* dwarf2read.c (peek_abbrev_code): New function.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60 #include <ctype.h>
61
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_assert.h"
65 #include <sys/types.h>
66 #ifdef HAVE_ZLIB_H
67 #include <zlib.h>
68 #endif
69 #ifdef HAVE_MMAP
70 #include <sys/mman.h>
71 #ifndef MAP_FAILED
72 #define MAP_FAILED ((void *) -1)
73 #endif
74 #endif
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 #if 0
80 /* .debug_info header for a compilation unit
81 Because of alignment constraints, this structure has padding and cannot
82 be mapped directly onto the beginning of the .debug_info section. */
83 typedef struct comp_unit_header
84 {
85 unsigned int length; /* length of the .debug_info
86 contribution */
87 unsigned short version; /* version number -- 2 for DWARF
88 version 2 */
89 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
90 unsigned char addr_size; /* byte size of an address -- 4 */
91 }
92 _COMP_UNIT_HEADER;
93 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
94 #endif
95
96 /* .debug_line statement program prologue
97 Because of alignment constraints, this structure has padding and cannot
98 be mapped directly onto the beginning of the .debug_info section. */
99 typedef struct statement_prologue
100 {
101 unsigned int total_length; /* byte length of the statement
102 information */
103 unsigned short version; /* version number -- 2 for DWARF
104 version 2 */
105 unsigned int prologue_length; /* # bytes between prologue &
106 stmt program */
107 unsigned char minimum_instruction_length; /* byte size of
108 smallest instr */
109 unsigned char default_is_stmt; /* initial value of is_stmt
110 register */
111 char line_base;
112 unsigned char line_range;
113 unsigned char opcode_base; /* number assigned to first special
114 opcode */
115 unsigned char *standard_opcode_lengths;
116 }
117 _STATEMENT_PROLOGUE;
118
119 /* When non-zero, dump DIEs after they are read in. */
120 static int dwarf2_die_debug = 0;
121
122 /* When non-zero, cross-check physname against demangler. */
123 static int check_physname = 0;
124
125 static int pagesize;
126
127 /* When set, the file that we're processing is known to have debugging
128 info for C++ namespaces. GCC 3.3.x did not produce this information,
129 but later versions do. */
130
131 static int processing_has_namespace_info;
132
133 static const struct objfile_data *dwarf2_objfile_data_key;
134
135 struct dwarf2_section_info
136 {
137 asection *asection;
138 gdb_byte *buffer;
139 bfd_size_type size;
140 /* Not NULL if the section was actually mmapped. */
141 void *map_addr;
142 /* Page aligned size of mmapped area. */
143 bfd_size_type map_len;
144 /* True if we have tried to read this section. */
145 int readin;
146 };
147
148 typedef struct dwarf2_section_info dwarf2_section_info_def;
149 DEF_VEC_O (dwarf2_section_info_def);
150
151 /* All offsets in the index are of this type. It must be
152 architecture-independent. */
153 typedef uint32_t offset_type;
154
155 DEF_VEC_I (offset_type);
156
157 /* A description of the mapped index. The file format is described in
158 a comment by the code that writes the index. */
159 struct mapped_index
160 {
161 /* Index data format version. */
162 int version;
163
164 /* The total length of the buffer. */
165 off_t total_size;
166
167 /* A pointer to the address table data. */
168 const gdb_byte *address_table;
169
170 /* Size of the address table data in bytes. */
171 offset_type address_table_size;
172
173 /* The symbol table, implemented as a hash table. */
174 const offset_type *symbol_table;
175
176 /* Size in slots, each slot is 2 offset_types. */
177 offset_type symbol_table_slots;
178
179 /* A pointer to the constant pool. */
180 const char *constant_pool;
181 };
182
183 struct dwarf2_per_objfile
184 {
185 struct dwarf2_section_info info;
186 struct dwarf2_section_info abbrev;
187 struct dwarf2_section_info line;
188 struct dwarf2_section_info loc;
189 struct dwarf2_section_info macinfo;
190 struct dwarf2_section_info macro;
191 struct dwarf2_section_info str;
192 struct dwarf2_section_info ranges;
193 struct dwarf2_section_info frame;
194 struct dwarf2_section_info eh_frame;
195 struct dwarf2_section_info gdb_index;
196
197 VEC (dwarf2_section_info_def) *types;
198
199 /* Back link. */
200 struct objfile *objfile;
201
202 /* A list of all the compilation units. This is used to locate
203 the target compilation unit of a particular reference. */
204 struct dwarf2_per_cu_data **all_comp_units;
205
206 /* The number of compilation units in ALL_COMP_UNITS. */
207 int n_comp_units;
208
209 /* The number of .debug_types-related CUs. */
210 int n_type_comp_units;
211
212 /* The .debug_types-related CUs. */
213 struct dwarf2_per_cu_data **type_comp_units;
214
215 /* A chain of compilation units that are currently read in, so that
216 they can be freed later. */
217 struct dwarf2_per_cu_data *read_in_chain;
218
219 /* A table mapping .debug_types signatures to its signatured_type entry.
220 This is NULL if the .debug_types section hasn't been read in yet. */
221 htab_t signatured_types;
222
223 /* A flag indicating wether this objfile has a section loaded at a
224 VMA of 0. */
225 int has_section_at_zero;
226
227 /* True if we are using the mapped index,
228 or we are faking it for OBJF_READNOW's sake. */
229 unsigned char using_index;
230
231 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
232 struct mapped_index *index_table;
233
234 /* When using index_table, this keeps track of all quick_file_names entries.
235 TUs can share line table entries with CUs or other TUs, and there can be
236 a lot more TUs than unique line tables, so we maintain a separate table
237 of all line table entries to support the sharing. */
238 htab_t quick_file_names_table;
239
240 /* Set during partial symbol reading, to prevent queueing of full
241 symbols. */
242 int reading_partial_symbols;
243
244 /* Table mapping type .debug_info DIE offsets to types.
245 This is NULL if not allocated yet.
246 It (currently) makes sense to allocate debug_types_type_hash lazily.
247 To keep things simple we allocate both lazily. */
248 htab_t debug_info_type_hash;
249
250 /* Table mapping type .debug_types DIE offsets to types.
251 This is NULL if not allocated yet. */
252 htab_t debug_types_type_hash;
253 };
254
255 static struct dwarf2_per_objfile *dwarf2_per_objfile;
256
257 /* Default names of the debugging sections. */
258
259 /* Note that if the debugging section has been compressed, it might
260 have a name like .zdebug_info. */
261
262 static const struct dwarf2_debug_sections dwarf2_elf_names = {
263 { ".debug_info", ".zdebug_info" },
264 { ".debug_abbrev", ".zdebug_abbrev" },
265 { ".debug_line", ".zdebug_line" },
266 { ".debug_loc", ".zdebug_loc" },
267 { ".debug_macinfo", ".zdebug_macinfo" },
268 { ".debug_macro", ".zdebug_macro" },
269 { ".debug_str", ".zdebug_str" },
270 { ".debug_ranges", ".zdebug_ranges" },
271 { ".debug_types", ".zdebug_types" },
272 { ".debug_frame", ".zdebug_frame" },
273 { ".eh_frame", NULL },
274 { ".gdb_index", ".zgdb_index" },
275 23
276 };
277
278 /* local data types */
279
280 /* We hold several abbreviation tables in memory at the same time. */
281 #ifndef ABBREV_HASH_SIZE
282 #define ABBREV_HASH_SIZE 121
283 #endif
284
285 /* The data in a compilation unit header, after target2host
286 translation, looks like this. */
287 struct comp_unit_head
288 {
289 unsigned int length;
290 short version;
291 unsigned char addr_size;
292 unsigned char signed_addr_p;
293 unsigned int abbrev_offset;
294
295 /* Size of file offsets; either 4 or 8. */
296 unsigned int offset_size;
297
298 /* Size of the length field; either 4 or 12. */
299 unsigned int initial_length_size;
300
301 /* Offset to the first byte of this compilation unit header in the
302 .debug_info section, for resolving relative reference dies. */
303 unsigned int offset;
304
305 /* Offset to first die in this cu from the start of the cu.
306 This will be the first byte following the compilation unit header. */
307 unsigned int first_die_offset;
308 };
309
310 /* Type used for delaying computation of method physnames.
311 See comments for compute_delayed_physnames. */
312 struct delayed_method_info
313 {
314 /* The type to which the method is attached, i.e., its parent class. */
315 struct type *type;
316
317 /* The index of the method in the type's function fieldlists. */
318 int fnfield_index;
319
320 /* The index of the method in the fieldlist. */
321 int index;
322
323 /* The name of the DIE. */
324 const char *name;
325
326 /* The DIE associated with this method. */
327 struct die_info *die;
328 };
329
330 typedef struct delayed_method_info delayed_method_info;
331 DEF_VEC_O (delayed_method_info);
332
333 /* Internal state when decoding a particular compilation unit. */
334 struct dwarf2_cu
335 {
336 /* The objfile containing this compilation unit. */
337 struct objfile *objfile;
338
339 /* The header of the compilation unit. */
340 struct comp_unit_head header;
341
342 /* Base address of this compilation unit. */
343 CORE_ADDR base_address;
344
345 /* Non-zero if base_address has been set. */
346 int base_known;
347
348 struct function_range *first_fn, *last_fn, *cached_fn;
349
350 /* The language we are debugging. */
351 enum language language;
352 const struct language_defn *language_defn;
353
354 const char *producer;
355
356 /* The generic symbol table building routines have separate lists for
357 file scope symbols and all all other scopes (local scopes). So
358 we need to select the right one to pass to add_symbol_to_list().
359 We do it by keeping a pointer to the correct list in list_in_scope.
360
361 FIXME: The original dwarf code just treated the file scope as the
362 first local scope, and all other local scopes as nested local
363 scopes, and worked fine. Check to see if we really need to
364 distinguish these in buildsym.c. */
365 struct pending **list_in_scope;
366
367 /* DWARF abbreviation table associated with this compilation unit. */
368 struct abbrev_info **dwarf2_abbrevs;
369
370 /* Storage for the abbrev table. */
371 struct obstack abbrev_obstack;
372
373 /* Hash table holding all the loaded partial DIEs. */
374 htab_t partial_dies;
375
376 /* Storage for things with the same lifetime as this read-in compilation
377 unit, including partial DIEs. */
378 struct obstack comp_unit_obstack;
379
380 /* When multiple dwarf2_cu structures are living in memory, this field
381 chains them all together, so that they can be released efficiently.
382 We will probably also want a generation counter so that most-recently-used
383 compilation units are cached... */
384 struct dwarf2_per_cu_data *read_in_chain;
385
386 /* Backchain to our per_cu entry if the tree has been built. */
387 struct dwarf2_per_cu_data *per_cu;
388
389 /* How many compilation units ago was this CU last referenced? */
390 int last_used;
391
392 /* A hash table of die offsets for following references. */
393 htab_t die_hash;
394
395 /* Full DIEs if read in. */
396 struct die_info *dies;
397
398 /* A set of pointers to dwarf2_per_cu_data objects for compilation
399 units referenced by this one. Only set during full symbol processing;
400 partial symbol tables do not have dependencies. */
401 htab_t dependencies;
402
403 /* Header data from the line table, during full symbol processing. */
404 struct line_header *line_header;
405
406 /* A list of methods which need to have physnames computed
407 after all type information has been read. */
408 VEC (delayed_method_info) *method_list;
409
410 /* To be copied to symtab->call_site_htab. */
411 htab_t call_site_htab;
412
413 /* Mark used when releasing cached dies. */
414 unsigned int mark : 1;
415
416 /* This flag will be set if this compilation unit might include
417 inter-compilation-unit references. */
418 unsigned int has_form_ref_addr : 1;
419
420 /* This flag will be set if this compilation unit includes any
421 DW_TAG_namespace DIEs. If we know that there are explicit
422 DIEs for namespaces, we don't need to try to infer them
423 from mangled names. */
424 unsigned int has_namespace_info : 1;
425
426 /* This CU references .debug_loc. See the symtab->locations_valid field.
427 This test is imperfect as there may exist optimized debug code not using
428 any location list and still facing inlining issues if handled as
429 unoptimized code. For a future better test see GCC PR other/32998. */
430
431 unsigned int has_loclist : 1;
432 };
433
434 /* Persistent data held for a compilation unit, even when not
435 processing it. We put a pointer to this structure in the
436 read_symtab_private field of the psymtab. If we encounter
437 inter-compilation-unit references, we also maintain a sorted
438 list of all compilation units. */
439
440 struct dwarf2_per_cu_data
441 {
442 /* The start offset and length of this compilation unit. 2**29-1
443 bytes should suffice to store the length of any compilation unit
444 - if it doesn't, GDB will fall over anyway.
445 NOTE: Unlike comp_unit_head.length, this length includes
446 initial_length_size. */
447 unsigned int offset;
448 unsigned int length : 29;
449
450 /* Flag indicating this compilation unit will be read in before
451 any of the current compilation units are processed. */
452 unsigned int queued : 1;
453
454 /* This flag will be set if we need to load absolutely all DIEs
455 for this compilation unit, instead of just the ones we think
456 are interesting. It gets set if we look for a DIE in the
457 hash table and don't find it. */
458 unsigned int load_all_dies : 1;
459
460 /* Non-null if this CU is from .debug_types; in which case it points
461 to the section. Otherwise it's from .debug_info. */
462 struct dwarf2_section_info *debug_type_section;
463
464 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
465 of the CU cache it gets reset to NULL again. */
466 struct dwarf2_cu *cu;
467
468 /* The corresponding objfile. */
469 struct objfile *objfile;
470
471 /* When using partial symbol tables, the 'psymtab' field is active.
472 Otherwise the 'quick' field is active. */
473 union
474 {
475 /* The partial symbol table associated with this compilation unit,
476 or NULL for partial units (which do not have an associated
477 symtab). */
478 struct partial_symtab *psymtab;
479
480 /* Data needed by the "quick" functions. */
481 struct dwarf2_per_cu_quick_data *quick;
482 } v;
483 };
484
485 /* Entry in the signatured_types hash table. */
486
487 struct signatured_type
488 {
489 ULONGEST signature;
490
491 /* Offset in .debug_types of the type defined by this TU. */
492 unsigned int type_offset;
493
494 /* The CU(/TU) of this type. */
495 struct dwarf2_per_cu_data per_cu;
496 };
497
498 /* Struct used to pass misc. parameters to read_die_and_children, et
499 al. which are used for both .debug_info and .debug_types dies.
500 All parameters here are unchanging for the life of the call. This
501 struct exists to abstract away the constant parameters of die
502 reading. */
503
504 struct die_reader_specs
505 {
506 /* The bfd of this objfile. */
507 bfd* abfd;
508
509 /* The CU of the DIE we are parsing. */
510 struct dwarf2_cu *cu;
511
512 /* Pointer to start of section buffer.
513 This is either the start of .debug_info or .debug_types. */
514 const gdb_byte *buffer;
515 };
516
517 /* The line number information for a compilation unit (found in the
518 .debug_line section) begins with a "statement program header",
519 which contains the following information. */
520 struct line_header
521 {
522 unsigned int total_length;
523 unsigned short version;
524 unsigned int header_length;
525 unsigned char minimum_instruction_length;
526 unsigned char maximum_ops_per_instruction;
527 unsigned char default_is_stmt;
528 int line_base;
529 unsigned char line_range;
530 unsigned char opcode_base;
531
532 /* standard_opcode_lengths[i] is the number of operands for the
533 standard opcode whose value is i. This means that
534 standard_opcode_lengths[0] is unused, and the last meaningful
535 element is standard_opcode_lengths[opcode_base - 1]. */
536 unsigned char *standard_opcode_lengths;
537
538 /* The include_directories table. NOTE! These strings are not
539 allocated with xmalloc; instead, they are pointers into
540 debug_line_buffer. If you try to free them, `free' will get
541 indigestion. */
542 unsigned int num_include_dirs, include_dirs_size;
543 char **include_dirs;
544
545 /* The file_names table. NOTE! These strings are not allocated
546 with xmalloc; instead, they are pointers into debug_line_buffer.
547 Don't try to free them directly. */
548 unsigned int num_file_names, file_names_size;
549 struct file_entry
550 {
551 char *name;
552 unsigned int dir_index;
553 unsigned int mod_time;
554 unsigned int length;
555 int included_p; /* Non-zero if referenced by the Line Number Program. */
556 struct symtab *symtab; /* The associated symbol table, if any. */
557 } *file_names;
558
559 /* The start and end of the statement program following this
560 header. These point into dwarf2_per_objfile->line_buffer. */
561 gdb_byte *statement_program_start, *statement_program_end;
562 };
563
564 /* When we construct a partial symbol table entry we only
565 need this much information. */
566 struct partial_die_info
567 {
568 /* Offset of this DIE. */
569 unsigned int offset;
570
571 /* DWARF-2 tag for this DIE. */
572 ENUM_BITFIELD(dwarf_tag) tag : 16;
573
574 /* Assorted flags describing the data found in this DIE. */
575 unsigned int has_children : 1;
576 unsigned int is_external : 1;
577 unsigned int is_declaration : 1;
578 unsigned int has_type : 1;
579 unsigned int has_specification : 1;
580 unsigned int has_pc_info : 1;
581
582 /* Flag set if the SCOPE field of this structure has been
583 computed. */
584 unsigned int scope_set : 1;
585
586 /* Flag set if the DIE has a byte_size attribute. */
587 unsigned int has_byte_size : 1;
588
589 /* Flag set if any of the DIE's children are template arguments. */
590 unsigned int has_template_arguments : 1;
591
592 /* Flag set if fixup_partial_die has been called on this die. */
593 unsigned int fixup_called : 1;
594
595 /* The name of this DIE. Normally the value of DW_AT_name, but
596 sometimes a default name for unnamed DIEs. */
597 char *name;
598
599 /* The linkage name, if present. */
600 const char *linkage_name;
601
602 /* The scope to prepend to our children. This is generally
603 allocated on the comp_unit_obstack, so will disappear
604 when this compilation unit leaves the cache. */
605 char *scope;
606
607 /* The location description associated with this DIE, if any. */
608 struct dwarf_block *locdesc;
609
610 /* If HAS_PC_INFO, the PC range associated with this DIE. */
611 CORE_ADDR lowpc;
612 CORE_ADDR highpc;
613
614 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
615 DW_AT_sibling, if any. */
616 /* NOTE: This member isn't strictly necessary, read_partial_die could
617 return DW_AT_sibling values to its caller load_partial_dies. */
618 gdb_byte *sibling;
619
620 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
621 DW_AT_specification (or DW_AT_abstract_origin or
622 DW_AT_extension). */
623 unsigned int spec_offset;
624
625 /* Pointers to this DIE's parent, first child, and next sibling,
626 if any. */
627 struct partial_die_info *die_parent, *die_child, *die_sibling;
628 };
629
630 /* This data structure holds the information of an abbrev. */
631 struct abbrev_info
632 {
633 unsigned int number; /* number identifying abbrev */
634 enum dwarf_tag tag; /* dwarf tag */
635 unsigned short has_children; /* boolean */
636 unsigned short num_attrs; /* number of attributes */
637 struct attr_abbrev *attrs; /* an array of attribute descriptions */
638 struct abbrev_info *next; /* next in chain */
639 };
640
641 struct attr_abbrev
642 {
643 ENUM_BITFIELD(dwarf_attribute) name : 16;
644 ENUM_BITFIELD(dwarf_form) form : 16;
645 };
646
647 /* Attributes have a name and a value. */
648 struct attribute
649 {
650 ENUM_BITFIELD(dwarf_attribute) name : 16;
651 ENUM_BITFIELD(dwarf_form) form : 15;
652
653 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
654 field should be in u.str (existing only for DW_STRING) but it is kept
655 here for better struct attribute alignment. */
656 unsigned int string_is_canonical : 1;
657
658 union
659 {
660 char *str;
661 struct dwarf_block *blk;
662 ULONGEST unsnd;
663 LONGEST snd;
664 CORE_ADDR addr;
665 struct signatured_type *signatured_type;
666 }
667 u;
668 };
669
670 /* This data structure holds a complete die structure. */
671 struct die_info
672 {
673 /* DWARF-2 tag for this DIE. */
674 ENUM_BITFIELD(dwarf_tag) tag : 16;
675
676 /* Number of attributes */
677 unsigned char num_attrs;
678
679 /* True if we're presently building the full type name for the
680 type derived from this DIE. */
681 unsigned char building_fullname : 1;
682
683 /* Abbrev number */
684 unsigned int abbrev;
685
686 /* Offset in .debug_info or .debug_types section. */
687 unsigned int offset;
688
689 /* The dies in a compilation unit form an n-ary tree. PARENT
690 points to this die's parent; CHILD points to the first child of
691 this node; and all the children of a given node are chained
692 together via their SIBLING fields. */
693 struct die_info *child; /* Its first child, if any. */
694 struct die_info *sibling; /* Its next sibling, if any. */
695 struct die_info *parent; /* Its parent, if any. */
696
697 /* An array of attributes, with NUM_ATTRS elements. There may be
698 zero, but it's not common and zero-sized arrays are not
699 sufficiently portable C. */
700 struct attribute attrs[1];
701 };
702
703 struct function_range
704 {
705 const char *name;
706 CORE_ADDR lowpc, highpc;
707 int seen_line;
708 struct function_range *next;
709 };
710
711 /* Get at parts of an attribute structure. */
712
713 #define DW_STRING(attr) ((attr)->u.str)
714 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
715 #define DW_UNSND(attr) ((attr)->u.unsnd)
716 #define DW_BLOCK(attr) ((attr)->u.blk)
717 #define DW_SND(attr) ((attr)->u.snd)
718 #define DW_ADDR(attr) ((attr)->u.addr)
719 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
720
721 /* Blocks are a bunch of untyped bytes. */
722 struct dwarf_block
723 {
724 unsigned int size;
725
726 /* Valid only if SIZE is not zero. */
727 gdb_byte *data;
728 };
729
730 #ifndef ATTR_ALLOC_CHUNK
731 #define ATTR_ALLOC_CHUNK 4
732 #endif
733
734 /* Allocate fields for structs, unions and enums in this size. */
735 #ifndef DW_FIELD_ALLOC_CHUNK
736 #define DW_FIELD_ALLOC_CHUNK 4
737 #endif
738
739 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
740 but this would require a corresponding change in unpack_field_as_long
741 and friends. */
742 static int bits_per_byte = 8;
743
744 /* The routines that read and process dies for a C struct or C++ class
745 pass lists of data member fields and lists of member function fields
746 in an instance of a field_info structure, as defined below. */
747 struct field_info
748 {
749 /* List of data member and baseclasses fields. */
750 struct nextfield
751 {
752 struct nextfield *next;
753 int accessibility;
754 int virtuality;
755 struct field field;
756 }
757 *fields, *baseclasses;
758
759 /* Number of fields (including baseclasses). */
760 int nfields;
761
762 /* Number of baseclasses. */
763 int nbaseclasses;
764
765 /* Set if the accesibility of one of the fields is not public. */
766 int non_public_fields;
767
768 /* Member function fields array, entries are allocated in the order they
769 are encountered in the object file. */
770 struct nextfnfield
771 {
772 struct nextfnfield *next;
773 struct fn_field fnfield;
774 }
775 *fnfields;
776
777 /* Member function fieldlist array, contains name of possibly overloaded
778 member function, number of overloaded member functions and a pointer
779 to the head of the member function field chain. */
780 struct fnfieldlist
781 {
782 char *name;
783 int length;
784 struct nextfnfield *head;
785 }
786 *fnfieldlists;
787
788 /* Number of entries in the fnfieldlists array. */
789 int nfnfields;
790
791 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
792 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
793 struct typedef_field_list
794 {
795 struct typedef_field field;
796 struct typedef_field_list *next;
797 }
798 *typedef_field_list;
799 unsigned typedef_field_list_count;
800 };
801
802 /* One item on the queue of compilation units to read in full symbols
803 for. */
804 struct dwarf2_queue_item
805 {
806 struct dwarf2_per_cu_data *per_cu;
807 struct dwarf2_queue_item *next;
808 };
809
810 /* The current queue. */
811 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
812
813 /* Loaded secondary compilation units are kept in memory until they
814 have not been referenced for the processing of this many
815 compilation units. Set this to zero to disable caching. Cache
816 sizes of up to at least twenty will improve startup time for
817 typical inter-CU-reference binaries, at an obvious memory cost. */
818 static int dwarf2_max_cache_age = 5;
819 static void
820 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
821 struct cmd_list_element *c, const char *value)
822 {
823 fprintf_filtered (file, _("The upper bound on the age of cached "
824 "dwarf2 compilation units is %s.\n"),
825 value);
826 }
827
828
829 /* Various complaints about symbol reading that don't abort the process. */
830
831 static void
832 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
833 {
834 complaint (&symfile_complaints,
835 _("statement list doesn't fit in .debug_line section"));
836 }
837
838 static void
839 dwarf2_debug_line_missing_file_complaint (void)
840 {
841 complaint (&symfile_complaints,
842 _(".debug_line section has line data without a file"));
843 }
844
845 static void
846 dwarf2_debug_line_missing_end_sequence_complaint (void)
847 {
848 complaint (&symfile_complaints,
849 _(".debug_line section has line "
850 "program sequence without an end"));
851 }
852
853 static void
854 dwarf2_complex_location_expr_complaint (void)
855 {
856 complaint (&symfile_complaints, _("location expression too complex"));
857 }
858
859 static void
860 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
861 int arg3)
862 {
863 complaint (&symfile_complaints,
864 _("const value length mismatch for '%s', got %d, expected %d"),
865 arg1, arg2, arg3);
866 }
867
868 static void
869 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
870 {
871 complaint (&symfile_complaints,
872 _("macro info runs off end of `%s' section"),
873 section->asection->name);
874 }
875
876 static void
877 dwarf2_macro_malformed_definition_complaint (const char *arg1)
878 {
879 complaint (&symfile_complaints,
880 _("macro debug info contains a "
881 "malformed macro definition:\n`%s'"),
882 arg1);
883 }
884
885 static void
886 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
887 {
888 complaint (&symfile_complaints,
889 _("invalid attribute class or form for '%s' in '%s'"),
890 arg1, arg2);
891 }
892
893 /* local function prototypes */
894
895 static void dwarf2_locate_sections (bfd *, asection *, void *);
896
897 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
898 struct objfile *);
899
900 static void dwarf2_find_base_address (struct die_info *die,
901 struct dwarf2_cu *cu);
902
903 static void dwarf2_build_psymtabs_hard (struct objfile *);
904
905 static void scan_partial_symbols (struct partial_die_info *,
906 CORE_ADDR *, CORE_ADDR *,
907 int, struct dwarf2_cu *);
908
909 static void add_partial_symbol (struct partial_die_info *,
910 struct dwarf2_cu *);
911
912 static void add_partial_namespace (struct partial_die_info *pdi,
913 CORE_ADDR *lowpc, CORE_ADDR *highpc,
914 int need_pc, struct dwarf2_cu *cu);
915
916 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
917 CORE_ADDR *highpc, int need_pc,
918 struct dwarf2_cu *cu);
919
920 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
921 struct dwarf2_cu *cu);
922
923 static void add_partial_subprogram (struct partial_die_info *pdi,
924 CORE_ADDR *lowpc, CORE_ADDR *highpc,
925 int need_pc, struct dwarf2_cu *cu);
926
927 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
928 gdb_byte *buffer, gdb_byte *info_ptr,
929 bfd *abfd, struct dwarf2_cu *cu);
930
931 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
932
933 static void psymtab_to_symtab_1 (struct partial_symtab *);
934
935 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
936
937 static void dwarf2_free_abbrev_table (void *);
938
939 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
940
941 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
942 struct dwarf2_cu *);
943
944 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
945 struct dwarf2_cu *);
946
947 static struct partial_die_info *load_partial_dies (bfd *,
948 gdb_byte *, gdb_byte *,
949 int, struct dwarf2_cu *);
950
951 static gdb_byte *read_partial_die (struct partial_die_info *,
952 struct abbrev_info *abbrev,
953 unsigned int, bfd *,
954 gdb_byte *, gdb_byte *,
955 struct dwarf2_cu *);
956
957 static struct partial_die_info *find_partial_die (unsigned int,
958 struct dwarf2_cu *);
959
960 static void fixup_partial_die (struct partial_die_info *,
961 struct dwarf2_cu *);
962
963 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
964 bfd *, gdb_byte *, struct dwarf2_cu *);
965
966 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
967 bfd *, gdb_byte *, struct dwarf2_cu *);
968
969 static unsigned int read_1_byte (bfd *, gdb_byte *);
970
971 static int read_1_signed_byte (bfd *, gdb_byte *);
972
973 static unsigned int read_2_bytes (bfd *, gdb_byte *);
974
975 static unsigned int read_4_bytes (bfd *, gdb_byte *);
976
977 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
978
979 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
980 unsigned int *);
981
982 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
983
984 static LONGEST read_checked_initial_length_and_offset
985 (bfd *, gdb_byte *, const struct comp_unit_head *,
986 unsigned int *, unsigned int *);
987
988 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
989 unsigned int *);
990
991 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
992
993 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
994
995 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
996
997 static char *read_indirect_string (bfd *, gdb_byte *,
998 const struct comp_unit_head *,
999 unsigned int *);
1000
1001 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1002
1003 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1004
1005 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
1006
1007 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1008
1009 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1010 struct dwarf2_cu *);
1011
1012 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1013 unsigned int,
1014 struct dwarf2_cu *);
1015
1016 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1017 struct dwarf2_cu *cu);
1018
1019 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1020
1021 static struct die_info *die_specification (struct die_info *die,
1022 struct dwarf2_cu **);
1023
1024 static void free_line_header (struct line_header *lh);
1025
1026 static void add_file_name (struct line_header *, char *, unsigned int,
1027 unsigned int, unsigned int);
1028
1029 static struct line_header *(dwarf_decode_line_header
1030 (unsigned int offset,
1031 bfd *abfd, struct dwarf2_cu *cu));
1032
1033 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1034 struct dwarf2_cu *, struct partial_symtab *);
1035
1036 static void dwarf2_start_subfile (char *, const char *, const char *);
1037
1038 static struct symbol *new_symbol (struct die_info *, struct type *,
1039 struct dwarf2_cu *);
1040
1041 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1042 struct dwarf2_cu *, struct symbol *);
1043
1044 static void dwarf2_const_value (struct attribute *, struct symbol *,
1045 struct dwarf2_cu *);
1046
1047 static void dwarf2_const_value_attr (struct attribute *attr,
1048 struct type *type,
1049 const char *name,
1050 struct obstack *obstack,
1051 struct dwarf2_cu *cu, long *value,
1052 gdb_byte **bytes,
1053 struct dwarf2_locexpr_baton **baton);
1054
1055 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1056
1057 static int need_gnat_info (struct dwarf2_cu *);
1058
1059 static struct type *die_descriptive_type (struct die_info *,
1060 struct dwarf2_cu *);
1061
1062 static void set_descriptive_type (struct type *, struct die_info *,
1063 struct dwarf2_cu *);
1064
1065 static struct type *die_containing_type (struct die_info *,
1066 struct dwarf2_cu *);
1067
1068 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1069 struct dwarf2_cu *);
1070
1071 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1072
1073 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1074
1075 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1076
1077 static char *typename_concat (struct obstack *obs, const char *prefix,
1078 const char *suffix, int physname,
1079 struct dwarf2_cu *cu);
1080
1081 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1082
1083 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1084
1085 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1086
1087 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1088
1089 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1090
1091 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1092 struct dwarf2_cu *, struct partial_symtab *);
1093
1094 static int dwarf2_get_pc_bounds (struct die_info *,
1095 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1096 struct partial_symtab *);
1097
1098 static void get_scope_pc_bounds (struct die_info *,
1099 CORE_ADDR *, CORE_ADDR *,
1100 struct dwarf2_cu *);
1101
1102 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1103 CORE_ADDR, struct dwarf2_cu *);
1104
1105 static void dwarf2_add_field (struct field_info *, struct die_info *,
1106 struct dwarf2_cu *);
1107
1108 static void dwarf2_attach_fields_to_type (struct field_info *,
1109 struct type *, struct dwarf2_cu *);
1110
1111 static void dwarf2_add_member_fn (struct field_info *,
1112 struct die_info *, struct type *,
1113 struct dwarf2_cu *);
1114
1115 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1116 struct type *,
1117 struct dwarf2_cu *);
1118
1119 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1120
1121 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1122
1123 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1124
1125 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1126
1127 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1128
1129 static struct type *read_module_type (struct die_info *die,
1130 struct dwarf2_cu *cu);
1131
1132 static const char *namespace_name (struct die_info *die,
1133 int *is_anonymous, struct dwarf2_cu *);
1134
1135 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1136
1137 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1138
1139 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1140 struct dwarf2_cu *);
1141
1142 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1143
1144 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1145 gdb_byte *info_ptr,
1146 gdb_byte **new_info_ptr,
1147 struct die_info *parent);
1148
1149 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1150 gdb_byte *info_ptr,
1151 gdb_byte **new_info_ptr,
1152 struct die_info *parent);
1153
1154 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1155 gdb_byte *info_ptr,
1156 gdb_byte **new_info_ptr,
1157 struct die_info *parent);
1158
1159 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1160 struct die_info **, gdb_byte *,
1161 int *);
1162
1163 static void process_die (struct die_info *, struct dwarf2_cu *);
1164
1165 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1166 struct obstack *);
1167
1168 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1169
1170 static const char *dwarf2_full_name (char *name,
1171 struct die_info *die,
1172 struct dwarf2_cu *cu);
1173
1174 static struct die_info *dwarf2_extension (struct die_info *die,
1175 struct dwarf2_cu **);
1176
1177 static char *dwarf_tag_name (unsigned int);
1178
1179 static char *dwarf_attr_name (unsigned int);
1180
1181 static char *dwarf_form_name (unsigned int);
1182
1183 static char *dwarf_bool_name (unsigned int);
1184
1185 static char *dwarf_type_encoding_name (unsigned int);
1186
1187 #if 0
1188 static char *dwarf_cfi_name (unsigned int);
1189 #endif
1190
1191 static struct die_info *sibling_die (struct die_info *);
1192
1193 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1194
1195 static void dump_die_for_error (struct die_info *);
1196
1197 static void dump_die_1 (struct ui_file *, int level, int max_level,
1198 struct die_info *);
1199
1200 /*static*/ void dump_die (struct die_info *, int max_level);
1201
1202 static void store_in_ref_table (struct die_info *,
1203 struct dwarf2_cu *);
1204
1205 static int is_ref_attr (struct attribute *);
1206
1207 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1208
1209 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1210
1211 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1212 struct attribute *,
1213 struct dwarf2_cu **);
1214
1215 static struct die_info *follow_die_ref (struct die_info *,
1216 struct attribute *,
1217 struct dwarf2_cu **);
1218
1219 static struct die_info *follow_die_sig (struct die_info *,
1220 struct attribute *,
1221 struct dwarf2_cu **);
1222
1223 static struct signatured_type *lookup_signatured_type_at_offset
1224 (struct objfile *objfile,
1225 struct dwarf2_section_info *section,
1226 unsigned int offset);
1227
1228 static void read_signatured_type_at_offset (struct objfile *objfile,
1229 struct dwarf2_section_info *sect,
1230 unsigned int offset);
1231
1232 static void read_signatured_type (struct objfile *,
1233 struct signatured_type *type_sig);
1234
1235 /* memory allocation interface */
1236
1237 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1238
1239 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1240
1241 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1242
1243 static void initialize_cu_func_list (struct dwarf2_cu *);
1244
1245 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1246 struct dwarf2_cu *);
1247
1248 static void dwarf_decode_macros (struct line_header *, unsigned int,
1249 char *, bfd *, struct dwarf2_cu *,
1250 struct dwarf2_section_info *,
1251 int);
1252
1253 static int attr_form_is_block (struct attribute *);
1254
1255 static int attr_form_is_section_offset (struct attribute *);
1256
1257 static int attr_form_is_constant (struct attribute *);
1258
1259 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1260 struct dwarf2_loclist_baton *baton,
1261 struct attribute *attr);
1262
1263 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1264 struct symbol *sym,
1265 struct dwarf2_cu *cu);
1266
1267 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1268 struct abbrev_info *abbrev,
1269 struct dwarf2_cu *cu);
1270
1271 static void free_stack_comp_unit (void *);
1272
1273 static hashval_t partial_die_hash (const void *item);
1274
1275 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1276
1277 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1278 (unsigned int offset, struct objfile *objfile);
1279
1280 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1281 (unsigned int offset, struct objfile *objfile);
1282
1283 static void init_one_comp_unit (struct dwarf2_cu *cu,
1284 struct objfile *objfile);
1285
1286 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1287 struct die_info *comp_unit_die);
1288
1289 static void free_one_comp_unit (void *);
1290
1291 static void free_cached_comp_units (void *);
1292
1293 static void age_cached_comp_units (void);
1294
1295 static void free_one_cached_comp_unit (void *);
1296
1297 static struct type *set_die_type (struct die_info *, struct type *,
1298 struct dwarf2_cu *);
1299
1300 static void create_all_comp_units (struct objfile *);
1301
1302 static int create_debug_types_hash_table (struct objfile *objfile);
1303
1304 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1305 struct objfile *);
1306
1307 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1308
1309 static void dwarf2_add_dependence (struct dwarf2_cu *,
1310 struct dwarf2_per_cu_data *);
1311
1312 static void dwarf2_mark (struct dwarf2_cu *);
1313
1314 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1315
1316 static struct type *get_die_type_at_offset (unsigned int,
1317 struct dwarf2_per_cu_data *per_cu);
1318
1319 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1320
1321 static void dwarf2_release_queue (void *dummy);
1322
1323 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1324 struct objfile *objfile);
1325
1326 static void process_queue (struct objfile *objfile);
1327
1328 static void find_file_and_directory (struct die_info *die,
1329 struct dwarf2_cu *cu,
1330 char **name, char **comp_dir);
1331
1332 static char *file_full_name (int file, struct line_header *lh,
1333 const char *comp_dir);
1334
1335 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1336 gdb_byte *info_ptr,
1337 gdb_byte *buffer,
1338 unsigned int buffer_size,
1339 bfd *abfd);
1340
1341 static void init_cu_die_reader (struct die_reader_specs *reader,
1342 struct dwarf2_cu *cu);
1343
1344 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1345
1346 #if WORDS_BIGENDIAN
1347
1348 /* Convert VALUE between big- and little-endian. */
1349 static offset_type
1350 byte_swap (offset_type value)
1351 {
1352 offset_type result;
1353
1354 result = (value & 0xff) << 24;
1355 result |= (value & 0xff00) << 8;
1356 result |= (value & 0xff0000) >> 8;
1357 result |= (value & 0xff000000) >> 24;
1358 return result;
1359 }
1360
1361 #define MAYBE_SWAP(V) byte_swap (V)
1362
1363 #else
1364 #define MAYBE_SWAP(V) (V)
1365 #endif /* WORDS_BIGENDIAN */
1366
1367 /* The suffix for an index file. */
1368 #define INDEX_SUFFIX ".gdb-index"
1369
1370 static const char *dwarf2_physname (char *name, struct die_info *die,
1371 struct dwarf2_cu *cu);
1372
1373 /* Try to locate the sections we need for DWARF 2 debugging
1374 information and return true if we have enough to do something.
1375 NAMES points to the dwarf2 section names, or is NULL if the standard
1376 ELF names are used. */
1377
1378 int
1379 dwarf2_has_info (struct objfile *objfile,
1380 const struct dwarf2_debug_sections *names)
1381 {
1382 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1383 if (!dwarf2_per_objfile)
1384 {
1385 /* Initialize per-objfile state. */
1386 struct dwarf2_per_objfile *data
1387 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1388
1389 memset (data, 0, sizeof (*data));
1390 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1391 dwarf2_per_objfile = data;
1392
1393 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1394 (void *) names);
1395 dwarf2_per_objfile->objfile = objfile;
1396 }
1397 return (dwarf2_per_objfile->info.asection != NULL
1398 && dwarf2_per_objfile->abbrev.asection != NULL);
1399 }
1400
1401 /* When loading sections, we look either for uncompressed section or for
1402 compressed section names. */
1403
1404 static int
1405 section_is_p (const char *section_name,
1406 const struct dwarf2_section_names *names)
1407 {
1408 if (names->normal != NULL
1409 && strcmp (section_name, names->normal) == 0)
1410 return 1;
1411 if (names->compressed != NULL
1412 && strcmp (section_name, names->compressed) == 0)
1413 return 1;
1414 return 0;
1415 }
1416
1417 /* This function is mapped across the sections and remembers the
1418 offset and size of each of the debugging sections we are interested
1419 in. */
1420
1421 static void
1422 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1423 {
1424 const struct dwarf2_debug_sections *names;
1425
1426 if (vnames == NULL)
1427 names = &dwarf2_elf_names;
1428 else
1429 names = (const struct dwarf2_debug_sections *) vnames;
1430
1431 if (section_is_p (sectp->name, &names->info))
1432 {
1433 dwarf2_per_objfile->info.asection = sectp;
1434 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1435 }
1436 else if (section_is_p (sectp->name, &names->abbrev))
1437 {
1438 dwarf2_per_objfile->abbrev.asection = sectp;
1439 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1440 }
1441 else if (section_is_p (sectp->name, &names->line))
1442 {
1443 dwarf2_per_objfile->line.asection = sectp;
1444 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1445 }
1446 else if (section_is_p (sectp->name, &names->loc))
1447 {
1448 dwarf2_per_objfile->loc.asection = sectp;
1449 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1450 }
1451 else if (section_is_p (sectp->name, &names->macinfo))
1452 {
1453 dwarf2_per_objfile->macinfo.asection = sectp;
1454 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1455 }
1456 else if (section_is_p (sectp->name, &names->macro))
1457 {
1458 dwarf2_per_objfile->macro.asection = sectp;
1459 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1460 }
1461 else if (section_is_p (sectp->name, &names->str))
1462 {
1463 dwarf2_per_objfile->str.asection = sectp;
1464 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1465 }
1466 else if (section_is_p (sectp->name, &names->frame))
1467 {
1468 dwarf2_per_objfile->frame.asection = sectp;
1469 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1470 }
1471 else if (section_is_p (sectp->name, &names->eh_frame))
1472 {
1473 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1474
1475 if (aflag & SEC_HAS_CONTENTS)
1476 {
1477 dwarf2_per_objfile->eh_frame.asection = sectp;
1478 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1479 }
1480 }
1481 else if (section_is_p (sectp->name, &names->ranges))
1482 {
1483 dwarf2_per_objfile->ranges.asection = sectp;
1484 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1485 }
1486 else if (section_is_p (sectp->name, &names->types))
1487 {
1488 struct dwarf2_section_info type_section;
1489
1490 memset (&type_section, 0, sizeof (type_section));
1491 type_section.asection = sectp;
1492 type_section.size = bfd_get_section_size (sectp);
1493
1494 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1495 &type_section);
1496 }
1497 else if (section_is_p (sectp->name, &names->gdb_index))
1498 {
1499 dwarf2_per_objfile->gdb_index.asection = sectp;
1500 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1501 }
1502
1503 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1504 && bfd_section_vma (abfd, sectp) == 0)
1505 dwarf2_per_objfile->has_section_at_zero = 1;
1506 }
1507
1508 /* Decompress a section that was compressed using zlib. Store the
1509 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1510
1511 static void
1512 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1513 gdb_byte **outbuf, bfd_size_type *outsize)
1514 {
1515 bfd *abfd = objfile->obfd;
1516 #ifndef HAVE_ZLIB_H
1517 error (_("Support for zlib-compressed DWARF data (from '%s') "
1518 "is disabled in this copy of GDB"),
1519 bfd_get_filename (abfd));
1520 #else
1521 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1522 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1523 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1524 bfd_size_type uncompressed_size;
1525 gdb_byte *uncompressed_buffer;
1526 z_stream strm;
1527 int rc;
1528 int header_size = 12;
1529
1530 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1531 || bfd_bread (compressed_buffer,
1532 compressed_size, abfd) != compressed_size)
1533 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1534 bfd_get_filename (abfd));
1535
1536 /* Read the zlib header. In this case, it should be "ZLIB" followed
1537 by the uncompressed section size, 8 bytes in big-endian order. */
1538 if (compressed_size < header_size
1539 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1540 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1541 bfd_get_filename (abfd));
1542 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1543 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1544 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1545 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1546 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1547 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1548 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1549 uncompressed_size += compressed_buffer[11];
1550
1551 /* It is possible the section consists of several compressed
1552 buffers concatenated together, so we uncompress in a loop. */
1553 strm.zalloc = NULL;
1554 strm.zfree = NULL;
1555 strm.opaque = NULL;
1556 strm.avail_in = compressed_size - header_size;
1557 strm.next_in = (Bytef*) compressed_buffer + header_size;
1558 strm.avail_out = uncompressed_size;
1559 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1560 uncompressed_size);
1561 rc = inflateInit (&strm);
1562 while (strm.avail_in > 0)
1563 {
1564 if (rc != Z_OK)
1565 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1566 bfd_get_filename (abfd), rc);
1567 strm.next_out = ((Bytef*) uncompressed_buffer
1568 + (uncompressed_size - strm.avail_out));
1569 rc = inflate (&strm, Z_FINISH);
1570 if (rc != Z_STREAM_END)
1571 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1572 bfd_get_filename (abfd), rc);
1573 rc = inflateReset (&strm);
1574 }
1575 rc = inflateEnd (&strm);
1576 if (rc != Z_OK
1577 || strm.avail_out != 0)
1578 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1579 bfd_get_filename (abfd), rc);
1580
1581 do_cleanups (cleanup);
1582 *outbuf = uncompressed_buffer;
1583 *outsize = uncompressed_size;
1584 #endif
1585 }
1586
1587 /* A helper function that decides whether a section is empty. */
1588
1589 static int
1590 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1591 {
1592 return info->asection == NULL || info->size == 0;
1593 }
1594
1595 /* Read the contents of the section SECTP from object file specified by
1596 OBJFILE, store info about the section into INFO.
1597 If the section is compressed, uncompress it before returning. */
1598
1599 static void
1600 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1601 {
1602 bfd *abfd = objfile->obfd;
1603 asection *sectp = info->asection;
1604 gdb_byte *buf, *retbuf;
1605 unsigned char header[4];
1606
1607 if (info->readin)
1608 return;
1609 info->buffer = NULL;
1610 info->map_addr = NULL;
1611 info->readin = 1;
1612
1613 if (dwarf2_section_empty_p (info))
1614 return;
1615
1616 /* Check if the file has a 4-byte header indicating compression. */
1617 if (info->size > sizeof (header)
1618 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1619 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1620 {
1621 /* Upon decompression, update the buffer and its size. */
1622 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1623 {
1624 zlib_decompress_section (objfile, sectp, &info->buffer,
1625 &info->size);
1626 return;
1627 }
1628 }
1629
1630 #ifdef HAVE_MMAP
1631 if (pagesize == 0)
1632 pagesize = getpagesize ();
1633
1634 /* Only try to mmap sections which are large enough: we don't want to
1635 waste space due to fragmentation. Also, only try mmap for sections
1636 without relocations. */
1637
1638 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1639 {
1640 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1641 MAP_PRIVATE, sectp->filepos,
1642 &info->map_addr, &info->map_len);
1643
1644 if ((caddr_t)info->buffer != MAP_FAILED)
1645 {
1646 #if HAVE_POSIX_MADVISE
1647 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1648 #endif
1649 return;
1650 }
1651 }
1652 #endif
1653
1654 /* If we get here, we are a normal, not-compressed section. */
1655 info->buffer = buf
1656 = obstack_alloc (&objfile->objfile_obstack, info->size);
1657
1658 /* When debugging .o files, we may need to apply relocations; see
1659 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1660 We never compress sections in .o files, so we only need to
1661 try this when the section is not compressed. */
1662 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1663 if (retbuf != NULL)
1664 {
1665 info->buffer = retbuf;
1666 return;
1667 }
1668
1669 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1670 || bfd_bread (buf, info->size, abfd) != info->size)
1671 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1672 bfd_get_filename (abfd));
1673 }
1674
1675 /* A helper function that returns the size of a section in a safe way.
1676 If you are positive that the section has been read before using the
1677 size, then it is safe to refer to the dwarf2_section_info object's
1678 "size" field directly. In other cases, you must call this
1679 function, because for compressed sections the size field is not set
1680 correctly until the section has been read. */
1681
1682 static bfd_size_type
1683 dwarf2_section_size (struct objfile *objfile,
1684 struct dwarf2_section_info *info)
1685 {
1686 if (!info->readin)
1687 dwarf2_read_section (objfile, info);
1688 return info->size;
1689 }
1690
1691 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1692 SECTION_NAME. */
1693
1694 void
1695 dwarf2_get_section_info (struct objfile *objfile,
1696 enum dwarf2_section_enum sect,
1697 asection **sectp, gdb_byte **bufp,
1698 bfd_size_type *sizep)
1699 {
1700 struct dwarf2_per_objfile *data
1701 = objfile_data (objfile, dwarf2_objfile_data_key);
1702 struct dwarf2_section_info *info;
1703
1704 /* We may see an objfile without any DWARF, in which case we just
1705 return nothing. */
1706 if (data == NULL)
1707 {
1708 *sectp = NULL;
1709 *bufp = NULL;
1710 *sizep = 0;
1711 return;
1712 }
1713 switch (sect)
1714 {
1715 case DWARF2_DEBUG_FRAME:
1716 info = &data->frame;
1717 break;
1718 case DWARF2_EH_FRAME:
1719 info = &data->eh_frame;
1720 break;
1721 default:
1722 gdb_assert_not_reached ("unexpected section");
1723 }
1724
1725 dwarf2_read_section (objfile, info);
1726
1727 *sectp = info->asection;
1728 *bufp = info->buffer;
1729 *sizep = info->size;
1730 }
1731
1732 \f
1733 /* DWARF quick_symbols_functions support. */
1734
1735 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1736 unique line tables, so we maintain a separate table of all .debug_line
1737 derived entries to support the sharing.
1738 All the quick functions need is the list of file names. We discard the
1739 line_header when we're done and don't need to record it here. */
1740 struct quick_file_names
1741 {
1742 /* The offset in .debug_line of the line table. We hash on this. */
1743 unsigned int offset;
1744
1745 /* The number of entries in file_names, real_names. */
1746 unsigned int num_file_names;
1747
1748 /* The file names from the line table, after being run through
1749 file_full_name. */
1750 const char **file_names;
1751
1752 /* The file names from the line table after being run through
1753 gdb_realpath. These are computed lazily. */
1754 const char **real_names;
1755 };
1756
1757 /* When using the index (and thus not using psymtabs), each CU has an
1758 object of this type. This is used to hold information needed by
1759 the various "quick" methods. */
1760 struct dwarf2_per_cu_quick_data
1761 {
1762 /* The file table. This can be NULL if there was no file table
1763 or it's currently not read in.
1764 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1765 struct quick_file_names *file_names;
1766
1767 /* The corresponding symbol table. This is NULL if symbols for this
1768 CU have not yet been read. */
1769 struct symtab *symtab;
1770
1771 /* A temporary mark bit used when iterating over all CUs in
1772 expand_symtabs_matching. */
1773 unsigned int mark : 1;
1774
1775 /* True if we've tried to read the file table and found there isn't one.
1776 There will be no point in trying to read it again next time. */
1777 unsigned int no_file_data : 1;
1778 };
1779
1780 /* Hash function for a quick_file_names. */
1781
1782 static hashval_t
1783 hash_file_name_entry (const void *e)
1784 {
1785 const struct quick_file_names *file_data = e;
1786
1787 return file_data->offset;
1788 }
1789
1790 /* Equality function for a quick_file_names. */
1791
1792 static int
1793 eq_file_name_entry (const void *a, const void *b)
1794 {
1795 const struct quick_file_names *ea = a;
1796 const struct quick_file_names *eb = b;
1797
1798 return ea->offset == eb->offset;
1799 }
1800
1801 /* Delete function for a quick_file_names. */
1802
1803 static void
1804 delete_file_name_entry (void *e)
1805 {
1806 struct quick_file_names *file_data = e;
1807 int i;
1808
1809 for (i = 0; i < file_data->num_file_names; ++i)
1810 {
1811 xfree ((void*) file_data->file_names[i]);
1812 if (file_data->real_names)
1813 xfree ((void*) file_data->real_names[i]);
1814 }
1815
1816 /* The space for the struct itself lives on objfile_obstack,
1817 so we don't free it here. */
1818 }
1819
1820 /* Create a quick_file_names hash table. */
1821
1822 static htab_t
1823 create_quick_file_names_table (unsigned int nr_initial_entries)
1824 {
1825 return htab_create_alloc (nr_initial_entries,
1826 hash_file_name_entry, eq_file_name_entry,
1827 delete_file_name_entry, xcalloc, xfree);
1828 }
1829
1830 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1831 have to be created afterwards. You should call age_cached_comp_units after
1832 processing PER_CU->CU. dw2_setup must have been already called. */
1833
1834 static void
1835 load_cu (struct dwarf2_per_cu_data *per_cu)
1836 {
1837 if (per_cu->debug_type_section)
1838 read_signatured_type_at_offset (per_cu->objfile,
1839 per_cu->debug_type_section,
1840 per_cu->offset);
1841 else
1842 load_full_comp_unit (per_cu, per_cu->objfile);
1843
1844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1845
1846 gdb_assert (per_cu->cu != NULL);
1847 }
1848
1849 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1850 this CU came. */
1851
1852 static void
1853 dw2_do_instantiate_symtab (struct objfile *objfile,
1854 struct dwarf2_per_cu_data *per_cu)
1855 {
1856 struct cleanup *back_to;
1857
1858 back_to = make_cleanup (dwarf2_release_queue, NULL);
1859
1860 queue_comp_unit (per_cu, objfile);
1861
1862 load_cu (per_cu);
1863
1864 process_queue (objfile);
1865
1866 /* Age the cache, releasing compilation units that have not
1867 been used recently. */
1868 age_cached_comp_units ();
1869
1870 do_cleanups (back_to);
1871 }
1872
1873 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1874 the objfile from which this CU came. Returns the resulting symbol
1875 table. */
1876
1877 static struct symtab *
1878 dw2_instantiate_symtab (struct objfile *objfile,
1879 struct dwarf2_per_cu_data *per_cu)
1880 {
1881 if (!per_cu->v.quick->symtab)
1882 {
1883 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1884 increment_reading_symtab ();
1885 dw2_do_instantiate_symtab (objfile, per_cu);
1886 do_cleanups (back_to);
1887 }
1888 return per_cu->v.quick->symtab;
1889 }
1890
1891 /* Return the CU given its index. */
1892
1893 static struct dwarf2_per_cu_data *
1894 dw2_get_cu (int index)
1895 {
1896 if (index >= dwarf2_per_objfile->n_comp_units)
1897 {
1898 index -= dwarf2_per_objfile->n_comp_units;
1899 return dwarf2_per_objfile->type_comp_units[index];
1900 }
1901 return dwarf2_per_objfile->all_comp_units[index];
1902 }
1903
1904 /* A helper function that knows how to read a 64-bit value in a way
1905 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1906 otherwise. */
1907
1908 static int
1909 extract_cu_value (const char *bytes, ULONGEST *result)
1910 {
1911 if (sizeof (ULONGEST) < 8)
1912 {
1913 int i;
1914
1915 /* Ignore the upper 4 bytes if they are all zero. */
1916 for (i = 0; i < 4; ++i)
1917 if (bytes[i + 4] != 0)
1918 return 0;
1919
1920 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1921 }
1922 else
1923 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1924 return 1;
1925 }
1926
1927 /* Read the CU list from the mapped index, and use it to create all
1928 the CU objects for this objfile. Return 0 if something went wrong,
1929 1 if everything went ok. */
1930
1931 static int
1932 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1933 offset_type cu_list_elements)
1934 {
1935 offset_type i;
1936
1937 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1938 dwarf2_per_objfile->all_comp_units
1939 = obstack_alloc (&objfile->objfile_obstack,
1940 dwarf2_per_objfile->n_comp_units
1941 * sizeof (struct dwarf2_per_cu_data *));
1942
1943 for (i = 0; i < cu_list_elements; i += 2)
1944 {
1945 struct dwarf2_per_cu_data *the_cu;
1946 ULONGEST offset, length;
1947
1948 if (!extract_cu_value (cu_list, &offset)
1949 || !extract_cu_value (cu_list + 8, &length))
1950 return 0;
1951 cu_list += 2 * 8;
1952
1953 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1954 struct dwarf2_per_cu_data);
1955 the_cu->offset = offset;
1956 the_cu->length = length;
1957 the_cu->objfile = objfile;
1958 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1959 struct dwarf2_per_cu_quick_data);
1960 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1961 }
1962
1963 return 1;
1964 }
1965
1966 /* Create the signatured type hash table from the index. */
1967
1968 static int
1969 create_signatured_type_table_from_index (struct objfile *objfile,
1970 struct dwarf2_section_info *section,
1971 const gdb_byte *bytes,
1972 offset_type elements)
1973 {
1974 offset_type i;
1975 htab_t sig_types_hash;
1976
1977 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1978 dwarf2_per_objfile->type_comp_units
1979 = obstack_alloc (&objfile->objfile_obstack,
1980 dwarf2_per_objfile->n_type_comp_units
1981 * sizeof (struct dwarf2_per_cu_data *));
1982
1983 sig_types_hash = allocate_signatured_type_table (objfile);
1984
1985 for (i = 0; i < elements; i += 3)
1986 {
1987 struct signatured_type *type_sig;
1988 ULONGEST offset, type_offset, signature;
1989 void **slot;
1990
1991 if (!extract_cu_value (bytes, &offset)
1992 || !extract_cu_value (bytes + 8, &type_offset))
1993 return 0;
1994 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1995 bytes += 3 * 8;
1996
1997 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1998 struct signatured_type);
1999 type_sig->signature = signature;
2000 type_sig->type_offset = type_offset;
2001 type_sig->per_cu.debug_type_section = section;
2002 type_sig->per_cu.offset = offset;
2003 type_sig->per_cu.objfile = objfile;
2004 type_sig->per_cu.v.quick
2005 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2006 struct dwarf2_per_cu_quick_data);
2007
2008 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
2009 *slot = type_sig;
2010
2011 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
2012 }
2013
2014 dwarf2_per_objfile->signatured_types = sig_types_hash;
2015
2016 return 1;
2017 }
2018
2019 /* Read the address map data from the mapped index, and use it to
2020 populate the objfile's psymtabs_addrmap. */
2021
2022 static void
2023 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2024 {
2025 const gdb_byte *iter, *end;
2026 struct obstack temp_obstack;
2027 struct addrmap *mutable_map;
2028 struct cleanup *cleanup;
2029 CORE_ADDR baseaddr;
2030
2031 obstack_init (&temp_obstack);
2032 cleanup = make_cleanup_obstack_free (&temp_obstack);
2033 mutable_map = addrmap_create_mutable (&temp_obstack);
2034
2035 iter = index->address_table;
2036 end = iter + index->address_table_size;
2037
2038 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2039
2040 while (iter < end)
2041 {
2042 ULONGEST hi, lo, cu_index;
2043 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2044 iter += 8;
2045 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2046 iter += 8;
2047 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2048 iter += 4;
2049
2050 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2051 dw2_get_cu (cu_index));
2052 }
2053
2054 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2055 &objfile->objfile_obstack);
2056 do_cleanups (cleanup);
2057 }
2058
2059 /* The hash function for strings in the mapped index. This is the same as
2060 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2061 implementation. This is necessary because the hash function is tied to the
2062 format of the mapped index file. The hash values do not have to match with
2063 SYMBOL_HASH_NEXT.
2064
2065 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2066
2067 static hashval_t
2068 mapped_index_string_hash (int index_version, const void *p)
2069 {
2070 const unsigned char *str = (const unsigned char *) p;
2071 hashval_t r = 0;
2072 unsigned char c;
2073
2074 while ((c = *str++) != 0)
2075 {
2076 if (index_version >= 5)
2077 c = tolower (c);
2078 r = r * 67 + c - 113;
2079 }
2080
2081 return r;
2082 }
2083
2084 /* Find a slot in the mapped index INDEX for the object named NAME.
2085 If NAME is found, set *VEC_OUT to point to the CU vector in the
2086 constant pool and return 1. If NAME cannot be found, return 0. */
2087
2088 static int
2089 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2090 offset_type **vec_out)
2091 {
2092 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2093 offset_type hash;
2094 offset_type slot, step;
2095 int (*cmp) (const char *, const char *);
2096
2097 if (current_language->la_language == language_cplus
2098 || current_language->la_language == language_java
2099 || current_language->la_language == language_fortran)
2100 {
2101 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2102 not contain any. */
2103 const char *paren = strchr (name, '(');
2104
2105 if (paren)
2106 {
2107 char *dup;
2108
2109 dup = xmalloc (paren - name + 1);
2110 memcpy (dup, name, paren - name);
2111 dup[paren - name] = 0;
2112
2113 make_cleanup (xfree, dup);
2114 name = dup;
2115 }
2116 }
2117
2118 /* Index version 4 did not support case insensitive searches. But the
2119 indexes for case insensitive languages are built in lowercase, therefore
2120 simulate our NAME being searched is also lowercased. */
2121 hash = mapped_index_string_hash ((index->version == 4
2122 && case_sensitivity == case_sensitive_off
2123 ? 5 : index->version),
2124 name);
2125
2126 slot = hash & (index->symbol_table_slots - 1);
2127 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2128 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2129
2130 for (;;)
2131 {
2132 /* Convert a slot number to an offset into the table. */
2133 offset_type i = 2 * slot;
2134 const char *str;
2135 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2136 {
2137 do_cleanups (back_to);
2138 return 0;
2139 }
2140
2141 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2142 if (!cmp (name, str))
2143 {
2144 *vec_out = (offset_type *) (index->constant_pool
2145 + MAYBE_SWAP (index->symbol_table[i + 1]));
2146 do_cleanups (back_to);
2147 return 1;
2148 }
2149
2150 slot = (slot + step) & (index->symbol_table_slots - 1);
2151 }
2152 }
2153
2154 /* Read the index file. If everything went ok, initialize the "quick"
2155 elements of all the CUs and return 1. Otherwise, return 0. */
2156
2157 static int
2158 dwarf2_read_index (struct objfile *objfile)
2159 {
2160 char *addr;
2161 struct mapped_index *map;
2162 offset_type *metadata;
2163 const gdb_byte *cu_list;
2164 const gdb_byte *types_list = NULL;
2165 offset_type version, cu_list_elements;
2166 offset_type types_list_elements = 0;
2167 int i;
2168
2169 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2170 return 0;
2171
2172 /* Older elfutils strip versions could keep the section in the main
2173 executable while splitting it for the separate debug info file. */
2174 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2175 & SEC_HAS_CONTENTS) == 0)
2176 return 0;
2177
2178 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2179
2180 addr = dwarf2_per_objfile->gdb_index.buffer;
2181 /* Version check. */
2182 version = MAYBE_SWAP (*(offset_type *) addr);
2183 /* Versions earlier than 3 emitted every copy of a psymbol. This
2184 causes the index to behave very poorly for certain requests. Version 3
2185 contained incomplete addrmap. So, it seems better to just ignore such
2186 indices. Index version 4 uses a different hash function than index
2187 version 5 and later. */
2188 if (version < 4)
2189 return 0;
2190 /* Indexes with higher version than the one supported by GDB may be no
2191 longer backward compatible. */
2192 if (version > 5)
2193 return 0;
2194
2195 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2196 map->version = version;
2197 map->total_size = dwarf2_per_objfile->gdb_index.size;
2198
2199 metadata = (offset_type *) (addr + sizeof (offset_type));
2200
2201 i = 0;
2202 cu_list = addr + MAYBE_SWAP (metadata[i]);
2203 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2204 / 8);
2205 ++i;
2206
2207 types_list = addr + MAYBE_SWAP (metadata[i]);
2208 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2209 - MAYBE_SWAP (metadata[i]))
2210 / 8);
2211 ++i;
2212
2213 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2214 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2215 - MAYBE_SWAP (metadata[i]));
2216 ++i;
2217
2218 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2219 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2220 - MAYBE_SWAP (metadata[i]))
2221 / (2 * sizeof (offset_type)));
2222 ++i;
2223
2224 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2225
2226 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2227 return 0;
2228
2229 if (types_list_elements)
2230 {
2231 struct dwarf2_section_info *section;
2232
2233 /* We can only handle a single .debug_types when we have an
2234 index. */
2235 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2236 return 0;
2237
2238 section = VEC_index (dwarf2_section_info_def,
2239 dwarf2_per_objfile->types, 0);
2240
2241 if (!create_signatured_type_table_from_index (objfile, section,
2242 types_list,
2243 types_list_elements))
2244 return 0;
2245 }
2246
2247 create_addrmap_from_index (objfile, map);
2248
2249 dwarf2_per_objfile->index_table = map;
2250 dwarf2_per_objfile->using_index = 1;
2251 dwarf2_per_objfile->quick_file_names_table =
2252 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2253
2254 return 1;
2255 }
2256
2257 /* A helper for the "quick" functions which sets the global
2258 dwarf2_per_objfile according to OBJFILE. */
2259
2260 static void
2261 dw2_setup (struct objfile *objfile)
2262 {
2263 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2264 gdb_assert (dwarf2_per_objfile);
2265 }
2266
2267 /* A helper for the "quick" functions which attempts to read the line
2268 table for THIS_CU. */
2269
2270 static struct quick_file_names *
2271 dw2_get_file_names (struct objfile *objfile,
2272 struct dwarf2_per_cu_data *this_cu)
2273 {
2274 bfd *abfd = objfile->obfd;
2275 struct line_header *lh;
2276 struct attribute *attr;
2277 struct cleanup *cleanups;
2278 struct die_info *comp_unit_die;
2279 struct dwarf2_section_info* sec;
2280 gdb_byte *info_ptr, *buffer;
2281 int has_children, i;
2282 struct dwarf2_cu cu;
2283 unsigned int bytes_read, buffer_size;
2284 struct die_reader_specs reader_specs;
2285 char *name, *comp_dir;
2286 void **slot;
2287 struct quick_file_names *qfn;
2288 unsigned int line_offset;
2289
2290 if (this_cu->v.quick->file_names != NULL)
2291 return this_cu->v.quick->file_names;
2292 /* If we know there is no line data, no point in looking again. */
2293 if (this_cu->v.quick->no_file_data)
2294 return NULL;
2295
2296 init_one_comp_unit (&cu, objfile);
2297 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2298
2299 if (this_cu->debug_type_section)
2300 sec = this_cu->debug_type_section;
2301 else
2302 sec = &dwarf2_per_objfile->info;
2303 dwarf2_read_section (objfile, sec);
2304 buffer_size = sec->size;
2305 buffer = sec->buffer;
2306 info_ptr = buffer + this_cu->offset;
2307
2308 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2309 buffer, buffer_size,
2310 abfd);
2311
2312 /* Skip dummy compilation units. */
2313 if (info_ptr >= buffer + buffer_size
2314 || peek_abbrev_code (abfd, info_ptr) == 0)
2315 {
2316 do_cleanups (cleanups);
2317 return NULL;
2318 }
2319
2320 this_cu->cu = &cu;
2321 cu.per_cu = this_cu;
2322
2323 dwarf2_read_abbrevs (abfd, &cu);
2324 make_cleanup (dwarf2_free_abbrev_table, &cu);
2325
2326 if (this_cu->debug_type_section)
2327 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2328 init_cu_die_reader (&reader_specs, &cu);
2329 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2330 &has_children);
2331
2332 lh = NULL;
2333 slot = NULL;
2334 line_offset = 0;
2335 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2336 if (attr)
2337 {
2338 struct quick_file_names find_entry;
2339
2340 line_offset = DW_UNSND (attr);
2341
2342 /* We may have already read in this line header (TU line header sharing).
