DWARF-5: .debug_names index producer
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84 #include "selftest.h"
85 #include <cmath>
86 #include <set>
87 #include <forward_list>
88
89 typedef struct symbol *symbolp;
90 DEF_VEC_P (symbolp);
91
92 /* When == 1, print basic high level tracing messages.
93 When > 1, be more verbose.
94 This is in contrast to the low level DIE reading of dwarf_die_debug. */
95 static unsigned int dwarf_read_debug = 0;
96
97 /* When non-zero, dump DIEs after they are read in. */
98 static unsigned int dwarf_die_debug = 0;
99
100 /* When non-zero, dump line number entries as they are read in. */
101 static unsigned int dwarf_line_debug = 0;
102
103 /* When non-zero, cross-check physname against demangler. */
104 static int check_physname = 0;
105
106 /* When non-zero, do not reject deprecated .gdb_index sections. */
107 static int use_deprecated_index_sections = 0;
108
109 static const struct objfile_data *dwarf2_objfile_data_key;
110
111 /* The "aclass" indices for various kinds of computed DWARF symbols. */
112
113 static int dwarf2_locexpr_index;
114 static int dwarf2_loclist_index;
115 static int dwarf2_locexpr_block_index;
116 static int dwarf2_loclist_block_index;
117
118 /* A descriptor for dwarf sections.
119
120 S.ASECTION, SIZE are typically initialized when the objfile is first
121 scanned. BUFFER, READIN are filled in later when the section is read.
122 If the section contained compressed data then SIZE is updated to record
123 the uncompressed size of the section.
124
125 DWP file format V2 introduces a wrinkle that is easiest to handle by
126 creating the concept of virtual sections contained within a real section.
127 In DWP V2 the sections of the input DWO files are concatenated together
128 into one section, but section offsets are kept relative to the original
129 input section.
130 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
131 the real section this "virtual" section is contained in, and BUFFER,SIZE
132 describe the virtual section. */
133
134 struct dwarf2_section_info
135 {
136 union
137 {
138 /* If this is a real section, the bfd section. */
139 asection *section;
140 /* If this is a virtual section, pointer to the containing ("real")
141 section. */
142 struct dwarf2_section_info *containing_section;
143 } s;
144 /* Pointer to section data, only valid if readin. */
145 const gdb_byte *buffer;
146 /* The size of the section, real or virtual. */
147 bfd_size_type size;
148 /* If this is a virtual section, the offset in the real section.
149 Only valid if is_virtual. */
150 bfd_size_type virtual_offset;
151 /* True if we have tried to read this section. */
152 char readin;
153 /* True if this is a virtual section, False otherwise.
154 This specifies which of s.section and s.containing_section to use. */
155 char is_virtual;
156 };
157
158 typedef struct dwarf2_section_info dwarf2_section_info_def;
159 DEF_VEC_O (dwarf2_section_info_def);
160
161 /* All offsets in the index are of this type. It must be
162 architecture-independent. */
163 typedef uint32_t offset_type;
164
165 DEF_VEC_I (offset_type);
166
167 /* Ensure only legit values are used. */
168 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert ((unsigned int) (value) <= 1); \
171 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
174 /* Ensure only legit values are used. */
175 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
176 do { \
177 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
178 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
179 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
180 } while (0)
181
182 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
183 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
184 do { \
185 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
186 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
187 } while (0)
188
189 #if WORDS_BIGENDIAN
190
191 /* Convert VALUE between big- and little-endian. */
192
193 static offset_type
194 byte_swap (offset_type value)
195 {
196 offset_type result;
197
198 result = (value & 0xff) << 24;
199 result |= (value & 0xff00) << 8;
200 result |= (value & 0xff0000) >> 8;
201 result |= (value & 0xff000000) >> 24;
202 return result;
203 }
204
205 #define MAYBE_SWAP(V) byte_swap (V)
206
207 #else
208 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
209 #endif /* WORDS_BIGENDIAN */
210
211 /* An index into a (C++) symbol name component in a symbol name as
212 recorded in the mapped_index's symbol table. For each C++ symbol
213 in the symbol table, we record one entry for the start of each
214 component in the symbol in a table of name components, and then
215 sort the table, in order to be able to binary search symbol names,
216 ignoring leading namespaces, both completion and regular look up.
217 For example, for symbol "A::B::C", we'll have an entry that points
218 to "A::B::C", another that points to "B::C", and another for "C".
219 Note that function symbols in GDB index have no parameter
220 information, just the function/method names. You can convert a
221 name_component to a "const char *" using the
222 'mapped_index::symbol_name_at(offset_type)' method. */
223
224 struct name_component
225 {
226 /* Offset in the symbol name where the component starts. Stored as
227 a (32-bit) offset instead of a pointer to save memory and improve
228 locality on 64-bit architectures. */
229 offset_type name_offset;
230
231 /* The symbol's index in the symbol and constant pool tables of a
232 mapped_index. */
233 offset_type idx;
234 };
235
236 /* A description of the mapped index. The file format is described in
237 a comment by the code that writes the index. */
238 struct mapped_index
239 {
240 /* Index data format version. */
241 int version;
242
243 /* The total length of the buffer. */
244 off_t total_size;
245
246 /* A pointer to the address table data. */
247 const gdb_byte *address_table;
248
249 /* Size of the address table data in bytes. */
250 offset_type address_table_size;
251
252 /* The symbol table, implemented as a hash table. */
253 const offset_type *symbol_table;
254
255 /* Size in slots, each slot is 2 offset_types. */
256 offset_type symbol_table_slots;
257
258 /* A pointer to the constant pool. */
259 const char *constant_pool;
260
261 /* The name_component table (a sorted vector). See name_component's
262 description above. */
263 std::vector<name_component> name_components;
264
265 /* How NAME_COMPONENTS is sorted. */
266 enum case_sensitivity name_components_casing;
267
268 /* Convenience method to get at the name of the symbol at IDX in the
269 symbol table. */
270 const char *symbol_name_at (offset_type idx) const
271 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx]); }
272
273 /* Build the symbol name component sorted vector, if we haven't
274 yet. */
275 void build_name_components ();
276
277 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
278 possible matches for LN_NO_PARAMS in the name component
279 vector. */
280 std::pair<std::vector<name_component>::const_iterator,
281 std::vector<name_component>::const_iterator>
282 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
283 };
284
285 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
286 DEF_VEC_P (dwarf2_per_cu_ptr);
287
288 struct tu_stats
289 {
290 int nr_uniq_abbrev_tables;
291 int nr_symtabs;
292 int nr_symtab_sharers;
293 int nr_stmt_less_type_units;
294 int nr_all_type_units_reallocs;
295 };
296
297 /* Collection of data recorded per objfile.
298 This hangs off of dwarf2_objfile_data_key. */
299
300 struct dwarf2_per_objfile
301 {
302 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
303 dwarf2 section names, or is NULL if the standard ELF names are
304 used. */
305 dwarf2_per_objfile (struct objfile *objfile,
306 const dwarf2_debug_sections *names);
307
308 ~dwarf2_per_objfile ();
309
310 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
311
312 /* Free all cached compilation units. */
313 void free_cached_comp_units ();
314 private:
315 /* This function is mapped across the sections and remembers the
316 offset and size of each of the debugging sections we are
317 interested in. */
318 void locate_sections (bfd *abfd, asection *sectp,
319 const dwarf2_debug_sections &names);
320
321 public:
322 dwarf2_section_info info {};
323 dwarf2_section_info abbrev {};
324 dwarf2_section_info line {};
325 dwarf2_section_info loc {};
326 dwarf2_section_info loclists {};
327 dwarf2_section_info macinfo {};
328 dwarf2_section_info macro {};
329 dwarf2_section_info str {};
330 dwarf2_section_info line_str {};
331 dwarf2_section_info ranges {};
332 dwarf2_section_info rnglists {};
333 dwarf2_section_info addr {};
334 dwarf2_section_info frame {};
335 dwarf2_section_info eh_frame {};
336 dwarf2_section_info gdb_index {};
337
338 VEC (dwarf2_section_info_def) *types = NULL;
339
340 /* Back link. */
341 struct objfile *objfile = NULL;
342
343 /* Table of all the compilation units. This is used to locate
344 the target compilation unit of a particular reference. */
345 struct dwarf2_per_cu_data **all_comp_units = NULL;
346
347 /* The number of compilation units in ALL_COMP_UNITS. */
348 int n_comp_units = 0;
349
350 /* The number of .debug_types-related CUs. */
351 int n_type_units = 0;
352
353 /* The number of elements allocated in all_type_units.
354 If there are skeleton-less TUs, we add them to all_type_units lazily. */
355 int n_allocated_type_units = 0;
356
357 /* The .debug_types-related CUs (TUs).
358 This is stored in malloc space because we may realloc it. */
359 struct signatured_type **all_type_units = NULL;
360
361 /* Table of struct type_unit_group objects.
362 The hash key is the DW_AT_stmt_list value. */
363 htab_t type_unit_groups {};
364
365 /* A table mapping .debug_types signatures to its signatured_type entry.
366 This is NULL if the .debug_types section hasn't been read in yet. */
367 htab_t signatured_types {};
368
369 /* Type unit statistics, to see how well the scaling improvements
370 are doing. */
371 struct tu_stats tu_stats {};
372
373 /* A chain of compilation units that are currently read in, so that
374 they can be freed later. */
375 dwarf2_per_cu_data *read_in_chain = NULL;
376
377 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
378 This is NULL if the table hasn't been allocated yet. */
379 htab_t dwo_files {};
380
381 /* True if we've checked for whether there is a DWP file. */
382 bool dwp_checked = false;
383
384 /* The DWP file if there is one, or NULL. */
385 struct dwp_file *dwp_file = NULL;
386
387 /* The shared '.dwz' file, if one exists. This is used when the
388 original data was compressed using 'dwz -m'. */
389 struct dwz_file *dwz_file = NULL;
390
391 /* A flag indicating whether this objfile has a section loaded at a
392 VMA of 0. */
393 bool has_section_at_zero = false;
394
395 /* True if we are using the mapped index,
396 or we are faking it for OBJF_READNOW's sake. */
397 bool using_index = false;
398
399 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
400 mapped_index *index_table = NULL;
401
402 /* When using index_table, this keeps track of all quick_file_names entries.
403 TUs typically share line table entries with a CU, so we maintain a
404 separate table of all line table entries to support the sharing.
405 Note that while there can be way more TUs than CUs, we've already
406 sorted all the TUs into "type unit groups", grouped by their
407 DW_AT_stmt_list value. Therefore the only sharing done here is with a
408 CU and its associated TU group if there is one. */
409 htab_t quick_file_names_table {};
410
411 /* Set during partial symbol reading, to prevent queueing of full
412 symbols. */
413 bool reading_partial_symbols = false;
414
415 /* Table mapping type DIEs to their struct type *.
416 This is NULL if not allocated yet.
417 The mapping is done via (CU/TU + DIE offset) -> type. */
418 htab_t die_type_hash {};
419
420 /* The CUs we recently read. */
421 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
422
423 /* Table containing line_header indexed by offset and offset_in_dwz. */
424 htab_t line_header_hash {};
425
426 /* Table containing all filenames. This is an optional because the
427 table is lazily constructed on first access. */
428 gdb::optional<filename_seen_cache> filenames_cache;
429 };
430
431 static struct dwarf2_per_objfile *dwarf2_per_objfile;
432
433 /* Default names of the debugging sections. */
434
435 /* Note that if the debugging section has been compressed, it might
436 have a name like .zdebug_info. */
437
438 static const struct dwarf2_debug_sections dwarf2_elf_names =
439 {
440 { ".debug_info", ".zdebug_info" },
441 { ".debug_abbrev", ".zdebug_abbrev" },
442 { ".debug_line", ".zdebug_line" },
443 { ".debug_loc", ".zdebug_loc" },
444 { ".debug_loclists", ".zdebug_loclists" },
445 { ".debug_macinfo", ".zdebug_macinfo" },
446 { ".debug_macro", ".zdebug_macro" },
447 { ".debug_str", ".zdebug_str" },
448 { ".debug_line_str", ".zdebug_line_str" },
449 { ".debug_ranges", ".zdebug_ranges" },
450 { ".debug_rnglists", ".zdebug_rnglists" },
451 { ".debug_types", ".zdebug_types" },
452 { ".debug_addr", ".zdebug_addr" },
453 { ".debug_frame", ".zdebug_frame" },
454 { ".eh_frame", NULL },
455 { ".gdb_index", ".zgdb_index" },
456 23
457 };
458
459 /* List of DWO/DWP sections. */
460
461 static const struct dwop_section_names
462 {
463 struct dwarf2_section_names abbrev_dwo;
464 struct dwarf2_section_names info_dwo;
465 struct dwarf2_section_names line_dwo;
466 struct dwarf2_section_names loc_dwo;
467 struct dwarf2_section_names loclists_dwo;
468 struct dwarf2_section_names macinfo_dwo;
469 struct dwarf2_section_names macro_dwo;
470 struct dwarf2_section_names str_dwo;
471 struct dwarf2_section_names str_offsets_dwo;
472 struct dwarf2_section_names types_dwo;
473 struct dwarf2_section_names cu_index;
474 struct dwarf2_section_names tu_index;
475 }
476 dwop_section_names =
477 {
478 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
479 { ".debug_info.dwo", ".zdebug_info.dwo" },
480 { ".debug_line.dwo", ".zdebug_line.dwo" },
481 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
482 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
483 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
484 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
485 { ".debug_str.dwo", ".zdebug_str.dwo" },
486 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
487 { ".debug_types.dwo", ".zdebug_types.dwo" },
488 { ".debug_cu_index", ".zdebug_cu_index" },
489 { ".debug_tu_index", ".zdebug_tu_index" },
490 };
491
492 /* local data types */
493
494 /* The data in a compilation unit header, after target2host
495 translation, looks like this. */
496 struct comp_unit_head
497 {
498 unsigned int length;
499 short version;
500 unsigned char addr_size;
501 unsigned char signed_addr_p;
502 sect_offset abbrev_sect_off;
503
504 /* Size of file offsets; either 4 or 8. */
505 unsigned int offset_size;
506
507 /* Size of the length field; either 4 or 12. */
508 unsigned int initial_length_size;
509
510 enum dwarf_unit_type unit_type;
511
512 /* Offset to the first byte of this compilation unit header in the
513 .debug_info section, for resolving relative reference dies. */
514 sect_offset sect_off;
515
516 /* Offset to first die in this cu from the start of the cu.
517 This will be the first byte following the compilation unit header. */
518 cu_offset first_die_cu_offset;
519
520 /* 64-bit signature of this type unit - it is valid only for
521 UNIT_TYPE DW_UT_type. */
522 ULONGEST signature;
523
524 /* For types, offset in the type's DIE of the type defined by this TU. */
525 cu_offset type_cu_offset_in_tu;
526 };
527
528 /* Type used for delaying computation of method physnames.
529 See comments for compute_delayed_physnames. */
530 struct delayed_method_info
531 {
532 /* The type to which the method is attached, i.e., its parent class. */
533 struct type *type;
534
535 /* The index of the method in the type's function fieldlists. */
536 int fnfield_index;
537
538 /* The index of the method in the fieldlist. */
539 int index;
540
541 /* The name of the DIE. */
542 const char *name;
543
544 /* The DIE associated with this method. */
545 struct die_info *die;
546 };
547
548 typedef struct delayed_method_info delayed_method_info;
549 DEF_VEC_O (delayed_method_info);
550
551 /* Internal state when decoding a particular compilation unit. */
552 struct dwarf2_cu
553 {
554 /* The objfile containing this compilation unit. */
555 struct objfile *objfile;
556
557 /* The header of the compilation unit. */
558 struct comp_unit_head header;
559
560 /* Base address of this compilation unit. */
561 CORE_ADDR base_address;
562
563 /* Non-zero if base_address has been set. */
564 int base_known;
565
566 /* The language we are debugging. */
567 enum language language;
568 const struct language_defn *language_defn;
569
570 const char *producer;
571
572 /* The generic symbol table building routines have separate lists for
573 file scope symbols and all all other scopes (local scopes). So
574 we need to select the right one to pass to add_symbol_to_list().
575 We do it by keeping a pointer to the correct list in list_in_scope.
576
577 FIXME: The original dwarf code just treated the file scope as the
578 first local scope, and all other local scopes as nested local
579 scopes, and worked fine. Check to see if we really need to
580 distinguish these in buildsym.c. */
581 struct pending **list_in_scope;
582
583 /* The abbrev table for this CU.
584 Normally this points to the abbrev table in the objfile.
585 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
586 struct abbrev_table *abbrev_table;
587
588 /* Hash table holding all the loaded partial DIEs
589 with partial_die->offset.SECT_OFF as hash. */
590 htab_t partial_dies;
591
592 /* Storage for things with the same lifetime as this read-in compilation
593 unit, including partial DIEs. */
594 struct obstack comp_unit_obstack;
595
596 /* When multiple dwarf2_cu structures are living in memory, this field
597 chains them all together, so that they can be released efficiently.
598 We will probably also want a generation counter so that most-recently-used
599 compilation units are cached... */
600 struct dwarf2_per_cu_data *read_in_chain;
601
602 /* Backlink to our per_cu entry. */
603 struct dwarf2_per_cu_data *per_cu;
604
605 /* How many compilation units ago was this CU last referenced? */
606 int last_used;
607
608 /* A hash table of DIE cu_offset for following references with
609 die_info->offset.sect_off as hash. */
610 htab_t die_hash;
611
612 /* Full DIEs if read in. */
613 struct die_info *dies;
614
615 /* A set of pointers to dwarf2_per_cu_data objects for compilation
616 units referenced by this one. Only set during full symbol processing;
617 partial symbol tables do not have dependencies. */
618 htab_t dependencies;
619
620 /* Header data from the line table, during full symbol processing. */
621 struct line_header *line_header;
622 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
623 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
624 this is the DW_TAG_compile_unit die for this CU. We'll hold on
625 to the line header as long as this DIE is being processed. See
626 process_die_scope. */
627 die_info *line_header_die_owner;
628
629 /* A list of methods which need to have physnames computed
630 after all type information has been read. */
631 VEC (delayed_method_info) *method_list;
632
633 /* To be copied to symtab->call_site_htab. */
634 htab_t call_site_htab;
635
636 /* Non-NULL if this CU came from a DWO file.
637 There is an invariant here that is important to remember:
638 Except for attributes copied from the top level DIE in the "main"
639 (or "stub") file in preparation for reading the DWO file
640 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
641 Either there isn't a DWO file (in which case this is NULL and the point
642 is moot), or there is and either we're not going to read it (in which
643 case this is NULL) or there is and we are reading it (in which case this
644 is non-NULL). */
645 struct dwo_unit *dwo_unit;
646
647 /* The DW_AT_addr_base attribute if present, zero otherwise
648 (zero is a valid value though).
649 Note this value comes from the Fission stub CU/TU's DIE. */
650 ULONGEST addr_base;
651
652 /* The DW_AT_ranges_base attribute if present, zero otherwise
653 (zero is a valid value though).
654 Note this value comes from the Fission stub CU/TU's DIE.
655 Also note that the value is zero in the non-DWO case so this value can
656 be used without needing to know whether DWO files are in use or not.
657 N.B. This does not apply to DW_AT_ranges appearing in
658 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
659 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
660 DW_AT_ranges_base *would* have to be applied, and we'd have to care
661 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
662 ULONGEST ranges_base;
663
664 /* Mark used when releasing cached dies. */
665 unsigned int mark : 1;
666
667 /* This CU references .debug_loc. See the symtab->locations_valid field.
668 This test is imperfect as there may exist optimized debug code not using
669 any location list and still facing inlining issues if handled as
670 unoptimized code. For a future better test see GCC PR other/32998. */
671 unsigned int has_loclist : 1;
672
673 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
674 if all the producer_is_* fields are valid. This information is cached
675 because profiling CU expansion showed excessive time spent in
676 producer_is_gxx_lt_4_6. */
677 unsigned int checked_producer : 1;
678 unsigned int producer_is_gxx_lt_4_6 : 1;
679 unsigned int producer_is_gcc_lt_4_3 : 1;
680 unsigned int producer_is_icc_lt_14 : 1;
681
682 /* When set, the file that we're processing is known to have
683 debugging info for C++ namespaces. GCC 3.3.x did not produce
684 this information, but later versions do. */
685
686 unsigned int processing_has_namespace_info : 1;
687 };
688
689 /* Persistent data held for a compilation unit, even when not
690 processing it. We put a pointer to this structure in the
691 read_symtab_private field of the psymtab. */
692
693 struct dwarf2_per_cu_data
694 {
695 /* The start offset and length of this compilation unit.
696 NOTE: Unlike comp_unit_head.length, this length includes
697 initial_length_size.
698 If the DIE refers to a DWO file, this is always of the original die,
699 not the DWO file. */
700 sect_offset sect_off;
701 unsigned int length;
702
703 /* DWARF standard version this data has been read from (such as 4 or 5). */
704 short dwarf_version;
705
706 /* Flag indicating this compilation unit will be read in before
707 any of the current compilation units are processed. */
708 unsigned int queued : 1;
709
710 /* This flag will be set when reading partial DIEs if we need to load
711 absolutely all DIEs for this compilation unit, instead of just the ones
712 we think are interesting. It gets set if we look for a DIE in the
713 hash table and don't find it. */
714 unsigned int load_all_dies : 1;
715
716 /* Non-zero if this CU is from .debug_types.
717 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
718 this is non-zero. */
719 unsigned int is_debug_types : 1;
720
721 /* Non-zero if this CU is from the .dwz file. */
722 unsigned int is_dwz : 1;
723
724 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
725 This flag is only valid if is_debug_types is true.
726 We can't read a CU directly from a DWO file: There are required
727 attributes in the stub. */
728 unsigned int reading_dwo_directly : 1;
729
730 /* Non-zero if the TU has been read.
731 This is used to assist the "Stay in DWO Optimization" for Fission:
732 When reading a DWO, it's faster to read TUs from the DWO instead of
733 fetching them from random other DWOs (due to comdat folding).
734 If the TU has already been read, the optimization is unnecessary
735 (and unwise - we don't want to change where gdb thinks the TU lives
736 "midflight").
737 This flag is only valid if is_debug_types is true. */
738 unsigned int tu_read : 1;
739
740 /* The section this CU/TU lives in.
741 If the DIE refers to a DWO file, this is always the original die,
742 not the DWO file. */
743 struct dwarf2_section_info *section;
744
745 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
746 of the CU cache it gets reset to NULL again. This is left as NULL for
747 dummy CUs (a CU header, but nothing else). */
748 struct dwarf2_cu *cu;
749
750 /* The corresponding objfile.
751 Normally we can get the objfile from dwarf2_per_objfile.
752 However we can enter this file with just a "per_cu" handle. */
753 struct objfile *objfile;
754
755 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
756 is active. Otherwise, the 'psymtab' field is active. */
757 union
758 {
759 /* The partial symbol table associated with this compilation unit,
760 or NULL for unread partial units. */
761 struct partial_symtab *psymtab;
762
763 /* Data needed by the "quick" functions. */
764 struct dwarf2_per_cu_quick_data *quick;
765 } v;
766
767 /* The CUs we import using DW_TAG_imported_unit. This is filled in
768 while reading psymtabs, used to compute the psymtab dependencies,
769 and then cleared. Then it is filled in again while reading full
770 symbols, and only deleted when the objfile is destroyed.
771
772 This is also used to work around a difference between the way gold
773 generates .gdb_index version <=7 and the way gdb does. Arguably this
774 is a gold bug. For symbols coming from TUs, gold records in the index
775 the CU that includes the TU instead of the TU itself. This breaks
776 dw2_lookup_symbol: It assumes that if the index says symbol X lives
777 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
778 will find X. Alas TUs live in their own symtab, so after expanding CU Y
779 we need to look in TU Z to find X. Fortunately, this is akin to
780 DW_TAG_imported_unit, so we just use the same mechanism: For
781 .gdb_index version <=7 this also records the TUs that the CU referred
782 to. Concurrently with this change gdb was modified to emit version 8
783 indices so we only pay a price for gold generated indices.
784 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
785 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
786 };
787
788 /* Entry in the signatured_types hash table. */
789
790 struct signatured_type
791 {
792 /* The "per_cu" object of this type.
793 This struct is used iff per_cu.is_debug_types.
794 N.B.: This is the first member so that it's easy to convert pointers
795 between them. */
796 struct dwarf2_per_cu_data per_cu;
797
798 /* The type's signature. */
799 ULONGEST signature;
800
801 /* Offset in the TU of the type's DIE, as read from the TU header.
802 If this TU is a DWO stub and the definition lives in a DWO file
803 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
804 cu_offset type_offset_in_tu;
805
806 /* Offset in the section of the type's DIE.
807 If the definition lives in a DWO file, this is the offset in the
808 .debug_types.dwo section.
809 The value is zero until the actual value is known.
810 Zero is otherwise not a valid section offset. */
811 sect_offset type_offset_in_section;
812
813 /* Type units are grouped by their DW_AT_stmt_list entry so that they
814 can share them. This points to the containing symtab. */
815 struct type_unit_group *type_unit_group;
816
817 /* The type.
818 The first time we encounter this type we fully read it in and install it
819 in the symbol tables. Subsequent times we only need the type. */
820 struct type *type;
821
822 /* Containing DWO unit.
823 This field is valid iff per_cu.reading_dwo_directly. */
824 struct dwo_unit *dwo_unit;
825 };
826
827 typedef struct signatured_type *sig_type_ptr;
828 DEF_VEC_P (sig_type_ptr);
829
830 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
831 This includes type_unit_group and quick_file_names. */
832
833 struct stmt_list_hash
834 {
835 /* The DWO unit this table is from or NULL if there is none. */
836 struct dwo_unit *dwo_unit;
837
838 /* Offset in .debug_line or .debug_line.dwo. */
839 sect_offset line_sect_off;
840 };
841
842 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
843 an object of this type. */
844
845 struct type_unit_group
846 {
847 /* dwarf2read.c's main "handle" on a TU symtab.
848 To simplify things we create an artificial CU that "includes" all the
849 type units using this stmt_list so that the rest of the code still has
850 a "per_cu" handle on the symtab.
851 This PER_CU is recognized by having no section. */
852 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
853 struct dwarf2_per_cu_data per_cu;
854
855 /* The TUs that share this DW_AT_stmt_list entry.
856 This is added to while parsing type units to build partial symtabs,
857 and is deleted afterwards and not used again. */
858 VEC (sig_type_ptr) *tus;
859
860 /* The compunit symtab.
861 Type units in a group needn't all be defined in the same source file,
862 so we create an essentially anonymous symtab as the compunit symtab. */
863 struct compunit_symtab *compunit_symtab;
864
865 /* The data used to construct the hash key. */
866 struct stmt_list_hash hash;
867
868 /* The number of symtabs from the line header.
869 The value here must match line_header.num_file_names. */
870 unsigned int num_symtabs;
871
872 /* The symbol tables for this TU (obtained from the files listed in
873 DW_AT_stmt_list).
874 WARNING: The order of entries here must match the order of entries
875 in the line header. After the first TU using this type_unit_group, the
876 line header for the subsequent TUs is recreated from this. This is done
877 because we need to use the same symtabs for each TU using the same
878 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
879 there's no guarantee the line header doesn't have duplicate entries. */
880 struct symtab **symtabs;
881 };
882
883 /* These sections are what may appear in a (real or virtual) DWO file. */
884
885 struct dwo_sections
886 {
887 struct dwarf2_section_info abbrev;
888 struct dwarf2_section_info line;
889 struct dwarf2_section_info loc;
890 struct dwarf2_section_info loclists;
891 struct dwarf2_section_info macinfo;
892 struct dwarf2_section_info macro;
893 struct dwarf2_section_info str;
894 struct dwarf2_section_info str_offsets;
895 /* In the case of a virtual DWO file, these two are unused. */
896 struct dwarf2_section_info info;
897 VEC (dwarf2_section_info_def) *types;
898 };
899
900 /* CUs/TUs in DWP/DWO files. */
901
902 struct dwo_unit
903 {
904 /* Backlink to the containing struct dwo_file. */
905 struct dwo_file *dwo_file;
906
907 /* The "id" that distinguishes this CU/TU.
908 .debug_info calls this "dwo_id", .debug_types calls this "signature".
909 Since signatures came first, we stick with it for consistency. */
910 ULONGEST signature;
911
912 /* The section this CU/TU lives in, in the DWO file. */
913 struct dwarf2_section_info *section;
914
915 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
916 sect_offset sect_off;
917 unsigned int length;
918
919 /* For types, offset in the type's DIE of the type defined by this TU. */
920 cu_offset type_offset_in_tu;
921 };
922
923 /* include/dwarf2.h defines the DWP section codes.
924 It defines a max value but it doesn't define a min value, which we
925 use for error checking, so provide one. */
926
927 enum dwp_v2_section_ids
928 {
929 DW_SECT_MIN = 1
930 };
931
932 /* Data for one DWO file.
933
934 This includes virtual DWO files (a virtual DWO file is a DWO file as it
935 appears in a DWP file). DWP files don't really have DWO files per se -
936 comdat folding of types "loses" the DWO file they came from, and from
937 a high level view DWP files appear to contain a mass of random types.
938 However, to maintain consistency with the non-DWP case we pretend DWP
939 files contain virtual DWO files, and we assign each TU with one virtual
940 DWO file (generally based on the line and abbrev section offsets -
941 a heuristic that seems to work in practice). */
942
943 struct dwo_file
944 {
945 /* The DW_AT_GNU_dwo_name attribute.
946 For virtual DWO files the name is constructed from the section offsets
947 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
948 from related CU+TUs. */
949 const char *dwo_name;
950
951 /* The DW_AT_comp_dir attribute. */
952 const char *comp_dir;
953
954 /* The bfd, when the file is open. Otherwise this is NULL.
955 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
956 bfd *dbfd;
957
958 /* The sections that make up this DWO file.
959 Remember that for virtual DWO files in DWP V2, these are virtual
960 sections (for lack of a better name). */
961 struct dwo_sections sections;
962
963 /* The CUs in the file.
964 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
965 an extension to handle LLVM's Link Time Optimization output (where
966 multiple source files may be compiled into a single object/dwo pair). */
967 htab_t cus;
968
969 /* Table of TUs in the file.
970 Each element is a struct dwo_unit. */
971 htab_t tus;
972 };
973
974 /* These sections are what may appear in a DWP file. */
975
976 struct dwp_sections
977 {
978 /* These are used by both DWP version 1 and 2. */
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info cu_index;
981 struct dwarf2_section_info tu_index;
982
983 /* These are only used by DWP version 2 files.
984 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
985 sections are referenced by section number, and are not recorded here.
986 In DWP version 2 there is at most one copy of all these sections, each
987 section being (effectively) comprised of the concatenation of all of the
988 individual sections that exist in the version 1 format.
989 To keep the code simple we treat each of these concatenated pieces as a
990 section itself (a virtual section?). */
991 struct dwarf2_section_info abbrev;
992 struct dwarf2_section_info info;
993 struct dwarf2_section_info line;
994 struct dwarf2_section_info loc;
995 struct dwarf2_section_info macinfo;
996 struct dwarf2_section_info macro;
997 struct dwarf2_section_info str_offsets;
998 struct dwarf2_section_info types;
999 };
1000
1001 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1002 A virtual DWO file is a DWO file as it appears in a DWP file. */
1003
1004 struct virtual_v1_dwo_sections
1005 {
1006 struct dwarf2_section_info abbrev;
1007 struct dwarf2_section_info line;
1008 struct dwarf2_section_info loc;
1009 struct dwarf2_section_info macinfo;
1010 struct dwarf2_section_info macro;
1011 struct dwarf2_section_info str_offsets;
1012 /* Each DWP hash table entry records one CU or one TU.
1013 That is recorded here, and copied to dwo_unit.section. */
1014 struct dwarf2_section_info info_or_types;
1015 };
1016
1017 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1018 In version 2, the sections of the DWO files are concatenated together
1019 and stored in one section of that name. Thus each ELF section contains
1020 several "virtual" sections. */
1021
1022 struct virtual_v2_dwo_sections
1023 {
1024 bfd_size_type abbrev_offset;
1025 bfd_size_type abbrev_size;
1026
1027 bfd_size_type line_offset;
1028 bfd_size_type line_size;
1029
1030 bfd_size_type loc_offset;
1031 bfd_size_type loc_size;
1032
1033 bfd_size_type macinfo_offset;
1034 bfd_size_type macinfo_size;
1035
1036 bfd_size_type macro_offset;
1037 bfd_size_type macro_size;
1038
1039 bfd_size_type str_offsets_offset;
1040 bfd_size_type str_offsets_size;
1041
1042 /* Each DWP hash table entry records one CU or one TU.
1043 That is recorded here, and copied to dwo_unit.section. */
1044 bfd_size_type info_or_types_offset;
1045 bfd_size_type info_or_types_size;
1046 };
1047
1048 /* Contents of DWP hash tables. */
1049
1050 struct dwp_hash_table
1051 {
1052 uint32_t version, nr_columns;
1053 uint32_t nr_units, nr_slots;
1054 const gdb_byte *hash_table, *unit_table;
1055 union
1056 {
1057 struct
1058 {
1059 const gdb_byte *indices;
1060 } v1;
1061 struct
1062 {
1063 /* This is indexed by column number and gives the id of the section
1064 in that column. */
1065 #define MAX_NR_V2_DWO_SECTIONS \
1066 (1 /* .debug_info or .debug_types */ \
1067 + 1 /* .debug_abbrev */ \
1068 + 1 /* .debug_line */ \
1069 + 1 /* .debug_loc */ \
1070 + 1 /* .debug_str_offsets */ \
1071 + 1 /* .debug_macro or .debug_macinfo */)
1072 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1073 const gdb_byte *offsets;
1074 const gdb_byte *sizes;
1075 } v2;
1076 } section_pool;
1077 };
1078
1079 /* Data for one DWP file. */
1080
1081 struct dwp_file
1082 {
1083 /* Name of the file. */
1084 const char *name;
1085
1086 /* File format version. */
1087 int version;
1088
1089 /* The bfd. */
1090 bfd *dbfd;
1091
1092 /* Section info for this file. */
1093 struct dwp_sections sections;
1094
1095 /* Table of CUs in the file. */
1096 const struct dwp_hash_table *cus;
1097
1098 /* Table of TUs in the file. */
1099 const struct dwp_hash_table *tus;
1100
1101 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1102 htab_t loaded_cus;
1103 htab_t loaded_tus;
1104
1105 /* Table to map ELF section numbers to their sections.
1106 This is only needed for the DWP V1 file format. */
1107 unsigned int num_sections;
1108 asection **elf_sections;
1109 };
1110
1111 /* This represents a '.dwz' file. */
1112
1113 struct dwz_file
1114 {
1115 /* A dwz file can only contain a few sections. */
1116 struct dwarf2_section_info abbrev;
1117 struct dwarf2_section_info info;
1118 struct dwarf2_section_info str;
1119 struct dwarf2_section_info line;
1120 struct dwarf2_section_info macro;
1121 struct dwarf2_section_info gdb_index;
1122
1123 /* The dwz's BFD. */
1124 bfd *dwz_bfd;
1125 };
1126
1127 /* Struct used to pass misc. parameters to read_die_and_children, et
1128 al. which are used for both .debug_info and .debug_types dies.
1129 All parameters here are unchanging for the life of the call. This
1130 struct exists to abstract away the constant parameters of die reading. */
1131
1132 struct die_reader_specs
1133 {
1134 /* The bfd of die_section. */
1135 bfd* abfd;
1136
1137 /* The CU of the DIE we are parsing. */
1138 struct dwarf2_cu *cu;
1139
1140 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1141 struct dwo_file *dwo_file;
1142
1143 /* The section the die comes from.
1144 This is either .debug_info or .debug_types, or the .dwo variants. */
1145 struct dwarf2_section_info *die_section;
1146
1147 /* die_section->buffer. */
1148 const gdb_byte *buffer;
1149
1150 /* The end of the buffer. */
1151 const gdb_byte *buffer_end;
1152
1153 /* The value of the DW_AT_comp_dir attribute. */
1154 const char *comp_dir;
1155 };
1156
1157 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1158 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1159 const gdb_byte *info_ptr,
1160 struct die_info *comp_unit_die,
1161 int has_children,
1162 void *data);
1163
1164 /* A 1-based directory index. This is a strong typedef to prevent
1165 accidentally using a directory index as a 0-based index into an
1166 array/vector. */
1167 enum class dir_index : unsigned int {};
1168
1169 /* Likewise, a 1-based file name index. */
1170 enum class file_name_index : unsigned int {};
1171
1172 struct file_entry
1173 {
1174 file_entry () = default;
1175
1176 file_entry (const char *name_, dir_index d_index_,
1177 unsigned int mod_time_, unsigned int length_)
1178 : name (name_),
1179 d_index (d_index_),
1180 mod_time (mod_time_),
1181 length (length_)
1182 {}
1183
1184 /* Return the include directory at D_INDEX stored in LH. Returns
1185 NULL if D_INDEX is out of bounds. */
1186 const char *include_dir (const line_header *lh) const;
1187
1188 /* The file name. Note this is an observing pointer. The memory is
1189 owned by debug_line_buffer. */
1190 const char *name {};
1191
1192 /* The directory index (1-based). */
1193 dir_index d_index {};
1194
1195 unsigned int mod_time {};
1196
1197 unsigned int length {};
1198
1199 /* True if referenced by the Line Number Program. */
1200 bool included_p {};
1201
1202 /* The associated symbol table, if any. */
1203 struct symtab *symtab {};
1204 };
1205
1206 /* The line number information for a compilation unit (found in the
1207 .debug_line section) begins with a "statement program header",
1208 which contains the following information. */
1209 struct line_header
1210 {
1211 line_header ()
1212 : offset_in_dwz {}
1213 {}
1214
1215 /* Add an entry to the include directory table. */
1216 void add_include_dir (const char *include_dir);
1217
1218 /* Add an entry to the file name table. */
1219 void add_file_name (const char *name, dir_index d_index,
1220 unsigned int mod_time, unsigned int length);
1221
1222 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1223 is out of bounds. */
1224 const char *include_dir_at (dir_index index) const
1225 {
1226 /* Convert directory index number (1-based) to vector index
1227 (0-based). */
1228 size_t vec_index = to_underlying (index) - 1;
1229
1230 if (vec_index >= include_dirs.size ())
1231 return NULL;
1232 return include_dirs[vec_index];
1233 }
1234
1235 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1236 is out of bounds. */
1237 file_entry *file_name_at (file_name_index index)
1238 {
1239 /* Convert file name index number (1-based) to vector index
1240 (0-based). */
1241 size_t vec_index = to_underlying (index) - 1;
1242
1243 if (vec_index >= file_names.size ())
1244 return NULL;
1245 return &file_names[vec_index];
1246 }
1247
1248 /* Const version of the above. */
1249 const file_entry *file_name_at (unsigned int index) const
1250 {
1251 if (index >= file_names.size ())
1252 return NULL;
1253 return &file_names[index];
1254 }
1255
1256 /* Offset of line number information in .debug_line section. */
1257 sect_offset sect_off {};
1258
1259 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1260 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1261
1262 unsigned int total_length {};
1263 unsigned short version {};
1264 unsigned int header_length {};
1265 unsigned char minimum_instruction_length {};
1266 unsigned char maximum_ops_per_instruction {};
1267 unsigned char default_is_stmt {};
1268 int line_base {};
1269 unsigned char line_range {};
1270 unsigned char opcode_base {};
1271
1272 /* standard_opcode_lengths[i] is the number of operands for the
1273 standard opcode whose value is i. This means that
1274 standard_opcode_lengths[0] is unused, and the last meaningful
1275 element is standard_opcode_lengths[opcode_base - 1]. */
1276 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1277
1278 /* The include_directories table. Note these are observing
1279 pointers. The memory is owned by debug_line_buffer. */
1280 std::vector<const char *> include_dirs;
1281
1282 /* The file_names table. */
1283 std::vector<file_entry> file_names;
1284
1285 /* The start and end of the statement program following this
1286 header. These point into dwarf2_per_objfile->line_buffer. */
1287 const gdb_byte *statement_program_start {}, *statement_program_end {};
1288 };
1289
1290 typedef std::unique_ptr<line_header> line_header_up;
1291
1292 const char *
1293 file_entry::include_dir (const line_header *lh) const
1294 {
1295 return lh->include_dir_at (d_index);
1296 }
1297
1298 /* When we construct a partial symbol table entry we only
1299 need this much information. */
1300 struct partial_die_info
1301 {
1302 /* Offset of this DIE. */
1303 sect_offset sect_off;
1304
1305 /* DWARF-2 tag for this DIE. */
1306 ENUM_BITFIELD(dwarf_tag) tag : 16;
1307
1308 /* Assorted flags describing the data found in this DIE. */
1309 unsigned int has_children : 1;
1310 unsigned int is_external : 1;
1311 unsigned int is_declaration : 1;
1312 unsigned int has_type : 1;
1313 unsigned int has_specification : 1;
1314 unsigned int has_pc_info : 1;
1315 unsigned int may_be_inlined : 1;
1316
1317 /* This DIE has been marked DW_AT_main_subprogram. */
1318 unsigned int main_subprogram : 1;
1319
1320 /* Flag set if the SCOPE field of this structure has been
1321 computed. */
1322 unsigned int scope_set : 1;
1323
1324 /* Flag set if the DIE has a byte_size attribute. */
1325 unsigned int has_byte_size : 1;
1326
1327 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1328 unsigned int has_const_value : 1;
1329
1330 /* Flag set if any of the DIE's children are template arguments. */
1331 unsigned int has_template_arguments : 1;
1332
1333 /* Flag set if fixup_partial_die has been called on this die. */
1334 unsigned int fixup_called : 1;
1335
1336 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1337 unsigned int is_dwz : 1;
1338
1339 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1340 unsigned int spec_is_dwz : 1;
1341
1342 /* The name of this DIE. Normally the value of DW_AT_name, but
1343 sometimes a default name for unnamed DIEs. */
1344 const char *name;
1345
1346 /* The linkage name, if present. */
1347 const char *linkage_name;
1348
1349 /* The scope to prepend to our children. This is generally
1350 allocated on the comp_unit_obstack, so will disappear
1351 when this compilation unit leaves the cache. */
1352 const char *scope;
1353
1354 /* Some data associated with the partial DIE. The tag determines
1355 which field is live. */
1356 union
1357 {
1358 /* The location description associated with this DIE, if any. */
1359 struct dwarf_block *locdesc;
1360 /* The offset of an import, for DW_TAG_imported_unit. */
1361 sect_offset sect_off;
1362 } d;
1363
1364 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1365 CORE_ADDR lowpc;
1366 CORE_ADDR highpc;
1367
1368 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1369 DW_AT_sibling, if any. */
1370 /* NOTE: This member isn't strictly necessary, read_partial_die could
1371 return DW_AT_sibling values to its caller load_partial_dies. */
1372 const gdb_byte *sibling;
1373
1374 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1375 DW_AT_specification (or DW_AT_abstract_origin or
1376 DW_AT_extension). */
1377 sect_offset spec_offset;
1378
1379 /* Pointers to this DIE's parent, first child, and next sibling,
1380 if any. */
1381 struct partial_die_info *die_parent, *die_child, *die_sibling;
1382 };
1383
1384 /* This data structure holds the information of an abbrev. */
1385 struct abbrev_info
1386 {
1387 unsigned int number; /* number identifying abbrev */
1388 enum dwarf_tag tag; /* dwarf tag */
1389 unsigned short has_children; /* boolean */
1390 unsigned short num_attrs; /* number of attributes */
1391 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1392 struct abbrev_info *next; /* next in chain */
1393 };
1394
1395 struct attr_abbrev
1396 {
1397 ENUM_BITFIELD(dwarf_attribute) name : 16;
1398 ENUM_BITFIELD(dwarf_form) form : 16;
1399
1400 /* It is valid only if FORM is DW_FORM_implicit_const. */
1401 LONGEST implicit_const;
1402 };
1403
1404 /* Size of abbrev_table.abbrev_hash_table. */
1405 #define ABBREV_HASH_SIZE 121
1406
1407 /* Top level data structure to contain an abbreviation table. */
1408
1409 struct abbrev_table
1410 {
1411 /* Where the abbrev table came from.
1412 This is used as a sanity check when the table is used. */
1413 sect_offset sect_off;
1414
1415 /* Storage for the abbrev table. */
1416 struct obstack abbrev_obstack;
1417
1418 /* Hash table of abbrevs.
1419 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1420 It could be statically allocated, but the previous code didn't so we
1421 don't either. */
1422 struct abbrev_info **abbrevs;
1423 };
1424
1425 /* Attributes have a name and a value. */
1426 struct attribute
1427 {
1428 ENUM_BITFIELD(dwarf_attribute) name : 16;
1429 ENUM_BITFIELD(dwarf_form) form : 15;
1430
1431 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1432 field should be in u.str (existing only for DW_STRING) but it is kept
1433 here for better struct attribute alignment. */
1434 unsigned int string_is_canonical : 1;
1435
1436 union
1437 {
1438 const char *str;
1439 struct dwarf_block *blk;
1440 ULONGEST unsnd;
1441 LONGEST snd;
1442 CORE_ADDR addr;
1443 ULONGEST signature;
1444 }
1445 u;
1446 };
1447
1448 /* This data structure holds a complete die structure. */
1449 struct die_info
1450 {
1451 /* DWARF-2 tag for this DIE. */
1452 ENUM_BITFIELD(dwarf_tag) tag : 16;
1453
1454 /* Number of attributes */
1455 unsigned char num_attrs;
1456
1457 /* True if we're presently building the full type name for the
1458 type derived from this DIE. */
1459 unsigned char building_fullname : 1;
1460
1461 /* True if this die is in process. PR 16581. */
1462 unsigned char in_process : 1;
1463
1464 /* Abbrev number */
1465 unsigned int abbrev;
1466
1467 /* Offset in .debug_info or .debug_types section. */
1468 sect_offset sect_off;
1469
1470 /* The dies in a compilation unit form an n-ary tree. PARENT
1471 points to this die's parent; CHILD points to the first child of
1472 this node; and all the children of a given node are chained
1473 together via their SIBLING fields. */
1474 struct die_info *child; /* Its first child, if any. */
1475 struct die_info *sibling; /* Its next sibling, if any. */
1476 struct die_info *parent; /* Its parent, if any. */
1477
1478 /* An array of attributes, with NUM_ATTRS elements. There may be
1479 zero, but it's not common and zero-sized arrays are not
1480 sufficiently portable C. */
1481 struct attribute attrs[1];
1482 };
1483
1484 /* Get at parts of an attribute structure. */
1485
1486 #define DW_STRING(attr) ((attr)->u.str)
1487 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1488 #define DW_UNSND(attr) ((attr)->u.unsnd)
1489 #define DW_BLOCK(attr) ((attr)->u.blk)
1490 #define DW_SND(attr) ((attr)->u.snd)
1491 #define DW_ADDR(attr) ((attr)->u.addr)
1492 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1493
1494 /* Blocks are a bunch of untyped bytes. */
1495 struct dwarf_block
1496 {
1497 size_t size;
1498
1499 /* Valid only if SIZE is not zero. */
1500 const gdb_byte *data;
1501 };
1502
1503 #ifndef ATTR_ALLOC_CHUNK
1504 #define ATTR_ALLOC_CHUNK 4
1505 #endif
1506
1507 /* Allocate fields for structs, unions and enums in this size. */
1508 #ifndef DW_FIELD_ALLOC_CHUNK
1509 #define DW_FIELD_ALLOC_CHUNK 4
1510 #endif
1511
1512 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1513 but this would require a corresponding change in unpack_field_as_long
1514 and friends. */
1515 static int bits_per_byte = 8;
1516
1517 struct nextfield
1518 {
1519 struct nextfield *next;
1520 int accessibility;
1521 int virtuality;
1522 struct field field;
1523 };
1524
1525 struct nextfnfield
1526 {
1527 struct nextfnfield *next;
1528 struct fn_field fnfield;
1529 };
1530
1531 struct fnfieldlist
1532 {
1533 const char *name;
1534 int length;
1535 struct nextfnfield *head;
1536 };
1537
1538 struct decl_field_list
1539 {
1540 struct decl_field field;
1541 struct decl_field_list *next;
1542 };
1543
1544 /* The routines that read and process dies for a C struct or C++ class
1545 pass lists of data member fields and lists of member function fields
1546 in an instance of a field_info structure, as defined below. */
1547 struct field_info
1548 {
1549 /* List of data member and baseclasses fields. */
1550 struct nextfield *fields, *baseclasses;
1551
1552 /* Number of fields (including baseclasses). */
1553 int nfields;
1554
1555 /* Number of baseclasses. */
1556 int nbaseclasses;
1557
1558 /* Set if the accesibility of one of the fields is not public. */
1559 int non_public_fields;
1560
1561 /* Member function fieldlist array, contains name of possibly overloaded
1562 member function, number of overloaded member functions and a pointer
1563 to the head of the member function field chain. */
1564 struct fnfieldlist *fnfieldlists;
1565
1566 /* Number of entries in the fnfieldlists array. */
1567 int nfnfields;
1568
1569 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1570 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1571 struct decl_field_list *typedef_field_list;
1572 unsigned typedef_field_list_count;
1573
1574 /* Nested types defined by this class and the number of elements in this
1575 list. */
1576 struct decl_field_list *nested_types_list;
1577 unsigned nested_types_list_count;
1578 };
1579
1580 /* One item on the queue of compilation units to read in full symbols
1581 for. */
1582 struct dwarf2_queue_item
1583 {
1584 struct dwarf2_per_cu_data *per_cu;
1585 enum language pretend_language;
1586 struct dwarf2_queue_item *next;
1587 };
1588
1589 /* The current queue. */
1590 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1591
1592 /* Loaded secondary compilation units are kept in memory until they
1593 have not been referenced for the processing of this many
1594 compilation units. Set this to zero to disable caching. Cache
1595 sizes of up to at least twenty will improve startup time for
1596 typical inter-CU-reference binaries, at an obvious memory cost. */
1597 static int dwarf_max_cache_age = 5;
1598 static void
1599 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1600 struct cmd_list_element *c, const char *value)
1601 {
1602 fprintf_filtered (file, _("The upper bound on the age of cached "
1603 "DWARF compilation units is %s.\n"),
1604 value);
1605 }
1606 \f
1607 /* local function prototypes */
1608
1609 static const char *get_section_name (const struct dwarf2_section_info *);
1610
1611 static const char *get_section_file_name (const struct dwarf2_section_info *);
1612
1613 static void dwarf2_find_base_address (struct die_info *die,
1614 struct dwarf2_cu *cu);
1615
1616 static struct partial_symtab *create_partial_symtab
1617 (struct dwarf2_per_cu_data *per_cu, const char *name);
1618
1619 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1620 const gdb_byte *info_ptr,
1621 struct die_info *type_unit_die,
1622 int has_children, void *data);
1623
1624 static void dwarf2_build_psymtabs_hard (struct objfile *);
1625
1626 static void scan_partial_symbols (struct partial_die_info *,
1627 CORE_ADDR *, CORE_ADDR *,
1628 int, struct dwarf2_cu *);
1629
1630 static void add_partial_symbol (struct partial_die_info *,
1631 struct dwarf2_cu *);
1632
1633 static void add_partial_namespace (struct partial_die_info *pdi,
1634 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1635 int set_addrmap, struct dwarf2_cu *cu);
1636
1637 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1638 CORE_ADDR *highpc, int set_addrmap,
1639 struct dwarf2_cu *cu);
1640
1641 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1642 struct dwarf2_cu *cu);
1643
1644 static void add_partial_subprogram (struct partial_die_info *pdi,
1645 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1646 int need_pc, struct dwarf2_cu *cu);
1647
1648 static void dwarf2_read_symtab (struct partial_symtab *,
1649 struct objfile *);
1650
1651 static void psymtab_to_symtab_1 (struct partial_symtab *);
1652
1653 static struct abbrev_info *abbrev_table_lookup_abbrev
1654 (const struct abbrev_table *, unsigned int);
1655
1656 static struct abbrev_table *abbrev_table_read_table
1657 (struct dwarf2_section_info *, sect_offset);
1658
1659 static void abbrev_table_free (struct abbrev_table *);
1660
1661 static void abbrev_table_free_cleanup (void *);
1662
1663 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1664 struct dwarf2_section_info *);
1665
1666 static void dwarf2_free_abbrev_table (void *);
1667
1668 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1669
1670 static struct partial_die_info *load_partial_dies
1671 (const struct die_reader_specs *, const gdb_byte *, int);
1672
1673 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1674 struct partial_die_info *,
1675 struct abbrev_info *,
1676 unsigned int,
1677 const gdb_byte *);
1678
1679 static struct partial_die_info *find_partial_die (sect_offset, int,
1680 struct dwarf2_cu *);
1681
1682 static void fixup_partial_die (struct partial_die_info *,
1683 struct dwarf2_cu *);
1684
1685 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1686 struct attribute *, struct attr_abbrev *,
1687 const gdb_byte *);
1688
1689 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1690
1691 static int read_1_signed_byte (bfd *, const gdb_byte *);
1692
1693 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1694
1695 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1696
1697 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1698
1699 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1700 unsigned int *);
1701
1702 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1703
1704 static LONGEST read_checked_initial_length_and_offset
1705 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1706 unsigned int *, unsigned int *);
1707
1708 static LONGEST read_offset (bfd *, const gdb_byte *,
1709 const struct comp_unit_head *,
1710 unsigned int *);
1711
1712 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1713
1714 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1715 sect_offset);
1716
1717 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1718
1719 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1720
1721 static const char *read_indirect_string (bfd *, const gdb_byte *,
1722 const struct comp_unit_head *,
1723 unsigned int *);
1724
1725 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1726 const struct comp_unit_head *,
1727 unsigned int *);
1728
1729 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1730
1731 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1732
1733 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1734 const gdb_byte *,
1735 unsigned int *);
1736
1737 static const char *read_str_index (const struct die_reader_specs *reader,
1738 ULONGEST str_index);
1739
1740 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1741
1742 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1743 struct dwarf2_cu *);
1744
1745 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1746 unsigned int);
1747
1748 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1749 struct dwarf2_cu *cu);
1750
1751 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1752 struct dwarf2_cu *cu);
1753
1754 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1755
1756 static struct die_info *die_specification (struct die_info *die,
1757 struct dwarf2_cu **);
1758
1759 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1760 struct dwarf2_cu *cu);
1761
1762 static void dwarf_decode_lines (struct line_header *, const char *,
1763 struct dwarf2_cu *, struct partial_symtab *,
1764 CORE_ADDR, int decode_mapping);
1765
1766 static void dwarf2_start_subfile (const char *, const char *);
1767
1768 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1769 const char *, const char *,
1770 CORE_ADDR);
1771
1772 static struct symbol *new_symbol (struct die_info *, struct type *,
1773 struct dwarf2_cu *);
1774
1775 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1776 struct dwarf2_cu *, struct symbol *);
1777
1778 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1779 struct dwarf2_cu *);
1780
1781 static void dwarf2_const_value_attr (const struct attribute *attr,
1782 struct type *type,
1783 const char *name,
1784 struct obstack *obstack,
1785 struct dwarf2_cu *cu, LONGEST *value,
1786 const gdb_byte **bytes,
1787 struct dwarf2_locexpr_baton **baton);
1788
1789 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1790
1791 static int need_gnat_info (struct dwarf2_cu *);
1792
1793 static struct type *die_descriptive_type (struct die_info *,
1794 struct dwarf2_cu *);
1795
1796 static void set_descriptive_type (struct type *, struct die_info *,
1797 struct dwarf2_cu *);
1798
1799 static struct type *die_containing_type (struct die_info *,
1800 struct dwarf2_cu *);
1801
1802 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1803 struct dwarf2_cu *);
1804
1805 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1806
1807 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1808
1809 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1810
1811 static char *typename_concat (struct obstack *obs, const char *prefix,
1812 const char *suffix, int physname,
1813 struct dwarf2_cu *cu);
1814
1815 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1816
1817 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1818
1819 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1820
1821 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1822
1823 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1824
1825 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1826
1827 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1828 struct dwarf2_cu *, struct partial_symtab *);
1829
1830 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1831 values. Keep the items ordered with increasing constraints compliance. */
1832 enum pc_bounds_kind
1833 {
1834 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1835 PC_BOUNDS_NOT_PRESENT,
1836
1837 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1838 were present but they do not form a valid range of PC addresses. */
1839 PC_BOUNDS_INVALID,
1840
1841 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1842 PC_BOUNDS_RANGES,
1843
1844 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1845 PC_BOUNDS_HIGH_LOW,
1846 };
1847
1848 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1849 CORE_ADDR *, CORE_ADDR *,
1850 struct dwarf2_cu *,
1851 struct partial_symtab *);
1852
1853 static void get_scope_pc_bounds (struct die_info *,
1854 CORE_ADDR *, CORE_ADDR *,
1855 struct dwarf2_cu *);
1856
1857 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1858 CORE_ADDR, struct dwarf2_cu *);
1859
1860 static void dwarf2_add_field (struct field_info *, struct die_info *,
1861 struct dwarf2_cu *);
1862
1863 static void dwarf2_attach_fields_to_type (struct field_info *,
1864 struct type *, struct dwarf2_cu *);
1865
1866 static void dwarf2_add_member_fn (struct field_info *,
1867 struct die_info *, struct type *,
1868 struct dwarf2_cu *);
1869
1870 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1871 struct type *,
1872 struct dwarf2_cu *);
1873
1874 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1875
1876 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1877
1878 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1879
1880 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1881
1882 static struct using_direct **using_directives (enum language);
1883
1884 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1885
1886 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static struct type *read_module_type (struct die_info *die,
1889 struct dwarf2_cu *cu);
1890
1891 static const char *namespace_name (struct die_info *die,
1892 int *is_anonymous, struct dwarf2_cu *);
1893
1894 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1895
1896 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1897
1898 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1899 struct dwarf2_cu *);
1900
1901 static struct die_info *read_die_and_siblings_1
1902 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1903 struct die_info *);
1904
1905 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1906 const gdb_byte *info_ptr,
1907 const gdb_byte **new_info_ptr,
1908 struct die_info *parent);
1909
1910 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1911 struct die_info **, const gdb_byte *,
1912 int *, int);
1913
1914 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1915 struct die_info **, const gdb_byte *,
1916 int *);
1917
1918 static void process_die (struct die_info *, struct dwarf2_cu *);
1919
1920 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1921 struct obstack *);
1922
1923 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1924
1925 static const char *dwarf2_full_name (const char *name,
1926 struct die_info *die,
1927 struct dwarf2_cu *cu);
1928
1929 static const char *dwarf2_physname (const char *name, struct die_info *die,
1930 struct dwarf2_cu *cu);
1931
1932 static struct die_info *dwarf2_extension (struct die_info *die,
1933 struct dwarf2_cu **);
1934
1935 static const char *dwarf_tag_name (unsigned int);
1936
1937 static const char *dwarf_attr_name (unsigned int);
1938
1939 static const char *dwarf_form_name (unsigned int);
1940
1941 static const char *dwarf_bool_name (unsigned int);
1942
1943 static const char *dwarf_type_encoding_name (unsigned int);
1944
1945 static struct die_info *sibling_die (struct die_info *);
1946
1947 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1948
1949 static void dump_die_for_error (struct die_info *);
1950
1951 static void dump_die_1 (struct ui_file *, int level, int max_level,
1952 struct die_info *);
1953
1954 /*static*/ void dump_die (struct die_info *, int max_level);
1955
1956 static void store_in_ref_table (struct die_info *,
1957 struct dwarf2_cu *);
1958
1959 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1960
1961 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1962
1963 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1964 const struct attribute *,
1965 struct dwarf2_cu **);
1966
1967 static struct die_info *follow_die_ref (struct die_info *,
1968 const struct attribute *,
1969 struct dwarf2_cu **);
1970
1971 static struct die_info *follow_die_sig (struct die_info *,
1972 const struct attribute *,
1973 struct dwarf2_cu **);
1974
1975 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1976 struct dwarf2_cu *);
1977
1978 static struct type *get_DW_AT_signature_type (struct die_info *,
1979 const struct attribute *,
1980 struct dwarf2_cu *);
1981
1982 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1983
1984 static void read_signatured_type (struct signatured_type *);
1985
1986 static int attr_to_dynamic_prop (const struct attribute *attr,
1987 struct die_info *die, struct dwarf2_cu *cu,
1988 struct dynamic_prop *prop);
1989
1990 /* memory allocation interface */
1991
1992 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1993
1994 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1995
1996 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1997
1998 static int attr_form_is_block (const struct attribute *);
1999
2000 static int attr_form_is_section_offset (const struct attribute *);
2001
2002 static int attr_form_is_constant (const struct attribute *);
2003
2004 static int attr_form_is_ref (const struct attribute *);
2005
2006 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2007 struct dwarf2_loclist_baton *baton,
2008 const struct attribute *attr);
2009
2010 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2011 struct symbol *sym,
2012 struct dwarf2_cu *cu,
2013 int is_block);
2014
2015 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2016 const gdb_byte *info_ptr,
2017 struct abbrev_info *abbrev);
2018
2019 static void free_stack_comp_unit (void *);
2020
2021 static hashval_t partial_die_hash (const void *item);
2022
2023 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2024
2025 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2026 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2027
2028 static void init_one_comp_unit (struct dwarf2_cu *cu,
2029 struct dwarf2_per_cu_data *per_cu);
2030
2031 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2032 struct die_info *comp_unit_die,
2033 enum language pretend_language);
2034
2035 static void free_heap_comp_unit (void *);
2036
2037 static void free_cached_comp_units (void *);
2038
2039 static void age_cached_comp_units (void);
2040
2041 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2042
2043 static struct type *set_die_type (struct die_info *, struct type *,
2044 struct dwarf2_cu *);
2045
2046 static void create_all_comp_units (struct objfile *);
2047
2048 static int create_all_type_units (struct objfile *);
2049
2050 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2051 enum language);
2052
2053 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2054 enum language);
2055
2056 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2057 enum language);
2058
2059 static void dwarf2_add_dependence (struct dwarf2_cu *,
2060 struct dwarf2_per_cu_data *);
2061
2062 static void dwarf2_mark (struct dwarf2_cu *);
2063
2064 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2065
2066 static struct type *get_die_type_at_offset (sect_offset,
2067 struct dwarf2_per_cu_data *);
2068
2069 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2070
2071 static void dwarf2_release_queue (void *dummy);
2072
2073 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2074 enum language pretend_language);
2075
2076 static void process_queue (void);
2077
2078 /* The return type of find_file_and_directory. Note, the enclosed
2079 string pointers are only valid while this object is valid. */
2080
2081 struct file_and_directory
2082 {
2083 /* The filename. This is never NULL. */
2084 const char *name;
2085
2086 /* The compilation directory. NULL if not known. If we needed to
2087 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2088 points directly to the DW_AT_comp_dir string attribute owned by
2089 the obstack that owns the DIE. */
2090 const char *comp_dir;
2091
2092 /* If we needed to build a new string for comp_dir, this is what
2093 owns the storage. */
2094 std::string comp_dir_storage;
2095 };
2096
2097 static file_and_directory find_file_and_directory (struct die_info *die,
2098 struct dwarf2_cu *cu);
2099
2100 static char *file_full_name (int file, struct line_header *lh,
2101 const char *comp_dir);
2102
2103 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2104 enum class rcuh_kind { COMPILE, TYPE };
2105
2106 static const gdb_byte *read_and_check_comp_unit_head
2107 (struct comp_unit_head *header,
2108 struct dwarf2_section_info *section,
2109 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2110 rcuh_kind section_kind);
2111
2112 static void init_cutu_and_read_dies
2113 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2114 int use_existing_cu, int keep,
2115 die_reader_func_ftype *die_reader_func, void *data);
2116
2117 static void init_cutu_and_read_dies_simple
2118 (struct dwarf2_per_cu_data *this_cu,
2119 die_reader_func_ftype *die_reader_func, void *data);
2120
2121 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2122
2123 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2124
2125 static struct dwo_unit *lookup_dwo_unit_in_dwp
2126 (struct dwp_file *dwp_file, const char *comp_dir,
2127 ULONGEST signature, int is_debug_types);
2128
2129 static struct dwp_file *get_dwp_file (void);
2130
2131 static struct dwo_unit *lookup_dwo_comp_unit
2132 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2133
2134 static struct dwo_unit *lookup_dwo_type_unit
2135 (struct signatured_type *, const char *, const char *);
2136
2137 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2138
2139 static void free_dwo_file_cleanup (void *);
2140
2141 static void process_cu_includes (void);
2142
2143 static void check_producer (struct dwarf2_cu *cu);
2144
2145 static void free_line_header_voidp (void *arg);
2146 \f
2147 /* Various complaints about symbol reading that don't abort the process. */
2148
2149 static void
2150 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2151 {
2152 complaint (&symfile_complaints,
2153 _("statement list doesn't fit in .debug_line section"));
2154 }
2155
2156 static void
2157 dwarf2_debug_line_missing_file_complaint (void)
2158 {
2159 complaint (&symfile_complaints,
2160 _(".debug_line section has line data without a file"));
2161 }
2162
2163 static void
2164 dwarf2_debug_line_missing_end_sequence_complaint (void)
2165 {
2166 complaint (&symfile_complaints,
2167 _(".debug_line section has line "
2168 "program sequence without an end"));
2169 }
2170
2171 static void
2172 dwarf2_complex_location_expr_complaint (void)
2173 {
2174 complaint (&symfile_complaints, _("location expression too complex"));
2175 }
2176
2177 static void
2178 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2179 int arg3)
2180 {
2181 complaint (&symfile_complaints,
2182 _("const value length mismatch for '%s', got %d, expected %d"),
2183 arg1, arg2, arg3);
2184 }
2185
2186 static void
2187 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2188 {
2189 complaint (&symfile_complaints,
2190 _("debug info runs off end of %s section"
2191 " [in module %s]"),
2192 get_section_name (section),
2193 get_section_file_name (section));
2194 }
2195
2196 static void
2197 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2198 {
2199 complaint (&symfile_complaints,
2200 _("macro debug info contains a "
2201 "malformed macro definition:\n`%s'"),
2202 arg1);
2203 }
2204
2205 static void
2206 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2207 {
2208 complaint (&symfile_complaints,
2209 _("invalid attribute class or form for '%s' in '%s'"),
2210 arg1, arg2);
2211 }
2212
2213 /* Hash function for line_header_hash. */
2214
2215 static hashval_t
2216 line_header_hash (const struct line_header *ofs)
2217 {
2218 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2219 }
2220
2221 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2222
2223 static hashval_t
2224 line_header_hash_voidp (const void *item)
2225 {
2226 const struct line_header *ofs = (const struct line_header *) item;
2227
2228 return line_header_hash (ofs);
2229 }
2230
2231 /* Equality function for line_header_hash. */
2232
2233 static int
2234 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2235 {
2236 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2237 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2238
2239 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2240 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2241 }
2242
2243 \f
2244
2245 /* Read the given attribute value as an address, taking the attribute's
2246 form into account. */
2247
2248 static CORE_ADDR
2249 attr_value_as_address (struct attribute *attr)
2250 {
2251 CORE_ADDR addr;
2252
2253 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2254 {
2255 /* Aside from a few clearly defined exceptions, attributes that
2256 contain an address must always be in DW_FORM_addr form.
2257 Unfortunately, some compilers happen to be violating this
2258 requirement by encoding addresses using other forms, such
2259 as DW_FORM_data4 for example. For those broken compilers,
2260 we try to do our best, without any guarantee of success,
2261 to interpret the address correctly. It would also be nice
2262 to generate a complaint, but that would require us to maintain
2263 a list of legitimate cases where a non-address form is allowed,
2264 as well as update callers to pass in at least the CU's DWARF
2265 version. This is more overhead than what we're willing to
2266 expand for a pretty rare case. */
2267 addr = DW_UNSND (attr);
2268 }
2269 else
2270 addr = DW_ADDR (attr);
2271
2272 return addr;
2273 }
2274
2275 /* The suffix for an index file. */
2276 #define INDEX4_SUFFIX ".gdb-index"
2277 #define INDEX5_SUFFIX ".debug_names"
2278 #define DEBUG_STR_SUFFIX ".debug_str"
2279
2280 /* See declaration. */
2281
2282 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2283 const dwarf2_debug_sections *names)
2284 : objfile (objfile_)
2285 {
2286 if (names == NULL)
2287 names = &dwarf2_elf_names;
2288
2289 bfd *obfd = objfile->obfd;
2290
2291 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2292 locate_sections (obfd, sec, *names);
2293 }
2294
2295 dwarf2_per_objfile::~dwarf2_per_objfile ()
2296 {
2297 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2298 free_cached_comp_units ();
2299
2300 if (quick_file_names_table)
2301 htab_delete (quick_file_names_table);
2302
2303 if (line_header_hash)
2304 htab_delete (line_header_hash);
2305
2306 /* Everything else should be on the objfile obstack. */
2307 }
2308
2309 /* See declaration. */
2310
2311 void
2312 dwarf2_per_objfile::free_cached_comp_units ()
2313 {
2314 dwarf2_per_cu_data *per_cu = read_in_chain;
2315 dwarf2_per_cu_data **last_chain = &read_in_chain;
2316 while (per_cu != NULL)
2317 {
2318 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2319
2320 free_heap_comp_unit (per_cu->cu);
2321 *last_chain = next_cu;
2322 per_cu = next_cu;
2323 }
2324 }
2325
2326 /* Try to locate the sections we need for DWARF 2 debugging
2327 information and return true if we have enough to do something.
2328 NAMES points to the dwarf2 section names, or is NULL if the standard
2329 ELF names are used. */
2330
2331 int
2332 dwarf2_has_info (struct objfile *objfile,
2333 const struct dwarf2_debug_sections *names)
2334 {
2335 if (objfile->flags & OBJF_READNEVER)
2336 return 0;
2337
2338 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2339 objfile_data (objfile, dwarf2_objfile_data_key));
2340 if (!dwarf2_per_objfile)
2341 {
2342 /* Initialize per-objfile state. */
2343 struct dwarf2_per_objfile *data
2344 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2345
2346 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2347 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2348 }
2349 return (!dwarf2_per_objfile->info.is_virtual
2350 && dwarf2_per_objfile->info.s.section != NULL
2351 && !dwarf2_per_objfile->abbrev.is_virtual
2352 && dwarf2_per_objfile->abbrev.s.section != NULL);
2353 }
2354
2355 /* Return the containing section of virtual section SECTION. */
2356
2357 static struct dwarf2_section_info *
2358 get_containing_section (const struct dwarf2_section_info *section)
2359 {
2360 gdb_assert (section->is_virtual);
2361 return section->s.containing_section;
2362 }
2363
2364 /* Return the bfd owner of SECTION. */
2365
2366 static struct bfd *
2367 get_section_bfd_owner (const struct dwarf2_section_info *section)
2368 {
2369 if (section->is_virtual)
2370 {
2371 section = get_containing_section (section);
2372 gdb_assert (!section->is_virtual);
2373 }
2374 return section->s.section->owner;
2375 }
2376
2377 /* Return the bfd section of SECTION.
2378 Returns NULL if the section is not present. */
2379
2380 static asection *
2381 get_section_bfd_section (const struct dwarf2_section_info *section)
2382 {
2383 if (section->is_virtual)
2384 {
2385 section = get_containing_section (section);
2386 gdb_assert (!section->is_virtual);
2387 }
2388 return section->s.section;
2389 }
2390
2391 /* Return the name of SECTION. */
2392
2393 static const char *
2394 get_section_name (const struct dwarf2_section_info *section)
2395 {
2396 asection *sectp = get_section_bfd_section (section);
2397
2398 gdb_assert (sectp != NULL);
2399 return bfd_section_name (get_section_bfd_owner (section), sectp);
2400 }
2401
2402 /* Return the name of the file SECTION is in. */
2403
2404 static const char *
2405 get_section_file_name (const struct dwarf2_section_info *section)
2406 {
2407 bfd *abfd = get_section_bfd_owner (section);
2408
2409 return bfd_get_filename (abfd);
2410 }
2411
2412 /* Return the id of SECTION.
2413 Returns 0 if SECTION doesn't exist. */
2414
2415 static int
2416 get_section_id (const struct dwarf2_section_info *section)
2417 {
2418 asection *sectp = get_section_bfd_section (section);
2419
2420 if (sectp == NULL)
2421 return 0;
2422 return sectp->id;
2423 }
2424
2425 /* Return the flags of SECTION.
