gdb:
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
226 };
227
228 static struct dwarf2_per_objfile *dwarf2_per_objfile;
229
230 /* names of the debugging sections */
231
232 /* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235 #define INFO_SECTION "debug_info"
236 #define ABBREV_SECTION "debug_abbrev"
237 #define LINE_SECTION "debug_line"
238 #define LOC_SECTION "debug_loc"
239 #define MACINFO_SECTION "debug_macinfo"
240 #define STR_SECTION "debug_str"
241 #define RANGES_SECTION "debug_ranges"
242 #define TYPES_SECTION "debug_types"
243 #define FRAME_SECTION "debug_frame"
244 #define EH_FRAME_SECTION "eh_frame"
245 #define GDB_INDEX_SECTION "gdb_index"
246
247 /* local data types */
248
249 /* We hold several abbreviation tables in memory at the same time. */
250 #ifndef ABBREV_HASH_SIZE
251 #define ABBREV_HASH_SIZE 121
252 #endif
253
254 /* The data in a compilation unit header, after target2host
255 translation, looks like this. */
256 struct comp_unit_head
257 {
258 unsigned int length;
259 short version;
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
262 unsigned int abbrev_offset;
263
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
266
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
269
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
273
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
277 };
278
279 /* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281 struct delayed_method_info
282 {
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297 };
298
299 typedef struct delayed_method_info delayed_method_info;
300 DEF_VEC_O (delayed_method_info);
301
302 /* Internal state when decoding a particular compilation unit. */
303 struct dwarf2_cu
304 {
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
308 /* The header of the compilation unit. */
309 struct comp_unit_head header;
310
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
323 const char *producer;
324
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of die offsets for following references. */
362 htab_t die_hash;
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
391 };
392
393 /* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396 struct dwarf2_per_cu_quick_data
397 {
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417 };
418
419 /* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
425 struct dwarf2_per_cu_data
426 {
427 /* The start offset and length of this compilation unit. 2**29-1
428 bytes should suffice to store the length of any compilation unit
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
432 unsigned int offset;
433 unsigned int length : 29;
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
437 unsigned int queued : 1;
438
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
451 struct dwarf2_cu *cu;
452
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
468 };
469
470 /* Entry in the signatured_types hash table. */
471
472 struct signatured_type
473 {
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484 };
485
486 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492 struct die_reader_specs
493 {
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503 };
504
505 /* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508 struct line_header
509 {
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
514 unsigned char maximum_ops_per_instruction;
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
538 {
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
543 int included_p; /* Non-zero if referenced by the Line Number Program. */
544 struct symtab *symtab; /* The associated symbol table, if any. */
545 } *file_names;
546
547 /* The start and end of the statement program following this
548 header. These point into dwarf2_per_objfile->line_buffer. */
549 gdb_byte *statement_program_start, *statement_program_end;
550 };
551
552 /* When we construct a partial symbol table entry we only
553 need this much information. */
554 struct partial_die_info
555 {
556 /* Offset of this DIE. */
557 unsigned int offset;
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
580 /* Flag set if fixup_partial_die has been called on this die. */
581 unsigned int fixup_called : 1;
582
583 /* The name of this DIE. Normally the value of DW_AT_name, but
584 sometimes a default name for unnamed DIEs. */
585 char *name;
586
587 /* The linkage name, if present. */
588 const char *linkage_name;
589
590 /* The scope to prepend to our children. This is generally
591 allocated on the comp_unit_obstack, so will disappear
592 when this compilation unit leaves the cache. */
593 char *scope;
594
595 /* The location description associated with this DIE, if any. */
596 struct dwarf_block *locdesc;
597
598 /* If HAS_PC_INFO, the PC range associated with this DIE. */
599 CORE_ADDR lowpc;
600 CORE_ADDR highpc;
601
602 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
603 DW_AT_sibling, if any. */
604 /* NOTE: This member isn't strictly necessary, read_partial_die could
605 return DW_AT_sibling values to its caller load_partial_dies. */
606 gdb_byte *sibling;
607
608 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
609 DW_AT_specification (or DW_AT_abstract_origin or
610 DW_AT_extension). */
611 unsigned int spec_offset;
612
613 /* Pointers to this DIE's parent, first child, and next sibling,
614 if any. */
615 struct partial_die_info *die_parent, *die_child, *die_sibling;
616 };
617
618 /* This data structure holds the information of an abbrev. */
619 struct abbrev_info
620 {
621 unsigned int number; /* number identifying abbrev */
622 enum dwarf_tag tag; /* dwarf tag */
623 unsigned short has_children; /* boolean */
624 unsigned short num_attrs; /* number of attributes */
625 struct attr_abbrev *attrs; /* an array of attribute descriptions */
626 struct abbrev_info *next; /* next in chain */
627 };
628
629 struct attr_abbrev
630 {
631 ENUM_BITFIELD(dwarf_attribute) name : 16;
632 ENUM_BITFIELD(dwarf_form) form : 16;
633 };
634
635 /* Attributes have a name and a value */
636 struct attribute
637 {
638 ENUM_BITFIELD(dwarf_attribute) name : 16;
639 ENUM_BITFIELD(dwarf_form) form : 15;
640
641 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
642 field should be in u.str (existing only for DW_STRING) but it is kept
643 here for better struct attribute alignment. */
644 unsigned int string_is_canonical : 1;
645
646 union
647 {
648 char *str;
649 struct dwarf_block *blk;
650 ULONGEST unsnd;
651 LONGEST snd;
652 CORE_ADDR addr;
653 struct signatured_type *signatured_type;
654 }
655 u;
656 };
657
658 /* This data structure holds a complete die structure. */
659 struct die_info
660 {
661 /* DWARF-2 tag for this DIE. */
662 ENUM_BITFIELD(dwarf_tag) tag : 16;
663
664 /* Number of attributes */
665 unsigned char num_attrs;
666
667 /* True if we're presently building the full type name for the
668 type derived from this DIE. */
669 unsigned char building_fullname : 1;
670
671 /* Abbrev number */
672 unsigned int abbrev;
673
674 /* Offset in .debug_info or .debug_types section. */
675 unsigned int offset;
676
677 /* The dies in a compilation unit form an n-ary tree. PARENT
678 points to this die's parent; CHILD points to the first child of
679 this node; and all the children of a given node are chained
680 together via their SIBLING fields. */
681 struct die_info *child; /* Its first child, if any. */
682 struct die_info *sibling; /* Its next sibling, if any. */
683 struct die_info *parent; /* Its parent, if any. */
684
685 /* An array of attributes, with NUM_ATTRS elements. There may be
686 zero, but it's not common and zero-sized arrays are not
687 sufficiently portable C. */
688 struct attribute attrs[1];
689 };
690
691 struct function_range
692 {
693 const char *name;
694 CORE_ADDR lowpc, highpc;
695 int seen_line;
696 struct function_range *next;
697 };
698
699 /* Get at parts of an attribute structure */
700
701 #define DW_STRING(attr) ((attr)->u.str)
702 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
703 #define DW_UNSND(attr) ((attr)->u.unsnd)
704 #define DW_BLOCK(attr) ((attr)->u.blk)
705 #define DW_SND(attr) ((attr)->u.snd)
706 #define DW_ADDR(attr) ((attr)->u.addr)
707 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
708
709 /* Blocks are a bunch of untyped bytes. */
710 struct dwarf_block
711 {
712 unsigned int size;
713 gdb_byte *data;
714 };
715
716 #ifndef ATTR_ALLOC_CHUNK
717 #define ATTR_ALLOC_CHUNK 4
718 #endif
719
720 /* Allocate fields for structs, unions and enums in this size. */
721 #ifndef DW_FIELD_ALLOC_CHUNK
722 #define DW_FIELD_ALLOC_CHUNK 4
723 #endif
724
725 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
726 but this would require a corresponding change in unpack_field_as_long
727 and friends. */
728 static int bits_per_byte = 8;
729
730 /* The routines that read and process dies for a C struct or C++ class
731 pass lists of data member fields and lists of member function fields
732 in an instance of a field_info structure, as defined below. */
733 struct field_info
734 {
735 /* List of data member and baseclasses fields. */
736 struct nextfield
737 {
738 struct nextfield *next;
739 int accessibility;
740 int virtuality;
741 struct field field;
742 }
743 *fields, *baseclasses;
744
745 /* Number of fields (including baseclasses). */
746 int nfields;
747
748 /* Number of baseclasses. */
749 int nbaseclasses;
750
751 /* Set if the accesibility of one of the fields is not public. */
752 int non_public_fields;
753
754 /* Member function fields array, entries are allocated in the order they
755 are encountered in the object file. */
756 struct nextfnfield
757 {
758 struct nextfnfield *next;
759 struct fn_field fnfield;
760 }
761 *fnfields;
762
763 /* Member function fieldlist array, contains name of possibly overloaded
764 member function, number of overloaded member functions and a pointer
765 to the head of the member function field chain. */
766 struct fnfieldlist
767 {
768 char *name;
769 int length;
770 struct nextfnfield *head;
771 }
772 *fnfieldlists;
773
774 /* Number of entries in the fnfieldlists array. */
775 int nfnfields;
776
777 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
778 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
779 struct typedef_field_list
780 {
781 struct typedef_field field;
782 struct typedef_field_list *next;
783 }
784 *typedef_field_list;
785 unsigned typedef_field_list_count;
786 };
787
788 /* One item on the queue of compilation units to read in full symbols
789 for. */
790 struct dwarf2_queue_item
791 {
792 struct dwarf2_per_cu_data *per_cu;
793 struct dwarf2_queue_item *next;
794 };
795
796 /* The current queue. */
797 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
798
799 /* Loaded secondary compilation units are kept in memory until they
800 have not been referenced for the processing of this many
801 compilation units. Set this to zero to disable caching. Cache
802 sizes of up to at least twenty will improve startup time for
803 typical inter-CU-reference binaries, at an obvious memory cost. */
804 static int dwarf2_max_cache_age = 5;
805 static void
806 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808 {
809 fprintf_filtered (file, _("\
810 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
811 value);
812 }
813
814
815 /* Various complaints about symbol reading that don't abort the process */
816
817 static void
818 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
819 {
820 complaint (&symfile_complaints,
821 _("statement list doesn't fit in .debug_line section"));
822 }
823
824 static void
825 dwarf2_debug_line_missing_file_complaint (void)
826 {
827 complaint (&symfile_complaints,
828 _(".debug_line section has line data without a file"));
829 }
830
831 static void
832 dwarf2_debug_line_missing_end_sequence_complaint (void)
833 {
834 complaint (&symfile_complaints,
835 _(".debug_line section has line program sequence without an end"));
836 }
837
838 static void
839 dwarf2_complex_location_expr_complaint (void)
840 {
841 complaint (&symfile_complaints, _("location expression too complex"));
842 }
843
844 static void
845 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
846 int arg3)
847 {
848 complaint (&symfile_complaints,
849 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
850 arg2, arg3);
851 }
852
853 static void
854 dwarf2_macros_too_long_complaint (void)
855 {
856 complaint (&symfile_complaints,
857 _("macro info runs off end of `.debug_macinfo' section"));
858 }
859
860 static void
861 dwarf2_macro_malformed_definition_complaint (const char *arg1)
862 {
863 complaint (&symfile_complaints,
864 _("macro debug info contains a malformed macro definition:\n`%s'"),
865 arg1);
866 }
867
868 static void
869 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
870 {
871 complaint (&symfile_complaints,
872 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
873 }
874
875 /* local function prototypes */
876
877 static void dwarf2_locate_sections (bfd *, asection *, void *);
878
879 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
880 struct objfile *);
881
882 static void dwarf2_build_psymtabs_hard (struct objfile *);
883
884 static void scan_partial_symbols (struct partial_die_info *,
885 CORE_ADDR *, CORE_ADDR *,
886 int, struct dwarf2_cu *);
887
888 static void add_partial_symbol (struct partial_die_info *,
889 struct dwarf2_cu *);
890
891 static void add_partial_namespace (struct partial_die_info *pdi,
892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
893 int need_pc, struct dwarf2_cu *cu);
894
895 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
896 CORE_ADDR *highpc, int need_pc,
897 struct dwarf2_cu *cu);
898
899 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
900 struct dwarf2_cu *cu);
901
902 static void add_partial_subprogram (struct partial_die_info *pdi,
903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
904 int need_pc, struct dwarf2_cu *cu);
905
906 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
907 gdb_byte *buffer, gdb_byte *info_ptr,
908 bfd *abfd, struct dwarf2_cu *cu);
909
910 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
911
912 static void psymtab_to_symtab_1 (struct partial_symtab *);
913
914 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
915
916 static void dwarf2_free_abbrev_table (void *);
917
918 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
919 struct dwarf2_cu *);
920
921 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
922 struct dwarf2_cu *);
923
924 static struct partial_die_info *load_partial_dies (bfd *,
925 gdb_byte *, gdb_byte *,
926 int, struct dwarf2_cu *);
927
928 static gdb_byte *read_partial_die (struct partial_die_info *,
929 struct abbrev_info *abbrev,
930 unsigned int, bfd *,
931 gdb_byte *, gdb_byte *,
932 struct dwarf2_cu *);
933
934 static struct partial_die_info *find_partial_die (unsigned int,
935 struct dwarf2_cu *);
936
937 static void fixup_partial_die (struct partial_die_info *,
938 struct dwarf2_cu *);
939
940 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
941 bfd *, gdb_byte *, struct dwarf2_cu *);
942
943 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
944 bfd *, gdb_byte *, struct dwarf2_cu *);
945
946 static unsigned int read_1_byte (bfd *, gdb_byte *);
947
948 static int read_1_signed_byte (bfd *, gdb_byte *);
949
950 static unsigned int read_2_bytes (bfd *, gdb_byte *);
951
952 static unsigned int read_4_bytes (bfd *, gdb_byte *);
953
954 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
955
956 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
957 unsigned int *);
958
959 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
960
961 static LONGEST read_checked_initial_length_and_offset
962 (bfd *, gdb_byte *, const struct comp_unit_head *,
963 unsigned int *, unsigned int *);
964
965 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
966 unsigned int *);
967
968 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
969
970 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
971
972 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
973
974 static char *read_indirect_string (bfd *, gdb_byte *,
975 const struct comp_unit_head *,
976 unsigned int *);
977
978 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
979
980 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
981
982 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
983
984 static void set_cu_language (unsigned int, struct dwarf2_cu *);
985
986 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
987 struct dwarf2_cu *);
988
989 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
990 unsigned int,
991 struct dwarf2_cu *);
992
993 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
994 struct dwarf2_cu *cu);
995
996 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
997
998 static struct die_info *die_specification (struct die_info *die,
999 struct dwarf2_cu **);
1000
1001 static void free_line_header (struct line_header *lh);
1002
1003 static void add_file_name (struct line_header *, char *, unsigned int,
1004 unsigned int, unsigned int);
1005
1006 static struct line_header *(dwarf_decode_line_header
1007 (unsigned int offset,
1008 bfd *abfd, struct dwarf2_cu *cu));
1009
1010 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1011 struct dwarf2_cu *, struct partial_symtab *);
1012
1013 static void dwarf2_start_subfile (char *, const char *, const char *);
1014
1015 static struct symbol *new_symbol (struct die_info *, struct type *,
1016 struct dwarf2_cu *);
1017
1018 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1019 struct dwarf2_cu *, struct symbol *);
1020
1021 static void dwarf2_const_value (struct attribute *, struct symbol *,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf2_const_value_attr (struct attribute *attr,
1025 struct type *type,
1026 const char *name,
1027 struct obstack *obstack,
1028 struct dwarf2_cu *cu, long *value,
1029 gdb_byte **bytes,
1030 struct dwarf2_locexpr_baton **baton);
1031
1032 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1033
1034 static int need_gnat_info (struct dwarf2_cu *);
1035
1036 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1037
1038 static void set_descriptive_type (struct type *, struct die_info *,
1039 struct dwarf2_cu *);
1040
1041 static struct type *die_containing_type (struct die_info *,
1042 struct dwarf2_cu *);
1043
1044 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1045 struct dwarf2_cu *);
1046
1047 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1048
1049 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1050
1051 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1052
1053 static char *typename_concat (struct obstack *obs, const char *prefix,
1054 const char *suffix, int physname,
1055 struct dwarf2_cu *cu);
1056
1057 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1058
1059 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1060
1061 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1062
1063 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1064
1065 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1066 struct dwarf2_cu *, struct partial_symtab *);
1067
1068 static int dwarf2_get_pc_bounds (struct die_info *,
1069 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1070 struct partial_symtab *);
1071
1072 static void get_scope_pc_bounds (struct die_info *,
1073 CORE_ADDR *, CORE_ADDR *,
1074 struct dwarf2_cu *);
1075
1076 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1077 CORE_ADDR, struct dwarf2_cu *);
1078
1079 static void dwarf2_add_field (struct field_info *, struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void dwarf2_attach_fields_to_type (struct field_info *,
1083 struct type *, struct dwarf2_cu *);
1084
1085 static void dwarf2_add_member_fn (struct field_info *,
1086 struct die_info *, struct type *,
1087 struct dwarf2_cu *);
1088
1089 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1090 struct type *, struct dwarf2_cu *);
1091
1092 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1095
1096 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1097
1098 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1099
1100 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1101
1102 static struct type *read_module_type (struct die_info *die,
1103 struct dwarf2_cu *cu);
1104
1105 static const char *namespace_name (struct die_info *die,
1106 int *is_anonymous, struct dwarf2_cu *);
1107
1108 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1109
1110 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1111
1112 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1113 struct dwarf2_cu *);
1114
1115 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1116
1117 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1118 gdb_byte *info_ptr,
1119 gdb_byte **new_info_ptr,
1120 struct die_info *parent);
1121
1122 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1123 gdb_byte *info_ptr,
1124 gdb_byte **new_info_ptr,
1125 struct die_info *parent);
1126
1127 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1128 gdb_byte *info_ptr,
1129 gdb_byte **new_info_ptr,
1130 struct die_info *parent);
1131
1132 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1133 struct die_info **, gdb_byte *,
1134 int *);
1135
1136 static void process_die (struct die_info *, struct dwarf2_cu *);
1137
1138 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1139 struct obstack *);
1140
1141 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1142
1143 static const char *dwarf2_full_name (char *name,
1144 struct die_info *die,
1145 struct dwarf2_cu *cu);
1146
1147 static struct die_info *dwarf2_extension (struct die_info *die,
1148 struct dwarf2_cu **);
1149
1150 static char *dwarf_tag_name (unsigned int);
1151
1152 static char *dwarf_attr_name (unsigned int);
1153
1154 static char *dwarf_form_name (unsigned int);
1155
1156 static char *dwarf_bool_name (unsigned int);
1157
1158 static char *dwarf_type_encoding_name (unsigned int);
1159
1160 #if 0
1161 static char *dwarf_cfi_name (unsigned int);
1162 #endif
1163
1164 static struct die_info *sibling_die (struct die_info *);
1165
1166 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1167
1168 static void dump_die_for_error (struct die_info *);
1169
1170 static void dump_die_1 (struct ui_file *, int level, int max_level,
1171 struct die_info *);
1172
1173 /*static*/ void dump_die (struct die_info *, int max_level);
1174
1175 static void store_in_ref_table (struct die_info *,
1176 struct dwarf2_cu *);
1177
1178 static int is_ref_attr (struct attribute *);
1179
1180 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1181
1182 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1183
1184 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1185 struct attribute *,
1186 struct dwarf2_cu **);
1187
1188 static struct die_info *follow_die_ref (struct die_info *,
1189 struct attribute *,
1190 struct dwarf2_cu **);
1191
1192 static struct die_info *follow_die_sig (struct die_info *,
1193 struct attribute *,
1194 struct dwarf2_cu **);
1195
1196 static void read_signatured_type_at_offset (struct objfile *objfile,
1197 unsigned int offset);
1198
1199 static void read_signatured_type (struct objfile *,
1200 struct signatured_type *type_sig);
1201
1202 /* memory allocation interface */
1203
1204 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1205
1206 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1207
1208 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1209
1210 static void initialize_cu_func_list (struct dwarf2_cu *);
1211
1212 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1213 struct dwarf2_cu *);
1214
1215 static void dwarf_decode_macros (struct line_header *, unsigned int,
1216 char *, bfd *, struct dwarf2_cu *);
1217
1218 static int attr_form_is_block (struct attribute *);
1219
1220 static int attr_form_is_section_offset (struct attribute *);
1221
1222 static int attr_form_is_constant (struct attribute *);
1223
1224 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1225 struct symbol *sym,
1226 struct dwarf2_cu *cu);
1227
1228 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1229 struct abbrev_info *abbrev,
1230 struct dwarf2_cu *cu);
1231
1232 static void free_stack_comp_unit (void *);
1233
1234 static hashval_t partial_die_hash (const void *item);
1235
1236 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1237
1238 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1239 (unsigned int offset, struct objfile *objfile);
1240
1241 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1242 (unsigned int offset, struct objfile *objfile);
1243
1244 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1245
1246 static void free_one_comp_unit (void *);
1247
1248 static void free_cached_comp_units (void *);
1249
1250 static void age_cached_comp_units (void);
1251
1252 static void free_one_cached_comp_unit (void *);
1253
1254 static struct type *set_die_type (struct die_info *, struct type *,
1255 struct dwarf2_cu *);
1256
1257 static void create_all_comp_units (struct objfile *);
1258
1259 static int create_debug_types_hash_table (struct objfile *objfile);
1260
1261 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1262 struct objfile *);
1263
1264 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1265
1266 static void dwarf2_add_dependence (struct dwarf2_cu *,
1267 struct dwarf2_per_cu_data *);
1268
1269 static void dwarf2_mark (struct dwarf2_cu *);
1270
1271 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1272
1273 static struct type *get_die_type_at_offset (unsigned int,
1274 struct dwarf2_per_cu_data *per_cu);
1275
1276 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1277
1278 static void dwarf2_release_queue (void *dummy);
1279
1280 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1281 struct objfile *objfile);
1282
1283 static void process_queue (struct objfile *objfile);
1284
1285 static void find_file_and_directory (struct die_info *die,
1286 struct dwarf2_cu *cu,
1287 char **name, char **comp_dir);
1288
1289 static char *file_full_name (int file, struct line_header *lh,
1290 const char *comp_dir);
1291
1292 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1293 gdb_byte *info_ptr,
1294 gdb_byte *buffer,
1295 unsigned int buffer_size,
1296 bfd *abfd);
1297
1298 static void init_cu_die_reader (struct die_reader_specs *reader,
1299 struct dwarf2_cu *cu);
1300
1301 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1302
1303 #if WORDS_BIGENDIAN
1304
1305 /* Convert VALUE between big- and little-endian. */
1306 static offset_type
1307 byte_swap (offset_type value)
1308 {
1309 offset_type result;
1310
1311 result = (value & 0xff) << 24;
1312 result |= (value & 0xff00) << 8;
1313 result |= (value & 0xff0000) >> 8;
1314 result |= (value & 0xff000000) >> 24;
1315 return result;
1316 }
1317
1318 #define MAYBE_SWAP(V) byte_swap (V)
1319
1320 #else
1321 #define MAYBE_SWAP(V) (V)
1322 #endif /* WORDS_BIGENDIAN */
1323
1324 /* The suffix for an index file. */
1325 #define INDEX_SUFFIX ".gdb-index"
1326
1327 static const char *dwarf2_physname (char *name, struct die_info *die,
1328 struct dwarf2_cu *cu);
1329
1330 /* Try to locate the sections we need for DWARF 2 debugging
1331 information and return true if we have enough to do something. */
1332
1333 int
1334 dwarf2_has_info (struct objfile *objfile)
1335 {
1336 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1337 if (!dwarf2_per_objfile)
1338 {
1339 /* Initialize per-objfile state. */
1340 struct dwarf2_per_objfile *data
1341 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1342
1343 memset (data, 0, sizeof (*data));
1344 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1345 dwarf2_per_objfile = data;
1346
1347 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1348 dwarf2_per_objfile->objfile = objfile;
1349 }
1350 return (dwarf2_per_objfile->info.asection != NULL
1351 && dwarf2_per_objfile->abbrev.asection != NULL);
1352 }
1353
1354 /* When loading sections, we can either look for ".<name>", or for
1355 * ".z<name>", which indicates a compressed section. */
1356
1357 static int
1358 section_is_p (const char *section_name, const char *name)
1359 {
1360 return (section_name[0] == '.'
1361 && (strcmp (section_name + 1, name) == 0
1362 || (section_name[1] == 'z'
1363 && strcmp (section_name + 2, name) == 0)));
1364 }
1365
1366 /* This function is mapped across the sections and remembers the
1367 offset and size of each of the debugging sections we are interested
1368 in. */
1369
1370 static void
1371 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1372 {
1373 if (section_is_p (sectp->name, INFO_SECTION))
1374 {
1375 dwarf2_per_objfile->info.asection = sectp;
1376 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1377 }
1378 else if (section_is_p (sectp->name, ABBREV_SECTION))
1379 {
1380 dwarf2_per_objfile->abbrev.asection = sectp;
1381 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1382 }
1383 else if (section_is_p (sectp->name, LINE_SECTION))
1384 {
1385 dwarf2_per_objfile->line.asection = sectp;
1386 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1387 }
1388 else if (section_is_p (sectp->name, LOC_SECTION))
1389 {
1390 dwarf2_per_objfile->loc.asection = sectp;
1391 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1392 }
1393 else if (section_is_p (sectp->name, MACINFO_SECTION))
1394 {
1395 dwarf2_per_objfile->macinfo.asection = sectp;
1396 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1397 }
1398 else if (section_is_p (sectp->name, STR_SECTION))
1399 {
1400 dwarf2_per_objfile->str.asection = sectp;
1401 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1402 }
1403 else if (section_is_p (sectp->name, FRAME_SECTION))
1404 {
1405 dwarf2_per_objfile->frame.asection = sectp;
1406 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1407 }
1408 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1409 {
1410 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1411
1412 if (aflag & SEC_HAS_CONTENTS)
1413 {
1414 dwarf2_per_objfile->eh_frame.asection = sectp;
1415 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1416 }
1417 }
1418 else if (section_is_p (sectp->name, RANGES_SECTION))
1419 {
1420 dwarf2_per_objfile->ranges.asection = sectp;
1421 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1422 }
1423 else if (section_is_p (sectp->name, TYPES_SECTION))
1424 {
1425 dwarf2_per_objfile->types.asection = sectp;
1426 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1427 }
1428 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1429 {
1430 dwarf2_per_objfile->gdb_index.asection = sectp;
1431 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1432 }
1433
1434 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1435 && bfd_section_vma (abfd, sectp) == 0)
1436 dwarf2_per_objfile->has_section_at_zero = 1;
1437 }
1438
1439 /* Decompress a section that was compressed using zlib. Store the
1440 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1441
1442 static void
1443 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1444 gdb_byte **outbuf, bfd_size_type *outsize)
1445 {
1446 bfd *abfd = objfile->obfd;
1447 #ifndef HAVE_ZLIB_H
1448 error (_("Support for zlib-compressed DWARF data (from '%s') "
1449 "is disabled in this copy of GDB"),
1450 bfd_get_filename (abfd));
1451 #else
1452 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1453 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1454 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1455 bfd_size_type uncompressed_size;
1456 gdb_byte *uncompressed_buffer;
1457 z_stream strm;
1458 int rc;
1459 int header_size = 12;
1460
1461 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1462 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1463 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1464 bfd_get_filename (abfd));
1465
1466 /* Read the zlib header. In this case, it should be "ZLIB" followed
1467 by the uncompressed section size, 8 bytes in big-endian order. */
1468 if (compressed_size < header_size
1469 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1470 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1471 bfd_get_filename (abfd));
1472 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1475 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1476 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[11];
1480
1481 /* It is possible the section consists of several compressed
1482 buffers concatenated together, so we uncompress in a loop. */
1483 strm.zalloc = NULL;
1484 strm.zfree = NULL;
1485 strm.opaque = NULL;
1486 strm.avail_in = compressed_size - header_size;
1487 strm.next_in = (Bytef*) compressed_buffer + header_size;
1488 strm.avail_out = uncompressed_size;
1489 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1490 uncompressed_size);
1491 rc = inflateInit (&strm);
1492 while (strm.avail_in > 0)
1493 {
1494 if (rc != Z_OK)
1495 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1496 bfd_get_filename (abfd), rc);
1497 strm.next_out = ((Bytef*) uncompressed_buffer
1498 + (uncompressed_size - strm.avail_out));
1499 rc = inflate (&strm, Z_FINISH);
1500 if (rc != Z_STREAM_END)
1501 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1502 bfd_get_filename (abfd), rc);
1503 rc = inflateReset (&strm);
1504 }
1505 rc = inflateEnd (&strm);
1506 if (rc != Z_OK
1507 || strm.avail_out != 0)
1508 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510
1511 do_cleanups (cleanup);
1512 *outbuf = uncompressed_buffer;
1513 *outsize = uncompressed_size;
1514 #endif
1515 }
1516
1517 /* Read the contents of the section SECTP from object file specified by
1518 OBJFILE, store info about the section into INFO.
1519 If the section is compressed, uncompress it before returning. */
1520
1521 static void
1522 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1523 {
1524 bfd *abfd = objfile->obfd;
1525 asection *sectp = info->asection;
1526 gdb_byte *buf, *retbuf;
1527 unsigned char header[4];
1528
1529 if (info->readin)
1530 return;
1531 info->buffer = NULL;
1532 info->was_mmapped = 0;
1533 info->readin = 1;
1534
1535 if (info->asection == NULL || info->size == 0)
1536 return;
1537
1538 /* Check if the file has a 4-byte header indicating compression. */
1539 if (info->size > sizeof (header)
1540 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1541 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1542 {
1543 /* Upon decompression, update the buffer and its size. */
1544 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1545 {
1546 zlib_decompress_section (objfile, sectp, &info->buffer,
1547 &info->size);
1548 return;
1549 }
1550 }
1551
1552 #ifdef HAVE_MMAP
1553 if (pagesize == 0)
1554 pagesize = getpagesize ();
1555
1556 /* Only try to mmap sections which are large enough: we don't want to
1557 waste space due to fragmentation. Also, only try mmap for sections
1558 without relocations. */
1559
1560 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1561 {
1562 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1563 size_t map_length = info->size + sectp->filepos - pg_offset;
1564 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1565 MAP_PRIVATE, pg_offset);
1566
1567 if (retbuf != MAP_FAILED)
1568 {
1569 info->was_mmapped = 1;
1570 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1571 #if HAVE_POSIX_MADVISE
1572 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1573 #endif
1574 return;
1575 }
1576 }
1577 #endif
1578
1579 /* If we get here, we are a normal, not-compressed section. */
1580 info->buffer = buf
1581 = obstack_alloc (&objfile->objfile_obstack, info->size);
1582
1583 /* When debugging .o files, we may need to apply relocations; see
1584 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1585 We never compress sections in .o files, so we only need to
1586 try this when the section is not compressed. */
1587 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1588 if (retbuf != NULL)
1589 {
1590 info->buffer = retbuf;
1591 return;
1592 }
1593
1594 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1595 || bfd_bread (buf, info->size, abfd) != info->size)
1596 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1597 bfd_get_filename (abfd));
1598 }
1599
1600 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1601 SECTION_NAME. */
1602
1603 void
1604 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1605 asection **sectp, gdb_byte **bufp,
1606 bfd_size_type *sizep)
1607 {
1608 struct dwarf2_per_objfile *data
1609 = objfile_data (objfile, dwarf2_objfile_data_key);
1610 struct dwarf2_section_info *info;
1611
1612 /* We may see an objfile without any DWARF, in which case we just
1613 return nothing. */
1614 if (data == NULL)
1615 {
1616 *sectp = NULL;
1617 *bufp = NULL;
1618 *sizep = 0;
1619 return;
1620 }
1621 if (section_is_p (section_name, EH_FRAME_SECTION))
1622 info = &data->eh_frame;
1623 else if (section_is_p (section_name, FRAME_SECTION))
1624 info = &data->frame;
1625 else
1626 gdb_assert_not_reached ("unexpected section");
1627
1628 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1629 /* We haven't read this section in yet. Do it now. */
1630 dwarf2_read_section (objfile, info);
1631
1632 *sectp = info->asection;
1633 *bufp = info->buffer;
1634 *sizep = info->size;
1635 }
1636
1637 \f
1638
1639 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1640 this CU came. */
1641
1642 static void
1643 dw2_do_instantiate_symtab (struct objfile *objfile,
1644 struct dwarf2_per_cu_data *per_cu)
1645 {
1646 struct cleanup *back_to;
1647
1648 back_to = make_cleanup (dwarf2_release_queue, NULL);
1649
1650 queue_comp_unit (per_cu, objfile);
1651
1652 if (per_cu->from_debug_types)
1653 read_signatured_type_at_offset (objfile, per_cu->offset);
1654 else
1655 load_full_comp_unit (per_cu, objfile);
1656
1657 process_queue (objfile);
1658
1659 /* Age the cache, releasing compilation units that have not
1660 been used recently. */
1661 age_cached_comp_units ();
1662
1663 do_cleanups (back_to);
1664 }
1665
1666 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1667 the objfile from which this CU came. Returns the resulting symbol
1668 table. */
1669
1670 static struct symtab *
1671 dw2_instantiate_symtab (struct objfile *objfile,
1672 struct dwarf2_per_cu_data *per_cu)
1673 {
1674 if (!per_cu->v.quick->symtab)
1675 {
1676 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1677 increment_reading_symtab ();
1678 dw2_do_instantiate_symtab (objfile, per_cu);
1679 do_cleanups (back_to);
1680 }
1681 return per_cu->v.quick->symtab;
1682 }
1683
1684 /* Return the CU given its index. */
1685
1686 static struct dwarf2_per_cu_data *
1687 dw2_get_cu (int index)
1688 {
1689 if (index >= dwarf2_per_objfile->n_comp_units)
1690 {
1691 index -= dwarf2_per_objfile->n_comp_units;
1692 return dwarf2_per_objfile->type_comp_units[index];
1693 }
1694 return dwarf2_per_objfile->all_comp_units[index];
1695 }
1696
1697 /* A helper function that knows how to read a 64-bit value in a way
1698 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1699 otherwise. */
1700
1701 static int
1702 extract_cu_value (const char *bytes, ULONGEST *result)
1703 {
1704 if (sizeof (ULONGEST) < 8)
1705 {
1706 int i;
1707
1708 /* Ignore the upper 4 bytes if they are all zero. */
1709 for (i = 0; i < 4; ++i)
1710 if (bytes[i + 4] != 0)
1711 return 0;
1712
1713 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1714 }
1715 else
1716 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1717 return 1;
1718 }
1719
1720 /* Read the CU list from the mapped index, and use it to create all
1721 the CU objects for this objfile. Return 0 if something went wrong,
1722 1 if everything went ok. */
1723
1724 static int
1725 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1726 offset_type cu_list_elements)
1727 {
1728 offset_type i;
1729
1730 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1731 dwarf2_per_objfile->all_comp_units
1732 = obstack_alloc (&objfile->objfile_obstack,
1733 dwarf2_per_objfile->n_comp_units
1734 * sizeof (struct dwarf2_per_cu_data *));
1735
1736 for (i = 0; i < cu_list_elements; i += 2)
1737 {
1738 struct dwarf2_per_cu_data *the_cu;
1739 ULONGEST offset, length;
1740
1741 if (!extract_cu_value (cu_list, &offset)
1742 || !extract_cu_value (cu_list + 8, &length))
1743 return 0;
1744 cu_list += 2 * 8;
1745
1746 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1747 struct dwarf2_per_cu_data);
1748 the_cu->offset = offset;
1749 the_cu->length = length;
1750 the_cu->objfile = objfile;
1751 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1752 struct dwarf2_per_cu_quick_data);
1753 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1754 }
1755
1756 return 1;
1757 }
1758
1759 /* Create the signatured type hash table from the index. */
1760
1761 static int
1762 create_signatured_type_table_from_index (struct objfile *objfile,
1763 const gdb_byte *bytes,
1764 offset_type elements)
1765 {
1766 offset_type i;
1767 htab_t sig_types_hash;
1768
1769 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1770 dwarf2_per_objfile->type_comp_units
1771 = obstack_alloc (&objfile->objfile_obstack,
1772 dwarf2_per_objfile->n_type_comp_units
1773 * sizeof (struct dwarf2_per_cu_data *));
1774
1775 sig_types_hash = allocate_signatured_type_table (objfile);
1776
1777 for (i = 0; i < elements; i += 3)
1778 {
1779 struct signatured_type *type_sig;
1780 ULONGEST offset, type_offset, signature;
1781 void **slot;
1782
1783 if (!extract_cu_value (bytes, &offset)
1784 || !extract_cu_value (bytes + 8, &type_offset))
1785 return 0;
1786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1787 bytes += 3 * 8;
1788
1789 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1790 struct signatured_type);
1791 type_sig->signature = signature;
1792 type_sig->offset = offset;
1793 type_sig->type_offset = type_offset;
1794 type_sig->per_cu.from_debug_types = 1;
1795 type_sig->per_cu.offset = offset;
1796 type_sig->per_cu.objfile = objfile;
1797 type_sig->per_cu.v.quick
1798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1799 struct dwarf2_per_cu_quick_data);
1800
1801 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1802 *slot = type_sig;
1803
1804 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1805 }
1806
1807 dwarf2_per_objfile->signatured_types = sig_types_hash;
1808
1809 return 1;
1810 }
1811
1812 /* Read the address map data from the mapped index, and use it to
1813 populate the objfile's psymtabs_addrmap. */
1814
1815 static void
1816 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1817 {
1818 const gdb_byte *iter, *end;
1819 struct obstack temp_obstack;
1820 struct addrmap *mutable_map;
1821 struct cleanup *cleanup;
1822 CORE_ADDR baseaddr;
1823
1824 obstack_init (&temp_obstack);
1825 cleanup = make_cleanup_obstack_free (&temp_obstack);
1826 mutable_map = addrmap_create_mutable (&temp_obstack);
1827
1828 iter = index->address_table;
1829 end = iter + index->address_table_size;
1830
1831 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1832
1833 while (iter < end)
1834 {
1835 ULONGEST hi, lo, cu_index;
1836 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1837 iter += 8;
1838 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1839 iter += 8;
1840 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1841 iter += 4;
1842
1843 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1844 dw2_get_cu (cu_index));
1845 }
1846
1847 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1848 &objfile->objfile_obstack);
1849 do_cleanups (cleanup);
1850 }
1851
1852 /* The hash function for strings in the mapped index. This is the
1853 same as the hashtab.c hash function, but we keep a separate copy to
1854 maintain control over the implementation. This is necessary
1855 because the hash function is tied to the format of the mapped index
1856 file. */
1857
1858 static hashval_t
1859 mapped_index_string_hash (const void *p)
1860 {
1861 const unsigned char *str = (const unsigned char *) p;
1862 hashval_t r = 0;
1863 unsigned char c;
1864
1865 while ((c = *str++) != 0)
1866 r = r * 67 + c - 113;
1867
1868 return r;
1869 }
1870
1871 /* Find a slot in the mapped index INDEX for the object named NAME.
1872 If NAME is found, set *VEC_OUT to point to the CU vector in the
1873 constant pool and return 1. If NAME cannot be found, return 0. */
1874
1875 static int
1876 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1877 offset_type **vec_out)
1878 {
1879 offset_type hash = mapped_index_string_hash (name);
1880 offset_type slot, step;
1881
1882 slot = hash & (index->symbol_table_slots - 1);
1883 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1884
1885 for (;;)
1886 {
1887 /* Convert a slot number to an offset into the table. */
1888 offset_type i = 2 * slot;
1889 const char *str;
1890 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1891 return 0;
1892
1893 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1894 if (!strcmp (name, str))
1895 {
1896 *vec_out = (offset_type *) (index->constant_pool
1897 + MAYBE_SWAP (index->symbol_table[i + 1]));
1898 return 1;
1899 }
1900
1901 slot = (slot + step) & (index->symbol_table_slots - 1);
1902 }
1903 }
1904
1905 /* Read the index file. If everything went ok, initialize the "quick"
1906 elements of all the CUs and return 1. Otherwise, return 0. */
1907
1908 static int
1909 dwarf2_read_index (struct objfile *objfile)
1910 {
1911 char *addr;
1912 struct mapped_index *map;
1913 offset_type *metadata;
1914 const gdb_byte *cu_list;
1915 const gdb_byte *types_list = NULL;
1916 offset_type version, cu_list_elements;
1917 offset_type types_list_elements = 0;
1918 int i;
1919
1920 if (dwarf2_per_objfile->gdb_index.asection == NULL
1921 || dwarf2_per_objfile->gdb_index.size == 0)
1922 return 0;
1923
1924 /* Older elfutils strip versions could keep the section in the main
1925 executable while splitting it for the separate debug info file. */
1926 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
1927 & SEC_HAS_CONTENTS) == 0)
1928 return 0;
1929
1930 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1931
1932 addr = dwarf2_per_objfile->gdb_index.buffer;
1933 /* Version check. */
1934 version = MAYBE_SWAP (*(offset_type *) addr);
1935 /* Versions earlier than 3 emitted every copy of a psymbol. This
1936 causes the index to behave very poorly for certain requests. So,
1937 it seems better to just ignore such indices. */
1938 if (version < 3)
1939 return 0;
1940
1941 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1942 map->total_size = dwarf2_per_objfile->gdb_index.size;
1943
1944 metadata = (offset_type *) (addr + sizeof (offset_type));
1945
1946 i = 0;
1947 cu_list = addr + MAYBE_SWAP (metadata[i]);
1948 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
1949 / 8);
1950 ++i;
1951
1952 types_list = addr + MAYBE_SWAP (metadata[i]);
1953 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1954 - MAYBE_SWAP (metadata[i]))
1955 / 8);
1956 ++i;
1957
1958 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1959 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1960 - MAYBE_SWAP (metadata[i]));
1961 ++i;
1962
1963 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1964 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1965 - MAYBE_SWAP (metadata[i]))
1966 / (2 * sizeof (offset_type)));
1967 ++i;
1968
1969 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1970
1971 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1972 return 0;
1973
1974 if (types_list_elements
1975 && !create_signatured_type_table_from_index (objfile, types_list,
1976 types_list_elements))
1977 return 0;
1978
1979 create_addrmap_from_index (objfile, map);
1980
1981 dwarf2_per_objfile->index_table = map;
1982 dwarf2_per_objfile->using_index = 1;
1983
1984 return 1;
1985 }
1986
1987 /* A helper for the "quick" functions which sets the global
1988 dwarf2_per_objfile according to OBJFILE. */
1989
1990 static void
1991 dw2_setup (struct objfile *objfile)
1992 {
1993 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1994 gdb_assert (dwarf2_per_objfile);
1995 }
1996
1997 /* A helper for the "quick" functions which attempts to read the line
1998 table for THIS_CU. */
1999
2000 static void
2001 dw2_require_line_header (struct objfile *objfile,
2002 struct dwarf2_per_cu_data *this_cu)
2003 {
2004 bfd *abfd = objfile->obfd;
2005 struct line_header *lh = NULL;
2006 struct attribute *attr;
2007 struct cleanup *cleanups;
2008 struct die_info *comp_unit_die;
2009 struct dwarf2_section_info* sec;
2010 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2011 int has_children, i;
2012 struct dwarf2_cu cu;
2013 unsigned int bytes_read, buffer_size;
2014 struct die_reader_specs reader_specs;
2015 char *name, *comp_dir;
2016
2017 if (this_cu->v.quick->read_lines)
2018 return;
2019 this_cu->v.quick->read_lines = 1;
2020
2021 memset (&cu, 0, sizeof (cu));
2022 cu.objfile = objfile;
2023 obstack_init (&cu.comp_unit_obstack);
2024
2025 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2026
2027 if (this_cu->from_debug_types)
2028 sec = &dwarf2_per_objfile->types;
2029 else
2030 sec = &dwarf2_per_objfile->info;
2031 dwarf2_read_section (objfile, sec);
2032 buffer_size = sec->size;
2033 buffer = sec->buffer;
2034 info_ptr = buffer + this_cu->offset;
2035 beg_of_comp_unit = info_ptr;
2036
2037 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2038 buffer, buffer_size,
2039 abfd);
2040
2041 /* Complete the cu_header. */
2042 cu.header.offset = beg_of_comp_unit - buffer;
2043 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2044
2045 this_cu->cu = &cu;
2046 cu.per_cu = this_cu;
2047
2048 dwarf2_read_abbrevs (abfd, &cu);
2049 make_cleanup (dwarf2_free_abbrev_table, &cu);
2050
2051 if (this_cu->from_debug_types)
2052 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2053 init_cu_die_reader (&reader_specs, &cu);
2054 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2055 &has_children);
2056
2057 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2058 if (attr)
2059 {
2060 unsigned int line_offset = DW_UNSND (attr);
2061 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2062 }
2063 if (lh == NULL)
2064 {
2065 do_cleanups (cleanups);
2066 return;
2067 }
2068
2069 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2070
2071 this_cu->v.quick->lines = lh;
2072
2073 this_cu->v.quick->file_names
2074 = obstack_alloc (&objfile->objfile_obstack,
2075 lh->num_file_names * sizeof (char *));
2076 for (i = 0; i < lh->num_file_names; ++i)
2077 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2078
2079 do_cleanups (cleanups);
2080 }
2081
2082 /* A helper for the "quick" functions which computes and caches the
2083 real path for a given file name from the line table.
2084 dw2_require_line_header must have been called before this is
2085 invoked. */
2086
2087 static const char *
2088 dw2_require_full_path (struct objfile *objfile,
2089 struct dwarf2_per_cu_data *per_cu,
2090 int index)
2091 {
2092 if (!per_cu->v.quick->full_names)
2093 per_cu->v.quick->full_names
2094 = OBSTACK_CALLOC (&objfile->objfile_obstack,
2095 per_cu->v.quick->lines->num_file_names,
2096 sizeof (char *));
2097
2098 if (!per_cu->v.quick->full_names[index])
2099 per_cu->v.quick->full_names[index]
2100 = gdb_realpath (per_cu->v.quick->file_names[index]);
2101
2102 return per_cu->v.quick->full_names[index];
2103 }
2104
2105 static struct symtab *
2106 dw2_find_last_source_symtab (struct objfile *objfile)
2107 {
2108 int index;
2109 dw2_setup (objfile);
2110 index = dwarf2_per_objfile->n_comp_units - 1;
2111 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2112 }
2113
2114 static void
2115 dw2_forget_cached_source_info (struct objfile *objfile)
2116 {
2117 int i;
2118
2119 dw2_setup (objfile);
2120 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2121 + dwarf2_per_objfile->n_type_comp_units); ++i)
2122 {
2123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2124
2125 if (per_cu->v.quick->full_names)
2126 {
2127 int j;
2128
2129 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2130 xfree ((void *) per_cu->v.quick->full_names[j]);
2131 }
2132 }
2133 }
2134
2135 static int
2136 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2137 const char *full_path, const char *real_path,
2138 struct symtab **result)
2139 {
2140 int i;
2141 int check_basename = lbasename (name) == name;
2142 struct dwarf2_per_cu_data *base_cu = NULL;
2143
2144 dw2_setup (objfile);
2145 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2146 + dwarf2_per_objfile->n_type_comp_units); ++i)
2147 {
2148 int j;
2149 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2150
2151 if (per_cu->v.quick->symtab)
2152 continue;
2153
2154 dw2_require_line_header (objfile, per_cu);
2155 if (!per_cu->v.quick->lines)
2156 continue;
2157
2158 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2159 {
2160 const char *this_name = per_cu->v.quick->file_names[j];
2161
2162 if (FILENAME_CMP (name, this_name) == 0)
2163 {
2164 *result = dw2_instantiate_symtab (objfile, per_cu);
2165 return 1;
2166 }
2167
2168 if (check_basename && ! base_cu
2169 && FILENAME_CMP (lbasename (this_name), name) == 0)
2170 base_cu = per_cu;
2171
2172 if (full_path != NULL)
2173 {
2174 const char *this_full_name = dw2_require_full_path (objfile,
2175 per_cu, j);
2176
2177 if (this_full_name
2178 && FILENAME_CMP (full_path, this_full_name) == 0)
2179 {
2180 *result = dw2_instantiate_symtab (objfile, per_cu);
2181 return 1;
2182 }
2183 }
2184
2185 if (real_path != NULL)
2186 {
2187 const char *this_full_name = dw2_require_full_path (objfile,
2188 per_cu, j);
2189
2190 if (this_full_name != NULL)
2191 {
2192 char *rp = gdb_realpath (this_full_name);
2193 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2194 {
2195 xfree (rp);
2196 *result = dw2_instantiate_symtab (objfile, per_cu);
2197 return 1;
2198 }
2199 xfree (rp);
2200 }
2201 }
2202 }
2203 }
2204
2205 if (base_cu)
2206 {
2207 *result = dw2_instantiate_symtab (objfile, base_cu);
2208 return 1;
2209 }
2210
2211 return 0;
2212 }
2213
2214 static struct symtab *
2215 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2216 const char *name, domain_enum domain)
2217 {
2218 /* We do all the work in the pre_expand_symtabs_matching hook
2219 instead. */
2220 return NULL;
2221 }
2222
2223 /* A helper function that expands all symtabs that hold an object
2224 named NAME. */
2225
2226 static void
2227 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2228 {
2229 dw2_setup (objfile);
2230
2231 if (dwarf2_per_objfile->index_table)
2232 {
2233 offset_type *vec;
2234
2235 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2236 name, &vec))
2237 {
2238 offset_type i, len = MAYBE_SWAP (*vec);
2239 for (i = 0; i < len; ++i)
2240 {
2241 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2243
2244 dw2_instantiate_symtab (objfile, per_cu);
2245 }
2246 }
2247 }
2248 }
2249
2250 static void
2251 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2252 int kind, const char *name,
2253 domain_enum domain)
2254 {
2255 dw2_do_expand_symtabs_matching (objfile, name);
2256 }
2257
2258 static void
2259 dw2_print_stats (struct objfile *objfile)
2260 {
2261 int i, count;
2262
2263 dw2_setup (objfile);
2264 count = 0;
2265 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2266 + dwarf2_per_objfile->n_type_comp_units); ++i)
2267 {
2268 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2269
2270 if (!per_cu->v.quick->symtab)
2271 ++count;
2272 }
2273 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2274 }
2275
2276 static void
2277 dw2_dump (struct objfile *objfile)
2278 {
2279 /* Nothing worth printing. */
2280 }
2281
2282 static void
2283 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2284 struct section_offsets *delta)
2285 {
2286 /* There's nothing to relocate here. */
2287 }
2288
2289 static void
2290 dw2_expand_symtabs_for_function (struct objfile *objfile,
2291 const char *func_name)
2292 {
2293 dw2_do_expand_symtabs_matching (objfile, func_name);
2294 }
2295
2296 static void
2297 dw2_expand_all_symtabs (struct objfile *objfile)
2298 {
2299 int i;
2300
2301 dw2_setup (objfile);
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_comp_units); ++i)
2305 {
2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2307
2308 dw2_instantiate_symtab (objfile, per_cu);
2309 }
2310 }
2311
2312 static void
2313 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2314 const char *filename)
2315 {
2316 int i;
2317
2318 dw2_setup (objfile);
2319 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2320 + dwarf2_per_objfile->n_type_comp_units); ++i)
2321 {
2322 int j;
2323 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2324
2325 if (per_cu->v.quick->symtab)
2326 continue;
2327
2328 dw2_require_line_header (objfile, per_cu);
2329 if (!per_cu->v.quick->lines)
2330 continue;
2331
2332 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2333 {
2334 const char *this_name = per_cu->v.quick->file_names[j];
2335 if (strcmp (this_name, filename) == 0)
2336 {
2337 dw2_instantiate_symtab (objfile, per_cu);
2338 break;
2339 }
2340 }
2341 }
2342 }
2343
2344 static const char *
2345 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2346 {
2347 struct dwarf2_per_cu_data *per_cu;
2348 offset_type *vec;
2349
2350 dw2_setup (objfile);
2351
2352 if (!dwarf2_per_objfile->index_table)
2353 return NULL;
2354
2355 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2356 name, &vec))
2357 return NULL;
2358
2359 /* Note that this just looks at the very first one named NAME -- but
2360 actually we are looking for a function. find_main_filename
2361 should be rewritten so that it doesn't require a custom hook. It
2362 could just use the ordinary symbol tables. */
2363 /* vec[0] is the length, which must always be >0. */
2364 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2365
2366 dw2_require_line_header (objfile, per_cu);
2367 if (!per_cu->v.quick->lines)
2368 return NULL;
2369
2370 return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
2371 }
2372
2373 static void
2374 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2375 struct objfile *objfile, int global,
2376 int (*callback) (struct block *,
2377 struct symbol *, void *),
2378 void *data,
2379 int (*match) (const char *, const char *),
2380 int (*ordered_compare) (const char *,
2381 const char *))
2382 {
2383 /* Currently unimplemented; used for Ada. The function can be called if the
2384 current language is Ada for a non-Ada objfile using GNU index. As Ada
2385 does not look for non-Ada symbols this function should just return. */
2386 }
2387
2388 static void
2389 dw2_expand_symtabs_matching (struct objfile *objfile,
2390 int (*file_matcher) (const char *, void *),
2391 int (*name_matcher) (const char *, void *),
2392 domain_enum kind,
2393 void *data)
2394 {
2395 int i;
2396 offset_type iter;
2397 struct mapped_index *index;
2398
2399 dw2_setup (objfile);
2400 if (!dwarf2_per_objfile->index_table)
2401 return;
2402 index = dwarf2_per_objfile->index_table;
2403
2404 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2405 + dwarf2_per_objfile->n_type_comp_units); ++i)
2406 {
2407 int j;
2408 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2409
2410 per_cu->v.quick->mark = 0;
2411 if (per_cu->v.quick->symtab)
2412 continue;
2413
2414 dw2_require_line_header (objfile, per_cu);
2415 if (!per_cu->v.quick->lines)
2416 continue;
2417
2418 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2419 {
2420 if (file_matcher (per_cu->v.quick->file_names[j], data))
2421 {
2422 per_cu->v.quick->mark = 1;
2423 break;
2424 }
2425 }
2426 }
2427
2428 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2429 {
2430 offset_type idx = 2 * iter;
2431 const char *name;
2432 offset_type *vec, vec_len, vec_idx;
2433
2434 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2435 continue;
2436
2437 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2438
2439 if (! (*name_matcher) (name, data))
2440 continue;
2441
2442 /* The name was matched, now expand corresponding CUs that were
2443 marked. */
2444 vec = (offset_type *) (index->constant_pool
2445 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2446 vec_len = MAYBE_SWAP (vec[0]);
2447 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2448 {
2449 struct dwarf2_per_cu_data *per_cu;
2450
2451 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2452 if (per_cu->v.quick->mark)
2453 dw2_instantiate_symtab (objfile, per_cu);
2454 }
2455 }
2456 }
2457
2458 static struct symtab *
2459 dw2_find_pc_sect_symtab (struct objfile *objfile,
2460 struct minimal_symbol *msymbol,
2461 CORE_ADDR pc,
2462 struct obj_section *section,
2463 int warn_if_readin)
2464 {
2465 struct dwarf2_per_cu_data *data;
2466
2467 dw2_setup (objfile);
2468
2469 if (!objfile->psymtabs_addrmap)
2470 return NULL;
2471
2472 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2473 if (!data)
2474 return NULL;
2475
2476 if (warn_if_readin && data->v.quick->symtab)
2477 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2478 paddress (get_objfile_arch (objfile), pc));
2479
2480 return dw2_instantiate_symtab (objfile, data);
2481 }
2482
2483 static void
2484 dw2_map_symbol_names (struct objfile *objfile,
2485 void (*fun) (const char *, void *),
2486 void *data)
2487 {
2488 offset_type iter;
2489 struct mapped_index *index;
2490
2491 dw2_setup (objfile);
2492
2493 if (!dwarf2_per_objfile->index_table)
2494 return;
2495 index = dwarf2_per_objfile->index_table;
2496
2497 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2498 {
2499 offset_type idx = 2 * iter;
2500 const char *name;
2501 offset_type *vec, vec_len, vec_idx;
2502
2503 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2504 continue;
2505
2506 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2507
2508 (*fun) (name, data);
2509 }
2510 }
2511
2512 static void
2513 dw2_map_symbol_filenames (struct objfile *objfile,
2514 void (*fun) (const char *, const char *, void *),
2515 void *data)
2516 {
2517 int i;
2518
2519 dw2_setup (objfile);
2520 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2521 + dwarf2_per_objfile->n_type_comp_units); ++i)
2522 {
2523 int j;
2524 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2525
2526 if (per_cu->v.quick->symtab)
2527 continue;
2528
2529 dw2_require_line_header (objfile, per_cu);
2530 if (!per_cu->v.quick->lines)
2531 continue;
2532
2533 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2534 {
2535 const char *this_full_name = dw2_require_full_path (objfile, per_cu,
2536 j);
2537 (*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
2538 }
2539 }
2540 }
2541
2542 static int
2543 dw2_has_symbols (struct objfile *objfile)
2544 {
2545 return 1;
2546 }
2547
2548 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2549 {
2550 dw2_has_symbols,
2551 dw2_find_last_source_symtab,
2552 dw2_forget_cached_source_info,
2553 dw2_lookup_symtab,
2554 dw2_lookup_symbol,
2555 dw2_pre_expand_symtabs_matching,
2556 dw2_print_stats,
2557 dw2_dump,
2558 dw2_relocate,
2559 dw2_expand_symtabs_for_function,
2560 dw2_expand_all_symtabs,
2561 dw2_expand_symtabs_with_filename,
2562 dw2_find_symbol_file,
2563 dw2_map_matching_symbols,
2564 dw2_expand_symtabs_matching,
2565 dw2_find_pc_sect_symtab,
2566 dw2_map_symbol_names,
2567 dw2_map_symbol_filenames
2568 };
2569
2570 /* Initialize for reading DWARF for this objfile. Return 0 if this
2571 file will use psymtabs, or 1 if using the GNU index. */
2572
2573 int
2574 dwarf2_initialize_objfile (struct objfile *objfile)
2575 {
2576 /* If we're about to read full symbols, don't bother with the
2577 indices. In this case we also don't care if some other debug
2578 format is making psymtabs, because they are all about to be
2579 expanded anyway. */
2580 if ((objfile->flags & OBJF_READNOW))
2581 {
2582 int i;
2583
2584 dwarf2_per_objfile->using_index = 1;
2585 create_all_comp_units (objfile);
2586 create_debug_types_hash_table (objfile);
2587
2588 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2589 + dwarf2_per_objfile->n_type_comp_units); ++i)
2590 {
2591 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2592
2593 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2594 struct dwarf2_per_cu_quick_data);
2595 }
2596
2597 /* Return 1 so that gdb sees the "quick" functions. However,
2598 these functions will be no-ops because we will have expanded
2599 all symtabs. */
2600 return 1;
2601 }
2602
2603 if (dwarf2_read_index (objfile))
2604 return 1;
2605
2606 dwarf2_build_psymtabs (objfile);
2607 return 0;
2608 }
2609
2610 \f
2611
2612 /* Build a partial symbol table. */
2613
2614 void
2615 dwarf2_build_psymtabs (struct objfile *objfile)
2616 {
2617 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2618 {
2619 init_psymbol_list (objfile, 1024);
2620 }
2621
2622 dwarf2_build_psymtabs_hard (objfile);
2623 }
2624
2625 /* Return TRUE if OFFSET is within CU_HEADER. */
2626
2627 static inline int
2628 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2629 {
2630 unsigned int bottom = cu_header->offset;
2631 unsigned int top = (cu_header->offset
2632 + cu_header->length
2633 + cu_header->initial_length_size);
2634
2635 return (offset >= bottom && offset < top);
2636 }
2637
2638 /* Read in the comp unit header information from the debug_info at info_ptr.
