;
22963
22964 if (attr_form_is_ref (attr))
22965 die = follow_die_ref (src_die, attr, ref_cu);
22966 else if (attr->form == DW_FORM_ref_sig8)
22967 die = follow_die_sig (src_die, attr, ref_cu);
22968 else
22969 {
22970 dump_die_for_error (src_die);
22971 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22972 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22973 }
22974
22975 return die;
22976 }
22977
22978 /* Follow reference OFFSET.
22979 On entry *REF_CU is the CU of the source die referencing OFFSET.
22980 On exit *REF_CU is the CU of the result.
22981 Returns NULL if OFFSET is invalid. */
22982
22983 static struct die_info *
22984 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22985 struct dwarf2_cu **ref_cu)
22986 {
22987 struct die_info temp_die;
22988 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22989 struct dwarf2_per_objfile *dwarf2_per_objfile
22990 = cu->per_cu->dwarf2_per_objfile;
22991
22992 gdb_assert (cu->per_cu != NULL);
22993
22994 target_cu = cu;
22995
22996 if (cu->per_cu->is_debug_types)
22997 {
22998 /* .debug_types CUs cannot reference anything outside their CU.
22999 If they need to, they have to reference a signatured type via
23000 DW_FORM_ref_sig8. */
23001 if (!offset_in_cu_p (&cu->header, sect_off))
23002 return NULL;
23003 }
23004 else if (offset_in_dwz != cu->per_cu->is_dwz
23005 || !offset_in_cu_p (&cu->header, sect_off))
23006 {
23007 struct dwarf2_per_cu_data *per_cu;
23008
23009 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23010 dwarf2_per_objfile);
23011
23012 /* If necessary, add it to the queue and load its DIEs. */
23013 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23014 load_full_comp_unit (per_cu, false, cu->language);
23015
23016 target_cu = per_cu->cu;
23017 }
23018 else if (cu->dies == NULL)
23019 {
23020 /* We're loading full DIEs during partial symbol reading. */
23021 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23022 load_full_comp_unit (cu->per_cu, false, language_minimal);
23023 }
23024
23025 *ref_cu = target_cu;
23026 temp_die.sect_off = sect_off;
23027 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23028 &temp_die,
23029 to_underlying (sect_off));
23030 }
23031
23032 /* Follow reference attribute ATTR of SRC_DIE.
23033 On entry *REF_CU is the CU of SRC_DIE.
23034 On exit *REF_CU is the CU of the result. */
23035
23036 static struct die_info *
23037 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23038 struct dwarf2_cu **ref_cu)
23039 {
23040 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23041 struct dwarf2_cu *cu = *ref_cu;
23042 struct die_info *die;
23043
23044 die = follow_die_offset (sect_off,
23045 (attr->form == DW_FORM_GNU_ref_alt
23046 || cu->per_cu->is_dwz),
23047 ref_cu);
23048 if (!die)
23049 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23050 "at %s [in module %s]"),
23051 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23052 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23053
23054 return die;
23055 }
23056
23057 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23058 Returned value is intended for DW_OP_call*. Returned
23059 dwarf2_locexpr_baton->data has lifetime of
23060 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23061
23062 struct dwarf2_locexpr_baton
23063 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23064 struct dwarf2_per_cu_data *per_cu,
23065 CORE_ADDR (*get_frame_pc) (void *baton),
23066 void *baton, bool resolve_abstract_p)
23067 {
23068 struct dwarf2_cu *cu;
23069 struct die_info *die;
23070 struct attribute *attr;
23071 struct dwarf2_locexpr_baton retval;
23072 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23073 struct objfile *objfile = dwarf2_per_objfile->objfile;
23074
23075 if (per_cu->cu == NULL)
23076 load_cu (per_cu, false);
23077 cu = per_cu->cu;
23078 if (cu == NULL)
23079 {
23080 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23081 Instead just throw an error, not much else we can do. */
23082 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23083 sect_offset_str (sect_off), objfile_name (objfile));
23084 }
23085
23086 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23087 if (!die)
23088 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23089 sect_offset_str (sect_off), objfile_name (objfile));
23090
23091 attr = dwarf2_attr (die, DW_AT_location, cu);
23092 if (!attr && resolve_abstract_p
23093 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23094 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23095 {
23096 CORE_ADDR pc = (*get_frame_pc) (baton);
23097
23098 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23099 {
23100 if (!cand->parent
23101 || cand->parent->tag != DW_TAG_subprogram)
23102 continue;
23103
23104 CORE_ADDR pc_low, pc_high;
23105 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23106 if (pc_low == ((CORE_ADDR) -1)
23107 || !(pc_low <= pc && pc < pc_high))
23108 continue;
23109
23110 die = cand;
23111 attr = dwarf2_attr (die, DW_AT_location, cu);
23112 break;
23113 }
23114 }
23115
23116 if (!attr)
23117 {
23118 /* DWARF: "If there is no such attribute, then there is no effect.".
23119 DATA is ignored if SIZE is 0. */
23120
23121 retval.data = NULL;
23122 retval.size = 0;
23123 }
23124 else if (attr_form_is_section_offset (attr))
23125 {
23126 struct dwarf2_loclist_baton loclist_baton;
23127 CORE_ADDR pc = (*get_frame_pc) (baton);
23128 size_t size;
23129
23130 fill_in_loclist_baton (cu, &loclist_baton, attr);
23131
23132 retval.data = dwarf2_find_location_expression (&loclist_baton,
23133 &size, pc);
23134 retval.size = size;
23135 }
23136 else
23137 {
23138 if (!attr_form_is_block (attr))
23139 error (_("Dwarf Error: DIE at %s referenced in module %s "
23140 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23141 sect_offset_str (sect_off), objfile_name (objfile));
23142
23143 retval.data = DW_BLOCK (attr)->data;
23144 retval.size = DW_BLOCK (attr)->size;
23145 }
23146 retval.per_cu = cu->per_cu;
23147
23148 age_cached_comp_units (dwarf2_per_objfile);
23149
23150 return retval;
23151 }
23152
23153 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23154 offset. */
23155
23156 struct dwarf2_locexpr_baton
23157 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23158 struct dwarf2_per_cu_data *per_cu,
23159 CORE_ADDR (*get_frame_pc) (void *baton),
23160 void *baton)
23161 {
23162 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23163
23164 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23165 }
23166
23167 /* Write a constant of a given type as target-ordered bytes into
23168 OBSTACK. */
23169
23170 static const gdb_byte *
23171 write_constant_as_bytes (struct obstack *obstack,
23172 enum bfd_endian byte_order,
23173 struct type *type,
23174 ULONGEST value,
23175 LONGEST *len)
23176 {
23177 gdb_byte *result;
23178
23179 *len = TYPE_LENGTH (type);
23180 result = (gdb_byte *) obstack_alloc (obstack, *len);
23181 store_unsigned_integer (result, *len, byte_order, value);
23182
23183 return result;
23184 }
23185
23186 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23187 pointer to the constant bytes and set LEN to the length of the
23188 data. If memory is needed, allocate it on OBSTACK. If the DIE
23189 does not have a DW_AT_const_value, return NULL. */
23190
23191 const gdb_byte *
23192 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23193 struct dwarf2_per_cu_data *per_cu,
23194 struct obstack *obstack,
23195 LONGEST *len)
23196 {
23197 struct dwarf2_cu *cu;
23198 struct die_info *die;
23199 struct attribute *attr;
23200 const gdb_byte *result = NULL;
23201 struct type *type;
23202 LONGEST value;
23203 enum bfd_endian byte_order;
23204 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23205
23206 if (per_cu->cu == NULL)
23207 load_cu (per_cu, false);
23208 cu = per_cu->cu;
23209 if (cu == NULL)
23210 {
23211 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23212 Instead just throw an error, not much else we can do. */
23213 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23214 sect_offset_str (sect_off), objfile_name (objfile));
23215 }
23216
23217 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23218 if (!die)
23219 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23220 sect_offset_str (sect_off), objfile_name (objfile));
23221
23222 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23223 if (attr == NULL)
23224 return NULL;
23225
23226 byte_order = (bfd_big_endian (objfile->obfd)
23227 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23228
23229 switch (attr->form)
23230 {
23231 case DW_FORM_addr:
23232 case DW_FORM_GNU_addr_index:
23233 {
23234 gdb_byte *tem;
23235
23236 *len = cu->header.addr_size;
23237 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23238 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23239 result = tem;
23240 }
23241 break;
23242 case DW_FORM_string:
23243 case DW_FORM_strp:
23244 case DW_FORM_GNU_str_index:
23245 case DW_FORM_GNU_strp_alt:
23246 /* DW_STRING is already allocated on the objfile obstack, point
23247 directly to it. */
23248 result = (const gdb_byte *) DW_STRING (attr);
23249 *len = strlen (DW_STRING (attr));
23250 break;
23251 case DW_FORM_block1:
23252 case DW_FORM_block2:
23253 case DW_FORM_block4:
23254 case DW_FORM_block:
23255 case DW_FORM_exprloc:
23256 case DW_FORM_data16:
23257 result = DW_BLOCK (attr)->data;
23258 *len = DW_BLOCK (attr)->size;
23259 break;
23260
23261 /* The DW_AT_const_value attributes are supposed to carry the
23262 symbol's value "represented as it would be on the target
23263 architecture." By the time we get here, it's already been
23264 converted to host endianness, so we just need to sign- or
23265 zero-extend it as appropriate. */
23266 case DW_FORM_data1:
23267 type = die_type (die, cu);
23268 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23269 if (result == NULL)
23270 result = write_constant_as_bytes (obstack, byte_order,
23271 type, value, len);
23272 break;
23273 case DW_FORM_data2:
23274 type = die_type (die, cu);
23275 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23276 if (result == NULL)
23277 result = write_constant_as_bytes (obstack, byte_order,
23278 type, value, len);
23279 break;
23280 case DW_FORM_data4:
23281 type = die_type (die, cu);
23282 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23283 if (result == NULL)
23284 result = write_constant_as_bytes (obstack, byte_order,
23285 type, value, len);
23286 break;
23287 case DW_FORM_data8:
23288 type = die_type (die, cu);
23289 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23290 if (result == NULL)
23291 result = write_constant_as_bytes (obstack, byte_order,
23292 type, value, len);
23293 break;
23294
23295 case DW_FORM_sdata:
23296 case DW_FORM_implicit_const:
23297 type = die_type (die, cu);
23298 result = write_constant_as_bytes (obstack, byte_order,
23299 type, DW_SND (attr), len);
23300 break;
23301
23302 case DW_FORM_udata:
23303 type = die_type (die, cu);
23304 result = write_constant_as_bytes (obstack, byte_order,
23305 type, DW_UNSND (attr), len);
23306 break;
23307
23308 default:
23309 complaint (_("unsupported const value attribute form: '%s'"),
23310 dwarf_form_name (attr->form));
23311 break;
23312 }
23313
23314 return result;
23315 }
23316
23317 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23318 valid type for this die is found. */
23319
23320 struct type *
23321 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23322 struct dwarf2_per_cu_data *per_cu)
23323 {
23324 struct dwarf2_cu *cu;
23325 struct die_info *die;
23326
23327 if (per_cu->cu == NULL)
23328 load_cu (per_cu, false);
23329 cu = per_cu->cu;
23330 if (!cu)
23331 return NULL;
23332
23333 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23334 if (!die)
23335 return NULL;
23336
23337 return die_type (die, cu);
23338 }
23339
23340 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23341 PER_CU. */
23342
23343 struct type *
23344 dwarf2_get_die_type (cu_offset die_offset,
23345 struct dwarf2_per_cu_data *per_cu)
23346 {
23347 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23348 return get_die_type_at_offset (die_offset_sect, per_cu);
23349 }
23350
23351 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23352 On entry *REF_CU is the CU of SRC_DIE.