2426 SECTION (or containing section if this is a virtual section) must exist. */
2427
2428 static int
2429 get_section_flags (const struct dwarf2_section_info *section)
2430 {
2431 asection *sectp = get_section_bfd_section (section);
2432
2433 gdb_assert (sectp != NULL);
2434 return bfd_get_section_flags (sectp->owner, sectp);
2435 }
2436
2437 /* When loading sections, we look either for uncompressed section or for
2438 compressed section names. */
2439
2440 static int
2441 section_is_p (const char *section_name,
2442 const struct dwarf2_section_names *names)
2443 {
2444 if (names->normal != NULL
2445 && strcmp (section_name, names->normal) == 0)
2446 return 1;
2447 if (names->compressed != NULL
2448 && strcmp (section_name, names->compressed) == 0)
2449 return 1;
2450 return 0;
2451 }
2452
2453 /* See declaration. */
2454
2455 void
2456 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2457 const dwarf2_debug_sections &names)
2458 {
2459 flagword aflag = bfd_get_section_flags (abfd, sectp);
2460
2461 if ((aflag & SEC_HAS_CONTENTS) == 0)
2462 {
2463 }
2464 else if (section_is_p (sectp->name, &names.info))
2465 {
2466 this->info.s.section = sectp;
2467 this->info.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.abbrev))
2470 {
2471 this->abbrev.s.section = sectp;
2472 this->abbrev.size = bfd_get_section_size (sectp);
2473 }
2474 else if (section_is_p (sectp->name, &names.line))
2475 {
2476 this->line.s.section = sectp;
2477 this->line.size = bfd_get_section_size (sectp);
2478 }
2479 else if (section_is_p (sectp->name, &names.loc))
2480 {
2481 this->loc.s.section = sectp;
2482 this->loc.size = bfd_get_section_size (sectp);
2483 }
2484 else if (section_is_p (sectp->name, &names.loclists))
2485 {
2486 this->loclists.s.section = sectp;
2487 this->loclists.size = bfd_get_section_size (sectp);
2488 }
2489 else if (section_is_p (sectp->name, &names.macinfo))
2490 {
2491 this->macinfo.s.section = sectp;
2492 this->macinfo.size = bfd_get_section_size (sectp);
2493 }
2494 else if (section_is_p (sectp->name, &names.macro))
2495 {
2496 this->macro.s.section = sectp;
2497 this->macro.size = bfd_get_section_size (sectp);
2498 }
2499 else if (section_is_p (sectp->name, &names.str))
2500 {
2501 this->str.s.section = sectp;
2502 this->str.size = bfd_get_section_size (sectp);
2503 }
2504 else if (section_is_p (sectp->name, &names.line_str))
2505 {
2506 this->line_str.s.section = sectp;
2507 this->line_str.size = bfd_get_section_size (sectp);
2508 }
2509 else if (section_is_p (sectp->name, &names.addr))
2510 {
2511 this->addr.s.section = sectp;
2512 this->addr.size = bfd_get_section_size (sectp);
2513 }
2514 else if (section_is_p (sectp->name, &names.frame))
2515 {
2516 this->frame.s.section = sectp;
2517 this->frame.size = bfd_get_section_size (sectp);
2518 }
2519 else if (section_is_p (sectp->name, &names.eh_frame))
2520 {
2521 this->eh_frame.s.section = sectp;
2522 this->eh_frame.size = bfd_get_section_size (sectp);
2523 }
2524 else if (section_is_p (sectp->name, &names.ranges))
2525 {
2526 this->ranges.s.section = sectp;
2527 this->ranges.size = bfd_get_section_size (sectp);
2528 }
2529 else if (section_is_p (sectp->name, &names.rnglists))
2530 {
2531 this->rnglists.s.section = sectp;
2532 this->rnglists.size = bfd_get_section_size (sectp);
2533 }
2534 else if (section_is_p (sectp->name, &names.types))
2535 {
2536 struct dwarf2_section_info type_section;
2537
2538 memset (&type_section, 0, sizeof (type_section));
2539 type_section.s.section = sectp;
2540 type_section.size = bfd_get_section_size (sectp);
2541
2542 VEC_safe_push (dwarf2_section_info_def, this->types,
2543 &type_section);
2544 }
2545 else if (section_is_p (sectp->name, &names.gdb_index))
2546 {
2547 this->gdb_index.s.section = sectp;
2548 this->gdb_index.size = bfd_get_section_size (sectp);
2549 }
2550
2551 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2552 && bfd_section_vma (abfd, sectp) == 0)
2553 this->has_section_at_zero = true;
2554 }
2555
2556 /* A helper function that decides whether a section is empty,
2557 or not present. */
2558
2559 static int
2560 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2561 {
2562 if (section->is_virtual)
2563 return section->size == 0;
2564 return section->s.section == NULL || section->size == 0;
2565 }
2566
2567 /* Read the contents of the section INFO.
2568 OBJFILE is the main object file, but not necessarily the file where
2569 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2570 of the DWO file.
2571 If the section is compressed, uncompress it before returning. */
2572
2573 static void
2574 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2575 {
2576 asection *sectp;
2577 bfd *abfd;
2578 gdb_byte *buf, *retbuf;
2579
2580 if (info->readin)
2581 return;
2582 info->buffer = NULL;
2583 info->readin = 1;
2584
2585 if (dwarf2_section_empty_p (info))
2586 return;
2587
2588 sectp = get_section_bfd_section (info);
2589
2590 /* If this is a virtual section we need to read in the real one first. */
2591 if (info->is_virtual)
2592 {
2593 struct dwarf2_section_info *containing_section =
2594 get_containing_section (info);
2595
2596 gdb_assert (sectp != NULL);
2597 if ((sectp->flags & SEC_RELOC) != 0)
2598 {
2599 error (_("Dwarf Error: DWP format V2 with relocations is not"
2600 " supported in section %s [in module %s]"),
2601 get_section_name (info), get_section_file_name (info));
2602 }
2603 dwarf2_read_section (objfile, containing_section);
2604 /* Other code should have already caught virtual sections that don't
2605 fit. */
2606 gdb_assert (info->virtual_offset + info->size
2607 <= containing_section->size);
2608 /* If the real section is empty or there was a problem reading the
2609 section we shouldn't get here. */
2610 gdb_assert (containing_section->buffer != NULL);
2611 info->buffer = containing_section->buffer + info->virtual_offset;
2612 return;
2613 }
2614
2615 /* If the section has relocations, we must read it ourselves.
2616 Otherwise we attach it to the BFD. */
2617 if ((sectp->flags & SEC_RELOC) == 0)
2618 {
2619 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2620 return;
2621 }
2622
2623 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2624 info->buffer = buf;
2625
2626 /* When debugging .o files, we may need to apply relocations; see
2627 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2628 We never compress sections in .o files, so we only need to
2629 try this when the section is not compressed. */
2630 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2631 if (retbuf != NULL)
2632 {
2633 info->buffer = retbuf;
2634 return;
2635 }
2636
2637 abfd = get_section_bfd_owner (info);
2638 gdb_assert (abfd != NULL);
2639
2640 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2641 || bfd_bread (buf, info->size, abfd) != info->size)
2642 {
2643 error (_("Dwarf Error: Can't read DWARF data"
2644 " in section %s [in module %s]"),
2645 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2646 }
2647 }
2648
2649 /* A helper function that returns the size of a section in a safe way.
2650 If you are positive that the section has been read before using the
2651 size, then it is safe to refer to the dwarf2_section_info object's
2652 "size" field directly. In other cases, you must call this
2653 function, because for compressed sections the size field is not set
2654 correctly until the section has been read. */
2655
2656 static bfd_size_type
2657 dwarf2_section_size (struct objfile *objfile,
2658 struct dwarf2_section_info *info)
2659 {
2660 if (!info->readin)
2661 dwarf2_read_section (objfile, info);
2662 return info->size;
2663 }
2664
2665 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2666 SECTION_NAME. */
2667
2668 void
2669 dwarf2_get_section_info (struct objfile *objfile,
2670 enum dwarf2_section_enum sect,
2671 asection **sectp, const gdb_byte **bufp,
2672 bfd_size_type *sizep)
2673 {
2674 struct dwarf2_per_objfile *data
2675 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2676 dwarf2_objfile_data_key);
2677 struct dwarf2_section_info *info;
2678
2679 /* We may see an objfile without any DWARF, in which case we just
2680 return nothing. */
2681 if (data == NULL)
2682 {
2683 *sectp = NULL;
2684 *bufp = NULL;
2685 *sizep = 0;
2686 return;
2687 }
2688 switch (sect)
2689 {
2690 case DWARF2_DEBUG_FRAME:
2691 info = &data->frame;
2692 break;
2693 case DWARF2_EH_FRAME:
2694 info = &data->eh_frame;
2695 break;
2696 default:
2697 gdb_assert_not_reached ("unexpected section");
2698 }
2699
2700 dwarf2_read_section (objfile, info);
2701
2702 *sectp = get_section_bfd_section (info);
2703 *bufp = info->buffer;
2704 *sizep = info->size;
2705 }
2706
2707 /* A helper function to find the sections for a .dwz file. */
2708
2709 static void
2710 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2711 {
2712 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2713
2714 /* Note that we only support the standard ELF names, because .dwz
2715 is ELF-only (at the time of writing). */
2716 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2717 {
2718 dwz_file->abbrev.s.section = sectp;
2719 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2720 }
2721 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2722 {
2723 dwz_file->info.s.section = sectp;
2724 dwz_file->info.size = bfd_get_section_size (sectp);
2725 }
2726 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2727 {
2728 dwz_file->str.s.section = sectp;
2729 dwz_file->str.size = bfd_get_section_size (sectp);
2730 }
2731 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2732 {
2733 dwz_file->line.s.section = sectp;
2734 dwz_file->line.size = bfd_get_section_size (sectp);
2735 }
2736 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2737 {
2738 dwz_file->macro.s.section = sectp;
2739 dwz_file->macro.size = bfd_get_section_size (sectp);
2740 }
2741 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2742 {
2743 dwz_file->gdb_index.s.section = sectp;
2744 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2745 }
2746 }
2747
2748 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2749 there is no .gnu_debugaltlink section in the file. Error if there
2750 is such a section but the file cannot be found. */
2751
2752 static struct dwz_file *
2753 dwarf2_get_dwz_file (void)
2754 {
2755 const char *filename;
2756 struct dwz_file *result;
2757 bfd_size_type buildid_len_arg;
2758 size_t buildid_len;
2759 bfd_byte *buildid;
2760
2761 if (dwarf2_per_objfile->dwz_file != NULL)
2762 return dwarf2_per_objfile->dwz_file;
2763
2764 bfd_set_error (bfd_error_no_error);
2765 gdb::unique_xmalloc_ptr<char> data
2766 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2767 &buildid_len_arg, &buildid));
2768 if (data == NULL)
2769 {
2770 if (bfd_get_error () == bfd_error_no_error)
2771 return NULL;
2772 error (_("could not read '.gnu_debugaltlink' section: %s"),
2773 bfd_errmsg (bfd_get_error ()));
2774 }
2775
2776 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2777
2778 buildid_len = (size_t) buildid_len_arg;
2779
2780 filename = data.get ();
2781
2782 std::string abs_storage;
2783 if (!IS_ABSOLUTE_PATH (filename))
2784 {
2785 gdb::unique_xmalloc_ptr<char> abs
2786 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2787
2788 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2789 filename = abs_storage.c_str ();
2790 }
2791
2792 /* First try the file name given in the section. If that doesn't
2793 work, try to use the build-id instead. */
2794 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2795 if (dwz_bfd != NULL)
2796 {
2797 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2798 dwz_bfd.release ();
2799 }
2800
2801 if (dwz_bfd == NULL)
2802 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2803
2804 if (dwz_bfd == NULL)
2805 error (_("could not find '.gnu_debugaltlink' file for %s"),
2806 objfile_name (dwarf2_per_objfile->objfile));
2807
2808 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2809 struct dwz_file);
2810 result->dwz_bfd = dwz_bfd.release ();
2811
2812 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2813
2814 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2815 dwarf2_per_objfile->dwz_file = result;
2816 return result;
2817 }
2818 \f
2819 /* DWARF quick_symbols_functions support. */
2820
2821 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2822 unique line tables, so we maintain a separate table of all .debug_line
2823 derived entries to support the sharing.
2824 All the quick functions need is the list of file names. We discard the
2825 line_header when we're done and don't need to record it here. */
2826 struct quick_file_names
2827 {
2828 /* The data used to construct the hash key. */
2829 struct stmt_list_hash hash;
2830
2831 /* The number of entries in file_names, real_names. */
2832 unsigned int num_file_names;
2833
2834 /* The file names from the line table, after being run through
2835 file_full_name. */
2836 const char **file_names;
2837
2838 /* The file names from the line table after being run through
2839 gdb_realpath. These are computed lazily. */
2840 const char **real_names;
2841 };
2842
2843 /* When using the index (and thus not using psymtabs), each CU has an
2844 object of this type. This is used to hold information needed by
2845 the various "quick" methods. */
2846 struct dwarf2_per_cu_quick_data
2847 {
2848 /* The file table. This can be NULL if there was no file table
2849 or it's currently not read in.
2850 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2851 struct quick_file_names *file_names;
2852
2853 /* The corresponding symbol table. This is NULL if symbols for this
2854 CU have not yet been read. */
2855 struct compunit_symtab *compunit_symtab;
2856
2857 /* A temporary mark bit used when iterating over all CUs in
2858 expand_symtabs_matching. */
2859 unsigned int mark : 1;
2860
2861 /* True if we've tried to read the file table and found there isn't one.
2862 There will be no point in trying to read it again next time. */
2863 unsigned int no_file_data : 1;
2864 };
2865
2866 /* Utility hash function for a stmt_list_hash. */
2867
2868 static hashval_t
2869 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2870 {
2871 hashval_t v = 0;
2872
2873 if (stmt_list_hash->dwo_unit != NULL)
2874 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2875 v += to_underlying (stmt_list_hash->line_sect_off);
2876 return v;
2877 }
2878
2879 /* Utility equality function for a stmt_list_hash. */
2880
2881 static int
2882 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2883 const struct stmt_list_hash *rhs)
2884 {
2885 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2886 return 0;
2887 if (lhs->dwo_unit != NULL
2888 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2889 return 0;
2890
2891 return lhs->line_sect_off == rhs->line_sect_off;
2892 }
2893
2894 /* Hash function for a quick_file_names. */
2895
2896 static hashval_t
2897 hash_file_name_entry (const void *e)
2898 {
2899 const struct quick_file_names *file_data
2900 = (const struct quick_file_names *) e;
2901
2902 return hash_stmt_list_entry (&file_data->hash);
2903 }
2904
2905 /* Equality function for a quick_file_names. */
2906
2907 static int
2908 eq_file_name_entry (const void *a, const void *b)
2909 {
2910 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2911 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2912
2913 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2914 }
2915
2916 /* Delete function for a quick_file_names. */
2917
2918 static void
2919 delete_file_name_entry (void *e)
2920 {
2921 struct quick_file_names *file_data = (struct quick_file_names *) e;
2922 int i;
2923
2924 for (i = 0; i < file_data->num_file_names; ++i)
2925 {
2926 xfree ((void*) file_data->file_names[i]);
2927 if (file_data->real_names)
2928 xfree ((void*) file_data->real_names[i]);
2929 }
2930
2931 /* The space for the struct itself lives on objfile_obstack,
2932 so we don't free it here. */
2933 }
2934
2935 /* Create a quick_file_names hash table. */
2936
2937 static htab_t
2938 create_quick_file_names_table (unsigned int nr_initial_entries)
2939 {
2940 return htab_create_alloc (nr_initial_entries,
2941 hash_file_name_entry, eq_file_name_entry,
2942 delete_file_name_entry, xcalloc, xfree);
2943 }
2944
2945 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2946 have to be created afterwards. You should call age_cached_comp_units after
2947 processing PER_CU->CU. dw2_setup must have been already called. */
2948
2949 static void
2950 load_cu (struct dwarf2_per_cu_data *per_cu)
2951 {
2952 if (per_cu->is_debug_types)
2953 load_full_type_unit (per_cu);
2954 else
2955 load_full_comp_unit (per_cu, language_minimal);
2956
2957 if (per_cu->cu == NULL)
2958 return; /* Dummy CU. */
2959
2960 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2961 }
2962
2963 /* Read in the symbols for PER_CU. */
2964
2965 static void
2966 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2967 {
2968 struct cleanup *back_to;
2969
2970 /* Skip type_unit_groups, reading the type units they contain
2971 is handled elsewhere. */
2972 if (IS_TYPE_UNIT_GROUP (per_cu))
2973 return;
2974
2975 back_to = make_cleanup (dwarf2_release_queue, NULL);
2976
2977 if (dwarf2_per_objfile->using_index
2978 ? per_cu->v.quick->compunit_symtab == NULL
2979 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2980 {
2981 queue_comp_unit (per_cu, language_minimal);
2982 load_cu (per_cu);
2983
2984 /* If we just loaded a CU from a DWO, and we're working with an index
2985 that may badly handle TUs, load all the TUs in that DWO as well.
2986 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2987 if (!per_cu->is_debug_types
2988 && per_cu->cu != NULL
2989 && per_cu->cu->dwo_unit != NULL
2990 && dwarf2_per_objfile->index_table != NULL
2991 && dwarf2_per_objfile->index_table->version <= 7
2992 /* DWP files aren't supported yet. */
2993 && get_dwp_file () == NULL)
2994 queue_and_load_all_dwo_tus (per_cu);
2995 }
2996
2997 process_queue ();
2998
2999 /* Age the cache, releasing compilation units that have not
3000 been used recently. */
3001 age_cached_comp_units ();
3002
3003 do_cleanups (back_to);
3004 }
3005
3006 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3007 the objfile from which this CU came. Returns the resulting symbol
3008 table. */
3009
3010 static struct compunit_symtab *
3011 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3012 {
3013 gdb_assert (dwarf2_per_objfile->using_index);
3014 if (!per_cu->v.quick->compunit_symtab)
3015 {
3016 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
3017 scoped_restore decrementer = increment_reading_symtab ();
3018 dw2_do_instantiate_symtab (per_cu);
3019 process_cu_includes ();
3020 do_cleanups (back_to);
3021 }
3022
3023 return per_cu->v.quick->compunit_symtab;
3024 }
3025
3026 /* Return the CU/TU given its index.
3027
3028 This is intended for loops like:
3029
3030 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3031 + dwarf2_per_objfile->n_type_units); ++i)
3032 {
3033 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3034
3035 ...;
3036 }
3037 */
3038
3039 static struct dwarf2_per_cu_data *
3040 dw2_get_cutu (int index)
3041 {
3042 if (index >= dwarf2_per_objfile->n_comp_units)
3043 {
3044 index -= dwarf2_per_objfile->n_comp_units;
3045 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3046 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3047 }
3048
3049 return dwarf2_per_objfile->all_comp_units[index];
3050 }
3051
3052 /* Return the CU given its index.
3053 This differs from dw2_get_cutu in that it's for when you know INDEX
3054 refers to a CU. */
3055
3056 static struct dwarf2_per_cu_data *
3057 dw2_get_cu (int index)
3058 {
3059 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3060
3061 return dwarf2_per_objfile->all_comp_units[index];
3062 }
3063
3064 /* A helper for create_cus_from_index that handles a given list of
3065 CUs. */
3066
3067 static void
3068 create_cus_from_index_list (struct objfile *objfile,
3069 const gdb_byte *cu_list, offset_type n_elements,
3070 struct dwarf2_section_info *section,
3071 int is_dwz,
3072 int base_offset)
3073 {
3074 offset_type i;
3075
3076 for (i = 0; i < n_elements; i += 2)
3077 {
3078 gdb_static_assert (sizeof (ULONGEST) >= 8);
3079
3080 sect_offset sect_off
3081 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3082 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3083 cu_list += 2 * 8;
3084
3085 dwarf2_per_cu_data *the_cu
3086 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3087 struct dwarf2_per_cu_data);
3088 the_cu->sect_off = sect_off;
3089 the_cu->length = length;
3090 the_cu->objfile = objfile;
3091 the_cu->section = section;
3092 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3093 struct dwarf2_per_cu_quick_data);
3094 the_cu->is_dwz = is_dwz;
3095 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3096 }
3097 }
3098
3099 /* Read the CU list from the mapped index, and use it to create all
3100 the CU objects for this objfile. */
3101
3102 static void
3103 create_cus_from_index (struct objfile *objfile,
3104 const gdb_byte *cu_list, offset_type cu_list_elements,
3105 const gdb_byte *dwz_list, offset_type dwz_elements)
3106 {
3107 struct dwz_file *dwz;
3108
3109 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3110 dwarf2_per_objfile->all_comp_units =
3111 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3112 dwarf2_per_objfile->n_comp_units);
3113
3114 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3115 &dwarf2_per_objfile->info, 0, 0);
3116
3117 if (dwz_elements == 0)
3118 return;
3119
3120 dwz = dwarf2_get_dwz_file ();
3121 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3122 cu_list_elements / 2);
3123 }
3124
3125 /* Create the signatured type hash table from the index. */
3126
3127 static void
3128 create_signatured_type_table_from_index (struct objfile *objfile,
3129 struct dwarf2_section_info *section,
3130 const gdb_byte *bytes,
3131 offset_type elements)
3132 {
3133 offset_type i;
3134 htab_t sig_types_hash;
3135
3136 dwarf2_per_objfile->n_type_units
3137 = dwarf2_per_objfile->n_allocated_type_units
3138 = elements / 3;
3139 dwarf2_per_objfile->all_type_units =
3140 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3141
3142 sig_types_hash = allocate_signatured_type_table (objfile);
3143
3144 for (i = 0; i < elements; i += 3)
3145 {
3146 struct signatured_type *sig_type;
3147 ULONGEST signature;
3148 void **slot;
3149 cu_offset type_offset_in_tu;
3150
3151 gdb_static_assert (sizeof (ULONGEST) >= 8);
3152 sect_offset sect_off
3153 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3154 type_offset_in_tu
3155 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3156 BFD_ENDIAN_LITTLE);
3157 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3158 bytes += 3 * 8;
3159
3160 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3161 struct signatured_type);
3162 sig_type->signature = signature;
3163 sig_type->type_offset_in_tu = type_offset_in_tu;
3164 sig_type->per_cu.is_debug_types = 1;
3165 sig_type->per_cu.section = section;
3166 sig_type->per_cu.sect_off = sect_off;
3167 sig_type->per_cu.objfile = objfile;
3168 sig_type->per_cu.v.quick
3169 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3170 struct dwarf2_per_cu_quick_data);
3171
3172 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3173 *slot = sig_type;
3174
3175 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3176 }
3177
3178 dwarf2_per_objfile->signatured_types = sig_types_hash;
3179 }
3180
3181 /* Read the address map data from the mapped index, and use it to
3182 populate the objfile's psymtabs_addrmap. */
3183
3184 static void
3185 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3186 {
3187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3188 const gdb_byte *iter, *end;
3189 struct addrmap *mutable_map;
3190 CORE_ADDR baseaddr;
3191
3192 auto_obstack temp_obstack;
3193
3194 mutable_map = addrmap_create_mutable (&temp_obstack);
3195
3196 iter = index->address_table;
3197 end = iter + index->address_table_size;
3198
3199 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3200
3201 while (iter < end)
3202 {
3203 ULONGEST hi, lo, cu_index;
3204 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3205 iter += 8;
3206 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3207 iter += 8;
3208 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3209 iter += 4;
3210
3211 if (lo > hi)
3212 {
3213 complaint (&symfile_complaints,
3214 _(".gdb_index address table has invalid range (%s - %s)"),
3215 hex_string (lo), hex_string (hi));
3216 continue;
3217 }
3218
3219 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3220 {
3221 complaint (&symfile_complaints,
3222 _(".gdb_index address table has invalid CU number %u"),
3223 (unsigned) cu_index);
3224 continue;
3225 }
3226
3227 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3228 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3229 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3230 }
3231
3232 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3233 &objfile->objfile_obstack);
3234 }
3235
3236 /* The hash function for strings in the mapped index. This is the same as
3237 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3238 implementation. This is necessary because the hash function is tied to the
3239 format of the mapped index file. The hash values do not have to match with
3240 SYMBOL_HASH_NEXT.
3241
3242 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3243
3244 static hashval_t
3245 mapped_index_string_hash (int index_version, const void *p)
3246 {
3247 const unsigned char *str = (const unsigned char *) p;
3248 hashval_t r = 0;
3249 unsigned char c;
3250
3251 while ((c = *str++) != 0)
3252 {
3253 if (index_version >= 5)
3254 c = tolower (c);
3255 r = r * 67 + c - 113;
3256 }
3257
3258 return r;
3259 }
3260
3261 /* Find a slot in the mapped index INDEX for the object named NAME.
3262 If NAME is found, set *VEC_OUT to point to the CU vector in the
3263 constant pool and return true. If NAME cannot be found, return
3264 false. */
3265
3266 static bool
3267 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3268 offset_type **vec_out)
3269 {
3270 offset_type hash;
3271 offset_type slot, step;
3272 int (*cmp) (const char *, const char *);
3273
3274 gdb::unique_xmalloc_ptr<char> without_params;
3275 if (current_language->la_language == language_cplus
3276 || current_language->la_language == language_fortran
3277 || current_language->la_language == language_d)
3278 {
3279 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3280 not contain any. */
3281
3282 if (strchr (name, '(') != NULL)
3283 {
3284 without_params = cp_remove_params (name);
3285
3286 if (without_params != NULL)
3287 name = without_params.get ();
3288 }
3289 }
3290
3291 /* Index version 4 did not support case insensitive searches. But the
3292 indices for case insensitive languages are built in lowercase, therefore
3293 simulate our NAME being searched is also lowercased. */
3294 hash = mapped_index_string_hash ((index->version == 4
3295 && case_sensitivity == case_sensitive_off
3296 ? 5 : index->version),
3297 name);
3298
3299 slot = hash & (index->symbol_table_slots - 1);
3300 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3301 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3302
3303 for (;;)
3304 {
3305 /* Convert a slot number to an offset into the table. */
3306 offset_type i = 2 * slot;
3307 const char *str;
3308 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3309 return false;
3310
3311 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3312 if (!cmp (name, str))
3313 {
3314 *vec_out = (offset_type *) (index->constant_pool
3315 + MAYBE_SWAP (index->symbol_table[i + 1]));
3316 return true;
3317 }
3318
3319 slot = (slot + step) & (index->symbol_table_slots - 1);
3320 }
3321 }
3322
3323 /* A helper function that reads the .gdb_index from SECTION and fills
3324 in MAP. FILENAME is the name of the file containing the section;
3325 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3326 ok to use deprecated sections.
3327
3328 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3329 out parameters that are filled in with information about the CU and
3330 TU lists in the section.
3331
3332 Returns 1 if all went well, 0 otherwise. */
3333
3334 static int
3335 read_index_from_section (struct objfile *objfile,
3336 const char *filename,
3337 int deprecated_ok,
3338 struct dwarf2_section_info *section,
3339 struct mapped_index *map,
3340 const gdb_byte **cu_list,
3341 offset_type *cu_list_elements,
3342 const gdb_byte **types_list,
3343 offset_type *types_list_elements)
3344 {
3345 const gdb_byte *addr;
3346 offset_type version;
3347 offset_type *metadata;
3348 int i;
3349
3350 if (dwarf2_section_empty_p (section))
3351 return 0;
3352
3353 /* Older elfutils strip versions could keep the section in the main
3354 executable while splitting it for the separate debug info file. */
3355 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3356 return 0;
3357
3358 dwarf2_read_section (objfile, section);
3359
3360 addr = section->buffer;
3361 /* Version check. */
3362 version = MAYBE_SWAP (*(offset_type *) addr);
3363 /* Versions earlier than 3 emitted every copy of a psymbol. This
3364 causes the index to behave very poorly for certain requests. Version 3
3365 contained incomplete addrmap. So, it seems better to just ignore such
3366 indices. */
3367 if (version < 4)
3368 {
3369 static int warning_printed = 0;
3370 if (!warning_printed)
3371 {
3372 warning (_("Skipping obsolete .gdb_index section in %s."),
3373 filename);
3374 warning_printed = 1;
3375 }
3376 return 0;
3377 }
3378 /* Index version 4 uses a different hash function than index version
3379 5 and later.
3380
3381 Versions earlier than 6 did not emit psymbols for inlined
3382 functions. Using these files will cause GDB not to be able to
3383 set breakpoints on inlined functions by name, so we ignore these
3384 indices unless the user has done
3385 "set use-deprecated-index-sections on". */
3386 if (version < 6 && !deprecated_ok)
3387 {
3388 static int warning_printed = 0;
3389 if (!warning_printed)
3390 {
3391 warning (_("\
3392 Skipping deprecated .gdb_index section in %s.\n\
3393 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3394 to use the section anyway."),
3395 filename);
3396 warning_printed = 1;
3397 }
3398 return 0;
3399 }
3400 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3401 of the TU (for symbols coming from TUs),
3402 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3403 Plus gold-generated indices can have duplicate entries for global symbols,
3404 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3405 These are just performance bugs, and we can't distinguish gdb-generated
3406 indices from gold-generated ones, so issue no warning here. */
3407
3408 /* Indexes with higher version than the one supported by GDB may be no
3409 longer backward compatible. */
3410 if (version > 8)
3411 return 0;
3412
3413 map->version = version;
3414 map->total_size = section->size;
3415
3416 metadata = (offset_type *) (addr + sizeof (offset_type));
3417
3418 i = 0;
3419 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3420 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3421 / 8);
3422 ++i;
3423
3424 *types_list = addr + MAYBE_SWAP (metadata[i]);
3425 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3426 - MAYBE_SWAP (metadata[i]))
3427 / 8);
3428 ++i;
3429
3430 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3431 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3432 - MAYBE_SWAP (metadata[i]));
3433 ++i;
3434
3435 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3436 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3437 - MAYBE_SWAP (metadata[i]))
3438 / (2 * sizeof (offset_type)));
3439 ++i;
3440
3441 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3442
3443 return 1;
3444 }
3445
3446
3447 /* Read the index file. If everything went ok, initialize the "quick"
3448 elements of all the CUs and return 1. Otherwise, return 0. */
3449
3450 static int
3451 dwarf2_read_index (struct objfile *objfile)
3452 {
3453 struct mapped_index local_map, *map;
3454 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3455 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3456 struct dwz_file *dwz;
3457
3458 if (!read_index_from_section (objfile, objfile_name (objfile),
3459 use_deprecated_index_sections,
3460 &dwarf2_per_objfile->gdb_index, &local_map,
3461 &cu_list, &cu_list_elements,
3462 &types_list, &types_list_elements))
3463 return 0;
3464
3465 /* Don't use the index if it's empty. */
3466 if (local_map.symbol_table_slots == 0)
3467 return 0;
3468
3469 /* If there is a .dwz file, read it so we can get its CU list as
3470 well. */
3471 dwz = dwarf2_get_dwz_file ();
3472 if (dwz != NULL)
3473 {
3474 struct mapped_index dwz_map;
3475 const gdb_byte *dwz_types_ignore;
3476 offset_type dwz_types_elements_ignore;
3477
3478 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3479 1,
3480 &dwz->gdb_index, &dwz_map,
3481 &dwz_list, &dwz_list_elements,
3482 &dwz_types_ignore,
3483 &dwz_types_elements_ignore))
3484 {
3485 warning (_("could not read '.gdb_index' section from %s; skipping"),
3486 bfd_get_filename (dwz->dwz_bfd));
3487 return 0;
3488 }
3489 }
3490
3491 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3492 dwz_list_elements);
3493
3494 if (types_list_elements)
3495 {
3496 struct dwarf2_section_info *section;
3497
3498 /* We can only handle a single .debug_types when we have an
3499 index. */
3500 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3501 return 0;
3502
3503 section = VEC_index (dwarf2_section_info_def,
3504 dwarf2_per_objfile->types, 0);
3505
3506 create_signatured_type_table_from_index (objfile, section, types_list,
3507 types_list_elements);
3508 }
3509
3510 create_addrmap_from_index (objfile, &local_map);
3511
3512 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3513 map = new (map) mapped_index ();
3514 *map = local_map;
3515
3516 dwarf2_per_objfile->index_table = map;
3517 dwarf2_per_objfile->using_index = 1;
3518 dwarf2_per_objfile->quick_file_names_table =
3519 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3520
3521 return 1;
3522 }
3523
3524 /* A helper for the "quick" functions which sets the global
3525 dwarf2_per_objfile according to OBJFILE. */
3526
3527 static void
3528 dw2_setup (struct objfile *objfile)
3529 {
3530 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3531 objfile_data (objfile, dwarf2_objfile_data_key));
3532 gdb_assert (dwarf2_per_objfile);
3533 }
3534
3535 /* die_reader_func for dw2_get_file_names. */
3536
3537 static void
3538 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3539 const gdb_byte *info_ptr,
3540 struct die_info *comp_unit_die,
3541 int has_children,
3542 void *data)
3543 {
3544 struct dwarf2_cu *cu = reader->cu;
3545 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3546 struct objfile *objfile = dwarf2_per_objfile->objfile;
3547 struct dwarf2_per_cu_data *lh_cu;
3548 struct attribute *attr;
3549 int i;
3550 void **slot;
3551 struct quick_file_names *qfn;
3552
3553 gdb_assert (! this_cu->is_debug_types);
3554
3555 /* Our callers never want to match partial units -- instead they
3556 will match the enclosing full CU. */
3557 if (comp_unit_die->tag == DW_TAG_partial_unit)
3558 {
3559 this_cu->v.quick->no_file_data = 1;
3560 return;
3561 }
3562
3563 lh_cu = this_cu;
3564 slot = NULL;
3565
3566 line_header_up lh;
3567 sect_offset line_offset {};
3568
3569 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3570 if (attr)
3571 {
3572 struct quick_file_names find_entry;
3573
3574 line_offset = (sect_offset) DW_UNSND (attr);
3575
3576 /* We may have already read in this line header (TU line header sharing).
3577 If we have we're done. */
3578 find_entry.hash.dwo_unit = cu->dwo_unit;
3579 find_entry.hash.line_sect_off = line_offset;
3580 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3581 &find_entry, INSERT);
3582 if (*slot != NULL)
3583 {
3584 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3585 return;
3586 }
3587
3588 lh = dwarf_decode_line_header (line_offset, cu);
3589 }
3590 if (lh == NULL)
3591 {
3592 lh_cu->v.quick->no_file_data = 1;
3593 return;
3594 }
3595
3596 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3597 qfn->hash.dwo_unit = cu->dwo_unit;
3598 qfn->hash.line_sect_off = line_offset;
3599 gdb_assert (slot != NULL);
3600 *slot = qfn;
3601
3602 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3603
3604 qfn->num_file_names = lh->file_names.size ();
3605 qfn->file_names =
3606 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3607 for (i = 0; i < lh->file_names.size (); ++i)
3608 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3609 qfn->real_names = NULL;
3610
3611 lh_cu->v.quick->file_names = qfn;
3612 }
3613
3614 /* A helper for the "quick" functions which attempts to read the line
3615 table for THIS_CU. */
3616
3617 static struct quick_file_names *
3618 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3619 {
3620 /* This should never be called for TUs. */
3621 gdb_assert (! this_cu->is_debug_types);
3622 /* Nor type unit groups. */
3623 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3624
3625 if (this_cu->v.quick->file_names != NULL)
3626 return this_cu->v.quick->file_names;
3627 /* If we know there is no line data, no point in looking again. */
3628 if (this_cu->v.quick->no_file_data)
3629 return NULL;
3630
3631 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3632
3633 if (this_cu->v.quick->no_file_data)
3634 return NULL;
3635 return this_cu->v.quick->file_names;
3636 }
3637
3638 /* A helper for the "quick" functions which computes and caches the
3639 real path for a given file name from the line table. */
3640
3641 static const char *
3642 dw2_get_real_path (struct objfile *objfile,
3643 struct quick_file_names *qfn, int index)
3644 {
3645 if (qfn->real_names == NULL)
3646 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3647 qfn->num_file_names, const char *);
3648
3649 if (qfn->real_names[index] == NULL)
3650 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3651
3652 return qfn->real_names[index];
3653 }
3654
3655 static struct symtab *
3656 dw2_find_last_source_symtab (struct objfile *objfile)
3657 {
3658 struct compunit_symtab *cust;
3659 int index;
3660
3661 dw2_setup (objfile);
3662 index = dwarf2_per_objfile->n_comp_units - 1;
3663 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3664 if (cust == NULL)
3665 return NULL;
3666 return compunit_primary_filetab (cust);
3667 }
3668
3669 /* Traversal function for dw2_forget_cached_source_info. */
3670
3671 static int
3672 dw2_free_cached_file_names (void **slot, void *info)
3673 {
3674 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3675
3676 if (file_data->real_names)
3677 {
3678 int i;
3679
3680 for (i = 0; i < file_data->num_file_names; ++i)
3681 {
3682 xfree ((void*) file_data->real_names[i]);
3683 file_data->real_names[i] = NULL;
3684 }
3685 }
3686
3687 return 1;
3688 }
3689
3690 static void
3691 dw2_forget_cached_source_info (struct objfile *objfile)
3692 {
3693 dw2_setup (objfile);
3694
3695 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3696 dw2_free_cached_file_names, NULL);
3697 }
3698
3699 /* Helper function for dw2_map_symtabs_matching_filename that expands
3700 the symtabs and calls the iterator. */
3701
3702 static int
3703 dw2_map_expand_apply (struct objfile *objfile,
3704 struct dwarf2_per_cu_data *per_cu,
3705 const char *name, const char *real_path,
3706 gdb::function_view<bool (symtab *)> callback)
3707 {
3708 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3709
3710 /* Don't visit already-expanded CUs. */
3711 if (per_cu->v.quick->compunit_symtab)
3712 return 0;
3713
3714 /* This may expand more than one symtab, and we want to iterate over
3715 all of them. */
3716 dw2_instantiate_symtab (per_cu);
3717
3718 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3719 last_made, callback);
3720 }
3721
3722 /* Implementation of the map_symtabs_matching_filename method. */
3723
3724 static bool
3725 dw2_map_symtabs_matching_filename
3726 (struct objfile *objfile, const char *name, const char *real_path,
3727 gdb::function_view<bool (symtab *)> callback)
3728 {
3729 int i;
3730 const char *name_basename = lbasename (name);
3731
3732 dw2_setup (objfile);
3733
3734 /* The rule is CUs specify all the files, including those used by
3735 any TU, so there's no need to scan TUs here. */
3736
3737 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3738 {
3739 int j;
3740 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3741 struct quick_file_names *file_data;
3742
3743 /* We only need to look at symtabs not already expanded. */
3744 if (per_cu->v.quick->compunit_symtab)
3745 continue;
3746
3747 file_data = dw2_get_file_names (per_cu);
3748 if (file_data == NULL)
3749 continue;
3750
3751 for (j = 0; j < file_data->num_file_names; ++j)
3752 {
3753 const char *this_name = file_data->file_names[j];
3754 const char *this_real_name;
3755
3756 if (compare_filenames_for_search (this_name, name))
3757 {
3758 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3759 callback))
3760 return true;
3761 continue;
3762 }
3763
3764 /* Before we invoke realpath, which can get expensive when many
3765 files are involved, do a quick comparison of the basenames. */
3766 if (! basenames_may_differ
3767 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3768 continue;
3769
3770 this_real_name = dw2_get_real_path (objfile, file_data, j);
3771 if (compare_filenames_for_search (this_real_name, name))
3772 {
3773 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3774 callback))
3775 return true;
3776 continue;
3777 }
3778
3779 if (real_path != NULL)
3780 {
3781 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3782 gdb_assert (IS_ABSOLUTE_PATH (name));
3783 if (this_real_name != NULL
3784 && FILENAME_CMP (real_path, this_real_name) == 0)
3785 {
3786 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3787 callback))
3788 return true;
3789 continue;
3790 }
3791 }
3792 }
3793 }
3794
3795 return false;
3796 }
3797
3798 /* Struct used to manage iterating over all CUs looking for a symbol. */
3799
3800 struct dw2_symtab_iterator
3801 {
3802 /* The internalized form of .gdb_index. */
3803 struct mapped_index *index;
3804 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3805 int want_specific_block;
3806 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3807 Unused if !WANT_SPECIFIC_BLOCK. */
3808 int block_index;
3809 /* The kind of symbol we're looking for. */
3810 domain_enum domain;
3811 /* The list of CUs from the index entry of the symbol,
3812 or NULL if not found. */
3813 offset_type *vec;
3814 /* The next element in VEC to look at. */
3815 int next;
3816 /* The number of elements in VEC, or zero if there is no match. */
3817 int length;
3818 /* Have we seen a global version of the symbol?
3819 If so we can ignore all further global instances.
3820 This is to work around gold/15646, inefficient gold-generated
3821 indices. */
3822 int global_seen;
3823 };
3824
3825 /* Initialize the index symtab iterator ITER.
3826 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3827 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3828
3829 static void
3830 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3831 struct mapped_index *index,
3832 int want_specific_block,
3833 int block_index,
3834 domain_enum domain,
3835 const char *name)
3836 {
3837 iter->index = index;
3838 iter->want_specific_block = want_specific_block;
3839 iter->block_index = block_index;
3840 iter->domain = domain;
3841 iter->next = 0;
3842 iter->global_seen = 0;
3843
3844 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3845 iter->length = MAYBE_SWAP (*iter->vec);
3846 else
3847 {
3848 iter->vec = NULL;
3849 iter->length = 0;
3850 }
3851 }
3852
3853 /* Return the next matching CU or NULL if there are no more. */
3854
3855 static struct dwarf2_per_cu_data *
3856 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3857 {
3858 for ( ; iter->next < iter->length; ++iter->next)
3859 {
3860 offset_type cu_index_and_attrs =
3861 MAYBE_SWAP (iter->vec[iter->next + 1]);
3862 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3863 struct dwarf2_per_cu_data *per_cu;
3864 int want_static = iter->block_index != GLOBAL_BLOCK;
3865 /* This value is only valid for index versions >= 7. */
3866 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3867 gdb_index_symbol_kind symbol_kind =
3868 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3869 /* Only check the symbol attributes if they're present.
3870 Indices prior to version 7 don't record them,
3871 and indices >= 7 may elide them for certain symbols
3872 (gold does this). */
3873 int attrs_valid =
3874 (iter->index->version >= 7
3875 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3876
3877 /* Don't crash on bad data. */
3878 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3879 + dwarf2_per_objfile->n_type_units))
3880 {
3881 complaint (&symfile_complaints,
3882 _(".gdb_index entry has bad CU index"
3883 " [in module %s]"),
3884 objfile_name (dwarf2_per_objfile->objfile));
3885 continue;
3886 }
3887
3888 per_cu = dw2_get_cutu (cu_index);
3889
3890 /* Skip if already read in. */
3891 if (per_cu->v.quick->compunit_symtab)
3892 continue;
3893
3894 /* Check static vs global. */
3895 if (attrs_valid)
3896 {
3897 if (iter->want_specific_block
3898 && want_static != is_static)
3899 continue;
3900 /* Work around gold/15646. */
3901 if (!is_static && iter->global_seen)
3902 continue;
3903 if (!is_static)
3904 iter->global_seen = 1;
3905 }
3906
3907 /* Only check the symbol's kind if it has one. */
3908 if (attrs_valid)
3909 {
3910 switch (iter->domain)
3911 {
3912 case VAR_DOMAIN:
3913 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3914 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3915 /* Some types are also in VAR_DOMAIN. */
3916 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3917 continue;
3918 break;
3919 case STRUCT_DOMAIN:
3920 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3921 continue;
3922 break;
3923 case LABEL_DOMAIN:
3924 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3925 continue;
3926 break;
3927 default:
3928 break;
3929 }
3930 }
3931
3932 ++iter->next;
3933 return per_cu;
3934 }
3935
3936 return NULL;
3937 }
3938
3939 static struct compunit_symtab *
3940 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3941 const char *name, domain_enum domain)
3942 {
3943 struct compunit_symtab *stab_best = NULL;
3944 struct mapped_index *index;
3945
3946 dw2_setup (objfile);
3947
3948 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3949
3950 index = dwarf2_per_objfile->index_table;
3951
3952 /* index is NULL if OBJF_READNOW. */
3953 if (index)
3954 {
3955 struct dw2_symtab_iterator iter;
3956 struct dwarf2_per_cu_data *per_cu;
3957
3958 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3959
3960 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3961 {
3962 struct symbol *sym, *with_opaque = NULL;
3963 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3964 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3965 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3966
3967 sym = block_find_symbol (block, name, domain,
3968 block_find_non_opaque_type_preferred,
3969 &with_opaque);
3970
3971 /* Some caution must be observed with overloaded functions
3972 and methods, since the index will not contain any overload
3973 information (but NAME might contain it). */
3974
3975 if (sym != NULL
3976 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3977 return stab;
3978 if (with_opaque != NULL
3979 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3980 stab_best = stab;
3981
3982 /* Keep looking through other CUs. */
3983 }
3984 }
3985
3986 return stab_best;
3987 }
3988
3989 static void
3990 dw2_print_stats (struct objfile *objfile)
3991 {
3992 int i, total, count;
3993
3994 dw2_setup (objfile);
3995 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3996 count = 0;
3997 for (i = 0; i < total; ++i)
3998 {
3999 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4000
4001 if (!per_cu->v.quick->compunit_symtab)
4002 ++count;
4003 }
4004 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4005 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4006 }
4007
4008 /* This dumps minimal information about the index.
4009 It is called via "mt print objfiles".
4010 One use is to verify .gdb_index has been loaded by the
4011 gdb.dwarf2/gdb-index.exp testcase. */
4012
4013 static void
4014 dw2_dump (struct objfile *objfile)
4015 {
4016 dw2_setup (objfile);
4017 gdb_assert (dwarf2_per_objfile->using_index);
4018 printf_filtered (".gdb_index:");
4019 if (dwarf2_per_objfile->index_table != NULL)
4020 {
4021 printf_filtered (" version %d\n",
4022 dwarf2_per_objfile->index_table->version);
4023 }
4024 else
4025 printf_filtered (" faked for \"readnow\"\n");
4026 printf_filtered ("\n");
4027 }
4028
4029 static void
4030 dw2_relocate (struct objfile *objfile,
4031 const struct section_offsets *new_offsets,
4032 const struct section_offsets *delta)
4033 {
4034 /* There's nothing to relocate here. */
4035 }
4036
4037 static void
4038 dw2_expand_symtabs_for_function (struct objfile *objfile,
4039 const char *func_name)
4040 {
4041 struct mapped_index *index;
4042
4043 dw2_setup (objfile);
4044
4045 index = dwarf2_per_objfile->index_table;
4046
4047 /* index is NULL if OBJF_READNOW. */
4048 if (index)
4049 {
4050 struct dw2_symtab_iterator iter;
4051 struct dwarf2_per_cu_data *per_cu;
4052
4053 /* Note: It doesn't matter what we pass for block_index here. */
4054 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4055 func_name);
4056
4057 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4058 dw2_instantiate_symtab (per_cu);
4059 }
4060 }
4061
4062 static void
4063 dw2_expand_all_symtabs (struct objfile *objfile)
4064 {
4065 int i;
4066
4067 dw2_setup (objfile);
4068
4069 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4070 + dwarf2_per_objfile->n_type_units); ++i)
4071 {
4072 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4073
4074 dw2_instantiate_symtab (per_cu);
4075 }
4076 }
4077
4078 static void
4079 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4080 const char *fullname)
4081 {
4082 int i;
4083
4084 dw2_setup (objfile);
4085
4086 /* We don't need to consider type units here.
4087 This is only called for examining code, e.g. expand_line_sal.
4088 There can be an order of magnitude (or more) more type units
4089 than comp units, and we avoid them if we can. */
4090
4091 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4092 {
4093 int j;
4094 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4095 struct quick_file_names *file_data;
4096
4097 /* We only need to look at symtabs not already expanded. */
4098 if (per_cu->v.quick->compunit_symtab)
4099 continue;
4100
4101 file_data = dw2_get_file_names (per_cu);
4102 if (file_data == NULL)
4103 continue;
4104
4105 for (j = 0; j < file_data->num_file_names; ++j)
4106 {
4107 const char *this_fullname = file_data->file_names[j];
4108
4109 if (filename_cmp (this_fullname, fullname) == 0)
4110 {
4111 dw2_instantiate_symtab (per_cu);
4112 break;
4113 }
4114 }
4115 }
4116 }
4117
4118 static void
4119 dw2_map_matching_symbols (struct objfile *objfile,
4120 const char * name, domain_enum domain,
4121 int global,
4122 int (*callback) (struct block *,
4123 struct symbol *, void *),
4124 void *data, symbol_name_match_type match,
4125 symbol_compare_ftype *ordered_compare)
4126 {
4127 /* Currently unimplemented; used for Ada. The function can be called if the
4128 current language is Ada for a non-Ada objfile using GNU index. As Ada
4129 does not look for non-Ada symbols this function should just return. */
4130 }
4131
4132 /* Symbol name matcher for .gdb_index names.
4133
4134 Symbol names in .gdb_index have a few particularities:
4135
4136 - There's no indication of which is the language of each symbol.
4137
4138 Since each language has its own symbol name matching algorithm,
4139 and we don't know which language is the right one, we must match
4140 each symbol against all languages. This would be a potential
4141 performance problem if it were not mitigated by the
4142 mapped_index::name_components lookup table, which significantly
4143 reduces the number of times we need to call into this matcher,
4144 making it a non-issue.
4145
4146 - Symbol names in the index have no overload (parameter)
4147 information. I.e., in C++, "foo(int)" and "foo(long)" both
4148 appear as "foo" in the index, for example.
4149
4150 This means that the lookup names passed to the symbol name
4151 matcher functions must have no parameter information either
4152 because (e.g.) symbol search name "foo" does not match
4153 lookup-name "foo(int)" [while swapping search name for lookup
4154 name would match].
4155 */
4156 class gdb_index_symbol_name_matcher
4157 {
4158 public:
4159 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4160 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4161
4162 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4163 Returns true if any matcher matches. */
4164 bool matches (const char *symbol_name);
4165
4166 private:
4167 /* A reference to the lookup name we're matching against. */
4168 const lookup_name_info &m_lookup_name;
4169
4170 /* A vector holding all the different symbol name matchers, for all
4171 languages. */
4172 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4173 };
4174
4175 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4176 (const lookup_name_info &lookup_name)
4177 : m_lookup_name (lookup_name)
4178 {
4179 /* Prepare the vector of comparison functions upfront, to avoid
4180 doing the same work for each symbol. Care is taken to avoid
4181 matching with the same matcher more than once if/when multiple
4182 languages use the same matcher function. */
4183 auto &matchers = m_symbol_name_matcher_funcs;
4184 matchers.reserve (nr_languages);
4185
4186 matchers.push_back (default_symbol_name_matcher);
4187
4188 for (int i = 0; i < nr_languages; i++)
4189 {
4190 const language_defn *lang = language_def ((enum language) i);
4191 if (lang->la_get_symbol_name_matcher != NULL)
4192 {
4193 symbol_name_matcher_ftype *name_matcher
4194 = lang->la_get_symbol_name_matcher (m_lookup_name);
4195
4196 /* Don't insert the same comparison routine more than once.
4197 Note that we do this linear walk instead of a cheaper
4198 sorted insert, or use a std::set or something like that,
4199 because relative order of function addresses is not
4200 stable. This is not a problem in practice because the
4201 number of supported languages is low, and the cost here
4202 is tiny compared to the number of searches we'll do
4203 afterwards using this object. */
4204 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4205 == matchers.end ())
4206 matchers.push_back (name_matcher);
4207 }
4208 }
4209 }
4210
4211 bool
4212 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4213 {
4214 for (auto matches_name : m_symbol_name_matcher_funcs)
4215 if (matches_name (symbol_name, m_lookup_name, NULL))
4216 return true;
4217
4218 return false;
4219 }
4220
4221 /* Starting from a search name, return the string that finds the upper
4222 bound of all strings that start with SEARCH_NAME in a sorted name
4223 list. Returns the empty string to indicate that the upper bound is
4224 the end of the list. */
4225
4226 static std::string
4227 make_sort_after_prefix_name (const char *search_name)
4228 {
4229 /* When looking to complete "func", we find the upper bound of all
4230 symbols that start with "func" by looking for where we'd insert
4231 the closest string that would follow "func" in lexicographical
4232 order. Usually, that's "func"-with-last-character-incremented,
4233 i.e. "fund". Mind non-ASCII characters, though. Usually those
4234 will be UTF-8 multi-byte sequences, but we can't be certain.
4235 Especially mind the 0xff character, which is a valid character in
4236 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4237 rule out compilers allowing it in identifiers. Note that
4238 conveniently, strcmp/strcasecmp are specified to compare
4239 characters interpreted as unsigned char. So what we do is treat
4240 the whole string as a base 256 number composed of a sequence of
4241 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4242 to 0, and carries 1 to the following more-significant position.
4243 If the very first character in SEARCH_NAME ends up incremented
4244 and carries/overflows, then the upper bound is the end of the
4245 list. The string after the empty string is also the empty
4246 string.
4247
4248 Some examples of this operation:
4249
4250 SEARCH_NAME => "+1" RESULT
4251
4252 "abc" => "abd"
4253 "ab\xff" => "ac"
4254 "\xff" "a" "\xff" => "\xff" "b"
4255 "\xff" => ""
4256 "\xff\xff" => ""
4257 "" => ""
4258
4259 Then, with these symbols for example:
4260
4261 func
4262 func1
4263 fund
4264
4265 completing "func" looks for symbols between "func" and
4266 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4267 which finds "func" and "func1", but not "fund".
4268
4269 And with:
4270
4271 funcÿ (Latin1 'ÿ' [0xff])
4272 funcÿ1
4273 fund
4274
4275 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4276 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4277
4278 And with:
4279
4280 ÿÿ (Latin1 'ÿ' [0xff])
4281 ÿÿ1
4282
4283 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4284 the end of the list.
4285 */
4286 std::string after = search_name;
4287 while (!after.empty () && (unsigned char) after.back () == 0xff)
4288 after.pop_back ();
4289 if (!after.empty ())
4290 after.back () = (unsigned char) after.back () + 1;
4291 return after;
4292 }
4293
4294 /* See declaration. */
4295
4296 std::pair<std::vector<name_component>::const_iterator,
4297 std::vector<name_component>::const_iterator>
4298 mapped_index::find_name_components_bounds
4299 (const lookup_name_info &lookup_name_without_params) const
4300 {
4301 auto *name_cmp
4302 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4303
4304 const char *cplus
4305 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4306
4307 /* Comparison function object for lower_bound that matches against a
4308 given symbol name. */
4309 auto lookup_compare_lower = [&] (const name_component &elem,
4310 const char *name)
4311 {
4312 const char *elem_qualified = this->symbol_name_at (elem.idx);
4313 const char *elem_name = elem_qualified + elem.name_offset;
4314 return name_cmp (elem_name, name) < 0;
4315 };
4316
4317 /* Comparison function object for upper_bound that matches against a
4318 given symbol name. */
4319 auto lookup_compare_upper = [&] (const char *name,
4320 const name_component &elem)
4321 {
4322 const char *elem_qualified = this->symbol_name_at (elem.idx);
4323 const char *elem_name = elem_qualified + elem.name_offset;
4324 return name_cmp (name, elem_name) < 0;
4325 };
4326
4327 auto begin = this->name_components.begin ();
4328 auto end = this->name_components.end ();
4329
4330 /* Find the lower bound. */
4331 auto lower = [&] ()
4332 {
4333 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4334 return begin;
4335 else
4336 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4337 } ();
4338
4339 /* Find the upper bound. */
4340 auto upper = [&] ()
4341 {
4342 if (lookup_name_without_params.completion_mode ())
4343 {
4344 /* In completion mode, we want UPPER to point past all
4345 symbols names that have the same prefix. I.e., with
4346 these symbols, and completing "func":
4347
4348 function << lower bound
4349 function1
4350 other_function << upper bound
4351
4352 We find the upper bound by looking for the insertion
4353 point of "func"-with-last-character-incremented,
4354 i.e. "fund". */
4355 std::string after = make_sort_after_prefix_name (cplus);
4356 if (after.empty ())
4357 return end;
4358 return std::lower_bound (lower, end, after.c_str (),
4359 lookup_compare_lower);
4360 }
4361 else
4362 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4363 } ();
4364
4365 return {lower, upper};
4366 }
4367
4368 /* See declaration. */
4369
4370 void
4371 mapped_index::build_name_components ()
4372 {
4373 if (!this->name_components.empty ())
4374 return;
4375
4376 this->name_components_casing = case_sensitivity;
4377 auto *name_cmp
4378 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4379
4380 /* The code below only knows how to break apart components of C++
4381 symbol names (and other languages that use '::' as
4382 namespace/module separator). If we add support for wild matching
4383 to some language that uses some other operator (E.g., Ada, Go and
4384 D use '.'), then we'll need to try splitting the symbol name
4385 according to that language too. Note that Ada does support wild
4386 matching, but doesn't currently support .gdb_index. */
4387 for (size_t iter = 0; iter < this->symbol_table_slots; ++iter)
4388 {
4389 offset_type idx = 2 * iter;
4390
4391 if (this->symbol_table[idx] == 0
4392 && this->symbol_table[idx + 1] == 0)
4393 continue;
4394
4395 const char *name = this->symbol_name_at (idx);
4396
4397 /* Add each name component to the name component table. */
4398 unsigned int previous_len = 0;
4399 for (unsigned int current_len = cp_find_first_component (name);
4400 name[current_len] != '\0';
4401 current_len += cp_find_first_component (name + current_len))
4402 {
4403 gdb_assert (name[current_len] == ':');
4404 this->name_components.push_back ({previous_len, idx});
4405 /* Skip the '::'. */
4406 current_len += 2;
4407 previous_len = current_len;
4408 }
4409 this->name_components.push_back ({previous_len, idx});
4410 }
4411
4412 /* Sort name_components elements by name. */
4413 auto name_comp_compare = [&] (const name_component &left,
4414 const name_component &right)
4415 {
4416 const char *left_qualified = this->symbol_name_at (left.idx);
4417 const char *right_qualified = this->symbol_name_at (right.idx);
4418
4419 const char *left_name = left_qualified + left.name_offset;
4420 const char *right_name = right_qualified + right.name_offset;
4421
4422 return name_cmp (left_name, right_name) < 0;
4423 };
4424
4425 std::sort (this->name_components.begin (),
4426 this->name_components.end (),
4427 name_comp_compare);
4428 }
4429
4430 /* Helper for dw2_expand_symtabs_matching that works with a
4431 mapped_index instead of the containing objfile. This is split to a
4432 separate function in order to be able to unit test the
4433 name_components matching using a mock mapped_index. For each
4434 symbol name that matches, calls MATCH_CALLBACK, passing it the
4435 symbol's index in the mapped_index symbol table. */
4436
4437 static void
4438 dw2_expand_symtabs_matching_symbol
4439 (mapped_index &index,
4440 const lookup_name_info &lookup_name_in,
4441 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4442 enum search_domain kind,
4443 gdb::function_view<void (offset_type)> match_callback)
4444 {
4445 lookup_name_info lookup_name_without_params
4446 = lookup_name_in.make_ignore_params ();
4447 gdb_index_symbol_name_matcher lookup_name_matcher
4448 (lookup_name_without_params);
4449
4450 /* Build the symbol name component sorted vector, if we haven't
4451 yet. */
4452 index.build_name_components ();
4453
4454 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4455
4456 /* Now for each symbol name in range, check to see if we have a name
4457 match, and if so, call the MATCH_CALLBACK callback. */
4458
4459 /* The same symbol may appear more than once in the range though.
4460 E.g., if we're looking for symbols that complete "w", and we have
4461 a symbol named "w1::w2", we'll find the two name components for
4462 that same symbol in the range. To be sure we only call the
4463 callback once per symbol, we first collect the symbol name
4464 indexes that matched in a temporary vector and ignore
4465 duplicates. */
4466 std::vector<offset_type> matches;
4467 matches.reserve (std::distance (bounds.first, bounds.second));
4468
4469 for (; bounds.first != bounds.second; ++bounds.first)
4470 {
4471 const char *qualified = index.symbol_name_at (bounds.first->idx);
4472
4473 if (!lookup_name_matcher.matches (qualified)
4474 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4475 continue;
4476
4477 matches.push_back (bounds.first->idx);
4478 }
4479
4480 std::sort (matches.begin (), matches.end ());
4481
4482 /* Finally call the callback, once per match. */
4483 ULONGEST prev = -1;
4484 for (offset_type idx : matches)
4485 {
4486 if (prev != idx)
4487 {
4488 match_callback (idx);
4489 prev = idx;
4490 }
4491 }
4492
4493 /* Above we use a type wider than idx's for 'prev', since 0 and
4494 (offset_type)-1 are both possible values. */
4495 static_assert (sizeof (prev) > sizeof (offset_type), "");
4496 }
4497
4498 #if GDB_SELF_TEST
4499
4500 namespace selftests { namespace dw2_expand_symtabs_matching {
4501
4502 /* A wrapper around mapped_index that builds a mock mapped_index, from
4503 the symbol list passed as parameter to the constructor. */
4504 class mock_mapped_index
4505 {
4506 public:
4507 template<size_t N>
4508 mock_mapped_index (const char *(&symbols)[N])
4509 : mock_mapped_index (symbols, N)
4510 {}
4511
4512 /* Access the built index. */
4513 mapped_index &index ()
4514 { return m_index; }
4515
4516 /* Disable copy. */
4517 mock_mapped_index(const mock_mapped_index &) = delete;
4518 void operator= (const mock_mapped_index &) = delete;
4519
4520 private:
4521 mock_mapped_index (const char **symbols, size_t symbols_size)
4522 {
4523 /* No string can live at offset zero. Add a dummy entry. */
4524 obstack_grow_str0 (&m_constant_pool, "");
4525
4526 for (size_t i = 0; i < symbols_size; i++)
4527 {
4528 const char *sym = symbols[i];
4529 size_t offset = obstack_object_size (&m_constant_pool);
4530 obstack_grow_str0 (&m_constant_pool, sym);
4531 m_symbol_table.push_back (offset);
4532 m_symbol_table.push_back (0);
4533 };
4534
4535 m_index.constant_pool = (const char *) obstack_base (&m_constant_pool);
4536 m_index.symbol_table = m_symbol_table.data ();
4537 m_index.symbol_table_slots = m_symbol_table.size () / 2;
4538 }
4539
4540 public:
4541 /* The built mapped_index. */
4542 mapped_index m_index{};
4543
4544 /* The storage that the built mapped_index uses for symbol and
4545 constant pool tables. */
4546 std::vector<offset_type> m_symbol_table;
4547 auto_obstack m_constant_pool;
4548 };
4549
4550 /* Convenience function that converts a NULL pointer to a "<null>"
4551 string, to pass to print routines. */
4552
4553 static const char *
4554 string_or_null (const char *str)
4555 {
4556 return str != NULL ? str : "<null>";
4557 }
4558
4559 /* Check if a lookup_name_info built from
4560 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4561 index. EXPECTED_LIST is the list of expected matches, in expected
4562 matching order. If no match expected, then an empty list is
4563 specified. Returns true on success. On failure prints a warning
4564 indicating the file:line that failed, and returns false. */
4565
4566 static bool
4567 check_match (const char *file, int line,
4568 mock_mapped_index &mock_index,
4569 const char *name, symbol_name_match_type match_type,
4570 bool completion_mode,
4571 std::initializer_list<const char *> expected_list)
4572 {
4573 lookup_name_info lookup_name (name, match_type, completion_mode);
4574
4575 bool matched = true;
4576
4577 auto mismatch = [&] (const char *expected_str,
4578 const char *got)
4579 {
4580 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4581 "expected=\"%s\", got=\"%s\"\n"),
4582 file, line,
4583 (match_type == symbol_name_match_type::FULL
4584 ? "FULL" : "WILD"),
4585 name, string_or_null (expected_str), string_or_null (got));
4586 matched = false;
4587 };
4588
4589 auto expected_it = expected_list.begin ();
4590 auto expected_end = expected_list.end ();
4591
4592 dw2_expand_symtabs_matching_symbol (mock_index.index (), lookup_name,
4593 NULL, ALL_DOMAIN,
4594 [&] (offset_type idx)
4595 {
4596 const char *matched_name = mock_index.index ().symbol_name_at (idx);
4597 const char *expected_str
4598 = expected_it == expected_end ? NULL : *expected_it++;
4599
4600 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4601 mismatch (expected_str, matched_name);
4602 });
4603
4604 const char *expected_str
4605 = expected_it == expected_end ? NULL : *expected_it++;
4606 if (expected_str != NULL)
4607 mismatch (expected_str, NULL);
4608
4609 return matched;
4610 }
4611
4612 /* The symbols added to the mock mapped_index for testing (in
4613 canonical form). */
4614 static const char *test_symbols[] = {
4615 "function",
4616 "std::bar",
4617 "std::zfunction",
4618 "std::zfunction2",
4619 "w1::w2",
4620 "ns::foo<char*>",
4621 "ns::foo<int>",
4622 "ns::foo<long>",
4623 "ns2::tmpl<int>::foo2",
4624 "(anonymous namespace)::A::B::C",
4625
4626 /* These are used to check that the increment-last-char in the
4627 matching algorithm for completion doesn't match "t1_fund" when
4628 completing "t1_func". */
4629 "t1_func",
4630 "t1_func1",
4631 "t1_fund",
4632 "t1_fund1",
4633
4634 /* A UTF-8 name with multi-byte sequences to make sure that
4635 cp-name-parser understands this as a single identifier ("função"
4636 is "function" in PT). */
4637 u8"u8função",
4638
4639 /* \377 (0xff) is Latin1 'ÿ'. */
4640 "yfunc\377",
4641
4642 /* \377 (0xff) is Latin1 'ÿ'. */
4643 "\377",
4644 "\377\377123",
4645
4646 /* A name with all sorts of complications. Starts with "z" to make
4647 it easier for the completion tests below. */
4648 #define Z_SYM_NAME \
4649 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4650 "::tuple<(anonymous namespace)::ui*, " \
4651 "std::default_delete<(anonymous namespace)::ui>, void>"
4652
4653 Z_SYM_NAME
4654 };
4655
4656 /* Returns true if the mapped_index::find_name_component_bounds method
4657 finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME, in
4658 completion mode. */
4659
4660 static bool
4661 check_find_bounds_finds (mapped_index &index,
4662 const char *search_name,
4663 gdb::array_view<const char *> expected_syms)
4664 {
4665 lookup_name_info lookup_name (search_name,
4666 symbol_name_match_type::FULL, true);
4667
4668 auto bounds = index.find_name_components_bounds (lookup_name);
4669
4670 size_t distance = std::distance (bounds.first, bounds.second);
4671 if (distance != expected_syms.size ())
4672 return false;
4673
4674 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4675 {
4676 auto nc_elem = bounds.first + exp_elem;
4677 const char *qualified = index.symbol_name_at (nc_elem->idx);
4678 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4679 return false;
4680 }
4681
4682 return true;
4683 }
4684
4685 /* Test the lower-level mapped_index::find_name_component_bounds
4686 method. */
4687
4688 static void
4689 test_mapped_index_find_name_component_bounds ()
4690 {
4691 mock_mapped_index mock_index (test_symbols);
4692
4693 mock_index.index ().build_name_components ();
4694
4695 /* Test the lower-level mapped_index::find_name_component_bounds
4696 method in completion mode. */
4697 {
4698 static const char *expected_syms[] = {
4699 "t1_func",
4700 "t1_func1",
4701 };
4702
4703 SELF_CHECK (check_find_bounds_finds (mock_index.index (),
4704 "t1_func", expected_syms));
4705 }
4706
4707 /* Check that the increment-last-char in the name matching algorithm
4708 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4709 {
4710 static const char *expected_syms1[] = {
4711 "\377",
4712 "\377\377123",
4713 };
4714 SELF_CHECK (check_find_bounds_finds (mock_index.index (),
4715 "\377", expected_syms1));
4716
4717 static const char *expected_syms2[] = {
4718 "\377\377123",
4719 };
4720 SELF_CHECK (check_find_bounds_finds (mock_index.index (),
4721 "\377\377", expected_syms2));
4722 }
4723 }
4724
4725 /* Test dw2_expand_symtabs_matching_symbol. */
4726
4727 static void
4728 test_dw2_expand_symtabs_matching_symbol ()
4729 {
4730 mock_mapped_index mock_index (test_symbols);
4731
4732 /* We let all tests run until the end even if some fails, for debug
4733 convenience. */
4734 bool any_mismatch = false;
4735
4736 /* Create the expected symbols list (an initializer_list). Needed
4737 because lists have commas, and we need to pass them to CHECK,
4738 which is a macro. */
4739 #define EXPECT(...) { __VA_ARGS__ }
4740
4741 /* Wrapper for check_match that passes down the current
4742 __FILE__/__LINE__. */
4743 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4744 any_mismatch |= !check_match (__FILE__, __LINE__, \
4745 mock_index, \
4746 NAME, MATCH_TYPE, COMPLETION_MODE, \
4747 EXPECTED_LIST)
4748
4749 /* Identity checks. */
4750 for (const char *sym : test_symbols)
4751 {
4752 /* Should be able to match all existing symbols. */
4753 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4754 EXPECT (sym));
4755
4756 /* Should be able to match all existing symbols with
4757 parameters. */
4758 std::string with_params = std::string (sym) + "(int)";
4759 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4760 EXPECT (sym));
4761
4762 /* Should be able to match all existing symbols with
4763 parameters and qualifiers. */
4764 with_params = std::string (sym) + " ( int ) const";
4765 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4766 EXPECT (sym));
4767
4768 /* This should really find sym, but cp-name-parser.y doesn't
4769 know about lvalue/rvalue qualifiers yet. */
4770 with_params = std::string (sym) + " ( int ) &&";
4771 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4772 {});
4773 }
4774
4775 /* Check that the name matching algorithm for completion doesn't get
4776 confused with Latin1 'ÿ' / 0xff. */
4777 {
4778 static const char str[] = "\377";
4779 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4780 EXPECT ("\377", "\377\377123"));
4781 }
4782
4783 /* Check that the increment-last-char in the matching algorithm for
4784 completion doesn't match "t1_fund" when completing "t1_func". */
4785 {
4786 static const char str[] = "t1_func";
4787 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4788 EXPECT ("t1_func", "t1_func1"));
4789 }
4790
4791 /* Check that completion mode works at each prefix of the expected
4792 symbol name. */
4793 {
4794 static const char str[] = "function(int)";
4795 size_t len = strlen (str);
4796 std::string lookup;
4797
4798 for (size_t i = 1; i < len; i++)
4799 {
4800 lookup.assign (str, i);
4801 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4802 EXPECT ("function"));
4803 }
4804 }
4805
4806 /* While "w" is a prefix of both components, the match function
4807 should still only be called once. */
4808 {
4809 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4810 EXPECT ("w1::w2"));
4811 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4812 EXPECT ("w1::w2"));
4813 }
4814
4815 /* Same, with a "complicated" symbol. */
4816 {
4817 static const char str[] = Z_SYM_NAME;
4818 size_t len = strlen (str);
4819 std::string lookup;
4820
4821 for (size_t i = 1; i < len; i++)
4822 {
4823 lookup.assign (str, i);
4824 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4825 EXPECT (Z_SYM_NAME));
4826 }
4827 }
4828
4829 /* In FULL mode, an incomplete symbol doesn't match. */
4830 {
4831 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4832 {});
4833 }
4834
4835 /* A complete symbol with parameters matches any overload, since the
4836 index has no overload info. */
4837 {
4838 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4839 EXPECT ("std::zfunction", "std::zfunction2"));
4840 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4841 EXPECT ("std::zfunction", "std::zfunction2"));
4842 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4843 EXPECT ("std::zfunction", "std::zfunction2"));
4844 }
4845
4846 /* Check that whitespace is ignored appropriately. A symbol with a
4847 template argument list. */
4848 {
4849 static const char expected[] = "ns::foo<int>";
4850 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4851 EXPECT (expected));
4852 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4853 EXPECT (expected));
4854 }
4855
4856 /* Check that whitespace is ignored appropriately. A symbol with a
4857 template argument list that includes a pointer. */
4858 {
4859 static const char expected[] = "ns::foo<char*>";
4860 /* Try both completion and non-completion modes. */
4861 static const bool completion_mode[2] = {false, true};
4862 for (size_t i = 0; i < 2; i++)
4863 {
4864 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4865 completion_mode[i], EXPECT (expected));
4866 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4867 completion_mode[i], EXPECT (expected));
4868
4869 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4870 completion_mode[i], EXPECT (expected));
4871 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4872 completion_mode[i], EXPECT (expected));
4873 }
4874 }
4875
4876 {
4877 /* Check method qualifiers are ignored. */
4878 static const char expected[] = "ns::foo<char*>";
4879 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4880 symbol_name_match_type::FULL, true, EXPECT (expected));
4881 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4882 symbol_name_match_type::FULL, true, EXPECT (expected));
4883 CHECK_MATCH ("foo < char * > ( int ) const",
4884 symbol_name_match_type::WILD, true, EXPECT (expected));
4885 CHECK_MATCH ("foo < char * > ( int ) &&",
4886 symbol_name_match_type::WILD, true, EXPECT (expected));
4887 }
4888
4889 /* Test lookup names that don't match anything. */
4890 {
4891 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4892 {});
4893
4894 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4895 {});
4896 }
4897
4898 /* Some wild matching tests, exercising "(anonymous namespace)",
4899 which should not be confused with a parameter list. */
4900 {
4901 static const char *syms[] = {
4902 "A::B::C",
4903 "B::C",
4904 "C",
4905 "A :: B :: C ( int )",
4906 "B :: C ( int )",
4907 "C ( int )",
4908 };
4909
4910 for (const char *s : syms)
4911 {
4912 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4913 EXPECT ("(anonymous namespace)::A::B::C"));
4914 }
4915 }
4916
4917 {
4918 static const char expected[] = "ns2::tmpl<int>::foo2";
4919 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4920 EXPECT (expected));
4921 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4922 EXPECT (expected));
4923 }
4924
4925 SELF_CHECK (!any_mismatch);
4926
4927 #undef EXPECT
4928 #undef CHECK_MATCH
4929 }
4930
4931 static void
4932 run_test ()
4933 {
4934 test_mapped_index_find_name_component_bounds ();
4935 test_dw2_expand_symtabs_matching_symbol ();
4936 }
4937
4938 }} // namespace selftests::dw2_expand_symtabs_matching
4939
4940 #endif /* GDB_SELF_TEST */
4941
4942 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4943 matched, to expand corresponding CUs that were marked. IDX is the
4944 index of the symbol name that matched. */
4945
4946 static void
4947 dw2_expand_marked_cus
4948 (mapped_index &index, offset_type idx,
4949 struct objfile *objfile,
4950 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4951 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4952 search_domain kind)
4953 {
4954 offset_type *vec, vec_len, vec_idx;
4955 bool global_seen = false;
4956
4957 vec = (offset_type *) (index.constant_pool
4958 + MAYBE_SWAP (index.symbol_table[idx + 1]));
4959 vec_len = MAYBE_SWAP (vec[0]);
4960 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4961 {
4962 struct dwarf2_per_cu_data *per_cu;
4963 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4964 /* This value is only valid for index versions >= 7. */
4965 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4966 gdb_index_symbol_kind symbol_kind =
4967 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4968 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4969 /* Only check the symbol attributes if they're present.