2639 NOTE: This leaves members offset, first_die_offset to be filled in
2640 by the caller. */
2641
2642 static gdb_byte *
2643 read_comp_unit_head (struct comp_unit_head *cu_header,
2644 gdb_byte *info_ptr, bfd *abfd)
2645 {
2646 int signed_addr;
2647 unsigned int bytes_read;
2648
2649 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2650 cu_header->initial_length_size = bytes_read;
2651 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2652 info_ptr += bytes_read;
2653 cu_header->version = read_2_bytes (abfd, info_ptr);
2654 info_ptr += 2;
2655 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2656 &bytes_read);
2657 info_ptr += bytes_read;
2658 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2659 info_ptr += 1;
2660 signed_addr = bfd_get_sign_extend_vma (abfd);
2661 if (signed_addr < 0)
2662 internal_error (__FILE__, __LINE__,
2663 _("read_comp_unit_head: dwarf from non elf file"));
2664 cu_header->signed_addr_p = signed_addr;
2665
2666 return info_ptr;
2667 }
2668
2669 static gdb_byte *
2670 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2671 gdb_byte *buffer, unsigned int buffer_size,
2672 bfd *abfd)
2673 {
2674 gdb_byte *beg_of_comp_unit = info_ptr;
2675
2676 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2677
2678 if (header->version != 2 && header->version != 3 && header->version != 4)
2679 error (_("Dwarf Error: wrong version in compilation unit header "
2680 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2681 bfd_get_filename (abfd));
2682
2683 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2684 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2685 "(offset 0x%lx + 6) [in module %s]"),
2686 (long) header->abbrev_offset,
2687 (long) (beg_of_comp_unit - buffer),
2688 bfd_get_filename (abfd));
2689
2690 if (beg_of_comp_unit + header->length + header->initial_length_size
2691 > buffer + buffer_size)
2692 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2693 "(offset 0x%lx + 0) [in module %s]"),
2694 (long) header->length,
2695 (long) (beg_of_comp_unit - buffer),
2696 bfd_get_filename (abfd));
2697
2698 return info_ptr;
2699 }
2700
2701 /* Read in the types comp unit header information from .debug_types entry at
2702 types_ptr. The result is a pointer to one past the end of the header. */
2703
2704 static gdb_byte *
2705 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2706 ULONGEST *signature,
2707 gdb_byte *types_ptr, bfd *abfd)
2708 {
2709 gdb_byte *initial_types_ptr = types_ptr;
2710
2711 dwarf2_read_section (dwarf2_per_objfile->objfile,
2712 &dwarf2_per_objfile->types);
2713 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2714
2715 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2716
2717 *signature = read_8_bytes (abfd, types_ptr);
2718 types_ptr += 8;
2719 types_ptr += cu_header->offset_size;
2720 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2721
2722 return types_ptr;
2723 }
2724
2725 /* Allocate a new partial symtab for file named NAME and mark this new
2726 partial symtab as being an include of PST. */
2727
2728 static void
2729 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2730 struct objfile *objfile)
2731 {
2732 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2733
2734 subpst->section_offsets = pst->section_offsets;
2735 subpst->textlow = 0;
2736 subpst->texthigh = 0;
2737
2738 subpst->dependencies = (struct partial_symtab **)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct partial_symtab *));
2741 subpst->dependencies[0] = pst;
2742 subpst->number_of_dependencies = 1;
2743
2744 subpst->globals_offset = 0;
2745 subpst->n_global_syms = 0;
2746 subpst->statics_offset = 0;
2747 subpst->n_static_syms = 0;
2748 subpst->symtab = NULL;
2749 subpst->read_symtab = pst->read_symtab;
2750 subpst->readin = 0;
2751
2752 /* No private part is necessary for include psymtabs. This property
2753 can be used to differentiate between such include psymtabs and
2754 the regular ones. */
2755 subpst->read_symtab_private = NULL;
2756 }
2757
2758 /* Read the Line Number Program data and extract the list of files
2759 included by the source file represented by PST. Build an include
2760 partial symtab for each of these included files. */
2761
2762 static void
2763 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2764 struct die_info *die,
2765 struct partial_symtab *pst)
2766 {
2767 struct objfile *objfile = cu->objfile;
2768 bfd *abfd = objfile->obfd;
2769 struct line_header *lh = NULL;
2770 struct attribute *attr;
2771
2772 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2773 if (attr)
2774 {
2775 unsigned int line_offset = DW_UNSND (attr);
2776
2777 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2778 }
2779 if (lh == NULL)
2780 return; /* No linetable, so no includes. */
2781
2782 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2783 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2784
2785 free_line_header (lh);
2786 }
2787
2788 static hashval_t
2789 hash_type_signature (const void *item)
2790 {
2791 const struct signatured_type *type_sig = item;
2792
2793 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2794 return type_sig->signature;
2795 }
2796
2797 static int
2798 eq_type_signature (const void *item_lhs, const void *item_rhs)
2799 {
2800 const struct signatured_type *lhs = item_lhs;
2801 const struct signatured_type *rhs = item_rhs;
2802
2803 return lhs->signature == rhs->signature;
2804 }
2805
2806 /* Allocate a hash table for signatured types. */
2807
2808 static htab_t
2809 allocate_signatured_type_table (struct objfile *objfile)
2810 {
2811 return htab_create_alloc_ex (41,
2812 hash_type_signature,
2813 eq_type_signature,
2814 NULL,
2815 &objfile->objfile_obstack,
2816 hashtab_obstack_allocate,
2817 dummy_obstack_deallocate);
2818 }
2819
2820 /* A helper function to add a signatured type CU to a list. */
2821
2822 static int
2823 add_signatured_type_cu_to_list (void **slot, void *datum)
2824 {
2825 struct signatured_type *sigt = *slot;
2826 struct dwarf2_per_cu_data ***datap = datum;
2827
2828 **datap = &sigt->per_cu;
2829 ++*datap;
2830
2831 return 1;
2832 }
2833
2834 /* Create the hash table of all entries in the .debug_types section.
2835 The result is zero if there is an error (e.g. missing .debug_types section),
2836 otherwise non-zero. */
2837
2838 static int
2839 create_debug_types_hash_table (struct objfile *objfile)
2840 {
2841 gdb_byte *info_ptr;
2842 htab_t types_htab;
2843 struct dwarf2_per_cu_data **iter;
2844
2845 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2846 info_ptr = dwarf2_per_objfile->types.buffer;
2847
2848 if (info_ptr == NULL)
2849 {
2850 dwarf2_per_objfile->signatured_types = NULL;
2851 return 0;
2852 }
2853
2854 types_htab = allocate_signatured_type_table (objfile);
2855
2856 if (dwarf2_die_debug)
2857 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2858
2859 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2860 {
2861 unsigned int offset;
2862 unsigned int offset_size;
2863 unsigned int type_offset;
2864 unsigned int length, initial_length_size;
2865 unsigned short version;
2866 ULONGEST signature;
2867 struct signatured_type *type_sig;
2868 void **slot;
2869 gdb_byte *ptr = info_ptr;
2870
2871 offset = ptr - dwarf2_per_objfile->types.buffer;
2872
2873 /* We need to read the type's signature in order to build the hash
2874 table, but we don't need to read anything else just yet. */
2875
2876 /* Sanity check to ensure entire cu is present. */
2877 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2878 if (ptr + length + initial_length_size
2879 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2880 {
2881 complaint (&symfile_complaints,
2882 _("debug type entry runs off end of `.debug_types' section, ignored"));
2883 break;
2884 }
2885
2886 offset_size = initial_length_size == 4 ? 4 : 8;
2887 ptr += initial_length_size;
2888 version = bfd_get_16 (objfile->obfd, ptr);
2889 ptr += 2;
2890 ptr += offset_size; /* abbrev offset */
2891 ptr += 1; /* address size */
2892 signature = bfd_get_64 (objfile->obfd, ptr);
2893 ptr += 8;
2894 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2895
2896 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2897 memset (type_sig, 0, sizeof (*type_sig));
2898 type_sig->signature = signature;
2899 type_sig->offset = offset;
2900 type_sig->type_offset = type_offset;
2901 type_sig->per_cu.objfile = objfile;
2902 type_sig->per_cu.from_debug_types = 1;
2903
2904 slot = htab_find_slot (types_htab, type_sig, INSERT);
2905 gdb_assert (slot != NULL);
2906 *slot = type_sig;
2907
2908 if (dwarf2_die_debug)
2909 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2910 offset, phex (signature, sizeof (signature)));
2911
2912 info_ptr = info_ptr + initial_length_size + length;
2913 }
2914
2915 dwarf2_per_objfile->signatured_types = types_htab;
2916
2917 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2918 dwarf2_per_objfile->type_comp_units
2919 = obstack_alloc (&objfile->objfile_obstack,
2920 dwarf2_per_objfile->n_type_comp_units
2921 * sizeof (struct dwarf2_per_cu_data *));
2922 iter = &dwarf2_per_objfile->type_comp_units[0];
2923 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2924 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2925 == dwarf2_per_objfile->n_type_comp_units);
2926
2927 return 1;
2928 }
2929
2930 /* Lookup a signature based type.
2931 Returns NULL if SIG is not present in the table. */
2932
2933 static struct signatured_type *
2934 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2935 {
2936 struct signatured_type find_entry, *entry;
2937
2938 if (dwarf2_per_objfile->signatured_types == NULL)
2939 {
2940 complaint (&symfile_complaints,
2941 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2942 return 0;
2943 }
2944
2945 find_entry.signature = sig;
2946 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2947 return entry;
2948 }
2949
2950 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2951
2952 static void
2953 init_cu_die_reader (struct die_reader_specs *reader,
2954 struct dwarf2_cu *cu)
2955 {
2956 reader->abfd = cu->objfile->obfd;
2957 reader->cu = cu;
2958 if (cu->per_cu->from_debug_types)
2959 {
2960 gdb_assert (dwarf2_per_objfile->types.readin);
2961 reader->buffer = dwarf2_per_objfile->types.buffer;
2962 }
2963 else
2964 {
2965 gdb_assert (dwarf2_per_objfile->info.readin);
2966 reader->buffer = dwarf2_per_objfile->info.buffer;
2967 }
2968 }
2969
2970 /* Find the base address of the compilation unit for range lists and
2971 location lists. It will normally be specified by DW_AT_low_pc.
2972 In DWARF-3 draft 4, the base address could be overridden by
2973 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2974 compilation units with discontinuous ranges. */
2975
2976 static void
2977 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2978 {
2979 struct attribute *attr;
2980
2981 cu->base_known = 0;
2982 cu->base_address = 0;
2983
2984 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2985 if (attr)
2986 {
2987 cu->base_address = DW_ADDR (attr);
2988 cu->base_known = 1;
2989 }
2990 else
2991 {
2992 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2993 if (attr)
2994 {
2995 cu->base_address = DW_ADDR (attr);
2996 cu->base_known = 1;
2997 }
2998 }
2999 }
3000
3001 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3002 to combine the common parts.
3003 Process a compilation unit for a psymtab.
3004 BUFFER is a pointer to the beginning of the dwarf section buffer,
3005 either .debug_info or debug_types.
3006 INFO_PTR is a pointer to the start of the CU.
3007 Returns a pointer to the next CU. */
3008
3009 static gdb_byte *
3010 process_psymtab_comp_unit (struct objfile *objfile,
3011 struct dwarf2_per_cu_data *this_cu,
3012 gdb_byte *buffer, gdb_byte *info_ptr,
3013 unsigned int buffer_size)
3014 {
3015 bfd *abfd = objfile->obfd;
3016 gdb_byte *beg_of_comp_unit = info_ptr;
3017 struct die_info *comp_unit_die;
3018 struct partial_symtab *pst;
3019 CORE_ADDR baseaddr;
3020 struct cleanup *back_to_inner;
3021 struct dwarf2_cu cu;
3022 int has_children, has_pc_info;
3023 struct attribute *attr;
3024 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3025 struct die_reader_specs reader_specs;
3026
3027 memset (&cu, 0, sizeof (cu));
3028 cu.objfile = objfile;
3029 obstack_init (&cu.comp_unit_obstack);
3030
3031 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3032
3033 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3034 buffer, buffer_size,
3035 abfd);
3036
3037 /* Complete the cu_header. */
3038 cu.header.offset = beg_of_comp_unit - buffer;
3039 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3040
3041 cu.list_in_scope = &file_symbols;
3042
3043 /* If this compilation unit was already read in, free the
3044 cached copy in order to read it in again. This is
3045 necessary because we skipped some symbols when we first
3046 read in the compilation unit (see load_partial_dies).
3047 This problem could be avoided, but the benefit is
3048 unclear. */
3049 if (this_cu->cu != NULL)
3050 free_one_cached_comp_unit (this_cu->cu);
3051
3052 /* Note that this is a pointer to our stack frame, being
3053 added to a global data structure. It will be cleaned up
3054 in free_stack_comp_unit when we finish with this
3055 compilation unit. */
3056 this_cu->cu = &cu;
3057 cu.per_cu = this_cu;
3058
3059 /* Read the abbrevs for this compilation unit into a table. */
3060 dwarf2_read_abbrevs (abfd, &cu);
3061 make_cleanup (dwarf2_free_abbrev_table, &cu);
3062
3063 /* Read the compilation unit die. */
3064 if (this_cu->from_debug_types)
3065 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3066 init_cu_die_reader (&reader_specs, &cu);
3067 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3068 &has_children);
3069
3070 if (this_cu->from_debug_types)
3071 {
3072 /* offset,length haven't been set yet for type units. */
3073 this_cu->offset = cu.header.offset;
3074 this_cu->length = cu.header.length + cu.header.initial_length_size;
3075 }
3076 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3077 {
3078 info_ptr = (beg_of_comp_unit + cu.header.length
3079 + cu.header.initial_length_size);
3080 do_cleanups (back_to_inner);
3081 return info_ptr;
3082 }
3083
3084 /* Set the language we're debugging. */
3085 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
3086 if (attr)
3087 set_cu_language (DW_UNSND (attr), &cu);
3088 else
3089 set_cu_language (language_minimal, &cu);
3090
3091 /* Allocate a new partial symbol table structure. */
3092 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3093 pst = start_psymtab_common (objfile, objfile->section_offsets,
3094 (attr != NULL) ? DW_STRING (attr) : "",
3095 /* TEXTLOW and TEXTHIGH are set below. */
3096 0,
3097 objfile->global_psymbols.next,
3098 objfile->static_psymbols.next);
3099
3100 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3101 if (attr != NULL)
3102 pst->dirname = DW_STRING (attr);
3103
3104 pst->read_symtab_private = this_cu;
3105
3106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3107
3108 /* Store the function that reads in the rest of the symbol table */
3109 pst->read_symtab = dwarf2_psymtab_to_symtab;
3110
3111 this_cu->v.psymtab = pst;
3112
3113 dwarf2_find_base_address (comp_unit_die, &cu);
3114
3115 /* Possibly set the default values of LOWPC and HIGHPC from
3116 `DW_AT_ranges'. */
3117 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3118 &best_highpc, &cu, pst);
3119 if (has_pc_info == 1 && best_lowpc < best_highpc)
3120 /* Store the contiguous range if it is not empty; it can be empty for
3121 CUs with no code. */
3122 addrmap_set_empty (objfile->psymtabs_addrmap,
3123 best_lowpc + baseaddr,
3124 best_highpc + baseaddr - 1, pst);
3125
3126 /* Check if comp unit has_children.
3127 If so, read the rest of the partial symbols from this comp unit.
3128 If not, there's no more debug_info for this comp unit. */
3129 if (has_children)
3130 {
3131 struct partial_die_info *first_die;
3132 CORE_ADDR lowpc, highpc;
3133
3134 lowpc = ((CORE_ADDR) -1);
3135 highpc = ((CORE_ADDR) 0);
3136
3137 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3138
3139 scan_partial_symbols (first_die, &lowpc, &highpc,
3140 ! has_pc_info, &cu);
3141
3142 /* If we didn't find a lowpc, set it to highpc to avoid
3143 complaints from `maint check'. */
3144 if (lowpc == ((CORE_ADDR) -1))
3145 lowpc = highpc;
3146
3147 /* If the compilation unit didn't have an explicit address range,
3148 then use the information extracted from its child dies. */
3149 if (! has_pc_info)
3150 {
3151 best_lowpc = lowpc;
3152 best_highpc = highpc;
3153 }
3154 }
3155 pst->textlow = best_lowpc + baseaddr;
3156 pst->texthigh = best_highpc + baseaddr;
3157
3158 pst->n_global_syms = objfile->global_psymbols.next -
3159 (objfile->global_psymbols.list + pst->globals_offset);
3160 pst->n_static_syms = objfile->static_psymbols.next -
3161 (objfile->static_psymbols.list + pst->statics_offset);
3162 sort_pst_symbols (pst);
3163
3164 info_ptr = (beg_of_comp_unit + cu.header.length
3165 + cu.header.initial_length_size);
3166
3167 if (this_cu->from_debug_types)
3168 {
3169 /* It's not clear we want to do anything with stmt lists here.
3170 Waiting to see what gcc ultimately does. */
3171 }
3172 else
3173 {
3174 /* Get the list of files included in the current compilation unit,
3175 and build a psymtab for each of them. */
3176 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3177 }
3178
3179 do_cleanups (back_to_inner);
3180
3181 return info_ptr;
3182 }
3183
3184 /* Traversal function for htab_traverse_noresize.
3185 Process one .debug_types comp-unit. */
3186
3187 static int
3188 process_type_comp_unit (void **slot, void *info)
3189 {
3190 struct signatured_type *entry = (struct signatured_type *) *slot;
3191 struct objfile *objfile = (struct objfile *) info;
3192 struct dwarf2_per_cu_data *this_cu;
3193
3194 this_cu = &entry->per_cu;
3195
3196 gdb_assert (dwarf2_per_objfile->types.readin);
3197 process_psymtab_comp_unit (objfile, this_cu,
3198 dwarf2_per_objfile->types.buffer,
3199 dwarf2_per_objfile->types.buffer + entry->offset,
3200 dwarf2_per_objfile->types.size);
3201
3202 return 1;
3203 }
3204
3205 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3206 Build partial symbol tables for the .debug_types comp-units. */
3207
3208 static void
3209 build_type_psymtabs (struct objfile *objfile)
3210 {
3211 if (! create_debug_types_hash_table (objfile))
3212 return;
3213
3214 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3215 process_type_comp_unit, objfile);
3216 }
3217
3218 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3219
3220 static void
3221 psymtabs_addrmap_cleanup (void *o)
3222 {
3223 struct objfile *objfile = o;
3224
3225 objfile->psymtabs_addrmap = NULL;
3226 }
3227
3228 /* Build the partial symbol table by doing a quick pass through the
3229 .debug_info and .debug_abbrev sections. */
3230
3231 static void
3232 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3233 {
3234 gdb_byte *info_ptr;
3235 struct cleanup *back_to, *addrmap_cleanup;
3236 struct obstack temp_obstack;
3237
3238 dwarf2_per_objfile->reading_partial_symbols = 1;
3239
3240 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3241 info_ptr = dwarf2_per_objfile->info.buffer;
3242
3243 /* Any cached compilation units will be linked by the per-objfile
3244 read_in_chain. Make sure to free them when we're done. */
3245 back_to = make_cleanup (free_cached_comp_units, NULL);
3246
3247 build_type_psymtabs (objfile);
3248
3249 create_all_comp_units (objfile);
3250
3251 /* Create a temporary address map on a temporary obstack. We later
3252 copy this to the final obstack. */
3253 obstack_init (&temp_obstack);
3254 make_cleanup_obstack_free (&temp_obstack);
3255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3257
3258 /* Since the objects we're extracting from .debug_info vary in
3259 length, only the individual functions to extract them (like
3260 read_comp_unit_head and load_partial_die) can really know whether
3261 the buffer is large enough to hold another complete object.
3262
3263 At the moment, they don't actually check that. If .debug_info
3264 holds just one extra byte after the last compilation unit's dies,
3265 then read_comp_unit_head will happily read off the end of the
3266 buffer. read_partial_die is similarly casual. Those functions
3267 should be fixed.
3268
3269 For this loop condition, simply checking whether there's any data
3270 left at all should be sufficient. */
3271
3272 while (info_ptr < (dwarf2_per_objfile->info.buffer
3273 + dwarf2_per_objfile->info.size))
3274 {
3275 struct dwarf2_per_cu_data *this_cu;
3276
3277 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3278 objfile);
3279
3280 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3281 dwarf2_per_objfile->info.buffer,
3282 info_ptr,
3283 dwarf2_per_objfile->info.size);
3284 }
3285
3286 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3287 &objfile->objfile_obstack);
3288 discard_cleanups (addrmap_cleanup);
3289
3290 do_cleanups (back_to);
3291 }
3292
3293 /* Load the partial DIEs for a secondary CU into memory. */
3294
3295 static void
3296 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3297 struct objfile *objfile)
3298 {
3299 bfd *abfd = objfile->obfd;
3300 gdb_byte *info_ptr, *beg_of_comp_unit;
3301 struct die_info *comp_unit_die;
3302 struct dwarf2_cu *cu;
3303 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3304 struct attribute *attr;
3305 int has_children;
3306 struct die_reader_specs reader_specs;
3307 int read_cu = 0;
3308
3309 gdb_assert (! this_cu->from_debug_types);
3310
3311 gdb_assert (dwarf2_per_objfile->info.readin);
3312 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3313 beg_of_comp_unit = info_ptr;
3314
3315 if (this_cu->cu == NULL)
3316 {
3317 cu = alloc_one_comp_unit (objfile);
3318
3319 read_cu = 1;
3320
3321 /* If an error occurs while loading, release our storage. */
3322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3323
3324 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3325 dwarf2_per_objfile->info.buffer,
3326 dwarf2_per_objfile->info.size,
3327 abfd);
3328
3329 /* Complete the cu_header. */
3330 cu->header.offset = this_cu->offset;
3331 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3332
3333 /* Link this compilation unit into the compilation unit tree. */
3334 this_cu->cu = cu;
3335 cu->per_cu = this_cu;
3336
3337 /* Link this CU into read_in_chain. */
3338 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3339 dwarf2_per_objfile->read_in_chain = this_cu;
3340 }
3341 else
3342 {
3343 cu = this_cu->cu;
3344 info_ptr += cu->header.first_die_offset;
3345 }
3346
3347 /* Read the abbrevs for this compilation unit into a table. */
3348 gdb_assert (cu->dwarf2_abbrevs == NULL);
3349 dwarf2_read_abbrevs (abfd, cu);
3350 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3351
3352 /* Read the compilation unit die. */
3353 init_cu_die_reader (&reader_specs, cu);
3354 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3355 &has_children);
3356
3357 /* Set the language we're debugging. */
3358 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3359 if (attr)
3360 set_cu_language (DW_UNSND (attr), cu);
3361 else
3362 set_cu_language (language_minimal, cu);
3363
3364 /* Check if comp unit has_children.
3365 If so, read the rest of the partial symbols from this comp unit.
3366 If not, there's no more debug_info for this comp unit. */
3367 if (has_children)
3368 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3369
3370 do_cleanups (free_abbrevs_cleanup);
3371
3372 if (read_cu)
3373 {
3374 /* We've successfully allocated this compilation unit. Let our
3375 caller clean it up when finished with it. */
3376 discard_cleanups (free_cu_cleanup);
3377 }
3378 }
3379
3380 /* Create a list of all compilation units in OBJFILE. We do this only
3381 if an inter-comp-unit reference is found; presumably if there is one,
3382 there will be many, and one will occur early in the .debug_info section.
3383 So there's no point in building this list incrementally. */
3384
3385 static void
3386 create_all_comp_units (struct objfile *objfile)
3387 {
3388 int n_allocated;
3389 int n_comp_units;
3390 struct dwarf2_per_cu_data **all_comp_units;
3391 gdb_byte *info_ptr;
3392
3393 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3394 info_ptr = dwarf2_per_objfile->info.buffer;
3395
3396 n_comp_units = 0;
3397 n_allocated = 10;
3398 all_comp_units = xmalloc (n_allocated
3399 * sizeof (struct dwarf2_per_cu_data *));
3400
3401 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3402 {
3403 unsigned int length, initial_length_size;
3404 struct dwarf2_per_cu_data *this_cu;
3405 unsigned int offset;
3406
3407 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3408
3409 /* Read just enough information to find out where the next
3410 compilation unit is. */
3411 length = read_initial_length (objfile->obfd, info_ptr,
3412 &initial_length_size);
3413
3414 /* Save the compilation unit for later lookup. */
3415 this_cu = obstack_alloc (&objfile->objfile_obstack,
3416 sizeof (struct dwarf2_per_cu_data));
3417 memset (this_cu, 0, sizeof (*this_cu));
3418 this_cu->offset = offset;
3419 this_cu->length = length + initial_length_size;
3420 this_cu->objfile = objfile;
3421
3422 if (n_comp_units == n_allocated)
3423 {
3424 n_allocated *= 2;
3425 all_comp_units = xrealloc (all_comp_units,
3426 n_allocated
3427 * sizeof (struct dwarf2_per_cu_data *));
3428 }
3429 all_comp_units[n_comp_units++] = this_cu;
3430
3431 info_ptr = info_ptr + this_cu->length;
3432 }
3433
3434 dwarf2_per_objfile->all_comp_units
3435 = obstack_alloc (&objfile->objfile_obstack,
3436 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3437 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3438 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3439 xfree (all_comp_units);
3440 dwarf2_per_objfile->n_comp_units = n_comp_units;
3441 }
3442
3443 /* Process all loaded DIEs for compilation unit CU, starting at
3444 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3445 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3446 DW_AT_ranges). If NEED_PC is set, then this function will set
3447 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3448 and record the covered ranges in the addrmap. */
3449
3450 static void
3451 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3452 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3453 {
3454 struct partial_die_info *pdi;
3455
3456 /* Now, march along the PDI's, descending into ones which have
3457 interesting children but skipping the children of the other ones,
3458 until we reach the end of the compilation unit. */
3459
3460 pdi = first_die;
3461
3462 while (pdi != NULL)
3463 {
3464 fixup_partial_die (pdi, cu);
3465
3466 /* Anonymous namespaces or modules have no name but have interesting
3467 children, so we need to look at them. Ditto for anonymous
3468 enums. */
3469
3470 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3471 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3472 {
3473 switch (pdi->tag)
3474 {
3475 case DW_TAG_subprogram:
3476 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3477 break;
3478 case DW_TAG_constant:
3479 case DW_TAG_variable:
3480 case DW_TAG_typedef:
3481 case DW_TAG_union_type:
3482 if (!pdi->is_declaration)
3483 {
3484 add_partial_symbol (pdi, cu);
3485 }
3486 break;
3487 case DW_TAG_class_type:
3488 case DW_TAG_interface_type:
3489 case DW_TAG_structure_type:
3490 if (!pdi->is_declaration)
3491 {
3492 add_partial_symbol (pdi, cu);
3493 }
3494 break;
3495 case DW_TAG_enumeration_type:
3496 if (!pdi->is_declaration)
3497 add_partial_enumeration (pdi, cu);
3498 break;
3499 case DW_TAG_base_type:
3500 case DW_TAG_subrange_type:
3501 /* File scope base type definitions are added to the partial
3502 symbol table. */
3503 add_partial_symbol (pdi, cu);
3504 break;
3505 case DW_TAG_namespace:
3506 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3507 break;
3508 case DW_TAG_module:
3509 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3510 break;
3511 default:
3512 break;
3513 }
3514 }
3515
3516 /* If the die has a sibling, skip to the sibling. */
3517
3518 pdi = pdi->die_sibling;
3519 }
3520 }
3521
3522 /* Functions used to compute the fully scoped name of a partial DIE.
3523
3524 Normally, this is simple. For C++, the parent DIE's fully scoped
3525 name is concatenated with "::" and the partial DIE's name. For
3526 Java, the same thing occurs except that "." is used instead of "::".
3527 Enumerators are an exception; they use the scope of their parent
3528 enumeration type, i.e. the name of the enumeration type is not
3529 prepended to the enumerator.
3530
3531 There are two complexities. One is DW_AT_specification; in this
3532 case "parent" means the parent of the target of the specification,
3533 instead of the direct parent of the DIE. The other is compilers
3534 which do not emit DW_TAG_namespace; in this case we try to guess
3535 the fully qualified name of structure types from their members'
3536 linkage names. This must be done using the DIE's children rather
3537 than the children of any DW_AT_specification target. We only need
3538 to do this for structures at the top level, i.e. if the target of
3539 any DW_AT_specification (if any; otherwise the DIE itself) does not
3540 have a parent. */
3541
3542 /* Compute the scope prefix associated with PDI's parent, in
3543 compilation unit CU. The result will be allocated on CU's
3544 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3545 field. NULL is returned if no prefix is necessary. */
3546 static char *
3547 partial_die_parent_scope (struct partial_die_info *pdi,
3548 struct dwarf2_cu *cu)
3549 {
3550 char *grandparent_scope;
3551 struct partial_die_info *parent, *real_pdi;
3552
3553 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3554 then this means the parent of the specification DIE. */
3555
3556 real_pdi = pdi;
3557 while (real_pdi->has_specification)
3558 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3559
3560 parent = real_pdi->die_parent;
3561 if (parent == NULL)
3562 return NULL;
3563
3564 if (parent->scope_set)
3565 return parent->scope;
3566
3567 fixup_partial_die (parent, cu);
3568
3569 grandparent_scope = partial_die_parent_scope (parent, cu);
3570
3571 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3572 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3573 Work around this problem here. */
3574 if (cu->language == language_cplus
3575 && parent->tag == DW_TAG_namespace
3576 && strcmp (parent->name, "::") == 0
3577 && grandparent_scope == NULL)
3578 {
3579 parent->scope = NULL;
3580 parent->scope_set = 1;
3581 return NULL;
3582 }
3583
3584 if (parent->tag == DW_TAG_namespace
3585 || parent->tag == DW_TAG_module
3586 || parent->tag == DW_TAG_structure_type
3587 || parent->tag == DW_TAG_class_type
3588 || parent->tag == DW_TAG_interface_type
3589 || parent->tag == DW_TAG_union_type
3590 || parent->tag == DW_TAG_enumeration_type)
3591 {
3592 if (grandparent_scope == NULL)
3593 parent->scope = parent->name;
3594 else
3595 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3596 parent->name, 0, cu);
3597 }
3598 else if (parent->tag == DW_TAG_enumerator)
3599 /* Enumerators should not get the name of the enumeration as a prefix. */
3600 parent->scope = grandparent_scope;
3601 else
3602 {
3603 /* FIXME drow/2004-04-01: What should we be doing with
3604 function-local names? For partial symbols, we should probably be
3605 ignoring them. */
3606 complaint (&symfile_complaints,
3607 _("unhandled containing DIE tag %d for DIE at %d"),
3608 parent->tag, pdi->offset);
3609 parent->scope = grandparent_scope;
3610 }
3611
3612 parent->scope_set = 1;
3613 return parent->scope;
3614 }
3615
3616 /* Return the fully scoped name associated with PDI, from compilation unit
3617 CU. The result will be allocated with malloc. */
3618 static char *
3619 partial_die_full_name (struct partial_die_info *pdi,
3620 struct dwarf2_cu *cu)
3621 {
3622 char *parent_scope;
3623
3624 /* If this is a template instantiation, we can not work out the
3625 template arguments from partial DIEs. So, unfortunately, we have
3626 to go through the full DIEs. At least any work we do building
3627 types here will be reused if full symbols are loaded later. */
3628 if (pdi->has_template_arguments)
3629 {
3630 fixup_partial_die (pdi, cu);
3631
3632 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3633 {
3634 struct die_info *die;
3635 struct attribute attr;
3636 struct dwarf2_cu *ref_cu = cu;
3637
3638 attr.name = 0;
3639 attr.form = DW_FORM_ref_addr;
3640 attr.u.addr = pdi->offset;
3641 die = follow_die_ref (NULL, &attr, &ref_cu);
3642
3643 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3644 }
3645 }
3646
3647 parent_scope = partial_die_parent_scope (pdi, cu);
3648 if (parent_scope == NULL)
3649 return NULL;
3650 else
3651 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3652 }
3653
3654 static void
3655 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3656 {
3657 struct objfile *objfile = cu->objfile;
3658 CORE_ADDR addr = 0;
3659 char *actual_name = NULL;
3660 const struct partial_symbol *psym = NULL;
3661 CORE_ADDR baseaddr;
3662 int built_actual_name = 0;
3663
3664 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3665
3666 actual_name = partial_die_full_name (pdi, cu);
3667 if (actual_name)
3668 built_actual_name = 1;
3669
3670 if (actual_name == NULL)
3671 actual_name = pdi->name;
3672
3673 switch (pdi->tag)
3674 {
3675 case DW_TAG_subprogram:
3676 if (pdi->is_external || cu->language == language_ada)
3677 {
3678 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3679 of the global scope. But in Ada, we want to be able to access
3680 nested procedures globally. So all Ada subprograms are stored
3681 in the global scope. */
3682 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3683 mst_text, objfile); */
3684 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3685 built_actual_name,
3686 VAR_DOMAIN, LOC_BLOCK,
3687 &objfile->global_psymbols,
3688 0, pdi->lowpc + baseaddr,
3689 cu->language, objfile);
3690 }
3691 else
3692 {
3693 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3694 mst_file_text, objfile); */
3695 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3696 built_actual_name,
3697 VAR_DOMAIN, LOC_BLOCK,
3698 &objfile->static_psymbols,
3699 0, pdi->lowpc + baseaddr,
3700 cu->language, objfile);
3701 }
3702 break;
3703 case DW_TAG_constant:
3704 {
3705 struct psymbol_allocation_list *list;
3706
3707 if (pdi->is_external)
3708 list = &objfile->global_psymbols;
3709 else
3710 list = &objfile->static_psymbols;
3711 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3712 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3713 list, 0, 0, cu->language, objfile);
3714
3715 }
3716 break;
3717 case DW_TAG_variable:
3718 if (pdi->locdesc)
3719 addr = decode_locdesc (pdi->locdesc, cu);
3720
3721 if (pdi->locdesc
3722 && addr == 0
3723 && !dwarf2_per_objfile->has_section_at_zero)
3724 {
3725 /* A global or static variable may also have been stripped
3726 out by the linker if unused, in which case its address
3727 will be nullified; do not add such variables into partial
3728 symbol table then. */
3729 }
3730 else if (pdi->is_external)
3731 {
3732 /* Global Variable.
3733 Don't enter into the minimal symbol tables as there is
3734 a minimal symbol table entry from the ELF symbols already.
3735 Enter into partial symbol table if it has a location
3736 descriptor or a type.
3737 If the location descriptor is missing, new_symbol will create
3738 a LOC_UNRESOLVED symbol, the address of the variable will then
3739 be determined from the minimal symbol table whenever the variable
3740 is referenced.
3741 The address for the partial symbol table entry is not
3742 used by GDB, but it comes in handy for debugging partial symbol
3743 table building. */
3744
3745 if (pdi->locdesc || pdi->has_type)
3746 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3747 built_actual_name,
3748 VAR_DOMAIN, LOC_STATIC,
3749 &objfile->global_psymbols,
3750 0, addr + baseaddr,
3751 cu->language, objfile);
3752 }
3753 else
3754 {
3755 /* Static Variable. Skip symbols without location descriptors. */
3756 if (pdi->locdesc == NULL)
3757 {
3758 if (built_actual_name)
3759 xfree (actual_name);
3760 return;
3761 }
3762 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3763 mst_file_data, objfile); */
3764 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3765 built_actual_name,
3766 VAR_DOMAIN, LOC_STATIC,
3767 &objfile->static_psymbols,
3768 0, addr + baseaddr,
3769 cu->language, objfile);
3770 }
3771 break;
3772 case DW_TAG_typedef:
3773 case DW_TAG_base_type:
3774 case DW_TAG_subrange_type:
3775 add_psymbol_to_list (actual_name, strlen (actual_name),
3776 built_actual_name,
3777 VAR_DOMAIN, LOC_TYPEDEF,
3778 &objfile->static_psymbols,
3779 0, (CORE_ADDR) 0, cu->language, objfile);
3780 break;
3781 case DW_TAG_namespace:
3782 add_psymbol_to_list (actual_name, strlen (actual_name),
3783 built_actual_name,
3784 VAR_DOMAIN, LOC_TYPEDEF,
3785 &objfile->global_psymbols,
3786 0, (CORE_ADDR) 0, cu->language, objfile);
3787 break;
3788 case DW_TAG_class_type:
3789 case DW_TAG_interface_type:
3790 case DW_TAG_structure_type:
3791 case DW_TAG_union_type:
3792 case DW_TAG_enumeration_type:
3793 /* Skip external references. The DWARF standard says in the section
3794 about "Structure, Union, and Class Type Entries": "An incomplete
3795 structure, union or class type is represented by a structure,
3796 union or class entry that does not have a byte size attribute
3797 and that has a DW_AT_declaration attribute." */
3798 if (!pdi->has_byte_size && pdi->is_declaration)
3799 {
3800 if (built_actual_name)
3801 xfree (actual_name);
3802 return;
3803 }
3804
3805 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3806 static vs. global. */
3807 add_psymbol_to_list (actual_name, strlen (actual_name),
3808 built_actual_name,
3809 STRUCT_DOMAIN, LOC_TYPEDEF,
3810 (cu->language == language_cplus
3811 || cu->language == language_java)
3812 ? &objfile->global_psymbols
3813 : &objfile->static_psymbols,
3814 0, (CORE_ADDR) 0, cu->language, objfile);
3815
3816 break;
3817 case DW_TAG_enumerator:
3818 add_psymbol_to_list (actual_name, strlen (actual_name),
3819 built_actual_name,
3820 VAR_DOMAIN, LOC_CONST,
3821 (cu->language == language_cplus
3822 || cu->language == language_java)
3823 ? &objfile->global_psymbols
3824 : &objfile->static_psymbols,
3825 0, (CORE_ADDR) 0, cu->language, objfile);
3826 break;
3827 default:
3828 break;
3829 }
3830
3831 if (built_actual_name)
3832 xfree (actual_name);
3833 }
3834
3835 /* Read a partial die corresponding to a namespace; also, add a symbol
3836 corresponding to that namespace to the symbol table. NAMESPACE is
3837 the name of the enclosing namespace. */
3838
3839 static void
3840 add_partial_namespace (struct partial_die_info *pdi,
3841 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3842 int need_pc, struct dwarf2_cu *cu)
3843 {
3844 /* Add a symbol for the namespace. */
3845
3846 add_partial_symbol (pdi, cu);
3847
3848 /* Now scan partial symbols in that namespace. */
3849
3850 if (pdi->has_children)
3851 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3852 }
3853
3854 /* Read a partial die corresponding to a Fortran module. */
3855
3856 static void
3857 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3858 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3859 {
3860 /* Now scan partial symbols in that module. */
3861
3862 if (pdi->has_children)
3863 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3864 }
3865
3866 /* Read a partial die corresponding to a subprogram and create a partial
3867 symbol for that subprogram. When the CU language allows it, this
3868 routine also defines a partial symbol for each nested subprogram
3869 that this subprogram contains.
3870
3871 DIE my also be a lexical block, in which case we simply search
3872 recursively for suprograms defined inside that lexical block.
3873 Again, this is only performed when the CU language allows this
3874 type of definitions. */
3875
3876 static void
3877 add_partial_subprogram (struct partial_die_info *pdi,
3878 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3879 int need_pc, struct dwarf2_cu *cu)
3880 {
3881 if (pdi->tag == DW_TAG_subprogram)
3882 {
3883 if (pdi->has_pc_info)
3884 {
3885 if (pdi->lowpc < *lowpc)
3886 *lowpc = pdi->lowpc;
3887 if (pdi->highpc > *highpc)
3888 *highpc = pdi->highpc;
3889 if (need_pc)
3890 {
3891 CORE_ADDR baseaddr;
3892 struct objfile *objfile = cu->objfile;
3893
3894 baseaddr = ANOFFSET (objfile->section_offsets,
3895 SECT_OFF_TEXT (objfile));
3896 addrmap_set_empty (objfile->psymtabs_addrmap,
3897 pdi->lowpc + baseaddr,
3898 pdi->highpc - 1 + baseaddr,
3899 cu->per_cu->v.psymtab);
3900 }
3901 if (!pdi->is_declaration)
3902 /* Ignore subprogram DIEs that do not have a name, they are
3903 illegal. Do not emit a complaint at this point, we will
3904 do so when we convert this psymtab into a symtab. */
3905 if (pdi->name)
3906 add_partial_symbol (pdi, cu);
3907 }
3908 }
3909
3910 if (! pdi->has_children)
3911 return;
3912
3913 if (cu->language == language_ada)
3914 {
3915 pdi = pdi->die_child;
3916 while (pdi != NULL)
3917 {
3918 fixup_partial_die (pdi, cu);
3919 if (pdi->tag == DW_TAG_subprogram
3920 || pdi->tag == DW_TAG_lexical_block)
3921 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3922 pdi = pdi->die_sibling;
3923 }
3924 }
3925 }
3926
3927 /* Read a partial die corresponding to an enumeration type. */
3928
3929 static void
3930 add_partial_enumeration (struct partial_die_info *enum_pdi,
3931 struct dwarf2_cu *cu)
3932 {
3933 struct partial_die_info *pdi;
3934
3935 if (enum_pdi->name != NULL)
3936 add_partial_symbol (enum_pdi, cu);
3937
3938 pdi = enum_pdi->die_child;
3939 while (pdi)
3940 {
3941 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3942 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3943 else
3944 add_partial_symbol (pdi, cu);
3945 pdi = pdi->die_sibling;
3946 }
3947 }
3948
3949 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3950 Return the corresponding abbrev, or NULL if the number is zero (indicating
3951 an empty DIE). In either case *BYTES_READ will be set to the length of
3952 the initial number. */
3953
3954 static struct abbrev_info *
3955 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3956 struct dwarf2_cu *cu)
3957 {
3958 bfd *abfd = cu->objfile->obfd;
3959 unsigned int abbrev_number;
3960 struct abbrev_info *abbrev;
3961
3962 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3963
3964 if (abbrev_number == 0)
3965 return NULL;
3966
3967 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3968 if (!abbrev)
3969 {
3970 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3971 bfd_get_filename (abfd));
3972 }
3973
3974 return abbrev;
3975 }
3976
3977 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3978 Returns a pointer to the end of a series of DIEs, terminated by an empty
3979 DIE. Any children of the skipped DIEs will also be skipped. */
3980
3981 static gdb_byte *
3982 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3983 {
3984 struct abbrev_info *abbrev;
3985 unsigned int bytes_read;
3986
3987 while (1)
3988 {
3989 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3990 if (abbrev == NULL)
3991 return info_ptr + bytes_read;
3992 else
3993 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3994 }
3995 }
3996
3997 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3998 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3999 abbrev corresponding to that skipped uleb128 should be passed in
4000 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4001 children. */
4002
4003 static gdb_byte *
4004 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4005 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4006 {
4007 unsigned int bytes_read;
4008 struct attribute attr;
4009 bfd *abfd = cu->objfile->obfd;
4010 unsigned int form, i;
4011
4012 for (i = 0; i < abbrev->num_attrs; i++)
4013 {
4014 /* The only abbrev we care about is DW_AT_sibling. */
4015 if (abbrev->attrs[i].name == DW_AT_sibling)
4016 {
4017 read_attribute (&attr, &abbrev->attrs[i],
4018 abfd, info_ptr, cu);
4019 if (attr.form == DW_FORM_ref_addr)
4020 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4021 else
4022 return buffer + dwarf2_get_ref_die_offset (&attr);
4023 }
4024
4025 /* If it isn't DW_AT_sibling, skip this attribute. */
4026 form = abbrev->attrs[i].form;
4027 skip_attribute:
4028 switch (form)
4029 {
4030 case DW_FORM_ref_addr:
4031 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4032 and later it is offset sized. */
4033 if (cu->header.version == 2)
4034 info_ptr += cu->header.addr_size;
4035 else
4036 info_ptr += cu->header.offset_size;
4037 break;
4038 case DW_FORM_addr:
4039 info_ptr += cu->header.addr_size;
4040 break;
4041 case DW_FORM_data1:
4042 case DW_FORM_ref1:
4043 case DW_FORM_flag:
4044 info_ptr += 1;
4045 break;
4046 case DW_FORM_flag_present:
4047 break;
4048 case DW_FORM_data2:
4049 case DW_FORM_ref2:
4050 info_ptr += 2;
4051 break;
4052 case DW_FORM_data4:
4053 case DW_FORM_ref4:
4054 info_ptr += 4;
4055 break;
4056 case DW_FORM_data8:
4057 case DW_FORM_ref8:
4058 case DW_FORM_sig8:
4059 info_ptr += 8;
4060 break;
4061 case DW_FORM_string:
4062 read_direct_string (abfd, info_ptr, &bytes_read);
4063 info_ptr += bytes_read;
4064 break;
4065 case DW_FORM_sec_offset:
4066 case DW_FORM_strp:
4067 info_ptr += cu->header.offset_size;
4068 break;
4069 case DW_FORM_exprloc:
4070 case DW_FORM_block:
4071 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4072 info_ptr += bytes_read;
4073 break;
4074 case DW_FORM_block1:
4075 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4076 break;
4077 case DW_FORM_block2:
4078 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4079 break;
4080 case DW_FORM_block4:
4081 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4082 break;
4083 case DW_FORM_sdata:
4084 case DW_FORM_udata:
4085 case DW_FORM_ref_udata:
4086 info_ptr = skip_leb128 (abfd, info_ptr);
4087 break;
4088 case DW_FORM_indirect:
4089 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4090 info_ptr += bytes_read;
4091 /* We need to continue parsing from here, so just go back to
4092 the top. */
4093 goto skip_attribute;
4094
4095 default:
4096 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4097 dwarf_form_name (form),
4098 bfd_get_filename (abfd));
4099 }
4100 }
4101
4102 if (abbrev->has_children)
4103 return skip_children (buffer, info_ptr, cu);
4104 else
4105 return info_ptr;
4106 }
4107
4108 /* Locate ORIG_PDI's sibling.
4109 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4110 in BUFFER. */
4111
4112 static gdb_byte *
4113 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4114 gdb_byte *buffer, gdb_byte *info_ptr,
4115 bfd *abfd, struct dwarf2_cu *cu)
4116 {
4117 /* Do we know the sibling already? */
4118
4119 if (orig_pdi->sibling)
4120 return orig_pdi->sibling;
4121
4122 /* Are there any children to deal with? */
4123
4124 if (!orig_pdi->has_children)
4125 return info_ptr;
4126
4127 /* Skip the children the long way. */
4128
4129 return skip_children (buffer, info_ptr, cu);
4130 }
4131
4132 /* Expand this partial symbol table into a full symbol table. */
4133
4134 static void
4135 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4136 {
4137 if (pst != NULL)
4138 {
4139 if (pst->readin)
4140 {
4141 warning (_("bug: psymtab for %s is already read in."), pst->filename);
4142 }
4143 else
4144 {
4145 if (info_verbose)
4146 {
4147 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
4148 gdb_flush (gdb_stdout);
4149 }
4150
4151 /* Restore our global data. */
4152 dwarf2_per_objfile = objfile_data (pst->objfile,
4153 dwarf2_objfile_data_key);
4154
4155 /* If this psymtab is constructed from a debug-only objfile, the
4156 has_section_at_zero flag will not necessarily be correct. We
4157 can get the correct value for this flag by looking at the data
4158 associated with the (presumably stripped) associated objfile. */
4159 if (pst->objfile->separate_debug_objfile_backlink)
4160 {
4161 struct dwarf2_per_objfile *dpo_backlink
4162 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4163 dwarf2_objfile_data_key);
4164
4165 dwarf2_per_objfile->has_section_at_zero
4166 = dpo_backlink->has_section_at_zero;
4167 }
4168
4169 dwarf2_per_objfile->reading_partial_symbols = 0;
4170
4171 psymtab_to_symtab_1 (pst);
4172
4173 /* Finish up the debug error message. */
4174 if (info_verbose)
4175 printf_filtered (_("done.\n"));
4176 }
4177 }
4178 }
4179
4180 /* Add PER_CU to the queue. */
4181
4182 static void
4183 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4184 {
4185 struct dwarf2_queue_item *item;
4186
4187 per_cu->queued = 1;
4188 item = xmalloc (sizeof (*item));
4189 item->per_cu = per_cu;
4190 item->next = NULL;
4191
4192 if (dwarf2_queue == NULL)
4193 dwarf2_queue = item;
4194 else
4195 dwarf2_queue_tail->next = item;
4196
4197 dwarf2_queue_tail = item;
4198 }
4199
4200 /* Process the queue. */
4201
4202 static void
4203 process_queue (struct objfile *objfile)
4204 {
4205 struct dwarf2_queue_item *item, *next_item;
4206
4207 /* The queue starts out with one item, but following a DIE reference
4208 may load a new CU, adding it to the end of the queue. */
4209 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4210 {
4211 if (dwarf2_per_objfile->using_index
4212 ? !item->per_cu->v.quick->symtab
4213 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4214 process_full_comp_unit (item->per_cu);
4215
4216 item->per_cu->queued = 0;
4217 next_item = item->next;
4218 xfree (item);
4219 }
4220
4221 dwarf2_queue_tail = NULL;
4222 }
4223
4224 /* Free all allocated queue entries. This function only releases anything if
4225 an error was thrown; if the queue was processed then it would have been
4226 freed as we went along. */
4227
4228 static void
4229 dwarf2_release_queue (void *dummy)
4230 {
4231 struct dwarf2_queue_item *item, *last;
4232
4233 item = dwarf2_queue;
4234 while (item)
4235 {
4236 /* Anything still marked queued is likely to be in an
4237 inconsistent state, so discard it. */
4238 if (item->per_cu->queued)
4239 {
4240 if (item->per_cu->cu != NULL)
4241 free_one_cached_comp_unit (item->per_cu->cu);
4242 item->per_cu->queued = 0;
4243 }
4244
4245 last = item;
4246 item = item->next;
4247 xfree (last);
4248 }
4249
4250 dwarf2_queue = dwarf2_queue_tail = NULL;
4251 }
4252
4253 /* Read in full symbols for PST, and anything it depends on. */
4254
4255 static void
4256 psymtab_to_symtab_1 (struct partial_symtab *pst)
4257 {
4258 struct dwarf2_per_cu_data *per_cu;
4259 struct cleanup *back_to;
4260 int i;
4261
4262 for (i = 0; i < pst->number_of_dependencies; i++)
4263 if (!pst->dependencies[i]->readin)
4264 {
4265 /* Inform about additional files that need to be read in. */
4266 if (info_verbose)
4267 {
4268 /* FIXME: i18n: Need to make this a single string. */
4269 fputs_filtered (" ", gdb_stdout);
4270 wrap_here ("");
4271 fputs_filtered ("and ", gdb_stdout);
4272 wrap_here ("");
4273 printf_filtered ("%s...", pst->dependencies[i]->filename);
4274 wrap_here (""); /* Flush output */
4275 gdb_flush (gdb_stdout);
4276 }
4277 psymtab_to_symtab_1 (pst->dependencies[i]);
4278 }
4279
4280 per_cu = pst->read_symtab_private;
4281
4282 if (per_cu == NULL)
4283 {
4284 /* It's an include file, no symbols to read for it.
4285 Everything is in the parent symtab. */
4286 pst->readin = 1;
4287 return;
4288 }
4289
4290 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4291 }
4292
4293 /* Load the DIEs associated with PER_CU into memory. */
4294
4295 static void
4296 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4297 {
4298 bfd *abfd = objfile->obfd;
4299 struct dwarf2_cu *cu;
4300 unsigned int offset;
4301 gdb_byte *info_ptr, *beg_of_comp_unit;
4302 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4303 struct attribute *attr;
4304 int read_cu = 0;
4305
4306 gdb_assert (! per_cu->from_debug_types);
4307
4308 /* Set local variables from the partial symbol table info. */
4309 offset = per_cu->offset;
4310
4311 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4312 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4313 beg_of_comp_unit = info_ptr;
4314
4315 if (per_cu->cu == NULL)
4316 {
4317 cu = alloc_one_comp_unit (objfile);
4318
4319 read_cu = 1;
4320
4321 /* If an error occurs while loading, release our storage. */
4322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4323
4324 /* Read in the comp_unit header. */
4325 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4326
4327 /* Complete the cu_header. */
4328 cu->header.offset = offset;
4329 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4330
4331 /* Read the abbrevs for this compilation unit. */
4332 dwarf2_read_abbrevs (abfd, cu);
4333 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4334
4335 /* Link this compilation unit into the compilation unit tree. */
4336 per_cu->cu = cu;
4337 cu->per_cu = per_cu;
4338
4339 /* Link this CU into read_in_chain. */
4340 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4341 dwarf2_per_objfile->read_in_chain = per_cu;
4342 }
4343 else
4344 {
4345 cu = per_cu->cu;
4346 info_ptr += cu->header.first_die_offset;
4347 }
4348
4349 cu->dies = read_comp_unit (info_ptr, cu);
4350
4351 /* We try not to read any attributes in this function, because not
4352 all objfiles needed for references have been loaded yet, and symbol
4353 table processing isn't initialized. But we have to set the CU language,
4354 or we won't be able to build types correctly. */
4355 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4356 if (attr)
4357 set_cu_language (DW_UNSND (attr), cu);
4358 else
4359 set_cu_language (language_minimal, cu);
4360
4361 /* Similarly, if we do not read the producer, we can not apply
4362 producer-specific interpretation. */
4363 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4364 if (attr)
4365 cu->producer = DW_STRING (attr);
4366
4367 if (read_cu)
4368 {
4369 do_cleanups (free_abbrevs_cleanup);
4370
4371 /* We've successfully allocated this compilation unit. Let our
4372 caller clean it up when finished with it. */
4373 discard_cleanups (free_cu_cleanup);
4374 }
4375 }
4376
4377 /* Add a DIE to the delayed physname list. */
4378
4379 static void
4380 add_to_method_list (struct type *type, int fnfield_index, int index,
4381 const char *name, struct die_info *die,
4382 struct dwarf2_cu *cu)
4383 {
4384 struct delayed_method_info mi;
4385 mi.type = type;
4386 mi.fnfield_index = fnfield_index;
4387 mi.index = index;
4388 mi.name = name;
4389 mi.die = die;
4390 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4391 }
4392
4393 /* A cleanup for freeing the delayed method list. */
4394
4395 static void
4396 free_delayed_list (void *ptr)
4397 {
4398 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4399 if (cu->method_list != NULL)
4400 {
4401 VEC_free (delayed_method_info, cu->method_list);
4402 cu->method_list = NULL;
4403 }
4404 }
4405
4406 /* Compute the physnames of any methods on the CU's method list.