2343 If we have we're done. */
2344 find_entry.offset = line_offset;
2345 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2346 &find_entry, INSERT);
2347 if (*slot != NULL)
2348 {
2349 do_cleanups (cleanups);
2350 this_cu->v.quick->file_names = *slot;
2351 return *slot;
2352 }
2353
2354 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2355 }
2356 if (lh == NULL)
2357 {
2358 do_cleanups (cleanups);
2359 this_cu->v.quick->no_file_data = 1;
2360 return NULL;
2361 }
2362
2363 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2364 qfn->offset = line_offset;
2365 gdb_assert (slot != NULL);
2366 *slot = qfn;
2367
2368 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2369
2370 qfn->num_file_names = lh->num_file_names;
2371 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2372 lh->num_file_names * sizeof (char *));
2373 for (i = 0; i < lh->num_file_names; ++i)
2374 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2375 qfn->real_names = NULL;
2376
2377 free_line_header (lh);
2378 do_cleanups (cleanups);
2379
2380 this_cu->v.quick->file_names = qfn;
2381 return qfn;
2382 }
2383
2384 /* A helper for the "quick" functions which computes and caches the
2385 real path for a given file name from the line table. */
2386
2387 static const char *
2388 dw2_get_real_path (struct objfile *objfile,
2389 struct quick_file_names *qfn, int index)
2390 {
2391 if (qfn->real_names == NULL)
2392 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2393 qfn->num_file_names, sizeof (char *));
2394
2395 if (qfn->real_names[index] == NULL)
2396 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2397
2398 return qfn->real_names[index];
2399 }
2400
2401 static struct symtab *
2402 dw2_find_last_source_symtab (struct objfile *objfile)
2403 {
2404 int index;
2405
2406 dw2_setup (objfile);
2407 index = dwarf2_per_objfile->n_comp_units - 1;
2408 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2409 }
2410
2411 /* Traversal function for dw2_forget_cached_source_info. */
2412
2413 static int
2414 dw2_free_cached_file_names (void **slot, void *info)
2415 {
2416 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2417
2418 if (file_data->real_names)
2419 {
2420 int i;
2421
2422 for (i = 0; i < file_data->num_file_names; ++i)
2423 {
2424 xfree ((void*) file_data->real_names[i]);
2425 file_data->real_names[i] = NULL;
2426 }
2427 }
2428
2429 return 1;
2430 }
2431
2432 static void
2433 dw2_forget_cached_source_info (struct objfile *objfile)
2434 {
2435 dw2_setup (objfile);
2436
2437 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2438 dw2_free_cached_file_names, NULL);
2439 }
2440
2441 static int
2442 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2443 const char *full_path, const char *real_path,
2444 struct symtab **result)
2445 {
2446 int i;
2447 int check_basename = lbasename (name) == name;
2448 struct dwarf2_per_cu_data *base_cu = NULL;
2449
2450 dw2_setup (objfile);
2451
2452 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2453 + dwarf2_per_objfile->n_type_comp_units); ++i)
2454 {
2455 int j;
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457 struct quick_file_names *file_data;
2458
2459 if (per_cu->v.quick->symtab)
2460 continue;
2461
2462 file_data = dw2_get_file_names (objfile, per_cu);
2463 if (file_data == NULL)
2464 continue;
2465
2466 for (j = 0; j < file_data->num_file_names; ++j)
2467 {
2468 const char *this_name = file_data->file_names[j];
2469
2470 if (FILENAME_CMP (name, this_name) == 0)
2471 {
2472 *result = dw2_instantiate_symtab (objfile, per_cu);
2473 return 1;
2474 }
2475
2476 if (check_basename && ! base_cu
2477 && FILENAME_CMP (lbasename (this_name), name) == 0)
2478 base_cu = per_cu;
2479
2480 if (full_path != NULL)
2481 {
2482 const char *this_real_name = dw2_get_real_path (objfile,
2483 file_data, j);
2484
2485 if (this_real_name != NULL
2486 && FILENAME_CMP (full_path, this_real_name) == 0)
2487 {
2488 *result = dw2_instantiate_symtab (objfile, per_cu);
2489 return 1;
2490 }
2491 }
2492
2493 if (real_path != NULL)
2494 {
2495 const char *this_real_name = dw2_get_real_path (objfile,
2496 file_data, j);
2497
2498 if (this_real_name != NULL
2499 && FILENAME_CMP (real_path, this_real_name) == 0)
2500 {
2501 *result = dw2_instantiate_symtab (objfile, per_cu);
2502 return 1;
2503 }
2504 }
2505 }
2506 }
2507
2508 if (base_cu)
2509 {
2510 *result = dw2_instantiate_symtab (objfile, base_cu);
2511 return 1;
2512 }
2513
2514 return 0;
2515 }
2516
2517 static struct symtab *
2518 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2519 const char *name, domain_enum domain)
2520 {
2521 /* We do all the work in the pre_expand_symtabs_matching hook
2522 instead. */
2523 return NULL;
2524 }
2525
2526 /* A helper function that expands all symtabs that hold an object
2527 named NAME. */
2528
2529 static void
2530 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2531 {
2532 dw2_setup (objfile);
2533
2534 /* index_table is NULL if OBJF_READNOW. */
2535 if (dwarf2_per_objfile->index_table)
2536 {
2537 offset_type *vec;
2538
2539 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2540 name, &vec))
2541 {
2542 offset_type i, len = MAYBE_SWAP (*vec);
2543 for (i = 0; i < len; ++i)
2544 {
2545 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2546 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2547
2548 dw2_instantiate_symtab (objfile, per_cu);
2549 }
2550 }
2551 }
2552 }
2553
2554 static void
2555 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2556 enum block_enum block_kind, const char *name,
2557 domain_enum domain)
2558 {
2559 dw2_do_expand_symtabs_matching (objfile, name);
2560 }
2561
2562 static void
2563 dw2_print_stats (struct objfile *objfile)
2564 {
2565 int i, count;
2566
2567 dw2_setup (objfile);
2568 count = 0;
2569 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2570 + dwarf2_per_objfile->n_type_comp_units); ++i)
2571 {
2572 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2573
2574 if (!per_cu->v.quick->symtab)
2575 ++count;
2576 }
2577 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2578 }
2579
2580 static void
2581 dw2_dump (struct objfile *objfile)
2582 {
2583 /* Nothing worth printing. */
2584 }
2585
2586 static void
2587 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2588 struct section_offsets *delta)
2589 {
2590 /* There's nothing to relocate here. */
2591 }
2592
2593 static void
2594 dw2_expand_symtabs_for_function (struct objfile *objfile,
2595 const char *func_name)
2596 {
2597 dw2_do_expand_symtabs_matching (objfile, func_name);
2598 }
2599
2600 static void
2601 dw2_expand_all_symtabs (struct objfile *objfile)
2602 {
2603 int i;
2604
2605 dw2_setup (objfile);
2606
2607 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2608 + dwarf2_per_objfile->n_type_comp_units); ++i)
2609 {
2610 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2611
2612 dw2_instantiate_symtab (objfile, per_cu);
2613 }
2614 }
2615
2616 static void
2617 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2618 const char *filename)
2619 {
2620 int i;
2621
2622 dw2_setup (objfile);
2623
2624 /* We don't need to consider type units here.
2625 This is only called for examining code, e.g. expand_line_sal.
2626 There can be an order of magnitude (or more) more type units
2627 than comp units, and we avoid them if we can. */
2628
2629 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2630 {
2631 int j;
2632 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2633 struct quick_file_names *file_data;
2634
2635 if (per_cu->v.quick->symtab)
2636 continue;
2637
2638 file_data = dw2_get_file_names (objfile, per_cu);
2639 if (file_data == NULL)
2640 continue;
2641
2642 for (j = 0; j < file_data->num_file_names; ++j)
2643 {
2644 const char *this_name = file_data->file_names[j];
2645 if (FILENAME_CMP (this_name, filename) == 0)
2646 {
2647 dw2_instantiate_symtab (objfile, per_cu);
2648 break;
2649 }
2650 }
2651 }
2652 }
2653
2654 static const char *
2655 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2656 {
2657 struct dwarf2_per_cu_data *per_cu;
2658 offset_type *vec;
2659 struct quick_file_names *file_data;
2660
2661 dw2_setup (objfile);
2662
2663 /* index_table is NULL if OBJF_READNOW. */
2664 if (!dwarf2_per_objfile->index_table)
2665 {
2666 struct symtab *s;
2667
2668 ALL_OBJFILE_SYMTABS (objfile, s)
2669 if (s->primary)
2670 {
2671 struct blockvector *bv = BLOCKVECTOR (s);
2672 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2673 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2674
2675 if (sym)
2676 return sym->symtab->filename;
2677 }
2678 return NULL;
2679 }
2680
2681 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2682 name, &vec))
2683 return NULL;
2684
2685 /* Note that this just looks at the very first one named NAME -- but
2686 actually we are looking for a function. find_main_filename
2687 should be rewritten so that it doesn't require a custom hook. It
2688 could just use the ordinary symbol tables. */
2689 /* vec[0] is the length, which must always be >0. */
2690 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2691
2692 file_data = dw2_get_file_names (objfile, per_cu);
2693 if (file_data == NULL)
2694 return NULL;
2695
2696 return file_data->file_names[file_data->num_file_names - 1];
2697 }
2698
2699 static void
2700 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2701 struct objfile *objfile, int global,
2702 int (*callback) (struct block *,
2703 struct symbol *, void *),
2704 void *data, symbol_compare_ftype *match,
2705 symbol_compare_ftype *ordered_compare)
2706 {
2707 /* Currently unimplemented; used for Ada. The function can be called if the
2708 current language is Ada for a non-Ada objfile using GNU index. As Ada
2709 does not look for non-Ada symbols this function should just return. */
2710 }
2711
2712 static void
2713 dw2_expand_symtabs_matching (struct objfile *objfile,
2714 int (*file_matcher) (const char *, void *),
2715 int (*name_matcher) (const char *, void *),
2716 enum search_domain kind,
2717 void *data)
2718 {
2719 int i;
2720 offset_type iter;
2721 struct mapped_index *index;
2722
2723 dw2_setup (objfile);
2724
2725 /* index_table is NULL if OBJF_READNOW. */
2726 if (!dwarf2_per_objfile->index_table)
2727 return;
2728 index = dwarf2_per_objfile->index_table;
2729
2730 if (file_matcher != NULL)
2731 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2732 + dwarf2_per_objfile->n_type_comp_units); ++i)
2733 {
2734 int j;
2735 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2736 struct quick_file_names *file_data;
2737
2738 per_cu->v.quick->mark = 0;
2739 if (per_cu->v.quick->symtab)
2740 continue;
2741
2742 file_data = dw2_get_file_names (objfile, per_cu);
2743 if (file_data == NULL)
2744 continue;
2745
2746 for (j = 0; j < file_data->num_file_names; ++j)
2747 {
2748 if (file_matcher (file_data->file_names[j], data))
2749 {
2750 per_cu->v.quick->mark = 1;
2751 break;
2752 }
2753 }
2754 }
2755
2756 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2757 {
2758 offset_type idx = 2 * iter;
2759 const char *name;
2760 offset_type *vec, vec_len, vec_idx;
2761
2762 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2763 continue;
2764
2765 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2766
2767 if (! (*name_matcher) (name, data))
2768 continue;
2769
2770 /* The name was matched, now expand corresponding CUs that were
2771 marked. */
2772 vec = (offset_type *) (index->constant_pool
2773 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2774 vec_len = MAYBE_SWAP (vec[0]);
2775 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2776 {
2777 struct dwarf2_per_cu_data *per_cu;
2778
2779 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2780 if (file_matcher == NULL || per_cu->v.quick->mark)
2781 dw2_instantiate_symtab (objfile, per_cu);
2782 }
2783 }
2784 }
2785
2786 static struct symtab *
2787 dw2_find_pc_sect_symtab (struct objfile *objfile,
2788 struct minimal_symbol *msymbol,
2789 CORE_ADDR pc,
2790 struct obj_section *section,
2791 int warn_if_readin)
2792 {
2793 struct dwarf2_per_cu_data *data;
2794
2795 dw2_setup (objfile);
2796
2797 if (!objfile->psymtabs_addrmap)
2798 return NULL;
2799
2800 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2801 if (!data)
2802 return NULL;
2803
2804 if (warn_if_readin && data->v.quick->symtab)
2805 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2806 paddress (get_objfile_arch (objfile), pc));
2807
2808 return dw2_instantiate_symtab (objfile, data);
2809 }
2810
2811 static void
2812 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2813 void *data)
2814 {
2815 int i;
2816
2817 dw2_setup (objfile);
2818
2819 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2820 + dwarf2_per_objfile->n_type_comp_units); ++i)
2821 {
2822 int j;
2823 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2824 struct quick_file_names *file_data;
2825
2826 if (per_cu->v.quick->symtab)
2827 continue;
2828
2829 file_data = dw2_get_file_names (objfile, per_cu);
2830 if (file_data == NULL)
2831 continue;
2832
2833 for (j = 0; j < file_data->num_file_names; ++j)
2834 {
2835 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2836 j);
2837 (*fun) (file_data->file_names[j], this_real_name, data);
2838 }
2839 }
2840 }
2841
2842 static int
2843 dw2_has_symbols (struct objfile *objfile)
2844 {
2845 return 1;
2846 }
2847
2848 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2849 {
2850 dw2_has_symbols,
2851 dw2_find_last_source_symtab,
2852 dw2_forget_cached_source_info,
2853 dw2_lookup_symtab,
2854 dw2_lookup_symbol,
2855 dw2_pre_expand_symtabs_matching,
2856 dw2_print_stats,
2857 dw2_dump,
2858 dw2_relocate,
2859 dw2_expand_symtabs_for_function,
2860 dw2_expand_all_symtabs,
2861 dw2_expand_symtabs_with_filename,
2862 dw2_find_symbol_file,
2863 dw2_map_matching_symbols,
2864 dw2_expand_symtabs_matching,
2865 dw2_find_pc_sect_symtab,
2866 dw2_map_symbol_filenames
2867 };
2868
2869 /* Initialize for reading DWARF for this objfile. Return 0 if this
2870 file will use psymtabs, or 1 if using the GNU index. */
2871
2872 int
2873 dwarf2_initialize_objfile (struct objfile *objfile)
2874 {
2875 /* If we're about to read full symbols, don't bother with the
2876 indices. In this case we also don't care if some other debug
2877 format is making psymtabs, because they are all about to be
2878 expanded anyway. */
2879 if ((objfile->flags & OBJF_READNOW))
2880 {
2881 int i;
2882
2883 dwarf2_per_objfile->using_index = 1;
2884 create_all_comp_units (objfile);
2885 create_debug_types_hash_table (objfile);
2886 dwarf2_per_objfile->quick_file_names_table =
2887 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2888
2889 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2890 + dwarf2_per_objfile->n_type_comp_units); ++i)
2891 {
2892 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2893
2894 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2895 struct dwarf2_per_cu_quick_data);
2896 }
2897
2898 /* Return 1 so that gdb sees the "quick" functions. However,
2899 these functions will be no-ops because we will have expanded
2900 all symtabs. */
2901 return 1;
2902 }
2903
2904 if (dwarf2_read_index (objfile))
2905 return 1;
2906
2907 return 0;
2908 }
2909
2910 \f
2911
2912 /* Build a partial symbol table. */
2913
2914 void
2915 dwarf2_build_psymtabs (struct objfile *objfile)
2916 {
2917 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2918 {
2919 init_psymbol_list (objfile, 1024);
2920 }
2921
2922 dwarf2_build_psymtabs_hard (objfile);
2923 }
2924
2925 /* Return TRUE if OFFSET is within CU_HEADER. */
2926
2927 static inline int
2928 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2929 {
2930 unsigned int bottom = cu_header->offset;
2931 unsigned int top = (cu_header->offset
2932 + cu_header->length
2933 + cu_header->initial_length_size);
2934
2935 return (offset >= bottom && offset < top);
2936 }
2937
2938 /* Read in the comp unit header information from the debug_info at info_ptr.
2939 NOTE: This leaves members offset, first_die_offset to be filled in
2940 by the caller. */
2941
2942 static gdb_byte *
2943 read_comp_unit_head (struct comp_unit_head *cu_header,
2944 gdb_byte *info_ptr, bfd *abfd)
2945 {
2946 int signed_addr;
2947 unsigned int bytes_read;
2948
2949 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2950 cu_header->initial_length_size = bytes_read;
2951 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2952 info_ptr += bytes_read;
2953 cu_header->version = read_2_bytes (abfd, info_ptr);
2954 info_ptr += 2;
2955 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2956 &bytes_read);
2957 info_ptr += bytes_read;
2958 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2959 info_ptr += 1;
2960 signed_addr = bfd_get_sign_extend_vma (abfd);
2961 if (signed_addr < 0)
2962 internal_error (__FILE__, __LINE__,
2963 _("read_comp_unit_head: dwarf from non elf file"));
2964 cu_header->signed_addr_p = signed_addr;
2965
2966 return info_ptr;
2967 }
2968
2969 /* Read in a CU header and perform some basic error checking. */
2970
2971 static gdb_byte *
2972 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2973 gdb_byte *buffer, unsigned int buffer_size,
2974 bfd *abfd)
2975 {
2976 gdb_byte *beg_of_comp_unit = info_ptr;
2977
2978 header->offset = beg_of_comp_unit - buffer;
2979
2980 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2981
2982 header->first_die_offset = info_ptr - beg_of_comp_unit;
2983
2984 if (header->version != 2 && header->version != 3 && header->version != 4)
2985 error (_("Dwarf Error: wrong version in compilation unit header "
2986 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2987 bfd_get_filename (abfd));
2988
2989 if (header->abbrev_offset
2990 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2991 &dwarf2_per_objfile->abbrev))
2992 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2993 "(offset 0x%lx + 6) [in module %s]"),
2994 (long) header->abbrev_offset,
2995 (long) (beg_of_comp_unit - buffer),
2996 bfd_get_filename (abfd));
2997
2998 if (beg_of_comp_unit + header->length + header->initial_length_size
2999 > buffer + buffer_size)
3000 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3001 "(offset 0x%lx + 0) [in module %s]"),
3002 (long) header->length,
3003 (long) (beg_of_comp_unit - buffer),
3004 bfd_get_filename (abfd));
3005
3006 return info_ptr;
3007 }
3008
3009 /* Read in the types comp unit header information from .debug_types entry at
3010 types_ptr. The result is a pointer to one past the end of the header. */
3011
3012 static gdb_byte *
3013 read_type_comp_unit_head (struct comp_unit_head *cu_header,
3014 struct dwarf2_section_info *section,
3015 ULONGEST *signature,
3016 gdb_byte *types_ptr, bfd *abfd)
3017 {
3018 gdb_byte *initial_types_ptr = types_ptr;
3019
3020 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3021 cu_header->offset = types_ptr - section->buffer;
3022
3023 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
3024
3025 *signature = read_8_bytes (abfd, types_ptr);
3026 types_ptr += 8;
3027 types_ptr += cu_header->offset_size;
3028 cu_header->first_die_offset = types_ptr - initial_types_ptr;
3029
3030 return types_ptr;
3031 }
3032
3033 /* Allocate a new partial symtab for file named NAME and mark this new
3034 partial symtab as being an include of PST. */
3035
3036 static void
3037 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3038 struct objfile *objfile)
3039 {
3040 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3041
3042 subpst->section_offsets = pst->section_offsets;
3043 subpst->textlow = 0;
3044 subpst->texthigh = 0;
3045
3046 subpst->dependencies = (struct partial_symtab **)
3047 obstack_alloc (&objfile->objfile_obstack,
3048 sizeof (struct partial_symtab *));
3049 subpst->dependencies[0] = pst;
3050 subpst->number_of_dependencies = 1;
3051
3052 subpst->globals_offset = 0;
3053 subpst->n_global_syms = 0;
3054 subpst->statics_offset = 0;
3055 subpst->n_static_syms = 0;
3056 subpst->symtab = NULL;
3057 subpst->read_symtab = pst->read_symtab;
3058 subpst->readin = 0;
3059
3060 /* No private part is necessary for include psymtabs. This property
3061 can be used to differentiate between such include psymtabs and
3062 the regular ones. */
3063 subpst->read_symtab_private = NULL;
3064 }
3065
3066 /* Read the Line Number Program data and extract the list of files
3067 included by the source file represented by PST. Build an include
3068 partial symtab for each of these included files. */
3069
3070 static void
3071 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3072 struct die_info *die,
3073 struct partial_symtab *pst)
3074 {
3075 struct objfile *objfile = cu->objfile;
3076 bfd *abfd = objfile->obfd;
3077 struct line_header *lh = NULL;
3078 struct attribute *attr;
3079
3080 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3081 if (attr)
3082 {
3083 unsigned int line_offset = DW_UNSND (attr);
3084
3085 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3086 }
3087 if (lh == NULL)
3088 return; /* No linetable, so no includes. */
3089
3090 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3091 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
3092
3093 free_line_header (lh);
3094 }
3095
3096 static hashval_t
3097 hash_type_signature (const void *item)
3098 {
3099 const struct signatured_type *type_sig = item;
3100
3101 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3102 return type_sig->signature;
3103 }
3104
3105 static int
3106 eq_type_signature (const void *item_lhs, const void *item_rhs)
3107 {
3108 const struct signatured_type *lhs = item_lhs;
3109 const struct signatured_type *rhs = item_rhs;
3110
3111 return lhs->signature == rhs->signature;
3112 }
3113
3114 /* Allocate a hash table for signatured types. */
3115
3116 static htab_t
3117 allocate_signatured_type_table (struct objfile *objfile)
3118 {
3119 return htab_create_alloc_ex (41,
3120 hash_type_signature,
3121 eq_type_signature,
3122 NULL,
3123 &objfile->objfile_obstack,
3124 hashtab_obstack_allocate,
3125 dummy_obstack_deallocate);
3126 }
3127
3128 /* A helper function to add a signatured type CU to a list. */
3129
3130 static int
3131 add_signatured_type_cu_to_list (void **slot, void *datum)
3132 {
3133 struct signatured_type *sigt = *slot;
3134 struct dwarf2_per_cu_data ***datap = datum;
3135
3136 **datap = &sigt->per_cu;
3137 ++*datap;
3138
3139 return 1;
3140 }
3141
3142 /* Create the hash table of all entries in the .debug_types section.
3143 The result is zero if there is an error (e.g. missing .debug_types section),
3144 otherwise non-zero. */
3145
3146 static int
3147 create_debug_types_hash_table (struct objfile *objfile)
3148 {
3149 htab_t types_htab = NULL;
3150 struct dwarf2_per_cu_data **iter;
3151 int ix;
3152 struct dwarf2_section_info *section;
3153
3154 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3155 {
3156 dwarf2_per_objfile->signatured_types = NULL;
3157 return 0;
3158 }
3159
3160 for (ix = 0;
3161 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3162 ix, section);
3163 ++ix)
3164 {
3165 gdb_byte *info_ptr, *end_ptr;
3166
3167 dwarf2_read_section (objfile, section);
3168 info_ptr = section->buffer;
3169
3170 if (info_ptr == NULL)
3171 continue;
3172
3173 if (types_htab == NULL)
3174 types_htab = allocate_signatured_type_table (objfile);
3175
3176 if (dwarf2_die_debug)
3177 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3178
3179 end_ptr = info_ptr + section->size;
3180 while (info_ptr < end_ptr)
3181 {
3182 unsigned int offset;
3183 unsigned int offset_size;
3184 unsigned int type_offset;
3185 unsigned int length, initial_length_size;
3186 unsigned short version;
3187 ULONGEST signature;
3188 struct signatured_type *type_sig;
3189 void **slot;
3190 gdb_byte *ptr = info_ptr;
3191
3192 offset = ptr - section->buffer;
3193
3194 /* We need to read the type's signature in order to build the hash
3195 table, but we don't need to read anything else just yet. */
3196
3197 /* Sanity check to ensure entire cu is present. */
3198 length = read_initial_length (objfile->obfd, ptr,
3199 &initial_length_size);
3200 if (ptr + length + initial_length_size > end_ptr)
3201 {
3202 complaint (&symfile_complaints,
3203 _("debug type entry runs off end "
3204 "of `.debug_types' section, ignored"));
3205 break;
3206 }
3207
3208 offset_size = initial_length_size == 4 ? 4 : 8;
3209 ptr += initial_length_size;
3210 version = bfd_get_16 (objfile->obfd, ptr);
3211 ptr += 2;
3212 ptr += offset_size; /* abbrev offset */
3213 ptr += 1; /* address size */
3214 signature = bfd_get_64 (objfile->obfd, ptr);
3215 ptr += 8;
3216 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3217 ptr += 1;
3218
3219 /* Skip dummy type units. */
3220 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3221 {
3222 info_ptr = info_ptr + initial_length_size + length;
3223 continue;
3224 }
3225
3226 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3227 memset (type_sig, 0, sizeof (*type_sig));
3228 type_sig->signature = signature;
3229 type_sig->type_offset = type_offset;
3230 type_sig->per_cu.objfile = objfile;
3231 type_sig->per_cu.debug_type_section = section;
3232 type_sig->per_cu.offset = offset;
3233
3234 slot = htab_find_slot (types_htab, type_sig, INSERT);
3235 gdb_assert (slot != NULL);
3236 if (*slot != NULL)
3237 {
3238 const struct signatured_type *dup_sig = *slot;
3239
3240 complaint (&symfile_complaints,
3241 _("debug type entry at offset 0x%x is duplicate to the "
3242 "entry at offset 0x%x, signature 0x%s"),
3243 offset, dup_sig->per_cu.offset,
3244 phex (signature, sizeof (signature)));
3245 gdb_assert (signature == dup_sig->signature);
3246 }
3247 *slot = type_sig;
3248
3249 if (dwarf2_die_debug)
3250 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3251 offset, phex (signature, sizeof (signature)));
3252
3253 info_ptr = info_ptr + initial_length_size + length;
3254 }
3255 }
3256
3257 dwarf2_per_objfile->signatured_types = types_htab;
3258
3259 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3260 dwarf2_per_objfile->type_comp_units
3261 = obstack_alloc (&objfile->objfile_obstack,
3262 dwarf2_per_objfile->n_type_comp_units
3263 * sizeof (struct dwarf2_per_cu_data *));
3264 iter = &dwarf2_per_objfile->type_comp_units[0];
3265 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3266 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3267 == dwarf2_per_objfile->n_type_comp_units);
3268
3269 return 1;
3270 }
3271
3272 /* Lookup a signature based type.
3273 Returns NULL if SIG is not present in the table. */
3274
3275 static struct signatured_type *
3276 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3277 {
3278 struct signatured_type find_entry, *entry;
3279
3280 if (dwarf2_per_objfile->signatured_types == NULL)
3281 {
3282 complaint (&symfile_complaints,
3283 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3284 return 0;
3285 }
3286
3287 find_entry.signature = sig;
3288 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3289 return entry;
3290 }
3291
3292 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3293
3294 static void
3295 init_cu_die_reader (struct die_reader_specs *reader,
3296 struct dwarf2_cu *cu)
3297 {
3298 reader->abfd = cu->objfile->obfd;
3299 reader->cu = cu;
3300 if (cu->per_cu->debug_type_section)
3301 {
3302 gdb_assert (cu->per_cu->debug_type_section->readin);
3303 reader->buffer = cu->per_cu->debug_type_section->buffer;
3304 }
3305 else
3306 {
3307 gdb_assert (dwarf2_per_objfile->info.readin);
3308 reader->buffer = dwarf2_per_objfile->info.buffer;
3309 }
3310 }
3311
3312 /* Find the base address of the compilation unit for range lists and
3313 location lists. It will normally be specified by DW_AT_low_pc.
3314 In DWARF-3 draft 4, the base address could be overridden by
3315 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3316 compilation units with discontinuous ranges. */
3317
3318 static void
3319 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3320 {
3321 struct attribute *attr;
3322
3323 cu->base_known = 0;
3324 cu->base_address = 0;
3325
3326 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3327 if (attr)
3328 {
3329 cu->base_address = DW_ADDR (attr);
3330 cu->base_known = 1;
3331 }
3332 else
3333 {
3334 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3335 if (attr)
3336 {
3337 cu->base_address = DW_ADDR (attr);
3338 cu->base_known = 1;
3339 }
3340 }
3341 }
3342
3343 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3344 to combine the common parts.
3345 Process a compilation unit for a psymtab.
3346 BUFFER is a pointer to the beginning of the dwarf section buffer,
3347 either .debug_info or debug_types.
3348 INFO_PTR is a pointer to the start of the CU.
3349 Returns a pointer to the next CU. */
3350
3351 static gdb_byte *
3352 process_psymtab_comp_unit (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *this_cu,
3354 gdb_byte *buffer, gdb_byte *info_ptr,
3355 unsigned int buffer_size)
3356 {
3357 bfd *abfd = objfile->obfd;
3358 gdb_byte *beg_of_comp_unit = info_ptr;
3359 struct die_info *comp_unit_die;
3360 struct partial_symtab *pst;
3361 CORE_ADDR baseaddr;
3362 struct cleanup *back_to_inner;
3363 struct dwarf2_cu cu;
3364 int has_children, has_pc_info;
3365 struct attribute *attr;
3366 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3367 struct die_reader_specs reader_specs;
3368 const char *filename;
3369
3370 init_one_comp_unit (&cu, objfile);
3371 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3372
3373 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3374 buffer, buffer_size,
3375 abfd);
3376
3377 /* Skip dummy compilation units. */
3378 if (info_ptr >= buffer + buffer_size
3379 || peek_abbrev_code (abfd, info_ptr) == 0)
3380 {
3381 info_ptr = (beg_of_comp_unit + cu.header.length
3382 + cu.header.initial_length_size);
3383 do_cleanups (back_to_inner);
3384 return info_ptr;
3385 }
3386
3387 cu.list_in_scope = &file_symbols;
3388
3389 /* If this compilation unit was already read in, free the
3390 cached copy in order to read it in again. This is
3391 necessary because we skipped some symbols when we first
3392 read in the compilation unit (see load_partial_dies).
3393 This problem could be avoided, but the benefit is
3394 unclear. */
3395 if (this_cu->cu != NULL)
3396 free_one_cached_comp_unit (this_cu->cu);
3397
3398 /* Note that this is a pointer to our stack frame, being
3399 added to a global data structure. It will be cleaned up
3400 in free_stack_comp_unit when we finish with this
3401 compilation unit. */
3402 this_cu->cu = &cu;
3403 cu.per_cu = this_cu;
3404
3405 /* Read the abbrevs for this compilation unit into a table. */
3406 dwarf2_read_abbrevs (abfd, &cu);
3407 make_cleanup (dwarf2_free_abbrev_table, &cu);
3408
3409 /* Read the compilation unit die. */
3410 if (this_cu->debug_type_section)
3411 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3412 init_cu_die_reader (&reader_specs, &cu);
3413 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3414 &has_children);
3415
3416 if (this_cu->debug_type_section)
3417 {
3418 /* LENGTH has not been set yet for type units. */
3419 gdb_assert (this_cu->offset == cu.header.offset);
3420 this_cu->length = cu.header.length + cu.header.initial_length_size;
3421 }
3422 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3423 {
3424 info_ptr = (beg_of_comp_unit + cu.header.length
3425 + cu.header.initial_length_size);
3426 do_cleanups (back_to_inner);
3427 return info_ptr;
3428 }
3429
3430 prepare_one_comp_unit (&cu, comp_unit_die);
3431
3432 /* Allocate a new partial symbol table structure. */
3433 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3434 if (attr == NULL || !DW_STRING (attr))
3435 filename = "";
3436 else
3437 filename = DW_STRING (attr);
3438 pst = start_psymtab_common (objfile, objfile->section_offsets,
3439 filename,
3440 /* TEXTLOW and TEXTHIGH are set below. */
3441 0,
3442 objfile->global_psymbols.next,
3443 objfile->static_psymbols.next);
3444
3445 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3446 if (attr != NULL)
3447 pst->dirname = DW_STRING (attr);
3448
3449 pst->read_symtab_private = this_cu;
3450
3451 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3452
3453 /* Store the function that reads in the rest of the symbol table. */
3454 pst->read_symtab = dwarf2_psymtab_to_symtab;
3455
3456 this_cu->v.psymtab = pst;
3457
3458 dwarf2_find_base_address (comp_unit_die, &cu);
3459
3460 /* Possibly set the default values of LOWPC and HIGHPC from
3461 `DW_AT_ranges'. */
3462 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3463 &best_highpc, &cu, pst);
3464 if (has_pc_info == 1 && best_lowpc < best_highpc)
3465 /* Store the contiguous range if it is not empty; it can be empty for
3466 CUs with no code. */
3467 addrmap_set_empty (objfile->psymtabs_addrmap,
3468 best_lowpc + baseaddr,
3469 best_highpc + baseaddr - 1, pst);
3470
3471 /* Check if comp unit has_children.
3472 If so, read the rest of the partial symbols from this comp unit.
3473 If not, there's no more debug_info for this comp unit. */
3474 if (has_children)
3475 {
3476 struct partial_die_info *first_die;
3477 CORE_ADDR lowpc, highpc;
3478
3479 lowpc = ((CORE_ADDR) -1);
3480 highpc = ((CORE_ADDR) 0);
3481
3482 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3483
3484 scan_partial_symbols (first_die, &lowpc, &highpc,
3485 ! has_pc_info, &cu);
3486
3487 /* If we didn't find a lowpc, set it to highpc to avoid
3488 complaints from `maint check'. */
3489 if (lowpc == ((CORE_ADDR) -1))
3490 lowpc = highpc;
3491
3492 /* If the compilation unit didn't have an explicit address range,
3493 then use the information extracted from its child dies. */
3494 if (! has_pc_info)
3495 {
3496 best_lowpc = lowpc;
3497 best_highpc = highpc;
3498 }
3499 }
3500 pst->textlow = best_lowpc + baseaddr;
3501 pst->texthigh = best_highpc + baseaddr;
3502
3503 pst->n_global_syms = objfile->global_psymbols.next -
3504 (objfile->global_psymbols.list + pst->globals_offset);
3505 pst->n_static_syms = objfile->static_psymbols.next -
3506 (objfile->static_psymbols.list + pst->statics_offset);
3507 sort_pst_symbols (pst);
3508
3509 info_ptr = (beg_of_comp_unit + cu.header.length
3510 + cu.header.initial_length_size);
3511
3512 if (this_cu->debug_type_section)
3513 {
3514 /* It's not clear we want to do anything with stmt lists here.
3515 Waiting to see what gcc ultimately does. */
3516 }
3517 else
3518 {
3519 /* Get the list of files included in the current compilation unit,
3520 and build a psymtab for each of them. */
3521 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3522 }
3523
3524 do_cleanups (back_to_inner);
3525
3526 return info_ptr;
3527 }
3528
3529 /* Traversal function for htab_traverse_noresize.
3530 Process one .debug_types comp-unit. */
3531
3532 static int
3533 process_type_comp_unit (void **slot, void *info)
3534 {
3535 struct signatured_type *entry = (struct signatured_type *) *slot;
3536 struct objfile *objfile = (struct objfile *) info;
3537 struct dwarf2_per_cu_data *this_cu;
3538
3539 this_cu = &entry->per_cu;
3540
3541 gdb_assert (this_cu->debug_type_section->readin);
3542 process_psymtab_comp_unit (objfile, this_cu,
3543 this_cu->debug_type_section->buffer,
3544 (this_cu->debug_type_section->buffer
3545 + this_cu->offset),
3546 this_cu->debug_type_section->size);
3547
3548 return 1;
3549 }
3550
3551 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3552 Build partial symbol tables for the .debug_types comp-units. */
3553
3554 static void
3555 build_type_psymtabs (struct objfile *objfile)
3556 {
3557 if (! create_debug_types_hash_table (objfile))
3558 return;
3559
3560 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3561 process_type_comp_unit, objfile);
3562 }
3563
3564 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3565
3566 static void
3567 psymtabs_addrmap_cleanup (void *o)
3568 {
3569 struct objfile *objfile = o;
3570
3571 objfile->psymtabs_addrmap = NULL;
3572 }
3573
3574 /* Build the partial symbol table by doing a quick pass through the
3575 .debug_info and .debug_abbrev sections. */
3576
3577 static void
3578 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3579 {
3580 gdb_byte *info_ptr;
3581 struct cleanup *back_to, *addrmap_cleanup;
3582 struct obstack temp_obstack;
3583
3584 dwarf2_per_objfile->reading_partial_symbols = 1;
3585
3586 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3587 info_ptr = dwarf2_per_objfile->info.buffer;
3588
3589 /* Any cached compilation units will be linked by the per-objfile
3590 read_in_chain. Make sure to free them when we're done. */
3591 back_to = make_cleanup (free_cached_comp_units, NULL);
3592
3593 build_type_psymtabs (objfile);
3594
3595 create_all_comp_units (objfile);
3596
3597 /* Create a temporary address map on a temporary obstack. We later
3598 copy this to the final obstack. */
3599 obstack_init (&temp_obstack);
3600 make_cleanup_obstack_free (&temp_obstack);
3601 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3602 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3603
3604 /* Since the objects we're extracting from .debug_info vary in
3605 length, only the individual functions to extract them (like
3606 read_comp_unit_head and load_partial_die) can really know whether
3607 the buffer is large enough to hold another complete object.
3608
3609 At the moment, they don't actually check that. If .debug_info
3610 holds just one extra byte after the last compilation unit's dies,
3611 then read_comp_unit_head will happily read off the end of the
3612 buffer. read_partial_die is similarly casual. Those functions
3613 should be fixed.
3614
3615 For this loop condition, simply checking whether there's any data
3616 left at all should be sufficient. */
3617
3618 while (info_ptr < (dwarf2_per_objfile->info.buffer
3619 + dwarf2_per_objfile->info.size))
3620 {
3621 struct dwarf2_per_cu_data *this_cu;
3622
3623 this_cu = dwarf2_find_comp_unit (info_ptr
3624 - dwarf2_per_objfile->info.buffer,
3625 objfile);
3626
3627 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3628 dwarf2_per_objfile->info.buffer,
3629 info_ptr,
3630 dwarf2_per_objfile->info.size);
3631 }
3632
3633 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3634 &objfile->objfile_obstack);
3635 discard_cleanups (addrmap_cleanup);
3636
3637 do_cleanups (back_to);
3638 }
3639
3640 /* Load the partial DIEs for a secondary CU into memory. */
3641
3642 static void
3643 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3644 struct objfile *objfile)
3645 {
3646 bfd *abfd = objfile->obfd;
3647 gdb_byte *info_ptr;
3648 struct die_info *comp_unit_die;
3649 struct dwarf2_cu *cu;
3650 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3651 int has_children;
3652 struct die_reader_specs reader_specs;
3653 int read_cu = 0;
3654
3655 gdb_assert (! this_cu->debug_type_section);
3656
3657 gdb_assert (dwarf2_per_objfile->info.readin);
3658 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3659
3660 if (this_cu->cu == NULL)
3661 {
3662 cu = xmalloc (sizeof (*cu));
3663 init_one_comp_unit (cu, objfile);
3664
3665 read_cu = 1;
3666
3667 /* If an error occurs while loading, release our storage. */
3668 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3669
3670 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3671 dwarf2_per_objfile->info.buffer,
3672 dwarf2_per_objfile->info.size,
3673 abfd);
3674
3675 /* Skip dummy compilation units. */
3676 if (info_ptr >= (dwarf2_per_objfile->info.buffer
3677 + dwarf2_per_objfile->info.size)
3678 || peek_abbrev_code (abfd, info_ptr) == 0)
3679 {
3680 do_cleanups (free_cu_cleanup);
3681 return;
3682 }
3683
3684 /* Link this compilation unit into the compilation unit tree. */
3685 this_cu->cu = cu;
3686 cu->per_cu = this_cu;
3687
3688 /* Link this CU into read_in_chain. */
3689 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3690 dwarf2_per_objfile->read_in_chain = this_cu;
3691 }
3692 else
3693 {
3694 cu = this_cu->cu;
3695 info_ptr += cu->header.first_die_offset;
3696 }
3697
3698 /* Read the abbrevs for this compilation unit into a table. */
3699 gdb_assert (cu->dwarf2_abbrevs == NULL);
3700 dwarf2_read_abbrevs (abfd, cu);
3701 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3702
3703 /* Read the compilation unit die. */
3704 init_cu_die_reader (&reader_specs, cu);
3705 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3706 &has_children);
3707
3708 prepare_one_comp_unit (cu, comp_unit_die);
3709
3710 /* Check if comp unit has_children.
3711 If so, read the rest of the partial symbols from this comp unit.
3712 If not, there's no more debug_info for this comp unit. */
3713 if (has_children)
3714 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3715
3716 do_cleanups (free_abbrevs_cleanup);
3717
3718 if (read_cu)
3719 {
3720 /* We've successfully allocated this compilation unit. Let our
3721 caller clean it up when finished with it. */
3722 discard_cleanups (free_cu_cleanup);
3723 }
3724 }
3725
3726 /* Create a list of all compilation units in OBJFILE. We do this only
3727 if an inter-comp-unit reference is found; presumably if there is one,
3728 there will be many, and one will occur early in the .debug_info section.
3729 So there's no point in building this list incrementally. */
3730
3731 static void
3732 create_all_comp_units (struct objfile *objfile)
3733 {
3734 int n_allocated;
3735 int n_comp_units;
3736 struct dwarf2_per_cu_data **all_comp_units;
3737 gdb_byte *info_ptr;
3738
3739 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3740 info_ptr = dwarf2_per_objfile->info.buffer;
3741
3742 n_comp_units = 0;
3743 n_allocated = 10;
3744 all_comp_units = xmalloc (n_allocated
3745 * sizeof (struct dwarf2_per_cu_data *));
3746
3747 while (info_ptr < dwarf2_per_objfile->info.buffer
3748 + dwarf2_per_objfile->info.size)
3749 {
3750 unsigned int length, initial_length_size;
3751 struct dwarf2_per_cu_data *this_cu;
3752 unsigned int offset;
3753
3754 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3755
3756 /* Read just enough information to find out where the next
3757 compilation unit is. */
3758 length = read_initial_length (objfile->obfd, info_ptr,
3759 &initial_length_size);
3760
3761 /* Save the compilation unit for later lookup. */
3762 this_cu = obstack_alloc (&objfile->objfile_obstack,
3763 sizeof (struct dwarf2_per_cu_data));
3764 memset (this_cu, 0, sizeof (*this_cu));
3765 this_cu->offset = offset;
3766 this_cu->length = length + initial_length_size;
3767 this_cu->objfile = objfile;
3768
3769 if (n_comp_units == n_allocated)
3770 {
3771 n_allocated *= 2;
3772 all_comp_units = xrealloc (all_comp_units,
3773 n_allocated
3774 * sizeof (struct dwarf2_per_cu_data *));
3775 }
3776 all_comp_units[n_comp_units++] = this_cu;
3777
3778 info_ptr = info_ptr + this_cu->length;
3779 }
3780
3781 dwarf2_per_objfile->all_comp_units
3782 = obstack_alloc (&objfile->objfile_obstack,
3783 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3784 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3785 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3786 xfree (all_comp_units);
3787 dwarf2_per_objfile->n_comp_units = n_comp_units;
3788 }
3789
3790 /* Process all loaded DIEs for compilation unit CU, starting at
3791 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3792 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3793 DW_AT_ranges). If NEED_PC is set, then this function will set
3794 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3795 and record the covered ranges in the addrmap. */
3796
3797 static void
3798 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3799 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3800 {
3801 struct partial_die_info *pdi;
3802
3803 /* Now, march along the PDI's, descending into ones which have
3804 interesting children but skipping the children of the other ones,
3805 until we reach the end of the compilation unit. */
3806
3807 pdi = first_die;
3808
3809 while (pdi != NULL)
3810 {
3811 fixup_partial_die (pdi, cu);
3812
3813 /* Anonymous namespaces or modules have no name but have interesting
3814 children, so we need to look at them. Ditto for anonymous
3815 enums. */
3816
3817 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3818 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3819 {
3820 switch (pdi->tag)
3821 {
3822 case DW_TAG_subprogram:
3823 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3824 break;
3825 case DW_TAG_constant:
3826 case DW_TAG_variable:
3827 case DW_TAG_typedef:
3828 case DW_TAG_union_type:
3829 if (!pdi->is_declaration)
3830 {
3831 add_partial_symbol (pdi, cu);
3832 }
3833 break;
3834 case DW_TAG_class_type:
3835 case DW_TAG_interface_type:
3836 case DW_TAG_structure_type:
3837 if (!pdi->is_declaration)
3838 {
3839 add_partial_symbol (pdi, cu);
3840 }
3841 break;
3842 case DW_TAG_enumeration_type:
3843 if (!pdi->is_declaration)
3844 add_partial_enumeration (pdi, cu);
3845 break;
3846 case DW_TAG_base_type:
3847 case DW_TAG_subrange_type:
3848 /* File scope base type definitions are added to the partial
3849 symbol table. */
3850 add_partial_symbol (pdi, cu);
3851 break;
3852 case DW_TAG_namespace:
3853 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3854 break;
3855 case DW_TAG_module:
3856 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3857 break;
3858 default:
3859 break;
3860 }
3861 }
3862
3863 /* If the die has a sibling, skip to the sibling. */
3864
3865 pdi = pdi->die_sibling;
3866 }
3867 }
3868
3869 /* Functions used to compute the fully scoped name of a partial DIE.
3870
3871 Normally, this is simple. For C++, the parent DIE's fully scoped
3872 name is concatenated with "::" and the partial DIE's name. For
3873 Java, the same thing occurs except that "." is used instead of "::".
3874 Enumerators are an exception; they use the scope of their parent
3875 enumeration type, i.e. the name of the enumeration type is not
3876 prepended to the enumerator.
3877
3878 There are two complexities. One is DW_AT_specification; in this
3879 case "parent" means the parent of the target of the specification,
3880 instead of the direct parent of the DIE. The other is compilers
3881 which do not emit DW_TAG_namespace; in this case we try to guess
3882 the fully qualified name of structure types from their members'
3883 linkage names. This must be done using the DIE's children rather
3884 than the children of any DW_AT_specification target. We only need
3885 to do this for structures at the top level, i.e. if the target of
3886 any DW_AT_specification (if any; otherwise the DIE itself) does not
3887 have a parent. */
3888
3889 /* Compute the scope prefix associated with PDI's parent, in
3890 compilation unit CU. The result will be allocated on CU's
3891 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3892 field. NULL is returned if no prefix is necessary. */
3893 static char *
3894 partial_die_parent_scope (struct partial_die_info *pdi,
3895 struct dwarf2_cu *cu)
3896 {
3897 char *grandparent_scope;
3898 struct partial_die_info *parent, *real_pdi;
3899
3900 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3901 then this means the parent of the specification DIE. */
3902
3903 real_pdi = pdi;
3904 while (real_pdi->has_specification)
3905 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3906
3907 parent = real_pdi->die_parent;
3908 if (parent == NULL)
3909 return NULL;
3910
3911 if (parent->scope_set)
3912 return parent->scope;
3913
3914 fixup_partial_die (parent, cu);
3915
3916 grandparent_scope = partial_die_parent_scope (parent, cu);
3917
3918 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3919 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3920 Work around this problem here. */
3921 if (cu->language == language_cplus
3922 && parent->tag == DW_TAG_namespace
3923 && strcmp (parent->name, "::") == 0
3924 && grandparent_scope == NULL)
3925 {
3926 parent->scope = NULL;
3927 parent->scope_set = 1;
3928 return NULL;
3929 }
3930
3931 if (pdi->tag == DW_TAG_enumerator)
3932 /* Enumerators should not get the name of the enumeration as a prefix. */
3933 parent->scope = grandparent_scope;
3934 else if (parent->tag == DW_TAG_namespace
3935 || parent->tag == DW_TAG_module
3936 || parent->tag == DW_TAG_structure_type
3937 || parent->tag == DW_TAG_class_type
3938 || parent->tag == DW_TAG_interface_type
3939 || parent->tag == DW_TAG_union_type
3940 || parent->tag == DW_TAG_enumeration_type)
3941 {
3942 if (grandparent_scope == NULL)
3943 parent->scope = parent->name;
3944 else
3945 parent->scope = typename_concat (&cu->comp_unit_obstack,
3946 grandparent_scope,
3947 parent->name, 0, cu);
3948 }
3949 else
3950 {
3951 /* FIXME drow/2004-04-01: What should we be doing with
3952 function-local names? For partial symbols, we should probably be
3953 ignoring them. */
3954 complaint (&symfile_complaints,
3955 _("unhandled containing DIE tag %d for DIE at %d"),
3956 parent->tag, pdi->offset);
3957 parent->scope = grandparent_scope;
3958 }
3959
3960 parent->scope_set = 1;
3961 return parent->scope;
3962 }
3963
3964 /* Return the fully scoped name associated with PDI, from compilation unit
3965 CU. The result will be allocated with malloc. */
3966 static char *
3967 partial_die_full_name (struct partial_die_info *pdi,
3968 struct dwarf2_cu *cu)
3969 {
3970 char *parent_scope;
3971
3972 /* If this is a template instantiation, we can not work out the
3973 template arguments from partial DIEs. So, unfortunately, we have
3974 to go through the full DIEs. At least any work we do building
3975 types here will be reused if full symbols are loaded later. */
3976 if (pdi->has_template_arguments)
3977 {
3978 fixup_partial_die (pdi, cu);
3979
3980 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3981 {
3982 struct die_info *die;
3983 struct attribute attr;
3984 struct dwarf2_cu *ref_cu = cu;
3985
3986 attr.name = 0;
3987 attr.form = DW_FORM_ref_addr;
3988 attr.u.addr = pdi->offset;
3989 die = follow_die_ref (NULL, &attr, &ref_cu);
3990
3991 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3992 }
3993 }
3994
3995 parent_scope = partial_die_parent_scope (pdi, cu);
3996 if (parent_scope == NULL)
3997 return NULL;
3998 else
3999 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4000 }
4001
4002 static void
4003 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4004 {
4005 struct objfile *objfile = cu->objfile;
4006 CORE_ADDR addr = 0;
4007 char *actual_name = NULL;
4008 const struct partial_symbol *psym = NULL;
4009 CORE_ADDR baseaddr;
4010 int built_actual_name = 0;
4011
4012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4013
4014 actual_name = partial_die_full_name (pdi, cu);
4015 if (actual_name)
4016 built_actual_name = 1;
4017
4018 if (actual_name == NULL)
4019 actual_name = pdi->name;
4020
4021 switch (pdi->tag)
4022 {
4023 case DW_TAG_subprogram:
4024 if (pdi->is_external || cu->language == language_ada)
4025 {
4026 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4027 of the global scope. But in Ada, we want to be able to access
4028 nested procedures globally. So all Ada subprograms are stored
4029 in the global scope. */
4030 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4031 mst_text, objfile); */
4032 add_psymbol_to_list (actual_name, strlen (actual_name),
4033 built_actual_name,
4034 VAR_DOMAIN, LOC_BLOCK,
4035 &objfile->global_psymbols,
4036 0, pdi->lowpc + baseaddr,
4037 cu->language, objfile);
4038 }
4039 else
4040 {
4041 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4042 mst_file_text, objfile); */
4043 add_psymbol_to_list (actual_name, strlen (actual_name),
4044 built_actual_name,
4045 VAR_DOMAIN, LOC_BLOCK,
4046 &objfile->static_psymbols,
4047 0, pdi->lowpc + baseaddr,
4048 cu->language, objfile);
4049 }
4050 break;
4051 case DW_TAG_constant:
4052 {
4053 struct psymbol_allocation_list *list;
4054
4055 if (pdi->is_external)
4056 list = &objfile->global_psymbols;
4057 else
4058 list = &objfile->static_psymbols;
4059 add_psymbol_to_list (actual_name, strlen (actual_name),
4060 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4061 list, 0, 0, cu->language, objfile);
4062 }
4063 break;
4064 case DW_TAG_variable:
4065 if (pdi->locdesc)
4066 addr = decode_locdesc (pdi->locdesc, cu);
4067
4068 if (pdi->locdesc
4069 && addr == 0
4070 && !dwarf2_per_objfile->has_section_at_zero)
4071 {
4072 /* A global or static variable may also have been stripped
4073 out by the linker if unused, in which case its address
4074 will be nullified; do not add such variables into partial
4075 symbol table then. */
4076 }
4077 else if (pdi->is_external)
4078 {
4079 /* Global Variable.
4080 Don't enter into the minimal symbol tables as there is
4081 a minimal symbol table entry from the ELF symbols already.
4082 Enter into partial symbol table if it has a location
4083 descriptor or a type.
4084 If the location descriptor is missing, new_symbol will create
4085 a LOC_UNRESOLVED symbol, the address of the variable will then
4086 be determined from the minimal symbol table whenever the variable
4087 is referenced.
4088 The address for the partial symbol table entry is not
4089 used by GDB, but it comes in handy for debugging partial symbol
4090 table building. */
4091
4092 if (pdi->locdesc || pdi->has_type)
4093 add_psymbol_to_list (actual_name, strlen (actual_name),
4094 built_actual_name,
4095 VAR_DOMAIN, LOC_STATIC,
4096 &objfile->global_psymbols,
4097 0, addr + baseaddr,
4098 cu->language, objfile);
4099 }
4100 else
4101 {
4102 /* Static Variable. Skip symbols without location descriptors. */
4103 if (pdi->locdesc == NULL)
4104 {
4105 if (built_actual_name)
4106 xfree (actual_name);
4107 return;
4108 }
4109 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4110 mst_file_data, objfile); */
4111 add_psymbol_to_list (actual_name, strlen (actual_name),
4112 built_actual_name,
4113 VAR_DOMAIN, LOC_STATIC,
4114 &objfile->static_psymbols,
4115 0, addr + baseaddr,
4116 cu->language, objfile);
4117 }
4118 break;
4119 case DW_TAG_typedef:
4120 case DW_TAG_base_type:
4121 case DW_TAG_subrange_type:
4122 add_psymbol_to_list (actual_name, strlen (actual_name),
4123 built_actual_name,
4124 VAR_DOMAIN, LOC_TYPEDEF,
4125 &objfile->static_psymbols,
4126 0, (CORE_ADDR) 0, cu->language, objfile);
4127 break;
4128 case DW_TAG_namespace:
4129 add_psymbol_to_list (actual_name, strlen (actual_name),
4130 built_actual_name,
4131 VAR_DOMAIN, LOC_TYPEDEF,
4132 &objfile->global_psymbols,
4133 0, (CORE_ADDR) 0, cu->language, objfile);
4134 break;
4135 case DW_TAG_class_type:
4136 case DW_TAG_interface_type:
4137 case DW_TAG_structure_type:
4138 case DW_TAG_union_type:
4139 case DW_TAG_enumeration_type:
4140 /* Skip external references. The DWARF standard says in the section
4141 about "Structure, Union, and Class Type Entries": "An incomplete
4142 structure, union or class type is represented by a structure,
4143 union or class entry that does not have a byte size attribute
4144 and that has a DW_AT_declaration attribute." */
4145 if (!pdi->has_byte_size && pdi->is_declaration)
4146 {
4147 if (built_actual_name)
4148 xfree (actual_name);
4149 return;
4150 }
4151
4152 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4153 static vs. global. */
4154 add_psymbol_to_list (actual_name, strlen (actual_name),
4155 built_actual_name,
4156 STRUCT_DOMAIN, LOC_TYPEDEF,
4157 (cu->language == language_cplus
4158 || cu->language == language_java)
4159 ? &objfile->global_psymbols
4160 : &objfile->static_psymbols,
4161 0, (CORE_ADDR) 0, cu->language, objfile);
4162
4163 break;
4164 case DW_TAG_enumerator:
4165 add_psymbol_to_list (actual_name, strlen (actual_name),
4166 built_actual_name,
4167 VAR_DOMAIN, LOC_CONST,
4168 (cu->language == language_cplus
4169 || cu->language == language_java)
4170 ? &objfile->global_psymbols
4171 : &objfile->static_psymbols,
4172 0, (CORE_ADDR) 0, cu->language, objfile);
4173 break;
4174 default:
4175 break;
4176 }
4177
4178 if (built_actual_name)
4179 xfree (actual_name);
4180 }
4181
4182 /* Read a partial die corresponding to a namespace; also, add a symbol
4183 corresponding to that namespace to the symbol table. NAMESPACE is
4184 the name of the enclosing namespace. */
4185
4186 static void
4187 add_partial_namespace (struct partial_die_info *pdi,
4188 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4189 int need_pc, struct dwarf2_cu *cu)
4190 {
4191 /* Add a symbol for the namespace. */
4192
4193 add_partial_symbol (pdi, cu);
4194
4195 /* Now scan partial symbols in that namespace. */
4196
4197 if (pdi->has_children)
4198 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4199 }
4200
4201 /* Read a partial die corresponding to a Fortran module. */
4202
4203 static void
4204 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4205 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4206 {
4207 /* Now scan partial symbols in that module. */
4208
4209 if (pdi->has_children)
4210 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4211 }
4212
4213 /* Read a partial die corresponding to a subprogram and create a partial
4214 symbol for that subprogram. When the CU language allows it, this
4215 routine also defines a partial symbol for each nested subprogram
4216 that this subprogram contains.
4217
4218 DIE my also be a lexical block, in which case we simply search
4219 recursively for suprograms defined inside that lexical block.
4220 Again, this is only performed when the CU language allows this
4221 type of definitions. */
4222
4223 static void
4224 add_partial_subprogram (struct partial_die_info *pdi,
4225 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4226 int need_pc, struct dwarf2_cu *cu)
4227 {
4228 if (pdi->tag == DW_TAG_subprogram)
4229 {
4230 if (pdi->has_pc_info)
4231 {
4232 if (pdi->lowpc < *lowpc)
4233 *lowpc = pdi->lowpc;
4234 if (pdi->highpc > *highpc)
4235 *highpc = pdi->highpc;
4236 if (need_pc)
4237 {
4238 CORE_ADDR baseaddr;
4239 struct objfile *objfile = cu->objfile;
4240
4241 baseaddr = ANOFFSET (objfile->section_offsets,
4242 SECT_OFF_TEXT (objfile));
4243 addrmap_set_empty (objfile->psymtabs_addrmap,
4244 pdi->lowpc + baseaddr,
4245 pdi->highpc - 1 + baseaddr,
4246 cu->per_cu->v.psymtab);
4247 }
4248 if (!pdi->is_declaration)
4249 /* Ignore subprogram DIEs that do not have a name, they are
4250 illegal. Do not emit a complaint at this point, we will
4251 do so when we convert this psymtab into a symtab. */
4252 if (pdi->name)
4253 add_partial_symbol (pdi, cu);
4254 }
4255 }
4256
4257 if (! pdi->has_children)
4258 return;
4259
4260 if (cu->language == language_ada)
4261 {
4262 pdi = pdi->die_child;
4263 while (pdi != NULL)
4264 {
4265 fixup_partial_die (pdi, cu);
4266 if (pdi->tag == DW_TAG_subprogram
4267 || pdi->tag == DW_TAG_lexical_block)
4268 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4269 pdi = pdi->die_sibling;
4270 }
4271 }
4272 }
4273
4274 /* Read a partial die corresponding to an enumeration type. */
4275
4276 static void
4277 add_partial_enumeration (struct partial_die_info *enum_pdi,
4278 struct dwarf2_cu *cu)
4279 {
4280 struct partial_die_info *pdi;
4281
4282 if (enum_pdi->name != NULL)
4283 add_partial_symbol (enum_pdi, cu);
4284
4285 pdi = enum_pdi->die_child;
4286 while (pdi)
4287 {
4288 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4289 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4290 else
4291 add_partial_symbol (pdi, cu);
4292 pdi = pdi->die_sibling;
4293 }
4294 }
4295
4296 /* Return the initial uleb128 in the die at INFO_PTR. */
4297
4298 static unsigned int
4299 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4300 {
4301 unsigned int bytes_read;
4302
4303 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4304 }
4305
4306 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4307 Return the corresponding abbrev, or NULL if the number is zero (indicating
4308 an empty DIE). In either case *BYTES_READ will be set to the length of
4309 the initial number. */
4310
4311 static struct abbrev_info *
4312 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4313 struct dwarf2_cu *cu)
4314 {
4315 bfd *abfd = cu->objfile->obfd;
4316 unsigned int abbrev_number;
4317 struct abbrev_info *abbrev;
4318
4319 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4320
4321 if (abbrev_number == 0)
4322 return NULL;
4323
4324 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4325 if (!abbrev)
4326 {
4327 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4328 abbrev_number, bfd_get_filename (abfd));
4329 }
4330
4331 return abbrev;
4332 }
4333
4334 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4335 Returns a pointer to the end of a series of DIEs, terminated by an empty
4336 DIE. Any children of the skipped DIEs will also be skipped. */
4337
4338 static gdb_byte *
4339 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4340 {
4341 struct abbrev_info *abbrev;
4342 unsigned int bytes_read;
4343
4344 while (1)
4345 {
4346 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4347 if (abbrev == NULL)
4348 return info_ptr + bytes_read;
4349 else
4350 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4351 }
4352 }
4353
4354 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4355 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4356 abbrev corresponding to that skipped uleb128 should be passed in
4357 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4358 children. */
4359
4360 static gdb_byte *
4361 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4362 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4363 {
4364 unsigned int bytes_read;
4365 struct attribute attr;
4366 bfd *abfd = cu->objfile->obfd;
4367 unsigned int form, i;
4368
4369 for (i = 0; i < abbrev->num_attrs; i++)
4370 {
4371 /* The only abbrev we care about is DW_AT_sibling. */
4372 if (abbrev->attrs[i].name == DW_AT_sibling)
4373 {
4374 read_attribute (&attr, &abbrev->attrs[i],
4375 abfd, info_ptr, cu);
4376 if (attr.form == DW_FORM_ref_addr)
4377 complaint (&symfile_complaints,
4378 _("ignoring absolute DW_AT_sibling"));
4379 else
4380 return buffer + dwarf2_get_ref_die_offset (&attr);
4381 }
4382
4383 /* If it isn't DW_AT_sibling, skip this attribute. */
4384 form = abbrev->attrs[i].form;
4385 skip_attribute:
4386 switch (form)
4387 {
4388 case DW_FORM_ref_addr:
4389 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4390 and later it is offset sized. */
4391 if (cu->header.version == 2)
4392 info_ptr += cu->header.addr_size;
4393 else
4394 info_ptr += cu->header.offset_size;
4395 break;
4396 case DW_FORM_addr:
4397 info_ptr += cu->header.addr_size;
4398 break;
4399 case DW_FORM_data1:
4400 case DW_FORM_ref1:
4401 case DW_FORM_flag:
4402 info_ptr += 1;
4403 break;
4404 case DW_FORM_flag_present:
4405 break;
4406 case DW_FORM_data2:
4407 case DW_FORM_ref2:
4408 info_ptr += 2;
4409 break;
4410 case DW_FORM_data4:
4411 case DW_FORM_ref4:
4412 info_ptr += 4;
4413 break;
4414 case DW_FORM_data8:
4415 case DW_FORM_ref8:
4416 case DW_FORM_ref_sig8:
4417 info_ptr += 8;
4418 break;
4419 case DW_FORM_string:
4420 read_direct_string (abfd, info_ptr, &bytes_read);
4421 info_ptr += bytes_read;
4422 break;
4423 case DW_FORM_sec_offset:
4424 case DW_FORM_strp:
4425 info_ptr += cu->header.offset_size;
4426 break;
4427 case DW_FORM_exprloc:
4428 case DW_FORM_block:
4429 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4430 info_ptr += bytes_read;
4431 break;
4432 case DW_FORM_block1:
4433 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4434 break;
4435 case DW_FORM_block2:
4436 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4437 break;
4438 case DW_FORM_block4:
4439 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4440 break;
4441 case DW_FORM_sdata:
4442 case DW_FORM_udata:
4443 case DW_FORM_ref_udata:
4444 info_ptr = skip_leb128 (abfd, info_ptr);
4445 break;
4446 case DW_FORM_indirect:
4447 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4448 info_ptr += bytes_read;
4449 /* We need to continue parsing from here, so just go back to
4450 the top. */
4451 goto skip_attribute;
4452
4453 default:
4454 error (_("Dwarf Error: Cannot handle %s "
4455 "in DWARF reader [in module %s]"),
4456 dwarf_form_name (form),
4457 bfd_get_filename (abfd));
4458 }
4459 }
4460
4461 if (abbrev->has_children)
4462 return skip_children (buffer, info_ptr, cu);
4463 else
4464 return info_ptr;
4465 }
4466
4467 /* Locate ORIG_PDI's sibling.