23353 On exit *REF_CU is the CU of the result.
23354 Returns NULL if the referenced DIE isn't found. */
23355
23356 static struct die_info *
23357 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23358 struct dwarf2_cu **ref_cu)
23359 {
23360 struct die_info temp_die;
23361 struct dwarf2_cu *sig_cu;
23362 struct die_info *die;
23363
23364 /* While it might be nice to assert sig_type->type == NULL here,
23365 we can get here for DW_AT_imported_declaration where we need
23366 the DIE not the type. */
23367
23368 /* If necessary, add it to the queue and load its DIEs. */
23369
23370 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23371 read_signatured_type (sig_type);
23372
23373 sig_cu = sig_type->per_cu.cu;
23374 gdb_assert (sig_cu != NULL);
23375 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23376 temp_die.sect_off = sig_type->type_offset_in_section;
23377 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23378 to_underlying (temp_die.sect_off));
23379 if (die)
23380 {
23381 struct dwarf2_per_objfile *dwarf2_per_objfile
23382 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23383
23384 /* For .gdb_index version 7 keep track of included TUs.
23385 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23386 if (dwarf2_per_objfile->index_table != NULL
23387 && dwarf2_per_objfile->index_table->version <= 7)
23388 {
23389 VEC_safe_push (dwarf2_per_cu_ptr,
23390 (*ref_cu)->per_cu->imported_symtabs,
23391 sig_cu->per_cu);
23392 }
23393
23394 *ref_cu = sig_cu;
23395 return die;
23396 }
23397
23398 return NULL;
23399 }
23400
23401 /* Follow signatured type referenced by ATTR in SRC_DIE.
23402 On entry *REF_CU is the CU of SRC_DIE.
23403 On exit *REF_CU is the CU of the result.
23404 The result is the DIE of the type.
23405 If the referenced type cannot be found an error is thrown. */
23406
23407 static struct die_info *
23408 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23409 struct dwarf2_cu **ref_cu)
23410 {
23411 ULONGEST signature = DW_SIGNATURE (attr);
23412 struct signatured_type *sig_type;
23413 struct die_info *die;
23414
23415 gdb_assert (attr->form == DW_FORM_ref_sig8);
23416
23417 sig_type = lookup_signatured_type (*ref_cu, signature);
23418 /* sig_type will be NULL if the signatured type is missing from
23419 the debug info. */
23420 if (sig_type == NULL)
23421 {
23422 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23423 " from DIE at %s [in module %s]"),
23424 hex_string (signature), sect_offset_str (src_die->sect_off),
23425 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23426 }
23427
23428 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23429 if (die == NULL)
23430 {
23431 dump_die_for_error (src_die);
23432 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23433 " from DIE at %s [in module %s]"),
23434 hex_string (signature), sect_offset_str (src_die->sect_off),
23435 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23436 }
23437
23438 return die;
23439 }
23440
23441 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23442 reading in and processing the type unit if necessary. */
23443
23444 static struct type *
23445 get_signatured_type (struct die_info *die, ULONGEST signature,
23446 struct dwarf2_cu *cu)
23447 {
23448 struct dwarf2_per_objfile *dwarf2_per_objfile
23449 = cu->per_cu->dwarf2_per_objfile;
23450 struct signatured_type *sig_type;
23451 struct dwarf2_cu *type_cu;
23452 struct die_info *type_die;
23453 struct type *type;
23454
23455 sig_type = lookup_signatured_type (cu, signature);
23456 /* sig_type will be NULL if the signatured type is missing from
23457 the debug info. */
23458 if (sig_type == NULL)
23459 {
23460 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23461 " from DIE at %s [in module %s]"),
23462 hex_string (signature), sect_offset_str (die->sect_off),
23463 objfile_name (dwarf2_per_objfile->objfile));
23464 return build_error_marker_type (cu, die);
23465 }
23466
23467 /* If we already know the type we're done. */
23468 if (sig_type->type != NULL)
23469 return sig_type->type;
23470
23471 type_cu = cu;
23472 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23473 if (type_die != NULL)
23474 {
23475 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23476 is created. This is important, for example, because for c++ classes
23477 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23478 type = read_type_die (type_die, type_cu);
23479 if (type == NULL)
23480 {
23481 complaint (_("Dwarf Error: Cannot build signatured type %s"
23482 " referenced from DIE at %s [in module %s]"),
23483 hex_string (signature), sect_offset_str (die->sect_off),
23484 objfile_name (dwarf2_per_objfile->objfile));
23485 type = build_error_marker_type (cu, die);
23486 }
23487 }
23488 else
23489 {
23490 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23491 " from DIE at %s [in module %s]"),
23492 hex_string (signature), sect_offset_str (die->sect_off),
23493 objfile_name (dwarf2_per_objfile->objfile));
23494 type = build_error_marker_type (cu, die);
23495 }
23496 sig_type->type = type;
23497
23498 return type;
23499 }
23500
23501 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23502 reading in and processing the type unit if necessary. */
23503
23504 static struct type *
23505 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23506 struct dwarf2_cu *cu) /* ARI: editCase function */
23507 {
23508 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23509 if (attr_form_is_ref (attr))
23510 {
23511 struct dwarf2_cu *type_cu = cu;
23512 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23513
23514 return read_type_die (type_die, type_cu);
23515 }
23516 else if (attr->form == DW_FORM_ref_sig8)
23517 {
23518 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23519 }
23520 else
23521 {
23522 struct dwarf2_per_objfile *dwarf2_per_objfile
23523 = cu->per_cu->dwarf2_per_objfile;
23524
23525 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23526 " at %s [in module %s]"),
23527 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23528 objfile_name (dwarf2_per_objfile->objfile));
23529 return build_error_marker_type (cu, die);
23530 }
23531 }
23532
23533 /* Load the DIEs associated with type unit PER_CU into memory. */
23534
23535 static void
23536 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23537 {
23538 struct signatured_type *sig_type;
23539
23540 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23541 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23542
23543 /* We have the per_cu, but we need the signatured_type.
23544 Fortunately this is an easy translation. */
23545 gdb_assert (per_cu->is_debug_types);
23546 sig_type = (struct signatured_type *) per_cu;
23547
23548 gdb_assert (per_cu->cu == NULL);
23549
23550 read_signatured_type (sig_type);
23551
23552 gdb_assert (per_cu->cu != NULL);
23553 }
23554
23555 /* die_reader_func for read_signatured_type.
23556 This is identical to load_full_comp_unit_reader,
23557 but is kept separate for now. */
23558
23559 static void
23560 read_signatured_type_reader (const struct die_reader_specs *reader,
23561 const gdb_byte *info_ptr,
23562 struct die_info *comp_unit_die,
23563 int has_children,
23564 void *data)
23565 {
23566 struct dwarf2_cu *cu = reader->cu;
23567
23568 gdb_assert (cu->die_hash == NULL);
23569 cu->die_hash =
23570 htab_create_alloc_ex (cu->header.length / 12,
23571 die_hash,
23572 die_eq,
23573 NULL,
23574 &cu->comp_unit_obstack,
23575 hashtab_obstack_allocate,
23576 dummy_obstack_deallocate);
23577
23578 if (has_children)
23579 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23580 &info_ptr, comp_unit_die);
23581 cu->dies = comp_unit_die;
23582 /* comp_unit_die is not stored in die_hash, no need. */
23583
23584 /* We try not to read any attributes in this function, because not
23585 all CUs needed for references have been loaded yet, and symbol
23586 table processing isn't initialized. But we have to set the CU language,
23587 or we won't be able to build types correctly.
23588 Similarly, if we do not read the producer, we can not apply
23589 producer-specific interpretation. */
23590 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23591 }
23592
23593 /* Read in a signatured type and build its CU and DIEs.
23594 If the type is a stub for the real type in a DWO file,
23595 read in the real type from the DWO file as well. */
23596
23597 static void
23598 read_signatured_type (struct signatured_type *sig_type)
23599 {
23600 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23601
23602 gdb_assert (per_cu->is_debug_types);
23603 gdb_assert (per_cu->cu == NULL);
23604
23605 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23606 read_signatured_type_reader, NULL);
23607 sig_type->per_cu.tu_read = 1;
23608 }
23609
23610 /* Decode simple location descriptions.
23611 Given a pointer to a dwarf block that defines a location, compute
23612 the location and return the value.
23613
23614 NOTE drow/2003-11-18: This function is called in two situations
23615 now: for the address of static or global variables (partial symbols
23616 only) and for offsets into structures which are expected to be
23617 (more or less) constant. The partial symbol case should go away,
23618 and only the constant case should remain. That will let this
23619 function complain more accurately. A few special modes are allowed
23620 without complaint for global variables (for instance, global
23621 register values and thread-local values).