4407
4408 The computation of method physnames is delayed in order to avoid the
4409 (bad) condition that one of the method's formal parameters is of an as yet
4410 incomplete type. */
4411
4412 static void
4413 compute_delayed_physnames (struct dwarf2_cu *cu)
4414 {
4415 int i;
4416 struct delayed_method_info *mi;
4417 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4418 {
4419 char *physname;
4420 struct fn_fieldlist *fn_flp
4421 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4422 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4423 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4424 }
4425 }
4426
4427 /* Generate full symbol information for PST and CU, whose DIEs have
4428 already been loaded into memory. */
4429
4430 static void
4431 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4432 {
4433 struct dwarf2_cu *cu = per_cu->cu;
4434 struct objfile *objfile = per_cu->objfile;
4435 CORE_ADDR lowpc, highpc;
4436 struct symtab *symtab;
4437 struct cleanup *back_to, *delayed_list_cleanup;
4438 CORE_ADDR baseaddr;
4439
4440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4441
4442 buildsym_init ();
4443 back_to = make_cleanup (really_free_pendings, NULL);
4444 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4445
4446 cu->list_in_scope = &file_symbols;
4447
4448 dwarf2_find_base_address (cu->dies, cu);
4449
4450 /* Do line number decoding in read_file_scope () */
4451 process_die (cu->dies, cu);
4452
4453 /* Now that we have processed all the DIEs in the CU, all the types
4454 should be complete, and it should now be safe to compute all of the
4455 physnames. */
4456 compute_delayed_physnames (cu);
4457 do_cleanups (delayed_list_cleanup);
4458
4459 /* Some compilers don't define a DW_AT_high_pc attribute for the
4460 compilation unit. If the DW_AT_high_pc is missing, synthesize
4461 it, by scanning the DIE's below the compilation unit. */
4462 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4463
4464 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4465
4466 /* Set symtab language to language from DW_AT_language.
4467 If the compilation is from a C file generated by language preprocessors,
4468 do not set the language if it was already deduced by start_subfile. */
4469 if (symtab != NULL
4470 && !(cu->language == language_c && symtab->language != language_c))
4471 {
4472 symtab->language = cu->language;
4473 }
4474
4475 if (dwarf2_per_objfile->using_index)
4476 per_cu->v.quick->symtab = symtab;
4477 else
4478 {
4479 struct partial_symtab *pst = per_cu->v.psymtab;
4480 pst->symtab = symtab;
4481 pst->readin = 1;
4482 }
4483
4484 do_cleanups (back_to);
4485 }
4486
4487 /* Process a die and its children. */
4488
4489 static void
4490 process_die (struct die_info *die, struct dwarf2_cu *cu)
4491 {
4492 switch (die->tag)
4493 {
4494 case DW_TAG_padding:
4495 break;
4496 case DW_TAG_compile_unit:
4497 read_file_scope (die, cu);
4498 break;
4499 case DW_TAG_type_unit:
4500 read_type_unit_scope (die, cu);
4501 break;
4502 case DW_TAG_subprogram:
4503 case DW_TAG_inlined_subroutine:
4504 read_func_scope (die, cu);
4505 break;
4506 case DW_TAG_lexical_block:
4507 case DW_TAG_try_block:
4508 case DW_TAG_catch_block:
4509 read_lexical_block_scope (die, cu);
4510 break;
4511 case DW_TAG_class_type:
4512 case DW_TAG_interface_type:
4513 case DW_TAG_structure_type:
4514 case DW_TAG_union_type:
4515 process_structure_scope (die, cu);
4516 break;
4517 case DW_TAG_enumeration_type:
4518 process_enumeration_scope (die, cu);
4519 break;
4520
4521 /* These dies have a type, but processing them does not create
4522 a symbol or recurse to process the children. Therefore we can
4523 read them on-demand through read_type_die. */
4524 case DW_TAG_subroutine_type:
4525 case DW_TAG_set_type:
4526 case DW_TAG_array_type:
4527 case DW_TAG_pointer_type:
4528 case DW_TAG_ptr_to_member_type:
4529 case DW_TAG_reference_type:
4530 case DW_TAG_string_type:
4531 break;
4532
4533 case DW_TAG_base_type:
4534 case DW_TAG_subrange_type:
4535 case DW_TAG_typedef:
4536 /* Add a typedef symbol for the type definition, if it has a
4537 DW_AT_name. */
4538 new_symbol (die, read_type_die (die, cu), cu);
4539 break;
4540 case DW_TAG_common_block:
4541 read_common_block (die, cu);
4542 break;
4543 case DW_TAG_common_inclusion:
4544 break;
4545 case DW_TAG_namespace:
4546 processing_has_namespace_info = 1;
4547 read_namespace (die, cu);
4548 break;
4549 case DW_TAG_module:
4550 processing_has_namespace_info = 1;
4551 read_module (die, cu);
4552 break;
4553 case DW_TAG_imported_declaration:
4554 case DW_TAG_imported_module:
4555 processing_has_namespace_info = 1;
4556 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4557 || cu->language != language_fortran))
4558 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4559 dwarf_tag_name (die->tag));
4560 read_import_statement (die, cu);
4561 break;
4562 default:
4563 new_symbol (die, NULL, cu);
4564 break;
4565 }
4566 }
4567
4568 /* A helper function for dwarf2_compute_name which determines whether DIE
4569 needs to have the name of the scope prepended to the name listed in the
4570 die. */
4571
4572 static int
4573 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4574 {
4575 struct attribute *attr;
4576
4577 switch (die->tag)
4578 {
4579 case DW_TAG_namespace:
4580 case DW_TAG_typedef:
4581 case DW_TAG_class_type:
4582 case DW_TAG_interface_type:
4583 case DW_TAG_structure_type:
4584 case DW_TAG_union_type:
4585 case DW_TAG_enumeration_type:
4586 case DW_TAG_enumerator:
4587 case DW_TAG_subprogram:
4588 case DW_TAG_member:
4589 return 1;
4590
4591 case DW_TAG_variable:
4592 case DW_TAG_constant:
4593 /* We only need to prefix "globally" visible variables. These include
4594 any variable marked with DW_AT_external or any variable that
4595 lives in a namespace. [Variables in anonymous namespaces
4596 require prefixing, but they are not DW_AT_external.] */
4597
4598 if (dwarf2_attr (die, DW_AT_specification, cu))
4599 {
4600 struct dwarf2_cu *spec_cu = cu;
4601
4602 return die_needs_namespace (die_specification (die, &spec_cu),
4603 spec_cu);
4604 }
4605
4606 attr = dwarf2_attr (die, DW_AT_external, cu);
4607 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4608 && die->parent->tag != DW_TAG_module)
4609 return 0;
4610 /* A variable in a lexical block of some kind does not need a
4611 namespace, even though in C++ such variables may be external
4612 and have a mangled name. */
4613 if (die->parent->tag == DW_TAG_lexical_block
4614 || die->parent->tag == DW_TAG_try_block
4615 || die->parent->tag == DW_TAG_catch_block
4616 || die->parent->tag == DW_TAG_subprogram)
4617 return 0;
4618 return 1;
4619
4620 default:
4621 return 0;
4622 }
4623 }
4624
4625 /* Retrieve the last character from a mem_file. */
4626
4627 static void
4628 do_ui_file_peek_last (void *object, const char *buffer, long length)
4629 {
4630 char *last_char_p = (char *) object;
4631
4632 if (length > 0)
4633 *last_char_p = buffer[length - 1];
4634 }
4635
4636 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4637 compute the physname for the object, which include a method's
4638 formal parameters (C++/Java) and return type (Java).
4639
4640 For Ada, return the DIE's linkage name rather than the fully qualified
4641 name. PHYSNAME is ignored..
4642
4643 The result is allocated on the objfile_obstack and canonicalized. */
4644
4645 static const char *
4646 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4647 int physname)
4648 {
4649 if (name == NULL)
4650 name = dwarf2_name (die, cu);
4651
4652 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4653 compute it by typename_concat inside GDB. */
4654 if (cu->language == language_ada
4655 || (cu->language == language_fortran && physname))
4656 {
4657 /* For Ada unit, we prefer the linkage name over the name, as
4658 the former contains the exported name, which the user expects
4659 to be able to reference. Ideally, we want the user to be able
4660 to reference this entity using either natural or linkage name,
4661 but we haven't started looking at this enhancement yet. */
4662 struct attribute *attr;
4663
4664 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4665 if (attr == NULL)
4666 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4667 if (attr && DW_STRING (attr))
4668 return DW_STRING (attr);
4669 }
4670
4671 /* These are the only languages we know how to qualify names in. */
4672 if (name != NULL
4673 && (cu->language == language_cplus || cu->language == language_java
4674 || cu->language == language_fortran))
4675 {
4676 if (die_needs_namespace (die, cu))
4677 {
4678 long length;
4679 char *prefix;
4680 struct ui_file *buf;
4681
4682 prefix = determine_prefix (die, cu);
4683 buf = mem_fileopen ();
4684 if (*prefix != '\0')
4685 {
4686 char *prefixed_name = typename_concat (NULL, prefix, name,
4687 physname, cu);
4688
4689 fputs_unfiltered (prefixed_name, buf);
4690 xfree (prefixed_name);
4691 }
4692 else
4693 fputs_unfiltered (name ? name : "", buf);
4694
4695 /* Template parameters may be specified in the DIE's DW_AT_name, or
4696 as children with DW_TAG_template_type_param or
4697 DW_TAG_value_type_param. If the latter, add them to the name
4698 here. If the name already has template parameters, then
4699 skip this step; some versions of GCC emit both, and
4700 it is more efficient to use the pre-computed name.
4701
4702 Something to keep in mind about this process: it is very
4703 unlikely, or in some cases downright impossible, to produce
4704 something that will match the mangled name of a function.
4705 If the definition of the function has the same debug info,
4706 we should be able to match up with it anyway. But fallbacks
4707 using the minimal symbol, for instance to find a method
4708 implemented in a stripped copy of libstdc++, will not work.
4709 If we do not have debug info for the definition, we will have to
4710 match them up some other way.
4711
4712 When we do name matching there is a related problem with function
4713 templates; two instantiated function templates are allowed to
4714 differ only by their return types, which we do not add here. */
4715
4716 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4717 {
4718 struct attribute *attr;
4719 struct die_info *child;
4720 int first = 1;
4721
4722 die->building_fullname = 1;
4723
4724 for (child = die->child; child != NULL; child = child->sibling)
4725 {
4726 struct type *type;
4727 long value;
4728 gdb_byte *bytes;
4729 struct dwarf2_locexpr_baton *baton;
4730 struct value *v;
4731
4732 if (child->tag != DW_TAG_template_type_param
4733 && child->tag != DW_TAG_template_value_param)
4734 continue;
4735
4736 if (first)
4737 {
4738 fputs_unfiltered ("<", buf);
4739 first = 0;
4740 }
4741 else
4742 fputs_unfiltered (", ", buf);
4743
4744 attr = dwarf2_attr (child, DW_AT_type, cu);
4745 if (attr == NULL)
4746 {
4747 complaint (&symfile_complaints,
4748 _("template parameter missing DW_AT_type"));
4749 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4750 continue;
4751 }
4752 type = die_type (child, cu);
4753
4754 if (child->tag == DW_TAG_template_type_param)
4755 {
4756 c_print_type (type, "", buf, -1, 0);
4757 continue;
4758 }
4759
4760 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4761 if (attr == NULL)
4762 {
4763 complaint (&symfile_complaints,
4764 _("template parameter missing DW_AT_const_value"));
4765 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4766 continue;
4767 }
4768
4769 dwarf2_const_value_attr (attr, type, name,
4770 &cu->comp_unit_obstack, cu,
4771 &value, &bytes, &baton);
4772
4773 if (TYPE_NOSIGN (type))
4774 /* GDB prints characters as NUMBER 'CHAR'. If that's
4775 changed, this can use value_print instead. */
4776 c_printchar (value, type, buf);
4777 else
4778 {
4779 struct value_print_options opts;
4780
4781 if (baton != NULL)
4782 v = dwarf2_evaluate_loc_desc (type, NULL,
4783 baton->data,
4784 baton->size,
4785 baton->per_cu);
4786 else if (bytes != NULL)
4787 {
4788 v = allocate_value (type);
4789 memcpy (value_contents_writeable (v), bytes,
4790 TYPE_LENGTH (type));
4791 }
4792 else
4793 v = value_from_longest (type, value);
4794
4795 /* Specify decimal so that we do not depend on the radix. */
4796 get_formatted_print_options (&opts, 'd');
4797 opts.raw = 1;
4798 value_print (v, buf, &opts);
4799 release_value (v);
4800 value_free (v);
4801 }
4802 }
4803
4804 die->building_fullname = 0;
4805
4806 if (!first)
4807 {
4808 /* Close the argument list, with a space if necessary
4809 (nested templates). */
4810 char last_char = '\0';
4811 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4812 if (last_char == '>')
4813 fputs_unfiltered (" >", buf);
4814 else
4815 fputs_unfiltered (">", buf);
4816 }
4817 }
4818
4819 /* For Java and C++ methods, append formal parameter type
4820 information, if PHYSNAME. */
4821
4822 if (physname && die->tag == DW_TAG_subprogram
4823 && (cu->language == language_cplus
4824 || cu->language == language_java))
4825 {
4826 struct type *type = read_type_die (die, cu);
4827
4828 c_type_print_args (type, buf, 0, cu->language);
4829
4830 if (cu->language == language_java)
4831 {
4832 /* For java, we must append the return type to method
4833 names. */
4834 if (die->tag == DW_TAG_subprogram)
4835 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4836 0, 0);
4837 }
4838 else if (cu->language == language_cplus)
4839 {
4840 /* Assume that an artificial first parameter is
4841 "this", but do not crash if it is not. RealView
4842 marks unnamed (and thus unused) parameters as
4843 artificial; there is no way to differentiate
4844 the two cases. */
4845 if (TYPE_NFIELDS (type) > 0
4846 && TYPE_FIELD_ARTIFICIAL (type, 0)
4847 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4848 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4849 fputs_unfiltered (" const", buf);
4850 }
4851 }
4852
4853 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4854 &length);
4855 ui_file_delete (buf);
4856
4857 if (cu->language == language_cplus)
4858 {
4859 char *cname
4860 = dwarf2_canonicalize_name (name, cu,
4861 &cu->objfile->objfile_obstack);
4862
4863 if (cname != NULL)
4864 name = cname;
4865 }
4866 }
4867 }
4868
4869 return name;
4870 }
4871
4872 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4873 If scope qualifiers are appropriate they will be added. The result
4874 will be allocated on the objfile_obstack, or NULL if the DIE does
4875 not have a name. NAME may either be from a previous call to
4876 dwarf2_name or NULL.
4877
4878 The output string will be canonicalized (if C++/Java). */
4879
4880 static const char *
4881 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4882 {
4883 return dwarf2_compute_name (name, die, cu, 0);
4884 }
4885
4886 /* Construct a physname for the given DIE in CU. NAME may either be
4887 from a previous call to dwarf2_name or NULL. The result will be
4888 allocated on the objfile_objstack or NULL if the DIE does not have a
4889 name.
4890
4891 The output string will be canonicalized (if C++/Java). */
4892
4893 static const char *
4894 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4895 {
4896 return dwarf2_compute_name (name, die, cu, 1);
4897 }
4898
4899 /* Read the import statement specified by the given die and record it. */
4900
4901 static void
4902 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4903 {
4904 struct attribute *import_attr;
4905 struct die_info *imported_die;
4906 struct dwarf2_cu *imported_cu;
4907 const char *imported_name;
4908 const char *imported_name_prefix;
4909 const char *canonical_name;
4910 const char *import_alias;
4911 const char *imported_declaration = NULL;
4912 const char *import_prefix;
4913
4914 char *temp;
4915
4916 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4917 if (import_attr == NULL)
4918 {
4919 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4920 dwarf_tag_name (die->tag));
4921 return;
4922 }
4923
4924 imported_cu = cu;
4925 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4926 imported_name = dwarf2_name (imported_die, imported_cu);
4927 if (imported_name == NULL)
4928 {
4929 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4930
4931 The import in the following code:
4932 namespace A
4933 {
4934 typedef int B;
4935 }
4936
4937 int main ()
4938 {
4939 using A::B;
4940 B b;
4941 return b;
4942 }
4943
4944 ...
4945 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4946 <52> DW_AT_decl_file : 1
4947 <53> DW_AT_decl_line : 6
4948 <54> DW_AT_import : <0x75>
4949 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4950 <59> DW_AT_name : B
4951 <5b> DW_AT_decl_file : 1
4952 <5c> DW_AT_decl_line : 2
4953 <5d> DW_AT_type : <0x6e>
4954 ...
4955 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4956 <76> DW_AT_byte_size : 4
4957 <77> DW_AT_encoding : 5 (signed)
4958
4959 imports the wrong die ( 0x75 instead of 0x58 ).
4960 This case will be ignored until the gcc bug is fixed. */
4961 return;
4962 }
4963
4964 /* Figure out the local name after import. */
4965 import_alias = dwarf2_name (die, cu);
4966
4967 /* Figure out where the statement is being imported to. */
4968 import_prefix = determine_prefix (die, cu);
4969
4970 /* Figure out what the scope of the imported die is and prepend it
4971 to the name of the imported die. */
4972 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4973
4974 if (imported_die->tag != DW_TAG_namespace
4975 && imported_die->tag != DW_TAG_module)
4976 {
4977 imported_declaration = imported_name;
4978 canonical_name = imported_name_prefix;
4979 }
4980 else if (strlen (imported_name_prefix) > 0)
4981 {
4982 temp = alloca (strlen (imported_name_prefix)
4983 + 2 + strlen (imported_name) + 1);
4984 strcpy (temp, imported_name_prefix);
4985 strcat (temp, "::");
4986 strcat (temp, imported_name);
4987 canonical_name = temp;
4988 }
4989 else
4990 canonical_name = imported_name;
4991
4992 cp_add_using_directive (import_prefix,
4993 canonical_name,
4994 import_alias,
4995 imported_declaration,
4996 &cu->objfile->objfile_obstack);
4997 }
4998
4999 static void
5000 initialize_cu_func_list (struct dwarf2_cu *cu)
5001 {
5002 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5003 }
5004
5005 static void
5006 free_cu_line_header (void *arg)
5007 {
5008 struct dwarf2_cu *cu = arg;
5009
5010 free_line_header (cu->line_header);
5011 cu->line_header = NULL;
5012 }
5013
5014 static void
5015 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5016 char **name, char **comp_dir)
5017 {
5018 struct attribute *attr;
5019
5020 *name = NULL;
5021 *comp_dir = NULL;
5022
5023 /* Find the filename. Do not use dwarf2_name here, since the filename
5024 is not a source language identifier. */
5025 attr = dwarf2_attr (die, DW_AT_name, cu);
5026 if (attr)
5027 {
5028 *name = DW_STRING (attr);
5029 }
5030
5031 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5032 if (attr)
5033 *comp_dir = DW_STRING (attr);
5034 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5035 {
5036 *comp_dir = ldirname (*name);
5037 if (*comp_dir != NULL)
5038 make_cleanup (xfree, *comp_dir);
5039 }
5040 if (*comp_dir != NULL)
5041 {
5042 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5043 directory, get rid of it. */
5044 char *cp = strchr (*comp_dir, ':');
5045
5046 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5047 *comp_dir = cp + 1;
5048 }
5049
5050 if (*name == NULL)
5051 *name = "<unknown>";
5052 }
5053
5054 static void
5055 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5056 {
5057 struct objfile *objfile = cu->objfile;
5058 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5059 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5060 CORE_ADDR highpc = ((CORE_ADDR) 0);
5061 struct attribute *attr;
5062 char *name = NULL;
5063 char *comp_dir = NULL;
5064 struct die_info *child_die;
5065 bfd *abfd = objfile->obfd;
5066 struct line_header *line_header = 0;
5067 CORE_ADDR baseaddr;
5068
5069 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5070
5071 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5072
5073 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5074 from finish_block. */
5075 if (lowpc == ((CORE_ADDR) -1))
5076 lowpc = highpc;
5077 lowpc += baseaddr;
5078 highpc += baseaddr;
5079
5080 find_file_and_directory (die, cu, &name, &comp_dir);
5081
5082 attr = dwarf2_attr (die, DW_AT_language, cu);
5083 if (attr)
5084 {
5085 set_cu_language (DW_UNSND (attr), cu);
5086 }
5087
5088 attr = dwarf2_attr (die, DW_AT_producer, cu);
5089 if (attr)
5090 cu->producer = DW_STRING (attr);
5091
5092 /* We assume that we're processing GCC output. */
5093 processing_gcc_compilation = 2;
5094
5095 processing_has_namespace_info = 0;
5096
5097 start_symtab (name, comp_dir, lowpc);
5098 record_debugformat ("DWARF 2");
5099 record_producer (cu->producer);
5100
5101 initialize_cu_func_list (cu);
5102
5103 /* Decode line number information if present. We do this before
5104 processing child DIEs, so that the line header table is available
5105 for DW_AT_decl_file. */
5106 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5107 if (attr)
5108 {
5109 unsigned int line_offset = DW_UNSND (attr);
5110 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5111 if (line_header)
5112 {
5113 cu->line_header = line_header;
5114 make_cleanup (free_cu_line_header, cu);
5115 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5116 }
5117 }
5118
5119 /* Process all dies in compilation unit. */
5120 if (die->child != NULL)
5121 {
5122 child_die = die->child;
5123 while (child_die && child_die->tag)
5124 {
5125 process_die (child_die, cu);
5126 child_die = sibling_die (child_die);
5127 }
5128 }
5129
5130 /* Decode macro information, if present. Dwarf 2 macro information
5131 refers to information in the line number info statement program
5132 header, so we can only read it if we've read the header
5133 successfully. */
5134 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5135 if (attr && line_header)
5136 {
5137 unsigned int macro_offset = DW_UNSND (attr);
5138
5139 dwarf_decode_macros (line_header, macro_offset,
5140 comp_dir, abfd, cu);
5141 }
5142 do_cleanups (back_to);
5143 }
5144
5145 /* For TUs we want to skip the first top level sibling if it's not the
5146 actual type being defined by this TU. In this case the first top
5147 level sibling is there to provide context only. */
5148
5149 static void
5150 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5151 {
5152 struct objfile *objfile = cu->objfile;
5153 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5154 CORE_ADDR lowpc;
5155 struct attribute *attr;
5156 char *name = NULL;
5157 char *comp_dir = NULL;
5158 struct die_info *child_die;
5159 bfd *abfd = objfile->obfd;
5160
5161 /* start_symtab needs a low pc, but we don't really have one.
5162 Do what read_file_scope would do in the absence of such info. */
5163 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5164
5165 /* Find the filename. Do not use dwarf2_name here, since the filename
5166 is not a source language identifier. */
5167 attr = dwarf2_attr (die, DW_AT_name, cu);
5168 if (attr)
5169 name = DW_STRING (attr);
5170
5171 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5172 if (attr)
5173 comp_dir = DW_STRING (attr);
5174 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5175 {
5176 comp_dir = ldirname (name);
5177 if (comp_dir != NULL)
5178 make_cleanup (xfree, comp_dir);
5179 }
5180
5181 if (name == NULL)
5182 name = "<unknown>";
5183
5184 attr = dwarf2_attr (die, DW_AT_language, cu);
5185 if (attr)
5186 set_cu_language (DW_UNSND (attr), cu);
5187
5188 /* This isn't technically needed today. It is done for symmetry
5189 with read_file_scope. */
5190 attr = dwarf2_attr (die, DW_AT_producer, cu);
5191 if (attr)
5192 cu->producer = DW_STRING (attr);
5193
5194 /* We assume that we're processing GCC output. */
5195 processing_gcc_compilation = 2;
5196
5197 processing_has_namespace_info = 0;
5198
5199 start_symtab (name, comp_dir, lowpc);
5200 record_debugformat ("DWARF 2");
5201 record_producer (cu->producer);
5202
5203 /* Process the dies in the type unit. */
5204 if (die->child == NULL)
5205 {
5206 dump_die_for_error (die);
5207 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5208 bfd_get_filename (abfd));
5209 }
5210
5211 child_die = die->child;
5212
5213 while (child_die && child_die->tag)
5214 {
5215 process_die (child_die, cu);
5216
5217 child_die = sibling_die (child_die);
5218 }
5219
5220 do_cleanups (back_to);
5221 }
5222
5223 static void
5224 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5225 struct dwarf2_cu *cu)
5226 {
5227 struct function_range *thisfn;
5228
5229 thisfn = (struct function_range *)
5230 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5231 thisfn->name = name;
5232 thisfn->lowpc = lowpc;
5233 thisfn->highpc = highpc;
5234 thisfn->seen_line = 0;
5235 thisfn->next = NULL;
5236
5237 if (cu->last_fn == NULL)
5238 cu->first_fn = thisfn;
5239 else
5240 cu->last_fn->next = thisfn;
5241
5242 cu->last_fn = thisfn;
5243 }
5244
5245 /* qsort helper for inherit_abstract_dies. */
5246
5247 static int
5248 unsigned_int_compar (const void *ap, const void *bp)
5249 {
5250 unsigned int a = *(unsigned int *) ap;
5251 unsigned int b = *(unsigned int *) bp;
5252
5253 return (a > b) - (b > a);
5254 }
5255
5256 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5257 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5258 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5259
5260 static void
5261 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5262 {
5263 struct die_info *child_die;
5264 unsigned die_children_count;
5265 /* CU offsets which were referenced by children of the current DIE. */
5266 unsigned *offsets;
5267 unsigned *offsets_end, *offsetp;
5268 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5269 struct die_info *origin_die;
5270 /* Iterator of the ORIGIN_DIE children. */
5271 struct die_info *origin_child_die;
5272 struct cleanup *cleanups;
5273 struct attribute *attr;
5274 struct dwarf2_cu *origin_cu;
5275 struct pending **origin_previous_list_in_scope;
5276
5277 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5278 if (!attr)
5279 return;
5280
5281 /* Note that following die references may follow to a die in a
5282 different cu. */
5283
5284 origin_cu = cu;
5285 origin_die = follow_die_ref (die, attr, &origin_cu);
5286
5287 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5288 symbols in. */
5289 origin_previous_list_in_scope = origin_cu->list_in_scope;
5290 origin_cu->list_in_scope = cu->list_in_scope;
5291
5292 if (die->tag != origin_die->tag
5293 && !(die->tag == DW_TAG_inlined_subroutine
5294 && origin_die->tag == DW_TAG_subprogram))
5295 complaint (&symfile_complaints,
5296 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5297 die->offset, origin_die->offset);
5298
5299 child_die = die->child;
5300 die_children_count = 0;
5301 while (child_die && child_die->tag)
5302 {
5303 child_die = sibling_die (child_die);
5304 die_children_count++;
5305 }
5306 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5307 cleanups = make_cleanup (xfree, offsets);
5308
5309 offsets_end = offsets;
5310 child_die = die->child;
5311 while (child_die && child_die->tag)
5312 {
5313 /* For each CHILD_DIE, find the corresponding child of
5314 ORIGIN_DIE. If there is more than one layer of
5315 DW_AT_abstract_origin, follow them all; there shouldn't be,
5316 but GCC versions at least through 4.4 generate this (GCC PR
5317 40573). */
5318 struct die_info *child_origin_die = child_die;
5319 struct dwarf2_cu *child_origin_cu = cu;
5320
5321 while (1)
5322 {
5323 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5324 child_origin_cu);
5325 if (attr == NULL)
5326 break;
5327 child_origin_die = follow_die_ref (child_origin_die, attr,
5328 &child_origin_cu);
5329 }
5330
5331 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5332 counterpart may exist. */
5333 if (child_origin_die != child_die)
5334 {
5335 if (child_die->tag != child_origin_die->tag
5336 && !(child_die->tag == DW_TAG_inlined_subroutine
5337 && child_origin_die->tag == DW_TAG_subprogram))
5338 complaint (&symfile_complaints,
5339 _("Child DIE 0x%x and its abstract origin 0x%x have "
5340 "different tags"), child_die->offset,
5341 child_origin_die->offset);
5342 if (child_origin_die->parent != origin_die)
5343 complaint (&symfile_complaints,
5344 _("Child DIE 0x%x and its abstract origin 0x%x have "
5345 "different parents"), child_die->offset,
5346 child_origin_die->offset);
5347 else
5348 *offsets_end++ = child_origin_die->offset;
5349 }
5350 child_die = sibling_die (child_die);
5351 }
5352 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5353 unsigned_int_compar);
5354 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5355 if (offsetp[-1] == *offsetp)
5356 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5357 "to DIE 0x%x as their abstract origin"),
5358 die->offset, *offsetp);
5359
5360 offsetp = offsets;
5361 origin_child_die = origin_die->child;
5362 while (origin_child_die && origin_child_die->tag)
5363 {
5364 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5365 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5366 offsetp++;
5367 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5368 {
5369 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5370 process_die (origin_child_die, origin_cu);
5371 }
5372 origin_child_die = sibling_die (origin_child_die);
5373 }
5374 origin_cu->list_in_scope = origin_previous_list_in_scope;
5375
5376 do_cleanups (cleanups);
5377 }
5378
5379 static void
5380 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5381 {
5382 struct objfile *objfile = cu->objfile;
5383 struct context_stack *new;
5384 CORE_ADDR lowpc;
5385 CORE_ADDR highpc;
5386 struct die_info *child_die;
5387 struct attribute *attr, *call_line, *call_file;
5388 char *name;
5389 CORE_ADDR baseaddr;
5390 struct block *block;
5391 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5392 VEC (symbolp) *template_args = NULL;
5393 struct template_symbol *templ_func = NULL;
5394
5395 if (inlined_func)
5396 {
5397 /* If we do not have call site information, we can't show the
5398 caller of this inlined function. That's too confusing, so
5399 only use the scope for local variables. */
5400 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5401 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5402 if (call_line == NULL || call_file == NULL)
5403 {
5404 read_lexical_block_scope (die, cu);
5405 return;
5406 }
5407 }
5408
5409 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5410
5411 name = dwarf2_name (die, cu);
5412
5413 /* Ignore functions with missing or empty names. These are actually
5414 illegal according to the DWARF standard. */
5415 if (name == NULL)
5416 {
5417 complaint (&symfile_complaints,
5418 _("missing name for subprogram DIE at %d"), die->offset);
5419 return;
5420 }
5421
5422 /* Ignore functions with missing or invalid low and high pc attributes. */
5423 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5424 {
5425 attr = dwarf2_attr (die, DW_AT_external, cu);
5426 if (!attr || !DW_UNSND (attr))
5427 complaint (&symfile_complaints,
5428 _("cannot get low and high bounds for subprogram DIE at %d"),
5429 die->offset);
5430 return;
5431 }
5432
5433 lowpc += baseaddr;
5434 highpc += baseaddr;
5435
5436 /* Record the function range for dwarf_decode_lines. */
5437 add_to_cu_func_list (name, lowpc, highpc, cu);
5438
5439 /* If we have any template arguments, then we must allocate a
5440 different sort of symbol. */
5441 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5442 {
5443 if (child_die->tag == DW_TAG_template_type_param
5444 || child_die->tag == DW_TAG_template_value_param)
5445 {
5446 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5447 struct template_symbol);
5448 templ_func->base.is_cplus_template_function = 1;
5449 break;
5450 }
5451 }
5452
5453 new = push_context (0, lowpc);
5454 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5455 (struct symbol *) templ_func);
5456
5457 /* If there is a location expression for DW_AT_frame_base, record
5458 it. */
5459 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5460 if (attr)
5461 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5462 expression is being recorded directly in the function's symbol
5463 and not in a separate frame-base object. I guess this hack is
5464 to avoid adding some sort of frame-base adjunct/annex to the
5465 function's symbol :-(. The problem with doing this is that it
5466 results in a function symbol with a location expression that
5467 has nothing to do with the location of the function, ouch! The
5468 relationship should be: a function's symbol has-a frame base; a
5469 frame-base has-a location expression. */
5470 dwarf2_symbol_mark_computed (attr, new->name, cu);
5471
5472 cu->list_in_scope = &local_symbols;
5473
5474 if (die->child != NULL)
5475 {
5476 child_die = die->child;
5477 while (child_die && child_die->tag)
5478 {
5479 if (child_die->tag == DW_TAG_template_type_param
5480 || child_die->tag == DW_TAG_template_value_param)
5481 {
5482 struct symbol *arg = new_symbol (child_die, NULL, cu);
5483
5484 if (arg != NULL)
5485 VEC_safe_push (symbolp, template_args, arg);
5486 }
5487 else
5488 process_die (child_die, cu);
5489 child_die = sibling_die (child_die);
5490 }
5491 }
5492
5493 inherit_abstract_dies (die, cu);
5494
5495 /* If we have a DW_AT_specification, we might need to import using
5496 directives from the context of the specification DIE. See the
5497 comment in determine_prefix. */
5498 if (cu->language == language_cplus
5499 && dwarf2_attr (die, DW_AT_specification, cu))
5500 {
5501 struct dwarf2_cu *spec_cu = cu;
5502 struct die_info *spec_die = die_specification (die, &spec_cu);
5503
5504 while (spec_die)
5505 {
5506 child_die = spec_die->child;
5507 while (child_die && child_die->tag)
5508 {
5509 if (child_die->tag == DW_TAG_imported_module)
5510 process_die (child_die, spec_cu);
5511 child_die = sibling_die (child_die);
5512 }
5513
5514 /* In some cases, GCC generates specification DIEs that
5515 themselves contain DW_AT_specification attributes. */
5516 spec_die = die_specification (spec_die, &spec_cu);
5517 }
5518 }
5519
5520 new = pop_context ();
5521 /* Make a block for the local symbols within. */
5522 block = finish_block (new->name, &local_symbols, new->old_blocks,
5523 lowpc, highpc, objfile);
5524
5525 /* For C++, set the block's scope. */
5526 if (cu->language == language_cplus || cu->language == language_fortran)
5527 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5528 determine_prefix (die, cu),
5529 processing_has_namespace_info);
5530
5531 /* If we have address ranges, record them. */
5532 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5533
5534 /* Attach template arguments to function. */
5535 if (! VEC_empty (symbolp, template_args))
5536 {
5537 gdb_assert (templ_func != NULL);
5538
5539 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5540 templ_func->template_arguments
5541 = obstack_alloc (&objfile->objfile_obstack,
5542 (templ_func->n_template_arguments
5543 * sizeof (struct symbol *)));
5544 memcpy (templ_func->template_arguments,
5545 VEC_address (symbolp, template_args),
5546 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5547 VEC_free (symbolp, template_args);
5548 }
5549
5550 /* In C++, we can have functions nested inside functions (e.g., when
5551 a function declares a class that has methods). This means that
5552 when we finish processing a function scope, we may need to go
5553 back to building a containing block's symbol lists. */
5554 local_symbols = new->locals;
5555 param_symbols = new->params;
5556 using_directives = new->using_directives;
5557
5558 /* If we've finished processing a top-level function, subsequent
5559 symbols go in the file symbol list. */
5560 if (outermost_context_p ())
5561 cu->list_in_scope = &file_symbols;
5562 }
5563
5564 /* Process all the DIES contained within a lexical block scope. Start
5565 a new scope, process the dies, and then close the scope. */
5566
5567 static void
5568 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5569 {
5570 struct objfile *objfile = cu->objfile;
5571 struct context_stack *new;
5572 CORE_ADDR lowpc, highpc;
5573 struct die_info *child_die;
5574 CORE_ADDR baseaddr;
5575
5576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5577
5578 /* Ignore blocks with missing or invalid low and high pc attributes. */
5579 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5580 as multiple lexical blocks? Handling children in a sane way would
5581 be nasty. Might be easier to properly extend generic blocks to
5582 describe ranges. */
5583 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5584 return;
5585 lowpc += baseaddr;
5586 highpc += baseaddr;
5587
5588 push_context (0, lowpc);
5589 if (die->child != NULL)
5590 {
5591 child_die = die->child;
5592 while (child_die && child_die->tag)
5593 {
5594 process_die (child_die, cu);
5595 child_die = sibling_die (child_die);
5596 }
5597 }
5598 new = pop_context ();
5599
5600 if (local_symbols != NULL || using_directives != NULL)
5601 {
5602 struct block *block
5603 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5604 highpc, objfile);
5605
5606 /* Note that recording ranges after traversing children, as we
5607 do here, means that recording a parent's ranges entails
5608 walking across all its children's ranges as they appear in
5609 the address map, which is quadratic behavior.
5610
5611 It would be nicer to record the parent's ranges before
5612 traversing its children, simply overriding whatever you find
5613 there. But since we don't even decide whether to create a
5614 block until after we've traversed its children, that's hard
5615 to do. */
5616 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5617 }
5618 local_symbols = new->locals;
5619 using_directives = new->using_directives;
5620 }
5621
5622 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5623 Return 1 if the attributes are present and valid, otherwise, return 0.
5624 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5625
5626 static int
5627 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5628 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5629 struct partial_symtab *ranges_pst)
5630 {
5631 struct objfile *objfile = cu->objfile;
5632 struct comp_unit_head *cu_header = &cu->header;
5633 bfd *obfd = objfile->obfd;
5634 unsigned int addr_size = cu_header->addr_size;
5635 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5636 /* Base address selection entry. */
5637 CORE_ADDR base;
5638 int found_base;
5639 unsigned int dummy;
5640 gdb_byte *buffer;
5641 CORE_ADDR marker;
5642 int low_set;
5643 CORE_ADDR low = 0;
5644 CORE_ADDR high = 0;
5645 CORE_ADDR baseaddr;
5646
5647 found_base = cu->base_known;
5648 base = cu->base_address;
5649
5650 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5651 if (offset >= dwarf2_per_objfile->ranges.size)
5652 {
5653 complaint (&symfile_complaints,
5654 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5655 offset);
5656 return 0;
5657 }
5658 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5659
5660 /* Read in the largest possible address. */
5661 marker = read_address (obfd, buffer, cu, &dummy);
5662 if ((marker & mask) == mask)
5663 {
5664 /* If we found the largest possible address, then
5665 read the base address. */
5666 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5667 buffer += 2 * addr_size;
5668 offset += 2 * addr_size;
5669 found_base = 1;
5670 }
5671
5672 low_set = 0;
5673
5674 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5675
5676 while (1)
5677 {
5678 CORE_ADDR range_beginning, range_end;
5679
5680 range_beginning = read_address (obfd, buffer, cu, &dummy);
5681 buffer += addr_size;
5682 range_end = read_address (obfd, buffer, cu, &dummy);
5683 buffer += addr_size;
5684 offset += 2 * addr_size;
5685
5686 /* An end of list marker is a pair of zero addresses. */
5687 if (range_beginning == 0 && range_end == 0)
5688 /* Found the end of list entry. */
5689 break;
5690
5691 /* Each base address selection entry is a pair of 2 values.
5692 The first is the largest possible address, the second is
5693 the base address. Check for a base address here. */
5694 if ((range_beginning & mask) == mask)
5695 {
5696 /* If we found the largest possible address, then
5697 read the base address. */
5698 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5699 found_base = 1;
5700 continue;
5701 }
5702
5703 if (!found_base)
5704 {
5705 /* We have no valid base address for the ranges
5706 data. */
5707 complaint (&symfile_complaints,
5708 _("Invalid .debug_ranges data (no base address)"));
5709 return 0;
5710 }
5711
5712 range_beginning += base;
5713 range_end += base;
5714
5715 if (ranges_pst != NULL && range_beginning < range_end)
5716 addrmap_set_empty (objfile->psymtabs_addrmap,
5717 range_beginning + baseaddr, range_end - 1 + baseaddr,
5718 ranges_pst);
5719
5720 /* FIXME: This is recording everything as a low-high
5721 segment of consecutive addresses. We should have a
5722 data structure for discontiguous block ranges
5723 instead. */
5724 if (! low_set)
5725 {
5726 low = range_beginning;
5727 high = range_end;
5728 low_set = 1;
5729 }
5730 else
5731 {
5732 if (range_beginning < low)
5733 low = range_beginning;
5734 if (range_end > high)
5735 high = range_end;
5736 }
5737 }
5738
5739 if (! low_set)
5740 /* If the first entry is an end-of-list marker, the range
5741 describes an empty scope, i.e. no instructions. */
5742 return 0;
5743
5744 if (low_return)
5745 *low_return = low;
5746 if (high_return)
5747 *high_return = high;
5748 return 1;
5749 }
5750
5751 /* Get low and high pc attributes from a die. Return 1 if the attributes
5752 are present and valid, otherwise, return 0. Return -1 if the range is
5753 discontinuous, i.e. derived from DW_AT_ranges information. */
5754 static int
5755 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5756 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5757 struct partial_symtab *pst)
5758 {
5759 struct attribute *attr;
5760 CORE_ADDR low = 0;
5761 CORE_ADDR high = 0;
5762 int ret = 0;
5763
5764 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5765 if (attr)
5766 {
5767 high = DW_ADDR (attr);
5768 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5769 if (attr)
5770 low = DW_ADDR (attr);
5771 else
5772 /* Found high w/o low attribute. */
5773 return 0;
5774
5775 /* Found consecutive range of addresses. */
5776 ret = 1;
5777 }
5778 else
5779 {
5780 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5781 if (attr != NULL)
5782 {
5783 /* Value of the DW_AT_ranges attribute is the offset in the
5784 .debug_ranges section. */
5785 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5786 return 0;
5787 /* Found discontinuous range of addresses. */
5788 ret = -1;
5789 }
5790 }
5791
5792 if (high < low)
5793 return 0;
5794
5795 /* When using the GNU linker, .gnu.linkonce. sections are used to
5796 eliminate duplicate copies of functions and vtables and such.
5797 The linker will arbitrarily choose one and discard the others.
5798 The AT_*_pc values for such functions refer to local labels in
5799 these sections. If the section from that file was discarded, the
5800 labels are not in the output, so the relocs get a value of 0.
5801 If this is a discarded function, mark the pc bounds as invalid,
5802 so that GDB will ignore it. */
5803 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5804 return 0;
5805
5806 *lowpc = low;
5807 *highpc = high;
5808 return ret;
5809 }
5810
5811 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5812 its low and high PC addresses. Do nothing if these addresses could not
5813 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5814 and HIGHPC to the high address if greater than HIGHPC. */
5815
5816 static void
5817 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5818 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5819 struct dwarf2_cu *cu)
5820 {
5821 CORE_ADDR low, high;
5822 struct die_info *child = die->child;
5823
5824 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5825 {
5826 *lowpc = min (*lowpc, low);
5827 *highpc = max (*highpc, high);
5828 }
5829
5830 /* If the language does not allow nested subprograms (either inside
5831 subprograms or lexical blocks), we're done. */
5832 if (cu->language != language_ada)
5833 return;
5834
5835 /* Check all the children of the given DIE. If it contains nested
5836 subprograms, then check their pc bounds. Likewise, we need to
5837 check lexical blocks as well, as they may also contain subprogram
5838 definitions. */
5839 while (child && child->tag)
5840 {
5841 if (child->tag == DW_TAG_subprogram
5842 || child->tag == DW_TAG_lexical_block)
5843 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5844 child = sibling_die (child);
5845 }
5846 }
5847
5848 /* Get the low and high pc's represented by the scope DIE, and store
5849 them in *LOWPC and *HIGHPC. If the correct values can't be
5850 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5851
5852 static void
5853 get_scope_pc_bounds (struct die_info *die,
5854 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5855 struct dwarf2_cu *cu)
5856 {
5857 CORE_ADDR best_low = (CORE_ADDR) -1;
5858 CORE_ADDR best_high = (CORE_ADDR) 0;
5859 CORE_ADDR current_low, current_high;
5860
5861 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5862 {
5863 best_low = current_low;
5864 best_high = current_high;
5865 }
5866 else
5867 {
5868 struct die_info *child = die->child;
5869
5870 while (child && child->tag)
5871 {
5872 switch (child->tag) {
5873 case DW_TAG_subprogram:
5874 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5875 break;
5876 case DW_TAG_namespace:
5877 case DW_TAG_module:
5878 /* FIXME: carlton/2004-01-16: Should we do this for
5879 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5880 that current GCC's always emit the DIEs corresponding
5881 to definitions of methods of classes as children of a
5882 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5883 the DIEs giving the declarations, which could be
5884 anywhere). But I don't see any reason why the
5885 standards says that they have to be there. */
5886 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5887
5888 if (current_low != ((CORE_ADDR) -1))
5889 {
5890 best_low = min (best_low, current_low);
5891 best_high = max (best_high, current_high);
5892 }
5893 break;
5894 default:
5895 /* Ignore. */
5896 break;
5897 }
5898
5899 child = sibling_die (child);
5900 }
5901 }
5902
5903 *lowpc = best_low;
5904 *highpc = best_high;
5905 }
5906
5907 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5908 in DIE. */
5909 static void
5910 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5911 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5912 {
5913 struct attribute *attr;
5914
5915 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5916 if (attr)
5917 {
5918 CORE_ADDR high = DW_ADDR (attr);
5919
5920 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5921 if (attr)
5922 {
5923 CORE_ADDR low = DW_ADDR (attr);
5924
5925 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5926 }
5927 }
5928
5929 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5930 if (attr)
5931 {
5932 bfd *obfd = cu->objfile->obfd;
5933
5934 /* The value of the DW_AT_ranges attribute is the offset of the
5935 address range list in the .debug_ranges section. */
5936 unsigned long offset = DW_UNSND (attr);
5937 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5938
5939 /* For some target architectures, but not others, the
5940 read_address function sign-extends the addresses it returns.
5941 To recognize base address selection entries, we need a
5942 mask. */
5943 unsigned int addr_size = cu->header.addr_size;
5944 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5945
5946 /* The base address, to which the next pair is relative. Note
5947 that this 'base' is a DWARF concept: most entries in a range
5948 list are relative, to reduce the number of relocs against the
5949 debugging information. This is separate from this function's
5950 'baseaddr' argument, which GDB uses to relocate debugging
5951 information from a shared library based on the address at
5952 which the library was loaded. */
5953 CORE_ADDR base = cu->base_address;
5954 int base_known = cu->base_known;
5955
5956 gdb_assert (dwarf2_per_objfile->ranges.readin);
5957 if (offset >= dwarf2_per_objfile->ranges.size)
5958 {
5959 complaint (&symfile_complaints,
5960 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5961 offset);
5962 return;
5963 }
5964
5965 for (;;)
5966 {
5967 unsigned int bytes_read;
5968 CORE_ADDR start, end;
5969
5970 start = read_address (obfd, buffer, cu, &bytes_read);
5971 buffer += bytes_read;
5972 end = read_address (obfd, buffer, cu, &bytes_read);
5973 buffer += bytes_read;
5974
5975 /* Did we find the end of the range list? */
5976 if (start == 0 && end == 0)
5977 break;
5978
5979 /* Did we find a base address selection entry? */
5980 else if ((start & base_select_mask) == base_select_mask)
5981 {
5982 base = end;
5983 base_known = 1;
5984 }
5985
5986 /* We found an ordinary address range. */
5987 else
5988 {
5989 if (!base_known)
5990 {
5991 complaint (&symfile_complaints,
5992 _("Invalid .debug_ranges data (no base address)"));
5993 return;
5994 }
5995
5996 record_block_range (block,
5997 baseaddr + base + start,
5998 baseaddr + base + end - 1);
5999 }
6000 }
6001 }
6002 }
6003
6004 /* Add an aggregate field to the field list. */
6005
6006 static void
6007 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6008 struct dwarf2_cu *cu)
6009 {
6010 struct objfile *objfile = cu->objfile;
6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6012 struct nextfield *new_field;
6013 struct attribute *attr;
6014 struct field *fp;
6015 char *fieldname = "";
6016
6017 /* Allocate a new field list entry and link it in. */
6018 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6019 make_cleanup (xfree, new_field);
6020 memset (new_field, 0, sizeof (struct nextfield));
6021
6022 if (die->tag == DW_TAG_inheritance)
6023 {
6024 new_field->next = fip->baseclasses;
6025 fip->baseclasses = new_field;
6026 }
6027 else
6028 {
6029 new_field->next = fip->fields;
6030 fip->fields = new_field;
6031 }
6032 fip->nfields++;
6033
6034 /* Handle accessibility and virtuality of field.
6035 The default accessibility for members is public, the default
6036 accessibility for inheritance is private. */
6037 if (die->tag != DW_TAG_inheritance)
6038 new_field->accessibility = DW_ACCESS_public;
6039 else
6040 new_field->accessibility = DW_ACCESS_private;
6041 new_field->virtuality = DW_VIRTUALITY_none;
6042
6043 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6044 if (attr)
6045 new_field->accessibility = DW_UNSND (attr);
6046 if (new_field->accessibility != DW_ACCESS_public)
6047 fip->non_public_fields = 1;
6048 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6049 if (attr)
6050 new_field->virtuality = DW_UNSND (attr);
6051
6052 fp = &new_field->field;
6053
6054 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6055 {
6056 /* Data member other than a C++ static data member. */
6057
6058 /* Get type of field. */
6059 fp->type = die_type (die, cu);
6060
6061 SET_FIELD_BITPOS (*fp, 0);
6062
6063 /* Get bit size of field (zero if none). */
6064 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6065 if (attr)
6066 {
6067 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6068 }
6069 else
6070 {
6071 FIELD_BITSIZE (*fp) = 0;
6072 }
6073
6074 /* Get bit offset of field. */
6075 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6076 if (attr)
6077 {
6078 int byte_offset = 0;
6079
6080 if (attr_form_is_section_offset (attr))
6081 dwarf2_complex_location_expr_complaint ();
6082 else if (attr_form_is_constant (attr))
6083 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6084 else if (attr_form_is_block (attr))
6085 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6086 else
6087 dwarf2_complex_location_expr_complaint ();
6088
6089 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6090 }
6091 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6092 if (attr)
6093 {
6094 if (gdbarch_bits_big_endian (gdbarch))
6095 {
6096 /* For big endian bits, the DW_AT_bit_offset gives the
6097 additional bit offset from the MSB of the containing
6098 anonymous object to the MSB of the field. We don't
6099 have to do anything special since we don't need to
6100 know the size of the anonymous object. */
6101 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6102 }
6103 else
6104 {
6105 /* For little endian bits, compute the bit offset to the
6106 MSB of the anonymous object, subtract off the number of
6107 bits from the MSB of the field to the MSB of the
6108 object, and then subtract off the number of bits of
6109 the field itself. The result is the bit offset of
6110 the LSB of the field. */
6111 int anonymous_size;
6112 int bit_offset = DW_UNSND (attr);
6113
6114 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6115 if (attr)
6116 {
6117 /* The size of the anonymous object containing
6118 the bit field is explicit, so use the
6119 indicated size (in bytes). */
6120 anonymous_size = DW_UNSND (attr);
6121 }
6122 else
6123 {
6124 /* The size of the anonymous object containing
6125 the bit field must be inferred from the type
6126 attribute of the data member containing the
6127 bit field. */
6128 anonymous_size = TYPE_LENGTH (fp->type);
6129 }
6130 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6131 - bit_offset - FIELD_BITSIZE (*fp);
6132 }
6133 }
6134
6135 /* Get name of field. */
6136 fieldname = dwarf2_name (die, cu);
6137 if (fieldname == NULL)
6138 fieldname = "";
6139
6140 /* The name is already allocated along with this objfile, so we don't
6141 need to duplicate it for the type. */
6142 fp->name = fieldname;
6143
6144 /* Change accessibility for artificial fields (e.g. virtual table
6145 pointer or virtual base class pointer) to private. */
6146 if (dwarf2_attr (die, DW_AT_artificial, cu))
6147 {
6148 FIELD_ARTIFICIAL (*fp) = 1;
6149 new_field->accessibility = DW_ACCESS_private;
6150 fip->non_public_fields = 1;
6151 }
6152 }
6153 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6154 {
6155 /* C++ static member. */
6156
6157 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6158 is a declaration, but all versions of G++ as of this writing
6159 (so through at least 3.2.1) incorrectly generate
6160 DW_TAG_variable tags. */
6161
6162 char *physname;
6163
6164 /* Get name of field. */
6165 fieldname = dwarf2_name (die, cu);
6166 if (fieldname == NULL)
6167 return;
6168
6169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6170 if (attr
6171 /* Only create a symbol if this is an external value.
6172 new_symbol checks this and puts the value in the global symbol
6173 table, which we want. If it is not external, new_symbol
6174 will try to put the value in cu->list_in_scope which is wrong. */
6175 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6176 {
6177 /* A static const member, not much different than an enum as far as
6178 we're concerned, except that we can support more types. */
6179 new_symbol (die, NULL, cu);
6180 }
6181
6182 /* Get physical name. */
6183 physname = (char *) dwarf2_physname (fieldname, die, cu);
6184
6185 /* The name is already allocated along with this objfile, so we don't
6186 need to duplicate it for the type. */
6187 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6188 FIELD_TYPE (*fp) = die_type (die, cu);
6189 FIELD_NAME (*fp) = fieldname;
6190 }
6191 else if (die->tag == DW_TAG_inheritance)
6192 {
6193 /* C++ base class field. */
6194 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6195 if (attr)
6196 {
6197 int byte_offset = 0;
6198
6199 if (attr_form_is_section_offset (attr))
6200 dwarf2_complex_location_expr_complaint ();
6201 else if (attr_form_is_constant (attr))
6202 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6203 else if (attr_form_is_block (attr))
6204 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6205 else
6206 dwarf2_complex_location_expr_complaint ();
6207
6208 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6209 }
6210 FIELD_BITSIZE (*fp) = 0;
6211 FIELD_TYPE (*fp) = die_type (die, cu);
6212 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6213 fip->nbaseclasses++;
6214 }
6215 }
6216
6217 /* Add a typedef defined in the scope of the FIP's class. */
6218
6219 static void
6220 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6221 struct dwarf2_cu *cu)
6222 {
6223 struct objfile *objfile = cu->objfile;
6224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6225 struct typedef_field_list *new_field;
6226 struct attribute *attr;
6227 struct typedef_field *fp;
6228 char *fieldname = "";
6229
6230 /* Allocate a new field list entry and link it in. */
6231 new_field = xzalloc (sizeof (*new_field));
6232 make_cleanup (xfree, new_field);
6233
6234 gdb_assert (die->tag == DW_TAG_typedef);
6235
6236 fp = &new_field->field;
6237
6238 /* Get name of field. */
6239 fp->name = dwarf2_name (die, cu);
6240 if (fp->name == NULL)
6241 return;
6242
6243 fp->type = read_type_die (die, cu);
6244
6245 new_field->next = fip->typedef_field_list;
6246 fip->typedef_field_list = new_field;
6247 fip->typedef_field_list_count++;
6248 }
6249
6250 /* Create the vector of fields, and attach it to the type. */
6251
6252 static void
6253 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6254 struct dwarf2_cu *cu)
6255 {
6256 int nfields = fip->nfields;
6257
6258 /* Record the field count, allocate space for the array of fields,
6259 and create blank accessibility bitfields if necessary. */
6260 TYPE_NFIELDS (type) = nfields;
6261 TYPE_FIELDS (type) = (struct field *)
6262 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6263 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6264
6265 if (fip->non_public_fields && cu->language != language_ada)
6266 {
6267 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6268
6269 TYPE_FIELD_PRIVATE_BITS (type) =
6270 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6271 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6272
6273 TYPE_FIELD_PROTECTED_BITS (type) =
6274 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6275 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6276
6277 TYPE_FIELD_IGNORE_BITS (type) =
6278 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6279 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6280 }
6281
6282 /* If the type has baseclasses, allocate and clear a bit vector for
6283 TYPE_FIELD_VIRTUAL_BITS. */
6284 if (fip->nbaseclasses && cu->language != language_ada)
6285 {
6286 int num_bytes = B_BYTES (fip->nbaseclasses);
6287 unsigned char *pointer;
6288
6289 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6290 pointer = TYPE_ALLOC (type, num_bytes);
6291 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6292 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6293 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6294 }
6295
6296 /* Copy the saved-up fields into the field vector. Start from the head
6297 of the list, adding to the tail of the field array, so that they end
6298 up in the same order in the array in which they were added to the list. */
6299 while (nfields-- > 0)
6300 {
6301 struct nextfield *fieldp;
6302
6303 if (fip->fields)
6304 {
6305 fieldp = fip->fields;
6306 fip->fields = fieldp->next;
6307 }
6308 else
6309 {
6310 fieldp = fip->baseclasses;
6311 fip->baseclasses = fieldp->next;
6312 }
6313
6314 TYPE_FIELD (type, nfields) = fieldp->field;
6315 switch (fieldp->accessibility)
6316 {
6317 case DW_ACCESS_private:
6318 if (cu->language != language_ada)
6319 SET_TYPE_FIELD_PRIVATE (type, nfields);
6320 break;
6321
6322 case DW_ACCESS_protected:
6323 if (cu->language != language_ada)
6324 SET_TYPE_FIELD_PROTECTED (type, nfields);
6325 break;
6326
6327 case DW_ACCESS_public:
6328 break;
6329
6330 default:
6331 /* Unknown accessibility. Complain and treat it as public. */
6332 {
6333 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6334 fieldp->accessibility);
6335 }
6336 break;
6337 }
6338 if (nfields < fip->nbaseclasses)
6339 {
6340 switch (fieldp->virtuality)
6341 {
6342 case DW_VIRTUALITY_virtual:
6343 case DW_VIRTUALITY_pure_virtual:
6344 if (cu->language == language_ada)
6345 error ("unexpected virtuality in component of Ada type");
6346 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6347 break;
6348 }
6349 }
6350 }
6351 }
6352
6353 /* Add a member function to the proper fieldlist. */
6354
6355 static void
6356 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6357 struct type *type, struct dwarf2_cu *cu)
6358 {
6359 struct objfile *objfile = cu->objfile;
6360 struct attribute *attr;
6361 struct fnfieldlist *flp;
6362 int i;
6363 struct fn_field *fnp;
6364 char *fieldname;
6365 struct nextfnfield *new_fnfield;
6366 struct type *this_type;
6367
6368 if (cu->language == language_ada)
6369 error ("unexpected member function in Ada type");
6370
6371 /* Get name of member function. */
6372 fieldname = dwarf2_name (die, cu);
6373 if (fieldname == NULL)
6374 return;
6375
6376 /* Look up member function name in fieldlist. */
6377 for (i = 0; i < fip->nfnfields; i++)
6378 {
6379 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6380 break;
6381 }
6382
6383 /* Create new list element if necessary. */
6384 if (i < fip->nfnfields)
6385 flp = &fip->fnfieldlists[i];
6386 else
6387 {
6388 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6389 {
6390 fip->fnfieldlists = (struct fnfieldlist *)
6391 xrealloc (fip->fnfieldlists,
6392 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6393 * sizeof (struct fnfieldlist));
6394 if (fip->nfnfields == 0)
6395 make_cleanup (free_current_contents, &fip->fnfieldlists);
6396 }
6397 flp = &fip->fnfieldlists[fip->nfnfields];
6398 flp->name = fieldname;
6399 flp->length = 0;
6400 flp->head = NULL;
6401 i = fip->nfnfields++;
6402 }
6403
6404 /* Create a new member function field and chain it to the field list
6405 entry. */
6406 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6407 make_cleanup (xfree, new_fnfield);
6408 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6409 new_fnfield->next = flp->head;
6410 flp->head = new_fnfield;
6411 flp->length++;
6412
6413 /* Fill in the member function field info. */
6414 fnp = &new_fnfield->fnfield;
6415
6416 /* Delay processing of the physname until later. */
6417 if (cu->language == language_cplus || cu->language == language_java)
6418 {
6419 add_to_method_list (type, i, flp->length - 1, fieldname,
6420 die, cu);
6421 }
6422 else
6423 {
6424 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6425 fnp->physname = physname ? physname : "";
6426 }
6427
6428 fnp->type = alloc_type (objfile);
6429 this_type = read_type_die (die, cu);
6430 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6431 {
6432 int nparams = TYPE_NFIELDS (this_type);
6433
6434 /* TYPE is the domain of this method, and THIS_TYPE is the type
6435 of the method itself (TYPE_CODE_METHOD). */
6436 smash_to_method_type (fnp->type, type,
6437 TYPE_TARGET_TYPE (this_type),
6438 TYPE_FIELDS (this_type),
6439 TYPE_NFIELDS (this_type),
6440 TYPE_VARARGS (this_type));
6441
6442 /* Handle static member functions.