4970 Indices prior to version 7 don't record them,
4971 and indices >= 7 may elide them for certain symbols
4972 (gold does this). */
4973 int attrs_valid =
4974 (index.version >= 7
4975 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4976
4977 /* Work around gold/15646. */
4978 if (attrs_valid)
4979 {
4980 if (!is_static && global_seen)
4981 continue;
4982 if (!is_static)
4983 global_seen = true;
4984 }
4985
4986 /* Only check the symbol's kind if it has one. */
4987 if (attrs_valid)
4988 {
4989 switch (kind)
4990 {
4991 case VARIABLES_DOMAIN:
4992 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4993 continue;
4994 break;
4995 case FUNCTIONS_DOMAIN:
4996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4997 continue;
4998 break;
4999 case TYPES_DOMAIN:
5000 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5001 continue;
5002 break;
5003 default:
5004 break;
5005 }
5006 }
5007
5008 /* Don't crash on bad data. */
5009 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5010 + dwarf2_per_objfile->n_type_units))
5011 {
5012 complaint (&symfile_complaints,
5013 _(".gdb_index entry has bad CU index"
5014 " [in module %s]"), objfile_name (objfile));
5015 continue;
5016 }
5017
5018 per_cu = dw2_get_cutu (cu_index);
5019 if (file_matcher == NULL || per_cu->v.quick->mark)
5020 {
5021 int symtab_was_null =
5022 (per_cu->v.quick->compunit_symtab == NULL);
5023
5024 dw2_instantiate_symtab (per_cu);
5025
5026 if (expansion_notify != NULL
5027 && symtab_was_null
5028 && per_cu->v.quick->compunit_symtab != NULL)
5029 expansion_notify (per_cu->v.quick->compunit_symtab);
5030 }
5031 }
5032 }
5033
5034 static void
5035 dw2_expand_symtabs_matching
5036 (struct objfile *objfile,
5037 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5038 const lookup_name_info &lookup_name,
5039 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5040 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5041 enum search_domain kind)
5042 {
5043 int i;
5044
5045 dw2_setup (objfile);
5046
5047 /* index_table is NULL if OBJF_READNOW. */
5048 if (!dwarf2_per_objfile->index_table)
5049 return;
5050
5051 if (file_matcher != NULL)
5052 {
5053 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5054 htab_eq_pointer,
5055 NULL, xcalloc, xfree));
5056 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5057 htab_eq_pointer,
5058 NULL, xcalloc, xfree));
5059
5060 /* The rule is CUs specify all the files, including those used by
5061 any TU, so there's no need to scan TUs here. */
5062
5063 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5064 {
5065 int j;
5066 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5067 struct quick_file_names *file_data;
5068 void **slot;
5069
5070 QUIT;
5071
5072 per_cu->v.quick->mark = 0;
5073
5074 /* We only need to look at symtabs not already expanded. */
5075 if (per_cu->v.quick->compunit_symtab)
5076 continue;
5077
5078 file_data = dw2_get_file_names (per_cu);
5079 if (file_data == NULL)
5080 continue;
5081
5082 if (htab_find (visited_not_found.get (), file_data) != NULL)
5083 continue;
5084 else if (htab_find (visited_found.get (), file_data) != NULL)
5085 {
5086 per_cu->v.quick->mark = 1;
5087 continue;
5088 }
5089
5090 for (j = 0; j < file_data->num_file_names; ++j)
5091 {
5092 const char *this_real_name;
5093
5094 if (file_matcher (file_data->file_names[j], false))
5095 {
5096 per_cu->v.quick->mark = 1;
5097 break;
5098 }
5099
5100 /* Before we invoke realpath, which can get expensive when many
5101 files are involved, do a quick comparison of the basenames. */
5102 if (!basenames_may_differ
5103 && !file_matcher (lbasename (file_data->file_names[j]),
5104 true))
5105 continue;
5106
5107 this_real_name = dw2_get_real_path (objfile, file_data, j);
5108 if (file_matcher (this_real_name, false))
5109 {
5110 per_cu->v.quick->mark = 1;
5111 break;
5112 }
5113 }
5114
5115 slot = htab_find_slot (per_cu->v.quick->mark
5116 ? visited_found.get ()
5117 : visited_not_found.get (),
5118 file_data, INSERT);
5119 *slot = file_data;
5120 }
5121 }
5122
5123 mapped_index &index = *dwarf2_per_objfile->index_table;
5124
5125 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5126 symbol_matcher,
5127 kind, [&] (offset_type idx)
5128 {
5129 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
5130 expansion_notify, kind);
5131 });
5132 }
5133
5134 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5135 symtab. */
5136
5137 static struct compunit_symtab *
5138 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5139 CORE_ADDR pc)
5140 {
5141 int i;
5142
5143 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5144 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5145 return cust;
5146
5147 if (cust->includes == NULL)
5148 return NULL;
5149
5150 for (i = 0; cust->includes[i]; ++i)
5151 {
5152 struct compunit_symtab *s = cust->includes[i];
5153
5154 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5155 if (s != NULL)
5156 return s;
5157 }
5158
5159 return NULL;
5160 }
5161
5162 static struct compunit_symtab *
5163 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5164 struct bound_minimal_symbol msymbol,
5165 CORE_ADDR pc,
5166 struct obj_section *section,
5167 int warn_if_readin)
5168 {
5169 struct dwarf2_per_cu_data *data;
5170 struct compunit_symtab *result;
5171
5172 dw2_setup (objfile);
5173
5174 if (!objfile->psymtabs_addrmap)
5175 return NULL;
5176
5177 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5178 pc);
5179 if (!data)
5180 return NULL;
5181
5182 if (warn_if_readin && data->v.quick->compunit_symtab)
5183 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5184 paddress (get_objfile_arch (objfile), pc));
5185
5186 result
5187 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5188 pc);
5189 gdb_assert (result != NULL);
5190 return result;
5191 }
5192
5193 static void
5194 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5195 void *data, int need_fullname)
5196 {
5197 dw2_setup (objfile);
5198
5199 if (!dwarf2_per_objfile->filenames_cache)
5200 {
5201 dwarf2_per_objfile->filenames_cache.emplace ();
5202
5203 htab_up visited (htab_create_alloc (10,
5204 htab_hash_pointer, htab_eq_pointer,
5205 NULL, xcalloc, xfree));
5206
5207 /* The rule is CUs specify all the files, including those used
5208 by any TU, so there's no need to scan TUs here. We can
5209 ignore file names coming from already-expanded CUs. */
5210
5211 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5212 {
5213 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5214
5215 if (per_cu->v.quick->compunit_symtab)
5216 {
5217 void **slot = htab_find_slot (visited.get (),
5218 per_cu->v.quick->file_names,
5219 INSERT);
5220
5221 *slot = per_cu->v.quick->file_names;
5222 }
5223 }
5224
5225 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5226 {
5227 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5228 struct quick_file_names *file_data;
5229 void **slot;
5230
5231 /* We only need to look at symtabs not already expanded. */
5232 if (per_cu->v.quick->compunit_symtab)
5233 continue;
5234
5235 file_data = dw2_get_file_names (per_cu);
5236 if (file_data == NULL)
5237 continue;
5238
5239 slot = htab_find_slot (visited.get (), file_data, INSERT);
5240 if (*slot)
5241 {
5242 /* Already visited. */
5243 continue;
5244 }
5245 *slot = file_data;
5246
5247 for (int j = 0; j < file_data->num_file_names; ++j)
5248 {
5249 const char *filename = file_data->file_names[j];
5250 dwarf2_per_objfile->filenames_cache->seen (filename);
5251 }
5252 }
5253 }
5254
5255 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5256 {
5257 gdb::unique_xmalloc_ptr<char> this_real_name;
5258
5259 if (need_fullname)
5260 this_real_name = gdb_realpath (filename);
5261 (*fun) (filename, this_real_name.get (), data);
5262 });
5263 }
5264
5265 static int
5266 dw2_has_symbols (struct objfile *objfile)
5267 {
5268 return 1;
5269 }
5270
5271 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5272 {
5273 dw2_has_symbols,
5274 dw2_find_last_source_symtab,
5275 dw2_forget_cached_source_info,
5276 dw2_map_symtabs_matching_filename,
5277 dw2_lookup_symbol,
5278 dw2_print_stats,
5279 dw2_dump,
5280 dw2_relocate,
5281 dw2_expand_symtabs_for_function,
5282 dw2_expand_all_symtabs,
5283 dw2_expand_symtabs_with_fullname,
5284 dw2_map_matching_symbols,
5285 dw2_expand_symtabs_matching,
5286 dw2_find_pc_sect_compunit_symtab,
5287 NULL,
5288 dw2_map_symbol_filenames
5289 };
5290
5291 /* Initialize for reading DWARF for this objfile. Return 0 if this
5292 file will use psymtabs, or 1 if using the GNU index. */
5293
5294 int
5295 dwarf2_initialize_objfile (struct objfile *objfile)
5296 {
5297 /* If we're about to read full symbols, don't bother with the
5298 indices. In this case we also don't care if some other debug
5299 format is making psymtabs, because they are all about to be
5300 expanded anyway. */
5301 if ((objfile->flags & OBJF_READNOW))
5302 {
5303 int i;
5304
5305 dwarf2_per_objfile->using_index = 1;
5306 create_all_comp_units (objfile);
5307 create_all_type_units (objfile);
5308 dwarf2_per_objfile->quick_file_names_table =
5309 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5310
5311 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
5312 + dwarf2_per_objfile->n_type_units); ++i)
5313 {
5314 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5315
5316 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5317 struct dwarf2_per_cu_quick_data);
5318 }
5319
5320 /* Return 1 so that gdb sees the "quick" functions. However,
5321 these functions will be no-ops because we will have expanded
5322 all symtabs. */
5323 return 1;
5324 }
5325
5326 if (dwarf2_read_index (objfile))
5327 return 1;
5328
5329 return 0;
5330 }
5331
5332 \f
5333
5334 /* Build a partial symbol table. */
5335
5336 void
5337 dwarf2_build_psymtabs (struct objfile *objfile)
5338 {
5339
5340 if (objfile->global_psymbols.capacity () == 0
5341 && objfile->static_psymbols.capacity () == 0)
5342 init_psymbol_list (objfile, 1024);
5343
5344 TRY
5345 {
5346 /* This isn't really ideal: all the data we allocate on the
5347 objfile's obstack is still uselessly kept around. However,
5348 freeing it seems unsafe. */
5349 psymtab_discarder psymtabs (objfile);
5350 dwarf2_build_psymtabs_hard (objfile);
5351 psymtabs.keep ();
5352 }
5353 CATCH (except, RETURN_MASK_ERROR)
5354 {
5355 exception_print (gdb_stderr, except);
5356 }
5357 END_CATCH
5358 }
5359
5360 /* Return the total length of the CU described by HEADER. */
5361
5362 static unsigned int
5363 get_cu_length (const struct comp_unit_head *header)
5364 {
5365 return header->initial_length_size + header->length;
5366 }
5367
5368 /* Return TRUE if SECT_OFF is within CU_HEADER. */
5369
5370 static inline bool
5371 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
5372 {
5373 sect_offset bottom = cu_header->sect_off;
5374 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
5375
5376 return sect_off >= bottom && sect_off < top;
5377 }
5378
5379 /* Find the base address of the compilation unit for range lists and
5380 location lists. It will normally be specified by DW_AT_low_pc.
5381 In DWARF-3 draft 4, the base address could be overridden by
5382 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5383 compilation units with discontinuous ranges. */
5384
5385 static void
5386 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5387 {
5388 struct attribute *attr;
5389
5390 cu->base_known = 0;
5391 cu->base_address = 0;
5392
5393 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5394 if (attr)
5395 {
5396 cu->base_address = attr_value_as_address (attr);
5397 cu->base_known = 1;
5398 }
5399 else
5400 {
5401 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5402 if (attr)
5403 {
5404 cu->base_address = attr_value_as_address (attr);
5405 cu->base_known = 1;
5406 }
5407 }
5408 }
5409
5410 /* Read in the comp unit header information from the debug_info at info_ptr.
5411 Use rcuh_kind::COMPILE as the default type if not known by the caller.
5412 NOTE: This leaves members offset, first_die_offset to be filled in
5413 by the caller. */
5414
5415 static const gdb_byte *
5416 read_comp_unit_head (struct comp_unit_head *cu_header,
5417 const gdb_byte *info_ptr,
5418 struct dwarf2_section_info *section,
5419 rcuh_kind section_kind)
5420 {
5421 int signed_addr;
5422 unsigned int bytes_read;
5423 const char *filename = get_section_file_name (section);
5424 bfd *abfd = get_section_bfd_owner (section);
5425
5426 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
5427 cu_header->initial_length_size = bytes_read;
5428 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
5429 info_ptr += bytes_read;
5430 cu_header->version = read_2_bytes (abfd, info_ptr);
5431 info_ptr += 2;
5432 if (cu_header->version < 5)
5433 switch (section_kind)
5434 {
5435 case rcuh_kind::COMPILE:
5436 cu_header->unit_type = DW_UT_compile;
5437 break;
5438 case rcuh_kind::TYPE:
5439 cu_header->unit_type = DW_UT_type;
5440 break;
5441 default:
5442 internal_error (__FILE__, __LINE__,
5443 _("read_comp_unit_head: invalid section_kind"));
5444 }
5445 else
5446 {
5447 cu_header->unit_type = static_cast<enum dwarf_unit_type>
5448 (read_1_byte (abfd, info_ptr));
5449 info_ptr += 1;
5450 switch (cu_header->unit_type)
5451 {
5452 case DW_UT_compile:
5453 if (section_kind != rcuh_kind::COMPILE)
5454 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5455 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
5456 filename);
5457 break;
5458 case DW_UT_type:
5459 section_kind = rcuh_kind::TYPE;
5460 break;
5461 default:
5462 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5463 "(is %d, should be %d or %d) [in module %s]"),
5464 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
5465 }
5466
5467 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5468 info_ptr += 1;
5469 }
5470 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
5471 cu_header,
5472 &bytes_read);
5473 info_ptr += bytes_read;
5474 if (cu_header->version < 5)
5475 {
5476 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5477 info_ptr += 1;
5478 }
5479 signed_addr = bfd_get_sign_extend_vma (abfd);
5480 if (signed_addr < 0)
5481 internal_error (__FILE__, __LINE__,
5482 _("read_comp_unit_head: dwarf from non elf file"));
5483 cu_header->signed_addr_p = signed_addr;
5484
5485 if (section_kind == rcuh_kind::TYPE)
5486 {
5487 LONGEST type_offset;
5488
5489 cu_header->signature = read_8_bytes (abfd, info_ptr);
5490 info_ptr += 8;
5491
5492 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
5493 info_ptr += bytes_read;
5494 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
5495 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
5496 error (_("Dwarf Error: Too big type_offset in compilation unit "
5497 "header (is %s) [in module %s]"), plongest (type_offset),
5498 filename);
5499 }
5500
5501 return info_ptr;
5502 }
5503
5504 /* Helper function that returns the proper abbrev section for
5505 THIS_CU. */
5506
5507 static struct dwarf2_section_info *
5508 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5509 {
5510 struct dwarf2_section_info *abbrev;
5511
5512 if (this_cu->is_dwz)
5513 abbrev = &dwarf2_get_dwz_file ()->abbrev;
5514 else
5515 abbrev = &dwarf2_per_objfile->abbrev;
5516
5517 return abbrev;
5518 }
5519
5520 /* Subroutine of read_and_check_comp_unit_head and
5521 read_and_check_type_unit_head to simplify them.
5522 Perform various error checking on the header. */
5523
5524 static void
5525 error_check_comp_unit_head (struct comp_unit_head *header,
5526 struct dwarf2_section_info *section,
5527 struct dwarf2_section_info *abbrev_section)
5528 {
5529 const char *filename = get_section_file_name (section);
5530
5531 if (header->version < 2 || header->version > 5)
5532 error (_("Dwarf Error: wrong version in compilation unit header "
5533 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
5534 filename);
5535
5536 if (to_underlying (header->abbrev_sect_off)
5537 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
5538 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
5539 "(offset 0x%x + 6) [in module %s]"),
5540 to_underlying (header->abbrev_sect_off),
5541 to_underlying (header->sect_off),
5542 filename);
5543
5544 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
5545 avoid potential 32-bit overflow. */
5546 if (((ULONGEST) header->sect_off + get_cu_length (header))
5547 > section->size)
5548 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
5549 "(offset 0x%x + 0) [in module %s]"),
5550 header->length, to_underlying (header->sect_off),
5551 filename);
5552 }
5553
5554 /* Read in a CU/TU header and perform some basic error checking.
5555 The contents of the header are stored in HEADER.
5556 The result is a pointer to the start of the first DIE. */
5557
5558 static const gdb_byte *
5559 read_and_check_comp_unit_head (struct comp_unit_head *header,
5560 struct dwarf2_section_info *section,
5561 struct dwarf2_section_info *abbrev_section,
5562 const gdb_byte *info_ptr,
5563 rcuh_kind section_kind)
5564 {
5565 const gdb_byte *beg_of_comp_unit = info_ptr;
5566
5567 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
5568
5569 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
5570
5571 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
5572
5573 error_check_comp_unit_head (header, section, abbrev_section);
5574
5575 return info_ptr;
5576 }
5577
5578 /* Fetch the abbreviation table offset from a comp or type unit header. */
5579
5580 static sect_offset
5581 read_abbrev_offset (struct dwarf2_section_info *section,
5582 sect_offset sect_off)
5583 {
5584 bfd *abfd = get_section_bfd_owner (section);
5585 const gdb_byte *info_ptr;
5586 unsigned int initial_length_size, offset_size;
5587 uint16_t version;
5588
5589 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
5590 info_ptr = section->buffer + to_underlying (sect_off);
5591 read_initial_length (abfd, info_ptr, &initial_length_size);
5592 offset_size = initial_length_size == 4 ? 4 : 8;
5593 info_ptr += initial_length_size;
5594
5595 version = read_2_bytes (abfd, info_ptr);
5596 info_ptr += 2;
5597 if (version >= 5)
5598 {
5599 /* Skip unit type and address size. */
5600 info_ptr += 2;
5601 }
5602
5603 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
5604 }
5605
5606 /* Allocate a new partial symtab for file named NAME and mark this new
5607 partial symtab as being an include of PST. */
5608
5609 static void
5610 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
5611 struct objfile *objfile)
5612 {
5613 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
5614
5615 if (!IS_ABSOLUTE_PATH (subpst->filename))
5616 {
5617 /* It shares objfile->objfile_obstack. */
5618 subpst->dirname = pst->dirname;
5619 }
5620
5621 subpst->textlow = 0;
5622 subpst->texthigh = 0;
5623
5624 subpst->dependencies
5625 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
5626 subpst->dependencies[0] = pst;
5627 subpst->number_of_dependencies = 1;
5628
5629 subpst->globals_offset = 0;
5630 subpst->n_global_syms = 0;
5631 subpst->statics_offset = 0;
5632 subpst->n_static_syms = 0;
5633 subpst->compunit_symtab = NULL;
5634 subpst->read_symtab = pst->read_symtab;
5635 subpst->readin = 0;
5636
5637 /* No private part is necessary for include psymtabs. This property
5638 can be used to differentiate between such include psymtabs and
5639 the regular ones. */
5640 subpst->read_symtab_private = NULL;
5641 }
5642
5643 /* Read the Line Number Program data and extract the list of files
5644 included by the source file represented by PST. Build an include
5645 partial symtab for each of these included files. */
5646
5647 static void
5648 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5649 struct die_info *die,
5650 struct partial_symtab *pst)
5651 {
5652 line_header_up lh;
5653 struct attribute *attr;
5654
5655 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5656 if (attr)
5657 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5658 if (lh == NULL)
5659 return; /* No linetable, so no includes. */
5660
5661 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
5662 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
5663 }
5664
5665 static hashval_t
5666 hash_signatured_type (const void *item)
5667 {
5668 const struct signatured_type *sig_type
5669 = (const struct signatured_type *) item;
5670
5671 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5672 return sig_type->signature;
5673 }
5674
5675 static int
5676 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5677 {
5678 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5679 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5680
5681 return lhs->signature == rhs->signature;
5682 }
5683
5684 /* Allocate a hash table for signatured types. */
5685
5686 static htab_t
5687 allocate_signatured_type_table (struct objfile *objfile)
5688 {
5689 return htab_create_alloc_ex (41,
5690 hash_signatured_type,
5691 eq_signatured_type,
5692 NULL,
5693 &objfile->objfile_obstack,
5694 hashtab_obstack_allocate,
5695 dummy_obstack_deallocate);
5696 }
5697
5698 /* A helper function to add a signatured type CU to a table. */
5699
5700 static int
5701 add_signatured_type_cu_to_table (void **slot, void *datum)
5702 {
5703 struct signatured_type *sigt = (struct signatured_type *) *slot;
5704 struct signatured_type ***datap = (struct signatured_type ***) datum;
5705
5706 **datap = sigt;
5707 ++*datap;
5708
5709 return 1;
5710 }
5711
5712 /* A helper for create_debug_types_hash_table. Read types from SECTION
5713 and fill them into TYPES_HTAB. It will process only type units,
5714 therefore DW_UT_type. */
5715
5716 static void
5717 create_debug_type_hash_table (struct dwo_file *dwo_file,
5718 dwarf2_section_info *section, htab_t &types_htab,
5719 rcuh_kind section_kind)
5720 {
5721 struct objfile *objfile = dwarf2_per_objfile->objfile;
5722 struct dwarf2_section_info *abbrev_section;
5723 bfd *abfd;
5724 const gdb_byte *info_ptr, *end_ptr;
5725
5726 abbrev_section = (dwo_file != NULL
5727 ? &dwo_file->sections.abbrev
5728 : &dwarf2_per_objfile->abbrev);
5729
5730 if (dwarf_read_debug)
5731 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
5732 get_section_name (section),
5733 get_section_file_name (abbrev_section));
5734
5735 dwarf2_read_section (objfile, section);
5736 info_ptr = section->buffer;
5737
5738 if (info_ptr == NULL)
5739 return;
5740
5741 /* We can't set abfd until now because the section may be empty or
5742 not present, in which case the bfd is unknown. */
5743 abfd = get_section_bfd_owner (section);
5744
5745 /* We don't use init_cutu_and_read_dies_simple, or some such, here
5746 because we don't need to read any dies: the signature is in the
5747 header. */
5748
5749 end_ptr = info_ptr + section->size;
5750 while (info_ptr < end_ptr)
5751 {
5752 struct signatured_type *sig_type;
5753 struct dwo_unit *dwo_tu;
5754 void **slot;
5755 const gdb_byte *ptr = info_ptr;
5756 struct comp_unit_head header;
5757 unsigned int length;
5758
5759 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5760
5761 /* Initialize it due to a false compiler warning. */
5762 header.signature = -1;
5763 header.type_cu_offset_in_tu = (cu_offset) -1;
5764
5765 /* We need to read the type's signature in order to build the hash
5766 table, but we don't need anything else just yet. */
5767
5768 ptr = read_and_check_comp_unit_head (&header, section,
5769 abbrev_section, ptr, section_kind);
5770
5771 length = get_cu_length (&header);
5772
5773 /* Skip dummy type units. */
5774 if (ptr >= info_ptr + length
5775 || peek_abbrev_code (abfd, ptr) == 0
5776 || header.unit_type != DW_UT_type)
5777 {
5778 info_ptr += length;
5779 continue;
5780 }
5781
5782 if (types_htab == NULL)
5783 {
5784 if (dwo_file)
5785 types_htab = allocate_dwo_unit_table (objfile);
5786 else
5787 types_htab = allocate_signatured_type_table (objfile);
5788 }
5789
5790 if (dwo_file)
5791 {
5792 sig_type = NULL;
5793 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5794 struct dwo_unit);
5795 dwo_tu->dwo_file = dwo_file;
5796 dwo_tu->signature = header.signature;
5797 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5798 dwo_tu->section = section;
5799 dwo_tu->sect_off = sect_off;
5800 dwo_tu->length = length;
5801 }
5802 else
5803 {
5804 /* N.B.: type_offset is not usable if this type uses a DWO file.
5805 The real type_offset is in the DWO file. */
5806 dwo_tu = NULL;
5807 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5808 struct signatured_type);
5809 sig_type->signature = header.signature;
5810 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
5811 sig_type->per_cu.objfile = objfile;
5812 sig_type->per_cu.is_debug_types = 1;
5813 sig_type->per_cu.section = section;
5814 sig_type->per_cu.sect_off = sect_off;
5815 sig_type->per_cu.length = length;
5816 }
5817
5818 slot = htab_find_slot (types_htab,
5819 dwo_file ? (void*) dwo_tu : (void *) sig_type,
5820 INSERT);
5821 gdb_assert (slot != NULL);
5822 if (*slot != NULL)
5823 {
5824 sect_offset dup_sect_off;
5825
5826 if (dwo_file)
5827 {
5828 const struct dwo_unit *dup_tu
5829 = (const struct dwo_unit *) *slot;
5830
5831 dup_sect_off = dup_tu->sect_off;
5832 }
5833 else
5834 {
5835 const struct signatured_type *dup_tu
5836 = (const struct signatured_type *) *slot;
5837
5838 dup_sect_off = dup_tu->per_cu.sect_off;
5839 }
5840
5841 complaint (&symfile_complaints,
5842 _("debug type entry at offset 0x%x is duplicate to"
5843 " the entry at offset 0x%x, signature %s"),
5844 to_underlying (sect_off), to_underlying (dup_sect_off),
5845 hex_string (header.signature));
5846 }
5847 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
5848
5849 if (dwarf_read_debug > 1)
5850 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
5851 to_underlying (sect_off),
5852 hex_string (header.signature));
5853
5854 info_ptr += length;
5855 }
5856 }
5857
5858 /* Create the hash table of all entries in the .debug_types
5859 (or .debug_types.dwo) section(s).
5860 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
5861 otherwise it is NULL.
5862
5863 The result is a pointer to the hash table or NULL if there are no types.
5864
5865 Note: This function processes DWO files only, not DWP files. */
5866
5867 static void
5868 create_debug_types_hash_table (struct dwo_file *dwo_file,
5869 VEC (dwarf2_section_info_def) *types,
5870 htab_t &types_htab)
5871 {
5872 int ix;
5873 struct dwarf2_section_info *section;
5874
5875 if (VEC_empty (dwarf2_section_info_def, types))
5876 return;
5877
5878 for (ix = 0;
5879 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5880 ++ix)
5881 create_debug_type_hash_table (dwo_file, section, types_htab,
5882 rcuh_kind::TYPE);
5883 }
5884
5885 /* Create the hash table of all entries in the .debug_types section,
5886 and initialize all_type_units.
5887 The result is zero if there is an error (e.g. missing .debug_types section),
5888 otherwise non-zero. */
5889
5890 static int
5891 create_all_type_units (struct objfile *objfile)
5892 {
5893 htab_t types_htab = NULL;
5894 struct signatured_type **iter;
5895
5896 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5897 rcuh_kind::COMPILE);
5898 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5899 if (types_htab == NULL)
5900 {
5901 dwarf2_per_objfile->signatured_types = NULL;
5902 return 0;
5903 }
5904
5905 dwarf2_per_objfile->signatured_types = types_htab;
5906
5907 dwarf2_per_objfile->n_type_units
5908 = dwarf2_per_objfile->n_allocated_type_units
5909 = htab_elements (types_htab);
5910 dwarf2_per_objfile->all_type_units =
5911 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5912 iter = &dwarf2_per_objfile->all_type_units[0];
5913 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5914 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5915 == dwarf2_per_objfile->n_type_units);
5916
5917 return 1;
5918 }
5919
5920 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5921 If SLOT is non-NULL, it is the entry to use in the hash table.
5922 Otherwise we find one. */
5923
5924 static struct signatured_type *
5925 add_type_unit (ULONGEST sig, void **slot)
5926 {
5927 struct objfile *objfile = dwarf2_per_objfile->objfile;
5928 int n_type_units = dwarf2_per_objfile->n_type_units;
5929 struct signatured_type *sig_type;
5930
5931 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5932 ++n_type_units;
5933 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5934 {
5935 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5936 dwarf2_per_objfile->n_allocated_type_units = 1;
5937 dwarf2_per_objfile->n_allocated_type_units *= 2;
5938 dwarf2_per_objfile->all_type_units
5939 = XRESIZEVEC (struct signatured_type *,
5940 dwarf2_per_objfile->all_type_units,
5941 dwarf2_per_objfile->n_allocated_type_units);
5942 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5943 }
5944 dwarf2_per_objfile->n_type_units = n_type_units;
5945
5946 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5947 struct signatured_type);
5948 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5949 sig_type->signature = sig;
5950 sig_type->per_cu.is_debug_types = 1;
5951 if (dwarf2_per_objfile->using_index)
5952 {
5953 sig_type->per_cu.v.quick =
5954 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5955 struct dwarf2_per_cu_quick_data);
5956 }
5957
5958 if (slot == NULL)
5959 {
5960 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5961 sig_type, INSERT);
5962 }
5963 gdb_assert (*slot == NULL);
5964 *slot = sig_type;
5965 /* The rest of sig_type must be filled in by the caller. */
5966 return sig_type;
5967 }
5968
5969 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5970 Fill in SIG_ENTRY with DWO_ENTRY. */
5971
5972 static void
5973 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5974 struct signatured_type *sig_entry,
5975 struct dwo_unit *dwo_entry)
5976 {
5977 /* Make sure we're not clobbering something we don't expect to. */
5978 gdb_assert (! sig_entry->per_cu.queued);
5979 gdb_assert (sig_entry->per_cu.cu == NULL);
5980 if (dwarf2_per_objfile->using_index)
5981 {
5982 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5983 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5984 }
5985 else
5986 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5987 gdb_assert (sig_entry->signature == dwo_entry->signature);
5988 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5989 gdb_assert (sig_entry->type_unit_group == NULL);
5990 gdb_assert (sig_entry->dwo_unit == NULL);
5991
5992 sig_entry->per_cu.section = dwo_entry->section;
5993 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5994 sig_entry->per_cu.length = dwo_entry->length;
5995 sig_entry->per_cu.reading_dwo_directly = 1;
5996 sig_entry->per_cu.objfile = objfile;
5997 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5998 sig_entry->dwo_unit = dwo_entry;
5999 }
6000
6001 /* Subroutine of lookup_signatured_type.
6002 If we haven't read the TU yet, create the signatured_type data structure
6003 for a TU to be read in directly from a DWO file, bypassing the stub.
6004 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6005 using .gdb_index, then when reading a CU we want to stay in the DWO file
6006 containing that CU. Otherwise we could end up reading several other DWO
6007 files (due to comdat folding) to process the transitive closure of all the
6008 mentioned TUs, and that can be slow. The current DWO file will have every
6009 type signature that it needs.
6010 We only do this for .gdb_index because in the psymtab case we already have
6011 to read all the DWOs to build the type unit groups. */
6012
6013 static struct signatured_type *
6014 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6015 {
6016 struct objfile *objfile = dwarf2_per_objfile->objfile;
6017 struct dwo_file *dwo_file;
6018 struct dwo_unit find_dwo_entry, *dwo_entry;
6019 struct signatured_type find_sig_entry, *sig_entry;
6020 void **slot;
6021
6022 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6023
6024 /* If TU skeletons have been removed then we may not have read in any
6025 TUs yet. */
6026 if (dwarf2_per_objfile->signatured_types == NULL)
6027 {
6028 dwarf2_per_objfile->signatured_types
6029 = allocate_signatured_type_table (objfile);
6030 }
6031
6032 /* We only ever need to read in one copy of a signatured type.
6033 Use the global signatured_types array to do our own comdat-folding
6034 of types. If this is the first time we're reading this TU, and
6035 the TU has an entry in .gdb_index, replace the recorded data from
6036 .gdb_index with this TU. */
6037
6038 find_sig_entry.signature = sig;
6039 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6040 &find_sig_entry, INSERT);
6041 sig_entry = (struct signatured_type *) *slot;
6042
6043 /* We can get here with the TU already read, *or* in the process of being
6044 read. Don't reassign the global entry to point to this DWO if that's
6045 the case. Also note that if the TU is already being read, it may not
6046 have come from a DWO, the program may be a mix of Fission-compiled
6047 code and non-Fission-compiled code. */
6048
6049 /* Have we already tried to read this TU?
6050 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6051 needn't exist in the global table yet). */
6052 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6053 return sig_entry;
6054
6055 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6056 dwo_unit of the TU itself. */
6057 dwo_file = cu->dwo_unit->dwo_file;
6058
6059 /* Ok, this is the first time we're reading this TU. */
6060 if (dwo_file->tus == NULL)
6061 return NULL;
6062 find_dwo_entry.signature = sig;
6063 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6064 if (dwo_entry == NULL)
6065 return NULL;
6066
6067 /* If the global table doesn't have an entry for this TU, add one. */
6068 if (sig_entry == NULL)
6069 sig_entry = add_type_unit (sig, slot);
6070
6071 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
6072 sig_entry->per_cu.tu_read = 1;
6073 return sig_entry;
6074 }
6075
6076 /* Subroutine of lookup_signatured_type.
6077 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6078 then try the DWP file. If the TU stub (skeleton) has been removed then
6079 it won't be in .gdb_index. */
6080
6081 static struct signatured_type *
6082 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6083 {
6084 struct objfile *objfile = dwarf2_per_objfile->objfile;
6085 struct dwp_file *dwp_file = get_dwp_file ();
6086 struct dwo_unit *dwo_entry;
6087 struct signatured_type find_sig_entry, *sig_entry;
6088 void **slot;
6089
6090 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6091 gdb_assert (dwp_file != NULL);
6092
6093 /* If TU skeletons have been removed then we may not have read in any
6094 TUs yet. */
6095 if (dwarf2_per_objfile->signatured_types == NULL)
6096 {
6097 dwarf2_per_objfile->signatured_types
6098 = allocate_signatured_type_table (objfile);
6099 }
6100
6101 find_sig_entry.signature = sig;
6102 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6103 &find_sig_entry, INSERT);
6104 sig_entry = (struct signatured_type *) *slot;
6105
6106 /* Have we already tried to read this TU?
6107 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6108 needn't exist in the global table yet). */
6109 if (sig_entry != NULL)
6110 return sig_entry;
6111
6112 if (dwp_file->tus == NULL)
6113 return NULL;
6114 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
6115 sig, 1 /* is_debug_types */);
6116 if (dwo_entry == NULL)
6117 return NULL;
6118
6119 sig_entry = add_type_unit (sig, slot);
6120 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
6121
6122 return sig_entry;
6123 }
6124
6125 /* Lookup a signature based type for DW_FORM_ref_sig8.
6126 Returns NULL if signature SIG is not present in the table.
6127 It is up to the caller to complain about this. */
6128
6129 static struct signatured_type *
6130 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6131 {
6132 if (cu->dwo_unit
6133 && dwarf2_per_objfile->using_index)
6134 {
6135 /* We're in a DWO/DWP file, and we're using .gdb_index.
6136 These cases require special processing. */
6137 if (get_dwp_file () == NULL)
6138 return lookup_dwo_signatured_type (cu, sig);
6139 else
6140 return lookup_dwp_signatured_type (cu, sig);
6141 }
6142 else
6143 {
6144 struct signatured_type find_entry, *entry;
6145
6146 if (dwarf2_per_objfile->signatured_types == NULL)
6147 return NULL;
6148 find_entry.signature = sig;
6149 entry = ((struct signatured_type *)
6150 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
6151 return entry;
6152 }
6153 }
6154 \f
6155 /* Low level DIE reading support. */
6156
6157 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6158
6159 static void
6160 init_cu_die_reader (struct die_reader_specs *reader,
6161 struct dwarf2_cu *cu,
6162 struct dwarf2_section_info *section,
6163 struct dwo_file *dwo_file)
6164 {
6165 gdb_assert (section->readin && section->buffer != NULL);
6166 reader->abfd = get_section_bfd_owner (section);
6167 reader->cu = cu;
6168 reader->dwo_file = dwo_file;
6169 reader->die_section = section;
6170 reader->buffer = section->buffer;
6171 reader->buffer_end = section->buffer + section->size;
6172 reader->comp_dir = NULL;
6173 }
6174
6175 /* Subroutine of init_cutu_and_read_dies to simplify it.
6176 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6177 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
6178 already.
6179
6180 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6181 from it to the DIE in the DWO. If NULL we are skipping the stub.
6182 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6183 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6184 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6185 STUB_COMP_DIR may be non-NULL.
6186 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
6187 are filled in with the info of the DIE from the DWO file.
6188 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
6189 provided an abbrev table to use.
6190 The result is non-zero if a valid (non-dummy) DIE was found. */
6191
6192 static int
6193 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6194 struct dwo_unit *dwo_unit,
6195 int abbrev_table_provided,
6196 struct die_info *stub_comp_unit_die,
6197 const char *stub_comp_dir,
6198 struct die_reader_specs *result_reader,
6199 const gdb_byte **result_info_ptr,
6200 struct die_info **result_comp_unit_die,
6201 int *result_has_children)
6202 {
6203 struct objfile *objfile = dwarf2_per_objfile->objfile;
6204 struct dwarf2_cu *cu = this_cu->cu;
6205 struct dwarf2_section_info *section;
6206 bfd *abfd;
6207 const gdb_byte *begin_info_ptr, *info_ptr;
6208 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6209 int i,num_extra_attrs;
6210 struct dwarf2_section_info *dwo_abbrev_section;
6211 struct attribute *attr;
6212 struct die_info *comp_unit_die;
6213
6214 /* At most one of these may be provided. */
6215 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6216
6217 /* These attributes aren't processed until later:
6218 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6219 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6220 referenced later. However, these attributes are found in the stub
6221 which we won't have later. In order to not impose this complication
6222 on the rest of the code, we read them here and copy them to the
6223 DWO CU/TU die. */
6224
6225 stmt_list = NULL;
6226 low_pc = NULL;
6227 high_pc = NULL;
6228 ranges = NULL;
6229 comp_dir = NULL;
6230
6231 if (stub_comp_unit_die != NULL)
6232 {
6233 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6234 DWO file. */
6235 if (! this_cu->is_debug_types)
6236 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6237 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6238 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6239 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6240 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6241
6242 /* There should be a DW_AT_addr_base attribute here (if needed).
6243 We need the value before we can process DW_FORM_GNU_addr_index. */
6244 cu->addr_base = 0;
6245 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
6246 if (attr)
6247 cu->addr_base = DW_UNSND (attr);
6248
6249 /* There should be a DW_AT_ranges_base attribute here (if needed).
6250 We need the value before we can process DW_AT_ranges. */
6251 cu->ranges_base = 0;
6252 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
6253 if (attr)
6254 cu->ranges_base = DW_UNSND (attr);
6255 }
6256 else if (stub_comp_dir != NULL)
6257 {
6258 /* Reconstruct the comp_dir attribute to simplify the code below. */
6259 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6260 comp_dir->name = DW_AT_comp_dir;
6261 comp_dir->form = DW_FORM_string;
6262 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6263 DW_STRING (comp_dir) = stub_comp_dir;
6264 }
6265
6266 /* Set up for reading the DWO CU/TU. */
6267 cu->dwo_unit = dwo_unit;
6268 section = dwo_unit->section;
6269 dwarf2_read_section (objfile, section);
6270 abfd = get_section_bfd_owner (section);
6271 begin_info_ptr = info_ptr = (section->buffer
6272 + to_underlying (dwo_unit->sect_off));
6273 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6274 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
6275
6276 if (this_cu->is_debug_types)
6277 {
6278 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6279
6280 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6281 dwo_abbrev_section,
6282 info_ptr, rcuh_kind::TYPE);
6283 /* This is not an assert because it can be caused by bad debug info. */
6284 if (sig_type->signature != cu->header.signature)
6285 {
6286 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6287 " TU at offset 0x%x [in module %s]"),
6288 hex_string (sig_type->signature),
6289 hex_string (cu->header.signature),
6290 to_underlying (dwo_unit->sect_off),
6291 bfd_get_filename (abfd));
6292 }
6293 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6294 /* For DWOs coming from DWP files, we don't know the CU length
6295 nor the type's offset in the TU until now. */
6296 dwo_unit->length = get_cu_length (&cu->header);
6297 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6298
6299 /* Establish the type offset that can be used to lookup the type.
6300 For DWO files, we don't know it until now. */
6301 sig_type->type_offset_in_section
6302 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6303 }
6304 else
6305 {
6306 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6307 dwo_abbrev_section,
6308 info_ptr, rcuh_kind::COMPILE);
6309 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6310 /* For DWOs coming from DWP files, we don't know the CU length
6311 until now. */
6312 dwo_unit->length = get_cu_length (&cu->header);
6313 }
6314
6315 /* Replace the CU's original abbrev table with the DWO's.
6316 Reminder: We can't read the abbrev table until we've read the header. */
6317 if (abbrev_table_provided)
6318 {
6319 /* Don't free the provided abbrev table, the caller of
6320 init_cutu_and_read_dies owns it. */
6321 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6322 /* Ensure the DWO abbrev table gets freed. */
6323 make_cleanup (dwarf2_free_abbrev_table, cu);
6324 }
6325 else
6326 {
6327 dwarf2_free_abbrev_table (cu);
6328 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6329 /* Leave any existing abbrev table cleanup as is. */
6330 }
6331
6332 /* Read in the die, but leave space to copy over the attributes
6333 from the stub. This has the benefit of simplifying the rest of
6334 the code - all the work to maintain the illusion of a single
6335 DW_TAG_{compile,type}_unit DIE is done here. */
6336 num_extra_attrs = ((stmt_list != NULL)
6337 + (low_pc != NULL)
6338 + (high_pc != NULL)
6339 + (ranges != NULL)
6340 + (comp_dir != NULL));
6341 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6342 result_has_children, num_extra_attrs);
6343
6344 /* Copy over the attributes from the stub to the DIE we just read in. */
6345 comp_unit_die = *result_comp_unit_die;
6346 i = comp_unit_die->num_attrs;
6347 if (stmt_list != NULL)
6348 comp_unit_die->attrs[i++] = *stmt_list;
6349 if (low_pc != NULL)
6350 comp_unit_die->attrs[i++] = *low_pc;
6351 if (high_pc != NULL)
6352 comp_unit_die->attrs[i++] = *high_pc;
6353 if (ranges != NULL)
6354 comp_unit_die->attrs[i++] = *ranges;
6355 if (comp_dir != NULL)
6356 comp_unit_die->attrs[i++] = *comp_dir;
6357 comp_unit_die->num_attrs += num_extra_attrs;
6358
6359 if (dwarf_die_debug)
6360 {
6361 fprintf_unfiltered (gdb_stdlog,
6362 "Read die from %s@0x%x of %s:\n",
6363 get_section_name (section),
6364 (unsigned) (begin_info_ptr - section->buffer),
6365 bfd_get_filename (abfd));
6366 dump_die (comp_unit_die, dwarf_die_debug);
6367 }
6368
6369 /* Save the comp_dir attribute. If there is no DWP file then we'll read
6370 TUs by skipping the stub and going directly to the entry in the DWO file.
6371 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
6372 to get it via circuitous means. Blech. */
6373 if (comp_dir != NULL)
6374 result_reader->comp_dir = DW_STRING (comp_dir);
6375
6376 /* Skip dummy compilation units. */
6377 if (info_ptr >= begin_info_ptr + dwo_unit->length
6378 || peek_abbrev_code (abfd, info_ptr) == 0)
6379 return 0;
6380
6381 *result_info_ptr = info_ptr;
6382 return 1;
6383 }
6384
6385 /* Subroutine of init_cutu_and_read_dies to simplify it.
6386 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6387 Returns NULL if the specified DWO unit cannot be found. */
6388
6389 static struct dwo_unit *
6390 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6391 struct die_info *comp_unit_die)
6392 {
6393 struct dwarf2_cu *cu = this_cu->cu;
6394 ULONGEST signature;
6395 struct dwo_unit *dwo_unit;
6396 const char *comp_dir, *dwo_name;
6397
6398 gdb_assert (cu != NULL);
6399
6400 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6401 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6402 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6403
6404 if (this_cu->is_debug_types)
6405 {
6406 struct signatured_type *sig_type;
6407
6408 /* Since this_cu is the first member of struct signatured_type,
6409 we can go from a pointer to one to a pointer to the other. */
6410 sig_type = (struct signatured_type *) this_cu;
6411 signature = sig_type->signature;
6412 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6413 }
6414 else
6415 {
6416 struct attribute *attr;
6417
6418 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6419 if (! attr)
6420 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6421 " [in module %s]"),
6422 dwo_name, objfile_name (this_cu->objfile));
6423 signature = DW_UNSND (attr);
6424 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6425 signature);
6426 }
6427
6428 return dwo_unit;
6429 }
6430
6431 /* Subroutine of init_cutu_and_read_dies to simplify it.
6432 See it for a description of the parameters.
6433 Read a TU directly from a DWO file, bypassing the stub.
6434
6435 Note: This function could be a little bit simpler if we shared cleanups
6436 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
6437 to do, so we keep this function self-contained. Or we could move this
6438 into our caller, but it's complex enough already. */
6439
6440 static void
6441 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6442 int use_existing_cu, int keep,
6443 die_reader_func_ftype *die_reader_func,
6444 void *data)
6445 {
6446 struct dwarf2_cu *cu;
6447 struct signatured_type *sig_type;
6448 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6449 struct die_reader_specs reader;
6450 const gdb_byte *info_ptr;
6451 struct die_info *comp_unit_die;
6452 int has_children;
6453
6454 /* Verify we can do the following downcast, and that we have the
6455 data we need. */
6456 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6457 sig_type = (struct signatured_type *) this_cu;
6458 gdb_assert (sig_type->dwo_unit != NULL);
6459
6460 cleanups = make_cleanup (null_cleanup, NULL);
6461
6462 if (use_existing_cu && this_cu->cu != NULL)
6463 {
6464 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6465 cu = this_cu->cu;
6466 /* There's no need to do the rereading_dwo_cu handling that
6467 init_cutu_and_read_dies does since we don't read the stub. */
6468 }
6469 else
6470 {
6471 /* If !use_existing_cu, this_cu->cu must be NULL. */
6472 gdb_assert (this_cu->cu == NULL);
6473 cu = XNEW (struct dwarf2_cu);
6474 init_one_comp_unit (cu, this_cu);
6475 /* If an error occurs while loading, release our storage. */
6476 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6477 }
6478
6479 /* A future optimization, if needed, would be to use an existing
6480 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6481 could share abbrev tables. */
6482
6483 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6484 0 /* abbrev_table_provided */,
6485 NULL /* stub_comp_unit_die */,
6486 sig_type->dwo_unit->dwo_file->comp_dir,
6487 &reader, &info_ptr,
6488 &comp_unit_die, &has_children) == 0)
6489 {
6490 /* Dummy die. */
6491 do_cleanups (cleanups);
6492 return;
6493 }
6494
6495 /* All the "real" work is done here. */
6496 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6497
6498 /* This duplicates the code in init_cutu_and_read_dies,
6499 but the alternative is making the latter more complex.
6500 This function is only for the special case of using DWO files directly:
6501 no point in overly complicating the general case just to handle this. */
6502 if (free_cu_cleanup != NULL)
6503 {
6504 if (keep)
6505 {
6506 /* We've successfully allocated this compilation unit. Let our
6507 caller clean it up when finished with it. */
6508 discard_cleanups (free_cu_cleanup);
6509
6510 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6511 So we have to manually free the abbrev table. */
6512 dwarf2_free_abbrev_table (cu);
6513
6514 /* Link this CU into read_in_chain. */
6515 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6516 dwarf2_per_objfile->read_in_chain = this_cu;
6517 }
6518 else
6519 do_cleanups (free_cu_cleanup);
6520 }
6521
6522 do_cleanups (cleanups);
6523 }
6524
6525 /* Initialize a CU (or TU) and read its DIEs.
6526 If the CU defers to a DWO file, read the DWO file as well.
6527
6528 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6529 Otherwise the table specified in the comp unit header is read in and used.
6530 This is an optimization for when we already have the abbrev table.
6531
6532 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6533 Otherwise, a new CU is allocated with xmalloc.
6534
6535 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
6536 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
6537
6538 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6539 linker) then DIE_READER_FUNC will not get called. */
6540
6541 static void
6542 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
6543 struct abbrev_table *abbrev_table,
6544 int use_existing_cu, int keep,
6545 die_reader_func_ftype *die_reader_func,
6546 void *data)
6547 {
6548 struct objfile *objfile = dwarf2_per_objfile->objfile;
6549 struct dwarf2_section_info *section = this_cu->section;
6550 bfd *abfd = get_section_bfd_owner (section);
6551 struct dwarf2_cu *cu;
6552 const gdb_byte *begin_info_ptr, *info_ptr;
6553 struct die_reader_specs reader;
6554 struct die_info *comp_unit_die;
6555 int has_children;
6556 struct attribute *attr;
6557 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6558 struct signatured_type *sig_type = NULL;
6559 struct dwarf2_section_info *abbrev_section;
6560 /* Non-zero if CU currently points to a DWO file and we need to
6561 reread it. When this happens we need to reread the skeleton die
6562 before we can reread the DWO file (this only applies to CUs, not TUs). */
6563 int rereading_dwo_cu = 0;
6564
6565 if (dwarf_die_debug)
6566 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6567 this_cu->is_debug_types ? "type" : "comp",
6568 to_underlying (this_cu->sect_off));
6569
6570 if (use_existing_cu)
6571 gdb_assert (keep);
6572
6573 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6574 file (instead of going through the stub), short-circuit all of this. */
6575 if (this_cu->reading_dwo_directly)
6576 {
6577 /* Narrow down the scope of possibilities to have to understand. */
6578 gdb_assert (this_cu->is_debug_types);
6579 gdb_assert (abbrev_table == NULL);
6580 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
6581 die_reader_func, data);
6582 return;
6583 }
6584
6585 cleanups = make_cleanup (null_cleanup, NULL);
6586
6587 /* This is cheap if the section is already read in. */
6588 dwarf2_read_section (objfile, section);
6589
6590 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6591
6592 abbrev_section = get_abbrev_section_for_cu (this_cu);
6593
6594 if (use_existing_cu && this_cu->cu != NULL)
6595 {
6596 cu = this_cu->cu;
6597 /* If this CU is from a DWO file we need to start over, we need to
6598 refetch the attributes from the skeleton CU.
6599 This could be optimized by retrieving those attributes from when we
6600 were here the first time: the previous comp_unit_die was stored in
6601 comp_unit_obstack. But there's no data yet that we need this
6602 optimization. */
6603 if (cu->dwo_unit != NULL)
6604 rereading_dwo_cu = 1;
6605 }
6606 else
6607 {
6608 /* If !use_existing_cu, this_cu->cu must be NULL. */
6609 gdb_assert (this_cu->cu == NULL);
6610 cu = XNEW (struct dwarf2_cu);
6611 init_one_comp_unit (cu, this_cu);
6612 /* If an error occurs while loading, release our storage. */
6613 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6614 }
6615
6616 /* Get the header. */
6617 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6618 {
6619 /* We already have the header, there's no need to read it in again. */
6620 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6621 }
6622 else
6623 {
6624 if (this_cu->is_debug_types)
6625 {
6626 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6627 abbrev_section, info_ptr,
6628 rcuh_kind::TYPE);
6629
6630 /* Since per_cu is the first member of struct signatured_type,
6631 we can go from a pointer to one to a pointer to the other. */
6632 sig_type = (struct signatured_type *) this_cu;
6633 gdb_assert (sig_type->signature == cu->header.signature);
6634 gdb_assert (sig_type->type_offset_in_tu
6635 == cu->header.type_cu_offset_in_tu);
6636 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6637
6638 /* LENGTH has not been set yet for type units if we're
6639 using .gdb_index. */
6640 this_cu->length = get_cu_length (&cu->header);
6641
6642 /* Establish the type offset that can be used to lookup the type. */
6643 sig_type->type_offset_in_section =
6644 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6645
6646 this_cu->dwarf_version = cu->header.version;
6647 }
6648 else
6649 {
6650 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6651 abbrev_section,
6652 info_ptr,
6653 rcuh_kind::COMPILE);
6654
6655 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6656 gdb_assert (this_cu->length == get_cu_length (&cu->header));
6657 this_cu->dwarf_version = cu->header.version;
6658 }
6659 }
6660
6661 /* Skip dummy compilation units. */
6662 if (info_ptr >= begin_info_ptr + this_cu->length
6663 || peek_abbrev_code (abfd, info_ptr) == 0)
6664 {
6665 do_cleanups (cleanups);
6666 return;
6667 }
6668
6669 /* If we don't have them yet, read the abbrevs for this compilation unit.
6670 And if we need to read them now, make sure they're freed when we're
6671 done. Note that it's important that if the CU had an abbrev table
6672 on entry we don't free it when we're done: Somewhere up the call stack
6673 it may be in use. */
6674 if (abbrev_table != NULL)
6675 {
6676 gdb_assert (cu->abbrev_table == NULL);
6677 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6678 cu->abbrev_table = abbrev_table;
6679 }
6680 else if (cu->abbrev_table == NULL)
6681 {
6682 dwarf2_read_abbrevs (cu, abbrev_section);
6683 make_cleanup (dwarf2_free_abbrev_table, cu);
6684 }
6685 else if (rereading_dwo_cu)
6686 {
6687 dwarf2_free_abbrev_table (cu);
6688 dwarf2_read_abbrevs (cu, abbrev_section);
6689 }
6690
6691 /* Read the top level CU/TU die. */
6692 init_cu_die_reader (&reader, cu, section, NULL);
6693 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6694
6695 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6696 from the DWO file.
6697 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6698 DWO CU, that this test will fail (the attribute will not be present). */
6699 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6700 if (attr)
6701 {
6702 struct dwo_unit *dwo_unit;
6703 struct die_info *dwo_comp_unit_die;
6704
6705 if (has_children)
6706 {
6707 complaint (&symfile_complaints,
6708 _("compilation unit with DW_AT_GNU_dwo_name"
6709 " has children (offset 0x%x) [in module %s]"),
6710 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6711 }
6712 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6713 if (dwo_unit != NULL)
6714 {
6715 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6716 abbrev_table != NULL,
6717 comp_unit_die, NULL,
6718 &reader, &info_ptr,
6719 &dwo_comp_unit_die, &has_children) == 0)
6720 {
6721 /* Dummy die. */
6722 do_cleanups (cleanups);
6723 return;
6724 }
6725 comp_unit_die = dwo_comp_unit_die;
6726 }
6727 else
6728 {
6729 /* Yikes, we couldn't find the rest of the DIE, we only have
6730 the stub. A complaint has already been logged. There's
6731 not much more we can do except pass on the stub DIE to
6732 die_reader_func. We don't want to throw an error on bad
6733 debug info. */
6734 }
6735 }
6736
6737 /* All of the above is setup for this call. Yikes. */
6738 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6739
6740 /* Done, clean up. */
6741 if (free_cu_cleanup != NULL)
6742 {
6743 if (keep)
6744 {
6745 /* We've successfully allocated this compilation unit. Let our
6746 caller clean it up when finished with it. */
6747 discard_cleanups (free_cu_cleanup);
6748
6749 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6750 So we have to manually free the abbrev table. */
6751 dwarf2_free_abbrev_table (cu);
6752
6753 /* Link this CU into read_in_chain. */
6754 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6755 dwarf2_per_objfile->read_in_chain = this_cu;
6756 }
6757 else
6758 do_cleanups (free_cu_cleanup);
6759 }
6760
6761 do_cleanups (cleanups);
6762 }
6763
6764 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
6765 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
6766 to have already done the lookup to find the DWO file).
6767
6768 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6769 THIS_CU->is_debug_types, but nothing else.
6770
6771 We fill in THIS_CU->length.
6772
6773 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6774 linker) then DIE_READER_FUNC will not get called.
6775
6776 THIS_CU->cu is always freed when done.
6777 This is done in order to not leave THIS_CU->cu in a state where we have
6778 to care whether it refers to the "main" CU or the DWO CU. */
6779
6780 static void
6781 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
6782 struct dwo_file *dwo_file,
6783 die_reader_func_ftype *die_reader_func,
6784 void *data)
6785 {
6786 struct objfile *objfile = dwarf2_per_objfile->objfile;
6787 struct dwarf2_section_info *section = this_cu->section;
6788 bfd *abfd = get_section_bfd_owner (section);
6789 struct dwarf2_section_info *abbrev_section;
6790 struct dwarf2_cu cu;
6791 const gdb_byte *begin_info_ptr, *info_ptr;
6792 struct die_reader_specs reader;
6793 struct cleanup *cleanups;
6794 struct die_info *comp_unit_die;
6795 int has_children;
6796
6797 if (dwarf_die_debug)
6798 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6799 this_cu->is_debug_types ? "type" : "comp",
6800 to_underlying (this_cu->sect_off));
6801
6802 gdb_assert (this_cu->cu == NULL);
6803
6804 abbrev_section = (dwo_file != NULL
6805 ? &dwo_file->sections.abbrev
6806 : get_abbrev_section_for_cu (this_cu));
6807
6808 /* This is cheap if the section is already read in. */
6809 dwarf2_read_section (objfile, section);
6810
6811 init_one_comp_unit (&cu, this_cu);
6812
6813 cleanups = make_cleanup (free_stack_comp_unit, &cu);
6814
6815 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6816 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
6817 abbrev_section, info_ptr,
6818 (this_cu->is_debug_types
6819 ? rcuh_kind::TYPE
6820 : rcuh_kind::COMPILE));
6821
6822 this_cu->length = get_cu_length (&cu.header);
6823
6824 /* Skip dummy compilation units. */
6825 if (info_ptr >= begin_info_ptr + this_cu->length
6826 || peek_abbrev_code (abfd, info_ptr) == 0)
6827 {
6828 do_cleanups (cleanups);
6829 return;
6830 }
6831
6832 dwarf2_read_abbrevs (&cu, abbrev_section);
6833 make_cleanup (dwarf2_free_abbrev_table, &cu);
6834
6835 init_cu_die_reader (&reader, &cu, section, dwo_file);
6836 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6837
6838 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6839
6840 do_cleanups (cleanups);
6841 }
6842
6843 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
6844 does not lookup the specified DWO file.
6845 This cannot be used to read DWO files.
6846
6847 THIS_CU->cu is always freed when done.
6848 This is done in order to not leave THIS_CU->cu in a state where we have
6849 to care whether it refers to the "main" CU or the DWO CU.
6850 We can revisit this if the data shows there's a performance issue. */
6851
6852 static void
6853 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
6854 die_reader_func_ftype *die_reader_func,
6855 void *data)
6856 {
6857 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
6858 }
6859 \f
6860 /* Type Unit Groups.
6861
6862 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6863 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6864 so that all types coming from the same compilation (.o file) are grouped
6865 together. A future step could be to put the types in the same symtab as
6866 the CU the types ultimately came from. */
6867
6868 static hashval_t
6869 hash_type_unit_group (const void *item)
6870 {
6871 const struct type_unit_group *tu_group
6872 = (const struct type_unit_group *) item;
6873
6874 return hash_stmt_list_entry (&tu_group->hash);
6875 }
6876
6877 static int
6878 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6879 {
6880 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6881 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6882
6883 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6884 }
6885
6886 /* Allocate a hash table for type unit groups. */
6887
6888 static htab_t
6889 allocate_type_unit_groups_table (void)
6890 {
6891 return htab_create_alloc_ex (3,
6892 hash_type_unit_group,
6893 eq_type_unit_group,
6894 NULL,
6895 &dwarf2_per_objfile->objfile->objfile_obstack,
6896 hashtab_obstack_allocate,
6897 dummy_obstack_deallocate);
6898 }
6899
6900 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6901 partial symtabs. We combine several TUs per psymtab to not let the size
6902 of any one psymtab grow too big. */
6903 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6904 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6905
6906 /* Helper routine for get_type_unit_group.
6907 Create the type_unit_group object used to hold one or more TUs. */
6908
6909 static struct type_unit_group *
6910 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6911 {
6912 struct objfile *objfile = dwarf2_per_objfile->objfile;
6913 struct dwarf2_per_cu_data *per_cu;
6914 struct type_unit_group *tu_group;
6915
6916 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6917 struct type_unit_group);
6918 per_cu = &tu_group->per_cu;
6919 per_cu->objfile = objfile;
6920
6921 if (dwarf2_per_objfile->using_index)
6922 {
6923 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6924 struct dwarf2_per_cu_quick_data);
6925 }
6926 else
6927 {
6928 unsigned int line_offset = to_underlying (line_offset_struct);
6929 struct partial_symtab *pst;
6930 char *name;
6931
6932 /* Give the symtab a useful name for debug purposes. */
6933 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6934 name = xstrprintf ("<type_units_%d>",
6935 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6936 else
6937 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6938
6939 pst = create_partial_symtab (per_cu, name);
6940 pst->anonymous = 1;
6941
6942 xfree (name);
6943 }
6944
6945 tu_group->hash.dwo_unit = cu->dwo_unit;
6946 tu_group->hash.line_sect_off = line_offset_struct;
6947
6948 return tu_group;
6949 }
6950
6951 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6952 STMT_LIST is a DW_AT_stmt_list attribute. */
6953
6954 static struct type_unit_group *
6955 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6956 {
6957 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6958 struct type_unit_group *tu_group;
6959 void **slot;
6960 unsigned int line_offset;
6961 struct type_unit_group type_unit_group_for_lookup;
6962
6963 if (dwarf2_per_objfile->type_unit_groups == NULL)
6964 {
6965 dwarf2_per_objfile->type_unit_groups =
6966 allocate_type_unit_groups_table ();
6967 }
6968
6969 /* Do we need to create a new group, or can we use an existing one? */
6970
6971 if (stmt_list)
6972 {
6973 line_offset = DW_UNSND (stmt_list);
6974 ++tu_stats->nr_symtab_sharers;
6975 }
6976 else
6977 {
6978 /* Ugh, no stmt_list. Rare, but we have to handle it.
6979 We can do various things here like create one group per TU or
6980 spread them over multiple groups to split up the expansion work.
6981 To avoid worst case scenarios (too many groups or too large groups)
6982 we, umm, group them in bunches. */
6983 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6984 | (tu_stats->nr_stmt_less_type_units
6985 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6986 ++tu_stats->nr_stmt_less_type_units;
6987 }
6988
6989 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6990 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6991 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6992 &type_unit_group_for_lookup, INSERT);
6993 if (*slot != NULL)
6994 {
6995 tu_group = (struct type_unit_group *) *slot;
6996 gdb_assert (tu_group != NULL);
6997 }
6998 else
6999 {
7000 sect_offset line_offset_struct = (sect_offset) line_offset;
7001 tu_group = create_type_unit_group (cu, line_offset_struct);
7002 *slot = tu_group;
7003 ++tu_stats->nr_symtabs;
7004 }
7005
7006 return tu_group;
7007 }
7008 \f
7009 /* Partial symbol tables. */
7010
7011 /* Create a psymtab named NAME and assign it to PER_CU.
7012
7013 The caller must fill in the following details:
7014 dirname, textlow, texthigh. */
7015
7016 static struct partial_symtab *
7017 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7018 {
7019 struct objfile *objfile = per_cu->objfile;
7020 struct partial_symtab *pst;
7021
7022 pst = start_psymtab_common (objfile, name, 0,
7023 objfile->global_psymbols,
7024 objfile->static_psymbols);
7025
7026 pst->psymtabs_addrmap_supported = 1;
7027
7028 /* This is the glue that links PST into GDB's symbol API. */
7029 pst->read_symtab_private = per_cu;
7030 pst->read_symtab = dwarf2_read_symtab;
7031 per_cu->v.psymtab = pst;
7032
7033 return pst;
7034 }
7035
7036 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7037 type. */
7038
7039 struct process_psymtab_comp_unit_data
7040 {
7041 /* True if we are reading a DW_TAG_partial_unit. */
7042
7043 int want_partial_unit;
7044
7045 /* The "pretend" language that is used if the CU doesn't declare a
7046 language. */
7047
7048 enum language pretend_language;
7049 };
7050
7051 /* die_reader_func for process_psymtab_comp_unit. */
7052
7053 static void
7054 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7055 const gdb_byte *info_ptr,
7056 struct die_info *comp_unit_die,
7057 int has_children,
7058 void *data)
7059 {
7060 struct dwarf2_cu *cu = reader->cu;
7061 struct objfile *objfile = cu->objfile;
7062 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7063 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7064 CORE_ADDR baseaddr;
7065 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7066 struct partial_symtab *pst;
7067 enum pc_bounds_kind cu_bounds_kind;
7068 const char *filename;
7069 struct process_psymtab_comp_unit_data *info
7070 = (struct process_psymtab_comp_unit_data *) data;
7071
7072 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7073 return;
7074
7075 gdb_assert (! per_cu->is_debug_types);
7076
7077 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7078
7079 cu->list_in_scope = &file_symbols;
7080
7081 /* Allocate a new partial symbol table structure. */
7082 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7083 if (filename == NULL)
7084 filename = "";
7085
7086 pst = create_partial_symtab (per_cu, filename);
7087
7088 /* This must be done before calling dwarf2_build_include_psymtabs. */
7089 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7090
7091 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7092
7093 dwarf2_find_base_address (comp_unit_die, cu);
7094
7095 /* Possibly set the default values of LOWPC and HIGHPC from
7096 `DW_AT_ranges'. */
7097 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7098 &best_highpc, cu, pst);
7099 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7100 /* Store the contiguous range if it is not empty; it can be empty for
7101 CUs with no code. */
7102 addrmap_set_empty (objfile->psymtabs_addrmap,
7103 gdbarch_adjust_dwarf2_addr (gdbarch,
7104 best_lowpc + baseaddr),
7105 gdbarch_adjust_dwarf2_addr (gdbarch,
7106 best_highpc + baseaddr) - 1,
7107 pst);
7108
7109 /* Check if comp unit has_children.
7110 If so, read the rest of the partial symbols from this comp unit.
7111 If not, there's no more debug_info for this comp unit. */
7112 if (has_children)
7113 {
7114 struct partial_die_info *first_die;
7115 CORE_ADDR lowpc, highpc;
7116
7117 lowpc = ((CORE_ADDR) -1);
7118 highpc = ((CORE_ADDR) 0);
7119
7120 first_die = load_partial_dies (reader, info_ptr, 1);
7121
7122 scan_partial_symbols (first_die, &lowpc, &highpc,
7123 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7124
7125 /* If we didn't find a lowpc, set it to highpc to avoid
7126 complaints from `maint check'. */
7127 if (lowpc == ((CORE_ADDR) -1))
7128 lowpc = highpc;
7129
7130 /* If the compilation unit didn't have an explicit address range,
7131 then use the information extracted from its child dies. */
7132 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7133 {
7134 best_lowpc = lowpc;
7135 best_highpc = highpc;
7136 }
7137 }
7138 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7139 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7140
7141 end_psymtab_common (objfile, pst);
7142
7143 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7144 {
7145 int i;
7146 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7147 struct dwarf2_per_cu_data *iter;
7148
7149 /* Fill in 'dependencies' here; we fill in 'users' in a
7150 post-pass. */
7151 pst->number_of_dependencies = len;
7152 pst->dependencies =
7153 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7154 for (i = 0;
7155 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7156 i, iter);
7157 ++i)
7158 pst->dependencies[i] = iter->v.psymtab;
7159
7160 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7161 }
7162
7163 /* Get the list of files included in the current compilation unit,
7164 and build a psymtab for each of them. */
7165 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7166
7167 if (dwarf_read_debug)
7168 {
7169 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7170
7171 fprintf_unfiltered (gdb_stdlog,
7172 "Psymtab for %s unit @0x%x: %s - %s"
7173 ", %d global, %d static syms\n",
7174 per_cu->is_debug_types ? "type" : "comp",
7175 to_underlying (per_cu->sect_off),
7176 paddress (gdbarch, pst->textlow),
7177 paddress (gdbarch, pst->texthigh),
7178 pst->n_global_syms, pst->n_static_syms);
7179 }
7180 }
7181
7182 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7183 Process compilation unit THIS_CU for a psymtab. */
7184
7185 static void
7186 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7187 int want_partial_unit,
7188 enum language pretend_language)
7189 {
7190 /* If this compilation unit was already read in, free the
7191 cached copy in order to read it in again. This is
7192 necessary because we skipped some symbols when we first
7193 read in the compilation unit (see load_partial_dies).
7194 This problem could be avoided, but the benefit is unclear. */
7195 if (this_cu->cu != NULL)
7196 free_one_cached_comp_unit (this_cu);
7197
7198 if (this_cu->is_debug_types)
7199 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
7200 NULL);
7201 else
7202 {
7203 process_psymtab_comp_unit_data info;
7204 info.want_partial_unit = want_partial_unit;
7205 info.pretend_language = pretend_language;
7206 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
7207 process_psymtab_comp_unit_reader, &info);
7208 }
7209
7210 /* Age out any secondary CUs. */
7211 age_cached_comp_units ();
7212 }
7213
7214 /* Reader function for build_type_psymtabs. */
7215
7216 static void
7217 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7218 const gdb_byte *info_ptr,
7219 struct die_info *type_unit_die,
7220 int has_children,
7221 void *data)
7222 {
7223 struct objfile *objfile = dwarf2_per_objfile->objfile;
7224 struct dwarf2_cu *cu = reader->cu;
7225 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7226 struct signatured_type *sig_type;
7227 struct type_unit_group *tu_group;
7228 struct attribute *attr;
7229 struct partial_die_info *first_die;
7230 CORE_ADDR lowpc, highpc;
7231 struct partial_symtab *pst;
7232
7233 gdb_assert (data == NULL);
7234 gdb_assert (per_cu->is_debug_types);
7235 sig_type = (struct signatured_type *) per_cu;
7236
7237 if (! has_children)
7238 return;
7239
7240 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7241 tu_group = get_type_unit_group (cu, attr);
7242
7243 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
7244
7245 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7246 cu->list_in_scope = &file_symbols;
7247 pst = create_partial_symtab (per_cu, "");
7248 pst->anonymous = 1;
7249
7250 first_die = load_partial_dies (reader, info_ptr, 1);
7251
7252 lowpc = (CORE_ADDR) -1;
7253 highpc = (CORE_ADDR) 0;
7254 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7255
7256 end_psymtab_common (objfile, pst);
7257 }
7258
7259 /* Struct used to sort TUs by their abbreviation table offset. */
7260
7261 struct tu_abbrev_offset
7262 {
7263 struct signatured_type *sig_type;
7264 sect_offset abbrev_offset;
7265 };
7266
7267 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
7268
7269 static int
7270 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
7271 {
7272 const struct tu_abbrev_offset * const *a
7273 = (const struct tu_abbrev_offset * const*) ap;
7274 const struct tu_abbrev_offset * const *b
7275 = (const struct tu_abbrev_offset * const*) bp;
7276 sect_offset aoff = (*a)->abbrev_offset;
7277 sect_offset boff = (*b)->abbrev_offset;
7278
7279 return (aoff > boff) - (aoff < boff);
7280 }
7281
7282 /* Efficiently read all the type units.
7283 This does the bulk of the work for build_type_psymtabs.
7284
7285 The efficiency is because we sort TUs by the abbrev table they use and
7286 only read each abbrev table once. In one program there are 200K TUs
7287 sharing 8K abbrev tables.
7288
7289 The main purpose of this function is to support building the
7290 dwarf2_per_objfile->type_unit_groups table.
7291 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7292 can collapse the search space by grouping them by stmt_list.
7293 The savings can be significant, in the same program from above the 200K TUs
7294 share 8K stmt_list tables.
7295
7296 FUNC is expected to call get_type_unit_group, which will create the
7297 struct type_unit_group if necessary and add it to
7298 dwarf2_per_objfile->type_unit_groups. */
7299
7300 static void
7301 build_type_psymtabs_1 (void)
7302 {
7303 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7304 struct cleanup *cleanups;
7305 struct abbrev_table *abbrev_table;
7306 sect_offset abbrev_offset;
7307 struct tu_abbrev_offset *sorted_by_abbrev;
7308 int i;
7309
7310 /* It's up to the caller to not call us multiple times. */
7311 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7312
7313 if (dwarf2_per_objfile->n_type_units == 0)
7314 return;
7315
7316 /* TUs typically share abbrev tables, and there can be way more TUs than
7317 abbrev tables. Sort by abbrev table to reduce the number of times we
7318 read each abbrev table in.
7319 Alternatives are to punt or to maintain a cache of abbrev tables.
7320 This is simpler and efficient enough for now.
7321
7322 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7323 symtab to use). Typically TUs with the same abbrev offset have the same
7324 stmt_list value too so in practice this should work well.