4468 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4469 in BUFFER. */
4470
4471 static gdb_byte *
4472 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4473 gdb_byte *buffer, gdb_byte *info_ptr,
4474 bfd *abfd, struct dwarf2_cu *cu)
4475 {
4476 /* Do we know the sibling already? */
4477
4478 if (orig_pdi->sibling)
4479 return orig_pdi->sibling;
4480
4481 /* Are there any children to deal with? */
4482
4483 if (!orig_pdi->has_children)
4484 return info_ptr;
4485
4486 /* Skip the children the long way. */
4487
4488 return skip_children (buffer, info_ptr, cu);
4489 }
4490
4491 /* Expand this partial symbol table into a full symbol table. */
4492
4493 static void
4494 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4495 {
4496 if (pst != NULL)
4497 {
4498 if (pst->readin)
4499 {
4500 warning (_("bug: psymtab for %s is already read in."),
4501 pst->filename);
4502 }
4503 else
4504 {
4505 if (info_verbose)
4506 {
4507 printf_filtered (_("Reading in symbols for %s..."),
4508 pst->filename);
4509 gdb_flush (gdb_stdout);
4510 }
4511
4512 /* Restore our global data. */
4513 dwarf2_per_objfile = objfile_data (pst->objfile,
4514 dwarf2_objfile_data_key);
4515
4516 /* If this psymtab is constructed from a debug-only objfile, the
4517 has_section_at_zero flag will not necessarily be correct. We
4518 can get the correct value for this flag by looking at the data
4519 associated with the (presumably stripped) associated objfile. */
4520 if (pst->objfile->separate_debug_objfile_backlink)
4521 {
4522 struct dwarf2_per_objfile *dpo_backlink
4523 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4524 dwarf2_objfile_data_key);
4525
4526 dwarf2_per_objfile->has_section_at_zero
4527 = dpo_backlink->has_section_at_zero;
4528 }
4529
4530 dwarf2_per_objfile->reading_partial_symbols = 0;
4531
4532 psymtab_to_symtab_1 (pst);
4533
4534 /* Finish up the debug error message. */
4535 if (info_verbose)
4536 printf_filtered (_("done.\n"));
4537 }
4538 }
4539 }
4540
4541 /* Add PER_CU to the queue. */
4542
4543 static void
4544 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4545 {
4546 struct dwarf2_queue_item *item;
4547
4548 per_cu->queued = 1;
4549 item = xmalloc (sizeof (*item));
4550 item->per_cu = per_cu;
4551 item->next = NULL;
4552
4553 if (dwarf2_queue == NULL)
4554 dwarf2_queue = item;
4555 else
4556 dwarf2_queue_tail->next = item;
4557
4558 dwarf2_queue_tail = item;
4559 }
4560
4561 /* Process the queue. */
4562
4563 static void
4564 process_queue (struct objfile *objfile)
4565 {
4566 struct dwarf2_queue_item *item, *next_item;
4567
4568 /* The queue starts out with one item, but following a DIE reference
4569 may load a new CU, adding it to the end of the queue. */
4570 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4571 {
4572 if (dwarf2_per_objfile->using_index
4573 ? !item->per_cu->v.quick->symtab
4574 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4575 process_full_comp_unit (item->per_cu);
4576
4577 item->per_cu->queued = 0;
4578 next_item = item->next;
4579 xfree (item);
4580 }
4581
4582 dwarf2_queue_tail = NULL;
4583 }
4584
4585 /* Free all allocated queue entries. This function only releases anything if
4586 an error was thrown; if the queue was processed then it would have been
4587 freed as we went along. */
4588
4589 static void
4590 dwarf2_release_queue (void *dummy)
4591 {
4592 struct dwarf2_queue_item *item, *last;
4593
4594 item = dwarf2_queue;
4595 while (item)
4596 {
4597 /* Anything still marked queued is likely to be in an
4598 inconsistent state, so discard it. */
4599 if (item->per_cu->queued)
4600 {
4601 if (item->per_cu->cu != NULL)
4602 free_one_cached_comp_unit (item->per_cu->cu);
4603 item->per_cu->queued = 0;
4604 }
4605
4606 last = item;
4607 item = item->next;
4608 xfree (last);
4609 }
4610
4611 dwarf2_queue = dwarf2_queue_tail = NULL;
4612 }
4613
4614 /* Read in full symbols for PST, and anything it depends on. */
4615
4616 static void
4617 psymtab_to_symtab_1 (struct partial_symtab *pst)
4618 {
4619 struct dwarf2_per_cu_data *per_cu;
4620 struct cleanup *back_to;
4621 int i;
4622
4623 for (i = 0; i < pst->number_of_dependencies; i++)
4624 if (!pst->dependencies[i]->readin)
4625 {
4626 /* Inform about additional files that need to be read in. */
4627 if (info_verbose)
4628 {
4629 /* FIXME: i18n: Need to make this a single string. */
4630 fputs_filtered (" ", gdb_stdout);
4631 wrap_here ("");
4632 fputs_filtered ("and ", gdb_stdout);
4633 wrap_here ("");
4634 printf_filtered ("%s...", pst->dependencies[i]->filename);
4635 wrap_here (""); /* Flush output. */
4636 gdb_flush (gdb_stdout);
4637 }
4638 psymtab_to_symtab_1 (pst->dependencies[i]);
4639 }
4640
4641 per_cu = pst->read_symtab_private;
4642
4643 if (per_cu == NULL)
4644 {
4645 /* It's an include file, no symbols to read for it.
4646 Everything is in the parent symtab. */
4647 pst->readin = 1;
4648 return;
4649 }
4650
4651 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4652 }
4653
4654 /* Load the DIEs associated with PER_CU into memory. */
4655
4656 static void
4657 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4658 struct objfile *objfile)
4659 {
4660 bfd *abfd = objfile->obfd;
4661 struct dwarf2_cu *cu;
4662 unsigned int offset;
4663 gdb_byte *info_ptr, *beg_of_comp_unit;
4664 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4665 struct attribute *attr;
4666 int read_cu = 0;
4667
4668 gdb_assert (! per_cu->debug_type_section);
4669
4670 /* Set local variables from the partial symbol table info. */
4671 offset = per_cu->offset;
4672
4673 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4674 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4675 beg_of_comp_unit = info_ptr;
4676
4677 if (per_cu->cu == NULL)
4678 {
4679 cu = xmalloc (sizeof (*cu));
4680 init_one_comp_unit (cu, objfile);
4681
4682 read_cu = 1;
4683
4684 /* If an error occurs while loading, release our storage. */
4685 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4686
4687 /* Read in the comp_unit header. */
4688 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4689
4690 /* Skip dummy compilation units. */
4691 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4692 + dwarf2_per_objfile->info.size)
4693 || peek_abbrev_code (abfd, info_ptr) == 0)
4694 {
4695 do_cleanups (free_cu_cleanup);
4696 return;
4697 }
4698
4699 /* Complete the cu_header. */
4700 cu->header.offset = offset;
4701 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4702
4703 /* Read the abbrevs for this compilation unit. */
4704 dwarf2_read_abbrevs (abfd, cu);
4705 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4706
4707 /* Link this compilation unit into the compilation unit tree. */
4708 per_cu->cu = cu;
4709 cu->per_cu = per_cu;
4710
4711 /* Link this CU into read_in_chain. */
4712 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4713 dwarf2_per_objfile->read_in_chain = per_cu;
4714 }
4715 else
4716 {
4717 cu = per_cu->cu;
4718 info_ptr += cu->header.first_die_offset;
4719 }
4720
4721 cu->dies = read_comp_unit (info_ptr, cu);
4722
4723 /* We try not to read any attributes in this function, because not
4724 all objfiles needed for references have been loaded yet, and symbol
4725 table processing isn't initialized. But we have to set the CU language,
4726 or we won't be able to build types correctly. */
4727 prepare_one_comp_unit (cu, cu->dies);
4728
4729 /* Similarly, if we do not read the producer, we can not apply
4730 producer-specific interpretation. */
4731 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4732 if (attr)
4733 cu->producer = DW_STRING (attr);
4734
4735 if (read_cu)
4736 {
4737 do_cleanups (free_abbrevs_cleanup);
4738
4739 /* We've successfully allocated this compilation unit. Let our
4740 caller clean it up when finished with it. */
4741 discard_cleanups (free_cu_cleanup);
4742 }
4743 }
4744
4745 /* Add a DIE to the delayed physname list. */
4746
4747 static void
4748 add_to_method_list (struct type *type, int fnfield_index, int index,
4749 const char *name, struct die_info *die,
4750 struct dwarf2_cu *cu)
4751 {
4752 struct delayed_method_info mi;
4753 mi.type = type;
4754 mi.fnfield_index = fnfield_index;
4755 mi.index = index;
4756 mi.name = name;
4757 mi.die = die;
4758 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4759 }
4760
4761 /* A cleanup for freeing the delayed method list. */
4762
4763 static void
4764 free_delayed_list (void *ptr)
4765 {
4766 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4767 if (cu->method_list != NULL)
4768 {
4769 VEC_free (delayed_method_info, cu->method_list);
4770 cu->method_list = NULL;
4771 }
4772 }
4773
4774 /* Compute the physnames of any methods on the CU's method list.
4775
4776 The computation of method physnames is delayed in order to avoid the
4777 (bad) condition that one of the method's formal parameters is of an as yet
4778 incomplete type. */
4779
4780 static void
4781 compute_delayed_physnames (struct dwarf2_cu *cu)
4782 {
4783 int i;
4784 struct delayed_method_info *mi;
4785 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4786 {
4787 const char *physname;
4788 struct fn_fieldlist *fn_flp
4789 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4790 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4791 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4792 }
4793 }
4794
4795 /* Generate full symbol information for PST and CU, whose DIEs have
4796 already been loaded into memory. */
4797
4798 static void
4799 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4800 {
4801 struct dwarf2_cu *cu = per_cu->cu;
4802 struct objfile *objfile = per_cu->objfile;
4803 CORE_ADDR lowpc, highpc;
4804 struct symtab *symtab;
4805 struct cleanup *back_to, *delayed_list_cleanup;
4806 CORE_ADDR baseaddr;
4807
4808 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4809
4810 buildsym_init ();
4811 back_to = make_cleanup (really_free_pendings, NULL);
4812 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4813
4814 cu->list_in_scope = &file_symbols;
4815
4816 /* Do line number decoding in read_file_scope () */
4817 process_die (cu->dies, cu);
4818
4819 /* Now that we have processed all the DIEs in the CU, all the types
4820 should be complete, and it should now be safe to compute all of the
4821 physnames. */
4822 compute_delayed_physnames (cu);
4823 do_cleanups (delayed_list_cleanup);
4824
4825 /* Some compilers don't define a DW_AT_high_pc attribute for the
4826 compilation unit. If the DW_AT_high_pc is missing, synthesize
4827 it, by scanning the DIE's below the compilation unit. */
4828 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4829
4830 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4831
4832 if (symtab != NULL)
4833 {
4834 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4835
4836 /* Set symtab language to language from DW_AT_language. If the
4837 compilation is from a C file generated by language preprocessors, do
4838 not set the language if it was already deduced by start_subfile. */
4839 if (!(cu->language == language_c && symtab->language != language_c))
4840 symtab->language = cu->language;
4841
4842 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4843 produce DW_AT_location with location lists but it can be possibly
4844 invalid without -fvar-tracking.
4845
4846 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4847 needed, it would be wrong due to missing DW_AT_producer there.
4848
4849 Still one can confuse GDB by using non-standard GCC compilation
4850 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4851 */
4852 if (cu->has_loclist && gcc_4_minor >= 0)
4853 symtab->locations_valid = 1;
4854
4855 if (gcc_4_minor >= 5)
4856 symtab->epilogue_unwind_valid = 1;
4857
4858 symtab->call_site_htab = cu->call_site_htab;
4859 }
4860
4861 if (dwarf2_per_objfile->using_index)
4862 per_cu->v.quick->symtab = symtab;
4863 else
4864 {
4865 struct partial_symtab *pst = per_cu->v.psymtab;
4866 pst->symtab = symtab;
4867 pst->readin = 1;
4868 }
4869
4870 do_cleanups (back_to);
4871 }
4872
4873 /* Process a die and its children. */
4874
4875 static void
4876 process_die (struct die_info *die, struct dwarf2_cu *cu)
4877 {
4878 switch (die->tag)
4879 {
4880 case DW_TAG_padding:
4881 break;
4882 case DW_TAG_compile_unit:
4883 read_file_scope (die, cu);
4884 break;
4885 case DW_TAG_type_unit:
4886 read_type_unit_scope (die, cu);
4887 break;
4888 case DW_TAG_subprogram:
4889 case DW_TAG_inlined_subroutine:
4890 read_func_scope (die, cu);
4891 break;
4892 case DW_TAG_lexical_block:
4893 case DW_TAG_try_block:
4894 case DW_TAG_catch_block:
4895 read_lexical_block_scope (die, cu);
4896 break;
4897 case DW_TAG_GNU_call_site:
4898 read_call_site_scope (die, cu);
4899 break;
4900 case DW_TAG_class_type:
4901 case DW_TAG_interface_type:
4902 case DW_TAG_structure_type:
4903 case DW_TAG_union_type:
4904 process_structure_scope (die, cu);
4905 break;
4906 case DW_TAG_enumeration_type:
4907 process_enumeration_scope (die, cu);
4908 break;
4909
4910 /* These dies have a type, but processing them does not create
4911 a symbol or recurse to process the children. Therefore we can
4912 read them on-demand through read_type_die. */
4913 case DW_TAG_subroutine_type:
4914 case DW_TAG_set_type:
4915 case DW_TAG_array_type:
4916 case DW_TAG_pointer_type:
4917 case DW_TAG_ptr_to_member_type:
4918 case DW_TAG_reference_type:
4919 case DW_TAG_string_type:
4920 break;
4921
4922 case DW_TAG_base_type:
4923 case DW_TAG_subrange_type:
4924 case DW_TAG_typedef:
4925 /* Add a typedef symbol for the type definition, if it has a
4926 DW_AT_name. */
4927 new_symbol (die, read_type_die (die, cu), cu);
4928 break;
4929 case DW_TAG_common_block:
4930 read_common_block (die, cu);
4931 break;
4932 case DW_TAG_common_inclusion:
4933 break;
4934 case DW_TAG_namespace:
4935 processing_has_namespace_info = 1;
4936 read_namespace (die, cu);
4937 break;
4938 case DW_TAG_module:
4939 processing_has_namespace_info = 1;
4940 read_module (die, cu);
4941 break;
4942 case DW_TAG_imported_declaration:
4943 case DW_TAG_imported_module:
4944 processing_has_namespace_info = 1;
4945 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4946 || cu->language != language_fortran))
4947 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4948 dwarf_tag_name (die->tag));
4949 read_import_statement (die, cu);
4950 break;
4951 default:
4952 new_symbol (die, NULL, cu);
4953 break;
4954 }
4955 }
4956
4957 /* A helper function for dwarf2_compute_name which determines whether DIE
4958 needs to have the name of the scope prepended to the name listed in the
4959 die. */
4960
4961 static int
4962 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4963 {
4964 struct attribute *attr;
4965
4966 switch (die->tag)
4967 {
4968 case DW_TAG_namespace:
4969 case DW_TAG_typedef:
4970 case DW_TAG_class_type:
4971 case DW_TAG_interface_type:
4972 case DW_TAG_structure_type:
4973 case DW_TAG_union_type:
4974 case DW_TAG_enumeration_type:
4975 case DW_TAG_enumerator:
4976 case DW_TAG_subprogram:
4977 case DW_TAG_member:
4978 return 1;
4979
4980 case DW_TAG_variable:
4981 case DW_TAG_constant:
4982 /* We only need to prefix "globally" visible variables. These include
4983 any variable marked with DW_AT_external or any variable that
4984 lives in a namespace. [Variables in anonymous namespaces
4985 require prefixing, but they are not DW_AT_external.] */
4986
4987 if (dwarf2_attr (die, DW_AT_specification, cu))
4988 {
4989 struct dwarf2_cu *spec_cu = cu;
4990
4991 return die_needs_namespace (die_specification (die, &spec_cu),
4992 spec_cu);
4993 }
4994
4995 attr = dwarf2_attr (die, DW_AT_external, cu);
4996 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4997 && die->parent->tag != DW_TAG_module)
4998 return 0;
4999 /* A variable in a lexical block of some kind does not need a
5000 namespace, even though in C++ such variables may be external
5001 and have a mangled name. */
5002 if (die->parent->tag == DW_TAG_lexical_block
5003 || die->parent->tag == DW_TAG_try_block
5004 || die->parent->tag == DW_TAG_catch_block
5005 || die->parent->tag == DW_TAG_subprogram)
5006 return 0;
5007 return 1;
5008
5009 default:
5010 return 0;
5011 }
5012 }
5013
5014 /* Retrieve the last character from a mem_file. */
5015
5016 static void
5017 do_ui_file_peek_last (void *object, const char *buffer, long length)
5018 {
5019 char *last_char_p = (char *) object;
5020
5021 if (length > 0)
5022 *last_char_p = buffer[length - 1];
5023 }
5024
5025 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5026 compute the physname for the object, which include a method's
5027 formal parameters (C++/Java) and return type (Java).
5028
5029 For Ada, return the DIE's linkage name rather than the fully qualified
5030 name. PHYSNAME is ignored..
5031
5032 The result is allocated on the objfile_obstack and canonicalized. */
5033
5034 static const char *
5035 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5036 int physname)
5037 {
5038 if (name == NULL)
5039 name = dwarf2_name (die, cu);
5040
5041 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5042 compute it by typename_concat inside GDB. */
5043 if (cu->language == language_ada
5044 || (cu->language == language_fortran && physname))
5045 {
5046 /* For Ada unit, we prefer the linkage name over the name, as
5047 the former contains the exported name, which the user expects
5048 to be able to reference. Ideally, we want the user to be able
5049 to reference this entity using either natural or linkage name,
5050 but we haven't started looking at this enhancement yet. */
5051 struct attribute *attr;
5052
5053 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5054 if (attr == NULL)
5055 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5056 if (attr && DW_STRING (attr))
5057 return DW_STRING (attr);
5058 }
5059
5060 /* These are the only languages we know how to qualify names in. */
5061 if (name != NULL
5062 && (cu->language == language_cplus || cu->language == language_java
5063 || cu->language == language_fortran))
5064 {
5065 if (die_needs_namespace (die, cu))
5066 {
5067 long length;
5068 char *prefix;
5069 struct ui_file *buf;
5070
5071 prefix = determine_prefix (die, cu);
5072 buf = mem_fileopen ();
5073 if (*prefix != '\0')
5074 {
5075 char *prefixed_name = typename_concat (NULL, prefix, name,
5076 physname, cu);
5077
5078 fputs_unfiltered (prefixed_name, buf);
5079 xfree (prefixed_name);
5080 }
5081 else
5082 fputs_unfiltered (name, buf);
5083
5084 /* Template parameters may be specified in the DIE's DW_AT_name, or
5085 as children with DW_TAG_template_type_param or
5086 DW_TAG_value_type_param. If the latter, add them to the name
5087 here. If the name already has template parameters, then
5088 skip this step; some versions of GCC emit both, and
5089 it is more efficient to use the pre-computed name.
5090
5091 Something to keep in mind about this process: it is very
5092 unlikely, or in some cases downright impossible, to produce
5093 something that will match the mangled name of a function.
5094 If the definition of the function has the same debug info,
5095 we should be able to match up with it anyway. But fallbacks
5096 using the minimal symbol, for instance to find a method
5097 implemented in a stripped copy of libstdc++, will not work.
5098 If we do not have debug info for the definition, we will have to
5099 match them up some other way.
5100
5101 When we do name matching there is a related problem with function
5102 templates; two instantiated function templates are allowed to
5103 differ only by their return types, which we do not add here. */
5104
5105 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5106 {
5107 struct attribute *attr;
5108 struct die_info *child;
5109 int first = 1;
5110
5111 die->building_fullname = 1;
5112
5113 for (child = die->child; child != NULL; child = child->sibling)
5114 {
5115 struct type *type;
5116 long value;
5117 gdb_byte *bytes;
5118 struct dwarf2_locexpr_baton *baton;
5119 struct value *v;
5120
5121 if (child->tag != DW_TAG_template_type_param
5122 && child->tag != DW_TAG_template_value_param)
5123 continue;
5124
5125 if (first)
5126 {
5127 fputs_unfiltered ("<", buf);
5128 first = 0;
5129 }
5130 else
5131 fputs_unfiltered (", ", buf);
5132
5133 attr = dwarf2_attr (child, DW_AT_type, cu);
5134 if (attr == NULL)
5135 {
5136 complaint (&symfile_complaints,
5137 _("template parameter missing DW_AT_type"));
5138 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5139 continue;
5140 }
5141 type = die_type (child, cu);
5142
5143 if (child->tag == DW_TAG_template_type_param)
5144 {
5145 c_print_type (type, "", buf, -1, 0);
5146 continue;
5147 }
5148
5149 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5150 if (attr == NULL)
5151 {
5152 complaint (&symfile_complaints,
5153 _("template parameter missing "
5154 "DW_AT_const_value"));
5155 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5156 continue;
5157 }
5158
5159 dwarf2_const_value_attr (attr, type, name,
5160 &cu->comp_unit_obstack, cu,
5161 &value, &bytes, &baton);
5162
5163 if (TYPE_NOSIGN (type))
5164 /* GDB prints characters as NUMBER 'CHAR'. If that's
5165 changed, this can use value_print instead. */
5166 c_printchar (value, type, buf);
5167 else
5168 {
5169 struct value_print_options opts;
5170
5171 if (baton != NULL)
5172 v = dwarf2_evaluate_loc_desc (type, NULL,
5173 baton->data,
5174 baton->size,
5175 baton->per_cu);
5176 else if (bytes != NULL)
5177 {
5178 v = allocate_value (type);
5179 memcpy (value_contents_writeable (v), bytes,
5180 TYPE_LENGTH (type));
5181 }
5182 else
5183 v = value_from_longest (type, value);
5184
5185 /* Specify decimal so that we do not depend on
5186 the radix. */
5187 get_formatted_print_options (&opts, 'd');
5188 opts.raw = 1;
5189 value_print (v, buf, &opts);
5190 release_value (v);
5191 value_free (v);
5192 }
5193 }
5194
5195 die->building_fullname = 0;
5196
5197 if (!first)
5198 {
5199 /* Close the argument list, with a space if necessary
5200 (nested templates). */
5201 char last_char = '\0';
5202 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5203 if (last_char == '>')
5204 fputs_unfiltered (" >", buf);
5205 else
5206 fputs_unfiltered (">", buf);
5207 }
5208 }
5209
5210 /* For Java and C++ methods, append formal parameter type
5211 information, if PHYSNAME. */
5212
5213 if (physname && die->tag == DW_TAG_subprogram
5214 && (cu->language == language_cplus
5215 || cu->language == language_java))
5216 {
5217 struct type *type = read_type_die (die, cu);
5218
5219 c_type_print_args (type, buf, 1, cu->language);
5220
5221 if (cu->language == language_java)
5222 {
5223 /* For java, we must append the return type to method
5224 names. */
5225 if (die->tag == DW_TAG_subprogram)
5226 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5227 0, 0);
5228 }
5229 else if (cu->language == language_cplus)
5230 {
5231 /* Assume that an artificial first parameter is
5232 "this", but do not crash if it is not. RealView
5233 marks unnamed (and thus unused) parameters as
5234 artificial; there is no way to differentiate
5235 the two cases. */
5236 if (TYPE_NFIELDS (type) > 0
5237 && TYPE_FIELD_ARTIFICIAL (type, 0)
5238 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5239 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5240 0))))
5241 fputs_unfiltered (" const", buf);
5242 }
5243 }
5244
5245 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5246 &length);
5247 ui_file_delete (buf);
5248
5249 if (cu->language == language_cplus)
5250 {
5251 char *cname
5252 = dwarf2_canonicalize_name (name, cu,
5253 &cu->objfile->objfile_obstack);
5254
5255 if (cname != NULL)
5256 name = cname;
5257 }
5258 }
5259 }
5260
5261 return name;
5262 }
5263
5264 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5265 If scope qualifiers are appropriate they will be added. The result
5266 will be allocated on the objfile_obstack, or NULL if the DIE does
5267 not have a name. NAME may either be from a previous call to
5268 dwarf2_name or NULL.
5269
5270 The output string will be canonicalized (if C++/Java). */
5271
5272 static const char *
5273 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5274 {
5275 return dwarf2_compute_name (name, die, cu, 0);
5276 }
5277
5278 /* Construct a physname for the given DIE in CU. NAME may either be
5279 from a previous call to dwarf2_name or NULL. The result will be
5280 allocated on the objfile_objstack or NULL if the DIE does not have a
5281 name.
5282
5283 The output string will be canonicalized (if C++/Java). */
5284
5285 static const char *
5286 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5287 {
5288 struct attribute *attr;
5289 const char *retval, *mangled = NULL, *canon = NULL;
5290 struct cleanup *back_to;
5291 int need_copy = 1;
5292
5293 /* In this case dwarf2_compute_name is just a shortcut not building anything
5294 on its own. */
5295 if (!die_needs_namespace (die, cu))
5296 return dwarf2_compute_name (name, die, cu, 1);
5297
5298 back_to = make_cleanup (null_cleanup, NULL);
5299
5300 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5301 if (!attr)
5302 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5303
5304 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5305 has computed. */
5306 if (attr && DW_STRING (attr))
5307 {
5308 char *demangled;
5309
5310 mangled = DW_STRING (attr);
5311
5312 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5313 type. It is easier for GDB users to search for such functions as
5314 `name(params)' than `long name(params)'. In such case the minimal
5315 symbol names do not match the full symbol names but for template
5316 functions there is never a need to look up their definition from their
5317 declaration so the only disadvantage remains the minimal symbol
5318 variant `long name(params)' does not have the proper inferior type.
5319 */
5320
5321 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5322 | (cu->language == language_java
5323 ? DMGL_JAVA | DMGL_RET_POSTFIX
5324 : DMGL_RET_DROP)));
5325 if (demangled)
5326 {
5327 make_cleanup (xfree, demangled);
5328 canon = demangled;
5329 }
5330 else
5331 {
5332 canon = mangled;
5333 need_copy = 0;
5334 }
5335 }
5336
5337 if (canon == NULL || check_physname)
5338 {
5339 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5340
5341 if (canon != NULL && strcmp (physname, canon) != 0)
5342 {
5343 /* It may not mean a bug in GDB. The compiler could also
5344 compute DW_AT_linkage_name incorrectly. But in such case
5345 GDB would need to be bug-to-bug compatible. */
5346
5347 complaint (&symfile_complaints,
5348 _("Computed physname <%s> does not match demangled <%s> "
5349 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5350 physname, canon, mangled, die->offset, cu->objfile->name);
5351
5352 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5353 is available here - over computed PHYSNAME. It is safer
5354 against both buggy GDB and buggy compilers. */
5355
5356 retval = canon;
5357 }
5358 else
5359 {
5360 retval = physname;
5361 need_copy = 0;
5362 }
5363 }
5364 else
5365 retval = canon;
5366
5367 if (need_copy)
5368 retval = obsavestring (retval, strlen (retval),
5369 &cu->objfile->objfile_obstack);
5370
5371 do_cleanups (back_to);
5372 return retval;
5373 }
5374
5375 /* Read the import statement specified by the given die and record it. */
5376
5377 static void
5378 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5379 {
5380 struct attribute *import_attr;
5381 struct die_info *imported_die, *child_die;
5382 struct dwarf2_cu *imported_cu;
5383 const char *imported_name;
5384 const char *imported_name_prefix;
5385 const char *canonical_name;
5386 const char *import_alias;
5387 const char *imported_declaration = NULL;
5388 const char *import_prefix;
5389 VEC (const_char_ptr) *excludes = NULL;
5390 struct cleanup *cleanups;
5391
5392 char *temp;
5393
5394 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5395 if (import_attr == NULL)
5396 {
5397 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5398 dwarf_tag_name (die->tag));
5399 return;
5400 }
5401
5402 imported_cu = cu;
5403 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5404 imported_name = dwarf2_name (imported_die, imported_cu);
5405 if (imported_name == NULL)
5406 {
5407 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5408
5409 The import in the following code:
5410 namespace A
5411 {
5412 typedef int B;
5413 }
5414
5415 int main ()
5416 {
5417 using A::B;
5418 B b;
5419 return b;
5420 }
5421
5422 ...
5423 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5424 <52> DW_AT_decl_file : 1
5425 <53> DW_AT_decl_line : 6
5426 <54> DW_AT_import : <0x75>
5427 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5428 <59> DW_AT_name : B
5429 <5b> DW_AT_decl_file : 1
5430 <5c> DW_AT_decl_line : 2
5431 <5d> DW_AT_type : <0x6e>
5432 ...
5433 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5434 <76> DW_AT_byte_size : 4
5435 <77> DW_AT_encoding : 5 (signed)
5436
5437 imports the wrong die ( 0x75 instead of 0x58 ).
5438 This case will be ignored until the gcc bug is fixed. */
5439 return;
5440 }
5441
5442 /* Figure out the local name after import. */
5443 import_alias = dwarf2_name (die, cu);
5444
5445 /* Figure out where the statement is being imported to. */
5446 import_prefix = determine_prefix (die, cu);
5447
5448 /* Figure out what the scope of the imported die is and prepend it
5449 to the name of the imported die. */
5450 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5451
5452 if (imported_die->tag != DW_TAG_namespace
5453 && imported_die->tag != DW_TAG_module)
5454 {
5455 imported_declaration = imported_name;
5456 canonical_name = imported_name_prefix;
5457 }
5458 else if (strlen (imported_name_prefix) > 0)
5459 {
5460 temp = alloca (strlen (imported_name_prefix)
5461 + 2 + strlen (imported_name) + 1);
5462 strcpy (temp, imported_name_prefix);
5463 strcat (temp, "::");
5464 strcat (temp, imported_name);
5465 canonical_name = temp;
5466 }
5467 else
5468 canonical_name = imported_name;
5469
5470 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5471
5472 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5473 for (child_die = die->child; child_die && child_die->tag;
5474 child_die = sibling_die (child_die))
5475 {
5476 /* DWARF-4: A Fortran use statement with a “rename list” may be
5477 represented by an imported module entry with an import attribute
5478 referring to the module and owned entries corresponding to those
5479 entities that are renamed as part of being imported. */
5480
5481 if (child_die->tag != DW_TAG_imported_declaration)
5482 {
5483 complaint (&symfile_complaints,
5484 _("child DW_TAG_imported_declaration expected "
5485 "- DIE at 0x%x [in module %s]"),
5486 child_die->offset, cu->objfile->name);
5487 continue;
5488 }
5489
5490 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5491 if (import_attr == NULL)
5492 {
5493 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5494 dwarf_tag_name (child_die->tag));
5495 continue;
5496 }
5497
5498 imported_cu = cu;
5499 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5500 &imported_cu);
5501 imported_name = dwarf2_name (imported_die, imported_cu);
5502 if (imported_name == NULL)
5503 {
5504 complaint (&symfile_complaints,
5505 _("child DW_TAG_imported_declaration has unknown "
5506 "imported name - DIE at 0x%x [in module %s]"),
5507 child_die->offset, cu->objfile->name);
5508 continue;
5509 }
5510
5511 VEC_safe_push (const_char_ptr, excludes, imported_name);
5512
5513 process_die (child_die, cu);
5514 }
5515
5516 cp_add_using_directive (import_prefix,
5517 canonical_name,
5518 import_alias,
5519 imported_declaration,
5520 excludes,
5521 &cu->objfile->objfile_obstack);
5522
5523 do_cleanups (cleanups);
5524 }
5525
5526 static void
5527 initialize_cu_func_list (struct dwarf2_cu *cu)
5528 {
5529 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5530 }
5531
5532 /* Cleanup function for read_file_scope. */
5533
5534 static void
5535 free_cu_line_header (void *arg)
5536 {
5537 struct dwarf2_cu *cu = arg;
5538
5539 free_line_header (cu->line_header);
5540 cu->line_header = NULL;
5541 }
5542
5543 static void
5544 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5545 char **name, char **comp_dir)
5546 {
5547 struct attribute *attr;
5548
5549 *name = NULL;
5550 *comp_dir = NULL;
5551
5552 /* Find the filename. Do not use dwarf2_name here, since the filename
5553 is not a source language identifier. */
5554 attr = dwarf2_attr (die, DW_AT_name, cu);
5555 if (attr)
5556 {
5557 *name = DW_STRING (attr);
5558 }
5559
5560 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5561 if (attr)
5562 *comp_dir = DW_STRING (attr);
5563 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5564 {
5565 *comp_dir = ldirname (*name);
5566 if (*comp_dir != NULL)
5567 make_cleanup (xfree, *comp_dir);
5568 }
5569 if (*comp_dir != NULL)
5570 {
5571 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5572 directory, get rid of it. */
5573 char *cp = strchr (*comp_dir, ':');
5574
5575 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5576 *comp_dir = cp + 1;
5577 }
5578
5579 if (*name == NULL)
5580 *name = "<unknown>";
5581 }
5582
5583 /* Handle DW_AT_stmt_list for a compilation unit. */
5584
5585 static void
5586 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5587 const char *comp_dir)
5588 {
5589 struct attribute *attr;
5590 struct objfile *objfile = cu->objfile;
5591 bfd *abfd = objfile->obfd;
5592
5593 /* Decode line number information if present. We do this before
5594 processing child DIEs, so that the line header table is available
5595 for DW_AT_decl_file. */
5596 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5597 if (attr)
5598 {
5599 unsigned int line_offset = DW_UNSND (attr);
5600 struct line_header *line_header
5601 = dwarf_decode_line_header (line_offset, abfd, cu);
5602
5603 if (line_header)
5604 {
5605 cu->line_header = line_header;
5606 make_cleanup (free_cu_line_header, cu);
5607 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5608 }
5609 }
5610 }
5611
5612 /* Process DW_TAG_compile_unit. */
5613
5614 static void
5615 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5616 {
5617 struct objfile *objfile = cu->objfile;
5618 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5619 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5620 CORE_ADDR highpc = ((CORE_ADDR) 0);
5621 struct attribute *attr;
5622 char *name = NULL;
5623 char *comp_dir = NULL;
5624 struct die_info *child_die;
5625 bfd *abfd = objfile->obfd;
5626 CORE_ADDR baseaddr;
5627
5628 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5629
5630 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5631
5632 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5633 from finish_block. */
5634 if (lowpc == ((CORE_ADDR) -1))
5635 lowpc = highpc;
5636 lowpc += baseaddr;
5637 highpc += baseaddr;
5638
5639 find_file_and_directory (die, cu, &name, &comp_dir);
5640
5641 attr = dwarf2_attr (die, DW_AT_language, cu);
5642 if (attr)
5643 {
5644 set_cu_language (DW_UNSND (attr), cu);
5645 }
5646
5647 attr = dwarf2_attr (die, DW_AT_producer, cu);
5648 if (attr)
5649 cu->producer = DW_STRING (attr);
5650
5651 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5652 standardised yet. As a workaround for the language detection we fall
5653 back to the DW_AT_producer string. */
5654 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5655 cu->language = language_opencl;
5656
5657 /* We assume that we're processing GCC output. */
5658 processing_gcc_compilation = 2;
5659
5660 processing_has_namespace_info = 0;
5661
5662 start_symtab (name, comp_dir, lowpc);
5663 record_debugformat ("DWARF 2");
5664 record_producer (cu->producer);
5665
5666 initialize_cu_func_list (cu);
5667
5668 handle_DW_AT_stmt_list (die, cu, comp_dir);
5669
5670 /* Process all dies in compilation unit. */
5671 if (die->child != NULL)
5672 {
5673 child_die = die->child;
5674 while (child_die && child_die->tag)
5675 {
5676 process_die (child_die, cu);
5677 child_die = sibling_die (child_die);
5678 }
5679 }
5680
5681 /* Decode macro information, if present. Dwarf 2 macro information
5682 refers to information in the line number info statement program
5683 header, so we can only read it if we've read the header
5684 successfully. */
5685 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5686 if (attr && cu->line_header)
5687 {
5688 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5689 complaint (&symfile_complaints,
5690 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5691
5692 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5693 comp_dir, abfd, cu,
5694 &dwarf2_per_objfile->macro, 1);
5695 }
5696 else
5697 {
5698 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5699 if (attr && cu->line_header)
5700 {
5701 unsigned int macro_offset = DW_UNSND (attr);
5702
5703 dwarf_decode_macros (cu->line_header, macro_offset,
5704 comp_dir, abfd, cu,
5705 &dwarf2_per_objfile->macinfo, 0);
5706 }
5707 }
5708 do_cleanups (back_to);
5709 }
5710
5711 /* Process DW_TAG_type_unit.
5712 For TUs we want to skip the first top level sibling if it's not the
5713 actual type being defined by this TU. In this case the first top
5714 level sibling is there to provide context only. */
5715
5716 static void
5717 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5718 {
5719 struct objfile *objfile = cu->objfile;
5720 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5721 CORE_ADDR lowpc;
5722 struct attribute *attr;
5723 char *name = NULL;
5724 char *comp_dir = NULL;
5725 struct die_info *child_die;
5726 bfd *abfd = objfile->obfd;
5727
5728 /* start_symtab needs a low pc, but we don't really have one.
5729 Do what read_file_scope would do in the absence of such info. */
5730 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5731
5732 /* Find the filename. Do not use dwarf2_name here, since the filename
5733 is not a source language identifier. */
5734 attr = dwarf2_attr (die, DW_AT_name, cu);
5735 if (attr)
5736 name = DW_STRING (attr);
5737
5738 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5739 if (attr)
5740 comp_dir = DW_STRING (attr);
5741 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5742 {
5743 comp_dir = ldirname (name);
5744 if (comp_dir != NULL)
5745 make_cleanup (xfree, comp_dir);
5746 }
5747
5748 if (name == NULL)
5749 name = "<unknown>";
5750
5751 attr = dwarf2_attr (die, DW_AT_language, cu);
5752 if (attr)
5753 set_cu_language (DW_UNSND (attr), cu);
5754
5755 /* This isn't technically needed today. It is done for symmetry
5756 with read_file_scope. */
5757 attr = dwarf2_attr (die, DW_AT_producer, cu);
5758 if (attr)
5759 cu->producer = DW_STRING (attr);
5760
5761 /* We assume that we're processing GCC output. */
5762 processing_gcc_compilation = 2;
5763
5764 processing_has_namespace_info = 0;
5765
5766 start_symtab (name, comp_dir, lowpc);
5767 record_debugformat ("DWARF 2");
5768 record_producer (cu->producer);
5769
5770 handle_DW_AT_stmt_list (die, cu, comp_dir);
5771
5772 /* Process the dies in the type unit. */
5773 if (die->child == NULL)
5774 {
5775 dump_die_for_error (die);
5776 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5777 bfd_get_filename (abfd));
5778 }
5779
5780 child_die = die->child;
5781
5782 while (child_die && child_die->tag)
5783 {
5784 process_die (child_die, cu);
5785
5786 child_die = sibling_die (child_die);
5787 }
5788
5789 do_cleanups (back_to);
5790 }
5791
5792 static void
5793 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5794 struct dwarf2_cu *cu)
5795 {
5796 struct function_range *thisfn;
5797
5798 thisfn = (struct function_range *)
5799 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5800 thisfn->name = name;
5801 thisfn->lowpc = lowpc;
5802 thisfn->highpc = highpc;
5803 thisfn->seen_line = 0;
5804 thisfn->next = NULL;
5805
5806 if (cu->last_fn == NULL)
5807 cu->first_fn = thisfn;
5808 else
5809 cu->last_fn->next = thisfn;
5810
5811 cu->last_fn = thisfn;
5812 }
5813
5814 /* qsort helper for inherit_abstract_dies. */
5815
5816 static int
5817 unsigned_int_compar (const void *ap, const void *bp)
5818 {
5819 unsigned int a = *(unsigned int *) ap;
5820 unsigned int b = *(unsigned int *) bp;
5821
5822 return (a > b) - (b > a);
5823 }
5824
5825 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5826 Inherit only the children of the DW_AT_abstract_origin DIE not being
5827 already referenced by DW_AT_abstract_origin from the children of the
5828 current DIE. */
5829
5830 static void
5831 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5832 {
5833 struct die_info *child_die;
5834 unsigned die_children_count;
5835 /* CU offsets which were referenced by children of the current DIE. */
5836 unsigned *offsets;
5837 unsigned *offsets_end, *offsetp;
5838 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5839 struct die_info *origin_die;
5840 /* Iterator of the ORIGIN_DIE children. */
5841 struct die_info *origin_child_die;
5842 struct cleanup *cleanups;
5843 struct attribute *attr;
5844 struct dwarf2_cu *origin_cu;
5845 struct pending **origin_previous_list_in_scope;
5846
5847 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5848 if (!attr)
5849 return;
5850
5851 /* Note that following die references may follow to a die in a
5852 different cu. */
5853
5854 origin_cu = cu;
5855 origin_die = follow_die_ref (die, attr, &origin_cu);
5856
5857 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5858 symbols in. */
5859 origin_previous_list_in_scope = origin_cu->list_in_scope;
5860 origin_cu->list_in_scope = cu->list_in_scope;
5861
5862 if (die->tag != origin_die->tag
5863 && !(die->tag == DW_TAG_inlined_subroutine
5864 && origin_die->tag == DW_TAG_subprogram))
5865 complaint (&symfile_complaints,
5866 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5867 die->offset, origin_die->offset);
5868
5869 child_die = die->child;
5870 die_children_count = 0;
5871 while (child_die && child_die->tag)
5872 {
5873 child_die = sibling_die (child_die);
5874 die_children_count++;
5875 }
5876 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5877 cleanups = make_cleanup (xfree, offsets);
5878
5879 offsets_end = offsets;
5880 child_die = die->child;
5881 while (child_die && child_die->tag)
5882 {
5883 /* For each CHILD_DIE, find the corresponding child of
5884 ORIGIN_DIE. If there is more than one layer of
5885 DW_AT_abstract_origin, follow them all; there shouldn't be,
5886 but GCC versions at least through 4.4 generate this (GCC PR
5887 40573). */
5888 struct die_info *child_origin_die = child_die;
5889 struct dwarf2_cu *child_origin_cu = cu;
5890
5891 while (1)
5892 {
5893 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5894 child_origin_cu);
5895 if (attr == NULL)
5896 break;
5897 child_origin_die = follow_die_ref (child_origin_die, attr,
5898 &child_origin_cu);
5899 }
5900
5901 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5902 counterpart may exist. */
5903 if (child_origin_die != child_die)
5904 {
5905 if (child_die->tag != child_origin_die->tag
5906 && !(child_die->tag == DW_TAG_inlined_subroutine
5907 && child_origin_die->tag == DW_TAG_subprogram))
5908 complaint (&symfile_complaints,
5909 _("Child DIE 0x%x and its abstract origin 0x%x have "
5910 "different tags"), child_die->offset,
5911 child_origin_die->offset);
5912 if (child_origin_die->parent != origin_die)
5913 complaint (&symfile_complaints,
5914 _("Child DIE 0x%x and its abstract origin 0x%x have "
5915 "different parents"), child_die->offset,
5916 child_origin_die->offset);
5917 else
5918 *offsets_end++ = child_origin_die->offset;
5919 }
5920 child_die = sibling_die (child_die);
5921 }
5922 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5923 unsigned_int_compar);
5924 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5925 if (offsetp[-1] == *offsetp)
5926 complaint (&symfile_complaints,
5927 _("Multiple children of DIE 0x%x refer "
5928 "to DIE 0x%x as their abstract origin"),
5929 die->offset, *offsetp);
5930
5931 offsetp = offsets;
5932 origin_child_die = origin_die->child;
5933 while (origin_child_die && origin_child_die->tag)
5934 {
5935 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5936 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5937 offsetp++;
5938 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5939 {
5940 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5941 process_die (origin_child_die, origin_cu);
5942 }
5943 origin_child_die = sibling_die (origin_child_die);
5944 }
5945 origin_cu->list_in_scope = origin_previous_list_in_scope;
5946
5947 do_cleanups (cleanups);
5948 }
5949
5950 static void
5951 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5952 {
5953 struct objfile *objfile = cu->objfile;
5954 struct context_stack *new;
5955 CORE_ADDR lowpc;
5956 CORE_ADDR highpc;
5957 struct die_info *child_die;
5958 struct attribute *attr, *call_line, *call_file;
5959 char *name;
5960 CORE_ADDR baseaddr;
5961 struct block *block;
5962 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5963 VEC (symbolp) *template_args = NULL;
5964 struct template_symbol *templ_func = NULL;
5965
5966 if (inlined_func)
5967 {
5968 /* If we do not have call site information, we can't show the
5969 caller of this inlined function. That's too confusing, so
5970 only use the scope for local variables. */
5971 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5972 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5973 if (call_line == NULL || call_file == NULL)
5974 {
5975 read_lexical_block_scope (die, cu);
5976 return;
5977 }
5978 }
5979
5980 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5981
5982 name = dwarf2_name (die, cu);
5983
5984 /* Ignore functions with missing or empty names. These are actually
5985 illegal according to the DWARF standard. */
5986 if (name == NULL)
5987 {
5988 complaint (&symfile_complaints,
5989 _("missing name for subprogram DIE at %d"), die->offset);
5990 return;
5991 }
5992
5993 /* Ignore functions with missing or invalid low and high pc attributes. */
5994 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5995 {
5996 attr = dwarf2_attr (die, DW_AT_external, cu);
5997 if (!attr || !DW_UNSND (attr))
5998 complaint (&symfile_complaints,
5999 _("cannot get low and high bounds "
6000 "for subprogram DIE at %d"),
6001 die->offset);
6002 return;
6003 }
6004
6005 lowpc += baseaddr;
6006 highpc += baseaddr;
6007
6008 /* Record the function range for dwarf_decode_lines. */
6009 add_to_cu_func_list (name, lowpc, highpc, cu);
6010
6011 /* If we have any template arguments, then we must allocate a
6012 different sort of symbol. */
6013 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6014 {
6015 if (child_die->tag == DW_TAG_template_type_param
6016 || child_die->tag == DW_TAG_template_value_param)
6017 {
6018 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6019 struct template_symbol);
6020 templ_func->base.is_cplus_template_function = 1;
6021 break;
6022 }
6023 }
6024
6025 new = push_context (0, lowpc);
6026 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6027 (struct symbol *) templ_func);
6028
6029 /* If there is a location expression for DW_AT_frame_base, record
6030 it. */
6031 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6032 if (attr)
6033 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6034 expression is being recorded directly in the function's symbol
6035 and not in a separate frame-base object. I guess this hack is
6036 to avoid adding some sort of frame-base adjunct/annex to the
6037 function's symbol :-(. The problem with doing this is that it
6038 results in a function symbol with a location expression that
6039 has nothing to do with the location of the function, ouch! The
6040 relationship should be: a function's symbol has-a frame base; a
6041 frame-base has-a location expression. */
6042 dwarf2_symbol_mark_computed (attr, new->name, cu);
6043
6044 cu->list_in_scope = &local_symbols;
6045
6046 if (die->child != NULL)
6047 {
6048 child_die = die->child;
6049 while (child_die && child_die->tag)
6050 {
6051 if (child_die->tag == DW_TAG_template_type_param
6052 || child_die->tag == DW_TAG_template_value_param)
6053 {
6054 struct symbol *arg = new_symbol (child_die, NULL, cu);
6055
6056 if (arg != NULL)
6057 VEC_safe_push (symbolp, template_args, arg);
6058 }
6059 else
6060 process_die (child_die, cu);
6061 child_die = sibling_die (child_die);
6062 }
6063 }
6064
6065 inherit_abstract_dies (die, cu);
6066
6067 /* If we have a DW_AT_specification, we might need to import using
6068 directives from the context of the specification DIE. See the
6069 comment in determine_prefix. */
6070 if (cu->language == language_cplus
6071 && dwarf2_attr (die, DW_AT_specification, cu))
6072 {
6073 struct dwarf2_cu *spec_cu = cu;
6074 struct die_info *spec_die = die_specification (die, &spec_cu);
6075
6076 while (spec_die)
6077 {
6078 child_die = spec_die->child;
6079 while (child_die && child_die->tag)
6080 {
6081 if (child_die->tag == DW_TAG_imported_module)
6082 process_die (child_die, spec_cu);
6083 child_die = sibling_die (child_die);
6084 }
6085
6086 /* In some cases, GCC generates specification DIEs that
6087 themselves contain DW_AT_specification attributes. */
6088 spec_die = die_specification (spec_die, &spec_cu);
6089 }
6090 }
6091
6092 new = pop_context ();
6093 /* Make a block for the local symbols within. */
6094 block = finish_block (new->name, &local_symbols, new->old_blocks,
6095 lowpc, highpc, objfile);
6096
6097 /* For C++, set the block's scope. */
6098 if (cu->language == language_cplus || cu->language == language_fortran)
6099 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6100 determine_prefix (die, cu),
6101 processing_has_namespace_info);
6102
6103 /* If we have address ranges, record them. */
6104 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6105
6106 /* Attach template arguments to function. */
6107 if (! VEC_empty (symbolp, template_args))
6108 {
6109 gdb_assert (templ_func != NULL);
6110
6111 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6112 templ_func->template_arguments
6113 = obstack_alloc (&objfile->objfile_obstack,
6114 (templ_func->n_template_arguments
6115 * sizeof (struct symbol *)));
6116 memcpy (templ_func->template_arguments,
6117 VEC_address (symbolp, template_args),
6118 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6119 VEC_free (symbolp, template_args);
6120 }
6121
6122 /* In C++, we can have functions nested inside functions (e.g., when
6123 a function declares a class that has methods). This means that
6124 when we finish processing a function scope, we may need to go
6125 back to building a containing block's symbol lists. */
6126 local_symbols = new->locals;
6127 param_symbols = new->params;
6128 using_directives = new->using_directives;
6129
6130 /* If we've finished processing a top-level function, subsequent
6131 symbols go in the file symbol list. */
6132 if (outermost_context_p ())
6133 cu->list_in_scope = &file_symbols;
6134 }
6135
6136 /* Process all the DIES contained within a lexical block scope. Start
6137 a new scope, process the dies, and then close the scope. */
6138
6139 static void
6140 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6141 {
6142 struct objfile *objfile = cu->objfile;
6143 struct context_stack *new;
6144 CORE_ADDR lowpc, highpc;
6145 struct die_info *child_die;
6146 CORE_ADDR baseaddr;
6147
6148 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6149
6150 /* Ignore blocks with missing or invalid low and high pc attributes. */
6151 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6152 as multiple lexical blocks? Handling children in a sane way would
6153 be nasty. Might be easier to properly extend generic blocks to
6154 describe ranges. */
6155 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6156 return;
6157 lowpc += baseaddr;
6158 highpc += baseaddr;
6159
6160 push_context (0, lowpc);
6161 if (die->child != NULL)
6162 {
6163 child_die = die->child;
6164 while (child_die && child_die->tag)
6165 {
6166 process_die (child_die, cu);
6167 child_die = sibling_die (child_die);
6168 }
6169 }
6170 new = pop_context ();
6171
6172 if (local_symbols != NULL || using_directives != NULL)
6173 {
6174 struct block *block
6175 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6176 highpc, objfile);
6177
6178 /* Note that recording ranges after traversing children, as we
6179 do here, means that recording a parent's ranges entails
6180 walking across all its children's ranges as they appear in
6181 the address map, which is quadratic behavior.
6182
6183 It would be nicer to record the parent's ranges before
6184 traversing its children, simply overriding whatever you find
6185 there. But since we don't even decide whether to create a
6186 block until after we've traversed its children, that's hard
6187 to do. */
6188 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6189 }
6190 local_symbols = new->locals;
6191 using_directives = new->using_directives;
6192 }
6193
6194 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6195
6196 static void
6197 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6198 {
6199 struct objfile *objfile = cu->objfile;
6200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6201 CORE_ADDR pc, baseaddr;
6202 struct attribute *attr;
6203 struct call_site *call_site, call_site_local;
6204 void **slot;
6205 int nparams;
6206 struct die_info *child_die;
6207
6208 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6209
6210 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6211 if (!attr)
6212 {
6213 complaint (&symfile_complaints,
6214 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6215 "DIE 0x%x [in module %s]"),
6216 die->offset, cu->objfile->name);
6217 return;
6218 }
6219 pc = DW_ADDR (attr) + baseaddr;
6220
6221 if (cu->call_site_htab == NULL)
6222 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6223 NULL, &objfile->objfile_obstack,
6224 hashtab_obstack_allocate, NULL);
6225 call_site_local.pc = pc;
6226 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6227 if (*slot != NULL)
6228 {
6229 complaint (&symfile_complaints,
6230 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6231 "DIE 0x%x [in module %s]"),
6232 paddress (gdbarch, pc), die->offset, cu->objfile->name);
6233 return;
6234 }
6235
6236 /* Count parameters at the caller. */
6237
6238 nparams = 0;
6239 for (child_die = die->child; child_die && child_die->tag;
6240 child_die = sibling_die (child_die))
6241 {
6242 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6243 {
6244 complaint (&symfile_complaints,
6245 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6246 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6247 child_die->tag, child_die->offset, cu->objfile->name);
6248 continue;
6249 }
6250
6251 nparams++;
6252 }
6253
6254 call_site = obstack_alloc (&objfile->objfile_obstack,
6255 (sizeof (*call_site)
6256 + (sizeof (*call_site->parameter)
6257 * (nparams - 1))));
6258 *slot = call_site;
6259 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6260 call_site->pc = pc;
6261
6262 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6263 {
6264 struct die_info *func_die;
6265
6266 /* Skip also over DW_TAG_inlined_subroutine. */
6267 for (func_die = die->parent;
6268 func_die && func_die->tag != DW_TAG_subprogram
6269 && func_die->tag != DW_TAG_subroutine_type;
6270 func_die = func_die->parent);
6271
6272 /* DW_AT_GNU_all_call_sites is a superset
6273 of DW_AT_GNU_all_tail_call_sites. */
6274 if (func_die
6275 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6276 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6277 {
6278 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6279 not complete. But keep CALL_SITE for look ups via call_site_htab,
6280 both the initial caller containing the real return address PC and
6281 the final callee containing the current PC of a chain of tail
6282 calls do not need to have the tail call list complete. But any
6283 function candidate for a virtual tail call frame searched via
6284 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6285 determined unambiguously. */
6286 }
6287 else
6288 {
6289 struct type *func_type = NULL;
6290
6291 if (func_die)
6292 func_type = get_die_type (func_die, cu);
6293 if (func_type != NULL)
6294 {
6295 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6296
6297 /* Enlist this call site to the function. */
6298 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6299 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6300 }
6301 else
6302 complaint (&symfile_complaints,
6303 _("Cannot find function owning DW_TAG_GNU_call_site "
6304 "DIE 0x%x [in module %s]"),
6305 die->offset, cu->objfile->name);
6306 }
6307 }
6308
6309 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6310 if (attr == NULL)
6311 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6312 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6313 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6314 /* Keep NULL DWARF_BLOCK. */;
6315 else if (attr_form_is_block (attr))
6316 {
6317 struct dwarf2_locexpr_baton *dlbaton;
6318
6319 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6320 dlbaton->data = DW_BLOCK (attr)->data;
6321 dlbaton->size = DW_BLOCK (attr)->size;
6322 dlbaton->per_cu = cu->per_cu;
6323
6324 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6325 }
6326 else if (is_ref_attr (attr))
6327 {
6328 struct objfile *objfile = cu->objfile;
6329 struct dwarf2_cu *target_cu = cu;
6330 struct die_info *target_die;
6331
6332 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6333 gdb_assert (target_cu->objfile == objfile);
6334 if (die_is_declaration (target_die, target_cu))
6335 {
6336 const char *target_physname;
6337
6338 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6339 if (target_physname == NULL)
6340 complaint (&symfile_complaints,
6341 _("DW_AT_GNU_call_site_target target DIE has invalid "
6342 "physname, for referencing DIE 0x%x [in module %s]"),
6343 die->offset, cu->objfile->name);
6344 else
6345 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6346 }
6347 else
6348 {
6349 CORE_ADDR lowpc;
6350
6351 /* DW_AT_entry_pc should be preferred. */
6352 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6353 complaint (&symfile_complaints,
6354 _("DW_AT_GNU_call_site_target target DIE has invalid "
6355 "low pc, for referencing DIE 0x%x [in module %s]"),
6356 die->offset, cu->objfile->name);
6357 else
6358 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6359 }
6360 }
6361 else
6362 complaint (&symfile_complaints,
6363 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6364 "block nor reference, for DIE 0x%x [in module %s]"),
6365 die->offset, cu->objfile->name);
6366
6367 call_site->per_cu = cu->per_cu;
6368
6369 for (child_die = die->child;
6370 child_die && child_die->tag;
6371 child_die = sibling_die (child_die))
6372 {
6373 struct dwarf2_locexpr_baton *dlbaton;
6374 struct call_site_parameter *parameter;
6375
6376 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6377 {
6378 /* Already printed the complaint above. */
6379 continue;
6380 }
6381
6382 gdb_assert (call_site->parameter_count < nparams);
6383 parameter = &call_site->parameter[call_site->parameter_count];
6384
6385 /* DW_AT_location specifies the register number. Value of the data
6386 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6387
6388 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6389 if (!attr || !attr_form_is_block (attr))
6390 {
6391 complaint (&symfile_complaints,
6392 _("No DW_FORM_block* DW_AT_location for "
6393 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6394 child_die->offset, cu->objfile->name);
6395 continue;
6396 }
6397 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6398 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6399 if (parameter->dwarf_reg == -1
6400 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6401 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6402 &parameter->fb_offset))
6403 {
6404 complaint (&symfile_complaints,
6405 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6406 "for DW_FORM_block* DW_AT_location for "
6407 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6408 child_die->offset, cu->objfile->name);
6409 continue;
6410 }
6411
6412 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6413 if (!attr_form_is_block (attr))
6414 {
6415 complaint (&symfile_complaints,
6416 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6417 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6418 child_die->offset, cu->objfile->name);
6419 continue;
6420 }
6421 parameter->value = DW_BLOCK (attr)->data;
6422 parameter->value_size = DW_BLOCK (attr)->size;
6423
6424 /* Parameters are not pre-cleared by memset above. */
6425 parameter->data_value = NULL;
6426 parameter->data_value_size = 0;
6427 call_site->parameter_count++;
6428
6429 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6430 if (attr)
6431 {
6432 if (!attr_form_is_block (attr))
6433 complaint (&symfile_complaints,
6434 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6435 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6436 child_die->offset, cu->objfile->name);
6437 else
6438 {
6439 parameter->data_value = DW_BLOCK (attr)->data;
6440 parameter->data_value_size = DW_BLOCK (attr)->size;
6441 }
6442 }
6443 }
6444 }
6445
6446 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6447 Return 1 if the attributes are present and valid, otherwise, return 0.
6448 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6449
6450 static int
6451 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6452 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6453 struct partial_symtab *ranges_pst)
6454 {
6455 struct objfile *objfile = cu->objfile;
6456 struct comp_unit_head *cu_header = &cu->header;
6457 bfd *obfd = objfile->obfd;
6458 unsigned int addr_size = cu_header->addr_size;
6459 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6460 /* Base address selection entry. */
6461 CORE_ADDR base;
6462 int found_base;
6463 unsigned int dummy;
6464 gdb_byte *buffer;
6465 CORE_ADDR marker;
6466 int low_set;
6467 CORE_ADDR low = 0;
6468 CORE_ADDR high = 0;
6469 CORE_ADDR baseaddr;
6470
6471 found_base = cu->base_known;
6472 base = cu->base_address;
6473
6474 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6475 if (offset >= dwarf2_per_objfile->ranges.size)
6476 {
6477 complaint (&symfile_complaints,
6478 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6479 offset);
6480 return 0;
6481 }
6482 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6483
6484 /* Read in the largest possible address. */
6485 marker = read_address (obfd, buffer, cu, &dummy);
6486 if ((marker & mask) == mask)
6487 {
6488 /* If we found the largest possible address, then
6489 read the base address. */
6490 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6491 buffer += 2 * addr_size;
6492 offset += 2 * addr_size;
6493 found_base = 1;
6494 }
6495
6496 low_set = 0;
6497
6498 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6499
6500 while (1)
6501 {
6502 CORE_ADDR range_beginning, range_end;
6503
6504 range_beginning = read_address (obfd, buffer, cu, &dummy);
6505 buffer += addr_size;
6506 range_end = read_address (obfd, buffer, cu, &dummy);
6507 buffer += addr_size;
6508 offset += 2 * addr_size;
6509
6510 /* An end of list marker is a pair of zero addresses. */
6511 if (range_beginning == 0 && range_end == 0)
6512 /* Found the end of list entry. */
6513 break;
6514
6515 /* Each base address selection entry is a pair of 2 values.
6516 The first is the largest possible address, the second is
6517 the base address. Check for a base address here. */
6518 if ((range_beginning & mask) == mask)
6519 {
6520 /* If we found the largest possible address, then
6521 read the base address. */
6522 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6523 found_base = 1;
6524 continue;
6525 }
6526
6527 if (!found_base)
6528 {
6529 /* We have no valid base address for the ranges
6530 data. */
6531 complaint (&symfile_complaints,
6532 _("Invalid .debug_ranges data (no base address)"));
6533 return 0;
6534 }
6535
6536 if (range_beginning > range_end)
6537 {
6538 /* Inverted range entries are invalid. */
6539 complaint (&symfile_complaints,
6540 _("Invalid .debug_ranges data (inverted range)"));
6541 return 0;
6542 }
6543
6544 /* Empty range entries have no effect. */
6545 if (range_beginning == range_end)
6546 continue;
6547
6548 range_beginning += base;
6549 range_end += base;
6550
6551 if (ranges_pst != NULL)
6552 addrmap_set_empty (objfile->psymtabs_addrmap,
6553 range_beginning + baseaddr,
6554 range_end - 1 + baseaddr,
6555 ranges_pst);
6556
6557 /* FIXME: This is recording everything as a low-high
6558 segment of consecutive addresses. We should have a
6559 data structure for discontiguous block ranges
6560 instead. */
6561 if (! low_set)
6562 {
6563 low = range_beginning;
6564 high = range_end;
6565 low_set = 1;
6566 }
6567 else
6568 {
6569 if (range_beginning < low)
6570 low = range_beginning;
6571 if (range_end > high)
6572 high = range_end;
6573 }
6574 }
6575
6576 if (! low_set)
6577 /* If the first entry is an end-of-list marker, the range
6578 describes an empty scope, i.e. no instructions. */
6579 return 0;
6580
6581 if (low_return)
6582 *low_return = low;
6583 if (high_return)
6584 *high_return = high;
6585 return 1;
6586 }
6587
6588 /* Get low and high pc attributes from a die. Return 1 if the attributes
6589 are present and valid, otherwise, return 0. Return -1 if the range is
6590 discontinuous, i.e. derived from DW_AT_ranges information. */
6591 static int
6592 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6593 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6594 struct partial_symtab *pst)
6595 {
6596 struct attribute *attr;
6597 CORE_ADDR low = 0;
6598 CORE_ADDR high = 0;
6599 int ret = 0;
6600
6601 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6602 if (attr)
6603 {
6604 high = DW_ADDR (attr);
6605 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6606 if (attr)
6607 low = DW_ADDR (attr);
6608 else
6609 /* Found high w/o low attribute. */
6610 return 0;
6611
6612 /* Found consecutive range of addresses. */
6613 ret = 1;
6614 }
6615 else
6616 {
6617 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6618 if (attr != NULL)
6619 {
6620 /* Value of the DW_AT_ranges attribute is the offset in the
6621 .debug_ranges section. */
6622 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6623 return 0;
6624 /* Found discontinuous range of addresses. */
6625 ret = -1;
6626 }
6627 }
6628
6629 /* read_partial_die has also the strict LOW < HIGH requirement. */
6630 if (high <= low)
6631 return 0;
6632
6633 /* When using the GNU linker, .gnu.linkonce. sections are used to
6634 eliminate duplicate copies of functions and vtables and such.