6443 Dwarf2 has no clean way to discern C++ static and non-static
6444 member functions. G++ helps GDB by marking the first
6445 parameter for non-static member functions (which is the
6446 this pointer) as artificial. We obtain this information
6447 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6448 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6449 fnp->voffset = VOFFSET_STATIC;
6450 }
6451 else
6452 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6453 dwarf2_full_name (fieldname, die, cu));
6454
6455 /* Get fcontext from DW_AT_containing_type if present. */
6456 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6457 fnp->fcontext = die_containing_type (die, cu);
6458
6459 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6460 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6461
6462 /* Get accessibility. */
6463 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6464 if (attr)
6465 {
6466 switch (DW_UNSND (attr))
6467 {
6468 case DW_ACCESS_private:
6469 fnp->is_private = 1;
6470 break;
6471 case DW_ACCESS_protected:
6472 fnp->is_protected = 1;
6473 break;
6474 }
6475 }
6476
6477 /* Check for artificial methods. */
6478 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6479 if (attr && DW_UNSND (attr) != 0)
6480 fnp->is_artificial = 1;
6481
6482 /* Get index in virtual function table if it is a virtual member
6483 function. For older versions of GCC, this is an offset in the
6484 appropriate virtual table, as specified by DW_AT_containing_type.
6485 For everyone else, it is an expression to be evaluated relative
6486 to the object address. */
6487
6488 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6489 if (attr)
6490 {
6491 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6492 {
6493 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6494 {
6495 /* Old-style GCC. */
6496 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6497 }
6498 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6499 || (DW_BLOCK (attr)->size > 1
6500 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6501 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6502 {
6503 struct dwarf_block blk;
6504 int offset;
6505
6506 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6507 ? 1 : 2);
6508 blk.size = DW_BLOCK (attr)->size - offset;
6509 blk.data = DW_BLOCK (attr)->data + offset;
6510 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6511 if ((fnp->voffset % cu->header.addr_size) != 0)
6512 dwarf2_complex_location_expr_complaint ();
6513 else
6514 fnp->voffset /= cu->header.addr_size;
6515 fnp->voffset += 2;
6516 }
6517 else
6518 dwarf2_complex_location_expr_complaint ();
6519
6520 if (!fnp->fcontext)
6521 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6522 }
6523 else if (attr_form_is_section_offset (attr))
6524 {
6525 dwarf2_complex_location_expr_complaint ();
6526 }
6527 else
6528 {
6529 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6530 fieldname);
6531 }
6532 }
6533 else
6534 {
6535 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6536 if (attr && DW_UNSND (attr))
6537 {
6538 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6539 complaint (&symfile_complaints,
6540 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6541 fieldname, die->offset);
6542 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6543 TYPE_CPLUS_DYNAMIC (type) = 1;
6544 }
6545 }
6546 }
6547
6548 /* Create the vector of member function fields, and attach it to the type. */
6549
6550 static void
6551 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6552 struct dwarf2_cu *cu)
6553 {
6554 struct fnfieldlist *flp;
6555 int total_length = 0;
6556 int i;
6557
6558 if (cu->language == language_ada)
6559 error ("unexpected member functions in Ada type");
6560
6561 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6562 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6563 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6564
6565 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6566 {
6567 struct nextfnfield *nfp = flp->head;
6568 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6569 int k;
6570
6571 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6572 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6573 fn_flp->fn_fields = (struct fn_field *)
6574 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6575 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6576 fn_flp->fn_fields[k] = nfp->fnfield;
6577
6578 total_length += flp->length;
6579 }
6580
6581 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6582 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6583 }
6584
6585 /* Returns non-zero if NAME is the name of a vtable member in CU's
6586 language, zero otherwise. */
6587 static int
6588 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6589 {
6590 static const char vptr[] = "_vptr";
6591 static const char vtable[] = "vtable";
6592
6593 /* Look for the C++ and Java forms of the vtable. */
6594 if ((cu->language == language_java
6595 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6596 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6597 && is_cplus_marker (name[sizeof (vptr) - 1])))
6598 return 1;
6599
6600 return 0;
6601 }
6602
6603 /* GCC outputs unnamed structures that are really pointers to member
6604 functions, with the ABI-specified layout. If TYPE describes
6605 such a structure, smash it into a member function type.
6606
6607 GCC shouldn't do this; it should just output pointer to member DIEs.
6608 This is GCC PR debug/28767. */
6609
6610 static void
6611 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6612 {
6613 struct type *pfn_type, *domain_type, *new_type;
6614
6615 /* Check for a structure with no name and two children. */
6616 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6617 return;
6618
6619 /* Check for __pfn and __delta members. */
6620 if (TYPE_FIELD_NAME (type, 0) == NULL
6621 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6622 || TYPE_FIELD_NAME (type, 1) == NULL
6623 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6624 return;
6625
6626 /* Find the type of the method. */
6627 pfn_type = TYPE_FIELD_TYPE (type, 0);
6628 if (pfn_type == NULL
6629 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6630 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6631 return;
6632
6633 /* Look for the "this" argument. */
6634 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6635 if (TYPE_NFIELDS (pfn_type) == 0
6636 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6637 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6638 return;
6639
6640 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6641 new_type = alloc_type (objfile);
6642 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6643 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6644 TYPE_VARARGS (pfn_type));
6645 smash_to_methodptr_type (type, new_type);
6646 }
6647
6648 /* Called when we find the DIE that starts a structure or union scope
6649 (definition) to create a type for the structure or union. Fill in
6650 the type's name and general properties; the members will not be
6651 processed until process_structure_type.
6652
6653 NOTE: we need to call these functions regardless of whether or not the
6654 DIE has a DW_AT_name attribute, since it might be an anonymous
6655 structure or union. This gets the type entered into our set of
6656 user defined types.
6657
6658 However, if the structure is incomplete (an opaque struct/union)
6659 then suppress creating a symbol table entry for it since gdb only
6660 wants to find the one with the complete definition. Note that if
6661 it is complete, we just call new_symbol, which does it's own
6662 checking about whether the struct/union is anonymous or not (and
6663 suppresses creating a symbol table entry itself). */
6664
6665 static struct type *
6666 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6667 {
6668 struct objfile *objfile = cu->objfile;
6669 struct type *type;
6670 struct attribute *attr;
6671 char *name;
6672
6673 /* If the definition of this type lives in .debug_types, read that type.
6674 Don't follow DW_AT_specification though, that will take us back up
6675 the chain and we want to go down. */
6676 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6677 if (attr)
6678 {
6679 struct dwarf2_cu *type_cu = cu;
6680 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6681
6682 /* We could just recurse on read_structure_type, but we need to call
6683 get_die_type to ensure only one type for this DIE is created.
6684 This is important, for example, because for c++ classes we need
6685 TYPE_NAME set which is only done by new_symbol. Blech. */
6686 type = read_type_die (type_die, type_cu);
6687
6688 /* TYPE_CU may not be the same as CU.
6689 Ensure TYPE is recorded in CU's type_hash table. */
6690 return set_die_type (die, type, cu);
6691 }
6692
6693 type = alloc_type (objfile);
6694 INIT_CPLUS_SPECIFIC (type);
6695
6696 name = dwarf2_name (die, cu);
6697 if (name != NULL)
6698 {
6699 if (cu->language == language_cplus
6700 || cu->language == language_java)
6701 {
6702 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6703
6704 /* dwarf2_full_name might have already finished building the DIE's
6705 type. If so, there is no need to continue. */
6706 if (get_die_type (die, cu) != NULL)
6707 return get_die_type (die, cu);
6708
6709 TYPE_TAG_NAME (type) = full_name;
6710 if (die->tag == DW_TAG_structure_type
6711 || die->tag == DW_TAG_class_type)
6712 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6713 }
6714 else
6715 {
6716 /* The name is already allocated along with this objfile, so
6717 we don't need to duplicate it for the type. */
6718 TYPE_TAG_NAME (type) = (char *) name;
6719 if (die->tag == DW_TAG_class_type)
6720 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6721 }
6722 }
6723
6724 if (die->tag == DW_TAG_structure_type)
6725 {
6726 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6727 }
6728 else if (die->tag == DW_TAG_union_type)
6729 {
6730 TYPE_CODE (type) = TYPE_CODE_UNION;
6731 }
6732 else
6733 {
6734 TYPE_CODE (type) = TYPE_CODE_CLASS;
6735 }
6736
6737 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6738 TYPE_DECLARED_CLASS (type) = 1;
6739
6740 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6741 if (attr)
6742 {
6743 TYPE_LENGTH (type) = DW_UNSND (attr);
6744 }
6745 else
6746 {
6747 TYPE_LENGTH (type) = 0;
6748 }
6749
6750 TYPE_STUB_SUPPORTED (type) = 1;
6751 if (die_is_declaration (die, cu))
6752 TYPE_STUB (type) = 1;
6753 else if (attr == NULL && die->child == NULL
6754 && producer_is_realview (cu->producer))
6755 /* RealView does not output the required DW_AT_declaration
6756 on incomplete types. */
6757 TYPE_STUB (type) = 1;
6758
6759 /* We need to add the type field to the die immediately so we don't
6760 infinitely recurse when dealing with pointers to the structure
6761 type within the structure itself. */
6762 set_die_type (die, type, cu);
6763
6764 /* set_die_type should be already done. */
6765 set_descriptive_type (type, die, cu);
6766
6767 return type;
6768 }
6769
6770 /* Finish creating a structure or union type, including filling in
6771 its members and creating a symbol for it. */
6772
6773 static void
6774 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6775 {
6776 struct objfile *objfile = cu->objfile;
6777 struct die_info *child_die = die->child;
6778 struct type *type;
6779
6780 type = get_die_type (die, cu);
6781 if (type == NULL)
6782 type = read_structure_type (die, cu);
6783
6784 if (die->child != NULL && ! die_is_declaration (die, cu))
6785 {
6786 struct field_info fi;
6787 struct die_info *child_die;
6788 VEC (symbolp) *template_args = NULL;
6789 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6790
6791 memset (&fi, 0, sizeof (struct field_info));
6792
6793 child_die = die->child;
6794
6795 while (child_die && child_die->tag)
6796 {
6797 if (child_die->tag == DW_TAG_member
6798 || child_die->tag == DW_TAG_variable)
6799 {
6800 /* NOTE: carlton/2002-11-05: A C++ static data member
6801 should be a DW_TAG_member that is a declaration, but
6802 all versions of G++ as of this writing (so through at
6803 least 3.2.1) incorrectly generate DW_TAG_variable
6804 tags for them instead. */
6805 dwarf2_add_field (&fi, child_die, cu);
6806 }
6807 else if (child_die->tag == DW_TAG_subprogram)
6808 {
6809 /* C++ member function. */
6810 dwarf2_add_member_fn (&fi, child_die, type, cu);
6811 }
6812 else if (child_die->tag == DW_TAG_inheritance)
6813 {
6814 /* C++ base class field. */
6815 dwarf2_add_field (&fi, child_die, cu);
6816 }
6817 else if (child_die->tag == DW_TAG_typedef)
6818 dwarf2_add_typedef (&fi, child_die, cu);
6819 else if (child_die->tag == DW_TAG_template_type_param
6820 || child_die->tag == DW_TAG_template_value_param)
6821 {
6822 struct symbol *arg = new_symbol (child_die, NULL, cu);
6823
6824 if (arg != NULL)
6825 VEC_safe_push (symbolp, template_args, arg);
6826 }
6827
6828 child_die = sibling_die (child_die);
6829 }
6830
6831 /* Attach template arguments to type. */
6832 if (! VEC_empty (symbolp, template_args))
6833 {
6834 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6835 TYPE_N_TEMPLATE_ARGUMENTS (type)
6836 = VEC_length (symbolp, template_args);
6837 TYPE_TEMPLATE_ARGUMENTS (type)
6838 = obstack_alloc (&objfile->objfile_obstack,
6839 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6840 * sizeof (struct symbol *)));
6841 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6842 VEC_address (symbolp, template_args),
6843 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6844 * sizeof (struct symbol *)));
6845 VEC_free (symbolp, template_args);
6846 }
6847
6848 /* Attach fields and member functions to the type. */
6849 if (fi.nfields)
6850 dwarf2_attach_fields_to_type (&fi, type, cu);
6851 if (fi.nfnfields)
6852 {
6853 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6854
6855 /* Get the type which refers to the base class (possibly this
6856 class itself) which contains the vtable pointer for the current
6857 class from the DW_AT_containing_type attribute. This use of
6858 DW_AT_containing_type is a GNU extension. */
6859
6860 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6861 {
6862 struct type *t = die_containing_type (die, cu);
6863
6864 TYPE_VPTR_BASETYPE (type) = t;
6865 if (type == t)
6866 {
6867 int i;
6868
6869 /* Our own class provides vtbl ptr. */
6870 for (i = TYPE_NFIELDS (t) - 1;
6871 i >= TYPE_N_BASECLASSES (t);
6872 --i)
6873 {
6874 char *fieldname = TYPE_FIELD_NAME (t, i);
6875
6876 if (is_vtable_name (fieldname, cu))
6877 {
6878 TYPE_VPTR_FIELDNO (type) = i;
6879 break;
6880 }
6881 }
6882
6883 /* Complain if virtual function table field not found. */
6884 if (i < TYPE_N_BASECLASSES (t))
6885 complaint (&symfile_complaints,
6886 _("virtual function table pointer not found when defining class '%s'"),
6887 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6888 "");
6889 }
6890 else
6891 {
6892 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6893 }
6894 }
6895 else if (cu->producer
6896 && strncmp (cu->producer,
6897 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6898 {
6899 /* The IBM XLC compiler does not provide direct indication
6900 of the containing type, but the vtable pointer is
6901 always named __vfp. */
6902
6903 int i;
6904
6905 for (i = TYPE_NFIELDS (type) - 1;
6906 i >= TYPE_N_BASECLASSES (type);
6907 --i)
6908 {
6909 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6910 {
6911 TYPE_VPTR_FIELDNO (type) = i;
6912 TYPE_VPTR_BASETYPE (type) = type;
6913 break;
6914 }
6915 }
6916 }
6917 }
6918
6919 /* Copy fi.typedef_field_list linked list elements content into the
6920 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6921 if (fi.typedef_field_list)
6922 {
6923 int i = fi.typedef_field_list_count;
6924
6925 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6926 TYPE_TYPEDEF_FIELD_ARRAY (type)
6927 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6928 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6929
6930 /* Reverse the list order to keep the debug info elements order. */
6931 while (--i >= 0)
6932 {
6933 struct typedef_field *dest, *src;
6934
6935 dest = &TYPE_TYPEDEF_FIELD (type, i);
6936 src = &fi.typedef_field_list->field;
6937 fi.typedef_field_list = fi.typedef_field_list->next;
6938 *dest = *src;
6939 }
6940 }
6941
6942 do_cleanups (back_to);
6943 }
6944
6945 quirk_gcc_member_function_pointer (type, cu->objfile);
6946
6947 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6948 snapshots) has been known to create a die giving a declaration
6949 for a class that has, as a child, a die giving a definition for a
6950 nested class. So we have to process our children even if the
6951 current die is a declaration. Normally, of course, a declaration
6952 won't have any children at all. */
6953
6954 while (child_die != NULL && child_die->tag)
6955 {
6956 if (child_die->tag == DW_TAG_member
6957 || child_die->tag == DW_TAG_variable
6958 || child_die->tag == DW_TAG_inheritance
6959 || child_die->tag == DW_TAG_template_value_param
6960 || child_die->tag == DW_TAG_template_type_param)
6961 {
6962 /* Do nothing. */
6963 }
6964 else
6965 process_die (child_die, cu);
6966
6967 child_die = sibling_die (child_die);
6968 }
6969
6970 /* Do not consider external references. According to the DWARF standard,
6971 these DIEs are identified by the fact that they have no byte_size
6972 attribute, and a declaration attribute. */
6973 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6974 || !die_is_declaration (die, cu))
6975 new_symbol (die, type, cu);
6976 }
6977
6978 /* Given a DW_AT_enumeration_type die, set its type. We do not
6979 complete the type's fields yet, or create any symbols. */
6980
6981 static struct type *
6982 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6983 {
6984 struct objfile *objfile = cu->objfile;
6985 struct type *type;
6986 struct attribute *attr;
6987 const char *name;
6988
6989 /* If the definition of this type lives in .debug_types, read that type.
6990 Don't follow DW_AT_specification though, that will take us back up
6991 the chain and we want to go down. */
6992 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6993 if (attr)
6994 {
6995 struct dwarf2_cu *type_cu = cu;
6996 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6997
6998 type = read_type_die (type_die, type_cu);
6999
7000 /* TYPE_CU may not be the same as CU.
7001 Ensure TYPE is recorded in CU's type_hash table. */
7002 return set_die_type (die, type, cu);
7003 }
7004
7005 type = alloc_type (objfile);
7006
7007 TYPE_CODE (type) = TYPE_CODE_ENUM;
7008 name = dwarf2_full_name (NULL, die, cu);
7009 if (name != NULL)
7010 TYPE_TAG_NAME (type) = (char *) name;
7011
7012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7013 if (attr)
7014 {
7015 TYPE_LENGTH (type) = DW_UNSND (attr);
7016 }
7017 else
7018 {
7019 TYPE_LENGTH (type) = 0;
7020 }
7021
7022 /* The enumeration DIE can be incomplete. In Ada, any type can be
7023 declared as private in the package spec, and then defined only
7024 inside the package body. Such types are known as Taft Amendment
7025 Types. When another package uses such a type, an incomplete DIE
7026 may be generated by the compiler. */
7027 if (die_is_declaration (die, cu))
7028 TYPE_STUB (type) = 1;
7029
7030 return set_die_type (die, type, cu);
7031 }
7032
7033 /* Given a pointer to a die which begins an enumeration, process all
7034 the dies that define the members of the enumeration, and create the
7035 symbol for the enumeration type.
7036
7037 NOTE: We reverse the order of the element list. */
7038
7039 static void
7040 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7041 {
7042 struct type *this_type;
7043
7044 this_type = get_die_type (die, cu);
7045 if (this_type == NULL)
7046 this_type = read_enumeration_type (die, cu);
7047
7048 if (die->child != NULL)
7049 {
7050 struct die_info *child_die;
7051 struct symbol *sym;
7052 struct field *fields = NULL;
7053 int num_fields = 0;
7054 int unsigned_enum = 1;
7055 char *name;
7056
7057 child_die = die->child;
7058 while (child_die && child_die->tag)
7059 {
7060 if (child_die->tag != DW_TAG_enumerator)
7061 {
7062 process_die (child_die, cu);
7063 }
7064 else
7065 {
7066 name = dwarf2_name (child_die, cu);
7067 if (name)
7068 {
7069 sym = new_symbol (child_die, this_type, cu);
7070 if (SYMBOL_VALUE (sym) < 0)
7071 unsigned_enum = 0;
7072
7073 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7074 {
7075 fields = (struct field *)
7076 xrealloc (fields,
7077 (num_fields + DW_FIELD_ALLOC_CHUNK)
7078 * sizeof (struct field));
7079 }
7080
7081 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7082 FIELD_TYPE (fields[num_fields]) = NULL;
7083 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7084 FIELD_BITSIZE (fields[num_fields]) = 0;
7085
7086 num_fields++;
7087 }
7088 }
7089
7090 child_die = sibling_die (child_die);
7091 }
7092
7093 if (num_fields)
7094 {
7095 TYPE_NFIELDS (this_type) = num_fields;
7096 TYPE_FIELDS (this_type) = (struct field *)
7097 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7098 memcpy (TYPE_FIELDS (this_type), fields,
7099 sizeof (struct field) * num_fields);
7100 xfree (fields);
7101 }
7102 if (unsigned_enum)
7103 TYPE_UNSIGNED (this_type) = 1;
7104 }
7105
7106 new_symbol (die, this_type, cu);
7107 }
7108
7109 /* Extract all information from a DW_TAG_array_type DIE and put it in
7110 the DIE's type field. For now, this only handles one dimensional
7111 arrays. */
7112
7113 static struct type *
7114 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7115 {
7116 struct objfile *objfile = cu->objfile;
7117 struct die_info *child_die;
7118 struct type *type;
7119 struct type *element_type, *range_type, *index_type;
7120 struct type **range_types = NULL;
7121 struct attribute *attr;
7122 int ndim = 0;
7123 struct cleanup *back_to;
7124 char *name;
7125
7126 element_type = die_type (die, cu);
7127
7128 /* The die_type call above may have already set the type for this DIE. */
7129 type = get_die_type (die, cu);
7130 if (type)
7131 return type;
7132
7133 /* Irix 6.2 native cc creates array types without children for
7134 arrays with unspecified length. */
7135 if (die->child == NULL)
7136 {
7137 index_type = objfile_type (objfile)->builtin_int;
7138 range_type = create_range_type (NULL, index_type, 0, -1);
7139 type = create_array_type (NULL, element_type, range_type);
7140 return set_die_type (die, type, cu);
7141 }
7142
7143 back_to = make_cleanup (null_cleanup, NULL);
7144 child_die = die->child;
7145 while (child_die && child_die->tag)
7146 {
7147 if (child_die->tag == DW_TAG_subrange_type)
7148 {
7149 struct type *child_type = read_type_die (child_die, cu);
7150
7151 if (child_type != NULL)
7152 {
7153 /* The range type was succesfully read. Save it for
7154 the array type creation. */
7155 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7156 {
7157 range_types = (struct type **)
7158 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7159 * sizeof (struct type *));
7160 if (ndim == 0)
7161 make_cleanup (free_current_contents, &range_types);
7162 }
7163 range_types[ndim++] = child_type;
7164 }
7165 }
7166 child_die = sibling_die (child_die);
7167 }
7168
7169 /* Dwarf2 dimensions are output from left to right, create the
7170 necessary array types in backwards order. */
7171
7172 type = element_type;
7173
7174 if (read_array_order (die, cu) == DW_ORD_col_major)
7175 {
7176 int i = 0;
7177
7178 while (i < ndim)
7179 type = create_array_type (NULL, type, range_types[i++]);
7180 }
7181 else
7182 {
7183 while (ndim-- > 0)
7184 type = create_array_type (NULL, type, range_types[ndim]);
7185 }
7186
7187 /* Understand Dwarf2 support for vector types (like they occur on
7188 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7189 array type. This is not part of the Dwarf2/3 standard yet, but a
7190 custom vendor extension. The main difference between a regular
7191 array and the vector variant is that vectors are passed by value
7192 to functions. */
7193 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7194 if (attr)
7195 make_vector_type (type);
7196
7197 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7198 implementation may choose to implement triple vectors using this
7199 attribute. */
7200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7201 if (attr)
7202 {
7203 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7204 TYPE_LENGTH (type) = DW_UNSND (attr);
7205 else
7206 complaint (&symfile_complaints, _("\
7207 DW_AT_byte_size for array type smaller than the total size of elements"));
7208 }
7209
7210 name = dwarf2_name (die, cu);
7211 if (name)
7212 TYPE_NAME (type) = name;
7213
7214 /* Install the type in the die. */
7215 set_die_type (die, type, cu);
7216
7217 /* set_die_type should be already done. */
7218 set_descriptive_type (type, die, cu);
7219
7220 do_cleanups (back_to);
7221
7222 return type;
7223 }
7224
7225 static enum dwarf_array_dim_ordering
7226 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7227 {
7228 struct attribute *attr;
7229
7230 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7231
7232 if (attr) return DW_SND (attr);
7233
7234 /*
7235 GNU F77 is a special case, as at 08/2004 array type info is the
7236 opposite order to the dwarf2 specification, but data is still
7237 laid out as per normal fortran.
7238
7239 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7240 version checking.
7241 */
7242
7243 if (cu->language == language_fortran
7244 && cu->producer && strstr (cu->producer, "GNU F77"))
7245 {
7246 return DW_ORD_row_major;
7247 }
7248
7249 switch (cu->language_defn->la_array_ordering)
7250 {
7251 case array_column_major:
7252 return DW_ORD_col_major;
7253 case array_row_major:
7254 default:
7255 return DW_ORD_row_major;
7256 };
7257 }
7258
7259 /* Extract all information from a DW_TAG_set_type DIE and put it in
7260 the DIE's type field. */
7261
7262 static struct type *
7263 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7264 {
7265 struct type *domain_type, *set_type;
7266 struct attribute *attr;
7267
7268 domain_type = die_type (die, cu);
7269
7270 /* The die_type call above may have already set the type for this DIE. */
7271 set_type = get_die_type (die, cu);
7272 if (set_type)
7273 return set_type;
7274
7275 set_type = create_set_type (NULL, domain_type);
7276
7277 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7278 if (attr)
7279 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7280
7281 return set_die_type (die, set_type, cu);
7282 }
7283
7284 /* First cut: install each common block member as a global variable. */
7285
7286 static void
7287 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7288 {
7289 struct die_info *child_die;
7290 struct attribute *attr;
7291 struct symbol *sym;
7292 CORE_ADDR base = (CORE_ADDR) 0;
7293
7294 attr = dwarf2_attr (die, DW_AT_location, cu);
7295 if (attr)
7296 {
7297 /* Support the .debug_loc offsets */
7298 if (attr_form_is_block (attr))
7299 {
7300 base = decode_locdesc (DW_BLOCK (attr), cu);
7301 }
7302 else if (attr_form_is_section_offset (attr))
7303 {
7304 dwarf2_complex_location_expr_complaint ();
7305 }
7306 else
7307 {
7308 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7309 "common block member");
7310 }
7311 }
7312 if (die->child != NULL)
7313 {
7314 child_die = die->child;
7315 while (child_die && child_die->tag)
7316 {
7317 sym = new_symbol (child_die, NULL, cu);
7318 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7319 if (sym != NULL && attr != NULL)
7320 {
7321 CORE_ADDR byte_offset = 0;
7322
7323 if (attr_form_is_section_offset (attr))
7324 dwarf2_complex_location_expr_complaint ();
7325 else if (attr_form_is_constant (attr))
7326 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7327 else if (attr_form_is_block (attr))
7328 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7329 else
7330 dwarf2_complex_location_expr_complaint ();
7331
7332 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7333 add_symbol_to_list (sym, &global_symbols);
7334 }
7335 child_die = sibling_die (child_die);
7336 }
7337 }
7338 }
7339
7340 /* Create a type for a C++ namespace. */
7341
7342 static struct type *
7343 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7344 {
7345 struct objfile *objfile = cu->objfile;
7346 const char *previous_prefix, *name;
7347 int is_anonymous;
7348 struct type *type;
7349
7350 /* For extensions, reuse the type of the original namespace. */
7351 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7352 {
7353 struct die_info *ext_die;
7354 struct dwarf2_cu *ext_cu = cu;
7355
7356 ext_die = dwarf2_extension (die, &ext_cu);
7357 type = read_type_die (ext_die, ext_cu);
7358
7359 /* EXT_CU may not be the same as CU.
7360 Ensure TYPE is recorded in CU's type_hash table. */
7361 return set_die_type (die, type, cu);
7362 }
7363
7364 name = namespace_name (die, &is_anonymous, cu);
7365
7366 /* Now build the name of the current namespace. */
7367
7368 previous_prefix = determine_prefix (die, cu);
7369 if (previous_prefix[0] != '\0')
7370 name = typename_concat (&objfile->objfile_obstack,
7371 previous_prefix, name, 0, cu);
7372
7373 /* Create the type. */
7374 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7375 objfile);
7376 TYPE_NAME (type) = (char *) name;
7377 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7378
7379 return set_die_type (die, type, cu);
7380 }
7381
7382 /* Read a C++ namespace. */
7383
7384 static void
7385 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7386 {
7387 struct objfile *objfile = cu->objfile;
7388 const char *name;
7389 int is_anonymous;
7390
7391 /* Add a symbol associated to this if we haven't seen the namespace
7392 before. Also, add a using directive if it's an anonymous
7393 namespace. */
7394
7395 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7396 {
7397 struct type *type;
7398
7399 type = read_type_die (die, cu);
7400 new_symbol (die, type, cu);
7401
7402 name = namespace_name (die, &is_anonymous, cu);
7403 if (is_anonymous)
7404 {
7405 const char *previous_prefix = determine_prefix (die, cu);
7406
7407 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7408 NULL, &objfile->objfile_obstack);
7409 }
7410 }
7411
7412 if (die->child != NULL)
7413 {
7414 struct die_info *child_die = die->child;
7415
7416 while (child_die && child_die->tag)
7417 {
7418 process_die (child_die, cu);
7419 child_die = sibling_die (child_die);
7420 }
7421 }
7422 }
7423
7424 /* Read a Fortran module as type. This DIE can be only a declaration used for
7425 imported module. Still we need that type as local Fortran "use ... only"
7426 declaration imports depend on the created type in determine_prefix. */
7427
7428 static struct type *
7429 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7430 {
7431 struct objfile *objfile = cu->objfile;
7432 char *module_name;
7433 struct type *type;
7434
7435 module_name = dwarf2_name (die, cu);
7436 if (!module_name)
7437 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7438 die->offset);
7439 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7440
7441 /* determine_prefix uses TYPE_TAG_NAME. */
7442 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7443
7444 return set_die_type (die, type, cu);
7445 }
7446
7447 /* Read a Fortran module. */
7448
7449 static void
7450 read_module (struct die_info *die, struct dwarf2_cu *cu)
7451 {
7452 struct die_info *child_die = die->child;
7453
7454 while (child_die && child_die->tag)
7455 {
7456 process_die (child_die, cu);
7457 child_die = sibling_die (child_die);
7458 }
7459 }
7460
7461 /* Return the name of the namespace represented by DIE. Set
7462 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7463 namespace. */
7464
7465 static const char *
7466 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7467 {
7468 struct die_info *current_die;
7469 const char *name = NULL;
7470
7471 /* Loop through the extensions until we find a name. */
7472
7473 for (current_die = die;
7474 current_die != NULL;
7475 current_die = dwarf2_extension (die, &cu))
7476 {
7477 name = dwarf2_name (current_die, cu);
7478 if (name != NULL)
7479 break;
7480 }
7481
7482 /* Is it an anonymous namespace? */
7483
7484 *is_anonymous = (name == NULL);
7485 if (*is_anonymous)
7486 name = "(anonymous namespace)";
7487
7488 return name;
7489 }
7490
7491 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7492 the user defined type vector. */
7493
7494 static struct type *
7495 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7496 {
7497 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7498 struct comp_unit_head *cu_header = &cu->header;
7499 struct type *type;
7500 struct attribute *attr_byte_size;
7501 struct attribute *attr_address_class;
7502 int byte_size, addr_class;
7503 struct type *target_type;
7504
7505 target_type = die_type (die, cu);
7506
7507 /* The die_type call above may have already set the type for this DIE. */
7508 type = get_die_type (die, cu);
7509 if (type)
7510 return type;
7511
7512 type = lookup_pointer_type (target_type);
7513
7514 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7515 if (attr_byte_size)
7516 byte_size = DW_UNSND (attr_byte_size);
7517 else
7518 byte_size = cu_header->addr_size;
7519
7520 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7521 if (attr_address_class)
7522 addr_class = DW_UNSND (attr_address_class);
7523 else
7524 addr_class = DW_ADDR_none;
7525
7526 /* If the pointer size or address class is different than the
7527 default, create a type variant marked as such and set the
7528 length accordingly. */
7529 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7530 {
7531 if (gdbarch_address_class_type_flags_p (gdbarch))
7532 {
7533 int type_flags;
7534
7535 type_flags = gdbarch_address_class_type_flags
7536 (gdbarch, byte_size, addr_class);
7537 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7538 == 0);
7539 type = make_type_with_address_space (type, type_flags);
7540 }
7541 else if (TYPE_LENGTH (type) != byte_size)
7542 {
7543 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
7544 }
7545 else
7546 {
7547 /* Should we also complain about unhandled address classes? */
7548 }
7549 }
7550
7551 TYPE_LENGTH (type) = byte_size;
7552 return set_die_type (die, type, cu);
7553 }
7554
7555 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7556 the user defined type vector. */
7557
7558 static struct type *
7559 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7560 {
7561 struct type *type;
7562 struct type *to_type;
7563 struct type *domain;
7564
7565 to_type = die_type (die, cu);
7566 domain = die_containing_type (die, cu);
7567
7568 /* The calls above may have already set the type for this DIE. */
7569 type = get_die_type (die, cu);
7570 if (type)
7571 return type;
7572
7573 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7574 type = lookup_methodptr_type (to_type);
7575 else
7576 type = lookup_memberptr_type (to_type, domain);
7577
7578 return set_die_type (die, type, cu);
7579 }
7580
7581 /* Extract all information from a DW_TAG_reference_type DIE and add to
7582 the user defined type vector. */
7583
7584 static struct type *
7585 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7586 {
7587 struct comp_unit_head *cu_header = &cu->header;
7588 struct type *type, *target_type;
7589 struct attribute *attr;
7590
7591 target_type = die_type (die, cu);
7592
7593 /* The die_type call above may have already set the type for this DIE. */
7594 type = get_die_type (die, cu);
7595 if (type)
7596 return type;
7597
7598 type = lookup_reference_type (target_type);
7599 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7600 if (attr)
7601 {
7602 TYPE_LENGTH (type) = DW_UNSND (attr);
7603 }
7604 else
7605 {
7606 TYPE_LENGTH (type) = cu_header->addr_size;
7607 }
7608 return set_die_type (die, type, cu);
7609 }
7610
7611 static struct type *
7612 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7613 {
7614 struct type *base_type, *cv_type;
7615
7616 base_type = die_type (die, cu);
7617
7618 /* The die_type call above may have already set the type for this DIE. */
7619 cv_type = get_die_type (die, cu);
7620 if (cv_type)
7621 return cv_type;
7622
7623 /* In case the const qualifier is applied to an array type, the element type
7624 is so qualified, not the array type (section 6.7.3 of C99). */
7625 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7626 {
7627 struct type *el_type, *inner_array;
7628
7629 base_type = copy_type (base_type);
7630 inner_array = base_type;
7631
7632 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7633 {
7634 TYPE_TARGET_TYPE (inner_array) =
7635 copy_type (TYPE_TARGET_TYPE (inner_array));
7636 inner_array = TYPE_TARGET_TYPE (inner_array);
7637 }
7638
7639 el_type = TYPE_TARGET_TYPE (inner_array);
7640 TYPE_TARGET_TYPE (inner_array) =
7641 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7642
7643 return set_die_type (die, base_type, cu);
7644 }
7645
7646 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7647 return set_die_type (die, cv_type, cu);
7648 }
7649
7650 static struct type *
7651 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7652 {
7653 struct type *base_type, *cv_type;
7654
7655 base_type = die_type (die, cu);
7656
7657 /* The die_type call above may have already set the type for this DIE. */
7658 cv_type = get_die_type (die, cu);
7659 if (cv_type)
7660 return cv_type;
7661
7662 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7663 return set_die_type (die, cv_type, cu);
7664 }
7665
7666 /* Extract all information from a DW_TAG_string_type DIE and add to
7667 the user defined type vector. It isn't really a user defined type,
7668 but it behaves like one, with other DIE's using an AT_user_def_type
7669 attribute to reference it. */
7670
7671 static struct type *
7672 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7673 {
7674 struct objfile *objfile = cu->objfile;
7675 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7676 struct type *type, *range_type, *index_type, *char_type;
7677 struct attribute *attr;
7678 unsigned int length;
7679
7680 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7681 if (attr)
7682 {
7683 length = DW_UNSND (attr);
7684 }
7685 else
7686 {
7687 /* check for the DW_AT_byte_size attribute */
7688 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7689 if (attr)
7690 {
7691 length = DW_UNSND (attr);
7692 }
7693 else
7694 {
7695 length = 1;
7696 }
7697 }
7698
7699 index_type = objfile_type (objfile)->builtin_int;
7700 range_type = create_range_type (NULL, index_type, 1, length);
7701 char_type = language_string_char_type (cu->language_defn, gdbarch);
7702 type = create_string_type (NULL, char_type, range_type);
7703
7704 return set_die_type (die, type, cu);
7705 }
7706
7707 /* Handle DIES due to C code like:
7708
7709 struct foo
7710 {
7711 int (*funcp)(int a, long l);
7712 int b;
7713 };
7714
7715 ('funcp' generates a DW_TAG_subroutine_type DIE)
7716 */
7717
7718 static struct type *
7719 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7720 {
7721 struct type *type; /* Type that this function returns */
7722 struct type *ftype; /* Function that returns above type */
7723 struct attribute *attr;
7724
7725 type = die_type (die, cu);
7726
7727 /* The die_type call above may have already set the type for this DIE. */
7728 ftype = get_die_type (die, cu);
7729 if (ftype)
7730 return ftype;
7731
7732 ftype = lookup_function_type (type);
7733
7734 /* All functions in C++, Pascal and Java have prototypes. */
7735 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7736 if ((attr && (DW_UNSND (attr) != 0))
7737 || cu->language == language_cplus
7738 || cu->language == language_java
7739 || cu->language == language_pascal)
7740 TYPE_PROTOTYPED (ftype) = 1;
7741 else if (producer_is_realview (cu->producer))
7742 /* RealView does not emit DW_AT_prototyped. We can not
7743 distinguish prototyped and unprototyped functions; default to
7744 prototyped, since that is more common in modern code (and
7745 RealView warns about unprototyped functions). */
7746 TYPE_PROTOTYPED (ftype) = 1;
7747
7748 /* Store the calling convention in the type if it's available in
7749 the subroutine die. Otherwise set the calling convention to
7750 the default value DW_CC_normal. */
7751 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7752 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7753
7754 /* We need to add the subroutine type to the die immediately so
7755 we don't infinitely recurse when dealing with parameters
7756 declared as the same subroutine type. */
7757 set_die_type (die, ftype, cu);
7758
7759 if (die->child != NULL)
7760 {
7761 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7762 struct die_info *child_die;
7763 int nparams, iparams;
7764
7765 /* Count the number of parameters.
7766 FIXME: GDB currently ignores vararg functions, but knows about
7767 vararg member functions. */
7768 nparams = 0;
7769 child_die = die->child;
7770 while (child_die && child_die->tag)
7771 {
7772 if (child_die->tag == DW_TAG_formal_parameter)
7773 nparams++;
7774 else if (child_die->tag == DW_TAG_unspecified_parameters)
7775 TYPE_VARARGS (ftype) = 1;
7776 child_die = sibling_die (child_die);
7777 }
7778
7779 /* Allocate storage for parameters and fill them in. */
7780 TYPE_NFIELDS (ftype) = nparams;
7781 TYPE_FIELDS (ftype) = (struct field *)
7782 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7783
7784 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7785 even if we error out during the parameters reading below. */
7786 for (iparams = 0; iparams < nparams; iparams++)
7787 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7788
7789 iparams = 0;
7790 child_die = die->child;
7791 while (child_die && child_die->tag)
7792 {
7793 if (child_die->tag == DW_TAG_formal_parameter)
7794 {
7795 struct type *arg_type;
7796
7797 /* DWARF version 2 has no clean way to discern C++
7798 static and non-static member functions. G++ helps
7799 GDB by marking the first parameter for non-static
7800 member functions (which is the this pointer) as
7801 artificial. We pass this information to
7802 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7803
7804 DWARF version 3 added DW_AT_object_pointer, which GCC
7805 4.5 does not yet generate. */
7806 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7807 if (attr)
7808 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7809 else
7810 {
7811 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7812
7813 /* GCC/43521: In java, the formal parameter
7814 "this" is sometimes not marked with DW_AT_artificial. */
7815 if (cu->language == language_java)
7816 {
7817 const char *name = dwarf2_name (child_die, cu);
7818
7819 if (name && !strcmp (name, "this"))
7820 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7821 }
7822 }
7823 arg_type = die_type (child_die, cu);
7824
7825 /* RealView does not mark THIS as const, which the testsuite
7826 expects. GCC marks THIS as const in method definitions,
7827 but not in the class specifications (GCC PR 43053). */
7828 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7829 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7830 {
7831 int is_this = 0;
7832 struct dwarf2_cu *arg_cu = cu;
7833 const char *name = dwarf2_name (child_die, cu);
7834
7835 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7836 if (attr)
7837 {
7838 /* If the compiler emits this, use it. */
7839 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7840 is_this = 1;
7841 }
7842 else if (name && strcmp (name, "this") == 0)
7843 /* Function definitions will have the argument names. */
7844 is_this = 1;
7845 else if (name == NULL && iparams == 0)
7846 /* Declarations may not have the names, so like
7847 elsewhere in GDB, assume an artificial first
7848 argument is "this". */
7849 is_this = 1;
7850
7851 if (is_this)
7852 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7853 arg_type, 0);
7854 }
7855
7856 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
7857 iparams++;
7858 }
7859 child_die = sibling_die (child_die);
7860 }
7861 }
7862
7863 return ftype;
7864 }
7865
7866 static struct type *
7867 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7868 {
7869 struct objfile *objfile = cu->objfile;
7870 const char *name = NULL;
7871 struct type *this_type;
7872
7873 name = dwarf2_full_name (NULL, die, cu);
7874 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7875 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7876 TYPE_NAME (this_type) = (char *) name;
7877 set_die_type (die, this_type, cu);
7878 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7879 return this_type;
7880 }
7881
7882 /* Find a representation of a given base type and install
7883 it in the TYPE field of the die. */
7884
7885 static struct type *
7886 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7887 {
7888 struct objfile *objfile = cu->objfile;
7889 struct type *type;
7890 struct attribute *attr;
7891 int encoding = 0, size = 0;
7892 char *name;
7893 enum type_code code = TYPE_CODE_INT;
7894 int type_flags = 0;
7895 struct type *target_type = NULL;
7896
7897 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7898 if (attr)
7899 {
7900 encoding = DW_UNSND (attr);
7901 }
7902 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7903 if (attr)
7904 {
7905 size = DW_UNSND (attr);
7906 }
7907 name = dwarf2_name (die, cu);
7908 if (!name)
7909 {
7910 complaint (&symfile_complaints,
7911 _("DW_AT_name missing from DW_TAG_base_type"));
7912 }
7913
7914 switch (encoding)
7915 {
7916 case DW_ATE_address:
7917 /* Turn DW_ATE_address into a void * pointer. */
7918 code = TYPE_CODE_PTR;
7919 type_flags |= TYPE_FLAG_UNSIGNED;
7920 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7921 break;
7922 case DW_ATE_boolean:
7923 code = TYPE_CODE_BOOL;
7924 type_flags |= TYPE_FLAG_UNSIGNED;
7925 break;
7926 case DW_ATE_complex_float:
7927 code = TYPE_CODE_COMPLEX;
7928 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7929 break;
7930 case DW_ATE_decimal_float:
7931 code = TYPE_CODE_DECFLOAT;
7932 break;
7933 case DW_ATE_float:
7934 code = TYPE_CODE_FLT;
7935 break;
7936 case DW_ATE_signed:
7937 break;
7938 case DW_ATE_unsigned:
7939 type_flags |= TYPE_FLAG_UNSIGNED;
7940 break;
7941 case DW_ATE_signed_char:
7942 if (cu->language == language_ada || cu->language == language_m2
7943 || cu->language == language_pascal)
7944 code = TYPE_CODE_CHAR;
7945 break;
7946 case DW_ATE_unsigned_char:
7947 if (cu->language == language_ada || cu->language == language_m2
7948 || cu->language == language_pascal)
7949 code = TYPE_CODE_CHAR;
7950 type_flags |= TYPE_FLAG_UNSIGNED;
7951 break;
7952 case DW_ATE_UTF:
7953 /* We just treat this as an integer and then recognize the
7954 type by name elsewhere. */
7955 break;
7956
7957 default:
7958 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7959 dwarf_type_encoding_name (encoding));
7960 break;
7961 }
7962
7963 type = init_type (code, size, type_flags, NULL, objfile);
7964 TYPE_NAME (type) = name;
7965 TYPE_TARGET_TYPE (type) = target_type;
7966
7967 if (name && strcmp (name, "char") == 0)
7968 TYPE_NOSIGN (type) = 1;
7969
7970 return set_die_type (die, type, cu);
7971 }
7972
7973 /* Read the given DW_AT_subrange DIE. */
7974
7975 static struct type *
7976 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7977 {
7978 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7979 struct type *base_type;
7980 struct type *range_type;
7981 struct attribute *attr;
7982 LONGEST low = 0;
7983 LONGEST high = -1;
7984 char *name;
7985 LONGEST negative_mask;
7986
7987 base_type = die_type (die, cu);
7988 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7989 check_typedef (base_type);
7990
7991 /* The die_type call above may have already set the type for this DIE. */
7992 range_type = get_die_type (die, cu);
7993 if (range_type)
7994 return range_type;
7995
7996 if (cu->language == language_fortran)
7997 {
7998 /* FORTRAN implies a lower bound of 1, if not given. */
7999 low = 1;
8000 }
8001
8002 /* FIXME: For variable sized arrays either of these could be
8003 a variable rather than a constant value. We'll allow it,
8004 but we don't know how to handle it. */
8005 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8006 if (attr)
8007 low = dwarf2_get_attr_constant_value (attr, 0);
8008
8009 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8010 if (attr)
8011 {
8012 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8013 {
8014 /* GCC encodes arrays with unspecified or dynamic length
8015 with a DW_FORM_block1 attribute or a reference attribute.
8016 FIXME: GDB does not yet know how to handle dynamic
8017 arrays properly, treat them as arrays with unspecified
8018 length for now.
8019
8020 FIXME: jimb/2003-09-22: GDB does not really know
8021 how to handle arrays of unspecified length
8022 either; we just represent them as zero-length
8023 arrays. Choose an appropriate upper bound given
8024 the lower bound we've computed above. */
8025 high = low - 1;
8026 }
8027 else
8028 high = dwarf2_get_attr_constant_value (attr, 1);
8029 }
8030 else
8031 {
8032 attr = dwarf2_attr (die, DW_AT_count, cu);
8033 if (attr)
8034 {
8035 int count = dwarf2_get_attr_constant_value (attr, 1);
8036 high = low + count - 1;
8037 }
8038 }
8039
8040 /* Dwarf-2 specifications explicitly allows to create subrange types
8041 without specifying a base type.
8042 In that case, the base type must be set to the type of
8043 the lower bound, upper bound or count, in that order, if any of these
8044 three attributes references an object that has a type.
8045 If no base type is found, the Dwarf-2 specifications say that
8046 a signed integer type of size equal to the size of an address should
8047 be used.
8048 For the following C code: `extern char gdb_int [];'
8049 GCC produces an empty range DIE.
8050 FIXME: muller/2010-05-28: Possible references to object for low bound,
8051 high bound or count are not yet handled by this code.
8052 */
8053 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8054 {
8055 struct objfile *objfile = cu->objfile;
8056 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8057 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8058 struct type *int_type = objfile_type (objfile)->builtin_int;
8059
8060 /* Test "int", "long int", and "long long int" objfile types,
8061 and select the first one having a size above or equal to the
8062 architecture address size. */
8063 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8064 base_type = int_type;
8065 else
8066 {
8067 int_type = objfile_type (objfile)->builtin_long;
8068 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8069 base_type = int_type;
8070 else
8071 {
8072 int_type = objfile_type (objfile)->builtin_long_long;
8073 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8074 base_type = int_type;
8075 }
8076 }
8077 }
8078
8079 negative_mask =
8080 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8081 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8082 low |= negative_mask;
8083 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8084 high |= negative_mask;
8085
8086 range_type = create_range_type (NULL, base_type, low, high);
8087
8088 /* Mark arrays with dynamic length at least as an array of unspecified
8089 length. GDB could check the boundary but before it gets implemented at
8090 least allow accessing the array elements. */
8091 if (attr && attr->form == DW_FORM_block1)
8092 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8093
8094 name = dwarf2_name (die, cu);
8095 if (name)
8096 TYPE_NAME (range_type) = name;
8097
8098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8099 if (attr)
8100 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8101
8102 set_die_type (die, range_type, cu);
8103
8104 /* set_die_type should be already done. */
8105 set_descriptive_type (range_type, die, cu);
8106
8107 return range_type;
8108 }
8109
8110 static struct type *
8111 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8112 {
8113 struct type *type;
8114
8115 /* For now, we only support the C meaning of an unspecified type: void. */
8116
8117 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8118 TYPE_NAME (type) = dwarf2_name (die, cu);
8119
8120 return set_die_type (die, type, cu);
8121 }
8122
8123 /* Trivial hash function for die_info: the hash value of a DIE
8124 is its offset in .debug_info for this objfile. */
8125
8126 static hashval_t
8127 die_hash (const void *item)
8128 {
8129 const struct die_info *die = item;
8130
8131 return die->offset;
8132 }
8133
8134 /* Trivial comparison function for die_info structures: two DIEs
8135 are equal if they have the same offset. */
8136
8137 static int
8138 die_eq (const void *item_lhs, const void *item_rhs)
8139 {
8140 const struct die_info *die_lhs = item_lhs;
8141 const struct die_info *die_rhs = item_rhs;
8142
8143 return die_lhs->offset == die_rhs->offset;
8144 }
8145
8146 /* Read a whole compilation unit into a linked list of dies. */
8147
8148 static struct die_info *
8149 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8150 {
8151 struct die_reader_specs reader_specs;
8152 int read_abbrevs = 0;
8153 struct cleanup *back_to = NULL;
8154 struct die_info *die;
8155
8156 if (cu->dwarf2_abbrevs == NULL)
8157 {
8158 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8159 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8160 read_abbrevs = 1;
8161 }
8162
8163 gdb_assert (cu->die_hash == NULL);
8164 cu->die_hash
8165 = htab_create_alloc_ex (cu->header.length / 12,
8166 die_hash,
8167 die_eq,
8168 NULL,
8169 &cu->comp_unit_obstack,
8170 hashtab_obstack_allocate,
8171 dummy_obstack_deallocate);
8172
8173 init_cu_die_reader (&reader_specs, cu);
8174
8175 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8176
8177 if (read_abbrevs)
8178 do_cleanups (back_to);
8179
8180 return die;
8181 }
8182
8183 /* Main entry point for reading a DIE and all children.
8184 Read the DIE and dump it if requested. */
8185
8186 static struct die_info *
8187 read_die_and_children (const struct die_reader_specs *reader,
8188 gdb_byte *info_ptr,
8189 gdb_byte **new_info_ptr,
8190 struct die_info *parent)
8191 {
8192 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8193 new_info_ptr, parent);
8194
8195 if (dwarf2_die_debug)
8196 {
8197 fprintf_unfiltered (gdb_stdlog,
8198 "\nRead die from %s of %s:\n",
8199 reader->buffer == dwarf2_per_objfile->info.buffer
8200 ? ".debug_info"
8201 : reader->buffer == dwarf2_per_objfile->types.buffer
8202 ? ".debug_types"
8203 : "unknown section",
8204 reader->abfd->filename);
8205 dump_die (result, dwarf2_die_debug);
8206 }
8207
8208 return result;
8209 }
8210
8211 /* Read a single die and all its descendents. Set the die's sibling
8212 field to NULL; set other fields in the die correctly, and set all
8213 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8214 location of the info_ptr after reading all of those dies. PARENT
8215 is the parent of the die in question. */
8216
8217 static struct die_info *
8218 read_die_and_children_1 (const struct die_reader_specs *reader,
8219 gdb_byte *info_ptr,
8220 gdb_byte **new_info_ptr,
8221 struct die_info *parent)
8222 {
8223 struct die_info *die;
8224 gdb_byte *cur_ptr;
8225 int has_children;
8226
8227 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8228 if (die == NULL)
8229 {
8230 *new_info_ptr = cur_ptr;
8231 return NULL;
8232 }
8233 store_in_ref_table (die, reader->cu);
8234
8235 if (has_children)
8236 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8237 else
8238 {
8239 die->child = NULL;
8240 *new_info_ptr = cur_ptr;
8241 }
8242
8243 die->sibling = NULL;
8244 die->parent = parent;
8245 return die;
8246 }
8247
8248 /* Read a die, all of its descendents, and all of its siblings; set
8249 all of the fields of all of the dies correctly. Arguments are as
8250 in read_die_and_children. */
8251
8252 static struct die_info *
8253 read_die_and_siblings (const struct die_reader_specs *reader,
8254 gdb_byte *info_ptr,
8255 gdb_byte **new_info_ptr,
8256 struct die_info *parent)
8257 {
8258 struct die_info *first_die, *last_sibling;
8259 gdb_byte *cur_ptr;
8260
8261 cur_ptr = info_ptr;
8262 first_die = last_sibling = NULL;
8263
8264 while (1)
8265 {
8266 struct die_info *die
8267 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8268
8269 if (die == NULL)
8270 {
8271 *new_info_ptr = cur_ptr;
8272 return first_die;
8273 }
8274
8275 if (!first_die)
8276 first_die = die;
8277 else
8278 last_sibling->sibling = die;
8279
8280 last_sibling = die;
8281 }
8282 }
8283
8284 /* Read the die from the .debug_info section buffer. Set DIEP to
8285 point to a newly allocated die with its information, except for its
8286 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8287 whether the die has children or not. */
8288
8289 static gdb_byte *
8290 read_full_die (const struct die_reader_specs *reader,
8291 struct die_info **diep, gdb_byte *info_ptr,
8292 int *has_children)
8293 {
8294 unsigned int abbrev_number, bytes_read, i, offset;
8295 struct abbrev_info *abbrev;
8296 struct die_info *die;
8297 struct dwarf2_cu *cu = reader->cu;
8298 bfd *abfd = reader->abfd;
8299
8300 offset = info_ptr - reader->buffer;
8301 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8302 info_ptr += bytes_read;
8303 if (!abbrev_number)
8304 {
8305 *diep = NULL;
8306 *has_children = 0;
8307 return info_ptr;
8308 }
8309
8310 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8311 if (!abbrev)
8312 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8313 abbrev_number,
8314 bfd_get_filename (abfd));
8315
8316 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8317 die->offset = offset;
8318 die->tag = abbrev->tag;
8319 die->abbrev = abbrev_number;
8320
8321 die->num_attrs = abbrev->num_attrs;
8322
8323 for (i = 0; i < abbrev->num_attrs; ++i)
8324 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8325 abfd, info_ptr, cu);
8326
8327 *diep = die;
8328 *has_children = abbrev->has_children;
8329 return info_ptr;
8330 }
8331
8332 /* In DWARF version 2, the description of the debugging information is
8333 stored in a separate .debug_abbrev section. Before we read any
8334 dies from a section we read in all abbreviations and install them
8335 in a hash table. This function also sets flags in CU describing
8336 the data found in the abbrev table. */
8337
8338 static void
8339 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8340 {
8341 struct comp_unit_head *cu_header = &cu->header;
8342 gdb_byte *abbrev_ptr;
8343 struct abbrev_info *cur_abbrev;
8344 unsigned int abbrev_number, bytes_read, abbrev_name;
8345 unsigned int abbrev_form, hash_number;
8346 struct attr_abbrev *cur_attrs;
8347 unsigned int allocated_attrs;
8348
8349 /* Initialize dwarf2 abbrevs */
8350 obstack_init (&cu->abbrev_obstack);
8351 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8352 (ABBREV_HASH_SIZE
8353 * sizeof (struct abbrev_info *)));
8354 memset (cu->dwarf2_abbrevs, 0,
8355 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8356
8357 dwarf2_read_section (dwarf2_per_objfile->objfile,
8358 &dwarf2_per_objfile->abbrev);
8359 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8360 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8361 abbrev_ptr += bytes_read;
8362
8363 allocated_attrs = ATTR_ALLOC_CHUNK;
8364 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8365
8366 /* loop until we reach an abbrev number of 0 */
8367 while (abbrev_number)
8368 {
8369 cur_abbrev = dwarf_alloc_abbrev (cu);
8370
8371 /* read in abbrev header */
8372 cur_abbrev->number = abbrev_number;
8373 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8374 abbrev_ptr += bytes_read;
8375 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8376 abbrev_ptr += 1;
8377
8378 if (cur_abbrev->tag == DW_TAG_namespace)
8379 cu->has_namespace_info = 1;
8380
8381 /* now read in declarations */
8382 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8383 abbrev_ptr += bytes_read;
8384 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8385 abbrev_ptr += bytes_read;
8386 while (abbrev_name)
8387 {
8388 if (cur_abbrev->num_attrs == allocated_attrs)
8389 {
8390 allocated_attrs += ATTR_ALLOC_CHUNK;
8391 cur_attrs
8392 = xrealloc (cur_attrs, (allocated_attrs
8393 * sizeof (struct attr_abbrev)));
8394 }
8395
8396 /* Record whether this compilation unit might have
8397 inter-compilation-unit references. If we don't know what form
8398 this attribute will have, then it might potentially be a
8399 DW_FORM_ref_addr, so we conservatively expect inter-CU
8400 references. */
8401
8402 if (abbrev_form == DW_FORM_ref_addr
8403 || abbrev_form == DW_FORM_indirect)
8404 cu->has_form_ref_addr = 1;
8405
8406 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8407 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8408 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8409 abbrev_ptr += bytes_read;
8410 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8411 abbrev_ptr += bytes_read;
8412 }
8413
8414 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8415 (cur_abbrev->num_attrs
8416 * sizeof (struct attr_abbrev)));
8417 memcpy (cur_abbrev->attrs, cur_attrs,
8418 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8419
8420 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8421 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8422 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8423
8424 /* Get next abbreviation.