23622
23623 A location description containing no operations indicates that the
23624 object is optimized out. The return value is 0 for that case.
23625 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23626 callers will only want a very basic result and this can become a
23627 complaint.
23628
23629 Note that stack[0] is unused except as a default error return. */
23630
23631 static CORE_ADDR
23632 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23633 {
23634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23635 size_t i;
23636 size_t size = blk->size;
23637 const gdb_byte *data = blk->data;
23638 CORE_ADDR stack[64];
23639 int stacki;
23640 unsigned int bytes_read, unsnd;
23641 gdb_byte op;
23642
23643 i = 0;
23644 stacki = 0;
23645 stack[stacki] = 0;
23646 stack[++stacki] = 0;
23647
23648 while (i < size)
23649 {
23650 op = data[i++];
23651 switch (op)
23652 {
23653 case DW_OP_lit0:
23654 case DW_OP_lit1:
23655 case DW_OP_lit2:
23656 case DW_OP_lit3:
23657 case DW_OP_lit4:
23658 case DW_OP_lit5:
23659 case DW_OP_lit6:
23660 case DW_OP_lit7:
23661 case DW_OP_lit8:
23662 case DW_OP_lit9:
23663 case DW_OP_lit10:
23664 case DW_OP_lit11:
23665 case DW_OP_lit12:
23666 case DW_OP_lit13:
23667 case DW_OP_lit14:
23668 case DW_OP_lit15:
23669 case DW_OP_lit16:
23670 case DW_OP_lit17:
23671 case DW_OP_lit18:
23672 case DW_OP_lit19:
23673 case DW_OP_lit20:
23674 case DW_OP_lit21:
23675 case DW_OP_lit22:
23676 case DW_OP_lit23:
23677 case DW_OP_lit24:
23678 case DW_OP_lit25:
23679 case DW_OP_lit26:
23680 case DW_OP_lit27:
23681 case DW_OP_lit28:
23682 case DW_OP_lit29:
23683 case DW_OP_lit30:
23684 case DW_OP_lit31:
23685 stack[++stacki] = op - DW_OP_lit0;
23686 break;
23687
23688 case DW_OP_reg0:
23689 case DW_OP_reg1:
23690 case DW_OP_reg2:
23691 case DW_OP_reg3:
23692 case DW_OP_reg4:
23693 case DW_OP_reg5:
23694 case DW_OP_reg6:
23695 case DW_OP_reg7:
23696 case DW_OP_reg8:
23697 case DW_OP_reg9:
23698 case DW_OP_reg10:
23699 case DW_OP_reg11:
23700 case DW_OP_reg12:
23701 case DW_OP_reg13:
23702 case DW_OP_reg14:
23703 case DW_OP_reg15:
23704 case DW_OP_reg16:
23705 case DW_OP_reg17:
23706 case DW_OP_reg18:
23707 case DW_OP_reg19:
23708 case DW_OP_reg20:
23709 case DW_OP_reg21:
23710 case DW_OP_reg22:
23711 case DW_OP_reg23:
23712 case DW_OP_reg24:
23713 case DW_OP_reg25:
23714 case DW_OP_reg26:
23715 case DW_OP_reg27:
23716 case DW_OP_reg28:
23717 case DW_OP_reg29:
23718 case DW_OP_reg30:
23719 case DW_OP_reg31:
23720 stack[++stacki] = op - DW_OP_reg0;
23721 if (i < size)
23722 dwarf2_complex_location_expr_complaint ();
23723 break;
23724
23725 case DW_OP_regx:
23726 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23727 i += bytes_read;
23728 stack[++stacki] = unsnd;
23729 if (i < size)
23730 dwarf2_complex_location_expr_complaint ();
23731 break;
23732
23733 case DW_OP_addr:
23734 stack[++stacki] = read_address (objfile->obfd, &data[i],
23735 cu, &bytes_read);
23736 i += bytes_read;
23737 break;
23738
23739 case DW_OP_const1u:
23740 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23741 i += 1;
23742 break;
23743
23744 case DW_OP_const1s:
23745 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23746 i += 1;
23747 break;
23748
23749 case DW_OP_const2u:
23750 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23751 i += 2;
23752 break;
23753
23754 case DW_OP_const2s:
23755 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23756 i += 2;
23757 break;
23758
23759 case DW_OP_const4u:
23760 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23761 i += 4;
23762 break;
23763
23764 case DW_OP_const4s:
23765 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23766 i += 4;
23767 break;
23768
23769 case DW_OP_const8u:
23770 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23771 i += 8;
23772 break;
23773
23774 case DW_OP_constu:
23775 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23776 &bytes_read);
23777 i += bytes_read;
23778 break;
23779
23780 case DW_OP_consts:
23781 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23782 i += bytes_read;
23783 break;
23784
23785 case DW_OP_dup:
23786 stack[stacki + 1] = stack[stacki];
23787 stacki++;
23788 break;
23789
23790 case DW_OP_plus:
23791 stack[stacki - 1] += stack[stacki];
23792 stacki--;
23793 break;
23794
23795 case DW_OP_plus_uconst:
23796 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23797 &bytes_read);
23798 i += bytes_read;
23799 break;
23800
23801 case DW_OP_minus:
23802 stack[stacki - 1] -= stack[stacki];
23803 stacki--;
23804 break;
23805
23806 case DW_OP_deref:
23807 /* If we're not the last op, then we definitely can't encode
23808 this using GDB's address_class enum. This is valid for partial
23809 global symbols, although the variable's address will be bogus
23810 in the psymtab. */
23811 if (i < size)
23812 dwarf2_complex_location_expr_complaint ();
23813 break;
23814
23815 case DW_OP_GNU_push_tls_address:
23816 case DW_OP_form_tls_address:
23817 /* The top of the stack has the offset from the beginning
23818 of the thread control block at which the variable is located. */
23819 /* Nothing should follow this operator, so the top of stack would
23820 be returned. */
23821 /* This is valid for partial global symbols, but the variable's
23822 address will be bogus in the psymtab. Make it always at least
23823 non-zero to not look as a variable garbage collected by linker
23824 which have DW_OP_addr 0. */
23825 if (i < size)
23826 dwarf2_complex_location_expr_complaint ();
23827 stack[stacki]++;
23828 break;
23829
23830 case DW_OP_GNU_uninit:
23831 break;
23832
23833 case DW_OP_GNU_addr_index:
23834 case DW_OP_GNU_const_index:
23835 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23836 &bytes_read);
23837 i += bytes_read;
23838 break;
23839
23840 default:
23841 {
23842 const char *name = get_DW_OP_name (op);
23843
23844 if (name)
23845 complaint (_("unsupported stack op: '%s'"),
23846 name);
23847 else
23848 complaint (_("unsupported stack op: '%02x'"),
23849 op);
23850 }
23851
23852 return (stack[stacki]);
23853 }
23854
23855 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23856 outside of the allocated space. Also enforce minimum>0. */
23857 if (stacki >= ARRAY_SIZE (stack) - 1)
23858 {
23859 complaint (_("location description stack overflow"));
23860 return 0;
23861 }
23862
23863 if (stacki <= 0)
23864 {
23865 complaint (_("location description stack underflow"));
23866 return 0;
23867 }
23868 }
23869 return (stack[stacki]);
23870 }
23871
23872 /* memory allocation interface */
23873
23874 static struct dwarf_block *
23875 dwarf_alloc_block (struct dwarf2_cu *cu)
23876 {
23877 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23878 }
23879
23880 static struct die_info *
23881 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23882 {
23883 struct die_info *die;
23884 size_t size = sizeof (struct die_info);
23885
23886 if (num_attrs > 1)
23887 size += (num_attrs - 1) * sizeof (struct attribute);
23888
23889 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23890 memset (die, 0, sizeof (struct die_info));
23891 return (die);
23892 }
23893
23894 \f
23895 /* Macro support. */
23896
23897 /* Return file name relative to the compilation directory of file number I in
23898 *LH's file name table. The result is allocated using xmalloc; the caller is
23899 responsible for freeing it. */
23900
23901 static char *
23902 file_file_name (int file, struct line_header *lh)
23903 {
23904 /* Is the file number a valid index into the line header's file name
23905 table? Remember that file numbers start with one, not zero. */
23906 if (1 <= file && file <= lh->file_names.size ())
23907 {
23908 const file_entry &fe = lh->file_names[file - 1];
23909
23910 if (!IS_ABSOLUTE_PATH (fe.name))
23911 {
23912 const char *dir = fe.include_dir (lh);
23913 if (dir != NULL)
23914 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23915 }
23916 return xstrdup (fe.name);
23917 }
23918 else
23919 {
23920 /* The compiler produced a bogus file number. We can at least
23921 record the macro definitions made in the file, even if we
23922 won't be able to find the file by name. */
23923 char fake_name[80];
23924
23925 xsnprintf (fake_name, sizeof (fake_name),
23926 "<bad macro file number %d>", file);
23927
23928 complaint (_("bad file number in macro information (%d)"),
23929 file);
23930
23931 return xstrdup (fake_name);
23932 }
23933 }
23934
23935 /* Return the full name of file number I in *LH's file name table.
23936 Use COMP_DIR as the name of the current directory of the
23937 compilation. The result is allocated using xmalloc; the caller is
23938 responsible for freeing it. */
23939 static char *
23940 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23941 {
23942 /* Is the file number a valid index into the line header's file name
23943 table? Remember that file numbers start with one, not zero. */
23944 if (1 <= file && file <= lh->file_names.size ())
23945 {
23946 char *relative = file_file_name (file, lh);
23947
23948 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23949 return relative;
23950 return reconcat (relative, comp_dir, SLASH_STRING,
23951 relative, (char *) NULL);
23952 }
23953 else
23954 return file_file_name (file, lh);
23955 }
23956
23957
23958 static struct macro_source_file *
23959 macro_start_file (struct dwarf2_cu *cu,
23960 int file, int line,
23961 struct macro_source_file *current_file,
23962 struct line_header *lh)
23963 {
23964 /* File name relative to the compilation directory of this source file. */
23965 char *file_name = file_file_name (file, lh);
23966
23967 if (! current_file)
23968 {
23969 /* Note: We don't create a macro table for this compilation unit
23970 at all until we actually get a filename. */
23971 struct macro_table *macro_table = cu->builder->get_macro_table ();
23972
23973 /* If we have no current file, then this must be the start_file
23974 directive for the compilation unit's main source file. */
23975 current_file = macro_set_main (macro_table, file_name);
23976 macro_define_special (macro_table);
23977 }
23978 else
23979 current_file = macro_include (current_file, line, file_name);
23980
23981 xfree (file_name);
23982
23983 return current_file;
23984 }
23985
23986 static const char *
23987 consume_improper_spaces (const char *p, const char *body)
23988 {
23989 if (*p == ' ')
23990 {
23991 complaint (_("macro definition contains spaces "
23992 "in formal argument list:\n`%s'"),
23993 body);
23994
23995 while (*p == ' ')
23996 p++;
23997 }
23998
23999 return p;
24000 }
24001
24002
24003 static void
24004 parse_macro_definition (struct macro_source_file *file, int line,
24005 const char *body)
24006 {
24007 const char *p;
24008
24009 /* The body string takes one of two forms. For object-like macro
24010 definitions, it should be:
24011
24012 <macro name> " " <definition>
24013
24014 For function-like macro definitions, it should be:
24015
24016 <macro name> "() " <definition>
24017 or
24018 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24019
24020 Spaces may appear only where explicitly indicated, and in the
24021 <definition>.