7325
7326 The basic algorithm here is:
7327
7328 sort TUs by abbrev table
7329 for each TU with same abbrev table:
7330 read abbrev table if first user
7331 read TU top level DIE
7332 [IWBN if DWO skeletons had DW_AT_stmt_list]
7333 call FUNC */
7334
7335 if (dwarf_read_debug)
7336 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7337
7338 /* Sort in a separate table to maintain the order of all_type_units
7339 for .gdb_index: TU indices directly index all_type_units. */
7340 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
7341 dwarf2_per_objfile->n_type_units);
7342 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7343 {
7344 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
7345
7346 sorted_by_abbrev[i].sig_type = sig_type;
7347 sorted_by_abbrev[i].abbrev_offset =
7348 read_abbrev_offset (sig_type->per_cu.section,
7349 sig_type->per_cu.sect_off);
7350 }
7351 cleanups = make_cleanup (xfree, sorted_by_abbrev);
7352 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
7353 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
7354
7355 abbrev_offset = (sect_offset) ~(unsigned) 0;
7356 abbrev_table = NULL;
7357 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
7358
7359 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7360 {
7361 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
7362
7363 /* Switch to the next abbrev table if necessary. */
7364 if (abbrev_table == NULL
7365 || tu->abbrev_offset != abbrev_offset)
7366 {
7367 if (abbrev_table != NULL)
7368 {
7369 abbrev_table_free (abbrev_table);
7370 /* Reset to NULL in case abbrev_table_read_table throws
7371 an error: abbrev_table_free_cleanup will get called. */
7372 abbrev_table = NULL;
7373 }
7374 abbrev_offset = tu->abbrev_offset;
7375 abbrev_table =
7376 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
7377 abbrev_offset);
7378 ++tu_stats->nr_uniq_abbrev_tables;
7379 }
7380
7381 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
7382 build_type_psymtabs_reader, NULL);
7383 }
7384
7385 do_cleanups (cleanups);
7386 }
7387
7388 /* Print collected type unit statistics. */
7389
7390 static void
7391 print_tu_stats (void)
7392 {
7393 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7394
7395 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7396 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
7397 dwarf2_per_objfile->n_type_units);
7398 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7399 tu_stats->nr_uniq_abbrev_tables);
7400 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7401 tu_stats->nr_symtabs);
7402 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7403 tu_stats->nr_symtab_sharers);
7404 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7405 tu_stats->nr_stmt_less_type_units);
7406 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7407 tu_stats->nr_all_type_units_reallocs);
7408 }
7409
7410 /* Traversal function for build_type_psymtabs. */
7411
7412 static int
7413 build_type_psymtab_dependencies (void **slot, void *info)
7414 {
7415 struct objfile *objfile = dwarf2_per_objfile->objfile;
7416 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7417 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7418 struct partial_symtab *pst = per_cu->v.psymtab;
7419 int len = VEC_length (sig_type_ptr, tu_group->tus);
7420 struct signatured_type *iter;
7421 int i;
7422
7423 gdb_assert (len > 0);
7424 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
7425
7426 pst->number_of_dependencies = len;
7427 pst->dependencies =
7428 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7429 for (i = 0;
7430 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
7431 ++i)
7432 {
7433 gdb_assert (iter->per_cu.is_debug_types);
7434 pst->dependencies[i] = iter->per_cu.v.psymtab;
7435 iter->type_unit_group = tu_group;
7436 }
7437
7438 VEC_free (sig_type_ptr, tu_group->tus);
7439
7440 return 1;
7441 }
7442
7443 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7444 Build partial symbol tables for the .debug_types comp-units. */
7445
7446 static void
7447 build_type_psymtabs (struct objfile *objfile)
7448 {
7449 if (! create_all_type_units (objfile))
7450 return;
7451
7452 build_type_psymtabs_1 ();
7453 }
7454
7455 /* Traversal function for process_skeletonless_type_unit.
7456 Read a TU in a DWO file and build partial symbols for it. */
7457
7458 static int
7459 process_skeletonless_type_unit (void **slot, void *info)
7460 {
7461 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7462 struct objfile *objfile = (struct objfile *) info;
7463 struct signatured_type find_entry, *entry;
7464
7465 /* If this TU doesn't exist in the global table, add it and read it in. */
7466
7467 if (dwarf2_per_objfile->signatured_types == NULL)
7468 {
7469 dwarf2_per_objfile->signatured_types
7470 = allocate_signatured_type_table (objfile);
7471 }
7472
7473 find_entry.signature = dwo_unit->signature;
7474 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
7475 INSERT);
7476 /* If we've already seen this type there's nothing to do. What's happening
7477 is we're doing our own version of comdat-folding here. */
7478 if (*slot != NULL)
7479 return 1;
7480
7481 /* This does the job that create_all_type_units would have done for
7482 this TU. */
7483 entry = add_type_unit (dwo_unit->signature, slot);
7484 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
7485 *slot = entry;
7486
7487 /* This does the job that build_type_psymtabs_1 would have done. */
7488 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
7489 build_type_psymtabs_reader, NULL);
7490
7491 return 1;
7492 }
7493
7494 /* Traversal function for process_skeletonless_type_units. */
7495
7496 static int
7497 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7498 {
7499 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7500
7501 if (dwo_file->tus != NULL)
7502 {
7503 htab_traverse_noresize (dwo_file->tus,
7504 process_skeletonless_type_unit, info);
7505 }
7506
7507 return 1;
7508 }
7509
7510 /* Scan all TUs of DWO files, verifying we've processed them.
7511 This is needed in case a TU was emitted without its skeleton.
7512 Note: This can't be done until we know what all the DWO files are. */
7513
7514 static void
7515 process_skeletonless_type_units (struct objfile *objfile)
7516 {
7517 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7518 if (get_dwp_file () == NULL
7519 && dwarf2_per_objfile->dwo_files != NULL)
7520 {
7521 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
7522 process_dwo_file_for_skeletonless_type_units,
7523 objfile);
7524 }
7525 }
7526
7527 /* Compute the 'user' field for each psymtab in OBJFILE. */
7528
7529 static void
7530 set_partial_user (struct objfile *objfile)
7531 {
7532 int i;
7533
7534 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7535 {
7536 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7537 struct partial_symtab *pst = per_cu->v.psymtab;
7538 int j;
7539
7540 if (pst == NULL)
7541 continue;
7542
7543 for (j = 0; j < pst->number_of_dependencies; ++j)
7544 {
7545 /* Set the 'user' field only if it is not already set. */
7546 if (pst->dependencies[j]->user == NULL)
7547 pst->dependencies[j]->user = pst;
7548 }
7549 }
7550 }
7551
7552 /* Build the partial symbol table by doing a quick pass through the
7553 .debug_info and .debug_abbrev sections. */
7554
7555 static void
7556 dwarf2_build_psymtabs_hard (struct objfile *objfile)
7557 {
7558 struct cleanup *back_to;
7559 int i;
7560
7561 if (dwarf_read_debug)
7562 {
7563 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7564 objfile_name (objfile));
7565 }
7566
7567 dwarf2_per_objfile->reading_partial_symbols = 1;
7568
7569 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
7570
7571 /* Any cached compilation units will be linked by the per-objfile
7572 read_in_chain. Make sure to free them when we're done. */
7573 back_to = make_cleanup (free_cached_comp_units, NULL);
7574
7575 build_type_psymtabs (objfile);
7576
7577 create_all_comp_units (objfile);
7578
7579 /* Create a temporary address map on a temporary obstack. We later
7580 copy this to the final obstack. */
7581 auto_obstack temp_obstack;
7582
7583 scoped_restore save_psymtabs_addrmap
7584 = make_scoped_restore (&objfile->psymtabs_addrmap,
7585 addrmap_create_mutable (&temp_obstack));
7586
7587 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7588 {
7589 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7590
7591 process_psymtab_comp_unit (per_cu, 0, language_minimal);
7592 }
7593
7594 /* This has to wait until we read the CUs, we need the list of DWOs. */
7595 process_skeletonless_type_units (objfile);
7596
7597 /* Now that all TUs have been processed we can fill in the dependencies. */
7598 if (dwarf2_per_objfile->type_unit_groups != NULL)
7599 {
7600 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
7601 build_type_psymtab_dependencies, NULL);
7602 }
7603
7604 if (dwarf_read_debug)
7605 print_tu_stats ();
7606
7607 set_partial_user (objfile);
7608
7609 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
7610 &objfile->objfile_obstack);
7611 /* At this point we want to keep the address map. */
7612 save_psymtabs_addrmap.release ();
7613
7614 do_cleanups (back_to);
7615
7616 if (dwarf_read_debug)
7617 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7618 objfile_name (objfile));
7619 }
7620
7621 /* die_reader_func for load_partial_comp_unit. */
7622
7623 static void
7624 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
7625 const gdb_byte *info_ptr,
7626 struct die_info *comp_unit_die,
7627 int has_children,
7628 void *data)
7629 {
7630 struct dwarf2_cu *cu = reader->cu;
7631
7632 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
7633
7634 /* Check if comp unit has_children.
7635 If so, read the rest of the partial symbols from this comp unit.
7636 If not, there's no more debug_info for this comp unit. */
7637 if (has_children)
7638 load_partial_dies (reader, info_ptr, 0);
7639 }
7640
7641 /* Load the partial DIEs for a secondary CU into memory.
7642 This is also used when rereading a primary CU with load_all_dies. */
7643
7644 static void
7645 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7646 {
7647 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7648 load_partial_comp_unit_reader, NULL);
7649 }
7650
7651 static void
7652 read_comp_units_from_section (struct objfile *objfile,
7653 struct dwarf2_section_info *section,
7654 struct dwarf2_section_info *abbrev_section,
7655 unsigned int is_dwz,
7656 int *n_allocated,
7657 int *n_comp_units,
7658 struct dwarf2_per_cu_data ***all_comp_units)
7659 {
7660 const gdb_byte *info_ptr;
7661
7662 if (dwarf_read_debug)
7663 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7664 get_section_name (section),
7665 get_section_file_name (section));
7666
7667 dwarf2_read_section (objfile, section);
7668
7669 info_ptr = section->buffer;
7670
7671 while (info_ptr < section->buffer + section->size)
7672 {
7673 struct dwarf2_per_cu_data *this_cu;
7674
7675 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7676
7677 comp_unit_head cu_header;
7678 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
7679 info_ptr, rcuh_kind::COMPILE);
7680
7681 /* Save the compilation unit for later lookup. */
7682 if (cu_header.unit_type != DW_UT_type)
7683 {
7684 this_cu = XOBNEW (&objfile->objfile_obstack,
7685 struct dwarf2_per_cu_data);
7686 memset (this_cu, 0, sizeof (*this_cu));
7687 }
7688 else
7689 {
7690 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7691 struct signatured_type);
7692 memset (sig_type, 0, sizeof (*sig_type));
7693 sig_type->signature = cu_header.signature;
7694 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7695 this_cu = &sig_type->per_cu;
7696 }
7697 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7698 this_cu->sect_off = sect_off;
7699 this_cu->length = cu_header.length + cu_header.initial_length_size;
7700 this_cu->is_dwz = is_dwz;
7701 this_cu->objfile = objfile;
7702 this_cu->section = section;
7703
7704 if (*n_comp_units == *n_allocated)
7705 {
7706 *n_allocated *= 2;
7707 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
7708 *all_comp_units, *n_allocated);
7709 }
7710 (*all_comp_units)[*n_comp_units] = this_cu;
7711 ++*n_comp_units;
7712
7713 info_ptr = info_ptr + this_cu->length;
7714 }
7715 }
7716
7717 /* Create a list of all compilation units in OBJFILE.
7718 This is only done for -readnow and building partial symtabs. */
7719
7720 static void
7721 create_all_comp_units (struct objfile *objfile)
7722 {
7723 int n_allocated;
7724 int n_comp_units;
7725 struct dwarf2_per_cu_data **all_comp_units;
7726 struct dwz_file *dwz;
7727
7728 n_comp_units = 0;
7729 n_allocated = 10;
7730 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
7731
7732 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
7733 &dwarf2_per_objfile->abbrev, 0,
7734 &n_allocated, &n_comp_units, &all_comp_units);
7735
7736 dwz = dwarf2_get_dwz_file ();
7737 if (dwz != NULL)
7738 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
7739 &n_allocated, &n_comp_units,
7740 &all_comp_units);
7741
7742 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
7743 struct dwarf2_per_cu_data *,
7744 n_comp_units);
7745 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
7746 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
7747 xfree (all_comp_units);
7748 dwarf2_per_objfile->n_comp_units = n_comp_units;
7749 }
7750
7751 /* Process all loaded DIEs for compilation unit CU, starting at
7752 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7753 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7754 DW_AT_ranges). See the comments of add_partial_subprogram on how
7755 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7756
7757 static void
7758 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7759 CORE_ADDR *highpc, int set_addrmap,
7760 struct dwarf2_cu *cu)
7761 {
7762 struct partial_die_info *pdi;
7763
7764 /* Now, march along the PDI's, descending into ones which have
7765 interesting children but skipping the children of the other ones,
7766 until we reach the end of the compilation unit. */
7767
7768 pdi = first_die;
7769
7770 while (pdi != NULL)
7771 {
7772 fixup_partial_die (pdi, cu);
7773
7774 /* Anonymous namespaces or modules have no name but have interesting
7775 children, so we need to look at them. Ditto for anonymous
7776 enums. */
7777
7778 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7779 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7780 || pdi->tag == DW_TAG_imported_unit)
7781 {
7782 switch (pdi->tag)
7783 {
7784 case DW_TAG_subprogram:
7785 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7786 break;
7787 case DW_TAG_constant:
7788 case DW_TAG_variable:
7789 case DW_TAG_typedef:
7790 case DW_TAG_union_type:
7791 if (!pdi->is_declaration)
7792 {
7793 add_partial_symbol (pdi, cu);
7794 }
7795 break;
7796 case DW_TAG_class_type:
7797 case DW_TAG_interface_type:
7798 case DW_TAG_structure_type:
7799 if (!pdi->is_declaration)
7800 {
7801 add_partial_symbol (pdi, cu);
7802 }
7803 if (cu->language == language_rust && pdi->has_children)
7804 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7805 set_addrmap, cu);
7806 break;
7807 case DW_TAG_enumeration_type:
7808 if (!pdi->is_declaration)
7809 add_partial_enumeration (pdi, cu);
7810 break;
7811 case DW_TAG_base_type:
7812 case DW_TAG_subrange_type:
7813 /* File scope base type definitions are added to the partial
7814 symbol table. */
7815 add_partial_symbol (pdi, cu);
7816 break;
7817 case DW_TAG_namespace:
7818 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7819 break;
7820 case DW_TAG_module:
7821 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7822 break;
7823 case DW_TAG_imported_unit:
7824 {
7825 struct dwarf2_per_cu_data *per_cu;
7826
7827 /* For now we don't handle imported units in type units. */
7828 if (cu->per_cu->is_debug_types)
7829 {
7830 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7831 " supported in type units [in module %s]"),
7832 objfile_name (cu->objfile));
7833 }
7834
7835 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
7836 pdi->is_dwz,
7837 cu->objfile);
7838
7839 /* Go read the partial unit, if needed. */
7840 if (per_cu->v.psymtab == NULL)
7841 process_psymtab_comp_unit (per_cu, 1, cu->language);
7842
7843 VEC_safe_push (dwarf2_per_cu_ptr,
7844 cu->per_cu->imported_symtabs, per_cu);
7845 }
7846 break;
7847 case DW_TAG_imported_declaration:
7848 add_partial_symbol (pdi, cu);
7849 break;
7850 default:
7851 break;
7852 }
7853 }
7854
7855 /* If the die has a sibling, skip to the sibling. */
7856
7857 pdi = pdi->die_sibling;
7858 }
7859 }
7860
7861 /* Functions used to compute the fully scoped name of a partial DIE.
7862
7863 Normally, this is simple. For C++, the parent DIE's fully scoped
7864 name is concatenated with "::" and the partial DIE's name.
7865 Enumerators are an exception; they use the scope of their parent
7866 enumeration type, i.e. the name of the enumeration type is not
7867 prepended to the enumerator.
7868
7869 There are two complexities. One is DW_AT_specification; in this
7870 case "parent" means the parent of the target of the specification,
7871 instead of the direct parent of the DIE. The other is compilers
7872 which do not emit DW_TAG_namespace; in this case we try to guess
7873 the fully qualified name of structure types from their members'
7874 linkage names. This must be done using the DIE's children rather
7875 than the children of any DW_AT_specification target. We only need
7876 to do this for structures at the top level, i.e. if the target of
7877 any DW_AT_specification (if any; otherwise the DIE itself) does not
7878 have a parent. */
7879
7880 /* Compute the scope prefix associated with PDI's parent, in
7881 compilation unit CU. The result will be allocated on CU's
7882 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7883 field. NULL is returned if no prefix is necessary. */
7884 static const char *
7885 partial_die_parent_scope (struct partial_die_info *pdi,
7886 struct dwarf2_cu *cu)
7887 {
7888 const char *grandparent_scope;
7889 struct partial_die_info *parent, *real_pdi;
7890
7891 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7892 then this means the parent of the specification DIE. */
7893
7894 real_pdi = pdi;
7895 while (real_pdi->has_specification)
7896 real_pdi = find_partial_die (real_pdi->spec_offset,
7897 real_pdi->spec_is_dwz, cu);
7898
7899 parent = real_pdi->die_parent;
7900 if (parent == NULL)
7901 return NULL;
7902
7903 if (parent->scope_set)
7904 return parent->scope;
7905
7906 fixup_partial_die (parent, cu);
7907
7908 grandparent_scope = partial_die_parent_scope (parent, cu);
7909
7910 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7911 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7912 Work around this problem here. */
7913 if (cu->language == language_cplus
7914 && parent->tag == DW_TAG_namespace
7915 && strcmp (parent->name, "::") == 0
7916 && grandparent_scope == NULL)
7917 {
7918 parent->scope = NULL;
7919 parent->scope_set = 1;
7920 return NULL;
7921 }
7922
7923 if (pdi->tag == DW_TAG_enumerator)
7924 /* Enumerators should not get the name of the enumeration as a prefix. */
7925 parent->scope = grandparent_scope;
7926 else if (parent->tag == DW_TAG_namespace
7927 || parent->tag == DW_TAG_module
7928 || parent->tag == DW_TAG_structure_type
7929 || parent->tag == DW_TAG_class_type
7930 || parent->tag == DW_TAG_interface_type
7931 || parent->tag == DW_TAG_union_type
7932 || parent->tag == DW_TAG_enumeration_type)
7933 {
7934 if (grandparent_scope == NULL)
7935 parent->scope = parent->name;
7936 else
7937 parent->scope = typename_concat (&cu->comp_unit_obstack,
7938 grandparent_scope,
7939 parent->name, 0, cu);
7940 }
7941 else
7942 {
7943 /* FIXME drow/2004-04-01: What should we be doing with
7944 function-local names? For partial symbols, we should probably be
7945 ignoring them. */
7946 complaint (&symfile_complaints,
7947 _("unhandled containing DIE tag %d for DIE at %d"),
7948 parent->tag, to_underlying (pdi->sect_off));
7949 parent->scope = grandparent_scope;
7950 }
7951
7952 parent->scope_set = 1;
7953 return parent->scope;
7954 }
7955
7956 /* Return the fully scoped name associated with PDI, from compilation unit
7957 CU. The result will be allocated with malloc. */
7958
7959 static char *
7960 partial_die_full_name (struct partial_die_info *pdi,
7961 struct dwarf2_cu *cu)
7962 {
7963 const char *parent_scope;
7964
7965 /* If this is a template instantiation, we can not work out the
7966 template arguments from partial DIEs. So, unfortunately, we have
7967 to go through the full DIEs. At least any work we do building
7968 types here will be reused if full symbols are loaded later. */
7969 if (pdi->has_template_arguments)
7970 {
7971 fixup_partial_die (pdi, cu);
7972
7973 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7974 {
7975 struct die_info *die;
7976 struct attribute attr;
7977 struct dwarf2_cu *ref_cu = cu;
7978
7979 /* DW_FORM_ref_addr is using section offset. */
7980 attr.name = (enum dwarf_attribute) 0;
7981 attr.form = DW_FORM_ref_addr;
7982 attr.u.unsnd = to_underlying (pdi->sect_off);
7983 die = follow_die_ref (NULL, &attr, &ref_cu);
7984
7985 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7986 }
7987 }
7988
7989 parent_scope = partial_die_parent_scope (pdi, cu);
7990 if (parent_scope == NULL)
7991 return NULL;
7992 else
7993 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7994 }
7995
7996 static void
7997 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7998 {
7999 struct objfile *objfile = cu->objfile;
8000 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8001 CORE_ADDR addr = 0;
8002 const char *actual_name = NULL;
8003 CORE_ADDR baseaddr;
8004 char *built_actual_name;
8005
8006 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8007
8008 built_actual_name = partial_die_full_name (pdi, cu);
8009 if (built_actual_name != NULL)
8010 actual_name = built_actual_name;
8011
8012 if (actual_name == NULL)
8013 actual_name = pdi->name;
8014
8015 switch (pdi->tag)
8016 {
8017 case DW_TAG_subprogram:
8018 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8019 if (pdi->is_external || cu->language == language_ada)
8020 {
8021 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8022 of the global scope. But in Ada, we want to be able to access
8023 nested procedures globally. So all Ada subprograms are stored
8024 in the global scope. */
8025 add_psymbol_to_list (actual_name, strlen (actual_name),
8026 built_actual_name != NULL,
8027 VAR_DOMAIN, LOC_BLOCK,
8028 &objfile->global_psymbols,
8029 addr, cu->language, objfile);
8030 }
8031 else
8032 {
8033 add_psymbol_to_list (actual_name, strlen (actual_name),
8034 built_actual_name != NULL,
8035 VAR_DOMAIN, LOC_BLOCK,
8036 &objfile->static_psymbols,
8037 addr, cu->language, objfile);
8038 }
8039
8040 if (pdi->main_subprogram && actual_name != NULL)
8041 set_objfile_main_name (objfile, actual_name, cu->language);
8042 break;
8043 case DW_TAG_constant:
8044 {
8045 std::vector<partial_symbol *> *list;
8046
8047 if (pdi->is_external)
8048 list = &objfile->global_psymbols;
8049 else
8050 list = &objfile->static_psymbols;
8051 add_psymbol_to_list (actual_name, strlen (actual_name),
8052 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8053 list, 0, cu->language, objfile);
8054 }
8055 break;
8056 case DW_TAG_variable:
8057 if (pdi->d.locdesc)
8058 addr = decode_locdesc (pdi->d.locdesc, cu);
8059
8060 if (pdi->d.locdesc
8061 && addr == 0
8062 && !dwarf2_per_objfile->has_section_at_zero)
8063 {
8064 /* A global or static variable may also have been stripped
8065 out by the linker if unused, in which case its address
8066 will be nullified; do not add such variables into partial
8067 symbol table then. */
8068 }
8069 else if (pdi->is_external)
8070 {
8071 /* Global Variable.
8072 Don't enter into the minimal symbol tables as there is
8073 a minimal symbol table entry from the ELF symbols already.
8074 Enter into partial symbol table if it has a location
8075 descriptor or a type.
8076 If the location descriptor is missing, new_symbol will create
8077 a LOC_UNRESOLVED symbol, the address of the variable will then
8078 be determined from the minimal symbol table whenever the variable
8079 is referenced.
8080 The address for the partial symbol table entry is not
8081 used by GDB, but it comes in handy for debugging partial symbol
8082 table building. */
8083
8084 if (pdi->d.locdesc || pdi->has_type)
8085 add_psymbol_to_list (actual_name, strlen (actual_name),
8086 built_actual_name != NULL,
8087 VAR_DOMAIN, LOC_STATIC,
8088 &objfile->global_psymbols,
8089 addr + baseaddr,
8090 cu->language, objfile);
8091 }
8092 else
8093 {
8094 int has_loc = pdi->d.locdesc != NULL;
8095
8096 /* Static Variable. Skip symbols whose value we cannot know (those
8097 without location descriptors or constant values). */
8098 if (!has_loc && !pdi->has_const_value)
8099 {
8100 xfree (built_actual_name);
8101 return;
8102 }
8103
8104 add_psymbol_to_list (actual_name, strlen (actual_name),
8105 built_actual_name != NULL,
8106 VAR_DOMAIN, LOC_STATIC,
8107 &objfile->static_psymbols,
8108 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8109 cu->language, objfile);
8110 }
8111 break;
8112 case DW_TAG_typedef:
8113 case DW_TAG_base_type:
8114 case DW_TAG_subrange_type:
8115 add_psymbol_to_list (actual_name, strlen (actual_name),
8116 built_actual_name != NULL,
8117 VAR_DOMAIN, LOC_TYPEDEF,
8118 &objfile->static_psymbols,
8119 0, cu->language, objfile);
8120 break;
8121 case DW_TAG_imported_declaration:
8122 case DW_TAG_namespace:
8123 add_psymbol_to_list (actual_name, strlen (actual_name),
8124 built_actual_name != NULL,
8125 VAR_DOMAIN, LOC_TYPEDEF,
8126 &objfile->global_psymbols,
8127 0, cu->language, objfile);
8128 break;
8129 case DW_TAG_module:
8130 add_psymbol_to_list (actual_name, strlen (actual_name),
8131 built_actual_name != NULL,
8132 MODULE_DOMAIN, LOC_TYPEDEF,
8133 &objfile->global_psymbols,
8134 0, cu->language, objfile);
8135 break;
8136 case DW_TAG_class_type:
8137 case DW_TAG_interface_type:
8138 case DW_TAG_structure_type:
8139 case DW_TAG_union_type:
8140 case DW_TAG_enumeration_type:
8141 /* Skip external references. The DWARF standard says in the section
8142 about "Structure, Union, and Class Type Entries": "An incomplete
8143 structure, union or class type is represented by a structure,
8144 union or class entry that does not have a byte size attribute
8145 and that has a DW_AT_declaration attribute." */
8146 if (!pdi->has_byte_size && pdi->is_declaration)
8147 {
8148 xfree (built_actual_name);
8149 return;
8150 }
8151
8152 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8153 static vs. global. */
8154 add_psymbol_to_list (actual_name, strlen (actual_name),
8155 built_actual_name != NULL,
8156 STRUCT_DOMAIN, LOC_TYPEDEF,
8157 cu->language == language_cplus
8158 ? &objfile->global_psymbols
8159 : &objfile->static_psymbols,
8160 0, cu->language, objfile);
8161
8162 break;
8163 case DW_TAG_enumerator:
8164 add_psymbol_to_list (actual_name, strlen (actual_name),
8165 built_actual_name != NULL,
8166 VAR_DOMAIN, LOC_CONST,
8167 cu->language == language_cplus
8168 ? &objfile->global_psymbols
8169 : &objfile->static_psymbols,
8170 0, cu->language, objfile);
8171 break;
8172 default:
8173 break;
8174 }
8175
8176 xfree (built_actual_name);
8177 }
8178
8179 /* Read a partial die corresponding to a namespace; also, add a symbol
8180 corresponding to that namespace to the symbol table. NAMESPACE is
8181 the name of the enclosing namespace. */
8182
8183 static void
8184 add_partial_namespace (struct partial_die_info *pdi,
8185 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8186 int set_addrmap, struct dwarf2_cu *cu)
8187 {
8188 /* Add a symbol for the namespace. */
8189
8190 add_partial_symbol (pdi, cu);
8191
8192 /* Now scan partial symbols in that namespace. */
8193
8194 if (pdi->has_children)
8195 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8196 }
8197
8198 /* Read a partial die corresponding to a Fortran module. */
8199
8200 static void
8201 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8202 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8203 {
8204 /* Add a symbol for the namespace. */
8205
8206 add_partial_symbol (pdi, cu);
8207
8208 /* Now scan partial symbols in that module. */
8209
8210 if (pdi->has_children)
8211 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8212 }
8213
8214 /* Read a partial die corresponding to a subprogram and create a partial
8215 symbol for that subprogram. When the CU language allows it, this
8216 routine also defines a partial symbol for each nested subprogram
8217 that this subprogram contains. If SET_ADDRMAP is true, record the
8218 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
8219 and highest PC values found in PDI.
8220
8221 PDI may also be a lexical block, in which case we simply search
8222 recursively for subprograms defined inside that lexical block.
8223 Again, this is only performed when the CU language allows this
8224 type of definitions. */
8225
8226 static void
8227 add_partial_subprogram (struct partial_die_info *pdi,
8228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8229 int set_addrmap, struct dwarf2_cu *cu)
8230 {
8231 if (pdi->tag == DW_TAG_subprogram)
8232 {
8233 if (pdi->has_pc_info)
8234 {
8235 if (pdi->lowpc < *lowpc)
8236 *lowpc = pdi->lowpc;
8237 if (pdi->highpc > *highpc)
8238 *highpc = pdi->highpc;
8239 if (set_addrmap)
8240 {
8241 struct objfile *objfile = cu->objfile;
8242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8243 CORE_ADDR baseaddr;
8244 CORE_ADDR highpc;
8245 CORE_ADDR lowpc;
8246
8247 baseaddr = ANOFFSET (objfile->section_offsets,
8248 SECT_OFF_TEXT (objfile));
8249 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
8250 pdi->lowpc + baseaddr);
8251 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
8252 pdi->highpc + baseaddr);
8253 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
8254 cu->per_cu->v.psymtab);
8255 }
8256 }
8257
8258 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8259 {
8260 if (!pdi->is_declaration)
8261 /* Ignore subprogram DIEs that do not have a name, they are
8262 illegal. Do not emit a complaint at this point, we will
8263 do so when we convert this psymtab into a symtab. */
8264 if (pdi->name)
8265 add_partial_symbol (pdi, cu);
8266 }
8267 }
8268
8269 if (! pdi->has_children)
8270 return;
8271
8272 if (cu->language == language_ada)
8273 {
8274 pdi = pdi->die_child;
8275 while (pdi != NULL)
8276 {
8277 fixup_partial_die (pdi, cu);
8278 if (pdi->tag == DW_TAG_subprogram
8279 || pdi->tag == DW_TAG_lexical_block)
8280 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8281 pdi = pdi->die_sibling;
8282 }
8283 }
8284 }
8285
8286 /* Read a partial die corresponding to an enumeration type. */
8287
8288 static void
8289 add_partial_enumeration (struct partial_die_info *enum_pdi,
8290 struct dwarf2_cu *cu)
8291 {
8292 struct partial_die_info *pdi;
8293
8294 if (enum_pdi->name != NULL)
8295 add_partial_symbol (enum_pdi, cu);
8296
8297 pdi = enum_pdi->die_child;
8298 while (pdi)
8299 {
8300 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8301 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8302 else
8303 add_partial_symbol (pdi, cu);
8304 pdi = pdi->die_sibling;
8305 }
8306 }
8307
8308 /* Return the initial uleb128 in the die at INFO_PTR. */
8309
8310 static unsigned int
8311 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8312 {
8313 unsigned int bytes_read;
8314
8315 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8316 }
8317
8318 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
8319 Return the corresponding abbrev, or NULL if the number is zero (indicating
8320 an empty DIE). In either case *BYTES_READ will be set to the length of
8321 the initial number. */
8322
8323 static struct abbrev_info *
8324 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
8325 struct dwarf2_cu *cu)
8326 {
8327 bfd *abfd = cu->objfile->obfd;
8328 unsigned int abbrev_number;
8329 struct abbrev_info *abbrev;
8330
8331 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8332
8333 if (abbrev_number == 0)
8334 return NULL;
8335
8336 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
8337 if (!abbrev)
8338 {
8339 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8340 " at offset 0x%x [in module %s]"),
8341 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8342 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
8343 }
8344
8345 return abbrev;
8346 }
8347
8348 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8349 Returns a pointer to the end of a series of DIEs, terminated by an empty
8350 DIE. Any children of the skipped DIEs will also be skipped. */
8351
8352 static const gdb_byte *
8353 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8354 {
8355 struct dwarf2_cu *cu = reader->cu;
8356 struct abbrev_info *abbrev;
8357 unsigned int bytes_read;
8358
8359 while (1)
8360 {
8361 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8362 if (abbrev == NULL)
8363 return info_ptr + bytes_read;
8364 else
8365 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8366 }
8367 }
8368
8369 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8370 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8371 abbrev corresponding to that skipped uleb128 should be passed in
8372 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8373 children. */
8374
8375 static const gdb_byte *
8376 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8377 struct abbrev_info *abbrev)
8378 {
8379 unsigned int bytes_read;
8380 struct attribute attr;
8381 bfd *abfd = reader->abfd;
8382 struct dwarf2_cu *cu = reader->cu;
8383 const gdb_byte *buffer = reader->buffer;
8384 const gdb_byte *buffer_end = reader->buffer_end;
8385 unsigned int form, i;
8386
8387 for (i = 0; i < abbrev->num_attrs; i++)
8388 {
8389 /* The only abbrev we care about is DW_AT_sibling. */
8390 if (abbrev->attrs[i].name == DW_AT_sibling)
8391 {
8392 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8393 if (attr.form == DW_FORM_ref_addr)
8394 complaint (&symfile_complaints,
8395 _("ignoring absolute DW_AT_sibling"));
8396 else
8397 {
8398 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8399 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8400
8401 if (sibling_ptr < info_ptr)
8402 complaint (&symfile_complaints,
8403 _("DW_AT_sibling points backwards"));
8404 else if (sibling_ptr > reader->buffer_end)
8405 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8406 else
8407 return sibling_ptr;
8408 }
8409 }
8410
8411 /* If it isn't DW_AT_sibling, skip this attribute. */
8412 form = abbrev->attrs[i].form;
8413 skip_attribute:
8414 switch (form)
8415 {
8416 case DW_FORM_ref_addr:
8417 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8418 and later it is offset sized. */
8419 if (cu->header.version == 2)
8420 info_ptr += cu->header.addr_size;
8421 else
8422 info_ptr += cu->header.offset_size;
8423 break;
8424 case DW_FORM_GNU_ref_alt:
8425 info_ptr += cu->header.offset_size;
8426 break;
8427 case DW_FORM_addr:
8428 info_ptr += cu->header.addr_size;
8429 break;
8430 case DW_FORM_data1:
8431 case DW_FORM_ref1:
8432 case DW_FORM_flag:
8433 info_ptr += 1;
8434 break;
8435 case DW_FORM_flag_present:
8436 case DW_FORM_implicit_const:
8437 break;
8438 case DW_FORM_data2:
8439 case DW_FORM_ref2:
8440 info_ptr += 2;
8441 break;
8442 case DW_FORM_data4:
8443 case DW_FORM_ref4:
8444 info_ptr += 4;
8445 break;
8446 case DW_FORM_data8:
8447 case DW_FORM_ref8:
8448 case DW_FORM_ref_sig8:
8449 info_ptr += 8;
8450 break;
8451 case DW_FORM_data16:
8452 info_ptr += 16;
8453 break;
8454 case DW_FORM_string:
8455 read_direct_string (abfd, info_ptr, &bytes_read);
8456 info_ptr += bytes_read;
8457 break;
8458 case DW_FORM_sec_offset:
8459 case DW_FORM_strp:
8460 case DW_FORM_GNU_strp_alt:
8461 info_ptr += cu->header.offset_size;
8462 break;
8463 case DW_FORM_exprloc:
8464 case DW_FORM_block:
8465 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8466 info_ptr += bytes_read;
8467 break;
8468 case DW_FORM_block1:
8469 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8470 break;
8471 case DW_FORM_block2:
8472 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8473 break;
8474 case DW_FORM_block4:
8475 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8476 break;
8477 case DW_FORM_sdata:
8478 case DW_FORM_udata:
8479 case DW_FORM_ref_udata:
8480 case DW_FORM_GNU_addr_index:
8481 case DW_FORM_GNU_str_index:
8482 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8483 break;
8484 case DW_FORM_indirect:
8485 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8486 info_ptr += bytes_read;
8487 /* We need to continue parsing from here, so just go back to
8488 the top. */
8489 goto skip_attribute;
8490
8491 default:
8492 error (_("Dwarf Error: Cannot handle %s "
8493 "in DWARF reader [in module %s]"),
8494 dwarf_form_name (form),
8495 bfd_get_filename (abfd));
8496 }
8497 }
8498
8499 if (abbrev->has_children)
8500 return skip_children (reader, info_ptr);
8501 else
8502 return info_ptr;
8503 }
8504
8505 /* Locate ORIG_PDI's sibling.
8506 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8507
8508 static const gdb_byte *
8509 locate_pdi_sibling (const struct die_reader_specs *reader,
8510 struct partial_die_info *orig_pdi,
8511 const gdb_byte *info_ptr)
8512 {
8513 /* Do we know the sibling already? */
8514
8515 if (orig_pdi->sibling)
8516 return orig_pdi->sibling;
8517
8518 /* Are there any children to deal with? */
8519
8520 if (!orig_pdi->has_children)
8521 return info_ptr;
8522
8523 /* Skip the children the long way. */
8524
8525 return skip_children (reader, info_ptr);
8526 }
8527
8528 /* Expand this partial symbol table into a full symbol table. SELF is
8529 not NULL. */
8530
8531 static void
8532 dwarf2_read_symtab (struct partial_symtab *self,
8533 struct objfile *objfile)
8534 {
8535 if (self->readin)
8536 {
8537 warning (_("bug: psymtab for %s is already read in."),
8538 self->filename);
8539 }
8540 else
8541 {
8542 if (info_verbose)
8543 {
8544 printf_filtered (_("Reading in symbols for %s..."),
8545 self->filename);
8546 gdb_flush (gdb_stdout);
8547 }
8548
8549 /* Restore our global data. */
8550 dwarf2_per_objfile
8551 = (struct dwarf2_per_objfile *) objfile_data (objfile,
8552 dwarf2_objfile_data_key);
8553
8554 /* If this psymtab is constructed from a debug-only objfile, the
8555 has_section_at_zero flag will not necessarily be correct. We
8556 can get the correct value for this flag by looking at the data
8557 associated with the (presumably stripped) associated objfile. */
8558 if (objfile->separate_debug_objfile_backlink)
8559 {
8560 struct dwarf2_per_objfile *dpo_backlink
8561 = ((struct dwarf2_per_objfile *)
8562 objfile_data (objfile->separate_debug_objfile_backlink,
8563 dwarf2_objfile_data_key));
8564
8565 dwarf2_per_objfile->has_section_at_zero
8566 = dpo_backlink->has_section_at_zero;
8567 }
8568
8569 dwarf2_per_objfile->reading_partial_symbols = 0;
8570
8571 psymtab_to_symtab_1 (self);
8572
8573 /* Finish up the debug error message. */
8574 if (info_verbose)
8575 printf_filtered (_("done.\n"));
8576 }
8577
8578 process_cu_includes ();
8579 }
8580 \f
8581 /* Reading in full CUs. */
8582
8583 /* Add PER_CU to the queue. */
8584
8585 static void
8586 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8587 enum language pretend_language)
8588 {
8589 struct dwarf2_queue_item *item;
8590
8591 per_cu->queued = 1;
8592 item = XNEW (struct dwarf2_queue_item);
8593 item->per_cu = per_cu;
8594 item->pretend_language = pretend_language;
8595 item->next = NULL;
8596
8597 if (dwarf2_queue == NULL)
8598 dwarf2_queue = item;
8599 else
8600 dwarf2_queue_tail->next = item;
8601
8602 dwarf2_queue_tail = item;
8603 }
8604
8605 /* If PER_CU is not yet queued, add it to the queue.
8606 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8607 dependency.
8608 The result is non-zero if PER_CU was queued, otherwise the result is zero
8609 meaning either PER_CU is already queued or it is already loaded.
8610
8611 N.B. There is an invariant here that if a CU is queued then it is loaded.
8612 The caller is required to load PER_CU if we return non-zero. */
8613
8614 static int
8615 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8616 struct dwarf2_per_cu_data *per_cu,
8617 enum language pretend_language)
8618 {
8619 /* We may arrive here during partial symbol reading, if we need full
8620 DIEs to process an unusual case (e.g. template arguments). Do
8621 not queue PER_CU, just tell our caller to load its DIEs. */
8622 if (dwarf2_per_objfile->reading_partial_symbols)
8623 {
8624 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8625 return 1;
8626 return 0;
8627 }
8628
8629 /* Mark the dependence relation so that we don't flush PER_CU
8630 too early. */
8631 if (dependent_cu != NULL)
8632 dwarf2_add_dependence (dependent_cu, per_cu);
8633
8634 /* If it's already on the queue, we have nothing to do. */
8635 if (per_cu->queued)
8636 return 0;
8637
8638 /* If the compilation unit is already loaded, just mark it as
8639 used. */
8640 if (per_cu->cu != NULL)
8641 {
8642 per_cu->cu->last_used = 0;
8643 return 0;
8644 }
8645
8646 /* Add it to the queue. */
8647 queue_comp_unit (per_cu, pretend_language);
8648
8649 return 1;
8650 }
8651
8652 /* Process the queue. */
8653
8654 static void
8655 process_queue (void)
8656 {
8657 struct dwarf2_queue_item *item, *next_item;
8658
8659 if (dwarf_read_debug)
8660 {
8661 fprintf_unfiltered (gdb_stdlog,
8662 "Expanding one or more symtabs of objfile %s ...\n",
8663 objfile_name (dwarf2_per_objfile->objfile));
8664 }
8665
8666 /* The queue starts out with one item, but following a DIE reference
8667 may load a new CU, adding it to the end of the queue. */
8668 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
8669 {
8670 if ((dwarf2_per_objfile->using_index
8671 ? !item->per_cu->v.quick->compunit_symtab
8672 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
8673 /* Skip dummy CUs. */
8674 && item->per_cu->cu != NULL)
8675 {
8676 struct dwarf2_per_cu_data *per_cu = item->per_cu;
8677 unsigned int debug_print_threshold;
8678 char buf[100];
8679
8680 if (per_cu->is_debug_types)
8681 {
8682 struct signatured_type *sig_type =
8683 (struct signatured_type *) per_cu;
8684
8685 sprintf (buf, "TU %s at offset 0x%x",
8686 hex_string (sig_type->signature),
8687 to_underlying (per_cu->sect_off));
8688 /* There can be 100s of TUs.
8689 Only print them in verbose mode. */
8690 debug_print_threshold = 2;
8691 }
8692 else
8693 {
8694 sprintf (buf, "CU at offset 0x%x",
8695 to_underlying (per_cu->sect_off));
8696 debug_print_threshold = 1;
8697 }
8698
8699 if (dwarf_read_debug >= debug_print_threshold)
8700 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8701
8702 if (per_cu->is_debug_types)
8703 process_full_type_unit (per_cu, item->pretend_language);
8704 else
8705 process_full_comp_unit (per_cu, item->pretend_language);
8706
8707 if (dwarf_read_debug >= debug_print_threshold)
8708 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8709 }
8710
8711 item->per_cu->queued = 0;
8712 next_item = item->next;
8713 xfree (item);
8714 }
8715
8716 dwarf2_queue_tail = NULL;
8717
8718 if (dwarf_read_debug)
8719 {
8720 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8721 objfile_name (dwarf2_per_objfile->objfile));
8722 }
8723 }
8724
8725 /* Free all allocated queue entries. This function only releases anything if
8726 an error was thrown; if the queue was processed then it would have been
8727 freed as we went along. */
8728
8729 static void
8730 dwarf2_release_queue (void *dummy)
8731 {
8732 struct dwarf2_queue_item *item, *last;
8733
8734 item = dwarf2_queue;
8735 while (item)
8736 {
8737 /* Anything still marked queued is likely to be in an
8738 inconsistent state, so discard it. */
8739 if (item->per_cu->queued)
8740 {
8741 if (item->per_cu->cu != NULL)
8742 free_one_cached_comp_unit (item->per_cu);
8743 item->per_cu->queued = 0;
8744 }
8745
8746 last = item;
8747 item = item->next;
8748 xfree (last);
8749 }
8750
8751 dwarf2_queue = dwarf2_queue_tail = NULL;
8752 }
8753
8754 /* Read in full symbols for PST, and anything it depends on. */
8755
8756 static void
8757 psymtab_to_symtab_1 (struct partial_symtab *pst)
8758 {
8759 struct dwarf2_per_cu_data *per_cu;
8760 int i;
8761
8762 if (pst->readin)
8763 return;
8764
8765 for (i = 0; i < pst->number_of_dependencies; i++)
8766 if (!pst->dependencies[i]->readin
8767 && pst->dependencies[i]->user == NULL)
8768 {
8769 /* Inform about additional files that need to be read in. */
8770 if (info_verbose)
8771 {
8772 /* FIXME: i18n: Need to make this a single string. */
8773 fputs_filtered (" ", gdb_stdout);
8774 wrap_here ("");
8775 fputs_filtered ("and ", gdb_stdout);
8776 wrap_here ("");
8777 printf_filtered ("%s...", pst->dependencies[i]->filename);
8778 wrap_here (""); /* Flush output. */
8779 gdb_flush (gdb_stdout);
8780 }
8781 psymtab_to_symtab_1 (pst->dependencies[i]);
8782 }
8783
8784 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
8785
8786 if (per_cu == NULL)
8787 {
8788 /* It's an include file, no symbols to read for it.
8789 Everything is in the parent symtab. */
8790 pst->readin = 1;
8791 return;
8792 }
8793
8794 dw2_do_instantiate_symtab (per_cu);
8795 }
8796
8797 /* Trivial hash function for die_info: the hash value of a DIE
8798 is its offset in .debug_info for this objfile. */
8799
8800 static hashval_t
8801 die_hash (const void *item)
8802 {
8803 const struct die_info *die = (const struct die_info *) item;
8804
8805 return to_underlying (die->sect_off);
8806 }
8807
8808 /* Trivial comparison function for die_info structures: two DIEs
8809 are equal if they have the same offset. */
8810
8811 static int
8812 die_eq (const void *item_lhs, const void *item_rhs)
8813 {
8814 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8815 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8816
8817 return die_lhs->sect_off == die_rhs->sect_off;
8818 }
8819
8820 /* die_reader_func for load_full_comp_unit.
8821 This is identical to read_signatured_type_reader,
8822 but is kept separate for now. */
8823
8824 static void
8825 load_full_comp_unit_reader (const struct die_reader_specs *reader,
8826 const gdb_byte *info_ptr,
8827 struct die_info *comp_unit_die,
8828 int has_children,
8829 void *data)
8830 {
8831 struct dwarf2_cu *cu = reader->cu;
8832 enum language *language_ptr = (enum language *) data;
8833
8834 gdb_assert (cu->die_hash == NULL);
8835 cu->die_hash =
8836 htab_create_alloc_ex (cu->header.length / 12,
8837 die_hash,
8838 die_eq,
8839 NULL,
8840 &cu->comp_unit_obstack,
8841 hashtab_obstack_allocate,
8842 dummy_obstack_deallocate);
8843
8844 if (has_children)
8845 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
8846 &info_ptr, comp_unit_die);
8847 cu->dies = comp_unit_die;
8848 /* comp_unit_die is not stored in die_hash, no need. */
8849
8850 /* We try not to read any attributes in this function, because not
8851 all CUs needed for references have been loaded yet, and symbol
8852 table processing isn't initialized. But we have to set the CU language,
8853 or we won't be able to build types correctly.
8854 Similarly, if we do not read the producer, we can not apply
8855 producer-specific interpretation. */
8856 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8857 }
8858
8859 /* Load the DIEs associated with PER_CU into memory. */
8860
8861 static void
8862 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8863 enum language pretend_language)
8864 {
8865 gdb_assert (! this_cu->is_debug_types);
8866
8867 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8868 load_full_comp_unit_reader, &pretend_language);
8869 }
8870
8871 /* Add a DIE to the delayed physname list. */
8872
8873 static void
8874 add_to_method_list (struct type *type, int fnfield_index, int index,
8875 const char *name, struct die_info *die,
8876 struct dwarf2_cu *cu)
8877 {
8878 struct delayed_method_info mi;
8879 mi.type = type;
8880 mi.fnfield_index = fnfield_index;
8881 mi.index = index;
8882 mi.name = name;
8883 mi.die = die;
8884 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8885 }
8886
8887 /* A cleanup for freeing the delayed method list. */
8888
8889 static void
8890 free_delayed_list (void *ptr)
8891 {
8892 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8893 if (cu->method_list != NULL)
8894 {
8895 VEC_free (delayed_method_info, cu->method_list);
8896 cu->method_list = NULL;
8897 }
8898 }
8899
8900 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8901 "const" / "volatile". If so, decrements LEN by the length of the
8902 modifier and return true. Otherwise return false. */
8903
8904 template<size_t N>
8905 static bool
8906 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8907 {
8908 size_t mod_len = sizeof (mod) - 1;
8909 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8910 {
8911 len -= mod_len;
8912 return true;
8913 }
8914 return false;
8915 }
8916
8917 /* Compute the physnames of any methods on the CU's method list.
8918
8919 The computation of method physnames is delayed in order to avoid the
8920 (bad) condition that one of the method's formal parameters is of an as yet
8921 incomplete type. */
8922
8923 static void
8924 compute_delayed_physnames (struct dwarf2_cu *cu)
8925 {
8926 int i;
8927 struct delayed_method_info *mi;
8928
8929 /* Only C++ delays computing physnames. */
8930 if (VEC_empty (delayed_method_info, cu->method_list))
8931 return;
8932 gdb_assert (cu->language == language_cplus);
8933
8934 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8935 {
8936 const char *physname;
8937 struct fn_fieldlist *fn_flp
8938 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8939 physname = dwarf2_physname (mi->name, mi->die, cu);
8940 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8941 = physname ? physname : "";
8942
8943 /* Since there's no tag to indicate whether a method is a
8944 const/volatile overload, extract that information out of the
8945 demangled name. */
8946 if (physname != NULL)
8947 {
8948 size_t len = strlen (physname);
8949
8950 while (1)
8951 {
8952 if (physname[len] == ')') /* shortcut */
8953 break;
8954 else if (check_modifier (physname, len, " const"))
8955 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8956 else if (check_modifier (physname, len, " volatile"))
8957 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8958 else
8959 break;
8960 }
8961 }
8962 }
8963 }
8964
8965 /* Go objects should be embedded in a DW_TAG_module DIE,
8966 and it's not clear if/how imported objects will appear.
8967 To keep Go support simple until that's worked out,
8968 go back through what we've read and create something usable.
8969 We could do this while processing each DIE, and feels kinda cleaner,
8970 but that way is more invasive.
8971 This is to, for example, allow the user to type "p var" or "b main"
8972 without having to specify the package name, and allow lookups
8973 of module.object to work in contexts that use the expression
8974 parser. */
8975
8976 static void
8977 fixup_go_packaging (struct dwarf2_cu *cu)
8978 {
8979 char *package_name = NULL;
8980 struct pending *list;
8981 int i;
8982
8983 for (list = global_symbols; list != NULL; list = list->next)
8984 {
8985 for (i = 0; i < list->nsyms; ++i)
8986 {
8987 struct symbol *sym = list->symbol[i];
8988
8989 if (SYMBOL_LANGUAGE (sym) == language_go
8990 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8991 {
8992 char *this_package_name = go_symbol_package_name (sym);
8993
8994 if (this_package_name == NULL)
8995 continue;
8996 if (package_name == NULL)
8997 package_name = this_package_name;
8998 else
8999 {
9000 if (strcmp (package_name, this_package_name) != 0)
9001 complaint (&symfile_complaints,
9002 _("Symtab %s has objects from two different Go packages: %s and %s"),
9003 (symbol_symtab (sym) != NULL
9004 ? symtab_to_filename_for_display
9005 (symbol_symtab (sym))
9006 : objfile_name (cu->objfile)),
9007 this_package_name, package_name);
9008 xfree (this_package_name);
9009 }
9010 }
9011 }
9012 }
9013
9014 if (package_name != NULL)
9015 {
9016 struct objfile *objfile = cu->objfile;
9017 const char *saved_package_name
9018 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9019 package_name,
9020 strlen (package_name));
9021 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9022 saved_package_name);
9023 struct symbol *sym;
9024
9025 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9026
9027 sym = allocate_symbol (objfile);
9028 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9029 SYMBOL_SET_NAMES (sym, saved_package_name,
9030 strlen (saved_package_name), 0, objfile);
9031 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9032 e.g., "main" finds the "main" module and not C's main(). */
9033 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9034 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9035 SYMBOL_TYPE (sym) = type;
9036
9037 add_symbol_to_list (sym, &global_symbols);
9038
9039 xfree (package_name);
9040 }
9041 }
9042
9043 /* Return the symtab for PER_CU. This works properly regardless of
9044 whether we're using the index or psymtabs. */
9045
9046 static struct compunit_symtab *
9047 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9048 {
9049 return (dwarf2_per_objfile->using_index
9050 ? per_cu->v.quick->compunit_symtab
9051 : per_cu->v.psymtab->compunit_symtab);
9052 }
9053
9054 /* A helper function for computing the list of all symbol tables
9055 included by PER_CU. */
9056
9057 static void
9058 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
9059 htab_t all_children, htab_t all_type_symtabs,
9060 struct dwarf2_per_cu_data *per_cu,
9061 struct compunit_symtab *immediate_parent)
9062 {
9063 void **slot;
9064 int ix;
9065 struct compunit_symtab *cust;
9066 struct dwarf2_per_cu_data *iter;
9067
9068 slot = htab_find_slot (all_children, per_cu, INSERT);
9069 if (*slot != NULL)
9070 {
9071 /* This inclusion and its children have been processed. */
9072 return;
9073 }
9074
9075 *slot = per_cu;
9076 /* Only add a CU if it has a symbol table. */
9077 cust = get_compunit_symtab (per_cu);
9078 if (cust != NULL)
9079 {
9080 /* If this is a type unit only add its symbol table if we haven't
9081 seen it yet (type unit per_cu's can share symtabs). */
9082 if (per_cu->is_debug_types)
9083 {
9084 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9085 if (*slot == NULL)
9086 {
9087 *slot = cust;
9088 VEC_safe_push (compunit_symtab_ptr, *result, cust);
9089 if (cust->user == NULL)
9090 cust->user = immediate_parent;
9091 }
9092 }
9093 else
9094 {
9095 VEC_safe_push (compunit_symtab_ptr, *result, cust);
9096 if (cust->user == NULL)
9097 cust->user = immediate_parent;
9098 }
9099 }
9100
9101 for (ix = 0;
9102 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
9103 ++ix)
9104 {
9105 recursively_compute_inclusions (result, all_children,
9106 all_type_symtabs, iter, cust);
9107 }
9108 }
9109
9110 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9111 PER_CU. */
9112
9113 static void
9114 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9115 {
9116 gdb_assert (! per_cu->is_debug_types);
9117
9118 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
9119 {
9120 int ix, len;
9121 struct dwarf2_per_cu_data *per_cu_iter;
9122 struct compunit_symtab *compunit_symtab_iter;
9123 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
9124 htab_t all_children, all_type_symtabs;
9125 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9126
9127 /* If we don't have a symtab, we can just skip this case. */
9128 if (cust == NULL)
9129 return;
9130
9131 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9132 NULL, xcalloc, xfree);
9133 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9134 NULL, xcalloc, xfree);
9135
9136 for (ix = 0;
9137 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
9138 ix, per_cu_iter);
9139 ++ix)
9140 {
9141 recursively_compute_inclusions (&result_symtabs, all_children,
9142 all_type_symtabs, per_cu_iter,
9143 cust);
9144 }
9145
9146 /* Now we have a transitive closure of all the included symtabs. */
9147 len = VEC_length (compunit_symtab_ptr, result_symtabs);
9148 cust->includes
9149 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
9150 struct compunit_symtab *, len + 1);
9151 for (ix = 0;
9152 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
9153 compunit_symtab_iter);
9154 ++ix)
9155 cust->includes[ix] = compunit_symtab_iter;
9156 cust->includes[len] = NULL;
9157
9158 VEC_free (compunit_symtab_ptr, result_symtabs);
9159 htab_delete (all_children);
9160 htab_delete (all_type_symtabs);
9161 }
9162 }
9163
9164 /* Compute the 'includes' field for the symtabs of all the CUs we just
9165 read. */
9166
9167 static void
9168 process_cu_includes (void)
9169 {
9170 int ix;
9171 struct dwarf2_per_cu_data *iter;
9172
9173 for (ix = 0;
9174 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
9175 ix, iter);
9176 ++ix)
9177 {
9178 if (! iter->is_debug_types)
9179 compute_compunit_symtab_includes (iter);
9180 }
9181
9182 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
9183 }
9184
9185 /* Generate full symbol information for PER_CU, whose DIEs have
9186 already been loaded into memory. */
9187
9188 static void
9189 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9190 enum language pretend_language)
9191 {
9192 struct dwarf2_cu *cu = per_cu->cu;
9193 struct objfile *objfile = per_cu->objfile;
9194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9195 CORE_ADDR lowpc, highpc;
9196 struct compunit_symtab *cust;
9197 struct cleanup *delayed_list_cleanup;
9198 CORE_ADDR baseaddr;
9199 struct block *static_block;
9200 CORE_ADDR addr;
9201
9202 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9203
9204 buildsym_init ();
9205 scoped_free_pendings free_pending;
9206 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
9207
9208 cu->list_in_scope = &file_symbols;
9209
9210 cu->language = pretend_language;
9211 cu->language_defn = language_def (cu->language);
9212
9213 /* Do line number decoding in read_file_scope () */
9214 process_die (cu->dies, cu);
9215
9216 /* For now fudge the Go package. */
9217 if (cu->language == language_go)
9218 fixup_go_packaging (cu);
9219
9220 /* Now that we have processed all the DIEs in the CU, all the types
9221 should be complete, and it should now be safe to compute all of the
9222 physnames. */
9223 compute_delayed_physnames (cu);
9224 do_cleanups (delayed_list_cleanup);
9225
9226 /* Some compilers don't define a DW_AT_high_pc attribute for the
9227 compilation unit. If the DW_AT_high_pc is missing, synthesize
9228 it, by scanning the DIE's below the compilation unit. */
9229 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9230
9231 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9232 static_block = end_symtab_get_static_block (addr, 0, 1);
9233
9234 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9235 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9236 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9237 addrmap to help ensure it has an accurate map of pc values belonging to
9238 this comp unit. */
9239 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9240
9241 cust = end_symtab_from_static_block (static_block,
9242 SECT_OFF_TEXT (objfile), 0);
9243
9244 if (cust != NULL)
9245 {
9246 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9247
9248 /* Set symtab language to language from DW_AT_language. If the
9249 compilation is from a C file generated by language preprocessors, do
9250 not set the language if it was already deduced by start_subfile. */
9251 if (!(cu->language == language_c
9252 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9253 COMPUNIT_FILETABS (cust)->language = cu->language;
9254
9255 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9256 produce DW_AT_location with location lists but it can be possibly
9257 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9258 there were bugs in prologue debug info, fixed later in GCC-4.5
9259 by "unwind info for epilogues" patch (which is not directly related).
9260
9261 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9262 needed, it would be wrong due to missing DW_AT_producer there.
9263
9264 Still one can confuse GDB by using non-standard GCC compilation
9265 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9266 */
9267 if (cu->has_loclist && gcc_4_minor >= 5)
9268 cust->locations_valid = 1;
9269
9270 if (gcc_4_minor >= 5)
9271 cust->epilogue_unwind_valid = 1;
9272
9273 cust->call_site_htab = cu->call_site_htab;
9274 }
9275
9276 if (dwarf2_per_objfile->using_index)
9277 per_cu->v.quick->compunit_symtab = cust;
9278 else
9279 {
9280 struct partial_symtab *pst = per_cu->v.psymtab;
9281 pst->compunit_symtab = cust;
9282 pst->readin = 1;
9283 }
9284
9285 /* Push it for inclusion processing later. */
9286 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
9287 }
9288
9289 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9290 already been loaded into memory. */
9291
9292 static void
9293 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9294 enum language pretend_language)
9295 {
9296 struct dwarf2_cu *cu = per_cu->cu;
9297 struct objfile *objfile = per_cu->objfile;
9298 struct compunit_symtab *cust;
9299 struct cleanup *delayed_list_cleanup;
9300 struct signatured_type *sig_type;
9301
9302 gdb_assert (per_cu->is_debug_types);
9303 sig_type = (struct signatured_type *) per_cu;
9304
9305 buildsym_init ();
9306 scoped_free_pendings free_pending;
9307 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
9308
9309 cu->list_in_scope = &file_symbols;
9310
9311 cu->language = pretend_language;
9312 cu->language_defn = language_def (cu->language);
9313
9314 /* The symbol tables are set up in read_type_unit_scope. */
9315 process_die (cu->dies, cu);
9316
9317 /* For now fudge the Go package. */
9318 if (cu->language == language_go)
9319 fixup_go_packaging (cu);
9320
9321 /* Now that we have processed all the DIEs in the CU, all the types
9322 should be complete, and it should now be safe to compute all of the
9323 physnames. */
9324 compute_delayed_physnames (cu);
9325 do_cleanups (delayed_list_cleanup);
9326
9327 /* TUs share symbol tables.
9328 If this is the first TU to use this symtab, complete the construction
9329 of it with end_expandable_symtab. Otherwise, complete the addition of
9330 this TU's symbols to the existing symtab. */
9331 if (sig_type->type_unit_group->compunit_symtab == NULL)
9332 {
9333 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9334 sig_type->type_unit_group->compunit_symtab = cust;
9335
9336 if (cust != NULL)
9337 {
9338 /* Set symtab language to language from DW_AT_language. If the
9339 compilation is from a C file generated by language preprocessors,
9340 do not set the language if it was already deduced by
9341 start_subfile. */
9342 if (!(cu->language == language_c
9343 && COMPUNIT_FILETABS (cust)->language != language_c))
9344 COMPUNIT_FILETABS (cust)->language = cu->language;
9345 }
9346 }
9347 else
9348 {
9349 augment_type_symtab ();
9350 cust = sig_type->type_unit_group->compunit_symtab;
9351 }
9352
9353 if (dwarf2_per_objfile->using_index)
9354 per_cu->v.quick->compunit_symtab = cust;
9355 else
9356 {
9357 struct partial_symtab *pst = per_cu->v.psymtab;
9358 pst->compunit_symtab = cust;
9359 pst->readin = 1;
9360 }
9361 }
9362
9363 /* Process an imported unit DIE. */
9364
9365 static void
9366 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9367 {
9368 struct attribute *attr;
9369
9370 /* For now we don't handle imported units in type units. */
9371 if (cu->per_cu->is_debug_types)
9372 {
9373 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9374 " supported in type units [in module %s]"),
9375 objfile_name (cu->objfile));
9376 }
9377
9378 attr = dwarf2_attr (die, DW_AT_import, cu);
9379 if (attr != NULL)
9380 {
9381 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9382 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9383 dwarf2_per_cu_data *per_cu
9384 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
9385
9386 /* If necessary, add it to the queue and load its DIEs. */
9387 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9388 load_full_comp_unit (per_cu, cu->language);
9389
9390 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
9391 per_cu);
9392 }
9393 }
9394
9395 /* RAII object that represents a process_die scope: i.e.,
9396 starts/finishes processing a DIE. */
9397 class process_die_scope
9398 {
9399 public:
9400 process_die_scope (die_info *die, dwarf2_cu *cu)
9401 : m_die (die), m_cu (cu)
9402 {
9403 /* We should only be processing DIEs not already in process. */
9404 gdb_assert (!m_die->in_process);
9405 m_die->in_process = true;
9406 }
9407
9408 ~process_die_scope ()
9409 {
9410 m_die->in_process = false;
9411
9412 /* If we're done processing the DIE for the CU that owns the line
9413 header, we don't need the line header anymore. */
9414 if (m_cu->line_header_die_owner == m_die)
9415 {
9416 delete m_cu->line_header;
9417 m_cu->line_header = NULL;
9418 m_cu->line_header_die_owner = NULL;
9419 }
9420 }
9421
9422 private:
9423 die_info *m_die;
9424 dwarf2_cu *m_cu;
9425 };
9426
9427 /* Process a die and its children. */
9428
9429 static void
9430 process_die (struct die_info *die, struct dwarf2_cu *cu)
9431 {
9432 process_die_scope scope (die, cu);
9433
9434 switch (die->tag)
9435 {
9436 case DW_TAG_padding:
9437 break;
9438 case DW_TAG_compile_unit:
9439 case DW_TAG_partial_unit:
9440 read_file_scope (die, cu);
9441 break;
9442 case DW_TAG_type_unit:
9443 read_type_unit_scope (die, cu);
9444 break;
9445 case DW_TAG_subprogram:
9446 case DW_TAG_inlined_subroutine:
9447 read_func_scope (die, cu);
9448 break;
9449 case DW_TAG_lexical_block:
9450 case DW_TAG_try_block:
9451 case DW_TAG_catch_block:
9452 read_lexical_block_scope (die, cu);
9453 break;
9454 case DW_TAG_call_site:
9455 case DW_TAG_GNU_call_site:
9456 read_call_site_scope (die, cu);
9457 break;
9458 case DW_TAG_class_type:
9459 case DW_TAG_interface_type:
9460 case DW_TAG_structure_type:
9461 case DW_TAG_union_type:
9462 process_structure_scope (die, cu);
9463 break;
9464 case DW_TAG_enumeration_type:
9465 process_enumeration_scope (die, cu);
9466 break;
9467
9468 /* These dies have a type, but processing them does not create
9469 a symbol or recurse to process the children. Therefore we can
9470 read them on-demand through read_type_die. */
9471 case DW_TAG_subroutine_type:
9472 case DW_TAG_set_type:
9473 case DW_TAG_array_type:
9474 case DW_TAG_pointer_type:
9475 case DW_TAG_ptr_to_member_type:
9476 case DW_TAG_reference_type:
9477 case DW_TAG_rvalue_reference_type:
9478 case DW_TAG_string_type:
9479 break;
9480
9481 case DW_TAG_base_type:
9482 case DW_TAG_subrange_type:
9483 case DW_TAG_typedef:
9484 /* Add a typedef symbol for the type definition, if it has a
9485 DW_AT_name. */
9486 new_symbol (die, read_type_die (die, cu), cu);
9487 break;
9488 case DW_TAG_common_block:
9489 read_common_block (die, cu);
9490 break;
9491 case DW_TAG_common_inclusion:
9492 break;
9493 case DW_TAG_namespace:
9494 cu->processing_has_namespace_info = 1;
9495 read_namespace (die, cu);
9496 break;
9497 case DW_TAG_module:
9498 cu->processing_has_namespace_info = 1;
9499 read_module (die, cu);
9500 break;
9501 case DW_TAG_imported_declaration:
9502 cu->processing_has_namespace_info = 1;
9503 if (read_namespace_alias (die, cu))
9504 break;
9505 /* The declaration is not a global namespace alias: fall through. */
9506 case DW_TAG_imported_module:
9507 cu->processing_has_namespace_info = 1;
9508 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9509 || cu->language != language_fortran))
9510 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
9511 dwarf_tag_name (die->tag));
9512 read_import_statement (die, cu);
9513 break;
9514
9515 case DW_TAG_imported_unit:
9516 process_imported_unit_die (die, cu);
9517 break;
9518
9519 case DW_TAG_variable:
9520 read_variable (die, cu);
9521 break;
9522
9523 default:
9524 new_symbol (die, NULL, cu);
9525 break;
9526 }
9527 }
9528 \f
9529 /* DWARF name computation. */
9530
9531 /* A helper function for dwarf2_compute_name which determines whether DIE
9532 needs to have the name of the scope prepended to the name listed in the
9533 die. */
9534
9535 static int
9536 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9537 {
9538 struct attribute *attr;
9539
9540 switch (die->tag)
9541 {
9542 case DW_TAG_namespace:
9543 case DW_TAG_typedef:
9544 case DW_TAG_class_type:
9545 case DW_TAG_interface_type:
9546 case DW_TAG_structure_type:
9547 case DW_TAG_union_type:
9548 case DW_TAG_enumeration_type:
9549 case DW_TAG_enumerator:
9550 case DW_TAG_subprogram:
9551 case DW_TAG_inlined_subroutine:
9552 case DW_TAG_member:
9553 case DW_TAG_imported_declaration:
9554 return 1;
9555
9556 case DW_TAG_variable:
9557 case DW_TAG_constant:
9558 /* We only need to prefix "globally" visible variables. These include
9559 any variable marked with DW_AT_external or any variable that
9560 lives in a namespace. [Variables in anonymous namespaces
9561 require prefixing, but they are not DW_AT_external.] */
9562
9563 if (dwarf2_attr (die, DW_AT_specification, cu))
9564 {
9565 struct dwarf2_cu *spec_cu = cu;
9566
9567 return die_needs_namespace (die_specification (die, &spec_cu),
9568 spec_cu);
9569 }
9570
9571 attr = dwarf2_attr (die, DW_AT_external, cu);
9572 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9573 && die->parent->tag != DW_TAG_module)
9574 return 0;
9575 /* A variable in a lexical block of some kind does not need a
9576 namespace, even though in C++ such variables may be external
9577 and have a mangled name. */
9578 if (die->parent->tag == DW_TAG_lexical_block
9579 || die->parent->tag == DW_TAG_try_block
9580 || die->parent->tag == DW_TAG_catch_block
9581 || die->parent->tag == DW_TAG_subprogram)
9582 return 0;
9583 return 1;
9584
9585 default:
9586 return 0;
9587 }
9588 }
9589
9590 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9591 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9592 defined for the given DIE. */
9593
9594 static struct attribute *
9595 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9596 {
9597 struct attribute *attr;
9598
9599 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9600 if (attr == NULL)
9601 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9602
9603 return attr;
9604 }
9605
9606 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9607 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9608 defined for the given DIE. */
9609
9610 static const char *
9611 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9612 {
9613 const char *linkage_name;
9614
9615 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9616 if (linkage_name == NULL)
9617 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9618
9619 return linkage_name;
9620 }
9621
9622 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9623 compute the physname for the object, which include a method's:
9624 - formal parameters (C++),
9625 - receiver type (Go),
9626
9627 The term "physname" is a bit confusing.
9628 For C++, for example, it is the demangled name.
9629 For Go, for example, it's the mangled name.
9630
9631 For Ada, return the DIE's linkage name rather than the fully qualified
9632 name. PHYSNAME is ignored..
9633
9634 The result is allocated on the objfile_obstack and canonicalized. */
9635
9636 static const char *
9637 dwarf2_compute_name (const char *name,
9638 struct die_info *die, struct dwarf2_cu *cu,
9639 int physname)
9640 {
9641 struct objfile *objfile = cu->objfile;
9642
9643 if (name == NULL)
9644 name = dwarf2_name (die, cu);
9645
9646 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9647 but otherwise compute it by typename_concat inside GDB.
9648 FIXME: Actually this is not really true, or at least not always true.
9649 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
9650 Fortran names because there is no mangling standard. So new_symbol_full
9651 will set the demangled name to the result of dwarf2_full_name, and it is
9652 the demangled name that GDB uses if it exists. */
9653 if (cu->language == language_ada
9654 || (cu->language == language_fortran && physname))
9655 {
9656 /* For Ada unit, we prefer the linkage name over the name, as
9657 the former contains the exported name, which the user expects
9658 to be able to reference. Ideally, we want the user to be able
9659 to reference this entity using either natural or linkage name,
9660 but we haven't started looking at this enhancement yet. */
9661 const char *linkage_name = dw2_linkage_name (die, cu);
9662
9663 if (linkage_name != NULL)
9664 return linkage_name;
9665 }
9666
9667 /* These are the only languages we know how to qualify names in. */
9668 if (name != NULL
9669 && (cu->language == language_cplus
9670 || cu->language == language_fortran || cu->language == language_d
9671 || cu->language == language_rust))
9672 {
9673 if (die_needs_namespace (die, cu))
9674 {
9675 const char *prefix;
9676 const char *canonical_name = NULL;
9677
9678 string_file buf;
9679
9680 prefix = determine_prefix (die, cu);
9681 if (*prefix != '\0')
9682 {
9683 char *prefixed_name = typename_concat (NULL, prefix, name,
9684 physname, cu);
9685
9686 buf.puts (prefixed_name);
9687 xfree (prefixed_name);
9688 }
9689 else
9690 buf.puts (name);
9691
9692 /* Template parameters may be specified in the DIE's DW_AT_name, or
9693 as children with DW_TAG_template_type_param or
9694 DW_TAG_value_type_param. If the latter, add them to the name
9695 here. If the name already has template parameters, then
9696 skip this step; some versions of GCC emit both, and
9697 it is more efficient to use the pre-computed name.
9698
9699 Something to keep in mind about this process: it is very
9700 unlikely, or in some cases downright impossible, to produce
9701 something that will match the mangled name of a function.
9702 If the definition of the function has the same debug info,
9703 we should be able to match up with it anyway. But fallbacks
9704 using the minimal symbol, for instance to find a method
9705 implemented in a stripped copy of libstdc++, will not work.
9706 If we do not have debug info for the definition, we will have to
9707 match them up some other way.