8425 Under Irix6 the abbreviations for a compilation unit are not
8426 always properly terminated with an abbrev number of 0.
8427 Exit loop if we encounter an abbreviation which we have
8428 already read (which means we are about to read the abbreviations
8429 for the next compile unit) or if the end of the abbreviation
8430 table is reached. */
8431 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8432 >= dwarf2_per_objfile->abbrev.size)
8433 break;
8434 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8435 abbrev_ptr += bytes_read;
8436 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8437 break;
8438 }
8439
8440 xfree (cur_attrs);
8441 }
8442
8443 /* Release the memory used by the abbrev table for a compilation unit. */
8444
8445 static void
8446 dwarf2_free_abbrev_table (void *ptr_to_cu)
8447 {
8448 struct dwarf2_cu *cu = ptr_to_cu;
8449
8450 obstack_free (&cu->abbrev_obstack, NULL);
8451 cu->dwarf2_abbrevs = NULL;
8452 }
8453
8454 /* Lookup an abbrev_info structure in the abbrev hash table. */
8455
8456 static struct abbrev_info *
8457 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8458 {
8459 unsigned int hash_number;
8460 struct abbrev_info *abbrev;
8461
8462 hash_number = number % ABBREV_HASH_SIZE;
8463 abbrev = cu->dwarf2_abbrevs[hash_number];
8464
8465 while (abbrev)
8466 {
8467 if (abbrev->number == number)
8468 return abbrev;
8469 else
8470 abbrev = abbrev->next;
8471 }
8472 return NULL;
8473 }
8474
8475 /* Returns nonzero if TAG represents a type that we might generate a partial
8476 symbol for. */
8477
8478 static int
8479 is_type_tag_for_partial (int tag)
8480 {
8481 switch (tag)
8482 {
8483 #if 0
8484 /* Some types that would be reasonable to generate partial symbols for,
8485 that we don't at present. */
8486 case DW_TAG_array_type:
8487 case DW_TAG_file_type:
8488 case DW_TAG_ptr_to_member_type:
8489 case DW_TAG_set_type:
8490 case DW_TAG_string_type:
8491 case DW_TAG_subroutine_type:
8492 #endif
8493 case DW_TAG_base_type:
8494 case DW_TAG_class_type:
8495 case DW_TAG_interface_type:
8496 case DW_TAG_enumeration_type:
8497 case DW_TAG_structure_type:
8498 case DW_TAG_subrange_type:
8499 case DW_TAG_typedef:
8500 case DW_TAG_union_type:
8501 return 1;
8502 default:
8503 return 0;
8504 }
8505 }
8506
8507 /* Load all DIEs that are interesting for partial symbols into memory. */
8508
8509 static struct partial_die_info *
8510 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8511 int building_psymtab, struct dwarf2_cu *cu)
8512 {
8513 struct partial_die_info *part_die;
8514 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8515 struct abbrev_info *abbrev;
8516 unsigned int bytes_read;
8517 unsigned int load_all = 0;
8518
8519 int nesting_level = 1;
8520
8521 parent_die = NULL;
8522 last_die = NULL;
8523
8524 if (cu->per_cu && cu->per_cu->load_all_dies)
8525 load_all = 1;
8526
8527 cu->partial_dies
8528 = htab_create_alloc_ex (cu->header.length / 12,
8529 partial_die_hash,
8530 partial_die_eq,
8531 NULL,
8532 &cu->comp_unit_obstack,
8533 hashtab_obstack_allocate,
8534 dummy_obstack_deallocate);
8535
8536 part_die = obstack_alloc (&cu->comp_unit_obstack,
8537 sizeof (struct partial_die_info));
8538
8539 while (1)
8540 {
8541 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8542
8543 /* A NULL abbrev means the end of a series of children. */
8544 if (abbrev == NULL)
8545 {
8546 if (--nesting_level == 0)
8547 {
8548 /* PART_DIE was probably the last thing allocated on the
8549 comp_unit_obstack, so we could call obstack_free
8550 here. We don't do that because the waste is small,
8551 and will be cleaned up when we're done with this
8552 compilation unit. This way, we're also more robust
8553 against other users of the comp_unit_obstack. */
8554 return first_die;
8555 }
8556 info_ptr += bytes_read;
8557 last_die = parent_die;
8558 parent_die = parent_die->die_parent;
8559 continue;
8560 }
8561
8562 /* Check for template arguments. We never save these; if
8563 they're seen, we just mark the parent, and go on our way. */
8564 if (parent_die != NULL
8565 && cu->language == language_cplus
8566 && (abbrev->tag == DW_TAG_template_type_param
8567 || abbrev->tag == DW_TAG_template_value_param))
8568 {
8569 parent_die->has_template_arguments = 1;
8570
8571 if (!load_all)
8572 {
8573 /* We don't need a partial DIE for the template argument. */
8574 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8575 cu);
8576 continue;
8577 }
8578 }
8579
8580 /* We only recurse into subprograms looking for template arguments.
8581 Skip their other children. */
8582 if (!load_all
8583 && cu->language == language_cplus
8584 && parent_die != NULL
8585 && parent_die->tag == DW_TAG_subprogram)
8586 {
8587 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8588 continue;
8589 }
8590
8591 /* Check whether this DIE is interesting enough to save. Normally
8592 we would not be interested in members here, but there may be
8593 later variables referencing them via DW_AT_specification (for
8594 static members). */
8595 if (!load_all
8596 && !is_type_tag_for_partial (abbrev->tag)
8597 && abbrev->tag != DW_TAG_constant
8598 && abbrev->tag != DW_TAG_enumerator
8599 && abbrev->tag != DW_TAG_subprogram
8600 && abbrev->tag != DW_TAG_lexical_block
8601 && abbrev->tag != DW_TAG_variable
8602 && abbrev->tag != DW_TAG_namespace
8603 && abbrev->tag != DW_TAG_module
8604 && abbrev->tag != DW_TAG_member)
8605 {
8606 /* Otherwise we skip to the next sibling, if any. */
8607 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8608 continue;
8609 }
8610
8611 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8612 buffer, info_ptr, cu);
8613
8614 /* This two-pass algorithm for processing partial symbols has a
8615 high cost in cache pressure. Thus, handle some simple cases
8616 here which cover the majority of C partial symbols. DIEs
8617 which neither have specification tags in them, nor could have
8618 specification tags elsewhere pointing at them, can simply be
8619 processed and discarded.
8620
8621 This segment is also optional; scan_partial_symbols and
8622 add_partial_symbol will handle these DIEs if we chain
8623 them in normally. When compilers which do not emit large
8624 quantities of duplicate debug information are more common,
8625 this code can probably be removed. */
8626
8627 /* Any complete simple types at the top level (pretty much all
8628 of them, for a language without namespaces), can be processed
8629 directly. */
8630 if (parent_die == NULL
8631 && part_die->has_specification == 0
8632 && part_die->is_declaration == 0
8633 && (part_die->tag == DW_TAG_typedef
8634 || part_die->tag == DW_TAG_base_type
8635 || part_die->tag == DW_TAG_subrange_type))
8636 {
8637 if (building_psymtab && part_die->name != NULL)
8638 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8639 VAR_DOMAIN, LOC_TYPEDEF,
8640 &cu->objfile->static_psymbols,
8641 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8642 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8643 continue;
8644 }
8645
8646 /* If we're at the second level, and we're an enumerator, and
8647 our parent has no specification (meaning possibly lives in a
8648 namespace elsewhere), then we can add the partial symbol now
8649 instead of queueing it. */
8650 if (part_die->tag == DW_TAG_enumerator
8651 && parent_die != NULL
8652 && parent_die->die_parent == NULL
8653 && parent_die->tag == DW_TAG_enumeration_type
8654 && parent_die->has_specification == 0)
8655 {
8656 if (part_die->name == NULL)
8657 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8658 else if (building_psymtab)
8659 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8660 VAR_DOMAIN, LOC_CONST,
8661 (cu->language == language_cplus
8662 || cu->language == language_java)
8663 ? &cu->objfile->global_psymbols
8664 : &cu->objfile->static_psymbols,
8665 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8666
8667 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8668 continue;
8669 }
8670
8671 /* We'll save this DIE so link it in. */
8672 part_die->die_parent = parent_die;
8673 part_die->die_sibling = NULL;
8674 part_die->die_child = NULL;
8675
8676 if (last_die && last_die == parent_die)
8677 last_die->die_child = part_die;
8678 else if (last_die)
8679 last_die->die_sibling = part_die;
8680
8681 last_die = part_die;
8682
8683 if (first_die == NULL)
8684 first_die = part_die;
8685
8686 /* Maybe add the DIE to the hash table. Not all DIEs that we
8687 find interesting need to be in the hash table, because we
8688 also have the parent/sibling/child chains; only those that we
8689 might refer to by offset later during partial symbol reading.
8690
8691 For now this means things that might have be the target of a
8692 DW_AT_specification, DW_AT_abstract_origin, or
8693 DW_AT_extension. DW_AT_extension will refer only to
8694 namespaces; DW_AT_abstract_origin refers to functions (and
8695 many things under the function DIE, but we do not recurse
8696 into function DIEs during partial symbol reading) and
8697 possibly variables as well; DW_AT_specification refers to
8698 declarations. Declarations ought to have the DW_AT_declaration
8699 flag. It happens that GCC forgets to put it in sometimes, but
8700 only for functions, not for types.
8701
8702 Adding more things than necessary to the hash table is harmless
8703 except for the performance cost. Adding too few will result in
8704 wasted time in find_partial_die, when we reread the compilation
8705 unit with load_all_dies set. */
8706
8707 if (load_all
8708 || abbrev->tag == DW_TAG_constant
8709 || abbrev->tag == DW_TAG_subprogram
8710 || abbrev->tag == DW_TAG_variable
8711 || abbrev->tag == DW_TAG_namespace
8712 || part_die->is_declaration)
8713 {
8714 void **slot;
8715
8716 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8717 part_die->offset, INSERT);
8718 *slot = part_die;
8719 }
8720
8721 part_die = obstack_alloc (&cu->comp_unit_obstack,
8722 sizeof (struct partial_die_info));
8723
8724 /* For some DIEs we want to follow their children (if any). For C
8725 we have no reason to follow the children of structures; for other
8726 languages we have to, so that we can get at method physnames
8727 to infer fully qualified class names, for DW_AT_specification,
8728 and for C++ template arguments. For C++, we also look one level
8729 inside functions to find template arguments (if the name of the
8730 function does not already contain the template arguments).
8731
8732 For Ada, we need to scan the children of subprograms and lexical
8733 blocks as well because Ada allows the definition of nested
8734 entities that could be interesting for the debugger, such as
8735 nested subprograms for instance. */
8736 if (last_die->has_children
8737 && (load_all
8738 || last_die->tag == DW_TAG_namespace
8739 || last_die->tag == DW_TAG_module
8740 || last_die->tag == DW_TAG_enumeration_type
8741 || (cu->language == language_cplus
8742 && last_die->tag == DW_TAG_subprogram
8743 && (last_die->name == NULL
8744 || strchr (last_die->name, '<') == NULL))
8745 || (cu->language != language_c
8746 && (last_die->tag == DW_TAG_class_type
8747 || last_die->tag == DW_TAG_interface_type
8748 || last_die->tag == DW_TAG_structure_type
8749 || last_die->tag == DW_TAG_union_type))
8750 || (cu->language == language_ada
8751 && (last_die->tag == DW_TAG_subprogram
8752 || last_die->tag == DW_TAG_lexical_block))))
8753 {
8754 nesting_level++;
8755 parent_die = last_die;
8756 continue;
8757 }
8758
8759 /* Otherwise we skip to the next sibling, if any. */
8760 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8761
8762 /* Back to the top, do it again. */
8763 }
8764 }
8765
8766 /* Read a minimal amount of information into the minimal die structure. */
8767
8768 static gdb_byte *
8769 read_partial_die (struct partial_die_info *part_die,
8770 struct abbrev_info *abbrev,
8771 unsigned int abbrev_len, bfd *abfd,
8772 gdb_byte *buffer, gdb_byte *info_ptr,
8773 struct dwarf2_cu *cu)
8774 {
8775 unsigned int i;
8776 struct attribute attr;
8777 int has_low_pc_attr = 0;
8778 int has_high_pc_attr = 0;
8779
8780 memset (part_die, 0, sizeof (struct partial_die_info));
8781
8782 part_die->offset = info_ptr - buffer;
8783
8784 info_ptr += abbrev_len;
8785
8786 if (abbrev == NULL)
8787 return info_ptr;
8788
8789 part_die->tag = abbrev->tag;
8790 part_die->has_children = abbrev->has_children;
8791
8792 for (i = 0; i < abbrev->num_attrs; ++i)
8793 {
8794 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8795
8796 /* Store the data if it is of an attribute we want to keep in a
8797 partial symbol table. */
8798 switch (attr.name)
8799 {
8800 case DW_AT_name:
8801 switch (part_die->tag)
8802 {
8803 case DW_TAG_compile_unit:
8804 case DW_TAG_type_unit:
8805 /* Compilation units have a DW_AT_name that is a filename, not
8806 a source language identifier. */
8807 case DW_TAG_enumeration_type:
8808 case DW_TAG_enumerator:
8809 /* These tags always have simple identifiers already; no need
8810 to canonicalize them. */
8811 part_die->name = DW_STRING (&attr);
8812 break;
8813 default:
8814 part_die->name
8815 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8816 &cu->objfile->objfile_obstack);
8817 break;
8818 }
8819 break;
8820 case DW_AT_linkage_name:
8821 case DW_AT_MIPS_linkage_name:
8822 /* Note that both forms of linkage name might appear. We
8823 assume they will be the same, and we only store the last
8824 one we see. */
8825 if (cu->language == language_ada)
8826 part_die->name = DW_STRING (&attr);
8827 part_die->linkage_name = DW_STRING (&attr);
8828 break;
8829 case DW_AT_low_pc:
8830 has_low_pc_attr = 1;
8831 part_die->lowpc = DW_ADDR (&attr);
8832 break;
8833 case DW_AT_high_pc:
8834 has_high_pc_attr = 1;
8835 part_die->highpc = DW_ADDR (&attr);
8836 break;
8837 case DW_AT_location:
8838 /* Support the .debug_loc offsets */
8839 if (attr_form_is_block (&attr))
8840 {
8841 part_die->locdesc = DW_BLOCK (&attr);
8842 }
8843 else if (attr_form_is_section_offset (&attr))
8844 {
8845 dwarf2_complex_location_expr_complaint ();
8846 }
8847 else
8848 {
8849 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8850 "partial symbol information");
8851 }
8852 break;
8853 case DW_AT_external:
8854 part_die->is_external = DW_UNSND (&attr);
8855 break;
8856 case DW_AT_declaration:
8857 part_die->is_declaration = DW_UNSND (&attr);
8858 break;
8859 case DW_AT_type:
8860 part_die->has_type = 1;
8861 break;
8862 case DW_AT_abstract_origin:
8863 case DW_AT_specification:
8864 case DW_AT_extension:
8865 part_die->has_specification = 1;
8866 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8867 break;
8868 case DW_AT_sibling:
8869 /* Ignore absolute siblings, they might point outside of
8870 the current compile unit. */
8871 if (attr.form == DW_FORM_ref_addr)
8872 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8873 else
8874 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8875 break;
8876 case DW_AT_byte_size:
8877 part_die->has_byte_size = 1;
8878 break;
8879 case DW_AT_calling_convention:
8880 /* DWARF doesn't provide a way to identify a program's source-level
8881 entry point. DW_AT_calling_convention attributes are only meant
8882 to describe functions' calling conventions.
8883
8884 However, because it's a necessary piece of information in
8885 Fortran, and because DW_CC_program is the only piece of debugging
8886 information whose definition refers to a 'main program' at all,
8887 several compilers have begun marking Fortran main programs with
8888 DW_CC_program --- even when those functions use the standard
8889 calling conventions.
8890
8891 So until DWARF specifies a way to provide this information and
8892 compilers pick up the new representation, we'll support this
8893 practice. */
8894 if (DW_UNSND (&attr) == DW_CC_program
8895 && cu->language == language_fortran)
8896 {
8897 set_main_name (part_die->name);
8898
8899 /* As this DIE has a static linkage the name would be difficult
8900 to look up later. */
8901 language_of_main = language_fortran;
8902 }
8903 break;
8904 default:
8905 break;
8906 }
8907 }
8908
8909 /* When using the GNU linker, .gnu.linkonce. sections are used to
8910 eliminate duplicate copies of functions and vtables and such.
8911 The linker will arbitrarily choose one and discard the others.
8912 The AT_*_pc values for such functions refer to local labels in
8913 these sections. If the section from that file was discarded, the
8914 labels are not in the output, so the relocs get a value of 0.
8915 If this is a discarded function, mark the pc bounds as invalid,
8916 so that GDB will ignore it. */
8917 if (has_low_pc_attr && has_high_pc_attr
8918 && part_die->lowpc < part_die->highpc
8919 && (part_die->lowpc != 0
8920 || dwarf2_per_objfile->has_section_at_zero))
8921 part_die->has_pc_info = 1;
8922
8923 return info_ptr;
8924 }
8925
8926 /* Find a cached partial DIE at OFFSET in CU. */
8927
8928 static struct partial_die_info *
8929 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8930 {
8931 struct partial_die_info *lookup_die = NULL;
8932 struct partial_die_info part_die;
8933
8934 part_die.offset = offset;
8935 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8936
8937 return lookup_die;
8938 }
8939
8940 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8941 except in the case of .debug_types DIEs which do not reference
8942 outside their CU (they do however referencing other types via
8943 DW_FORM_sig8). */
8944
8945 static struct partial_die_info *
8946 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8947 {
8948 struct dwarf2_per_cu_data *per_cu = NULL;
8949 struct partial_die_info *pd = NULL;
8950
8951 if (cu->per_cu->from_debug_types)
8952 {
8953 pd = find_partial_die_in_comp_unit (offset, cu);
8954 if (pd != NULL)
8955 return pd;
8956 goto not_found;
8957 }
8958
8959 if (offset_in_cu_p (&cu->header, offset))
8960 {
8961 pd = find_partial_die_in_comp_unit (offset, cu);
8962 if (pd != NULL)
8963 return pd;
8964 }
8965
8966 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8967
8968 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8969 load_partial_comp_unit (per_cu, cu->objfile);
8970
8971 per_cu->cu->last_used = 0;
8972 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8973
8974 if (pd == NULL && per_cu->load_all_dies == 0)
8975 {
8976 struct cleanup *back_to;
8977 struct partial_die_info comp_unit_die;
8978 struct abbrev_info *abbrev;
8979 unsigned int bytes_read;
8980 char *info_ptr;
8981
8982 per_cu->load_all_dies = 1;
8983
8984 /* Re-read the DIEs. */
8985 back_to = make_cleanup (null_cleanup, 0);
8986 if (per_cu->cu->dwarf2_abbrevs == NULL)
8987 {
8988 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8989 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8990 }
8991 info_ptr = (dwarf2_per_objfile->info.buffer
8992 + per_cu->cu->header.offset
8993 + per_cu->cu->header.first_die_offset);
8994 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8995 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
8996 per_cu->cu->objfile->obfd,
8997 dwarf2_per_objfile->info.buffer, info_ptr,
8998 per_cu->cu);
8999 if (comp_unit_die.has_children)
9000 load_partial_dies (per_cu->cu->objfile->obfd,
9001 dwarf2_per_objfile->info.buffer, info_ptr,
9002 0, per_cu->cu);
9003 do_cleanups (back_to);
9004
9005 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9006 }
9007
9008 not_found:
9009
9010 if (pd == NULL)
9011 internal_error (__FILE__, __LINE__,
9012 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
9013 offset, bfd_get_filename (cu->objfile->obfd));
9014 return pd;
9015 }
9016
9017 /* See if we can figure out if the class lives in a namespace. We do
9018 this by looking for a member function; its demangled name will
9019 contain namespace info, if there is any. */
9020
9021 static void
9022 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9023 struct dwarf2_cu *cu)
9024 {
9025 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9026 what template types look like, because the demangler
9027 frequently doesn't give the same name as the debug info. We
9028 could fix this by only using the demangled name to get the
9029 prefix (but see comment in read_structure_type). */
9030
9031 struct partial_die_info *real_pdi;
9032 struct partial_die_info *child_pdi;
9033
9034 /* If this DIE (this DIE's specification, if any) has a parent, then
9035 we should not do this. We'll prepend the parent's fully qualified
9036 name when we create the partial symbol. */
9037
9038 real_pdi = struct_pdi;
9039 while (real_pdi->has_specification)
9040 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9041
9042 if (real_pdi->die_parent != NULL)
9043 return;
9044
9045 for (child_pdi = struct_pdi->die_child;
9046 child_pdi != NULL;
9047 child_pdi = child_pdi->die_sibling)
9048 {
9049 if (child_pdi->tag == DW_TAG_subprogram
9050 && child_pdi->linkage_name != NULL)
9051 {
9052 char *actual_class_name
9053 = language_class_name_from_physname (cu->language_defn,
9054 child_pdi->linkage_name);
9055 if (actual_class_name != NULL)
9056 {
9057 struct_pdi->name
9058 = obsavestring (actual_class_name,
9059 strlen (actual_class_name),
9060 &cu->objfile->objfile_obstack);
9061 xfree (actual_class_name);
9062 }
9063 break;
9064 }
9065 }
9066 }
9067
9068 /* Adjust PART_DIE before generating a symbol for it. This function
9069 may set the is_external flag or change the DIE's name. */
9070
9071 static void
9072 fixup_partial_die (struct partial_die_info *part_die,
9073 struct dwarf2_cu *cu)
9074 {
9075 /* Once we've fixed up a die, there's no point in doing so again.
9076 This also avoids a memory leak if we were to call
9077 guess_partial_die_structure_name multiple times. */
9078 if (part_die->fixup_called)
9079 return;
9080
9081 /* If we found a reference attribute and the DIE has no name, try
9082 to find a name in the referred to DIE. */
9083
9084 if (part_die->name == NULL && part_die->has_specification)
9085 {
9086 struct partial_die_info *spec_die;
9087
9088 spec_die = find_partial_die (part_die->spec_offset, cu);
9089
9090 fixup_partial_die (spec_die, cu);
9091
9092 if (spec_die->name)
9093 {
9094 part_die->name = spec_die->name;
9095
9096 /* Copy DW_AT_external attribute if it is set. */
9097 if (spec_die->is_external)
9098 part_die->is_external = spec_die->is_external;
9099 }
9100 }
9101
9102 /* Set default names for some unnamed DIEs. */
9103
9104 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9105 part_die->name = "(anonymous namespace)";
9106
9107 /* If there is no parent die to provide a namespace, and there are
9108 children, see if we can determine the namespace from their linkage
9109 name.
9110 NOTE: We need to do this even if cu->has_namespace_info != 0.
9111 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9112 if (cu->language == language_cplus
9113 && dwarf2_per_objfile->types.asection != NULL
9114 && part_die->die_parent == NULL
9115 && part_die->has_children
9116 && (part_die->tag == DW_TAG_class_type
9117 || part_die->tag == DW_TAG_structure_type
9118 || part_die->tag == DW_TAG_union_type))
9119 guess_partial_die_structure_name (part_die, cu);
9120
9121 part_die->fixup_called = 1;
9122 }
9123
9124 /* Read an attribute value described by an attribute form. */
9125
9126 static gdb_byte *
9127 read_attribute_value (struct attribute *attr, unsigned form,
9128 bfd *abfd, gdb_byte *info_ptr,
9129 struct dwarf2_cu *cu)
9130 {
9131 struct comp_unit_head *cu_header = &cu->header;
9132 unsigned int bytes_read;
9133 struct dwarf_block *blk;
9134
9135 attr->form = form;
9136 switch (form)
9137 {
9138 case DW_FORM_ref_addr:
9139 if (cu->header.version == 2)
9140 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9141 else
9142 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9143 info_ptr += bytes_read;
9144 break;
9145 case DW_FORM_addr:
9146 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9147 info_ptr += bytes_read;
9148 break;
9149 case DW_FORM_block2:
9150 blk = dwarf_alloc_block (cu);
9151 blk->size = read_2_bytes (abfd, info_ptr);
9152 info_ptr += 2;
9153 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9154 info_ptr += blk->size;
9155 DW_BLOCK (attr) = blk;
9156 break;
9157 case DW_FORM_block4:
9158 blk = dwarf_alloc_block (cu);
9159 blk->size = read_4_bytes (abfd, info_ptr);
9160 info_ptr += 4;
9161 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9162 info_ptr += blk->size;
9163 DW_BLOCK (attr) = blk;
9164 break;
9165 case DW_FORM_data2:
9166 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9167 info_ptr += 2;
9168 break;
9169 case DW_FORM_data4:
9170 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9171 info_ptr += 4;
9172 break;
9173 case DW_FORM_data8:
9174 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9175 info_ptr += 8;
9176 break;
9177 case DW_FORM_sec_offset:
9178 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9179 info_ptr += bytes_read;
9180 break;
9181 case DW_FORM_string:
9182 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9183 DW_STRING_IS_CANONICAL (attr) = 0;
9184 info_ptr += bytes_read;
9185 break;
9186 case DW_FORM_strp:
9187 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9188 &bytes_read);
9189 DW_STRING_IS_CANONICAL (attr) = 0;
9190 info_ptr += bytes_read;
9191 break;
9192 case DW_FORM_exprloc:
9193 case DW_FORM_block:
9194 blk = dwarf_alloc_block (cu);
9195 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9196 info_ptr += bytes_read;
9197 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9198 info_ptr += blk->size;
9199 DW_BLOCK (attr) = blk;
9200 break;
9201 case DW_FORM_block1:
9202 blk = dwarf_alloc_block (cu);
9203 blk->size = read_1_byte (abfd, info_ptr);
9204 info_ptr += 1;
9205 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9206 info_ptr += blk->size;
9207 DW_BLOCK (attr) = blk;
9208 break;
9209 case DW_FORM_data1:
9210 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9211 info_ptr += 1;
9212 break;
9213 case DW_FORM_flag:
9214 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9215 info_ptr += 1;
9216 break;
9217 case DW_FORM_flag_present:
9218 DW_UNSND (attr) = 1;
9219 break;
9220 case DW_FORM_sdata:
9221 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9222 info_ptr += bytes_read;
9223 break;
9224 case DW_FORM_udata:
9225 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9226 info_ptr += bytes_read;
9227 break;
9228 case DW_FORM_ref1:
9229 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9230 info_ptr += 1;
9231 break;
9232 case DW_FORM_ref2:
9233 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9234 info_ptr += 2;
9235 break;
9236 case DW_FORM_ref4:
9237 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9238 info_ptr += 4;
9239 break;
9240 case DW_FORM_ref8:
9241 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9242 info_ptr += 8;
9243 break;
9244 case DW_FORM_sig8:
9245 /* Convert the signature to something we can record in DW_UNSND
9246 for later lookup.
9247 NOTE: This is NULL if the type wasn't found. */
9248 DW_SIGNATURED_TYPE (attr) =
9249 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9250 info_ptr += 8;
9251 break;
9252 case DW_FORM_ref_udata:
9253 DW_ADDR (attr) = (cu->header.offset
9254 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9255 info_ptr += bytes_read;
9256 break;
9257 case DW_FORM_indirect:
9258 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9259 info_ptr += bytes_read;
9260 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9261 break;
9262 default:
9263 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9264 dwarf_form_name (form),
9265 bfd_get_filename (abfd));
9266 }
9267
9268 /* We have seen instances where the compiler tried to emit a byte
9269 size attribute of -1 which ended up being encoded as an unsigned
9270 0xffffffff. Although 0xffffffff is technically a valid size value,
9271 an object of this size seems pretty unlikely so we can relatively
9272 safely treat these cases as if the size attribute was invalid and
9273 treat them as zero by default. */
9274 if (attr->name == DW_AT_byte_size
9275 && form == DW_FORM_data4
9276 && DW_UNSND (attr) >= 0xffffffff)
9277 {
9278 complaint
9279 (&symfile_complaints,
9280 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9281 hex_string (DW_UNSND (attr)));
9282 DW_UNSND (attr) = 0;
9283 }
9284
9285 return info_ptr;
9286 }
9287
9288 /* Read an attribute described by an abbreviated attribute. */
9289
9290 static gdb_byte *
9291 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9292 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9293 {
9294 attr->name = abbrev->name;
9295 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9296 }
9297
9298 /* read dwarf information from a buffer */
9299
9300 static unsigned int
9301 read_1_byte (bfd *abfd, gdb_byte *buf)
9302 {
9303 return bfd_get_8 (abfd, buf);
9304 }
9305
9306 static int
9307 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9308 {
9309 return bfd_get_signed_8 (abfd, buf);
9310 }
9311
9312 static unsigned int
9313 read_2_bytes (bfd *abfd, gdb_byte *buf)
9314 {
9315 return bfd_get_16 (abfd, buf);
9316 }
9317
9318 static int
9319 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9320 {
9321 return bfd_get_signed_16 (abfd, buf);
9322 }
9323
9324 static unsigned int
9325 read_4_bytes (bfd *abfd, gdb_byte *buf)
9326 {
9327 return bfd_get_32 (abfd, buf);
9328 }
9329
9330 static int
9331 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9332 {
9333 return bfd_get_signed_32 (abfd, buf);
9334 }
9335
9336 static ULONGEST
9337 read_8_bytes (bfd *abfd, gdb_byte *buf)
9338 {
9339 return bfd_get_64 (abfd, buf);
9340 }
9341
9342 static CORE_ADDR
9343 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9344 unsigned int *bytes_read)
9345 {
9346 struct comp_unit_head *cu_header = &cu->header;
9347 CORE_ADDR retval = 0;
9348
9349 if (cu_header->signed_addr_p)
9350 {
9351 switch (cu_header->addr_size)
9352 {
9353 case 2:
9354 retval = bfd_get_signed_16 (abfd, buf);
9355 break;
9356 case 4:
9357 retval = bfd_get_signed_32 (abfd, buf);
9358 break;
9359 case 8:
9360 retval = bfd_get_signed_64 (abfd, buf);
9361 break;
9362 default:
9363 internal_error (__FILE__, __LINE__,
9364 _("read_address: bad switch, signed [in module %s]"),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368 else
9369 {
9370 switch (cu_header->addr_size)
9371 {
9372 case 2:
9373 retval = bfd_get_16 (abfd, buf);
9374 break;
9375 case 4:
9376 retval = bfd_get_32 (abfd, buf);
9377 break;
9378 case 8:
9379 retval = bfd_get_64 (abfd, buf);
9380 break;
9381 default:
9382 internal_error (__FILE__, __LINE__,
9383 _("read_address: bad switch, unsigned [in module %s]"),
9384 bfd_get_filename (abfd));
9385 }
9386 }
9387
9388 *bytes_read = cu_header->addr_size;
9389 return retval;
9390 }
9391
9392 /* Read the initial length from a section. The (draft) DWARF 3
9393 specification allows the initial length to take up either 4 bytes
9394 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9395 bytes describe the length and all offsets will be 8 bytes in length
9396 instead of 4.
9397
9398 An older, non-standard 64-bit format is also handled by this
9399 function. The older format in question stores the initial length
9400 as an 8-byte quantity without an escape value. Lengths greater
9401 than 2^32 aren't very common which means that the initial 4 bytes
9402 is almost always zero. Since a length value of zero doesn't make
9403 sense for the 32-bit format, this initial zero can be considered to
9404 be an escape value which indicates the presence of the older 64-bit
9405 format. As written, the code can't detect (old format) lengths
9406 greater than 4GB. If it becomes necessary to handle lengths
9407 somewhat larger than 4GB, we could allow other small values (such
9408 as the non-sensical values of 1, 2, and 3) to also be used as
9409 escape values indicating the presence of the old format.
9410
9411 The value returned via bytes_read should be used to increment the
9412 relevant pointer after calling read_initial_length().
9413
9414 [ Note: read_initial_length() and read_offset() are based on the
9415 document entitled "DWARF Debugging Information Format", revision
9416 3, draft 8, dated November 19, 2001. This document was obtained
9417 from:
9418
9419 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9420
9421 This document is only a draft and is subject to change. (So beware.)
9422
9423 Details regarding the older, non-standard 64-bit format were
9424 determined empirically by examining 64-bit ELF files produced by
9425 the SGI toolchain on an IRIX 6.5 machine.
9426
9427 - Kevin, July 16, 2002
9428 ] */
9429
9430 static LONGEST
9431 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9432 {
9433 LONGEST length = bfd_get_32 (abfd, buf);
9434
9435 if (length == 0xffffffff)
9436 {
9437 length = bfd_get_64 (abfd, buf + 4);
9438 *bytes_read = 12;
9439 }
9440 else if (length == 0)
9441 {
9442 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9443 length = bfd_get_64 (abfd, buf);
9444 *bytes_read = 8;
9445 }
9446 else
9447 {
9448 *bytes_read = 4;
9449 }
9450
9451 return length;
9452 }
9453
9454 /* Cover function for read_initial_length.
9455 Returns the length of the object at BUF, and stores the size of the
9456 initial length in *BYTES_READ and stores the size that offsets will be in
9457 *OFFSET_SIZE.
9458 If the initial length size is not equivalent to that specified in
9459 CU_HEADER then issue a complaint.
9460 This is useful when reading non-comp-unit headers. */
9461
9462 static LONGEST
9463 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9464 const struct comp_unit_head *cu_header,
9465 unsigned int *bytes_read,
9466 unsigned int *offset_size)
9467 {
9468 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9469
9470 gdb_assert (cu_header->initial_length_size == 4
9471 || cu_header->initial_length_size == 8
9472 || cu_header->initial_length_size == 12);
9473
9474 if (cu_header->initial_length_size != *bytes_read)
9475 complaint (&symfile_complaints,
9476 _("intermixed 32-bit and 64-bit DWARF sections"));
9477
9478 *offset_size = (*bytes_read == 4) ? 4 : 8;
9479 return length;
9480 }
9481
9482 /* Read an offset from the data stream. The size of the offset is
9483 given by cu_header->offset_size. */
9484
9485 static LONGEST
9486 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9487 unsigned int *bytes_read)
9488 {
9489 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9490
9491 *bytes_read = cu_header->offset_size;
9492 return offset;
9493 }
9494
9495 /* Read an offset from the data stream. */
9496
9497 static LONGEST
9498 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9499 {
9500 LONGEST retval = 0;
9501
9502 switch (offset_size)
9503 {
9504 case 4:
9505 retval = bfd_get_32 (abfd, buf);
9506 break;
9507 case 8:
9508 retval = bfd_get_64 (abfd, buf);
9509 break;
9510 default:
9511 internal_error (__FILE__, __LINE__,
9512 _("read_offset_1: bad switch [in module %s]"),
9513 bfd_get_filename (abfd));
9514 }
9515
9516 return retval;
9517 }
9518
9519 static gdb_byte *
9520 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9521 {
9522 /* If the size of a host char is 8 bits, we can return a pointer
9523 to the buffer, otherwise we have to copy the data to a buffer
9524 allocated on the temporary obstack. */
9525 gdb_assert (HOST_CHAR_BIT == 8);
9526 return buf;
9527 }
9528
9529 static char *
9530 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9531 {
9532 /* If the size of a host char is 8 bits, we can return a pointer
9533 to the string, otherwise we have to copy the string to a buffer
9534 allocated on the temporary obstack. */
9535 gdb_assert (HOST_CHAR_BIT == 8);
9536 if (*buf == '\0')
9537 {
9538 *bytes_read_ptr = 1;
9539 return NULL;
9540 }
9541 *bytes_read_ptr = strlen ((char *) buf) + 1;
9542 return (char *) buf;
9543 }
9544
9545 static char *
9546 read_indirect_string (bfd *abfd, gdb_byte *buf,
9547 const struct comp_unit_head *cu_header,
9548 unsigned int *bytes_read_ptr)
9549 {
9550 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9551
9552 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9553 if (dwarf2_per_objfile->str.buffer == NULL)
9554 {
9555 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9556 bfd_get_filename (abfd));
9557 return NULL;
9558 }
9559 if (str_offset >= dwarf2_per_objfile->str.size)
9560 {
9561 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
9562 bfd_get_filename (abfd));
9563 return NULL;
9564 }
9565 gdb_assert (HOST_CHAR_BIT == 8);
9566 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9567 return NULL;
9568 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9569 }
9570
9571 static unsigned long
9572 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9573 {
9574 unsigned long result;
9575 unsigned int num_read;
9576 int i, shift;
9577 unsigned char byte;
9578
9579 result = 0;
9580 shift = 0;
9581 num_read = 0;
9582 i = 0;
9583 while (1)
9584 {
9585 byte = bfd_get_8 (abfd, buf);
9586 buf++;
9587 num_read++;
9588 result |= ((unsigned long)(byte & 127) << shift);
9589 if ((byte & 128) == 0)
9590 {
9591 break;
9592 }
9593 shift += 7;
9594 }
9595 *bytes_read_ptr = num_read;
9596 return result;
9597 }
9598
9599 static long
9600 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9601 {
9602 long result;
9603 int i, shift, num_read;
9604 unsigned char byte;
9605
9606 result = 0;
9607 shift = 0;
9608 num_read = 0;
9609 i = 0;
9610 while (1)
9611 {
9612 byte = bfd_get_8 (abfd, buf);
9613 buf++;
9614 num_read++;
9615 result |= ((long)(byte & 127) << shift);
9616 shift += 7;
9617 if ((byte & 128) == 0)
9618 {
9619 break;
9620 }
9621 }
9622 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9623 result |= -(((long)1) << shift);
9624 *bytes_read_ptr = num_read;
9625 return result;
9626 }
9627
9628 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9629
9630 static gdb_byte *
9631 skip_leb128 (bfd *abfd, gdb_byte *buf)
9632 {
9633 int byte;
9634
9635 while (1)
9636 {
9637 byte = bfd_get_8 (abfd, buf);
9638 buf++;
9639 if ((byte & 128) == 0)
9640 return buf;
9641 }
9642 }
9643
9644 static void
9645 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9646 {
9647 switch (lang)
9648 {
9649 case DW_LANG_C89:
9650 case DW_LANG_C99:
9651 case DW_LANG_C:
9652 cu->language = language_c;
9653 break;
9654 case DW_LANG_C_plus_plus:
9655 cu->language = language_cplus;
9656 break;
9657 case DW_LANG_D:
9658 cu->language = language_d;
9659 break;
9660 case DW_LANG_Fortran77:
9661 case DW_LANG_Fortran90:
9662 case DW_LANG_Fortran95:
9663 cu->language = language_fortran;
9664 break;
9665 case DW_LANG_Mips_Assembler:
9666 cu->language = language_asm;
9667 break;
9668 case DW_LANG_Java:
9669 cu->language = language_java;
9670 break;
9671 case DW_LANG_Ada83:
9672 case DW_LANG_Ada95:
9673 cu->language = language_ada;
9674 break;
9675 case DW_LANG_Modula2:
9676 cu->language = language_m2;
9677 break;
9678 case DW_LANG_Pascal83:
9679 cu->language = language_pascal;
9680 break;
9681 case DW_LANG_ObjC:
9682 cu->language = language_objc;
9683 break;
9684 case DW_LANG_Cobol74:
9685 case DW_LANG_Cobol85:
9686 default:
9687 cu->language = language_minimal;
9688 break;
9689 }
9690 cu->language_defn = language_def (cu->language);
9691 }
9692
9693 /* Return the named attribute or NULL if not there. */
9694
9695 static struct attribute *
9696 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9697 {
9698 unsigned int i;
9699 struct attribute *spec = NULL;
9700
9701 for (i = 0; i < die->num_attrs; ++i)
9702 {
9703 if (die->attrs[i].name == name)
9704 return &die->attrs[i];
9705 if (die->attrs[i].name == DW_AT_specification
9706 || die->attrs[i].name == DW_AT_abstract_origin)
9707 spec = &die->attrs[i];
9708 }
9709
9710 if (spec)
9711 {
9712 die = follow_die_ref (die, spec, &cu);
9713 return dwarf2_attr (die, name, cu);
9714 }
9715
9716 return NULL;
9717 }
9718
9719 /* Return the named attribute or NULL if not there,
9720 but do not follow DW_AT_specification, etc.
9721 This is for use in contexts where we're reading .debug_types dies.
9722 Following DW_AT_specification, DW_AT_abstract_origin will take us
9723 back up the chain, and we want to go down. */
9724
9725 static struct attribute *
9726 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9727 struct dwarf2_cu *cu)
9728 {
9729 unsigned int i;
9730
9731 for (i = 0; i < die->num_attrs; ++i)
9732 if (die->attrs[i].name == name)
9733 return &die->attrs[i];
9734
9735 return NULL;
9736 }
9737
9738 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9739 and holds a non-zero value. This function should only be used for
9740 DW_FORM_flag or DW_FORM_flag_present attributes. */
9741
9742 static int
9743 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9744 {
9745 struct attribute *attr = dwarf2_attr (die, name, cu);
9746
9747 return (attr && DW_UNSND (attr));
9748 }
9749
9750 static int
9751 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9752 {
9753 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9754 which value is non-zero. However, we have to be careful with
9755 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9756 (via dwarf2_flag_true_p) follows this attribute. So we may
9757 end up accidently finding a declaration attribute that belongs
9758 to a different DIE referenced by the specification attribute,
9759 even though the given DIE does not have a declaration attribute. */
9760 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9761 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9762 }
9763
9764 /* Return the die giving the specification for DIE, if there is
9765 one. *SPEC_CU is the CU containing DIE on input, and the CU
9766 containing the return value on output. If there is no
9767 specification, but there is an abstract origin, that is
9768 returned. */
9769
9770 static struct die_info *
9771 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9772 {
9773 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9774 *spec_cu);
9775
9776 if (spec_attr == NULL)
9777 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9778
9779 if (spec_attr == NULL)
9780 return NULL;
9781 else
9782 return follow_die_ref (die, spec_attr, spec_cu);
9783 }
9784
9785 /* Free the line_header structure *LH, and any arrays and strings it
9786 refers to. */
9787 static void
9788 free_line_header (struct line_header *lh)
9789 {
9790 if (lh->standard_opcode_lengths)
9791 xfree (lh->standard_opcode_lengths);
9792
9793 /* Remember that all the lh->file_names[i].name pointers are
9794 pointers into debug_line_buffer, and don't need to be freed. */
9795 if (lh->file_names)
9796 xfree (lh->file_names);
9797
9798 /* Similarly for the include directory names. */
9799 if (lh->include_dirs)
9800 xfree (lh->include_dirs);
9801
9802 xfree (lh);
9803 }
9804
9805
9806 /* Add an entry to LH's include directory table. */
9807 static void
9808 add_include_dir (struct line_header *lh, char *include_dir)
9809 {
9810 /* Grow the array if necessary. */
9811 if (lh->include_dirs_size == 0)
9812 {
9813 lh->include_dirs_size = 1; /* for testing */
9814 lh->include_dirs = xmalloc (lh->include_dirs_size
9815 * sizeof (*lh->include_dirs));
9816 }
9817 else if (lh->num_include_dirs >= lh->include_dirs_size)
9818 {
9819 lh->include_dirs_size *= 2;
9820 lh->include_dirs = xrealloc (lh->include_dirs,
9821 (lh->include_dirs_size
9822 * sizeof (*lh->include_dirs)));
9823 }
9824
9825 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9826 }
9827
9828
9829 /* Add an entry to LH's file name table. */
9830 static void
9831 add_file_name (struct line_header *lh,
9832 char *name,
9833 unsigned int dir_index,
9834 unsigned int mod_time,
9835 unsigned int length)
9836 {
9837 struct file_entry *fe;
9838
9839 /* Grow the array if necessary. */
9840 if (lh->file_names_size == 0)
9841 {
9842 lh->file_names_size = 1; /* for testing */
9843 lh->file_names = xmalloc (lh->file_names_size
9844 * sizeof (*lh->file_names));
9845 }
9846 else if (lh->num_file_names >= lh->file_names_size)
9847 {
9848 lh->file_names_size *= 2;
9849 lh->file_names = xrealloc (lh->file_names,
9850 (lh->file_names_size
9851 * sizeof (*lh->file_names)));
9852 }
9853
9854 fe = &lh->file_names[lh->num_file_names++];
9855 fe->name = name;
9856 fe->dir_index = dir_index;
9857 fe->mod_time = mod_time;
9858 fe->length = length;
9859 fe->included_p = 0;
9860 fe->symtab = NULL;
9861 }
9862
9863
9864 /* Read the statement program header starting at OFFSET in
9865 .debug_line, according to the endianness of ABFD. Return a pointer
9866 to a struct line_header, allocated using xmalloc.
9867
9868 NOTE: the strings in the include directory and file name tables of
9869 the returned object point into debug_line_buffer, and must not be
9870 freed. */
9871 static struct line_header *
9872 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9873 struct dwarf2_cu *cu)
9874 {
9875 struct cleanup *back_to;
9876 struct line_header *lh;
9877 gdb_byte *line_ptr;
9878 unsigned int bytes_read, offset_size;
9879 int i;
9880 char *cur_dir, *cur_file;
9881
9882 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9883 if (dwarf2_per_objfile->line.buffer == NULL)
9884 {
9885 complaint (&symfile_complaints, _("missing .debug_line section"));
9886 return 0;
9887 }
9888
9889 /* Make sure that at least there's room for the total_length field.
9890 That could be 12 bytes long, but we're just going to fudge that. */
9891 if (offset + 4 >= dwarf2_per_objfile->line.size)
9892 {
9893 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9894 return 0;
9895 }
9896
9897 lh = xmalloc (sizeof (*lh));
9898 memset (lh, 0, sizeof (*lh));
9899 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9900 (void *) lh);
9901
9902 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9903
9904 /* Read in the header. */
9905 lh->total_length =
9906 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9907 &bytes_read, &offset_size);
9908 line_ptr += bytes_read;
9909 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9910 + dwarf2_per_objfile->line.size))
9911 {
9912 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9913 return 0;
9914 }
9915 lh->statement_program_end = line_ptr + lh->total_length;
9916 lh->version = read_2_bytes (abfd, line_ptr);
9917 line_ptr += 2;
9918 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9919 line_ptr += offset_size;
9920 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9921 line_ptr += 1;
9922 if (lh->version >= 4)
9923 {
9924 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9925 line_ptr += 1;
9926 }
9927 else
9928 lh->maximum_ops_per_instruction = 1;
9929
9930 if (lh->maximum_ops_per_instruction == 0)
9931 {
9932 lh->maximum_ops_per_instruction = 1;
9933 complaint (&symfile_complaints,
9934 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9935 }
9936
9937 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9938 line_ptr += 1;
9939 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9940 line_ptr += 1;
9941 lh->line_range = read_1_byte (abfd, line_ptr);
9942 line_ptr += 1;
9943 lh->opcode_base = read_1_byte (abfd, line_ptr);
9944 line_ptr += 1;
9945 lh->standard_opcode_lengths
9946 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9947
9948 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9949 for (i = 1; i < lh->opcode_base; ++i)
9950 {
9951 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9952 line_ptr += 1;
9953 }
9954
9955 /* Read directory table. */
9956 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9957 {
9958 line_ptr += bytes_read;
9959 add_include_dir (lh, cur_dir);
9960 }
9961 line_ptr += bytes_read;
9962
9963 /* Read file name table. */
9964 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9965 {
9966 unsigned int dir_index, mod_time, length;
9967
9968 line_ptr += bytes_read;
9969 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9970 line_ptr += bytes_read;
9971 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9972 line_ptr += bytes_read;
9973 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9974 line_ptr += bytes_read;
9975
9976 add_file_name (lh, cur_file, dir_index, mod_time, length);
9977 }
9978 line_ptr += bytes_read;
9979 lh->statement_program_start = line_ptr;
9980
9981 if (line_ptr > (dwarf2_per_objfile->line.buffer
9982 + dwarf2_per_objfile->line.size))
9983 complaint (&symfile_complaints,
9984 _("line number info header doesn't fit in `.debug_line' section"));
9985
9986 discard_cleanups (back_to);
9987 return lh;
9988 }
9989
9990 /* This function exists to work around a bug in certain compilers
9991 (particularly GCC 2.95), in which the first line number marker of a
9992 function does not show up until after the prologue, right before
9993 the second line number marker. This function shifts ADDRESS down
9994 to the beginning of the function if necessary, and is called on
9995 addresses passed to record_line. */
9996
9997 static CORE_ADDR
9998 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
9999 {
10000 struct function_range *fn;
10001
10002 /* Find the function_range containing address. */
10003 if (!cu->first_fn)
10004 return address;
10005
10006 if (!cu->cached_fn)
10007 cu->cached_fn = cu->first_fn;
10008
10009 fn = cu->cached_fn;
10010 while (fn)
10011 if (fn->lowpc <= address && fn->highpc > address)
10012 goto found;
10013 else
10014 fn = fn->next;
10015
10016 fn = cu->first_fn;
10017 while (fn && fn != cu->cached_fn)
10018 if (fn->lowpc <= address && fn->highpc > address)
10019 goto found;
10020 else
10021 fn = fn->next;
10022
10023 return address;
10024
10025 found:
10026 if (fn->seen_line)
10027 return address;
10028 if (address != fn->lowpc)
10029 complaint (&symfile_complaints,
10030 _("misplaced first line number at 0x%lx for '%s'"),
10031 (unsigned long) address, fn->name);
10032 fn->seen_line = 1;
10033 return fn->lowpc;
10034 }
10035
10036 /* Subroutine of dwarf_decode_lines to simplify it.
10037 Return the file name of the psymtab for included file FILE_INDEX
10038 in line header LH of PST.
10039 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10040 If space for the result is malloc'd, it will be freed by a cleanup.
10041 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10042
10043 static char *
10044 psymtab_include_file_name (const struct line_header *lh, int file_index,
10045 const struct partial_symtab *pst,
10046 const char *comp_dir)
10047 {
10048 const struct file_entry fe = lh->file_names [file_index];
10049 char *include_name = fe.name;
10050 char *include_name_to_compare = include_name;
10051 char *dir_name = NULL;
10052 const char *pst_filename;
10053 char *copied_name = NULL;
10054 int file_is_pst;
10055
10056 if (fe.dir_index)
10057 dir_name = lh->include_dirs[fe.dir_index - 1];
10058
10059 if (!IS_ABSOLUTE_PATH (include_name)
10060 && (dir_name != NULL || comp_dir != NULL))
10061 {
10062 /* Avoid creating a duplicate psymtab for PST.
10063 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10064 Before we do the comparison, however, we need to account
10065 for DIR_NAME and COMP_DIR.
10066 First prepend dir_name (if non-NULL). If we still don't
10067 have an absolute path prepend comp_dir (if non-NULL).
10068 However, the directory we record in the include-file's
10069 psymtab does not contain COMP_DIR (to match the
10070 corresponding symtab(s)).
10071
10072 Example:
10073
10074 bash$ cd /tmp
10075 bash$ gcc -g ./hello.c
10076 include_name = "hello.c"
10077 dir_name = "."
10078 DW_AT_comp_dir = comp_dir = "/tmp"
10079 DW_AT_name = "./hello.c" */
10080
10081 if (dir_name != NULL)
10082 {
10083 include_name = concat (dir_name, SLASH_STRING,
10084 include_name, (char *)NULL);
10085 include_name_to_compare = include_name;
10086 make_cleanup (xfree, include_name);
10087 }
10088 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10089 {
10090 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10091 include_name, (char *)NULL);
10092 }
10093 }
10094
10095 pst_filename = pst->filename;
10096 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10097 {
10098 copied_name = concat (pst->dirname, SLASH_STRING,
10099 pst_filename, (char *)NULL);
10100 pst_filename = copied_name;
10101 }
10102
10103 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10104
10105 if (include_name_to_compare != include_name)
10106 xfree (include_name_to_compare);
10107 if (copied_name != NULL)
10108 xfree (copied_name);
10109
10110 if (file_is_pst)
10111 return NULL;
10112 return include_name;
10113 }
10114
10115 /* Decode the Line Number Program (LNP) for the given line_header
10116 structure and CU. The actual information extracted and the type
10117 of structures created from the LNP depends on the value of PST.
10118
10119 1. If PST is NULL, then this procedure uses the data from the program
10120 to create all necessary symbol tables, and their linetables.
10121
10122 2. If PST is not NULL, this procedure reads the program to determine
10123 the list of files included by the unit represented by PST, and
10124 builds all the associated partial symbol tables.
10125
10126 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10127 It is used for relative paths in the line table.
10128 NOTE: When processing partial symtabs (pst != NULL),
10129 comp_dir == pst->dirname.
10130
10131 NOTE: It is important that psymtabs have the same file name (via strcmp)
10132 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10133 symtab we don't use it in the name of the psymtabs we create.