24022
24023 The Dwarf 2 spec says that an object-like macro's name is always
24024 followed by a space, but versions of GCC around March 2002 omit
24025 the space when the macro's definition is the empty string.
24026
24027 The Dwarf 2 spec says that there should be no spaces between the
24028 formal arguments in a function-like macro's formal argument list,
24029 but versions of GCC around March 2002 include spaces after the
24030 commas. */
24031
24032
24033 /* Find the extent of the macro name. The macro name is terminated
24034 by either a space or null character (for an object-like macro) or
24035 an opening paren (for a function-like macro). */
24036 for (p = body; *p; p++)
24037 if (*p == ' ' || *p == '(')
24038 break;
24039
24040 if (*p == ' ' || *p == '\0')
24041 {
24042 /* It's an object-like macro. */
24043 int name_len = p - body;
24044 char *name = savestring (body, name_len);
24045 const char *replacement;
24046
24047 if (*p == ' ')
24048 replacement = body + name_len + 1;
24049 else
24050 {
24051 dwarf2_macro_malformed_definition_complaint (body);
24052 replacement = body + name_len;
24053 }
24054
24055 macro_define_object (file, line, name, replacement);
24056
24057 xfree (name);
24058 }
24059 else if (*p == '(')
24060 {
24061 /* It's a function-like macro. */
24062 char *name = savestring (body, p - body);
24063 int argc = 0;
24064 int argv_size = 1;
24065 char **argv = XNEWVEC (char *, argv_size);
24066
24067 p++;
24068
24069 p = consume_improper_spaces (p, body);
24070
24071 /* Parse the formal argument list. */
24072 while (*p && *p != ')')
24073 {
24074 /* Find the extent of the current argument name. */
24075 const char *arg_start = p;
24076
24077 while (*p && *p != ',' && *p != ')' && *p != ' ')
24078 p++;
24079
24080 if (! *p || p == arg_start)
24081 dwarf2_macro_malformed_definition_complaint (body);
24082 else
24083 {
24084 /* Make sure argv has room for the new argument. */
24085 if (argc >= argv_size)
24086 {
24087 argv_size *= 2;
24088 argv = XRESIZEVEC (char *, argv, argv_size);
24089 }
24090
24091 argv[argc++] = savestring (arg_start, p - arg_start);
24092 }
24093
24094 p = consume_improper_spaces (p, body);
24095
24096 /* Consume the comma, if present. */
24097 if (*p == ',')
24098 {
24099 p++;
24100
24101 p = consume_improper_spaces (p, body);
24102 }
24103 }
24104
24105 if (*p == ')')
24106 {
24107 p++;
24108
24109 if (*p == ' ')
24110 /* Perfectly formed definition, no complaints. */
24111 macro_define_function (file, line, name,
24112 argc, (const char **) argv,
24113 p + 1);
24114 else if (*p == '\0')
24115 {
24116 /* Complain, but do define it. */
24117 dwarf2_macro_malformed_definition_complaint (body);
24118 macro_define_function (file, line, name,
24119 argc, (const char **) argv,
24120 p);
24121 }
24122 else
24123 /* Just complain. */
24124 dwarf2_macro_malformed_definition_complaint (body);
24125 }
24126 else
24127 /* Just complain. */
24128 dwarf2_macro_malformed_definition_complaint (body);
24129
24130 xfree (name);
24131 {
24132 int i;
24133
24134 for (i = 0; i < argc; i++)
24135 xfree (argv[i]);
24136 }
24137 xfree (argv);
24138 }
24139 else
24140 dwarf2_macro_malformed_definition_complaint (body);
24141 }
24142
24143 /* Skip some bytes from BYTES according to the form given in FORM.
24144 Returns the new pointer. */
24145
24146 static const gdb_byte *
24147 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24148 enum dwarf_form form,
24149 unsigned int offset_size,
24150 struct dwarf2_section_info *section)
24151 {
24152 unsigned int bytes_read;
24153
24154 switch (form)
24155 {
24156 case DW_FORM_data1:
24157 case DW_FORM_flag:
24158 ++bytes;
24159 break;
24160
24161 case DW_FORM_data2:
24162 bytes += 2;
24163 break;
24164
24165 case DW_FORM_data4:
24166 bytes += 4;
24167 break;
24168
24169 case DW_FORM_data8:
24170 bytes += 8;
24171 break;
24172
24173 case DW_FORM_data16:
24174 bytes += 16;
24175 break;
24176
24177 case DW_FORM_string:
24178 read_direct_string (abfd, bytes, &bytes_read);
24179 bytes += bytes_read;
24180 break;
24181
24182 case DW_FORM_sec_offset:
24183 case DW_FORM_strp:
24184 case DW_FORM_GNU_strp_alt:
24185 bytes += offset_size;
24186 break;
24187
24188 case DW_FORM_block:
24189 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24190 bytes += bytes_read;
24191 break;
24192
24193 case DW_FORM_block1:
24194 bytes += 1 + read_1_byte (abfd, bytes);
24195 break;
24196 case DW_FORM_block2:
24197 bytes += 2 + read_2_bytes (abfd, bytes);
24198 break;
24199 case DW_FORM_block4:
24200 bytes += 4 + read_4_bytes (abfd, bytes);
24201 break;
24202
24203 case DW_FORM_sdata:
24204 case DW_FORM_udata:
24205 case DW_FORM_GNU_addr_index:
24206 case DW_FORM_GNU_str_index:
24207 bytes = gdb_skip_leb128 (bytes, buffer_end);
24208 if (bytes == NULL)
24209 {
24210 dwarf2_section_buffer_overflow_complaint (section);
24211 return NULL;
24212 }
24213 break;
24214
24215 case DW_FORM_implicit_const:
24216 break;
24217
24218 default:
24219 {
24220 complaint (_("invalid form 0x%x in `%s'"),
24221 form, get_section_name (section));
24222 return NULL;
24223 }
24224 }
24225
24226 return bytes;
24227 }
24228
24229 /* A helper for dwarf_decode_macros that handles skipping an unknown
24230 opcode. Returns an updated pointer to the macro data buffer; or,
24231 on error, issues a complaint and returns NULL. */
24232
24233 static const gdb_byte *
24234 skip_unknown_opcode (unsigned int opcode,
24235 const gdb_byte **opcode_definitions,
24236 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24237 bfd *abfd,
24238 unsigned int offset_size,
24239 struct dwarf2_section_info *section)
24240 {
24241 unsigned int bytes_read, i;
24242 unsigned long arg;
24243 const gdb_byte *defn;
24244
24245 if (opcode_definitions[opcode] == NULL)
24246 {
24247 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24248 opcode);
24249 return NULL;
24250 }
24251
24252 defn = opcode_definitions[opcode];
24253 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24254 defn += bytes_read;
24255
24256 for (i = 0; i < arg; ++i)
24257 {
24258 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24259 (enum dwarf_form) defn[i], offset_size,
24260 section);
24261 if (mac_ptr == NULL)
24262 {
24263 /* skip_form_bytes already issued the complaint. */
24264 return NULL;
24265 }
24266 }
24267
24268 return mac_ptr;
24269 }
24270
24271 /* A helper function which parses the header of a macro section.