9708
9709 When we do name matching there is a related problem with function
9710 templates; two instantiated function templates are allowed to
9711 differ only by their return types, which we do not add here. */
9712
9713 if (cu->language == language_cplus && strchr (name, '<') == NULL)
9714 {
9715 struct attribute *attr;
9716 struct die_info *child;
9717 int first = 1;
9718
9719 die->building_fullname = 1;
9720
9721 for (child = die->child; child != NULL; child = child->sibling)
9722 {
9723 struct type *type;
9724 LONGEST value;
9725 const gdb_byte *bytes;
9726 struct dwarf2_locexpr_baton *baton;
9727 struct value *v;
9728
9729 if (child->tag != DW_TAG_template_type_param
9730 && child->tag != DW_TAG_template_value_param)
9731 continue;
9732
9733 if (first)
9734 {
9735 buf.puts ("<");
9736 first = 0;
9737 }
9738 else
9739 buf.puts (", ");
9740
9741 attr = dwarf2_attr (child, DW_AT_type, cu);
9742 if (attr == NULL)
9743 {
9744 complaint (&symfile_complaints,
9745 _("template parameter missing DW_AT_type"));
9746 buf.puts ("UNKNOWN_TYPE");
9747 continue;
9748 }
9749 type = die_type (child, cu);
9750
9751 if (child->tag == DW_TAG_template_type_param)
9752 {
9753 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
9754 continue;
9755 }
9756
9757 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9758 if (attr == NULL)
9759 {
9760 complaint (&symfile_complaints,
9761 _("template parameter missing "
9762 "DW_AT_const_value"));
9763 buf.puts ("UNKNOWN_VALUE");
9764 continue;
9765 }
9766
9767 dwarf2_const_value_attr (attr, type, name,
9768 &cu->comp_unit_obstack, cu,
9769 &value, &bytes, &baton);
9770
9771 if (TYPE_NOSIGN (type))
9772 /* GDB prints characters as NUMBER 'CHAR'. If that's
9773 changed, this can use value_print instead. */
9774 c_printchar (value, type, &buf);
9775 else
9776 {
9777 struct value_print_options opts;
9778
9779 if (baton != NULL)
9780 v = dwarf2_evaluate_loc_desc (type, NULL,
9781 baton->data,
9782 baton->size,
9783 baton->per_cu);
9784 else if (bytes != NULL)
9785 {
9786 v = allocate_value (type);
9787 memcpy (value_contents_writeable (v), bytes,
9788 TYPE_LENGTH (type));
9789 }
9790 else
9791 v = value_from_longest (type, value);
9792
9793 /* Specify decimal so that we do not depend on
9794 the radix. */
9795 get_formatted_print_options (&opts, 'd');
9796 opts.raw = 1;
9797 value_print (v, &buf, &opts);
9798 release_value (v);
9799 value_free (v);
9800 }
9801 }
9802
9803 die->building_fullname = 0;
9804
9805 if (!first)
9806 {
9807 /* Close the argument list, with a space if necessary
9808 (nested templates). */
9809 if (!buf.empty () && buf.string ().back () == '>')
9810 buf.puts (" >");
9811 else
9812 buf.puts (">");
9813 }
9814 }
9815
9816 /* For C++ methods, append formal parameter type
9817 information, if PHYSNAME. */
9818
9819 if (physname && die->tag == DW_TAG_subprogram
9820 && cu->language == language_cplus)
9821 {
9822 struct type *type = read_type_die (die, cu);
9823
9824 c_type_print_args (type, &buf, 1, cu->language,
9825 &type_print_raw_options);
9826
9827 if (cu->language == language_cplus)
9828 {
9829 /* Assume that an artificial first parameter is
9830 "this", but do not crash if it is not. RealView
9831 marks unnamed (and thus unused) parameters as
9832 artificial; there is no way to differentiate
9833 the two cases. */
9834 if (TYPE_NFIELDS (type) > 0
9835 && TYPE_FIELD_ARTIFICIAL (type, 0)
9836 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
9837 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
9838 0))))
9839 buf.puts (" const");
9840 }
9841 }
9842
9843 const std::string &intermediate_name = buf.string ();
9844
9845 if (cu->language == language_cplus)
9846 canonical_name
9847 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9848 &objfile->per_bfd->storage_obstack);
9849
9850 /* If we only computed INTERMEDIATE_NAME, or if
9851 INTERMEDIATE_NAME is already canonical, then we need to
9852 copy it to the appropriate obstack. */
9853 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9854 name = ((const char *)
9855 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9856 intermediate_name.c_str (),
9857 intermediate_name.length ()));
9858 else
9859 name = canonical_name;
9860 }
9861 }
9862
9863 return name;
9864 }
9865
9866 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9867 If scope qualifiers are appropriate they will be added. The result
9868 will be allocated on the storage_obstack, or NULL if the DIE does
9869 not have a name. NAME may either be from a previous call to
9870 dwarf2_name or NULL.
9871
9872 The output string will be canonicalized (if C++). */
9873
9874 static const char *
9875 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9876 {
9877 return dwarf2_compute_name (name, die, cu, 0);
9878 }
9879
9880 /* Construct a physname for the given DIE in CU. NAME may either be
9881 from a previous call to dwarf2_name or NULL. The result will be
9882 allocated on the objfile_objstack or NULL if the DIE does not have a
9883 name.
9884
9885 The output string will be canonicalized (if C++). */
9886
9887 static const char *
9888 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9889 {
9890 struct objfile *objfile = cu->objfile;
9891 const char *retval, *mangled = NULL, *canon = NULL;
9892 int need_copy = 1;
9893
9894 /* In this case dwarf2_compute_name is just a shortcut not building anything
9895 on its own. */
9896 if (!die_needs_namespace (die, cu))
9897 return dwarf2_compute_name (name, die, cu, 1);
9898
9899 mangled = dw2_linkage_name (die, cu);
9900
9901 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9902 See https://github.com/rust-lang/rust/issues/32925. */
9903 if (cu->language == language_rust && mangled != NULL
9904 && strchr (mangled, '{') != NULL)
9905 mangled = NULL;
9906
9907 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9908 has computed. */
9909 gdb::unique_xmalloc_ptr<char> demangled;
9910 if (mangled != NULL)
9911 {
9912 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9913 type. It is easier for GDB users to search for such functions as
9914 `name(params)' than `long name(params)'. In such case the minimal
9915 symbol names do not match the full symbol names but for template
9916 functions there is never a need to look up their definition from their
9917 declaration so the only disadvantage remains the minimal symbol
9918 variant `long name(params)' does not have the proper inferior type.
9919 */
9920
9921 if (cu->language == language_go)
9922 {
9923 /* This is a lie, but we already lie to the caller new_symbol_full.
9924 new_symbol_full assumes we return the mangled name.
9925 This just undoes that lie until things are cleaned up. */
9926 }
9927 else
9928 {
9929 demangled.reset (gdb_demangle (mangled,
9930 (DMGL_PARAMS | DMGL_ANSI
9931 | DMGL_RET_DROP)));
9932 }
9933 if (demangled)
9934 canon = demangled.get ();
9935 else
9936 {
9937 canon = mangled;
9938 need_copy = 0;
9939 }
9940 }
9941
9942 if (canon == NULL || check_physname)
9943 {
9944 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9945
9946 if (canon != NULL && strcmp (physname, canon) != 0)
9947 {
9948 /* It may not mean a bug in GDB. The compiler could also
9949 compute DW_AT_linkage_name incorrectly. But in such case
9950 GDB would need to be bug-to-bug compatible. */
9951
9952 complaint (&symfile_complaints,
9953 _("Computed physname <%s> does not match demangled <%s> "
9954 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9955 physname, canon, mangled, to_underlying (die->sect_off),
9956 objfile_name (objfile));
9957
9958 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9959 is available here - over computed PHYSNAME. It is safer
9960 against both buggy GDB and buggy compilers. */
9961
9962 retval = canon;
9963 }
9964 else
9965 {
9966 retval = physname;
9967 need_copy = 0;
9968 }
9969 }
9970 else
9971 retval = canon;
9972
9973 if (need_copy)
9974 retval = ((const char *)
9975 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9976 retval, strlen (retval)));
9977
9978 return retval;
9979 }
9980
9981 /* Inspect DIE in CU for a namespace alias. If one exists, record
9982 a new symbol for it.
9983
9984 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9985
9986 static int
9987 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9988 {
9989 struct attribute *attr;
9990
9991 /* If the die does not have a name, this is not a namespace
9992 alias. */
9993 attr = dwarf2_attr (die, DW_AT_name, cu);
9994 if (attr != NULL)
9995 {
9996 int num;
9997 struct die_info *d = die;
9998 struct dwarf2_cu *imported_cu = cu;
9999
10000 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10001 keep inspecting DIEs until we hit the underlying import. */
10002 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10003 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10004 {
10005 attr = dwarf2_attr (d, DW_AT_import, cu);
10006 if (attr == NULL)
10007 break;
10008
10009 d = follow_die_ref (d, attr, &imported_cu);
10010 if (d->tag != DW_TAG_imported_declaration)
10011 break;
10012 }
10013
10014 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10015 {
10016 complaint (&symfile_complaints,
10017 _("DIE at 0x%x has too many recursively imported "
10018 "declarations"), to_underlying (d->sect_off));
10019 return 0;
10020 }
10021
10022 if (attr != NULL)
10023 {
10024 struct type *type;
10025 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10026
10027 type = get_die_type_at_offset (sect_off, cu->per_cu);
10028 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10029 {
10030 /* This declaration is a global namespace alias. Add
10031 a symbol for it whose type is the aliased namespace. */
10032 new_symbol (die, type, cu);
10033 return 1;
10034 }
10035 }
10036 }
10037
10038 return 0;
10039 }
10040
10041 /* Return the using directives repository (global or local?) to use in the
10042 current context for LANGUAGE.
10043
10044 For Ada, imported declarations can materialize renamings, which *may* be
10045 global. However it is impossible (for now?) in DWARF to distinguish
10046 "external" imported declarations and "static" ones. As all imported
10047 declarations seem to be static in all other languages, make them all CU-wide
10048 global only in Ada. */
10049
10050 static struct using_direct **
10051 using_directives (enum language language)
10052 {
10053 if (language == language_ada && context_stack_depth == 0)
10054 return &global_using_directives;
10055 else
10056 return &local_using_directives;
10057 }
10058
10059 /* Read the import statement specified by the given die and record it. */
10060
10061 static void
10062 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10063 {
10064 struct objfile *objfile = cu->objfile;
10065 struct attribute *import_attr;
10066 struct die_info *imported_die, *child_die;
10067 struct dwarf2_cu *imported_cu;
10068 const char *imported_name;
10069 const char *imported_name_prefix;
10070 const char *canonical_name;
10071 const char *import_alias;
10072 const char *imported_declaration = NULL;
10073 const char *import_prefix;
10074 std::vector<const char *> excludes;
10075
10076 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10077 if (import_attr == NULL)
10078 {
10079 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
10080 dwarf_tag_name (die->tag));
10081 return;
10082 }
10083
10084 imported_cu = cu;
10085 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10086 imported_name = dwarf2_name (imported_die, imported_cu);
10087 if (imported_name == NULL)
10088 {
10089 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10090
10091 The import in the following code:
10092 namespace A
10093 {
10094 typedef int B;
10095 }
10096
10097 int main ()
10098 {
10099 using A::B;
10100 B b;
10101 return b;
10102 }
10103
10104 ...
10105 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10106 <52> DW_AT_decl_file : 1
10107 <53> DW_AT_decl_line : 6
10108 <54> DW_AT_import : <0x75>
10109 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10110 <59> DW_AT_name : B
10111 <5b> DW_AT_decl_file : 1
10112 <5c> DW_AT_decl_line : 2
10113 <5d> DW_AT_type : <0x6e>
10114 ...
10115 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10116 <76> DW_AT_byte_size : 4
10117 <77> DW_AT_encoding : 5 (signed)
10118
10119 imports the wrong die ( 0x75 instead of 0x58 ).
10120 This case will be ignored until the gcc bug is fixed. */
10121 return;
10122 }
10123
10124 /* Figure out the local name after import. */
10125 import_alias = dwarf2_name (die, cu);
10126
10127 /* Figure out where the statement is being imported to. */
10128 import_prefix = determine_prefix (die, cu);
10129
10130 /* Figure out what the scope of the imported die is and prepend it
10131 to the name of the imported die. */
10132 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10133
10134 if (imported_die->tag != DW_TAG_namespace
10135 && imported_die->tag != DW_TAG_module)
10136 {
10137 imported_declaration = imported_name;
10138 canonical_name = imported_name_prefix;
10139 }
10140 else if (strlen (imported_name_prefix) > 0)
10141 canonical_name = obconcat (&objfile->objfile_obstack,
10142 imported_name_prefix,
10143 (cu->language == language_d ? "." : "::"),
10144 imported_name, (char *) NULL);
10145 else
10146 canonical_name = imported_name;
10147
10148 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10149 for (child_die = die->child; child_die && child_die->tag;
10150 child_die = sibling_die (child_die))
10151 {
10152 /* DWARF-4: A Fortran use statement with a “rename list” may be
10153 represented by an imported module entry with an import attribute
10154 referring to the module and owned entries corresponding to those
10155 entities that are renamed as part of being imported. */
10156
10157 if (child_die->tag != DW_TAG_imported_declaration)
10158 {
10159 complaint (&symfile_complaints,
10160 _("child DW_TAG_imported_declaration expected "
10161 "- DIE at 0x%x [in module %s]"),
10162 to_underlying (child_die->sect_off), objfile_name (objfile));
10163 continue;
10164 }
10165
10166 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10167 if (import_attr == NULL)
10168 {
10169 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
10170 dwarf_tag_name (child_die->tag));
10171 continue;
10172 }
10173
10174 imported_cu = cu;
10175 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10176 &imported_cu);
10177 imported_name = dwarf2_name (imported_die, imported_cu);
10178 if (imported_name == NULL)
10179 {
10180 complaint (&symfile_complaints,
10181 _("child DW_TAG_imported_declaration has unknown "
10182 "imported name - DIE at 0x%x [in module %s]"),
10183 to_underlying (child_die->sect_off), objfile_name (objfile));
10184 continue;
10185 }
10186
10187 excludes.push_back (imported_name);
10188
10189 process_die (child_die, cu);
10190 }
10191
10192 add_using_directive (using_directives (cu->language),
10193 import_prefix,
10194 canonical_name,
10195 import_alias,
10196 imported_declaration,
10197 excludes,
10198 0,
10199 &objfile->objfile_obstack);
10200 }
10201
10202 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10203 types, but gives them a size of zero. Starting with version 14,
10204 ICC is compatible with GCC. */
10205
10206 static int
10207 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10208 {
10209 if (!cu->checked_producer)
10210 check_producer (cu);
10211
10212 return cu->producer_is_icc_lt_14;
10213 }
10214
10215 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10216 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10217 this, it was first present in GCC release 4.3.0. */
10218
10219 static int
10220 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10221 {
10222 if (!cu->checked_producer)
10223 check_producer (cu);
10224
10225 return cu->producer_is_gcc_lt_4_3;
10226 }
10227
10228 static file_and_directory
10229 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10230 {
10231 file_and_directory res;
10232
10233 /* Find the filename. Do not use dwarf2_name here, since the filename
10234 is not a source language identifier. */
10235 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10236 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10237
10238 if (res.comp_dir == NULL
10239 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10240 && IS_ABSOLUTE_PATH (res.name))
10241 {
10242 res.comp_dir_storage = ldirname (res.name);
10243 if (!res.comp_dir_storage.empty ())
10244 res.comp_dir = res.comp_dir_storage.c_str ();
10245 }
10246 if (res.comp_dir != NULL)
10247 {
10248 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10249 directory, get rid of it. */
10250 const char *cp = strchr (res.comp_dir, ':');
10251
10252 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10253 res.comp_dir = cp + 1;
10254 }
10255
10256 if (res.name == NULL)
10257 res.name = "<unknown>";
10258
10259 return res;
10260 }
10261
10262 /* Handle DW_AT_stmt_list for a compilation unit.
10263 DIE is the DW_TAG_compile_unit die for CU.
10264 COMP_DIR is the compilation directory. LOWPC is passed to
10265 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10266
10267 static void
10268 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10269 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10270 {
10271 struct objfile *objfile = dwarf2_per_objfile->objfile;
10272 struct attribute *attr;
10273 struct line_header line_header_local;
10274 hashval_t line_header_local_hash;
10275 void **slot;
10276 int decode_mapping;
10277
10278 gdb_assert (! cu->per_cu->is_debug_types);
10279
10280 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10281 if (attr == NULL)
10282 return;
10283
10284 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10285
10286 /* The line header hash table is only created if needed (it exists to
10287 prevent redundant reading of the line table for partial_units).
10288 If we're given a partial_unit, we'll need it. If we're given a
10289 compile_unit, then use the line header hash table if it's already
10290 created, but don't create one just yet. */
10291
10292 if (dwarf2_per_objfile->line_header_hash == NULL
10293 && die->tag == DW_TAG_partial_unit)
10294 {
10295 dwarf2_per_objfile->line_header_hash
10296 = htab_create_alloc_ex (127, line_header_hash_voidp,
10297 line_header_eq_voidp,
10298 free_line_header_voidp,
10299 &objfile->objfile_obstack,
10300 hashtab_obstack_allocate,
10301 dummy_obstack_deallocate);
10302 }
10303
10304 line_header_local.sect_off = line_offset;
10305 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10306 line_header_local_hash = line_header_hash (&line_header_local);
10307 if (dwarf2_per_objfile->line_header_hash != NULL)
10308 {
10309 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10310 &line_header_local,
10311 line_header_local_hash, NO_INSERT);
10312
10313 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10314 is not present in *SLOT (since if there is something in *SLOT then
10315 it will be for a partial_unit). */
10316 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10317 {
10318 gdb_assert (*slot != NULL);
10319 cu->line_header = (struct line_header *) *slot;
10320 return;
10321 }
10322 }
10323
10324 /* dwarf_decode_line_header does not yet provide sufficient information.
10325 We always have to call also dwarf_decode_lines for it. */
10326 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10327 if (lh == NULL)
10328 return;
10329
10330 cu->line_header = lh.release ();
10331 cu->line_header_die_owner = die;
10332
10333 if (dwarf2_per_objfile->line_header_hash == NULL)
10334 slot = NULL;
10335 else
10336 {
10337 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10338 &line_header_local,
10339 line_header_local_hash, INSERT);
10340 gdb_assert (slot != NULL);
10341 }
10342 if (slot != NULL && *slot == NULL)
10343 {
10344 /* This newly decoded line number information unit will be owned
10345 by line_header_hash hash table. */
10346 *slot = cu->line_header;
10347 cu->line_header_die_owner = NULL;
10348 }
10349 else
10350 {
10351 /* We cannot free any current entry in (*slot) as that struct line_header
10352 may be already used by multiple CUs. Create only temporary decoded
10353 line_header for this CU - it may happen at most once for each line
10354 number information unit. And if we're not using line_header_hash
10355 then this is what we want as well. */
10356 gdb_assert (die->tag != DW_TAG_partial_unit);
10357 }
10358 decode_mapping = (die->tag != DW_TAG_partial_unit);
10359 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10360 decode_mapping);
10361
10362 }
10363
10364 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10365
10366 static void
10367 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10368 {
10369 struct objfile *objfile = dwarf2_per_objfile->objfile;
10370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10371 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10372 CORE_ADDR highpc = ((CORE_ADDR) 0);
10373 struct attribute *attr;
10374 struct die_info *child_die;
10375 CORE_ADDR baseaddr;
10376
10377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10378
10379 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10380
10381 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10382 from finish_block. */
10383 if (lowpc == ((CORE_ADDR) -1))
10384 lowpc = highpc;
10385 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10386
10387 file_and_directory fnd = find_file_and_directory (die, cu);
10388
10389 prepare_one_comp_unit (cu, die, cu->language);
10390
10391 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10392 standardised yet. As a workaround for the language detection we fall
10393 back to the DW_AT_producer string. */
10394 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10395 cu->language = language_opencl;
10396
10397 /* Similar hack for Go. */
10398 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10399 set_cu_language (DW_LANG_Go, cu);
10400
10401 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
10402
10403 /* Decode line number information if present. We do this before
10404 processing child DIEs, so that the line header table is available
10405 for DW_AT_decl_file. */
10406 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10407
10408 /* Process all dies in compilation unit. */
10409 if (die->child != NULL)
10410 {
10411 child_die = die->child;
10412 while (child_die && child_die->tag)
10413 {
10414 process_die (child_die, cu);
10415 child_die = sibling_die (child_die);
10416 }
10417 }
10418
10419 /* Decode macro information, if present. Dwarf 2 macro information
10420 refers to information in the line number info statement program
10421 header, so we can only read it if we've read the header
10422 successfully. */
10423 attr = dwarf2_attr (die, DW_AT_macros, cu);
10424 if (attr == NULL)
10425 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10426 if (attr && cu->line_header)
10427 {
10428 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10429 complaint (&symfile_complaints,
10430 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10431
10432 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10433 }
10434 else
10435 {
10436 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10437 if (attr && cu->line_header)
10438 {
10439 unsigned int macro_offset = DW_UNSND (attr);
10440
10441 dwarf_decode_macros (cu, macro_offset, 0);
10442 }
10443 }
10444 }
10445
10446 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
10447 Create the set of symtabs used by this TU, or if this TU is sharing
10448 symtabs with another TU and the symtabs have already been created
10449 then restore those symtabs in the line header.
10450 We don't need the pc/line-number mapping for type units. */
10451
10452 static void
10453 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
10454 {
10455 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
10456 struct type_unit_group *tu_group;
10457 int first_time;
10458 struct attribute *attr;
10459 unsigned int i;
10460 struct signatured_type *sig_type;
10461
10462 gdb_assert (per_cu->is_debug_types);
10463 sig_type = (struct signatured_type *) per_cu;
10464
10465 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10466
10467 /* If we're using .gdb_index (includes -readnow) then
10468 per_cu->type_unit_group may not have been set up yet. */
10469 if (sig_type->type_unit_group == NULL)
10470 sig_type->type_unit_group = get_type_unit_group (cu, attr);
10471 tu_group = sig_type->type_unit_group;
10472
10473 /* If we've already processed this stmt_list there's no real need to
10474 do it again, we could fake it and just recreate the part we need
10475 (file name,index -> symtab mapping). If data shows this optimization
10476 is useful we can do it then. */
10477 first_time = tu_group->compunit_symtab == NULL;
10478
10479 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10480 debug info. */
10481 line_header_up lh;
10482 if (attr != NULL)
10483 {
10484 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10485 lh = dwarf_decode_line_header (line_offset, cu);
10486 }
10487 if (lh == NULL)
10488 {
10489 if (first_time)
10490 dwarf2_start_symtab (cu, "", NULL, 0);
10491 else
10492 {
10493 gdb_assert (tu_group->symtabs == NULL);
10494 restart_symtab (tu_group->compunit_symtab, "", 0);
10495 }
10496 return;
10497 }
10498
10499 cu->line_header = lh.release ();
10500 cu->line_header_die_owner = die;
10501
10502 if (first_time)
10503 {
10504 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
10505
10506 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10507 still initializing it, and our caller (a few levels up)
10508 process_full_type_unit still needs to know if this is the first
10509 time. */
10510
10511 tu_group->num_symtabs = cu->line_header->file_names.size ();
10512 tu_group->symtabs = XNEWVEC (struct symtab *,
10513 cu->line_header->file_names.size ());
10514
10515 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10516 {
10517 file_entry &fe = cu->line_header->file_names[i];
10518
10519 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
10520
10521 if (current_subfile->symtab == NULL)
10522 {
10523 /* NOTE: start_subfile will recognize when it's been
10524 passed a file it has already seen. So we can't
10525 assume there's a simple mapping from
10526 cu->line_header->file_names to subfiles, plus
10527 cu->line_header->file_names may contain dups. */
10528 current_subfile->symtab
10529 = allocate_symtab (cust, current_subfile->name);
10530 }
10531
10532 fe.symtab = current_subfile->symtab;
10533 tu_group->symtabs[i] = fe.symtab;
10534 }
10535 }
10536 else
10537 {
10538 restart_symtab (tu_group->compunit_symtab, "", 0);
10539
10540 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10541 {
10542 file_entry &fe = cu->line_header->file_names[i];
10543
10544 fe.symtab = tu_group->symtabs[i];
10545 }
10546 }
10547
10548 /* The main symtab is allocated last. Type units don't have DW_AT_name
10549 so they don't have a "real" (so to speak) symtab anyway.
10550 There is later code that will assign the main symtab to all symbols
10551 that don't have one. We need to handle the case of a symbol with a
10552 missing symtab (DW_AT_decl_file) anyway. */
10553 }
10554
10555 /* Process DW_TAG_type_unit.
10556 For TUs we want to skip the first top level sibling if it's not the
10557 actual type being defined by this TU. In this case the first top
10558 level sibling is there to provide context only. */
10559
10560 static void
10561 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10562 {
10563 struct die_info *child_die;
10564
10565 prepare_one_comp_unit (cu, die, language_minimal);
10566
10567 /* Initialize (or reinitialize) the machinery for building symtabs.
10568 We do this before processing child DIEs, so that the line header table
10569 is available for DW_AT_decl_file. */
10570 setup_type_unit_groups (die, cu);
10571
10572 if (die->child != NULL)
10573 {
10574 child_die = die->child;
10575 while (child_die && child_die->tag)
10576 {
10577 process_die (child_die, cu);
10578 child_die = sibling_die (child_die);
10579 }
10580 }
10581 }
10582 \f
10583 /* DWO/DWP files.
10584
10585 http://gcc.gnu.org/wiki/DebugFission
10586 http://gcc.gnu.org/wiki/DebugFissionDWP
10587
10588 To simplify handling of both DWO files ("object" files with the DWARF info)
10589 and DWP files (a file with the DWOs packaged up into one file), we treat
10590 DWP files as having a collection of virtual DWO files. */
10591
10592 static hashval_t
10593 hash_dwo_file (const void *item)
10594 {
10595 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10596 hashval_t hash;
10597
10598 hash = htab_hash_string (dwo_file->dwo_name);
10599 if (dwo_file->comp_dir != NULL)
10600 hash += htab_hash_string (dwo_file->comp_dir);
10601 return hash;
10602 }
10603
10604 static int
10605 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10606 {
10607 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10608 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10609
10610 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10611 return 0;
10612 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10613 return lhs->comp_dir == rhs->comp_dir;
10614 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10615 }
10616
10617 /* Allocate a hash table for DWO files. */
10618
10619 static htab_t
10620 allocate_dwo_file_hash_table (void)
10621 {
10622 struct objfile *objfile = dwarf2_per_objfile->objfile;
10623
10624 return htab_create_alloc_ex (41,
10625 hash_dwo_file,
10626 eq_dwo_file,
10627 NULL,
10628 &objfile->objfile_obstack,
10629 hashtab_obstack_allocate,
10630 dummy_obstack_deallocate);
10631 }
10632
10633 /* Lookup DWO file DWO_NAME. */
10634
10635 static void **
10636 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
10637 {
10638 struct dwo_file find_entry;
10639 void **slot;
10640
10641 if (dwarf2_per_objfile->dwo_files == NULL)
10642 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
10643
10644 memset (&find_entry, 0, sizeof (find_entry));
10645 find_entry.dwo_name = dwo_name;
10646 find_entry.comp_dir = comp_dir;
10647 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
10648
10649 return slot;
10650 }
10651
10652 static hashval_t
10653 hash_dwo_unit (const void *item)
10654 {
10655 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10656
10657 /* This drops the top 32 bits of the id, but is ok for a hash. */
10658 return dwo_unit->signature;
10659 }
10660
10661 static int
10662 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10663 {
10664 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10665 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10666
10667 /* The signature is assumed to be unique within the DWO file.
10668 So while object file CU dwo_id's always have the value zero,
10669 that's OK, assuming each object file DWO file has only one CU,
10670 and that's the rule for now. */
10671 return lhs->signature == rhs->signature;
10672 }
10673
10674 /* Allocate a hash table for DWO CUs,TUs.
10675 There is one of these tables for each of CUs,TUs for each DWO file. */
10676
10677 static htab_t
10678 allocate_dwo_unit_table (struct objfile *objfile)
10679 {
10680 /* Start out with a pretty small number.
10681 Generally DWO files contain only one CU and maybe some TUs. */
10682 return htab_create_alloc_ex (3,
10683 hash_dwo_unit,
10684 eq_dwo_unit,
10685 NULL,
10686 &objfile->objfile_obstack,
10687 hashtab_obstack_allocate,
10688 dummy_obstack_deallocate);
10689 }
10690
10691 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
10692
10693 struct create_dwo_cu_data
10694 {
10695 struct dwo_file *dwo_file;
10696 struct dwo_unit dwo_unit;
10697 };
10698
10699 /* die_reader_func for create_dwo_cu. */
10700
10701 static void
10702 create_dwo_cu_reader (const struct die_reader_specs *reader,
10703 const gdb_byte *info_ptr,
10704 struct die_info *comp_unit_die,
10705 int has_children,
10706 void *datap)
10707 {
10708 struct dwarf2_cu *cu = reader->cu;
10709 sect_offset sect_off = cu->per_cu->sect_off;
10710 struct dwarf2_section_info *section = cu->per_cu->section;
10711 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
10712 struct dwo_file *dwo_file = data->dwo_file;
10713 struct dwo_unit *dwo_unit = &data->dwo_unit;
10714 struct attribute *attr;
10715
10716 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
10717 if (attr == NULL)
10718 {
10719 complaint (&symfile_complaints,
10720 _("Dwarf Error: debug entry at offset 0x%x is missing"
10721 " its dwo_id [in module %s]"),
10722 to_underlying (sect_off), dwo_file->dwo_name);
10723 return;
10724 }
10725
10726 dwo_unit->dwo_file = dwo_file;
10727 dwo_unit->signature = DW_UNSND (attr);
10728 dwo_unit->section = section;
10729 dwo_unit->sect_off = sect_off;
10730 dwo_unit->length = cu->per_cu->length;
10731
10732 if (dwarf_read_debug)
10733 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
10734 to_underlying (sect_off),
10735 hex_string (dwo_unit->signature));
10736 }
10737
10738 /* Create the dwo_units for the CUs in a DWO_FILE.
10739 Note: This function processes DWO files only, not DWP files. */
10740
10741 static void
10742 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
10743 htab_t &cus_htab)
10744 {
10745 struct objfile *objfile = dwarf2_per_objfile->objfile;
10746 const gdb_byte *info_ptr, *end_ptr;
10747
10748 dwarf2_read_section (objfile, &section);
10749 info_ptr = section.buffer;
10750
10751 if (info_ptr == NULL)
10752 return;
10753
10754 if (dwarf_read_debug)
10755 {
10756 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
10757 get_section_name (&section),
10758 get_section_file_name (&section));
10759 }
10760
10761 end_ptr = info_ptr + section.size;
10762 while (info_ptr < end_ptr)
10763 {
10764 struct dwarf2_per_cu_data per_cu;
10765 struct create_dwo_cu_data create_dwo_cu_data;
10766 struct dwo_unit *dwo_unit;
10767 void **slot;
10768 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10769
10770 memset (&create_dwo_cu_data.dwo_unit, 0,
10771 sizeof (create_dwo_cu_data.dwo_unit));
10772 memset (&per_cu, 0, sizeof (per_cu));
10773 per_cu.objfile = objfile;
10774 per_cu.is_debug_types = 0;
10775 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10776 per_cu.section = &section;
10777 create_dwo_cu_data.dwo_file = &dwo_file;
10778
10779 init_cutu_and_read_dies_no_follow (
10780 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
10781 info_ptr += per_cu.length;
10782
10783 // If the unit could not be parsed, skip it.
10784 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
10785 continue;
10786
10787 if (cus_htab == NULL)
10788 cus_htab = allocate_dwo_unit_table (objfile);
10789
10790 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10791 *dwo_unit = create_dwo_cu_data.dwo_unit;
10792 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
10793 gdb_assert (slot != NULL);
10794 if (*slot != NULL)
10795 {
10796 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10797 sect_offset dup_sect_off = dup_cu->sect_off;
10798
10799 complaint (&symfile_complaints,
10800 _("debug cu entry at offset 0x%x is duplicate to"
10801 " the entry at offset 0x%x, signature %s"),
10802 to_underlying (sect_off), to_underlying (dup_sect_off),
10803 hex_string (dwo_unit->signature));
10804 }
10805 *slot = (void *)dwo_unit;
10806 }
10807 }
10808
10809 /* DWP file .debug_{cu,tu}_index section format:
10810 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10811
10812 DWP Version 1:
10813
10814 Both index sections have the same format, and serve to map a 64-bit
10815 signature to a set of section numbers. Each section begins with a header,
10816 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10817 indexes, and a pool of 32-bit section numbers. The index sections will be
10818 aligned at 8-byte boundaries in the file.
10819
10820 The index section header consists of:
10821
10822 V, 32 bit version number
10823 -, 32 bits unused
10824 N, 32 bit number of compilation units or type units in the index
10825 M, 32 bit number of slots in the hash table
10826
10827 Numbers are recorded using the byte order of the application binary.
10828
10829 The hash table begins at offset 16 in the section, and consists of an array
10830 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10831 order of the application binary). Unused slots in the hash table are 0.
10832 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10833
10834 The parallel table begins immediately after the hash table
10835 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10836 array of 32-bit indexes (using the byte order of the application binary),
10837 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10838 table contains a 32-bit index into the pool of section numbers. For unused
10839 hash table slots, the corresponding entry in the parallel table will be 0.
10840
10841 The pool of section numbers begins immediately following the hash table
10842 (at offset 16 + 12 * M from the beginning of the section). The pool of
10843 section numbers consists of an array of 32-bit words (using the byte order
10844 of the application binary). Each item in the array is indexed starting
10845 from 0. The hash table entry provides the index of the first section
10846 number in the set. Additional section numbers in the set follow, and the
10847 set is terminated by a 0 entry (section number 0 is not used in ELF).
10848
10849 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10850 section must be the first entry in the set, and the .debug_abbrev.dwo must
10851 be the second entry. Other members of the set may follow in any order.
10852
10853 ---
10854
10855 DWP Version 2:
10856
10857 DWP Version 2 combines all the .debug_info, etc. sections into one,
10858 and the entries in the index tables are now offsets into these sections.
10859 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10860 section.
10861
10862 Index Section Contents:
10863 Header
10864 Hash Table of Signatures dwp_hash_table.hash_table
10865 Parallel Table of Indices dwp_hash_table.unit_table
10866 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10867 Table of Section Sizes dwp_hash_table.v2.sizes
10868
10869 The index section header consists of:
10870
10871 V, 32 bit version number
10872 L, 32 bit number of columns in the table of section offsets
10873 N, 32 bit number of compilation units or type units in the index
10874 M, 32 bit number of slots in the hash table
10875
10876 Numbers are recorded using the byte order of the application binary.
10877
10878 The hash table has the same format as version 1.
10879 The parallel table of indices has the same format as version 1,
10880 except that the entries are origin-1 indices into the table of sections
10881 offsets and the table of section sizes.
10882
10883 The table of offsets begins immediately following the parallel table
10884 (at offset 16 + 12 * M from the beginning of the section). The table is
10885 a two-dimensional array of 32-bit words (using the byte order of the
10886 application binary), with L columns and N+1 rows, in row-major order.
10887 Each row in the array is indexed starting from 0. The first row provides
10888 a key to the remaining rows: each column in this row provides an identifier
10889 for a debug section, and the offsets in the same column of subsequent rows
10890 refer to that section. The section identifiers are:
10891
10892 DW_SECT_INFO 1 .debug_info.dwo
10893 DW_SECT_TYPES 2 .debug_types.dwo
10894 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10895 DW_SECT_LINE 4 .debug_line.dwo
10896 DW_SECT_LOC 5 .debug_loc.dwo
10897 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10898 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10899 DW_SECT_MACRO 8 .debug_macro.dwo
10900
10901 The offsets provided by the CU and TU index sections are the base offsets
10902 for the contributions made by each CU or TU to the corresponding section
10903 in the package file. Each CU and TU header contains an abbrev_offset
10904 field, used to find the abbreviations table for that CU or TU within the
10905 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10906 be interpreted as relative to the base offset given in the index section.
10907 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10908 should be interpreted as relative to the base offset for .debug_line.dwo,
10909 and offsets into other debug sections obtained from DWARF attributes should
10910 also be interpreted as relative to the corresponding base offset.
10911
10912 The table of sizes begins immediately following the table of offsets.
10913 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10914 with L columns and N rows, in row-major order. Each row in the array is
10915 indexed starting from 1 (row 0 is shared by the two tables).
10916
10917 ---
10918
10919 Hash table lookup is handled the same in version 1 and 2:
10920
10921 We assume that N and M will not exceed 2^32 - 1.
10922 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10923
10924 Given a 64-bit compilation unit signature or a type signature S, an entry
10925 in the hash table is located as follows:
10926
10927 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10928 the low-order k bits all set to 1.
10929
10930 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10931
10932 3) If the hash table entry at index H matches the signature, use that
10933 entry. If the hash table entry at index H is unused (all zeroes),
10934 terminate the search: the signature is not present in the table.
10935
10936 4) Let H = (H + H') modulo M. Repeat at Step 3.
10937
10938 Because M > N and H' and M are relatively prime, the search is guaranteed
10939 to stop at an unused slot or find the match. */
10940
10941 /* Create a hash table to map DWO IDs to their CU/TU entry in
10942 .debug_{info,types}.dwo in DWP_FILE.
10943 Returns NULL if there isn't one.
10944 Note: This function processes DWP files only, not DWO files. */
10945
10946 static struct dwp_hash_table *
10947 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10948 {
10949 struct objfile *objfile = dwarf2_per_objfile->objfile;
10950 bfd *dbfd = dwp_file->dbfd;
10951 const gdb_byte *index_ptr, *index_end;
10952 struct dwarf2_section_info *index;
10953 uint32_t version, nr_columns, nr_units, nr_slots;
10954 struct dwp_hash_table *htab;
10955
10956 if (is_debug_types)
10957 index = &dwp_file->sections.tu_index;
10958 else
10959 index = &dwp_file->sections.cu_index;
10960
10961 if (dwarf2_section_empty_p (index))
10962 return NULL;
10963 dwarf2_read_section (objfile, index);
10964
10965 index_ptr = index->buffer;
10966 index_end = index_ptr + index->size;
10967
10968 version = read_4_bytes (dbfd, index_ptr);
10969 index_ptr += 4;
10970 if (version == 2)
10971 nr_columns = read_4_bytes (dbfd, index_ptr);
10972 else
10973 nr_columns = 0;
10974 index_ptr += 4;
10975 nr_units = read_4_bytes (dbfd, index_ptr);
10976 index_ptr += 4;
10977 nr_slots = read_4_bytes (dbfd, index_ptr);
10978 index_ptr += 4;
10979
10980 if (version != 1 && version != 2)
10981 {
10982 error (_("Dwarf Error: unsupported DWP file version (%s)"
10983 " [in module %s]"),
10984 pulongest (version), dwp_file->name);
10985 }
10986 if (nr_slots != (nr_slots & -nr_slots))
10987 {
10988 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10989 " is not power of 2 [in module %s]"),
10990 pulongest (nr_slots), dwp_file->name);
10991 }
10992
10993 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10994 htab->version = version;
10995 htab->nr_columns = nr_columns;
10996 htab->nr_units = nr_units;
10997 htab->nr_slots = nr_slots;
10998 htab->hash_table = index_ptr;
10999 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11000
11001 /* Exit early if the table is empty. */
11002 if (nr_slots == 0 || nr_units == 0
11003 || (version == 2 && nr_columns == 0))
11004 {
11005 /* All must be zero. */
11006 if (nr_slots != 0 || nr_units != 0
11007 || (version == 2 && nr_columns != 0))
11008 {
11009 complaint (&symfile_complaints,
11010 _("Empty DWP but nr_slots,nr_units,nr_columns not"
11011 " all zero [in modules %s]"),
11012 dwp_file->name);
11013 }
11014 return htab;
11015 }
11016
11017 if (version == 1)
11018 {
11019 htab->section_pool.v1.indices =
11020 htab->unit_table + sizeof (uint32_t) * nr_slots;
11021 /* It's harder to decide whether the section is too small in v1.
11022 V1 is deprecated anyway so we punt. */
11023 }
11024 else
11025 {
11026 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11027 int *ids = htab->section_pool.v2.section_ids;
11028 /* Reverse map for error checking. */
11029 int ids_seen[DW_SECT_MAX + 1];
11030 int i;
11031
11032 if (nr_columns < 2)
11033 {
11034 error (_("Dwarf Error: bad DWP hash table, too few columns"
11035 " in section table [in module %s]"),
11036 dwp_file->name);
11037 }
11038 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11039 {
11040 error (_("Dwarf Error: bad DWP hash table, too many columns"
11041 " in section table [in module %s]"),
11042 dwp_file->name);
11043 }
11044 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
11045 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
11046 for (i = 0; i < nr_columns; ++i)
11047 {
11048 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11049
11050 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11051 {
11052 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11053 " in section table [in module %s]"),
11054 id, dwp_file->name);
11055 }
11056 if (ids_seen[id] != -1)
11057 {
11058 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11059 " id %d in section table [in module %s]"),
11060 id, dwp_file->name);
11061 }
11062 ids_seen[id] = i;
11063 ids[i] = id;
11064 }
11065 /* Must have exactly one info or types section. */
11066 if (((ids_seen[DW_SECT_INFO] != -1)
11067 + (ids_seen[DW_SECT_TYPES] != -1))
11068 != 1)
11069 {
11070 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11071 " DWO info/types section [in module %s]"),
11072 dwp_file->name);
11073 }
11074 /* Must have an abbrev section. */
11075 if (ids_seen[DW_SECT_ABBREV] == -1)
11076 {
11077 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11078 " section [in module %s]"),
11079 dwp_file->name);
11080 }
11081 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11082 htab->section_pool.v2.sizes =
11083 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11084 * nr_units * nr_columns);
11085 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11086 * nr_units * nr_columns))
11087 > index_end)
11088 {
11089 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11090 " [in module %s]"),
11091 dwp_file->name);
11092 }
11093 }
11094
11095 return htab;
11096 }
11097
11098 /* Update SECTIONS with the data from SECTP.
11099
11100 This function is like the other "locate" section routines that are
11101 passed to bfd_map_over_sections, but in this context the sections to
11102 read comes from the DWP V1 hash table, not the full ELF section table.
11103
11104 The result is non-zero for success, or zero if an error was found. */
11105
11106 static int
11107 locate_v1_virtual_dwo_sections (asection *sectp,
11108 struct virtual_v1_dwo_sections *sections)
11109 {
11110 const struct dwop_section_names *names = &dwop_section_names;
11111
11112 if (section_is_p (sectp->name, &names->abbrev_dwo))
11113 {
11114 /* There can be only one. */
11115 if (sections->abbrev.s.section != NULL)
11116 return 0;
11117 sections->abbrev.s.section = sectp;
11118 sections->abbrev.size = bfd_get_section_size (sectp);
11119 }
11120 else if (section_is_p (sectp->name, &names->info_dwo)
11121 || section_is_p (sectp->name, &names->types_dwo))
11122 {
11123 /* There can be only one. */
11124 if (sections->info_or_types.s.section != NULL)
11125 return 0;
11126 sections->info_or_types.s.section = sectp;
11127 sections->info_or_types.size = bfd_get_section_size (sectp);
11128 }
11129 else if (section_is_p (sectp->name, &names->line_dwo))
11130 {
11131 /* There can be only one. */
11132 if (sections->line.s.section != NULL)
11133 return 0;
11134 sections->line.s.section = sectp;
11135 sections->line.size = bfd_get_section_size (sectp);
11136 }
11137 else if (section_is_p (sectp->name, &names->loc_dwo))
11138 {
11139 /* There can be only one. */
11140 if (sections->loc.s.section != NULL)
11141 return 0;
11142 sections->loc.s.section = sectp;
11143 sections->loc.size = bfd_get_section_size (sectp);
11144 }
11145 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11146 {
11147 /* There can be only one. */
11148 if (sections->macinfo.s.section != NULL)
11149 return 0;
11150 sections->macinfo.s.section = sectp;
11151 sections->macinfo.size = bfd_get_section_size (sectp);
11152 }
11153 else if (section_is_p (sectp->name, &names->macro_dwo))
11154 {
11155 /* There can be only one. */
11156 if (sections->macro.s.section != NULL)
11157 return 0;
11158 sections->macro.s.section = sectp;
11159 sections->macro.size = bfd_get_section_size (sectp);
11160 }
11161 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11162 {
11163 /* There can be only one. */
11164 if (sections->str_offsets.s.section != NULL)
11165 return 0;
11166 sections->str_offsets.s.section = sectp;
11167 sections->str_offsets.size = bfd_get_section_size (sectp);
11168 }
11169 else
11170 {
11171 /* No other kind of section is valid. */
11172 return 0;
11173 }
11174
11175 return 1;
11176 }
11177
11178 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11179 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11180 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11181 This is for DWP version 1 files. */
11182
11183 static struct dwo_unit *
11184 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
11185 uint32_t unit_index,
11186 const char *comp_dir,
11187 ULONGEST signature, int is_debug_types)
11188 {
11189 struct objfile *objfile = dwarf2_per_objfile->objfile;
11190 const struct dwp_hash_table *dwp_htab =
11191 is_debug_types ? dwp_file->tus : dwp_file->cus;
11192 bfd *dbfd = dwp_file->dbfd;
11193 const char *kind = is_debug_types ? "TU" : "CU";
11194 struct dwo_file *dwo_file;
11195 struct dwo_unit *dwo_unit;
11196 struct virtual_v1_dwo_sections sections;
11197 void **dwo_file_slot;
11198 int i;
11199
11200 gdb_assert (dwp_file->version == 1);
11201
11202 if (dwarf_read_debug)
11203 {
11204 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11205 kind,
11206 pulongest (unit_index), hex_string (signature),
11207 dwp_file->name);
11208 }
11209
11210 /* Fetch the sections of this DWO unit.
11211 Put a limit on the number of sections we look for so that bad data
11212 doesn't cause us to loop forever. */
11213
11214 #define MAX_NR_V1_DWO_SECTIONS \
11215 (1 /* .debug_info or .debug_types */ \
11216 + 1 /* .debug_abbrev */ \
11217 + 1 /* .debug_line */ \
11218 + 1 /* .debug_loc */ \
11219 + 1 /* .debug_str_offsets */ \
11220 + 1 /* .debug_macro or .debug_macinfo */ \
11221 + 1 /* trailing zero */)
11222
11223 memset (&sections, 0, sizeof (sections));
11224
11225 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11226 {
11227 asection *sectp;
11228 uint32_t section_nr =
11229 read_4_bytes (dbfd,
11230 dwp_htab->section_pool.v1.indices
11231 + (unit_index + i) * sizeof (uint32_t));
11232
11233 if (section_nr == 0)
11234 break;
11235 if (section_nr >= dwp_file->num_sections)
11236 {
11237 error (_("Dwarf Error: bad DWP hash table, section number too large"
11238 " [in module %s]"),
11239 dwp_file->name);
11240 }
11241
11242 sectp = dwp_file->elf_sections[section_nr];
11243 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11244 {
11245 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11246 " [in module %s]"),
11247 dwp_file->name);
11248 }
11249 }
11250
11251 if (i < 2
11252 || dwarf2_section_empty_p (&sections.info_or_types)
11253 || dwarf2_section_empty_p (&sections.abbrev))
11254 {
11255 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11256 " [in module %s]"),
11257 dwp_file->name);
11258 }
11259 if (i == MAX_NR_V1_DWO_SECTIONS)
11260 {
11261 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11262 " [in module %s]"),
11263 dwp_file->name);
11264 }
11265
11266 /* It's easier for the rest of the code if we fake a struct dwo_file and
11267 have dwo_unit "live" in that. At least for now.
11268
11269 The DWP file can be made up of a random collection of CUs and TUs.
11270 However, for each CU + set of TUs that came from the same original DWO
11271 file, we can combine them back into a virtual DWO file to save space
11272 (fewer struct dwo_file objects to allocate). Remember that for really
11273 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11274
11275 std::string virtual_dwo_name =
11276 string_printf ("virtual-dwo/%d-%d-%d-%d",
11277 get_section_id (&sections.abbrev),
11278 get_section_id (&sections.line),
11279 get_section_id (&sections.loc),
11280 get_section_id (&sections.str_offsets));
11281 /* Can we use an existing virtual DWO file? */
11282 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11283 /* Create one if necessary. */
11284 if (*dwo_file_slot == NULL)
11285 {
11286 if (dwarf_read_debug)
11287 {
11288 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11289 virtual_dwo_name.c_str ());
11290 }
11291 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11292 dwo_file->dwo_name
11293 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11294 virtual_dwo_name.c_str (),
11295 virtual_dwo_name.size ());
11296 dwo_file->comp_dir = comp_dir;
11297 dwo_file->sections.abbrev = sections.abbrev;
11298 dwo_file->sections.line = sections.line;
11299 dwo_file->sections.loc = sections.loc;
11300 dwo_file->sections.macinfo = sections.macinfo;
11301 dwo_file->sections.macro = sections.macro;
11302 dwo_file->sections.str_offsets = sections.str_offsets;
11303 /* The "str" section is global to the entire DWP file. */
11304 dwo_file->sections.str = dwp_file->sections.str;
11305 /* The info or types section is assigned below to dwo_unit,
11306 there's no need to record it in dwo_file.
11307 Also, we can't simply record type sections in dwo_file because
11308 we record a pointer into the vector in dwo_unit. As we collect more
11309 types we'll grow the vector and eventually have to reallocate space
11310 for it, invalidating all copies of pointers into the previous
11311 contents. */
11312 *dwo_file_slot = dwo_file;
11313 }
11314 else
11315 {
11316 if (dwarf_read_debug)
11317 {
11318 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11319 virtual_dwo_name.c_str ());
11320 }
11321 dwo_file = (struct dwo_file *) *dwo_file_slot;
11322 }
11323
11324 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11325 dwo_unit->dwo_file = dwo_file;
11326 dwo_unit->signature = signature;
11327 dwo_unit->section =
11328 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11329 *dwo_unit->section = sections.info_or_types;
11330 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11331
11332 return dwo_unit;
11333 }
11334
11335 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11336 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11337 piece within that section used by a TU/CU, return a virtual section
11338 of just that piece. */
11339
11340 static struct dwarf2_section_info
11341 create_dwp_v2_section (struct dwarf2_section_info *section,
11342 bfd_size_type offset, bfd_size_type size)
11343 {
11344 struct dwarf2_section_info result;
11345 asection *sectp;
11346
11347 gdb_assert (section != NULL);
11348 gdb_assert (!section->is_virtual);
11349
11350 memset (&result, 0, sizeof (result));
11351 result.s.containing_section = section;
11352 result.is_virtual = 1;
11353
11354 if (size == 0)
11355 return result;
11356
11357 sectp = get_section_bfd_section (section);
11358
11359 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11360 bounds of the real section. This is a pretty-rare event, so just
11361 flag an error (easier) instead of a warning and trying to cope. */
11362 if (sectp == NULL
11363 || offset + size > bfd_get_section_size (sectp))
11364 {
11365 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11366 " in section %s [in module %s]"),
11367 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
11368 objfile_name (dwarf2_per_objfile->objfile));
11369 }
11370
11371 result.virtual_offset = offset;
11372 result.size = size;
11373 return result;
11374 }
11375
11376 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11377 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11378 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11379 This is for DWP version 2 files. */
11380
11381 static struct dwo_unit *
11382 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
11383 uint32_t unit_index,
11384 const char *comp_dir,
11385 ULONGEST signature, int is_debug_types)
11386 {
11387 struct objfile *objfile = dwarf2_per_objfile->objfile;
11388 const struct dwp_hash_table *dwp_htab =
11389 is_debug_types ? dwp_file->tus : dwp_file->cus;
11390 bfd *dbfd = dwp_file->dbfd;
11391 const char *kind = is_debug_types ? "TU" : "CU";
11392 struct dwo_file *dwo_file;
11393 struct dwo_unit *dwo_unit;
11394 struct virtual_v2_dwo_sections sections;
11395 void **dwo_file_slot;
11396 int i;
11397
11398 gdb_assert (dwp_file->version == 2);
11399
11400 if (dwarf_read_debug)
11401 {
11402 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11403 kind,
11404 pulongest (unit_index), hex_string (signature),
11405 dwp_file->name);
11406 }
11407
11408 /* Fetch the section offsets of this DWO unit. */
11409
11410 memset (&sections, 0, sizeof (sections));
11411
11412 for (i = 0; i < dwp_htab->nr_columns; ++i)
11413 {
11414 uint32_t offset = read_4_bytes (dbfd,
11415 dwp_htab->section_pool.v2.offsets
11416 + (((unit_index - 1) * dwp_htab->nr_columns
11417 + i)
11418 * sizeof (uint32_t)));
11419 uint32_t size = read_4_bytes (dbfd,
11420 dwp_htab->section_pool.v2.sizes
11421 + (((unit_index - 1) * dwp_htab->nr_columns
11422 + i)
11423 * sizeof (uint32_t)));
11424
11425 switch (dwp_htab->section_pool.v2.section_ids[i])
11426 {
11427 case DW_SECT_INFO:
11428 case DW_SECT_TYPES:
11429 sections.info_or_types_offset = offset;
11430 sections.info_or_types_size = size;
11431 break;
11432 case DW_SECT_ABBREV:
11433 sections.abbrev_offset = offset;
11434 sections.abbrev_size = size;
11435 break;
11436 case DW_SECT_LINE:
11437 sections.line_offset = offset;
11438 sections.line_size = size;
11439 break;
11440 case DW_SECT_LOC:
11441 sections.loc_offset = offset;
11442 sections.loc_size = size;
11443 break;
11444 case DW_SECT_STR_OFFSETS:
11445 sections.str_offsets_offset = offset;
11446 sections.str_offsets_size = size;
11447 break;
11448 case DW_SECT_MACINFO:
11449 sections.macinfo_offset = offset;
11450 sections.macinfo_size = size;
11451 break;
11452 case DW_SECT_MACRO:
11453 sections.macro_offset = offset;
11454 sections.macro_size = size;
11455 break;
11456 }
11457 }
11458
11459 /* It's easier for the rest of the code if we fake a struct dwo_file and
11460 have dwo_unit "live" in that. At least for now.
11461
11462 The DWP file can be made up of a random collection of CUs and TUs.
11463 However, for each CU + set of TUs that came from the same original DWO
11464 file, we can combine them back into a virtual DWO file to save space
11465 (fewer struct dwo_file objects to allocate). Remember that for really
11466 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11467
11468 std::string virtual_dwo_name =
11469 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11470 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11471 (long) (sections.line_size ? sections.line_offset : 0),
11472 (long) (sections.loc_size ? sections.loc_offset : 0),
11473 (long) (sections.str_offsets_size
11474 ? sections.str_offsets_offset : 0));
11475 /* Can we use an existing virtual DWO file? */
11476 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11477 /* Create one if necessary. */
11478 if (*dwo_file_slot == NULL)
11479 {
11480 if (dwarf_read_debug)
11481 {
11482 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11483 virtual_dwo_name.c_str ());
11484 }
11485 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11486 dwo_file->dwo_name
11487 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11488 virtual_dwo_name.c_str (),
11489 virtual_dwo_name.size ());
11490 dwo_file->comp_dir = comp_dir;
11491 dwo_file->sections.abbrev =
11492 create_dwp_v2_section (&dwp_file->sections.abbrev,
11493 sections.abbrev_offset, sections.abbrev_size);
11494 dwo_file->sections.line =
11495 create_dwp_v2_section (&dwp_file->sections.line,
11496 sections.line_offset, sections.line_size);
11497 dwo_file->sections.loc =
11498 create_dwp_v2_section (&dwp_file->sections.loc,
11499 sections.loc_offset, sections.loc_size);
11500 dwo_file->sections.macinfo =
11501 create_dwp_v2_section (&dwp_file->sections.macinfo,
11502 sections.macinfo_offset, sections.macinfo_size);
11503 dwo_file->sections.macro =
11504 create_dwp_v2_section (&dwp_file->sections.macro,
11505 sections.macro_offset, sections.macro_size);
11506 dwo_file->sections.str_offsets =
11507 create_dwp_v2_section (&dwp_file->sections.str_offsets,
11508 sections.str_offsets_offset,
11509 sections.str_offsets_size);
11510 /* The "str" section is global to the entire DWP file. */
11511 dwo_file->sections.str = dwp_file->sections.str;
11512 /* The info or types section is assigned below to dwo_unit,
11513 there's no need to record it in dwo_file.
11514 Also, we can't simply record type sections in dwo_file because
11515 we record a pointer into the vector in dwo_unit. As we collect more
11516 types we'll grow the vector and eventually have to reallocate space
11517 for it, invalidating all copies of pointers into the previous
11518 contents. */
11519 *dwo_file_slot = dwo_file;
11520 }
11521 else
11522 {
11523 if (dwarf_read_debug)
11524 {
11525 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11526 virtual_dwo_name.c_str ());
11527 }
11528 dwo_file = (struct dwo_file *) *dwo_file_slot;
11529 }
11530
11531 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11532 dwo_unit->dwo_file = dwo_file;
11533 dwo_unit->signature = signature;
11534 dwo_unit->section =
11535 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11536 *dwo_unit->section = create_dwp_v2_section (is_debug_types
11537 ? &dwp_file->sections.types
11538 : &dwp_file->sections.info,
11539 sections.info_or_types_offset,
11540 sections.info_or_types_size);
11541 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11542
11543 return dwo_unit;
11544 }
11545
11546 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11547 Returns NULL if the signature isn't found. */
11548
11549 static struct dwo_unit *
11550 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
11551 ULONGEST signature, int is_debug_types)
11552 {
11553 const struct dwp_hash_table *dwp_htab =
11554 is_debug_types ? dwp_file->tus : dwp_file->cus;
11555 bfd *dbfd = dwp_file->dbfd;
11556 uint32_t mask = dwp_htab->nr_slots - 1;
11557 uint32_t hash = signature & mask;
11558 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11559 unsigned int i;
11560 void **slot;
11561 struct dwo_unit find_dwo_cu;
11562
11563 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11564 find_dwo_cu.signature = signature;
11565 slot = htab_find_slot (is_debug_types
11566 ? dwp_file->loaded_tus
11567 : dwp_file->loaded_cus,
11568 &find_dwo_cu, INSERT);
11569
11570 if (*slot != NULL)
11571 return (struct dwo_unit *) *slot;
11572
11573 /* Use a for loop so that we don't loop forever on bad debug info. */
11574 for (i = 0; i < dwp_htab->nr_slots; ++i)
11575 {
11576 ULONGEST signature_in_table;
11577
11578 signature_in_table =
11579 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11580 if (signature_in_table == signature)
11581 {
11582 uint32_t unit_index =
11583 read_4_bytes (dbfd,
11584 dwp_htab->unit_table + hash * sizeof (uint32_t));
11585
11586 if (dwp_file->version == 1)
11587 {
11588 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
11589 comp_dir, signature,
11590 is_debug_types);
11591 }
11592 else
11593 {
11594 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
11595 comp_dir, signature,
11596 is_debug_types);
11597 }
11598 return (struct dwo_unit *) *slot;
11599 }
11600 if (signature_in_table == 0)
11601 return NULL;
11602 hash = (hash + hash2) & mask;
11603 }
11604
11605 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11606 " [in module %s]"),
11607 dwp_file->name);
11608 }
11609
11610 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11611 Open the file specified by FILE_NAME and hand it off to BFD for
11612 preliminary analysis. Return a newly initialized bfd *, which
11613 includes a canonicalized copy of FILE_NAME.
11614 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11615 SEARCH_CWD is true if the current directory is to be searched.
11616 It will be searched before debug-file-directory.
11617 If successful, the file is added to the bfd include table of the
11618 objfile's bfd (see gdb_bfd_record_inclusion).
11619 If unable to find/open the file, return NULL.
11620 NOTE: This function is derived from symfile_bfd_open. */
11621
11622 static gdb_bfd_ref_ptr
11623 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
11624 {
11625 int desc, flags;
11626 char *absolute_name;
11627 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11628 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11629 to debug_file_directory. */
11630 char *search_path;
11631 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11632
11633 if (search_cwd)
11634 {
11635 if (*debug_file_directory != '\0')
11636 search_path = concat (".", dirname_separator_string,
11637 debug_file_directory, (char *) NULL);
11638 else
11639 search_path = xstrdup (".");
11640 }
11641 else
11642 search_path = xstrdup (debug_file_directory);
11643
11644 flags = OPF_RETURN_REALPATH;
11645 if (is_dwp)
11646 flags |= OPF_SEARCH_IN_PATH;
11647 desc = openp (search_path, flags, file_name,
11648 O_RDONLY | O_BINARY, &absolute_name);
11649 xfree (search_path);
11650 if (desc < 0)
11651 return NULL;
11652
11653 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
11654 xfree (absolute_name);
11655 if (sym_bfd == NULL)
11656 return NULL;
11657 bfd_set_cacheable (sym_bfd.get (), 1);
11658
11659 if (!bfd_check_format (sym_bfd.get (), bfd_object))
11660 return NULL;
11661
11662 /* Success. Record the bfd as having been included by the objfile's bfd.
11663 This is important because things like demangled_names_hash lives in the
11664 objfile's per_bfd space and may have references to things like symbol
11665 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
11666 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
11667
11668 return sym_bfd;
11669 }
11670
11671 /* Try to open DWO file FILE_NAME.
11672 COMP_DIR is the DW_AT_comp_dir attribute.
11673 The result is the bfd handle of the file.
11674 If there is a problem finding or opening the file, return NULL.
11675 Upon success, the canonicalized path of the file is stored in the bfd,
11676 same as symfile_bfd_open. */
11677
11678 static gdb_bfd_ref_ptr
11679 open_dwo_file (const char *file_name, const char *comp_dir)
11680 {
11681 if (IS_ABSOLUTE_PATH (file_name))
11682 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
11683
11684 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
11685
11686 if (comp_dir != NULL)
11687 {
11688 char *path_to_try = concat (comp_dir, SLASH_STRING,
11689 file_name, (char *) NULL);
11690
11691 /* NOTE: If comp_dir is a relative path, this will also try the
11692 search path, which seems useful. */
11693 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
11694 1 /*search_cwd*/));
11695 xfree (path_to_try);
11696 if (abfd != NULL)
11697 return abfd;
11698 }
11699
11700 /* That didn't work, try debug-file-directory, which, despite its name,
11701 is a list of paths. */
11702
11703 if (*debug_file_directory == '\0')
11704 return NULL;
11705
11706 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
11707 }
11708
11709 /* This function is mapped across the sections and remembers the offset and
11710 size of each of the DWO debugging sections we are interested in. */
11711
11712 static void
11713 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
11714 {
11715 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
11716 const struct dwop_section_names *names = &dwop_section_names;
11717
11718 if (section_is_p (sectp->name, &names->abbrev_dwo))
11719 {
11720 dwo_sections->abbrev.s.section = sectp;
11721 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
11722 }
11723 else if (section_is_p (sectp->name, &names->info_dwo))
11724 {
11725 dwo_sections->info.s.section = sectp;
11726 dwo_sections->info.size = bfd_get_section_size (sectp);
11727 }
11728 else if (section_is_p (sectp->name, &names->line_dwo))
11729 {
11730 dwo_sections->line.s.section = sectp;
11731 dwo_sections->line.size = bfd_get_section_size (sectp);
11732 }
11733 else if (section_is_p (sectp->name, &names->loc_dwo))
11734 {
11735 dwo_sections->loc.s.section = sectp;
11736 dwo_sections->loc.size = bfd_get_section_size (sectp);
11737 }
11738 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11739 {
11740 dwo_sections->macinfo.s.section = sectp;
11741 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
11742 }
11743 else if (section_is_p (sectp->name, &names->macro_dwo))
11744 {
11745 dwo_sections->macro.s.section = sectp;
11746 dwo_sections->macro.size = bfd_get_section_size (sectp);
11747 }
11748 else if (section_is_p (sectp->name, &names->str_dwo))
11749 {
11750 dwo_sections->str.s.section = sectp;
11751 dwo_sections->str.size = bfd_get_section_size (sectp);
11752 }
11753 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11754 {
11755 dwo_sections->str_offsets.s.section = sectp;
11756 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
11757 }
11758 else if (section_is_p (sectp->name, &names->types_dwo))
11759 {
11760 struct dwarf2_section_info type_section;
11761
11762 memset (&type_section, 0, sizeof (type_section));
11763 type_section.s.section = sectp;
11764 type_section.size = bfd_get_section_size (sectp);
11765 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
11766 &type_section);
11767 }
11768 }
11769
11770 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
11771 by PER_CU. This is for the non-DWP case.
11772 The result is NULL if DWO_NAME can't be found. */
11773
11774 static struct dwo_file *
11775 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
11776 const char *dwo_name, const char *comp_dir)
11777 {
11778 struct objfile *objfile = dwarf2_per_objfile->objfile;
11779 struct dwo_file *dwo_file;
11780 struct cleanup *cleanups;
11781
11782 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
11783 if (dbfd == NULL)
11784 {
11785 if (dwarf_read_debug)
11786 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
11787 return NULL;
11788 }
11789 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11790 dwo_file->dwo_name = dwo_name;
11791 dwo_file->comp_dir = comp_dir;
11792 dwo_file->dbfd = dbfd.release ();
11793
11794 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
11795
11796 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
11797 &dwo_file->sections);
11798
11799 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
11800
11801 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
11802 dwo_file->tus);
11803
11804 discard_cleanups (cleanups);
11805
11806 if (dwarf_read_debug)
11807 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
11808
11809 return dwo_file;
11810 }
11811
11812 /* This function is mapped across the sections and remembers the offset and
11813 size of each of the DWP debugging sections common to version 1 and 2 that
11814 we are interested in. */
11815
11816 static void
11817 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
11818 void *dwp_file_ptr)
11819 {
11820 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11821 const struct dwop_section_names *names = &dwop_section_names;
11822 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11823
11824 /* Record the ELF section number for later lookup: this is what the
11825 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11826 gdb_assert (elf_section_nr < dwp_file->num_sections);
11827 dwp_file->elf_sections[elf_section_nr] = sectp;
11828
11829 /* Look for specific sections that we need. */
11830 if (section_is_p (sectp->name, &names->str_dwo))
11831 {
11832 dwp_file->sections.str.s.section = sectp;
11833 dwp_file->sections.str.size = bfd_get_section_size (sectp);
11834 }
11835 else if (section_is_p (sectp->name, &names->cu_index))
11836 {
11837 dwp_file->sections.cu_index.s.section = sectp;
11838 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11839 }
11840 else if (section_is_p (sectp->name, &names->tu_index))
11841 {
11842 dwp_file->sections.tu_index.s.section = sectp;
11843 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11844 }
11845 }
11846
11847 /* This function is mapped across the sections and remembers the offset and
11848 size of each of the DWP version 2 debugging sections that we are interested
11849 in. This is split into a separate function because we don't know if we
11850 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11851
11852 static void
11853 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11854 {
11855 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11856 const struct dwop_section_names *names = &dwop_section_names;
11857 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11858
11859 /* Record the ELF section number for later lookup: this is what the
11860 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11861 gdb_assert (elf_section_nr < dwp_file->num_sections);
11862 dwp_file->elf_sections[elf_section_nr] = sectp;
11863
11864 /* Look for specific sections that we need. */
11865 if (section_is_p (sectp->name, &names->abbrev_dwo))
11866 {
11867 dwp_file->sections.abbrev.s.section = sectp;
11868 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11869 }
11870 else if (section_is_p (sectp->name, &names->info_dwo))
11871 {
11872 dwp_file->sections.info.s.section = sectp;
11873 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11874 }
11875 else if (section_is_p (sectp->name, &names->line_dwo))
11876 {
11877 dwp_file->sections.line.s.section = sectp;
11878 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11879 }
11880 else if (section_is_p (sectp->name, &names->loc_dwo))
11881 {
11882 dwp_file->sections.loc.s.section = sectp;
11883 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11884 }
11885 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11886 {
11887 dwp_file->sections.macinfo.s.section = sectp;
11888 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11889 }
11890 else if (section_is_p (sectp->name, &names->macro_dwo))
11891 {
11892 dwp_file->sections.macro.s.section = sectp;
11893 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11894 }
11895 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11896 {
11897 dwp_file->sections.str_offsets.s.section = sectp;
11898 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11899 }
11900 else if (section_is_p (sectp->name, &names->types_dwo))
11901 {
11902 dwp_file->sections.types.s.section = sectp;
11903 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11904 }
11905 }
11906
11907 /* Hash function for dwp_file loaded CUs/TUs. */
11908
11909 static hashval_t
11910 hash_dwp_loaded_cutus (const void *item)
11911 {
11912 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11913
11914 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11915 return dwo_unit->signature;
11916 }
11917
11918 /* Equality function for dwp_file loaded CUs/TUs. */
11919
11920 static int
11921 eq_dwp_loaded_cutus (const void *a, const void *b)
11922 {
11923 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11924 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11925
11926 return dua->signature == dub->signature;
11927 }
11928
11929 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11930
11931 static htab_t
11932 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11933 {
11934 return htab_create_alloc_ex (3,
11935 hash_dwp_loaded_cutus,
11936 eq_dwp_loaded_cutus,
11937 NULL,
11938 &objfile->objfile_obstack,
11939 hashtab_obstack_allocate,
11940 dummy_obstack_deallocate);
11941 }
11942
11943 /* Try to open DWP file FILE_NAME.
11944 The result is the bfd handle of the file.
11945 If there is a problem finding or opening the file, return NULL.
11946 Upon success, the canonicalized path of the file is stored in the bfd,
11947 same as symfile_bfd_open. */
11948
11949 static gdb_bfd_ref_ptr
11950 open_dwp_file (const char *file_name)
11951 {
11952 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11953 1 /*search_cwd*/));
11954 if (abfd != NULL)
11955 return abfd;
11956
11957 /* Work around upstream bug 15652.
11958 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11959 [Whether that's a "bug" is debatable, but it is getting in our way.]
11960 We have no real idea where the dwp file is, because gdb's realpath-ing
11961 of the executable's path may have discarded the needed info.
11962 [IWBN if the dwp file name was recorded in the executable, akin to
11963 .gnu_debuglink, but that doesn't exist yet.]
11964 Strip the directory from FILE_NAME and search again. */
11965 if (*debug_file_directory != '\0')
11966 {
11967 /* Don't implicitly search the current directory here.
11968 If the user wants to search "." to handle this case,
11969 it must be added to debug-file-directory. */
11970 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11971 0 /*search_cwd*/);
11972 }
11973
11974 return NULL;
11975 }
11976
11977 /* Initialize the use of the DWP file for the current objfile.
11978 By convention the name of the DWP file is ${objfile}.dwp.
11979 The result is NULL if it can't be found. */
11980
11981 static struct dwp_file *
11982 open_and_init_dwp_file (void)
11983 {
11984 struct objfile *objfile = dwarf2_per_objfile->objfile;
11985 struct dwp_file *dwp_file;
11986
11987 /* Try to find first .dwp for the binary file before any symbolic links
11988 resolving. */
11989
11990 /* If the objfile is a debug file, find the name of the real binary
11991 file and get the name of dwp file from there. */
11992 std::string dwp_name;
11993 if (objfile->separate_debug_objfile_backlink != NULL)
11994 {
11995 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11996 const char *backlink_basename = lbasename (backlink->original_name);
11997
11998 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11999 }
12000 else
12001 dwp_name = objfile->original_name;
12002
12003 dwp_name += ".dwp";
12004
12005 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
12006 if (dbfd == NULL
12007 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12008 {
12009 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12010 dwp_name = objfile_name (objfile);
12011 dwp_name += ".dwp";
12012 dbfd = open_dwp_file (dwp_name.c_str ());
12013 }
12014
12015 if (dbfd == NULL)
12016 {
12017 if (dwarf_read_debug)
12018 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12019 return NULL;
12020 }
12021 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
12022 dwp_file->name = bfd_get_filename (dbfd.get ());
12023 dwp_file->dbfd = dbfd.release ();
12024
12025 /* +1: section 0 is unused */
12026 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
12027 dwp_file->elf_sections =
12028 OBSTACK_CALLOC (&objfile->objfile_obstack,
12029 dwp_file->num_sections, asection *);
12030
12031 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
12032 dwp_file);
12033
12034 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
12035
12036 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
12037
12038 /* The DWP file version is stored in the hash table. Oh well. */
12039 if (dwp_file->cus && dwp_file->tus
12040 && dwp_file->cus->version != dwp_file->tus->version)
12041 {
12042 /* Technically speaking, we should try to limp along, but this is
12043 pretty bizarre. We use pulongest here because that's the established
12044 portability solution (e.g, we cannot use %u for uint32_t). */
12045 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12046 " TU version %s [in DWP file %s]"),
12047 pulongest (dwp_file->cus->version),
12048 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12049 }
12050
12051 if (dwp_file->cus)
12052 dwp_file->version = dwp_file->cus->version;
12053 else if (dwp_file->tus)
12054 dwp_file->version = dwp_file->tus->version;
12055 else
12056 dwp_file->version = 2;
12057
12058 if (dwp_file->version == 2)
12059 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
12060 dwp_file);
12061
12062 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
12063 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
12064
12065 if (dwarf_read_debug)
12066 {
12067 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12068 fprintf_unfiltered (gdb_stdlog,
12069 " %s CUs, %s TUs\n",
12070 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12071 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12072 }
12073
12074 return dwp_file;
12075 }
12076
12077 /* Wrapper around open_and_init_dwp_file, only open it once. */
12078
12079 static struct dwp_file *
12080 get_dwp_file (void)
12081 {
12082 if (! dwarf2_per_objfile->dwp_checked)
12083 {
12084 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
12085 dwarf2_per_objfile->dwp_checked = 1;
12086 }
12087 return dwarf2_per_objfile->dwp_file;
12088 }
12089
12090 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12091 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12092 or in the DWP file for the objfile, referenced by THIS_UNIT.
12093 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12094 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12095
12096 This is called, for example, when wanting to read a variable with a
12097 complex location. Therefore we don't want to do file i/o for every call.
12098 Therefore we don't want to look for a DWO file on every call.
12099 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12100 then we check if we've already seen DWO_NAME, and only THEN do we check
12101 for a DWO file.
12102
12103 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12104 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12105
12106 static struct dwo_unit *
12107 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12108 const char *dwo_name, const char *comp_dir,
12109 ULONGEST signature, int is_debug_types)
12110 {
12111 struct objfile *objfile = dwarf2_per_objfile->objfile;
12112 const char *kind = is_debug_types ? "TU" : "CU";
12113 void **dwo_file_slot;
12114 struct dwo_file *dwo_file;
12115 struct dwp_file *dwp_file;
12116
12117 /* First see if there's a DWP file.