10134 E.g. expand_line_sal requires this when finding psymtabs to expand.
10135 A good testcase for this is mb-inline.exp. */
10136
10137 static void
10138 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10139 struct dwarf2_cu *cu, struct partial_symtab *pst)
10140 {
10141 gdb_byte *line_ptr, *extended_end;
10142 gdb_byte *line_end;
10143 unsigned int bytes_read, extended_len;
10144 unsigned char op_code, extended_op, adj_opcode;
10145 CORE_ADDR baseaddr;
10146 struct objfile *objfile = cu->objfile;
10147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10148 const int decode_for_pst_p = (pst != NULL);
10149 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10150
10151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10152
10153 line_ptr = lh->statement_program_start;
10154 line_end = lh->statement_program_end;
10155
10156 /* Read the statement sequences until there's nothing left. */
10157 while (line_ptr < line_end)
10158 {
10159 /* state machine registers */
10160 CORE_ADDR address = 0;
10161 unsigned int file = 1;
10162 unsigned int line = 1;
10163 unsigned int column = 0;
10164 int is_stmt = lh->default_is_stmt;
10165 int basic_block = 0;
10166 int end_sequence = 0;
10167 CORE_ADDR addr;
10168 unsigned char op_index = 0;
10169
10170 if (!decode_for_pst_p && lh->num_file_names >= file)
10171 {
10172 /* Start a subfile for the current file of the state machine. */
10173 /* lh->include_dirs and lh->file_names are 0-based, but the
10174 directory and file name numbers in the statement program
10175 are 1-based. */
10176 struct file_entry *fe = &lh->file_names[file - 1];
10177 char *dir = NULL;
10178
10179 if (fe->dir_index)
10180 dir = lh->include_dirs[fe->dir_index - 1];
10181
10182 dwarf2_start_subfile (fe->name, dir, comp_dir);
10183 }
10184
10185 /* Decode the table. */
10186 while (!end_sequence)
10187 {
10188 op_code = read_1_byte (abfd, line_ptr);
10189 line_ptr += 1;
10190 if (line_ptr > line_end)
10191 {
10192 dwarf2_debug_line_missing_end_sequence_complaint ();
10193 break;
10194 }
10195
10196 if (op_code >= lh->opcode_base)
10197 {
10198 /* Special operand. */
10199 adj_opcode = op_code - lh->opcode_base;
10200 address += (((op_index + (adj_opcode / lh->line_range))
10201 / lh->maximum_ops_per_instruction)
10202 * lh->minimum_instruction_length);
10203 op_index = ((op_index + (adj_opcode / lh->line_range))
10204 % lh->maximum_ops_per_instruction);
10205 line += lh->line_base + (adj_opcode % lh->line_range);
10206 if (lh->num_file_names < file || file == 0)
10207 dwarf2_debug_line_missing_file_complaint ();
10208 /* For now we ignore lines not starting on an
10209 instruction boundary. */
10210 else if (op_index == 0)
10211 {
10212 lh->file_names[file - 1].included_p = 1;
10213 if (!decode_for_pst_p && is_stmt)
10214 {
10215 if (last_subfile != current_subfile)
10216 {
10217 addr = gdbarch_addr_bits_remove (gdbarch, address);
10218 if (last_subfile)
10219 record_line (last_subfile, 0, addr);
10220 last_subfile = current_subfile;
10221 }
10222 /* Append row to matrix using current values. */
10223 addr = check_cu_functions (address, cu);
10224 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10225 record_line (current_subfile, line, addr);
10226 }
10227 }
10228 basic_block = 0;
10229 }
10230 else switch (op_code)
10231 {
10232 case DW_LNS_extended_op:
10233 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10234 line_ptr += bytes_read;
10235 extended_end = line_ptr + extended_len;
10236 extended_op = read_1_byte (abfd, line_ptr);
10237 line_ptr += 1;
10238 switch (extended_op)
10239 {
10240 case DW_LNE_end_sequence:
10241 end_sequence = 1;
10242 break;
10243 case DW_LNE_set_address:
10244 address = read_address (abfd, line_ptr, cu, &bytes_read);
10245 op_index = 0;
10246 line_ptr += bytes_read;
10247 address += baseaddr;
10248 break;
10249 case DW_LNE_define_file:
10250 {
10251 char *cur_file;
10252 unsigned int dir_index, mod_time, length;
10253
10254 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
10255 line_ptr += bytes_read;
10256 dir_index =
10257 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10258 line_ptr += bytes_read;
10259 mod_time =
10260 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10261 line_ptr += bytes_read;
10262 length =
10263 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10264 line_ptr += bytes_read;
10265 add_file_name (lh, cur_file, dir_index, mod_time, length);
10266 }
10267 break;
10268 case DW_LNE_set_discriminator:
10269 /* The discriminator is not interesting to the debugger;
10270 just ignore it. */
10271 line_ptr = extended_end;
10272 break;
10273 default:
10274 complaint (&symfile_complaints,
10275 _("mangled .debug_line section"));
10276 return;
10277 }
10278 /* Make sure that we parsed the extended op correctly. If e.g.
10279 we expected a different address size than the producer used,
10280 we may have read the wrong number of bytes. */
10281 if (line_ptr != extended_end)
10282 {
10283 complaint (&symfile_complaints,
10284 _("mangled .debug_line section"));
10285 return;
10286 }
10287 break;
10288 case DW_LNS_copy:
10289 if (lh->num_file_names < file || file == 0)
10290 dwarf2_debug_line_missing_file_complaint ();
10291 else
10292 {
10293 lh->file_names[file - 1].included_p = 1;
10294 if (!decode_for_pst_p && is_stmt)
10295 {
10296 if (last_subfile != current_subfile)
10297 {
10298 addr = gdbarch_addr_bits_remove (gdbarch, address);
10299 if (last_subfile)
10300 record_line (last_subfile, 0, addr);
10301 last_subfile = current_subfile;
10302 }
10303 addr = check_cu_functions (address, cu);
10304 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10305 record_line (current_subfile, line, addr);
10306 }
10307 }
10308 basic_block = 0;
10309 break;
10310 case DW_LNS_advance_pc:
10311 {
10312 CORE_ADDR adjust
10313 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10314
10315 address += (((op_index + adjust)
10316 / lh->maximum_ops_per_instruction)
10317 * lh->minimum_instruction_length);
10318 op_index = ((op_index + adjust)
10319 % lh->maximum_ops_per_instruction);
10320 line_ptr += bytes_read;
10321 }
10322 break;
10323 case DW_LNS_advance_line:
10324 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10325 line_ptr += bytes_read;
10326 break;
10327 case DW_LNS_set_file:
10328 {
10329 /* The arrays lh->include_dirs and lh->file_names are
10330 0-based, but the directory and file name numbers in
10331 the statement program are 1-based. */
10332 struct file_entry *fe;
10333 char *dir = NULL;
10334
10335 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10336 line_ptr += bytes_read;
10337 if (lh->num_file_names < file || file == 0)
10338 dwarf2_debug_line_missing_file_complaint ();
10339 else
10340 {
10341 fe = &lh->file_names[file - 1];
10342 if (fe->dir_index)
10343 dir = lh->include_dirs[fe->dir_index - 1];
10344 if (!decode_for_pst_p)
10345 {
10346 last_subfile = current_subfile;
10347 dwarf2_start_subfile (fe->name, dir, comp_dir);
10348 }
10349 }
10350 }
10351 break;
10352 case DW_LNS_set_column:
10353 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10354 line_ptr += bytes_read;
10355 break;
10356 case DW_LNS_negate_stmt:
10357 is_stmt = (!is_stmt);
10358 break;
10359 case DW_LNS_set_basic_block:
10360 basic_block = 1;
10361 break;
10362 /* Add to the address register of the state machine the
10363 address increment value corresponding to special opcode
10364 255. I.e., this value is scaled by the minimum
10365 instruction length since special opcode 255 would have
10366 scaled the the increment. */
10367 case DW_LNS_const_add_pc:
10368 {
10369 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10370
10371 address += (((op_index + adjust)
10372 / lh->maximum_ops_per_instruction)
10373 * lh->minimum_instruction_length);
10374 op_index = ((op_index + adjust)
10375 % lh->maximum_ops_per_instruction);
10376 }
10377 break;
10378 case DW_LNS_fixed_advance_pc:
10379 address += read_2_bytes (abfd, line_ptr);
10380 op_index = 0;
10381 line_ptr += 2;
10382 break;
10383 default:
10384 {
10385 /* Unknown standard opcode, ignore it. */
10386 int i;
10387
10388 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10389 {
10390 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10391 line_ptr += bytes_read;
10392 }
10393 }
10394 }
10395 }
10396 if (lh->num_file_names < file || file == 0)
10397 dwarf2_debug_line_missing_file_complaint ();
10398 else
10399 {
10400 lh->file_names[file - 1].included_p = 1;
10401 if (!decode_for_pst_p)
10402 {
10403 addr = gdbarch_addr_bits_remove (gdbarch, address);
10404 record_line (current_subfile, 0, addr);
10405 }
10406 }
10407 }
10408
10409 if (decode_for_pst_p)
10410 {
10411 int file_index;
10412
10413 /* Now that we're done scanning the Line Header Program, we can
10414 create the psymtab of each included file. */
10415 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10416 if (lh->file_names[file_index].included_p == 1)
10417 {
10418 char *include_name =
10419 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10420 if (include_name != NULL)
10421 dwarf2_create_include_psymtab (include_name, pst, objfile);
10422 }
10423 }
10424 else
10425 {
10426 /* Make sure a symtab is created for every file, even files
10427 which contain only variables (i.e. no code with associated
10428 line numbers). */
10429
10430 int i;
10431 struct file_entry *fe;
10432
10433 for (i = 0; i < lh->num_file_names; i++)
10434 {
10435 char *dir = NULL;
10436
10437 fe = &lh->file_names[i];
10438 if (fe->dir_index)
10439 dir = lh->include_dirs[fe->dir_index - 1];
10440 dwarf2_start_subfile (fe->name, dir, comp_dir);
10441
10442 /* Skip the main file; we don't need it, and it must be
10443 allocated last, so that it will show up before the
10444 non-primary symtabs in the objfile's symtab list. */
10445 if (current_subfile == first_subfile)
10446 continue;
10447
10448 if (current_subfile->symtab == NULL)
10449 current_subfile->symtab = allocate_symtab (current_subfile->name,
10450 cu->objfile);
10451 fe->symtab = current_subfile->symtab;
10452 }
10453 }
10454 }
10455
10456 /* Start a subfile for DWARF. FILENAME is the name of the file and
10457 DIRNAME the name of the source directory which contains FILENAME
10458 or NULL if not known. COMP_DIR is the compilation directory for the
10459 linetable's compilation unit or NULL if not known.
10460 This routine tries to keep line numbers from identical absolute and
10461 relative file names in a common subfile.
10462
10463 Using the `list' example from the GDB testsuite, which resides in
10464 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10465 of /srcdir/list0.c yields the following debugging information for list0.c:
10466
10467 DW_AT_name: /srcdir/list0.c
10468 DW_AT_comp_dir: /compdir
10469 files.files[0].name: list0.h
10470 files.files[0].dir: /srcdir
10471 files.files[1].name: list0.c
10472 files.files[1].dir: /srcdir
10473
10474 The line number information for list0.c has to end up in a single
10475 subfile, so that `break /srcdir/list0.c:1' works as expected.
10476 start_subfile will ensure that this happens provided that we pass the
10477 concatenation of files.files[1].dir and files.files[1].name as the
10478 subfile's name. */
10479
10480 static void
10481 dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
10482 {
10483 char *fullname;
10484
10485 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10486 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10487 second argument to start_subfile. To be consistent, we do the
10488 same here. In order not to lose the line information directory,
10489 we concatenate it to the filename when it makes sense.
10490 Note that the Dwarf3 standard says (speaking of filenames in line
10491 information): ``The directory index is ignored for file names
10492 that represent full path names''. Thus ignoring dirname in the
10493 `else' branch below isn't an issue. */
10494
10495 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10496 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10497 else
10498 fullname = filename;
10499
10500 start_subfile (fullname, comp_dir);
10501
10502 if (fullname != filename)
10503 xfree (fullname);
10504 }
10505
10506 static void
10507 var_decode_location (struct attribute *attr, struct symbol *sym,
10508 struct dwarf2_cu *cu)
10509 {
10510 struct objfile *objfile = cu->objfile;
10511 struct comp_unit_head *cu_header = &cu->header;
10512
10513 /* NOTE drow/2003-01-30: There used to be a comment and some special
10514 code here to turn a symbol with DW_AT_external and a
10515 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10516 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10517 with some versions of binutils) where shared libraries could have
10518 relocations against symbols in their debug information - the
10519 minimal symbol would have the right address, but the debug info
10520 would not. It's no longer necessary, because we will explicitly
10521 apply relocations when we read in the debug information now. */
10522
10523 /* A DW_AT_location attribute with no contents indicates that a
10524 variable has been optimized away. */
10525 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10526 {
10527 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10528 return;
10529 }
10530
10531 /* Handle one degenerate form of location expression specially, to
10532 preserve GDB's previous behavior when section offsets are
10533 specified. If this is just a DW_OP_addr then mark this symbol
10534 as LOC_STATIC. */
10535
10536 if (attr_form_is_block (attr)
10537 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10538 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10539 {
10540 unsigned int dummy;
10541
10542 SYMBOL_VALUE_ADDRESS (sym) =
10543 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10544 SYMBOL_CLASS (sym) = LOC_STATIC;
10545 fixup_symbol_section (sym, objfile);
10546 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10547 SYMBOL_SECTION (sym));
10548 return;
10549 }
10550
10551 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10552 expression evaluator, and use LOC_COMPUTED only when necessary
10553 (i.e. when the value of a register or memory location is
10554 referenced, or a thread-local block, etc.). Then again, it might
10555 not be worthwhile. I'm assuming that it isn't unless performance
10556 or memory numbers show me otherwise. */
10557
10558 dwarf2_symbol_mark_computed (attr, sym, cu);
10559 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10560 }
10561
10562 /* Given a pointer to a DWARF information entry, figure out if we need
10563 to make a symbol table entry for it, and if so, create a new entry
10564 and return a pointer to it.
10565 If TYPE is NULL, determine symbol type from the die, otherwise
10566 used the passed type.
10567 If SPACE is not NULL, use it to hold the new symbol. If it is
10568 NULL, allocate a new symbol on the objfile's obstack. */
10569
10570 static struct symbol *
10571 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10572 struct symbol *space)
10573 {
10574 struct objfile *objfile = cu->objfile;
10575 struct symbol *sym = NULL;
10576 char *name;
10577 struct attribute *attr = NULL;
10578 struct attribute *attr2 = NULL;
10579 CORE_ADDR baseaddr;
10580 struct pending **list_to_add = NULL;
10581
10582 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10583
10584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10585
10586 name = dwarf2_name (die, cu);
10587 if (name)
10588 {
10589 const char *linkagename;
10590 int suppress_add = 0;
10591
10592 if (space)
10593 sym = space;
10594 else
10595 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10596 OBJSTAT (objfile, n_syms++);
10597
10598 /* Cache this symbol's name and the name's demangled form (if any). */
10599 SYMBOL_SET_LANGUAGE (sym, cu->language);
10600 linkagename = dwarf2_physname (name, die, cu);
10601 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10602
10603 /* Fortran does not have mangling standard and the mangling does differ
10604 between gfortran, iFort etc. */
10605 if (cu->language == language_fortran
10606 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10607 symbol_set_demangled_name (&(sym->ginfo),
10608 (char *) dwarf2_full_name (name, die, cu),
10609 NULL);
10610
10611 /* Default assumptions.
10612 Use the passed type or decode it from the die. */
10613 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10614 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10615 if (type != NULL)
10616 SYMBOL_TYPE (sym) = type;
10617 else
10618 SYMBOL_TYPE (sym) = die_type (die, cu);
10619 attr = dwarf2_attr (die,
10620 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10621 cu);
10622 if (attr)
10623 {
10624 SYMBOL_LINE (sym) = DW_UNSND (attr);
10625 }
10626
10627 attr = dwarf2_attr (die,
10628 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10629 cu);
10630 if (attr)
10631 {
10632 int file_index = DW_UNSND (attr);
10633
10634 if (cu->line_header == NULL
10635 || file_index > cu->line_header->num_file_names)
10636 complaint (&symfile_complaints,
10637 _("file index out of range"));
10638 else if (file_index > 0)
10639 {
10640 struct file_entry *fe;
10641
10642 fe = &cu->line_header->file_names[file_index - 1];
10643 SYMBOL_SYMTAB (sym) = fe->symtab;
10644 }
10645 }
10646
10647 switch (die->tag)
10648 {
10649 case DW_TAG_label:
10650 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10651 if (attr)
10652 {
10653 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10654 }
10655 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10656 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10657 SYMBOL_CLASS (sym) = LOC_LABEL;
10658 add_symbol_to_list (sym, cu->list_in_scope);
10659 break;
10660 case DW_TAG_subprogram:
10661 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10662 finish_block. */
10663 SYMBOL_CLASS (sym) = LOC_BLOCK;
10664 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10665 if ((attr2 && (DW_UNSND (attr2) != 0))
10666 || cu->language == language_ada)
10667 {
10668 /* Subprograms marked external are stored as a global symbol.
10669 Ada subprograms, whether marked external or not, are always
10670 stored as a global symbol, because we want to be able to
10671 access them globally. For instance, we want to be able
10672 to break on a nested subprogram without having to
10673 specify the context. */
10674 list_to_add = &global_symbols;
10675 }
10676 else
10677 {
10678 list_to_add = cu->list_in_scope;
10679 }
10680 break;
10681 case DW_TAG_inlined_subroutine:
10682 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10683 finish_block. */
10684 SYMBOL_CLASS (sym) = LOC_BLOCK;
10685 SYMBOL_INLINED (sym) = 1;
10686 /* Do not add the symbol to any lists. It will be found via
10687 BLOCK_FUNCTION from the blockvector. */
10688 break;
10689 case DW_TAG_template_value_param:
10690 suppress_add = 1;
10691 /* Fall through. */
10692 case DW_TAG_constant:
10693 case DW_TAG_variable:
10694 case DW_TAG_member:
10695 /* Compilation with minimal debug info may result in variables
10696 with missing type entries. Change the misleading `void' type
10697 to something sensible. */
10698 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10699 SYMBOL_TYPE (sym)
10700 = objfile_type (objfile)->nodebug_data_symbol;
10701
10702 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10703 /* In the case of DW_TAG_member, we should only be called for
10704 static const members. */
10705 if (die->tag == DW_TAG_member)
10706 {
10707 /* dwarf2_add_field uses die_is_declaration,
10708 so we do the same. */
10709 gdb_assert (die_is_declaration (die, cu));
10710 gdb_assert (attr);
10711 }
10712 if (attr)
10713 {
10714 dwarf2_const_value (attr, sym, cu);
10715 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10716 if (!suppress_add)
10717 {
10718 if (attr2 && (DW_UNSND (attr2) != 0))
10719 list_to_add = &global_symbols;
10720 else
10721 list_to_add = cu->list_in_scope;
10722 }
10723 break;
10724 }
10725 attr = dwarf2_attr (die, DW_AT_location, cu);
10726 if (attr)
10727 {
10728 var_decode_location (attr, sym, cu);
10729 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10730 if (SYMBOL_CLASS (sym) == LOC_STATIC
10731 && SYMBOL_VALUE_ADDRESS (sym) == 0
10732 && !dwarf2_per_objfile->has_section_at_zero)
10733 {
10734 /* When a static variable is eliminated by the linker,
10735 the corresponding debug information is not stripped
10736 out, but the variable address is set to null;
10737 do not add such variables into symbol table. */
10738 }
10739 else if (attr2 && (DW_UNSND (attr2) != 0))
10740 {
10741 /* Workaround gfortran PR debug/40040 - it uses
10742 DW_AT_location for variables in -fPIC libraries which may
10743 get overriden by other libraries/executable and get
10744 a different address. Resolve it by the minimal symbol
10745 which may come from inferior's executable using copy
10746 relocation. Make this workaround only for gfortran as for
10747 other compilers GDB cannot guess the minimal symbol
10748 Fortran mangling kind. */
10749 if (cu->language == language_fortran && die->parent
10750 && die->parent->tag == DW_TAG_module
10751 && cu->producer
10752 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10753 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10754
10755 /* A variable with DW_AT_external is never static,
10756 but it may be block-scoped. */
10757 list_to_add = (cu->list_in_scope == &file_symbols
10758 ? &global_symbols : cu->list_in_scope);
10759 }
10760 else
10761 list_to_add = cu->list_in_scope;
10762 }
10763 else
10764 {
10765 /* We do not know the address of this symbol.
10766 If it is an external symbol and we have type information
10767 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10768 The address of the variable will then be determined from
10769 the minimal symbol table whenever the variable is
10770 referenced. */
10771 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10772 if (attr2 && (DW_UNSND (attr2) != 0)
10773 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10774 {
10775 /* A variable with DW_AT_external is never static, but it
10776 may be block-scoped. */
10777 list_to_add = (cu->list_in_scope == &file_symbols
10778 ? &global_symbols : cu->list_in_scope);
10779
10780 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10781 }
10782 else if (!die_is_declaration (die, cu))
10783 {
10784 /* Use the default LOC_OPTIMIZED_OUT class. */
10785 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10786 if (!suppress_add)
10787 list_to_add = cu->list_in_scope;
10788 }
10789 }
10790 break;
10791 case DW_TAG_formal_parameter:
10792 /* If we are inside a function, mark this as an argument. If
10793 not, we might be looking at an argument to an inlined function
10794 when we do not have enough information to show inlined frames;
10795 pretend it's a local variable in that case so that the user can
10796 still see it. */
10797 if (context_stack_depth > 0
10798 && context_stack[context_stack_depth - 1].name != NULL)
10799 SYMBOL_IS_ARGUMENT (sym) = 1;
10800 attr = dwarf2_attr (die, DW_AT_location, cu);
10801 if (attr)
10802 {
10803 var_decode_location (attr, sym, cu);
10804 }
10805 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10806 if (attr)
10807 {
10808 dwarf2_const_value (attr, sym, cu);
10809 }
10810 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10811 if (attr && DW_UNSND (attr))
10812 {
10813 struct type *ref_type;
10814
10815 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10816 SYMBOL_TYPE (sym) = ref_type;
10817 }
10818
10819 list_to_add = cu->list_in_scope;
10820 break;
10821 case DW_TAG_unspecified_parameters:
10822 /* From varargs functions; gdb doesn't seem to have any
10823 interest in this information, so just ignore it for now.
10824 (FIXME?) */
10825 break;
10826 case DW_TAG_template_type_param:
10827 suppress_add = 1;
10828 /* Fall through. */
10829 case DW_TAG_class_type:
10830 case DW_TAG_interface_type:
10831 case DW_TAG_structure_type:
10832 case DW_TAG_union_type:
10833 case DW_TAG_set_type:
10834 case DW_TAG_enumeration_type:
10835 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10836 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10837
10838 {
10839 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
10840 really ever be static objects: otherwise, if you try
10841 to, say, break of a class's method and you're in a file
10842 which doesn't mention that class, it won't work unless
10843 the check for all static symbols in lookup_symbol_aux
10844 saves you. See the OtherFileClass tests in
10845 gdb.c++/namespace.exp. */
10846
10847 if (!suppress_add)
10848 {
10849 list_to_add = (cu->list_in_scope == &file_symbols
10850 && (cu->language == language_cplus
10851 || cu->language == language_java)
10852 ? &global_symbols : cu->list_in_scope);
10853
10854 /* The semantics of C++ state that "struct foo {
10855 ... }" also defines a typedef for "foo". A Java
10856 class declaration also defines a typedef for the
10857 class. */
10858 if (cu->language == language_cplus
10859 || cu->language == language_java
10860 || cu->language == language_ada)
10861 {
10862 /* The symbol's name is already allocated along
10863 with this objfile, so we don't need to
10864 duplicate it for the type. */
10865 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10866 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10867 }
10868 }
10869 }
10870 break;
10871 case DW_TAG_typedef:
10872 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10873 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10874 list_to_add = cu->list_in_scope;
10875 break;
10876 case DW_TAG_base_type:
10877 case DW_TAG_subrange_type:
10878 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10880 list_to_add = cu->list_in_scope;
10881 break;
10882 case DW_TAG_enumerator:
10883 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10884 if (attr)
10885 {
10886 dwarf2_const_value (attr, sym, cu);
10887 }
10888 {
10889 /* NOTE: carlton/2003-11-10: See comment above in the
10890 DW_TAG_class_type, etc. block. */
10891
10892 list_to_add = (cu->list_in_scope == &file_symbols
10893 && (cu->language == language_cplus
10894 || cu->language == language_java)
10895 ? &global_symbols : cu->list_in_scope);
10896 }
10897 break;
10898 case DW_TAG_namespace:
10899 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10900 list_to_add = &global_symbols;
10901 break;
10902 default:
10903 /* Not a tag we recognize. Hopefully we aren't processing
10904 trash data, but since we must specifically ignore things
10905 we don't recognize, there is nothing else we should do at
10906 this point. */
10907 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10908 dwarf_tag_name (die->tag));
10909 break;
10910 }
10911
10912 if (suppress_add)
10913 {
10914 sym->hash_next = objfile->template_symbols;
10915 objfile->template_symbols = sym;
10916 list_to_add = NULL;
10917 }
10918
10919 if (list_to_add != NULL)
10920 add_symbol_to_list (sym, list_to_add);
10921
10922 /* For the benefit of old versions of GCC, check for anonymous
10923 namespaces based on the demangled name. */
10924 if (!processing_has_namespace_info
10925 && cu->language == language_cplus)
10926 cp_scan_for_anonymous_namespaces (sym);
10927 }
10928 return (sym);
10929 }
10930
10931 /* A wrapper for new_symbol_full that always allocates a new symbol. */
10932
10933 static struct symbol *
10934 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10935 {
10936 return new_symbol_full (die, type, cu, NULL);
10937 }
10938
10939 /* Given an attr with a DW_FORM_dataN value in host byte order,
10940 zero-extend it as appropriate for the symbol's type. The DWARF
10941 standard (v4) is not entirely clear about the meaning of using
10942 DW_FORM_dataN for a constant with a signed type, where the type is
10943 wider than the data. The conclusion of a discussion on the DWARF
10944 list was that this is unspecified. We choose to always zero-extend
10945 because that is the interpretation long in use by GCC. */
10946
10947 static gdb_byte *
10948 dwarf2_const_value_data (struct attribute *attr, struct type *type,
10949 const char *name, struct obstack *obstack,
10950 struct dwarf2_cu *cu, long *value, int bits)
10951 {
10952 struct objfile *objfile = cu->objfile;
10953 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10954 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10955 LONGEST l = DW_UNSND (attr);
10956
10957 if (bits < sizeof (*value) * 8)
10958 {
10959 l &= ((LONGEST) 1 << bits) - 1;
10960 *value = l;
10961 }
10962 else if (bits == sizeof (*value) * 8)
10963 *value = l;
10964 else
10965 {
10966 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10967 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10968 return bytes;
10969 }
10970
10971 return NULL;
10972 }
10973
10974 /* Read a constant value from an attribute. Either set *VALUE, or if
10975 the value does not fit in *VALUE, set *BYTES - either already
10976 allocated on the objfile obstack, or newly allocated on OBSTACK,
10977 or, set *BATON, if we translated the constant to a location
10978 expression. */
10979
10980 static void
10981 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10982 const char *name, struct obstack *obstack,
10983 struct dwarf2_cu *cu,
10984 long *value, gdb_byte **bytes,
10985 struct dwarf2_locexpr_baton **baton)
10986 {
10987 struct objfile *objfile = cu->objfile;
10988 struct comp_unit_head *cu_header = &cu->header;
10989 struct dwarf_block *blk;
10990 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10991 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10992
10993 *value = 0;
10994 *bytes = NULL;
10995 *baton = NULL;
10996
10997 switch (attr->form)
10998 {
10999 case DW_FORM_addr:
11000 {
11001 gdb_byte *data;
11002
11003 if (TYPE_LENGTH (type) != cu_header->addr_size)
11004 dwarf2_const_value_length_mismatch_complaint (name,
11005 cu_header->addr_size,
11006 TYPE_LENGTH (type));
11007 /* Symbols of this form are reasonably rare, so we just
11008 piggyback on the existing location code rather than writing
11009 a new implementation of symbol_computed_ops. */
11010 *baton = obstack_alloc (&objfile->objfile_obstack,
11011 sizeof (struct dwarf2_locexpr_baton));
11012 (*baton)->per_cu = cu->per_cu;
11013 gdb_assert ((*baton)->per_cu);
11014
11015 (*baton)->size = 2 + cu_header->addr_size;
11016 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11017 (*baton)->data = data;
11018
11019 data[0] = DW_OP_addr;
11020 store_unsigned_integer (&data[1], cu_header->addr_size,
11021 byte_order, DW_ADDR (attr));
11022 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11023 }
11024 break;
11025 case DW_FORM_string:
11026 case DW_FORM_strp:
11027 /* DW_STRING is already allocated on the objfile obstack, point
11028 directly to it. */
11029 *bytes = (gdb_byte *) DW_STRING (attr);
11030 break;
11031 case DW_FORM_block1:
11032 case DW_FORM_block2:
11033 case DW_FORM_block4:
11034 case DW_FORM_block:
11035 case DW_FORM_exprloc:
11036 blk = DW_BLOCK (attr);
11037 if (TYPE_LENGTH (type) != blk->size)
11038 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11039 TYPE_LENGTH (type));
11040 *bytes = blk->data;
11041 break;
11042
11043 /* The DW_AT_const_value attributes are supposed to carry the
11044 symbol's value "represented as it would be on the target
11045 architecture." By the time we get here, it's already been
11046 converted to host endianness, so we just need to sign- or
11047 zero-extend it as appropriate. */
11048 case DW_FORM_data1:
11049 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
11050 break;
11051 case DW_FORM_data2:
11052 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
11053 break;
11054 case DW_FORM_data4:
11055 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
11056 break;
11057 case DW_FORM_data8:
11058 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
11059 break;
11060
11061 case DW_FORM_sdata:
11062 *value = DW_SND (attr);
11063 break;
11064
11065 case DW_FORM_udata:
11066 *value = DW_UNSND (attr);
11067 break;
11068
11069 default:
11070 complaint (&symfile_complaints,
11071 _("unsupported const value attribute form: '%s'"),
11072 dwarf_form_name (attr->form));
11073 *value = 0;
11074 break;
11075 }
11076 }
11077
11078
11079 /* Copy constant value from an attribute to a symbol. */
11080
11081 static void
11082 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11083 struct dwarf2_cu *cu)
11084 {
11085 struct objfile *objfile = cu->objfile;
11086 struct comp_unit_head *cu_header = &cu->header;
11087 long value;
11088 gdb_byte *bytes;
11089 struct dwarf2_locexpr_baton *baton;
11090
11091 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11092 SYMBOL_PRINT_NAME (sym),
11093 &objfile->objfile_obstack, cu,
11094 &value, &bytes, &baton);
11095
11096 if (baton != NULL)
11097 {
11098 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11099 SYMBOL_LOCATION_BATON (sym) = baton;
11100 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11101 }
11102 else if (bytes != NULL)
11103 {
11104 SYMBOL_VALUE_BYTES (sym) = bytes;
11105 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11106 }
11107 else
11108 {
11109 SYMBOL_VALUE (sym) = value;
11110 SYMBOL_CLASS (sym) = LOC_CONST;
11111 }
11112 }
11113
11114 /* Return the type of the die in question using its DW_AT_type attribute. */
11115
11116 static struct type *
11117 die_type (struct die_info *die, struct dwarf2_cu *cu)
11118 {
11119 struct attribute *type_attr;
11120
11121 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11122 if (!type_attr)
11123 {
11124 /* A missing DW_AT_type represents a void type. */
11125 return objfile_type (cu->objfile)->builtin_void;
11126 }
11127
11128 return lookup_die_type (die, type_attr, cu);
11129 }
11130
11131 /* True iff CU's producer generates GNAT Ada auxiliary information
11132 that allows to find parallel types through that information instead
11133 of having to do expensive parallel lookups by type name. */
11134
11135 static int
11136 need_gnat_info (struct dwarf2_cu *cu)
11137 {
11138 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11139 of GNAT produces this auxiliary information, without any indication
11140 that it is produced. Part of enhancing the FSF version of GNAT
11141 to produce that information will be to put in place an indicator
11142 that we can use in order to determine whether the descriptive type
11143 info is available or not. One suggestion that has been made is
11144 to use a new attribute, attached to the CU die. For now, assume
11145 that the descriptive type info is not available. */
11146 return 0;
11147 }
11148
11149 /* Return the auxiliary type of the die in question using its
11150 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11151 attribute is not present. */
11152
11153 static struct type *
11154 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11155 {
11156 struct attribute *type_attr;
11157
11158 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11159 if (!type_attr)
11160 return NULL;
11161
11162 return lookup_die_type (die, type_attr, cu);
11163 }
11164
11165 /* If DIE has a descriptive_type attribute, then set the TYPE's
11166 descriptive type accordingly. */
11167
11168 static void
11169 set_descriptive_type (struct type *type, struct die_info *die,
11170 struct dwarf2_cu *cu)
11171 {
11172 struct type *descriptive_type = die_descriptive_type (die, cu);
11173
11174 if (descriptive_type)
11175 {
11176 ALLOCATE_GNAT_AUX_TYPE (type);
11177 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11178 }
11179 }
11180
11181 /* Return the containing type of the die in question using its
11182 DW_AT_containing_type attribute. */
11183
11184 static struct type *
11185 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11186 {
11187 struct attribute *type_attr;
11188
11189 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11190 if (!type_attr)
11191 error (_("Dwarf Error: Problem turning containing type into gdb type "
11192 "[in module %s]"), cu->objfile->name);
11193
11194 return lookup_die_type (die, type_attr, cu);
11195 }
11196
11197 /* Look up the type of DIE in CU using its type attribute ATTR.
11198 If there is no type substitute an error marker. */
11199
11200 static struct type *
11201 lookup_die_type (struct die_info *die, struct attribute *attr,
11202 struct dwarf2_cu *cu)
11203 {
11204 struct type *this_type;
11205
11206 /* First see if we have it cached. */
11207
11208 if (is_ref_attr (attr))
11209 {
11210 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11211
11212 this_type = get_die_type_at_offset (offset, cu->per_cu);
11213 }
11214 else if (attr->form == DW_FORM_sig8)
11215 {
11216 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11217 struct dwarf2_cu *sig_cu;
11218 unsigned int offset;
11219
11220 /* sig_type will be NULL if the signatured type is missing from
11221 the debug info. */
11222 if (sig_type == NULL)
11223 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11224 "at 0x%x [in module %s]"),
11225 die->offset, cu->objfile->name);
11226
11227 gdb_assert (sig_type->per_cu.from_debug_types);
11228 offset = sig_type->offset + sig_type->type_offset;
11229 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11230 }
11231 else
11232 {
11233 dump_die_for_error (die);
11234 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11235 dwarf_attr_name (attr->name), cu->objfile->name);
11236 }
11237
11238 /* If not cached we need to read it in. */
11239
11240 if (this_type == NULL)
11241 {
11242 struct die_info *type_die;
11243 struct dwarf2_cu *type_cu = cu;
11244
11245 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11246 /* If the type is cached, we should have found it above. */
11247 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11248 this_type = read_type_die_1 (type_die, type_cu);
11249 }
11250
11251 /* If we still don't have a type use an error marker. */
11252
11253 if (this_type == NULL)
11254 {
11255 char *message, *saved;
11256
11257 /* read_type_die already issued a complaint. */
11258 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11259 cu->objfile->name,
11260 cu->header.offset,
11261 die->offset);
11262 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11263 message, strlen (message));
11264 xfree (message);
11265
11266 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11267 }
11268
11269 return this_type;
11270 }
11271
11272 /* Return the type in DIE, CU.
11273 Returns NULL for invalid types.
11274
11275 This first does a lookup in the appropriate type_hash table,
11276 and only reads the die in if necessary.
11277
11278 NOTE: This can be called when reading in partial or full symbols. */
11279
11280 static struct type *
11281 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11282 {
11283 struct type *this_type;
11284
11285 this_type = get_die_type (die, cu);
11286 if (this_type)
11287 return this_type;
11288
11289 return read_type_die_1 (die, cu);
11290 }
11291
11292 /* Read the type in DIE, CU.
11293 Returns NULL for invalid types. */
11294
11295 static struct type *
11296 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11297 {
11298 struct type *this_type = NULL;
11299
11300 switch (die->tag)
11301 {
11302 case DW_TAG_class_type:
11303 case DW_TAG_interface_type:
11304 case DW_TAG_structure_type:
11305 case DW_TAG_union_type:
11306 this_type = read_structure_type (die, cu);
11307 break;
11308 case DW_TAG_enumeration_type:
11309 this_type = read_enumeration_type (die, cu);
11310 break;
11311 case DW_TAG_subprogram:
11312 case DW_TAG_subroutine_type:
11313 case DW_TAG_inlined_subroutine:
11314 this_type = read_subroutine_type (die, cu);
11315 break;
11316 case DW_TAG_array_type:
11317 this_type = read_array_type (die, cu);
11318 break;
11319 case DW_TAG_set_type:
11320 this_type = read_set_type (die, cu);
11321 break;
11322 case DW_TAG_pointer_type:
11323 this_type = read_tag_pointer_type (die, cu);
11324 break;
11325 case DW_TAG_ptr_to_member_type:
11326 this_type = read_tag_ptr_to_member_type (die, cu);
11327 break;
11328 case DW_TAG_reference_type:
11329 this_type = read_tag_reference_type (die, cu);
11330 break;
11331 case DW_TAG_const_type:
11332 this_type = read_tag_const_type (die, cu);
11333 break;
11334 case DW_TAG_volatile_type:
11335 this_type = read_tag_volatile_type (die, cu);
11336 break;
11337 case DW_TAG_string_type:
11338 this_type = read_tag_string_type (die, cu);
11339 break;
11340 case DW_TAG_typedef:
11341 this_type = read_typedef (die, cu);
11342 break;
11343 case DW_TAG_subrange_type:
11344 this_type = read_subrange_type (die, cu);
11345 break;
11346 case DW_TAG_base_type:
11347 this_type = read_base_type (die, cu);
11348 break;
11349 case DW_TAG_unspecified_type:
11350 this_type = read_unspecified_type (die, cu);
11351 break;
11352 case DW_TAG_namespace:
11353 this_type = read_namespace_type (die, cu);
11354 break;
11355 case DW_TAG_module:
11356 this_type = read_module_type (die, cu);
11357 break;
11358 default:
11359 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
11360 dwarf_tag_name (die->tag));
11361 break;
11362 }
11363
11364 return this_type;
11365 }
11366
11367 /* See if we can figure out if the class lives in a namespace. We do
11368 this by looking for a member function; its demangled name will
11369 contain namespace info, if there is any.
11370 Return the computed name or NULL.
11371 Space for the result is allocated on the objfile's obstack.
11372 This is the full-die version of guess_partial_die_structure_name.
11373 In this case we know DIE has no useful parent. */
11374
11375 static char *
11376 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11377 {
11378 struct die_info *spec_die;
11379 struct dwarf2_cu *spec_cu;
11380 struct die_info *child;
11381
11382 spec_cu = cu;
11383 spec_die = die_specification (die, &spec_cu);
11384 if (spec_die != NULL)
11385 {
11386 die = spec_die;
11387 cu = spec_cu;
11388 }
11389
11390 for (child = die->child;
11391 child != NULL;
11392 child = child->sibling)
11393 {
11394 if (child->tag == DW_TAG_subprogram)
11395 {
11396 struct attribute *attr;
11397
11398 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11399 if (attr == NULL)
11400 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11401 if (attr != NULL)
11402 {
11403 char *actual_name
11404 = language_class_name_from_physname (cu->language_defn,
11405 DW_STRING (attr));
11406 char *name = NULL;
11407
11408 if (actual_name != NULL)
11409 {
11410 char *die_name = dwarf2_name (die, cu);
11411
11412 if (die_name != NULL
11413 && strcmp (die_name, actual_name) != 0)
11414 {
11415 /* Strip off the class name from the full name.
11416 We want the prefix. */
11417 int die_name_len = strlen (die_name);
11418 int actual_name_len = strlen (actual_name);
11419
11420 /* Test for '::' as a sanity check. */
11421 if (actual_name_len > die_name_len + 2
11422 && actual_name[actual_name_len - die_name_len - 1] == ':')
11423 name =
11424 obsavestring (actual_name,
11425 actual_name_len - die_name_len - 2,
11426 &cu->objfile->objfile_obstack);
11427 }
11428 }
11429 xfree (actual_name);
11430 return name;
11431 }
11432 }
11433 }
11434
11435 return NULL;
11436 }
11437
11438 /* Return the name of the namespace/class that DIE is defined within,
11439 or "" if we can't tell. The caller should not xfree the result.
11440
11441 For example, if we're within the method foo() in the following
11442 code:
11443
11444 namespace N {
11445 class C {
11446 void foo () {
11447 }
11448 };
11449 }
11450
11451 then determine_prefix on foo's die will return "N::C". */
11452
11453 static char *
11454 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11455 {
11456 struct die_info *parent, *spec_die;
11457 struct dwarf2_cu *spec_cu;
11458 struct type *parent_type;
11459
11460 if (cu->language != language_cplus && cu->language != language_java
11461 && cu->language != language_fortran)
11462 return "";
11463
11464 /* We have to be careful in the presence of DW_AT_specification.
11465 For example, with GCC 3.4, given the code
11466
11467 namespace N {
11468 void foo() {
11469 // Definition of N::foo.
11470 }
11471 }
11472
11473 then we'll have a tree of DIEs like this:
11474
11475 1: DW_TAG_compile_unit
11476 2: DW_TAG_namespace // N
11477 3: DW_TAG_subprogram // declaration of N::foo
11478 4: DW_TAG_subprogram // definition of N::foo
11479 DW_AT_specification // refers to die #3
11480
11481 Thus, when processing die #4, we have to pretend that we're in
11482 the context of its DW_AT_specification, namely the contex of die
11483 #3. */
11484 spec_cu = cu;
11485 spec_die = die_specification (die, &spec_cu);
11486 if (spec_die == NULL)
11487 parent = die->parent;
11488 else
11489 {
11490 parent = spec_die->parent;
11491 cu = spec_cu;
11492 }
11493
11494 if (parent == NULL)
11495 return "";
11496 else if (parent->building_fullname)
11497 {
11498 const char *name;
11499 const char *parent_name;
11500
11501 /* It has been seen on RealView 2.2 built binaries,
11502 DW_TAG_template_type_param types actually _defined_ as
11503 children of the parent class:
11504
11505 enum E {};
11506 template class <class Enum> Class{};
11507 Class<enum E> class_e;
11508
11509 1: DW_TAG_class_type (Class)
11510 2: DW_TAG_enumeration_type (E)
11511 3: DW_TAG_enumerator (enum1:0)
11512 3: DW_TAG_enumerator (enum2:1)
11513 ...
11514 2: DW_TAG_template_type_param
11515 DW_AT_type DW_FORM_ref_udata (E)
11516
11517 Besides being broken debug info, it can put GDB into an
11518 infinite loop. Consider:
11519
11520 When we're building the full name for Class<E>, we'll start
11521 at Class, and go look over its template type parameters,
11522 finding E. We'll then try to build the full name of E, and
11523 reach here. We're now trying to build the full name of E,
11524 and look over the parent DIE for containing scope. In the
11525 broken case, if we followed the parent DIE of E, we'd again
11526 find Class, and once again go look at its template type
11527 arguments, etc., etc. Simply don't consider such parent die
11528 as source-level parent of this die (it can't be, the language
11529 doesn't allow it), and break the loop here. */
11530 name = dwarf2_name (die, cu);
11531 parent_name = dwarf2_name (parent, cu);
11532 complaint (&symfile_complaints,
11533 _("template param type '%s' defined within parent '%s'"),
11534 name ? name : "<unknown>",
11535 parent_name ? parent_name : "<unknown>");
11536 return "";
11537 }
11538 else
11539 switch (parent->tag)
11540 {
11541 case DW_TAG_namespace:
11542 parent_type = read_type_die (parent, cu);
11543 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11544 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11545 Work around this problem here. */
11546 if (cu->language == language_cplus
11547 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11548 return "";
11549 /* We give a name to even anonymous namespaces. */
11550 return TYPE_TAG_NAME (parent_type);
11551 case DW_TAG_class_type:
11552 case DW_TAG_interface_type:
11553 case DW_TAG_structure_type:
11554 case DW_TAG_union_type:
11555 case DW_TAG_module:
11556 parent_type = read_type_die (parent, cu);
11557 if (TYPE_TAG_NAME (parent_type) != NULL)
11558 return TYPE_TAG_NAME (parent_type);
11559 else
11560 /* An anonymous structure is only allowed non-static data
11561 members; no typedefs, no member functions, et cetera.
11562 So it does not need a prefix. */
11563 return "";
11564 case DW_TAG_compile_unit:
11565 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11566 if (cu->language == language_cplus
11567 && dwarf2_per_objfile->types.asection != NULL
11568 && die->child != NULL
11569 && (die->tag == DW_TAG_class_type
11570 || die->tag == DW_TAG_structure_type
11571 || die->tag == DW_TAG_union_type))
11572 {
11573 char *name = guess_full_die_structure_name (die, cu);
11574 if (name != NULL)
11575 return name;
11576 }
11577 return "";
11578 default:
11579 return determine_prefix (parent, cu);
11580 }
11581 }
11582
11583 /* Return a newly-allocated string formed by concatenating PREFIX and
11584 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11585 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11586 perform an obconcat, otherwise allocate storage for the result. The CU argument
11587 is used to determine the language and hence, the appropriate separator. */
11588
11589 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11590
11591 static char *
11592 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11593 int physname, struct dwarf2_cu *cu)
11594 {
11595 const char *lead = "";
11596 const char *sep;
11597
11598 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11599 sep = "";
11600 else if (cu->language == language_java)
11601 sep = ".";
11602 else if (cu->language == language_fortran && physname)
11603 {
11604 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11605 DW_AT_MIPS_linkage_name is preferred and used instead. */
11606
11607 lead = "__";
11608 sep = "_MOD_";
11609 }
11610 else
11611 sep = "::";
11612
11613 if (prefix == NULL)
11614 prefix = "";
11615 if (suffix == NULL)
11616 suffix = "";
11617
11618 if (obs == NULL)
11619 {
11620 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11621
11622 strcpy (retval, lead);
11623 strcat (retval, prefix);
11624 strcat (retval, sep);
11625 strcat (retval, suffix);
11626 return retval;
11627 }
11628 else
11629 {
11630 /* We have an obstack. */
11631 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11632 }
11633 }
11634
11635 /* Return sibling of die, NULL if no sibling. */
11636
11637 static struct die_info *
11638 sibling_die (struct die_info *die)
11639 {
11640 return die->sibling;
11641 }
11642
11643 /* Get name of a die, return NULL if not found. */
11644
11645 static char *
11646 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11647 struct obstack *obstack)
11648 {
11649 if (name && cu->language == language_cplus)
11650 {
11651 char *canon_name = cp_canonicalize_string (name);
11652
11653 if (canon_name != NULL)
11654 {
11655 if (strcmp (canon_name, name) != 0)
11656 name = obsavestring (canon_name, strlen (canon_name),
11657 obstack);
11658 xfree (canon_name);
11659 }
11660 }
11661
11662 return name;
11663 }
11664
11665 /* Get name of a die, return NULL if not found. */
11666
11667 static char *
11668 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11669 {
11670 struct attribute *attr;
11671
11672 attr = dwarf2_attr (die, DW_AT_name, cu);
11673 if (!attr || !DW_STRING (attr))
11674 return NULL;
11675
11676 switch (die->tag)
11677 {
11678 case DW_TAG_compile_unit:
11679 /* Compilation units have a DW_AT_name that is a filename, not
11680 a source language identifier. */
11681 case DW_TAG_enumeration_type:
11682 case DW_TAG_enumerator:
11683 /* These tags always have simple identifiers already; no need
11684 to canonicalize them. */
11685 return DW_STRING (attr);
11686
11687 case DW_TAG_subprogram:
11688 /* Java constructors will all be named "<init>", so return
11689 the class name when we see this special case. */
11690 if (cu->language == language_java
11691 && DW_STRING (attr) != NULL
11692 && strcmp (DW_STRING (attr), "<init>") == 0)
11693 {
11694 struct dwarf2_cu *spec_cu = cu;
11695 struct die_info *spec_die;
11696
11697 /* GCJ will output '<init>' for Java constructor names.
11698 For this special case, return the name of the parent class. */
11699
11700 /* GCJ may output suprogram DIEs with AT_specification set.