6635 The linker will arbitrarily choose one and discard the others.
6636 The AT_*_pc values for such functions refer to local labels in
6637 these sections. If the section from that file was discarded, the
6638 labels are not in the output, so the relocs get a value of 0.
6639 If this is a discarded function, mark the pc bounds as invalid,
6640 so that GDB will ignore it. */
6641 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6642 return 0;
6643
6644 *lowpc = low;
6645 if (highpc)
6646 *highpc = high;
6647 return ret;
6648 }
6649
6650 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6651 its low and high PC addresses. Do nothing if these addresses could not
6652 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6653 and HIGHPC to the high address if greater than HIGHPC. */
6654
6655 static void
6656 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6657 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6658 struct dwarf2_cu *cu)
6659 {
6660 CORE_ADDR low, high;
6661 struct die_info *child = die->child;
6662
6663 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6664 {
6665 *lowpc = min (*lowpc, low);
6666 *highpc = max (*highpc, high);
6667 }
6668
6669 /* If the language does not allow nested subprograms (either inside
6670 subprograms or lexical blocks), we're done. */
6671 if (cu->language != language_ada)
6672 return;
6673
6674 /* Check all the children of the given DIE. If it contains nested
6675 subprograms, then check their pc bounds. Likewise, we need to
6676 check lexical blocks as well, as they may also contain subprogram
6677 definitions. */
6678 while (child && child->tag)
6679 {
6680 if (child->tag == DW_TAG_subprogram
6681 || child->tag == DW_TAG_lexical_block)
6682 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6683 child = sibling_die (child);
6684 }
6685 }
6686
6687 /* Get the low and high pc's represented by the scope DIE, and store
6688 them in *LOWPC and *HIGHPC. If the correct values can't be
6689 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6690
6691 static void
6692 get_scope_pc_bounds (struct die_info *die,
6693 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6694 struct dwarf2_cu *cu)
6695 {
6696 CORE_ADDR best_low = (CORE_ADDR) -1;
6697 CORE_ADDR best_high = (CORE_ADDR) 0;
6698 CORE_ADDR current_low, current_high;
6699
6700 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6701 {
6702 best_low = current_low;
6703 best_high = current_high;
6704 }
6705 else
6706 {
6707 struct die_info *child = die->child;
6708
6709 while (child && child->tag)
6710 {
6711 switch (child->tag) {
6712 case DW_TAG_subprogram:
6713 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6714 break;
6715 case DW_TAG_namespace:
6716 case DW_TAG_module:
6717 /* FIXME: carlton/2004-01-16: Should we do this for
6718 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6719 that current GCC's always emit the DIEs corresponding
6720 to definitions of methods of classes as children of a
6721 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6722 the DIEs giving the declarations, which could be
6723 anywhere). But I don't see any reason why the
6724 standards says that they have to be there. */
6725 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6726
6727 if (current_low != ((CORE_ADDR) -1))
6728 {
6729 best_low = min (best_low, current_low);
6730 best_high = max (best_high, current_high);
6731 }
6732 break;
6733 default:
6734 /* Ignore. */
6735 break;
6736 }
6737
6738 child = sibling_die (child);
6739 }
6740 }
6741
6742 *lowpc = best_low;
6743 *highpc = best_high;
6744 }
6745
6746 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6747 in DIE. */
6748 static void
6749 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6750 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6751 {
6752 struct attribute *attr;
6753
6754 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6755 if (attr)
6756 {
6757 CORE_ADDR high = DW_ADDR (attr);
6758
6759 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6760 if (attr)
6761 {
6762 CORE_ADDR low = DW_ADDR (attr);
6763
6764 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6765 }
6766 }
6767
6768 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6769 if (attr)
6770 {
6771 bfd *obfd = cu->objfile->obfd;
6772
6773 /* The value of the DW_AT_ranges attribute is the offset of the
6774 address range list in the .debug_ranges section. */
6775 unsigned long offset = DW_UNSND (attr);
6776 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6777
6778 /* For some target architectures, but not others, the
6779 read_address function sign-extends the addresses it returns.
6780 To recognize base address selection entries, we need a
6781 mask. */
6782 unsigned int addr_size = cu->header.addr_size;
6783 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6784
6785 /* The base address, to which the next pair is relative. Note
6786 that this 'base' is a DWARF concept: most entries in a range
6787 list are relative, to reduce the number of relocs against the
6788 debugging information. This is separate from this function's
6789 'baseaddr' argument, which GDB uses to relocate debugging
6790 information from a shared library based on the address at
6791 which the library was loaded. */
6792 CORE_ADDR base = cu->base_address;
6793 int base_known = cu->base_known;
6794
6795 gdb_assert (dwarf2_per_objfile->ranges.readin);
6796 if (offset >= dwarf2_per_objfile->ranges.size)
6797 {
6798 complaint (&symfile_complaints,
6799 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6800 offset);
6801 return;
6802 }
6803
6804 for (;;)
6805 {
6806 unsigned int bytes_read;
6807 CORE_ADDR start, end;
6808
6809 start = read_address (obfd, buffer, cu, &bytes_read);
6810 buffer += bytes_read;
6811 end = read_address (obfd, buffer, cu, &bytes_read);
6812 buffer += bytes_read;
6813
6814 /* Did we find the end of the range list? */
6815 if (start == 0 && end == 0)
6816 break;
6817
6818 /* Did we find a base address selection entry? */
6819 else if ((start & base_select_mask) == base_select_mask)
6820 {
6821 base = end;
6822 base_known = 1;
6823 }
6824
6825 /* We found an ordinary address range. */
6826 else
6827 {
6828 if (!base_known)
6829 {
6830 complaint (&symfile_complaints,
6831 _("Invalid .debug_ranges data "
6832 "(no base address)"));
6833 return;
6834 }
6835
6836 if (start > end)
6837 {
6838 /* Inverted range entries are invalid. */
6839 complaint (&symfile_complaints,
6840 _("Invalid .debug_ranges data "
6841 "(inverted range)"));
6842 return;
6843 }
6844
6845 /* Empty range entries have no effect. */
6846 if (start == end)
6847 continue;
6848
6849 record_block_range (block,
6850 baseaddr + base + start,
6851 baseaddr + base + end - 1);
6852 }
6853 }
6854 }
6855 }
6856
6857 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6858 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6859 during 4.6.0 experimental. */
6860
6861 static int
6862 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6863 {
6864 const char *cs;
6865 int major, minor, release;
6866
6867 if (cu->producer == NULL)
6868 {
6869 /* For unknown compilers expect their behavior is DWARF version
6870 compliant.
6871
6872 GCC started to support .debug_types sections by -gdwarf-4 since
6873 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6874 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6875 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6876 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6877
6878 return 0;
6879 }
6880
6881 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6882
6883 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6884 {
6885 /* For non-GCC compilers expect their behavior is DWARF version
6886 compliant. */
6887
6888 return 0;
6889 }
6890 cs = &cu->producer[strlen ("GNU ")];
6891 while (*cs && !isdigit (*cs))
6892 cs++;
6893 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6894 {
6895 /* Not recognized as GCC. */
6896
6897 return 0;
6898 }
6899
6900 return major < 4 || (major == 4 && minor < 6);
6901 }
6902
6903 /* Return the default accessibility type if it is not overriden by
6904 DW_AT_accessibility. */
6905
6906 static enum dwarf_access_attribute
6907 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6908 {
6909 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6910 {
6911 /* The default DWARF 2 accessibility for members is public, the default
6912 accessibility for inheritance is private. */
6913
6914 if (die->tag != DW_TAG_inheritance)
6915 return DW_ACCESS_public;
6916 else
6917 return DW_ACCESS_private;
6918 }
6919 else
6920 {
6921 /* DWARF 3+ defines the default accessibility a different way. The same
6922 rules apply now for DW_TAG_inheritance as for the members and it only
6923 depends on the container kind. */
6924
6925 if (die->parent->tag == DW_TAG_class_type)
6926 return DW_ACCESS_private;
6927 else
6928 return DW_ACCESS_public;
6929 }
6930 }
6931
6932 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6933 offset. If the attribute was not found return 0, otherwise return
6934 1. If it was found but could not properly be handled, set *OFFSET
6935 to 0. */
6936
6937 static int
6938 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6939 LONGEST *offset)
6940 {
6941 struct attribute *attr;
6942
6943 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6944 if (attr != NULL)
6945 {
6946 *offset = 0;
6947
6948 /* Note that we do not check for a section offset first here.
6949 This is because DW_AT_data_member_location is new in DWARF 4,
6950 so if we see it, we can assume that a constant form is really
6951 a constant and not a section offset. */
6952 if (attr_form_is_constant (attr))
6953 *offset = dwarf2_get_attr_constant_value (attr, 0);
6954 else if (attr_form_is_section_offset (attr))
6955 dwarf2_complex_location_expr_complaint ();
6956 else if (attr_form_is_block (attr))
6957 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6958 else
6959 dwarf2_complex_location_expr_complaint ();
6960
6961 return 1;
6962 }
6963
6964 return 0;
6965 }
6966
6967 /* Add an aggregate field to the field list. */
6968
6969 static void
6970 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6971 struct dwarf2_cu *cu)
6972 {
6973 struct objfile *objfile = cu->objfile;
6974 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6975 struct nextfield *new_field;
6976 struct attribute *attr;
6977 struct field *fp;
6978 char *fieldname = "";
6979
6980 /* Allocate a new field list entry and link it in. */
6981 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6982 make_cleanup (xfree, new_field);
6983 memset (new_field, 0, sizeof (struct nextfield));
6984
6985 if (die->tag == DW_TAG_inheritance)
6986 {
6987 new_field->next = fip->baseclasses;
6988 fip->baseclasses = new_field;
6989 }
6990 else
6991 {
6992 new_field->next = fip->fields;
6993 fip->fields = new_field;
6994 }
6995 fip->nfields++;
6996
6997 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6998 if (attr)
6999 new_field->accessibility = DW_UNSND (attr);
7000 else
7001 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7002 if (new_field->accessibility != DW_ACCESS_public)
7003 fip->non_public_fields = 1;
7004
7005 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7006 if (attr)
7007 new_field->virtuality = DW_UNSND (attr);
7008 else
7009 new_field->virtuality = DW_VIRTUALITY_none;
7010
7011 fp = &new_field->field;
7012
7013 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7014 {
7015 LONGEST offset;
7016
7017 /* Data member other than a C++ static data member. */
7018
7019 /* Get type of field. */
7020 fp->type = die_type (die, cu);
7021
7022 SET_FIELD_BITPOS (*fp, 0);
7023
7024 /* Get bit size of field (zero if none). */
7025 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7026 if (attr)
7027 {
7028 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7029 }
7030 else
7031 {
7032 FIELD_BITSIZE (*fp) = 0;
7033 }
7034
7035 /* Get bit offset of field. */
7036 if (handle_data_member_location (die, cu, &offset))
7037 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7038 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7039 if (attr)
7040 {
7041 if (gdbarch_bits_big_endian (gdbarch))
7042 {
7043 /* For big endian bits, the DW_AT_bit_offset gives the
7044 additional bit offset from the MSB of the containing
7045 anonymous object to the MSB of the field. We don't
7046 have to do anything special since we don't need to
7047 know the size of the anonymous object. */
7048 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7049 }
7050 else
7051 {
7052 /* For little endian bits, compute the bit offset to the
7053 MSB of the anonymous object, subtract off the number of
7054 bits from the MSB of the field to the MSB of the
7055 object, and then subtract off the number of bits of
7056 the field itself. The result is the bit offset of
7057 the LSB of the field. */
7058 int anonymous_size;
7059 int bit_offset = DW_UNSND (attr);
7060
7061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7062 if (attr)
7063 {
7064 /* The size of the anonymous object containing
7065 the bit field is explicit, so use the
7066 indicated size (in bytes). */
7067 anonymous_size = DW_UNSND (attr);
7068 }
7069 else
7070 {
7071 /* The size of the anonymous object containing
7072 the bit field must be inferred from the type
7073 attribute of the data member containing the
7074 bit field. */
7075 anonymous_size = TYPE_LENGTH (fp->type);
7076 }
7077 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7078 - bit_offset - FIELD_BITSIZE (*fp);
7079 }
7080 }
7081
7082 /* Get name of field. */
7083 fieldname = dwarf2_name (die, cu);
7084 if (fieldname == NULL)
7085 fieldname = "";
7086
7087 /* The name is already allocated along with this objfile, so we don't
7088 need to duplicate it for the type. */
7089 fp->name = fieldname;
7090
7091 /* Change accessibility for artificial fields (e.g. virtual table
7092 pointer or virtual base class pointer) to private. */
7093 if (dwarf2_attr (die, DW_AT_artificial, cu))
7094 {
7095 FIELD_ARTIFICIAL (*fp) = 1;
7096 new_field->accessibility = DW_ACCESS_private;
7097 fip->non_public_fields = 1;
7098 }
7099 }
7100 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7101 {
7102 /* C++ static member. */
7103
7104 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7105 is a declaration, but all versions of G++ as of this writing
7106 (so through at least 3.2.1) incorrectly generate
7107 DW_TAG_variable tags. */
7108
7109 const char *physname;
7110
7111 /* Get name of field. */
7112 fieldname = dwarf2_name (die, cu);
7113 if (fieldname == NULL)
7114 return;
7115
7116 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7117 if (attr
7118 /* Only create a symbol if this is an external value.
7119 new_symbol checks this and puts the value in the global symbol
7120 table, which we want. If it is not external, new_symbol
7121 will try to put the value in cu->list_in_scope which is wrong. */
7122 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7123 {
7124 /* A static const member, not much different than an enum as far as
7125 we're concerned, except that we can support more types. */
7126 new_symbol (die, NULL, cu);
7127 }
7128
7129 /* Get physical name. */
7130 physname = dwarf2_physname (fieldname, die, cu);
7131
7132 /* The name is already allocated along with this objfile, so we don't
7133 need to duplicate it for the type. */
7134 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7135 FIELD_TYPE (*fp) = die_type (die, cu);
7136 FIELD_NAME (*fp) = fieldname;
7137 }
7138 else if (die->tag == DW_TAG_inheritance)
7139 {
7140 LONGEST offset;
7141
7142 /* C++ base class field. */
7143 if (handle_data_member_location (die, cu, &offset))
7144 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7145 FIELD_BITSIZE (*fp) = 0;
7146 FIELD_TYPE (*fp) = die_type (die, cu);
7147 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7148 fip->nbaseclasses++;
7149 }
7150 }
7151
7152 /* Add a typedef defined in the scope of the FIP's class. */
7153
7154 static void
7155 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7156 struct dwarf2_cu *cu)
7157 {
7158 struct objfile *objfile = cu->objfile;
7159 struct typedef_field_list *new_field;
7160 struct attribute *attr;
7161 struct typedef_field *fp;
7162 char *fieldname = "";
7163
7164 /* Allocate a new field list entry and link it in. */
7165 new_field = xzalloc (sizeof (*new_field));
7166 make_cleanup (xfree, new_field);
7167
7168 gdb_assert (die->tag == DW_TAG_typedef);
7169
7170 fp = &new_field->field;
7171
7172 /* Get name of field. */
7173 fp->name = dwarf2_name (die, cu);
7174 if (fp->name == NULL)
7175 return;
7176
7177 fp->type = read_type_die (die, cu);
7178
7179 new_field->next = fip->typedef_field_list;
7180 fip->typedef_field_list = new_field;
7181 fip->typedef_field_list_count++;
7182 }
7183
7184 /* Create the vector of fields, and attach it to the type. */
7185
7186 static void
7187 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7188 struct dwarf2_cu *cu)
7189 {
7190 int nfields = fip->nfields;
7191
7192 /* Record the field count, allocate space for the array of fields,
7193 and create blank accessibility bitfields if necessary. */
7194 TYPE_NFIELDS (type) = nfields;
7195 TYPE_FIELDS (type) = (struct field *)
7196 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7197 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7198
7199 if (fip->non_public_fields && cu->language != language_ada)
7200 {
7201 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7202
7203 TYPE_FIELD_PRIVATE_BITS (type) =
7204 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7205 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7206
7207 TYPE_FIELD_PROTECTED_BITS (type) =
7208 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7209 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7210
7211 TYPE_FIELD_IGNORE_BITS (type) =
7212 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7213 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7214 }
7215
7216 /* If the type has baseclasses, allocate and clear a bit vector for
7217 TYPE_FIELD_VIRTUAL_BITS. */
7218 if (fip->nbaseclasses && cu->language != language_ada)
7219 {
7220 int num_bytes = B_BYTES (fip->nbaseclasses);
7221 unsigned char *pointer;
7222
7223 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7224 pointer = TYPE_ALLOC (type, num_bytes);
7225 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7226 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7227 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7228 }
7229
7230 /* Copy the saved-up fields into the field vector. Start from the head of
7231 the list, adding to the tail of the field array, so that they end up in
7232 the same order in the array in which they were added to the list. */
7233 while (nfields-- > 0)
7234 {
7235 struct nextfield *fieldp;
7236
7237 if (fip->fields)
7238 {
7239 fieldp = fip->fields;
7240 fip->fields = fieldp->next;
7241 }
7242 else
7243 {
7244 fieldp = fip->baseclasses;
7245 fip->baseclasses = fieldp->next;
7246 }
7247
7248 TYPE_FIELD (type, nfields) = fieldp->field;
7249 switch (fieldp->accessibility)
7250 {
7251 case DW_ACCESS_private:
7252 if (cu->language != language_ada)
7253 SET_TYPE_FIELD_PRIVATE (type, nfields);
7254 break;
7255
7256 case DW_ACCESS_protected:
7257 if (cu->language != language_ada)
7258 SET_TYPE_FIELD_PROTECTED (type, nfields);
7259 break;
7260
7261 case DW_ACCESS_public:
7262 break;
7263
7264 default:
7265 /* Unknown accessibility. Complain and treat it as public. */
7266 {
7267 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7268 fieldp->accessibility);
7269 }
7270 break;
7271 }
7272 if (nfields < fip->nbaseclasses)
7273 {
7274 switch (fieldp->virtuality)
7275 {
7276 case DW_VIRTUALITY_virtual:
7277 case DW_VIRTUALITY_pure_virtual:
7278 if (cu->language == language_ada)
7279 error (_("unexpected virtuality in component of Ada type"));
7280 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7281 break;
7282 }
7283 }
7284 }
7285 }
7286
7287 /* Add a member function to the proper fieldlist. */
7288
7289 static void
7290 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7291 struct type *type, struct dwarf2_cu *cu)
7292 {
7293 struct objfile *objfile = cu->objfile;
7294 struct attribute *attr;
7295 struct fnfieldlist *flp;
7296 int i;
7297 struct fn_field *fnp;
7298 char *fieldname;
7299 struct nextfnfield *new_fnfield;
7300 struct type *this_type;
7301 enum dwarf_access_attribute accessibility;
7302
7303 if (cu->language == language_ada)
7304 error (_("unexpected member function in Ada type"));
7305
7306 /* Get name of member function. */
7307 fieldname = dwarf2_name (die, cu);
7308 if (fieldname == NULL)
7309 return;
7310
7311 /* Look up member function name in fieldlist. */
7312 for (i = 0; i < fip->nfnfields; i++)
7313 {
7314 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7315 break;
7316 }
7317
7318 /* Create new list element if necessary. */
7319 if (i < fip->nfnfields)
7320 flp = &fip->fnfieldlists[i];
7321 else
7322 {
7323 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7324 {
7325 fip->fnfieldlists = (struct fnfieldlist *)
7326 xrealloc (fip->fnfieldlists,
7327 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7328 * sizeof (struct fnfieldlist));
7329 if (fip->nfnfields == 0)
7330 make_cleanup (free_current_contents, &fip->fnfieldlists);
7331 }
7332 flp = &fip->fnfieldlists[fip->nfnfields];
7333 flp->name = fieldname;
7334 flp->length = 0;
7335 flp->head = NULL;
7336 i = fip->nfnfields++;
7337 }
7338
7339 /* Create a new member function field and chain it to the field list
7340 entry. */
7341 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7342 make_cleanup (xfree, new_fnfield);
7343 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7344 new_fnfield->next = flp->head;
7345 flp->head = new_fnfield;
7346 flp->length++;
7347
7348 /* Fill in the member function field info. */
7349 fnp = &new_fnfield->fnfield;
7350
7351 /* Delay processing of the physname until later. */
7352 if (cu->language == language_cplus || cu->language == language_java)
7353 {
7354 add_to_method_list (type, i, flp->length - 1, fieldname,
7355 die, cu);
7356 }
7357 else
7358 {
7359 const char *physname = dwarf2_physname (fieldname, die, cu);
7360 fnp->physname = physname ? physname : "";
7361 }
7362
7363 fnp->type = alloc_type (objfile);
7364 this_type = read_type_die (die, cu);
7365 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7366 {
7367 int nparams = TYPE_NFIELDS (this_type);
7368
7369 /* TYPE is the domain of this method, and THIS_TYPE is the type
7370 of the method itself (TYPE_CODE_METHOD). */
7371 smash_to_method_type (fnp->type, type,
7372 TYPE_TARGET_TYPE (this_type),
7373 TYPE_FIELDS (this_type),
7374 TYPE_NFIELDS (this_type),
7375 TYPE_VARARGS (this_type));
7376
7377 /* Handle static member functions.
7378 Dwarf2 has no clean way to discern C++ static and non-static
7379 member functions. G++ helps GDB by marking the first
7380 parameter for non-static member functions (which is the this
7381 pointer) as artificial. We obtain this information from
7382 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7383 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7384 fnp->voffset = VOFFSET_STATIC;
7385 }
7386 else
7387 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7388 dwarf2_full_name (fieldname, die, cu));
7389
7390 /* Get fcontext from DW_AT_containing_type if present. */
7391 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7392 fnp->fcontext = die_containing_type (die, cu);
7393
7394 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7395 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7396
7397 /* Get accessibility. */
7398 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7399 if (attr)
7400 accessibility = DW_UNSND (attr);
7401 else
7402 accessibility = dwarf2_default_access_attribute (die, cu);
7403 switch (accessibility)
7404 {
7405 case DW_ACCESS_private:
7406 fnp->is_private = 1;
7407 break;
7408 case DW_ACCESS_protected:
7409 fnp->is_protected = 1;
7410 break;
7411 }
7412
7413 /* Check for artificial methods. */
7414 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7415 if (attr && DW_UNSND (attr) != 0)
7416 fnp->is_artificial = 1;
7417
7418 /* Get index in virtual function table if it is a virtual member
7419 function. For older versions of GCC, this is an offset in the
7420 appropriate virtual table, as specified by DW_AT_containing_type.
7421 For everyone else, it is an expression to be evaluated relative
7422 to the object address. */
7423
7424 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7425 if (attr)
7426 {
7427 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7428 {
7429 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7430 {
7431 /* Old-style GCC. */
7432 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7433 }
7434 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7435 || (DW_BLOCK (attr)->size > 1
7436 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7437 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7438 {
7439 struct dwarf_block blk;
7440 int offset;
7441
7442 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7443 ? 1 : 2);
7444 blk.size = DW_BLOCK (attr)->size - offset;
7445 blk.data = DW_BLOCK (attr)->data + offset;
7446 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7447 if ((fnp->voffset % cu->header.addr_size) != 0)
7448 dwarf2_complex_location_expr_complaint ();
7449 else
7450 fnp->voffset /= cu->header.addr_size;
7451 fnp->voffset += 2;
7452 }
7453 else
7454 dwarf2_complex_location_expr_complaint ();
7455
7456 if (!fnp->fcontext)
7457 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7458 }
7459 else if (attr_form_is_section_offset (attr))
7460 {
7461 dwarf2_complex_location_expr_complaint ();
7462 }
7463 else
7464 {
7465 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7466 fieldname);
7467 }
7468 }
7469 else
7470 {
7471 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7472 if (attr && DW_UNSND (attr))
7473 {
7474 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7475 complaint (&symfile_complaints,
7476 _("Member function \"%s\" (offset %d) is virtual "
7477 "but the vtable offset is not specified"),
7478 fieldname, die->offset);
7479 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7480 TYPE_CPLUS_DYNAMIC (type) = 1;
7481 }
7482 }
7483 }
7484
7485 /* Create the vector of member function fields, and attach it to the type. */
7486
7487 static void
7488 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7489 struct dwarf2_cu *cu)
7490 {
7491 struct fnfieldlist *flp;
7492 int total_length = 0;
7493 int i;
7494
7495 if (cu->language == language_ada)
7496 error (_("unexpected member functions in Ada type"));
7497
7498 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7499 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7500 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7501
7502 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7503 {
7504 struct nextfnfield *nfp = flp->head;
7505 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7506 int k;
7507
7508 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7509 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7510 fn_flp->fn_fields = (struct fn_field *)
7511 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7512 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7513 fn_flp->fn_fields[k] = nfp->fnfield;
7514
7515 total_length += flp->length;
7516 }
7517
7518 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7519 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
7520 }
7521
7522 /* Returns non-zero if NAME is the name of a vtable member in CU's
7523 language, zero otherwise. */
7524 static int
7525 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7526 {
7527 static const char vptr[] = "_vptr";
7528 static const char vtable[] = "vtable";
7529
7530 /* Look for the C++ and Java forms of the vtable. */
7531 if ((cu->language == language_java
7532 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7533 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7534 && is_cplus_marker (name[sizeof (vptr) - 1])))
7535 return 1;
7536
7537 return 0;
7538 }
7539
7540 /* GCC outputs unnamed structures that are really pointers to member
7541 functions, with the ABI-specified layout. If TYPE describes
7542 such a structure, smash it into a member function type.
7543
7544 GCC shouldn't do this; it should just output pointer to member DIEs.
7545 This is GCC PR debug/28767. */
7546
7547 static void
7548 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7549 {
7550 struct type *pfn_type, *domain_type, *new_type;
7551
7552 /* Check for a structure with no name and two children. */
7553 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7554 return;
7555
7556 /* Check for __pfn and __delta members. */
7557 if (TYPE_FIELD_NAME (type, 0) == NULL
7558 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7559 || TYPE_FIELD_NAME (type, 1) == NULL
7560 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7561 return;
7562
7563 /* Find the type of the method. */
7564 pfn_type = TYPE_FIELD_TYPE (type, 0);
7565 if (pfn_type == NULL
7566 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7567 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7568 return;
7569
7570 /* Look for the "this" argument. */
7571 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7572 if (TYPE_NFIELDS (pfn_type) == 0
7573 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7574 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7575 return;
7576
7577 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7578 new_type = alloc_type (objfile);
7579 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7580 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7581 TYPE_VARARGS (pfn_type));
7582 smash_to_methodptr_type (type, new_type);
7583 }
7584
7585 /* Called when we find the DIE that starts a structure or union scope
7586 (definition) to create a type for the structure or union. Fill in
7587 the type's name and general properties; the members will not be
7588 processed until process_structure_type.
7589
7590 NOTE: we need to call these functions regardless of whether or not the
7591 DIE has a DW_AT_name attribute, since it might be an anonymous
7592 structure or union. This gets the type entered into our set of
7593 user defined types.
7594
7595 However, if the structure is incomplete (an opaque struct/union)
7596 then suppress creating a symbol table entry for it since gdb only
7597 wants to find the one with the complete definition. Note that if
7598 it is complete, we just call new_symbol, which does it's own
7599 checking about whether the struct/union is anonymous or not (and
7600 suppresses creating a symbol table entry itself). */
7601
7602 static struct type *
7603 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7604 {
7605 struct objfile *objfile = cu->objfile;
7606 struct type *type;
7607 struct attribute *attr;
7608 char *name;
7609
7610 /* If the definition of this type lives in .debug_types, read that type.
7611 Don't follow DW_AT_specification though, that will take us back up
7612 the chain and we want to go down. */
7613 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7614 if (attr)
7615 {
7616 struct dwarf2_cu *type_cu = cu;
7617 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7618
7619 /* We could just recurse on read_structure_type, but we need to call
7620 get_die_type to ensure only one type for this DIE is created.
7621 This is important, for example, because for c++ classes we need
7622 TYPE_NAME set which is only done by new_symbol. Blech. */
7623 type = read_type_die (type_die, type_cu);
7624
7625 /* TYPE_CU may not be the same as CU.
7626 Ensure TYPE is recorded in CU's type_hash table. */
7627 return set_die_type (die, type, cu);
7628 }
7629
7630 type = alloc_type (objfile);
7631 INIT_CPLUS_SPECIFIC (type);
7632
7633 name = dwarf2_name (die, cu);
7634 if (name != NULL)
7635 {
7636 if (cu->language == language_cplus
7637 || cu->language == language_java)
7638 {
7639 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7640
7641 /* dwarf2_full_name might have already finished building the DIE's
7642 type. If so, there is no need to continue. */
7643 if (get_die_type (die, cu) != NULL)
7644 return get_die_type (die, cu);
7645
7646 TYPE_TAG_NAME (type) = full_name;
7647 if (die->tag == DW_TAG_structure_type
7648 || die->tag == DW_TAG_class_type)
7649 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7650 }
7651 else
7652 {
7653 /* The name is already allocated along with this objfile, so
7654 we don't need to duplicate it for the type. */
7655 TYPE_TAG_NAME (type) = (char *) name;
7656 if (die->tag == DW_TAG_class_type)
7657 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7658 }
7659 }
7660
7661 if (die->tag == DW_TAG_structure_type)
7662 {
7663 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7664 }
7665 else if (die->tag == DW_TAG_union_type)
7666 {
7667 TYPE_CODE (type) = TYPE_CODE_UNION;
7668 }
7669 else
7670 {
7671 TYPE_CODE (type) = TYPE_CODE_CLASS;
7672 }
7673
7674 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7675 TYPE_DECLARED_CLASS (type) = 1;
7676
7677 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7678 if (attr)
7679 {
7680 TYPE_LENGTH (type) = DW_UNSND (attr);
7681 }
7682 else
7683 {
7684 TYPE_LENGTH (type) = 0;
7685 }
7686
7687 TYPE_STUB_SUPPORTED (type) = 1;
7688 if (die_is_declaration (die, cu))
7689 TYPE_STUB (type) = 1;
7690 else if (attr == NULL && die->child == NULL
7691 && producer_is_realview (cu->producer))
7692 /* RealView does not output the required DW_AT_declaration
7693 on incomplete types. */
7694 TYPE_STUB (type) = 1;
7695
7696 /* We need to add the type field to the die immediately so we don't
7697 infinitely recurse when dealing with pointers to the structure
7698 type within the structure itself. */
7699 set_die_type (die, type, cu);
7700
7701 /* set_die_type should be already done. */
7702 set_descriptive_type (type, die, cu);
7703
7704 return type;
7705 }
7706
7707 /* Finish creating a structure or union type, including filling in
7708 its members and creating a symbol for it. */
7709
7710 static void
7711 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7712 {
7713 struct objfile *objfile = cu->objfile;
7714 struct die_info *child_die = die->child;
7715 struct type *type;
7716
7717 type = get_die_type (die, cu);
7718 if (type == NULL)
7719 type = read_structure_type (die, cu);
7720
7721 if (die->child != NULL && ! die_is_declaration (die, cu))
7722 {
7723 struct field_info fi;
7724 struct die_info *child_die;
7725 VEC (symbolp) *template_args = NULL;
7726 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7727
7728 memset (&fi, 0, sizeof (struct field_info));
7729
7730 child_die = die->child;
7731
7732 while (child_die && child_die->tag)
7733 {
7734 if (child_die->tag == DW_TAG_member
7735 || child_die->tag == DW_TAG_variable)
7736 {
7737 /* NOTE: carlton/2002-11-05: A C++ static data member
7738 should be a DW_TAG_member that is a declaration, but
7739 all versions of G++ as of this writing (so through at
7740 least 3.2.1) incorrectly generate DW_TAG_variable
7741 tags for them instead. */
7742 dwarf2_add_field (&fi, child_die, cu);
7743 }
7744 else if (child_die->tag == DW_TAG_subprogram)
7745 {
7746 /* C++ member function. */
7747 dwarf2_add_member_fn (&fi, child_die, type, cu);
7748 }
7749 else if (child_die->tag == DW_TAG_inheritance)
7750 {
7751 /* C++ base class field. */
7752 dwarf2_add_field (&fi, child_die, cu);
7753 }
7754 else if (child_die->tag == DW_TAG_typedef)
7755 dwarf2_add_typedef (&fi, child_die, cu);
7756 else if (child_die->tag == DW_TAG_template_type_param
7757 || child_die->tag == DW_TAG_template_value_param)
7758 {
7759 struct symbol *arg = new_symbol (child_die, NULL, cu);
7760
7761 if (arg != NULL)
7762 VEC_safe_push (symbolp, template_args, arg);
7763 }
7764
7765 child_die = sibling_die (child_die);
7766 }
7767
7768 /* Attach template arguments to type. */
7769 if (! VEC_empty (symbolp, template_args))
7770 {
7771 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7772 TYPE_N_TEMPLATE_ARGUMENTS (type)
7773 = VEC_length (symbolp, template_args);
7774 TYPE_TEMPLATE_ARGUMENTS (type)
7775 = obstack_alloc (&objfile->objfile_obstack,
7776 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7777 * sizeof (struct symbol *)));
7778 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7779 VEC_address (symbolp, template_args),
7780 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7781 * sizeof (struct symbol *)));
7782 VEC_free (symbolp, template_args);
7783 }
7784
7785 /* Attach fields and member functions to the type. */
7786 if (fi.nfields)
7787 dwarf2_attach_fields_to_type (&fi, type, cu);
7788 if (fi.nfnfields)
7789 {
7790 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7791
7792 /* Get the type which refers to the base class (possibly this
7793 class itself) which contains the vtable pointer for the current
7794 class from the DW_AT_containing_type attribute. This use of
7795 DW_AT_containing_type is a GNU extension. */
7796
7797 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7798 {
7799 struct type *t = die_containing_type (die, cu);
7800
7801 TYPE_VPTR_BASETYPE (type) = t;
7802 if (type == t)
7803 {
7804 int i;
7805
7806 /* Our own class provides vtbl ptr. */
7807 for (i = TYPE_NFIELDS (t) - 1;
7808 i >= TYPE_N_BASECLASSES (t);
7809 --i)
7810 {
7811 char *fieldname = TYPE_FIELD_NAME (t, i);
7812
7813 if (is_vtable_name (fieldname, cu))
7814 {
7815 TYPE_VPTR_FIELDNO (type) = i;
7816 break;
7817 }
7818 }
7819
7820 /* Complain if virtual function table field not found. */
7821 if (i < TYPE_N_BASECLASSES (t))
7822 complaint (&symfile_complaints,
7823 _("virtual function table pointer "
7824 "not found when defining class '%s'"),
7825 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7826 "");
7827 }
7828 else
7829 {
7830 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7831 }
7832 }
7833 else if (cu->producer
7834 && strncmp (cu->producer,
7835 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7836 {
7837 /* The IBM XLC compiler does not provide direct indication
7838 of the containing type, but the vtable pointer is
7839 always named __vfp. */
7840
7841 int i;
7842
7843 for (i = TYPE_NFIELDS (type) - 1;
7844 i >= TYPE_N_BASECLASSES (type);
7845 --i)
7846 {
7847 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7848 {
7849 TYPE_VPTR_FIELDNO (type) = i;
7850 TYPE_VPTR_BASETYPE (type) = type;
7851 break;
7852 }
7853 }
7854 }
7855 }
7856
7857 /* Copy fi.typedef_field_list linked list elements content into the
7858 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7859 if (fi.typedef_field_list)
7860 {
7861 int i = fi.typedef_field_list_count;
7862
7863 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7864 TYPE_TYPEDEF_FIELD_ARRAY (type)
7865 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7866 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7867
7868 /* Reverse the list order to keep the debug info elements order. */
7869 while (--i >= 0)
7870 {
7871 struct typedef_field *dest, *src;
7872
7873 dest = &TYPE_TYPEDEF_FIELD (type, i);
7874 src = &fi.typedef_field_list->field;
7875 fi.typedef_field_list = fi.typedef_field_list->next;
7876 *dest = *src;
7877 }
7878 }
7879
7880 do_cleanups (back_to);
7881
7882 if (HAVE_CPLUS_STRUCT (type))
7883 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7884 }
7885
7886 quirk_gcc_member_function_pointer (type, cu->objfile);
7887
7888 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7889 snapshots) has been known to create a die giving a declaration
7890 for a class that has, as a child, a die giving a definition for a
7891 nested class. So we have to process our children even if the
7892 current die is a declaration. Normally, of course, a declaration
7893 won't have any children at all. */
7894
7895 while (child_die != NULL && child_die->tag)
7896 {
7897 if (child_die->tag == DW_TAG_member
7898 || child_die->tag == DW_TAG_variable
7899 || child_die->tag == DW_TAG_inheritance
7900 || child_die->tag == DW_TAG_template_value_param
7901 || child_die->tag == DW_TAG_template_type_param)
7902 {
7903 /* Do nothing. */
7904 }
7905 else
7906 process_die (child_die, cu);
7907
7908 child_die = sibling_die (child_die);
7909 }
7910
7911 /* Do not consider external references. According to the DWARF standard,
7912 these DIEs are identified by the fact that they have no byte_size
7913 attribute, and a declaration attribute. */
7914 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7915 || !die_is_declaration (die, cu))
7916 new_symbol (die, type, cu);
7917 }
7918
7919 /* Given a DW_AT_enumeration_type die, set its type. We do not
7920 complete the type's fields yet, or create any symbols. */
7921
7922 static struct type *
7923 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7924 {
7925 struct objfile *objfile = cu->objfile;
7926 struct type *type;
7927 struct attribute *attr;
7928 const char *name;
7929
7930 /* If the definition of this type lives in .debug_types, read that type.
7931 Don't follow DW_AT_specification though, that will take us back up
7932 the chain and we want to go down. */
7933 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7934 if (attr)
7935 {
7936 struct dwarf2_cu *type_cu = cu;
7937 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7938
7939 type = read_type_die (type_die, type_cu);
7940
7941 /* TYPE_CU may not be the same as CU.
7942 Ensure TYPE is recorded in CU's type_hash table. */
7943 return set_die_type (die, type, cu);
7944 }
7945
7946 type = alloc_type (objfile);
7947
7948 TYPE_CODE (type) = TYPE_CODE_ENUM;
7949 name = dwarf2_full_name (NULL, die, cu);
7950 if (name != NULL)
7951 TYPE_TAG_NAME (type) = (char *) name;
7952
7953 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7954 if (attr)
7955 {
7956 TYPE_LENGTH (type) = DW_UNSND (attr);
7957 }
7958 else
7959 {
7960 TYPE_LENGTH (type) = 0;
7961 }
7962
7963 /* The enumeration DIE can be incomplete. In Ada, any type can be
7964 declared as private in the package spec, and then defined only
7965 inside the package body. Such types are known as Taft Amendment
7966 Types. When another package uses such a type, an incomplete DIE
7967 may be generated by the compiler. */
7968 if (die_is_declaration (die, cu))
7969 TYPE_STUB (type) = 1;
7970
7971 return set_die_type (die, type, cu);
7972 }
7973
7974 /* Given a pointer to a die which begins an enumeration, process all
7975 the dies that define the members of the enumeration, and create the
7976 symbol for the enumeration type.
7977
7978 NOTE: We reverse the order of the element list. */
7979
7980 static void
7981 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7982 {
7983 struct type *this_type;
7984
7985 this_type = get_die_type (die, cu);
7986 if (this_type == NULL)
7987 this_type = read_enumeration_type (die, cu);
7988
7989 if (die->child != NULL)
7990 {
7991 struct die_info *child_die;
7992 struct symbol *sym;
7993 struct field *fields = NULL;
7994 int num_fields = 0;
7995 int unsigned_enum = 1;
7996 char *name;
7997
7998 child_die = die->child;
7999 while (child_die && child_die->tag)
8000 {
8001 if (child_die->tag != DW_TAG_enumerator)
8002 {
8003 process_die (child_die, cu);
8004 }
8005 else
8006 {
8007 name = dwarf2_name (child_die, cu);
8008 if (name)
8009 {
8010 sym = new_symbol (child_die, this_type, cu);
8011 if (SYMBOL_VALUE (sym) < 0)
8012 unsigned_enum = 0;
8013
8014 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8015 {
8016 fields = (struct field *)
8017 xrealloc (fields,
8018 (num_fields + DW_FIELD_ALLOC_CHUNK)
8019 * sizeof (struct field));
8020 }
8021
8022 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8023 FIELD_TYPE (fields[num_fields]) = NULL;
8024 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8025 FIELD_BITSIZE (fields[num_fields]) = 0;
8026
8027 num_fields++;
8028 }
8029 }
8030
8031 child_die = sibling_die (child_die);
8032 }
8033
8034 if (num_fields)
8035 {
8036 TYPE_NFIELDS (this_type) = num_fields;
8037 TYPE_FIELDS (this_type) = (struct field *)
8038 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8039 memcpy (TYPE_FIELDS (this_type), fields,
8040 sizeof (struct field) * num_fields);
8041 xfree (fields);
8042 }
8043 if (unsigned_enum)
8044 TYPE_UNSIGNED (this_type) = 1;
8045 }
8046
8047 /* If we are reading an enum from a .debug_types unit, and the enum
8048 is a declaration, and the enum is not the signatured type in the
8049 unit, then we do not want to add a symbol for it. Adding a
8050 symbol would in some cases obscure the true definition of the
8051 enum, giving users an incomplete type when the definition is
8052 actually available. Note that we do not want to do this for all
8053 enums which are just declarations, because C++0x allows forward
8054 enum declarations. */
8055 if (cu->per_cu->debug_type_section
8056 && die_is_declaration (die, cu))
8057 {
8058 struct signatured_type *type_sig;
8059
8060 type_sig
8061 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8062 cu->per_cu->debug_type_section,
8063 cu->per_cu->offset);
8064 if (type_sig->type_offset != die->offset)
8065 return;
8066 }
8067
8068 new_symbol (die, this_type, cu);
8069 }
8070
8071 /* Extract all information from a DW_TAG_array_type DIE and put it in
8072 the DIE's type field. For now, this only handles one dimensional
8073 arrays. */
8074
8075 static struct type *
8076 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8077 {
8078 struct objfile *objfile = cu->objfile;
8079 struct die_info *child_die;
8080 struct type *type;
8081 struct type *element_type, *range_type, *index_type;
8082 struct type **range_types = NULL;
8083 struct attribute *attr;
8084 int ndim = 0;
8085 struct cleanup *back_to;
8086 char *name;
8087
8088 element_type = die_type (die, cu);
8089
8090 /* The die_type call above may have already set the type for this DIE. */
8091 type = get_die_type (die, cu);
8092 if (type)
8093 return type;
8094
8095 /* Irix 6.2 native cc creates array types without children for
8096 arrays with unspecified length. */
8097 if (die->child == NULL)
8098 {
8099 index_type = objfile_type (objfile)->builtin_int;
8100 range_type = create_range_type (NULL, index_type, 0, -1);
8101 type = create_array_type (NULL, element_type, range_type);
8102 return set_die_type (die, type, cu);
8103 }
8104
8105 back_to = make_cleanup (null_cleanup, NULL);
8106 child_die = die->child;
8107 while (child_die && child_die->tag)
8108 {
8109 if (child_die->tag == DW_TAG_subrange_type)
8110 {
8111 struct type *child_type = read_type_die (child_die, cu);
8112
8113 if (child_type != NULL)
8114 {
8115 /* The range type was succesfully read. Save it for the
8116 array type creation. */
8117 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8118 {
8119 range_types = (struct type **)
8120 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8121 * sizeof (struct type *));
8122 if (ndim == 0)
8123 make_cleanup (free_current_contents, &range_types);
8124 }
8125 range_types[ndim++] = child_type;
8126 }
8127 }
8128 child_die = sibling_die (child_die);
8129 }
8130
8131 /* Dwarf2 dimensions are output from left to right, create the
8132 necessary array types in backwards order. */
8133
8134 type = element_type;
8135
8136 if (read_array_order (die, cu) == DW_ORD_col_major)
8137 {
8138 int i = 0;
8139
8140 while (i < ndim)
8141 type = create_array_type (NULL, type, range_types[i++]);
8142 }
8143 else
8144 {
8145 while (ndim-- > 0)
8146 type = create_array_type (NULL, type, range_types[ndim]);
8147 }
8148
8149 /* Understand Dwarf2 support for vector types (like they occur on
8150 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8151 array type. This is not part of the Dwarf2/3 standard yet, but a
8152 custom vendor extension. The main difference between a regular
8153 array and the vector variant is that vectors are passed by value
8154 to functions. */
8155 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8156 if (attr)
8157 make_vector_type (type);
8158
8159 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8160 implementation may choose to implement triple vectors using this
8161 attribute. */
8162 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8163 if (attr)
8164 {
8165 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8166 TYPE_LENGTH (type) = DW_UNSND (attr);
8167 else
8168 complaint (&symfile_complaints,
8169 _("DW_AT_byte_size for array type smaller "
8170 "than the total size of elements"));
8171 }
8172
8173 name = dwarf2_name (die, cu);
8174 if (name)
8175 TYPE_NAME (type) = name;
8176
8177 /* Install the type in the die. */
8178 set_die_type (die, type, cu);
8179
8180 /* set_die_type should be already done. */
8181 set_descriptive_type (type, die, cu);
8182
8183 do_cleanups (back_to);
8184
8185 return type;
8186 }
8187
8188 static enum dwarf_array_dim_ordering
8189 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8190 {
8191 struct attribute *attr;
8192
8193 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8194
8195 if (attr) return DW_SND (attr);
8196
8197 /* GNU F77 is a special case, as at 08/2004 array type info is the
8198 opposite order to the dwarf2 specification, but data is still
8199 laid out as per normal fortran.
8200
8201 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8202 version checking. */
8203
8204 if (cu->language == language_fortran
8205 && cu->producer && strstr (cu->producer, "GNU F77"))
8206 {
8207 return DW_ORD_row_major;
8208 }
8209
8210 switch (cu->language_defn->la_array_ordering)
8211 {
8212 case array_column_major:
8213 return DW_ORD_col_major;
8214 case array_row_major:
8215 default:
8216 return DW_ORD_row_major;
8217 };
8218 }
8219
8220 /* Extract all information from a DW_TAG_set_type DIE and put it in
8221 the DIE's type field. */
8222
8223 static struct type *
8224 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8225 {
8226 struct type *domain_type, *set_type;
8227 struct attribute *attr;
8228
8229 domain_type = die_type (die, cu);
8230
8231 /* The die_type call above may have already set the type for this DIE. */
8232 set_type = get_die_type (die, cu);
8233 if (set_type)
8234 return set_type;
8235
8236 set_type = create_set_type (NULL, domain_type);
8237
8238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8239 if (attr)
8240 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8241
8242 return set_die_type (die, set_type, cu);
8243 }
8244
8245 /* First cut: install each common block member as a global variable. */
8246
8247 static void
8248 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8249 {
8250 struct die_info *child_die;
8251 struct attribute *attr;
8252 struct symbol *sym;
8253 CORE_ADDR base = (CORE_ADDR) 0;
8254
8255 attr = dwarf2_attr (die, DW_AT_location, cu);
8256 if (attr)
8257 {
8258 /* Support the .debug_loc offsets. */
8259 if (attr_form_is_block (attr))
8260 {
8261 base = decode_locdesc (DW_BLOCK (attr), cu);
8262 }
8263 else if (attr_form_is_section_offset (attr))
8264 {
8265 dwarf2_complex_location_expr_complaint ();
8266 }
8267 else
8268 {
8269 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8270 "common block member");
8271 }
8272 }
8273 if (die->child != NULL)
8274 {
8275 child_die = die->child;
8276 while (child_die && child_die->tag)
8277 {
8278 LONGEST offset;
8279
8280 sym = new_symbol (child_die, NULL, cu);
8281 if (sym != NULL
8282 && handle_data_member_location (child_die, cu, &offset))
8283 {
8284 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8285 add_symbol_to_list (sym, &global_symbols);
8286 }
8287 child_die = sibling_die (child_die);
8288 }
8289 }
8290 }
8291
8292 /* Create a type for a C++ namespace. */
8293
8294 static struct type *
8295 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8296 {
8297 struct objfile *objfile = cu->objfile;
8298 const char *previous_prefix, *name;
8299 int is_anonymous;
8300 struct type *type;
8301
8302 /* For extensions, reuse the type of the original namespace. */
8303 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8304 {
8305 struct die_info *ext_die;
8306 struct dwarf2_cu *ext_cu = cu;
8307
8308 ext_die = dwarf2_extension (die, &ext_cu);
8309 type = read_type_die (ext_die, ext_cu);
8310
8311 /* EXT_CU may not be the same as CU.
8312 Ensure TYPE is recorded in CU's type_hash table. */
8313 return set_die_type (die, type, cu);
8314 }
8315
8316 name = namespace_name (die, &is_anonymous, cu);
8317
8318 /* Now build the name of the current namespace. */
8319
8320 previous_prefix = determine_prefix (die, cu);
8321 if (previous_prefix[0] != '\0')
8322 name = typename_concat (&objfile->objfile_obstack,
8323 previous_prefix, name, 0, cu);
8324
8325 /* Create the type. */
8326 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8327 objfile);
8328 TYPE_NAME (type) = (char *) name;
8329 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8330
8331 return set_die_type (die, type, cu);
8332 }
8333
8334 /* Read a C++ namespace. */
8335
8336 static void
8337 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8338 {
8339 struct objfile *objfile = cu->objfile;
8340 int is_anonymous;
8341
8342 /* Add a symbol associated to this if we haven't seen the namespace
8343 before. Also, add a using directive if it's an anonymous
8344 namespace. */
8345
8346 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8347 {
8348 struct type *type;
8349
8350 type = read_type_die (die, cu);
8351 new_symbol (die, type, cu);
8352
8353 namespace_name (die, &is_anonymous, cu);
8354 if (is_anonymous)
8355 {
8356 const char *previous_prefix = determine_prefix (die, cu);
8357
8358 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8359 NULL, NULL, &objfile->objfile_obstack);
8360 }
8361 }
8362
8363 if (die->child != NULL)
8364 {
8365 struct die_info *child_die = die->child;
8366
8367 while (child_die && child_die->tag)
8368 {
8369 process_die (child_die, cu);
8370 child_die = sibling_die (child_die);
8371 }
8372 }
8373 }
8374
8375 /* Read a Fortran module as type. This DIE can be only a declaration used for
8376 imported module. Still we need that type as local Fortran "use ... only"
8377 declaration imports depend on the created type in determine_prefix. */
8378
8379 static struct type *
8380 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8381 {
8382 struct objfile *objfile = cu->objfile;
8383 char *module_name;
8384 struct type *type;
8385
8386 module_name = dwarf2_name (die, cu);
8387 if (!module_name)
8388 complaint (&symfile_complaints,
8389 _("DW_TAG_module has no name, offset 0x%x"),
8390 die->offset);
8391 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8392
8393 /* determine_prefix uses TYPE_TAG_NAME. */
8394 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8395
8396 return set_die_type (die, type, cu);
8397 }
8398
8399 /* Read a Fortran module. */
8400
8401 static void
8402 read_module (struct die_info *die, struct dwarf2_cu *cu)
8403 {
8404 struct die_info *child_die = die->child;
8405
8406 while (child_die && child_die->tag)
8407 {
8408 process_die (child_die, cu);
8409 child_die = sibling_die (child_die);
8410 }
8411 }
8412
8413 /* Return the name of the namespace represented by DIE. Set
8414 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8415 namespace. */
8416
8417 static const char *
8418 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8419 {
8420 struct die_info *current_die;
8421 const char *name = NULL;
8422
8423 /* Loop through the extensions until we find a name. */
8424
8425 for (current_die = die;
8426 current_die != NULL;
8427 current_die = dwarf2_extension (die, &cu))
8428 {
8429 name = dwarf2_name (current_die, cu);
8430 if (name != NULL)
8431 break;
8432 }
8433
8434 /* Is it an anonymous namespace? */
8435
8436 *is_anonymous = (name == NULL);
8437 if (*is_anonymous)
8438 name = CP_ANONYMOUS_NAMESPACE_STR;
8439
8440 return name;
8441 }
8442
8443 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8444 the user defined type vector. */
8445
8446 static struct type *
8447 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8448 {
8449 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8450 struct comp_unit_head *cu_header = &cu->header;
8451 struct type *type;
8452 struct attribute *attr_byte_size;
8453 struct attribute *attr_address_class;
8454 int byte_size, addr_class;
8455 struct type *target_type;
8456
8457 target_type = die_type (die, cu);
8458
8459 /* The die_type call above may have already set the type for this DIE. */
8460 type = get_die_type (die, cu);
8461 if (type)
8462 return type;
8463
8464 type = lookup_pointer_type (target_type);
8465
8466 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8467 if (attr_byte_size)
8468 byte_size = DW_UNSND (attr_byte_size);
8469 else
8470 byte_size = cu_header->addr_size;
8471
8472 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8473 if (attr_address_class)
8474 addr_class = DW_UNSND (attr_address_class);
8475 else
8476 addr_class = DW_ADDR_none;
8477
8478 /* If the pointer size or address class is different than the
8479 default, create a type variant marked as such and set the
8480 length accordingly. */
8481 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8482 {
8483 if (gdbarch_address_class_type_flags_p (gdbarch))
8484 {
8485 int type_flags;
8486
8487 type_flags = gdbarch_address_class_type_flags
8488 (gdbarch, byte_size, addr_class);
8489 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8490 == 0);
8491 type = make_type_with_address_space (type, type_flags);
8492 }
8493 else if (TYPE_LENGTH (type) != byte_size)
8494 {
8495 complaint (&symfile_complaints,
8496 _("invalid pointer size %d"), byte_size);
8497 }
8498 else
8499 {
8500 /* Should we also complain about unhandled address classes? */
8501 }
8502 }
8503
8504 TYPE_LENGTH (type) = byte_size;
8505 return set_die_type (die, type, cu);
8506 }
8507
8508 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8509 the user defined type vector. */
8510
8511 static struct type *
8512 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8513 {
8514 struct type *type;
8515 struct type *to_type;
8516 struct type *domain;
8517
8518 to_type = die_type (die, cu);
8519 domain = die_containing_type (die, cu);
8520
8521 /* The calls above may have already set the type for this DIE. */
8522 type = get_die_type (die, cu);
8523 if (type)
8524 return type;
8525
8526 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8527 type = lookup_methodptr_type (to_type);
8528 else
8529 type = lookup_memberptr_type (to_type, domain);
8530
8531 return set_die_type (die, type, cu);
8532 }
8533
8534 /* Extract all information from a DW_TAG_reference_type DIE and add to
8535 the user defined type vector. */
8536
8537 static struct type *
8538 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8539 {
8540 struct comp_unit_head *cu_header = &cu->header;
8541 struct type *type, *target_type;
8542 struct attribute *attr;
8543
8544 target_type = die_type (die, cu);
8545
8546 /* The die_type call above may have already set the type for this DIE. */
8547 type = get_die_type (die, cu);
8548 if (type)
8549 return type;
8550
8551 type = lookup_reference_type (target_type);
8552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8553 if (attr)
8554 {
8555 TYPE_LENGTH (type) = DW_UNSND (attr);
8556 }
8557 else
8558 {
8559 TYPE_LENGTH (type) = cu_header->addr_size;
8560 }
8561 return set_die_type (die, type, cu);
8562 }
8563
8564 static struct type *
8565 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8566 {
8567 struct type *base_type, *cv_type;
8568
8569 base_type = die_type (die, cu);
8570
8571 /* The die_type call above may have already set the type for this DIE. */
8572 cv_type = get_die_type (die, cu);
8573 if (cv_type)
8574 return cv_type;
8575
8576 /* In case the const qualifier is applied to an array type, the element type
8577 is so qualified, not the array type (section 6.7.3 of C99). */
8578 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8579 {
8580 struct type *el_type, *inner_array;
8581
8582 base_type = copy_type (base_type);
8583 inner_array = base_type;
8584
8585 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8586 {
8587 TYPE_TARGET_TYPE (inner_array) =
8588 copy_type (TYPE_TARGET_TYPE (inner_array));
8589 inner_array = TYPE_TARGET_TYPE (inner_array);
8590 }
8591
8592 el_type = TYPE_TARGET_TYPE (inner_array);
8593 TYPE_TARGET_TYPE (inner_array) =
8594 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8595
8596 return set_die_type (die, base_type, cu);
8597 }
8598
8599 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8600 return set_die_type (die, cv_type, cu);
8601 }
8602
8603 static struct type *
8604 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8605 {
8606 struct type *base_type, *cv_type;
8607
8608 base_type = die_type (die, cu);
8609
8610 /* The die_type call above may have already set the type for this DIE. */
8611 cv_type = get_die_type (die, cu);
8612 if (cv_type)
8613 return cv_type;
8614
8615 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8616 return set_die_type (die, cv_type, cu);
8617 }
8618
8619 /* Extract all information from a DW_TAG_string_type DIE and add to
8620 the user defined type vector. It isn't really a user defined type,
8621 but it behaves like one, with other DIE's using an AT_user_def_type
8622 attribute to reference it. */
8623
8624 static struct type *
8625 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8626 {
8627 struct objfile *objfile = cu->objfile;
8628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8629 struct type *type, *range_type, *index_type, *char_type;
8630 struct attribute *attr;
8631 unsigned int length;
8632
8633 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8634 if (attr)
8635 {
8636 length = DW_UNSND (attr);
8637 }
8638 else
8639 {
8640 /* Check for the DW_AT_byte_size attribute. */
8641 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8642 if (attr)
8643 {
8644 length = DW_UNSND (attr);
8645 }
8646 else
8647 {
8648 length = 1;
8649 }
8650 }
8651
8652 index_type = objfile_type (objfile)->builtin_int;
8653 range_type = create_range_type (NULL, index_type, 1, length);
8654 char_type = language_string_char_type (cu->language_defn, gdbarch);
8655 type = create_string_type (NULL, char_type, range_type);
8656
8657 return set_die_type (die, type, cu);
8658 }
8659
8660 /* Handle DIES due to C code like:
8661
8662 struct foo
8663 {
8664 int (*funcp)(int a, long l);
8665 int b;
8666 };
8667
8668 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8669
8670 static struct type *
8671 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8672 {
8673 struct type *type; /* Type that this function returns. */
8674 struct type *ftype; /* Function that returns above type. */
8675 struct attribute *attr;
8676
8677 type = die_type (die, cu);
8678
8679 /* The die_type call above may have already set the type for this DIE. */
8680 ftype = get_die_type (die, cu);
8681 if (ftype)
8682 return ftype;
8683
8684 ftype = lookup_function_type (type);
8685
8686 /* All functions in C++, Pascal and Java have prototypes. */
8687 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8688 if ((attr && (DW_UNSND (attr) != 0))
8689 || cu->language == language_cplus
8690 || cu->language == language_java
8691 || cu->language == language_pascal)
8692 TYPE_PROTOTYPED (ftype) = 1;
8693 else if (producer_is_realview (cu->producer))
8694 /* RealView does not emit DW_AT_prototyped. We can not
8695 distinguish prototyped and unprototyped functions; default to
8696 prototyped, since that is more common in modern code (and
8697 RealView warns about unprototyped functions). */
8698 TYPE_PROTOTYPED (ftype) = 1;
8699
8700 /* Store the calling convention in the type if it's available in
8701 the subroutine die. Otherwise set the calling convention to
8702 the default value DW_CC_normal. */
8703 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8704 if (attr)
8705 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8706 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8707 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8708 else
8709 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8710
8711 /* We need to add the subroutine type to the die immediately so
8712 we don't infinitely recurse when dealing with parameters
8713 declared as the same subroutine type. */
8714 set_die_type (die, ftype, cu);
8715
8716 if (die->child != NULL)
8717 {
8718 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
8719 struct die_info *child_die;
8720 int nparams, iparams;
8721
8722 /* Count the number of parameters.
8723 FIXME: GDB currently ignores vararg functions, but knows about
8724 vararg member functions. */
8725 nparams = 0;
8726 child_die = die->child;
8727 while (child_die && child_die->tag)
8728 {
8729 if (child_die->tag == DW_TAG_formal_parameter)
8730 nparams++;
8731 else if (child_die->tag == DW_TAG_unspecified_parameters)
8732 TYPE_VARARGS (ftype) = 1;
8733 child_die = sibling_die (child_die);
8734 }
8735
8736 /* Allocate storage for parameters and fill them in. */
8737 TYPE_NFIELDS (ftype) = nparams;
8738 TYPE_FIELDS (ftype) = (struct field *)
8739 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8740
8741 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8742 even if we error out during the parameters reading below. */
8743 for (iparams = 0; iparams < nparams; iparams++)
8744 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8745
8746 iparams = 0;
8747 child_die = die->child;
8748 while (child_die && child_die->tag)
8749 {
8750 if (child_die->tag == DW_TAG_formal_parameter)
8751 {
8752 struct type *arg_type;
8753
8754 /* DWARF version 2 has no clean way to discern C++
8755 static and non-static member functions. G++ helps
8756 GDB by marking the first parameter for non-static
8757 member functions (which is the this pointer) as
8758 artificial. We pass this information to
8759 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8760
8761 DWARF version 3 added DW_AT_object_pointer, which GCC
8762 4.5 does not yet generate. */
8763 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8764 if (attr)
8765 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8766 else
8767 {
8768 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8769
8770 /* GCC/43521: In java, the formal parameter
8771 "this" is sometimes not marked with DW_AT_artificial. */
8772 if (cu->language == language_java)
8773 {
8774 const char *name = dwarf2_name (child_die, cu);
8775
8776 if (name && !strcmp (name, "this"))
8777 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8778 }
8779 }
8780 arg_type = die_type (child_die, cu);
8781
8782 /* RealView does not mark THIS as const, which the testsuite
8783 expects. GCC marks THIS as const in method definitions,
8784 but not in the class specifications (GCC PR 43053). */
8785 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8786 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8787 {
8788 int is_this = 0;
8789 struct dwarf2_cu *arg_cu = cu;
8790 const char *name = dwarf2_name (child_die, cu);
8791
8792 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8793 if (attr)
8794 {
8795 /* If the compiler emits this, use it. */
8796 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8797 is_this = 1;
8798 }
8799 else if (name && strcmp (name, "this") == 0)
8800 /* Function definitions will have the argument names. */
8801 is_this = 1;
8802 else if (name == NULL && iparams == 0)
8803 /* Declarations may not have the names, so like
8804 elsewhere in GDB, assume an artificial first
8805 argument is "this". */
8806 is_this = 1;
8807
8808 if (is_this)
8809 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8810 arg_type, 0);
8811 }
8812
8813 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8814 iparams++;
8815 }
8816 child_die = sibling_die (child_die);
8817 }
8818 }
8819
8820 return ftype;
8821 }
8822
8823 static struct type *
8824 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8825 {
8826 struct objfile *objfile = cu->objfile;
8827 const char *name = NULL;
8828 struct type *this_type;
8829
8830 name = dwarf2_full_name (NULL, die, cu);
8831 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8832 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8833 TYPE_NAME (this_type) = (char *) name;
8834 set_die_type (die, this_type, cu);
8835 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8836 return this_type;
8837 }
8838
8839 /* Find a representation of a given base type and install
8840 it in the TYPE field of the die. */
8841
8842 static struct type *
8843 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8844 {
8845 struct objfile *objfile = cu->objfile;
8846 struct type *type;
8847 struct attribute *attr;
8848 int encoding = 0, size = 0;
8849 char *name;
8850 enum type_code code = TYPE_CODE_INT;
8851 int type_flags = 0;
8852 struct type *target_type = NULL;
8853
8854 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8855 if (attr)
8856 {
8857 encoding = DW_UNSND (attr);
8858 }
8859 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8860 if (attr)
8861 {
8862 size = DW_UNSND (attr);
8863 }
8864 name = dwarf2_name (die, cu);
8865 if (!name)
8866 {
8867 complaint (&symfile_complaints,
8868 _("DW_AT_name missing from DW_TAG_base_type"));
8869 }
8870
8871 switch (encoding)
8872 {
8873 case DW_ATE_address:
8874 /* Turn DW_ATE_address into a void * pointer. */
8875 code = TYPE_CODE_PTR;
8876 type_flags |= TYPE_FLAG_UNSIGNED;
8877 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8878 break;
8879 case DW_ATE_boolean:
8880 code = TYPE_CODE_BOOL;
8881 type_flags |= TYPE_FLAG_UNSIGNED;
8882 break;
8883 case DW_ATE_complex_float:
8884 code = TYPE_CODE_COMPLEX;
8885 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8886 break;
8887 case DW_ATE_decimal_float:
8888 code = TYPE_CODE_DECFLOAT;
8889 break;
8890 case DW_ATE_float:
8891 code = TYPE_CODE_FLT;
8892 break;
8893 case DW_ATE_signed:
8894 break;
8895 case DW_ATE_unsigned:
8896 type_flags |= TYPE_FLAG_UNSIGNED;
8897 if (cu->language == language_fortran
8898 && name
8899 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8900 code = TYPE_CODE_CHAR;
8901 break;
8902 case DW_ATE_signed_char:
8903 if (cu->language == language_ada || cu->language == language_m2
8904 || cu->language == language_pascal
8905 || cu->language == language_fortran)
8906 code = TYPE_CODE_CHAR;
8907 break;
8908 case DW_ATE_unsigned_char:
8909 if (cu->language == language_ada || cu->language == language_m2
8910 || cu->language == language_pascal
8911 || cu->language == language_fortran)
8912 code = TYPE_CODE_CHAR;
8913 type_flags |= TYPE_FLAG_UNSIGNED;
8914 break;
8915 case DW_ATE_UTF:
8916 /* We just treat this as an integer and then recognize the
8917 type by name elsewhere. */
8918 break;
8919
8920 default:
8921 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8922 dwarf_type_encoding_name (encoding));
8923 break;
8924 }
8925
8926 type = init_type (code, size, type_flags, NULL, objfile);
8927 TYPE_NAME (type) = name;
8928 TYPE_TARGET_TYPE (type) = target_type;
8929
8930 if (name && strcmp (name, "char") == 0)
8931 TYPE_NOSIGN (type) = 1;
8932
8933 return set_die_type (die, type, cu);
8934 }
8935
8936 /* Read the given DW_AT_subrange DIE. */
8937
8938 static struct type *
8939 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8940 {
8941 struct type *base_type;
8942 struct type *range_type;
8943 struct attribute *attr;
8944 LONGEST low = 0;
8945 LONGEST high = -1;
8946 char *name;
8947 LONGEST negative_mask;
8948
8949 base_type = die_type (die, cu);
8950 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8951 check_typedef (base_type);
8952
8953 /* The die_type call above may have already set the type for this DIE. */
8954 range_type = get_die_type (die, cu);
8955 if (range_type)
8956 return range_type;
8957
8958 if (cu->language == language_fortran)
8959 {
8960 /* FORTRAN implies a lower bound of 1, if not given. */
8961 low = 1;
8962 }
8963
8964 /* FIXME: For variable sized arrays either of these could be
8965 a variable rather than a constant value. We'll allow it,
8966 but we don't know how to handle it. */
8967 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8968 if (attr)
8969 low = dwarf2_get_attr_constant_value (attr, 0);
8970
8971 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8972 if (attr)
8973 {
8974 if (attr_form_is_block (attr) || is_ref_attr (attr))
8975 {
8976 /* GCC encodes arrays with unspecified or dynamic length
8977 with a DW_FORM_block1 attribute or a reference attribute.