12118 If we have a DWP file but didn't find the DWO inside it, don't
12119 look for the original DWO file. It makes gdb behave differently
12120 depending on whether one is debugging in the build tree. */
12121
12122 dwp_file = get_dwp_file ();
12123 if (dwp_file != NULL)
12124 {
12125 const struct dwp_hash_table *dwp_htab =
12126 is_debug_types ? dwp_file->tus : dwp_file->cus;
12127
12128 if (dwp_htab != NULL)
12129 {
12130 struct dwo_unit *dwo_cutu =
12131 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
12132 signature, is_debug_types);
12133
12134 if (dwo_cutu != NULL)
12135 {
12136 if (dwarf_read_debug)
12137 {
12138 fprintf_unfiltered (gdb_stdlog,
12139 "Virtual DWO %s %s found: @%s\n",
12140 kind, hex_string (signature),
12141 host_address_to_string (dwo_cutu));
12142 }
12143 return dwo_cutu;
12144 }
12145 }
12146 }
12147 else
12148 {
12149 /* No DWP file, look for the DWO file. */
12150
12151 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
12152 if (*dwo_file_slot == NULL)
12153 {
12154 /* Read in the file and build a table of the CUs/TUs it contains. */
12155 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12156 }
12157 /* NOTE: This will be NULL if unable to open the file. */
12158 dwo_file = (struct dwo_file *) *dwo_file_slot;
12159
12160 if (dwo_file != NULL)
12161 {
12162 struct dwo_unit *dwo_cutu = NULL;
12163
12164 if (is_debug_types && dwo_file->tus)
12165 {
12166 struct dwo_unit find_dwo_cutu;
12167
12168 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12169 find_dwo_cutu.signature = signature;
12170 dwo_cutu
12171 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
12172 }
12173 else if (!is_debug_types && dwo_file->cus)
12174 {
12175 struct dwo_unit find_dwo_cutu;
12176
12177 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12178 find_dwo_cutu.signature = signature;
12179 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
12180 &find_dwo_cutu);
12181 }
12182
12183 if (dwo_cutu != NULL)
12184 {
12185 if (dwarf_read_debug)
12186 {
12187 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12188 kind, dwo_name, hex_string (signature),
12189 host_address_to_string (dwo_cutu));
12190 }
12191 return dwo_cutu;
12192 }
12193 }
12194 }
12195
12196 /* We didn't find it. This could mean a dwo_id mismatch, or
12197 someone deleted the DWO/DWP file, or the search path isn't set up
12198 correctly to find the file. */
12199
12200 if (dwarf_read_debug)
12201 {
12202 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12203 kind, dwo_name, hex_string (signature));
12204 }
12205
12206 /* This is a warning and not a complaint because it can be caused by
12207 pilot error (e.g., user accidentally deleting the DWO). */
12208 {
12209 /* Print the name of the DWP file if we looked there, helps the user
12210 better diagnose the problem. */
12211 std::string dwp_text;
12212
12213 if (dwp_file != NULL)
12214 dwp_text = string_printf (" [in DWP file %s]",
12215 lbasename (dwp_file->name));
12216
12217 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
12218 " [in module %s]"),
12219 kind, dwo_name, hex_string (signature),
12220 dwp_text.c_str (),
12221 this_unit->is_debug_types ? "TU" : "CU",
12222 to_underlying (this_unit->sect_off), objfile_name (objfile));
12223 }
12224 return NULL;
12225 }
12226
12227 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12228 See lookup_dwo_cutu_unit for details. */
12229
12230 static struct dwo_unit *
12231 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12232 const char *dwo_name, const char *comp_dir,
12233 ULONGEST signature)
12234 {
12235 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12236 }
12237
12238 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12239 See lookup_dwo_cutu_unit for details. */
12240
12241 static struct dwo_unit *
12242 lookup_dwo_type_unit (struct signatured_type *this_tu,
12243 const char *dwo_name, const char *comp_dir)
12244 {
12245 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12246 }
12247
12248 /* Traversal function for queue_and_load_all_dwo_tus. */
12249
12250 static int
12251 queue_and_load_dwo_tu (void **slot, void *info)
12252 {
12253 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12254 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12255 ULONGEST signature = dwo_unit->signature;
12256 struct signatured_type *sig_type =
12257 lookup_dwo_signatured_type (per_cu->cu, signature);
12258
12259 if (sig_type != NULL)
12260 {
12261 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12262
12263 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12264 a real dependency of PER_CU on SIG_TYPE. That is detected later
12265 while processing PER_CU. */
12266 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12267 load_full_type_unit (sig_cu);
12268 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
12269 }
12270
12271 return 1;
12272 }
12273
12274 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12275 The DWO may have the only definition of the type, though it may not be
12276 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12277 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12278
12279 static void
12280 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12281 {
12282 struct dwo_unit *dwo_unit;
12283 struct dwo_file *dwo_file;
12284
12285 gdb_assert (!per_cu->is_debug_types);
12286 gdb_assert (get_dwp_file () == NULL);
12287 gdb_assert (per_cu->cu != NULL);
12288
12289 dwo_unit = per_cu->cu->dwo_unit;
12290 gdb_assert (dwo_unit != NULL);
12291
12292 dwo_file = dwo_unit->dwo_file;
12293 if (dwo_file->tus != NULL)
12294 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
12295 }
12296
12297 /* Free all resources associated with DWO_FILE.
12298 Close the DWO file and munmap the sections.
12299 All memory should be on the objfile obstack. */
12300
12301 static void
12302 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
12303 {
12304
12305 /* Note: dbfd is NULL for virtual DWO files. */
12306 gdb_bfd_unref (dwo_file->dbfd);
12307
12308 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
12309 }
12310
12311 /* Wrapper for free_dwo_file for use in cleanups. */
12312
12313 static void
12314 free_dwo_file_cleanup (void *arg)
12315 {
12316 struct dwo_file *dwo_file = (struct dwo_file *) arg;
12317 struct objfile *objfile = dwarf2_per_objfile->objfile;
12318
12319 free_dwo_file (dwo_file, objfile);
12320 }
12321
12322 /* Traversal function for free_dwo_files. */
12323
12324 static int
12325 free_dwo_file_from_slot (void **slot, void *info)
12326 {
12327 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
12328 struct objfile *objfile = (struct objfile *) info;
12329
12330 free_dwo_file (dwo_file, objfile);
12331
12332 return 1;
12333 }
12334
12335 /* Free all resources associated with DWO_FILES. */
12336
12337 static void
12338 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
12339 {
12340 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
12341 }
12342 \f
12343 /* Read in various DIEs. */
12344
12345 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12346 Inherit only the children of the DW_AT_abstract_origin DIE not being
12347 already referenced by DW_AT_abstract_origin from the children of the
12348 current DIE. */
12349
12350 static void
12351 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12352 {
12353 struct die_info *child_die;
12354 sect_offset *offsetp;
12355 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12356 struct die_info *origin_die;
12357 /* Iterator of the ORIGIN_DIE children. */
12358 struct die_info *origin_child_die;
12359 struct attribute *attr;
12360 struct dwarf2_cu *origin_cu;
12361 struct pending **origin_previous_list_in_scope;
12362
12363 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12364 if (!attr)
12365 return;
12366
12367 /* Note that following die references may follow to a die in a
12368 different cu. */
12369
12370 origin_cu = cu;
12371 origin_die = follow_die_ref (die, attr, &origin_cu);
12372
12373 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12374 symbols in. */
12375 origin_previous_list_in_scope = origin_cu->list_in_scope;
12376 origin_cu->list_in_scope = cu->list_in_scope;
12377
12378 if (die->tag != origin_die->tag
12379 && !(die->tag == DW_TAG_inlined_subroutine
12380 && origin_die->tag == DW_TAG_subprogram))
12381 complaint (&symfile_complaints,
12382 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
12383 to_underlying (die->sect_off),
12384 to_underlying (origin_die->sect_off));
12385
12386 std::vector<sect_offset> offsets;
12387
12388 for (child_die = die->child;
12389 child_die && child_die->tag;
12390 child_die = sibling_die (child_die))
12391 {
12392 struct die_info *child_origin_die;
12393 struct dwarf2_cu *child_origin_cu;
12394
12395 /* We are trying to process concrete instance entries:
12396 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12397 it's not relevant to our analysis here. i.e. detecting DIEs that are
12398 present in the abstract instance but not referenced in the concrete
12399 one. */
12400 if (child_die->tag == DW_TAG_call_site
12401 || child_die->tag == DW_TAG_GNU_call_site)
12402 continue;
12403
12404 /* For each CHILD_DIE, find the corresponding child of
12405 ORIGIN_DIE. If there is more than one layer of
12406 DW_AT_abstract_origin, follow them all; there shouldn't be,
12407 but GCC versions at least through 4.4 generate this (GCC PR
12408 40573). */
12409 child_origin_die = child_die;
12410 child_origin_cu = cu;
12411 while (1)
12412 {
12413 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12414 child_origin_cu);
12415 if (attr == NULL)
12416 break;
12417 child_origin_die = follow_die_ref (child_origin_die, attr,
12418 &child_origin_cu);
12419 }
12420
12421 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12422 counterpart may exist. */
12423 if (child_origin_die != child_die)
12424 {
12425 if (child_die->tag != child_origin_die->tag
12426 && !(child_die->tag == DW_TAG_inlined_subroutine
12427 && child_origin_die->tag == DW_TAG_subprogram))
12428 complaint (&symfile_complaints,
12429 _("Child DIE 0x%x and its abstract origin 0x%x have "
12430 "different tags"),
12431 to_underlying (child_die->sect_off),
12432 to_underlying (child_origin_die->sect_off));
12433 if (child_origin_die->parent != origin_die)
12434 complaint (&symfile_complaints,
12435 _("Child DIE 0x%x and its abstract origin 0x%x have "
12436 "different parents"),
12437 to_underlying (child_die->sect_off),
12438 to_underlying (child_origin_die->sect_off));
12439 else
12440 offsets.push_back (child_origin_die->sect_off);
12441 }
12442 }
12443 std::sort (offsets.begin (), offsets.end ());
12444 sect_offset *offsets_end = offsets.data () + offsets.size ();
12445 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12446 if (offsetp[-1] == *offsetp)
12447 complaint (&symfile_complaints,
12448 _("Multiple children of DIE 0x%x refer "
12449 "to DIE 0x%x as their abstract origin"),
12450 to_underlying (die->sect_off), to_underlying (*offsetp));
12451
12452 offsetp = offsets.data ();
12453 origin_child_die = origin_die->child;
12454 while (origin_child_die && origin_child_die->tag)
12455 {
12456 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12457 while (offsetp < offsets_end
12458 && *offsetp < origin_child_die->sect_off)
12459 offsetp++;
12460 if (offsetp >= offsets_end
12461 || *offsetp > origin_child_die->sect_off)
12462 {
12463 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12464 Check whether we're already processing ORIGIN_CHILD_DIE.
12465 This can happen with mutually referenced abstract_origins.
12466 PR 16581. */
12467 if (!origin_child_die->in_process)
12468 process_die (origin_child_die, origin_cu);
12469 }
12470 origin_child_die = sibling_die (origin_child_die);
12471 }
12472 origin_cu->list_in_scope = origin_previous_list_in_scope;
12473 }
12474
12475 static void
12476 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12477 {
12478 struct objfile *objfile = cu->objfile;
12479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12480 struct context_stack *newobj;
12481 CORE_ADDR lowpc;
12482 CORE_ADDR highpc;
12483 struct die_info *child_die;
12484 struct attribute *attr, *call_line, *call_file;
12485 const char *name;
12486 CORE_ADDR baseaddr;
12487 struct block *block;
12488 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12489 std::vector<struct symbol *> template_args;
12490 struct template_symbol *templ_func = NULL;
12491
12492 if (inlined_func)
12493 {
12494 /* If we do not have call site information, we can't show the
12495 caller of this inlined function. That's too confusing, so
12496 only use the scope for local variables. */
12497 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12498 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12499 if (call_line == NULL || call_file == NULL)
12500 {
12501 read_lexical_block_scope (die, cu);
12502 return;
12503 }
12504 }
12505
12506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12507
12508 name = dwarf2_name (die, cu);
12509
12510 /* Ignore functions with missing or empty names. These are actually
12511 illegal according to the DWARF standard. */
12512 if (name == NULL)
12513 {
12514 complaint (&symfile_complaints,
12515 _("missing name for subprogram DIE at %d"),
12516 to_underlying (die->sect_off));
12517 return;
12518 }
12519
12520 /* Ignore functions with missing or invalid low and high pc attributes. */
12521 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12522 <= PC_BOUNDS_INVALID)
12523 {
12524 attr = dwarf2_attr (die, DW_AT_external, cu);
12525 if (!attr || !DW_UNSND (attr))
12526 complaint (&symfile_complaints,
12527 _("cannot get low and high bounds "
12528 "for subprogram DIE at %d"),
12529 to_underlying (die->sect_off));
12530 return;
12531 }
12532
12533 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12534 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12535
12536 /* If we have any template arguments, then we must allocate a
12537 different sort of symbol. */
12538 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12539 {
12540 if (child_die->tag == DW_TAG_template_type_param
12541 || child_die->tag == DW_TAG_template_value_param)
12542 {
12543 templ_func = allocate_template_symbol (objfile);
12544 templ_func->subclass = SYMBOL_TEMPLATE;
12545 break;
12546 }
12547 }
12548
12549 newobj = push_context (0, lowpc);
12550 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
12551 (struct symbol *) templ_func);
12552
12553 /* If there is a location expression for DW_AT_frame_base, record
12554 it. */
12555 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12556 if (attr)
12557 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12558
12559 /* If there is a location for the static link, record it. */
12560 newobj->static_link = NULL;
12561 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12562 if (attr)
12563 {
12564 newobj->static_link
12565 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12566 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
12567 }
12568
12569 cu->list_in_scope = &local_symbols;
12570
12571 if (die->child != NULL)
12572 {
12573 child_die = die->child;
12574 while (child_die && child_die->tag)
12575 {
12576 if (child_die->tag == DW_TAG_template_type_param
12577 || child_die->tag == DW_TAG_template_value_param)
12578 {
12579 struct symbol *arg = new_symbol (child_die, NULL, cu);
12580
12581 if (arg != NULL)
12582 template_args.push_back (arg);
12583 }
12584 else
12585 process_die (child_die, cu);
12586 child_die = sibling_die (child_die);
12587 }
12588 }
12589
12590 inherit_abstract_dies (die, cu);
12591
12592 /* If we have a DW_AT_specification, we might need to import using
12593 directives from the context of the specification DIE. See the
12594 comment in determine_prefix. */
12595 if (cu->language == language_cplus
12596 && dwarf2_attr (die, DW_AT_specification, cu))
12597 {
12598 struct dwarf2_cu *spec_cu = cu;
12599 struct die_info *spec_die = die_specification (die, &spec_cu);
12600
12601 while (spec_die)
12602 {
12603 child_die = spec_die->child;
12604 while (child_die && child_die->tag)
12605 {
12606 if (child_die->tag == DW_TAG_imported_module)
12607 process_die (child_die, spec_cu);
12608 child_die = sibling_die (child_die);
12609 }
12610
12611 /* In some cases, GCC generates specification DIEs that
12612 themselves contain DW_AT_specification attributes. */
12613 spec_die = die_specification (spec_die, &spec_cu);
12614 }
12615 }
12616
12617 newobj = pop_context ();
12618 /* Make a block for the local symbols within. */
12619 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
12620 newobj->static_link, lowpc, highpc);
12621
12622 /* For C++, set the block's scope. */
12623 if ((cu->language == language_cplus
12624 || cu->language == language_fortran
12625 || cu->language == language_d
12626 || cu->language == language_rust)
12627 && cu->processing_has_namespace_info)
12628 block_set_scope (block, determine_prefix (die, cu),
12629 &objfile->objfile_obstack);
12630
12631 /* If we have address ranges, record them. */
12632 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12633
12634 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
12635
12636 /* Attach template arguments to function. */
12637 if (!template_args.empty ())
12638 {
12639 gdb_assert (templ_func != NULL);
12640
12641 templ_func->n_template_arguments = template_args.size ();
12642 templ_func->template_arguments
12643 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12644 templ_func->n_template_arguments);
12645 memcpy (templ_func->template_arguments,
12646 template_args.data (),
12647 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12648 }
12649
12650 /* In C++, we can have functions nested inside functions (e.g., when
12651 a function declares a class that has methods). This means that
12652 when we finish processing a function scope, we may need to go
12653 back to building a containing block's symbol lists. */
12654 local_symbols = newobj->locals;
12655 local_using_directives = newobj->local_using_directives;
12656
12657 /* If we've finished processing a top-level function, subsequent
12658 symbols go in the file symbol list. */
12659 if (outermost_context_p ())
12660 cu->list_in_scope = &file_symbols;
12661 }
12662
12663 /* Process all the DIES contained within a lexical block scope. Start
12664 a new scope, process the dies, and then close the scope. */
12665
12666 static void
12667 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12668 {
12669 struct objfile *objfile = cu->objfile;
12670 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12671 struct context_stack *newobj;
12672 CORE_ADDR lowpc, highpc;
12673 struct die_info *child_die;
12674 CORE_ADDR baseaddr;
12675
12676 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12677
12678 /* Ignore blocks with missing or invalid low and high pc attributes. */
12679 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
12680 as multiple lexical blocks? Handling children in a sane way would
12681 be nasty. Might be easier to properly extend generic blocks to
12682 describe ranges. */
12683 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
12684 {
12685 case PC_BOUNDS_NOT_PRESENT:
12686 /* DW_TAG_lexical_block has no attributes, process its children as if
12687 there was no wrapping by that DW_TAG_lexical_block.
12688 GCC does no longer produces such DWARF since GCC r224161. */
12689 for (child_die = die->child;
12690 child_die != NULL && child_die->tag;
12691 child_die = sibling_die (child_die))
12692 process_die (child_die, cu);
12693 return;
12694 case PC_BOUNDS_INVALID:
12695 return;
12696 }
12697 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12698 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12699
12700 push_context (0, lowpc);
12701 if (die->child != NULL)
12702 {
12703 child_die = die->child;
12704 while (child_die && child_die->tag)
12705 {
12706 process_die (child_die, cu);
12707 child_die = sibling_die (child_die);
12708 }
12709 }
12710 inherit_abstract_dies (die, cu);
12711 newobj = pop_context ();
12712
12713 if (local_symbols != NULL || local_using_directives != NULL)
12714 {
12715 struct block *block
12716 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
12717 newobj->start_addr, highpc);
12718
12719 /* Note that recording ranges after traversing children, as we
12720 do here, means that recording a parent's ranges entails
12721 walking across all its children's ranges as they appear in
12722 the address map, which is quadratic behavior.
12723
12724 It would be nicer to record the parent's ranges before
12725 traversing its children, simply overriding whatever you find
12726 there. But since we don't even decide whether to create a
12727 block until after we've traversed its children, that's hard
12728 to do. */
12729 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12730 }
12731 local_symbols = newobj->locals;
12732 local_using_directives = newobj->local_using_directives;
12733 }
12734
12735 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
12736
12737 static void
12738 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
12739 {
12740 struct objfile *objfile = cu->objfile;
12741 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12742 CORE_ADDR pc, baseaddr;
12743 struct attribute *attr;
12744 struct call_site *call_site, call_site_local;
12745 void **slot;
12746 int nparams;
12747 struct die_info *child_die;
12748
12749 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12750
12751 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
12752 if (attr == NULL)
12753 {
12754 /* This was a pre-DWARF-5 GNU extension alias
12755 for DW_AT_call_return_pc. */
12756 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12757 }
12758 if (!attr)
12759 {
12760 complaint (&symfile_complaints,
12761 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
12762 "DIE 0x%x [in module %s]"),
12763 to_underlying (die->sect_off), objfile_name (objfile));
12764 return;
12765 }
12766 pc = attr_value_as_address (attr) + baseaddr;
12767 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
12768
12769 if (cu->call_site_htab == NULL)
12770 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
12771 NULL, &objfile->objfile_obstack,
12772 hashtab_obstack_allocate, NULL);
12773 call_site_local.pc = pc;
12774 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
12775 if (*slot != NULL)
12776 {
12777 complaint (&symfile_complaints,
12778 _("Duplicate PC %s for DW_TAG_call_site "
12779 "DIE 0x%x [in module %s]"),
12780 paddress (gdbarch, pc), to_underlying (die->sect_off),
12781 objfile_name (objfile));
12782 return;
12783 }
12784
12785 /* Count parameters at the caller. */
12786
12787 nparams = 0;
12788 for (child_die = die->child; child_die && child_die->tag;
12789 child_die = sibling_die (child_die))
12790 {
12791 if (child_die->tag != DW_TAG_call_site_parameter
12792 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12793 {
12794 complaint (&symfile_complaints,
12795 _("Tag %d is not DW_TAG_call_site_parameter in "
12796 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12797 child_die->tag, to_underlying (child_die->sect_off),
12798 objfile_name (objfile));
12799 continue;
12800 }
12801
12802 nparams++;
12803 }
12804
12805 call_site
12806 = ((struct call_site *)
12807 obstack_alloc (&objfile->objfile_obstack,
12808 sizeof (*call_site)
12809 + (sizeof (*call_site->parameter) * (nparams - 1))));
12810 *slot = call_site;
12811 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
12812 call_site->pc = pc;
12813
12814 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12815 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12816 {
12817 struct die_info *func_die;
12818
12819 /* Skip also over DW_TAG_inlined_subroutine. */
12820 for (func_die = die->parent;
12821 func_die && func_die->tag != DW_TAG_subprogram
12822 && func_die->tag != DW_TAG_subroutine_type;
12823 func_die = func_die->parent);
12824
12825 /* DW_AT_call_all_calls is a superset
12826 of DW_AT_call_all_tail_calls. */
12827 if (func_die
12828 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12829 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12830 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12831 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12832 {
12833 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12834 not complete. But keep CALL_SITE for look ups via call_site_htab,
12835 both the initial caller containing the real return address PC and
12836 the final callee containing the current PC of a chain of tail
12837 calls do not need to have the tail call list complete. But any
12838 function candidate for a virtual tail call frame searched via
12839 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12840 determined unambiguously. */
12841 }
12842 else
12843 {
12844 struct type *func_type = NULL;
12845
12846 if (func_die)
12847 func_type = get_die_type (func_die, cu);
12848 if (func_type != NULL)
12849 {
12850 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12851
12852 /* Enlist this call site to the function. */
12853 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12854 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12855 }
12856 else
12857 complaint (&symfile_complaints,
12858 _("Cannot find function owning DW_TAG_call_site "
12859 "DIE 0x%x [in module %s]"),
12860 to_underlying (die->sect_off), objfile_name (objfile));
12861 }
12862 }
12863
12864 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12865 if (attr == NULL)
12866 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12867 if (attr == NULL)
12868 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12869 if (attr == NULL)
12870 {
12871 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12872 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12873 }
12874 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12875 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12876 /* Keep NULL DWARF_BLOCK. */;
12877 else if (attr_form_is_block (attr))
12878 {
12879 struct dwarf2_locexpr_baton *dlbaton;
12880
12881 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12882 dlbaton->data = DW_BLOCK (attr)->data;
12883 dlbaton->size = DW_BLOCK (attr)->size;
12884 dlbaton->per_cu = cu->per_cu;
12885
12886 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12887 }
12888 else if (attr_form_is_ref (attr))
12889 {
12890 struct dwarf2_cu *target_cu = cu;
12891 struct die_info *target_die;
12892
12893 target_die = follow_die_ref (die, attr, &target_cu);
12894 gdb_assert (target_cu->objfile == objfile);
12895 if (die_is_declaration (target_die, target_cu))
12896 {
12897 const char *target_physname;
12898
12899 /* Prefer the mangled name; otherwise compute the demangled one. */
12900 target_physname = dw2_linkage_name (target_die, target_cu);
12901 if (target_physname == NULL)
12902 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12903 if (target_physname == NULL)
12904 complaint (&symfile_complaints,
12905 _("DW_AT_call_target target DIE has invalid "
12906 "physname, for referencing DIE 0x%x [in module %s]"),
12907 to_underlying (die->sect_off), objfile_name (objfile));
12908 else
12909 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12910 }
12911 else
12912 {
12913 CORE_ADDR lowpc;
12914
12915 /* DW_AT_entry_pc should be preferred. */
12916 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12917 <= PC_BOUNDS_INVALID)
12918 complaint (&symfile_complaints,
12919 _("DW_AT_call_target target DIE has invalid "
12920 "low pc, for referencing DIE 0x%x [in module %s]"),
12921 to_underlying (die->sect_off), objfile_name (objfile));
12922 else
12923 {
12924 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12925 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12926 }
12927 }
12928 }
12929 else
12930 complaint (&symfile_complaints,
12931 _("DW_TAG_call_site DW_AT_call_target is neither "
12932 "block nor reference, for DIE 0x%x [in module %s]"),
12933 to_underlying (die->sect_off), objfile_name (objfile));
12934
12935 call_site->per_cu = cu->per_cu;
12936
12937 for (child_die = die->child;
12938 child_die && child_die->tag;
12939 child_die = sibling_die (child_die))
12940 {
12941 struct call_site_parameter *parameter;
12942 struct attribute *loc, *origin;
12943
12944 if (child_die->tag != DW_TAG_call_site_parameter
12945 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12946 {
12947 /* Already printed the complaint above. */
12948 continue;
12949 }
12950
12951 gdb_assert (call_site->parameter_count < nparams);
12952 parameter = &call_site->parameter[call_site->parameter_count];
12953
12954 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12955 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12956 register is contained in DW_AT_call_value. */
12957
12958 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12959 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12960 if (origin == NULL)
12961 {
12962 /* This was a pre-DWARF-5 GNU extension alias
12963 for DW_AT_call_parameter. */
12964 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12965 }
12966 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12967 {
12968 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12969
12970 sect_offset sect_off
12971 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12972 if (!offset_in_cu_p (&cu->header, sect_off))
12973 {
12974 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12975 binding can be done only inside one CU. Such referenced DIE
12976 therefore cannot be even moved to DW_TAG_partial_unit. */
12977 complaint (&symfile_complaints,
12978 _("DW_AT_call_parameter offset is not in CU for "
12979 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12980 to_underlying (child_die->sect_off),
12981 objfile_name (objfile));
12982 continue;
12983 }
12984 parameter->u.param_cu_off
12985 = (cu_offset) (sect_off - cu->header.sect_off);
12986 }
12987 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12988 {
12989 complaint (&symfile_complaints,
12990 _("No DW_FORM_block* DW_AT_location for "
12991 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12992 to_underlying (child_die->sect_off), objfile_name (objfile));
12993 continue;
12994 }
12995 else
12996 {
12997 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12998 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12999 if (parameter->u.dwarf_reg != -1)
13000 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13001 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13002 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13003 &parameter->u.fb_offset))
13004 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13005 else
13006 {
13007 complaint (&symfile_complaints,
13008 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
13009 "for DW_FORM_block* DW_AT_location is supported for "
13010 "DW_TAG_call_site child DIE 0x%x "
13011 "[in module %s]"),
13012 to_underlying (child_die->sect_off),
13013 objfile_name (objfile));
13014 continue;
13015 }
13016 }
13017
13018 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13019 if (attr == NULL)
13020 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13021 if (!attr_form_is_block (attr))
13022 {
13023 complaint (&symfile_complaints,
13024 _("No DW_FORM_block* DW_AT_call_value for "
13025 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
13026 to_underlying (child_die->sect_off),
13027 objfile_name (objfile));
13028 continue;
13029 }
13030 parameter->value = DW_BLOCK (attr)->data;
13031 parameter->value_size = DW_BLOCK (attr)->size;
13032
13033 /* Parameters are not pre-cleared by memset above. */
13034 parameter->data_value = NULL;
13035 parameter->data_value_size = 0;
13036 call_site->parameter_count++;
13037
13038 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13039 if (attr == NULL)
13040 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13041 if (attr)
13042 {
13043 if (!attr_form_is_block (attr))
13044 complaint (&symfile_complaints,
13045 _("No DW_FORM_block* DW_AT_call_data_value for "
13046 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
13047 to_underlying (child_die->sect_off),
13048 objfile_name (objfile));
13049 else
13050 {
13051 parameter->data_value = DW_BLOCK (attr)->data;
13052 parameter->data_value_size = DW_BLOCK (attr)->size;
13053 }
13054 }
13055 }
13056 }
13057
13058 /* Helper function for read_variable. If DIE represents a virtual
13059 table, then return the type of the concrete object that is
13060 associated with the virtual table. Otherwise, return NULL. */
13061
13062 static struct type *
13063 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13064 {
13065 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13066 if (attr == NULL)
13067 return NULL;
13068
13069 /* Find the type DIE. */
13070 struct die_info *type_die = NULL;
13071 struct dwarf2_cu *type_cu = cu;
13072
13073 if (attr_form_is_ref (attr))
13074 type_die = follow_die_ref (die, attr, &type_cu);
13075 if (type_die == NULL)
13076 return NULL;
13077
13078 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13079 return NULL;
13080 return die_containing_type (type_die, type_cu);
13081 }
13082
13083 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13084
13085 static void
13086 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13087 {
13088 struct rust_vtable_symbol *storage = NULL;
13089
13090 if (cu->language == language_rust)
13091 {
13092 struct type *containing_type = rust_containing_type (die, cu);
13093
13094 if (containing_type != NULL)
13095 {
13096 struct objfile *objfile = cu->objfile;
13097
13098 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
13099 struct rust_vtable_symbol);
13100 initialize_objfile_symbol (storage);
13101 storage->concrete_type = containing_type;
13102 storage->subclass = SYMBOL_RUST_VTABLE;
13103 }
13104 }
13105
13106 new_symbol_full (die, NULL, cu, storage);
13107 }
13108
13109 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13110 reading .debug_rnglists.
13111 Callback's type should be:
13112 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13113 Return true if the attributes are present and valid, otherwise,
13114 return false. */
13115
13116 template <typename Callback>
13117 static bool
13118 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13119 Callback &&callback)
13120 {
13121 struct objfile *objfile = cu->objfile;
13122 bfd *obfd = objfile->obfd;
13123 /* Base address selection entry. */
13124 CORE_ADDR base;
13125 int found_base;
13126 const gdb_byte *buffer;
13127 CORE_ADDR baseaddr;
13128 bool overflow = false;
13129
13130 found_base = cu->base_known;
13131 base = cu->base_address;
13132
13133 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
13134 if (offset >= dwarf2_per_objfile->rnglists.size)
13135 {
13136 complaint (&symfile_complaints,
13137 _("Offset %d out of bounds for DW_AT_ranges attribute"),
13138 offset);
13139 return false;
13140 }
13141 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13142
13143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13144
13145 while (1)
13146 {
13147 /* Initialize it due to a false compiler warning. */
13148 CORE_ADDR range_beginning = 0, range_end = 0;
13149 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13150 + dwarf2_per_objfile->rnglists.size);
13151 unsigned int bytes_read;
13152
13153 if (buffer == buf_end)
13154 {
13155 overflow = true;
13156 break;
13157 }
13158 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13159 switch (rlet)
13160 {
13161 case DW_RLE_end_of_list:
13162 break;
13163 case DW_RLE_base_address:
13164 if (buffer + cu->header.addr_size > buf_end)
13165 {
13166 overflow = true;
13167 break;
13168 }
13169 base = read_address (obfd, buffer, cu, &bytes_read);
13170 found_base = 1;
13171 buffer += bytes_read;
13172 break;
13173 case DW_RLE_start_length:
13174 if (buffer + cu->header.addr_size > buf_end)
13175 {
13176 overflow = true;
13177 break;
13178 }
13179 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13180 buffer += bytes_read;
13181 range_end = (range_beginning
13182 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13183 buffer += bytes_read;
13184 if (buffer > buf_end)
13185 {
13186 overflow = true;
13187 break;
13188 }
13189 break;
13190 case DW_RLE_offset_pair:
13191 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13192 buffer += bytes_read;
13193 if (buffer > buf_end)
13194 {
13195 overflow = true;
13196 break;
13197 }
13198 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13199 buffer += bytes_read;
13200 if (buffer > buf_end)
13201 {
13202 overflow = true;
13203 break;
13204 }
13205 break;
13206 case DW_RLE_start_end:
13207 if (buffer + 2 * cu->header.addr_size > buf_end)
13208 {
13209 overflow = true;
13210 break;
13211 }
13212 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13213 buffer += bytes_read;
13214 range_end = read_address (obfd, buffer, cu, &bytes_read);
13215 buffer += bytes_read;
13216 break;
13217 default:
13218 complaint (&symfile_complaints,
13219 _("Invalid .debug_rnglists data (no base address)"));
13220 return false;
13221 }
13222 if (rlet == DW_RLE_end_of_list || overflow)
13223 break;
13224 if (rlet == DW_RLE_base_address)
13225 continue;
13226
13227 if (!found_base)
13228 {
13229 /* We have no valid base address for the ranges
13230 data. */
13231 complaint (&symfile_complaints,
13232 _("Invalid .debug_rnglists data (no base address)"));
13233 return false;
13234 }
13235
13236 if (range_beginning > range_end)
13237 {
13238 /* Inverted range entries are invalid. */
13239 complaint (&symfile_complaints,
13240 _("Invalid .debug_rnglists data (inverted range)"));
13241 return false;
13242 }
13243
13244 /* Empty range entries have no effect. */
13245 if (range_beginning == range_end)
13246 continue;
13247
13248 range_beginning += base;
13249 range_end += base;
13250
13251 /* A not-uncommon case of bad debug info.
13252 Don't pollute the addrmap with bad data. */
13253 if (range_beginning + baseaddr == 0
13254 && !dwarf2_per_objfile->has_section_at_zero)
13255 {
13256 complaint (&symfile_complaints,
13257 _(".debug_rnglists entry has start address of zero"
13258 " [in module %s]"), objfile_name (objfile));
13259 continue;
13260 }
13261
13262 callback (range_beginning, range_end);
13263 }
13264
13265 if (overflow)
13266 {
13267 complaint (&symfile_complaints,
13268 _("Offset %d is not terminated "
13269 "for DW_AT_ranges attribute"),
13270 offset);
13271 return false;
13272 }
13273
13274 return true;
13275 }
13276
13277 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13278 Callback's type should be:
13279 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13280 Return 1 if the attributes are present and valid, otherwise, return 0. */
13281
13282 template <typename Callback>
13283 static int
13284 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13285 Callback &&callback)
13286 {
13287 struct objfile *objfile = cu->objfile;
13288 struct comp_unit_head *cu_header = &cu->header;
13289 bfd *obfd = objfile->obfd;
13290 unsigned int addr_size = cu_header->addr_size;
13291 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13292 /* Base address selection entry. */
13293 CORE_ADDR base;
13294 int found_base;
13295 unsigned int dummy;
13296 const gdb_byte *buffer;
13297 CORE_ADDR baseaddr;
13298
13299 if (cu_header->version >= 5)
13300 return dwarf2_rnglists_process (offset, cu, callback);
13301
13302 found_base = cu->base_known;
13303 base = cu->base_address;
13304
13305 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
13306 if (offset >= dwarf2_per_objfile->ranges.size)
13307 {
13308 complaint (&symfile_complaints,
13309 _("Offset %d out of bounds for DW_AT_ranges attribute"),
13310 offset);
13311 return 0;
13312 }
13313 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13314
13315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13316
13317 while (1)
13318 {
13319 CORE_ADDR range_beginning, range_end;
13320
13321 range_beginning = read_address (obfd, buffer, cu, &dummy);
13322 buffer += addr_size;
13323 range_end = read_address (obfd, buffer, cu, &dummy);
13324 buffer += addr_size;
13325 offset += 2 * addr_size;
13326
13327 /* An end of list marker is a pair of zero addresses. */
13328 if (range_beginning == 0 && range_end == 0)
13329 /* Found the end of list entry. */
13330 break;
13331
13332 /* Each base address selection entry is a pair of 2 values.
13333 The first is the largest possible address, the second is
13334 the base address. Check for a base address here. */
13335 if ((range_beginning & mask) == mask)
13336 {
13337 /* If we found the largest possible address, then we already
13338 have the base address in range_end. */
13339 base = range_end;
13340 found_base = 1;
13341 continue;
13342 }
13343
13344 if (!found_base)
13345 {
13346 /* We have no valid base address for the ranges
13347 data. */
13348 complaint (&symfile_complaints,
13349 _("Invalid .debug_ranges data (no base address)"));
13350 return 0;
13351 }
13352
13353 if (range_beginning > range_end)
13354 {
13355 /* Inverted range entries are invalid. */
13356 complaint (&symfile_complaints,
13357 _("Invalid .debug_ranges data (inverted range)"));
13358 return 0;
13359 }
13360
13361 /* Empty range entries have no effect. */
13362 if (range_beginning == range_end)
13363 continue;
13364
13365 range_beginning += base;
13366 range_end += base;
13367
13368 /* A not-uncommon case of bad debug info.
13369 Don't pollute the addrmap with bad data. */
13370 if (range_beginning + baseaddr == 0
13371 && !dwarf2_per_objfile->has_section_at_zero)
13372 {
13373 complaint (&symfile_complaints,
13374 _(".debug_ranges entry has start address of zero"
13375 " [in module %s]"), objfile_name (objfile));
13376 continue;
13377 }
13378
13379 callback (range_beginning, range_end);
13380 }
13381
13382 return 1;
13383 }
13384
13385 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13386 Return 1 if the attributes are present and valid, otherwise, return 0.
13387 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13388
13389 static int
13390 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13391 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13392 struct partial_symtab *ranges_pst)
13393 {
13394 struct objfile *objfile = cu->objfile;
13395 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13396 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
13397 SECT_OFF_TEXT (objfile));
13398 int low_set = 0;
13399 CORE_ADDR low = 0;
13400 CORE_ADDR high = 0;
13401 int retval;
13402
13403 retval = dwarf2_ranges_process (offset, cu,
13404 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13405 {
13406 if (ranges_pst != NULL)
13407 {
13408 CORE_ADDR lowpc;
13409 CORE_ADDR highpc;
13410
13411 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13412 range_beginning + baseaddr);
13413 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13414 range_end + baseaddr);
13415 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
13416 ranges_pst);
13417 }
13418
13419 /* FIXME: This is recording everything as a low-high
13420 segment of consecutive addresses. We should have a
13421 data structure for discontiguous block ranges
13422 instead. */
13423 if (! low_set)
13424 {
13425 low = range_beginning;
13426 high = range_end;
13427 low_set = 1;
13428 }
13429 else
13430 {
13431 if (range_beginning < low)
13432 low = range_beginning;
13433 if (range_end > high)
13434 high = range_end;
13435 }
13436 });
13437 if (!retval)
13438 return 0;
13439
13440 if (! low_set)
13441 /* If the first entry is an end-of-list marker, the range
13442 describes an empty scope, i.e. no instructions. */
13443 return 0;
13444
13445 if (low_return)
13446 *low_return = low;
13447 if (high_return)
13448 *high_return = high;
13449 return 1;
13450 }
13451
13452 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13453 definition for the return value. *LOWPC and *HIGHPC are set iff
13454 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13455
13456 static enum pc_bounds_kind
13457 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13458 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13459 struct partial_symtab *pst)
13460 {
13461 struct attribute *attr;
13462 struct attribute *attr_high;
13463 CORE_ADDR low = 0;
13464 CORE_ADDR high = 0;
13465 enum pc_bounds_kind ret;
13466
13467 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13468 if (attr_high)
13469 {
13470 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13471 if (attr)
13472 {
13473 low = attr_value_as_address (attr);
13474 high = attr_value_as_address (attr_high);
13475 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13476 high += low;
13477 }
13478 else
13479 /* Found high w/o low attribute. */
13480 return PC_BOUNDS_INVALID;
13481
13482 /* Found consecutive range of addresses. */
13483 ret = PC_BOUNDS_HIGH_LOW;
13484 }
13485 else
13486 {
13487 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13488 if (attr != NULL)
13489 {
13490 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13491 We take advantage of the fact that DW_AT_ranges does not appear
13492 in DW_TAG_compile_unit of DWO files. */
13493 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13494 unsigned int ranges_offset = (DW_UNSND (attr)
13495 + (need_ranges_base
13496 ? cu->ranges_base
13497 : 0));
13498
13499 /* Value of the DW_AT_ranges attribute is the offset in the
13500 .debug_ranges section. */
13501 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13502 return PC_BOUNDS_INVALID;
13503 /* Found discontinuous range of addresses. */
13504 ret = PC_BOUNDS_RANGES;
13505 }
13506 else
13507 return PC_BOUNDS_NOT_PRESENT;
13508 }
13509
13510 /* read_partial_die has also the strict LOW < HIGH requirement. */
13511 if (high <= low)
13512 return PC_BOUNDS_INVALID;
13513
13514 /* When using the GNU linker, .gnu.linkonce. sections are used to
13515 eliminate duplicate copies of functions and vtables and such.
13516 The linker will arbitrarily choose one and discard the others.
13517 The AT_*_pc values for such functions refer to local labels in
13518 these sections. If the section from that file was discarded, the
13519 labels are not in the output, so the relocs get a value of 0.
13520 If this is a discarded function, mark the pc bounds as invalid,
13521 so that GDB will ignore it. */
13522 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13523 return PC_BOUNDS_INVALID;
13524
13525 *lowpc = low;
13526 if (highpc)
13527 *highpc = high;
13528 return ret;
13529 }
13530
13531 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13532 its low and high PC addresses. Do nothing if these addresses could not
13533 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13534 and HIGHPC to the high address if greater than HIGHPC. */
13535
13536 static void
13537 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13538 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13539 struct dwarf2_cu *cu)
13540 {
13541 CORE_ADDR low, high;
13542 struct die_info *child = die->child;
13543
13544 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13545 {
13546 *lowpc = std::min (*lowpc, low);
13547 *highpc = std::max (*highpc, high);
13548 }
13549
13550 /* If the language does not allow nested subprograms (either inside
13551 subprograms or lexical blocks), we're done. */
13552 if (cu->language != language_ada)
13553 return;
13554
13555 /* Check all the children of the given DIE. If it contains nested
13556 subprograms, then check their pc bounds. Likewise, we need to
13557 check lexical blocks as well, as they may also contain subprogram
13558 definitions. */
13559 while (child && child->tag)
13560 {
13561 if (child->tag == DW_TAG_subprogram
13562 || child->tag == DW_TAG_lexical_block)
13563 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13564 child = sibling_die (child);
13565 }
13566 }
13567
13568 /* Get the low and high pc's represented by the scope DIE, and store
13569 them in *LOWPC and *HIGHPC. If the correct values can't be
13570 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13571
13572 static void
13573 get_scope_pc_bounds (struct die_info *die,
13574 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13575 struct dwarf2_cu *cu)
13576 {
13577 CORE_ADDR best_low = (CORE_ADDR) -1;
13578 CORE_ADDR best_high = (CORE_ADDR) 0;
13579 CORE_ADDR current_low, current_high;
13580
13581 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13582 >= PC_BOUNDS_RANGES)
13583 {
13584 best_low = current_low;
13585 best_high = current_high;
13586 }
13587 else
13588 {
13589 struct die_info *child = die->child;
13590
13591 while (child && child->tag)
13592 {
13593 switch (child->tag) {
13594 case DW_TAG_subprogram:
13595 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13596 break;
13597 case DW_TAG_namespace:
13598 case DW_TAG_module:
13599 /* FIXME: carlton/2004-01-16: Should we do this for
13600 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13601 that current GCC's always emit the DIEs corresponding
13602 to definitions of methods of classes as children of a
13603 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13604 the DIEs giving the declarations, which could be
13605 anywhere). But I don't see any reason why the
13606 standards says that they have to be there. */
13607 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13608
13609 if (current_low != ((CORE_ADDR) -1))
13610 {
13611 best_low = std::min (best_low, current_low);
13612 best_high = std::max (best_high, current_high);
13613 }
13614 break;
13615 default:
13616 /* Ignore. */
13617 break;
13618 }
13619
13620 child = sibling_die (child);
13621 }
13622 }
13623
13624 *lowpc = best_low;
13625 *highpc = best_high;
13626 }
13627
13628 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13629 in DIE. */
13630
13631 static void
13632 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13633 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13634 {
13635 struct objfile *objfile = cu->objfile;
13636 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13637 struct attribute *attr;
13638 struct attribute *attr_high;
13639
13640 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13641 if (attr_high)
13642 {
13643 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13644 if (attr)
13645 {
13646 CORE_ADDR low = attr_value_as_address (attr);
13647 CORE_ADDR high = attr_value_as_address (attr_high);
13648
13649 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13650 high += low;
13651
13652 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13653 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13654 record_block_range (block, low, high - 1);
13655 }
13656 }
13657
13658 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13659 if (attr)
13660 {
13661 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13662 We take advantage of the fact that DW_AT_ranges does not appear
13663 in DW_TAG_compile_unit of DWO files. */
13664 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13665
13666 /* The value of the DW_AT_ranges attribute is the offset of the
13667 address range list in the .debug_ranges section. */
13668 unsigned long offset = (DW_UNSND (attr)
13669 + (need_ranges_base ? cu->ranges_base : 0));
13670 const gdb_byte *buffer;
13671
13672 /* For some target architectures, but not others, the
13673 read_address function sign-extends the addresses it returns.
13674 To recognize base address selection entries, we need a
13675 mask. */
13676 unsigned int addr_size = cu->header.addr_size;
13677 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13678
13679 /* The base address, to which the next pair is relative. Note
13680 that this 'base' is a DWARF concept: most entries in a range
13681 list are relative, to reduce the number of relocs against the
13682 debugging information. This is separate from this function's
13683 'baseaddr' argument, which GDB uses to relocate debugging
13684 information from a shared library based on the address at
13685 which the library was loaded. */
13686 CORE_ADDR base = cu->base_address;
13687 int base_known = cu->base_known;
13688
13689 dwarf2_ranges_process (offset, cu,
13690 [&] (CORE_ADDR start, CORE_ADDR end)
13691 {
13692 start += baseaddr;
13693 end += baseaddr;
13694 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
13695 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
13696 record_block_range (block, start, end - 1);
13697 });
13698 }
13699 }
13700
13701 /* Check whether the producer field indicates either of GCC < 4.6, or the
13702 Intel C/C++ compiler, and cache the result in CU. */
13703
13704 static void
13705 check_producer (struct dwarf2_cu *cu)
13706 {
13707 int major, minor;
13708
13709 if (cu->producer == NULL)
13710 {
13711 /* For unknown compilers expect their behavior is DWARF version
13712 compliant.
13713
13714 GCC started to support .debug_types sections by -gdwarf-4 since
13715 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
13716 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
13717 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
13718 interpreted incorrectly by GDB now - GCC PR debug/48229. */
13719 }
13720 else if (producer_is_gcc (cu->producer, &major, &minor))
13721 {
13722 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
13723 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
13724 }
13725 else if (producer_is_icc (cu->producer, &major, &minor))
13726 cu->producer_is_icc_lt_14 = major < 14;
13727 else
13728 {
13729 /* For other non-GCC compilers, expect their behavior is DWARF version
13730 compliant. */
13731 }
13732
13733 cu->checked_producer = 1;
13734 }
13735
13736 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
13737 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
13738 during 4.6.0 experimental. */
13739
13740 static int
13741 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
13742 {
13743 if (!cu->checked_producer)
13744 check_producer (cu);
13745
13746 return cu->producer_is_gxx_lt_4_6;
13747 }
13748
13749 /* Return the default accessibility type if it is not overriden by
13750 DW_AT_accessibility. */
13751
13752 static enum dwarf_access_attribute
13753 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
13754 {
13755 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
13756 {
13757 /* The default DWARF 2 accessibility for members is public, the default
13758 accessibility for inheritance is private. */
13759
13760 if (die->tag != DW_TAG_inheritance)
13761 return DW_ACCESS_public;
13762 else
13763 return DW_ACCESS_private;
13764 }
13765 else
13766 {
13767 /* DWARF 3+ defines the default accessibility a different way. The same
13768 rules apply now for DW_TAG_inheritance as for the members and it only
13769 depends on the container kind. */
13770
13771 if (die->parent->tag == DW_TAG_class_type)
13772 return DW_ACCESS_private;
13773 else
13774 return DW_ACCESS_public;
13775 }
13776 }
13777
13778 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
13779 offset. If the attribute was not found return 0, otherwise return
13780 1. If it was found but could not properly be handled, set *OFFSET
13781 to 0. */
13782
13783 static int
13784 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
13785 LONGEST *offset)
13786 {
13787 struct attribute *attr;
13788
13789 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
13790 if (attr != NULL)
13791 {
13792 *offset = 0;
13793
13794 /* Note that we do not check for a section offset first here.
13795 This is because DW_AT_data_member_location is new in DWARF 4,
13796 so if we see it, we can assume that a constant form is really
13797 a constant and not a section offset. */
13798 if (attr_form_is_constant (attr))
13799 *offset = dwarf2_get_attr_constant_value (attr, 0);
13800 else if (attr_form_is_section_offset (attr))
13801 dwarf2_complex_location_expr_complaint ();
13802 else if (attr_form_is_block (attr))
13803 *offset = decode_locdesc (DW_BLOCK (attr), cu);
13804 else
13805 dwarf2_complex_location_expr_complaint ();
13806
13807 return 1;
13808 }
13809
13810 return 0;
13811 }
13812
13813 /* Add an aggregate field to the field list. */
13814
13815 static void
13816 dwarf2_add_field (struct field_info *fip, struct die_info *die,
13817 struct dwarf2_cu *cu)
13818 {
13819 struct objfile *objfile = cu->objfile;
13820 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13821 struct nextfield *new_field;
13822 struct attribute *attr;
13823 struct field *fp;
13824 const char *fieldname = "";
13825
13826 /* Allocate a new field list entry and link it in. */
13827 new_field = XNEW (struct nextfield);
13828 make_cleanup (xfree, new_field);
13829 memset (new_field, 0, sizeof (struct nextfield));
13830
13831 if (die->tag == DW_TAG_inheritance)
13832 {
13833 new_field->next = fip->baseclasses;
13834 fip->baseclasses = new_field;
13835 }
13836 else
13837 {
13838 new_field->next = fip->fields;
13839 fip->fields = new_field;
13840 }
13841 fip->nfields++;
13842
13843 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13844 if (attr)
13845 new_field->accessibility = DW_UNSND (attr);
13846 else
13847 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
13848 if (new_field->accessibility != DW_ACCESS_public)
13849 fip->non_public_fields = 1;
13850
13851 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13852 if (attr)
13853 new_field->virtuality = DW_UNSND (attr);
13854 else
13855 new_field->virtuality = DW_VIRTUALITY_none;
13856
13857 fp = &new_field->field;
13858
13859 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13860 {
13861 LONGEST offset;
13862
13863 /* Data member other than a C++ static data member. */
13864
13865 /* Get type of field. */
13866 fp->type = die_type (die, cu);
13867
13868 SET_FIELD_BITPOS (*fp, 0);
13869
13870 /* Get bit size of field (zero if none). */
13871 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13872 if (attr)
13873 {
13874 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13875 }
13876 else
13877 {
13878 FIELD_BITSIZE (*fp) = 0;
13879 }
13880
13881 /* Get bit offset of field. */
13882 if (handle_data_member_location (die, cu, &offset))
13883 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13884 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13885 if (attr)
13886 {
13887 if (gdbarch_bits_big_endian (gdbarch))
13888 {
13889 /* For big endian bits, the DW_AT_bit_offset gives the
13890 additional bit offset from the MSB of the containing
13891 anonymous object to the MSB of the field. We don't
13892 have to do anything special since we don't need to
13893 know the size of the anonymous object. */
13894 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13895 }
13896 else
13897 {
13898 /* For little endian bits, compute the bit offset to the
13899 MSB of the anonymous object, subtract off the number of
13900 bits from the MSB of the field to the MSB of the
13901 object, and then subtract off the number of bits of
13902 the field itself. The result is the bit offset of
13903 the LSB of the field. */
13904 int anonymous_size;
13905 int bit_offset = DW_UNSND (attr);
13906
13907 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13908 if (attr)
13909 {
13910 /* The size of the anonymous object containing
13911 the bit field is explicit, so use the
13912 indicated size (in bytes). */
13913 anonymous_size = DW_UNSND (attr);
13914 }
13915 else
13916 {
13917 /* The size of the anonymous object containing
13918 the bit field must be inferred from the type
13919 attribute of the data member containing the
13920 bit field. */
13921 anonymous_size = TYPE_LENGTH (fp->type);
13922 }
13923 SET_FIELD_BITPOS (*fp,
13924 (FIELD_BITPOS (*fp)
13925 + anonymous_size * bits_per_byte
13926 - bit_offset - FIELD_BITSIZE (*fp)));
13927 }
13928 }
13929 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13930 if (attr != NULL)
13931 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13932 + dwarf2_get_attr_constant_value (attr, 0)));
13933
13934 /* Get name of field. */
13935 fieldname = dwarf2_name (die, cu);
13936 if (fieldname == NULL)
13937 fieldname = "";
13938
13939 /* The name is already allocated along with this objfile, so we don't
13940 need to duplicate it for the type. */
13941 fp->name = fieldname;
13942
13943 /* Change accessibility for artificial fields (e.g. virtual table
13944 pointer or virtual base class pointer) to private. */
13945 if (dwarf2_attr (die, DW_AT_artificial, cu))
13946 {
13947 FIELD_ARTIFICIAL (*fp) = 1;
13948 new_field->accessibility = DW_ACCESS_private;
13949 fip->non_public_fields = 1;
13950 }
13951 }
13952 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13953 {
13954 /* C++ static member. */
13955
13956 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13957 is a declaration, but all versions of G++ as of this writing
13958 (so through at least 3.2.1) incorrectly generate
13959 DW_TAG_variable tags. */
13960
13961 const char *physname;
13962
13963 /* Get name of field. */
13964 fieldname = dwarf2_name (die, cu);
13965 if (fieldname == NULL)
13966 return;
13967
13968 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13969 if (attr
13970 /* Only create a symbol if this is an external value.
13971 new_symbol checks this and puts the value in the global symbol
13972 table, which we want. If it is not external, new_symbol
13973 will try to put the value in cu->list_in_scope which is wrong. */
13974 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13975 {
13976 /* A static const member, not much different than an enum as far as
13977 we're concerned, except that we can support more types. */
13978 new_symbol (die, NULL, cu);
13979 }
13980
13981 /* Get physical name. */
13982 physname = dwarf2_physname (fieldname, die, cu);
13983
13984 /* The name is already allocated along with this objfile, so we don't
13985 need to duplicate it for the type. */
13986 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13987 FIELD_TYPE (*fp) = die_type (die, cu);
13988 FIELD_NAME (*fp) = fieldname;
13989 }
13990 else if (die->tag == DW_TAG_inheritance)
13991 {
13992 LONGEST offset;
13993
13994 /* C++ base class field. */
13995 if (handle_data_member_location (die, cu, &offset))
13996 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13997 FIELD_BITSIZE (*fp) = 0;
13998 FIELD_TYPE (*fp) = die_type (die, cu);
13999 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
14000 fip->nbaseclasses++;
14001 }
14002 }
14003
14004 /* Can the type given by DIE define another type? */
14005
14006 static bool
14007 type_can_define_types (const struct die_info *die)
14008 {
14009 switch (die->tag)
14010 {
14011 case DW_TAG_typedef:
14012 case DW_TAG_class_type:
14013 case DW_TAG_structure_type:
14014 case DW_TAG_union_type:
14015 case DW_TAG_enumeration_type:
14016 return true;
14017
14018 default:
14019 return false;
14020 }
14021 }
14022
14023 /* Add a type definition defined in the scope of the FIP's class. */
14024
14025 static void
14026 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14027 struct dwarf2_cu *cu)
14028 {
14029 struct decl_field_list *new_field;
14030 struct decl_field *fp;
14031
14032 /* Allocate a new field list entry and link it in. */
14033 new_field = XCNEW (struct decl_field_list);
14034 make_cleanup (xfree, new_field);
14035
14036 gdb_assert (type_can_define_types (die));
14037
14038 fp = &new_field->field;
14039
14040 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14041 fp->name = dwarf2_name (die, cu);
14042 fp->type = read_type_die (die, cu);
14043
14044 /* Save accessibility. */
14045 enum dwarf_access_attribute accessibility;
14046 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14047 if (attr != NULL)
14048 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14049 else
14050 accessibility = dwarf2_default_access_attribute (die, cu);
14051 switch (accessibility)
14052 {
14053 case DW_ACCESS_public:
14054 /* The assumed value if neither private nor protected. */
14055 break;
14056 case DW_ACCESS_private:
14057 fp->is_private = 1;
14058 break;
14059 case DW_ACCESS_protected:
14060 fp->is_protected = 1;
14061 break;
14062 default:
14063 complaint (&symfile_complaints,
14064 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14065 }
14066
14067 if (die->tag == DW_TAG_typedef)
14068 {
14069 new_field->next = fip->typedef_field_list;
14070 fip->typedef_field_list = new_field;
14071 fip->typedef_field_list_count++;
14072 }
14073 else
14074 {
14075 new_field->next = fip->nested_types_list;
14076 fip->nested_types_list = new_field;
14077 fip->nested_types_list_count++;
14078 }
14079 }
14080
14081 /* Create the vector of fields, and attach it to the type. */
14082
14083 static void
14084 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14085 struct dwarf2_cu *cu)
14086 {
14087 int nfields = fip->nfields;
14088
14089 /* Record the field count, allocate space for the array of fields,
14090 and create blank accessibility bitfields if necessary. */
14091 TYPE_NFIELDS (type) = nfields;
14092 TYPE_FIELDS (type) = (struct field *)
14093 TYPE_ALLOC (type, sizeof (struct field) * nfields);
14094 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
14095
14096 if (fip->non_public_fields && cu->language != language_ada)
14097 {
14098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14099
14100 TYPE_FIELD_PRIVATE_BITS (type) =
14101 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14102 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14103
14104 TYPE_FIELD_PROTECTED_BITS (type) =
14105 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14106 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14107
14108 TYPE_FIELD_IGNORE_BITS (type) =
14109 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14110 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14111 }
14112
14113 /* If the type has baseclasses, allocate and clear a bit vector for
14114 TYPE_FIELD_VIRTUAL_BITS. */
14115 if (fip->nbaseclasses && cu->language != language_ada)
14116 {
14117 int num_bytes = B_BYTES (fip->nbaseclasses);
14118 unsigned char *pointer;
14119
14120 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14121 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14122 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14123 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
14124 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
14125 }
14126
14127 /* Copy the saved-up fields into the field vector. Start from the head of
14128 the list, adding to the tail of the field array, so that they end up in
14129 the same order in the array in which they were added to the list. */
14130 while (nfields-- > 0)
14131 {
14132 struct nextfield *fieldp;
14133
14134 if (fip->fields)
14135 {
14136 fieldp = fip->fields;
14137 fip->fields = fieldp->next;
14138 }
14139 else
14140 {
14141 fieldp = fip->baseclasses;
14142 fip->baseclasses = fieldp->next;
14143 }
14144
14145 TYPE_FIELD (type, nfields) = fieldp->field;
14146 switch (fieldp->accessibility)
14147 {
14148 case DW_ACCESS_private:
14149 if (cu->language != language_ada)
14150 SET_TYPE_FIELD_PRIVATE (type, nfields);
14151 break;
14152
14153 case DW_ACCESS_protected:
14154 if (cu->language != language_ada)
14155 SET_TYPE_FIELD_PROTECTED (type, nfields);
14156 break;
14157
14158 case DW_ACCESS_public:
14159 break;
14160
14161 default:
14162 /* Unknown accessibility. Complain and treat it as public. */
14163 {
14164 complaint (&symfile_complaints, _("unsupported accessibility %d"),
14165 fieldp->accessibility);
14166 }
14167 break;
14168 }
14169 if (nfields < fip->nbaseclasses)
14170 {
14171 switch (fieldp->virtuality)
14172 {
14173 case DW_VIRTUALITY_virtual:
14174 case DW_VIRTUALITY_pure_virtual:
14175 if (cu->language == language_ada)
14176 error (_("unexpected virtuality in component of Ada type"));
14177 SET_TYPE_FIELD_VIRTUAL (type, nfields);
14178 break;
14179 }
14180 }
14181 }
14182 }
14183
14184 /* Return true if this member function is a constructor, false
14185 otherwise. */
14186
14187 static int
14188 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14189 {
14190 const char *fieldname;
14191 const char *type_name;
14192 int len;
14193
14194 if (die->parent == NULL)
14195 return 0;
14196
14197 if (die->parent->tag != DW_TAG_structure_type
14198 && die->parent->tag != DW_TAG_union_type
14199 && die->parent->tag != DW_TAG_class_type)
14200 return 0;
14201
14202 fieldname = dwarf2_name (die, cu);
14203 type_name = dwarf2_name (die->parent, cu);
14204 if (fieldname == NULL || type_name == NULL)
14205 return 0;
14206
14207 len = strlen (fieldname);
14208 return (strncmp (fieldname, type_name, len) == 0
14209 && (type_name[len] == '\0' || type_name[len] == '<'));
14210 }
14211
14212 /* Add a member function to the proper fieldlist. */
14213
14214 static void
14215 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14216 struct type *type, struct dwarf2_cu *cu)
14217 {
14218 struct objfile *objfile = cu->objfile;
14219 struct attribute *attr;
14220 struct fnfieldlist *flp;
14221 int i;
14222 struct fn_field *fnp;
14223 const char *fieldname;
14224 struct nextfnfield *new_fnfield;
14225 struct type *this_type;
14226 enum dwarf_access_attribute accessibility;
14227
14228 if (cu->language == language_ada)
14229 error (_("unexpected member function in Ada type"));
14230
14231 /* Get name of member function. */
14232 fieldname = dwarf2_name (die, cu);
14233 if (fieldname == NULL)
14234 return;
14235
14236 /* Look up member function name in fieldlist. */
14237 for (i = 0; i < fip->nfnfields; i++)
14238 {
14239 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14240 break;
14241 }
14242
14243 /* Create new list element if necessary. */
14244 if (i < fip->nfnfields)
14245 flp = &fip->fnfieldlists[i];
14246 else
14247 {
14248 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
14249 {
14250 fip->fnfieldlists = (struct fnfieldlist *)
14251 xrealloc (fip->fnfieldlists,
14252 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
14253 * sizeof (struct fnfieldlist));
14254 if (fip->nfnfields == 0)
14255 make_cleanup (free_current_contents, &fip->fnfieldlists);
14256 }
14257 flp = &fip->fnfieldlists[fip->nfnfields];
14258 flp->name = fieldname;
14259 flp->length = 0;
14260 flp->head = NULL;
14261 i = fip->nfnfields++;
14262 }
14263
14264 /* Create a new member function field and chain it to the field list
14265 entry. */
14266 new_fnfield = XNEW (struct nextfnfield);
14267 make_cleanup (xfree, new_fnfield);
14268 memset (new_fnfield, 0, sizeof (struct nextfnfield));
14269 new_fnfield->next = flp->head;
14270 flp->head = new_fnfield;
14271 flp->length++;
14272
14273 /* Fill in the member function field info. */
14274 fnp = &new_fnfield->fnfield;
14275
14276 /* Delay processing of the physname until later. */
14277 if (cu->language == language_cplus)
14278 {
14279 add_to_method_list (type, i, flp->length - 1, fieldname,
14280 die, cu);
14281 }
14282 else
14283 {
14284 const char *physname = dwarf2_physname (fieldname, die, cu);
14285 fnp->physname = physname ? physname : "";
14286 }
14287
14288 fnp->type = alloc_type (objfile);
14289 this_type = read_type_die (die, cu);
14290 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14291 {
14292 int nparams = TYPE_NFIELDS (this_type);
14293
14294 /* TYPE is the domain of this method, and THIS_TYPE is the type
14295 of the method itself (TYPE_CODE_METHOD). */
14296 smash_to_method_type (fnp->type, type,
14297 TYPE_TARGET_TYPE (this_type),
14298 TYPE_FIELDS (this_type),
14299 TYPE_NFIELDS (this_type),
14300 TYPE_VARARGS (this_type));
14301
14302 /* Handle static member functions.
14303 Dwarf2 has no clean way to discern C++ static and non-static
14304 member functions. G++ helps GDB by marking the first
14305 parameter for non-static member functions (which is the this
14306 pointer) as artificial. We obtain this information from
14307 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14308 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14309 fnp->voffset = VOFFSET_STATIC;
14310 }
14311 else
14312 complaint (&symfile_complaints, _("member function type missing for '%s'"),
14313 dwarf2_full_name (fieldname, die, cu));
14314
14315 /* Get fcontext from DW_AT_containing_type if present. */
14316 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14317 fnp->fcontext = die_containing_type (die, cu);
14318
14319 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14320 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14321
14322 /* Get accessibility. */
14323 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14324 if (attr)
14325 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14326 else
14327 accessibility = dwarf2_default_access_attribute (die, cu);
14328 switch (accessibility)
14329 {
14330 case DW_ACCESS_private:
14331 fnp->is_private = 1;
14332 break;
14333 case DW_ACCESS_protected:
14334 fnp->is_protected = 1;
14335 break;
14336 }
14337
14338 /* Check for artificial methods. */
14339 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14340 if (attr && DW_UNSND (attr) != 0)
14341 fnp->is_artificial = 1;
14342
14343 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14344
14345 /* Get index in virtual function table if it is a virtual member
14346 function. For older versions of GCC, this is an offset in the
14347 appropriate virtual table, as specified by DW_AT_containing_type.
14348 For everyone else, it is an expression to be evaluated relative
14349 to the object address. */
14350
14351 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14352 if (attr)
14353 {
14354 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
14355 {
14356 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14357 {
14358 /* Old-style GCC. */
14359 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14360 }
14361 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14362 || (DW_BLOCK (attr)->size > 1
14363 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14364 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14365 {
14366 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14367 if ((fnp->voffset % cu->header.addr_size) != 0)
14368 dwarf2_complex_location_expr_complaint ();
14369 else
14370 fnp->voffset /= cu->header.addr_size;
14371 fnp->voffset += 2;
14372 }
14373 else
14374 dwarf2_complex_location_expr_complaint ();
14375
14376 if (!fnp->fcontext)
14377 {
14378 /* If there is no `this' field and no DW_AT_containing_type,
14379 we cannot actually find a base class context for the
14380 vtable! */
14381 if (TYPE_NFIELDS (this_type) == 0
14382 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14383 {
14384 complaint (&symfile_complaints,
14385 _("cannot determine context for virtual member "
14386 "function \"%s\" (offset %d)"),
14387 fieldname, to_underlying (die->sect_off));
14388 }
14389 else
14390 {
14391 fnp->fcontext
14392 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14393 }
14394 }
14395 }
14396 else if (attr_form_is_section_offset (attr))
14397 {
14398 dwarf2_complex_location_expr_complaint ();
14399 }
14400 else
14401 {
14402 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14403 fieldname);
14404 }
14405 }
14406 else
14407 {
14408 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14409 if (attr && DW_UNSND (attr))
14410 {
14411 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14412 complaint (&symfile_complaints,
14413 _("Member function \"%s\" (offset %d) is virtual "
14414 "but the vtable offset is not specified"),
14415 fieldname, to_underlying (die->sect_off));
14416 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14417 TYPE_CPLUS_DYNAMIC (type) = 1;
14418 }
14419 }
14420 }
14421
14422 /* Create the vector of member function fields, and attach it to the type. */
14423
14424 static void
14425 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14426 struct dwarf2_cu *cu)
14427 {
14428 struct fnfieldlist *flp;
14429 int i;
14430
14431 if (cu->language == language_ada)
14432 error (_("unexpected member functions in Ada type"));
14433
14434 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14435 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14436 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
14437
14438 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
14439 {
14440 struct nextfnfield *nfp = flp->head;
14441 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14442 int k;
14443
14444 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
14445 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
14446 fn_flp->fn_fields = (struct fn_field *)
14447 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
14448 for (k = flp->length; (k--, nfp); nfp = nfp->next)
14449 fn_flp->fn_fields[k] = nfp->fnfield;
14450 }
14451
14452 TYPE_NFN_FIELDS (type) = fip->nfnfields;
14453 }
14454
14455 /* Returns non-zero if NAME is the name of a vtable member in CU's
14456 language, zero otherwise. */
14457 static int
14458 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14459 {
14460 static const char vptr[] = "_vptr";
14461
14462 /* Look for the C++ form of the vtable. */
14463 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14464 return 1;
14465
14466 return 0;
14467 }
14468
14469 /* GCC outputs unnamed structures that are really pointers to member
14470 functions, with the ABI-specified layout. If TYPE describes
14471 such a structure, smash it into a member function type.
14472
14473 GCC shouldn't do this; it should just output pointer to member DIEs.
14474 This is GCC PR debug/28767. */
14475
14476 static void
14477 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14478 {
14479 struct type *pfn_type, *self_type, *new_type;
14480
14481 /* Check for a structure with no name and two children. */
14482 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14483 return;
14484
14485 /* Check for __pfn and __delta members. */
14486 if (TYPE_FIELD_NAME (type, 0) == NULL
14487 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14488 || TYPE_FIELD_NAME (type, 1) == NULL
14489 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14490 return;
14491
14492 /* Find the type of the method. */
14493 pfn_type = TYPE_FIELD_TYPE (type, 0);
14494 if (pfn_type == NULL
14495 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14496 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14497 return;
14498
14499 /* Look for the "this" argument. */
14500 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14501 if (TYPE_NFIELDS (pfn_type) == 0
14502 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14503 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14504 return;
14505
14506 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14507 new_type = alloc_type (objfile);
14508 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14509 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14510 TYPE_VARARGS (pfn_type));
14511 smash_to_methodptr_type (type, new_type);
14512 }
14513
14514
14515 /* Called when we find the DIE that starts a structure or union scope
14516 (definition) to create a type for the structure or union. Fill in
14517 the type's name and general properties; the members will not be
14518 processed until process_structure_scope. A symbol table entry for
14519 the type will also not be done until process_structure_scope (assuming
14520 the type has a name).
14521
14522 NOTE: we need to call these functions regardless of whether or not the
14523 DIE has a DW_AT_name attribute, since it might be an anonymous
14524 structure or union. This gets the type entered into our set of
14525 user defined types. */
14526
14527 static struct type *
14528 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
14529 {
14530 struct objfile *objfile = cu->objfile;
14531 struct type *type;
14532 struct attribute *attr;
14533 const char *name;
14534
14535 /* If the definition of this type lives in .debug_types, read that type.
14536 Don't follow DW_AT_specification though, that will take us back up
14537 the chain and we want to go down. */
14538 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14539 if (attr)
14540 {
14541 type = get_DW_AT_signature_type (die, attr, cu);
14542
14543 /* The type's CU may not be the same as CU.
14544 Ensure TYPE is recorded with CU in die_type_hash. */
14545 return set_die_type (die, type, cu);
14546 }
14547
14548 type = alloc_type (objfile);
14549 INIT_CPLUS_SPECIFIC (type);
14550
14551 name = dwarf2_name (die, cu);
14552 if (name != NULL)
14553 {
14554 if (cu->language == language_cplus
14555 || cu->language == language_d
14556 || cu->language == language_rust)
14557 {
14558 const char *full_name = dwarf2_full_name (name, die, cu);
14559
14560 /* dwarf2_full_name might have already finished building the DIE's
14561 type. If so, there is no need to continue. */
14562 if (get_die_type (die, cu) != NULL)
14563 return get_die_type (die, cu);
14564
14565 TYPE_TAG_NAME (type) = full_name;
14566 if (die->tag == DW_TAG_structure_type
14567 || die->tag == DW_TAG_class_type)
14568 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14569 }
14570 else
14571 {
14572 /* The name is already allocated along with this objfile, so
14573 we don't need to duplicate it for the type. */
14574 TYPE_TAG_NAME (type) = name;
14575 if (die->tag == DW_TAG_class_type)
14576 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14577 }
14578 }
14579
14580 if (die->tag == DW_TAG_structure_type)
14581 {
14582 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14583 }
14584 else if (die->tag == DW_TAG_union_type)
14585 {
14586 TYPE_CODE (type) = TYPE_CODE_UNION;
14587 }
14588 else
14589 {
14590 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14591 }
14592
14593 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
14594 TYPE_DECLARED_CLASS (type) = 1;
14595
14596 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14597 if (attr)
14598 {
14599 if (attr_form_is_constant (attr))
14600 TYPE_LENGTH (type) = DW_UNSND (attr);
14601 else
14602 {
14603 /* For the moment, dynamic type sizes are not supported
14604 by GDB's struct type. The actual size is determined
14605 on-demand when resolving the type of a given object,
14606 so set the type's length to zero for now. Otherwise,
14607 we record an expression as the length, and that expression
14608 could lead to a very large value, which could eventually
14609 lead to us trying to allocate that much memory when creating
14610 a value of that type. */
14611 TYPE_LENGTH (type) = 0;
14612 }
14613 }
14614 else
14615 {
14616 TYPE_LENGTH (type) = 0;
14617 }
14618
14619 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
14620 {
14621 /* ICC<14 does not output the required DW_AT_declaration on
14622 incomplete types, but gives them a size of zero. */
14623 TYPE_STUB (type) = 1;
14624 }
14625 else
14626 TYPE_STUB_SUPPORTED (type) = 1;
14627
14628 if (die_is_declaration (die, cu))
14629 TYPE_STUB (type) = 1;
14630 else if (attr == NULL && die->child == NULL
14631 && producer_is_realview (cu->producer))
14632 /* RealView does not output the required DW_AT_declaration
14633 on incomplete types. */
14634 TYPE_STUB (type) = 1;
14635
14636 /* We need to add the type field to the die immediately so we don't
14637 infinitely recurse when dealing with pointers to the structure
14638 type within the structure itself. */
14639 set_die_type (die, type, cu);
14640
14641 /* set_die_type should be already done. */
14642 set_descriptive_type (type, die, cu);
14643
14644 return type;
14645 }
14646
14647 /* Finish creating a structure or union type, including filling in
14648 its members and creating a symbol for it. */
14649
14650 static void
14651 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
14652 {
14653 struct objfile *objfile = cu->objfile;
14654 struct die_info *child_die;
14655 struct type *type;
14656
14657 type = get_die_type (die, cu);
14658 if (type == NULL)
14659 type = read_structure_type (die, cu);
14660
14661 if (die->child != NULL && ! die_is_declaration (die, cu))
14662 {
14663 struct field_info fi;
14664 std::vector<struct symbol *> template_args;
14665 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
14666
14667 memset (&fi, 0, sizeof (struct field_info));
14668
14669 child_die = die->child;
14670
14671 while (child_die && child_die->tag)
14672 {
14673 if (child_die->tag == DW_TAG_member
14674 || child_die->tag == DW_TAG_variable)
14675 {
14676 /* NOTE: carlton/2002-11-05: A C++ static data member
14677 should be a DW_TAG_member that is a declaration, but
14678 all versions of G++ as of this writing (so through at
14679 least 3.2.1) incorrectly generate DW_TAG_variable
14680 tags for them instead. */
14681 dwarf2_add_field (&fi, child_die, cu);
14682 }
14683 else if (child_die->tag == DW_TAG_subprogram)
14684 {
14685 /* Rust doesn't have member functions in the C++ sense.