11701 If so, use the name of the specified DIE. */
11702 spec_die = die_specification (die, &spec_cu);
11703 if (spec_die != NULL)
11704 return dwarf2_name (spec_die, spec_cu);
11705
11706 do
11707 {
11708 die = die->parent;
11709 if (die->tag == DW_TAG_class_type)
11710 return dwarf2_name (die, cu);
11711 }
11712 while (die->tag != DW_TAG_compile_unit);
11713 }
11714 break;
11715
11716 case DW_TAG_class_type:
11717 case DW_TAG_interface_type:
11718 case DW_TAG_structure_type:
11719 case DW_TAG_union_type:
11720 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11721 structures or unions. These were of the form "._%d" in GCC 4.1,
11722 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11723 and GCC 4.4. We work around this problem by ignoring these. */
11724 if (strncmp (DW_STRING (attr), "._", 2) == 0
11725 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11726 return NULL;
11727 break;
11728
11729 default:
11730 break;
11731 }
11732
11733 if (!DW_STRING_IS_CANONICAL (attr))
11734 {
11735 DW_STRING (attr)
11736 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11737 &cu->objfile->objfile_obstack);
11738 DW_STRING_IS_CANONICAL (attr) = 1;
11739 }
11740 return DW_STRING (attr);
11741 }
11742
11743 /* Return the die that this die in an extension of, or NULL if there
11744 is none. *EXT_CU is the CU containing DIE on input, and the CU
11745 containing the return value on output. */
11746
11747 static struct die_info *
11748 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11749 {
11750 struct attribute *attr;
11751
11752 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11753 if (attr == NULL)
11754 return NULL;
11755
11756 return follow_die_ref (die, attr, ext_cu);
11757 }
11758
11759 /* Convert a DIE tag into its string name. */
11760
11761 static char *
11762 dwarf_tag_name (unsigned tag)
11763 {
11764 switch (tag)
11765 {
11766 case DW_TAG_padding:
11767 return "DW_TAG_padding";
11768 case DW_TAG_array_type:
11769 return "DW_TAG_array_type";
11770 case DW_TAG_class_type:
11771 return "DW_TAG_class_type";
11772 case DW_TAG_entry_point:
11773 return "DW_TAG_entry_point";
11774 case DW_TAG_enumeration_type:
11775 return "DW_TAG_enumeration_type";
11776 case DW_TAG_formal_parameter:
11777 return "DW_TAG_formal_parameter";
11778 case DW_TAG_imported_declaration:
11779 return "DW_TAG_imported_declaration";
11780 case DW_TAG_label:
11781 return "DW_TAG_label";
11782 case DW_TAG_lexical_block:
11783 return "DW_TAG_lexical_block";
11784 case DW_TAG_member:
11785 return "DW_TAG_member";
11786 case DW_TAG_pointer_type:
11787 return "DW_TAG_pointer_type";
11788 case DW_TAG_reference_type:
11789 return "DW_TAG_reference_type";
11790 case DW_TAG_compile_unit:
11791 return "DW_TAG_compile_unit";
11792 case DW_TAG_string_type:
11793 return "DW_TAG_string_type";
11794 case DW_TAG_structure_type:
11795 return "DW_TAG_structure_type";
11796 case DW_TAG_subroutine_type:
11797 return "DW_TAG_subroutine_type";
11798 case DW_TAG_typedef:
11799 return "DW_TAG_typedef";
11800 case DW_TAG_union_type:
11801 return "DW_TAG_union_type";
11802 case DW_TAG_unspecified_parameters:
11803 return "DW_TAG_unspecified_parameters";
11804 case DW_TAG_variant:
11805 return "DW_TAG_variant";
11806 case DW_TAG_common_block:
11807 return "DW_TAG_common_block";
11808 case DW_TAG_common_inclusion:
11809 return "DW_TAG_common_inclusion";
11810 case DW_TAG_inheritance:
11811 return "DW_TAG_inheritance";
11812 case DW_TAG_inlined_subroutine:
11813 return "DW_TAG_inlined_subroutine";
11814 case DW_TAG_module:
11815 return "DW_TAG_module";
11816 case DW_TAG_ptr_to_member_type:
11817 return "DW_TAG_ptr_to_member_type";
11818 case DW_TAG_set_type:
11819 return "DW_TAG_set_type";
11820 case DW_TAG_subrange_type:
11821 return "DW_TAG_subrange_type";
11822 case DW_TAG_with_stmt:
11823 return "DW_TAG_with_stmt";
11824 case DW_TAG_access_declaration:
11825 return "DW_TAG_access_declaration";
11826 case DW_TAG_base_type:
11827 return "DW_TAG_base_type";
11828 case DW_TAG_catch_block:
11829 return "DW_TAG_catch_block";
11830 case DW_TAG_const_type:
11831 return "DW_TAG_const_type";
11832 case DW_TAG_constant:
11833 return "DW_TAG_constant";
11834 case DW_TAG_enumerator:
11835 return "DW_TAG_enumerator";
11836 case DW_TAG_file_type:
11837 return "DW_TAG_file_type";
11838 case DW_TAG_friend:
11839 return "DW_TAG_friend";
11840 case DW_TAG_namelist:
11841 return "DW_TAG_namelist";
11842 case DW_TAG_namelist_item:
11843 return "DW_TAG_namelist_item";
11844 case DW_TAG_packed_type:
11845 return "DW_TAG_packed_type";
11846 case DW_TAG_subprogram:
11847 return "DW_TAG_subprogram";
11848 case DW_TAG_template_type_param:
11849 return "DW_TAG_template_type_param";
11850 case DW_TAG_template_value_param:
11851 return "DW_TAG_template_value_param";
11852 case DW_TAG_thrown_type:
11853 return "DW_TAG_thrown_type";
11854 case DW_TAG_try_block:
11855 return "DW_TAG_try_block";
11856 case DW_TAG_variant_part:
11857 return "DW_TAG_variant_part";
11858 case DW_TAG_variable:
11859 return "DW_TAG_variable";
11860 case DW_TAG_volatile_type:
11861 return "DW_TAG_volatile_type";
11862 case DW_TAG_dwarf_procedure:
11863 return "DW_TAG_dwarf_procedure";
11864 case DW_TAG_restrict_type:
11865 return "DW_TAG_restrict_type";
11866 case DW_TAG_interface_type:
11867 return "DW_TAG_interface_type";
11868 case DW_TAG_namespace:
11869 return "DW_TAG_namespace";
11870 case DW_TAG_imported_module:
11871 return "DW_TAG_imported_module";
11872 case DW_TAG_unspecified_type:
11873 return "DW_TAG_unspecified_type";
11874 case DW_TAG_partial_unit:
11875 return "DW_TAG_partial_unit";
11876 case DW_TAG_imported_unit:
11877 return "DW_TAG_imported_unit";
11878 case DW_TAG_condition:
11879 return "DW_TAG_condition";
11880 case DW_TAG_shared_type:
11881 return "DW_TAG_shared_type";
11882 case DW_TAG_type_unit:
11883 return "DW_TAG_type_unit";
11884 case DW_TAG_MIPS_loop:
11885 return "DW_TAG_MIPS_loop";
11886 case DW_TAG_HP_array_descriptor:
11887 return "DW_TAG_HP_array_descriptor";
11888 case DW_TAG_format_label:
11889 return "DW_TAG_format_label";
11890 case DW_TAG_function_template:
11891 return "DW_TAG_function_template";
11892 case DW_TAG_class_template:
11893 return "DW_TAG_class_template";
11894 case DW_TAG_GNU_BINCL:
11895 return "DW_TAG_GNU_BINCL";
11896 case DW_TAG_GNU_EINCL:
11897 return "DW_TAG_GNU_EINCL";
11898 case DW_TAG_upc_shared_type:
11899 return "DW_TAG_upc_shared_type";
11900 case DW_TAG_upc_strict_type:
11901 return "DW_TAG_upc_strict_type";
11902 case DW_TAG_upc_relaxed_type:
11903 return "DW_TAG_upc_relaxed_type";
11904 case DW_TAG_PGI_kanji_type:
11905 return "DW_TAG_PGI_kanji_type";
11906 case DW_TAG_PGI_interface_block:
11907 return "DW_TAG_PGI_interface_block";
11908 default:
11909 return "DW_TAG_<unknown>";
11910 }
11911 }
11912
11913 /* Convert a DWARF attribute code into its string name. */
11914
11915 static char *
11916 dwarf_attr_name (unsigned attr)
11917 {
11918 switch (attr)
11919 {
11920 case DW_AT_sibling:
11921 return "DW_AT_sibling";
11922 case DW_AT_location:
11923 return "DW_AT_location";
11924 case DW_AT_name:
11925 return "DW_AT_name";
11926 case DW_AT_ordering:
11927 return "DW_AT_ordering";
11928 case DW_AT_subscr_data:
11929 return "DW_AT_subscr_data";
11930 case DW_AT_byte_size:
11931 return "DW_AT_byte_size";
11932 case DW_AT_bit_offset:
11933 return "DW_AT_bit_offset";
11934 case DW_AT_bit_size:
11935 return "DW_AT_bit_size";
11936 case DW_AT_element_list:
11937 return "DW_AT_element_list";
11938 case DW_AT_stmt_list:
11939 return "DW_AT_stmt_list";
11940 case DW_AT_low_pc:
11941 return "DW_AT_low_pc";
11942 case DW_AT_high_pc:
11943 return "DW_AT_high_pc";
11944 case DW_AT_language:
11945 return "DW_AT_language";
11946 case DW_AT_member:
11947 return "DW_AT_member";
11948 case DW_AT_discr:
11949 return "DW_AT_discr";
11950 case DW_AT_discr_value:
11951 return "DW_AT_discr_value";
11952 case DW_AT_visibility:
11953 return "DW_AT_visibility";
11954 case DW_AT_import:
11955 return "DW_AT_import";
11956 case DW_AT_string_length:
11957 return "DW_AT_string_length";
11958 case DW_AT_common_reference:
11959 return "DW_AT_common_reference";
11960 case DW_AT_comp_dir:
11961 return "DW_AT_comp_dir";
11962 case DW_AT_const_value:
11963 return "DW_AT_const_value";
11964 case DW_AT_containing_type:
11965 return "DW_AT_containing_type";
11966 case DW_AT_default_value:
11967 return "DW_AT_default_value";
11968 case DW_AT_inline:
11969 return "DW_AT_inline";
11970 case DW_AT_is_optional:
11971 return "DW_AT_is_optional";
11972 case DW_AT_lower_bound:
11973 return "DW_AT_lower_bound";
11974 case DW_AT_producer:
11975 return "DW_AT_producer";
11976 case DW_AT_prototyped:
11977 return "DW_AT_prototyped";
11978 case DW_AT_return_addr:
11979 return "DW_AT_return_addr";
11980 case DW_AT_start_scope:
11981 return "DW_AT_start_scope";
11982 case DW_AT_bit_stride:
11983 return "DW_AT_bit_stride";
11984 case DW_AT_upper_bound:
11985 return "DW_AT_upper_bound";
11986 case DW_AT_abstract_origin:
11987 return "DW_AT_abstract_origin";
11988 case DW_AT_accessibility:
11989 return "DW_AT_accessibility";
11990 case DW_AT_address_class:
11991 return "DW_AT_address_class";
11992 case DW_AT_artificial:
11993 return "DW_AT_artificial";
11994 case DW_AT_base_types:
11995 return "DW_AT_base_types";
11996 case DW_AT_calling_convention:
11997 return "DW_AT_calling_convention";
11998 case DW_AT_count:
11999 return "DW_AT_count";
12000 case DW_AT_data_member_location:
12001 return "DW_AT_data_member_location";
12002 case DW_AT_decl_column:
12003 return "DW_AT_decl_column";
12004 case DW_AT_decl_file:
12005 return "DW_AT_decl_file";
12006 case DW_AT_decl_line:
12007 return "DW_AT_decl_line";
12008 case DW_AT_declaration:
12009 return "DW_AT_declaration";
12010 case DW_AT_discr_list:
12011 return "DW_AT_discr_list";
12012 case DW_AT_encoding:
12013 return "DW_AT_encoding";
12014 case DW_AT_external:
12015 return "DW_AT_external";
12016 case DW_AT_frame_base:
12017 return "DW_AT_frame_base";
12018 case DW_AT_friend:
12019 return "DW_AT_friend";
12020 case DW_AT_identifier_case:
12021 return "DW_AT_identifier_case";
12022 case DW_AT_macro_info:
12023 return "DW_AT_macro_info";
12024 case DW_AT_namelist_items:
12025 return "DW_AT_namelist_items";
12026 case DW_AT_priority:
12027 return "DW_AT_priority";
12028 case DW_AT_segment:
12029 return "DW_AT_segment";
12030 case DW_AT_specification:
12031 return "DW_AT_specification";
12032 case DW_AT_static_link:
12033 return "DW_AT_static_link";
12034 case DW_AT_type:
12035 return "DW_AT_type";
12036 case DW_AT_use_location:
12037 return "DW_AT_use_location";
12038 case DW_AT_variable_parameter:
12039 return "DW_AT_variable_parameter";
12040 case DW_AT_virtuality:
12041 return "DW_AT_virtuality";
12042 case DW_AT_vtable_elem_location:
12043 return "DW_AT_vtable_elem_location";
12044 /* DWARF 3 values. */
12045 case DW_AT_allocated:
12046 return "DW_AT_allocated";
12047 case DW_AT_associated:
12048 return "DW_AT_associated";
12049 case DW_AT_data_location:
12050 return "DW_AT_data_location";
12051 case DW_AT_byte_stride:
12052 return "DW_AT_byte_stride";
12053 case DW_AT_entry_pc:
12054 return "DW_AT_entry_pc";
12055 case DW_AT_use_UTF8:
12056 return "DW_AT_use_UTF8";
12057 case DW_AT_extension:
12058 return "DW_AT_extension";
12059 case DW_AT_ranges:
12060 return "DW_AT_ranges";
12061 case DW_AT_trampoline:
12062 return "DW_AT_trampoline";
12063 case DW_AT_call_column:
12064 return "DW_AT_call_column";
12065 case DW_AT_call_file:
12066 return "DW_AT_call_file";
12067 case DW_AT_call_line:
12068 return "DW_AT_call_line";
12069 case DW_AT_description:
12070 return "DW_AT_description";
12071 case DW_AT_binary_scale:
12072 return "DW_AT_binary_scale";
12073 case DW_AT_decimal_scale:
12074 return "DW_AT_decimal_scale";
12075 case DW_AT_small:
12076 return "DW_AT_small";
12077 case DW_AT_decimal_sign:
12078 return "DW_AT_decimal_sign";
12079 case DW_AT_digit_count:
12080 return "DW_AT_digit_count";
12081 case DW_AT_picture_string:
12082 return "DW_AT_picture_string";
12083 case DW_AT_mutable:
12084 return "DW_AT_mutable";
12085 case DW_AT_threads_scaled:
12086 return "DW_AT_threads_scaled";
12087 case DW_AT_explicit:
12088 return "DW_AT_explicit";
12089 case DW_AT_object_pointer:
12090 return "DW_AT_object_pointer";
12091 case DW_AT_endianity:
12092 return "DW_AT_endianity";
12093 case DW_AT_elemental:
12094 return "DW_AT_elemental";
12095 case DW_AT_pure:
12096 return "DW_AT_pure";
12097 case DW_AT_recursive:
12098 return "DW_AT_recursive";
12099 /* DWARF 4 values. */
12100 case DW_AT_signature:
12101 return "DW_AT_signature";
12102 case DW_AT_linkage_name:
12103 return "DW_AT_linkage_name";
12104 /* SGI/MIPS extensions. */
12105 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12106 case DW_AT_MIPS_fde:
12107 return "DW_AT_MIPS_fde";
12108 #endif
12109 case DW_AT_MIPS_loop_begin:
12110 return "DW_AT_MIPS_loop_begin";
12111 case DW_AT_MIPS_tail_loop_begin:
12112 return "DW_AT_MIPS_tail_loop_begin";
12113 case DW_AT_MIPS_epilog_begin:
12114 return "DW_AT_MIPS_epilog_begin";
12115 case DW_AT_MIPS_loop_unroll_factor:
12116 return "DW_AT_MIPS_loop_unroll_factor";
12117 case DW_AT_MIPS_software_pipeline_depth:
12118 return "DW_AT_MIPS_software_pipeline_depth";
12119 case DW_AT_MIPS_linkage_name:
12120 return "DW_AT_MIPS_linkage_name";
12121 case DW_AT_MIPS_stride:
12122 return "DW_AT_MIPS_stride";
12123 case DW_AT_MIPS_abstract_name:
12124 return "DW_AT_MIPS_abstract_name";
12125 case DW_AT_MIPS_clone_origin:
12126 return "DW_AT_MIPS_clone_origin";
12127 case DW_AT_MIPS_has_inlines:
12128 return "DW_AT_MIPS_has_inlines";
12129 /* HP extensions. */
12130 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12131 case DW_AT_HP_block_index:
12132 return "DW_AT_HP_block_index";
12133 #endif
12134 case DW_AT_HP_unmodifiable:
12135 return "DW_AT_HP_unmodifiable";
12136 case DW_AT_HP_actuals_stmt_list:
12137 return "DW_AT_HP_actuals_stmt_list";
12138 case DW_AT_HP_proc_per_section:
12139 return "DW_AT_HP_proc_per_section";
12140 case DW_AT_HP_raw_data_ptr:
12141 return "DW_AT_HP_raw_data_ptr";
12142 case DW_AT_HP_pass_by_reference:
12143 return "DW_AT_HP_pass_by_reference";
12144 case DW_AT_HP_opt_level:
12145 return "DW_AT_HP_opt_level";
12146 case DW_AT_HP_prof_version_id:
12147 return "DW_AT_HP_prof_version_id";
12148 case DW_AT_HP_opt_flags:
12149 return "DW_AT_HP_opt_flags";
12150 case DW_AT_HP_cold_region_low_pc:
12151 return "DW_AT_HP_cold_region_low_pc";
12152 case DW_AT_HP_cold_region_high_pc:
12153 return "DW_AT_HP_cold_region_high_pc";
12154 case DW_AT_HP_all_variables_modifiable:
12155 return "DW_AT_HP_all_variables_modifiable";
12156 case DW_AT_HP_linkage_name:
12157 return "DW_AT_HP_linkage_name";
12158 case DW_AT_HP_prof_flags:
12159 return "DW_AT_HP_prof_flags";
12160 /* GNU extensions. */
12161 case DW_AT_sf_names:
12162 return "DW_AT_sf_names";
12163 case DW_AT_src_info:
12164 return "DW_AT_src_info";
12165 case DW_AT_mac_info:
12166 return "DW_AT_mac_info";
12167 case DW_AT_src_coords:
12168 return "DW_AT_src_coords";
12169 case DW_AT_body_begin:
12170 return "DW_AT_body_begin";
12171 case DW_AT_body_end:
12172 return "DW_AT_body_end";
12173 case DW_AT_GNU_vector:
12174 return "DW_AT_GNU_vector";
12175 case DW_AT_GNU_odr_signature:
12176 return "DW_AT_GNU_odr_signature";
12177 /* VMS extensions. */
12178 case DW_AT_VMS_rtnbeg_pd_address:
12179 return "DW_AT_VMS_rtnbeg_pd_address";
12180 /* UPC extension. */
12181 case DW_AT_upc_threads_scaled:
12182 return "DW_AT_upc_threads_scaled";
12183 /* PGI (STMicroelectronics) extensions. */
12184 case DW_AT_PGI_lbase:
12185 return "DW_AT_PGI_lbase";
12186 case DW_AT_PGI_soffset:
12187 return "DW_AT_PGI_soffset";
12188 case DW_AT_PGI_lstride:
12189 return "DW_AT_PGI_lstride";
12190 default:
12191 return "DW_AT_<unknown>";
12192 }
12193 }
12194
12195 /* Convert a DWARF value form code into its string name. */
12196
12197 static char *
12198 dwarf_form_name (unsigned form)
12199 {
12200 switch (form)
12201 {
12202 case DW_FORM_addr:
12203 return "DW_FORM_addr";
12204 case DW_FORM_block2:
12205 return "DW_FORM_block2";
12206 case DW_FORM_block4:
12207 return "DW_FORM_block4";
12208 case DW_FORM_data2:
12209 return "DW_FORM_data2";
12210 case DW_FORM_data4:
12211 return "DW_FORM_data4";
12212 case DW_FORM_data8:
12213 return "DW_FORM_data8";
12214 case DW_FORM_string:
12215 return "DW_FORM_string";
12216 case DW_FORM_block:
12217 return "DW_FORM_block";
12218 case DW_FORM_block1:
12219 return "DW_FORM_block1";
12220 case DW_FORM_data1:
12221 return "DW_FORM_data1";
12222 case DW_FORM_flag:
12223 return "DW_FORM_flag";
12224 case DW_FORM_sdata:
12225 return "DW_FORM_sdata";
12226 case DW_FORM_strp:
12227 return "DW_FORM_strp";
12228 case DW_FORM_udata:
12229 return "DW_FORM_udata";
12230 case DW_FORM_ref_addr:
12231 return "DW_FORM_ref_addr";
12232 case DW_FORM_ref1:
12233 return "DW_FORM_ref1";
12234 case DW_FORM_ref2:
12235 return "DW_FORM_ref2";
12236 case DW_FORM_ref4:
12237 return "DW_FORM_ref4";
12238 case DW_FORM_ref8:
12239 return "DW_FORM_ref8";
12240 case DW_FORM_ref_udata:
12241 return "DW_FORM_ref_udata";
12242 case DW_FORM_indirect:
12243 return "DW_FORM_indirect";
12244 case DW_FORM_sec_offset:
12245 return "DW_FORM_sec_offset";
12246 case DW_FORM_exprloc:
12247 return "DW_FORM_exprloc";
12248 case DW_FORM_flag_present:
12249 return "DW_FORM_flag_present";
12250 case DW_FORM_sig8:
12251 return "DW_FORM_sig8";
12252 default:
12253 return "DW_FORM_<unknown>";
12254 }
12255 }
12256
12257 /* Convert a DWARF stack opcode into its string name. */
12258
12259 const char *
12260 dwarf_stack_op_name (unsigned op, int def)
12261 {
12262 switch (op)
12263 {
12264 case DW_OP_addr:
12265 return "DW_OP_addr";
12266 case DW_OP_deref:
12267 return "DW_OP_deref";
12268 case DW_OP_const1u:
12269 return "DW_OP_const1u";
12270 case DW_OP_const1s:
12271 return "DW_OP_const1s";
12272 case DW_OP_const2u:
12273 return "DW_OP_const2u";
12274 case DW_OP_const2s:
12275 return "DW_OP_const2s";
12276 case DW_OP_const4u:
12277 return "DW_OP_const4u";
12278 case DW_OP_const4s:
12279 return "DW_OP_const4s";
12280 case DW_OP_const8u:
12281 return "DW_OP_const8u";
12282 case DW_OP_const8s:
12283 return "DW_OP_const8s";
12284 case DW_OP_constu:
12285 return "DW_OP_constu";
12286 case DW_OP_consts:
12287 return "DW_OP_consts";
12288 case DW_OP_dup:
12289 return "DW_OP_dup";
12290 case DW_OP_drop:
12291 return "DW_OP_drop";
12292 case DW_OP_over:
12293 return "DW_OP_over";
12294 case DW_OP_pick:
12295 return "DW_OP_pick";
12296 case DW_OP_swap:
12297 return "DW_OP_swap";
12298 case DW_OP_rot:
12299 return "DW_OP_rot";
12300 case DW_OP_xderef:
12301 return "DW_OP_xderef";
12302 case DW_OP_abs:
12303 return "DW_OP_abs";
12304 case DW_OP_and:
12305 return "DW_OP_and";
12306 case DW_OP_div:
12307 return "DW_OP_div";
12308 case DW_OP_minus:
12309 return "DW_OP_minus";
12310 case DW_OP_mod:
12311 return "DW_OP_mod";
12312 case DW_OP_mul:
12313 return "DW_OP_mul";
12314 case DW_OP_neg:
12315 return "DW_OP_neg";
12316 case DW_OP_not:
12317 return "DW_OP_not";
12318 case DW_OP_or:
12319 return "DW_OP_or";
12320 case DW_OP_plus:
12321 return "DW_OP_plus";
12322 case DW_OP_plus_uconst:
12323 return "DW_OP_plus_uconst";
12324 case DW_OP_shl:
12325 return "DW_OP_shl";
12326 case DW_OP_shr:
12327 return "DW_OP_shr";
12328 case DW_OP_shra:
12329 return "DW_OP_shra";
12330 case DW_OP_xor:
12331 return "DW_OP_xor";
12332 case DW_OP_bra:
12333 return "DW_OP_bra";
12334 case DW_OP_eq:
12335 return "DW_OP_eq";
12336 case DW_OP_ge:
12337 return "DW_OP_ge";
12338 case DW_OP_gt:
12339 return "DW_OP_gt";
12340 case DW_OP_le:
12341 return "DW_OP_le";
12342 case DW_OP_lt:
12343 return "DW_OP_lt";
12344 case DW_OP_ne:
12345 return "DW_OP_ne";
12346 case DW_OP_skip:
12347 return "DW_OP_skip";
12348 case DW_OP_lit0:
12349 return "DW_OP_lit0";
12350 case DW_OP_lit1:
12351 return "DW_OP_lit1";
12352 case DW_OP_lit2:
12353 return "DW_OP_lit2";
12354 case DW_OP_lit3:
12355 return "DW_OP_lit3";
12356 case DW_OP_lit4:
12357 return "DW_OP_lit4";
12358 case DW_OP_lit5:
12359 return "DW_OP_lit5";
12360 case DW_OP_lit6:
12361 return "DW_OP_lit6";
12362 case DW_OP_lit7:
12363 return "DW_OP_lit7";
12364 case DW_OP_lit8:
12365 return "DW_OP_lit8";
12366 case DW_OP_lit9:
12367 return "DW_OP_lit9";
12368 case DW_OP_lit10:
12369 return "DW_OP_lit10";
12370 case DW_OP_lit11:
12371 return "DW_OP_lit11";
12372 case DW_OP_lit12:
12373 return "DW_OP_lit12";
12374 case DW_OP_lit13:
12375 return "DW_OP_lit13";
12376 case DW_OP_lit14:
12377 return "DW_OP_lit14";
12378 case DW_OP_lit15:
12379 return "DW_OP_lit15";
12380 case DW_OP_lit16:
12381 return "DW_OP_lit16";
12382 case DW_OP_lit17:
12383 return "DW_OP_lit17";
12384 case DW_OP_lit18:
12385 return "DW_OP_lit18";
12386 case DW_OP_lit19:
12387 return "DW_OP_lit19";
12388 case DW_OP_lit20:
12389 return "DW_OP_lit20";
12390 case DW_OP_lit21:
12391 return "DW_OP_lit21";
12392 case DW_OP_lit22:
12393 return "DW_OP_lit22";
12394 case DW_OP_lit23:
12395 return "DW_OP_lit23";
12396 case DW_OP_lit24:
12397 return "DW_OP_lit24";
12398 case DW_OP_lit25:
12399 return "DW_OP_lit25";
12400 case DW_OP_lit26:
12401 return "DW_OP_lit26";
12402 case DW_OP_lit27:
12403 return "DW_OP_lit27";
12404 case DW_OP_lit28:
12405 return "DW_OP_lit28";
12406 case DW_OP_lit29:
12407 return "DW_OP_lit29";
12408 case DW_OP_lit30:
12409 return "DW_OP_lit30";
12410 case DW_OP_lit31:
12411 return "DW_OP_lit31";
12412 case DW_OP_reg0:
12413 return "DW_OP_reg0";
12414 case DW_OP_reg1:
12415 return "DW_OP_reg1";
12416 case DW_OP_reg2:
12417 return "DW_OP_reg2";
12418 case DW_OP_reg3:
12419 return "DW_OP_reg3";
12420 case DW_OP_reg4:
12421 return "DW_OP_reg4";
12422 case DW_OP_reg5:
12423 return "DW_OP_reg5";
12424 case DW_OP_reg6:
12425 return "DW_OP_reg6";
12426 case DW_OP_reg7:
12427 return "DW_OP_reg7";
12428 case DW_OP_reg8:
12429 return "DW_OP_reg8";
12430 case DW_OP_reg9:
12431 return "DW_OP_reg9";
12432 case DW_OP_reg10:
12433 return "DW_OP_reg10";
12434 case DW_OP_reg11:
12435 return "DW_OP_reg11";
12436 case DW_OP_reg12:
12437 return "DW_OP_reg12";
12438 case DW_OP_reg13:
12439 return "DW_OP_reg13";
12440 case DW_OP_reg14:
12441 return "DW_OP_reg14";
12442 case DW_OP_reg15:
12443 return "DW_OP_reg15";
12444 case DW_OP_reg16:
12445 return "DW_OP_reg16";
12446 case DW_OP_reg17:
12447 return "DW_OP_reg17";
12448 case DW_OP_reg18:
12449 return "DW_OP_reg18";
12450 case DW_OP_reg19:
12451 return "DW_OP_reg19";
12452 case DW_OP_reg20:
12453 return "DW_OP_reg20";
12454 case DW_OP_reg21:
12455 return "DW_OP_reg21";
12456 case DW_OP_reg22:
12457 return "DW_OP_reg22";
12458 case DW_OP_reg23:
12459 return "DW_OP_reg23";
12460 case DW_OP_reg24:
12461 return "DW_OP_reg24";
12462 case DW_OP_reg25:
12463 return "DW_OP_reg25";
12464 case DW_OP_reg26:
12465 return "DW_OP_reg26";
12466 case DW_OP_reg27:
12467 return "DW_OP_reg27";
12468 case DW_OP_reg28:
12469 return "DW_OP_reg28";
12470 case DW_OP_reg29:
12471 return "DW_OP_reg29";
12472 case DW_OP_reg30:
12473 return "DW_OP_reg30";
12474 case DW_OP_reg31:
12475 return "DW_OP_reg31";
12476 case DW_OP_breg0:
12477 return "DW_OP_breg0";
12478 case DW_OP_breg1:
12479 return "DW_OP_breg1";
12480 case DW_OP_breg2:
12481 return "DW_OP_breg2";
12482 case DW_OP_breg3:
12483 return "DW_OP_breg3";
12484 case DW_OP_breg4:
12485 return "DW_OP_breg4";
12486 case DW_OP_breg5:
12487 return "DW_OP_breg5";
12488 case DW_OP_breg6:
12489 return "DW_OP_breg6";
12490 case DW_OP_breg7:
12491 return "DW_OP_breg7";
12492 case DW_OP_breg8:
12493 return "DW_OP_breg8";
12494 case DW_OP_breg9:
12495 return "DW_OP_breg9";
12496 case DW_OP_breg10:
12497 return "DW_OP_breg10";
12498 case DW_OP_breg11:
12499 return "DW_OP_breg11";
12500 case DW_OP_breg12:
12501 return "DW_OP_breg12";
12502 case DW_OP_breg13:
12503 return "DW_OP_breg13";
12504 case DW_OP_breg14:
12505 return "DW_OP_breg14";
12506 case DW_OP_breg15:
12507 return "DW_OP_breg15";
12508 case DW_OP_breg16:
12509 return "DW_OP_breg16";
12510 case DW_OP_breg17:
12511 return "DW_OP_breg17";
12512 case DW_OP_breg18:
12513 return "DW_OP_breg18";
12514 case DW_OP_breg19:
12515 return "DW_OP_breg19";
12516 case DW_OP_breg20:
12517 return "DW_OP_breg20";
12518 case DW_OP_breg21:
12519 return "DW_OP_breg21";
12520 case DW_OP_breg22:
12521 return "DW_OP_breg22";
12522 case DW_OP_breg23:
12523 return "DW_OP_breg23";
12524 case DW_OP_breg24:
12525 return "DW_OP_breg24";
12526 case DW_OP_breg25:
12527 return "DW_OP_breg25";
12528 case DW_OP_breg26:
12529 return "DW_OP_breg26";
12530 case DW_OP_breg27:
12531 return "DW_OP_breg27";
12532 case DW_OP_breg28:
12533 return "DW_OP_breg28";
12534 case DW_OP_breg29:
12535 return "DW_OP_breg29";
12536 case DW_OP_breg30:
12537 return "DW_OP_breg30";
12538 case DW_OP_breg31:
12539 return "DW_OP_breg31";
12540 case DW_OP_regx:
12541 return "DW_OP_regx";
12542 case DW_OP_fbreg:
12543 return "DW_OP_fbreg";
12544 case DW_OP_bregx:
12545 return "DW_OP_bregx";
12546 case DW_OP_piece:
12547 return "DW_OP_piece";
12548 case DW_OP_deref_size:
12549 return "DW_OP_deref_size";
12550 case DW_OP_xderef_size:
12551 return "DW_OP_xderef_size";
12552 case DW_OP_nop:
12553 return "DW_OP_nop";
12554 /* DWARF 3 extensions. */
12555 case DW_OP_push_object_address:
12556 return "DW_OP_push_object_address";
12557 case DW_OP_call2:
12558 return "DW_OP_call2";
12559 case DW_OP_call4:
12560 return "DW_OP_call4";
12561 case DW_OP_call_ref:
12562 return "DW_OP_call_ref";
12563 case DW_OP_form_tls_address:
12564 return "DW_OP_form_tls_address";
12565 case DW_OP_call_frame_cfa:
12566 return "DW_OP_call_frame_cfa";
12567 case DW_OP_bit_piece:
12568 return "DW_OP_bit_piece";
12569 /* DWARF 4 extensions. */
12570 case DW_OP_implicit_value:
12571 return "DW_OP_implicit_value";
12572 case DW_OP_stack_value:
12573 return "DW_OP_stack_value";
12574 /* GNU extensions. */
12575 case DW_OP_GNU_push_tls_address:
12576 return "DW_OP_GNU_push_tls_address";
12577 case DW_OP_GNU_uninit:
12578 return "DW_OP_GNU_uninit";
12579 default:
12580 return def ? "OP_<unknown>" : NULL;
12581 }
12582 }
12583
12584 static char *
12585 dwarf_bool_name (unsigned mybool)
12586 {
12587 if (mybool)
12588 return "TRUE";
12589 else
12590 return "FALSE";
12591 }
12592
12593 /* Convert a DWARF type code into its string name. */
12594
12595 static char *
12596 dwarf_type_encoding_name (unsigned enc)
12597 {
12598 switch (enc)
12599 {
12600 case DW_ATE_void:
12601 return "DW_ATE_void";
12602 case DW_ATE_address:
12603 return "DW_ATE_address";
12604 case DW_ATE_boolean:
12605 return "DW_ATE_boolean";
12606 case DW_ATE_complex_float:
12607 return "DW_ATE_complex_float";
12608 case DW_ATE_float:
12609 return "DW_ATE_float";
12610 case DW_ATE_signed:
12611 return "DW_ATE_signed";
12612 case DW_ATE_signed_char:
12613 return "DW_ATE_signed_char";
12614 case DW_ATE_unsigned:
12615 return "DW_ATE_unsigned";
12616 case DW_ATE_unsigned_char:
12617 return "DW_ATE_unsigned_char";
12618 /* DWARF 3. */
12619 case DW_ATE_imaginary_float:
12620 return "DW_ATE_imaginary_float";
12621 case DW_ATE_packed_decimal:
12622 return "DW_ATE_packed_decimal";
12623 case DW_ATE_numeric_string:
12624 return "DW_ATE_numeric_string";
12625 case DW_ATE_edited:
12626 return "DW_ATE_edited";
12627 case DW_ATE_signed_fixed:
12628 return "DW_ATE_signed_fixed";
12629 case DW_ATE_unsigned_fixed:
12630 return "DW_ATE_unsigned_fixed";
12631 case DW_ATE_decimal_float:
12632 return "DW_ATE_decimal_float";
12633 /* DWARF 4. */
12634 case DW_ATE_UTF:
12635 return "DW_ATE_UTF";
12636 /* HP extensions. */
12637 case DW_ATE_HP_float80:
12638 return "DW_ATE_HP_float80";
12639 case DW_ATE_HP_complex_float80:
12640 return "DW_ATE_HP_complex_float80";
12641 case DW_ATE_HP_float128:
12642 return "DW_ATE_HP_float128";
12643 case DW_ATE_HP_complex_float128:
12644 return "DW_ATE_HP_complex_float128";
12645 case DW_ATE_HP_floathpintel:
12646 return "DW_ATE_HP_floathpintel";
12647 case DW_ATE_HP_imaginary_float80:
12648 return "DW_ATE_HP_imaginary_float80";
12649 case DW_ATE_HP_imaginary_float128:
12650 return "DW_ATE_HP_imaginary_float128";
12651 default:
12652 return "DW_ATE_<unknown>";
12653 }
12654 }
12655
12656 /* Convert a DWARF call frame info operation to its string name. */
12657
12658 #if 0
12659 static char *
12660 dwarf_cfi_name (unsigned cfi_opc)
12661 {
12662 switch (cfi_opc)
12663 {
12664 case DW_CFA_advance_loc:
12665 return "DW_CFA_advance_loc";
12666 case DW_CFA_offset:
12667 return "DW_CFA_offset";
12668 case DW_CFA_restore:
12669 return "DW_CFA_restore";
12670 case DW_CFA_nop:
12671 return "DW_CFA_nop";
12672 case DW_CFA_set_loc:
12673 return "DW_CFA_set_loc";
12674 case DW_CFA_advance_loc1:
12675 return "DW_CFA_advance_loc1";
12676 case DW_CFA_advance_loc2:
12677 return "DW_CFA_advance_loc2";
12678 case DW_CFA_advance_loc4:
12679 return "DW_CFA_advance_loc4";
12680 case DW_CFA_offset_extended:
12681 return "DW_CFA_offset_extended";
12682 case DW_CFA_restore_extended:
12683 return "DW_CFA_restore_extended";
12684 case DW_CFA_undefined:
12685 return "DW_CFA_undefined";
12686 case DW_CFA_same_value:
12687 return "DW_CFA_same_value";
12688 case DW_CFA_register:
12689 return "DW_CFA_register";
12690 case DW_CFA_remember_state:
12691 return "DW_CFA_remember_state";
12692 case DW_CFA_restore_state:
12693 return "DW_CFA_restore_state";
12694 case DW_CFA_def_cfa:
12695 return "DW_CFA_def_cfa";
12696 case DW_CFA_def_cfa_register:
12697 return "DW_CFA_def_cfa_register";
12698 case DW_CFA_def_cfa_offset:
12699 return "DW_CFA_def_cfa_offset";
12700 /* DWARF 3. */
12701 case DW_CFA_def_cfa_expression:
12702 return "DW_CFA_def_cfa_expression";
12703 case DW_CFA_expression:
12704 return "DW_CFA_expression";
12705 case DW_CFA_offset_extended_sf:
12706 return "DW_CFA_offset_extended_sf";
12707 case DW_CFA_def_cfa_sf:
12708 return "DW_CFA_def_cfa_sf";
12709 case DW_CFA_def_cfa_offset_sf:
12710 return "DW_CFA_def_cfa_offset_sf";
12711 case DW_CFA_val_offset:
12712 return "DW_CFA_val_offset";
12713 case DW_CFA_val_offset_sf:
12714 return "DW_CFA_val_offset_sf";
12715 case DW_CFA_val_expression:
12716 return "DW_CFA_val_expression";
12717 /* SGI/MIPS specific. */
12718 case DW_CFA_MIPS_advance_loc8:
12719 return "DW_CFA_MIPS_advance_loc8";
12720 /* GNU extensions. */
12721 case DW_CFA_GNU_window_save:
12722 return "DW_CFA_GNU_window_save";
12723 case DW_CFA_GNU_args_size:
12724 return "DW_CFA_GNU_args_size";
12725 case DW_CFA_GNU_negative_offset_extended:
12726 return "DW_CFA_GNU_negative_offset_extended";
12727 default:
12728 return "DW_CFA_<unknown>";
12729 }
12730 }
12731 #endif
12732
12733 static void
12734 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12735 {
12736 unsigned int i;
12737
12738 print_spaces (indent, f);
12739 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12740 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12741
12742 if (die->parent != NULL)
12743 {
12744 print_spaces (indent, f);
12745 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12746 die->parent->offset);
12747 }
12748
12749 print_spaces (indent, f);
12750 fprintf_unfiltered (f, " has children: %s\n",
12751 dwarf_bool_name (die->child != NULL));
12752
12753 print_spaces (indent, f);
12754 fprintf_unfiltered (f, " attributes:\n");
12755
12756 for (i = 0; i < die->num_attrs; ++i)
12757 {
12758 print_spaces (indent, f);
12759 fprintf_unfiltered (f, " %s (%s) ",
12760 dwarf_attr_name (die->attrs[i].name),
12761 dwarf_form_name (die->attrs[i].form));
12762
12763 switch (die->attrs[i].form)
12764 {
12765 case DW_FORM_ref_addr:
12766 case DW_FORM_addr:
12767 fprintf_unfiltered (f, "address: ");
12768 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12769 break;
12770 case DW_FORM_block2:
12771 case DW_FORM_block4:
12772 case DW_FORM_block:
12773 case DW_FORM_block1:
12774 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
12775 break;
12776 case DW_FORM_exprloc:
12777 fprintf_unfiltered (f, "expression: size %u",
12778 DW_BLOCK (&die->attrs[i])->size);
12779 break;
12780 case DW_FORM_ref1:
12781 case DW_FORM_ref2:
12782 case DW_FORM_ref4:
12783 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12784 (long) (DW_ADDR (&die->attrs[i])));
12785 break;
12786 case DW_FORM_data1:
12787 case DW_FORM_data2:
12788 case DW_FORM_data4:
12789 case DW_FORM_data8:
12790 case DW_FORM_udata:
12791 case DW_FORM_sdata:
12792 fprintf_unfiltered (f, "constant: %s",
12793 pulongest (DW_UNSND (&die->attrs[i])));
12794 break;
12795 case DW_FORM_sec_offset:
12796 fprintf_unfiltered (f, "section offset: %s",
12797 pulongest (DW_UNSND (&die->attrs[i])));
12798 break;
12799 case DW_FORM_sig8:
12800 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12801 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12802 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12803 else
12804 fprintf_unfiltered (f, "signatured type, offset: unknown");
12805 break;
12806 case DW_FORM_string:
12807 case DW_FORM_strp:
12808 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12809 DW_STRING (&die->attrs[i])
12810 ? DW_STRING (&die->attrs[i]) : "",
12811 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12812 break;
12813 case DW_FORM_flag:
12814 if (DW_UNSND (&die->attrs[i]))
12815 fprintf_unfiltered (f, "flag: TRUE");
12816 else
12817 fprintf_unfiltered (f, "flag: FALSE");
12818 break;
12819 case DW_FORM_flag_present:
12820 fprintf_unfiltered (f, "flag: TRUE");
12821 break;
12822 case DW_FORM_indirect:
12823 /* the reader will have reduced the indirect form to
12824 the "base form" so this form should not occur */
12825 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
12826 break;
12827 default:
12828 fprintf_unfiltered (f, "unsupported attribute form: %d.",
12829 die->attrs[i].form);
12830 break;
12831 }
12832 fprintf_unfiltered (f, "\n");
12833 }
12834 }
12835
12836 static void
12837 dump_die_for_error (struct die_info *die)
12838 {
12839 dump_die_shallow (gdb_stderr, 0, die);
12840 }
12841
12842 static void
12843 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12844 {
12845 int indent = level * 4;
12846
12847 gdb_assert (die != NULL);
12848
12849 if (level >= max_level)
12850 return;
12851
12852 dump_die_shallow (f, indent, die);
12853
12854 if (die->child != NULL)
12855 {
12856 print_spaces (indent, f);
12857 fprintf_unfiltered (f, " Children:");
12858 if (level + 1 < max_level)
12859 {
12860 fprintf_unfiltered (f, "\n");
12861 dump_die_1 (f, level + 1, max_level, die->child);
12862 }
12863 else
12864 {
12865 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12866 }
12867 }
12868
12869 if (die->sibling != NULL && level > 0)
12870 {
12871 dump_die_1 (f, level, max_level, die->sibling);
12872 }
12873 }
12874
12875 /* This is called from the pdie macro in gdbinit.in.
12876 It's not static so gcc will keep a copy callable from gdb. */
12877
12878 void
12879 dump_die (struct die_info *die, int max_level)
12880 {
12881 dump_die_1 (gdb_stdlog, 0, max_level, die);
12882 }
12883
12884 static void
12885 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
12886 {
12887 void **slot;
12888
12889 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12890
12891 *slot = die;
12892 }
12893
12894 static int
12895 is_ref_attr (struct attribute *attr)
12896 {
12897 switch (attr->form)
12898 {
12899 case DW_FORM_ref_addr:
12900 case DW_FORM_ref1:
12901 case DW_FORM_ref2:
12902 case DW_FORM_ref4:
12903 case DW_FORM_ref8:
12904 case DW_FORM_ref_udata:
12905 return 1;
12906 default:
12907 return 0;
12908 }
12909 }
12910
12911 static unsigned int
12912 dwarf2_get_ref_die_offset (struct attribute *attr)
12913 {
12914 if (is_ref_attr (attr))
12915 return DW_ADDR (attr);
12916
12917 complaint (&symfile_complaints,
12918 _("unsupported die ref attribute form: '%s'"),
12919 dwarf_form_name (attr->form));
12920 return 0;
12921 }
12922
12923 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12924 * the value held by the attribute is not constant. */
12925
12926 static LONGEST
12927 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12928 {
12929 if (attr->form == DW_FORM_sdata)
12930 return DW_SND (attr);
12931 else if (attr->form == DW_FORM_udata
12932 || attr->form == DW_FORM_data1
12933 || attr->form == DW_FORM_data2
12934 || attr->form == DW_FORM_data4
12935 || attr->form == DW_FORM_data8)
12936 return DW_UNSND (attr);
12937 else
12938 {
12939 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
12940 dwarf_form_name (attr->form));
12941 return default_value;
12942 }
12943 }
12944
12945 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
12946 unit and add it to our queue.
12947 The result is non-zero if PER_CU was queued, otherwise the result is zero
12948 meaning either PER_CU is already queued or it is already loaded. */
12949
12950 static int
12951 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12952 struct dwarf2_per_cu_data *per_cu)
12953 {
12954 /* We may arrive here during partial symbol reading, if we need full
12955 DIEs to process an unusual case (e.g. template arguments). Do
12956 not queue PER_CU, just tell our caller to load its DIEs. */
12957 if (dwarf2_per_objfile->reading_partial_symbols)
12958 {
12959 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12960 return 1;
12961 return 0;
12962 }
12963
12964 /* Mark the dependence relation so that we don't flush PER_CU
12965 too early. */
12966 dwarf2_add_dependence (this_cu, per_cu);
12967
12968 /* If it's already on the queue, we have nothing to do. */
12969 if (per_cu->queued)
12970 return 0;
12971
12972 /* If the compilation unit is already loaded, just mark it as
12973 used. */
12974 if (per_cu->cu != NULL)
12975 {
12976 per_cu->cu->last_used = 0;
12977 return 0;
12978 }
12979
12980 /* Add it to the queue. */
12981 queue_comp_unit (per_cu, this_cu->objfile);
12982
12983 return 1;
12984 }
12985
12986 /* Follow reference or signature attribute ATTR of SRC_DIE.
12987 On entry *REF_CU is the CU of SRC_DIE.
12988 On exit *REF_CU is the CU of the result. */
12989
12990 static struct die_info *
12991 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12992 struct dwarf2_cu **ref_cu)
12993 {
12994 struct die_info *die;
12995
12996 if (is_ref_attr (attr))
12997 die = follow_die_ref (src_die, attr, ref_cu);
12998 else if (attr->form == DW_FORM_sig8)
12999 die = follow_die_sig (src_die, attr, ref_cu);
13000 else
13001 {
13002 dump_die_for_error (src_die);
13003 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13004 (*ref_cu)->objfile->name);
13005 }
13006
13007 return die;
13008 }
13009
13010 /* Follow reference OFFSET.
13011 On entry *REF_CU is the CU of the source die referencing OFFSET.
13012 On exit *REF_CU is the CU of the result.
13013 Returns NULL if OFFSET is invalid. */
13014
13015 static struct die_info *
13016 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13017 {
13018 struct die_info temp_die;
13019 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13020
13021 gdb_assert (cu->per_cu != NULL);
13022
13023 target_cu = cu;
13024
13025 if (cu->per_cu->from_debug_types)
13026 {
13027 /* .debug_types CUs cannot reference anything outside their CU.
13028 If they need to, they have to reference a signatured type via
13029 DW_FORM_sig8. */
13030 if (! offset_in_cu_p (&cu->header, offset))
13031 return NULL;
13032 }
13033 else if (! offset_in_cu_p (&cu->header, offset))
13034 {
13035 struct dwarf2_per_cu_data *per_cu;
13036
13037 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13038
13039 /* If necessary, add it to the queue and load its DIEs. */
13040 if (maybe_queue_comp_unit (cu, per_cu))
13041 load_full_comp_unit (per_cu, cu->objfile);
13042
13043 target_cu = per_cu->cu;
13044 }
13045 else if (cu->dies == NULL)
13046 {
13047 /* We're loading full DIEs during partial symbol reading. */
13048 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13049 load_full_comp_unit (cu->per_cu, cu->objfile);
13050 }
13051
13052 *ref_cu = target_cu;
13053 temp_die.offset = offset;
13054 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13055 }
13056
13057 /* Follow reference attribute ATTR of SRC_DIE.
13058 On entry *REF_CU is the CU of SRC_DIE.
13059 On exit *REF_CU is the CU of the result. */
13060
13061 static struct die_info *
13062 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13063 struct dwarf2_cu **ref_cu)
13064 {
13065 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13066 struct dwarf2_cu *cu = *ref_cu;
13067 struct die_info *die;
13068
13069 die = follow_die_offset (offset, ref_cu);
13070 if (!die)
13071 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13072 "at 0x%x [in module %s]"),
13073 offset, src_die->offset, cu->objfile->name);
13074
13075 return die;
13076 }
13077
13078 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13079 value is intended for DW_OP_call*. */
13080
13081 struct dwarf2_locexpr_baton
13082 dwarf2_fetch_die_location_block (unsigned int offset,
13083 struct dwarf2_per_cu_data *per_cu)
13084 {
13085 struct dwarf2_cu *cu = per_cu->cu;
13086 struct die_info *die;
13087 struct attribute *attr;
13088 struct dwarf2_locexpr_baton retval;
13089
13090 die = follow_die_offset (offset, &cu);
13091 if (!die)
13092 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13093 offset, per_cu->cu->objfile->name);
13094
13095 attr = dwarf2_attr (die, DW_AT_location, cu);
13096 if (!attr)
13097 {
13098 /* DWARF: "If there is no such attribute, then there is no effect.". */
13099
13100 retval.data = NULL;
13101 retval.size = 0;
13102 }
13103 else
13104 {
13105 if (!attr_form_is_block (attr))
13106 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13107 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13108 offset, per_cu->cu->objfile->name);
13109
13110 retval.data = DW_BLOCK (attr)->data;
13111 retval.size = DW_BLOCK (attr)->size;
13112 }
13113 retval.per_cu = cu->per_cu;
13114 return retval;
13115 }
13116
13117 /* Follow the signature attribute ATTR in SRC_DIE.
13118 On entry *REF_CU is the CU of SRC_DIE.
13119 On exit *REF_CU is the CU of the result. */
13120
13121 static struct die_info *
13122 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13123 struct dwarf2_cu **ref_cu)
13124 {
13125 struct objfile *objfile = (*ref_cu)->objfile;
13126 struct die_info temp_die;
13127 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13128 struct dwarf2_cu *sig_cu;
13129 struct die_info *die;
13130
13131 /* sig_type will be NULL if the signatured type is missing from
13132 the debug info. */
13133 if (sig_type == NULL)
13134 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13135 "at 0x%x [in module %s]"),
13136 src_die->offset, objfile->name);
13137
13138 /* If necessary, add it to the queue and load its DIEs. */
13139
13140 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13141 read_signatured_type (objfile, sig_type);
13142
13143 gdb_assert (sig_type->per_cu.cu != NULL);
13144
13145 sig_cu = sig_type->per_cu.cu;
13146 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13147 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13148 if (die)
13149 {
13150 *ref_cu = sig_cu;
13151 return die;
13152 }
13153
13154 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
13155 "at 0x%x [in module %s]"),
13156 sig_type->type_offset, src_die->offset, objfile->name);
13157 }
13158
13159 /* Given an offset of a signatured type, return its signatured_type. */
13160
13161 static struct signatured_type *
13162 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13163 {
13164 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13165 unsigned int length, initial_length_size;
13166 unsigned int sig_offset;
13167 struct signatured_type find_entry, *type_sig;
13168
13169 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13170 sig_offset = (initial_length_size
13171 + 2 /*version*/
13172 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13173 + 1 /*address_size*/);
13174 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13175 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13176
13177 /* This is only used to lookup previously recorded types.
13178 If we didn't find it, it's our bug. */
13179 gdb_assert (type_sig != NULL);
13180 gdb_assert (offset == type_sig->offset);
13181
13182 return type_sig;
13183 }
13184
13185 /* Read in signatured type at OFFSET and build its CU and die(s). */
13186
13187 static void
13188 read_signatured_type_at_offset (struct objfile *objfile,
13189 unsigned int offset)
13190 {
13191 struct signatured_type *type_sig;
13192
13193 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13194
13195 /* We have the section offset, but we need the signature to do the
13196 hash table lookup. */
13197 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13198
13199 gdb_assert (type_sig->per_cu.cu == NULL);
13200
13201 read_signatured_type (objfile, type_sig);
13202
13203 gdb_assert (type_sig->per_cu.cu != NULL);
13204 }
13205
13206 /* Read in a signatured type and build its CU and DIEs. */
13207
13208 static void
13209 read_signatured_type (struct objfile *objfile,
13210 struct signatured_type *type_sig)
13211 {
13212 gdb_byte *types_ptr;
13213 struct die_reader_specs reader_specs;
13214 struct dwarf2_cu *cu;
13215 ULONGEST signature;
13216 struct cleanup *back_to, *free_cu_cleanup;
13217 struct attribute *attr;
13218
13219 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13220 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13221
13222 gdb_assert (type_sig->per_cu.cu == NULL);
13223
13224 cu = xmalloc (sizeof (struct dwarf2_cu));
13225 memset (cu, 0, sizeof (struct dwarf2_cu));
13226 obstack_init (&cu->comp_unit_obstack);
13227 cu->objfile = objfile;
13228 type_sig->per_cu.cu = cu;
13229 cu->per_cu = &type_sig->per_cu;
13230
13231 /* If an error occurs while loading, release our storage. */
13232 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13233
13234 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13235 types_ptr, objfile->obfd);
13236 gdb_assert (signature == type_sig->signature);
13237
13238 cu->die_hash
13239 = htab_create_alloc_ex (cu->header.length / 12,
13240 die_hash,
13241 die_eq,
13242 NULL,
13243 &cu->comp_unit_obstack,
13244 hashtab_obstack_allocate,
13245 dummy_obstack_deallocate);
13246
13247 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13248 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13249
13250 init_cu_die_reader (&reader_specs, cu);
13251
13252 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13253 NULL /*parent*/);
13254
13255 /* We try not to read any attributes in this function, because not
13256 all objfiles needed for references have been loaded yet, and symbol
13257 table processing isn't initialized. But we have to set the CU language,
13258 or we won't be able to build types correctly. */
13259 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
13260 if (attr)
13261 set_cu_language (DW_UNSND (attr), cu);
13262 else
13263 set_cu_language (language_minimal, cu);
13264
13265 do_cleanups (back_to);
13266
13267 /* We've successfully allocated this compilation unit. Let our caller
13268 clean it up when finished with it. */
13269 discard_cleanups (free_cu_cleanup);
13270
13271 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13272 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13273 }
13274
13275 /* Decode simple location descriptions.
13276 Given a pointer to a dwarf block that defines a location, compute
13277 the location and return the value.
13278
13279 NOTE drow/2003-11-18: This function is called in two situations
13280 now: for the address of static or global variables (partial symbols
13281 only) and for offsets into structures which are expected to be
13282 (more or less) constant. The partial symbol case should go away,
13283 and only the constant case should remain. That will let this
13284 function complain more accurately. A few special modes are allowed
13285 without complaint for global variables (for instance, global
13286 register values and thread-local values).
13287
13288 A location description containing no operations indicates that the
13289 object is optimized out. The return value is 0 for that case.
13290 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13291 callers will only want a very basic result and this can become a
13292 complaint.
13293
13294 Note that stack[0] is unused except as a default error return.
13295 Note that stack overflow is not yet handled. */
13296
13297 static CORE_ADDR
13298 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13299 {
13300 struct objfile *objfile = cu->objfile;
13301 int i;
13302 int size = blk->size;
13303 gdb_byte *data = blk->data;
13304 CORE_ADDR stack[64];
13305 int stacki;
13306 unsigned int bytes_read, unsnd;
13307 gdb_byte op;
13308
13309 i = 0;
13310 stacki = 0;
13311 stack[stacki] = 0;
13312
13313 while (i < size)
13314 {
13315 op = data[i++];
13316 switch (op)
13317 {
13318 case DW_OP_lit0:
13319 case DW_OP_lit1:
13320 case DW_OP_lit2:
13321 case DW_OP_lit3:
13322 case DW_OP_lit4:
13323 case DW_OP_lit5:
13324 case DW_OP_lit6:
13325 case DW_OP_lit7:
13326 case DW_OP_lit8:
13327 case DW_OP_lit9:
13328 case DW_OP_lit10:
13329 case DW_OP_lit11:
13330 case DW_OP_lit12:
13331 case DW_OP_lit13:
13332 case DW_OP_lit14:
13333 case DW_OP_lit15:
13334 case DW_OP_lit16:
13335 case DW_OP_lit17:
13336 case DW_OP_lit18:
13337 case DW_OP_lit19:
13338 case DW_OP_lit20:
13339 case DW_OP_lit21:
13340 case DW_OP_lit22:
13341 case DW_OP_lit23:
13342 case DW_OP_lit24:
13343 case DW_OP_lit25:
13344 case DW_OP_lit26:
13345 case DW_OP_lit27:
13346 case DW_OP_lit28:
13347 case DW_OP_lit29:
13348 case DW_OP_lit30:
13349 case DW_OP_lit31:
13350 stack[++stacki] = op - DW_OP_lit0;
13351 break;
13352
13353 case DW_OP_reg0:
13354 case DW_OP_reg1:
13355 case DW_OP_reg2:
13356 case DW_OP_reg3:
13357 case DW_OP_reg4:
13358 case DW_OP_reg5:
13359 case DW_OP_reg6:
13360 case DW_OP_reg7:
13361 case DW_OP_reg8:
13362 case DW_OP_reg9:
13363 case DW_OP_reg10:
13364 case DW_OP_reg11:
13365 case DW_OP_reg12:
13366 case DW_OP_reg13:
13367 case DW_OP_reg14:
13368 case DW_OP_reg15:
13369 case DW_OP_reg16:
13370 case DW_OP_reg17:
13371 case DW_OP_reg18:
13372 case DW_OP_reg19:
13373 case DW_OP_reg20:
13374 case DW_OP_reg21:
13375 case DW_OP_reg22:
13376 case DW_OP_reg23:
13377 case DW_OP_reg24:
13378 case DW_OP_reg25:
13379 case DW_OP_reg26:
13380 case DW_OP_reg27:
13381 case DW_OP_reg28:
13382 case DW_OP_reg29:
13383 case DW_OP_reg30:
13384 case DW_OP_reg31:
13385 stack[++stacki] = op - DW_OP_reg0;
13386 if (i < size)
13387 dwarf2_complex_location_expr_complaint ();
13388 break;
13389
13390 case DW_OP_regx:
13391 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13392 i += bytes_read;
13393 stack[++stacki] = unsnd;
13394 if (i < size)
13395 dwarf2_complex_location_expr_complaint ();
13396 break;
13397
13398 case DW_OP_addr:
13399 stack[++stacki] = read_address (objfile->obfd, &data[i],
13400 cu, &bytes_read);
13401 i += bytes_read;
13402 break;
13403
13404 case DW_OP_const1u:
13405 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13406 i += 1;
13407 break;
13408
13409 case DW_OP_const1s:
13410 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13411 i += 1;
13412 break;
13413
13414 case DW_OP_const2u:
13415 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13416 i += 2;
13417 break;
13418
13419 case DW_OP_const2s:
13420 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13421 i += 2;
13422 break;
13423
13424 case DW_OP_const4u:
13425 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13426 i += 4;
13427 break;
13428
13429 case DW_OP_const4s:
13430 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13431 i += 4;
13432 break;
13433
13434 case DW_OP_constu:
13435 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13436 &bytes_read);
13437 i += bytes_read;
13438 break;
13439
13440 case DW_OP_consts:
13441 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13442 i += bytes_read;
13443 break;
13444
13445 case DW_OP_dup:
13446 stack[stacki + 1] = stack[stacki];
13447 stacki++;
13448 break;
13449
13450 case DW_OP_plus:
13451 stack[stacki - 1] += stack[stacki];
13452 stacki--;
13453 break;
13454
13455 case DW_OP_plus_uconst:
13456 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13457 i += bytes_read;
13458 break;
13459
13460 case DW_OP_minus:
13461 stack[stacki - 1] -= stack[stacki];
13462 stacki--;
13463 break;
13464
13465 case DW_OP_deref:
13466 /* If we're not the last op, then we definitely can't encode
13467 this using GDB's address_class enum. This is valid for partial
13468 global symbols, although the variable's address will be bogus
13469 in the psymtab. */
13470 if (i < size)
13471 dwarf2_complex_location_expr_complaint ();
13472 break;
13473
13474 case DW_OP_GNU_push_tls_address:
13475 /* The top of the stack has the offset from the beginning
13476 of the thread control block at which the variable is located. */
13477 /* Nothing should follow this operator, so the top of stack would
13478 be returned. */
13479 /* This is valid for partial global symbols, but the variable's
13480 address will be bogus in the psymtab. */
13481 if (i < size)
13482 dwarf2_complex_location_expr_complaint ();
13483 break;
13484
13485 case DW_OP_GNU_uninit:
13486 break;
13487
13488 default:
13489 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13490 dwarf_stack_op_name (op, 1));
13491 return (stack[stacki]);
13492 }
13493 }
13494 return (stack[stacki]);
13495 }
13496
13497 /* memory allocation interface */
13498
13499 static struct dwarf_block *
13500 dwarf_alloc_block (struct dwarf2_cu *cu)
13501 {
13502 struct dwarf_block *blk;
13503
13504 blk = (struct dwarf_block *)
13505 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13506 return (blk);
13507 }
13508
13509 static struct abbrev_info *
13510 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13511 {
13512 struct abbrev_info *abbrev;
13513
13514 abbrev = (struct abbrev_info *)
13515 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13516 memset (abbrev, 0, sizeof (struct abbrev_info));
13517 return (abbrev);
13518 }
13519
13520 static struct die_info *
13521 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13522 {
13523 struct die_info *die;
13524 size_t size = sizeof (struct die_info);
13525
13526 if (num_attrs > 1)
13527 size += (num_attrs - 1) * sizeof (struct attribute);
13528
13529 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13530 memset (die, 0, sizeof (struct die_info));
13531 return (die);
13532 }
13533
13534 \f
13535 /* Macro support. */
13536
13537
13538 /* Return the full name of file number I in *LH's file name table.
13539 Use COMP_DIR as the name of the current directory of the
13540 compilation. The result is allocated using xmalloc; the caller is
13541 responsible for freeing it. */
13542 static char *
13543 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13544 {
13545 /* Is the file number a valid index into the line header's file name
13546 table? Remember that file numbers start with one, not zero. */
13547 if (1 <= file && file <= lh->num_file_names)
13548 {
13549 struct file_entry *fe = &lh->file_names[file - 1];
13550
13551 if (IS_ABSOLUTE_PATH (fe->name))
13552 return xstrdup (fe->name);
13553 else
13554 {
13555 const char *dir;
13556 int dir_len;
13557 char *full_name;
13558
13559 if (fe->dir_index)
13560 dir = lh->include_dirs[fe->dir_index - 1];
13561 else
13562 dir = comp_dir;
13563
13564 if (dir)
13565 {
13566 dir_len = strlen (dir);
13567 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13568 strcpy (full_name, dir);
13569 full_name[dir_len] = '/';
13570 strcpy (full_name + dir_len + 1, fe->name);
13571 return full_name;
13572 }
13573 else
13574 return xstrdup (fe->name);
13575 }
13576 }
13577 else
13578 {
13579 /* The compiler produced a bogus file number. We can at least
13580 record the macro definitions made in the file, even if we
13581 won't be able to find the file by name. */
13582 char fake_name[80];
13583
13584 sprintf (fake_name, "<bad macro file number %d>", file);
13585
13586 complaint (&symfile_complaints,
13587 _("bad file number in macro information (%d)"),
13588 file);
13589
13590 return xstrdup (fake_name);
13591 }
13592 }
13593
13594
13595 static struct macro_source_file *
13596 macro_start_file (int file, int line,
13597 struct macro_source_file *current_file,
13598 const char *comp_dir,
13599 struct line_header *lh, struct objfile *objfile)
13600 {
13601 /* The full name of this source file. */
13602 char *full_name = file_full_name (file, lh, comp_dir);
13603
13604 /* We don't create a macro table for this compilation unit
13605 at all until we actually get a filename. */
13606 if (! pending_macros)
13607 pending_macros = new_macro_table (&objfile->objfile_obstack,
13608 objfile->macro_cache);
13609
13610 if (! current_file)
13611 /* If we have no current file, then this must be the start_file
13612 directive for the compilation unit's main source file. */
13613 current_file = macro_set_main (pending_macros, full_name);
13614 else
13615 current_file = macro_include (current_file, line, full_name);
13616
13617 xfree (full_name);
13618
13619 return current_file;
13620 }
13621
13622
13623 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13624 followed by a null byte. */
13625 static char *
13626 copy_string (const char *buf, int len)
13627 {
13628 char *s = xmalloc (len + 1);
13629
13630 memcpy (s, buf, len);
13631 s[len] = '\0';
13632 return s;
13633 }
13634
13635
13636 static const char *
13637 consume_improper_spaces (const char *p, const char *body)
13638 {
13639 if (*p == ' ')
13640 {
13641 complaint (&symfile_complaints,
13642 _("macro definition contains spaces in formal argument list:\n`%s'"),
13643 body);
13644
13645 while (*p == ' ')
13646 p++;
13647 }
13648
13649 return p;
13650 }
13651
13652
13653 static void
13654 parse_macro_definition (struct macro_source_file *file, int line,
13655 const char *body)
13656 {
13657 const char *p;
13658
13659 /* The body string takes one of two forms. For object-like macro
13660 definitions, it should be:
13661
13662 <macro name> " " <definition>
13663
13664 For function-like macro definitions, it should be:
13665
13666 <macro name> "() " <definition>
13667 or
13668 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13669
13670 Spaces may appear only where explicitly indicated, and in the
13671 <definition>.
13672
13673 The Dwarf 2 spec says that an object-like macro's name is always
13674 followed by a space, but versions of GCC around March 2002 omit
13675 the space when the macro's definition is the empty string.