8978 FIXME: GDB does not yet know how to handle dynamic
8979 arrays properly, treat them as arrays with unspecified
8980 length for now.
8981
8982 FIXME: jimb/2003-09-22: GDB does not really know
8983 how to handle arrays of unspecified length
8984 either; we just represent them as zero-length
8985 arrays. Choose an appropriate upper bound given
8986 the lower bound we've computed above. */
8987 high = low - 1;
8988 }
8989 else
8990 high = dwarf2_get_attr_constant_value (attr, 1);
8991 }
8992 else
8993 {
8994 attr = dwarf2_attr (die, DW_AT_count, cu);
8995 if (attr)
8996 {
8997 int count = dwarf2_get_attr_constant_value (attr, 1);
8998 high = low + count - 1;
8999 }
9000 else
9001 {
9002 /* Unspecified array length. */
9003 high = low - 1;
9004 }
9005 }
9006
9007 /* Dwarf-2 specifications explicitly allows to create subrange types
9008 without specifying a base type.
9009 In that case, the base type must be set to the type of
9010 the lower bound, upper bound or count, in that order, if any of these
9011 three attributes references an object that has a type.
9012 If no base type is found, the Dwarf-2 specifications say that
9013 a signed integer type of size equal to the size of an address should
9014 be used.
9015 For the following C code: `extern char gdb_int [];'
9016 GCC produces an empty range DIE.
9017 FIXME: muller/2010-05-28: Possible references to object for low bound,
9018 high bound or count are not yet handled by this code. */
9019 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9020 {
9021 struct objfile *objfile = cu->objfile;
9022 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9023 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9024 struct type *int_type = objfile_type (objfile)->builtin_int;
9025
9026 /* Test "int", "long int", and "long long int" objfile types,
9027 and select the first one having a size above or equal to the
9028 architecture address size. */
9029 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9030 base_type = int_type;
9031 else
9032 {
9033 int_type = objfile_type (objfile)->builtin_long;
9034 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9035 base_type = int_type;
9036 else
9037 {
9038 int_type = objfile_type (objfile)->builtin_long_long;
9039 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9040 base_type = int_type;
9041 }
9042 }
9043 }
9044
9045 negative_mask =
9046 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9047 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9048 low |= negative_mask;
9049 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9050 high |= negative_mask;
9051
9052 range_type = create_range_type (NULL, base_type, low, high);
9053
9054 /* Mark arrays with dynamic length at least as an array of unspecified
9055 length. GDB could check the boundary but before it gets implemented at
9056 least allow accessing the array elements. */
9057 if (attr && attr_form_is_block (attr))
9058 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9059
9060 /* Ada expects an empty array on no boundary attributes. */
9061 if (attr == NULL && cu->language != language_ada)
9062 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9063
9064 name = dwarf2_name (die, cu);
9065 if (name)
9066 TYPE_NAME (range_type) = name;
9067
9068 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9069 if (attr)
9070 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9071
9072 set_die_type (die, range_type, cu);
9073
9074 /* set_die_type should be already done. */
9075 set_descriptive_type (range_type, die, cu);
9076
9077 return range_type;
9078 }
9079
9080 static struct type *
9081 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9082 {
9083 struct type *type;
9084
9085 /* For now, we only support the C meaning of an unspecified type: void. */
9086
9087 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9088 TYPE_NAME (type) = dwarf2_name (die, cu);
9089
9090 return set_die_type (die, type, cu);
9091 }
9092
9093 /* Trivial hash function for die_info: the hash value of a DIE
9094 is its offset in .debug_info for this objfile. */
9095
9096 static hashval_t
9097 die_hash (const void *item)
9098 {
9099 const struct die_info *die = item;
9100
9101 return die->offset;
9102 }
9103
9104 /* Trivial comparison function for die_info structures: two DIEs
9105 are equal if they have the same offset. */
9106
9107 static int
9108 die_eq (const void *item_lhs, const void *item_rhs)
9109 {
9110 const struct die_info *die_lhs = item_lhs;
9111 const struct die_info *die_rhs = item_rhs;
9112
9113 return die_lhs->offset == die_rhs->offset;
9114 }
9115
9116 /* Read a whole compilation unit into a linked list of dies. */
9117
9118 static struct die_info *
9119 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9120 {
9121 struct die_reader_specs reader_specs;
9122 int read_abbrevs = 0;
9123 struct cleanup *back_to = NULL;
9124 struct die_info *die;
9125
9126 if (cu->dwarf2_abbrevs == NULL)
9127 {
9128 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
9129 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9130 read_abbrevs = 1;
9131 }
9132
9133 gdb_assert (cu->die_hash == NULL);
9134 cu->die_hash
9135 = htab_create_alloc_ex (cu->header.length / 12,
9136 die_hash,
9137 die_eq,
9138 NULL,
9139 &cu->comp_unit_obstack,
9140 hashtab_obstack_allocate,
9141 dummy_obstack_deallocate);
9142
9143 init_cu_die_reader (&reader_specs, cu);
9144
9145 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9146
9147 if (read_abbrevs)
9148 do_cleanups (back_to);
9149
9150 return die;
9151 }
9152
9153 /* Main entry point for reading a DIE and all children.
9154 Read the DIE and dump it if requested. */
9155
9156 static struct die_info *
9157 read_die_and_children (const struct die_reader_specs *reader,
9158 gdb_byte *info_ptr,
9159 gdb_byte **new_info_ptr,
9160 struct die_info *parent)
9161 {
9162 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9163 new_info_ptr, parent);
9164
9165 if (dwarf2_die_debug)
9166 {
9167 fprintf_unfiltered (gdb_stdlog,
9168 "\nRead die from %s of %s:\n",
9169 (reader->cu->per_cu->debug_type_section
9170 ? ".debug_types"
9171 : ".debug_info"),
9172 reader->abfd->filename);
9173 dump_die (result, dwarf2_die_debug);
9174 }
9175
9176 return result;
9177 }
9178
9179 /* Read a single die and all its descendents. Set the die's sibling
9180 field to NULL; set other fields in the die correctly, and set all
9181 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9182 location of the info_ptr after reading all of those dies. PARENT
9183 is the parent of the die in question. */
9184
9185 static struct die_info *
9186 read_die_and_children_1 (const struct die_reader_specs *reader,
9187 gdb_byte *info_ptr,
9188 gdb_byte **new_info_ptr,
9189 struct die_info *parent)
9190 {
9191 struct die_info *die;
9192 gdb_byte *cur_ptr;
9193 int has_children;
9194
9195 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9196 if (die == NULL)
9197 {
9198 *new_info_ptr = cur_ptr;
9199 return NULL;
9200 }
9201 store_in_ref_table (die, reader->cu);
9202
9203 if (has_children)
9204 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9205 else
9206 {
9207 die->child = NULL;
9208 *new_info_ptr = cur_ptr;
9209 }
9210
9211 die->sibling = NULL;
9212 die->parent = parent;
9213 return die;
9214 }
9215
9216 /* Read a die, all of its descendents, and all of its siblings; set
9217 all of the fields of all of the dies correctly. Arguments are as
9218 in read_die_and_children. */
9219
9220 static struct die_info *
9221 read_die_and_siblings (const struct die_reader_specs *reader,
9222 gdb_byte *info_ptr,
9223 gdb_byte **new_info_ptr,
9224 struct die_info *parent)
9225 {
9226 struct die_info *first_die, *last_sibling;
9227 gdb_byte *cur_ptr;
9228
9229 cur_ptr = info_ptr;
9230 first_die = last_sibling = NULL;
9231
9232 while (1)
9233 {
9234 struct die_info *die
9235 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9236
9237 if (die == NULL)
9238 {
9239 *new_info_ptr = cur_ptr;
9240 return first_die;
9241 }
9242
9243 if (!first_die)
9244 first_die = die;
9245 else
9246 last_sibling->sibling = die;
9247
9248 last_sibling = die;
9249 }
9250 }
9251
9252 /* Read the die from the .debug_info section buffer. Set DIEP to
9253 point to a newly allocated die with its information, except for its
9254 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9255 whether the die has children or not. */
9256
9257 static gdb_byte *
9258 read_full_die (const struct die_reader_specs *reader,
9259 struct die_info **diep, gdb_byte *info_ptr,
9260 int *has_children)
9261 {
9262 unsigned int abbrev_number, bytes_read, i, offset;
9263 struct abbrev_info *abbrev;
9264 struct die_info *die;
9265 struct dwarf2_cu *cu = reader->cu;
9266 bfd *abfd = reader->abfd;
9267
9268 offset = info_ptr - reader->buffer;
9269 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9270 info_ptr += bytes_read;
9271 if (!abbrev_number)
9272 {
9273 *diep = NULL;
9274 *has_children = 0;
9275 return info_ptr;
9276 }
9277
9278 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9279 if (!abbrev)
9280 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9281 abbrev_number,
9282 bfd_get_filename (abfd));
9283
9284 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9285 die->offset = offset;
9286 die->tag = abbrev->tag;
9287 die->abbrev = abbrev_number;
9288
9289 die->num_attrs = abbrev->num_attrs;
9290
9291 for (i = 0; i < abbrev->num_attrs; ++i)
9292 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9293 abfd, info_ptr, cu);
9294
9295 *diep = die;
9296 *has_children = abbrev->has_children;
9297 return info_ptr;
9298 }
9299
9300 /* In DWARF version 2, the description of the debugging information is
9301 stored in a separate .debug_abbrev section. Before we read any
9302 dies from a section we read in all abbreviations and install them
9303 in a hash table. This function also sets flags in CU describing
9304 the data found in the abbrev table. */
9305
9306 static void
9307 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
9308 {
9309 struct comp_unit_head *cu_header = &cu->header;
9310 gdb_byte *abbrev_ptr;
9311 struct abbrev_info *cur_abbrev;
9312 unsigned int abbrev_number, bytes_read, abbrev_name;
9313 unsigned int abbrev_form, hash_number;
9314 struct attr_abbrev *cur_attrs;
9315 unsigned int allocated_attrs;
9316
9317 /* Initialize dwarf2 abbrevs. */
9318 obstack_init (&cu->abbrev_obstack);
9319 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9320 (ABBREV_HASH_SIZE
9321 * sizeof (struct abbrev_info *)));
9322 memset (cu->dwarf2_abbrevs, 0,
9323 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9324
9325 dwarf2_read_section (dwarf2_per_objfile->objfile,
9326 &dwarf2_per_objfile->abbrev);
9327 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9328 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9329 abbrev_ptr += bytes_read;
9330
9331 allocated_attrs = ATTR_ALLOC_CHUNK;
9332 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9333
9334 /* Loop until we reach an abbrev number of 0. */
9335 while (abbrev_number)
9336 {
9337 cur_abbrev = dwarf_alloc_abbrev (cu);
9338
9339 /* read in abbrev header */
9340 cur_abbrev->number = abbrev_number;
9341 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9342 abbrev_ptr += bytes_read;
9343 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9344 abbrev_ptr += 1;
9345
9346 if (cur_abbrev->tag == DW_TAG_namespace)
9347 cu->has_namespace_info = 1;
9348
9349 /* now read in declarations */
9350 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9351 abbrev_ptr += bytes_read;
9352 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9353 abbrev_ptr += bytes_read;
9354 while (abbrev_name)
9355 {
9356 if (cur_abbrev->num_attrs == allocated_attrs)
9357 {
9358 allocated_attrs += ATTR_ALLOC_CHUNK;
9359 cur_attrs
9360 = xrealloc (cur_attrs, (allocated_attrs
9361 * sizeof (struct attr_abbrev)));
9362 }
9363
9364 /* Record whether this compilation unit might have
9365 inter-compilation-unit references. If we don't know what form
9366 this attribute will have, then it might potentially be a
9367 DW_FORM_ref_addr, so we conservatively expect inter-CU
9368 references. */
9369
9370 if (abbrev_form == DW_FORM_ref_addr
9371 || abbrev_form == DW_FORM_indirect)
9372 cu->has_form_ref_addr = 1;
9373
9374 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9375 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9376 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9377 abbrev_ptr += bytes_read;
9378 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9379 abbrev_ptr += bytes_read;
9380 }
9381
9382 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9383 (cur_abbrev->num_attrs
9384 * sizeof (struct attr_abbrev)));
9385 memcpy (cur_abbrev->attrs, cur_attrs,
9386 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9387
9388 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9389 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9390 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9391
9392 /* Get next abbreviation.
9393 Under Irix6 the abbreviations for a compilation unit are not
9394 always properly terminated with an abbrev number of 0.
9395 Exit loop if we encounter an abbreviation which we have
9396 already read (which means we are about to read the abbreviations
9397 for the next compile unit) or if the end of the abbreviation
9398 table is reached. */
9399 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9400 >= dwarf2_per_objfile->abbrev.size)
9401 break;
9402 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9403 abbrev_ptr += bytes_read;
9404 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9405 break;
9406 }
9407
9408 xfree (cur_attrs);
9409 }
9410
9411 /* Release the memory used by the abbrev table for a compilation unit. */
9412
9413 static void
9414 dwarf2_free_abbrev_table (void *ptr_to_cu)
9415 {
9416 struct dwarf2_cu *cu = ptr_to_cu;
9417
9418 obstack_free (&cu->abbrev_obstack, NULL);
9419 cu->dwarf2_abbrevs = NULL;
9420 }
9421
9422 /* Lookup an abbrev_info structure in the abbrev hash table. */
9423
9424 static struct abbrev_info *
9425 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9426 {
9427 unsigned int hash_number;
9428 struct abbrev_info *abbrev;
9429
9430 hash_number = number % ABBREV_HASH_SIZE;
9431 abbrev = cu->dwarf2_abbrevs[hash_number];
9432
9433 while (abbrev)
9434 {
9435 if (abbrev->number == number)
9436 return abbrev;
9437 else
9438 abbrev = abbrev->next;
9439 }
9440 return NULL;
9441 }
9442
9443 /* Returns nonzero if TAG represents a type that we might generate a partial
9444 symbol for. */
9445
9446 static int
9447 is_type_tag_for_partial (int tag)
9448 {
9449 switch (tag)
9450 {
9451 #if 0
9452 /* Some types that would be reasonable to generate partial symbols for,
9453 that we don't at present. */
9454 case DW_TAG_array_type:
9455 case DW_TAG_file_type:
9456 case DW_TAG_ptr_to_member_type:
9457 case DW_TAG_set_type:
9458 case DW_TAG_string_type:
9459 case DW_TAG_subroutine_type:
9460 #endif
9461 case DW_TAG_base_type:
9462 case DW_TAG_class_type:
9463 case DW_TAG_interface_type:
9464 case DW_TAG_enumeration_type:
9465 case DW_TAG_structure_type:
9466 case DW_TAG_subrange_type:
9467 case DW_TAG_typedef:
9468 case DW_TAG_union_type:
9469 return 1;
9470 default:
9471 return 0;
9472 }
9473 }
9474
9475 /* Load all DIEs that are interesting for partial symbols into memory. */
9476
9477 static struct partial_die_info *
9478 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9479 int building_psymtab, struct dwarf2_cu *cu)
9480 {
9481 struct partial_die_info *part_die;
9482 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9483 struct abbrev_info *abbrev;
9484 unsigned int bytes_read;
9485 unsigned int load_all = 0;
9486
9487 int nesting_level = 1;
9488
9489 parent_die = NULL;
9490 last_die = NULL;
9491
9492 if (cu->per_cu && cu->per_cu->load_all_dies)
9493 load_all = 1;
9494
9495 cu->partial_dies
9496 = htab_create_alloc_ex (cu->header.length / 12,
9497 partial_die_hash,
9498 partial_die_eq,
9499 NULL,
9500 &cu->comp_unit_obstack,
9501 hashtab_obstack_allocate,
9502 dummy_obstack_deallocate);
9503
9504 part_die = obstack_alloc (&cu->comp_unit_obstack,
9505 sizeof (struct partial_die_info));
9506
9507 while (1)
9508 {
9509 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9510
9511 /* A NULL abbrev means the end of a series of children. */
9512 if (abbrev == NULL)
9513 {
9514 if (--nesting_level == 0)
9515 {
9516 /* PART_DIE was probably the last thing allocated on the
9517 comp_unit_obstack, so we could call obstack_free
9518 here. We don't do that because the waste is small,
9519 and will be cleaned up when we're done with this
9520 compilation unit. This way, we're also more robust
9521 against other users of the comp_unit_obstack. */
9522 return first_die;
9523 }
9524 info_ptr += bytes_read;
9525 last_die = parent_die;
9526 parent_die = parent_die->die_parent;
9527 continue;
9528 }
9529
9530 /* Check for template arguments. We never save these; if
9531 they're seen, we just mark the parent, and go on our way. */
9532 if (parent_die != NULL
9533 && cu->language == language_cplus
9534 && (abbrev->tag == DW_TAG_template_type_param
9535 || abbrev->tag == DW_TAG_template_value_param))
9536 {
9537 parent_die->has_template_arguments = 1;
9538
9539 if (!load_all)
9540 {
9541 /* We don't need a partial DIE for the template argument. */
9542 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9543 cu);
9544 continue;
9545 }
9546 }
9547
9548 /* We only recurse into subprograms looking for template arguments.
9549 Skip their other children. */
9550 if (!load_all
9551 && cu->language == language_cplus
9552 && parent_die != NULL
9553 && parent_die->tag == DW_TAG_subprogram)
9554 {
9555 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9556 continue;
9557 }
9558
9559 /* Check whether this DIE is interesting enough to save. Normally
9560 we would not be interested in members here, but there may be
9561 later variables referencing them via DW_AT_specification (for
9562 static members). */
9563 if (!load_all
9564 && !is_type_tag_for_partial (abbrev->tag)
9565 && abbrev->tag != DW_TAG_constant
9566 && abbrev->tag != DW_TAG_enumerator
9567 && abbrev->tag != DW_TAG_subprogram
9568 && abbrev->tag != DW_TAG_lexical_block
9569 && abbrev->tag != DW_TAG_variable
9570 && abbrev->tag != DW_TAG_namespace
9571 && abbrev->tag != DW_TAG_module
9572 && abbrev->tag != DW_TAG_member)
9573 {
9574 /* Otherwise we skip to the next sibling, if any. */
9575 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9576 continue;
9577 }
9578
9579 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9580 buffer, info_ptr, cu);
9581
9582 /* This two-pass algorithm for processing partial symbols has a
9583 high cost in cache pressure. Thus, handle some simple cases
9584 here which cover the majority of C partial symbols. DIEs
9585 which neither have specification tags in them, nor could have
9586 specification tags elsewhere pointing at them, can simply be
9587 processed and discarded.
9588
9589 This segment is also optional; scan_partial_symbols and
9590 add_partial_symbol will handle these DIEs if we chain
9591 them in normally. When compilers which do not emit large
9592 quantities of duplicate debug information are more common,
9593 this code can probably be removed. */
9594
9595 /* Any complete simple types at the top level (pretty much all
9596 of them, for a language without namespaces), can be processed
9597 directly. */
9598 if (parent_die == NULL
9599 && part_die->has_specification == 0
9600 && part_die->is_declaration == 0
9601 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9602 || part_die->tag == DW_TAG_base_type
9603 || part_die->tag == DW_TAG_subrange_type))
9604 {
9605 if (building_psymtab && part_die->name != NULL)
9606 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9607 VAR_DOMAIN, LOC_TYPEDEF,
9608 &cu->objfile->static_psymbols,
9609 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9610 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9611 continue;
9612 }
9613
9614 /* The exception for DW_TAG_typedef with has_children above is
9615 a workaround of GCC PR debug/47510. In the case of this complaint
9616 type_name_no_tag_or_error will error on such types later.
9617
9618 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9619 it could not find the child DIEs referenced later, this is checked
9620 above. In correct DWARF DW_TAG_typedef should have no children. */
9621
9622 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9623 complaint (&symfile_complaints,
9624 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9625 "- DIE at 0x%x [in module %s]"),
9626 part_die->offset, cu->objfile->name);
9627
9628 /* If we're at the second level, and we're an enumerator, and
9629 our parent has no specification (meaning possibly lives in a
9630 namespace elsewhere), then we can add the partial symbol now
9631 instead of queueing it. */
9632 if (part_die->tag == DW_TAG_enumerator
9633 && parent_die != NULL
9634 && parent_die->die_parent == NULL
9635 && parent_die->tag == DW_TAG_enumeration_type
9636 && parent_die->has_specification == 0)
9637 {
9638 if (part_die->name == NULL)
9639 complaint (&symfile_complaints,
9640 _("malformed enumerator DIE ignored"));
9641 else if (building_psymtab)
9642 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9643 VAR_DOMAIN, LOC_CONST,
9644 (cu->language == language_cplus
9645 || cu->language == language_java)
9646 ? &cu->objfile->global_psymbols
9647 : &cu->objfile->static_psymbols,
9648 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9649
9650 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9651 continue;
9652 }
9653
9654 /* We'll save this DIE so link it in. */
9655 part_die->die_parent = parent_die;
9656 part_die->die_sibling = NULL;
9657 part_die->die_child = NULL;
9658
9659 if (last_die && last_die == parent_die)
9660 last_die->die_child = part_die;
9661 else if (last_die)
9662 last_die->die_sibling = part_die;
9663
9664 last_die = part_die;
9665
9666 if (first_die == NULL)
9667 first_die = part_die;
9668
9669 /* Maybe add the DIE to the hash table. Not all DIEs that we
9670 find interesting need to be in the hash table, because we
9671 also have the parent/sibling/child chains; only those that we
9672 might refer to by offset later during partial symbol reading.
9673
9674 For now this means things that might have be the target of a
9675 DW_AT_specification, DW_AT_abstract_origin, or
9676 DW_AT_extension. DW_AT_extension will refer only to
9677 namespaces; DW_AT_abstract_origin refers to functions (and
9678 many things under the function DIE, but we do not recurse
9679 into function DIEs during partial symbol reading) and
9680 possibly variables as well; DW_AT_specification refers to
9681 declarations. Declarations ought to have the DW_AT_declaration
9682 flag. It happens that GCC forgets to put it in sometimes, but
9683 only for functions, not for types.
9684
9685 Adding more things than necessary to the hash table is harmless
9686 except for the performance cost. Adding too few will result in
9687 wasted time in find_partial_die, when we reread the compilation
9688 unit with load_all_dies set. */
9689
9690 if (load_all
9691 || abbrev->tag == DW_TAG_constant
9692 || abbrev->tag == DW_TAG_subprogram
9693 || abbrev->tag == DW_TAG_variable
9694 || abbrev->tag == DW_TAG_namespace
9695 || part_die->is_declaration)
9696 {
9697 void **slot;
9698
9699 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9700 part_die->offset, INSERT);
9701 *slot = part_die;
9702 }
9703
9704 part_die = obstack_alloc (&cu->comp_unit_obstack,
9705 sizeof (struct partial_die_info));
9706
9707 /* For some DIEs we want to follow their children (if any). For C
9708 we have no reason to follow the children of structures; for other
9709 languages we have to, so that we can get at method physnames
9710 to infer fully qualified class names, for DW_AT_specification,
9711 and for C++ template arguments. For C++, we also look one level
9712 inside functions to find template arguments (if the name of the
9713 function does not already contain the template arguments).
9714
9715 For Ada, we need to scan the children of subprograms and lexical
9716 blocks as well because Ada allows the definition of nested
9717 entities that could be interesting for the debugger, such as
9718 nested subprograms for instance. */
9719 if (last_die->has_children
9720 && (load_all
9721 || last_die->tag == DW_TAG_namespace
9722 || last_die->tag == DW_TAG_module
9723 || last_die->tag == DW_TAG_enumeration_type
9724 || (cu->language == language_cplus
9725 && last_die->tag == DW_TAG_subprogram
9726 && (last_die->name == NULL
9727 || strchr (last_die->name, '<') == NULL))
9728 || (cu->language != language_c
9729 && (last_die->tag == DW_TAG_class_type
9730 || last_die->tag == DW_TAG_interface_type
9731 || last_die->tag == DW_TAG_structure_type
9732 || last_die->tag == DW_TAG_union_type))
9733 || (cu->language == language_ada
9734 && (last_die->tag == DW_TAG_subprogram
9735 || last_die->tag == DW_TAG_lexical_block))))
9736 {
9737 nesting_level++;
9738 parent_die = last_die;
9739 continue;
9740 }
9741
9742 /* Otherwise we skip to the next sibling, if any. */
9743 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9744
9745 /* Back to the top, do it again. */
9746 }
9747 }
9748
9749 /* Read a minimal amount of information into the minimal die structure. */
9750
9751 static gdb_byte *
9752 read_partial_die (struct partial_die_info *part_die,
9753 struct abbrev_info *abbrev,
9754 unsigned int abbrev_len, bfd *abfd,
9755 gdb_byte *buffer, gdb_byte *info_ptr,
9756 struct dwarf2_cu *cu)
9757 {
9758 unsigned int i;
9759 struct attribute attr;
9760 int has_low_pc_attr = 0;
9761 int has_high_pc_attr = 0;
9762
9763 memset (part_die, 0, sizeof (struct partial_die_info));
9764
9765 part_die->offset = info_ptr - buffer;
9766
9767 info_ptr += abbrev_len;
9768
9769 if (abbrev == NULL)
9770 return info_ptr;
9771
9772 part_die->tag = abbrev->tag;
9773 part_die->has_children = abbrev->has_children;
9774
9775 for (i = 0; i < abbrev->num_attrs; ++i)
9776 {
9777 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9778
9779 /* Store the data if it is of an attribute we want to keep in a
9780 partial symbol table. */
9781 switch (attr.name)
9782 {
9783 case DW_AT_name:
9784 switch (part_die->tag)
9785 {
9786 case DW_TAG_compile_unit:
9787 case DW_TAG_type_unit:
9788 /* Compilation units have a DW_AT_name that is a filename, not
9789 a source language identifier. */
9790 case DW_TAG_enumeration_type:
9791 case DW_TAG_enumerator:
9792 /* These tags always have simple identifiers already; no need
9793 to canonicalize them. */
9794 part_die->name = DW_STRING (&attr);
9795 break;
9796 default:
9797 part_die->name
9798 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9799 &cu->objfile->objfile_obstack);
9800 break;
9801 }
9802 break;
9803 case DW_AT_linkage_name:
9804 case DW_AT_MIPS_linkage_name:
9805 /* Note that both forms of linkage name might appear. We
9806 assume they will be the same, and we only store the last
9807 one we see. */
9808 if (cu->language == language_ada)
9809 part_die->name = DW_STRING (&attr);
9810 part_die->linkage_name = DW_STRING (&attr);
9811 break;
9812 case DW_AT_low_pc:
9813 has_low_pc_attr = 1;
9814 part_die->lowpc = DW_ADDR (&attr);
9815 break;
9816 case DW_AT_high_pc:
9817 has_high_pc_attr = 1;
9818 part_die->highpc = DW_ADDR (&attr);
9819 break;
9820 case DW_AT_location:
9821 /* Support the .debug_loc offsets. */
9822 if (attr_form_is_block (&attr))
9823 {
9824 part_die->locdesc = DW_BLOCK (&attr);
9825 }
9826 else if (attr_form_is_section_offset (&attr))
9827 {
9828 dwarf2_complex_location_expr_complaint ();
9829 }
9830 else
9831 {
9832 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9833 "partial symbol information");
9834 }
9835 break;
9836 case DW_AT_external:
9837 part_die->is_external = DW_UNSND (&attr);
9838 break;
9839 case DW_AT_declaration:
9840 part_die->is_declaration = DW_UNSND (&attr);
9841 break;
9842 case DW_AT_type:
9843 part_die->has_type = 1;
9844 break;
9845 case DW_AT_abstract_origin:
9846 case DW_AT_specification:
9847 case DW_AT_extension:
9848 part_die->has_specification = 1;
9849 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9850 break;
9851 case DW_AT_sibling:
9852 /* Ignore absolute siblings, they might point outside of
9853 the current compile unit. */
9854 if (attr.form == DW_FORM_ref_addr)
9855 complaint (&symfile_complaints,
9856 _("ignoring absolute DW_AT_sibling"));
9857 else
9858 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9859 break;
9860 case DW_AT_byte_size:
9861 part_die->has_byte_size = 1;
9862 break;
9863 case DW_AT_calling_convention:
9864 /* DWARF doesn't provide a way to identify a program's source-level
9865 entry point. DW_AT_calling_convention attributes are only meant
9866 to describe functions' calling conventions.
9867
9868 However, because it's a necessary piece of information in
9869 Fortran, and because DW_CC_program is the only piece of debugging
9870 information whose definition refers to a 'main program' at all,
9871 several compilers have begun marking Fortran main programs with
9872 DW_CC_program --- even when those functions use the standard
9873 calling conventions.
9874
9875 So until DWARF specifies a way to provide this information and
9876 compilers pick up the new representation, we'll support this
9877 practice. */
9878 if (DW_UNSND (&attr) == DW_CC_program
9879 && cu->language == language_fortran)
9880 {
9881 set_main_name (part_die->name);
9882
9883 /* As this DIE has a static linkage the name would be difficult
9884 to look up later. */
9885 language_of_main = language_fortran;
9886 }
9887 break;
9888 default:
9889 break;
9890 }
9891 }
9892
9893 if (has_low_pc_attr && has_high_pc_attr)
9894 {
9895 /* When using the GNU linker, .gnu.linkonce. sections are used to
9896 eliminate duplicate copies of functions and vtables and such.
9897 The linker will arbitrarily choose one and discard the others.
9898 The AT_*_pc values for such functions refer to local labels in
9899 these sections. If the section from that file was discarded, the
9900 labels are not in the output, so the relocs get a value of 0.
9901 If this is a discarded function, mark the pc bounds as invalid,
9902 so that GDB will ignore it. */
9903 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9904 {
9905 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9906
9907 complaint (&symfile_complaints,
9908 _("DW_AT_low_pc %s is zero "
9909 "for DIE at 0x%x [in module %s]"),
9910 paddress (gdbarch, part_die->lowpc),
9911 part_die->offset, cu->objfile->name);
9912 }
9913 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9914 else if (part_die->lowpc >= part_die->highpc)
9915 {
9916 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9917
9918 complaint (&symfile_complaints,
9919 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9920 "for DIE at 0x%x [in module %s]"),
9921 paddress (gdbarch, part_die->lowpc),
9922 paddress (gdbarch, part_die->highpc),
9923 part_die->offset, cu->objfile->name);
9924 }
9925 else
9926 part_die->has_pc_info = 1;
9927 }
9928
9929 return info_ptr;
9930 }
9931
9932 /* Find a cached partial DIE at OFFSET in CU. */
9933
9934 static struct partial_die_info *
9935 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9936 {
9937 struct partial_die_info *lookup_die = NULL;
9938 struct partial_die_info part_die;
9939
9940 part_die.offset = offset;
9941 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9942
9943 return lookup_die;
9944 }
9945
9946 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9947 except in the case of .debug_types DIEs which do not reference
9948 outside their CU (they do however referencing other types via
9949 DW_FORM_ref_sig8). */
9950
9951 static struct partial_die_info *
9952 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9953 {
9954 struct dwarf2_per_cu_data *per_cu = NULL;
9955 struct partial_die_info *pd = NULL;
9956
9957 if (cu->per_cu->debug_type_section)
9958 {
9959 pd = find_partial_die_in_comp_unit (offset, cu);
9960 if (pd != NULL)
9961 return pd;
9962 goto not_found;
9963 }
9964
9965 if (offset_in_cu_p (&cu->header, offset))
9966 {
9967 pd = find_partial_die_in_comp_unit (offset, cu);
9968 if (pd != NULL)
9969 return pd;
9970 }
9971
9972 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9973
9974 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9975 load_partial_comp_unit (per_cu, cu->objfile);
9976
9977 per_cu->cu->last_used = 0;
9978 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9979
9980 if (pd == NULL && per_cu->load_all_dies == 0)
9981 {
9982 struct cleanup *back_to;
9983 struct partial_die_info comp_unit_die;
9984 struct abbrev_info *abbrev;
9985 unsigned int bytes_read;
9986 char *info_ptr;
9987
9988 per_cu->load_all_dies = 1;
9989
9990 /* Re-read the DIEs. */
9991 back_to = make_cleanup (null_cleanup, 0);
9992 if (per_cu->cu->dwarf2_abbrevs == NULL)
9993 {
9994 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9995 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9996 }
9997 info_ptr = (dwarf2_per_objfile->info.buffer
9998 + per_cu->cu->header.offset
9999 + per_cu->cu->header.first_die_offset);
10000 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10001 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10002 per_cu->cu->objfile->obfd,
10003 dwarf2_per_objfile->info.buffer, info_ptr,
10004 per_cu->cu);
10005 if (comp_unit_die.has_children)
10006 load_partial_dies (per_cu->cu->objfile->obfd,
10007 dwarf2_per_objfile->info.buffer, info_ptr,
10008 0, per_cu->cu);
10009 do_cleanups (back_to);
10010
10011 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10012 }
10013
10014 not_found:
10015
10016 if (pd == NULL)
10017 internal_error (__FILE__, __LINE__,
10018 _("could not find partial DIE 0x%x "
10019 "in cache [from module %s]\n"),
10020 offset, bfd_get_filename (cu->objfile->obfd));
10021 return pd;
10022 }
10023
10024 /* See if we can figure out if the class lives in a namespace. We do
10025 this by looking for a member function; its demangled name will
10026 contain namespace info, if there is any. */
10027
10028 static void
10029 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10030 struct dwarf2_cu *cu)
10031 {
10032 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10033 what template types look like, because the demangler
10034 frequently doesn't give the same name as the debug info. We
10035 could fix this by only using the demangled name to get the
10036 prefix (but see comment in read_structure_type). */
10037
10038 struct partial_die_info *real_pdi;
10039 struct partial_die_info *child_pdi;
10040
10041 /* If this DIE (this DIE's specification, if any) has a parent, then
10042 we should not do this. We'll prepend the parent's fully qualified
10043 name when we create the partial symbol. */
10044
10045 real_pdi = struct_pdi;
10046 while (real_pdi->has_specification)
10047 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10048
10049 if (real_pdi->die_parent != NULL)
10050 return;
10051
10052 for (child_pdi = struct_pdi->die_child;
10053 child_pdi != NULL;
10054 child_pdi = child_pdi->die_sibling)
10055 {
10056 if (child_pdi->tag == DW_TAG_subprogram
10057 && child_pdi->linkage_name != NULL)
10058 {
10059 char *actual_class_name
10060 = language_class_name_from_physname (cu->language_defn,
10061 child_pdi->linkage_name);
10062 if (actual_class_name != NULL)
10063 {
10064 struct_pdi->name
10065 = obsavestring (actual_class_name,
10066 strlen (actual_class_name),
10067 &cu->objfile->objfile_obstack);
10068 xfree (actual_class_name);
10069 }
10070 break;
10071 }
10072 }
10073 }
10074
10075 /* Adjust PART_DIE before generating a symbol for it. This function
10076 may set the is_external flag or change the DIE's name. */
10077
10078 static void
10079 fixup_partial_die (struct partial_die_info *part_die,
10080 struct dwarf2_cu *cu)
10081 {
10082 /* Once we've fixed up a die, there's no point in doing so again.
10083 This also avoids a memory leak if we were to call
10084 guess_partial_die_structure_name multiple times. */
10085 if (part_die->fixup_called)
10086 return;
10087
10088 /* If we found a reference attribute and the DIE has no name, try
10089 to find a name in the referred to DIE. */
10090
10091 if (part_die->name == NULL && part_die->has_specification)
10092 {
10093 struct partial_die_info *spec_die;
10094
10095 spec_die = find_partial_die (part_die->spec_offset, cu);
10096
10097 fixup_partial_die (spec_die, cu);
10098
10099 if (spec_die->name)
10100 {
10101 part_die->name = spec_die->name;
10102
10103 /* Copy DW_AT_external attribute if it is set. */
10104 if (spec_die->is_external)
10105 part_die->is_external = spec_die->is_external;
10106 }
10107 }
10108
10109 /* Set default names for some unnamed DIEs. */
10110
10111 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10112 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10113
10114 /* If there is no parent die to provide a namespace, and there are
10115 children, see if we can determine the namespace from their linkage
10116 name.
10117 NOTE: We need to do this even if cu->has_namespace_info != 0.
10118 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
10119 if (cu->language == language_cplus
10120 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10121 && part_die->die_parent == NULL
10122 && part_die->has_children
10123 && (part_die->tag == DW_TAG_class_type
10124 || part_die->tag == DW_TAG_structure_type
10125 || part_die->tag == DW_TAG_union_type))
10126 guess_partial_die_structure_name (part_die, cu);
10127
10128 /* GCC might emit a nameless struct or union that has a linkage
10129 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10130 if (part_die->name == NULL
10131 && (part_die->tag == DW_TAG_class_type
10132 || part_die->tag == DW_TAG_interface_type
10133 || part_die->tag == DW_TAG_structure_type
10134 || part_die->tag == DW_TAG_union_type)
10135 && part_die->linkage_name != NULL)
10136 {
10137 char *demangled;
10138
10139 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10140 if (demangled)
10141 {
10142 const char *base;
10143
10144 /* Strip any leading namespaces/classes, keep only the base name.
10145 DW_AT_name for named DIEs does not contain the prefixes. */
10146 base = strrchr (demangled, ':');
10147 if (base && base > demangled && base[-1] == ':')
10148 base++;
10149 else
10150 base = demangled;
10151
10152 part_die->name = obsavestring (base, strlen (base),
10153 &cu->objfile->objfile_obstack);
10154 xfree (demangled);
10155 }
10156 }
10157
10158 part_die->fixup_called = 1;
10159 }
10160
10161 /* Read an attribute value described by an attribute form. */
10162
10163 static gdb_byte *
10164 read_attribute_value (struct attribute *attr, unsigned form,
10165 bfd *abfd, gdb_byte *info_ptr,
10166 struct dwarf2_cu *cu)
10167 {
10168 struct comp_unit_head *cu_header = &cu->header;
10169 unsigned int bytes_read;
10170 struct dwarf_block *blk;
10171
10172 attr->form = form;
10173 switch (form)
10174 {
10175 case DW_FORM_ref_addr:
10176 if (cu->header.version == 2)
10177 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10178 else
10179 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10180 &cu->header, &bytes_read);
10181 info_ptr += bytes_read;
10182 break;
10183 case DW_FORM_addr:
10184 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10185 info_ptr += bytes_read;
10186 break;
10187 case DW_FORM_block2:
10188 blk = dwarf_alloc_block (cu);
10189 blk->size = read_2_bytes (abfd, info_ptr);
10190 info_ptr += 2;
10191 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10192 info_ptr += blk->size;
10193 DW_BLOCK (attr) = blk;
10194 break;
10195 case DW_FORM_block4:
10196 blk = dwarf_alloc_block (cu);
10197 blk->size = read_4_bytes (abfd, info_ptr);
10198 info_ptr += 4;
10199 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10200 info_ptr += blk->size;
10201 DW_BLOCK (attr) = blk;
10202 break;
10203 case DW_FORM_data2:
10204 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10205 info_ptr += 2;
10206 break;
10207 case DW_FORM_data4:
10208 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10209 info_ptr += 4;
10210 break;
10211 case DW_FORM_data8:
10212 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10213 info_ptr += 8;
10214 break;
10215 case DW_FORM_sec_offset:
10216 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10217 info_ptr += bytes_read;
10218 break;
10219 case DW_FORM_string:
10220 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10221 DW_STRING_IS_CANONICAL (attr) = 0;
10222 info_ptr += bytes_read;
10223 break;
10224 case DW_FORM_strp:
10225 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10226 &bytes_read);
10227 DW_STRING_IS_CANONICAL (attr) = 0;
10228 info_ptr += bytes_read;
10229 break;
10230 case DW_FORM_exprloc:
10231 case DW_FORM_block:
10232 blk = dwarf_alloc_block (cu);
10233 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10234 info_ptr += bytes_read;
10235 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10236 info_ptr += blk->size;
10237 DW_BLOCK (attr) = blk;
10238 break;
10239 case DW_FORM_block1:
10240 blk = dwarf_alloc_block (cu);
10241 blk->size = read_1_byte (abfd, info_ptr);
10242 info_ptr += 1;
10243 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10244 info_ptr += blk->size;
10245 DW_BLOCK (attr) = blk;
10246 break;
10247 case DW_FORM_data1:
10248 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10249 info_ptr += 1;
10250 break;
10251 case DW_FORM_flag:
10252 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10253 info_ptr += 1;
10254 break;
10255 case DW_FORM_flag_present:
10256 DW_UNSND (attr) = 1;
10257 break;
10258 case DW_FORM_sdata:
10259 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10260 info_ptr += bytes_read;
10261 break;
10262 case DW_FORM_udata:
10263 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10264 info_ptr += bytes_read;
10265 break;
10266 case DW_FORM_ref1:
10267 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10268 info_ptr += 1;
10269 break;
10270 case DW_FORM_ref2:
10271 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10272 info_ptr += 2;
10273 break;
10274 case DW_FORM_ref4:
10275 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10276 info_ptr += 4;
10277 break;
10278 case DW_FORM_ref8:
10279 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10280 info_ptr += 8;
10281 break;
10282 case DW_FORM_ref_sig8:
10283 /* Convert the signature to something we can record in DW_UNSND
10284 for later lookup.
10285 NOTE: This is NULL if the type wasn't found. */
10286 DW_SIGNATURED_TYPE (attr) =
10287 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10288 info_ptr += 8;
10289 break;
10290 case DW_FORM_ref_udata:
10291 DW_ADDR (attr) = (cu->header.offset
10292 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10293 info_ptr += bytes_read;
10294 break;
10295 case DW_FORM_indirect:
10296 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10297 info_ptr += bytes_read;
10298 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10299 break;
10300 default:
10301 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10302 dwarf_form_name (form),
10303 bfd_get_filename (abfd));
10304 }
10305
10306 /* We have seen instances where the compiler tried to emit a byte
10307 size attribute of -1 which ended up being encoded as an unsigned
10308 0xffffffff. Although 0xffffffff is technically a valid size value,
10309 an object of this size seems pretty unlikely so we can relatively
10310 safely treat these cases as if the size attribute was invalid and
10311 treat them as zero by default. */
10312 if (attr->name == DW_AT_byte_size
10313 && form == DW_FORM_data4
10314 && DW_UNSND (attr) >= 0xffffffff)
10315 {
10316 complaint
10317 (&symfile_complaints,
10318 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10319 hex_string (DW_UNSND (attr)));
10320 DW_UNSND (attr) = 0;
10321 }
10322
10323 return info_ptr;
10324 }
10325
10326 /* Read an attribute described by an abbreviated attribute. */
10327
10328 static gdb_byte *
10329 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10330 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10331 {
10332 attr->name = abbrev->name;
10333 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10334 }
10335
10336 /* Read dwarf information from a buffer. */
10337
10338 static unsigned int
10339 read_1_byte (bfd *abfd, gdb_byte *buf)
10340 {
10341 return bfd_get_8 (abfd, buf);
10342 }
10343
10344 static int
10345 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10346 {
10347 return bfd_get_signed_8 (abfd, buf);
10348 }
10349
10350 static unsigned int
10351 read_2_bytes (bfd *abfd, gdb_byte *buf)
10352 {
10353 return bfd_get_16 (abfd, buf);
10354 }
10355
10356 static int
10357 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10358 {
10359 return bfd_get_signed_16 (abfd, buf);
10360 }
10361
10362 static unsigned int
10363 read_4_bytes (bfd *abfd, gdb_byte *buf)
10364 {
10365 return bfd_get_32 (abfd, buf);
10366 }
10367
10368 static int
10369 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10370 {
10371 return bfd_get_signed_32 (abfd, buf);
10372 }
10373
10374 static ULONGEST
10375 read_8_bytes (bfd *abfd, gdb_byte *buf)
10376 {
10377 return bfd_get_64 (abfd, buf);
10378 }
10379
10380 static CORE_ADDR
10381 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10382 unsigned int *bytes_read)
10383 {
10384 struct comp_unit_head *cu_header = &cu->header;
10385 CORE_ADDR retval = 0;
10386
10387 if (cu_header->signed_addr_p)
10388 {
10389 switch (cu_header->addr_size)
10390 {
10391 case 2:
10392 retval = bfd_get_signed_16 (abfd, buf);
10393 break;
10394 case 4:
10395 retval = bfd_get_signed_32 (abfd, buf);
10396 break;
10397 case 8:
10398 retval = bfd_get_signed_64 (abfd, buf);
10399 break;
10400 default:
10401 internal_error (__FILE__, __LINE__,
10402 _("read_address: bad switch, signed [in module %s]"),
10403 bfd_get_filename (abfd));
10404 }
10405 }
10406 else
10407 {
10408 switch (cu_header->addr_size)
10409 {
10410 case 2:
10411 retval = bfd_get_16 (abfd, buf);
10412 break;
10413 case 4:
10414 retval = bfd_get_32 (abfd, buf);
10415 break;
10416 case 8:
10417 retval = bfd_get_64 (abfd, buf);
10418 break;
10419 default:
10420 internal_error (__FILE__, __LINE__,
10421 _("read_address: bad switch, "
10422 "unsigned [in module %s]"),
10423 bfd_get_filename (abfd));
10424 }
10425 }
10426
10427 *bytes_read = cu_header->addr_size;
10428 return retval;
10429 }
10430
10431 /* Read the initial length from a section. The (draft) DWARF 3
10432 specification allows the initial length to take up either 4 bytes
10433 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10434 bytes describe the length and all offsets will be 8 bytes in length
10435 instead of 4.
10436
10437 An older, non-standard 64-bit format is also handled by this
10438 function. The older format in question stores the initial length
10439 as an 8-byte quantity without an escape value. Lengths greater
10440 than 2^32 aren't very common which means that the initial 4 bytes
10441 is almost always zero. Since a length value of zero doesn't make
10442 sense for the 32-bit format, this initial zero can be considered to
10443 be an escape value which indicates the presence of the older 64-bit
10444 format. As written, the code can't detect (old format) lengths
10445 greater than 4GB. If it becomes necessary to handle lengths
10446 somewhat larger than 4GB, we could allow other small values (such
10447 as the non-sensical values of 1, 2, and 3) to also be used as
10448 escape values indicating the presence of the old format.
10449
10450 The value returned via bytes_read should be used to increment the
10451 relevant pointer after calling read_initial_length().
10452
10453 [ Note: read_initial_length() and read_offset() are based on the
10454 document entitled "DWARF Debugging Information Format", revision
10455 3, draft 8, dated November 19, 2001. This document was obtained
10456 from:
10457
10458 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10459
10460 This document is only a draft and is subject to change. (So beware.)
10461
10462 Details regarding the older, non-standard 64-bit format were
10463 determined empirically by examining 64-bit ELF files produced by
10464 the SGI toolchain on an IRIX 6.5 machine.
10465
10466 - Kevin, July 16, 2002
10467 ] */
10468
10469 static LONGEST
10470 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10471 {
10472 LONGEST length = bfd_get_32 (abfd, buf);
10473
10474 if (length == 0xffffffff)
10475 {
10476 length = bfd_get_64 (abfd, buf + 4);
10477 *bytes_read = 12;
10478 }
10479 else if (length == 0)
10480 {
10481 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10482 length = bfd_get_64 (abfd, buf);
10483 *bytes_read = 8;
10484 }
10485 else
10486 {
10487 *bytes_read = 4;
10488 }
10489
10490 return length;
10491 }
10492
10493 /* Cover function for read_initial_length.
10494 Returns the length of the object at BUF, and stores the size of the
10495 initial length in *BYTES_READ and stores the size that offsets will be in
10496 *OFFSET_SIZE.
10497 If the initial length size is not equivalent to that specified in
10498 CU_HEADER then issue a complaint.
10499 This is useful when reading non-comp-unit headers. */
10500
10501 static LONGEST
10502 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10503 const struct comp_unit_head *cu_header,
10504 unsigned int *bytes_read,
10505 unsigned int *offset_size)
10506 {
10507 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10508
10509 gdb_assert (cu_header->initial_length_size == 4
10510 || cu_header->initial_length_size == 8
10511 || cu_header->initial_length_size == 12);
10512
10513 if (cu_header->initial_length_size != *bytes_read)
10514 complaint (&symfile_complaints,
10515 _("intermixed 32-bit and 64-bit DWARF sections"));
10516
10517 *offset_size = (*bytes_read == 4) ? 4 : 8;
10518 return length;
10519 }
10520
10521 /* Read an offset from the data stream. The size of the offset is
10522 given by cu_header->offset_size. */
10523
10524 static LONGEST
10525 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10526 unsigned int *bytes_read)
10527 {
10528 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10529
10530 *bytes_read = cu_header->offset_size;
10531 return offset;
10532 }
10533
10534 /* Read an offset from the data stream. */
10535
10536 static LONGEST
10537 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10538 {
10539 LONGEST retval = 0;
10540
10541 switch (offset_size)
10542 {
10543 case 4:
10544 retval = bfd_get_32 (abfd, buf);
10545 break;
10546 case 8:
10547 retval = bfd_get_64 (abfd, buf);
10548 break;
10549 default:
10550 internal_error (__FILE__, __LINE__,
10551 _("read_offset_1: bad switch [in module %s]"),
10552 bfd_get_filename (abfd));
10553 }
10554
10555 return retval;
10556 }
10557
10558 static gdb_byte *
10559 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10560 {
10561 /* If the size of a host char is 8 bits, we can return a pointer
10562 to the buffer, otherwise we have to copy the data to a buffer
10563 allocated on the temporary obstack. */
10564 gdb_assert (HOST_CHAR_BIT == 8);
10565 return buf;
10566 }
10567
10568 static char *
10569 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10570 {
10571 /* If the size of a host char is 8 bits, we can return a pointer
10572 to the string, otherwise we have to copy the string to a buffer
10573 allocated on the temporary obstack. */
10574 gdb_assert (HOST_CHAR_BIT == 8);
10575 if (*buf == '\0')
10576 {
10577 *bytes_read_ptr = 1;
10578 return NULL;
10579 }
10580 *bytes_read_ptr = strlen ((char *) buf) + 1;
10581 return (char *) buf;
10582 }
10583
10584 static char *
10585 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10586 {
10587 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10588 if (dwarf2_per_objfile->str.buffer == NULL)
10589 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10590 bfd_get_filename (abfd));
10591 if (str_offset >= dwarf2_per_objfile->str.size)
10592 error (_("DW_FORM_strp pointing outside of "
10593 ".debug_str section [in module %s]"),
10594 bfd_get_filename (abfd));
10595 gdb_assert (HOST_CHAR_BIT == 8);
10596 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10597 return NULL;
10598 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10599 }
10600
10601 static char *
10602 read_indirect_string (bfd *abfd, gdb_byte *buf,
10603 const struct comp_unit_head *cu_header,
10604 unsigned int *bytes_read_ptr)
10605 {
10606 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10607
10608 return read_indirect_string_at_offset (abfd, str_offset);
10609 }
10610
10611 static unsigned long
10612 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10613 {
10614 unsigned long result;
10615 unsigned int num_read;
10616 int i, shift;
10617 unsigned char byte;
10618
10619 result = 0;
10620 shift = 0;
10621 num_read = 0;
10622 i = 0;
10623 while (1)
10624 {
10625 byte = bfd_get_8 (abfd, buf);
10626 buf++;
10627 num_read++;
10628 result |= ((unsigned long)(byte & 127) << shift);
10629 if ((byte & 128) == 0)
10630 {
10631 break;
10632 }
10633 shift += 7;
10634 }
10635 *bytes_read_ptr = num_read;
10636 return result;
10637 }
10638
10639 static long
10640 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10641 {
10642 long result;
10643 int i, shift, num_read;
10644 unsigned char byte;
10645
10646 result = 0;
10647 shift = 0;
10648 num_read = 0;
10649 i = 0;
10650 while (1)
10651 {
10652 byte = bfd_get_8 (abfd, buf);
10653 buf++;
10654 num_read++;
10655 result |= ((long)(byte & 127) << shift);
10656 shift += 7;
10657 if ((byte & 128) == 0)
10658 {
10659 break;
10660 }
10661 }
10662 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10663 result |= -(((long)1) << shift);
10664 *bytes_read_ptr = num_read;
10665 return result;
10666 }
10667
10668 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10669
10670 static gdb_byte *
10671 skip_leb128 (bfd *abfd, gdb_byte *buf)
10672 {
10673 int byte;
10674
10675 while (1)
10676 {
10677 byte = bfd_get_8 (abfd, buf);
10678 buf++;
10679 if ((byte & 128) == 0)
10680 return buf;
10681 }
10682 }
10683
10684 static void
10685 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10686 {
10687 switch (lang)
10688 {
10689 case DW_LANG_C89:
10690 case DW_LANG_C99:
10691 case DW_LANG_C:
10692 cu->language = language_c;
10693 break;
10694 case DW_LANG_C_plus_plus:
10695 cu->language = language_cplus;
10696 break;
10697 case DW_LANG_D:
10698 cu->language = language_d;
10699 break;
10700 case DW_LANG_Fortran77:
10701 case DW_LANG_Fortran90:
10702 case DW_LANG_Fortran95:
10703 cu->language = language_fortran;
10704 break;
10705 case DW_LANG_Mips_Assembler:
10706 cu->language = language_asm;
10707 break;
10708 case DW_LANG_Java:
10709 cu->language = language_java;
10710 break;
10711 case DW_LANG_Ada83:
10712 case DW_LANG_Ada95:
10713 cu->language = language_ada;
10714 break;
10715 case DW_LANG_Modula2:
10716 cu->language = language_m2;
10717 break;
10718 case DW_LANG_Pascal83:
10719 cu->language = language_pascal;
10720 break;
10721 case DW_LANG_ObjC:
10722 cu->language = language_objc;
10723 break;
10724 case DW_LANG_Cobol74:
10725 case DW_LANG_Cobol85:
10726 default:
10727 cu->language = language_minimal;
10728 break;
10729 }
10730 cu->language_defn = language_def (cu->language);
10731 }
10732
10733 /* Return the named attribute or NULL if not there. */
10734
10735 static struct attribute *
10736 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10737 {
10738 unsigned int i;
10739 struct attribute *spec = NULL;
10740
10741 for (i = 0; i < die->num_attrs; ++i)
10742 {
10743 if (die->attrs[i].name == name)
10744 return &die->attrs[i];
10745 if (die->attrs[i].name == DW_AT_specification
10746 || die->attrs[i].name == DW_AT_abstract_origin)
10747 spec = &die->attrs[i];
10748 }
10749
10750 if (spec)
10751 {
10752 die = follow_die_ref (die, spec, &cu);
10753 return dwarf2_attr (die, name, cu);
10754 }
10755
10756 return NULL;
10757 }
10758
10759 /* Return the named attribute or NULL if not there,
10760 but do not follow DW_AT_specification, etc.
10761 This is for use in contexts where we're reading .debug_types dies.
10762 Following DW_AT_specification, DW_AT_abstract_origin will take us
10763 back up the chain, and we want to go down. */
10764
10765 static struct attribute *
10766 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10767 struct dwarf2_cu *cu)
10768 {
10769 unsigned int i;
10770
10771 for (i = 0; i < die->num_attrs; ++i)
10772 if (die->attrs[i].name == name)
10773 return &die->attrs[i];
10774
10775 return NULL;
10776 }
10777
10778 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10779 and holds a non-zero value. This function should only be used for
10780 DW_FORM_flag or DW_FORM_flag_present attributes. */
10781
10782 static int
10783 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10784 {
10785 struct attribute *attr = dwarf2_attr (die, name, cu);
10786
10787 return (attr && DW_UNSND (attr));
10788 }
10789
10790 static int
10791 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10792 {
10793 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10794 which value is non-zero. However, we have to be careful with
10795 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10796 (via dwarf2_flag_true_p) follows this attribute. So we may
10797 end up accidently finding a declaration attribute that belongs
10798 to a different DIE referenced by the specification attribute,
10799 even though the given DIE does not have a declaration attribute. */
10800 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10801 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10802 }
10803
10804 /* Return the die giving the specification for DIE, if there is
10805 one. *SPEC_CU is the CU containing DIE on input, and the CU
10806 containing the return value on output. If there is no
10807 specification, but there is an abstract origin, that is
10808 returned. */
10809
10810 static struct die_info *
10811 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10812 {
10813 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10814 *spec_cu);
10815
10816 if (spec_attr == NULL)
10817 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10818
10819 if (spec_attr == NULL)
10820 return NULL;
10821 else
10822 return follow_die_ref (die, spec_attr, spec_cu);
10823 }
10824
10825 /* Free the line_header structure *LH, and any arrays and strings it
10826 refers to.
10827 NOTE: This is also used as a "cleanup" function. */
10828
10829 static void
10830 free_line_header (struct line_header *lh)
10831 {
10832 if (lh->standard_opcode_lengths)
10833 xfree (lh->standard_opcode_lengths);
10834
10835 /* Remember that all the lh->file_names[i].name pointers are
10836 pointers into debug_line_buffer, and don't need to be freed. */
10837 if (lh->file_names)
10838 xfree (lh->file_names);
10839
10840 /* Similarly for the include directory names. */
10841 if (lh->include_dirs)
10842 xfree (lh->include_dirs);
10843
10844 xfree (lh);
10845 }
10846
10847 /* Add an entry to LH's include directory table. */
10848
10849 static void
10850 add_include_dir (struct line_header *lh, char *include_dir)
10851 {
10852 /* Grow the array if necessary. */
10853 if (lh->include_dirs_size == 0)
10854 {
10855 lh->include_dirs_size = 1; /* for testing */
10856 lh->include_dirs = xmalloc (lh->include_dirs_size
10857 * sizeof (*lh->include_dirs));
10858 }
10859 else if (lh->num_include_dirs >= lh->include_dirs_size)
10860 {
10861 lh->include_dirs_size *= 2;
10862 lh->include_dirs = xrealloc (lh->include_dirs,
10863 (lh->include_dirs_size
10864 * sizeof (*lh->include_dirs)));
10865 }
10866
10867 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10868 }
10869
10870 /* Add an entry to LH's file name table. */
10871
10872 static void
10873 add_file_name (struct line_header *lh,
10874 char *name,
10875 unsigned int dir_index,
10876 unsigned int mod_time,
10877 unsigned int length)
10878 {
10879 struct file_entry *fe;
10880
10881 /* Grow the array if necessary. */
10882 if (lh->file_names_size == 0)
10883 {
10884 lh->file_names_size = 1; /* for testing */
10885 lh->file_names = xmalloc (lh->file_names_size
10886 * sizeof (*lh->file_names));
10887 }
10888 else if (lh->num_file_names >= lh->file_names_size)
10889 {
10890 lh->file_names_size *= 2;
10891 lh->file_names = xrealloc (lh->file_names,
10892 (lh->file_names_size
10893 * sizeof (*lh->file_names)));
10894 }
10895
10896 fe = &lh->file_names[lh->num_file_names++];
10897 fe->name = name;
10898 fe->dir_index = dir_index;
10899 fe->mod_time = mod_time;
10900 fe->length = length;
10901 fe->included_p = 0;
10902 fe->symtab = NULL;
10903 }
10904
10905 /* Read the statement program header starting at OFFSET in
10906 .debug_line, according to the endianness of ABFD. Return a pointer
10907 to a struct line_header, allocated using xmalloc.
10908
10909 NOTE: the strings in the include directory and file name tables of
10910 the returned object point into debug_line_buffer, and must not be
10911 freed. */
10912
10913 static struct line_header *
10914 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10915 struct dwarf2_cu *cu)
10916 {
10917 struct cleanup *back_to;
10918 struct line_header *lh;
10919 gdb_byte *line_ptr;
10920 unsigned int bytes_read, offset_size;
10921 int i;
10922 char *cur_dir, *cur_file;
10923
10924 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10925 if (dwarf2_per_objfile->line.buffer == NULL)
10926 {
10927 complaint (&symfile_complaints, _("missing .debug_line section"));
10928 return 0;
10929 }
10930
10931 /* Make sure that at least there's room for the total_length field.
10932 That could be 12 bytes long, but we're just going to fudge that. */
10933 if (offset + 4 >= dwarf2_per_objfile->line.size)
10934 {
10935 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10936 return 0;
10937 }
10938
10939 lh = xmalloc (sizeof (*lh));
10940 memset (lh, 0, sizeof (*lh));
10941 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10942 (void *) lh);
10943
10944 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10945
10946 /* Read in the header. */
10947 lh->total_length =
10948 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10949 &bytes_read, &offset_size);
10950 line_ptr += bytes_read;
10951 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10952 + dwarf2_per_objfile->line.size))
10953 {
10954 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10955 return 0;
10956 }
10957 lh->statement_program_end = line_ptr + lh->total_length;
10958 lh->version = read_2_bytes (abfd, line_ptr);
10959 line_ptr += 2;
10960 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10961 line_ptr += offset_size;
10962 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10963 line_ptr += 1;
10964 if (lh->version >= 4)
10965 {
10966 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10967 line_ptr += 1;
10968 }
10969 else
10970 lh->maximum_ops_per_instruction = 1;
10971
10972 if (lh->maximum_ops_per_instruction == 0)
10973 {
10974 lh->maximum_ops_per_instruction = 1;
10975 complaint (&symfile_complaints,
10976 _("invalid maximum_ops_per_instruction "
10977 "in `.debug_line' section"));
10978 }
10979
10980 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10981 line_ptr += 1;
10982 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10983 line_ptr += 1;
10984 lh->line_range = read_1_byte (abfd, line_ptr);
10985 line_ptr += 1;
10986 lh->opcode_base = read_1_byte (abfd, line_ptr);
10987 line_ptr += 1;
10988 lh->standard_opcode_lengths
10989 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10990
10991 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10992 for (i = 1; i < lh->opcode_base; ++i)
10993 {
10994 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10995 line_ptr += 1;
10996 }
10997
10998 /* Read directory table. */
10999 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11000 {
11001 line_ptr += bytes_read;
11002 add_include_dir (lh, cur_dir);
11003 }
11004 line_ptr += bytes_read;
11005
11006 /* Read file name table. */
11007 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11008 {
11009 unsigned int dir_index, mod_time, length;
11010
11011 line_ptr += bytes_read;
11012 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11013 line_ptr += bytes_read;
11014 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11015 line_ptr += bytes_read;
11016 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11017 line_ptr += bytes_read;
11018
11019 add_file_name (lh, cur_file, dir_index, mod_time, length);
11020 }
11021 line_ptr += bytes_read;
11022 lh->statement_program_start = line_ptr;
11023
11024 if (line_ptr > (dwarf2_per_objfile->line.buffer
11025 + dwarf2_per_objfile->line.size))
11026 complaint (&symfile_complaints,
11027 _("line number info header doesn't "
11028 "fit in `.debug_line' section"));
11029
11030 discard_cleanups (back_to);
11031 return lh;
11032 }
11033
11034 /* This function exists to work around a bug in certain compilers
11035 (particularly GCC 2.95), in which the first line number marker of a
11036 function does not show up until after the prologue, right before
11037 the second line number marker. This function shifts ADDRESS down
11038 to the beginning of the function if necessary, and is called on
11039 addresses passed to record_line. */
11040
11041 static CORE_ADDR
11042 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
11043 {
11044 struct function_range *fn;
11045
11046 /* Find the function_range containing address. */
11047 if (!cu->first_fn)
11048 return address;
11049
11050 if (!cu->cached_fn)
11051 cu->cached_fn = cu->first_fn;
11052
11053 fn = cu->cached_fn;
11054 while (fn)
11055 if (fn->lowpc <= address && fn->highpc > address)
11056 goto found;
11057 else
11058 fn = fn->next;
11059
11060 fn = cu->first_fn;
11061 while (fn && fn != cu->cached_fn)
11062 if (fn->lowpc <= address && fn->highpc > address)
11063 goto found;
11064 else
11065 fn = fn->next;
11066
11067 return address;
11068
11069 found:
11070 if (fn->seen_line)
11071 return address;
11072 if (address != fn->lowpc)
11073 complaint (&symfile_complaints,
11074 _("misplaced first line number at 0x%lx for '%s'"),
11075 (unsigned long) address, fn->name);
11076 fn->seen_line = 1;
11077 return fn->lowpc;
11078 }
11079
11080 /* Subroutine of dwarf_decode_lines to simplify it.