14686 However, it does emit ordinary functions as children
14687 of a struct DIE. */
14688 if (cu->language == language_rust)
14689 read_func_scope (child_die, cu);
14690 else
14691 {
14692 /* C++ member function. */
14693 dwarf2_add_member_fn (&fi, child_die, type, cu);
14694 }
14695 }
14696 else if (child_die->tag == DW_TAG_inheritance)
14697 {
14698 /* C++ base class field. */
14699 dwarf2_add_field (&fi, child_die, cu);
14700 }
14701 else if (type_can_define_types (child_die))
14702 dwarf2_add_type_defn (&fi, child_die, cu);
14703 else if (child_die->tag == DW_TAG_template_type_param
14704 || child_die->tag == DW_TAG_template_value_param)
14705 {
14706 struct symbol *arg = new_symbol (child_die, NULL, cu);
14707
14708 if (arg != NULL)
14709 template_args.push_back (arg);
14710 }
14711
14712 child_die = sibling_die (child_die);
14713 }
14714
14715 /* Attach template arguments to type. */
14716 if (!template_args.empty ())
14717 {
14718 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14719 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
14720 TYPE_TEMPLATE_ARGUMENTS (type)
14721 = XOBNEWVEC (&objfile->objfile_obstack,
14722 struct symbol *,
14723 TYPE_N_TEMPLATE_ARGUMENTS (type));
14724 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
14725 template_args.data (),
14726 (TYPE_N_TEMPLATE_ARGUMENTS (type)
14727 * sizeof (struct symbol *)));
14728 }
14729
14730 /* Attach fields and member functions to the type. */
14731 if (fi.nfields)
14732 dwarf2_attach_fields_to_type (&fi, type, cu);
14733 if (fi.nfnfields)
14734 {
14735 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
14736
14737 /* Get the type which refers to the base class (possibly this
14738 class itself) which contains the vtable pointer for the current
14739 class from the DW_AT_containing_type attribute. This use of
14740 DW_AT_containing_type is a GNU extension. */
14741
14742 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14743 {
14744 struct type *t = die_containing_type (die, cu);
14745
14746 set_type_vptr_basetype (type, t);
14747 if (type == t)
14748 {
14749 int i;
14750
14751 /* Our own class provides vtbl ptr. */
14752 for (i = TYPE_NFIELDS (t) - 1;
14753 i >= TYPE_N_BASECLASSES (t);
14754 --i)
14755 {
14756 const char *fieldname = TYPE_FIELD_NAME (t, i);
14757
14758 if (is_vtable_name (fieldname, cu))
14759 {
14760 set_type_vptr_fieldno (type, i);
14761 break;
14762 }
14763 }
14764
14765 /* Complain if virtual function table field not found. */
14766 if (i < TYPE_N_BASECLASSES (t))
14767 complaint (&symfile_complaints,
14768 _("virtual function table pointer "
14769 "not found when defining class '%s'"),
14770 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
14771 "");
14772 }
14773 else
14774 {
14775 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
14776 }
14777 }
14778 else if (cu->producer
14779 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
14780 {
14781 /* The IBM XLC compiler does not provide direct indication
14782 of the containing type, but the vtable pointer is
14783 always named __vfp. */
14784
14785 int i;
14786
14787 for (i = TYPE_NFIELDS (type) - 1;
14788 i >= TYPE_N_BASECLASSES (type);
14789 --i)
14790 {
14791 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
14792 {
14793 set_type_vptr_fieldno (type, i);
14794 set_type_vptr_basetype (type, type);
14795 break;
14796 }
14797 }
14798 }
14799 }
14800
14801 /* Copy fi.typedef_field_list linked list elements content into the
14802 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
14803 if (fi.typedef_field_list)
14804 {
14805 int i = fi.typedef_field_list_count;
14806
14807 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14808 TYPE_TYPEDEF_FIELD_ARRAY (type)
14809 = ((struct decl_field *)
14810 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
14811 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
14812
14813 /* Reverse the list order to keep the debug info elements order. */
14814 while (--i >= 0)
14815 {
14816 struct decl_field *dest, *src;
14817
14818 dest = &TYPE_TYPEDEF_FIELD (type, i);
14819 src = &fi.typedef_field_list->field;
14820 fi.typedef_field_list = fi.typedef_field_list->next;
14821 *dest = *src;
14822 }
14823 }
14824
14825 /* Copy fi.nested_types_list linked list elements content into the
14826 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
14827 if (fi.nested_types_list != NULL && cu->language != language_ada)
14828 {
14829 int i = fi.nested_types_list_count;
14830
14831 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14832 TYPE_NESTED_TYPES_ARRAY (type)
14833 = ((struct decl_field *)
14834 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
14835 TYPE_NESTED_TYPES_COUNT (type) = i;
14836
14837 /* Reverse the list order to keep the debug info elements order. */
14838 while (--i >= 0)
14839 {
14840 struct decl_field *dest, *src;
14841
14842 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
14843 src = &fi.nested_types_list->field;
14844 fi.nested_types_list = fi.nested_types_list->next;
14845 *dest = *src;
14846 }
14847 }
14848
14849 do_cleanups (back_to);
14850 }
14851
14852 quirk_gcc_member_function_pointer (type, objfile);
14853
14854 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
14855 snapshots) has been known to create a die giving a declaration
14856 for a class that has, as a child, a die giving a definition for a
14857 nested class. So we have to process our children even if the
14858 current die is a declaration. Normally, of course, a declaration
14859 won't have any children at all. */
14860
14861 child_die = die->child;
14862
14863 while (child_die != NULL && child_die->tag)
14864 {
14865 if (child_die->tag == DW_TAG_member
14866 || child_die->tag == DW_TAG_variable
14867 || child_die->tag == DW_TAG_inheritance
14868 || child_die->tag == DW_TAG_template_value_param
14869 || child_die->tag == DW_TAG_template_type_param)
14870 {
14871 /* Do nothing. */
14872 }
14873 else
14874 process_die (child_die, cu);
14875
14876 child_die = sibling_die (child_die);
14877 }
14878
14879 /* Do not consider external references. According to the DWARF standard,
14880 these DIEs are identified by the fact that they have no byte_size
14881 attribute, and a declaration attribute. */
14882 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
14883 || !die_is_declaration (die, cu))
14884 new_symbol (die, type, cu);
14885 }
14886
14887 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
14888 update TYPE using some information only available in DIE's children. */
14889
14890 static void
14891 update_enumeration_type_from_children (struct die_info *die,
14892 struct type *type,
14893 struct dwarf2_cu *cu)
14894 {
14895 struct die_info *child_die;
14896 int unsigned_enum = 1;
14897 int flag_enum = 1;
14898 ULONGEST mask = 0;
14899
14900 auto_obstack obstack;
14901
14902 for (child_die = die->child;
14903 child_die != NULL && child_die->tag;
14904 child_die = sibling_die (child_die))
14905 {
14906 struct attribute *attr;
14907 LONGEST value;
14908 const gdb_byte *bytes;
14909 struct dwarf2_locexpr_baton *baton;
14910 const char *name;
14911
14912 if (child_die->tag != DW_TAG_enumerator)
14913 continue;
14914
14915 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
14916 if (attr == NULL)
14917 continue;
14918
14919 name = dwarf2_name (child_die, cu);
14920 if (name == NULL)
14921 name = "<anonymous enumerator>";
14922
14923 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14924 &value, &bytes, &baton);
14925 if (value < 0)
14926 {
14927 unsigned_enum = 0;
14928 flag_enum = 0;
14929 }
14930 else if ((mask & value) != 0)
14931 flag_enum = 0;
14932 else
14933 mask |= value;
14934
14935 /* If we already know that the enum type is neither unsigned, nor
14936 a flag type, no need to look at the rest of the enumerates. */
14937 if (!unsigned_enum && !flag_enum)
14938 break;
14939 }
14940
14941 if (unsigned_enum)
14942 TYPE_UNSIGNED (type) = 1;
14943 if (flag_enum)
14944 TYPE_FLAG_ENUM (type) = 1;
14945 }
14946
14947 /* Given a DW_AT_enumeration_type die, set its type. We do not
14948 complete the type's fields yet, or create any symbols. */
14949
14950 static struct type *
14951 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14952 {
14953 struct objfile *objfile = cu->objfile;
14954 struct type *type;
14955 struct attribute *attr;
14956 const char *name;
14957
14958 /* If the definition of this type lives in .debug_types, read that type.
14959 Don't follow DW_AT_specification though, that will take us back up
14960 the chain and we want to go down. */
14961 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14962 if (attr)
14963 {
14964 type = get_DW_AT_signature_type (die, attr, cu);
14965
14966 /* The type's CU may not be the same as CU.
14967 Ensure TYPE is recorded with CU in die_type_hash. */
14968 return set_die_type (die, type, cu);
14969 }
14970
14971 type = alloc_type (objfile);
14972
14973 TYPE_CODE (type) = TYPE_CODE_ENUM;
14974 name = dwarf2_full_name (NULL, die, cu);
14975 if (name != NULL)
14976 TYPE_TAG_NAME (type) = name;
14977
14978 attr = dwarf2_attr (die, DW_AT_type, cu);
14979 if (attr != NULL)
14980 {
14981 struct type *underlying_type = die_type (die, cu);
14982
14983 TYPE_TARGET_TYPE (type) = underlying_type;
14984 }
14985
14986 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14987 if (attr)
14988 {
14989 TYPE_LENGTH (type) = DW_UNSND (attr);
14990 }
14991 else
14992 {
14993 TYPE_LENGTH (type) = 0;
14994 }
14995
14996 /* The enumeration DIE can be incomplete. In Ada, any type can be
14997 declared as private in the package spec, and then defined only
14998 inside the package body. Such types are known as Taft Amendment
14999 Types. When another package uses such a type, an incomplete DIE
15000 may be generated by the compiler. */
15001 if (die_is_declaration (die, cu))
15002 TYPE_STUB (type) = 1;
15003
15004 /* Finish the creation of this type by using the enum's children.
15005 We must call this even when the underlying type has been provided
15006 so that we can determine if we're looking at a "flag" enum. */
15007 update_enumeration_type_from_children (die, type, cu);
15008
15009 /* If this type has an underlying type that is not a stub, then we
15010 may use its attributes. We always use the "unsigned" attribute
15011 in this situation, because ordinarily we guess whether the type
15012 is unsigned -- but the guess can be wrong and the underlying type
15013 can tell us the reality. However, we defer to a local size
15014 attribute if one exists, because this lets the compiler override
15015 the underlying type if needed. */
15016 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15017 {
15018 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15019 if (TYPE_LENGTH (type) == 0)
15020 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15021 }
15022
15023 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15024
15025 return set_die_type (die, type, cu);
15026 }
15027
15028 /* Given a pointer to a die which begins an enumeration, process all
15029 the dies that define the members of the enumeration, and create the
15030 symbol for the enumeration type.
15031
15032 NOTE: We reverse the order of the element list. */
15033
15034 static void
15035 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15036 {
15037 struct type *this_type;
15038
15039 this_type = get_die_type (die, cu);
15040 if (this_type == NULL)
15041 this_type = read_enumeration_type (die, cu);
15042
15043 if (die->child != NULL)
15044 {
15045 struct die_info *child_die;
15046 struct symbol *sym;
15047 struct field *fields = NULL;
15048 int num_fields = 0;
15049 const char *name;
15050
15051 child_die = die->child;
15052 while (child_die && child_die->tag)
15053 {
15054 if (child_die->tag != DW_TAG_enumerator)
15055 {
15056 process_die (child_die, cu);
15057 }
15058 else
15059 {
15060 name = dwarf2_name (child_die, cu);
15061 if (name)
15062 {
15063 sym = new_symbol (child_die, this_type, cu);
15064
15065 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
15066 {
15067 fields = (struct field *)
15068 xrealloc (fields,
15069 (num_fields + DW_FIELD_ALLOC_CHUNK)
15070 * sizeof (struct field));
15071 }
15072
15073 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
15074 FIELD_TYPE (fields[num_fields]) = NULL;
15075 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
15076 FIELD_BITSIZE (fields[num_fields]) = 0;
15077
15078 num_fields++;
15079 }
15080 }
15081
15082 child_die = sibling_die (child_die);
15083 }
15084
15085 if (num_fields)
15086 {
15087 TYPE_NFIELDS (this_type) = num_fields;
15088 TYPE_FIELDS (this_type) = (struct field *)
15089 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
15090 memcpy (TYPE_FIELDS (this_type), fields,
15091 sizeof (struct field) * num_fields);
15092 xfree (fields);
15093 }
15094 }
15095
15096 /* If we are reading an enum from a .debug_types unit, and the enum
15097 is a declaration, and the enum is not the signatured type in the
15098 unit, then we do not want to add a symbol for it. Adding a
15099 symbol would in some cases obscure the true definition of the
15100 enum, giving users an incomplete type when the definition is
15101 actually available. Note that we do not want to do this for all
15102 enums which are just declarations, because C++0x allows forward
15103 enum declarations. */
15104 if (cu->per_cu->is_debug_types
15105 && die_is_declaration (die, cu))
15106 {
15107 struct signatured_type *sig_type;
15108
15109 sig_type = (struct signatured_type *) cu->per_cu;
15110 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15111 if (sig_type->type_offset_in_section != die->sect_off)
15112 return;
15113 }
15114
15115 new_symbol (die, this_type, cu);
15116 }
15117
15118 /* Extract all information from a DW_TAG_array_type DIE and put it in
15119 the DIE's type field. For now, this only handles one dimensional
15120 arrays. */
15121
15122 static struct type *
15123 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15124 {
15125 struct objfile *objfile = cu->objfile;
15126 struct die_info *child_die;
15127 struct type *type;
15128 struct type *element_type, *range_type, *index_type;
15129 struct attribute *attr;
15130 const char *name;
15131 unsigned int bit_stride = 0;
15132
15133 element_type = die_type (die, cu);
15134
15135 /* The die_type call above may have already set the type for this DIE. */
15136 type = get_die_type (die, cu);
15137 if (type)
15138 return type;
15139
15140 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15141 if (attr != NULL)
15142 bit_stride = DW_UNSND (attr) * 8;
15143
15144 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15145 if (attr != NULL)
15146 bit_stride = DW_UNSND (attr);
15147
15148 /* Irix 6.2 native cc creates array types without children for
15149 arrays with unspecified length. */
15150 if (die->child == NULL)
15151 {
15152 index_type = objfile_type (objfile)->builtin_int;
15153 range_type = create_static_range_type (NULL, index_type, 0, -1);
15154 type = create_array_type_with_stride (NULL, element_type, range_type,
15155 bit_stride);
15156 return set_die_type (die, type, cu);
15157 }
15158
15159 std::vector<struct type *> range_types;
15160 child_die = die->child;
15161 while (child_die && child_die->tag)
15162 {
15163 if (child_die->tag == DW_TAG_subrange_type)
15164 {
15165 struct type *child_type = read_type_die (child_die, cu);
15166
15167 if (child_type != NULL)
15168 {
15169 /* The range type was succesfully read. Save it for the
15170 array type creation. */
15171 range_types.push_back (child_type);
15172 }
15173 }
15174 child_die = sibling_die (child_die);
15175 }
15176
15177 /* Dwarf2 dimensions are output from left to right, create the
15178 necessary array types in backwards order. */
15179
15180 type = element_type;
15181
15182 if (read_array_order (die, cu) == DW_ORD_col_major)
15183 {
15184 int i = 0;
15185
15186 while (i < range_types.size ())
15187 type = create_array_type_with_stride (NULL, type, range_types[i++],
15188 bit_stride);
15189 }
15190 else
15191 {
15192 size_t ndim = range_types.size ();
15193 while (ndim-- > 0)
15194 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15195 bit_stride);
15196 }
15197
15198 /* Understand Dwarf2 support for vector types (like they occur on
15199 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15200 array type. This is not part of the Dwarf2/3 standard yet, but a
15201 custom vendor extension. The main difference between a regular
15202 array and the vector variant is that vectors are passed by value
15203 to functions. */
15204 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15205 if (attr)
15206 make_vector_type (type);
15207
15208 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15209 implementation may choose to implement triple vectors using this
15210 attribute. */
15211 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15212 if (attr)
15213 {
15214 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15215 TYPE_LENGTH (type) = DW_UNSND (attr);
15216 else
15217 complaint (&symfile_complaints,
15218 _("DW_AT_byte_size for array type smaller "
15219 "than the total size of elements"));
15220 }
15221
15222 name = dwarf2_name (die, cu);
15223 if (name)
15224 TYPE_NAME (type) = name;
15225
15226 /* Install the type in the die. */
15227 set_die_type (die, type, cu);
15228
15229 /* set_die_type should be already done. */
15230 set_descriptive_type (type, die, cu);
15231
15232 return type;
15233 }
15234
15235 static enum dwarf_array_dim_ordering
15236 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15237 {
15238 struct attribute *attr;
15239
15240 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15241
15242 if (attr)
15243 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15244
15245 /* GNU F77 is a special case, as at 08/2004 array type info is the
15246 opposite order to the dwarf2 specification, but data is still
15247 laid out as per normal fortran.
15248
15249 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15250 version checking. */
15251
15252 if (cu->language == language_fortran
15253 && cu->producer && strstr (cu->producer, "GNU F77"))
15254 {
15255 return DW_ORD_row_major;
15256 }
15257
15258 switch (cu->language_defn->la_array_ordering)
15259 {
15260 case array_column_major:
15261 return DW_ORD_col_major;
15262 case array_row_major:
15263 default:
15264 return DW_ORD_row_major;
15265 };
15266 }
15267
15268 /* Extract all information from a DW_TAG_set_type DIE and put it in
15269 the DIE's type field. */
15270
15271 static struct type *
15272 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15273 {
15274 struct type *domain_type, *set_type;
15275 struct attribute *attr;
15276
15277 domain_type = die_type (die, cu);
15278
15279 /* The die_type call above may have already set the type for this DIE. */
15280 set_type = get_die_type (die, cu);
15281 if (set_type)
15282 return set_type;
15283
15284 set_type = create_set_type (NULL, domain_type);
15285
15286 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15287 if (attr)
15288 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15289
15290 return set_die_type (die, set_type, cu);
15291 }
15292
15293 /* A helper for read_common_block that creates a locexpr baton.
15294 SYM is the symbol which we are marking as computed.
15295 COMMON_DIE is the DIE for the common block.
15296 COMMON_LOC is the location expression attribute for the common
15297 block itself.
15298 MEMBER_LOC is the location expression attribute for the particular
15299 member of the common block that we are processing.
15300 CU is the CU from which the above come. */
15301
15302 static void
15303 mark_common_block_symbol_computed (struct symbol *sym,
15304 struct die_info *common_die,
15305 struct attribute *common_loc,
15306 struct attribute *member_loc,
15307 struct dwarf2_cu *cu)
15308 {
15309 struct objfile *objfile = dwarf2_per_objfile->objfile;
15310 struct dwarf2_locexpr_baton *baton;
15311 gdb_byte *ptr;
15312 unsigned int cu_off;
15313 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15314 LONGEST offset = 0;
15315
15316 gdb_assert (common_loc && member_loc);
15317 gdb_assert (attr_form_is_block (common_loc));
15318 gdb_assert (attr_form_is_block (member_loc)
15319 || attr_form_is_constant (member_loc));
15320
15321 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15322 baton->per_cu = cu->per_cu;
15323 gdb_assert (baton->per_cu);
15324
15325 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15326
15327 if (attr_form_is_constant (member_loc))
15328 {
15329 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15330 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15331 }
15332 else
15333 baton->size += DW_BLOCK (member_loc)->size;
15334
15335 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15336 baton->data = ptr;
15337
15338 *ptr++ = DW_OP_call4;
15339 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15340 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15341 ptr += 4;
15342
15343 if (attr_form_is_constant (member_loc))
15344 {
15345 *ptr++ = DW_OP_addr;
15346 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15347 ptr += cu->header.addr_size;
15348 }
15349 else
15350 {
15351 /* We have to copy the data here, because DW_OP_call4 will only
15352 use a DW_AT_location attribute. */
15353 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15354 ptr += DW_BLOCK (member_loc)->size;
15355 }
15356
15357 *ptr++ = DW_OP_plus;
15358 gdb_assert (ptr - baton->data == baton->size);
15359
15360 SYMBOL_LOCATION_BATON (sym) = baton;
15361 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
15362 }
15363
15364 /* Create appropriate locally-scoped variables for all the
15365 DW_TAG_common_block entries. Also create a struct common_block
15366 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
15367 is used to sepate the common blocks name namespace from regular
15368 variable names. */
15369
15370 static void
15371 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
15372 {
15373 struct attribute *attr;
15374
15375 attr = dwarf2_attr (die, DW_AT_location, cu);
15376 if (attr)
15377 {
15378 /* Support the .debug_loc offsets. */
15379 if (attr_form_is_block (attr))
15380 {
15381 /* Ok. */
15382 }
15383 else if (attr_form_is_section_offset (attr))
15384 {
15385 dwarf2_complex_location_expr_complaint ();
15386 attr = NULL;
15387 }
15388 else
15389 {
15390 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15391 "common block member");
15392 attr = NULL;
15393 }
15394 }
15395
15396 if (die->child != NULL)
15397 {
15398 struct objfile *objfile = cu->objfile;
15399 struct die_info *child_die;
15400 size_t n_entries = 0, size;
15401 struct common_block *common_block;
15402 struct symbol *sym;
15403
15404 for (child_die = die->child;
15405 child_die && child_die->tag;
15406 child_die = sibling_die (child_die))
15407 ++n_entries;
15408
15409 size = (sizeof (struct common_block)
15410 + (n_entries - 1) * sizeof (struct symbol *));
15411 common_block
15412 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
15413 size);
15414 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
15415 common_block->n_entries = 0;
15416
15417 for (child_die = die->child;
15418 child_die && child_die->tag;
15419 child_die = sibling_die (child_die))
15420 {
15421 /* Create the symbol in the DW_TAG_common_block block in the current
15422 symbol scope. */
15423 sym = new_symbol (child_die, NULL, cu);
15424 if (sym != NULL)
15425 {
15426 struct attribute *member_loc;
15427
15428 common_block->contents[common_block->n_entries++] = sym;
15429
15430 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
15431 cu);
15432 if (member_loc)
15433 {
15434 /* GDB has handled this for a long time, but it is
15435 not specified by DWARF. It seems to have been
15436 emitted by gfortran at least as recently as:
15437 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
15438 complaint (&symfile_complaints,
15439 _("Variable in common block has "
15440 "DW_AT_data_member_location "
15441 "- DIE at 0x%x [in module %s]"),
15442 to_underlying (child_die->sect_off),
15443 objfile_name (cu->objfile));
15444
15445 if (attr_form_is_section_offset (member_loc))
15446 dwarf2_complex_location_expr_complaint ();
15447 else if (attr_form_is_constant (member_loc)
15448 || attr_form_is_block (member_loc))
15449 {
15450 if (attr)
15451 mark_common_block_symbol_computed (sym, die, attr,
15452 member_loc, cu);
15453 }
15454 else
15455 dwarf2_complex_location_expr_complaint ();
15456 }
15457 }
15458 }
15459
15460 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
15461 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
15462 }
15463 }
15464
15465 /* Create a type for a C++ namespace. */
15466
15467 static struct type *
15468 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
15469 {
15470 struct objfile *objfile = cu->objfile;
15471 const char *previous_prefix, *name;
15472 int is_anonymous;
15473 struct type *type;
15474
15475 /* For extensions, reuse the type of the original namespace. */
15476 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
15477 {
15478 struct die_info *ext_die;
15479 struct dwarf2_cu *ext_cu = cu;
15480
15481 ext_die = dwarf2_extension (die, &ext_cu);
15482 type = read_type_die (ext_die, ext_cu);
15483
15484 /* EXT_CU may not be the same as CU.
15485 Ensure TYPE is recorded with CU in die_type_hash. */
15486 return set_die_type (die, type, cu);
15487 }
15488
15489 name = namespace_name (die, &is_anonymous, cu);
15490
15491 /* Now build the name of the current namespace. */
15492
15493 previous_prefix = determine_prefix (die, cu);
15494 if (previous_prefix[0] != '\0')
15495 name = typename_concat (&objfile->objfile_obstack,
15496 previous_prefix, name, 0, cu);
15497
15498 /* Create the type. */
15499 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
15500 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15501
15502 return set_die_type (die, type, cu);
15503 }
15504
15505 /* Read a namespace scope. */
15506
15507 static void
15508 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
15509 {
15510 struct objfile *objfile = cu->objfile;
15511 int is_anonymous;
15512
15513 /* Add a symbol associated to this if we haven't seen the namespace
15514 before. Also, add a using directive if it's an anonymous
15515 namespace. */
15516
15517 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
15518 {
15519 struct type *type;
15520
15521 type = read_type_die (die, cu);
15522 new_symbol (die, type, cu);
15523
15524 namespace_name (die, &is_anonymous, cu);
15525 if (is_anonymous)
15526 {
15527 const char *previous_prefix = determine_prefix (die, cu);
15528
15529 std::vector<const char *> excludes;
15530 add_using_directive (using_directives (cu->language),
15531 previous_prefix, TYPE_NAME (type), NULL,
15532 NULL, excludes, 0, &objfile->objfile_obstack);
15533 }
15534 }
15535
15536 if (die->child != NULL)
15537 {
15538 struct die_info *child_die = die->child;
15539
15540 while (child_die && child_die->tag)
15541 {
15542 process_die (child_die, cu);
15543 child_die = sibling_die (child_die);
15544 }
15545 }
15546 }
15547
15548 /* Read a Fortran module as type. This DIE can be only a declaration used for
15549 imported module. Still we need that type as local Fortran "use ... only"
15550 declaration imports depend on the created type in determine_prefix. */
15551
15552 static struct type *
15553 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
15554 {
15555 struct objfile *objfile = cu->objfile;
15556 const char *module_name;
15557 struct type *type;
15558
15559 module_name = dwarf2_name (die, cu);
15560 if (!module_name)
15561 complaint (&symfile_complaints,
15562 _("DW_TAG_module has no name, offset 0x%x"),
15563 to_underlying (die->sect_off));
15564 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
15565
15566 /* determine_prefix uses TYPE_TAG_NAME. */
15567 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15568
15569 return set_die_type (die, type, cu);
15570 }
15571
15572 /* Read a Fortran module. */
15573
15574 static void
15575 read_module (struct die_info *die, struct dwarf2_cu *cu)
15576 {
15577 struct die_info *child_die = die->child;
15578 struct type *type;
15579
15580 type = read_type_die (die, cu);
15581 new_symbol (die, type, cu);
15582
15583 while (child_die && child_die->tag)
15584 {
15585 process_die (child_die, cu);
15586 child_die = sibling_die (child_die);
15587 }
15588 }
15589
15590 /* Return the name of the namespace represented by DIE. Set
15591 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
15592 namespace. */
15593
15594 static const char *
15595 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
15596 {
15597 struct die_info *current_die;
15598 const char *name = NULL;
15599
15600 /* Loop through the extensions until we find a name. */
15601
15602 for (current_die = die;
15603 current_die != NULL;
15604 current_die = dwarf2_extension (die, &cu))
15605 {
15606 /* We don't use dwarf2_name here so that we can detect the absence
15607 of a name -> anonymous namespace. */
15608 name = dwarf2_string_attr (die, DW_AT_name, cu);
15609
15610 if (name != NULL)
15611 break;
15612 }
15613
15614 /* Is it an anonymous namespace? */
15615
15616 *is_anonymous = (name == NULL);
15617 if (*is_anonymous)
15618 name = CP_ANONYMOUS_NAMESPACE_STR;
15619
15620 return name;
15621 }
15622
15623 /* Extract all information from a DW_TAG_pointer_type DIE and add to
15624 the user defined type vector. */
15625
15626 static struct type *
15627 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
15628 {
15629 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
15630 struct comp_unit_head *cu_header = &cu->header;
15631 struct type *type;
15632 struct attribute *attr_byte_size;
15633 struct attribute *attr_address_class;
15634 int byte_size, addr_class;
15635 struct type *target_type;
15636
15637 target_type = die_type (die, cu);
15638
15639 /* The die_type call above may have already set the type for this DIE. */
15640 type = get_die_type (die, cu);
15641 if (type)
15642 return type;
15643
15644 type = lookup_pointer_type (target_type);
15645
15646 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
15647 if (attr_byte_size)
15648 byte_size = DW_UNSND (attr_byte_size);
15649 else
15650 byte_size = cu_header->addr_size;
15651
15652 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
15653 if (attr_address_class)
15654 addr_class = DW_UNSND (attr_address_class);
15655 else
15656 addr_class = DW_ADDR_none;
15657
15658 /* If the pointer size or address class is different than the
15659 default, create a type variant marked as such and set the
15660 length accordingly. */
15661 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
15662 {
15663 if (gdbarch_address_class_type_flags_p (gdbarch))
15664 {
15665 int type_flags;
15666
15667 type_flags = gdbarch_address_class_type_flags
15668 (gdbarch, byte_size, addr_class);
15669 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
15670 == 0);
15671 type = make_type_with_address_space (type, type_flags);
15672 }
15673 else if (TYPE_LENGTH (type) != byte_size)
15674 {
15675 complaint (&symfile_complaints,
15676 _("invalid pointer size %d"), byte_size);
15677 }
15678 else
15679 {
15680 /* Should we also complain about unhandled address classes? */
15681 }
15682 }
15683
15684 TYPE_LENGTH (type) = byte_size;
15685 return set_die_type (die, type, cu);
15686 }
15687
15688 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
15689 the user defined type vector. */
15690
15691 static struct type *
15692 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
15693 {
15694 struct type *type;
15695 struct type *to_type;
15696 struct type *domain;
15697
15698 to_type = die_type (die, cu);
15699 domain = die_containing_type (die, cu);
15700
15701 /* The calls above may have already set the type for this DIE. */
15702 type = get_die_type (die, cu);
15703 if (type)
15704 return type;
15705
15706 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
15707 type = lookup_methodptr_type (to_type);
15708 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
15709 {
15710 struct type *new_type = alloc_type (cu->objfile);
15711
15712 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
15713 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
15714 TYPE_VARARGS (to_type));
15715 type = lookup_methodptr_type (new_type);
15716 }
15717 else
15718 type = lookup_memberptr_type (to_type, domain);
15719
15720 return set_die_type (die, type, cu);
15721 }
15722
15723 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
15724 the user defined type vector. */
15725
15726 static struct type *
15727 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
15728 enum type_code refcode)
15729 {
15730 struct comp_unit_head *cu_header = &cu->header;
15731 struct type *type, *target_type;
15732 struct attribute *attr;
15733
15734 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
15735
15736 target_type = die_type (die, cu);
15737
15738 /* The die_type call above may have already set the type for this DIE. */
15739 type = get_die_type (die, cu);
15740 if (type)
15741 return type;
15742
15743 type = lookup_reference_type (target_type, refcode);
15744 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15745 if (attr)
15746 {
15747 TYPE_LENGTH (type) = DW_UNSND (attr);
15748 }
15749 else
15750 {
15751 TYPE_LENGTH (type) = cu_header->addr_size;
15752 }
15753 return set_die_type (die, type, cu);
15754 }
15755
15756 /* Add the given cv-qualifiers to the element type of the array. GCC
15757 outputs DWARF type qualifiers that apply to an array, not the
15758 element type. But GDB relies on the array element type to carry
15759 the cv-qualifiers. This mimics section 6.7.3 of the C99
15760 specification. */
15761
15762 static struct type *
15763 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
15764 struct type *base_type, int cnst, int voltl)
15765 {
15766 struct type *el_type, *inner_array;
15767
15768 base_type = copy_type (base_type);
15769 inner_array = base_type;
15770
15771 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
15772 {
15773 TYPE_TARGET_TYPE (inner_array) =
15774 copy_type (TYPE_TARGET_TYPE (inner_array));
15775 inner_array = TYPE_TARGET_TYPE (inner_array);
15776 }
15777
15778 el_type = TYPE_TARGET_TYPE (inner_array);
15779 cnst |= TYPE_CONST (el_type);
15780 voltl |= TYPE_VOLATILE (el_type);
15781 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
15782
15783 return set_die_type (die, base_type, cu);
15784 }
15785
15786 static struct type *
15787 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
15788 {
15789 struct type *base_type, *cv_type;
15790
15791 base_type = die_type (die, cu);
15792
15793 /* The die_type call above may have already set the type for this DIE. */
15794 cv_type = get_die_type (die, cu);
15795 if (cv_type)
15796 return cv_type;
15797
15798 /* In case the const qualifier is applied to an array type, the element type
15799 is so qualified, not the array type (section 6.7.3 of C99). */
15800 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15801 return add_array_cv_type (die, cu, base_type, 1, 0);
15802
15803 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
15804 return set_die_type (die, cv_type, cu);
15805 }
15806
15807 static struct type *
15808 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
15809 {
15810 struct type *base_type, *cv_type;
15811
15812 base_type = die_type (die, cu);
15813
15814 /* The die_type call above may have already set the type for this DIE. */
15815 cv_type = get_die_type (die, cu);
15816 if (cv_type)
15817 return cv_type;
15818
15819 /* In case the volatile qualifier is applied to an array type, the
15820 element type is so qualified, not the array type (section 6.7.3
15821 of C99). */
15822 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15823 return add_array_cv_type (die, cu, base_type, 0, 1);
15824
15825 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
15826 return set_die_type (die, cv_type, cu);
15827 }
15828
15829 /* Handle DW_TAG_restrict_type. */
15830
15831 static struct type *
15832 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
15833 {
15834 struct type *base_type, *cv_type;
15835
15836 base_type = die_type (die, cu);
15837
15838 /* The die_type call above may have already set the type for this DIE. */
15839 cv_type = get_die_type (die, cu);
15840 if (cv_type)
15841 return cv_type;
15842
15843 cv_type = make_restrict_type (base_type);
15844 return set_die_type (die, cv_type, cu);
15845 }
15846
15847 /* Handle DW_TAG_atomic_type. */
15848
15849 static struct type *
15850 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
15851 {
15852 struct type *base_type, *cv_type;
15853
15854 base_type = die_type (die, cu);
15855
15856 /* The die_type call above may have already set the type for this DIE. */
15857 cv_type = get_die_type (die, cu);
15858 if (cv_type)
15859 return cv_type;
15860
15861 cv_type = make_atomic_type (base_type);
15862 return set_die_type (die, cv_type, cu);
15863 }
15864
15865 /* Extract all information from a DW_TAG_string_type DIE and add to
15866 the user defined type vector. It isn't really a user defined type,
15867 but it behaves like one, with other DIE's using an AT_user_def_type
15868 attribute to reference it. */
15869
15870 static struct type *
15871 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
15872 {
15873 struct objfile *objfile = cu->objfile;
15874 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15875 struct type *type, *range_type, *index_type, *char_type;
15876 struct attribute *attr;
15877 unsigned int length;
15878
15879 attr = dwarf2_attr (die, DW_AT_string_length, cu);
15880 if (attr)
15881 {
15882 length = DW_UNSND (attr);
15883 }
15884 else
15885 {
15886 /* Check for the DW_AT_byte_size attribute. */
15887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15888 if (attr)
15889 {
15890 length = DW_UNSND (attr);
15891 }
15892 else
15893 {
15894 length = 1;
15895 }
15896 }
15897
15898 index_type = objfile_type (objfile)->builtin_int;
15899 range_type = create_static_range_type (NULL, index_type, 1, length);
15900 char_type = language_string_char_type (cu->language_defn, gdbarch);
15901 type = create_string_type (NULL, char_type, range_type);
15902
15903 return set_die_type (die, type, cu);
15904 }
15905
15906 /* Assuming that DIE corresponds to a function, returns nonzero
15907 if the function is prototyped. */
15908
15909 static int
15910 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15911 {
15912 struct attribute *attr;
15913
15914 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15915 if (attr && (DW_UNSND (attr) != 0))
15916 return 1;
15917
15918 /* The DWARF standard implies that the DW_AT_prototyped attribute
15919 is only meaninful for C, but the concept also extends to other
15920 languages that allow unprototyped functions (Eg: Objective C).
15921 For all other languages, assume that functions are always
15922 prototyped. */
15923 if (cu->language != language_c
15924 && cu->language != language_objc
15925 && cu->language != language_opencl)
15926 return 1;
15927
15928 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15929 prototyped and unprototyped functions; default to prototyped,
15930 since that is more common in modern code (and RealView warns
15931 about unprototyped functions). */
15932 if (producer_is_realview (cu->producer))
15933 return 1;
15934
15935 return 0;
15936 }
15937
15938 /* Handle DIES due to C code like:
15939
15940 struct foo
15941 {
15942 int (*funcp)(int a, long l);
15943 int b;
15944 };
15945
15946 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15947
15948 static struct type *
15949 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15950 {
15951 struct objfile *objfile = cu->objfile;
15952 struct type *type; /* Type that this function returns. */
15953 struct type *ftype; /* Function that returns above type. */
15954 struct attribute *attr;
15955
15956 type = die_type (die, cu);
15957
15958 /* The die_type call above may have already set the type for this DIE. */
15959 ftype = get_die_type (die, cu);
15960 if (ftype)
15961 return ftype;
15962
15963 ftype = lookup_function_type (type);
15964
15965 if (prototyped_function_p (die, cu))
15966 TYPE_PROTOTYPED (ftype) = 1;
15967
15968 /* Store the calling convention in the type if it's available in
15969 the subroutine die. Otherwise set the calling convention to
15970 the default value DW_CC_normal. */
15971 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15972 if (attr)
15973 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15974 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15975 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15976 else
15977 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15978
15979 /* Record whether the function returns normally to its caller or not
15980 if the DWARF producer set that information. */
15981 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15982 if (attr && (DW_UNSND (attr) != 0))
15983 TYPE_NO_RETURN (ftype) = 1;
15984
15985 /* We need to add the subroutine type to the die immediately so
15986 we don't infinitely recurse when dealing with parameters
15987 declared as the same subroutine type. */
15988 set_die_type (die, ftype, cu);
15989
15990 if (die->child != NULL)
15991 {
15992 struct type *void_type = objfile_type (objfile)->builtin_void;
15993 struct die_info *child_die;
15994 int nparams, iparams;
15995
15996 /* Count the number of parameters.
15997 FIXME: GDB currently ignores vararg functions, but knows about
15998 vararg member functions. */
15999 nparams = 0;
16000 child_die = die->child;
16001 while (child_die && child_die->tag)
16002 {
16003 if (child_die->tag == DW_TAG_formal_parameter)
16004 nparams++;
16005 else if (child_die->tag == DW_TAG_unspecified_parameters)
16006 TYPE_VARARGS (ftype) = 1;
16007 child_die = sibling_die (child_die);
16008 }
16009
16010 /* Allocate storage for parameters and fill them in. */
16011 TYPE_NFIELDS (ftype) = nparams;
16012 TYPE_FIELDS (ftype) = (struct field *)
16013 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16014
16015 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16016 even if we error out during the parameters reading below. */
16017 for (iparams = 0; iparams < nparams; iparams++)
16018 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16019
16020 iparams = 0;
16021 child_die = die->child;
16022 while (child_die && child_die->tag)
16023 {
16024 if (child_die->tag == DW_TAG_formal_parameter)
16025 {
16026 struct type *arg_type;
16027
16028 /* DWARF version 2 has no clean way to discern C++
16029 static and non-static member functions. G++ helps
16030 GDB by marking the first parameter for non-static
16031 member functions (which is the this pointer) as
16032 artificial. We pass this information to
16033 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16034
16035 DWARF version 3 added DW_AT_object_pointer, which GCC
16036 4.5 does not yet generate. */
16037 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16038 if (attr)
16039 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16040 else
16041 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16042 arg_type = die_type (child_die, cu);
16043
16044 /* RealView does not mark THIS as const, which the testsuite
16045 expects. GCC marks THIS as const in method definitions,
16046 but not in the class specifications (GCC PR 43053). */
16047 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16048 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16049 {
16050 int is_this = 0;
16051 struct dwarf2_cu *arg_cu = cu;
16052 const char *name = dwarf2_name (child_die, cu);
16053
16054 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16055 if (attr)
16056 {
16057 /* If the compiler emits this, use it. */
16058 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16059 is_this = 1;
16060 }
16061 else if (name && strcmp (name, "this") == 0)
16062 /* Function definitions will have the argument names. */
16063 is_this = 1;
16064 else if (name == NULL && iparams == 0)
16065 /* Declarations may not have the names, so like
16066 elsewhere in GDB, assume an artificial first
16067 argument is "this". */
16068 is_this = 1;
16069
16070 if (is_this)
16071 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16072 arg_type, 0);
16073 }
16074
16075 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16076 iparams++;
16077 }
16078 child_die = sibling_die (child_die);
16079 }
16080 }
16081
16082 return ftype;
16083 }
16084
16085 static struct type *
16086 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16087 {
16088 struct objfile *objfile = cu->objfile;
16089 const char *name = NULL;
16090 struct type *this_type, *target_type;
16091
16092 name = dwarf2_full_name (NULL, die, cu);
16093 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16094 TYPE_TARGET_STUB (this_type) = 1;
16095 set_die_type (die, this_type, cu);
16096 target_type = die_type (die, cu);
16097 if (target_type != this_type)
16098 TYPE_TARGET_TYPE (this_type) = target_type;
16099 else
16100 {
16101 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16102 spec and cause infinite loops in GDB. */
16103 complaint (&symfile_complaints,
16104 _("Self-referential DW_TAG_typedef "
16105 "- DIE at 0x%x [in module %s]"),
16106 to_underlying (die->sect_off), objfile_name (objfile));
16107 TYPE_TARGET_TYPE (this_type) = NULL;
16108 }
16109 return this_type;
16110 }
16111
16112 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16113 (which may be different from NAME) to the architecture back-end to allow
16114 it to guess the correct format if necessary. */
16115
16116 static struct type *
16117 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16118 const char *name_hint)
16119 {
16120 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16121 const struct floatformat **format;
16122 struct type *type;
16123
16124 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16125 if (format)
16126 type = init_float_type (objfile, bits, name, format);
16127 else
16128 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16129
16130 return type;
16131 }
16132
16133 /* Find a representation of a given base type and install
16134 it in the TYPE field of the die. */
16135
16136 static struct type *
16137 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16138 {
16139 struct objfile *objfile = cu->objfile;
16140 struct type *type;
16141 struct attribute *attr;
16142 int encoding = 0, bits = 0;
16143 const char *name;
16144
16145 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16146 if (attr)
16147 {
16148 encoding = DW_UNSND (attr);
16149 }
16150 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16151 if (attr)
16152 {
16153 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16154 }
16155 name = dwarf2_name (die, cu);
16156 if (!name)
16157 {
16158 complaint (&symfile_complaints,
16159 _("DW_AT_name missing from DW_TAG_base_type"));
16160 }
16161
16162 switch (encoding)
16163 {
16164 case DW_ATE_address:
16165 /* Turn DW_ATE_address into a void * pointer. */
16166 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16167 type = init_pointer_type (objfile, bits, name, type);
16168 break;
16169 case DW_ATE_boolean:
16170 type = init_boolean_type (objfile, bits, 1, name);
16171 break;
16172 case DW_ATE_complex_float:
16173 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
16174 type = init_complex_type (objfile, name, type);
16175 break;
16176 case DW_ATE_decimal_float:
16177 type = init_decfloat_type (objfile, bits, name);
16178 break;
16179 case DW_ATE_float:
16180 type = dwarf2_init_float_type (objfile, bits, name, name);
16181 break;
16182 case DW_ATE_signed:
16183 type = init_integer_type (objfile, bits, 0, name);
16184 break;
16185 case DW_ATE_unsigned:
16186 if (cu->language == language_fortran
16187 && name
16188 && startswith (name, "character("))
16189 type = init_character_type (objfile, bits, 1, name);
16190 else
16191 type = init_integer_type (objfile, bits, 1, name);
16192 break;
16193 case DW_ATE_signed_char:
16194 if (cu->language == language_ada || cu->language == language_m2
16195 || cu->language == language_pascal
16196 || cu->language == language_fortran)
16197 type = init_character_type (objfile, bits, 0, name);
16198 else
16199 type = init_integer_type (objfile, bits, 0, name);
16200 break;
16201 case DW_ATE_unsigned_char:
16202 if (cu->language == language_ada || cu->language == language_m2
16203 || cu->language == language_pascal
16204 || cu->language == language_fortran
16205 || cu->language == language_rust)
16206 type = init_character_type (objfile, bits, 1, name);
16207 else
16208 type = init_integer_type (objfile, bits, 1, name);
16209 break;
16210 case DW_ATE_UTF:
16211 {
16212 gdbarch *arch = get_objfile_arch (objfile);
16213
16214 if (bits == 16)
16215 type = builtin_type (arch)->builtin_char16;
16216 else if (bits == 32)
16217 type = builtin_type (arch)->builtin_char32;
16218 else
16219 {
16220 complaint (&symfile_complaints,
16221 _("unsupported DW_ATE_UTF bit size: '%d'"),
16222 bits);
16223 type = init_integer_type (objfile, bits, 1, name);
16224 }
16225 return set_die_type (die, type, cu);
16226 }
16227 break;
16228
16229 default:
16230 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
16231 dwarf_type_encoding_name (encoding));
16232 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16233 break;
16234 }
16235
16236 if (name && strcmp (name, "char") == 0)
16237 TYPE_NOSIGN (type) = 1;
16238
16239 return set_die_type (die, type, cu);
16240 }
16241
16242 /* Parse dwarf attribute if it's a block, reference or constant and put the
16243 resulting value of the attribute into struct bound_prop.
16244 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
16245
16246 static int
16247 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
16248 struct dwarf2_cu *cu, struct dynamic_prop *prop)
16249 {
16250 struct dwarf2_property_baton *baton;
16251 struct obstack *obstack = &cu->objfile->objfile_obstack;
16252
16253 if (attr == NULL || prop == NULL)
16254 return 0;
16255
16256 if (attr_form_is_block (attr))
16257 {
16258 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16259 baton->referenced_type = NULL;
16260 baton->locexpr.per_cu = cu->per_cu;
16261 baton->locexpr.size = DW_BLOCK (attr)->size;
16262 baton->locexpr.data = DW_BLOCK (attr)->data;
16263 prop->data.baton = baton;
16264 prop->kind = PROP_LOCEXPR;
16265 gdb_assert (prop->data.baton != NULL);
16266 }
16267 else if (attr_form_is_ref (attr))
16268 {
16269 struct dwarf2_cu *target_cu = cu;
16270 struct die_info *target_die;
16271 struct attribute *target_attr;
16272
16273 target_die = follow_die_ref (die, attr, &target_cu);
16274 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
16275 if (target_attr == NULL)
16276 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
16277 target_cu);
16278 if (target_attr == NULL)
16279 return 0;
16280
16281 switch (target_attr->name)
16282 {
16283 case DW_AT_location:
16284 if (attr_form_is_section_offset (target_attr))
16285 {
16286 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16287 baton->referenced_type = die_type (target_die, target_cu);
16288 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
16289 prop->data.baton = baton;
16290 prop->kind = PROP_LOCLIST;
16291 gdb_assert (prop->data.baton != NULL);
16292 }
16293 else if (attr_form_is_block (target_attr))
16294 {
16295 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16296 baton->referenced_type = die_type (target_die, target_cu);
16297 baton->locexpr.per_cu = cu->per_cu;
16298 baton->locexpr.size = DW_BLOCK (target_attr)->size;
16299 baton->locexpr.data = DW_BLOCK (target_attr)->data;
16300 prop->data.baton = baton;
16301 prop->kind = PROP_LOCEXPR;
16302 gdb_assert (prop->data.baton != NULL);
16303 }
16304 else
16305 {
16306 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16307 "dynamic property");
16308 return 0;
16309 }
16310 break;
16311 case DW_AT_data_member_location:
16312 {
16313 LONGEST offset;
16314
16315 if (!handle_data_member_location (target_die, target_cu,
16316 &offset))
16317 return 0;
16318
16319 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16320 baton->referenced_type = read_type_die (target_die->parent,
16321 target_cu);
16322 baton->offset_info.offset = offset;
16323 baton->offset_info.type = die_type (target_die, target_cu);
16324 prop->data.baton = baton;
16325 prop->kind = PROP_ADDR_OFFSET;
16326 break;
16327 }
16328 }
16329 }
16330 else if (attr_form_is_constant (attr))
16331 {
16332 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
16333 prop->kind = PROP_CONST;
16334 }
16335 else
16336 {
16337 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
16338 dwarf2_name (die, cu));
16339 return 0;
16340 }
16341
16342 return 1;
16343 }
16344
16345 /* Read the given DW_AT_subrange DIE. */
16346
16347 static struct type *
16348 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
16349 {
16350 struct type *base_type, *orig_base_type;
16351 struct type *range_type;
16352 struct attribute *attr;
16353 struct dynamic_prop low, high;
16354 int low_default_is_valid;
16355 int high_bound_is_count = 0;
16356 const char *name;
16357 LONGEST negative_mask;
16358
16359 orig_base_type = die_type (die, cu);
16360 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
16361 whereas the real type might be. So, we use ORIG_BASE_TYPE when
16362 creating the range type, but we use the result of check_typedef
16363 when examining properties of the type. */
16364 base_type = check_typedef (orig_base_type);
16365
16366 /* The die_type call above may have already set the type for this DIE. */
16367 range_type = get_die_type (die, cu);
16368 if (range_type)
16369 return range_type;
16370
16371 low.kind = PROP_CONST;
16372 high.kind = PROP_CONST;
16373 high.data.const_val = 0;
16374
16375 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
16376 omitting DW_AT_lower_bound. */
16377 switch (cu->language)
16378 {
16379 case language_c:
16380 case language_cplus:
16381 low.data.const_val = 0;
16382 low_default_is_valid = 1;
16383 break;
16384 case language_fortran:
16385 low.data.const_val = 1;
16386 low_default_is_valid = 1;
16387 break;
16388 case language_d:
16389 case language_objc:
16390 case language_rust:
16391 low.data.const_val = 0;
16392 low_default_is_valid = (cu->header.version >= 4);
16393 break;
16394 case language_ada:
16395 case language_m2:
16396 case language_pascal:
16397 low.data.const_val = 1;
16398 low_default_is_valid = (cu->header.version >= 4);
16399 break;
16400 default:
16401 low.data.const_val = 0;
16402 low_default_is_valid = 0;
16403 break;
16404 }
16405
16406 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
16407 if (attr)
16408 attr_to_dynamic_prop (attr, die, cu, &low);
16409 else if (!low_default_is_valid)
16410 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
16411 "- DIE at 0x%x [in module %s]"),
16412 to_underlying (die->sect_off), objfile_name (cu->objfile));
16413
16414 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
16415 if (!attr_to_dynamic_prop (attr, die, cu, &high))
16416 {
16417 attr = dwarf2_attr (die, DW_AT_count, cu);
16418 if (attr_to_dynamic_prop (attr, die, cu, &high))
16419 {
16420 /* If bounds are constant do the final calculation here. */
16421 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
16422 high.data.const_val = low.data.const_val + high.data.const_val - 1;
16423 else
16424 high_bound_is_count = 1;
16425 }
16426 }
16427
16428 /* Dwarf-2 specifications explicitly allows to create subrange types
16429 without specifying a base type.
16430 In that case, the base type must be set to the type of
16431 the lower bound, upper bound or count, in that order, if any of these
16432 three attributes references an object that has a type.
16433 If no base type is found, the Dwarf-2 specifications say that
16434 a signed integer type of size equal to the size of an address should
16435 be used.
16436 For the following C code: `extern char gdb_int [];'
16437 GCC produces an empty range DIE.
16438 FIXME: muller/2010-05-28: Possible references to object for low bound,
16439 high bound or count are not yet handled by this code. */
16440 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
16441 {
16442 struct objfile *objfile = cu->objfile;
16443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16444 int addr_size = gdbarch_addr_bit (gdbarch) /8;
16445 struct type *int_type = objfile_type (objfile)->builtin_int;
16446
16447 /* Test "int", "long int", and "long long int" objfile types,
16448 and select the first one having a size above or equal to the
16449 architecture address size. */
16450 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16451 base_type = int_type;
16452 else
16453 {
16454 int_type = objfile_type (objfile)->builtin_long;
16455 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16456 base_type = int_type;
16457 else
16458 {
16459 int_type = objfile_type (objfile)->builtin_long_long;
16460 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16461 base_type = int_type;
16462 }
16463 }
16464 }
16465
16466 /* Normally, the DWARF producers are expected to use a signed
16467 constant form (Eg. DW_FORM_sdata) to express negative bounds.
16468 But this is unfortunately not always the case, as witnessed
16469 with GCC, for instance, where the ambiguous DW_FORM_dataN form
16470 is used instead. To work around that ambiguity, we treat
16471 the bounds as signed, and thus sign-extend their values, when
16472 the base type is signed. */
16473 negative_mask =
16474 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
16475 if (low.kind == PROP_CONST
16476 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
16477 low.data.const_val |= negative_mask;
16478 if (high.kind == PROP_CONST
16479 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
16480 high.data.const_val |= negative_mask;
16481
16482 range_type = create_range_type (NULL, orig_base_type, &low, &high);
16483
16484 if (high_bound_is_count)
16485 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
16486
16487 /* Ada expects an empty array on no boundary attributes. */
16488 if (attr == NULL && cu->language != language_ada)
16489 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
16490
16491 name = dwarf2_name (die, cu);
16492 if (name)
16493 TYPE_NAME (range_type) = name;
16494
16495 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16496 if (attr)
16497 TYPE_LENGTH (range_type) = DW_UNSND (attr);
16498
16499 set_die_type (die, range_type, cu);
16500
16501 /* set_die_type should be already done. */
16502 set_descriptive_type (range_type, die, cu);
16503
16504 return range_type;
16505 }
16506
16507 static struct type *
16508 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
16509 {
16510 struct type *type;
16511
16512 /* For now, we only support the C meaning of an unspecified type: void. */
16513
16514 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
16515 TYPE_NAME (type) = dwarf2_name (die, cu);
16516
16517 return set_die_type (die, type, cu);
16518 }
16519
16520 /* Read a single die and all its descendents. Set the die's sibling
16521 field to NULL; set other fields in the die correctly, and set all
16522 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
16523 location of the info_ptr after reading all of those dies. PARENT
16524 is the parent of the die in question. */
16525
16526 static struct die_info *
16527 read_die_and_children (const struct die_reader_specs *reader,
16528 const gdb_byte *info_ptr,
16529 const gdb_byte **new_info_ptr,
16530 struct die_info *parent)
16531 {
16532 struct die_info *die;
16533 const gdb_byte *cur_ptr;
16534 int has_children;
16535
16536 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
16537 if (die == NULL)
16538 {
16539 *new_info_ptr = cur_ptr;
16540 return NULL;
16541 }
16542 store_in_ref_table (die, reader->cu);
16543
16544 if (has_children)
16545 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
16546 else
16547 {
16548 die->child = NULL;
16549 *new_info_ptr = cur_ptr;
16550 }
16551
16552 die->sibling = NULL;
16553 die->parent = parent;
16554 return die;
16555 }
16556
16557 /* Read a die, all of its descendents, and all of its siblings; set
16558 all of the fields of all of the dies correctly. Arguments are as
16559 in read_die_and_children. */
16560
16561 static struct die_info *
16562 read_die_and_siblings_1 (const struct die_reader_specs *reader,
16563 const gdb_byte *info_ptr,
16564 const gdb_byte **new_info_ptr,
16565 struct die_info *parent)
16566 {
16567 struct die_info *first_die, *last_sibling;
16568 const gdb_byte *cur_ptr;
16569
16570 cur_ptr = info_ptr;
16571 first_die = last_sibling = NULL;
16572
16573 while (1)
16574 {
16575 struct die_info *die
16576 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
16577
16578 if (die == NULL)
16579 {
16580 *new_info_ptr = cur_ptr;
16581 return first_die;
16582 }
16583
16584 if (!first_die)
16585 first_die = die;
16586 else
16587 last_sibling->sibling = die;
16588
16589 last_sibling = die;
16590 }
16591 }
16592
16593 /* Read a die, all of its descendents, and all of its siblings; set
16594 all of the fields of all of the dies correctly. Arguments are as
16595 in read_die_and_children.
16596 This the main entry point for reading a DIE and all its children. */
16597
16598 static struct die_info *
16599 read_die_and_siblings (const struct die_reader_specs *reader,
16600 const gdb_byte *info_ptr,
16601 const gdb_byte **new_info_ptr,
16602 struct die_info *parent)
16603 {
16604 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
16605 new_info_ptr, parent);
16606
16607 if (dwarf_die_debug)
16608 {
16609 fprintf_unfiltered (gdb_stdlog,
16610 "Read die from %s@0x%x of %s:\n",
16611 get_section_name (reader->die_section),
16612 (unsigned) (info_ptr - reader->die_section->buffer),
16613 bfd_get_filename (reader->abfd));
16614 dump_die (die, dwarf_die_debug);
16615 }
16616
16617 return die;
16618 }
16619
16620 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
16621 attributes.
16622 The caller is responsible for filling in the extra attributes
16623 and updating (*DIEP)->num_attrs.
16624 Set DIEP to point to a newly allocated die with its information,
16625 except for its child, sibling, and parent fields.
16626 Set HAS_CHILDREN to tell whether the die has children or not. */
16627
16628 static const gdb_byte *
16629 read_full_die_1 (const struct die_reader_specs *reader,
16630 struct die_info **diep, const gdb_byte *info_ptr,
16631 int *has_children, int num_extra_attrs)
16632 {
16633 unsigned int abbrev_number, bytes_read, i;
16634 struct abbrev_info *abbrev;
16635 struct die_info *die;
16636 struct dwarf2_cu *cu = reader->cu;
16637 bfd *abfd = reader->abfd;
16638
16639 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
16640 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16641 info_ptr += bytes_read;
16642 if (!abbrev_number)
16643 {
16644 *diep = NULL;
16645 *has_children = 0;
16646 return info_ptr;
16647 }
16648
16649 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
16650 if (!abbrev)
16651 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
16652 abbrev_number,
16653 bfd_get_filename (abfd));
16654
16655 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
16656 die->sect_off = sect_off;
16657 die->tag = abbrev->tag;
16658 die->abbrev = abbrev_number;
16659
16660 /* Make the result usable.
16661 The caller needs to update num_attrs after adding the extra
16662 attributes. */
16663 die->num_attrs = abbrev->num_attrs;
16664
16665 for (i = 0; i < abbrev->num_attrs; ++i)
16666 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
16667 info_ptr);
16668
16669 *diep = die;
16670 *has_children = abbrev->has_children;
16671 return info_ptr;
16672 }
16673
16674 /* Read a die and all its attributes.
16675 Set DIEP to point to a newly allocated die with its information,
16676 except for its child, sibling, and parent fields.
16677 Set HAS_CHILDREN to tell whether the die has children or not. */
16678
16679 static const gdb_byte *
16680 read_full_die (const struct die_reader_specs *reader,
16681 struct die_info **diep, const gdb_byte *info_ptr,
16682 int *has_children)
16683 {
16684 const gdb_byte *result;
16685
16686 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
16687
16688 if (dwarf_die_debug)
16689 {
16690 fprintf_unfiltered (gdb_stdlog,
16691 "Read die from %s@0x%x of %s:\n",
16692 get_section_name (reader->die_section),
16693 (unsigned) (info_ptr - reader->die_section->buffer),
16694 bfd_get_filename (reader->abfd));
16695 dump_die (*diep, dwarf_die_debug);
16696 }
16697
16698 return result;
16699 }
16700 \f
16701 /* Abbreviation tables.
16702
16703 In DWARF version 2, the description of the debugging information is
16704 stored in a separate .debug_abbrev section. Before we read any
16705 dies from a section we read in all abbreviations and install them
16706 in a hash table. */
16707
16708 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
16709
16710 static struct abbrev_info *
16711 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
16712 {
16713 struct abbrev_info *abbrev;
16714
16715 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
16716 memset (abbrev, 0, sizeof (struct abbrev_info));
16717
16718 return abbrev;
16719 }
16720
16721 /* Add an abbreviation to the table. */
16722
16723 static void
16724 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
16725 unsigned int abbrev_number,
16726 struct abbrev_info *abbrev)
16727 {
16728 unsigned int hash_number;
16729
16730 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16731 abbrev->next = abbrev_table->abbrevs[hash_number];
16732 abbrev_table->abbrevs[hash_number] = abbrev;
16733 }
16734
16735 /* Look up an abbrev in the table.
16736 Returns NULL if the abbrev is not found. */
16737
16738 static struct abbrev_info *
16739 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
16740 unsigned int abbrev_number)
16741 {
16742 unsigned int hash_number;
16743 struct abbrev_info *abbrev;
16744
16745 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16746 abbrev = abbrev_table->abbrevs[hash_number];
16747
16748 while (abbrev)
16749 {
16750 if (abbrev->number == abbrev_number)
16751 return abbrev;
16752 abbrev = abbrev->next;
16753 }
16754 return NULL;
16755 }
16756
16757 /* Read in an abbrev table. */
16758
16759 static struct abbrev_table *
16760 abbrev_table_read_table (struct dwarf2_section_info *section,
16761 sect_offset sect_off)
16762 {
16763 struct objfile *objfile = dwarf2_per_objfile->objfile;
16764 bfd *abfd = get_section_bfd_owner (section);
16765 struct abbrev_table *abbrev_table;
16766 const gdb_byte *abbrev_ptr;
16767 struct abbrev_info *cur_abbrev;
16768 unsigned int abbrev_number, bytes_read, abbrev_name;
16769 unsigned int abbrev_form;
16770 struct attr_abbrev *cur_attrs;
16771 unsigned int allocated_attrs;
16772
16773 abbrev_table = XNEW (struct abbrev_table);
16774 abbrev_table->sect_off = sect_off;
16775 obstack_init (&abbrev_table->abbrev_obstack);
16776 abbrev_table->abbrevs =
16777 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
16778 ABBREV_HASH_SIZE);
16779 memset (abbrev_table->abbrevs, 0,
16780 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
16781
16782 dwarf2_read_section (objfile, section);
16783 abbrev_ptr = section->buffer + to_underlying (sect_off);
16784 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16785 abbrev_ptr += bytes_read;
16786
16787 allocated_attrs = ATTR_ALLOC_CHUNK;
16788 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
16789
16790 /* Loop until we reach an abbrev number of 0. */
16791 while (abbrev_number)
16792 {
16793 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
16794
16795 /* read in abbrev header */
16796 cur_abbrev->number = abbrev_number;
16797 cur_abbrev->tag
16798 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16799 abbrev_ptr += bytes_read;
16800 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
16801 abbrev_ptr += 1;
16802
16803 /* now read in declarations */
16804 for (;;)
16805 {
16806 LONGEST implicit_const;
16807
16808 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16809 abbrev_ptr += bytes_read;
16810 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16811 abbrev_ptr += bytes_read;
16812 if (abbrev_form == DW_FORM_implicit_const)
16813 {
16814 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
16815 &bytes_read);
16816 abbrev_ptr += bytes_read;
16817 }
16818 else
16819 {
16820 /* Initialize it due to a false compiler warning. */
16821 implicit_const = -1;
16822 }
16823
16824 if (abbrev_name == 0)
16825 break;
16826
16827 if (cur_abbrev->num_attrs == allocated_attrs)
16828 {
16829 allocated_attrs += ATTR_ALLOC_CHUNK;
16830 cur_attrs
16831 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
16832 }
16833
16834 cur_attrs[cur_abbrev->num_attrs].name
16835 = (enum dwarf_attribute) abbrev_name;
16836 cur_attrs[cur_abbrev->num_attrs].form
16837 = (enum dwarf_form) abbrev_form;
16838 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
16839 ++cur_abbrev->num_attrs;
16840 }
16841
16842 cur_abbrev->attrs =
16843 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
16844 cur_abbrev->num_attrs);
16845 memcpy (cur_abbrev->attrs, cur_attrs,
16846 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
16847
16848 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
16849
16850 /* Get next abbreviation.
16851 Under Irix6 the abbreviations for a compilation unit are not
16852 always properly terminated with an abbrev number of 0.
16853 Exit loop if we encounter an abbreviation which we have
16854 already read (which means we are about to read the abbreviations
16855 for the next compile unit) or if the end of the abbreviation
16856 table is reached. */
16857 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
16858 break;
16859 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16860 abbrev_ptr += bytes_read;
16861 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
16862 break;
16863 }
16864
16865 xfree (cur_attrs);
16866 return abbrev_table;
16867 }
16868
16869 /* Free the resources held by ABBREV_TABLE. */
16870
16871 static void
16872 abbrev_table_free (struct abbrev_table *abbrev_table)
16873 {
16874 obstack_free (&abbrev_table->abbrev_obstack, NULL);
16875 xfree (abbrev_table);
16876 }
16877
16878 /* Same as abbrev_table_free but as a cleanup.
16879 We pass in a pointer to the pointer to the table so that we can
16880 set the pointer to NULL when we're done. It also simplifies
16881 build_type_psymtabs_1. */
16882
16883 static void
16884 abbrev_table_free_cleanup (void *table_ptr)
16885 {
16886 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
16887
16888 if (*abbrev_table_ptr != NULL)
16889 abbrev_table_free (*abbrev_table_ptr);
16890 *abbrev_table_ptr = NULL;
16891 }
16892
16893 /* Read the abbrev table for CU from ABBREV_SECTION. */
16894
16895 static void
16896 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
16897 struct dwarf2_section_info *abbrev_section)
16898 {
16899 cu->abbrev_table =
16900 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
16901 }
16902
16903 /* Release the memory used by the abbrev table for a compilation unit. */
16904
16905 static void
16906 dwarf2_free_abbrev_table (void *ptr_to_cu)
16907 {
16908 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16909
16910 if (cu->abbrev_table != NULL)
16911 abbrev_table_free (cu->abbrev_table);
16912 /* Set this to NULL so that we SEGV if we try to read it later,
16913 and also because free_comp_unit verifies this is NULL. */
16914 cu->abbrev_table = NULL;
16915 }
16916 \f
16917 /* Returns nonzero if TAG represents a type that we might generate a partial
16918 symbol for. */
16919
16920 static int
16921 is_type_tag_for_partial (int tag)
16922 {
16923 switch (tag)
16924 {
16925 #if 0
16926 /* Some types that would be reasonable to generate partial symbols for,
16927 that we don't at present. */
16928 case DW_TAG_array_type:
16929 case DW_TAG_file_type:
16930 case DW_TAG_ptr_to_member_type:
16931 case DW_TAG_set_type:
16932 case DW_TAG_string_type:
16933 case DW_TAG_subroutine_type:
16934 #endif
16935 case DW_TAG_base_type:
16936 case DW_TAG_class_type:
16937 case DW_TAG_interface_type:
16938 case DW_TAG_enumeration_type:
16939 case DW_TAG_structure_type:
16940 case DW_TAG_subrange_type:
16941 case DW_TAG_typedef:
16942 case DW_TAG_union_type:
16943 return 1;
16944 default:
16945 return 0;
16946 }
16947 }
16948
16949 /* Load all DIEs that are interesting for partial symbols into memory. */
16950
16951 static struct partial_die_info *
16952 load_partial_dies (const struct die_reader_specs *reader,
16953 const gdb_byte *info_ptr, int building_psymtab)
16954 {
16955 struct dwarf2_cu *cu = reader->cu;
16956 struct objfile *objfile = cu->objfile;
16957 struct partial_die_info *part_die;
16958 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16959 struct abbrev_info *abbrev;
16960 unsigned int bytes_read;
16961 unsigned int load_all = 0;
16962 int nesting_level = 1;
16963
16964 parent_die = NULL;
16965 last_die = NULL;
16966
16967 gdb_assert (cu->per_cu != NULL);
16968 if (cu->per_cu->load_all_dies)
16969 load_all = 1;
16970
16971 cu->partial_dies
16972 = htab_create_alloc_ex (cu->header.length / 12,
16973 partial_die_hash,
16974 partial_die_eq,
16975 NULL,
16976 &cu->comp_unit_obstack,
16977 hashtab_obstack_allocate,
16978 dummy_obstack_deallocate);
16979
16980 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16981
16982 while (1)
16983 {
16984 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16985
16986 /* A NULL abbrev means the end of a series of children. */
16987 if (abbrev == NULL)
16988 {
16989 if (--nesting_level == 0)
16990 {
16991 /* PART_DIE was probably the last thing allocated on the
16992 comp_unit_obstack, so we could call obstack_free
16993 here. We don't do that because the waste is small,
16994 and will be cleaned up when we're done with this
16995 compilation unit. This way, we're also more robust
16996 against other users of the comp_unit_obstack. */
16997 return first_die;
16998 }
16999 info_ptr += bytes_read;
17000 last_die = parent_die;
17001 parent_die = parent_die->die_parent;
17002 continue;
17003 }
17004
17005 /* Check for template arguments. We never save these; if
17006 they're seen, we just mark the parent, and go on our way. */
17007 if (parent_die != NULL
17008 && cu->language == language_cplus
17009 && (abbrev->tag == DW_TAG_template_type_param
17010 || abbrev->tag == DW_TAG_template_value_param))
17011 {
17012 parent_die->has_template_arguments = 1;
17013
17014 if (!load_all)
17015 {
17016 /* We don't need a partial DIE for the template argument. */
17017 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17018 continue;
17019 }
17020 }
17021
17022 /* We only recurse into c++ subprograms looking for template arguments.
17023 Skip their other children. */
17024 if (!load_all
17025 && cu->language == language_cplus
17026 && parent_die != NULL
17027 && parent_die->tag == DW_TAG_subprogram)
17028 {
17029 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17030 continue;
17031 }
17032
17033 /* Check whether this DIE is interesting enough to save. Normally
17034 we would not be interested in members here, but there may be
17035 later variables referencing them via DW_AT_specification (for
17036 static members). */
17037 if (!load_all
17038 && !is_type_tag_for_partial (abbrev->tag)
17039 && abbrev->tag != DW_TAG_constant
17040 && abbrev->tag != DW_TAG_enumerator
17041 && abbrev->tag != DW_TAG_subprogram
17042 && abbrev->tag != DW_TAG_lexical_block
17043 && abbrev->tag != DW_TAG_variable
17044 && abbrev->tag != DW_TAG_namespace
17045 && abbrev->tag != DW_TAG_module
17046 && abbrev->tag != DW_TAG_member
17047 && abbrev->tag != DW_TAG_imported_unit
17048 && abbrev->tag != DW_TAG_imported_declaration)
17049 {
17050 /* Otherwise we skip to the next sibling, if any. */
17051 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17052 continue;
17053 }
17054
17055 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
17056 info_ptr);
17057
17058 /* This two-pass algorithm for processing partial symbols has a
17059 high cost in cache pressure. Thus, handle some simple cases
17060 here which cover the majority of C partial symbols. DIEs
17061 which neither have specification tags in them, nor could have
17062 specification tags elsewhere pointing at them, can simply be
17063 processed and discarded.
17064
17065 This segment is also optional; scan_partial_symbols and
17066 add_partial_symbol will handle these DIEs if we chain
17067 them in normally. When compilers which do not emit large
17068 quantities of duplicate debug information are more common,
17069 this code can probably be removed. */
17070
17071 /* Any complete simple types at the top level (pretty much all
17072 of them, for a language without namespaces), can be processed
17073 directly. */
17074 if (parent_die == NULL
17075 && part_die->has_specification == 0
17076 && part_die->is_declaration == 0
17077 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
17078 || part_die->tag == DW_TAG_base_type
17079 || part_die->tag == DW_TAG_subrange_type))
17080 {
17081 if (building_psymtab && part_die->name != NULL)
17082 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
17083 VAR_DOMAIN, LOC_TYPEDEF,
17084 &objfile->static_psymbols,
17085 0, cu->language, objfile);
17086 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
17087 continue;
17088 }
17089
17090 /* The exception for DW_TAG_typedef with has_children above is
17091 a workaround of GCC PR debug/47510. In the case of this complaint
17092 type_name_no_tag_or_error will error on such types later.