24272 If the macro section is the extended (for now called "GNU") type,
24273 then this updates *OFFSET_SIZE. Returns a pointer to just after
24274 the header, or issues a complaint and returns NULL on error. */
24275
24276 static const gdb_byte *
24277 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24278 bfd *abfd,
24279 const gdb_byte *mac_ptr,
24280 unsigned int *offset_size,
24281 int section_is_gnu)
24282 {
24283 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24284
24285 if (section_is_gnu)
24286 {
24287 unsigned int version, flags;
24288
24289 version = read_2_bytes (abfd, mac_ptr);
24290 if (version != 4 && version != 5)
24291 {
24292 complaint (_("unrecognized version `%d' in .debug_macro section"),
24293 version);
24294 return NULL;
24295 }
24296 mac_ptr += 2;
24297
24298 flags = read_1_byte (abfd, mac_ptr);
24299 ++mac_ptr;
24300 *offset_size = (flags & 1) ? 8 : 4;
24301
24302 if ((flags & 2) != 0)
24303 /* We don't need the line table offset. */
24304 mac_ptr += *offset_size;
24305
24306 /* Vendor opcode descriptions. */
24307 if ((flags & 4) != 0)
24308 {
24309 unsigned int i, count;
24310
24311 count = read_1_byte (abfd, mac_ptr);
24312 ++mac_ptr;
24313 for (i = 0; i < count; ++i)
24314 {
24315 unsigned int opcode, bytes_read;
24316 unsigned long arg;
24317
24318 opcode = read_1_byte (abfd, mac_ptr);
24319 ++mac_ptr;
24320 opcode_definitions[opcode] = mac_ptr;
24321 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24322 mac_ptr += bytes_read;
24323 mac_ptr += arg;
24324 }
24325 }
24326 }
24327
24328 return mac_ptr;
24329 }
24330
24331 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24332 including DW_MACRO_import. */
24333
24334 static void
24335 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24336 bfd *abfd,
24337 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24338 struct macro_source_file *current_file,
24339 struct line_header *lh,
24340 struct dwarf2_section_info *section,
24341 int section_is_gnu, int section_is_dwz,
24342 unsigned int offset_size,
24343 htab_t include_hash)
24344 {
24345 struct dwarf2_per_objfile *dwarf2_per_objfile
24346 = cu->per_cu->dwarf2_per_objfile;
24347 struct objfile *objfile = dwarf2_per_objfile->objfile;
24348 enum dwarf_macro_record_type macinfo_type;
24349 int at_commandline;
24350 const gdb_byte *opcode_definitions[256];
24351
24352 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24353 &offset_size, section_is_gnu);
24354 if (mac_ptr == NULL)
24355 {
24356 /* We already issued a complaint. */
24357 return;
24358 }
24359
24360 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24361 GDB is still reading the definitions from command line. First
24362 DW_MACINFO_start_file will need to be ignored as it was already executed
24363 to create CURRENT_FILE for the main source holding also the command line
24364 definitions. On first met DW_MACINFO_start_file this flag is reset to
24365 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24366
24367 at_commandline = 1;
24368
24369 do
24370 {
24371 /* Do we at least have room for a macinfo type byte? */
24372 if (mac_ptr >= mac_end)
24373 {
24374 dwarf2_section_buffer_overflow_complaint (section);
24375 break;
24376 }
24377
24378 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24379 mac_ptr++;
24380
24381 /* Note that we rely on the fact that the corresponding GNU and
24382 DWARF constants are the same. */
24383 DIAGNOSTIC_PUSH
24384 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24385 switch (macinfo_type)
24386 {
24387 /* A zero macinfo type indicates the end of the macro
24388 information. */
24389 case 0:
24390 break;
24391
24392 case DW_MACRO_define:
24393 case DW_MACRO_undef:
24394 case DW_MACRO_define_strp:
24395 case DW_MACRO_undef_strp:
24396 case DW_MACRO_define_sup:
24397 case DW_MACRO_undef_sup:
24398 {
24399 unsigned int bytes_read;
24400 int line;
24401 const char *body;
24402 int is_define;
24403
24404 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24405 mac_ptr += bytes_read;
24406
24407 if (macinfo_type == DW_MACRO_define
24408 || macinfo_type == DW_MACRO_undef)
24409 {
24410 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24411 mac_ptr += bytes_read;
24412 }
24413 else
24414 {
24415 LONGEST str_offset;
24416
24417 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24418 mac_ptr += offset_size;
24419
24420 if (macinfo_type == DW_MACRO_define_sup
24421 || macinfo_type == DW_MACRO_undef_sup
24422 || section_is_dwz)
24423 {
24424 struct dwz_file *dwz
24425 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24426
24427 body = read_indirect_string_from_dwz (objfile,
24428 dwz, str_offset);
24429 }
24430 else
24431 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24432 abfd, str_offset);
24433 }
24434
24435 is_define = (macinfo_type == DW_MACRO_define
24436 || macinfo_type == DW_MACRO_define_strp
24437 || macinfo_type == DW_MACRO_define_sup);
24438 if (! current_file)
24439 {
24440 /* DWARF violation as no main source is present. */
24441 complaint (_("debug info with no main source gives macro %s "
24442 "on line %d: %s"),
24443 is_define ? _("definition") : _("undefinition"),
24444 line, body);
24445 break;
24446 }
24447 if ((line == 0 && !at_commandline)
24448 || (line != 0 && at_commandline))
24449 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24450 at_commandline ? _("command-line") : _("in-file"),
24451 is_define ? _("definition") : _("undefinition"),
24452 line == 0 ? _("zero") : _("non-zero"), line, body);
24453
24454 if (is_define)
24455 parse_macro_definition (current_file, line, body);
24456 else
24457 {
24458 gdb_assert (macinfo_type == DW_MACRO_undef
24459 || macinfo_type == DW_MACRO_undef_strp
24460 || macinfo_type == DW_MACRO_undef_sup);
24461 macro_undef (current_file, line, body);
24462 }
24463 }
24464 break;
24465
24466 case DW_MACRO_start_file:
24467 {
24468 unsigned int bytes_read;
24469 int line, file;
24470
24471 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24475
24476 if ((line == 0 && !at_commandline)
24477 || (line != 0 && at_commandline))
24478 complaint (_("debug info gives source %d included "
24479 "from %s at %s line %d"),
24480 file, at_commandline ? _("command-line") : _("file"),
24481 line == 0 ? _("zero") : _("non-zero"), line);
24482
24483 if (at_commandline)
24484 {
24485 /* This DW_MACRO_start_file was executed in the
24486 pass one. */
24487 at_commandline = 0;
24488 }
24489 else
24490 current_file = macro_start_file (cu, file, line, current_file,
24491 lh);
24492 }
24493 break;
24494
24495 case DW_MACRO_end_file:
24496 if (! current_file)
24497 complaint (_("macro debug info has an unmatched "
24498 "`close_file' directive"));
24499 else
24500 {
24501 current_file = current_file->included_by;
24502 if (! current_file)
24503 {
24504 enum dwarf_macro_record_type next_type;
24505
24506 /* GCC circa March 2002 doesn't produce the zero
24507 type byte marking the end of the compilation
24508 unit. Complain if it's not there, but exit no
24509 matter what. */
24510
24511 /* Do we at least have room for a macinfo type byte? */
24512 if (mac_ptr >= mac_end)
24513 {
24514 dwarf2_section_buffer_overflow_complaint (section);
24515 return;
24516 }
24517
24518 /* We don't increment mac_ptr here, so this is just
24519 a look-ahead. */
24520 next_type
24521 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24522 mac_ptr);
24523 if (next_type != 0)
24524 complaint (_("no terminating 0-type entry for "
24525 "macros in `.debug_macinfo' section"));
24526
24527 return;
24528 }
24529 }
24530 break;
24531
24532 case DW_MACRO_import:
24533 case DW_MACRO_import_sup:
24534 {
24535 LONGEST offset;
24536 void **slot;
24537 bfd *include_bfd = abfd;
24538 struct dwarf2_section_info *include_section = section;
24539 const gdb_byte *include_mac_end = mac_end;
24540 int is_dwz = section_is_dwz;
24541 const gdb_byte *new_mac_ptr;
24542
24543 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24544 mac_ptr += offset_size;
24545
24546 if (macinfo_type == DW_MACRO_import_sup)
24547 {
24548 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24549
24550 dwarf2_read_section (objfile, &dwz->macro);
24551
24552 include_section = &dwz->macro;
24553 include_bfd = get_section_bfd_owner (include_section);
24554 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24555 is_dwz = 1;
24556 }
24557
24558 new_mac_ptr = include_section->buffer + offset;
24559 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24560
24561 if (*slot != NULL)
24562 {
24563 /* This has actually happened; see
24564 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24565 complaint (_("recursive DW_MACRO_import in "
24566 ".debug_macro section"));
24567 }
24568 else
24569 {
24570 *slot = (void *) new_mac_ptr;
24571
24572 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24573 include_mac_end, current_file, lh,
24574 section, section_is_gnu, is_dwz,
24575 offset_size, include_hash);
24576
24577 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24578 }
24579 }
24580 break;
24581
24582 case DW_MACINFO_vendor_ext:
24583 if (!section_is_gnu)
24584 {
24585 unsigned int bytes_read;
24586
24587 /* This reads the constant, but since we don't recognize
24588 any vendor extensions, we ignore it. */
24589 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24590 mac_ptr += bytes_read;
24591 read_direct_string (abfd, mac_ptr, &bytes_read);
24592 mac_ptr += bytes_read;
24593
24594 /* We don't recognize any vendor extensions. */
24595 break;
24596 }
24597 /* FALLTHROUGH */
24598
24599 default:
24600 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24601 mac_ptr, mac_end, abfd, offset_size,
24602 section);
24603 if (mac_ptr == NULL)
24604 return;
24605 break;
24606 }
24607 DIAGNOSTIC_POP
24608 } while (macinfo_type != 0);
24609 }
24610
24611 static void
24612 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24613 int section_is_gnu)
24614 {
24615 struct dwarf2_per_objfile *dwarf2_per_objfile
24616 = cu->per_cu->dwarf2_per_objfile;
24617 struct objfile *objfile = dwarf2_per_objfile->objfile;
24618 struct line_header *lh = cu->line_header;
24619 bfd *abfd;
24620 const gdb_byte *mac_ptr, *mac_end;
24621 struct macro_source_file *current_file = 0;
24622 enum dwarf_macro_record_type macinfo_type;
24623 unsigned int offset_size = cu->header.offset_size;
24624 const gdb_byte *opcode_definitions[256];
24625 void **slot;
24626 struct dwarf2_section_info *section;
24627 const char *section_name;
24628
24629 if (cu->dwo_unit != NULL)
24630 {
24631 if (section_is_gnu)
24632 {
24633 section = &cu->dwo_unit->dwo_file->sections.macro;
24634 section_name = ".debug_macro.dwo";
24635 }
24636 else
24637 {
24638 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24639 section_name = ".debug_macinfo.dwo";
24640 }
24641 }
24642 else
24643 {
24644 if (section_is_gnu)
24645 {
24646 section = &dwarf2_per_objfile->macro;
24647 section_name = ".debug_macro";
24648 }
24649 else
24650 {
24651 section = &dwarf2_per_objfile->macinfo;
24652 section_name = ".debug_macinfo";
24653 }
24654 }
24655
24656 dwarf2_read_section (objfile, section);
24657 if (section->buffer == NULL)
24658 {
24659 complaint (_("missing %s section"), section_name);
24660 return;
24661 }
24662 abfd = get_section_bfd_owner (section);
24663
24664 /* First pass: Find the name of the base filename.
24665 This filename is needed in order to process all macros whose definition
24666 (or undefinition) comes from the command line. These macros are defined
24667 before the first DW_MACINFO_start_file entry, and yet still need to be
24668 associated to the base file.