11081 Return the file name of the psymtab for included file FILE_INDEX
11082 in line header LH of PST.
11083 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11084 If space for the result is malloc'd, it will be freed by a cleanup.
11085 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11086
11087 static char *
11088 psymtab_include_file_name (const struct line_header *lh, int file_index,
11089 const struct partial_symtab *pst,
11090 const char *comp_dir)
11091 {
11092 const struct file_entry fe = lh->file_names [file_index];
11093 char *include_name = fe.name;
11094 char *include_name_to_compare = include_name;
11095 char *dir_name = NULL;
11096 const char *pst_filename;
11097 char *copied_name = NULL;
11098 int file_is_pst;
11099
11100 if (fe.dir_index)
11101 dir_name = lh->include_dirs[fe.dir_index - 1];
11102
11103 if (!IS_ABSOLUTE_PATH (include_name)
11104 && (dir_name != NULL || comp_dir != NULL))
11105 {
11106 /* Avoid creating a duplicate psymtab for PST.
11107 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11108 Before we do the comparison, however, we need to account
11109 for DIR_NAME and COMP_DIR.
11110 First prepend dir_name (if non-NULL). If we still don't
11111 have an absolute path prepend comp_dir (if non-NULL).
11112 However, the directory we record in the include-file's
11113 psymtab does not contain COMP_DIR (to match the
11114 corresponding symtab(s)).
11115
11116 Example:
11117
11118 bash$ cd /tmp
11119 bash$ gcc -g ./hello.c
11120 include_name = "hello.c"
11121 dir_name = "."
11122 DW_AT_comp_dir = comp_dir = "/tmp"
11123 DW_AT_name = "./hello.c" */
11124
11125 if (dir_name != NULL)
11126 {
11127 include_name = concat (dir_name, SLASH_STRING,
11128 include_name, (char *)NULL);
11129 include_name_to_compare = include_name;
11130 make_cleanup (xfree, include_name);
11131 }
11132 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11133 {
11134 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11135 include_name, (char *)NULL);
11136 }
11137 }
11138
11139 pst_filename = pst->filename;
11140 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11141 {
11142 copied_name = concat (pst->dirname, SLASH_STRING,
11143 pst_filename, (char *)NULL);
11144 pst_filename = copied_name;
11145 }
11146
11147 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11148
11149 if (include_name_to_compare != include_name)
11150 xfree (include_name_to_compare);
11151 if (copied_name != NULL)
11152 xfree (copied_name);
11153
11154 if (file_is_pst)
11155 return NULL;
11156 return include_name;
11157 }
11158
11159 /* Ignore this record_line request. */
11160
11161 static void
11162 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11163 {
11164 return;
11165 }
11166
11167 /* Decode the Line Number Program (LNP) for the given line_header
11168 structure and CU. The actual information extracted and the type
11169 of structures created from the LNP depends on the value of PST.
11170
11171 1. If PST is NULL, then this procedure uses the data from the program
11172 to create all necessary symbol tables, and their linetables.
11173
11174 2. If PST is not NULL, this procedure reads the program to determine
11175 the list of files included by the unit represented by PST, and
11176 builds all the associated partial symbol tables.
11177
11178 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11179 It is used for relative paths in the line table.
11180 NOTE: When processing partial symtabs (pst != NULL),
11181 comp_dir == pst->dirname.
11182
11183 NOTE: It is important that psymtabs have the same file name (via strcmp)
11184 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11185 symtab we don't use it in the name of the psymtabs we create.
11186 E.g. expand_line_sal requires this when finding psymtabs to expand.
11187 A good testcase for this is mb-inline.exp. */
11188
11189 static void
11190 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
11191 struct dwarf2_cu *cu, struct partial_symtab *pst)
11192 {
11193 gdb_byte *line_ptr, *extended_end;
11194 gdb_byte *line_end;
11195 unsigned int bytes_read, extended_len;
11196 unsigned char op_code, extended_op, adj_opcode;
11197 CORE_ADDR baseaddr;
11198 struct objfile *objfile = cu->objfile;
11199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11200 const int decode_for_pst_p = (pst != NULL);
11201 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
11202 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11203 = record_line;
11204
11205 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11206
11207 line_ptr = lh->statement_program_start;
11208 line_end = lh->statement_program_end;
11209
11210 /* Read the statement sequences until there's nothing left. */
11211 while (line_ptr < line_end)
11212 {
11213 /* state machine registers */
11214 CORE_ADDR address = 0;
11215 unsigned int file = 1;
11216 unsigned int line = 1;
11217 unsigned int column = 0;
11218 int is_stmt = lh->default_is_stmt;
11219 int basic_block = 0;
11220 int end_sequence = 0;
11221 CORE_ADDR addr;
11222 unsigned char op_index = 0;
11223
11224 if (!decode_for_pst_p && lh->num_file_names >= file)
11225 {
11226 /* Start a subfile for the current file of the state machine. */
11227 /* lh->include_dirs and lh->file_names are 0-based, but the
11228 directory and file name numbers in the statement program
11229 are 1-based. */
11230 struct file_entry *fe = &lh->file_names[file - 1];
11231 char *dir = NULL;
11232
11233 if (fe->dir_index)
11234 dir = lh->include_dirs[fe->dir_index - 1];
11235
11236 dwarf2_start_subfile (fe->name, dir, comp_dir);
11237 }
11238
11239 /* Decode the table. */
11240 while (!end_sequence)
11241 {
11242 op_code = read_1_byte (abfd, line_ptr);
11243 line_ptr += 1;
11244 if (line_ptr > line_end)
11245 {
11246 dwarf2_debug_line_missing_end_sequence_complaint ();
11247 break;
11248 }
11249
11250 if (op_code >= lh->opcode_base)
11251 {
11252 /* Special operand. */
11253 adj_opcode = op_code - lh->opcode_base;
11254 address += (((op_index + (adj_opcode / lh->line_range))
11255 / lh->maximum_ops_per_instruction)
11256 * lh->minimum_instruction_length);
11257 op_index = ((op_index + (adj_opcode / lh->line_range))
11258 % lh->maximum_ops_per_instruction);
11259 line += lh->line_base + (adj_opcode % lh->line_range);
11260 if (lh->num_file_names < file || file == 0)
11261 dwarf2_debug_line_missing_file_complaint ();
11262 /* For now we ignore lines not starting on an
11263 instruction boundary. */
11264 else if (op_index == 0)
11265 {
11266 lh->file_names[file - 1].included_p = 1;
11267 if (!decode_for_pst_p && is_stmt)
11268 {
11269 if (last_subfile != current_subfile)
11270 {
11271 addr = gdbarch_addr_bits_remove (gdbarch, address);
11272 if (last_subfile)
11273 (*p_record_line) (last_subfile, 0, addr);
11274 last_subfile = current_subfile;
11275 }
11276 /* Append row to matrix using current values. */
11277 addr = check_cu_functions (address, cu);
11278 addr = gdbarch_addr_bits_remove (gdbarch, addr);
11279 (*p_record_line) (current_subfile, line, addr);
11280 }
11281 }
11282 basic_block = 0;
11283 }
11284 else switch (op_code)
11285 {
11286 case DW_LNS_extended_op:
11287 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11288 &bytes_read);
11289 line_ptr += bytes_read;
11290 extended_end = line_ptr + extended_len;
11291 extended_op = read_1_byte (abfd, line_ptr);
11292 line_ptr += 1;
11293 switch (extended_op)
11294 {
11295 case DW_LNE_end_sequence:
11296 p_record_line = record_line;
11297 end_sequence = 1;
11298 break;
11299 case DW_LNE_set_address:
11300 address = read_address (abfd, line_ptr, cu, &bytes_read);
11301
11302 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11303 {
11304 /* This line table is for a function which has been
11305 GCd by the linker. Ignore it. PR gdb/12528 */
11306
11307 long line_offset
11308 = line_ptr - dwarf2_per_objfile->line.buffer;
11309
11310 complaint (&symfile_complaints,
11311 _(".debug_line address at offset 0x%lx is 0 "
11312 "[in module %s]"),
11313 line_offset, cu->objfile->name);
11314 p_record_line = noop_record_line;
11315 }
11316
11317 op_index = 0;
11318 line_ptr += bytes_read;
11319 address += baseaddr;
11320 break;
11321 case DW_LNE_define_file:
11322 {
11323 char *cur_file;
11324 unsigned int dir_index, mod_time, length;
11325
11326 cur_file = read_direct_string (abfd, line_ptr,
11327 &bytes_read);
11328 line_ptr += bytes_read;
11329 dir_index =
11330 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11331 line_ptr += bytes_read;
11332 mod_time =
11333 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11334 line_ptr += bytes_read;
11335 length =
11336 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11337 line_ptr += bytes_read;
11338 add_file_name (lh, cur_file, dir_index, mod_time, length);
11339 }
11340 break;
11341 case DW_LNE_set_discriminator:
11342 /* The discriminator is not interesting to the debugger;
11343 just ignore it. */
11344 line_ptr = extended_end;
11345 break;
11346 default:
11347 complaint (&symfile_complaints,
11348 _("mangled .debug_line section"));
11349 return;
11350 }
11351 /* Make sure that we parsed the extended op correctly. If e.g.
11352 we expected a different address size than the producer used,
11353 we may have read the wrong number of bytes. */
11354 if (line_ptr != extended_end)
11355 {
11356 complaint (&symfile_complaints,
11357 _("mangled .debug_line section"));
11358 return;
11359 }
11360 break;
11361 case DW_LNS_copy:
11362 if (lh->num_file_names < file || file == 0)
11363 dwarf2_debug_line_missing_file_complaint ();
11364 else
11365 {
11366 lh->file_names[file - 1].included_p = 1;
11367 if (!decode_for_pst_p && is_stmt)
11368 {
11369 if (last_subfile != current_subfile)
11370 {
11371 addr = gdbarch_addr_bits_remove (gdbarch, address);
11372 if (last_subfile)
11373 (*p_record_line) (last_subfile, 0, addr);
11374 last_subfile = current_subfile;
11375 }
11376 addr = check_cu_functions (address, cu);
11377 addr = gdbarch_addr_bits_remove (gdbarch, addr);
11378 (*p_record_line) (current_subfile, line, addr);
11379 }
11380 }
11381 basic_block = 0;
11382 break;
11383 case DW_LNS_advance_pc:
11384 {
11385 CORE_ADDR adjust
11386 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11387
11388 address += (((op_index + adjust)
11389 / lh->maximum_ops_per_instruction)
11390 * lh->minimum_instruction_length);
11391 op_index = ((op_index + adjust)
11392 % lh->maximum_ops_per_instruction);
11393 line_ptr += bytes_read;
11394 }
11395 break;
11396 case DW_LNS_advance_line:
11397 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11398 line_ptr += bytes_read;
11399 break;
11400 case DW_LNS_set_file:
11401 {
11402 /* The arrays lh->include_dirs and lh->file_names are
11403 0-based, but the directory and file name numbers in
11404 the statement program are 1-based. */
11405 struct file_entry *fe;
11406 char *dir = NULL;
11407
11408 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11409 line_ptr += bytes_read;
11410 if (lh->num_file_names < file || file == 0)
11411 dwarf2_debug_line_missing_file_complaint ();
11412 else
11413 {
11414 fe = &lh->file_names[file - 1];
11415 if (fe->dir_index)
11416 dir = lh->include_dirs[fe->dir_index - 1];
11417 if (!decode_for_pst_p)
11418 {
11419 last_subfile = current_subfile;
11420 dwarf2_start_subfile (fe->name, dir, comp_dir);
11421 }
11422 }
11423 }
11424 break;
11425 case DW_LNS_set_column:
11426 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11427 line_ptr += bytes_read;
11428 break;
11429 case DW_LNS_negate_stmt:
11430 is_stmt = (!is_stmt);
11431 break;
11432 case DW_LNS_set_basic_block:
11433 basic_block = 1;
11434 break;
11435 /* Add to the address register of the state machine the
11436 address increment value corresponding to special opcode
11437 255. I.e., this value is scaled by the minimum
11438 instruction length since special opcode 255 would have
11439 scaled the increment. */
11440 case DW_LNS_const_add_pc:
11441 {
11442 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11443
11444 address += (((op_index + adjust)
11445 / lh->maximum_ops_per_instruction)
11446 * lh->minimum_instruction_length);
11447 op_index = ((op_index + adjust)
11448 % lh->maximum_ops_per_instruction);
11449 }
11450 break;
11451 case DW_LNS_fixed_advance_pc:
11452 address += read_2_bytes (abfd, line_ptr);
11453 op_index = 0;
11454 line_ptr += 2;
11455 break;
11456 default:
11457 {
11458 /* Unknown standard opcode, ignore it. */
11459 int i;
11460
11461 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11462 {
11463 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11464 line_ptr += bytes_read;
11465 }
11466 }
11467 }
11468 }
11469 if (lh->num_file_names < file || file == 0)
11470 dwarf2_debug_line_missing_file_complaint ();
11471 else
11472 {
11473 lh->file_names[file - 1].included_p = 1;
11474 if (!decode_for_pst_p)
11475 {
11476 addr = gdbarch_addr_bits_remove (gdbarch, address);
11477 (*p_record_line) (current_subfile, 0, addr);
11478 }
11479 }
11480 }
11481
11482 if (decode_for_pst_p)
11483 {
11484 int file_index;
11485
11486 /* Now that we're done scanning the Line Header Program, we can
11487 create the psymtab of each included file. */
11488 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11489 if (lh->file_names[file_index].included_p == 1)
11490 {
11491 char *include_name =
11492 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11493 if (include_name != NULL)
11494 dwarf2_create_include_psymtab (include_name, pst, objfile);
11495 }
11496 }
11497 else
11498 {
11499 /* Make sure a symtab is created for every file, even files
11500 which contain only variables (i.e. no code with associated
11501 line numbers). */
11502
11503 int i;
11504 struct file_entry *fe;
11505
11506 for (i = 0; i < lh->num_file_names; i++)
11507 {
11508 char *dir = NULL;
11509
11510 fe = &lh->file_names[i];
11511 if (fe->dir_index)
11512 dir = lh->include_dirs[fe->dir_index - 1];
11513 dwarf2_start_subfile (fe->name, dir, comp_dir);
11514
11515 /* Skip the main file; we don't need it, and it must be
11516 allocated last, so that it will show up before the
11517 non-primary symtabs in the objfile's symtab list. */
11518 if (current_subfile == first_subfile)
11519 continue;
11520
11521 if (current_subfile->symtab == NULL)
11522 current_subfile->symtab = allocate_symtab (current_subfile->name,
11523 cu->objfile);
11524 fe->symtab = current_subfile->symtab;
11525 }
11526 }
11527 }
11528
11529 /* Start a subfile for DWARF. FILENAME is the name of the file and
11530 DIRNAME the name of the source directory which contains FILENAME
11531 or NULL if not known. COMP_DIR is the compilation directory for the
11532 linetable's compilation unit or NULL if not known.
11533 This routine tries to keep line numbers from identical absolute and
11534 relative file names in a common subfile.
11535
11536 Using the `list' example from the GDB testsuite, which resides in
11537 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11538 of /srcdir/list0.c yields the following debugging information for list0.c:
11539
11540 DW_AT_name: /srcdir/list0.c
11541 DW_AT_comp_dir: /compdir
11542 files.files[0].name: list0.h
11543 files.files[0].dir: /srcdir
11544 files.files[1].name: list0.c
11545 files.files[1].dir: /srcdir
11546
11547 The line number information for list0.c has to end up in a single
11548 subfile, so that `break /srcdir/list0.c:1' works as expected.
11549 start_subfile will ensure that this happens provided that we pass the
11550 concatenation of files.files[1].dir and files.files[1].name as the
11551 subfile's name. */
11552
11553 static void
11554 dwarf2_start_subfile (char *filename, const char *dirname,
11555 const char *comp_dir)
11556 {
11557 char *fullname;
11558
11559 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11560 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11561 second argument to start_subfile. To be consistent, we do the
11562 same here. In order not to lose the line information directory,
11563 we concatenate it to the filename when it makes sense.
11564 Note that the Dwarf3 standard says (speaking of filenames in line
11565 information): ``The directory index is ignored for file names
11566 that represent full path names''. Thus ignoring dirname in the
11567 `else' branch below isn't an issue. */
11568
11569 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11570 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11571 else
11572 fullname = filename;
11573
11574 start_subfile (fullname, comp_dir);
11575
11576 if (fullname != filename)
11577 xfree (fullname);
11578 }
11579
11580 static void
11581 var_decode_location (struct attribute *attr, struct symbol *sym,
11582 struct dwarf2_cu *cu)
11583 {
11584 struct objfile *objfile = cu->objfile;
11585 struct comp_unit_head *cu_header = &cu->header;
11586
11587 /* NOTE drow/2003-01-30: There used to be a comment and some special
11588 code here to turn a symbol with DW_AT_external and a
11589 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11590 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11591 with some versions of binutils) where shared libraries could have
11592 relocations against symbols in their debug information - the
11593 minimal symbol would have the right address, but the debug info
11594 would not. It's no longer necessary, because we will explicitly
11595 apply relocations when we read in the debug information now. */
11596
11597 /* A DW_AT_location attribute with no contents indicates that a
11598 variable has been optimized away. */
11599 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11600 {
11601 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11602 return;
11603 }
11604
11605 /* Handle one degenerate form of location expression specially, to
11606 preserve GDB's previous behavior when section offsets are
11607 specified. If this is just a DW_OP_addr then mark this symbol
11608 as LOC_STATIC. */
11609
11610 if (attr_form_is_block (attr)
11611 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11612 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11613 {
11614 unsigned int dummy;
11615
11616 SYMBOL_VALUE_ADDRESS (sym) =
11617 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11618 SYMBOL_CLASS (sym) = LOC_STATIC;
11619 fixup_symbol_section (sym, objfile);
11620 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11621 SYMBOL_SECTION (sym));
11622 return;
11623 }
11624
11625 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11626 expression evaluator, and use LOC_COMPUTED only when necessary
11627 (i.e. when the value of a register or memory location is
11628 referenced, or a thread-local block, etc.). Then again, it might
11629 not be worthwhile. I'm assuming that it isn't unless performance
11630 or memory numbers show me otherwise. */
11631
11632 dwarf2_symbol_mark_computed (attr, sym, cu);
11633 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11634
11635 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11636 cu->has_loclist = 1;
11637 }
11638
11639 /* Given a pointer to a DWARF information entry, figure out if we need
11640 to make a symbol table entry for it, and if so, create a new entry
11641 and return a pointer to it.
11642 If TYPE is NULL, determine symbol type from the die, otherwise
11643 used the passed type.
11644 If SPACE is not NULL, use it to hold the new symbol. If it is
11645 NULL, allocate a new symbol on the objfile's obstack. */
11646
11647 static struct symbol *
11648 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11649 struct symbol *space)
11650 {
11651 struct objfile *objfile = cu->objfile;
11652 struct symbol *sym = NULL;
11653 char *name;
11654 struct attribute *attr = NULL;
11655 struct attribute *attr2 = NULL;
11656 CORE_ADDR baseaddr;
11657 struct pending **list_to_add = NULL;
11658
11659 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11660
11661 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11662
11663 name = dwarf2_name (die, cu);
11664 if (name)
11665 {
11666 const char *linkagename;
11667 int suppress_add = 0;
11668
11669 if (space)
11670 sym = space;
11671 else
11672 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11673 OBJSTAT (objfile, n_syms++);
11674
11675 /* Cache this symbol's name and the name's demangled form (if any). */
11676 SYMBOL_SET_LANGUAGE (sym, cu->language);
11677 linkagename = dwarf2_physname (name, die, cu);
11678 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11679
11680 /* Fortran does not have mangling standard and the mangling does differ
11681 between gfortran, iFort etc. */
11682 if (cu->language == language_fortran
11683 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11684 symbol_set_demangled_name (&(sym->ginfo),
11685 (char *) dwarf2_full_name (name, die, cu),
11686 NULL);
11687
11688 /* Default assumptions.
11689 Use the passed type or decode it from the die. */
11690 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11691 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11692 if (type != NULL)
11693 SYMBOL_TYPE (sym) = type;
11694 else
11695 SYMBOL_TYPE (sym) = die_type (die, cu);
11696 attr = dwarf2_attr (die,
11697 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11698 cu);
11699 if (attr)
11700 {
11701 SYMBOL_LINE (sym) = DW_UNSND (attr);
11702 }
11703
11704 attr = dwarf2_attr (die,
11705 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11706 cu);
11707 if (attr)
11708 {
11709 int file_index = DW_UNSND (attr);
11710
11711 if (cu->line_header == NULL
11712 || file_index > cu->line_header->num_file_names)
11713 complaint (&symfile_complaints,
11714 _("file index out of range"));
11715 else if (file_index > 0)
11716 {
11717 struct file_entry *fe;
11718
11719 fe = &cu->line_header->file_names[file_index - 1];
11720 SYMBOL_SYMTAB (sym) = fe->symtab;
11721 }
11722 }
11723
11724 switch (die->tag)
11725 {
11726 case DW_TAG_label:
11727 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11728 if (attr)
11729 {
11730 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11731 }
11732 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11733 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11734 SYMBOL_CLASS (sym) = LOC_LABEL;
11735 add_symbol_to_list (sym, cu->list_in_scope);
11736 break;
11737 case DW_TAG_subprogram:
11738 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11739 finish_block. */
11740 SYMBOL_CLASS (sym) = LOC_BLOCK;
11741 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11742 if ((attr2 && (DW_UNSND (attr2) != 0))
11743 || cu->language == language_ada)
11744 {
11745 /* Subprograms marked external are stored as a global symbol.
11746 Ada subprograms, whether marked external or not, are always
11747 stored as a global symbol, because we want to be able to
11748 access them globally. For instance, we want to be able
11749 to break on a nested subprogram without having to
11750 specify the context. */
11751 list_to_add = &global_symbols;
11752 }
11753 else
11754 {
11755 list_to_add = cu->list_in_scope;
11756 }
11757 break;
11758 case DW_TAG_inlined_subroutine:
11759 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11760 finish_block. */
11761 SYMBOL_CLASS (sym) = LOC_BLOCK;
11762 SYMBOL_INLINED (sym) = 1;
11763 /* Do not add the symbol to any lists. It will be found via
11764 BLOCK_FUNCTION from the blockvector. */
11765 break;
11766 case DW_TAG_template_value_param:
11767 suppress_add = 1;
11768 /* Fall through. */
11769 case DW_TAG_constant:
11770 case DW_TAG_variable:
11771 case DW_TAG_member:
11772 /* Compilation with minimal debug info may result in
11773 variables with missing type entries. Change the
11774 misleading `void' type to something sensible. */
11775 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11776 SYMBOL_TYPE (sym)
11777 = objfile_type (objfile)->nodebug_data_symbol;
11778
11779 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11780 /* In the case of DW_TAG_member, we should only be called for
11781 static const members. */
11782 if (die->tag == DW_TAG_member)
11783 {
11784 /* dwarf2_add_field uses die_is_declaration,
11785 so we do the same. */
11786 gdb_assert (die_is_declaration (die, cu));
11787 gdb_assert (attr);
11788 }
11789 if (attr)
11790 {
11791 dwarf2_const_value (attr, sym, cu);
11792 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11793 if (!suppress_add)
11794 {
11795 if (attr2 && (DW_UNSND (attr2) != 0))
11796 list_to_add = &global_symbols;
11797 else
11798 list_to_add = cu->list_in_scope;
11799 }
11800 break;
11801 }
11802 attr = dwarf2_attr (die, DW_AT_location, cu);
11803 if (attr)
11804 {
11805 var_decode_location (attr, sym, cu);
11806 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11807 if (SYMBOL_CLASS (sym) == LOC_STATIC
11808 && SYMBOL_VALUE_ADDRESS (sym) == 0
11809 && !dwarf2_per_objfile->has_section_at_zero)
11810 {
11811 /* When a static variable is eliminated by the linker,
11812 the corresponding debug information is not stripped
11813 out, but the variable address is set to null;
11814 do not add such variables into symbol table. */
11815 }
11816 else if (attr2 && (DW_UNSND (attr2) != 0))
11817 {
11818 /* Workaround gfortran PR debug/40040 - it uses
11819 DW_AT_location for variables in -fPIC libraries which may
11820 get overriden by other libraries/executable and get
11821 a different address. Resolve it by the minimal symbol
11822 which may come from inferior's executable using copy
11823 relocation. Make this workaround only for gfortran as for
11824 other compilers GDB cannot guess the minimal symbol
11825 Fortran mangling kind. */
11826 if (cu->language == language_fortran && die->parent
11827 && die->parent->tag == DW_TAG_module
11828 && cu->producer
11829 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11830 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11831
11832 /* A variable with DW_AT_external is never static,
11833 but it may be block-scoped. */
11834 list_to_add = (cu->list_in_scope == &file_symbols
11835 ? &global_symbols : cu->list_in_scope);
11836 }
11837 else
11838 list_to_add = cu->list_in_scope;
11839 }
11840 else
11841 {
11842 /* We do not know the address of this symbol.
11843 If it is an external symbol and we have type information
11844 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11845 The address of the variable will then be determined from
11846 the minimal symbol table whenever the variable is
11847 referenced. */
11848 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11849 if (attr2 && (DW_UNSND (attr2) != 0)
11850 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11851 {
11852 /* A variable with DW_AT_external is never static, but it
11853 may be block-scoped. */
11854 list_to_add = (cu->list_in_scope == &file_symbols
11855 ? &global_symbols : cu->list_in_scope);
11856
11857 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11858 }
11859 else if (!die_is_declaration (die, cu))
11860 {
11861 /* Use the default LOC_OPTIMIZED_OUT class. */
11862 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11863 if (!suppress_add)
11864 list_to_add = cu->list_in_scope;
11865 }
11866 }
11867 break;
11868 case DW_TAG_formal_parameter:
11869 /* If we are inside a function, mark this as an argument. If
11870 not, we might be looking at an argument to an inlined function
11871 when we do not have enough information to show inlined frames;
11872 pretend it's a local variable in that case so that the user can
11873 still see it. */
11874 if (context_stack_depth > 0
11875 && context_stack[context_stack_depth - 1].name != NULL)
11876 SYMBOL_IS_ARGUMENT (sym) = 1;
11877 attr = dwarf2_attr (die, DW_AT_location, cu);
11878 if (attr)
11879 {
11880 var_decode_location (attr, sym, cu);
11881 }
11882 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11883 if (attr)
11884 {
11885 dwarf2_const_value (attr, sym, cu);
11886 }
11887
11888 list_to_add = cu->list_in_scope;
11889 break;
11890 case DW_TAG_unspecified_parameters:
11891 /* From varargs functions; gdb doesn't seem to have any
11892 interest in this information, so just ignore it for now.
11893 (FIXME?) */
11894 break;
11895 case DW_TAG_template_type_param:
11896 suppress_add = 1;
11897 /* Fall through. */
11898 case DW_TAG_class_type:
11899 case DW_TAG_interface_type:
11900 case DW_TAG_structure_type:
11901 case DW_TAG_union_type:
11902 case DW_TAG_set_type:
11903 case DW_TAG_enumeration_type:
11904 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11905 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11906
11907 {
11908 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11909 really ever be static objects: otherwise, if you try
11910 to, say, break of a class's method and you're in a file
11911 which doesn't mention that class, it won't work unless
11912 the check for all static symbols in lookup_symbol_aux
11913 saves you. See the OtherFileClass tests in
11914 gdb.c++/namespace.exp. */
11915
11916 if (!suppress_add)
11917 {
11918 list_to_add = (cu->list_in_scope == &file_symbols
11919 && (cu->language == language_cplus
11920 || cu->language == language_java)
11921 ? &global_symbols : cu->list_in_scope);
11922
11923 /* The semantics of C++ state that "struct foo {
11924 ... }" also defines a typedef for "foo". A Java
11925 class declaration also defines a typedef for the
11926 class. */
11927 if (cu->language == language_cplus
11928 || cu->language == language_java
11929 || cu->language == language_ada)
11930 {
11931 /* The symbol's name is already allocated along
11932 with this objfile, so we don't need to
11933 duplicate it for the type. */
11934 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11935 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11936 }
11937 }
11938 }
11939 break;
11940 case DW_TAG_typedef:
11941 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11942 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11943 list_to_add = cu->list_in_scope;
11944 break;
11945 case DW_TAG_base_type:
11946 case DW_TAG_subrange_type:
11947 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11949 list_to_add = cu->list_in_scope;
11950 break;
11951 case DW_TAG_enumerator:
11952 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11953 if (attr)
11954 {
11955 dwarf2_const_value (attr, sym, cu);
11956 }
11957 {
11958 /* NOTE: carlton/2003-11-10: See comment above in the
11959 DW_TAG_class_type, etc. block. */
11960
11961 list_to_add = (cu->list_in_scope == &file_symbols
11962 && (cu->language == language_cplus
11963 || cu->language == language_java)
11964 ? &global_symbols : cu->list_in_scope);
11965 }
11966 break;
11967 case DW_TAG_namespace:
11968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11969 list_to_add = &global_symbols;
11970 break;
11971 default:
11972 /* Not a tag we recognize. Hopefully we aren't processing
11973 trash data, but since we must specifically ignore things
11974 we don't recognize, there is nothing else we should do at
11975 this point. */
11976 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11977 dwarf_tag_name (die->tag));
11978 break;
11979 }
11980
11981 if (suppress_add)
11982 {
11983 sym->hash_next = objfile->template_symbols;
11984 objfile->template_symbols = sym;
11985 list_to_add = NULL;
11986 }
11987
11988 if (list_to_add != NULL)
11989 add_symbol_to_list (sym, list_to_add);
11990
11991 /* For the benefit of old versions of GCC, check for anonymous
11992 namespaces based on the demangled name. */
11993 if (!processing_has_namespace_info
11994 && cu->language == language_cplus)
11995 cp_scan_for_anonymous_namespaces (sym);
11996 }
11997 return (sym);
11998 }
11999
12000 /* A wrapper for new_symbol_full that always allocates a new symbol. */
12001
12002 static struct symbol *
12003 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12004 {
12005 return new_symbol_full (die, type, cu, NULL);
12006 }
12007
12008 /* Given an attr with a DW_FORM_dataN value in host byte order,
12009 zero-extend it as appropriate for the symbol's type. The DWARF
12010 standard (v4) is not entirely clear about the meaning of using
12011 DW_FORM_dataN for a constant with a signed type, where the type is
12012 wider than the data. The conclusion of a discussion on the DWARF
12013 list was that this is unspecified. We choose to always zero-extend
12014 because that is the interpretation long in use by GCC. */
12015
12016 static gdb_byte *
12017 dwarf2_const_value_data (struct attribute *attr, struct type *type,
12018 const char *name, struct obstack *obstack,
12019 struct dwarf2_cu *cu, long *value, int bits)
12020 {
12021 struct objfile *objfile = cu->objfile;
12022 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12023 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12024 LONGEST l = DW_UNSND (attr);
12025
12026 if (bits < sizeof (*value) * 8)
12027 {
12028 l &= ((LONGEST) 1 << bits) - 1;
12029 *value = l;
12030 }
12031 else if (bits == sizeof (*value) * 8)
12032 *value = l;
12033 else
12034 {
12035 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12036 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12037 return bytes;
12038 }
12039
12040 return NULL;
12041 }
12042
12043 /* Read a constant value from an attribute. Either set *VALUE, or if
12044 the value does not fit in *VALUE, set *BYTES - either already
12045 allocated on the objfile obstack, or newly allocated on OBSTACK,
12046 or, set *BATON, if we translated the constant to a location
12047 expression. */
12048
12049 static void
12050 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12051 const char *name, struct obstack *obstack,
12052 struct dwarf2_cu *cu,
12053 long *value, gdb_byte **bytes,
12054 struct dwarf2_locexpr_baton **baton)
12055 {
12056 struct objfile *objfile = cu->objfile;
12057 struct comp_unit_head *cu_header = &cu->header;
12058 struct dwarf_block *blk;
12059 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12060 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12061
12062 *value = 0;
12063 *bytes = NULL;
12064 *baton = NULL;
12065
12066 switch (attr->form)
12067 {
12068 case DW_FORM_addr:
12069 {
12070 gdb_byte *data;
12071
12072 if (TYPE_LENGTH (type) != cu_header->addr_size)
12073 dwarf2_const_value_length_mismatch_complaint (name,
12074 cu_header->addr_size,
12075 TYPE_LENGTH (type));
12076 /* Symbols of this form are reasonably rare, so we just
12077 piggyback on the existing location code rather than writing
12078 a new implementation of symbol_computed_ops. */
12079 *baton = obstack_alloc (&objfile->objfile_obstack,
12080 sizeof (struct dwarf2_locexpr_baton));
12081 (*baton)->per_cu = cu->per_cu;
12082 gdb_assert ((*baton)->per_cu);
12083
12084 (*baton)->size = 2 + cu_header->addr_size;
12085 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12086 (*baton)->data = data;
12087
12088 data[0] = DW_OP_addr;
12089 store_unsigned_integer (&data[1], cu_header->addr_size,
12090 byte_order, DW_ADDR (attr));
12091 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12092 }
12093 break;
12094 case DW_FORM_string:
12095 case DW_FORM_strp:
12096 /* DW_STRING is already allocated on the objfile obstack, point
12097 directly to it. */
12098 *bytes = (gdb_byte *) DW_STRING (attr);
12099 break;
12100 case DW_FORM_block1:
12101 case DW_FORM_block2:
12102 case DW_FORM_block4:
12103 case DW_FORM_block:
12104 case DW_FORM_exprloc:
12105 blk = DW_BLOCK (attr);
12106 if (TYPE_LENGTH (type) != blk->size)
12107 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12108 TYPE_LENGTH (type));
12109 *bytes = blk->data;
12110 break;
12111
12112 /* The DW_AT_const_value attributes are supposed to carry the
12113 symbol's value "represented as it would be on the target
12114 architecture." By the time we get here, it's already been
12115 converted to host endianness, so we just need to sign- or
12116 zero-extend it as appropriate. */
12117 case DW_FORM_data1:
12118 *bytes = dwarf2_const_value_data (attr, type, name,
12119 obstack, cu, value, 8);
12120 break;
12121 case DW_FORM_data2:
12122 *bytes = dwarf2_const_value_data (attr, type, name,
12123 obstack, cu, value, 16);
12124 break;
12125 case DW_FORM_data4:
12126 *bytes = dwarf2_const_value_data (attr, type, name,
12127 obstack, cu, value, 32);
12128 break;
12129 case DW_FORM_data8:
12130 *bytes = dwarf2_const_value_data (attr, type, name,
12131 obstack, cu, value, 64);
12132 break;
12133
12134 case DW_FORM_sdata:
12135 *value = DW_SND (attr);
12136 break;
12137
12138 case DW_FORM_udata:
12139 *value = DW_UNSND (attr);
12140 break;
12141
12142 default:
12143 complaint (&symfile_complaints,
12144 _("unsupported const value attribute form: '%s'"),
12145 dwarf_form_name (attr->form));
12146 *value = 0;
12147 break;
12148 }
12149 }
12150
12151
12152 /* Copy constant value from an attribute to a symbol. */
12153
12154 static void
12155 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12156 struct dwarf2_cu *cu)
12157 {
12158 struct objfile *objfile = cu->objfile;
12159 struct comp_unit_head *cu_header = &cu->header;
12160 long value;
12161 gdb_byte *bytes;
12162 struct dwarf2_locexpr_baton *baton;
12163
12164 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12165 SYMBOL_PRINT_NAME (sym),
12166 &objfile->objfile_obstack, cu,
12167 &value, &bytes, &baton);
12168
12169 if (baton != NULL)
12170 {
12171 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12172 SYMBOL_LOCATION_BATON (sym) = baton;
12173 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12174 }
12175 else if (bytes != NULL)
12176 {
12177 SYMBOL_VALUE_BYTES (sym) = bytes;
12178 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12179 }
12180 else
12181 {
12182 SYMBOL_VALUE (sym) = value;
12183 SYMBOL_CLASS (sym) = LOC_CONST;
12184 }
12185 }
12186
12187 /* Return the type of the die in question using its DW_AT_type attribute. */
12188
12189 static struct type *
12190 die_type (struct die_info *die, struct dwarf2_cu *cu)
12191 {
12192 struct attribute *type_attr;
12193
12194 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12195 if (!type_attr)
12196 {
12197 /* A missing DW_AT_type represents a void type. */
12198 return objfile_type (cu->objfile)->builtin_void;
12199 }
12200
12201 return lookup_die_type (die, type_attr, cu);
12202 }
12203
12204 /* True iff CU's producer generates GNAT Ada auxiliary information
12205 that allows to find parallel types through that information instead
12206 of having to do expensive parallel lookups by type name. */
12207
12208 static int
12209 need_gnat_info (struct dwarf2_cu *cu)
12210 {
12211 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12212 of GNAT produces this auxiliary information, without any indication
12213 that it is produced. Part of enhancing the FSF version of GNAT
12214 to produce that information will be to put in place an indicator
12215 that we can use in order to determine whether the descriptive type
12216 info is available or not. One suggestion that has been made is
12217 to use a new attribute, attached to the CU die. For now, assume
12218 that the descriptive type info is not available. */
12219 return 0;
12220 }
12221
12222 /* Return the auxiliary type of the die in question using its
12223 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12224 attribute is not present. */
12225
12226 static struct type *
12227 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12228 {
12229 struct attribute *type_attr;
12230
12231 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12232 if (!type_attr)
12233 return NULL;
12234
12235 return lookup_die_type (die, type_attr, cu);
12236 }
12237
12238 /* If DIE has a descriptive_type attribute, then set the TYPE's
12239 descriptive type accordingly. */
12240
12241 static void
12242 set_descriptive_type (struct type *type, struct die_info *die,
12243 struct dwarf2_cu *cu)
12244 {
12245 struct type *descriptive_type = die_descriptive_type (die, cu);
12246
12247 if (descriptive_type)
12248 {
12249 ALLOCATE_GNAT_AUX_TYPE (type);
12250 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12251 }
12252 }
12253
12254 /* Return the containing type of the die in question using its
12255 DW_AT_containing_type attribute. */
12256
12257 static struct type *
12258 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12259 {
12260 struct attribute *type_attr;
12261
12262 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12263 if (!type_attr)
12264 error (_("Dwarf Error: Problem turning containing type into gdb type "
12265 "[in module %s]"), cu->objfile->name);
12266
12267 return lookup_die_type (die, type_attr, cu);
12268 }
12269
12270 /* Look up the type of DIE in CU using its type attribute ATTR.
12271 If there is no type substitute an error marker. */
12272
12273 static struct type *
12274 lookup_die_type (struct die_info *die, struct attribute *attr,
12275 struct dwarf2_cu *cu)
12276 {
12277 struct type *this_type;
12278
12279 /* First see if we have it cached. */
12280
12281 if (is_ref_attr (attr))
12282 {
12283 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12284
12285 this_type = get_die_type_at_offset (offset, cu->per_cu);
12286 }
12287 else if (attr->form == DW_FORM_ref_sig8)
12288 {
12289 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12290 struct dwarf2_cu *sig_cu;
12291 unsigned int offset;
12292
12293 /* sig_type will be NULL if the signatured type is missing from
12294 the debug info. */
12295 if (sig_type == NULL)
12296 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12297 "at 0x%x [in module %s]"),
12298 die->offset, cu->objfile->name);
12299
12300 gdb_assert (sig_type->per_cu.debug_type_section);
12301 offset = sig_type->per_cu.offset + sig_type->type_offset;
12302 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12303 }
12304 else
12305 {
12306 dump_die_for_error (die);
12307 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12308 dwarf_attr_name (attr->name), cu->objfile->name);
12309 }
12310
12311 /* If not cached we need to read it in. */
12312
12313 if (this_type == NULL)
12314 {
12315 struct die_info *type_die;
12316 struct dwarf2_cu *type_cu = cu;
12317
12318 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12319 /* If the type is cached, we should have found it above. */
12320 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12321 this_type = read_type_die_1 (type_die, type_cu);
12322 }
12323
12324 /* If we still don't have a type use an error marker. */
12325
12326 if (this_type == NULL)
12327 {
12328 char *message, *saved;
12329
12330 /* read_type_die already issued a complaint. */
12331 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12332 cu->objfile->name,
12333 cu->header.offset,
12334 die->offset);
12335 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
12336 message, strlen (message));
12337 xfree (message);
12338
12339 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
12340 }
12341
12342 return this_type;
12343 }
12344
12345 /* Return the type in DIE, CU.
12346 Returns NULL for invalid types.
12347
12348 This first does a lookup in the appropriate type_hash table,
12349 and only reads the die in if necessary.
12350
12351 NOTE: This can be called when reading in partial or full symbols. */
12352
12353 static struct type *
12354 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12355 {
12356 struct type *this_type;
12357
12358 this_type = get_die_type (die, cu);
12359 if (this_type)
12360 return this_type;
12361
12362 return read_type_die_1 (die, cu);
12363 }
12364
12365 /* Read the type in DIE, CU.
12366 Returns NULL for invalid types. */
12367
12368 static struct type *
12369 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12370 {
12371 struct type *this_type = NULL;
12372
12373 switch (die->tag)
12374 {
12375 case DW_TAG_class_type:
12376 case DW_TAG_interface_type:
12377 case DW_TAG_structure_type:
12378 case DW_TAG_union_type:
12379 this_type = read_structure_type (die, cu);
12380 break;
12381 case DW_TAG_enumeration_type:
12382 this_type = read_enumeration_type (die, cu);
12383 break;
12384 case DW_TAG_subprogram:
12385 case DW_TAG_subroutine_type:
12386 case DW_TAG_inlined_subroutine:
12387 this_type = read_subroutine_type (die, cu);
12388 break;
12389 case DW_TAG_array_type:
12390 this_type = read_array_type (die, cu);
12391 break;
12392 case DW_TAG_set_type:
12393 this_type = read_set_type (die, cu);
12394 break;
12395 case DW_TAG_pointer_type:
12396 this_type = read_tag_pointer_type (die, cu);
12397 break;
12398 case DW_TAG_ptr_to_member_type:
12399 this_type = read_tag_ptr_to_member_type (die, cu);
12400 break;
12401 case DW_TAG_reference_type:
12402 this_type = read_tag_reference_type (die, cu);
12403 break;
12404 case DW_TAG_const_type:
12405 this_type = read_tag_const_type (die, cu);
12406 break;
12407 case DW_TAG_volatile_type:
12408 this_type = read_tag_volatile_type (die, cu);
12409 break;
12410 case DW_TAG_string_type:
12411 this_type = read_tag_string_type (die, cu);
12412 break;
12413 case DW_TAG_typedef:
12414 this_type = read_typedef (die, cu);
12415 break;
12416 case DW_TAG_subrange_type:
12417 this_type = read_subrange_type (die, cu);
12418 break;
12419 case DW_TAG_base_type:
12420 this_type = read_base_type (die, cu);
12421 break;
12422 case DW_TAG_unspecified_type:
12423 this_type = read_unspecified_type (die, cu);
12424 break;
12425 case DW_TAG_namespace:
12426 this_type = read_namespace_type (die, cu);
12427 break;
12428 case DW_TAG_module:
12429 this_type = read_module_type (die, cu);
12430 break;
12431 default:
12432 complaint (&symfile_complaints,
12433 _("unexpected tag in read_type_die: '%s'"),
12434 dwarf_tag_name (die->tag));
12435 break;
12436 }
12437
12438 return this_type;
12439 }
12440
12441 /* See if we can figure out if the class lives in a namespace. We do
12442 this by looking for a member function; its demangled name will
12443 contain namespace info, if there is any.
12444 Return the computed name or NULL.
12445 Space for the result is allocated on the objfile's obstack.
12446 This is the full-die version of guess_partial_die_structure_name.
12447 In this case we know DIE has no useful parent. */
12448
12449 static char *
12450 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12451 {
12452 struct die_info *spec_die;
12453 struct dwarf2_cu *spec_cu;
12454 struct die_info *child;
12455
12456 spec_cu = cu;
12457 spec_die = die_specification (die, &spec_cu);
12458 if (spec_die != NULL)
12459 {
12460 die = spec_die;
12461 cu = spec_cu;
12462 }
12463
12464 for (child = die->child;
12465 child != NULL;
12466 child = child->sibling)
12467 {
12468 if (child->tag == DW_TAG_subprogram)
12469 {
12470 struct attribute *attr;
12471
12472 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12473 if (attr == NULL)
12474 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12475 if (attr != NULL)
12476 {
12477 char *actual_name
12478 = language_class_name_from_physname (cu->language_defn,
12479 DW_STRING (attr));
12480 char *name = NULL;
12481
12482 if (actual_name != NULL)
12483 {
12484 char *die_name = dwarf2_name (die, cu);
12485
12486 if (die_name != NULL
12487 && strcmp (die_name, actual_name) != 0)
12488 {
12489 /* Strip off the class name from the full name.
12490 We want the prefix. */
12491 int die_name_len = strlen (die_name);
12492 int actual_name_len = strlen (actual_name);
12493
12494 /* Test for '::' as a sanity check. */
12495 if (actual_name_len > die_name_len + 2
12496 && actual_name[actual_name_len
12497 - die_name_len - 1] == ':')
12498 name =
12499 obsavestring (actual_name,
12500 actual_name_len - die_name_len - 2,
12501 &cu->objfile->objfile_obstack);
12502 }
12503 }
12504 xfree (actual_name);
12505 return name;
12506 }
12507 }
12508 }
12509
12510 return NULL;
12511 }
12512
12513 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12514 prefix part in such case. See
12515 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12516
12517 static char *
12518 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12519 {
12520 struct attribute *attr;
12521 char *base;
12522
12523 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12524 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12525 return NULL;
12526
12527 attr = dwarf2_attr (die, DW_AT_name, cu);
12528 if (attr != NULL && DW_STRING (attr) != NULL)
12529 return NULL;
12530
12531 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12532 if (attr == NULL)
12533 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12534 if (attr == NULL || DW_STRING (attr) == NULL)
12535 return NULL;
12536
12537 /* dwarf2_name had to be already called. */
12538 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12539
12540 /* Strip the base name, keep any leading namespaces/classes. */
12541 base = strrchr (DW_STRING (attr), ':');
12542 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12543 return "";
12544
12545 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12546 &cu->objfile->objfile_obstack);
12547 }
12548
12549 /* Return the name of the namespace/class that DIE is defined within,
12550 or "" if we can't tell. The caller should not xfree the result.
12551
12552 For example, if we're within the method foo() in the following
12553 code:
12554
12555 namespace N {
12556 class C {
12557 void foo () {
12558 }
12559 };
12560 }
12561
12562 then determine_prefix on foo's die will return "N::C". */
12563
12564 static char *
12565 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12566 {
12567 struct die_info *parent, *spec_die;
12568 struct dwarf2_cu *spec_cu;
12569 struct type *parent_type;
12570 char *retval;
12571
12572 if (cu->language != language_cplus && cu->language != language_java
12573 && cu->language != language_fortran)
12574 return "";
12575
12576 retval = anonymous_struct_prefix (die, cu);
12577 if (retval)
12578 return retval;
12579
12580 /* We have to be careful in the presence of DW_AT_specification.
12581 For example, with GCC 3.4, given the code
12582
12583 namespace N {
12584 void foo() {
12585 // Definition of N::foo.
12586 }
12587 }
12588
12589 then we'll have a tree of DIEs like this:
12590
12591 1: DW_TAG_compile_unit
12592 2: DW_TAG_namespace // N
12593 3: DW_TAG_subprogram // declaration of N::foo
12594 4: DW_TAG_subprogram // definition of N::foo
12595 DW_AT_specification // refers to die #3
12596
12597 Thus, when processing die #4, we have to pretend that we're in
12598 the context of its DW_AT_specification, namely the contex of die
12599 #3. */
12600 spec_cu = cu;
12601 spec_die = die_specification (die, &spec_cu);
12602 if (spec_die == NULL)
12603 parent = die->parent;
12604 else
12605 {
12606 parent = spec_die->parent;
12607 cu = spec_cu;
12608 }
12609
12610 if (parent == NULL)
12611 return "";
12612 else if (parent->building_fullname)
12613 {
12614 const char *name;
12615 const char *parent_name;
12616
12617 /* It has been seen on RealView 2.2 built binaries,
12618 DW_TAG_template_type_param types actually _defined_ as
12619 children of the parent class:
12620
12621 enum E {};
12622 template class <class Enum> Class{};
12623 Class<enum E> class_e;
12624
12625 1: DW_TAG_class_type (Class)
12626 2: DW_TAG_enumeration_type (E)
12627 3: DW_TAG_enumerator (enum1:0)
12628 3: DW_TAG_enumerator (enum2:1)
12629 ...
12630 2: DW_TAG_template_type_param
12631 DW_AT_type DW_FORM_ref_udata (E)
12632
12633 Besides being broken debug info, it can put GDB into an
12634 infinite loop. Consider:
12635
12636 When we're building the full name for Class<E>, we'll start
12637 at Class, and go look over its template type parameters,
12638 finding E. We'll then try to build the full name of E, and
12639 reach here. We're now trying to build the full name of E,
12640 and look over the parent DIE for containing scope. In the
12641 broken case, if we followed the parent DIE of E, we'd again
12642 find Class, and once again go look at its template type
12643 arguments, etc., etc. Simply don't consider such parent die
12644 as source-level parent of this die (it can't be, the language
12645 doesn't allow it), and break the loop here. */
12646 name = dwarf2_name (die, cu);
12647 parent_name = dwarf2_name (parent, cu);
12648 complaint (&symfile_complaints,
12649 _("template param type '%s' defined within parent '%s'"),
12650 name ? name : "<unknown>",
12651 parent_name ? parent_name : "<unknown>");
12652 return "";
12653 }
12654 else
12655 switch (parent->tag)
12656 {
12657 case DW_TAG_namespace:
12658 parent_type = read_type_die (parent, cu);
12659 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12660 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12661 Work around this problem here. */
12662 if (cu->language == language_cplus
12663 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12664 return "";
12665 /* We give a name to even anonymous namespaces. */
12666 return TYPE_TAG_NAME (parent_type);
12667 case DW_TAG_class_type:
12668 case DW_TAG_interface_type:
12669 case DW_TAG_structure_type:
12670 case DW_TAG_union_type:
12671 case DW_TAG_module:
12672 parent_type = read_type_die (parent, cu);
12673 if (TYPE_TAG_NAME (parent_type) != NULL)
12674 return TYPE_TAG_NAME (parent_type);
12675 else
12676 /* An anonymous structure is only allowed non-static data
12677 members; no typedefs, no member functions, et cetera.
12678 So it does not need a prefix. */
12679 return "";
12680 case DW_TAG_compile_unit:
12681 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12682 if (cu->language == language_cplus
12683 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12684 && die->child != NULL
12685 && (die->tag == DW_TAG_class_type
12686 || die->tag == DW_TAG_structure_type
12687 || die->tag == DW_TAG_union_type))
12688 {
12689 char *name = guess_full_die_structure_name (die, cu);
12690 if (name != NULL)
12691 return name;
12692 }
12693 return "";
12694 default:
12695 return determine_prefix (parent, cu);
12696 }
12697 }
12698
12699 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12700 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12701 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12702 an obconcat, otherwise allocate storage for the result. The CU argument is
12703 used to determine the language and hence, the appropriate separator. */
12704
12705 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12706
12707 static char *
12708 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12709 int physname, struct dwarf2_cu *cu)
12710 {
12711 const char *lead = "";
12712 const char *sep;
12713
12714 if (suffix == NULL || suffix[0] == '\0'
12715 || prefix == NULL || prefix[0] == '\0')
12716 sep = "";
12717 else if (cu->language == language_java)
12718 sep = ".";
12719 else if (cu->language == language_fortran && physname)
12720 {
12721 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12722 DW_AT_MIPS_linkage_name is preferred and used instead. */
12723
12724 lead = "__";
12725 sep = "_MOD_";
12726 }
12727 else
12728 sep = "::";
12729
12730 if (prefix == NULL)
12731 prefix = "";
12732 if (suffix == NULL)
12733 suffix = "";
12734
12735 if (obs == NULL)
12736 {
12737 char *retval
12738 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12739
12740 strcpy (retval, lead);
12741 strcat (retval, prefix);
12742 strcat (retval, sep);
12743 strcat (retval, suffix);
12744 return retval;
12745 }
12746 else
12747 {
12748 /* We have an obstack. */
12749 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12750 }
12751 }
12752
12753 /* Return sibling of die, NULL if no sibling. */
12754
12755 static struct die_info *
12756 sibling_die (struct die_info *die)
12757 {
12758 return die->sibling;
12759 }
12760
12761 /* Get name of a die, return NULL if not found. */
12762
12763 static char *
12764 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12765 struct obstack *obstack)
12766 {
12767 if (name && cu->language == language_cplus)
12768 {
12769 char *canon_name = cp_canonicalize_string (name);
12770
12771 if (canon_name != NULL)
12772 {
12773 if (strcmp (canon_name, name) != 0)
12774 name = obsavestring (canon_name, strlen (canon_name),
12775 obstack);
12776 xfree (canon_name);
12777 }
12778 }
12779
12780 return name;
12781 }
12782
12783 /* Get name of a die, return NULL if not found. */
12784
12785 static char *
12786 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12787 {
12788 struct attribute *attr;
12789
12790 attr = dwarf2_attr (die, DW_AT_name, cu);
12791 if ((!attr || !DW_STRING (attr))
12792 && die->tag != DW_TAG_class_type
12793 && die->tag != DW_TAG_interface_type
12794 && die->tag != DW_TAG_structure_type
12795 && die->tag != DW_TAG_union_type)
12796 return NULL;
12797
12798 switch (die->tag)
12799 {
12800 case DW_TAG_compile_unit:
12801 /* Compilation units have a DW_AT_name that is a filename, not
12802 a source language identifier. */
12803 case DW_TAG_enumeration_type:
12804 case DW_TAG_enumerator:
12805 /* These tags always have simple identifiers already; no need
12806 to canonicalize them. */
12807 return DW_STRING (attr);
12808
12809 case DW_TAG_subprogram:
12810 /* Java constructors will all be named "<init>", so return
12811 the class name when we see this special case. */
12812 if (cu->language == language_java
12813 && DW_STRING (attr) != NULL
12814 && strcmp (DW_STRING (attr), "<init>") == 0)
12815 {
12816 struct dwarf2_cu *spec_cu = cu;
12817 struct die_info *spec_die;
12818
12819 /* GCJ will output '<init>' for Java constructor names.
12820 For this special case, return the name of the parent class. */
12821
12822 /* GCJ may output suprogram DIEs with AT_specification set.
12823 If so, use the name of the specified DIE. */
12824 spec_die = die_specification (die, &spec_cu);
12825 if (spec_die != NULL)
12826 return dwarf2_name (spec_die, spec_cu);
12827
12828 do
12829 {
12830 die = die->parent;
12831 if (die->tag == DW_TAG_class_type)
12832 return dwarf2_name (die, cu);
12833 }
12834 while (die->tag != DW_TAG_compile_unit);
12835 }
12836 break;
12837
12838 case DW_TAG_class_type:
12839 case DW_TAG_interface_type:
12840 case DW_TAG_structure_type:
12841 case DW_TAG_union_type:
12842 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12843 structures or unions. These were of the form "._%d" in GCC 4.1,
12844 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12845 and GCC 4.4. We work around this problem by ignoring these. */
12846 if (attr && DW_STRING (attr)
12847 && (strncmp (DW_STRING (attr), "._", 2) == 0
12848 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12849 return NULL;
12850
12851 /* GCC might emit a nameless typedef that has a linkage name. See
12852 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12853 if (!attr || DW_STRING (attr) == NULL)
12854 {
12855 char *demangled = NULL;
12856
12857 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12858 if (attr == NULL)
12859 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12860
12861 if (attr == NULL || DW_STRING (attr) == NULL)
12862 return NULL;
12863
12864 /* Avoid demangling DW_STRING (attr) the second time on a second
12865 call for the same DIE. */
12866 if (!DW_STRING_IS_CANONICAL (attr))
12867 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12868
12869 if (demangled)
12870 {
12871 char *base;
12872
12873 /* FIXME: we already did this for the partial symbol... */
12874 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12875 &cu->objfile->objfile_obstack);
12876 DW_STRING_IS_CANONICAL (attr) = 1;
12877 xfree (demangled);
12878
12879 /* Strip any leading namespaces/classes, keep only the base name.