13676
13677 The Dwarf 2 spec says that there should be no spaces between the
13678 formal arguments in a function-like macro's formal argument list,
13679 but versions of GCC around March 2002 include spaces after the
13680 commas. */
13681
13682
13683 /* Find the extent of the macro name. The macro name is terminated
13684 by either a space or null character (for an object-like macro) or
13685 an opening paren (for a function-like macro). */
13686 for (p = body; *p; p++)
13687 if (*p == ' ' || *p == '(')
13688 break;
13689
13690 if (*p == ' ' || *p == '\0')
13691 {
13692 /* It's an object-like macro. */
13693 int name_len = p - body;
13694 char *name = copy_string (body, name_len);
13695 const char *replacement;
13696
13697 if (*p == ' ')
13698 replacement = body + name_len + 1;
13699 else
13700 {
13701 dwarf2_macro_malformed_definition_complaint (body);
13702 replacement = body + name_len;
13703 }
13704
13705 macro_define_object (file, line, name, replacement);
13706
13707 xfree (name);
13708 }
13709 else if (*p == '(')
13710 {
13711 /* It's a function-like macro. */
13712 char *name = copy_string (body, p - body);
13713 int argc = 0;
13714 int argv_size = 1;
13715 char **argv = xmalloc (argv_size * sizeof (*argv));
13716
13717 p++;
13718
13719 p = consume_improper_spaces (p, body);
13720
13721 /* Parse the formal argument list. */
13722 while (*p && *p != ')')
13723 {
13724 /* Find the extent of the current argument name. */
13725 const char *arg_start = p;
13726
13727 while (*p && *p != ',' && *p != ')' && *p != ' ')
13728 p++;
13729
13730 if (! *p || p == arg_start)
13731 dwarf2_macro_malformed_definition_complaint (body);
13732 else
13733 {
13734 /* Make sure argv has room for the new argument. */
13735 if (argc >= argv_size)
13736 {
13737 argv_size *= 2;
13738 argv = xrealloc (argv, argv_size * sizeof (*argv));
13739 }
13740
13741 argv[argc++] = copy_string (arg_start, p - arg_start);
13742 }
13743
13744 p = consume_improper_spaces (p, body);
13745
13746 /* Consume the comma, if present. */
13747 if (*p == ',')
13748 {
13749 p++;
13750
13751 p = consume_improper_spaces (p, body);
13752 }
13753 }
13754
13755 if (*p == ')')
13756 {
13757 p++;
13758
13759 if (*p == ' ')
13760 /* Perfectly formed definition, no complaints. */
13761 macro_define_function (file, line, name,
13762 argc, (const char **) argv,
13763 p + 1);
13764 else if (*p == '\0')
13765 {
13766 /* Complain, but do define it. */
13767 dwarf2_macro_malformed_definition_complaint (body);
13768 macro_define_function (file, line, name,
13769 argc, (const char **) argv,
13770 p);
13771 }
13772 else
13773 /* Just complain. */
13774 dwarf2_macro_malformed_definition_complaint (body);
13775 }
13776 else
13777 /* Just complain. */
13778 dwarf2_macro_malformed_definition_complaint (body);
13779
13780 xfree (name);
13781 {
13782 int i;
13783
13784 for (i = 0; i < argc; i++)
13785 xfree (argv[i]);
13786 }
13787 xfree (argv);
13788 }
13789 else
13790 dwarf2_macro_malformed_definition_complaint (body);
13791 }
13792
13793
13794 static void
13795 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13796 char *comp_dir, bfd *abfd,
13797 struct dwarf2_cu *cu)
13798 {
13799 gdb_byte *mac_ptr, *mac_end;
13800 struct macro_source_file *current_file = 0;
13801 enum dwarf_macinfo_record_type macinfo_type;
13802 int at_commandline;
13803
13804 dwarf2_read_section (dwarf2_per_objfile->objfile,
13805 &dwarf2_per_objfile->macinfo);
13806 if (dwarf2_per_objfile->macinfo.buffer == NULL)
13807 {
13808 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
13809 return;
13810 }
13811
13812 /* First pass: Find the name of the base filename.
13813 This filename is needed in order to process all macros whose definition
13814 (or undefinition) comes from the command line. These macros are defined
13815 before the first DW_MACINFO_start_file entry, and yet still need to be
13816 associated to the base file.
13817
13818 To determine the base file name, we scan the macro definitions until we
13819 reach the first DW_MACINFO_start_file entry. We then initialize
13820 CURRENT_FILE accordingly so that any macro definition found before the
13821 first DW_MACINFO_start_file can still be associated to the base file. */
13822
13823 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13824 mac_end = dwarf2_per_objfile->macinfo.buffer
13825 + dwarf2_per_objfile->macinfo.size;
13826
13827 do
13828 {
13829 /* Do we at least have room for a macinfo type byte? */
13830 if (mac_ptr >= mac_end)
13831 {
13832 /* Complaint is printed during the second pass as GDB will probably
13833 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13834 break;
13835 }
13836
13837 macinfo_type = read_1_byte (abfd, mac_ptr);
13838 mac_ptr++;
13839
13840 switch (macinfo_type)
13841 {
13842 /* A zero macinfo type indicates the end of the macro
13843 information. */
13844 case 0:
13845 break;
13846
13847 case DW_MACINFO_define:
13848 case DW_MACINFO_undef:
13849 /* Only skip the data by MAC_PTR. */
13850 {
13851 unsigned int bytes_read;
13852
13853 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13854 mac_ptr += bytes_read;
13855 read_direct_string (abfd, mac_ptr, &bytes_read);
13856 mac_ptr += bytes_read;
13857 }
13858 break;
13859
13860 case DW_MACINFO_start_file:
13861 {
13862 unsigned int bytes_read;
13863 int line, file;
13864
13865 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13866 mac_ptr += bytes_read;
13867 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13868 mac_ptr += bytes_read;
13869
13870 current_file = macro_start_file (file, line, current_file, comp_dir,
13871 lh, cu->objfile);
13872 }
13873 break;
13874
13875 case DW_MACINFO_end_file:
13876 /* No data to skip by MAC_PTR. */
13877 break;
13878
13879 case DW_MACINFO_vendor_ext:
13880 /* Only skip the data by MAC_PTR. */
13881 {
13882 unsigned int bytes_read;
13883
13884 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13885 mac_ptr += bytes_read;
13886 read_direct_string (abfd, mac_ptr, &bytes_read);
13887 mac_ptr += bytes_read;
13888 }
13889 break;
13890
13891 default:
13892 break;
13893 }
13894 } while (macinfo_type != 0 && current_file == NULL);
13895
13896 /* Second pass: Process all entries.
13897
13898 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13899 command-line macro definitions/undefinitions. This flag is unset when we
13900 reach the first DW_MACINFO_start_file entry. */
13901
13902 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13903
13904 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13905 GDB is still reading the definitions from command line. First
13906 DW_MACINFO_start_file will need to be ignored as it was already executed
13907 to create CURRENT_FILE for the main source holding also the command line
13908 definitions. On first met DW_MACINFO_start_file this flag is reset to
13909 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13910
13911 at_commandline = 1;
13912
13913 do
13914 {
13915 /* Do we at least have room for a macinfo type byte? */
13916 if (mac_ptr >= mac_end)
13917 {
13918 dwarf2_macros_too_long_complaint ();
13919 break;
13920 }
13921
13922 macinfo_type = read_1_byte (abfd, mac_ptr);
13923 mac_ptr++;
13924
13925 switch (macinfo_type)
13926 {
13927 /* A zero macinfo type indicates the end of the macro
13928 information. */
13929 case 0:
13930 break;
13931
13932 case DW_MACINFO_define:
13933 case DW_MACINFO_undef:
13934 {
13935 unsigned int bytes_read;
13936 int line;
13937 char *body;
13938
13939 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13940 mac_ptr += bytes_read;
13941 body = read_direct_string (abfd, mac_ptr, &bytes_read);
13942 mac_ptr += bytes_read;
13943
13944 if (! current_file)
13945 {
13946 /* DWARF violation as no main source is present. */
13947 complaint (&symfile_complaints,
13948 _("debug info with no main source gives macro %s "
13949 "on line %d: %s"),
13950 macinfo_type == DW_MACINFO_define ?
13951 _("definition") :
13952 macinfo_type == DW_MACINFO_undef ?
13953 _("undefinition") :
13954 _("something-or-other"), line, body);
13955 break;
13956 }
13957 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13958 complaint (&symfile_complaints,
13959 _("debug info gives %s macro %s with %s line %d: %s"),
13960 at_commandline ? _("command-line") : _("in-file"),
13961 macinfo_type == DW_MACINFO_define ?
13962 _("definition") :
13963 macinfo_type == DW_MACINFO_undef ?
13964 _("undefinition") :
13965 _("something-or-other"),
13966 line == 0 ? _("zero") : _("non-zero"), line, body);
13967
13968 if (macinfo_type == DW_MACINFO_define)
13969 parse_macro_definition (current_file, line, body);
13970 else if (macinfo_type == DW_MACINFO_undef)
13971 macro_undef (current_file, line, body);
13972 }
13973 break;
13974
13975 case DW_MACINFO_start_file:
13976 {
13977 unsigned int bytes_read;
13978 int line, file;
13979
13980 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13981 mac_ptr += bytes_read;
13982 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13983 mac_ptr += bytes_read;
13984
13985 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13986 complaint (&symfile_complaints,
13987 _("debug info gives source %d included "
13988 "from %s at %s line %d"),
13989 file, at_commandline ? _("command-line") : _("file"),
13990 line == 0 ? _("zero") : _("non-zero"), line);
13991
13992 if (at_commandline)
13993 {
13994 /* This DW_MACINFO_start_file was executed in the pass one. */
13995 at_commandline = 0;
13996 }
13997 else
13998 current_file = macro_start_file (file, line,
13999 current_file, comp_dir,
14000 lh, cu->objfile);
14001 }
14002 break;
14003
14004 case DW_MACINFO_end_file:
14005 if (! current_file)
14006 complaint (&symfile_complaints,
14007 _("macro debug info has an unmatched `close_file' directive"));
14008 else
14009 {
14010 current_file = current_file->included_by;
14011 if (! current_file)
14012 {
14013 enum dwarf_macinfo_record_type next_type;
14014
14015 /* GCC circa March 2002 doesn't produce the zero
14016 type byte marking the end of the compilation
14017 unit. Complain if it's not there, but exit no
14018 matter what. */
14019
14020 /* Do we at least have room for a macinfo type byte? */
14021 if (mac_ptr >= mac_end)
14022 {
14023 dwarf2_macros_too_long_complaint ();
14024 return;
14025 }
14026
14027 /* We don't increment mac_ptr here, so this is just
14028 a look-ahead. */
14029 next_type = read_1_byte (abfd, mac_ptr);
14030 if (next_type != 0)
14031 complaint (&symfile_complaints,
14032 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
14033
14034 return;
14035 }
14036 }
14037 break;
14038
14039 case DW_MACINFO_vendor_ext:
14040 {
14041 unsigned int bytes_read;
14042 int constant;
14043 char *string;
14044
14045 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14046 mac_ptr += bytes_read;
14047 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14048 mac_ptr += bytes_read;
14049
14050 /* We don't recognize any vendor extensions. */
14051 }
14052 break;
14053 }
14054 } while (macinfo_type != 0);
14055 }
14056
14057 /* Check if the attribute's form is a DW_FORM_block*
14058 if so return true else false. */
14059 static int
14060 attr_form_is_block (struct attribute *attr)
14061 {
14062 return (attr == NULL ? 0 :
14063 attr->form == DW_FORM_block1
14064 || attr->form == DW_FORM_block2
14065 || attr->form == DW_FORM_block4
14066 || attr->form == DW_FORM_block
14067 || attr->form == DW_FORM_exprloc);
14068 }
14069
14070 /* Return non-zero if ATTR's value is a section offset --- classes
14071 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14072 You may use DW_UNSND (attr) to retrieve such offsets.
14073
14074 Section 7.5.4, "Attribute Encodings", explains that no attribute
14075 may have a value that belongs to more than one of these classes; it
14076 would be ambiguous if we did, because we use the same forms for all
14077 of them. */
14078 static int
14079 attr_form_is_section_offset (struct attribute *attr)
14080 {
14081 return (attr->form == DW_FORM_data4
14082 || attr->form == DW_FORM_data8
14083 || attr->form == DW_FORM_sec_offset);
14084 }
14085
14086
14087 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14088 zero otherwise. When this function returns true, you can apply
14089 dwarf2_get_attr_constant_value to it.
14090
14091 However, note that for some attributes you must check
14092 attr_form_is_section_offset before using this test. DW_FORM_data4
14093 and DW_FORM_data8 are members of both the constant class, and of
14094 the classes that contain offsets into other debug sections
14095 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14096 that, if an attribute's can be either a constant or one of the
14097 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14098 taken as section offsets, not constants. */
14099 static int
14100 attr_form_is_constant (struct attribute *attr)
14101 {
14102 switch (attr->form)
14103 {
14104 case DW_FORM_sdata:
14105 case DW_FORM_udata:
14106 case DW_FORM_data1:
14107 case DW_FORM_data2:
14108 case DW_FORM_data4:
14109 case DW_FORM_data8:
14110 return 1;
14111 default:
14112 return 0;
14113 }
14114 }
14115
14116 static void
14117 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14118 struct dwarf2_cu *cu)
14119 {
14120 if (attr_form_is_section_offset (attr)
14121 /* ".debug_loc" may not exist at all, or the offset may be outside
14122 the section. If so, fall through to the complaint in the
14123 other branch. */
14124 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14125 {
14126 struct dwarf2_loclist_baton *baton;
14127
14128 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14129 sizeof (struct dwarf2_loclist_baton));
14130 baton->per_cu = cu->per_cu;
14131 gdb_assert (baton->per_cu);
14132
14133 dwarf2_read_section (dwarf2_per_objfile->objfile,
14134 &dwarf2_per_objfile->loc);
14135
14136 /* We don't know how long the location list is, but make sure we
14137 don't run off the edge of the section. */
14138 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14139 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14140 baton->base_address = cu->base_address;
14141 if (cu->base_known == 0)
14142 complaint (&symfile_complaints,
14143 _("Location list used without specifying the CU base address."));
14144
14145 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14146 SYMBOL_LOCATION_BATON (sym) = baton;
14147 }
14148 else
14149 {
14150 struct dwarf2_locexpr_baton *baton;
14151
14152 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14153 sizeof (struct dwarf2_locexpr_baton));
14154 baton->per_cu = cu->per_cu;
14155 gdb_assert (baton->per_cu);
14156
14157 if (attr_form_is_block (attr))
14158 {
14159 /* Note that we're just copying the block's data pointer
14160 here, not the actual data. We're still pointing into the
14161 info_buffer for SYM's objfile; right now we never release
14162 that buffer, but when we do clean up properly this may
14163 need to change. */
14164 baton->size = DW_BLOCK (attr)->size;
14165 baton->data = DW_BLOCK (attr)->data;
14166 }
14167 else
14168 {
14169 dwarf2_invalid_attrib_class_complaint ("location description",
14170 SYMBOL_NATURAL_NAME (sym));
14171 baton->size = 0;
14172 baton->data = NULL;
14173 }
14174
14175 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14176 SYMBOL_LOCATION_BATON (sym) = baton;
14177 }
14178 }
14179
14180 /* Return the OBJFILE associated with the compilation unit CU. If CU
14181 came from a separate debuginfo file, then the master objfile is
14182 returned. */
14183
14184 struct objfile *
14185 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14186 {
14187 struct objfile *objfile = per_cu->objfile;
14188
14189 /* Return the master objfile, so that we can report and look up the
14190 correct file containing this variable. */
14191 if (objfile->separate_debug_objfile_backlink)
14192 objfile = objfile->separate_debug_objfile_backlink;
14193
14194 return objfile;
14195 }
14196
14197 /* Return the address size given in the compilation unit header for CU. */
14198
14199 CORE_ADDR
14200 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14201 {
14202 if (per_cu->cu)
14203 return per_cu->cu->header.addr_size;
14204 else
14205 {
14206 /* If the CU is not currently read in, we re-read its header. */
14207 struct objfile *objfile = per_cu->objfile;
14208 struct dwarf2_per_objfile *per_objfile
14209 = objfile_data (objfile, dwarf2_objfile_data_key);
14210 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14211 struct comp_unit_head cu_header;
14212
14213 memset (&cu_header, 0, sizeof cu_header);
14214 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14215 return cu_header.addr_size;
14216 }
14217 }
14218
14219 /* Return the offset size given in the compilation unit header for CU. */
14220
14221 int
14222 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14223 {
14224 if (per_cu->cu)
14225 return per_cu->cu->header.offset_size;
14226 else
14227 {
14228 /* If the CU is not currently read in, we re-read its header. */
14229 struct objfile *objfile = per_cu->objfile;
14230 struct dwarf2_per_objfile *per_objfile
14231 = objfile_data (objfile, dwarf2_objfile_data_key);
14232 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14233 struct comp_unit_head cu_header;
14234
14235 memset (&cu_header, 0, sizeof cu_header);
14236 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14237 return cu_header.offset_size;
14238 }
14239 }
14240
14241 /* Return the text offset of the CU. The returned offset comes from
14242 this CU's objfile. If this objfile came from a separate debuginfo
14243 file, then the offset may be different from the corresponding
14244 offset in the parent objfile. */
14245
14246 CORE_ADDR
14247 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14248 {
14249 struct objfile *objfile = per_cu->objfile;
14250
14251 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14252 }
14253
14254 /* Locate the .debug_info compilation unit from CU's objfile which contains
14255 the DIE at OFFSET. Raises an error on failure. */
14256
14257 static struct dwarf2_per_cu_data *
14258 dwarf2_find_containing_comp_unit (unsigned int offset,
14259 struct objfile *objfile)
14260 {
14261 struct dwarf2_per_cu_data *this_cu;
14262 int low, high;
14263
14264 low = 0;
14265 high = dwarf2_per_objfile->n_comp_units - 1;
14266 while (high > low)
14267 {
14268 int mid = low + (high - low) / 2;
14269
14270 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14271 high = mid;
14272 else
14273 low = mid + 1;
14274 }
14275 gdb_assert (low == high);
14276 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14277 {
14278 if (low == 0)
14279 error (_("Dwarf Error: could not find partial DIE containing "
14280 "offset 0x%lx [in module %s]"),
14281 (long) offset, bfd_get_filename (objfile->obfd));
14282
14283 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14284 return dwarf2_per_objfile->all_comp_units[low-1];
14285 }
14286 else
14287 {
14288 this_cu = dwarf2_per_objfile->all_comp_units[low];
14289 if (low == dwarf2_per_objfile->n_comp_units - 1
14290 && offset >= this_cu->offset + this_cu->length)
14291 error (_("invalid dwarf2 offset %u"), offset);
14292 gdb_assert (offset < this_cu->offset + this_cu->length);
14293 return this_cu;
14294 }
14295 }
14296
14297 /* Locate the compilation unit from OBJFILE which is located at exactly
14298 OFFSET. Raises an error on failure. */
14299
14300 static struct dwarf2_per_cu_data *
14301 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14302 {
14303 struct dwarf2_per_cu_data *this_cu;
14304
14305 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14306 if (this_cu->offset != offset)
14307 error (_("no compilation unit with offset %u."), offset);
14308 return this_cu;
14309 }
14310
14311 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
14312
14313 static struct dwarf2_cu *
14314 alloc_one_comp_unit (struct objfile *objfile)
14315 {
14316 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
14317 cu->objfile = objfile;
14318 obstack_init (&cu->comp_unit_obstack);
14319 return cu;
14320 }
14321
14322 /* Release one cached compilation unit, CU. We unlink it from the tree
14323 of compilation units, but we don't remove it from the read_in_chain;
14324 the caller is responsible for that.
14325 NOTE: DATA is a void * because this function is also used as a
14326 cleanup routine. */
14327
14328 static void
14329 free_one_comp_unit (void *data)
14330 {
14331 struct dwarf2_cu *cu = data;
14332
14333 if (cu->per_cu != NULL)
14334 cu->per_cu->cu = NULL;
14335 cu->per_cu = NULL;
14336
14337 obstack_free (&cu->comp_unit_obstack, NULL);
14338
14339 xfree (cu);
14340 }
14341
14342 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14343 when we're finished with it. We can't free the pointer itself, but be
14344 sure to unlink it from the cache. Also release any associated storage
14345 and perform cache maintenance.
14346
14347 Only used during partial symbol parsing. */
14348
14349 static void
14350 free_stack_comp_unit (void *data)
14351 {
14352 struct dwarf2_cu *cu = data;
14353
14354 obstack_free (&cu->comp_unit_obstack, NULL);
14355 cu->partial_dies = NULL;
14356
14357 if (cu->per_cu != NULL)
14358 {
14359 /* This compilation unit is on the stack in our caller, so we
14360 should not xfree it. Just unlink it. */
14361 cu->per_cu->cu = NULL;
14362 cu->per_cu = NULL;
14363
14364 /* If we had a per-cu pointer, then we may have other compilation
14365 units loaded, so age them now. */
14366 age_cached_comp_units ();
14367 }
14368 }
14369
14370 /* Free all cached compilation units. */
14371
14372 static void
14373 free_cached_comp_units (void *data)
14374 {
14375 struct dwarf2_per_cu_data *per_cu, **last_chain;
14376
14377 per_cu = dwarf2_per_objfile->read_in_chain;
14378 last_chain = &dwarf2_per_objfile->read_in_chain;
14379 while (per_cu != NULL)
14380 {
14381 struct dwarf2_per_cu_data *next_cu;
14382
14383 next_cu = per_cu->cu->read_in_chain;
14384
14385 free_one_comp_unit (per_cu->cu);
14386 *last_chain = next_cu;
14387
14388 per_cu = next_cu;
14389 }
14390 }
14391
14392 /* Increase the age counter on each cached compilation unit, and free
14393 any that are too old. */
14394
14395 static void
14396 age_cached_comp_units (void)
14397 {
14398 struct dwarf2_per_cu_data *per_cu, **last_chain;
14399
14400 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14401 per_cu = dwarf2_per_objfile->read_in_chain;
14402 while (per_cu != NULL)
14403 {
14404 per_cu->cu->last_used ++;
14405 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14406 dwarf2_mark (per_cu->cu);
14407 per_cu = per_cu->cu->read_in_chain;
14408 }
14409
14410 per_cu = dwarf2_per_objfile->read_in_chain;
14411 last_chain = &dwarf2_per_objfile->read_in_chain;
14412 while (per_cu != NULL)
14413 {
14414 struct dwarf2_per_cu_data *next_cu;
14415
14416 next_cu = per_cu->cu->read_in_chain;
14417
14418 if (!per_cu->cu->mark)
14419 {
14420 free_one_comp_unit (per_cu->cu);
14421 *last_chain = next_cu;
14422 }
14423 else
14424 last_chain = &per_cu->cu->read_in_chain;
14425
14426 per_cu = next_cu;
14427 }
14428 }
14429
14430 /* Remove a single compilation unit from the cache. */
14431
14432 static void
14433 free_one_cached_comp_unit (void *target_cu)
14434 {
14435 struct dwarf2_per_cu_data *per_cu, **last_chain;
14436
14437 per_cu = dwarf2_per_objfile->read_in_chain;
14438 last_chain = &dwarf2_per_objfile->read_in_chain;
14439 while (per_cu != NULL)
14440 {
14441 struct dwarf2_per_cu_data *next_cu;
14442
14443 next_cu = per_cu->cu->read_in_chain;
14444
14445 if (per_cu->cu == target_cu)
14446 {
14447 free_one_comp_unit (per_cu->cu);
14448 *last_chain = next_cu;
14449 break;
14450 }
14451 else
14452 last_chain = &per_cu->cu->read_in_chain;
14453
14454 per_cu = next_cu;
14455 }
14456 }
14457
14458 /* Release all extra memory associated with OBJFILE. */
14459
14460 void
14461 dwarf2_free_objfile (struct objfile *objfile)
14462 {
14463 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14464
14465 if (dwarf2_per_objfile == NULL)
14466 return;
14467
14468 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14469 free_cached_comp_units (NULL);
14470
14471 if (dwarf2_per_objfile->using_index)
14472 {
14473 int i;
14474
14475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14476 {
14477 int j;
14478 struct dwarf2_per_cu_data *per_cu =
14479 dwarf2_per_objfile->all_comp_units[i];
14480
14481 if (!per_cu->v.quick->lines)
14482 continue;
14483
14484 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
14485 {
14486 if (per_cu->v.quick->file_names)
14487 xfree ((void *) per_cu->v.quick->file_names[j]);
14488 if (per_cu->v.quick->full_names)
14489 xfree ((void *) per_cu->v.quick->full_names[j]);
14490 }
14491
14492 free_line_header (per_cu->v.quick->lines);
14493 }
14494 }
14495
14496 /* Everything else should be on the objfile obstack. */
14497 }
14498
14499 /* A pair of DIE offset and GDB type pointer. We store these
14500 in a hash table separate from the DIEs, and preserve them
14501 when the DIEs are flushed out of cache. */
14502
14503 struct dwarf2_offset_and_type
14504 {
14505 unsigned int offset;
14506 struct type *type;
14507 };
14508
14509 /* Hash function for a dwarf2_offset_and_type. */
14510
14511 static hashval_t
14512 offset_and_type_hash (const void *item)
14513 {
14514 const struct dwarf2_offset_and_type *ofs = item;
14515
14516 return ofs->offset;
14517 }
14518
14519 /* Equality function for a dwarf2_offset_and_type. */
14520
14521 static int
14522 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14523 {
14524 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14525 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14526
14527 return ofs_lhs->offset == ofs_rhs->offset;
14528 }
14529
14530 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14531 table if necessary. For convenience, return TYPE.
14532
14533 The DIEs reading must have careful ordering to:
14534 * Not cause infite loops trying to read in DIEs as a prerequisite for
14535 reading current DIE.
14536 * Not trying to dereference contents of still incompletely read in types
14537 while reading in other DIEs.
14538 * Enable referencing still incompletely read in types just by a pointer to
14539 the type without accessing its fields.
14540
14541 Therefore caller should follow these rules:
14542 * Try to fetch any prerequisite types we may need to build this DIE type
14543 before building the type and calling set_die_type.
14544 * After building type call set_die_type for current DIE as soon as
14545 possible before fetching more types to complete the current type.
14546 * Make the type as complete as possible before fetching more types. */
14547
14548 static struct type *
14549 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14550 {
14551 struct dwarf2_offset_and_type **slot, ofs;
14552 struct objfile *objfile = cu->objfile;
14553 htab_t *type_hash_ptr;
14554
14555 /* For Ada types, make sure that the gnat-specific data is always
14556 initialized (if not already set). There are a few types where
14557 we should not be doing so, because the type-specific area is
14558 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14559 where the type-specific area is used to store the floatformat).
14560 But this is not a problem, because the gnat-specific information
14561 is actually not needed for these types. */
14562 if (need_gnat_info (cu)
14563 && TYPE_CODE (type) != TYPE_CODE_FUNC
14564 && TYPE_CODE (type) != TYPE_CODE_FLT
14565 && !HAVE_GNAT_AUX_INFO (type))
14566 INIT_GNAT_SPECIFIC (type);
14567
14568 if (cu->per_cu->from_debug_types)
14569 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14570 else
14571 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14572
14573 if (*type_hash_ptr == NULL)
14574 {
14575 *type_hash_ptr
14576 = htab_create_alloc_ex (127,
14577 offset_and_type_hash,
14578 offset_and_type_eq,
14579 NULL,
14580 &objfile->objfile_obstack,
14581 hashtab_obstack_allocate,
14582 dummy_obstack_deallocate);
14583 }
14584
14585 ofs.offset = die->offset;
14586 ofs.type = type;
14587 slot = (struct dwarf2_offset_and_type **)
14588 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14589 if (*slot)
14590 complaint (&symfile_complaints,
14591 _("A problem internal to GDB: DIE 0x%x has type already set"),
14592 die->offset);
14593 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14594 **slot = ofs;
14595 return type;
14596 }
14597
14598 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14599 table, or return NULL if the die does not have a saved type. */
14600
14601 static struct type *
14602 get_die_type_at_offset (unsigned int offset,
14603 struct dwarf2_per_cu_data *per_cu)
14604 {
14605 struct dwarf2_offset_and_type *slot, ofs;
14606 htab_t type_hash;
14607
14608 if (per_cu->from_debug_types)
14609 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14610 else
14611 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14612 if (type_hash == NULL)
14613 return NULL;
14614
14615 ofs.offset = offset;
14616 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14617 if (slot)
14618 return slot->type;
14619 else
14620 return NULL;
14621 }
14622
14623 /* Look up the type for DIE in the appropriate type_hash table,
14624 or return NULL if DIE does not have a saved type. */
14625
14626 static struct type *
14627 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14628 {
14629 return get_die_type_at_offset (die->offset, cu->per_cu);
14630 }
14631
14632 /* Add a dependence relationship from CU to REF_PER_CU. */
14633
14634 static void
14635 dwarf2_add_dependence (struct dwarf2_cu *cu,
14636 struct dwarf2_per_cu_data *ref_per_cu)
14637 {
14638 void **slot;
14639
14640 if (cu->dependencies == NULL)
14641 cu->dependencies
14642 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14643 NULL, &cu->comp_unit_obstack,
14644 hashtab_obstack_allocate,
14645 dummy_obstack_deallocate);
14646
14647 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14648 if (*slot == NULL)
14649 *slot = ref_per_cu;
14650 }
14651
14652 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14653 Set the mark field in every compilation unit in the
14654 cache that we must keep because we are keeping CU. */
14655
14656 static int
14657 dwarf2_mark_helper (void **slot, void *data)
14658 {
14659 struct dwarf2_per_cu_data *per_cu;
14660
14661 per_cu = (struct dwarf2_per_cu_data *) *slot;
14662 if (per_cu->cu->mark)
14663 return 1;
14664 per_cu->cu->mark = 1;
14665
14666 if (per_cu->cu->dependencies != NULL)
14667 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14668
14669 return 1;
14670 }
14671
14672 /* Set the mark field in CU and in every other compilation unit in the
14673 cache that we must keep because we are keeping CU. */
14674
14675 static void
14676 dwarf2_mark (struct dwarf2_cu *cu)
14677 {
14678 if (cu->mark)
14679 return;
14680 cu->mark = 1;
14681 if (cu->dependencies != NULL)
14682 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14683 }
14684
14685 static void
14686 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14687 {
14688 while (per_cu)
14689 {
14690 per_cu->cu->mark = 0;
14691 per_cu = per_cu->cu->read_in_chain;
14692 }
14693 }
14694
14695 /* Trivial hash function for partial_die_info: the hash value of a DIE
14696 is its offset in .debug_info for this objfile. */
14697
14698 static hashval_t
14699 partial_die_hash (const void *item)
14700 {
14701 const struct partial_die_info *part_die = item;
14702
14703 return part_die->offset;
14704 }
14705
14706 /* Trivial comparison function for partial_die_info structures: two DIEs
14707 are equal if they have the same offset. */
14708
14709 static int
14710 partial_die_eq (const void *item_lhs, const void *item_rhs)
14711 {
14712 const struct partial_die_info *part_die_lhs = item_lhs;
14713 const struct partial_die_info *part_die_rhs = item_rhs;
14714
14715 return part_die_lhs->offset == part_die_rhs->offset;
14716 }
14717
14718 static struct cmd_list_element *set_dwarf2_cmdlist;
14719 static struct cmd_list_element *show_dwarf2_cmdlist;
14720
14721 static void
14722 set_dwarf2_cmd (char *args, int from_tty)
14723 {
14724 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14725 }
14726
14727 static void
14728 show_dwarf2_cmd (char *args, int from_tty)
14729 {
14730 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14731 }
14732
14733 /* If section described by INFO was mmapped, munmap it now. */
14734
14735 static void
14736 munmap_section_buffer (struct dwarf2_section_info *info)
14737 {
14738 if (info->was_mmapped)
14739 {
14740 #ifdef HAVE_MMAP
14741 intptr_t begin = (intptr_t) info->buffer;
14742 intptr_t map_begin = begin & ~(pagesize - 1);
14743 size_t map_length = info->size + begin - map_begin;
14744
14745 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14746 #else
14747 /* Without HAVE_MMAP, we should never be here to begin with. */
14748 gdb_assert_not_reached ("no mmap support");
14749 #endif
14750 }
14751 }
14752
14753 /* munmap debug sections for OBJFILE, if necessary. */
14754
14755 static void
14756 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14757 {
14758 struct dwarf2_per_objfile *data = d;
14759
14760 /* This is sorted according to the order they're defined in to make it easier
14761 to keep in sync. */
14762 munmap_section_buffer (&data->info);
14763 munmap_section_buffer (&data->abbrev);
14764 munmap_section_buffer (&data->line);
14765 munmap_section_buffer (&data->loc);
14766 munmap_section_buffer (&data->macinfo);
14767 munmap_section_buffer (&data->str);
14768 munmap_section_buffer (&data->ranges);
14769 munmap_section_buffer (&data->types);
14770 munmap_section_buffer (&data->frame);
14771 munmap_section_buffer (&data->eh_frame);
14772 munmap_section_buffer (&data->gdb_index);
14773 }
14774
14775 \f
14776
14777 /* The contents of the hash table we create when building the string
14778 table. */
14779 struct strtab_entry
14780 {
14781 offset_type offset;
14782 const char *str;
14783 };
14784
14785 /* Hash function for a strtab_entry. */
14786
14787 static hashval_t
14788 hash_strtab_entry (const void *e)
14789 {
14790 const struct strtab_entry *entry = e;
14791 return mapped_index_string_hash (entry->str);
14792 }
14793
14794 /* Equality function for a strtab_entry. */
14795
14796 static int
14797 eq_strtab_entry (const void *a, const void *b)
14798 {
14799 const struct strtab_entry *ea = a;
14800 const struct strtab_entry *eb = b;
14801 return !strcmp (ea->str, eb->str);
14802 }
14803
14804 /* Create a strtab_entry hash table. */
14805
14806 static htab_t
14807 create_strtab (void)
14808 {
14809 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14810 xfree, xcalloc, xfree);
14811 }
14812
14813 /* Add a string to the constant pool. Return the string's offset in
14814 host order. */
14815
14816 static offset_type
14817 add_string (htab_t table, struct obstack *cpool, const char *str)
14818 {
14819 void **slot;
14820 struct strtab_entry entry;
14821 struct strtab_entry *result;
14822
14823 entry.str = str;
14824 slot = htab_find_slot (table, &entry, INSERT);
14825 if (*slot)
14826 result = *slot;
14827 else
14828 {
14829 result = XNEW (struct strtab_entry);
14830 result->offset = obstack_object_size (cpool);
14831 result->str = str;
14832 obstack_grow_str0 (cpool, str);
14833 *slot = result;
14834 }
14835 return result->offset;
14836 }
14837
14838 /* An entry in the symbol table. */
14839 struct symtab_index_entry
14840 {
14841 /* The name of the symbol. */
14842 const char *name;
14843 /* The offset of the name in the constant pool. */
14844 offset_type index_offset;
14845 /* A sorted vector of the indices of all the CUs that hold an object
14846 of this name. */
14847 VEC (offset_type) *cu_indices;
14848 };
14849
14850 /* The symbol table. This is a power-of-2-sized hash table. */
14851 struct mapped_symtab
14852 {
14853 offset_type n_elements;
14854 offset_type size;
14855 struct symtab_index_entry **data;
14856 };
14857
14858 /* Hash function for a symtab_index_entry. */
14859
14860 static hashval_t
14861 hash_symtab_entry (const void *e)
14862 {
14863 const struct symtab_index_entry *entry = e;
14864 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14865 sizeof (offset_type) * VEC_length (offset_type,
14866 entry->cu_indices),
14867 0);
14868 }
14869
14870 /* Equality function for a symtab_index_entry. */
14871
14872 static int
14873 eq_symtab_entry (const void *a, const void *b)
14874 {
14875 const struct symtab_index_entry *ea = a;
14876 const struct symtab_index_entry *eb = b;
14877 int len = VEC_length (offset_type, ea->cu_indices);
14878 if (len != VEC_length (offset_type, eb->cu_indices))
14879 return 0;
14880 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14881 VEC_address (offset_type, eb->cu_indices),
14882 sizeof (offset_type) * len);
14883 }
14884
14885 /* Destroy a symtab_index_entry. */
14886
14887 static void
14888 delete_symtab_entry (void *p)
14889 {
14890 struct symtab_index_entry *entry = p;
14891 VEC_free (offset_type, entry->cu_indices);
14892 xfree (entry);
14893 }
14894
14895 /* Create a hash table holding symtab_index_entry objects. */
14896
14897 static htab_t
14898 create_symbol_hash_table (void)
14899 {
14900 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14901 delete_symtab_entry, xcalloc, xfree);
14902 }
14903
14904 /* Create a new mapped symtab object. */
14905
14906 static struct mapped_symtab *
14907 create_mapped_symtab (void)
14908 {
14909 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14910 symtab->n_elements = 0;
14911 symtab->size = 1024;
14912 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14913 return symtab;
14914 }
14915
14916 /* Destroy a mapped_symtab. */
14917
14918 static void
14919 cleanup_mapped_symtab (void *p)
14920 {
14921 struct mapped_symtab *symtab = p;
14922 /* The contents of the array are freed when the other hash table is
14923 destroyed. */
14924 xfree (symtab->data);
14925 xfree (symtab);
14926 }
14927
14928 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14929 the slot. */
14930
14931 static struct symtab_index_entry **
14932 find_slot (struct mapped_symtab *symtab, const char *name)
14933 {
14934 offset_type index, step, hash = mapped_index_string_hash (name);
14935
14936 index = hash & (symtab->size - 1);
14937 step = ((hash * 17) & (symtab->size - 1)) | 1;
14938
14939 for (;;)
14940 {
14941 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14942 return &symtab->data[index];
14943 index = (index + step) & (symtab->size - 1);
14944 }
14945 }
14946
14947 /* Expand SYMTAB's hash table. */
14948
14949 static void
14950 hash_expand (struct mapped_symtab *symtab)
14951 {
14952 offset_type old_size = symtab->size;
14953 offset_type i;
14954 struct symtab_index_entry **old_entries = symtab->data;
14955
14956 symtab->size *= 2;
14957 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14958
14959 for (i = 0; i < old_size; ++i)
14960 {
14961 if (old_entries[i])
14962 {
14963 struct symtab_index_entry **slot = find_slot (symtab,
14964 old_entries[i]->name);
14965 *slot = old_entries[i];
14966 }
14967 }
14968
14969 xfree (old_entries);
14970 }
14971
14972 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
14973 is the index of the CU in which the symbol appears. */
14974
14975 static void
14976 add_index_entry (struct mapped_symtab *symtab, const char *name,
14977 offset_type cu_index)
14978 {
14979 struct symtab_index_entry **slot;
14980
14981 ++symtab->n_elements;
14982 if (4 * symtab->n_elements / 3 >= symtab->size)
14983 hash_expand (symtab);
14984
14985 slot = find_slot (symtab, name);
14986 if (!*slot)
14987 {
14988 *slot = XNEW (struct symtab_index_entry);
14989 (*slot)->name = name;
14990 (*slot)->cu_indices = NULL;
14991 }
14992 /* Don't push an index twice. Due to how we add entries we only
14993 have to check the last one. */
14994 if (VEC_empty (offset_type, (*slot)->cu_indices)
14995 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
14996 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
14997 }
14998
14999 /* Add a vector of indices to the constant pool. */
15000
15001 static offset_type
15002 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15003 struct symtab_index_entry *entry)
15004 {
15005 void **slot;
15006
15007 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15008 if (!*slot)
15009 {
15010 offset_type len = VEC_length (offset_type, entry->cu_indices);
15011 offset_type val = MAYBE_SWAP (len);
15012 offset_type iter;
15013 int i;
15014
15015 *slot = entry;
15016 entry->index_offset = obstack_object_size (cpool);
15017
15018 obstack_grow (cpool, &val, sizeof (val));
15019 for (i = 0;
15020 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15021 ++i)
15022 {
15023 val = MAYBE_SWAP (iter);
15024 obstack_grow (cpool, &val, sizeof (val));
15025 }
15026 }
15027 else
15028 {
15029 struct symtab_index_entry *old_entry = *slot;
15030 entry->index_offset = old_entry->index_offset;
15031 entry = old_entry;
15032 }
15033 return entry->index_offset;
15034 }
15035
15036 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15037 constant pool entries going into the obstack CPOOL. */
15038
15039 static void
15040 write_hash_table (struct mapped_symtab *symtab,
15041 struct obstack *output, struct obstack *cpool)
15042 {
15043 offset_type i;
15044 htab_t symbol_hash_table;
15045 htab_t str_table;
15046
15047 symbol_hash_table = create_symbol_hash_table ();
15048 str_table = create_strtab ();
15049
15050 /* We add all the index vectors to the constant pool first, to
15051 ensure alignment is ok. */
15052 for (i = 0; i < symtab->size; ++i)
15053 {
15054 if (symtab->data[i])
15055 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15056 }
15057
15058 /* Now write out the hash table. */
15059 for (i = 0; i < symtab->size; ++i)
15060 {
15061 offset_type str_off, vec_off;
15062
15063 if (symtab->data[i])
15064 {
15065 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15066 vec_off = symtab->data[i]->index_offset;
15067 }
15068 else
15069 {
15070 /* While 0 is a valid constant pool index, it is not valid
15071 to have 0 for both offsets. */
15072 str_off = 0;
15073 vec_off = 0;
15074 }
15075
15076 str_off = MAYBE_SWAP (str_off);
15077 vec_off = MAYBE_SWAP (vec_off);
15078
15079 obstack_grow (output, &str_off, sizeof (str_off));
15080 obstack_grow (output, &vec_off, sizeof (vec_off));
15081 }
15082
15083 htab_delete (str_table);
15084 htab_delete (symbol_hash_table);
15085 }
15086
15087 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
15088 from PST; CU_INDEX is the index of the CU in the vector of all
15089 CUs. */
15090
15091 static void
15092 add_address_entry (struct objfile *objfile,
15093 struct obstack *addr_obstack, struct partial_symtab *pst,
15094 unsigned int cu_index)
15095 {
15096 offset_type offset;
15097 char addr[8];
15098 CORE_ADDR baseaddr;
15099
15100 /* Don't bother recording empty ranges. */
15101 if (pst->textlow == pst->texthigh)
15102 return;
15103
15104 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15105
15106 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
15107 obstack_grow (addr_obstack, addr, 8);
15108 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
15109 obstack_grow (addr_obstack, addr, 8);
15110 offset = MAYBE_SWAP (cu_index);
15111 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
15112 }
15113
15114 /* Add a list of partial symbols to SYMTAB. */
15115
15116 static void
15117 write_psymbols (struct mapped_symtab *symtab,
15118 htab_t psyms_seen,
15119 struct partial_symbol **psymp,
15120 int count,
15121 offset_type cu_index,
15122 int is_static)
15123 {
15124 for (; count-- > 0; ++psymp)
15125 {
15126 void **slot, *lookup;
15127
15128 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15129 error (_("Ada is not currently supported by the index"));
15130
15131 /* We only want to add a given psymbol once. However, we also
15132 want to account for whether it is global or static. So, we
15133 may add it twice, using slightly different values. */
15134 if (is_static)
15135 {
15136 uintptr_t val = 1 | (uintptr_t) *psymp;
15137
15138 lookup = (void *) val;
15139 }
15140 else
15141 lookup = *psymp;
15142
15143 /* Only add a given psymbol once. */
15144 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15145 if (!*slot)
15146 {
15147 *slot = lookup;
15148 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15149 }
15150 }
15151 }
15152
15153 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15154 exception if there is an error. */
15155
15156 static void
15157 write_obstack (FILE *file, struct obstack *obstack)
15158 {
15159 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15160 file)
15161 != obstack_object_size (obstack))
15162 error (_("couldn't data write to file"));
15163 }
15164
15165 /* Unlink a file if the argument is not NULL. */
15166
15167 static void
15168 unlink_if_set (void *p)
15169 {
15170 char **filename = p;
15171 if (*filename)
15172 unlink (*filename);
15173 }
15174
15175 /* A helper struct used when iterating over debug_types. */
15176 struct signatured_type_index_data
15177 {
15178 struct objfile *objfile;
15179 struct mapped_symtab *symtab;
15180 struct obstack *types_list;
15181 htab_t psyms_seen;
15182 int cu_index;
15183 };
15184
15185 /* A helper function that writes a single signatured_type to an
15186 obstack. */
15187
15188 static int
15189 write_one_signatured_type (void **slot, void *d)
15190 {
15191 struct signatured_type_index_data *info = d;
15192 struct signatured_type *entry = (struct signatured_type *) *slot;
15193 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15194 struct partial_symtab *psymtab = per_cu->v.psymtab;
15195 gdb_byte val[8];
15196
15197 write_psymbols (info->symtab,
15198 info->psyms_seen,
15199 info->objfile->global_psymbols.list + psymtab->globals_offset,
15200 psymtab->n_global_syms, info->cu_index,
15201 0);
15202 write_psymbols (info->symtab,
15203 info->psyms_seen,
15204 info->objfile->static_psymbols.list + psymtab->statics_offset,
15205 psymtab->n_static_syms, info->cu_index,
15206 1);
15207
15208 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15209 obstack_grow (info->types_list, val, 8);
15210 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15211 obstack_grow (info->types_list, val, 8);
15212 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15213 obstack_grow (info->types_list, val, 8);
15214
15215 ++info->cu_index;
15216
15217 return 1;
15218 }
15219
15220 /* A cleanup function for an htab_t. */
15221
15222 static void
15223 cleanup_htab (void *arg)
15224 {
15225 htab_delete (arg);
15226 }
15227
15228 /* Create an index file for OBJFILE in the directory DIR. */
15229
15230 static void
15231 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15232 {
15233 struct cleanup *cleanup;
15234 char *filename, *cleanup_filename;
15235 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15236 struct obstack cu_list, types_cu_list;
15237 int i;
15238 FILE *out_file;
15239 struct mapped_symtab *symtab;
15240 offset_type val, size_of_contents, total_len;
15241 struct stat st;
15242 char buf[8];
15243 htab_t psyms_seen;
15244
15245 if (!objfile->psymtabs)
15246 return;
15247 if (dwarf2_per_objfile->using_index)
15248 error (_("Cannot use an index to create the index"));
15249
15250 if (stat (objfile->name, &st) < 0)
15251 perror_with_name (_("Could not stat"));
15252
15253 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15254 INDEX_SUFFIX, (char *) NULL);
15255 cleanup = make_cleanup (xfree, filename);
15256
15257 out_file = fopen (filename, "wb");
15258 if (!out_file)
15259 error (_("Can't open `%s' for writing"), filename);
15260
15261 cleanup_filename = filename;
15262 make_cleanup (unlink_if_set, &cleanup_filename);
15263
15264 symtab = create_mapped_symtab ();
15265 make_cleanup (cleanup_mapped_symtab, symtab);
15266
15267 obstack_init (&addr_obstack);
15268 make_cleanup_obstack_free (&addr_obstack);
15269
15270 obstack_init (&cu_list);
15271 make_cleanup_obstack_free (&cu_list);
15272
15273 obstack_init (&types_cu_list);
15274 make_cleanup_obstack_free (&types_cu_list);
15275
15276 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15277 NULL, xcalloc, xfree);
15278 make_cleanup (cleanup_htab, psyms_seen);
15279
15280 /* The list is already sorted, so we don't need to do additional
15281 work here. Also, the debug_types entries do not appear in
15282 all_comp_units, but only in their own hash table. */
15283 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15284 {
15285 struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
15286 struct partial_symtab *psymtab = per_cu->v.psymtab;
15287 gdb_byte val[8];
15288
15289 write_psymbols (symtab,
15290 psyms_seen,
15291 objfile->global_psymbols.list + psymtab->globals_offset,
15292 psymtab->n_global_syms, i,
15293 0);
15294 write_psymbols (symtab,
15295 psyms_seen,
15296 objfile->static_psymbols.list + psymtab->statics_offset,
15297 psymtab->n_static_syms, i,
15298 1);
15299
15300 add_address_entry (objfile, &addr_obstack, psymtab, i);
15301
15302 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15303 obstack_grow (&cu_list, val, 8);
15304 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15305 obstack_grow (&cu_list, val, 8);
15306 }
15307
15308 /* Write out the .debug_type entries, if any. */
15309 if (dwarf2_per_objfile->signatured_types)
15310 {
15311 struct signatured_type_index_data sig_data;
15312
15313 sig_data.objfile = objfile;
15314 sig_data.symtab = symtab;
15315 sig_data.types_list = &types_cu_list;
15316 sig_data.psyms_seen = psyms_seen;
15317 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15318 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15319 write_one_signatured_type, &sig_data);
15320 }
15321
15322 obstack_init (&constant_pool);
15323 make_cleanup_obstack_free (&constant_pool);
15324 obstack_init (&symtab_obstack);
15325 make_cleanup_obstack_free (&symtab_obstack);
15326 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15327
15328 obstack_init (&contents);
15329 make_cleanup_obstack_free (&contents);
15330 size_of_contents = 6 * sizeof (offset_type);
15331 total_len = size_of_contents;
15332
15333 /* The version number. */
15334 val = MAYBE_SWAP (3);
15335 obstack_grow (&contents, &val, sizeof (val));
15336
15337 /* The offset of the CU list from the start of the file. */
15338 val = MAYBE_SWAP (total_len);
15339 obstack_grow (&contents, &val, sizeof (val));
15340 total_len += obstack_object_size (&cu_list);
15341
15342 /* The offset of the types CU list from the start of the file. */
15343 val = MAYBE_SWAP (total_len);
15344 obstack_grow (&contents, &val, sizeof (val));
15345 total_len += obstack_object_size (&types_cu_list);
15346
15347 /* The offset of the address table from the start of the file. */
15348 val = MAYBE_SWAP (total_len);
15349 obstack_grow (&contents, &val, sizeof (val));
15350 total_len += obstack_object_size (&addr_obstack);
15351
15352 /* The offset of the symbol table from the start of the file. */
15353 val = MAYBE_SWAP (total_len);
15354 obstack_grow (&contents, &val, sizeof (val));
15355 total_len += obstack_object_size (&symtab_obstack);
15356
15357 /* The offset of the constant pool from the start of the file. */
15358 val = MAYBE_SWAP (total_len);
15359 obstack_grow (&contents, &val, sizeof (val));
15360 total_len += obstack_object_size (&constant_pool);
15361
15362 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15363
15364 write_obstack (out_file, &contents);
15365 write_obstack (out_file, &cu_list);
15366 write_obstack (out_file, &types_cu_list);
15367 write_obstack (out_file, &addr_obstack);
15368 write_obstack (out_file, &symtab_obstack);
15369 write_obstack (out_file, &constant_pool);
15370
15371 fclose (out_file);
15372
15373 /* We want to keep the file, so we set cleanup_filename to NULL
15374 here. See unlink_if_set. */
15375 cleanup_filename = NULL;
15376
15377 do_cleanups (cleanup);
15378 }
15379
15380 /* The mapped index file format is designed to be directly mmap()able
15381 on any architecture. In most cases, a datum is represented using a
15382 little-endian 32-bit integer value, called an offset_type. Big
15383 endian machines must byte-swap the values before using them.
15384 Exceptions to this rule are noted. The data is laid out such that
15385 alignment is always respected.
15386
15387 A mapped index consists of several sections.
15388
15389 1. The file header. This is a sequence of values, of offset_type
15390 unless otherwise noted:
15391
15392 [0] The version number, currently 3. Versions 1 and 2 are
15393 obsolete.
15394 [1] The offset, from the start of the file, of the CU list.
15395 [2] The offset, from the start of the file, of the types CU list.
15396 Note that this section can be empty, in which case this offset will
15397 be equal to the next offset.
15398 [3] The offset, from the start of the file, of the address section.
15399 [4] The offset, from the start of the file, of the symbol table.
15400 [5] The offset, from the start of the file, of the constant pool.
15401
15402 2. The CU list. This is a sequence of pairs of 64-bit
15403 little-endian values, sorted by the CU offset. The first element
15404 in each pair is the offset of a CU in the .debug_info section. The
15405 second element in each pair is the length of that CU. References
15406 to a CU elsewhere in the map are done using a CU index, which is
15407 just the 0-based index into this table. Note that if there are
15408 type CUs, then conceptually CUs and type CUs form a single list for
15409 the purposes of CU indices.
15410
15411 3. The types CU list. This is a sequence of triplets of 64-bit
15412 little-endian values. In a triplet, the first value is the CU
15413 offset, the second value is the type offset in the CU, and the
15414 third value is the type signature. The types CU list is not
15415 sorted.
15416
15417 4. The address section. The address section consists of a sequence
15418 of address entries. Each address entry has three elements.
15419 [0] The low address. This is a 64-bit little-endian value.
15420 [1] The high address. This is a 64-bit little-endian value.
15421 [2] The CU index. This is an offset_type value.
15422
15423 5. The symbol table. This is a hash table. The size of the hash
15424 table is always a power of 2. The initial hash and the step are
15425 currently defined by the `find_slot' function.
15426
15427 Each slot in the hash table consists of a pair of offset_type
15428 values. The first value is the offset of the symbol's name in the
15429 constant pool. The second value is the offset of the CU vector in
15430 the constant pool.
15431
15432 If both values are 0, then this slot in the hash table is empty.
15433 This is ok because while 0 is a valid constant pool index, it
15434 cannot be a valid index for both a string and a CU vector.
15435
15436 A string in the constant pool is stored as a \0-terminated string,
15437 as you'd expect.
15438
15439 A CU vector in the constant pool is a sequence of offset_type
15440 values. The first value is the number of CU indices in the vector.
15441 Each subsequent value is the index of a CU in the CU list. This
15442 element in the hash table is used to indicate which CUs define the
15443 symbol.
15444
15445 6. The constant pool. This is simply a bunch of bytes. It is
15446 organized so that alignment is correct: CU vectors are stored
15447 first, followed by strings. */
15448
15449 static void
15450 save_gdb_index_command (char *arg, int from_tty)
15451 {
15452 struct objfile *objfile;
15453
15454 if (!arg || !*arg)
15455 error (_("usage: save gdb-index DIRECTORY"));
15456
15457 ALL_OBJFILES (objfile)
15458 {
15459 struct stat st;
15460
15461 /* If the objfile does not correspond to an actual file, skip it. */
15462 if (stat (objfile->name, &st) < 0)
15463 continue;
15464
15465 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15466 if (dwarf2_per_objfile)
15467 {
15468 volatile struct gdb_exception except;
15469
15470 TRY_CATCH (except, RETURN_MASK_ERROR)
15471 {
15472 write_psymtabs_to_index (objfile, arg);
15473 }
15474 if (except.reason < 0)
15475 exception_fprintf (gdb_stderr, except,
15476 _("Error while writing index for `%s': "),
15477 objfile->name);
15478 }
15479 }
15480 }
15481
15482 \f
15483
15484 int dwarf2_always_disassemble;
15485
15486 static void
15487 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15488 struct cmd_list_element *c, const char *value)
15489 {
15490 fprintf_filtered (file, _("\
15491 Whether to always disassemble DWARF expressions is %s.\n"),
15492 value);
15493 }
15494
15495 void _initialize_dwarf2_read (void);
15496
15497 void
15498 _initialize_dwarf2_read (void)
15499 {
15500 struct cmd_list_element *c;
15501
15502 dwarf2_objfile_data_key
15503 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15504
15505 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15506 Set DWARF 2 specific variables.\n\
15507 Configure DWARF 2 variables such as the cache size"),
15508 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15509 0/*allow-unknown*/, &maintenance_set_cmdlist);
15510
15511 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15512 Show DWARF 2 specific variables\n\
15513 Show DWARF 2 variables such as the cache size"),
15514 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15515 0/*allow-unknown*/, &maintenance_show_cmdlist);
15516
15517 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15518 &dwarf2_max_cache_age, _("\
15519 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15520 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15521 A higher limit means that cached compilation units will be stored\n\
15522 in memory longer, and more total memory will be used. Zero disables\n\
15523 caching, which can slow down startup."),
15524 NULL,
15525 show_dwarf2_max_cache_age,
15526 &set_dwarf2_cmdlist,
15527 &show_dwarf2_cmdlist);
15528
15529 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15530 &dwarf2_always_disassemble, _("\
15531 Set whether `info address' always disassembles DWARF expressions."), _("\
15532 Show whether `info address' always disassembles DWARF expressions."), _("\
15533 When enabled, DWARF expressions are always printed in an assembly-like\n\
15534 syntax. When disabled, expressions will be printed in a more\n\
15535 conversational style, when possible."),
15536 NULL,
15537 show_dwarf2_always_disassemble,
15538 &set_dwarf2_cmdlist,
15539 &show_dwarf2_cmdlist);
15540
15541 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15542 Set debugging of the dwarf2 DIE reader."), _("\
15543 Show debugging of the dwarf2 DIE reader."), _("\
15544 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15545 The value is the maximum depth to print."),
15546 NULL,
15547 NULL,
15548 &setdebuglist, &showdebuglist);
15549
15550 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15551 _("\
15552 Save a .gdb-index file.\n\
15553 Usage: save gdb-index DIRECTORY"),
15554 &save_cmdlist);
15555 set_cmd_completer (c, filename_completer);
15556 }
This page took 0.575784 seconds and 4 git commands to generate.