24669
24670 To determine the base file name, we scan the macro definitions until we
24671 reach the first DW_MACINFO_start_file entry. We then initialize
24672 CURRENT_FILE accordingly so that any macro definition found before the
24673 first DW_MACINFO_start_file can still be associated to the base file. */
24674
24675 mac_ptr = section->buffer + offset;
24676 mac_end = section->buffer + section->size;
24677
24678 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24679 &offset_size, section_is_gnu);
24680 if (mac_ptr == NULL)
24681 {
24682 /* We already issued a complaint. */
24683 return;
24684 }
24685
24686 do
24687 {
24688 /* Do we at least have room for a macinfo type byte? */
24689 if (mac_ptr >= mac_end)
24690 {
24691 /* Complaint is printed during the second pass as GDB will probably
24692 stop the first pass earlier upon finding
24693 DW_MACINFO_start_file. */
24694 break;
24695 }
24696
24697 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24698 mac_ptr++;
24699
24700 /* Note that we rely on the fact that the corresponding GNU and
24701 DWARF constants are the same. */
24702 DIAGNOSTIC_PUSH
24703 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24704 switch (macinfo_type)
24705 {
24706 /* A zero macinfo type indicates the end of the macro
24707 information. */
24708 case 0:
24709 break;
24710
24711 case DW_MACRO_define:
24712 case DW_MACRO_undef:
24713 /* Only skip the data by MAC_PTR. */
24714 {
24715 unsigned int bytes_read;
24716
24717 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24718 mac_ptr += bytes_read;
24719 read_direct_string (abfd, mac_ptr, &bytes_read);
24720 mac_ptr += bytes_read;
24721 }
24722 break;
24723
24724 case DW_MACRO_start_file:
24725 {
24726 unsigned int bytes_read;
24727 int line, file;
24728
24729 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24730 mac_ptr += bytes_read;
24731 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733
24734 current_file = macro_start_file (cu, file, line, current_file, lh);
24735 }
24736 break;
24737
24738 case DW_MACRO_end_file:
24739 /* No data to skip by MAC_PTR. */
24740 break;
24741
24742 case DW_MACRO_define_strp:
24743 case DW_MACRO_undef_strp:
24744 case DW_MACRO_define_sup:
24745 case DW_MACRO_undef_sup:
24746 {
24747 unsigned int bytes_read;
24748
24749 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24750 mac_ptr += bytes_read;
24751 mac_ptr += offset_size;
24752 }
24753 break;
24754
24755 case DW_MACRO_import:
24756 case DW_MACRO_import_sup:
24757 /* Note that, according to the spec, a transparent include
24758 chain cannot call DW_MACRO_start_file. So, we can just
24759 skip this opcode. */
24760 mac_ptr += offset_size;
24761 break;
24762
24763 case DW_MACINFO_vendor_ext:
24764 /* Only skip the data by MAC_PTR. */
24765 if (!section_is_gnu)
24766 {
24767 unsigned int bytes_read;
24768
24769 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24770 mac_ptr += bytes_read;
24771 read_direct_string (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 }
24774 /* FALLTHROUGH */
24775
24776 default:
24777 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24778 mac_ptr, mac_end, abfd, offset_size,
24779 section);
24780 if (mac_ptr == NULL)
24781 return;
24782 break;
24783 }
24784 DIAGNOSTIC_POP
24785 } while (macinfo_type != 0 && current_file == NULL);
24786
24787 /* Second pass: Process all entries.
24788
24789 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24790 command-line macro definitions/undefinitions. This flag is unset when we
24791 reach the first DW_MACINFO_start_file entry. */
24792
24793 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24794 htab_eq_pointer,
24795 NULL, xcalloc, xfree));
24796 mac_ptr = section->buffer + offset;
24797 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24798 *slot = (void *) mac_ptr;
24799 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24800 current_file, lh, section,
24801 section_is_gnu, 0, offset_size,
24802 include_hash.get ());
24803 }
24804
24805 /* Check if the attribute's form is a DW_FORM_block*
24806 if so return true else false. */
24807
24808 static int
24809 attr_form_is_block (const struct attribute *attr)
24810 {
24811 return (attr == NULL ? 0 :
24812 attr->form == DW_FORM_block1
24813 || attr->form == DW_FORM_block2
24814 || attr->form == DW_FORM_block4
24815 || attr->form == DW_FORM_block
24816 || attr->form == DW_FORM_exprloc);
24817 }
24818
24819 /* Return non-zero if ATTR's value is a section offset --- classes
24820 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24821 You may use DW_UNSND (attr) to retrieve such offsets.
24822
24823 Section 7.5.4, "Attribute Encodings", explains that no attribute
24824 may have a value that belongs to more than one of these classes; it
24825 would be ambiguous if we did, because we use the same forms for all
24826 of them. */
24827
24828 static int
24829 attr_form_is_section_offset (const struct attribute *attr)
24830 {
24831 return (attr->form == DW_FORM_data4
24832 || attr->form == DW_FORM_data8
24833 || attr->form == DW_FORM_sec_offset);
24834 }
24835
24836 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24837 zero otherwise. When this function returns true, you can apply
24838 dwarf2_get_attr_constant_value to it.
24839
24840 However, note that for some attributes you must check
24841 attr_form_is_section_offset before using this test. DW_FORM_data4
24842 and DW_FORM_data8 are members of both the constant class, and of
24843 the classes that contain offsets into other debug sections
24844 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24845 that, if an attribute's can be either a constant or one of the
24846 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24847 taken as section offsets, not constants.
24848
24849 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24850 cannot handle that. */
24851
24852 static int
24853 attr_form_is_constant (const struct attribute *attr)
24854 {
24855 switch (attr->form)
24856 {
24857 case DW_FORM_sdata:
24858 case DW_FORM_udata:
24859 case DW_FORM_data1:
24860 case DW_FORM_data2:
24861 case DW_FORM_data4:
24862 case DW_FORM_data8:
24863 case DW_FORM_implicit_const:
24864 return 1;
24865 default:
24866 return 0;
24867 }
24868 }
24869
24870
24871 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24872 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24873
24874 static int
24875 attr_form_is_ref (const struct attribute *attr)
24876 {
24877 switch (attr->form)
24878 {
24879 case DW_FORM_ref_addr:
24880 case DW_FORM_ref1:
24881 case DW_FORM_ref2:
24882 case DW_FORM_ref4:
24883 case DW_FORM_ref8:
24884 case DW_FORM_ref_udata:
24885 case DW_FORM_GNU_ref_alt:
24886 return 1;
24887 default:
24888 return 0;
24889 }
24890 }
24891
24892 /* Return the .debug_loc section to use for CU.
24893 For DWO files use .debug_loc.dwo. */
24894
24895 static struct dwarf2_section_info *
24896 cu_debug_loc_section (struct dwarf2_cu *cu)
24897 {
24898 struct dwarf2_per_objfile *dwarf2_per_objfile
24899 = cu->per_cu->dwarf2_per_objfile;
24900
24901 if (cu->dwo_unit)
24902 {
24903 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24904
24905 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24906 }
24907 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24908 : &dwarf2_per_objfile->loc);
24909 }
24910
24911 /* A helper function that fills in a dwarf2_loclist_baton. */
24912
24913 static void
24914 fill_in_loclist_baton (struct dwarf2_cu *cu,
24915 struct dwarf2_loclist_baton *baton,
24916 const struct attribute *attr)
24917 {
24918 struct dwarf2_per_objfile *dwarf2_per_objfile
24919 = cu->per_cu->dwarf2_per_objfile;
24920 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24921
24922 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24923
24924 baton->per_cu = cu->per_cu;
24925 gdb_assert (baton->per_cu);
24926 /* We don't know how long the location list is, but make sure we
24927 don't run off the edge of the section. */
24928 baton->size = section->size - DW_UNSND (attr);
24929 baton->data = section->buffer + DW_UNSND (attr);
24930 baton->base_address = cu->base_address;
24931 baton->from_dwo = cu->dwo_unit != NULL;
24932 }
24933
24934 static void
24935 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24936 struct dwarf2_cu *cu, int is_block)
24937 {
24938 struct dwarf2_per_objfile *dwarf2_per_objfile
24939 = cu->per_cu->dwarf2_per_objfile;
24940 struct objfile *objfile = dwarf2_per_objfile->objfile;
24941 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24942
24943 if (attr_form_is_section_offset (attr)
24944 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24945 the section. If so, fall through to the complaint in the
24946 other branch. */
24947 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24948 {
24949 struct dwarf2_loclist_baton *baton;
24950
24951 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24952
24953 fill_in_loclist_baton (cu, baton, attr);
24954
24955 if (cu->base_known == 0)
24956 complaint (_("Location list used without "
24957 "specifying the CU base address."));
24958
24959 SYMBOL_ACLASS_INDEX (sym) = (is_block
24960 ? dwarf2_loclist_block_index
24961 : dwarf2_loclist_index);
24962 SYMBOL_LOCATION_BATON (sym) = baton;
24963 }
24964 else
24965 {
24966 struct dwarf2_locexpr_baton *baton;
24967
24968 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24969 baton->per_cu = cu->per_cu;
24970 gdb_assert (baton->per_cu);
24971
24972 if (attr_form_is_block (attr))
24973 {
24974 /* Note that we're just copying the block's data pointer
24975 here, not the actual data. We're still pointing into the
24976 info_buffer for SYM's objfile; right now we never release
24977 that buffer, but when we do clean up properly this may
24978 need to change. */
24979 baton->size = DW_BLOCK (attr)->size;
24980 baton->data = DW_BLOCK (attr)->data;
24981 }
24982 else
24983 {
24984 dwarf2_invalid_attrib_class_complaint ("location description",
24985 SYMBOL_NATURAL_NAME (sym));
24986 baton->size = 0;
24987 }
24988
24989 SYMBOL_ACLASS_INDEX (sym) = (is_block
24990 ? dwarf2_locexpr_block_index
24991 : dwarf2_locexpr_index);
24992 SYMBOL_LOCATION_BATON (sym) = baton;
24993 }
24994 }
24995
24996 /* Return the OBJFILE associated with the compilation unit CU. If CU
24997 came from a separate debuginfo file, then the master objfile is
24998 returned. */
24999
25000 struct objfile *
25001 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25002 {
25003 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25004
25005 /* Return the master objfile, so that we can report and look up the
25006 correct file containing this variable. */
25007 if (objfile->separate_debug_objfile_backlink)
25008 objfile = objfile->separate_debug_objfile_backlink;
25009
25010 return objfile;
25011 }
25012
25013 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25014 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25015 CU_HEADERP first. */
25016
25017 static const struct comp_unit_head *