12880 DW_AT_name for named DIEs does not contain the prefixes. */
12881 base = strrchr (DW_STRING (attr), ':');
12882 if (base && base > DW_STRING (attr) && base[-1] == ':')
12883 return &base[1];
12884 else
12885 return DW_STRING (attr);
12886 }
12887 }
12888 break;
12889
12890 default:
12891 break;
12892 }
12893
12894 if (!DW_STRING_IS_CANONICAL (attr))
12895 {
12896 DW_STRING (attr)
12897 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12898 &cu->objfile->objfile_obstack);
12899 DW_STRING_IS_CANONICAL (attr) = 1;
12900 }
12901 return DW_STRING (attr);
12902 }
12903
12904 /* Return the die that this die in an extension of, or NULL if there
12905 is none. *EXT_CU is the CU containing DIE on input, and the CU
12906 containing the return value on output. */
12907
12908 static struct die_info *
12909 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12910 {
12911 struct attribute *attr;
12912
12913 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12914 if (attr == NULL)
12915 return NULL;
12916
12917 return follow_die_ref (die, attr, ext_cu);
12918 }
12919
12920 /* Convert a DIE tag into its string name. */
12921
12922 static char *
12923 dwarf_tag_name (unsigned tag)
12924 {
12925 switch (tag)
12926 {
12927 case DW_TAG_padding:
12928 return "DW_TAG_padding";
12929 case DW_TAG_array_type:
12930 return "DW_TAG_array_type";
12931 case DW_TAG_class_type:
12932 return "DW_TAG_class_type";
12933 case DW_TAG_entry_point:
12934 return "DW_TAG_entry_point";
12935 case DW_TAG_enumeration_type:
12936 return "DW_TAG_enumeration_type";
12937 case DW_TAG_formal_parameter:
12938 return "DW_TAG_formal_parameter";
12939 case DW_TAG_imported_declaration:
12940 return "DW_TAG_imported_declaration";
12941 case DW_TAG_label:
12942 return "DW_TAG_label";
12943 case DW_TAG_lexical_block:
12944 return "DW_TAG_lexical_block";
12945 case DW_TAG_member:
12946 return "DW_TAG_member";
12947 case DW_TAG_pointer_type:
12948 return "DW_TAG_pointer_type";
12949 case DW_TAG_reference_type:
12950 return "DW_TAG_reference_type";
12951 case DW_TAG_compile_unit:
12952 return "DW_TAG_compile_unit";
12953 case DW_TAG_string_type:
12954 return "DW_TAG_string_type";
12955 case DW_TAG_structure_type:
12956 return "DW_TAG_structure_type";
12957 case DW_TAG_subroutine_type:
12958 return "DW_TAG_subroutine_type";
12959 case DW_TAG_typedef:
12960 return "DW_TAG_typedef";
12961 case DW_TAG_union_type:
12962 return "DW_TAG_union_type";
12963 case DW_TAG_unspecified_parameters:
12964 return "DW_TAG_unspecified_parameters";
12965 case DW_TAG_variant:
12966 return "DW_TAG_variant";
12967 case DW_TAG_common_block:
12968 return "DW_TAG_common_block";
12969 case DW_TAG_common_inclusion:
12970 return "DW_TAG_common_inclusion";
12971 case DW_TAG_inheritance:
12972 return "DW_TAG_inheritance";
12973 case DW_TAG_inlined_subroutine:
12974 return "DW_TAG_inlined_subroutine";
12975 case DW_TAG_module:
12976 return "DW_TAG_module";
12977 case DW_TAG_ptr_to_member_type:
12978 return "DW_TAG_ptr_to_member_type";
12979 case DW_TAG_set_type:
12980 return "DW_TAG_set_type";
12981 case DW_TAG_subrange_type:
12982 return "DW_TAG_subrange_type";
12983 case DW_TAG_with_stmt:
12984 return "DW_TAG_with_stmt";
12985 case DW_TAG_access_declaration:
12986 return "DW_TAG_access_declaration";
12987 case DW_TAG_base_type:
12988 return "DW_TAG_base_type";
12989 case DW_TAG_catch_block:
12990 return "DW_TAG_catch_block";
12991 case DW_TAG_const_type:
12992 return "DW_TAG_const_type";
12993 case DW_TAG_constant:
12994 return "DW_TAG_constant";
12995 case DW_TAG_enumerator:
12996 return "DW_TAG_enumerator";
12997 case DW_TAG_file_type:
12998 return "DW_TAG_file_type";
12999 case DW_TAG_friend:
13000 return "DW_TAG_friend";
13001 case DW_TAG_namelist:
13002 return "DW_TAG_namelist";
13003 case DW_TAG_namelist_item:
13004 return "DW_TAG_namelist_item";
13005 case DW_TAG_packed_type:
13006 return "DW_TAG_packed_type";
13007 case DW_TAG_subprogram:
13008 return "DW_TAG_subprogram";
13009 case DW_TAG_template_type_param:
13010 return "DW_TAG_template_type_param";
13011 case DW_TAG_template_value_param:
13012 return "DW_TAG_template_value_param";
13013 case DW_TAG_thrown_type:
13014 return "DW_TAG_thrown_type";
13015 case DW_TAG_try_block:
13016 return "DW_TAG_try_block";
13017 case DW_TAG_variant_part:
13018 return "DW_TAG_variant_part";
13019 case DW_TAG_variable:
13020 return "DW_TAG_variable";
13021 case DW_TAG_volatile_type:
13022 return "DW_TAG_volatile_type";
13023 case DW_TAG_dwarf_procedure:
13024 return "DW_TAG_dwarf_procedure";
13025 case DW_TAG_restrict_type:
13026 return "DW_TAG_restrict_type";
13027 case DW_TAG_interface_type:
13028 return "DW_TAG_interface_type";
13029 case DW_TAG_namespace:
13030 return "DW_TAG_namespace";
13031 case DW_TAG_imported_module:
13032 return "DW_TAG_imported_module";
13033 case DW_TAG_unspecified_type:
13034 return "DW_TAG_unspecified_type";
13035 case DW_TAG_partial_unit:
13036 return "DW_TAG_partial_unit";
13037 case DW_TAG_imported_unit:
13038 return "DW_TAG_imported_unit";
13039 case DW_TAG_condition:
13040 return "DW_TAG_condition";
13041 case DW_TAG_shared_type:
13042 return "DW_TAG_shared_type";
13043 case DW_TAG_type_unit:
13044 return "DW_TAG_type_unit";
13045 case DW_TAG_MIPS_loop:
13046 return "DW_TAG_MIPS_loop";
13047 case DW_TAG_HP_array_descriptor:
13048 return "DW_TAG_HP_array_descriptor";
13049 case DW_TAG_format_label:
13050 return "DW_TAG_format_label";
13051 case DW_TAG_function_template:
13052 return "DW_TAG_function_template";
13053 case DW_TAG_class_template:
13054 return "DW_TAG_class_template";
13055 case DW_TAG_GNU_BINCL:
13056 return "DW_TAG_GNU_BINCL";
13057 case DW_TAG_GNU_EINCL:
13058 return "DW_TAG_GNU_EINCL";
13059 case DW_TAG_upc_shared_type:
13060 return "DW_TAG_upc_shared_type";
13061 case DW_TAG_upc_strict_type:
13062 return "DW_TAG_upc_strict_type";
13063 case DW_TAG_upc_relaxed_type:
13064 return "DW_TAG_upc_relaxed_type";
13065 case DW_TAG_PGI_kanji_type:
13066 return "DW_TAG_PGI_kanji_type";
13067 case DW_TAG_PGI_interface_block:
13068 return "DW_TAG_PGI_interface_block";
13069 case DW_TAG_GNU_call_site:
13070 return "DW_TAG_GNU_call_site";
13071 default:
13072 return "DW_TAG_<unknown>";
13073 }
13074 }
13075
13076 /* Convert a DWARF attribute code into its string name. */
13077
13078 static char *
13079 dwarf_attr_name (unsigned attr)
13080 {
13081 switch (attr)
13082 {
13083 case DW_AT_sibling:
13084 return "DW_AT_sibling";
13085 case DW_AT_location:
13086 return "DW_AT_location";
13087 case DW_AT_name:
13088 return "DW_AT_name";
13089 case DW_AT_ordering:
13090 return "DW_AT_ordering";
13091 case DW_AT_subscr_data:
13092 return "DW_AT_subscr_data";
13093 case DW_AT_byte_size:
13094 return "DW_AT_byte_size";
13095 case DW_AT_bit_offset:
13096 return "DW_AT_bit_offset";
13097 case DW_AT_bit_size:
13098 return "DW_AT_bit_size";
13099 case DW_AT_element_list:
13100 return "DW_AT_element_list";
13101 case DW_AT_stmt_list:
13102 return "DW_AT_stmt_list";
13103 case DW_AT_low_pc:
13104 return "DW_AT_low_pc";
13105 case DW_AT_high_pc:
13106 return "DW_AT_high_pc";
13107 case DW_AT_language:
13108 return "DW_AT_language";
13109 case DW_AT_member:
13110 return "DW_AT_member";
13111 case DW_AT_discr:
13112 return "DW_AT_discr";
13113 case DW_AT_discr_value:
13114 return "DW_AT_discr_value";
13115 case DW_AT_visibility:
13116 return "DW_AT_visibility";
13117 case DW_AT_import:
13118 return "DW_AT_import";
13119 case DW_AT_string_length:
13120 return "DW_AT_string_length";
13121 case DW_AT_common_reference:
13122 return "DW_AT_common_reference";
13123 case DW_AT_comp_dir:
13124 return "DW_AT_comp_dir";
13125 case DW_AT_const_value:
13126 return "DW_AT_const_value";
13127 case DW_AT_containing_type:
13128 return "DW_AT_containing_type";
13129 case DW_AT_default_value:
13130 return "DW_AT_default_value";
13131 case DW_AT_inline:
13132 return "DW_AT_inline";
13133 case DW_AT_is_optional:
13134 return "DW_AT_is_optional";
13135 case DW_AT_lower_bound:
13136 return "DW_AT_lower_bound";
13137 case DW_AT_producer:
13138 return "DW_AT_producer";
13139 case DW_AT_prototyped:
13140 return "DW_AT_prototyped";
13141 case DW_AT_return_addr:
13142 return "DW_AT_return_addr";
13143 case DW_AT_start_scope:
13144 return "DW_AT_start_scope";
13145 case DW_AT_bit_stride:
13146 return "DW_AT_bit_stride";
13147 case DW_AT_upper_bound:
13148 return "DW_AT_upper_bound";
13149 case DW_AT_abstract_origin:
13150 return "DW_AT_abstract_origin";
13151 case DW_AT_accessibility:
13152 return "DW_AT_accessibility";
13153 case DW_AT_address_class:
13154 return "DW_AT_address_class";
13155 case DW_AT_artificial:
13156 return "DW_AT_artificial";
13157 case DW_AT_base_types:
13158 return "DW_AT_base_types";
13159 case DW_AT_calling_convention:
13160 return "DW_AT_calling_convention";
13161 case DW_AT_count:
13162 return "DW_AT_count";
13163 case DW_AT_data_member_location:
13164 return "DW_AT_data_member_location";
13165 case DW_AT_decl_column:
13166 return "DW_AT_decl_column";
13167 case DW_AT_decl_file:
13168 return "DW_AT_decl_file";
13169 case DW_AT_decl_line:
13170 return "DW_AT_decl_line";
13171 case DW_AT_declaration:
13172 return "DW_AT_declaration";
13173 case DW_AT_discr_list:
13174 return "DW_AT_discr_list";
13175 case DW_AT_encoding:
13176 return "DW_AT_encoding";
13177 case DW_AT_external:
13178 return "DW_AT_external";
13179 case DW_AT_frame_base:
13180 return "DW_AT_frame_base";
13181 case DW_AT_friend:
13182 return "DW_AT_friend";
13183 case DW_AT_identifier_case:
13184 return "DW_AT_identifier_case";
13185 case DW_AT_macro_info:
13186 return "DW_AT_macro_info";
13187 case DW_AT_namelist_items:
13188 return "DW_AT_namelist_items";
13189 case DW_AT_priority:
13190 return "DW_AT_priority";
13191 case DW_AT_segment:
13192 return "DW_AT_segment";
13193 case DW_AT_specification:
13194 return "DW_AT_specification";
13195 case DW_AT_static_link:
13196 return "DW_AT_static_link";
13197 case DW_AT_type:
13198 return "DW_AT_type";
13199 case DW_AT_use_location:
13200 return "DW_AT_use_location";
13201 case DW_AT_variable_parameter:
13202 return "DW_AT_variable_parameter";
13203 case DW_AT_virtuality:
13204 return "DW_AT_virtuality";
13205 case DW_AT_vtable_elem_location:
13206 return "DW_AT_vtable_elem_location";
13207 /* DWARF 3 values. */
13208 case DW_AT_allocated:
13209 return "DW_AT_allocated";
13210 case DW_AT_associated:
13211 return "DW_AT_associated";
13212 case DW_AT_data_location:
13213 return "DW_AT_data_location";
13214 case DW_AT_byte_stride:
13215 return "DW_AT_byte_stride";
13216 case DW_AT_entry_pc:
13217 return "DW_AT_entry_pc";
13218 case DW_AT_use_UTF8:
13219 return "DW_AT_use_UTF8";
13220 case DW_AT_extension:
13221 return "DW_AT_extension";
13222 case DW_AT_ranges:
13223 return "DW_AT_ranges";
13224 case DW_AT_trampoline:
13225 return "DW_AT_trampoline";
13226 case DW_AT_call_column:
13227 return "DW_AT_call_column";
13228 case DW_AT_call_file:
13229 return "DW_AT_call_file";
13230 case DW_AT_call_line:
13231 return "DW_AT_call_line";
13232 case DW_AT_description:
13233 return "DW_AT_description";
13234 case DW_AT_binary_scale:
13235 return "DW_AT_binary_scale";
13236 case DW_AT_decimal_scale:
13237 return "DW_AT_decimal_scale";
13238 case DW_AT_small:
13239 return "DW_AT_small";
13240 case DW_AT_decimal_sign:
13241 return "DW_AT_decimal_sign";
13242 case DW_AT_digit_count:
13243 return "DW_AT_digit_count";
13244 case DW_AT_picture_string:
13245 return "DW_AT_picture_string";
13246 case DW_AT_mutable:
13247 return "DW_AT_mutable";
13248 case DW_AT_threads_scaled:
13249 return "DW_AT_threads_scaled";
13250 case DW_AT_explicit:
13251 return "DW_AT_explicit";
13252 case DW_AT_object_pointer:
13253 return "DW_AT_object_pointer";
13254 case DW_AT_endianity:
13255 return "DW_AT_endianity";
13256 case DW_AT_elemental:
13257 return "DW_AT_elemental";
13258 case DW_AT_pure:
13259 return "DW_AT_pure";
13260 case DW_AT_recursive:
13261 return "DW_AT_recursive";
13262 /* DWARF 4 values. */
13263 case DW_AT_signature:
13264 return "DW_AT_signature";
13265 case DW_AT_linkage_name:
13266 return "DW_AT_linkage_name";
13267 /* SGI/MIPS extensions. */
13268 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13269 case DW_AT_MIPS_fde:
13270 return "DW_AT_MIPS_fde";
13271 #endif
13272 case DW_AT_MIPS_loop_begin:
13273 return "DW_AT_MIPS_loop_begin";
13274 case DW_AT_MIPS_tail_loop_begin:
13275 return "DW_AT_MIPS_tail_loop_begin";
13276 case DW_AT_MIPS_epilog_begin:
13277 return "DW_AT_MIPS_epilog_begin";
13278 case DW_AT_MIPS_loop_unroll_factor:
13279 return "DW_AT_MIPS_loop_unroll_factor";
13280 case DW_AT_MIPS_software_pipeline_depth:
13281 return "DW_AT_MIPS_software_pipeline_depth";
13282 case DW_AT_MIPS_linkage_name:
13283 return "DW_AT_MIPS_linkage_name";
13284 case DW_AT_MIPS_stride:
13285 return "DW_AT_MIPS_stride";
13286 case DW_AT_MIPS_abstract_name:
13287 return "DW_AT_MIPS_abstract_name";
13288 case DW_AT_MIPS_clone_origin:
13289 return "DW_AT_MIPS_clone_origin";
13290 case DW_AT_MIPS_has_inlines:
13291 return "DW_AT_MIPS_has_inlines";
13292 /* HP extensions. */
13293 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13294 case DW_AT_HP_block_index:
13295 return "DW_AT_HP_block_index";
13296 #endif
13297 case DW_AT_HP_unmodifiable:
13298 return "DW_AT_HP_unmodifiable";
13299 case DW_AT_HP_actuals_stmt_list:
13300 return "DW_AT_HP_actuals_stmt_list";
13301 case DW_AT_HP_proc_per_section:
13302 return "DW_AT_HP_proc_per_section";
13303 case DW_AT_HP_raw_data_ptr:
13304 return "DW_AT_HP_raw_data_ptr";
13305 case DW_AT_HP_pass_by_reference:
13306 return "DW_AT_HP_pass_by_reference";
13307 case DW_AT_HP_opt_level:
13308 return "DW_AT_HP_opt_level";
13309 case DW_AT_HP_prof_version_id:
13310 return "DW_AT_HP_prof_version_id";
13311 case DW_AT_HP_opt_flags:
13312 return "DW_AT_HP_opt_flags";
13313 case DW_AT_HP_cold_region_low_pc:
13314 return "DW_AT_HP_cold_region_low_pc";
13315 case DW_AT_HP_cold_region_high_pc:
13316 return "DW_AT_HP_cold_region_high_pc";
13317 case DW_AT_HP_all_variables_modifiable:
13318 return "DW_AT_HP_all_variables_modifiable";
13319 case DW_AT_HP_linkage_name:
13320 return "DW_AT_HP_linkage_name";
13321 case DW_AT_HP_prof_flags:
13322 return "DW_AT_HP_prof_flags";
13323 /* GNU extensions. */
13324 case DW_AT_sf_names:
13325 return "DW_AT_sf_names";
13326 case DW_AT_src_info:
13327 return "DW_AT_src_info";
13328 case DW_AT_mac_info:
13329 return "DW_AT_mac_info";
13330 case DW_AT_src_coords:
13331 return "DW_AT_src_coords";
13332 case DW_AT_body_begin:
13333 return "DW_AT_body_begin";
13334 case DW_AT_body_end:
13335 return "DW_AT_body_end";
13336 case DW_AT_GNU_vector:
13337 return "DW_AT_GNU_vector";
13338 case DW_AT_GNU_odr_signature:
13339 return "DW_AT_GNU_odr_signature";
13340 /* VMS extensions. */
13341 case DW_AT_VMS_rtnbeg_pd_address:
13342 return "DW_AT_VMS_rtnbeg_pd_address";
13343 /* UPC extension. */
13344 case DW_AT_upc_threads_scaled:
13345 return "DW_AT_upc_threads_scaled";
13346 /* PGI (STMicroelectronics) extensions. */
13347 case DW_AT_PGI_lbase:
13348 return "DW_AT_PGI_lbase";
13349 case DW_AT_PGI_soffset:
13350 return "DW_AT_PGI_soffset";
13351 case DW_AT_PGI_lstride:
13352 return "DW_AT_PGI_lstride";
13353 default:
13354 return "DW_AT_<unknown>";
13355 }
13356 }
13357
13358 /* Convert a DWARF value form code into its string name. */
13359
13360 static char *
13361 dwarf_form_name (unsigned form)
13362 {
13363 switch (form)
13364 {
13365 case DW_FORM_addr:
13366 return "DW_FORM_addr";
13367 case DW_FORM_block2:
13368 return "DW_FORM_block2";
13369 case DW_FORM_block4:
13370 return "DW_FORM_block4";
13371 case DW_FORM_data2:
13372 return "DW_FORM_data2";
13373 case DW_FORM_data4:
13374 return "DW_FORM_data4";
13375 case DW_FORM_data8:
13376 return "DW_FORM_data8";
13377 case DW_FORM_string:
13378 return "DW_FORM_string";
13379 case DW_FORM_block:
13380 return "DW_FORM_block";
13381 case DW_FORM_block1:
13382 return "DW_FORM_block1";
13383 case DW_FORM_data1:
13384 return "DW_FORM_data1";
13385 case DW_FORM_flag:
13386 return "DW_FORM_flag";
13387 case DW_FORM_sdata:
13388 return "DW_FORM_sdata";
13389 case DW_FORM_strp:
13390 return "DW_FORM_strp";
13391 case DW_FORM_udata:
13392 return "DW_FORM_udata";
13393 case DW_FORM_ref_addr:
13394 return "DW_FORM_ref_addr";
13395 case DW_FORM_ref1:
13396 return "DW_FORM_ref1";
13397 case DW_FORM_ref2:
13398 return "DW_FORM_ref2";
13399 case DW_FORM_ref4:
13400 return "DW_FORM_ref4";
13401 case DW_FORM_ref8:
13402 return "DW_FORM_ref8";
13403 case DW_FORM_ref_udata:
13404 return "DW_FORM_ref_udata";
13405 case DW_FORM_indirect:
13406 return "DW_FORM_indirect";
13407 case DW_FORM_sec_offset:
13408 return "DW_FORM_sec_offset";
13409 case DW_FORM_exprloc:
13410 return "DW_FORM_exprloc";
13411 case DW_FORM_flag_present:
13412 return "DW_FORM_flag_present";
13413 case DW_FORM_ref_sig8:
13414 return "DW_FORM_ref_sig8";
13415 default:
13416 return "DW_FORM_<unknown>";
13417 }
13418 }
13419
13420 /* Convert a DWARF stack opcode into its string name. */
13421
13422 const char *
13423 dwarf_stack_op_name (unsigned op)
13424 {
13425 switch (op)
13426 {
13427 case DW_OP_addr:
13428 return "DW_OP_addr";
13429 case DW_OP_deref:
13430 return "DW_OP_deref";
13431 case DW_OP_const1u:
13432 return "DW_OP_const1u";
13433 case DW_OP_const1s:
13434 return "DW_OP_const1s";
13435 case DW_OP_const2u:
13436 return "DW_OP_const2u";
13437 case DW_OP_const2s:
13438 return "DW_OP_const2s";
13439 case DW_OP_const4u:
13440 return "DW_OP_const4u";
13441 case DW_OP_const4s:
13442 return "DW_OP_const4s";
13443 case DW_OP_const8u:
13444 return "DW_OP_const8u";
13445 case DW_OP_const8s:
13446 return "DW_OP_const8s";
13447 case DW_OP_constu:
13448 return "DW_OP_constu";
13449 case DW_OP_consts:
13450 return "DW_OP_consts";
13451 case DW_OP_dup:
13452 return "DW_OP_dup";
13453 case DW_OP_drop:
13454 return "DW_OP_drop";
13455 case DW_OP_over:
13456 return "DW_OP_over";
13457 case DW_OP_pick:
13458 return "DW_OP_pick";
13459 case DW_OP_swap:
13460 return "DW_OP_swap";
13461 case DW_OP_rot:
13462 return "DW_OP_rot";
13463 case DW_OP_xderef:
13464 return "DW_OP_xderef";
13465 case DW_OP_abs:
13466 return "DW_OP_abs";
13467 case DW_OP_and:
13468 return "DW_OP_and";
13469 case DW_OP_div:
13470 return "DW_OP_div";
13471 case DW_OP_minus:
13472 return "DW_OP_minus";
13473 case DW_OP_mod:
13474 return "DW_OP_mod";
13475 case DW_OP_mul:
13476 return "DW_OP_mul";
13477 case DW_OP_neg:
13478 return "DW_OP_neg";
13479 case DW_OP_not:
13480 return "DW_OP_not";
13481 case DW_OP_or:
13482 return "DW_OP_or";
13483 case DW_OP_plus:
13484 return "DW_OP_plus";
13485 case DW_OP_plus_uconst:
13486 return "DW_OP_plus_uconst";
13487 case DW_OP_shl:
13488 return "DW_OP_shl";
13489 case DW_OP_shr:
13490 return "DW_OP_shr";
13491 case DW_OP_shra:
13492 return "DW_OP_shra";
13493 case DW_OP_xor:
13494 return "DW_OP_xor";
13495 case DW_OP_bra:
13496 return "DW_OP_bra";
13497 case DW_OP_eq:
13498 return "DW_OP_eq";
13499 case DW_OP_ge:
13500 return "DW_OP_ge";
13501 case DW_OP_gt:
13502 return "DW_OP_gt";
13503 case DW_OP_le:
13504 return "DW_OP_le";
13505 case DW_OP_lt:
13506 return "DW_OP_lt";
13507 case DW_OP_ne:
13508 return "DW_OP_ne";
13509 case DW_OP_skip:
13510 return "DW_OP_skip";
13511 case DW_OP_lit0:
13512 return "DW_OP_lit0";
13513 case DW_OP_lit1:
13514 return "DW_OP_lit1";
13515 case DW_OP_lit2:
13516 return "DW_OP_lit2";
13517 case DW_OP_lit3:
13518 return "DW_OP_lit3";
13519 case DW_OP_lit4:
13520 return "DW_OP_lit4";
13521 case DW_OP_lit5:
13522 return "DW_OP_lit5";
13523 case DW_OP_lit6:
13524 return "DW_OP_lit6";
13525 case DW_OP_lit7:
13526 return "DW_OP_lit7";
13527 case DW_OP_lit8:
13528 return "DW_OP_lit8";
13529 case DW_OP_lit9:
13530 return "DW_OP_lit9";
13531 case DW_OP_lit10:
13532 return "DW_OP_lit10";
13533 case DW_OP_lit11:
13534 return "DW_OP_lit11";
13535 case DW_OP_lit12:
13536 return "DW_OP_lit12";
13537 case DW_OP_lit13:
13538 return "DW_OP_lit13";
13539 case DW_OP_lit14:
13540 return "DW_OP_lit14";
13541 case DW_OP_lit15:
13542 return "DW_OP_lit15";
13543 case DW_OP_lit16:
13544 return "DW_OP_lit16";
13545 case DW_OP_lit17:
13546 return "DW_OP_lit17";
13547 case DW_OP_lit18:
13548 return "DW_OP_lit18";
13549 case DW_OP_lit19:
13550 return "DW_OP_lit19";
13551 case DW_OP_lit20:
13552 return "DW_OP_lit20";
13553 case DW_OP_lit21:
13554 return "DW_OP_lit21";
13555 case DW_OP_lit22:
13556 return "DW_OP_lit22";
13557 case DW_OP_lit23:
13558 return "DW_OP_lit23";
13559 case DW_OP_lit24:
13560 return "DW_OP_lit24";
13561 case DW_OP_lit25:
13562 return "DW_OP_lit25";
13563 case DW_OP_lit26:
13564 return "DW_OP_lit26";
13565 case DW_OP_lit27:
13566 return "DW_OP_lit27";
13567 case DW_OP_lit28:
13568 return "DW_OP_lit28";
13569 case DW_OP_lit29:
13570 return "DW_OP_lit29";
13571 case DW_OP_lit30:
13572 return "DW_OP_lit30";
13573 case DW_OP_lit31:
13574 return "DW_OP_lit31";
13575 case DW_OP_reg0:
13576 return "DW_OP_reg0";
13577 case DW_OP_reg1:
13578 return "DW_OP_reg1";
13579 case DW_OP_reg2:
13580 return "DW_OP_reg2";
13581 case DW_OP_reg3:
13582 return "DW_OP_reg3";
13583 case DW_OP_reg4:
13584 return "DW_OP_reg4";
13585 case DW_OP_reg5:
13586 return "DW_OP_reg5";
13587 case DW_OP_reg6:
13588 return "DW_OP_reg6";
13589 case DW_OP_reg7:
13590 return "DW_OP_reg7";
13591 case DW_OP_reg8:
13592 return "DW_OP_reg8";
13593 case DW_OP_reg9:
13594 return "DW_OP_reg9";
13595 case DW_OP_reg10:
13596 return "DW_OP_reg10";
13597 case DW_OP_reg11:
13598 return "DW_OP_reg11";
13599 case DW_OP_reg12:
13600 return "DW_OP_reg12";
13601 case DW_OP_reg13:
13602 return "DW_OP_reg13";
13603 case DW_OP_reg14:
13604 return "DW_OP_reg14";
13605 case DW_OP_reg15:
13606 return "DW_OP_reg15";
13607 case DW_OP_reg16:
13608 return "DW_OP_reg16";
13609 case DW_OP_reg17:
13610 return "DW_OP_reg17";
13611 case DW_OP_reg18:
13612 return "DW_OP_reg18";
13613 case DW_OP_reg19:
13614 return "DW_OP_reg19";
13615 case DW_OP_reg20:
13616 return "DW_OP_reg20";
13617 case DW_OP_reg21:
13618 return "DW_OP_reg21";
13619 case DW_OP_reg22:
13620 return "DW_OP_reg22";
13621 case DW_OP_reg23:
13622 return "DW_OP_reg23";
13623 case DW_OP_reg24:
13624 return "DW_OP_reg24";
13625 case DW_OP_reg25:
13626 return "DW_OP_reg25";
13627 case DW_OP_reg26:
13628 return "DW_OP_reg26";
13629 case DW_OP_reg27:
13630 return "DW_OP_reg27";
13631 case DW_OP_reg28:
13632 return "DW_OP_reg28";
13633 case DW_OP_reg29:
13634 return "DW_OP_reg29";
13635 case DW_OP_reg30:
13636 return "DW_OP_reg30";
13637 case DW_OP_reg31:
13638 return "DW_OP_reg31";
13639 case DW_OP_breg0:
13640 return "DW_OP_breg0";
13641 case DW_OP_breg1:
13642 return "DW_OP_breg1";
13643 case DW_OP_breg2:
13644 return "DW_OP_breg2";
13645 case DW_OP_breg3:
13646 return "DW_OP_breg3";
13647 case DW_OP_breg4:
13648 return "DW_OP_breg4";
13649 case DW_OP_breg5:
13650 return "DW_OP_breg5";
13651 case DW_OP_breg6:
13652 return "DW_OP_breg6";
13653 case DW_OP_breg7:
13654 return "DW_OP_breg7";
13655 case DW_OP_breg8:
13656 return "DW_OP_breg8";
13657 case DW_OP_breg9:
13658 return "DW_OP_breg9";
13659 case DW_OP_breg10:
13660 return "DW_OP_breg10";
13661 case DW_OP_breg11:
13662 return "DW_OP_breg11";
13663 case DW_OP_breg12:
13664 return "DW_OP_breg12";
13665 case DW_OP_breg13:
13666 return "DW_OP_breg13";
13667 case DW_OP_breg14:
13668 return "DW_OP_breg14";
13669 case DW_OP_breg15:
13670 return "DW_OP_breg15";
13671 case DW_OP_breg16:
13672 return "DW_OP_breg16";
13673 case DW_OP_breg17:
13674 return "DW_OP_breg17";
13675 case DW_OP_breg18:
13676 return "DW_OP_breg18";
13677 case DW_OP_breg19:
13678 return "DW_OP_breg19";
13679 case DW_OP_breg20:
13680 return "DW_OP_breg20";
13681 case DW_OP_breg21:
13682 return "DW_OP_breg21";
13683 case DW_OP_breg22:
13684 return "DW_OP_breg22";
13685 case DW_OP_breg23:
13686 return "DW_OP_breg23";
13687 case DW_OP_breg24:
13688 return "DW_OP_breg24";
13689 case DW_OP_breg25:
13690 return "DW_OP_breg25";
13691 case DW_OP_breg26:
13692 return "DW_OP_breg26";
13693 case DW_OP_breg27:
13694 return "DW_OP_breg27";
13695 case DW_OP_breg28:
13696 return "DW_OP_breg28";
13697 case DW_OP_breg29:
13698 return "DW_OP_breg29";
13699 case DW_OP_breg30:
13700 return "DW_OP_breg30";
13701 case DW_OP_breg31:
13702 return "DW_OP_breg31";
13703 case DW_OP_regx:
13704 return "DW_OP_regx";
13705 case DW_OP_fbreg:
13706 return "DW_OP_fbreg";
13707 case DW_OP_bregx:
13708 return "DW_OP_bregx";
13709 case DW_OP_piece:
13710 return "DW_OP_piece";
13711 case DW_OP_deref_size:
13712 return "DW_OP_deref_size";
13713 case DW_OP_xderef_size:
13714 return "DW_OP_xderef_size";
13715 case DW_OP_nop:
13716 return "DW_OP_nop";
13717 /* DWARF 3 extensions. */
13718 case DW_OP_push_object_address:
13719 return "DW_OP_push_object_address";
13720 case DW_OP_call2:
13721 return "DW_OP_call2";
13722 case DW_OP_call4:
13723 return "DW_OP_call4";
13724 case DW_OP_call_ref:
13725 return "DW_OP_call_ref";
13726 case DW_OP_form_tls_address:
13727 return "DW_OP_form_tls_address";
13728 case DW_OP_call_frame_cfa:
13729 return "DW_OP_call_frame_cfa";
13730 case DW_OP_bit_piece:
13731 return "DW_OP_bit_piece";
13732 /* DWARF 4 extensions. */
13733 case DW_OP_implicit_value:
13734 return "DW_OP_implicit_value";
13735 case DW_OP_stack_value:
13736 return "DW_OP_stack_value";
13737 /* GNU extensions. */
13738 case DW_OP_GNU_push_tls_address:
13739 return "DW_OP_GNU_push_tls_address";
13740 case DW_OP_GNU_uninit:
13741 return "DW_OP_GNU_uninit";
13742 case DW_OP_GNU_implicit_pointer:
13743 return "DW_OP_GNU_implicit_pointer";
13744 case DW_OP_GNU_entry_value:
13745 return "DW_OP_GNU_entry_value";
13746 case DW_OP_GNU_const_type:
13747 return "DW_OP_GNU_const_type";
13748 case DW_OP_GNU_regval_type:
13749 return "DW_OP_GNU_regval_type";
13750 case DW_OP_GNU_deref_type:
13751 return "DW_OP_GNU_deref_type";
13752 case DW_OP_GNU_convert:
13753 return "DW_OP_GNU_convert";
13754 case DW_OP_GNU_reinterpret:
13755 return "DW_OP_GNU_reinterpret";
13756 default:
13757 return NULL;
13758 }
13759 }
13760
13761 static char *
13762 dwarf_bool_name (unsigned mybool)
13763 {
13764 if (mybool)
13765 return "TRUE";
13766 else
13767 return "FALSE";
13768 }
13769
13770 /* Convert a DWARF type code into its string name. */
13771
13772 static char *
13773 dwarf_type_encoding_name (unsigned enc)
13774 {
13775 switch (enc)
13776 {
13777 case DW_ATE_void:
13778 return "DW_ATE_void";
13779 case DW_ATE_address:
13780 return "DW_ATE_address";
13781 case DW_ATE_boolean:
13782 return "DW_ATE_boolean";
13783 case DW_ATE_complex_float:
13784 return "DW_ATE_complex_float";
13785 case DW_ATE_float:
13786 return "DW_ATE_float";
13787 case DW_ATE_signed:
13788 return "DW_ATE_signed";
13789 case DW_ATE_signed_char:
13790 return "DW_ATE_signed_char";
13791 case DW_ATE_unsigned:
13792 return "DW_ATE_unsigned";
13793 case DW_ATE_unsigned_char:
13794 return "DW_ATE_unsigned_char";
13795 /* DWARF 3. */
13796 case DW_ATE_imaginary_float:
13797 return "DW_ATE_imaginary_float";
13798 case DW_ATE_packed_decimal:
13799 return "DW_ATE_packed_decimal";
13800 case DW_ATE_numeric_string:
13801 return "DW_ATE_numeric_string";
13802 case DW_ATE_edited:
13803 return "DW_ATE_edited";
13804 case DW_ATE_signed_fixed:
13805 return "DW_ATE_signed_fixed";
13806 case DW_ATE_unsigned_fixed:
13807 return "DW_ATE_unsigned_fixed";
13808 case DW_ATE_decimal_float:
13809 return "DW_ATE_decimal_float";
13810 /* DWARF 4. */
13811 case DW_ATE_UTF:
13812 return "DW_ATE_UTF";
13813 /* HP extensions. */
13814 case DW_ATE_HP_float80:
13815 return "DW_ATE_HP_float80";
13816 case DW_ATE_HP_complex_float80:
13817 return "DW_ATE_HP_complex_float80";
13818 case DW_ATE_HP_float128:
13819 return "DW_ATE_HP_float128";
13820 case DW_ATE_HP_complex_float128:
13821 return "DW_ATE_HP_complex_float128";
13822 case DW_ATE_HP_floathpintel:
13823 return "DW_ATE_HP_floathpintel";
13824 case DW_ATE_HP_imaginary_float80:
13825 return "DW_ATE_HP_imaginary_float80";
13826 case DW_ATE_HP_imaginary_float128:
13827 return "DW_ATE_HP_imaginary_float128";
13828 default:
13829 return "DW_ATE_<unknown>";
13830 }
13831 }
13832
13833 /* Convert a DWARF call frame info operation to its string name. */
13834
13835 #if 0
13836 static char *
13837 dwarf_cfi_name (unsigned cfi_opc)
13838 {
13839 switch (cfi_opc)
13840 {
13841 case DW_CFA_advance_loc:
13842 return "DW_CFA_advance_loc";
13843 case DW_CFA_offset:
13844 return "DW_CFA_offset";
13845 case DW_CFA_restore:
13846 return "DW_CFA_restore";
13847 case DW_CFA_nop:
13848 return "DW_CFA_nop";
13849 case DW_CFA_set_loc:
13850 return "DW_CFA_set_loc";
13851 case DW_CFA_advance_loc1:
13852 return "DW_CFA_advance_loc1";
13853 case DW_CFA_advance_loc2:
13854 return "DW_CFA_advance_loc2";
13855 case DW_CFA_advance_loc4:
13856 return "DW_CFA_advance_loc4";
13857 case DW_CFA_offset_extended:
13858 return "DW_CFA_offset_extended";
13859 case DW_CFA_restore_extended:
13860 return "DW_CFA_restore_extended";
13861 case DW_CFA_undefined:
13862 return "DW_CFA_undefined";
13863 case DW_CFA_same_value:
13864 return "DW_CFA_same_value";
13865 case DW_CFA_register:
13866 return "DW_CFA_register";
13867 case DW_CFA_remember_state:
13868 return "DW_CFA_remember_state";
13869 case DW_CFA_restore_state:
13870 return "DW_CFA_restore_state";
13871 case DW_CFA_def_cfa:
13872 return "DW_CFA_def_cfa";
13873 case DW_CFA_def_cfa_register:
13874 return "DW_CFA_def_cfa_register";
13875 case DW_CFA_def_cfa_offset:
13876 return "DW_CFA_def_cfa_offset";
13877 /* DWARF 3. */
13878 case DW_CFA_def_cfa_expression:
13879 return "DW_CFA_def_cfa_expression";
13880 case DW_CFA_expression:
13881 return "DW_CFA_expression";
13882 case DW_CFA_offset_extended_sf:
13883 return "DW_CFA_offset_extended_sf";
13884 case DW_CFA_def_cfa_sf:
13885 return "DW_CFA_def_cfa_sf";
13886 case DW_CFA_def_cfa_offset_sf:
13887 return "DW_CFA_def_cfa_offset_sf";
13888 case DW_CFA_val_offset:
13889 return "DW_CFA_val_offset";
13890 case DW_CFA_val_offset_sf:
13891 return "DW_CFA_val_offset_sf";
13892 case DW_CFA_val_expression:
13893 return "DW_CFA_val_expression";
13894 /* SGI/MIPS specific. */
13895 case DW_CFA_MIPS_advance_loc8:
13896 return "DW_CFA_MIPS_advance_loc8";
13897 /* GNU extensions. */
13898 case DW_CFA_GNU_window_save:
13899 return "DW_CFA_GNU_window_save";
13900 case DW_CFA_GNU_args_size:
13901 return "DW_CFA_GNU_args_size";
13902 case DW_CFA_GNU_negative_offset_extended:
13903 return "DW_CFA_GNU_negative_offset_extended";
13904 default:
13905 return "DW_CFA_<unknown>";
13906 }
13907 }
13908 #endif
13909
13910 static void
13911 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13912 {
13913 unsigned int i;
13914
13915 print_spaces (indent, f);
13916 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13917 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13918
13919 if (die->parent != NULL)
13920 {
13921 print_spaces (indent, f);
13922 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13923 die->parent->offset);
13924 }
13925
13926 print_spaces (indent, f);
13927 fprintf_unfiltered (f, " has children: %s\n",
13928 dwarf_bool_name (die->child != NULL));
13929
13930 print_spaces (indent, f);
13931 fprintf_unfiltered (f, " attributes:\n");
13932
13933 for (i = 0; i < die->num_attrs; ++i)
13934 {
13935 print_spaces (indent, f);
13936 fprintf_unfiltered (f, " %s (%s) ",
13937 dwarf_attr_name (die->attrs[i].name),
13938 dwarf_form_name (die->attrs[i].form));
13939
13940 switch (die->attrs[i].form)
13941 {
13942 case DW_FORM_ref_addr:
13943 case DW_FORM_addr:
13944 fprintf_unfiltered (f, "address: ");
13945 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13946 break;
13947 case DW_FORM_block2:
13948 case DW_FORM_block4:
13949 case DW_FORM_block:
13950 case DW_FORM_block1:
13951 fprintf_unfiltered (f, "block: size %d",
13952 DW_BLOCK (&die->attrs[i])->size);
13953 break;
13954 case DW_FORM_exprloc:
13955 fprintf_unfiltered (f, "expression: size %u",
13956 DW_BLOCK (&die->attrs[i])->size);
13957 break;
13958 case DW_FORM_ref1:
13959 case DW_FORM_ref2:
13960 case DW_FORM_ref4:
13961 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13962 (long) (DW_ADDR (&die->attrs[i])));
13963 break;
13964 case DW_FORM_data1:
13965 case DW_FORM_data2:
13966 case DW_FORM_data4:
13967 case DW_FORM_data8:
13968 case DW_FORM_udata:
13969 case DW_FORM_sdata:
13970 fprintf_unfiltered (f, "constant: %s",
13971 pulongest (DW_UNSND (&die->attrs[i])));
13972 break;
13973 case DW_FORM_sec_offset:
13974 fprintf_unfiltered (f, "section offset: %s",
13975 pulongest (DW_UNSND (&die->attrs[i])));
13976 break;
13977 case DW_FORM_ref_sig8:
13978 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13979 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13980 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
13981 else
13982 fprintf_unfiltered (f, "signatured type, offset: unknown");
13983 break;
13984 case DW_FORM_string:
13985 case DW_FORM_strp:
13986 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13987 DW_STRING (&die->attrs[i])
13988 ? DW_STRING (&die->attrs[i]) : "",
13989 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13990 break;
13991 case DW_FORM_flag:
13992 if (DW_UNSND (&die->attrs[i]))
13993 fprintf_unfiltered (f, "flag: TRUE");
13994 else
13995 fprintf_unfiltered (f, "flag: FALSE");
13996 break;
13997 case DW_FORM_flag_present:
13998 fprintf_unfiltered (f, "flag: TRUE");
13999 break;
14000 case DW_FORM_indirect:
14001 /* The reader will have reduced the indirect form to
14002 the "base form" so this form should not occur. */
14003 fprintf_unfiltered (f,
14004 "unexpected attribute form: DW_FORM_indirect");
14005 break;
14006 default:
14007 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14008 die->attrs[i].form);
14009 break;
14010 }
14011 fprintf_unfiltered (f, "\n");
14012 }
14013 }
14014
14015 static void
14016 dump_die_for_error (struct die_info *die)
14017 {
14018 dump_die_shallow (gdb_stderr, 0, die);
14019 }
14020
14021 static void
14022 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14023 {
14024 int indent = level * 4;
14025
14026 gdb_assert (die != NULL);
14027
14028 if (level >= max_level)
14029 return;
14030
14031 dump_die_shallow (f, indent, die);
14032
14033 if (die->child != NULL)
14034 {
14035 print_spaces (indent, f);
14036 fprintf_unfiltered (f, " Children:");
14037 if (level + 1 < max_level)
14038 {
14039 fprintf_unfiltered (f, "\n");
14040 dump_die_1 (f, level + 1, max_level, die->child);
14041 }
14042 else
14043 {
14044 fprintf_unfiltered (f,
14045 " [not printed, max nesting level reached]\n");
14046 }
14047 }
14048
14049 if (die->sibling != NULL && level > 0)
14050 {
14051 dump_die_1 (f, level, max_level, die->sibling);
14052 }
14053 }
14054
14055 /* This is called from the pdie macro in gdbinit.in.
14056 It's not static so gcc will keep a copy callable from gdb. */
14057
14058 void
14059 dump_die (struct die_info *die, int max_level)
14060 {
14061 dump_die_1 (gdb_stdlog, 0, max_level, die);
14062 }
14063
14064 static void
14065 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14066 {
14067 void **slot;
14068
14069 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14070
14071 *slot = die;
14072 }
14073
14074 static int
14075 is_ref_attr (struct attribute *attr)
14076 {
14077 switch (attr->form)
14078 {
14079 case DW_FORM_ref_addr:
14080 case DW_FORM_ref1:
14081 case DW_FORM_ref2:
14082 case DW_FORM_ref4:
14083 case DW_FORM_ref8:
14084 case DW_FORM_ref_udata:
14085 return 1;
14086 default:
14087 return 0;
14088 }
14089 }
14090
14091 static unsigned int
14092 dwarf2_get_ref_die_offset (struct attribute *attr)
14093 {
14094 if (is_ref_attr (attr))
14095 return DW_ADDR (attr);
14096
14097 complaint (&symfile_complaints,
14098 _("unsupported die ref attribute form: '%s'"),
14099 dwarf_form_name (attr->form));
14100 return 0;
14101 }
14102
14103 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14104 * the value held by the attribute is not constant. */
14105
14106 static LONGEST
14107 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14108 {
14109 if (attr->form == DW_FORM_sdata)
14110 return DW_SND (attr);
14111 else if (attr->form == DW_FORM_udata
14112 || attr->form == DW_FORM_data1
14113 || attr->form == DW_FORM_data2
14114 || attr->form == DW_FORM_data4
14115 || attr->form == DW_FORM_data8)
14116 return DW_UNSND (attr);
14117 else
14118 {
14119 complaint (&symfile_complaints,
14120 _("Attribute value is not a constant (%s)"),
14121 dwarf_form_name (attr->form));
14122 return default_value;
14123 }
14124 }
14125
14126 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14127 unit and add it to our queue.
14128 The result is non-zero if PER_CU was queued, otherwise the result is zero
14129 meaning either PER_CU is already queued or it is already loaded. */
14130
14131 static int
14132 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14133 struct dwarf2_per_cu_data *per_cu)
14134 {
14135 /* We may arrive here during partial symbol reading, if we need full
14136 DIEs to process an unusual case (e.g. template arguments). Do
14137 not queue PER_CU, just tell our caller to load its DIEs. */
14138 if (dwarf2_per_objfile->reading_partial_symbols)
14139 {
14140 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14141 return 1;
14142 return 0;
14143 }
14144
14145 /* Mark the dependence relation so that we don't flush PER_CU
14146 too early. */
14147 dwarf2_add_dependence (this_cu, per_cu);
14148
14149 /* If it's already on the queue, we have nothing to do. */
14150 if (per_cu->queued)
14151 return 0;
14152
14153 /* If the compilation unit is already loaded, just mark it as
14154 used. */
14155 if (per_cu->cu != NULL)
14156 {
14157 per_cu->cu->last_used = 0;
14158 return 0;
14159 }
14160
14161 /* Add it to the queue. */
14162 queue_comp_unit (per_cu, this_cu->objfile);
14163
14164 return 1;
14165 }
14166
14167 /* Follow reference or signature attribute ATTR of SRC_DIE.
14168 On entry *REF_CU is the CU of SRC_DIE.
14169 On exit *REF_CU is the CU of the result. */
14170
14171 static struct die_info *
14172 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14173 struct dwarf2_cu **ref_cu)
14174 {
14175 struct die_info *die;
14176
14177 if (is_ref_attr (attr))
14178 die = follow_die_ref (src_die, attr, ref_cu);
14179 else if (attr->form == DW_FORM_ref_sig8)
14180 die = follow_die_sig (src_die, attr, ref_cu);
14181 else
14182 {
14183 dump_die_for_error (src_die);
14184 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14185 (*ref_cu)->objfile->name);
14186 }
14187
14188 return die;
14189 }
14190
14191 /* Follow reference OFFSET.
14192 On entry *REF_CU is the CU of the source die referencing OFFSET.
14193 On exit *REF_CU is the CU of the result.
14194 Returns NULL if OFFSET is invalid. */
14195
14196 static struct die_info *
14197 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14198 {
14199 struct die_info temp_die;
14200 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14201
14202 gdb_assert (cu->per_cu != NULL);
14203
14204 target_cu = cu;
14205
14206 if (cu->per_cu->debug_type_section)
14207 {
14208 /* .debug_types CUs cannot reference anything outside their CU.
14209 If they need to, they have to reference a signatured type via
14210 DW_FORM_ref_sig8. */
14211 if (! offset_in_cu_p (&cu->header, offset))
14212 return NULL;
14213 }
14214 else if (! offset_in_cu_p (&cu->header, offset))
14215 {
14216 struct dwarf2_per_cu_data *per_cu;
14217
14218 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14219
14220 /* If necessary, add it to the queue and load its DIEs. */
14221 if (maybe_queue_comp_unit (cu, per_cu))
14222 load_full_comp_unit (per_cu, cu->objfile);
14223
14224 target_cu = per_cu->cu;
14225 }
14226 else if (cu->dies == NULL)
14227 {
14228 /* We're loading full DIEs during partial symbol reading. */
14229 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14230 load_full_comp_unit (cu->per_cu, cu->objfile);
14231 }
14232
14233 *ref_cu = target_cu;
14234 temp_die.offset = offset;
14235 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14236 }
14237
14238 /* Follow reference attribute ATTR of SRC_DIE.
14239 On entry *REF_CU is the CU of SRC_DIE.
14240 On exit *REF_CU is the CU of the result. */
14241
14242 static struct die_info *
14243 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14244 struct dwarf2_cu **ref_cu)
14245 {
14246 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14247 struct dwarf2_cu *cu = *ref_cu;
14248 struct die_info *die;
14249
14250 die = follow_die_offset (offset, ref_cu);
14251 if (!die)
14252 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14253 "at 0x%x [in module %s]"),
14254 offset, src_die->offset, cu->objfile->name);
14255
14256 return die;
14257 }
14258
14259 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14260 Returned value is intended for DW_OP_call*. Returned
14261 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14262
14263 struct dwarf2_locexpr_baton
14264 dwarf2_fetch_die_location_block (unsigned int offset,
14265 struct dwarf2_per_cu_data *per_cu,
14266 CORE_ADDR (*get_frame_pc) (void *baton),
14267 void *baton)
14268 {
14269 struct dwarf2_cu *cu;
14270 struct die_info *die;
14271 struct attribute *attr;
14272 struct dwarf2_locexpr_baton retval;
14273
14274 dw2_setup (per_cu->objfile);
14275
14276 if (per_cu->cu == NULL)
14277 load_cu (per_cu);
14278 cu = per_cu->cu;
14279
14280 die = follow_die_offset (offset, &cu);
14281 if (!die)
14282 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14283 offset, per_cu->cu->objfile->name);
14284
14285 attr = dwarf2_attr (die, DW_AT_location, cu);
14286 if (!attr)
14287 {
14288 /* DWARF: "If there is no such attribute, then there is no effect.".
14289 DATA is ignored if SIZE is 0. */
14290
14291 retval.data = NULL;
14292 retval.size = 0;
14293 }
14294 else if (attr_form_is_section_offset (attr))
14295 {
14296 struct dwarf2_loclist_baton loclist_baton;
14297 CORE_ADDR pc = (*get_frame_pc) (baton);
14298 size_t size;
14299
14300 fill_in_loclist_baton (cu, &loclist_baton, attr);
14301
14302 retval.data = dwarf2_find_location_expression (&loclist_baton,
14303 &size, pc);
14304 retval.size = size;
14305 }
14306 else
14307 {
14308 if (!attr_form_is_block (attr))
14309 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14310 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14311 offset, per_cu->cu->objfile->name);
14312
14313 retval.data = DW_BLOCK (attr)->data;
14314 retval.size = DW_BLOCK (attr)->size;
14315 }
14316 retval.per_cu = cu->per_cu;
14317
14318 age_cached_comp_units ();
14319
14320 return retval;
14321 }
14322
14323 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14324 PER_CU. */
14325
14326 struct type *
14327 dwarf2_get_die_type (unsigned int die_offset,
14328 struct dwarf2_per_cu_data *per_cu)
14329 {
14330 dw2_setup (per_cu->objfile);
14331 return get_die_type_at_offset (die_offset, per_cu);
14332 }
14333
14334 /* Follow the signature attribute ATTR in SRC_DIE.
14335 On entry *REF_CU is the CU of SRC_DIE.
14336 On exit *REF_CU is the CU of the result. */
14337
14338 static struct die_info *
14339 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14340 struct dwarf2_cu **ref_cu)
14341 {
14342 struct objfile *objfile = (*ref_cu)->objfile;
14343 struct die_info temp_die;
14344 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14345 struct dwarf2_cu *sig_cu;
14346 struct die_info *die;
14347
14348 /* sig_type will be NULL if the signatured type is missing from
14349 the debug info. */
14350 if (sig_type == NULL)
14351 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14352 "at 0x%x [in module %s]"),
14353 src_die->offset, objfile->name);
14354
14355 /* If necessary, add it to the queue and load its DIEs. */
14356
14357 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14358 read_signatured_type (objfile, sig_type);
14359
14360 gdb_assert (sig_type->per_cu.cu != NULL);
14361
14362 sig_cu = sig_type->per_cu.cu;
14363 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14364 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14365 if (die)
14366 {
14367 *ref_cu = sig_cu;
14368 return die;
14369 }
14370
14371 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14372 "from DIE at 0x%x [in module %s]"),
14373 sig_type->type_offset, src_die->offset, objfile->name);
14374 }
14375
14376 /* Given an offset of a signatured type, return its signatured_type. */
14377
14378 static struct signatured_type *
14379 lookup_signatured_type_at_offset (struct objfile *objfile,
14380 struct dwarf2_section_info *section,
14381 unsigned int offset)
14382 {
14383 gdb_byte *info_ptr = section->buffer + offset;
14384 unsigned int length, initial_length_size;
14385 unsigned int sig_offset;
14386 struct signatured_type find_entry, *type_sig;
14387
14388 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14389 sig_offset = (initial_length_size
14390 + 2 /*version*/
14391 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14392 + 1 /*address_size*/);
14393 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14394 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14395
14396 /* This is only used to lookup previously recorded types.
14397 If we didn't find it, it's our bug. */
14398 gdb_assert (type_sig != NULL);
14399 gdb_assert (offset == type_sig->per_cu.offset);
14400
14401 return type_sig;
14402 }
14403
14404 /* Read in signatured type at OFFSET and build its CU and die(s). */
14405
14406 static void
14407 read_signatured_type_at_offset (struct objfile *objfile,
14408 struct dwarf2_section_info *sect,
14409 unsigned int offset)
14410 {
14411 struct signatured_type *type_sig;
14412
14413 dwarf2_read_section (objfile, sect);
14414
14415 /* We have the section offset, but we need the signature to do the
14416 hash table lookup. */
14417 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14418
14419 gdb_assert (type_sig->per_cu.cu == NULL);
14420
14421 read_signatured_type (objfile, type_sig);
14422
14423 gdb_assert (type_sig->per_cu.cu != NULL);
14424 }
14425
14426 /* Read in a signatured type and build its CU and DIEs. */
14427
14428 static void
14429 read_signatured_type (struct objfile *objfile,
14430 struct signatured_type *type_sig)
14431 {
14432 gdb_byte *types_ptr;
14433 struct die_reader_specs reader_specs;
14434 struct dwarf2_cu *cu;
14435 ULONGEST signature;
14436 struct cleanup *back_to, *free_cu_cleanup;
14437 struct dwarf2_section_info *section = type_sig->per_cu.debug_type_section;
14438
14439 dwarf2_read_section (objfile, section);
14440 types_ptr = section->buffer + type_sig->per_cu.offset;
14441
14442 gdb_assert (type_sig->per_cu.cu == NULL);
14443
14444 cu = xmalloc (sizeof (*cu));
14445 init_one_comp_unit (cu, objfile);
14446
14447 type_sig->per_cu.cu = cu;
14448 cu->per_cu = &type_sig->per_cu;
14449
14450 /* If an error occurs while loading, release our storage. */
14451 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
14452
14453 types_ptr = read_type_comp_unit_head (&cu->header, section, &signature,
14454 types_ptr, objfile->obfd);
14455 gdb_assert (signature == type_sig->signature);
14456
14457 cu->die_hash
14458 = htab_create_alloc_ex (cu->header.length / 12,
14459 die_hash,
14460 die_eq,
14461 NULL,
14462 &cu->comp_unit_obstack,
14463 hashtab_obstack_allocate,
14464 dummy_obstack_deallocate);
14465
14466 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
14467 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14468
14469 init_cu_die_reader (&reader_specs, cu);
14470
14471 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14472 NULL /*parent*/);
14473
14474 /* We try not to read any attributes in this function, because not
14475 all objfiles needed for references have been loaded yet, and symbol
14476 table processing isn't initialized. But we have to set the CU language,
14477 or we won't be able to build types correctly. */
14478 prepare_one_comp_unit (cu, cu->dies);
14479
14480 do_cleanups (back_to);
14481
14482 /* We've successfully allocated this compilation unit. Let our caller
14483 clean it up when finished with it. */
14484 discard_cleanups (free_cu_cleanup);
14485
14486 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14487 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14488 }
14489
14490 /* Decode simple location descriptions.
14491 Given a pointer to a dwarf block that defines a location, compute
14492 the location and return the value.
14493
14494 NOTE drow/2003-11-18: This function is called in two situations
14495 now: for the address of static or global variables (partial symbols
14496 only) and for offsets into structures which are expected to be
14497 (more or less) constant. The partial symbol case should go away,
14498 and only the constant case should remain. That will let this
14499 function complain more accurately. A few special modes are allowed
14500 without complaint for global variables (for instance, global
14501 register values and thread-local values).
14502
14503 A location description containing no operations indicates that the
14504 object is optimized out. The return value is 0 for that case.
14505 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14506 callers will only want a very basic result and this can become a
14507 complaint.
14508
14509 Note that stack[0] is unused except as a default error return. */
14510
14511 static CORE_ADDR
14512 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14513 {
14514 struct objfile *objfile = cu->objfile;
14515 int i;
14516 int size = blk->size;
14517 gdb_byte *data = blk->data;
14518 CORE_ADDR stack[64];
14519 int stacki;
14520 unsigned int bytes_read, unsnd;
14521 gdb_byte op;
14522
14523 i = 0;
14524 stacki = 0;
14525 stack[stacki] = 0;
14526 stack[++stacki] = 0;
14527
14528 while (i < size)
14529 {
14530 op = data[i++];
14531 switch (op)
14532 {
14533 case DW_OP_lit0:
14534 case DW_OP_lit1:
14535 case DW_OP_lit2:
14536 case DW_OP_lit3:
14537 case DW_OP_lit4:
14538 case DW_OP_lit5:
14539 case DW_OP_lit6:
14540 case DW_OP_lit7:
14541 case DW_OP_lit8:
14542 case DW_OP_lit9:
14543 case DW_OP_lit10:
14544 case DW_OP_lit11:
14545 case DW_OP_lit12:
14546 case DW_OP_lit13:
14547 case DW_OP_lit14:
14548 case DW_OP_lit15:
14549 case DW_OP_lit16:
14550 case DW_OP_lit17:
14551 case DW_OP_lit18:
14552 case DW_OP_lit19:
14553 case DW_OP_lit20:
14554 case DW_OP_lit21:
14555 case DW_OP_lit22:
14556 case DW_OP_lit23:
14557 case DW_OP_lit24:
14558 case DW_OP_lit25:
14559 case DW_OP_lit26:
14560 case DW_OP_lit27:
14561 case DW_OP_lit28:
14562 case DW_OP_lit29:
14563 case DW_OP_lit30:
14564 case DW_OP_lit31:
14565 stack[++stacki] = op - DW_OP_lit0;
14566 break;
14567
14568 case DW_OP_reg0:
14569 case DW_OP_reg1:
14570 case DW_OP_reg2:
14571 case DW_OP_reg3:
14572 case DW_OP_reg4:
14573 case DW_OP_reg5:
14574 case DW_OP_reg6:
14575 case DW_OP_reg7:
14576 case DW_OP_reg8:
14577 case DW_OP_reg9:
14578 case DW_OP_reg10:
14579 case DW_OP_reg11:
14580 case DW_OP_reg12:
14581 case DW_OP_reg13:
14582 case DW_OP_reg14:
14583 case DW_OP_reg15:
14584 case DW_OP_reg16:
14585 case DW_OP_reg17:
14586 case DW_OP_reg18:
14587 case DW_OP_reg19:
14588 case DW_OP_reg20:
14589 case DW_OP_reg21:
14590 case DW_OP_reg22:
14591 case DW_OP_reg23:
14592 case DW_OP_reg24:
14593 case DW_OP_reg25:
14594 case DW_OP_reg26:
14595 case DW_OP_reg27:
14596 case DW_OP_reg28:
14597 case DW_OP_reg29:
14598 case DW_OP_reg30:
14599 case DW_OP_reg31:
14600 stack[++stacki] = op - DW_OP_reg0;
14601 if (i < size)
14602 dwarf2_complex_location_expr_complaint ();
14603 break;
14604
14605 case DW_OP_regx:
14606 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14607 i += bytes_read;
14608 stack[++stacki] = unsnd;
14609 if (i < size)
14610 dwarf2_complex_location_expr_complaint ();
14611 break;
14612
14613 case DW_OP_addr:
14614 stack[++stacki] = read_address (objfile->obfd, &data[i],
14615 cu, &bytes_read);
14616 i += bytes_read;
14617 break;
14618
14619 case DW_OP_const1u:
14620 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14621 i += 1;
14622 break;
14623
14624 case DW_OP_const1s:
14625 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14626 i += 1;
14627 break;
14628
14629 case DW_OP_const2u:
14630 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14631 i += 2;
14632 break;
14633
14634 case DW_OP_const2s:
14635 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14636 i += 2;
14637 break;
14638
14639 case DW_OP_const4u:
14640 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14641 i += 4;
14642 break;
14643
14644 case DW_OP_const4s:
14645 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14646 i += 4;
14647 break;
14648
14649 case DW_OP_constu:
14650 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14651 &bytes_read);
14652 i += bytes_read;
14653 break;
14654
14655 case DW_OP_consts:
14656 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14657 i += bytes_read;
14658 break;
14659
14660 case DW_OP_dup:
14661 stack[stacki + 1] = stack[stacki];
14662 stacki++;
14663 break;
14664
14665 case DW_OP_plus:
14666 stack[stacki - 1] += stack[stacki];
14667 stacki--;
14668 break;
14669
14670 case DW_OP_plus_uconst:
14671 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14672 &bytes_read);
14673 i += bytes_read;
14674 break;
14675
14676 case DW_OP_minus:
14677 stack[stacki - 1] -= stack[stacki];
14678 stacki--;
14679 break;
14680
14681 case DW_OP_deref:
14682 /* If we're not the last op, then we definitely can't encode
14683 this using GDB's address_class enum. This is valid for partial
14684 global symbols, although the variable's address will be bogus
14685 in the psymtab. */
14686 if (i < size)
14687 dwarf2_complex_location_expr_complaint ();
14688 break;
14689
14690 case DW_OP_GNU_push_tls_address:
14691 /* The top of the stack has the offset from the beginning
14692 of the thread control block at which the variable is located. */
14693 /* Nothing should follow this operator, so the top of stack would
14694 be returned. */
14695 /* This is valid for partial global symbols, but the variable's
14696 address will be bogus in the psymtab. */
14697 if (i < size)
14698 dwarf2_complex_location_expr_complaint ();
14699 break;
14700
14701 case DW_OP_GNU_uninit:
14702 break;
14703
14704 default:
14705 {
14706 const char *name = dwarf_stack_op_name (op);
14707
14708 if (name)
14709 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14710 name);
14711 else
14712 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14713 op);
14714 }
14715
14716 return (stack[stacki]);
14717 }
14718
14719 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14720 outside of the allocated space. Also enforce minimum>0. */
14721 if (stacki >= ARRAY_SIZE (stack) - 1)
14722 {
14723 complaint (&symfile_complaints,
14724 _("location description stack overflow"));
14725 return 0;
14726 }
14727
14728 if (stacki <= 0)
14729 {
14730 complaint (&symfile_complaints,
14731 _("location description stack underflow"));
14732 return 0;
14733 }
14734 }
14735 return (stack[stacki]);
14736 }
14737
14738 /* memory allocation interface */
14739
14740 static struct dwarf_block *
14741 dwarf_alloc_block (struct dwarf2_cu *cu)
14742 {
14743 struct dwarf_block *blk;
14744
14745 blk = (struct dwarf_block *)
14746 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14747 return (blk);
14748 }
14749
14750 static struct abbrev_info *
14751 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14752 {
14753 struct abbrev_info *abbrev;
14754
14755 abbrev = (struct abbrev_info *)
14756 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14757 memset (abbrev, 0, sizeof (struct abbrev_info));
14758 return (abbrev);
14759 }
14760
14761 static struct die_info *
14762 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14763 {
14764 struct die_info *die;
14765 size_t size = sizeof (struct die_info);
14766
14767 if (num_attrs > 1)
14768 size += (num_attrs - 1) * sizeof (struct attribute);
14769
14770 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14771 memset (die, 0, sizeof (struct die_info));
14772 return (die);
14773 }
14774
14775 \f
14776 /* Macro support. */
14777
14778 /* Return the full name of file number I in *LH's file name table.
14779 Use COMP_DIR as the name of the current directory of the
14780 compilation. The result is allocated using xmalloc; the caller is
14781 responsible for freeing it. */
14782 static char *
14783 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14784 {
14785 /* Is the file number a valid index into the line header's file name
14786 table? Remember that file numbers start with one, not zero. */
14787 if (1 <= file && file <= lh->num_file_names)
14788 {
14789 struct file_entry *fe = &lh->file_names[file - 1];
14790
14791 if (IS_ABSOLUTE_PATH (fe->name))
14792 return xstrdup (fe->name);
14793 else
14794 {
14795 const char *dir;
14796 int dir_len;
14797 char *full_name;
14798
14799 if (fe->dir_index)
14800 dir = lh->include_dirs[fe->dir_index - 1];
14801 else
14802 dir = comp_dir;
14803
14804 if (dir)
14805 {
14806 dir_len = strlen (dir);
14807 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14808 strcpy (full_name, dir);
14809 full_name[dir_len] = '/';
14810 strcpy (full_name + dir_len + 1, fe->name);
14811 return full_name;
14812 }
14813 else
14814 return xstrdup (fe->name);
14815 }
14816 }
14817 else
14818 {
14819 /* The compiler produced a bogus file number. We can at least
14820 record the macro definitions made in the file, even if we
14821 won't be able to find the file by name. */
14822 char fake_name[80];
14823
14824 sprintf (fake_name, "<bad macro file number %d>", file);
14825
14826 complaint (&symfile_complaints,
14827 _("bad file number in macro information (%d)"),
14828 file);
14829
14830 return xstrdup (fake_name);
14831 }
14832 }
14833
14834
14835 static struct macro_source_file *
14836 macro_start_file (int file, int line,
14837 struct macro_source_file *current_file,
14838 const char *comp_dir,
14839 struct line_header *lh, struct objfile *objfile)
14840 {
14841 /* The full name of this source file. */
14842 char *full_name = file_full_name (file, lh, comp_dir);
14843
14844 /* We don't create a macro table for this compilation unit
14845 at all until we actually get a filename. */
14846 if (! pending_macros)
14847 pending_macros = new_macro_table (&objfile->objfile_obstack,
14848 objfile->macro_cache);
14849
14850 if (! current_file)
14851 /* If we have no current file, then this must be the start_file
14852 directive for the compilation unit's main source file. */
14853 current_file = macro_set_main (pending_macros, full_name);
14854 else
14855 current_file = macro_include (current_file, line, full_name);
14856
14857 xfree (full_name);
14858
14859 return current_file;
14860 }
14861
14862
14863 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14864 followed by a null byte. */
14865 static char *
14866 copy_string (const char *buf, int len)
14867 {
14868 char *s = xmalloc (len + 1);
14869
14870 memcpy (s, buf, len);
14871 s[len] = '\0';
14872 return s;
14873 }
14874
14875
14876 static const char *
14877 consume_improper_spaces (const char *p, const char *body)
14878 {
14879 if (*p == ' ')
14880 {
14881 complaint (&symfile_complaints,
14882 _("macro definition contains spaces "
14883 "in formal argument list:\n`%s'"),
14884 body);
14885
14886 while (*p == ' ')
14887 p++;
14888 }
14889
14890 return p;
14891 }
14892
14893
14894 static void
14895 parse_macro_definition (struct macro_source_file *file, int line,
14896 const char *body)
14897 {
14898 const char *p;
14899
14900 /* The body string takes one of two forms. For object-like macro
14901 definitions, it should be:
14902
14903 <macro name> " " <definition>
14904
14905 For function-like macro definitions, it should be:
14906
14907 <macro name> "() " <definition>
14908 or
14909 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14910
14911 Spaces may appear only where explicitly indicated, and in the
14912 <definition>.
14913
14914 The Dwarf 2 spec says that an object-like macro's name is always
14915 followed by a space, but versions of GCC around March 2002 omit
14916 the space when the macro's definition is the empty string.
14917
14918 The Dwarf 2 spec says that there should be no spaces between the
14919 formal arguments in a function-like macro's formal argument list,
14920 but versions of GCC around March 2002 include spaces after the
14921 commas. */
14922
14923
14924 /* Find the extent of the macro name. The macro name is terminated
14925 by either a space or null character (for an object-like macro) or
14926 an opening paren (for a function-like macro). */
14927 for (p = body; *p; p++)
14928 if (*p == ' ' || *p == '(')
14929 break;
14930
14931 if (*p == ' ' || *p == '\0')
14932 {
14933 /* It's an object-like macro. */
14934 int name_len = p - body;
14935 char *name = copy_string (body, name_len);
14936 const char *replacement;
14937
14938 if (*p == ' ')
14939 replacement = body + name_len + 1;
14940 else
14941 {
14942 dwarf2_macro_malformed_definition_complaint (body);
14943 replacement = body + name_len;
14944 }
14945
14946 macro_define_object (file, line, name, replacement);
14947
14948 xfree (name);
14949 }
14950 else if (*p == '(')
14951 {
14952 /* It's a function-like macro. */
14953 char *name = copy_string (body, p - body);
14954 int argc = 0;
14955 int argv_size = 1;
14956 char **argv = xmalloc (argv_size * sizeof (*argv));
14957
14958 p++;
14959
14960 p = consume_improper_spaces (p, body);
14961
14962 /* Parse the formal argument list. */
14963 while (*p && *p != ')')
14964 {
14965 /* Find the extent of the current argument name. */
14966 const char *arg_start = p;
14967
14968 while (*p && *p != ',' && *p != ')' && *p != ' ')
14969 p++;
14970
14971 if (! *p || p == arg_start)
14972 dwarf2_macro_malformed_definition_complaint (body);
14973 else
14974 {
14975 /* Make sure argv has room for the new argument. */
14976 if (argc >= argv_size)
14977 {
14978 argv_size *= 2;
14979 argv = xrealloc (argv, argv_size * sizeof (*argv));
14980 }
14981
14982 argv[argc++] = copy_string (arg_start, p - arg_start);
14983 }
14984
14985 p = consume_improper_spaces (p, body);
14986
14987 /* Consume the comma, if present. */
14988 if (*p == ',')
14989 {
14990 p++;
14991
14992 p = consume_improper_spaces (p, body);
14993 }
14994 }
14995
14996 if (*p == ')')
14997 {
14998 p++;
14999
15000 if (*p == ' ')
15001 /* Perfectly formed definition, no complaints. */
15002 macro_define_function (file, line, name,
15003 argc, (const char **) argv,
15004 p + 1);
15005 else if (*p == '\0')
15006 {
15007 /* Complain, but do define it. */
15008 dwarf2_macro_malformed_definition_complaint (body);
15009 macro_define_function (file, line, name,
15010 argc, (const char **) argv,
15011 p);
15012 }
15013 else
15014 /* Just complain. */
15015 dwarf2_macro_malformed_definition_complaint (body);
15016 }
15017 else
15018 /* Just complain. */
15019 dwarf2_macro_malformed_definition_complaint (body);
15020
15021 xfree (name);
15022 {
15023 int i;
15024
15025 for (i = 0; i < argc; i++)
15026 xfree (argv[i]);
15027 }
15028 xfree (argv);
15029 }
15030 else
15031 dwarf2_macro_malformed_definition_complaint (body);
15032 }
15033
15034 /* Skip some bytes from BYTES according to the form given in FORM.
15035 Returns the new pointer. */
15036
15037 static gdb_byte *
15038 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15039 enum dwarf_form form,
15040 unsigned int offset_size,
15041 struct dwarf2_section_info *section)
15042 {
15043 unsigned int bytes_read;
15044
15045 switch (form)
15046 {
15047 case DW_FORM_data1:
15048 case DW_FORM_flag:
15049 ++bytes;
15050 break;
15051
15052 case DW_FORM_data2:
15053 bytes += 2;
15054 break;
15055
15056 case DW_FORM_data4:
15057 bytes += 4;
15058 break;
15059
15060 case DW_FORM_data8:
15061 bytes += 8;
15062 break;
15063
15064 case DW_FORM_string:
15065 read_direct_string (abfd, bytes, &bytes_read);
15066 bytes += bytes_read;
15067 break;
15068
15069 case DW_FORM_sec_offset:
15070 case DW_FORM_strp:
15071 bytes += offset_size;
15072 break;
15073
15074 case DW_FORM_block:
15075 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15076 bytes += bytes_read;
15077 break;
15078
15079 case DW_FORM_block1:
15080 bytes += 1 + read_1_byte (abfd, bytes);
15081 break;
15082 case DW_FORM_block2:
15083 bytes += 2 + read_2_bytes (abfd, bytes);
15084 break;
15085 case DW_FORM_block4:
15086 bytes += 4 + read_4_bytes (abfd, bytes);
15087 break;
15088
15089 case DW_FORM_sdata:
15090 case DW_FORM_udata:
15091 bytes = skip_leb128 (abfd, bytes);
15092 break;
15093
15094 default:
15095 {
15096 complain:
15097 complaint (&symfile_complaints,
15098 _("invalid form 0x%x in `%s'"),
15099 form,
15100 section->asection->name);
15101 return NULL;
15102 }
15103 }
15104
15105 return bytes;
15106 }
15107
15108 /* A helper for dwarf_decode_macros that handles skipping an unknown
15109 opcode. Returns an updated pointer to the macro data buffer; or,
15110 on error, issues a complaint and returns NULL. */
15111
15112 static gdb_byte *
15113 skip_unknown_opcode (unsigned int opcode,
15114 gdb_byte **opcode_definitions,
15115 gdb_byte *mac_ptr,
15116 bfd *abfd,
15117 unsigned int offset_size,
15118 struct dwarf2_section_info *section)
15119 {
15120 unsigned int bytes_read, i;
15121 unsigned long arg;
15122 gdb_byte *defn;
15123
15124 if (opcode_definitions[opcode] == NULL)
15125 {
15126 complaint (&symfile_complaints,
15127 _("unrecognized DW_MACFINO opcode 0x%x"),
15128 opcode);
15129 return NULL;
15130 }
15131
15132 defn = opcode_definitions[opcode];
15133 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15134 defn += bytes_read;
15135
15136 for (i = 0; i < arg; ++i)
15137 {
15138 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15139 if (mac_ptr == NULL)
15140 {
15141 /* skip_form_bytes already issued the complaint. */
15142 return NULL;
15143 }
15144 }
15145
15146 return mac_ptr;
15147 }
15148
15149 /* A helper function which parses the header of a macro section.
15150 If the macro section is the extended (for now called "GNU") type,
15151 then this updates *OFFSET_SIZE. Returns a pointer to just after
15152 the header, or issues a complaint and returns NULL on error. */
15153
15154 static gdb_byte *
15155 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15156 bfd *abfd,
15157 gdb_byte *mac_ptr,
15158 unsigned int *offset_size,
15159 int section_is_gnu)
15160 {
15161 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15162
15163 if (section_is_gnu)
15164 {
15165 unsigned int version, flags;
15166
15167 version = read_2_bytes (abfd, mac_ptr);
15168 if (version != 4)
15169 {
15170 complaint (&symfile_complaints,
15171 _("unrecognized version `%d' in .debug_macro section"),
15172 version);
15173 return NULL;
15174 }
15175 mac_ptr += 2;
15176
15177 flags = read_1_byte (abfd, mac_ptr);
15178 ++mac_ptr;
15179 *offset_size = (flags & 1) ? 8 : 4;
15180
15181 if ((flags & 2) != 0)
15182 /* We don't need the line table offset. */
15183 mac_ptr += *offset_size;
15184
15185 /* Vendor opcode descriptions. */
15186 if ((flags & 4) != 0)
15187 {
15188 unsigned int i, count;
15189
15190 count = read_1_byte (abfd, mac_ptr);
15191 ++mac_ptr;
15192 for (i = 0; i < count; ++i)
15193 {
15194 unsigned int opcode, bytes_read;
15195 unsigned long arg;
15196
15197 opcode = read_1_byte (abfd, mac_ptr);
15198 ++mac_ptr;
15199 opcode_definitions[opcode] = mac_ptr;
15200 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15201 mac_ptr += bytes_read;
15202 mac_ptr += arg;
15203 }
15204 }
15205 }
15206
15207 return mac_ptr;
15208 }
15209
15210 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15211 including DW_GNU_MACINFO_transparent_include. */
15212
15213 static void
15214 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15215 struct macro_source_file *current_file,
15216 struct line_header *lh, char *comp_dir,
15217 struct dwarf2_section_info *section,
15218 int section_is_gnu,
15219 unsigned int offset_size,
15220 struct objfile *objfile)
15221 {
15222 enum dwarf_macro_record_type macinfo_type;
15223 int at_commandline;
15224 gdb_byte *opcode_definitions[256];
15225
15226 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15227 &offset_size, section_is_gnu);
15228 if (mac_ptr == NULL)
15229 {
15230 /* We already issued a complaint. */
15231 return;
15232 }
15233
15234 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15235 GDB is still reading the definitions from command line. First
15236 DW_MACINFO_start_file will need to be ignored as it was already executed
15237 to create CURRENT_FILE for the main source holding also the command line
15238 definitions. On first met DW_MACINFO_start_file this flag is reset to
15239 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15240
15241 at_commandline = 1;
15242
15243 do
15244 {
15245 /* Do we at least have room for a macinfo type byte? */
15246 if (mac_ptr >= mac_end)
15247 {
15248 dwarf2_macros_too_long_complaint (section);
15249 break;
15250 }
15251
15252 macinfo_type = read_1_byte (abfd, mac_ptr);
15253 mac_ptr++;
15254
15255 /* Note that we rely on the fact that the corresponding GNU and
15256 DWARF constants are the same. */
15257 switch (macinfo_type)
15258 {
15259 /* A zero macinfo type indicates the end of the macro
15260 information. */
15261 case 0:
15262 break;
15263
15264 case DW_MACRO_GNU_define:
15265 case DW_MACRO_GNU_undef:
15266 case DW_MACRO_GNU_define_indirect:
15267 case DW_MACRO_GNU_undef_indirect:
15268 {
15269 unsigned int bytes_read;
15270 int line;
15271 char *body;
15272 int is_define;
15273
15274 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15275 mac_ptr += bytes_read;
15276
15277 if (macinfo_type == DW_MACRO_GNU_define
15278 || macinfo_type == DW_MACRO_GNU_undef)
15279 {
15280 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15281 mac_ptr += bytes_read;
15282 }
15283 else
15284 {
15285 LONGEST str_offset;
15286
15287 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15288 mac_ptr += offset_size;
15289
15290 body = read_indirect_string_at_offset (abfd, str_offset);
15291 }
15292
15293 is_define = (macinfo_type == DW_MACRO_GNU_define
15294 || macinfo_type == DW_MACRO_GNU_define_indirect);
15295 if (! current_file)
15296 {
15297 /* DWARF violation as no main source is present. */
15298 complaint (&symfile_complaints,
15299 _("debug info with no main source gives macro %s "
15300 "on line %d: %s"),
15301 is_define ? _("definition") : _("undefinition"),
15302 line, body);
15303 break;
15304 }
15305 if ((line == 0 && !at_commandline)
15306 || (line != 0 && at_commandline))
15307 complaint (&symfile_complaints,
15308 _("debug info gives %s macro %s with %s line %d: %s"),
15309 at_commandline ? _("command-line") : _("in-file"),
15310 is_define ? _("definition") : _("undefinition"),
15311 line == 0 ? _("zero") : _("non-zero"), line, body);
15312
15313 if (is_define)
15314 parse_macro_definition (current_file, line, body);
15315 else
15316 {
15317 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15318 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15319 macro_undef (current_file, line, body);
15320 }
15321 }
15322 break;
15323
15324 case DW_MACRO_GNU_start_file:
15325 {
15326 unsigned int bytes_read;
15327 int line, file;
15328
15329 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15330 mac_ptr += bytes_read;
15331 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15332 mac_ptr += bytes_read;
15333
15334 if ((line == 0 && !at_commandline)
15335 || (line != 0 && at_commandline))
15336 complaint (&symfile_complaints,
15337 _("debug info gives source %d included "
15338 "from %s at %s line %d"),
15339 file, at_commandline ? _("command-line") : _("file"),
15340 line == 0 ? _("zero") : _("non-zero"), line);
15341
15342 if (at_commandline)
15343 {
15344 /* This DW_MACRO_GNU_start_file was executed in the
15345 pass one. */
15346 at_commandline = 0;
15347 }
15348 else
15349 current_file = macro_start_file (file, line,
15350 current_file, comp_dir,
15351 lh, objfile);
15352 }
15353 break;
15354
15355 case DW_MACRO_GNU_end_file:
15356 if (! current_file)
15357 complaint (&symfile_complaints,
15358 _("macro debug info has an unmatched "
15359 "`close_file' directive"));
15360 else
15361 {
15362 current_file = current_file->included_by;
15363 if (! current_file)
15364 {
15365 enum dwarf_macro_record_type next_type;
15366
15367 /* GCC circa March 2002 doesn't produce the zero
15368 type byte marking the end of the compilation
15369 unit. Complain if it's not there, but exit no
15370 matter what. */
15371
15372 /* Do we at least have room for a macinfo type byte? */
15373 if (mac_ptr >= mac_end)
15374 {
15375 dwarf2_macros_too_long_complaint (section);
15376 return;
15377 }
15378
15379 /* We don't increment mac_ptr here, so this is just
15380 a look-ahead. */
15381 next_type = read_1_byte (abfd, mac_ptr);
15382 if (next_type != 0)
15383 complaint (&symfile_complaints,
15384 _("no terminating 0-type entry for "
15385 "macros in `.debug_macinfo' section"));
15386
15387 return;
15388 }
15389 }
15390 break;
15391
15392 case DW_MACRO_GNU_transparent_include:
15393 {
15394 LONGEST offset;
15395
15396 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15397 mac_ptr += offset_size;
15398
15399 dwarf_decode_macro_bytes (abfd,
15400 section->buffer + offset,
15401 mac_end, current_file,
15402 lh, comp_dir,
15403 section, section_is_gnu,
15404 offset_size, objfile);
15405 }
15406 break;
15407
15408 case DW_MACINFO_vendor_ext:
15409 if (!section_is_gnu)
15410 {
15411 unsigned int bytes_read;
15412 int constant;
15413
15414 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15415 mac_ptr += bytes_read;
15416 read_direct_string (abfd, mac_ptr, &bytes_read);
15417 mac_ptr += bytes_read;
15418
15419 /* We don't recognize any vendor extensions. */
15420 break;
15421 }
15422 /* FALLTHROUGH */
15423
15424 default:
15425 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15426 mac_ptr, abfd, offset_size,
15427 section);
15428 if (mac_ptr == NULL)
15429 return;
15430 break;
15431 }
15432 } while (macinfo_type != 0);
15433 }
15434
15435 static void
15436 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15437 char *comp_dir, bfd *abfd,
15438 struct dwarf2_cu *cu,
15439 struct dwarf2_section_info *section,
15440 int section_is_gnu)
15441 {
15442 gdb_byte *mac_ptr, *mac_end;
15443 struct macro_source_file *current_file = 0;
15444 enum dwarf_macro_record_type macinfo_type;
15445 unsigned int offset_size = cu->header.offset_size;
15446 gdb_byte *opcode_definitions[256];
15447
15448 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15449 if (section->buffer == NULL)
15450 {
15451 complaint (&symfile_complaints, _("missing %s section"),
15452 section->asection->name);
15453 return;
15454 }
15455
15456 /* First pass: Find the name of the base filename.
15457 This filename is needed in order to process all macros whose definition
15458 (or undefinition) comes from the command line. These macros are defined
15459 before the first DW_MACINFO_start_file entry, and yet still need to be
15460 associated to the base file.
15461
15462 To determine the base file name, we scan the macro definitions until we
15463 reach the first DW_MACINFO_start_file entry. We then initialize
15464 CURRENT_FILE accordingly so that any macro definition found before the
15465 first DW_MACINFO_start_file can still be associated to the base file. */
15466
15467 mac_ptr = section->buffer + offset;
15468 mac_end = section->buffer + section->size;
15469
15470 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15471 &offset_size, section_is_gnu);
15472 if (mac_ptr == NULL)
15473 {
15474 /* We already issued a complaint. */
15475 return;
15476 }
15477
15478 do
15479 {
15480 /* Do we at least have room for a macinfo type byte? */
15481 if (mac_ptr >= mac_end)
15482 {
15483 /* Complaint is printed during the second pass as GDB will probably
15484 stop the first pass earlier upon finding
15485 DW_MACINFO_start_file. */
15486 break;
15487 }
15488
15489 macinfo_type = read_1_byte (abfd, mac_ptr);
15490 mac_ptr++;
15491
15492 /* Note that we rely on the fact that the corresponding GNU and
15493 DWARF constants are the same. */
15494 switch (macinfo_type)
15495 {
15496 /* A zero macinfo type indicates the end of the macro
15497 information. */
15498 case 0:
15499 break;
15500
15501 case DW_MACRO_GNU_define:
15502 case DW_MACRO_GNU_undef:
15503 /* Only skip the data by MAC_PTR. */
15504 {
15505 unsigned int bytes_read;
15506
15507 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15508 mac_ptr += bytes_read;
15509 read_direct_string (abfd, mac_ptr, &bytes_read);
15510 mac_ptr += bytes_read;
15511 }
15512 break;
15513
15514 case DW_MACRO_GNU_start_file:
15515 {
15516 unsigned int bytes_read;
15517 int line, file;
15518
15519 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15520 mac_ptr += bytes_read;
15521 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15522 mac_ptr += bytes_read;
15523
15524 current_file = macro_start_file (file, line, current_file,
15525 comp_dir, lh, cu->objfile);
15526 }
15527 break;
15528
15529 case DW_MACRO_GNU_end_file:
15530 /* No data to skip by MAC_PTR. */
15531 break;
15532
15533 case DW_MACRO_GNU_define_indirect:
15534 case DW_MACRO_GNU_undef_indirect:
15535 {
15536 unsigned int bytes_read;
15537
15538 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15539 mac_ptr += bytes_read;
15540 mac_ptr += offset_size;
15541 }
15542 break;
15543
15544 case DW_MACRO_GNU_transparent_include:
15545 /* Note that, according to the spec, a transparent include
15546 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15547 skip this opcode. */
15548 mac_ptr += offset_size;
15549 break;
15550
15551 case DW_MACINFO_vendor_ext:
15552 /* Only skip the data by MAC_PTR. */
15553 if (!section_is_gnu)
15554 {
15555 unsigned int bytes_read;
15556
15557 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15558 mac_ptr += bytes_read;
15559 read_direct_string (abfd, mac_ptr, &bytes_read);
15560 mac_ptr += bytes_read;
15561 }
15562 /* FALLTHROUGH */
15563
15564 default:
15565 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15566 mac_ptr, abfd, offset_size,
15567 section);
15568 if (mac_ptr == NULL)
15569 return;
15570 break;
15571 }
15572 } while (macinfo_type != 0 && current_file == NULL);
15573
15574 /* Second pass: Process all entries.
15575
15576 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15577 command-line macro definitions/undefinitions. This flag is unset when we
15578 reach the first DW_MACINFO_start_file entry. */
15579
15580 dwarf_decode_macro_bytes (abfd, section->buffer + offset, mac_end,
15581 current_file, lh, comp_dir, section, section_is_gnu,
15582 offset_size, cu->objfile);
15583 }
15584
15585 /* Check if the attribute's form is a DW_FORM_block*
15586 if so return true else false. */
15587 static int
15588 attr_form_is_block (struct attribute *attr)
15589 {
15590 return (attr == NULL ? 0 :
15591 attr->form == DW_FORM_block1
15592 || attr->form == DW_FORM_block2
15593 || attr->form == DW_FORM_block4
15594 || attr->form == DW_FORM_block
15595 || attr->form == DW_FORM_exprloc);
15596 }
15597
15598 /* Return non-zero if ATTR's value is a section offset --- classes
15599 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15600 You may use DW_UNSND (attr) to retrieve such offsets.
15601
15602 Section 7.5.4, "Attribute Encodings", explains that no attribute
15603 may have a value that belongs to more than one of these classes; it
15604 would be ambiguous if we did, because we use the same forms for all
15605 of them. */
15606 static int
15607 attr_form_is_section_offset (struct attribute *attr)
15608 {
15609 return (attr->form == DW_FORM_data4
15610 || attr->form == DW_FORM_data8
15611 || attr->form == DW_FORM_sec_offset);
15612 }
15613
15614
15615 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15616 zero otherwise. When this function returns true, you can apply
15617 dwarf2_get_attr_constant_value to it.
15618
15619 However, note that for some attributes you must check
15620 attr_form_is_section_offset before using this test. DW_FORM_data4
15621 and DW_FORM_data8 are members of both the constant class, and of
15622 the classes that contain offsets into other debug sections
15623 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15624 that, if an attribute's can be either a constant or one of the
15625 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15626 taken as section offsets, not constants. */
15627 static int
15628 attr_form_is_constant (struct attribute *attr)
15629 {
15630 switch (attr->form)
15631 {
15632 case DW_FORM_sdata:
15633 case DW_FORM_udata:
15634 case DW_FORM_data1:
15635 case DW_FORM_data2:
15636 case DW_FORM_data4:
15637 case DW_FORM_data8:
15638 return 1;
15639 default:
15640 return 0;
15641 }
15642 }
15643
15644 /* A helper function that fills in a dwarf2_loclist_baton. */
15645
15646 static void
15647 fill_in_loclist_baton (struct dwarf2_cu *cu,
15648 struct dwarf2_loclist_baton *baton,
15649 struct attribute *attr)
15650 {
15651 dwarf2_read_section (dwarf2_per_objfile->objfile,
15652 &dwarf2_per_objfile->loc);
15653
15654 baton->per_cu = cu->per_cu;
15655 gdb_assert (baton->per_cu);
15656 /* We don't know how long the location list is, but make sure we
15657 don't run off the edge of the section. */
15658 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15659 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15660 baton->base_address = cu->base_address;
15661 }
15662
15663 static void
15664 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15665 struct dwarf2_cu *cu)
15666 {
15667 if (attr_form_is_section_offset (attr)
15668 /* ".debug_loc" may not exist at all, or the offset may be outside
15669 the section. If so, fall through to the complaint in the
15670 other branch. */
15671 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
15672 &dwarf2_per_objfile->loc))
15673 {
15674 struct dwarf2_loclist_baton *baton;
15675
15676 baton = obstack_alloc (&cu->objfile->objfile_obstack,
15677 sizeof (struct dwarf2_loclist_baton));
15678
15679 fill_in_loclist_baton (cu, baton, attr);
15680
15681 if (cu->base_known == 0)
15682 complaint (&symfile_complaints,
15683 _("Location list used without "
15684 "specifying the CU base address."));
15685
15686 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15687 SYMBOL_LOCATION_BATON (sym) = baton;
15688 }
15689 else
15690 {
15691 struct dwarf2_locexpr_baton *baton;
15692
15693 baton = obstack_alloc (&cu->objfile->objfile_obstack,
15694 sizeof (struct dwarf2_locexpr_baton));
15695 baton->per_cu = cu->per_cu;
15696 gdb_assert (baton->per_cu);
15697
15698 if (attr_form_is_block (attr))
15699 {
15700 /* Note that we're just copying the block's data pointer
15701 here, not the actual data. We're still pointing into the
15702 info_buffer for SYM's objfile; right now we never release
15703 that buffer, but when we do clean up properly this may
15704 need to change. */
15705 baton->size = DW_BLOCK (attr)->size;
15706 baton->data = DW_BLOCK (attr)->data;
15707 }
15708 else
15709 {
15710 dwarf2_invalid_attrib_class_complaint ("location description",
15711 SYMBOL_NATURAL_NAME (sym));
15712 baton->size = 0;
15713 }
15714
15715 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15716 SYMBOL_LOCATION_BATON (sym) = baton;
15717 }
15718 }
15719
15720 /* Return the OBJFILE associated with the compilation unit CU. If CU
15721 came from a separate debuginfo file, then the master objfile is
15722 returned. */
15723
15724 struct objfile *
15725 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15726 {
15727 struct objfile *objfile = per_cu->objfile;
15728
15729 /* Return the master objfile, so that we can report and look up the
15730 correct file containing this variable. */
15731 if (objfile->separate_debug_objfile_backlink)
15732 objfile = objfile->separate_debug_objfile_backlink;
15733
15734 return objfile;
15735 }
15736
15737 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15738 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15739 CU_HEADERP first. */
15740
15741 static const struct comp_unit_head *
15742 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15743 struct dwarf2_per_cu_data *per_cu)
15744 {
15745 struct objfile *objfile;
15746 struct dwarf2_per_objfile *per_objfile;
15747 gdb_byte *info_ptr;
15748
15749 if (per_cu->cu)
15750 return &per_cu->cu->header;
15751
15752 objfile = per_cu->objfile;
15753 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15754 info_ptr = per_objfile->info.buffer + per_cu->offset;
15755
15756 memset (cu_headerp, 0, sizeof (*cu_headerp));
15757 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15758
15759 return cu_headerp;
15760 }
15761
15762 /* Return the address size given in the compilation unit header for CU. */
15763
15764 CORE_ADDR
15765 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15766 {
15767 struct comp_unit_head cu_header_local;
15768 const struct comp_unit_head *cu_headerp;
15769
15770 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15771
15772 return cu_headerp->addr_size;
15773 }
15774
15775 /* Return the offset size given in the compilation unit header for CU. */
15776
15777 int
15778 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15779 {
15780 struct comp_unit_head cu_header_local;
15781 const struct comp_unit_head *cu_headerp;
15782
15783 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15784
15785 return cu_headerp->offset_size;
15786 }
15787
15788 /* See its dwarf2loc.h declaration. */
15789
15790 int
15791 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15792 {
15793 struct comp_unit_head cu_header_local;
15794 const struct comp_unit_head *cu_headerp;
15795
15796 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15797
15798 if (cu_headerp->version == 2)
15799 return cu_headerp->addr_size;
15800 else
15801 return cu_headerp->offset_size;
15802 }
15803
15804 /* Return the text offset of the CU. The returned offset comes from
15805 this CU's objfile. If this objfile came from a separate debuginfo
15806 file, then the offset may be different from the corresponding
15807 offset in the parent objfile. */
15808
15809 CORE_ADDR
15810 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15811 {
15812 struct objfile *objfile = per_cu->objfile;
15813
15814 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15815 }
15816
15817 /* Locate the .debug_info compilation unit from CU's objfile which contains
15818 the DIE at OFFSET. Raises an error on failure. */
15819
15820 static struct dwarf2_per_cu_data *
15821 dwarf2_find_containing_comp_unit (unsigned int offset,
15822 struct objfile *objfile)
15823 {
15824 struct dwarf2_per_cu_data *this_cu;
15825 int low, high;
15826
15827 low = 0;
15828 high = dwarf2_per_objfile->n_comp_units - 1;
15829 while (high > low)
15830 {
15831 int mid = low + (high - low) / 2;
15832
15833 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15834 high = mid;
15835 else
15836 low = mid + 1;
15837 }
15838 gdb_assert (low == high);
15839 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15840 {
15841 if (low == 0)
15842 error (_("Dwarf Error: could not find partial DIE containing "
15843 "offset 0x%lx [in module %s]"),
15844 (long) offset, bfd_get_filename (objfile->obfd));
15845
15846 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15847 return dwarf2_per_objfile->all_comp_units[low-1];
15848 }
15849 else
15850 {
15851 this_cu = dwarf2_per_objfile->all_comp_units[low];
15852 if (low == dwarf2_per_objfile->n_comp_units - 1
15853 && offset >= this_cu->offset + this_cu->length)
15854 error (_("invalid dwarf2 offset %u"), offset);
15855 gdb_assert (offset < this_cu->offset + this_cu->length);
15856 return this_cu;
15857 }
15858 }
15859
15860 /* Locate the compilation unit from OBJFILE which is located at exactly
15861 OFFSET. Raises an error on failure. */
15862
15863 static struct dwarf2_per_cu_data *
15864 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
15865 {
15866 struct dwarf2_per_cu_data *this_cu;
15867
15868 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
15869 if (this_cu->offset != offset)
15870 error (_("no compilation unit with offset %u."), offset);
15871 return this_cu;
15872 }
15873
15874 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
15875
15876 static void
15877 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
15878 {
15879 memset (cu, 0, sizeof (*cu));
15880 cu->objfile = objfile;
15881 obstack_init (&cu->comp_unit_obstack);
15882 }
15883
15884 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15885
15886 static void
15887 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15888 {
15889 struct attribute *attr;
15890
15891 /* Set the language we're debugging. */
15892 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15893 if (attr)
15894 set_cu_language (DW_UNSND (attr), cu);
15895 else
15896 {
15897 cu->language = language_minimal;
15898 cu->language_defn = language_def (cu->language);
15899 }
15900 }
15901
15902 /* Release one cached compilation unit, CU. We unlink it from the tree
15903 of compilation units, but we don't remove it from the read_in_chain;
15904 the caller is responsible for that.
15905 NOTE: DATA is a void * because this function is also used as a
15906 cleanup routine. */
15907
15908 static void
15909 free_one_comp_unit (void *data)
15910 {
15911 struct dwarf2_cu *cu = data;
15912
15913 if (cu->per_cu != NULL)
15914 cu->per_cu->cu = NULL;
15915 cu->per_cu = NULL;
15916
15917 obstack_free (&cu->comp_unit_obstack, NULL);
15918
15919 xfree (cu);
15920 }
15921
15922 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15923 when we're finished with it. We can't free the pointer itself, but be
15924 sure to unlink it from the cache. Also release any associated storage
15925 and perform cache maintenance.
15926
15927 Only used during partial symbol parsing. */
15928
15929 static void
15930 free_stack_comp_unit (void *data)
15931 {
15932 struct dwarf2_cu *cu = data;
15933
15934 obstack_free (&cu->comp_unit_obstack, NULL);
15935 cu->partial_dies = NULL;
15936
15937 if (cu->per_cu != NULL)
15938 {
15939 /* This compilation unit is on the stack in our caller, so we
15940 should not xfree it. Just unlink it. */
15941 cu->per_cu->cu = NULL;
15942 cu->per_cu = NULL;
15943
15944 /* If we had a per-cu pointer, then we may have other compilation
15945 units loaded, so age them now. */
15946 age_cached_comp_units ();
15947 }
15948 }
15949
15950 /* Free all cached compilation units. */
15951
15952 static void
15953 free_cached_comp_units (void *data)
15954 {
15955 struct dwarf2_per_cu_data *per_cu, **last_chain;
15956
15957 per_cu = dwarf2_per_objfile->read_in_chain;
15958 last_chain = &dwarf2_per_objfile->read_in_chain;
15959 while (per_cu != NULL)
15960 {
15961 struct dwarf2_per_cu_data *next_cu;
15962
15963 next_cu = per_cu->cu->read_in_chain;
15964
15965 free_one_comp_unit (per_cu->cu);
15966 *last_chain = next_cu;
15967
15968 per_cu = next_cu;
15969 }
15970 }
15971
15972 /* Increase the age counter on each cached compilation unit, and free
15973 any that are too old. */
15974
15975 static void
15976 age_cached_comp_units (void)
15977 {
15978 struct dwarf2_per_cu_data *per_cu, **last_chain;
15979
15980 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15981 per_cu = dwarf2_per_objfile->read_in_chain;
15982 while (per_cu != NULL)
15983 {
15984 per_cu->cu->last_used ++;
15985 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15986 dwarf2_mark (per_cu->cu);
15987 per_cu = per_cu->cu->read_in_chain;
15988 }
15989
15990 per_cu = dwarf2_per_objfile->read_in_chain;
15991 last_chain = &dwarf2_per_objfile->read_in_chain;
15992 while (per_cu != NULL)
15993 {
15994 struct dwarf2_per_cu_data *next_cu;
15995
15996 next_cu = per_cu->cu->read_in_chain;
15997
15998 if (!per_cu->cu->mark)
15999 {
16000 free_one_comp_unit (per_cu->cu);
16001 *last_chain = next_cu;
16002 }
16003 else
16004 last_chain = &per_cu->cu->read_in_chain;
16005
16006 per_cu = next_cu;
16007 }
16008 }
16009
16010 /* Remove a single compilation unit from the cache. */
16011
16012 static void
16013 free_one_cached_comp_unit (void *target_cu)
16014 {
16015 struct dwarf2_per_cu_data *per_cu, **last_chain;
16016
16017 per_cu = dwarf2_per_objfile->read_in_chain;
16018 last_chain = &dwarf2_per_objfile->read_in_chain;
16019 while (per_cu != NULL)
16020 {
16021 struct dwarf2_per_cu_data *next_cu;
16022
16023 next_cu = per_cu->cu->read_in_chain;
16024
16025 if (per_cu->cu == target_cu)
16026 {
16027 free_one_comp_unit (per_cu->cu);
16028 *last_chain = next_cu;
16029 break;
16030 }
16031 else
16032 last_chain = &per_cu->cu->read_in_chain;
16033
16034 per_cu = next_cu;
16035 }
16036 }
16037
16038 /* Release all extra memory associated with OBJFILE. */
16039
16040 void
16041 dwarf2_free_objfile (struct objfile *objfile)
16042 {
16043 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16044
16045 if (dwarf2_per_objfile == NULL)
16046 return;
16047
16048 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16049 free_cached_comp_units (NULL);
16050
16051 if (dwarf2_per_objfile->quick_file_names_table)
16052 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16053
16054 /* Everything else should be on the objfile obstack. */
16055 }
16056
16057 /* A pair of DIE offset and GDB type pointer. We store these
16058 in a hash table separate from the DIEs, and preserve them
16059 when the DIEs are flushed out of cache. */
16060
16061 struct dwarf2_offset_and_type
16062 {
16063 unsigned int offset;
16064 struct type *type;
16065 };
16066
16067 /* Hash function for a dwarf2_offset_and_type. */
16068
16069 static hashval_t
16070 offset_and_type_hash (const void *item)
16071 {
16072 const struct dwarf2_offset_and_type *ofs = item;
16073
16074 return ofs->offset;
16075 }
16076
16077 /* Equality function for a dwarf2_offset_and_type. */
16078
16079 static int
16080 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16081 {
16082 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16083 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16084
16085 return ofs_lhs->offset == ofs_rhs->offset;
16086 }
16087
16088 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16089 table if necessary. For convenience, return TYPE.
16090
16091 The DIEs reading must have careful ordering to:
16092 * Not cause infite loops trying to read in DIEs as a prerequisite for
16093 reading current DIE.
16094 * Not trying to dereference contents of still incompletely read in types
16095 while reading in other DIEs.
16096 * Enable referencing still incompletely read in types just by a pointer to
16097 the type without accessing its fields.
16098
16099 Therefore caller should follow these rules:
16100 * Try to fetch any prerequisite types we may need to build this DIE type
16101 before building the type and calling set_die_type.
16102 * After building type call set_die_type for current DIE as soon as
16103 possible before fetching more types to complete the current type.
16104 * Make the type as complete as possible before fetching more types. */
16105
16106 static struct type *
16107 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16108 {
16109 struct dwarf2_offset_and_type **slot, ofs;
16110 struct objfile *objfile = cu->objfile;
16111 htab_t *type_hash_ptr;
16112
16113 /* For Ada types, make sure that the gnat-specific data is always
16114 initialized (if not already set). There are a few types where
16115 we should not be doing so, because the type-specific area is
16116 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16117 where the type-specific area is used to store the floatformat).
16118 But this is not a problem, because the gnat-specific information
16119 is actually not needed for these types. */
16120 if (need_gnat_info (cu)
16121 && TYPE_CODE (type) != TYPE_CODE_FUNC
16122 && TYPE_CODE (type) != TYPE_CODE_FLT
16123 && !HAVE_GNAT_AUX_INFO (type))
16124 INIT_GNAT_SPECIFIC (type);
16125
16126 if (cu->per_cu->debug_type_section)
16127 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16128 else
16129 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16130
16131 if (*type_hash_ptr == NULL)
16132 {
16133 *type_hash_ptr
16134 = htab_create_alloc_ex (127,
16135 offset_and_type_hash,
16136 offset_and_type_eq,
16137 NULL,
16138 &objfile->objfile_obstack,
16139 hashtab_obstack_allocate,
16140 dummy_obstack_deallocate);
16141 }
16142
16143 ofs.offset = die->offset;
16144 ofs.type = type;
16145 slot = (struct dwarf2_offset_and_type **)
16146 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16147 if (*slot)
16148 complaint (&symfile_complaints,
16149 _("A problem internal to GDB: DIE 0x%x has type already set"),
16150 die->offset);
16151 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16152 **slot = ofs;
16153 return type;
16154 }
16155
16156 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16157 table, or return NULL if the die does not have a saved type. */
16158
16159 static struct type *
16160 get_die_type_at_offset (unsigned int offset,
16161 struct dwarf2_per_cu_data *per_cu)
16162 {
16163 struct dwarf2_offset_and_type *slot, ofs;
16164 htab_t type_hash;
16165
16166 if (per_cu->debug_type_section)
16167 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16168 else
16169 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16170 if (type_hash == NULL)
16171 return NULL;
16172
16173 ofs.offset = offset;
16174 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16175 if (slot)
16176 return slot->type;
16177 else
16178 return NULL;
16179 }
16180
16181 /* Look up the type for DIE in the appropriate type_hash table,
16182 or return NULL if DIE does not have a saved type. */
16183
16184 static struct type *
16185 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16186 {
16187 return get_die_type_at_offset (die->offset, cu->per_cu);
16188 }
16189
16190 /* Add a dependence relationship from CU to REF_PER_CU. */
16191
16192 static void
16193 dwarf2_add_dependence (struct dwarf2_cu *cu,
16194 struct dwarf2_per_cu_data *ref_per_cu)
16195 {
16196 void **slot;
16197
16198 if (cu->dependencies == NULL)
16199 cu->dependencies
16200 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16201 NULL, &cu->comp_unit_obstack,
16202 hashtab_obstack_allocate,
16203 dummy_obstack_deallocate);
16204
16205 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16206 if (*slot == NULL)
16207 *slot = ref_per_cu;
16208 }
16209
16210 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16211 Set the mark field in every compilation unit in the
16212 cache that we must keep because we are keeping CU. */
16213
16214 static int
16215 dwarf2_mark_helper (void **slot, void *data)
16216 {
16217 struct dwarf2_per_cu_data *per_cu;
16218
16219 per_cu = (struct dwarf2_per_cu_data *) *slot;
16220
16221 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16222 reading of the chain. As such dependencies remain valid it is not much
16223 useful to track and undo them during QUIT cleanups. */
16224 if (per_cu->cu == NULL)
16225 return 1;
16226
16227 if (per_cu->cu->mark)
16228 return 1;
16229 per_cu->cu->mark = 1;
16230
16231 if (per_cu->cu->dependencies != NULL)
16232 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16233
16234 return 1;
16235 }
16236
16237 /* Set the mark field in CU and in every other compilation unit in the
16238 cache that we must keep because we are keeping CU. */
16239
16240 static void
16241 dwarf2_mark (struct dwarf2_cu *cu)
16242 {
16243 if (cu->mark)
16244 return;
16245 cu->mark = 1;
16246 if (cu->dependencies != NULL)
16247 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16248 }
16249
16250 static void
16251 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16252 {
16253 while (per_cu)
16254 {
16255 per_cu->cu->mark = 0;
16256 per_cu = per_cu->cu->read_in_chain;
16257 }
16258 }
16259
16260 /* Trivial hash function for partial_die_info: the hash value of a DIE
16261 is its offset in .debug_info for this objfile. */
16262
16263 static hashval_t
16264 partial_die_hash (const void *item)
16265 {
16266 const struct partial_die_info *part_die = item;
16267
16268 return part_die->offset;
16269 }
16270
16271 /* Trivial comparison function for partial_die_info structures: two DIEs
16272 are equal if they have the same offset. */
16273
16274 static int
16275 partial_die_eq (const void *item_lhs, const void *item_rhs)
16276 {
16277 const struct partial_die_info *part_die_lhs = item_lhs;
16278 const struct partial_die_info *part_die_rhs = item_rhs;
16279
16280 return part_die_lhs->offset == part_die_rhs->offset;
16281 }
16282
16283 static struct cmd_list_element *set_dwarf2_cmdlist;
16284 static struct cmd_list_element *show_dwarf2_cmdlist;
16285
16286 static void
16287 set_dwarf2_cmd (char *args, int from_tty)
16288 {
16289 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16290 }
16291
16292 static void
16293 show_dwarf2_cmd (char *args, int from_tty)
16294 {
16295 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16296 }
16297
16298 /* If section described by INFO was mmapped, munmap it now. */
16299
16300 static void
16301 munmap_section_buffer (struct dwarf2_section_info *info)
16302 {
16303 if (info->map_addr != NULL)
16304 {
16305 #ifdef HAVE_MMAP
16306 int res;
16307
16308 res = munmap (info->map_addr, info->map_len);
16309 gdb_assert (res == 0);
16310 #else
16311 /* Without HAVE_MMAP, we should never be here to begin with. */
16312 gdb_assert_not_reached ("no mmap support");
16313 #endif
16314 }
16315 }
16316
16317 /* munmap debug sections for OBJFILE, if necessary. */
16318
16319 static void
16320 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16321 {
16322 struct dwarf2_per_objfile *data = d;
16323 int ix;
16324 struct dwarf2_section_info *section;
16325
16326 /* This is sorted according to the order they're defined in to make it easier
16327 to keep in sync. */
16328 munmap_section_buffer (&data->info);
16329 munmap_section_buffer (&data->abbrev);
16330 munmap_section_buffer (&data->line);
16331 munmap_section_buffer (&data->loc);
16332 munmap_section_buffer (&data->macinfo);
16333 munmap_section_buffer (&data->macro);
16334 munmap_section_buffer (&data->str);
16335 munmap_section_buffer (&data->ranges);
16336 munmap_section_buffer (&data->frame);
16337 munmap_section_buffer (&data->eh_frame);
16338 munmap_section_buffer (&data->gdb_index);
16339
16340 for (ix = 0;
16341 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16342 ++ix)
16343 munmap_section_buffer (section);
16344
16345 VEC_free (dwarf2_section_info_def, data->types);
16346 }
16347
16348 \f
16349 /* The "save gdb-index" command. */
16350
16351 /* The contents of the hash table we create when building the string
16352 table. */
16353 struct strtab_entry
16354 {
16355 offset_type offset;
16356 const char *str;
16357 };
16358
16359 /* Hash function for a strtab_entry.
16360
16361 Function is used only during write_hash_table so no index format backward
16362 compatibility is needed. */
16363
16364 static hashval_t
16365 hash_strtab_entry (const void *e)
16366 {
16367 const struct strtab_entry *entry = e;
16368 return mapped_index_string_hash (INT_MAX, entry->str);
16369 }
16370
16371 /* Equality function for a strtab_entry. */
16372
16373 static int
16374 eq_strtab_entry (const void *a, const void *b)
16375 {
16376 const struct strtab_entry *ea = a;
16377 const struct strtab_entry *eb = b;
16378 return !strcmp (ea->str, eb->str);
16379 }
16380
16381 /* Create a strtab_entry hash table. */
16382
16383 static htab_t
16384 create_strtab (void)
16385 {
16386 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16387 xfree, xcalloc, xfree);
16388 }
16389
16390 /* Add a string to the constant pool. Return the string's offset in
16391 host order. */
16392
16393 static offset_type
16394 add_string (htab_t table, struct obstack *cpool, const char *str)
16395 {
16396 void **slot;
16397 struct strtab_entry entry;
16398 struct strtab_entry *result;
16399
16400 entry.str = str;
16401 slot = htab_find_slot (table, &entry, INSERT);
16402 if (*slot)
16403 result = *slot;
16404 else
16405 {
16406 result = XNEW (struct strtab_entry);
16407 result->offset = obstack_object_size (cpool);
16408 result->str = str;
16409 obstack_grow_str0 (cpool, str);
16410 *slot = result;
16411 }
16412 return result->offset;
16413 }
16414
16415 /* An entry in the symbol table. */
16416 struct symtab_index_entry
16417 {
16418 /* The name of the symbol. */
16419 const char *name;
16420 /* The offset of the name in the constant pool. */
16421 offset_type index_offset;
16422 /* A sorted vector of the indices of all the CUs that hold an object
16423 of this name. */
16424 VEC (offset_type) *cu_indices;
16425 };
16426
16427 /* The symbol table. This is a power-of-2-sized hash table. */
16428 struct mapped_symtab
16429 {
16430 offset_type n_elements;
16431 offset_type size;
16432 struct symtab_index_entry **data;
16433 };
16434
16435 /* Hash function for a symtab_index_entry. */
16436
16437 static hashval_t
16438 hash_symtab_entry (const void *e)
16439 {
16440 const struct symtab_index_entry *entry = e;
16441 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16442 sizeof (offset_type) * VEC_length (offset_type,
16443 entry->cu_indices),
16444 0);
16445 }
16446
16447 /* Equality function for a symtab_index_entry. */
16448
16449 static int
16450 eq_symtab_entry (const void *a, const void *b)
16451 {
16452 const struct symtab_index_entry *ea = a;
16453 const struct symtab_index_entry *eb = b;
16454 int len = VEC_length (offset_type, ea->cu_indices);
16455 if (len != VEC_length (offset_type, eb->cu_indices))
16456 return 0;
16457 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16458 VEC_address (offset_type, eb->cu_indices),
16459 sizeof (offset_type) * len);
16460 }
16461
16462 /* Destroy a symtab_index_entry. */
16463
16464 static void
16465 delete_symtab_entry (void *p)
16466 {
16467 struct symtab_index_entry *entry = p;
16468 VEC_free (offset_type, entry->cu_indices);
16469 xfree (entry);
16470 }
16471
16472 /* Create a hash table holding symtab_index_entry objects. */
16473
16474 static htab_t
16475 create_symbol_hash_table (void)
16476 {
16477 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16478 delete_symtab_entry, xcalloc, xfree);
16479 }
16480
16481 /* Create a new mapped symtab object. */
16482
16483 static struct mapped_symtab *
16484 create_mapped_symtab (void)
16485 {
16486 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16487 symtab->n_elements = 0;
16488 symtab->size = 1024;
16489 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16490 return symtab;
16491 }
16492
16493 /* Destroy a mapped_symtab. */
16494
16495 static void
16496 cleanup_mapped_symtab (void *p)
16497 {
16498 struct mapped_symtab *symtab = p;
16499 /* The contents of the array are freed when the other hash table is
16500 destroyed. */
16501 xfree (symtab->data);
16502 xfree (symtab);
16503 }
16504
16505 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16506 the slot.
16507
16508 Function is used only during write_hash_table so no index format backward
16509 compatibility is needed. */
16510
16511 static struct symtab_index_entry **
16512 find_slot (struct mapped_symtab *symtab, const char *name)
16513 {
16514 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16515
16516 index = hash & (symtab->size - 1);
16517 step = ((hash * 17) & (symtab->size - 1)) | 1;
16518
16519 for (;;)
16520 {
16521 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16522 return &symtab->data[index];
16523 index = (index + step) & (symtab->size - 1);
16524 }
16525 }
16526
16527 /* Expand SYMTAB's hash table. */
16528
16529 static void
16530 hash_expand (struct mapped_symtab *symtab)
16531 {
16532 offset_type old_size = symtab->size;
16533 offset_type i;
16534 struct symtab_index_entry **old_entries = symtab->data;
16535
16536 symtab->size *= 2;
16537 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16538
16539 for (i = 0; i < old_size; ++i)
16540 {
16541 if (old_entries[i])
16542 {
16543 struct symtab_index_entry **slot = find_slot (symtab,
16544 old_entries[i]->name);
16545 *slot = old_entries[i];
16546 }
16547 }
16548
16549 xfree (old_entries);
16550 }
16551
16552 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16553 is the index of the CU in which the symbol appears. */
16554
16555 static void
16556 add_index_entry (struct mapped_symtab *symtab, const char *name,
16557 offset_type cu_index)
16558 {
16559 struct symtab_index_entry **slot;
16560
16561 ++symtab->n_elements;
16562 if (4 * symtab->n_elements / 3 >= symtab->size)
16563 hash_expand (symtab);
16564
16565 slot = find_slot (symtab, name);
16566 if (!*slot)
16567 {
16568 *slot = XNEW (struct symtab_index_entry);
16569 (*slot)->name = name;
16570 (*slot)->cu_indices = NULL;
16571 }
16572 /* Don't push an index twice. Due to how we add entries we only
16573 have to check the last one. */
16574 if (VEC_empty (offset_type, (*slot)->cu_indices)
16575 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16576 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16577 }
16578
16579 /* Add a vector of indices to the constant pool. */
16580
16581 static offset_type
16582 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16583 struct symtab_index_entry *entry)
16584 {
16585 void **slot;
16586
16587 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16588 if (!*slot)
16589 {
16590 offset_type len = VEC_length (offset_type, entry->cu_indices);
16591 offset_type val = MAYBE_SWAP (len);
16592 offset_type iter;
16593 int i;
16594
16595 *slot = entry;
16596 entry->index_offset = obstack_object_size (cpool);
16597
16598 obstack_grow (cpool, &val, sizeof (val));
16599 for (i = 0;
16600 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16601 ++i)
16602 {
16603 val = MAYBE_SWAP (iter);
16604 obstack_grow (cpool, &val, sizeof (val));
16605 }
16606 }
16607 else
16608 {
16609 struct symtab_index_entry *old_entry = *slot;
16610 entry->index_offset = old_entry->index_offset;
16611 entry = old_entry;
16612 }
16613 return entry->index_offset;
16614 }
16615
16616 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16617 constant pool entries going into the obstack CPOOL. */
16618
16619 static void
16620 write_hash_table (struct mapped_symtab *symtab,
16621 struct obstack *output, struct obstack *cpool)
16622 {
16623 offset_type i;
16624 htab_t symbol_hash_table;
16625 htab_t str_table;
16626
16627 symbol_hash_table = create_symbol_hash_table ();
16628 str_table = create_strtab ();
16629
16630 /* We add all the index vectors to the constant pool first, to
16631 ensure alignment is ok. */
16632 for (i = 0; i < symtab->size; ++i)
16633 {
16634 if (symtab->data[i])
16635 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16636 }
16637
16638 /* Now write out the hash table. */
16639 for (i = 0; i < symtab->size; ++i)
16640 {
16641 offset_type str_off, vec_off;
16642
16643 if (symtab->data[i])
16644 {
16645 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16646 vec_off = symtab->data[i]->index_offset;
16647 }
16648 else
16649 {
16650 /* While 0 is a valid constant pool index, it is not valid
16651 to have 0 for both offsets. */
16652 str_off = 0;
16653 vec_off = 0;
16654 }
16655
16656 str_off = MAYBE_SWAP (str_off);
16657 vec_off = MAYBE_SWAP (vec_off);
16658
16659 obstack_grow (output, &str_off, sizeof (str_off));
16660 obstack_grow (output, &vec_off, sizeof (vec_off));
16661 }
16662
16663 htab_delete (str_table);
16664 htab_delete (symbol_hash_table);
16665 }
16666
16667 /* Struct to map psymtab to CU index in the index file. */
16668 struct psymtab_cu_index_map
16669 {
16670 struct partial_symtab *psymtab;
16671 unsigned int cu_index;
16672 };
16673
16674 static hashval_t
16675 hash_psymtab_cu_index (const void *item)
16676 {
16677 const struct psymtab_cu_index_map *map = item;
16678
16679 return htab_hash_pointer (map->psymtab);
16680 }
16681
16682 static int
16683 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16684 {
16685 const struct psymtab_cu_index_map *lhs = item_lhs;
16686 const struct psymtab_cu_index_map *rhs = item_rhs;
16687
16688 return lhs->psymtab == rhs->psymtab;
16689 }
16690
16691 /* Helper struct for building the address table. */
16692 struct addrmap_index_data
16693 {
16694 struct objfile *objfile;
16695 struct obstack *addr_obstack;
16696 htab_t cu_index_htab;
16697
16698 /* Non-zero if the previous_* fields are valid.
16699 We can't write an entry until we see the next entry (since it is only then
16700 that we know the end of the entry). */
16701 int previous_valid;
16702 /* Index of the CU in the table of all CUs in the index file. */
16703 unsigned int previous_cu_index;
16704 /* Start address of the CU. */
16705 CORE_ADDR previous_cu_start;
16706 };
16707
16708 /* Write an address entry to OBSTACK. */
16709
16710 static void
16711 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16712 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16713 {
16714 offset_type cu_index_to_write;
16715 char addr[8];
16716 CORE_ADDR baseaddr;
16717
16718 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16719
16720 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16721 obstack_grow (obstack, addr, 8);
16722 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16723 obstack_grow (obstack, addr, 8);
16724 cu_index_to_write = MAYBE_SWAP (cu_index);
16725 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16726 }
16727
16728 /* Worker function for traversing an addrmap to build the address table. */
16729
16730 static int
16731 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16732 {
16733 struct addrmap_index_data *data = datap;
16734 struct partial_symtab *pst = obj;
16735 offset_type cu_index;
16736 void **slot;
16737
16738 if (data->previous_valid)
16739 add_address_entry (data->objfile, data->addr_obstack,
16740 data->previous_cu_start, start_addr,
16741 data->previous_cu_index);
16742
16743 data->previous_cu_start = start_addr;
16744 if (pst != NULL)
16745 {
16746 struct psymtab_cu_index_map find_map, *map;
16747 find_map.psymtab = pst;
16748 map = htab_find (data->cu_index_htab, &find_map);
16749 gdb_assert (map != NULL);
16750 data->previous_cu_index = map->cu_index;
16751 data->previous_valid = 1;
16752 }
16753 else
16754 data->previous_valid = 0;
16755
16756 return 0;
16757 }
16758
16759 /* Write OBJFILE's address map to OBSTACK.
16760 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16761 in the index file. */
16762
16763 static void
16764 write_address_map (struct objfile *objfile, struct obstack *obstack,
16765 htab_t cu_index_htab)
16766 {
16767 struct addrmap_index_data addrmap_index_data;
16768
16769 /* When writing the address table, we have to cope with the fact that
16770 the addrmap iterator only provides the start of a region; we have to
16771 wait until the next invocation to get the start of the next region. */
16772
16773 addrmap_index_data.objfile = objfile;
16774 addrmap_index_data.addr_obstack = obstack;
16775 addrmap_index_data.cu_index_htab = cu_index_htab;
16776 addrmap_index_data.previous_valid = 0;
16777
16778 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16779 &addrmap_index_data);
16780
16781 /* It's highly unlikely the last entry (end address = 0xff...ff)
16782 is valid, but we should still handle it.
16783 The end address is recorded as the start of the next region, but that
16784 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16785 anyway. */
16786 if (addrmap_index_data.previous_valid)
16787 add_address_entry (objfile, obstack,
16788 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16789 addrmap_index_data.previous_cu_index);
16790 }
16791
16792 /* Add a list of partial symbols to SYMTAB. */
16793
16794 static void
16795 write_psymbols (struct mapped_symtab *symtab,
16796 htab_t psyms_seen,
16797 struct partial_symbol **psymp,
16798 int count,
16799 offset_type cu_index,
16800 int is_static)
16801 {
16802 for (; count-- > 0; ++psymp)
16803 {
16804 void **slot, *lookup;
16805
16806 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16807 error (_("Ada is not currently supported by the index"));
16808
16809 /* We only want to add a given psymbol once. However, we also
16810 want to account for whether it is global or static. So, we
16811 may add it twice, using slightly different values. */
16812 if (is_static)
16813 {
16814 uintptr_t val = 1 | (uintptr_t) *psymp;
16815
16816 lookup = (void *) val;
16817 }
16818 else
16819 lookup = *psymp;
16820
16821 /* Only add a given psymbol once. */
16822 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16823 if (!*slot)
16824 {
16825 *slot = lookup;
16826 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
16827 }
16828 }
16829 }
16830
16831 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16832 exception if there is an error. */
16833
16834 static void
16835 write_obstack (FILE *file, struct obstack *obstack)
16836 {
16837 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16838 file)
16839 != obstack_object_size (obstack))
16840 error (_("couldn't data write to file"));
16841 }
16842
16843 /* Unlink a file if the argument is not NULL. */
16844
16845 static void
16846 unlink_if_set (void *p)
16847 {
16848 char **filename = p;
16849 if (*filename)
16850 unlink (*filename);
16851 }
16852
16853 /* A helper struct used when iterating over debug_types. */
16854 struct signatured_type_index_data
16855 {
16856 struct objfile *objfile;
16857 struct mapped_symtab *symtab;
16858 struct obstack *types_list;
16859 htab_t psyms_seen;
16860 int cu_index;
16861 };
16862
16863 /* A helper function that writes a single signatured_type to an
16864 obstack. */
16865
16866 static int
16867 write_one_signatured_type (void **slot, void *d)
16868 {
16869 struct signatured_type_index_data *info = d;
16870 struct signatured_type *entry = (struct signatured_type *) *slot;
16871 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16872 struct partial_symtab *psymtab = per_cu->v.psymtab;
16873 gdb_byte val[8];
16874
16875 write_psymbols (info->symtab,
16876 info->psyms_seen,
16877 info->objfile->global_psymbols.list
16878 + psymtab->globals_offset,
16879 psymtab->n_global_syms, info->cu_index,
16880 0);
16881 write_psymbols (info->symtab,
16882 info->psyms_seen,
16883 info->objfile->static_psymbols.list
16884 + psymtab->statics_offset,
16885 psymtab->n_static_syms, info->cu_index,
16886 1);
16887
16888 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16889 obstack_grow (info->types_list, val, 8);
16890 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16891 obstack_grow (info->types_list, val, 8);
16892 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16893 obstack_grow (info->types_list, val, 8);
16894
16895 ++info->cu_index;
16896
16897 return 1;
16898 }
16899
16900 /* Create an index file for OBJFILE in the directory DIR. */
16901
16902 static void
16903 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16904 {
16905 struct cleanup *cleanup;
16906 char *filename, *cleanup_filename;
16907 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16908 struct obstack cu_list, types_cu_list;
16909 int i;
16910 FILE *out_file;
16911 struct mapped_symtab *symtab;
16912 offset_type val, size_of_contents, total_len;
16913 struct stat st;
16914 char buf[8];
16915 htab_t psyms_seen;
16916 htab_t cu_index_htab;
16917 struct psymtab_cu_index_map *psymtab_cu_index_map;
16918
16919 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16920 return;
16921
16922 if (dwarf2_per_objfile->using_index)
16923 error (_("Cannot use an index to create the index"));
16924
16925 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16926 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16927
16928 if (stat (objfile->name, &st) < 0)
16929 perror_with_name (objfile->name);
16930
16931 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16932 INDEX_SUFFIX, (char *) NULL);
16933 cleanup = make_cleanup (xfree, filename);
16934
16935 out_file = fopen (filename, "wb");
16936 if (!out_file)
16937 error (_("Can't open `%s' for writing"), filename);
16938
16939 cleanup_filename = filename;
16940 make_cleanup (unlink_if_set, &cleanup_filename);
16941
16942 symtab = create_mapped_symtab ();
16943 make_cleanup (cleanup_mapped_symtab, symtab);
16944
16945 obstack_init (&addr_obstack);
16946 make_cleanup_obstack_free (&addr_obstack);
16947
16948 obstack_init (&cu_list);
16949 make_cleanup_obstack_free (&cu_list);
16950
16951 obstack_init (&types_cu_list);
16952 make_cleanup_obstack_free (&types_cu_list);
16953
16954 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16955 NULL, xcalloc, xfree);
16956 make_cleanup_htab_delete (psyms_seen);
16957
16958 /* While we're scanning CU's create a table that maps a psymtab pointer
16959 (which is what addrmap records) to its index (which is what is recorded
16960 in the index file). This will later be needed to write the address
16961 table. */
16962 cu_index_htab = htab_create_alloc (100,
16963 hash_psymtab_cu_index,
16964 eq_psymtab_cu_index,
16965 NULL, xcalloc, xfree);
16966 make_cleanup_htab_delete (cu_index_htab);
16967 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16968 xmalloc (sizeof (struct psymtab_cu_index_map)
16969 * dwarf2_per_objfile->n_comp_units);
16970 make_cleanup (xfree, psymtab_cu_index_map);
16971
16972 /* The CU list is already sorted, so we don't need to do additional
16973 work here. Also, the debug_types entries do not appear in
16974 all_comp_units, but only in their own hash table. */
16975 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16976 {
16977 struct dwarf2_per_cu_data *per_cu
16978 = dwarf2_per_objfile->all_comp_units[i];
16979 struct partial_symtab *psymtab = per_cu->v.psymtab;
16980 gdb_byte val[8];
16981 struct psymtab_cu_index_map *map;
16982 void **slot;
16983
16984 write_psymbols (symtab,
16985 psyms_seen,
16986 objfile->global_psymbols.list + psymtab->globals_offset,
16987 psymtab->n_global_syms, i,
16988 0);
16989 write_psymbols (symtab,
16990 psyms_seen,
16991 objfile->static_psymbols.list + psymtab->statics_offset,
16992 psymtab->n_static_syms, i,
16993 1);
16994
16995 map = &psymtab_cu_index_map[i];
16996 map->psymtab = psymtab;
16997 map->cu_index = i;
16998 slot = htab_find_slot (cu_index_htab, map, INSERT);
16999 gdb_assert (slot != NULL);
17000 gdb_assert (*slot == NULL);
17001 *slot = map;
17002
17003 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
17004 obstack_grow (&cu_list, val, 8);
17005 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17006 obstack_grow (&cu_list, val, 8);
17007 }
17008
17009 /* Dump the address map. */
17010 write_address_map (objfile, &addr_obstack, cu_index_htab);
17011
17012 /* Write out the .debug_type entries, if any. */
17013 if (dwarf2_per_objfile->signatured_types)
17014 {
17015 struct signatured_type_index_data sig_data;
17016
17017 sig_data.objfile = objfile;
17018 sig_data.symtab = symtab;
17019 sig_data.types_list = &types_cu_list;
17020 sig_data.psyms_seen = psyms_seen;
17021 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17022 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17023 write_one_signatured_type, &sig_data);
17024 }
17025
17026 obstack_init (&constant_pool);
17027 make_cleanup_obstack_free (&constant_pool);
17028 obstack_init (&symtab_obstack);
17029 make_cleanup_obstack_free (&symtab_obstack);
17030 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17031
17032 obstack_init (&contents);
17033 make_cleanup_obstack_free (&contents);
17034 size_of_contents = 6 * sizeof (offset_type);
17035 total_len = size_of_contents;
17036
17037 /* The version number. */
17038 val = MAYBE_SWAP (5);
17039 obstack_grow (&contents, &val, sizeof (val));
17040
17041 /* The offset of the CU list from the start of the file. */
17042 val = MAYBE_SWAP (total_len);
17043 obstack_grow (&contents, &val, sizeof (val));
17044 total_len += obstack_object_size (&cu_list);
17045
17046 /* The offset of the types CU list from the start of the file. */
17047 val = MAYBE_SWAP (total_len);
17048 obstack_grow (&contents, &val, sizeof (val));
17049 total_len += obstack_object_size (&types_cu_list);
17050
17051 /* The offset of the address table from the start of the file. */
17052 val = MAYBE_SWAP (total_len);
17053 obstack_grow (&contents, &val, sizeof (val));
17054 total_len += obstack_object_size (&addr_obstack);
17055
17056 /* The offset of the symbol table from the start of the file. */
17057 val = MAYBE_SWAP (total_len);
17058 obstack_grow (&contents, &val, sizeof (val));
17059 total_len += obstack_object_size (&symtab_obstack);
17060
17061 /* The offset of the constant pool from the start of the file. */
17062 val = MAYBE_SWAP (total_len);
17063 obstack_grow (&contents, &val, sizeof (val));
17064 total_len += obstack_object_size (&constant_pool);
17065
17066 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17067
17068 write_obstack (out_file, &contents);
17069 write_obstack (out_file, &cu_list);
17070 write_obstack (out_file, &types_cu_list);
17071 write_obstack (out_file, &addr_obstack);
17072 write_obstack (out_file, &symtab_obstack);
17073 write_obstack (out_file, &constant_pool);
17074
17075 fclose (out_file);
17076
17077 /* We want to keep the file, so we set cleanup_filename to NULL
17078 here. See unlink_if_set. */
17079 cleanup_filename = NULL;
17080
17081 do_cleanups (cleanup);
17082 }
17083
17084 /* Implementation of the `save gdb-index' command.
17085
17086 Note that the file format used by this command is documented in the
17087 GDB manual. Any changes here must be documented there. */
17088
17089 static void
17090 save_gdb_index_command (char *arg, int from_tty)
17091 {
17092 struct objfile *objfile;
17093
17094 if (!arg || !*arg)
17095 error (_("usage: save gdb-index DIRECTORY"));
17096
17097 ALL_OBJFILES (objfile)
17098 {
17099 struct stat st;
17100
17101 /* If the objfile does not correspond to an actual file, skip it. */
17102 if (stat (objfile->name, &st) < 0)
17103 continue;
17104
17105 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17106 if (dwarf2_per_objfile)
17107 {
17108 volatile struct gdb_exception except;
17109
17110 TRY_CATCH (except, RETURN_MASK_ERROR)
17111 {
17112 write_psymtabs_to_index (objfile, arg);
17113 }
17114 if (except.reason < 0)
17115 exception_fprintf (gdb_stderr, except,
17116 _("Error while writing index for `%s': "),
17117 objfile->name);
17118 }
17119 }
17120 }
17121
17122 \f
17123
17124 int dwarf2_always_disassemble;
17125
17126 static void
17127 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17128 struct cmd_list_element *c, const char *value)
17129 {
17130 fprintf_filtered (file,
17131 _("Whether to always disassemble "
17132 "DWARF expressions is %s.\n"),
17133 value);
17134 }
17135
17136 static void
17137 show_check_physname (struct ui_file *file, int from_tty,
17138 struct cmd_list_element *c, const char *value)
17139 {
17140 fprintf_filtered (file,
17141 _("Whether to check \"physname\" is %s.\n"),
17142 value);
17143 }
17144
17145 void _initialize_dwarf2_read (void);
17146
17147 void
17148 _initialize_dwarf2_read (void)
17149 {
17150 struct cmd_list_element *c;
17151
17152 dwarf2_objfile_data_key
17153 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17154
17155 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17156 Set DWARF 2 specific variables.\n\
17157 Configure DWARF 2 variables such as the cache size"),
17158 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17159 0/*allow-unknown*/, &maintenance_set_cmdlist);
17160
17161 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17162 Show DWARF 2 specific variables\n\
17163 Show DWARF 2 variables such as the cache size"),
17164 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17165 0/*allow-unknown*/, &maintenance_show_cmdlist);
17166
17167 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17168 &dwarf2_max_cache_age, _("\
17169 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17170 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17171 A higher limit means that cached compilation units will be stored\n\
17172 in memory longer, and more total memory will be used. Zero disables\n\
17173 caching, which can slow down startup."),
17174 NULL,
17175 show_dwarf2_max_cache_age,
17176 &set_dwarf2_cmdlist,
17177 &show_dwarf2_cmdlist);
17178
17179 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17180 &dwarf2_always_disassemble, _("\
17181 Set whether `info address' always disassembles DWARF expressions."), _("\
17182 Show whether `info address' always disassembles DWARF expressions."), _("\
17183 When enabled, DWARF expressions are always printed in an assembly-like\n\
17184 syntax. When disabled, expressions will be printed in a more\n\
17185 conversational style, when possible."),
17186 NULL,
17187 show_dwarf2_always_disassemble,
17188 &set_dwarf2_cmdlist,
17189 &show_dwarf2_cmdlist);
17190
17191 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17192 Set debugging of the dwarf2 DIE reader."), _("\
17193 Show debugging of the dwarf2 DIE reader."), _("\
17194 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17195 The value is the maximum depth to print."),
17196 NULL,
17197 NULL,
17198 &setdebuglist, &showdebuglist);
17199
17200 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17201 Set cross-checking of \"physname\" code against demangler."), _("\
17202 Show cross-checking of \"physname\" code against demangler."), _("\
17203 When enabled, GDB's internal \"physname\" code is checked against\n\
17204 the demangler."),
17205 NULL, show_check_physname,
17206 &setdebuglist, &showdebuglist);
17207
17208 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17209 _("\
17210 Save a gdb-index file.\n\
17211 Usage: save gdb-index DIRECTORY"),
17212 &save_cmdlist);
17213 set_cmd_completer (c, filename_completer);
17214 }
This page took 0.58987 seconds and 4 git commands to generate.