25018 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25019 struct dwarf2_per_cu_data *per_cu)
25020 {
25021 const gdb_byte *info_ptr;
25022
25023 if (per_cu->cu)
25024 return &per_cu->cu->header;
25025
25026 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25027
25028 memset (cu_headerp, 0, sizeof (*cu_headerp));
25029 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25030 rcuh_kind::COMPILE);
25031
25032 return cu_headerp;
25033 }
25034
25035 /* Return the address size given in the compilation unit header for CU. */
25036
25037 int
25038 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25039 {
25040 struct comp_unit_head cu_header_local;
25041 const struct comp_unit_head *cu_headerp;
25042
25043 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25044
25045 return cu_headerp->addr_size;
25046 }
25047
25048 /* Return the offset size given in the compilation unit header for CU. */
25049
25050 int
25051 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25052 {
25053 struct comp_unit_head cu_header_local;
25054 const struct comp_unit_head *cu_headerp;
25055
25056 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25057
25058 return cu_headerp->offset_size;
25059 }
25060
25061 /* See its dwarf2loc.h declaration. */
25062
25063 int
25064 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25065 {
25066 struct comp_unit_head cu_header_local;
25067 const struct comp_unit_head *cu_headerp;
25068
25069 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25070
25071 if (cu_headerp->version == 2)
25072 return cu_headerp->addr_size;
25073 else
25074 return cu_headerp->offset_size;
25075 }
25076
25077 /* Return the text offset of the CU. The returned offset comes from
25078 this CU's objfile. If this objfile came from a separate debuginfo
25079 file, then the offset may be different from the corresponding
25080 offset in the parent objfile. */
25081
25082 CORE_ADDR
25083 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25084 {
25085 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25086
25087 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25088 }
25089
25090 /* Return DWARF version number of PER_CU. */
25091
25092 short
25093 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25094 {
25095 return per_cu->dwarf_version;
25096 }
25097
25098 /* Locate the .debug_info compilation unit from CU's objfile which contains
25099 the DIE at OFFSET. Raises an error on failure. */
25100
25101 static struct dwarf2_per_cu_data *
25102 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25103 unsigned int offset_in_dwz,
25104 struct dwarf2_per_objfile *dwarf2_per_objfile)
25105 {
25106 struct dwarf2_per_cu_data *this_cu;
25107 int low, high;
25108
25109 low = 0;
25110 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25111 while (high > low)
25112 {
25113 struct dwarf2_per_cu_data *mid_cu;
25114 int mid = low + (high - low) / 2;
25115
25116 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25117 if (mid_cu->is_dwz > offset_in_dwz
25118 || (mid_cu->is_dwz == offset_in_dwz
25119 && mid_cu->sect_off + mid_cu->length >= sect_off))
25120 high = mid;
25121 else
25122 low = mid + 1;
25123 }
25124 gdb_assert (low == high);
25125 this_cu = dwarf2_per_objfile->all_comp_units[low];
25126 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25127 {
25128 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25129 error (_("Dwarf Error: could not find partial DIE containing "
25130 "offset %s [in module %s]"),
25131 sect_offset_str (sect_off),
25132 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25133
25134 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25135 <= sect_off);
25136 return dwarf2_per_objfile->all_comp_units[low-1];
25137 }
25138 else
25139 {
25140 this_cu = dwarf2_per_objfile->all_comp_units[low];
25141 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25142 && sect_off >= this_cu->sect_off + this_cu->length)
25143 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25144 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25145 return this_cu;
25146 }
25147 }
25148
25149 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25150
25151 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25152 : per_cu (per_cu_),
25153 mark (false),
25154 has_loclist (false),
25155 checked_producer (false),
25156 producer_is_gxx_lt_4_6 (false),
25157 producer_is_gcc_lt_4_3 (false),
25158 producer_is_icc (false),
25159 producer_is_icc_lt_14 (false),
25160 producer_is_codewarrior (false),
25161 processing_has_namespace_info (false)
25162 {
25163 per_cu->cu = this;
25164 }
25165
25166 /* Destroy a dwarf2_cu. */
25167
25168 dwarf2_cu::~dwarf2_cu ()
25169 {
25170 per_cu->cu = NULL;
25171 }
25172
25173 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25174
25175 static void
25176 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25177 enum language pretend_language)
25178 {
25179 struct attribute *attr;
25180
25181 /* Set the language we're debugging. */
25182 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25183 if (attr)
25184 set_cu_language (DW_UNSND (attr), cu);
25185 else
25186 {
25187 cu->language = pretend_language;
25188 cu->language_defn = language_def (cu->language);
25189 }
25190
25191 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25192 }
25193
25194 /* Increase the age counter on each cached compilation unit, and free
25195 any that are too old. */
25196
25197 static void
25198 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25199 {
25200 struct dwarf2_per_cu_data *per_cu, **last_chain;
25201
25202 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25203 per_cu = dwarf2_per_objfile->read_in_chain;
25204 while (per_cu != NULL)
25205 {
25206 per_cu->cu->last_used ++;
25207 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25208 dwarf2_mark (per_cu->cu);
25209 per_cu = per_cu->cu->read_in_chain;
25210 }
25211
25212 per_cu = dwarf2_per_objfile->read_in_chain;
25213 last_chain = &dwarf2_per_objfile->read_in_chain;
25214 while (per_cu != NULL)
25215 {
25216 struct dwarf2_per_cu_data *next_cu;
25217
25218 next_cu = per_cu->cu->read_in_chain;
25219
25220 if (!per_cu->cu->mark)
25221 {
25222 delete per_cu->cu;
25223 *last_chain = next_cu;
25224 }
25225 else
25226 last_chain = &per_cu->cu->read_in_chain;
25227
25228 per_cu = next_cu;
25229 }
25230 }
25231
25232 /* Remove a single compilation unit from the cache. */
25233
25234 static void
25235 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25236 {
25237 struct dwarf2_per_cu_data *per_cu, **last_chain;
25238 struct dwarf2_per_objfile *dwarf2_per_objfile
25239 = target_per_cu->dwarf2_per_objfile;
25240
25241 per_cu = dwarf2_per_objfile->read_in_chain;
25242 last_chain = &dwarf2_per_objfile->read_in_chain;
25243 while (per_cu != NULL)
25244 {
25245 struct dwarf2_per_cu_data *next_cu;
25246
25247 next_cu = per_cu->cu->read_in_chain;
25248
25249 if (per_cu == target_per_cu)
25250 {
25251 delete per_cu->cu;
25252 per_cu->cu = NULL;
25253 *last_chain = next_cu;
25254 break;
25255 }
25256 else
25257 last_chain = &per_cu->cu->read_in_chain;
25258
25259 per_cu = next_cu;
25260 }
25261 }
25262
25263 /* Cleanup function for the dwarf2_per_objfile data. */
25264
25265 static void
25266 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25267 {
25268 struct dwarf2_per_objfile *dwarf2_per_objfile
25269 = static_cast<struct dwarf2_per_objfile *> (datum);
25270
25271 delete dwarf2_per_objfile;
25272 }
25273
25274 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25275 We store these in a hash table separate from the DIEs, and preserve them
25276 when the DIEs are flushed out of cache.
25277
25278 The CU "per_cu" pointer is needed because offset alone is not enough to
25279 uniquely identify the type. A file may have multiple .debug_types sections,
25280 or the type may come from a DWO file. Furthermore, while it's more logical
25281 to use per_cu->section+offset, with Fission the section with the data is in
25282 the DWO file but we don't know that section at the point we need it.
25283 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25284 because we can enter the lookup routine, get_die_type_at_offset, from
25285 outside this file, and thus won't necessarily have PER_CU->cu.
25286 Fortunately, PER_CU is stable for the life of the objfile. */
25287
25288 struct dwarf2_per_cu_offset_and_type
25289 {
25290 const struct dwarf2_per_cu_data *per_cu;
25291 sect_offset sect_off;
25292 struct type *type;
25293 };
25294
25295 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25296
25297 static hashval_t
25298 per_cu_offset_and_type_hash (const void *item)
25299 {
25300 const struct dwarf2_per_cu_offset_and_type *ofs
25301 = (const struct dwarf2_per_cu_offset_and_type *) item;
25302
25303 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25304 }
25305
25306 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25307
25308 static int
25309 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25310 {
25311 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25312 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25313 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25314 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25315
25316 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25317 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25318 }
25319
25320 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25321 table if necessary. For convenience, return TYPE.
25322
25323 The DIEs reading must have careful ordering to:
25324 * Not cause infite loops trying to read in DIEs as a prerequisite for
25325 reading current DIE.
25326 * Not trying to dereference contents of still incompletely read in types
25327 while reading in other DIEs.
25328 * Enable referencing still incompletely read in types just by a pointer to
25329 the type without accessing its fields.
25330
25331 Therefore caller should follow these rules:
25332 * Try to fetch any prerequisite types we may need to build this DIE type
25333 before building the type and calling set_die_type.
25334 * After building type call set_die_type for current DIE as soon as
25335 possible before fetching more types to complete the current type.
25336 * Make the type as complete as possible before fetching more types. */
25337
25338 static struct type *
25339 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25340 {
25341 struct dwarf2_per_objfile *dwarf2_per_objfile
25342 = cu->per_cu->dwarf2_per_objfile;
25343 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25344 struct objfile *objfile = dwarf2_per_objfile->objfile;
25345 struct attribute *attr;
25346 struct dynamic_prop prop;
25347
25348 /* For Ada types, make sure that the gnat-specific data is always
25349 initialized (if not already set). There are a few types where
25350 we should not be doing so, because the type-specific area is
25351 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25352 where the type-specific area is used to store the floatformat).
25353 But this is not a problem, because the gnat-specific information
25354 is actually not needed for these types. */
25355 if (need_gnat_info (cu)
25356 && TYPE_CODE (type) != TYPE_CODE_FUNC
25357 && TYPE_CODE (type) != TYPE_CODE_FLT
25358 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25359 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25360 && TYPE_CODE (type) != TYPE_CODE_METHOD
25361 && !HAVE_GNAT_AUX_INFO (type))
25362 INIT_GNAT_SPECIFIC (type);
25363
25364 /* Read DW_AT_allocated and set in type. */
25365 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25366 if (attr_form_is_block (attr))
25367 {
25368 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25369 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25370 }
25371 else if (attr != NULL)
25372 {
25373 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25374 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25375 sect_offset_str (die->sect_off));
25376 }
25377
25378 /* Read DW_AT_associated and set in type. */
25379 attr = dwarf2_attr (die, DW_AT_associated, cu);
25380 if (attr_form_is_block (attr))
25381 {
25382 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25383 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25384 }
25385 else if (attr != NULL)
25386 {
25387 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25388 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25389 sect_offset_str (die->sect_off));
25390 }
25391
25392 /* Read DW_AT_data_location and set in type. */
25393 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25394 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25395 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25396
25397 if (dwarf2_per_objfile->die_type_hash == NULL)
25398 {
25399 dwarf2_per_objfile->die_type_hash =
25400 htab_create_alloc_ex (127,
25401 per_cu_offset_and_type_hash,
25402 per_cu_offset_and_type_eq,
25403 NULL,
25404 &objfile->objfile_obstack,
25405 hashtab_obstack_allocate,
25406 dummy_obstack_deallocate);
25407 }
25408
25409 ofs.per_cu = cu->per_cu;
25410 ofs.sect_off = die->sect_off;
25411 ofs.type = type;
25412 slot = (struct dwarf2_per_cu_offset_and_type **)
25413 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25414 if (*slot)
25415 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25416 sect_offset_str (die->sect_off));
25417 *slot = XOBNEW (&objfile->objfile_obstack,
25418 struct dwarf2_per_cu_offset_and_type);
25419 **slot = ofs;
25420 return type;
25421 }
25422
25423 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25424 or return NULL if the die does not have a saved type. */
25425
25426 static struct type *
25427 get_die_type_at_offset (sect_offset sect_off,
25428 struct dwarf2_per_cu_data *per_cu)
25429 {
25430 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25431 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25432
25433 if (dwarf2_per_objfile->die_type_hash == NULL)
25434 return NULL;
25435
25436 ofs.per_cu = per_cu;
25437 ofs.sect_off = sect_off;
25438 slot = ((struct dwarf2_per_cu_offset_and_type *)
25439 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25440 if (slot)
25441 return slot->type;
25442 else
25443 return NULL;
25444 }
25445
25446 /* Look up the type for DIE in CU in die_type_hash,
25447 or return NULL if DIE does not have a saved type. */
25448
25449 static struct type *
25450 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25451 {
25452 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25453 }
25454
25455 /* Add a dependence relationship from CU to REF_PER_CU. */
25456
25457 static void
25458 dwarf2_add_dependence (struct dwarf2_cu *cu,
25459 struct dwarf2_per_cu_data *ref_per_cu)
25460 {
25461 void **slot;
25462
25463 if (cu->dependencies == NULL)
25464 cu->dependencies
25465 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25466 NULL, &cu->comp_unit_obstack,
25467 hashtab_obstack_allocate,
25468 dummy_obstack_deallocate);
25469
25470 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25471 if (*slot == NULL)
25472 *slot = ref_per_cu;
25473 }
25474
25475 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25476 Set the mark field in every compilation unit in the
25477 cache that we must keep because we are keeping CU. */
25478
25479 static int
25480 dwarf2_mark_helper (void **slot, void *data)
25481 {
25482 struct dwarf2_per_cu_data *per_cu;
25483
25484 per_cu = (struct dwarf2_per_cu_data *) *slot;
25485
25486 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25487 reading of the chain. As such dependencies remain valid it is not much
25488 useful to track and undo them during QUIT cleanups. */
25489 if (per_cu->cu == NULL)
25490 return 1;
25491
25492 if (per_cu->cu->mark)
25493 return 1;
25494 per_cu->cu->mark = true;
25495
25496 if (per_cu->cu->dependencies != NULL)
25497 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25498
25499 return 1;
25500 }
25501
25502 /* Set the mark field in CU and in every other compilation unit in the
25503 cache that we must keep because we are keeping CU. */
25504
25505 static void
25506 dwarf2_mark (struct dwarf2_cu *cu)
25507 {
25508 if (cu->mark)
25509 return;
25510 cu->mark = true;
25511 if (cu->dependencies != NULL)
25512 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25513 }
25514
25515 static void
25516 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25517 {
25518 while (per_cu)
25519 {
25520 per_cu->cu->mark = false;
25521 per_cu = per_cu->cu->read_in_chain;
25522 }
25523 }
25524
25525 /* Trivial hash function for partial_die_info: the hash value of a DIE
25526 is its offset in .debug_info for this objfile. */
25527
25528 static hashval_t
25529 partial_die_hash (const void *item)
25530 {
25531 const struct partial_die_info *part_die
25532 = (const struct partial_die_info *) item;
25533
25534 return to_underlying (part_die->sect_off);
25535 }
25536
25537 /* Trivial comparison function for partial_die_info structures: two DIEs
25538 are equal if they have the same offset. */
25539
25540 static int
25541 partial_die_eq (const void *item_lhs, const void *item_rhs)
25542 {
25543 const struct partial_die_info *part_die_lhs
25544 = (const struct partial_die_info *) item_lhs;
25545 const struct partial_die_info *part_die_rhs
25546 = (const struct partial_die_info *) item_rhs;
25547
25548 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25549 }
25550
25551 struct cmd_list_element *set_dwarf_cmdlist;
25552 struct cmd_list_element *show_dwarf_cmdlist;
25553
25554 static void
25555 set_dwarf_cmd (const char *args, int from_tty)
25556 {
25557 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25558 gdb_stdout);
25559 }
25560
25561 static void
25562 show_dwarf_cmd (const char *args, int from_tty)
25563 {
25564 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25565 }
25566
25567 int dwarf_always_disassemble;
25568
25569 static void
25570 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25571 struct cmd_list_element *c, const char *value)
25572 {
25573 fprintf_filtered (file,
25574 _("Whether to always disassemble "
25575 "DWARF expressions is %s.\n"),
25576 value);
25577 }
25578
25579 static void
25580 show_check_physname (struct ui_file *file, int from_tty,
25581 struct cmd_list_element *c, const char *value)
25582 {
25583 fprintf_filtered (file,
25584 _("Whether to check \"physname\" is %s.\n"),
25585 value);
25586 }
25587
25588 void
25589 _initialize_dwarf2_read (void)
25590 {
25591 dwarf2_objfile_data_key
25592 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25593
25594 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25595 Set DWARF specific variables.\n\
25596 Configure DWARF variables such as the cache size"),
25597 &set_dwarf_cmdlist, "maintenance set dwarf ",
25598 0/*allow-unknown*/, &maintenance_set_cmdlist);
25599
25600 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25601 Show DWARF specific variables\n\
25602 Show DWARF variables such as the cache size"),
25603 &show_dwarf_cmdlist, "maintenance show dwarf ",
25604 0/*allow-unknown*/, &maintenance_show_cmdlist);
25605
25606 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25607 &dwarf_max_cache_age, _("\
25608 Set the upper bound on the age of cached DWARF compilation units."), _("\
25609 Show the upper bound on the age of cached DWARF compilation units."), _("\
25610 A higher limit means that cached compilation units will be stored\n\
25611 in memory longer, and more total memory will be used. Zero disables\n\
25612 caching, which can slow down startup."),
25613 NULL,
25614 show_dwarf_max_cache_age,
25615 &set_dwarf_cmdlist,
25616 &show_dwarf_cmdlist);
25617
25618 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25619 &dwarf_always_disassemble, _("\
25620 Set whether `info address' always disassembles DWARF expressions."), _("\
25621 Show whether `info address' always disassembles DWARF expressions."), _("\
25622 When enabled, DWARF expressions are always printed in an assembly-like\n\
25623 syntax. When disabled, expressions will be printed in a more\n\
25624 conversational style, when possible."),
25625 NULL,
25626 show_dwarf_always_disassemble,
25627 &set_dwarf_cmdlist,
25628 &show_dwarf_cmdlist);
25629
25630 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25631 Set debugging of the DWARF reader."), _("\
25632 Show debugging of the DWARF reader."), _("\
25633 When enabled (non-zero), debugging messages are printed during DWARF\n\
25634 reading and symtab expansion. A value of 1 (one) provides basic\n\
25635 information. A value greater than 1 provides more verbose information."),
25636 NULL,
25637 NULL,
25638 &setdebuglist, &showdebuglist);
25639
25640 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25641 Set debugging of the DWARF DIE reader."), _("\
25642 Show debugging of the DWARF DIE reader."), _("\
25643 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25644 The value is the maximum depth to print."),
25645 NULL,
25646 NULL,
25647 &setdebuglist, &showdebuglist);
25648
25649 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25650 Set debugging of the dwarf line reader."), _("\
25651 Show debugging of the dwarf line reader."), _("\
25652 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25653 A value of 1 (one) provides basic information.\n\
25654 A value greater than 1 provides more verbose information."),
25655 NULL,
25656 NULL,
25657 &setdebuglist, &showdebuglist);
25658
25659 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25660 Set cross-checking of \"physname\" code against demangler."), _("\
25661 Show cross-checking of \"physname\" code against demangler."), _("\
25662 When enabled, GDB's internal \"physname\" code is checked against\n\
25663 the demangler."),
25664 NULL, show_check_physname,
25665 &setdebuglist, &showdebuglist);
25666
25667 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25668 no_class, &use_deprecated_index_sections, _("\
25669 Set whether to use deprecated gdb_index sections."), _("\
25670 Show whether to use deprecated gdb_index sections."), _("\
25671 When enabled, deprecated .gdb_index sections are used anyway.\n\
25672 Normally they are ignored either because of a missing feature or\n\
25673 performance issue.\n\
25674 Warning: This option must be enabled before gdb reads the file."),
25675 NULL,
25676 NULL,
25677 &setlist, &showlist);
25678
25679 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25680 &dwarf2_locexpr_funcs);
25681 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25682 &dwarf2_loclist_funcs);
25683
25684 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25685 &dwarf2_block_frame_base_locexpr_funcs);
25686 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25687 &dwarf2_block_frame_base_loclist_funcs);
25688
25689 #if GDB_SELF_TEST
25690 selftests::register_test ("dw2_expand_symtabs_matching",
25691 selftests::dw2_expand_symtabs_matching::run_test);
25692 #endif
25693 }
This page took 0.588386 seconds and 3 git commands to generate.