17093
17094 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17095 it could not find the child DIEs referenced later, this is checked
17096 above. In correct DWARF DW_TAG_typedef should have no children. */
17097
17098 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
17099 complaint (&symfile_complaints,
17100 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17101 "- DIE at 0x%x [in module %s]"),
17102 to_underlying (part_die->sect_off), objfile_name (objfile));
17103
17104 /* If we're at the second level, and we're an enumerator, and
17105 our parent has no specification (meaning possibly lives in a
17106 namespace elsewhere), then we can add the partial symbol now
17107 instead of queueing it. */
17108 if (part_die->tag == DW_TAG_enumerator
17109 && parent_die != NULL
17110 && parent_die->die_parent == NULL
17111 && parent_die->tag == DW_TAG_enumeration_type
17112 && parent_die->has_specification == 0)
17113 {
17114 if (part_die->name == NULL)
17115 complaint (&symfile_complaints,
17116 _("malformed enumerator DIE ignored"));
17117 else if (building_psymtab)
17118 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
17119 VAR_DOMAIN, LOC_CONST,
17120 cu->language == language_cplus
17121 ? &objfile->global_psymbols
17122 : &objfile->static_psymbols,
17123 0, cu->language, objfile);
17124
17125 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
17126 continue;
17127 }
17128
17129 /* We'll save this DIE so link it in. */
17130 part_die->die_parent = parent_die;
17131 part_die->die_sibling = NULL;
17132 part_die->die_child = NULL;
17133
17134 if (last_die && last_die == parent_die)
17135 last_die->die_child = part_die;
17136 else if (last_die)
17137 last_die->die_sibling = part_die;
17138
17139 last_die = part_die;
17140
17141 if (first_die == NULL)
17142 first_die = part_die;
17143
17144 /* Maybe add the DIE to the hash table. Not all DIEs that we
17145 find interesting need to be in the hash table, because we
17146 also have the parent/sibling/child chains; only those that we
17147 might refer to by offset later during partial symbol reading.
17148
17149 For now this means things that might have be the target of a
17150 DW_AT_specification, DW_AT_abstract_origin, or
17151 DW_AT_extension. DW_AT_extension will refer only to
17152 namespaces; DW_AT_abstract_origin refers to functions (and
17153 many things under the function DIE, but we do not recurse
17154 into function DIEs during partial symbol reading) and
17155 possibly variables as well; DW_AT_specification refers to
17156 declarations. Declarations ought to have the DW_AT_declaration
17157 flag. It happens that GCC forgets to put it in sometimes, but
17158 only for functions, not for types.
17159
17160 Adding more things than necessary to the hash table is harmless
17161 except for the performance cost. Adding too few will result in
17162 wasted time in find_partial_die, when we reread the compilation
17163 unit with load_all_dies set. */
17164
17165 if (load_all
17166 || abbrev->tag == DW_TAG_constant
17167 || abbrev->tag == DW_TAG_subprogram
17168 || abbrev->tag == DW_TAG_variable
17169 || abbrev->tag == DW_TAG_namespace
17170 || part_die->is_declaration)
17171 {
17172 void **slot;
17173
17174 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17175 to_underlying (part_die->sect_off),
17176 INSERT);
17177 *slot = part_die;
17178 }
17179
17180 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
17181
17182 /* For some DIEs we want to follow their children (if any). For C
17183 we have no reason to follow the children of structures; for other
17184 languages we have to, so that we can get at method physnames
17185 to infer fully qualified class names, for DW_AT_specification,
17186 and for C++ template arguments. For C++, we also look one level
17187 inside functions to find template arguments (if the name of the
17188 function does not already contain the template arguments).
17189
17190 For Ada, we need to scan the children of subprograms and lexical
17191 blocks as well because Ada allows the definition of nested
17192 entities that could be interesting for the debugger, such as
17193 nested subprograms for instance. */
17194 if (last_die->has_children
17195 && (load_all
17196 || last_die->tag == DW_TAG_namespace
17197 || last_die->tag == DW_TAG_module
17198 || last_die->tag == DW_TAG_enumeration_type
17199 || (cu->language == language_cplus
17200 && last_die->tag == DW_TAG_subprogram
17201 && (last_die->name == NULL
17202 || strchr (last_die->name, '<') == NULL))
17203 || (cu->language != language_c
17204 && (last_die->tag == DW_TAG_class_type
17205 || last_die->tag == DW_TAG_interface_type
17206 || last_die->tag == DW_TAG_structure_type
17207 || last_die->tag == DW_TAG_union_type))
17208 || (cu->language == language_ada
17209 && (last_die->tag == DW_TAG_subprogram
17210 || last_die->tag == DW_TAG_lexical_block))))
17211 {
17212 nesting_level++;
17213 parent_die = last_die;
17214 continue;
17215 }
17216
17217 /* Otherwise we skip to the next sibling, if any. */
17218 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17219
17220 /* Back to the top, do it again. */
17221 }
17222 }
17223
17224 /* Read a minimal amount of information into the minimal die structure. */
17225
17226 static const gdb_byte *
17227 read_partial_die (const struct die_reader_specs *reader,
17228 struct partial_die_info *part_die,
17229 struct abbrev_info *abbrev, unsigned int abbrev_len,
17230 const gdb_byte *info_ptr)
17231 {
17232 struct dwarf2_cu *cu = reader->cu;
17233 struct objfile *objfile = cu->objfile;
17234 const gdb_byte *buffer = reader->buffer;
17235 unsigned int i;
17236 struct attribute attr;
17237 int has_low_pc_attr = 0;
17238 int has_high_pc_attr = 0;
17239 int high_pc_relative = 0;
17240
17241 memset (part_die, 0, sizeof (struct partial_die_info));
17242
17243 part_die->sect_off = (sect_offset) (info_ptr - buffer);
17244
17245 info_ptr += abbrev_len;
17246
17247 if (abbrev == NULL)
17248 return info_ptr;
17249
17250 part_die->tag = abbrev->tag;
17251 part_die->has_children = abbrev->has_children;
17252
17253 for (i = 0; i < abbrev->num_attrs; ++i)
17254 {
17255 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
17256
17257 /* Store the data if it is of an attribute we want to keep in a
17258 partial symbol table. */
17259 switch (attr.name)
17260 {
17261 case DW_AT_name:
17262 switch (part_die->tag)
17263 {
17264 case DW_TAG_compile_unit:
17265 case DW_TAG_partial_unit:
17266 case DW_TAG_type_unit:
17267 /* Compilation units have a DW_AT_name that is a filename, not
17268 a source language identifier. */
17269 case DW_TAG_enumeration_type:
17270 case DW_TAG_enumerator:
17271 /* These tags always have simple identifiers already; no need
17272 to canonicalize them. */
17273 part_die->name = DW_STRING (&attr);
17274 break;
17275 default:
17276 part_die->name
17277 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17278 &objfile->per_bfd->storage_obstack);
17279 break;
17280 }
17281 break;
17282 case DW_AT_linkage_name:
17283 case DW_AT_MIPS_linkage_name:
17284 /* Note that both forms of linkage name might appear. We
17285 assume they will be the same, and we only store the last
17286 one we see. */
17287 if (cu->language == language_ada)
17288 part_die->name = DW_STRING (&attr);
17289 part_die->linkage_name = DW_STRING (&attr);
17290 break;
17291 case DW_AT_low_pc:
17292 has_low_pc_attr = 1;
17293 part_die->lowpc = attr_value_as_address (&attr);
17294 break;
17295 case DW_AT_high_pc:
17296 has_high_pc_attr = 1;
17297 part_die->highpc = attr_value_as_address (&attr);
17298 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
17299 high_pc_relative = 1;
17300 break;
17301 case DW_AT_location:
17302 /* Support the .debug_loc offsets. */
17303 if (attr_form_is_block (&attr))
17304 {
17305 part_die->d.locdesc = DW_BLOCK (&attr);
17306 }
17307 else if (attr_form_is_section_offset (&attr))
17308 {
17309 dwarf2_complex_location_expr_complaint ();
17310 }
17311 else
17312 {
17313 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17314 "partial symbol information");
17315 }
17316 break;
17317 case DW_AT_external:
17318 part_die->is_external = DW_UNSND (&attr);
17319 break;
17320 case DW_AT_declaration:
17321 part_die->is_declaration = DW_UNSND (&attr);
17322 break;
17323 case DW_AT_type:
17324 part_die->has_type = 1;
17325 break;
17326 case DW_AT_abstract_origin:
17327 case DW_AT_specification:
17328 case DW_AT_extension:
17329 part_die->has_specification = 1;
17330 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
17331 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17332 || cu->per_cu->is_dwz);
17333 break;
17334 case DW_AT_sibling:
17335 /* Ignore absolute siblings, they might point outside of
17336 the current compile unit. */
17337 if (attr.form == DW_FORM_ref_addr)
17338 complaint (&symfile_complaints,
17339 _("ignoring absolute DW_AT_sibling"));
17340 else
17341 {
17342 sect_offset off = dwarf2_get_ref_die_offset (&attr);
17343 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
17344
17345 if (sibling_ptr < info_ptr)
17346 complaint (&symfile_complaints,
17347 _("DW_AT_sibling points backwards"));
17348 else if (sibling_ptr > reader->buffer_end)
17349 dwarf2_section_buffer_overflow_complaint (reader->die_section);
17350 else
17351 part_die->sibling = sibling_ptr;
17352 }
17353 break;
17354 case DW_AT_byte_size:
17355 part_die->has_byte_size = 1;
17356 break;
17357 case DW_AT_const_value:
17358 part_die->has_const_value = 1;
17359 break;
17360 case DW_AT_calling_convention:
17361 /* DWARF doesn't provide a way to identify a program's source-level
17362 entry point. DW_AT_calling_convention attributes are only meant
17363 to describe functions' calling conventions.
17364
17365 However, because it's a necessary piece of information in
17366 Fortran, and before DWARF 4 DW_CC_program was the only
17367 piece of debugging information whose definition refers to
17368 a 'main program' at all, several compilers marked Fortran
17369 main programs with DW_CC_program --- even when those
17370 functions use the standard calling conventions.
17371
17372 Although DWARF now specifies a way to provide this
17373 information, we support this practice for backward
17374 compatibility. */
17375 if (DW_UNSND (&attr) == DW_CC_program
17376 && cu->language == language_fortran)
17377 part_die->main_subprogram = 1;
17378 break;
17379 case DW_AT_inline:
17380 if (DW_UNSND (&attr) == DW_INL_inlined
17381 || DW_UNSND (&attr) == DW_INL_declared_inlined)
17382 part_die->may_be_inlined = 1;
17383 break;
17384
17385 case DW_AT_import:
17386 if (part_die->tag == DW_TAG_imported_unit)
17387 {
17388 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
17389 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17390 || cu->per_cu->is_dwz);
17391 }
17392 break;
17393
17394 case DW_AT_main_subprogram:
17395 part_die->main_subprogram = DW_UNSND (&attr);
17396 break;
17397
17398 default:
17399 break;
17400 }
17401 }
17402
17403 if (high_pc_relative)
17404 part_die->highpc += part_die->lowpc;
17405
17406 if (has_low_pc_attr && has_high_pc_attr)
17407 {
17408 /* When using the GNU linker, .gnu.linkonce. sections are used to
17409 eliminate duplicate copies of functions and vtables and such.
17410 The linker will arbitrarily choose one and discard the others.
17411 The AT_*_pc values for such functions refer to local labels in
17412 these sections. If the section from that file was discarded, the
17413 labels are not in the output, so the relocs get a value of 0.
17414 If this is a discarded function, mark the pc bounds as invalid,
17415 so that GDB will ignore it. */
17416 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
17417 {
17418 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17419
17420 complaint (&symfile_complaints,
17421 _("DW_AT_low_pc %s is zero "
17422 "for DIE at 0x%x [in module %s]"),
17423 paddress (gdbarch, part_die->lowpc),
17424 to_underlying (part_die->sect_off), objfile_name (objfile));
17425 }
17426 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
17427 else if (part_die->lowpc >= part_die->highpc)
17428 {
17429 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17430
17431 complaint (&symfile_complaints,
17432 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
17433 "for DIE at 0x%x [in module %s]"),
17434 paddress (gdbarch, part_die->lowpc),
17435 paddress (gdbarch, part_die->highpc),
17436 to_underlying (part_die->sect_off),
17437 objfile_name (objfile));
17438 }
17439 else
17440 part_die->has_pc_info = 1;
17441 }
17442
17443 return info_ptr;
17444 }
17445
17446 /* Find a cached partial DIE at OFFSET in CU. */
17447
17448 static struct partial_die_info *
17449 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
17450 {
17451 struct partial_die_info *lookup_die = NULL;
17452 struct partial_die_info part_die;
17453
17454 part_die.sect_off = sect_off;
17455 lookup_die = ((struct partial_die_info *)
17456 htab_find_with_hash (cu->partial_dies, &part_die,
17457 to_underlying (sect_off)));
17458
17459 return lookup_die;
17460 }
17461
17462 /* Find a partial DIE at OFFSET, which may or may not be in CU,
17463 except in the case of .debug_types DIEs which do not reference
17464 outside their CU (they do however referencing other types via
17465 DW_FORM_ref_sig8). */
17466
17467 static struct partial_die_info *
17468 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
17469 {
17470 struct objfile *objfile = cu->objfile;
17471 struct dwarf2_per_cu_data *per_cu = NULL;
17472 struct partial_die_info *pd = NULL;
17473
17474 if (offset_in_dwz == cu->per_cu->is_dwz
17475 && offset_in_cu_p (&cu->header, sect_off))
17476 {
17477 pd = find_partial_die_in_comp_unit (sect_off, cu);
17478 if (pd != NULL)
17479 return pd;
17480 /* We missed recording what we needed.
17481 Load all dies and try again. */
17482 per_cu = cu->per_cu;
17483 }
17484 else
17485 {
17486 /* TUs don't reference other CUs/TUs (except via type signatures). */
17487 if (cu->per_cu->is_debug_types)
17488 {
17489 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
17490 " external reference to offset 0x%x [in module %s].\n"),
17491 to_underlying (cu->header.sect_off), to_underlying (sect_off),
17492 bfd_get_filename (objfile->obfd));
17493 }
17494 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
17495 objfile);
17496
17497 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
17498 load_partial_comp_unit (per_cu);
17499
17500 per_cu->cu->last_used = 0;
17501 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17502 }
17503
17504 /* If we didn't find it, and not all dies have been loaded,
17505 load them all and try again. */
17506
17507 if (pd == NULL && per_cu->load_all_dies == 0)
17508 {
17509 per_cu->load_all_dies = 1;
17510
17511 /* This is nasty. When we reread the DIEs, somewhere up the call chain
17512 THIS_CU->cu may already be in use. So we can't just free it and
17513 replace its DIEs with the ones we read in. Instead, we leave those
17514 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
17515 and clobber THIS_CU->cu->partial_dies with the hash table for the new
17516 set. */
17517 load_partial_comp_unit (per_cu);
17518
17519 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17520 }
17521
17522 if (pd == NULL)
17523 internal_error (__FILE__, __LINE__,
17524 _("could not find partial DIE 0x%x "
17525 "in cache [from module %s]\n"),
17526 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
17527 return pd;
17528 }
17529
17530 /* See if we can figure out if the class lives in a namespace. We do
17531 this by looking for a member function; its demangled name will
17532 contain namespace info, if there is any. */
17533
17534 static void
17535 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
17536 struct dwarf2_cu *cu)
17537 {
17538 /* NOTE: carlton/2003-10-07: Getting the info this way changes
17539 what template types look like, because the demangler
17540 frequently doesn't give the same name as the debug info. We
17541 could fix this by only using the demangled name to get the
17542 prefix (but see comment in read_structure_type). */
17543
17544 struct partial_die_info *real_pdi;
17545 struct partial_die_info *child_pdi;
17546
17547 /* If this DIE (this DIE's specification, if any) has a parent, then
17548 we should not do this. We'll prepend the parent's fully qualified
17549 name when we create the partial symbol. */
17550
17551 real_pdi = struct_pdi;
17552 while (real_pdi->has_specification)
17553 real_pdi = find_partial_die (real_pdi->spec_offset,
17554 real_pdi->spec_is_dwz, cu);
17555
17556 if (real_pdi->die_parent != NULL)
17557 return;
17558
17559 for (child_pdi = struct_pdi->die_child;
17560 child_pdi != NULL;
17561 child_pdi = child_pdi->die_sibling)
17562 {
17563 if (child_pdi->tag == DW_TAG_subprogram
17564 && child_pdi->linkage_name != NULL)
17565 {
17566 char *actual_class_name
17567 = language_class_name_from_physname (cu->language_defn,
17568 child_pdi->linkage_name);
17569 if (actual_class_name != NULL)
17570 {
17571 struct_pdi->name
17572 = ((const char *)
17573 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17574 actual_class_name,
17575 strlen (actual_class_name)));
17576 xfree (actual_class_name);
17577 }
17578 break;
17579 }
17580 }
17581 }
17582
17583 /* Adjust PART_DIE before generating a symbol for it. This function
17584 may set the is_external flag or change the DIE's name. */
17585
17586 static void
17587 fixup_partial_die (struct partial_die_info *part_die,
17588 struct dwarf2_cu *cu)
17589 {
17590 /* Once we've fixed up a die, there's no point in doing so again.
17591 This also avoids a memory leak if we were to call
17592 guess_partial_die_structure_name multiple times. */
17593 if (part_die->fixup_called)
17594 return;
17595
17596 /* If we found a reference attribute and the DIE has no name, try
17597 to find a name in the referred to DIE. */
17598
17599 if (part_die->name == NULL && part_die->has_specification)
17600 {
17601 struct partial_die_info *spec_die;
17602
17603 spec_die = find_partial_die (part_die->spec_offset,
17604 part_die->spec_is_dwz, cu);
17605
17606 fixup_partial_die (spec_die, cu);
17607
17608 if (spec_die->name)
17609 {
17610 part_die->name = spec_die->name;
17611
17612 /* Copy DW_AT_external attribute if it is set. */
17613 if (spec_die->is_external)
17614 part_die->is_external = spec_die->is_external;
17615 }
17616 }
17617
17618 /* Set default names for some unnamed DIEs. */
17619
17620 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
17621 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
17622
17623 /* If there is no parent die to provide a namespace, and there are
17624 children, see if we can determine the namespace from their linkage
17625 name. */
17626 if (cu->language == language_cplus
17627 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17628 && part_die->die_parent == NULL
17629 && part_die->has_children
17630 && (part_die->tag == DW_TAG_class_type
17631 || part_die->tag == DW_TAG_structure_type
17632 || part_die->tag == DW_TAG_union_type))
17633 guess_partial_die_structure_name (part_die, cu);
17634
17635 /* GCC might emit a nameless struct or union that has a linkage
17636 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17637 if (part_die->name == NULL
17638 && (part_die->tag == DW_TAG_class_type
17639 || part_die->tag == DW_TAG_interface_type
17640 || part_die->tag == DW_TAG_structure_type
17641 || part_die->tag == DW_TAG_union_type)
17642 && part_die->linkage_name != NULL)
17643 {
17644 char *demangled;
17645
17646 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
17647 if (demangled)
17648 {
17649 const char *base;
17650
17651 /* Strip any leading namespaces/classes, keep only the base name.
17652 DW_AT_name for named DIEs does not contain the prefixes. */
17653 base = strrchr (demangled, ':');
17654 if (base && base > demangled && base[-1] == ':')
17655 base++;
17656 else
17657 base = demangled;
17658
17659 part_die->name
17660 = ((const char *)
17661 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17662 base, strlen (base)));
17663 xfree (demangled);
17664 }
17665 }
17666
17667 part_die->fixup_called = 1;
17668 }
17669
17670 /* Read an attribute value described by an attribute form. */
17671
17672 static const gdb_byte *
17673 read_attribute_value (const struct die_reader_specs *reader,
17674 struct attribute *attr, unsigned form,
17675 LONGEST implicit_const, const gdb_byte *info_ptr)
17676 {
17677 struct dwarf2_cu *cu = reader->cu;
17678 struct objfile *objfile = cu->objfile;
17679 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17680 bfd *abfd = reader->abfd;
17681 struct comp_unit_head *cu_header = &cu->header;
17682 unsigned int bytes_read;
17683 struct dwarf_block *blk;
17684
17685 attr->form = (enum dwarf_form) form;
17686 switch (form)
17687 {
17688 case DW_FORM_ref_addr:
17689 if (cu->header.version == 2)
17690 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17691 else
17692 DW_UNSND (attr) = read_offset (abfd, info_ptr,
17693 &cu->header, &bytes_read);
17694 info_ptr += bytes_read;
17695 break;
17696 case DW_FORM_GNU_ref_alt:
17697 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17698 info_ptr += bytes_read;
17699 break;
17700 case DW_FORM_addr:
17701 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17702 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
17703 info_ptr += bytes_read;
17704 break;
17705 case DW_FORM_block2:
17706 blk = dwarf_alloc_block (cu);
17707 blk->size = read_2_bytes (abfd, info_ptr);
17708 info_ptr += 2;
17709 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17710 info_ptr += blk->size;
17711 DW_BLOCK (attr) = blk;
17712 break;
17713 case DW_FORM_block4:
17714 blk = dwarf_alloc_block (cu);
17715 blk->size = read_4_bytes (abfd, info_ptr);
17716 info_ptr += 4;
17717 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17718 info_ptr += blk->size;
17719 DW_BLOCK (attr) = blk;
17720 break;
17721 case DW_FORM_data2:
17722 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
17723 info_ptr += 2;
17724 break;
17725 case DW_FORM_data4:
17726 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
17727 info_ptr += 4;
17728 break;
17729 case DW_FORM_data8:
17730 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
17731 info_ptr += 8;
17732 break;
17733 case DW_FORM_data16:
17734 blk = dwarf_alloc_block (cu);
17735 blk->size = 16;
17736 blk->data = read_n_bytes (abfd, info_ptr, 16);
17737 info_ptr += 16;
17738 DW_BLOCK (attr) = blk;
17739 break;
17740 case DW_FORM_sec_offset:
17741 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17742 info_ptr += bytes_read;
17743 break;
17744 case DW_FORM_string:
17745 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
17746 DW_STRING_IS_CANONICAL (attr) = 0;
17747 info_ptr += bytes_read;
17748 break;
17749 case DW_FORM_strp:
17750 if (!cu->per_cu->is_dwz)
17751 {
17752 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
17753 &bytes_read);
17754 DW_STRING_IS_CANONICAL (attr) = 0;
17755 info_ptr += bytes_read;
17756 break;
17757 }
17758 /* FALLTHROUGH */
17759 case DW_FORM_line_strp:
17760 if (!cu->per_cu->is_dwz)
17761 {
17762 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
17763 cu_header, &bytes_read);
17764 DW_STRING_IS_CANONICAL (attr) = 0;
17765 info_ptr += bytes_read;
17766 break;
17767 }
17768 /* FALLTHROUGH */
17769 case DW_FORM_GNU_strp_alt:
17770 {
17771 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17772 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
17773 &bytes_read);
17774
17775 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
17776 DW_STRING_IS_CANONICAL (attr) = 0;
17777 info_ptr += bytes_read;
17778 }
17779 break;
17780 case DW_FORM_exprloc:
17781 case DW_FORM_block:
17782 blk = dwarf_alloc_block (cu);
17783 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17784 info_ptr += bytes_read;
17785 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17786 info_ptr += blk->size;
17787 DW_BLOCK (attr) = blk;
17788 break;
17789 case DW_FORM_block1:
17790 blk = dwarf_alloc_block (cu);
17791 blk->size = read_1_byte (abfd, info_ptr);
17792 info_ptr += 1;
17793 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17794 info_ptr += blk->size;
17795 DW_BLOCK (attr) = blk;
17796 break;
17797 case DW_FORM_data1:
17798 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17799 info_ptr += 1;
17800 break;
17801 case DW_FORM_flag:
17802 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17803 info_ptr += 1;
17804 break;
17805 case DW_FORM_flag_present:
17806 DW_UNSND (attr) = 1;
17807 break;
17808 case DW_FORM_sdata:
17809 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17810 info_ptr += bytes_read;
17811 break;
17812 case DW_FORM_udata:
17813 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17814 info_ptr += bytes_read;
17815 break;
17816 case DW_FORM_ref1:
17817 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17818 + read_1_byte (abfd, info_ptr));
17819 info_ptr += 1;
17820 break;
17821 case DW_FORM_ref2:
17822 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17823 + read_2_bytes (abfd, info_ptr));
17824 info_ptr += 2;
17825 break;
17826 case DW_FORM_ref4:
17827 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17828 + read_4_bytes (abfd, info_ptr));
17829 info_ptr += 4;
17830 break;
17831 case DW_FORM_ref8:
17832 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17833 + read_8_bytes (abfd, info_ptr));
17834 info_ptr += 8;
17835 break;
17836 case DW_FORM_ref_sig8:
17837 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
17838 info_ptr += 8;
17839 break;
17840 case DW_FORM_ref_udata:
17841 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17842 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
17843 info_ptr += bytes_read;
17844 break;
17845 case DW_FORM_indirect:
17846 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17847 info_ptr += bytes_read;
17848 if (form == DW_FORM_implicit_const)
17849 {
17850 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17851 info_ptr += bytes_read;
17852 }
17853 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
17854 info_ptr);
17855 break;
17856 case DW_FORM_implicit_const:
17857 DW_SND (attr) = implicit_const;
17858 break;
17859 case DW_FORM_GNU_addr_index:
17860 if (reader->dwo_file == NULL)
17861 {
17862 /* For now flag a hard error.
17863 Later we can turn this into a complaint. */
17864 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17865 dwarf_form_name (form),
17866 bfd_get_filename (abfd));
17867 }
17868 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
17869 info_ptr += bytes_read;
17870 break;
17871 case DW_FORM_GNU_str_index:
17872 if (reader->dwo_file == NULL)
17873 {
17874 /* For now flag a hard error.
17875 Later we can turn this into a complaint if warranted. */
17876 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17877 dwarf_form_name (form),
17878 bfd_get_filename (abfd));
17879 }
17880 {
17881 ULONGEST str_index =
17882 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17883
17884 DW_STRING (attr) = read_str_index (reader, str_index);
17885 DW_STRING_IS_CANONICAL (attr) = 0;
17886 info_ptr += bytes_read;
17887 }
17888 break;
17889 default:
17890 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
17891 dwarf_form_name (form),
17892 bfd_get_filename (abfd));
17893 }
17894
17895 /* Super hack. */
17896 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
17897 attr->form = DW_FORM_GNU_ref_alt;
17898
17899 /* We have seen instances where the compiler tried to emit a byte
17900 size attribute of -1 which ended up being encoded as an unsigned
17901 0xffffffff. Although 0xffffffff is technically a valid size value,
17902 an object of this size seems pretty unlikely so we can relatively
17903 safely treat these cases as if the size attribute was invalid and
17904 treat them as zero by default. */
17905 if (attr->name == DW_AT_byte_size
17906 && form == DW_FORM_data4
17907 && DW_UNSND (attr) >= 0xffffffff)
17908 {
17909 complaint
17910 (&symfile_complaints,
17911 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17912 hex_string (DW_UNSND (attr)));
17913 DW_UNSND (attr) = 0;
17914 }
17915
17916 return info_ptr;
17917 }
17918
17919 /* Read an attribute described by an abbreviated attribute. */
17920
17921 static const gdb_byte *
17922 read_attribute (const struct die_reader_specs *reader,
17923 struct attribute *attr, struct attr_abbrev *abbrev,
17924 const gdb_byte *info_ptr)
17925 {
17926 attr->name = abbrev->name;
17927 return read_attribute_value (reader, attr, abbrev->form,
17928 abbrev->implicit_const, info_ptr);
17929 }
17930
17931 /* Read dwarf information from a buffer. */
17932
17933 static unsigned int
17934 read_1_byte (bfd *abfd, const gdb_byte *buf)
17935 {
17936 return bfd_get_8 (abfd, buf);
17937 }
17938
17939 static int
17940 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17941 {
17942 return bfd_get_signed_8 (abfd, buf);
17943 }
17944
17945 static unsigned int
17946 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17947 {
17948 return bfd_get_16 (abfd, buf);
17949 }
17950
17951 static int
17952 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17953 {
17954 return bfd_get_signed_16 (abfd, buf);
17955 }
17956
17957 static unsigned int
17958 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17959 {
17960 return bfd_get_32 (abfd, buf);
17961 }
17962
17963 static int
17964 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17965 {
17966 return bfd_get_signed_32 (abfd, buf);
17967 }
17968
17969 static ULONGEST
17970 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17971 {
17972 return bfd_get_64 (abfd, buf);
17973 }
17974
17975 static CORE_ADDR
17976 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17977 unsigned int *bytes_read)
17978 {
17979 struct comp_unit_head *cu_header = &cu->header;
17980 CORE_ADDR retval = 0;
17981
17982 if (cu_header->signed_addr_p)
17983 {
17984 switch (cu_header->addr_size)
17985 {
17986 case 2:
17987 retval = bfd_get_signed_16 (abfd, buf);
17988 break;
17989 case 4:
17990 retval = bfd_get_signed_32 (abfd, buf);
17991 break;
17992 case 8:
17993 retval = bfd_get_signed_64 (abfd, buf);
17994 break;
17995 default:
17996 internal_error (__FILE__, __LINE__,
17997 _("read_address: bad switch, signed [in module %s]"),
17998 bfd_get_filename (abfd));
17999 }
18000 }
18001 else
18002 {
18003 switch (cu_header->addr_size)
18004 {
18005 case 2:
18006 retval = bfd_get_16 (abfd, buf);
18007 break;
18008 case 4:
18009 retval = bfd_get_32 (abfd, buf);
18010 break;
18011 case 8:
18012 retval = bfd_get_64 (abfd, buf);
18013 break;
18014 default:
18015 internal_error (__FILE__, __LINE__,
18016 _("read_address: bad switch, "
18017 "unsigned [in module %s]"),
18018 bfd_get_filename (abfd));
18019 }
18020 }
18021
18022 *bytes_read = cu_header->addr_size;
18023 return retval;
18024 }
18025
18026 /* Read the initial length from a section. The (draft) DWARF 3
18027 specification allows the initial length to take up either 4 bytes
18028 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
18029 bytes describe the length and all offsets will be 8 bytes in length
18030 instead of 4.
18031
18032 An older, non-standard 64-bit format is also handled by this
18033 function. The older format in question stores the initial length
18034 as an 8-byte quantity without an escape value. Lengths greater
18035 than 2^32 aren't very common which means that the initial 4 bytes
18036 is almost always zero. Since a length value of zero doesn't make
18037 sense for the 32-bit format, this initial zero can be considered to
18038 be an escape value which indicates the presence of the older 64-bit
18039 format. As written, the code can't detect (old format) lengths
18040 greater than 4GB. If it becomes necessary to handle lengths
18041 somewhat larger than 4GB, we could allow other small values (such
18042 as the non-sensical values of 1, 2, and 3) to also be used as
18043 escape values indicating the presence of the old format.
18044
18045 The value returned via bytes_read should be used to increment the
18046 relevant pointer after calling read_initial_length().
18047
18048 [ Note: read_initial_length() and read_offset() are based on the
18049 document entitled "DWARF Debugging Information Format", revision
18050 3, draft 8, dated November 19, 2001. This document was obtained
18051 from:
18052
18053 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
18054
18055 This document is only a draft and is subject to change. (So beware.)
18056
18057 Details regarding the older, non-standard 64-bit format were
18058 determined empirically by examining 64-bit ELF files produced by
18059 the SGI toolchain on an IRIX 6.5 machine.
18060
18061 - Kevin, July 16, 2002
18062 ] */
18063
18064 static LONGEST
18065 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
18066 {
18067 LONGEST length = bfd_get_32 (abfd, buf);
18068
18069 if (length == 0xffffffff)
18070 {
18071 length = bfd_get_64 (abfd, buf + 4);
18072 *bytes_read = 12;
18073 }
18074 else if (length == 0)
18075 {
18076 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
18077 length = bfd_get_64 (abfd, buf);
18078 *bytes_read = 8;
18079 }
18080 else
18081 {
18082 *bytes_read = 4;
18083 }
18084
18085 return length;
18086 }
18087
18088 /* Cover function for read_initial_length.
18089 Returns the length of the object at BUF, and stores the size of the
18090 initial length in *BYTES_READ and stores the size that offsets will be in
18091 *OFFSET_SIZE.
18092 If the initial length size is not equivalent to that specified in
18093 CU_HEADER then issue a complaint.
18094 This is useful when reading non-comp-unit headers. */
18095
18096 static LONGEST
18097 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18098 const struct comp_unit_head *cu_header,
18099 unsigned int *bytes_read,
18100 unsigned int *offset_size)
18101 {
18102 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18103
18104 gdb_assert (cu_header->initial_length_size == 4
18105 || cu_header->initial_length_size == 8
18106 || cu_header->initial_length_size == 12);
18107
18108 if (cu_header->initial_length_size != *bytes_read)
18109 complaint (&symfile_complaints,
18110 _("intermixed 32-bit and 64-bit DWARF sections"));
18111
18112 *offset_size = (*bytes_read == 4) ? 4 : 8;
18113 return length;
18114 }
18115
18116 /* Read an offset from the data stream. The size of the offset is
18117 given by cu_header->offset_size. */
18118
18119 static LONGEST
18120 read_offset (bfd *abfd, const gdb_byte *buf,
18121 const struct comp_unit_head *cu_header,
18122 unsigned int *bytes_read)
18123 {
18124 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
18125
18126 *bytes_read = cu_header->offset_size;
18127 return offset;
18128 }
18129
18130 /* Read an offset from the data stream. */
18131
18132 static LONGEST
18133 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
18134 {
18135 LONGEST retval = 0;
18136
18137 switch (offset_size)
18138 {
18139 case 4:
18140 retval = bfd_get_32 (abfd, buf);
18141 break;
18142 case 8:
18143 retval = bfd_get_64 (abfd, buf);
18144 break;
18145 default:
18146 internal_error (__FILE__, __LINE__,
18147 _("read_offset_1: bad switch [in module %s]"),
18148 bfd_get_filename (abfd));
18149 }
18150
18151 return retval;
18152 }
18153
18154 static const gdb_byte *
18155 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
18156 {
18157 /* If the size of a host char is 8 bits, we can return a pointer
18158 to the buffer, otherwise we have to copy the data to a buffer
18159 allocated on the temporary obstack. */
18160 gdb_assert (HOST_CHAR_BIT == 8);
18161 return buf;
18162 }
18163
18164 static const char *
18165 read_direct_string (bfd *abfd, const gdb_byte *buf,
18166 unsigned int *bytes_read_ptr)
18167 {
18168 /* If the size of a host char is 8 bits, we can return a pointer
18169 to the string, otherwise we have to copy the string to a buffer
18170 allocated on the temporary obstack. */
18171 gdb_assert (HOST_CHAR_BIT == 8);
18172 if (*buf == '\0')
18173 {
18174 *bytes_read_ptr = 1;
18175 return NULL;
18176 }
18177 *bytes_read_ptr = strlen ((const char *) buf) + 1;
18178 return (const char *) buf;
18179 }
18180
18181 /* Return pointer to string at section SECT offset STR_OFFSET with error
18182 reporting strings FORM_NAME and SECT_NAME. */
18183
18184 static const char *
18185 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
18186 struct dwarf2_section_info *sect,
18187 const char *form_name,
18188 const char *sect_name)
18189 {
18190 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
18191 if (sect->buffer == NULL)
18192 error (_("%s used without %s section [in module %s]"),
18193 form_name, sect_name, bfd_get_filename (abfd));
18194 if (str_offset >= sect->size)
18195 error (_("%s pointing outside of %s section [in module %s]"),
18196 form_name, sect_name, bfd_get_filename (abfd));
18197 gdb_assert (HOST_CHAR_BIT == 8);
18198 if (sect->buffer[str_offset] == '\0')
18199 return NULL;
18200 return (const char *) (sect->buffer + str_offset);
18201 }
18202
18203 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18204
18205 static const char *
18206 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
18207 {
18208 return read_indirect_string_at_offset_from (abfd, str_offset,
18209 &dwarf2_per_objfile->str,
18210 "DW_FORM_strp", ".debug_str");
18211 }
18212
18213 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18214
18215 static const char *
18216 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
18217 {
18218 return read_indirect_string_at_offset_from (abfd, str_offset,
18219 &dwarf2_per_objfile->line_str,
18220 "DW_FORM_line_strp",
18221 ".debug_line_str");
18222 }
18223
18224 /* Read a string at offset STR_OFFSET in the .debug_str section from
18225 the .dwz file DWZ. Throw an error if the offset is too large. If
18226 the string consists of a single NUL byte, return NULL; otherwise
18227 return a pointer to the string. */
18228
18229 static const char *
18230 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
18231 {
18232 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
18233
18234 if (dwz->str.buffer == NULL)
18235 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18236 "section [in module %s]"),
18237 bfd_get_filename (dwz->dwz_bfd));
18238 if (str_offset >= dwz->str.size)
18239 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18240 ".debug_str section [in module %s]"),
18241 bfd_get_filename (dwz->dwz_bfd));
18242 gdb_assert (HOST_CHAR_BIT == 8);
18243 if (dwz->str.buffer[str_offset] == '\0')
18244 return NULL;
18245 return (const char *) (dwz->str.buffer + str_offset);
18246 }
18247
18248 /* Return pointer to string at .debug_str offset as read from BUF.
18249 BUF is assumed to be in a compilation unit described by CU_HEADER.
18250 Return *BYTES_READ_PTR count of bytes read from BUF. */
18251
18252 static const char *
18253 read_indirect_string (bfd *abfd, const gdb_byte *buf,
18254 const struct comp_unit_head *cu_header,
18255 unsigned int *bytes_read_ptr)
18256 {
18257 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
18258
18259 return read_indirect_string_at_offset (abfd, str_offset);
18260 }
18261
18262 /* Return pointer to string at .debug_line_str offset as read from BUF.
18263 BUF is assumed to be in a compilation unit described by CU_HEADER.
18264 Return *BYTES_READ_PTR count of bytes read from BUF. */
18265
18266 static const char *
18267 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
18268 const struct comp_unit_head *cu_header,
18269 unsigned int *bytes_read_ptr)
18270 {
18271 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
18272
18273 return read_indirect_line_string_at_offset (abfd, str_offset);
18274 }
18275
18276 ULONGEST
18277 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
18278 unsigned int *bytes_read_ptr)
18279 {
18280 ULONGEST result;
18281 unsigned int num_read;
18282 int shift;
18283 unsigned char byte;
18284
18285 result = 0;
18286 shift = 0;
18287 num_read = 0;
18288 while (1)
18289 {
18290 byte = bfd_get_8 (abfd, buf);
18291 buf++;
18292 num_read++;
18293 result |= ((ULONGEST) (byte & 127) << shift);
18294 if ((byte & 128) == 0)
18295 {
18296 break;
18297 }
18298 shift += 7;
18299 }
18300 *bytes_read_ptr = num_read;
18301 return result;
18302 }
18303
18304 static LONGEST
18305 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
18306 unsigned int *bytes_read_ptr)
18307 {
18308 LONGEST result;
18309 int shift, num_read;
18310 unsigned char byte;
18311
18312 result = 0;
18313 shift = 0;
18314 num_read = 0;
18315 while (1)
18316 {
18317 byte = bfd_get_8 (abfd, buf);
18318 buf++;
18319 num_read++;
18320 result |= ((LONGEST) (byte & 127) << shift);
18321 shift += 7;
18322 if ((byte & 128) == 0)
18323 {
18324 break;
18325 }
18326 }
18327 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
18328 result |= -(((LONGEST) 1) << shift);
18329 *bytes_read_ptr = num_read;
18330 return result;
18331 }
18332
18333 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18334 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
18335 ADDR_SIZE is the size of addresses from the CU header. */
18336
18337 static CORE_ADDR
18338 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
18339 {
18340 struct objfile *objfile = dwarf2_per_objfile->objfile;
18341 bfd *abfd = objfile->obfd;
18342 const gdb_byte *info_ptr;
18343
18344 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
18345 if (dwarf2_per_objfile->addr.buffer == NULL)
18346 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18347 objfile_name (objfile));
18348 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
18349 error (_("DW_FORM_addr_index pointing outside of "
18350 ".debug_addr section [in module %s]"),
18351 objfile_name (objfile));
18352 info_ptr = (dwarf2_per_objfile->addr.buffer
18353 + addr_base + addr_index * addr_size);
18354 if (addr_size == 4)
18355 return bfd_get_32 (abfd, info_ptr);
18356 else
18357 return bfd_get_64 (abfd, info_ptr);
18358 }
18359
18360 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18361
18362 static CORE_ADDR
18363 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18364 {
18365 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
18366 }
18367
18368 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18369
18370 static CORE_ADDR
18371 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18372 unsigned int *bytes_read)
18373 {
18374 bfd *abfd = cu->objfile->obfd;
18375 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18376
18377 return read_addr_index (cu, addr_index);
18378 }
18379
18380 /* Data structure to pass results from dwarf2_read_addr_index_reader
18381 back to dwarf2_read_addr_index. */
18382
18383 struct dwarf2_read_addr_index_data
18384 {
18385 ULONGEST addr_base;
18386 int addr_size;
18387 };
18388
18389 /* die_reader_func for dwarf2_read_addr_index. */
18390
18391 static void
18392 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
18393 const gdb_byte *info_ptr,
18394 struct die_info *comp_unit_die,
18395 int has_children,
18396 void *data)
18397 {
18398 struct dwarf2_cu *cu = reader->cu;
18399 struct dwarf2_read_addr_index_data *aidata =
18400 (struct dwarf2_read_addr_index_data *) data;
18401
18402 aidata->addr_base = cu->addr_base;
18403 aidata->addr_size = cu->header.addr_size;
18404 }
18405
18406 /* Given an index in .debug_addr, fetch the value.
18407 NOTE: This can be called during dwarf expression evaluation,
18408 long after the debug information has been read, and thus per_cu->cu
18409 may no longer exist. */
18410
18411 CORE_ADDR
18412 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
18413 unsigned int addr_index)
18414 {
18415 struct objfile *objfile = per_cu->objfile;
18416 struct dwarf2_cu *cu = per_cu->cu;
18417 ULONGEST addr_base;
18418 int addr_size;
18419
18420 /* This is intended to be called from outside this file. */
18421 dw2_setup (objfile);
18422
18423 /* We need addr_base and addr_size.
18424 If we don't have PER_CU->cu, we have to get it.
18425 Nasty, but the alternative is storing the needed info in PER_CU,
18426 which at this point doesn't seem justified: it's not clear how frequently
18427 it would get used and it would increase the size of every PER_CU.
18428 Entry points like dwarf2_per_cu_addr_size do a similar thing
18429 so we're not in uncharted territory here.
18430 Alas we need to be a bit more complicated as addr_base is contained
18431 in the DIE.
18432
18433 We don't need to read the entire CU(/TU).
18434 We just need the header and top level die.
18435
18436 IWBN to use the aging mechanism to let us lazily later discard the CU.
18437 For now we skip this optimization. */
18438
18439 if (cu != NULL)
18440 {
18441 addr_base = cu->addr_base;
18442 addr_size = cu->header.addr_size;
18443 }
18444 else
18445 {
18446 struct dwarf2_read_addr_index_data aidata;
18447
18448 /* Note: We can't use init_cutu_and_read_dies_simple here,
18449 we need addr_base. */
18450 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
18451 dwarf2_read_addr_index_reader, &aidata);
18452 addr_base = aidata.addr_base;
18453 addr_size = aidata.addr_size;
18454 }
18455
18456 return read_addr_index_1 (addr_index, addr_base, addr_size);
18457 }
18458
18459 /* Given a DW_FORM_GNU_str_index, fetch the string.
18460 This is only used by the Fission support. */
18461
18462 static const char *
18463 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18464 {
18465 struct objfile *objfile = dwarf2_per_objfile->objfile;
18466 const char *objf_name = objfile_name (objfile);
18467 bfd *abfd = objfile->obfd;
18468 struct dwarf2_cu *cu = reader->cu;
18469 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
18470 struct dwarf2_section_info *str_offsets_section =
18471 &reader->dwo_file->sections.str_offsets;
18472 const gdb_byte *info_ptr;
18473 ULONGEST str_offset;
18474 static const char form_name[] = "DW_FORM_GNU_str_index";
18475
18476 dwarf2_read_section (objfile, str_section);
18477 dwarf2_read_section (objfile, str_offsets_section);
18478 if (str_section->buffer == NULL)
18479 error (_("%s used without .debug_str.dwo section"
18480 " in CU at offset 0x%x [in module %s]"),
18481 form_name, to_underlying (cu->header.sect_off), objf_name);
18482 if (str_offsets_section->buffer == NULL)
18483 error (_("%s used without .debug_str_offsets.dwo section"
18484 " in CU at offset 0x%x [in module %s]"),
18485 form_name, to_underlying (cu->header.sect_off), objf_name);
18486 if (str_index * cu->header.offset_size >= str_offsets_section->size)
18487 error (_("%s pointing outside of .debug_str_offsets.dwo"
18488 " section in CU at offset 0x%x [in module %s]"),
18489 form_name, to_underlying (cu->header.sect_off), objf_name);
18490 info_ptr = (str_offsets_section->buffer
18491 + str_index * cu->header.offset_size);
18492 if (cu->header.offset_size == 4)
18493 str_offset = bfd_get_32 (abfd, info_ptr);
18494 else
18495 str_offset = bfd_get_64 (abfd, info_ptr);
18496 if (str_offset >= str_section->size)
18497 error (_("Offset from %s pointing outside of"
18498 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
18499 form_name, to_underlying (cu->header.sect_off), objf_name);
18500 return (const char *) (str_section->buffer + str_offset);
18501 }
18502
18503 /* Return the length of an LEB128 number in BUF. */
18504
18505 static int
18506 leb128_size (const gdb_byte *buf)
18507 {
18508 const gdb_byte *begin = buf;
18509 gdb_byte byte;
18510
18511 while (1)
18512 {
18513 byte = *buf++;
18514 if ((byte & 128) == 0)
18515 return buf - begin;
18516 }
18517 }
18518
18519 static void
18520 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
18521 {
18522 switch (lang)
18523 {
18524 case DW_LANG_C89:
18525 case DW_LANG_C99:
18526 case DW_LANG_C11:
18527 case DW_LANG_C:
18528 case DW_LANG_UPC:
18529 cu->language = language_c;
18530 break;
18531 case DW_LANG_Java:
18532 case DW_LANG_C_plus_plus:
18533 case DW_LANG_C_plus_plus_11:
18534 case DW_LANG_C_plus_plus_14:
18535 cu->language = language_cplus;
18536 break;
18537 case DW_LANG_D:
18538 cu->language = language_d;
18539 break;
18540 case DW_LANG_Fortran77:
18541 case DW_LANG_Fortran90:
18542 case DW_LANG_Fortran95:
18543 case DW_LANG_Fortran03:
18544 case DW_LANG_Fortran08:
18545 cu->language = language_fortran;
18546 break;
18547 case DW_LANG_Go:
18548 cu->language = language_go;
18549 break;
18550 case DW_LANG_Mips_Assembler:
18551 cu->language = language_asm;
18552 break;
18553 case DW_LANG_Ada83:
18554 case DW_LANG_Ada95:
18555 cu->language = language_ada;
18556 break;
18557 case DW_LANG_Modula2:
18558 cu->language = language_m2;
18559 break;
18560 case DW_LANG_Pascal83:
18561 cu->language = language_pascal;
18562 break;
18563 case DW_LANG_ObjC:
18564 cu->language = language_objc;
18565 break;
18566 case DW_LANG_Rust:
18567 case DW_LANG_Rust_old:
18568 cu->language = language_rust;
18569 break;
18570 case DW_LANG_Cobol74:
18571 case DW_LANG_Cobol85:
18572 default:
18573 cu->language = language_minimal;
18574 break;
18575 }
18576 cu->language_defn = language_def (cu->language);
18577 }
18578
18579 /* Return the named attribute or NULL if not there. */
18580
18581 static struct attribute *
18582 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18583 {
18584 for (;;)
18585 {
18586 unsigned int i;
18587 struct attribute *spec = NULL;
18588
18589 for (i = 0; i < die->num_attrs; ++i)
18590 {
18591 if (die->attrs[i].name == name)
18592 return &die->attrs[i];
18593 if (die->attrs[i].name == DW_AT_specification
18594 || die->attrs[i].name == DW_AT_abstract_origin)
18595 spec = &die->attrs[i];
18596 }
18597
18598 if (!spec)
18599 break;
18600
18601 die = follow_die_ref (die, spec, &cu);
18602 }
18603
18604 return NULL;
18605 }
18606
18607 /* Return the named attribute or NULL if not there,
18608 but do not follow DW_AT_specification, etc.
18609 This is for use in contexts where we're reading .debug_types dies.
18610 Following DW_AT_specification, DW_AT_abstract_origin will take us
18611 back up the chain, and we want to go down. */
18612
18613 static struct attribute *
18614 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
18615 {
18616 unsigned int i;
18617
18618 for (i = 0; i < die->num_attrs; ++i)
18619 if (die->attrs[i].name == name)
18620 return &die->attrs[i];
18621
18622 return NULL;
18623 }
18624
18625 /* Return the string associated with a string-typed attribute, or NULL if it
18626 is either not found or is of an incorrect type. */
18627
18628 static const char *
18629 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18630 {
18631 struct attribute *attr;
18632 const char *str = NULL;
18633
18634 attr = dwarf2_attr (die, name, cu);
18635
18636 if (attr != NULL)
18637 {
18638 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
18639 || attr->form == DW_FORM_string
18640 || attr->form == DW_FORM_GNU_str_index
18641 || attr->form == DW_FORM_GNU_strp_alt)
18642 str = DW_STRING (attr);
18643 else
18644 complaint (&symfile_complaints,
18645 _("string type expected for attribute %s for "
18646 "DIE at 0x%x in module %s"),
18647 dwarf_attr_name (name), to_underlying (die->sect_off),
18648 objfile_name (cu->objfile));
18649 }
18650
18651 return str;
18652 }
18653
18654 /* Return non-zero iff the attribute NAME is defined for the given DIE,
18655 and holds a non-zero value. This function should only be used for
18656 DW_FORM_flag or DW_FORM_flag_present attributes. */
18657
18658 static int
18659 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
18660 {
18661 struct attribute *attr = dwarf2_attr (die, name, cu);
18662
18663 return (attr && DW_UNSND (attr));
18664 }
18665
18666 static int
18667 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
18668 {
18669 /* A DIE is a declaration if it has a DW_AT_declaration attribute
18670 which value is non-zero. However, we have to be careful with
18671 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
18672 (via dwarf2_flag_true_p) follows this attribute. So we may
18673 end up accidently finding a declaration attribute that belongs
18674 to a different DIE referenced by the specification attribute,
18675 even though the given DIE does not have a declaration attribute. */
18676 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
18677 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
18678 }
18679
18680 /* Return the die giving the specification for DIE, if there is
18681 one. *SPEC_CU is the CU containing DIE on input, and the CU
18682 containing the return value on output. If there is no
18683 specification, but there is an abstract origin, that is
18684 returned. */
18685
18686 static struct die_info *
18687 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
18688 {
18689 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
18690 *spec_cu);
18691
18692 if (spec_attr == NULL)
18693 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
18694
18695 if (spec_attr == NULL)
18696 return NULL;
18697 else
18698 return follow_die_ref (die, spec_attr, spec_cu);
18699 }
18700
18701 /* Stub for free_line_header to match void * callback types. */
18702
18703 static void
18704 free_line_header_voidp (void *arg)
18705 {
18706 struct line_header *lh = (struct line_header *) arg;
18707
18708 delete lh;
18709 }
18710
18711 void
18712 line_header::add_include_dir (const char *include_dir)
18713 {
18714 if (dwarf_line_debug >= 2)
18715 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
18716 include_dirs.size () + 1, include_dir);
18717
18718 include_dirs.push_back (include_dir);
18719 }
18720
18721 void
18722 line_header::add_file_name (const char *name,
18723 dir_index d_index,
18724 unsigned int mod_time,
18725 unsigned int length)
18726 {
18727 if (dwarf_line_debug >= 2)
18728 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
18729 (unsigned) file_names.size () + 1, name);
18730
18731 file_names.emplace_back (name, d_index, mod_time, length);
18732 }
18733
18734 /* A convenience function to find the proper .debug_line section for a CU. */
18735
18736 static struct dwarf2_section_info *
18737 get_debug_line_section (struct dwarf2_cu *cu)
18738 {
18739 struct dwarf2_section_info *section;
18740
18741 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
18742 DWO file. */
18743 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18744 section = &cu->dwo_unit->dwo_file->sections.line;
18745 else if (cu->per_cu->is_dwz)
18746 {
18747 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18748
18749 section = &dwz->line;
18750 }
18751 else
18752 section = &dwarf2_per_objfile->line;
18753
18754 return section;
18755 }
18756
18757 /* Read directory or file name entry format, starting with byte of
18758 format count entries, ULEB128 pairs of entry formats, ULEB128 of
18759 entries count and the entries themselves in the described entry
18760 format. */
18761
18762 static void
18763 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
18764 struct line_header *lh,
18765 const struct comp_unit_head *cu_header,
18766 void (*callback) (struct line_header *lh,
18767 const char *name,
18768 dir_index d_index,
18769 unsigned int mod_time,
18770 unsigned int length))
18771 {
18772 gdb_byte format_count, formati;
18773 ULONGEST data_count, datai;
18774 const gdb_byte *buf = *bufp;
18775 const gdb_byte *format_header_data;
18776 unsigned int bytes_read;
18777
18778 format_count = read_1_byte (abfd, buf);
18779 buf += 1;
18780 format_header_data = buf;
18781 for (formati = 0; formati < format_count; formati++)
18782 {
18783 read_unsigned_leb128 (abfd, buf, &bytes_read);
18784 buf += bytes_read;
18785 read_unsigned_leb128 (abfd, buf, &bytes_read);
18786 buf += bytes_read;
18787 }
18788
18789 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
18790 buf += bytes_read;
18791 for (datai = 0; datai < data_count; datai++)
18792 {
18793 const gdb_byte *format = format_header_data;
18794 struct file_entry fe;
18795
18796 for (formati = 0; formati < format_count; formati++)
18797 {
18798 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
18799 format += bytes_read;
18800
18801 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
18802 format += bytes_read;
18803
18804 gdb::optional<const char *> string;
18805 gdb::optional<unsigned int> uint;
18806
18807 switch (form)
18808 {
18809 case DW_FORM_string:
18810 string.emplace (read_direct_string (abfd, buf, &bytes_read));
18811 buf += bytes_read;
18812 break;
18813
18814 case DW_FORM_line_strp:
18815 string.emplace (read_indirect_line_string (abfd, buf,
18816 cu_header,
18817 &bytes_read));
18818 buf += bytes_read;
18819 break;
18820
18821 case DW_FORM_data1:
18822 uint.emplace (read_1_byte (abfd, buf));
18823 buf += 1;
18824 break;
18825
18826 case DW_FORM_data2:
18827 uint.emplace (read_2_bytes (abfd, buf));
18828 buf += 2;
18829 break;
18830
18831 case DW_FORM_data4:
18832 uint.emplace (read_4_bytes (abfd, buf));
18833 buf += 4;
18834 break;
18835
18836 case DW_FORM_data8:
18837 uint.emplace (read_8_bytes (abfd, buf));
18838 buf += 8;
18839 break;
18840
18841 case DW_FORM_udata:
18842 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
18843 buf += bytes_read;
18844 break;
18845
18846 case DW_FORM_block:
18847 /* It is valid only for DW_LNCT_timestamp which is ignored by
18848 current GDB. */
18849 break;
18850 }
18851
18852 switch (content_type)
18853 {
18854 case DW_LNCT_path:
18855 if (string.has_value ())
18856 fe.name = *string;
18857 break;
18858 case DW_LNCT_directory_index:
18859 if (uint.has_value ())
18860 fe.d_index = (dir_index) *uint;
18861 break;
18862 case DW_LNCT_timestamp:
18863 if (uint.has_value ())
18864 fe.mod_time = *uint;
18865 break;
18866 case DW_LNCT_size:
18867 if (uint.has_value ())
18868 fe.length = *uint;
18869 break;
18870 case DW_LNCT_MD5:
18871 break;
18872 default:
18873 complaint (&symfile_complaints,
18874 _("Unknown format content type %s"),
18875 pulongest (content_type));
18876 }
18877 }
18878
18879 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
18880 }
18881
18882 *bufp = buf;
18883 }
18884
18885 /* Read the statement program header starting at OFFSET in
18886 .debug_line, or .debug_line.dwo. Return a pointer
18887 to a struct line_header, allocated using xmalloc.
18888 Returns NULL if there is a problem reading the header, e.g., if it
18889 has a version we don't understand.
18890
18891 NOTE: the strings in the include directory and file name tables of
18892 the returned object point into the dwarf line section buffer,
18893 and must not be freed. */
18894
18895 static line_header_up
18896 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
18897 {
18898 const gdb_byte *line_ptr;
18899 unsigned int bytes_read, offset_size;
18900 int i;
18901 const char *cur_dir, *cur_file;
18902 struct dwarf2_section_info *section;
18903 bfd *abfd;
18904
18905 section = get_debug_line_section (cu);
18906 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18907 if (section->buffer == NULL)
18908 {
18909 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18910 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18911 else
18912 complaint (&symfile_complaints, _("missing .debug_line section"));
18913 return 0;
18914 }
18915
18916 /* We can't do this until we know the section is non-empty.
18917 Only then do we know we have such a section. */
18918 abfd = get_section_bfd_owner (section);
18919
18920 /* Make sure that at least there's room for the total_length field.
18921 That could be 12 bytes long, but we're just going to fudge that. */
18922 if (to_underlying (sect_off) + 4 >= section->size)
18923 {
18924 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18925 return 0;
18926 }
18927
18928 line_header_up lh (new line_header ());
18929
18930 lh->sect_off = sect_off;
18931 lh->offset_in_dwz = cu->per_cu->is_dwz;
18932
18933 line_ptr = section->buffer + to_underlying (sect_off);
18934
18935 /* Read in the header. */
18936 lh->total_length =
18937 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18938 &bytes_read, &offset_size);
18939 line_ptr += bytes_read;
18940 if (line_ptr + lh->total_length > (section->buffer + section->size))
18941 {
18942 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18943 return 0;
18944 }
18945 lh->statement_program_end = line_ptr + lh->total_length;
18946 lh->version = read_2_bytes (abfd, line_ptr);
18947 line_ptr += 2;
18948 if (lh->version > 5)
18949 {
18950 /* This is a version we don't understand. The format could have
18951 changed in ways we don't handle properly so just punt. */
18952 complaint (&symfile_complaints,
18953 _("unsupported version in .debug_line section"));
18954 return NULL;
18955 }
18956 if (lh->version >= 5)
18957 {
18958 gdb_byte segment_selector_size;
18959
18960 /* Skip address size. */
18961 read_1_byte (abfd, line_ptr);
18962 line_ptr += 1;
18963
18964 segment_selector_size = read_1_byte (abfd, line_ptr);
18965 line_ptr += 1;
18966 if (segment_selector_size != 0)
18967 {
18968 complaint (&symfile_complaints,
18969 _("unsupported segment selector size %u "
18970 "in .debug_line section"),
18971 segment_selector_size);
18972 return NULL;
18973 }
18974 }
18975 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18976 line_ptr += offset_size;
18977 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18978 line_ptr += 1;
18979 if (lh->version >= 4)
18980 {
18981 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18982 line_ptr += 1;
18983 }
18984 else
18985 lh->maximum_ops_per_instruction = 1;
18986
18987 if (lh->maximum_ops_per_instruction == 0)
18988 {
18989 lh->maximum_ops_per_instruction = 1;
18990 complaint (&symfile_complaints,
18991 _("invalid maximum_ops_per_instruction "
18992 "in `.debug_line' section"));
18993 }
18994
18995 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18996 line_ptr += 1;
18997 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18998 line_ptr += 1;
18999 lh->line_range = read_1_byte (abfd, line_ptr);
19000 line_ptr += 1;
19001 lh->opcode_base = read_1_byte (abfd, line_ptr);
19002 line_ptr += 1;
19003 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19004
19005 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19006 for (i = 1; i < lh->opcode_base; ++i)
19007 {
19008 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19009 line_ptr += 1;
19010 }
19011
19012 if (lh->version >= 5)
19013 {
19014 /* Read directory table. */
19015 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
19016 [] (struct line_header *lh, const char *name,
19017 dir_index d_index, unsigned int mod_time,
19018 unsigned int length)
19019 {
19020 lh->add_include_dir (name);
19021 });
19022
19023 /* Read file name table. */
19024 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
19025 [] (struct line_header *lh, const char *name,
19026 dir_index d_index, unsigned int mod_time,
19027 unsigned int length)
19028 {
19029 lh->add_file_name (name, d_index, mod_time, length);
19030 });
19031 }
19032 else
19033 {
19034 /* Read directory table. */
19035 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19036 {
19037 line_ptr += bytes_read;
19038 lh->add_include_dir (cur_dir);
19039 }
19040 line_ptr += bytes_read;
19041
19042 /* Read file name table. */
19043 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19044 {
19045 unsigned int mod_time, length;
19046 dir_index d_index;
19047
19048 line_ptr += bytes_read;
19049 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19050 line_ptr += bytes_read;
19051 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19052 line_ptr += bytes_read;
19053 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19054 line_ptr += bytes_read;
19055
19056 lh->add_file_name (cur_file, d_index, mod_time, length);
19057 }
19058 line_ptr += bytes_read;
19059 }
19060 lh->statement_program_start = line_ptr;
19061
19062 if (line_ptr > (section->buffer + section->size))
19063 complaint (&symfile_complaints,
19064 _("line number info header doesn't "
19065 "fit in `.debug_line' section"));
19066
19067 return lh;
19068 }
19069
19070 /* Subroutine of dwarf_decode_lines to simplify it.
19071 Return the file name of the psymtab for included file FILE_INDEX
19072 in line header LH of PST.
19073 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19074 If space for the result is malloc'd, it will be freed by a cleanup.
19075 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
19076
19077 The function creates dangling cleanup registration. */
19078
19079 static const char *
19080 psymtab_include_file_name (const struct line_header *lh, int file_index,
19081 const struct partial_symtab *pst,
19082 const char *comp_dir)
19083 {
19084 const file_entry &fe = lh->file_names[file_index];
19085 const char *include_name = fe.name;
19086 const char *include_name_to_compare = include_name;
19087 const char *pst_filename;
19088 char *copied_name = NULL;
19089 int file_is_pst;
19090
19091 const char *dir_name = fe.include_dir (lh);
19092
19093 if (!IS_ABSOLUTE_PATH (include_name)
19094 && (dir_name != NULL || comp_dir != NULL))
19095 {
19096 /* Avoid creating a duplicate psymtab for PST.
19097 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19098 Before we do the comparison, however, we need to account
19099 for DIR_NAME and COMP_DIR.
19100 First prepend dir_name (if non-NULL). If we still don't
19101 have an absolute path prepend comp_dir (if non-NULL).
19102 However, the directory we record in the include-file's
19103 psymtab does not contain COMP_DIR (to match the
19104 corresponding symtab(s)).
19105
19106 Example:
19107
19108 bash$ cd /tmp
19109 bash$ gcc -g ./hello.c
19110 include_name = "hello.c"
19111 dir_name = "."
19112 DW_AT_comp_dir = comp_dir = "/tmp"
19113 DW_AT_name = "./hello.c"
19114
19115 */
19116
19117 if (dir_name != NULL)
19118 {
19119 char *tem = concat (dir_name, SLASH_STRING,
19120 include_name, (char *)NULL);
19121
19122 make_cleanup (xfree, tem);
19123 include_name = tem;
19124 include_name_to_compare = include_name;
19125 }
19126 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19127 {
19128 char *tem = concat (comp_dir, SLASH_STRING,
19129 include_name, (char *)NULL);
19130
19131 make_cleanup (xfree, tem);
19132 include_name_to_compare = tem;
19133 }
19134 }
19135
19136 pst_filename = pst->filename;
19137 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19138 {
19139 copied_name = concat (pst->dirname, SLASH_STRING,
19140 pst_filename, (char *)NULL);
19141 pst_filename = copied_name;
19142 }
19143
19144 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19145
19146 if (copied_name != NULL)
19147 xfree (copied_name);
19148
19149 if (file_is_pst)
19150 return NULL;
19151 return include_name;
19152 }
19153
19154 /* State machine to track the state of the line number program. */
19155
19156 class lnp_state_machine
19157 {
19158 public:
19159 /* Initialize a machine state for the start of a line number
19160 program. */
19161 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
19162
19163 file_entry *current_file ()
19164 {
19165 /* lh->file_names is 0-based, but the file name numbers in the
19166 statement program are 1-based. */
19167 return m_line_header->file_name_at (m_file);
19168 }
19169
19170 /* Record the line in the state machine. END_SEQUENCE is true if
19171 we're processing the end of a sequence. */
19172 void record_line (bool end_sequence);
19173
19174 /* Check address and if invalid nop-out the rest of the lines in this
19175 sequence. */
19176 void check_line_address (struct dwarf2_cu *cu,
19177 const gdb_byte *line_ptr,
19178 CORE_ADDR lowpc, CORE_ADDR address);
19179
19180 void handle_set_discriminator (unsigned int discriminator)
19181 {
19182 m_discriminator = discriminator;
19183 m_line_has_non_zero_discriminator |= discriminator != 0;
19184 }
19185
19186 /* Handle DW_LNE_set_address. */
19187 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19188 {
19189 m_op_index = 0;
19190 address += baseaddr;
19191 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19192 }
19193
19194 /* Handle DW_LNS_advance_pc. */
19195 void handle_advance_pc (CORE_ADDR adjust);
19196
19197 /* Handle a special opcode. */
19198 void handle_special_opcode (unsigned char op_code);
19199
19200 /* Handle DW_LNS_advance_line. */
19201 void handle_advance_line (int line_delta)
19202 {
19203 advance_line (line_delta);
19204 }
19205
19206 /* Handle DW_LNS_set_file. */
19207 void handle_set_file (file_name_index file);
19208
19209 /* Handle DW_LNS_negate_stmt. */
19210 void handle_negate_stmt ()
19211 {
19212 m_is_stmt = !m_is_stmt;
19213 }
19214
19215 /* Handle DW_LNS_const_add_pc. */
19216 void handle_const_add_pc ();
19217
19218 /* Handle DW_LNS_fixed_advance_pc. */
19219 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19220 {
19221 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19222 m_op_index = 0;
19223 }
19224
19225 /* Handle DW_LNS_copy. */
19226 void handle_copy ()
19227 {
19228 record_line (false);
19229 m_discriminator = 0;
19230 }
19231
19232 /* Handle DW_LNE_end_sequence. */
19233 void handle_end_sequence ()
19234 {
19235 m_record_line_callback = ::record_line;
19236 }
19237
19238 private:
19239 /* Advance the line by LINE_DELTA. */
19240 void advance_line (int line_delta)
19241 {
19242 m_line += line_delta;
19243
19244 if (line_delta != 0)
19245 m_line_has_non_zero_discriminator = m_discriminator != 0;
19246 }
19247
19248 gdbarch *m_gdbarch;
19249
19250 /* True if we're recording lines.
19251 Otherwise we're building partial symtabs and are just interested in
19252 finding include files mentioned by the line number program. */
19253 bool m_record_lines_p;
19254
19255 /* The line number header. */
19256 line_header *m_line_header;
19257
19258 /* These are part of the standard DWARF line number state machine,
19259 and initialized according to the DWARF spec. */
19260
19261 unsigned char m_op_index = 0;
19262 /* The line table index (1-based) of the current file. */
19263 file_name_index m_file = (file_name_index) 1;
19264 unsigned int m_line = 1;
19265
19266 /* These are initialized in the constructor. */
19267
19268 CORE_ADDR m_address;
19269 bool m_is_stmt;
19270 unsigned int m_discriminator;
19271
19272 /* Additional bits of state we need to track. */
19273
19274 /* The last file that we called dwarf2_start_subfile for.
19275 This is only used for TLLs. */
19276 unsigned int m_last_file = 0;
19277 /* The last file a line number was recorded for. */
19278 struct subfile *m_last_subfile = NULL;
19279
19280 /* The function to call to record a line. */
19281 record_line_ftype *m_record_line_callback = NULL;
19282
19283 /* The last line number that was recorded, used to coalesce
19284 consecutive entries for the same line. This can happen, for
19285 example, when discriminators are present. PR 17276. */
19286 unsigned int m_last_line = 0;
19287 bool m_line_has_non_zero_discriminator = false;
19288 };
19289
19290 void
19291 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19292 {
19293 CORE_ADDR addr_adj = (((m_op_index + adjust)
19294 / m_line_header->maximum_ops_per_instruction)
19295 * m_line_header->minimum_instruction_length);
19296 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19297 m_op_index = ((m_op_index + adjust)
19298 % m_line_header->maximum_ops_per_instruction);
19299 }
19300
19301 void
19302 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19303 {
19304 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19305 CORE_ADDR addr_adj = (((m_op_index
19306 + (adj_opcode / m_line_header->line_range))
19307 / m_line_header->maximum_ops_per_instruction)
19308 * m_line_header->minimum_instruction_length);
19309 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19310 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
19311 % m_line_header->maximum_ops_per_instruction);
19312
19313 int line_delta = (m_line_header->line_base
19314 + (adj_opcode % m_line_header->line_range));
19315 advance_line (line_delta);
19316 record_line (false);
19317 m_discriminator = 0;
19318 }
19319
19320 void
19321 lnp_state_machine::handle_set_file (file_name_index file)
19322 {
19323 m_file = file;
19324
19325 const file_entry *fe = current_file ();
19326 if (fe == NULL)
19327 dwarf2_debug_line_missing_file_complaint ();
19328 else if (m_record_lines_p)
19329 {
19330 const char *dir = fe->include_dir (m_line_header);
19331
19332 m_last_subfile = current_subfile;
19333 m_line_has_non_zero_discriminator = m_discriminator != 0;
19334 dwarf2_start_subfile (fe->name, dir);
19335 }
19336 }
19337
19338 void
19339 lnp_state_machine::handle_const_add_pc ()
19340 {
19341 CORE_ADDR adjust
19342 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19343
19344 CORE_ADDR addr_adj
19345 = (((m_op_index + adjust)
19346 / m_line_header->maximum_ops_per_instruction)
19347 * m_line_header->minimum_instruction_length);
19348
19349 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19350 m_op_index = ((m_op_index + adjust)
19351 % m_line_header->maximum_ops_per_instruction);
19352 }
19353
19354 /* Ignore this record_line request. */
19355
19356 static void
19357 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
19358 {
19359 return;
19360 }
19361
19362 /* Return non-zero if we should add LINE to the line number table.
19363 LINE is the line to add, LAST_LINE is the last line that was added,
19364 LAST_SUBFILE is the subfile for LAST_LINE.
19365 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19366 had a non-zero discriminator.
19367
19368 We have to be careful in the presence of discriminators.
19369 E.g., for this line:
19370
19371 for (i = 0; i < 100000; i++);
19372
19373 clang can emit four line number entries for that one line,
19374 each with a different discriminator.
19375 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19376
19377 However, we want gdb to coalesce all four entries into one.
19378 Otherwise the user could stepi into the middle of the line and
19379 gdb would get confused about whether the pc really was in the
19380 middle of the line.
19381
19382 Things are further complicated by the fact that two consecutive
19383 line number entries for the same line is a heuristic used by gcc
19384 to denote the end of the prologue. So we can't just discard duplicate
19385 entries, we have to be selective about it. The heuristic we use is
19386 that we only collapse consecutive entries for the same line if at least
19387 one of those entries has a non-zero discriminator. PR 17276.
19388
19389 Note: Addresses in the line number state machine can never go backwards
19390 within one sequence, thus this coalescing is ok. */
19391
19392 static int
19393 dwarf_record_line_p (unsigned int line, unsigned int last_line,
19394 int line_has_non_zero_discriminator,
19395 struct subfile *last_subfile)
19396 {
19397 if (current_subfile != last_subfile)
19398 return 1;
19399 if (line != last_line)
19400 return 1;
19401 /* Same line for the same file that we've seen already.
19402 As a last check, for pr 17276, only record the line if the line
19403 has never had a non-zero discriminator. */
19404 if (!line_has_non_zero_discriminator)
19405 return 1;
19406 return 0;
19407 }
19408
19409 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
19410 in the line table of subfile SUBFILE. */
19411
19412 static void
19413 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19414 unsigned int line, CORE_ADDR address,
19415 record_line_ftype p_record_line)
19416 {
19417 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19418
19419 if (dwarf_line_debug)
19420 {
19421 fprintf_unfiltered (gdb_stdlog,
19422 "Recording line %u, file %s, address %s\n",
19423 line, lbasename (subfile->name),
19424 paddress (gdbarch, address));
19425 }
19426
19427 (*p_record_line) (subfile, line, addr);
19428 }
19429
19430 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19431 Mark the end of a set of line number records.
19432 The arguments are the same as for dwarf_record_line_1.
19433 If SUBFILE is NULL the request is ignored. */
19434
19435 static void
19436 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19437 CORE_ADDR address, record_line_ftype p_record_line)
19438 {
19439 if (subfile == NULL)
19440 return;
19441
19442 if (dwarf_line_debug)
19443 {
19444 fprintf_unfiltered (gdb_stdlog,
19445 "Finishing current line, file %s, address %s\n",
19446 lbasename (subfile->name),
19447 paddress (gdbarch, address));
19448 }
19449
19450 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
19451 }
19452
19453 void
19454 lnp_state_machine::record_line (bool end_sequence)
19455 {
19456 if (dwarf_line_debug)
19457 {
19458 fprintf_unfiltered (gdb_stdlog,
19459 "Processing actual line %u: file %u,"
19460 " address %s, is_stmt %u, discrim %u\n",
19461 m_line, to_underlying (m_file),
19462 paddress (m_gdbarch, m_address),
19463 m_is_stmt, m_discriminator);
19464 }
19465
19466 file_entry *fe = current_file ();
19467
19468 if (fe == NULL)
19469 dwarf2_debug_line_missing_file_complaint ();
19470 /* For now we ignore lines not starting on an instruction boundary.
19471 But not when processing end_sequence for compatibility with the
19472 previous version of the code. */
19473 else if (m_op_index == 0 || end_sequence)
19474 {
19475 fe->included_p = 1;
19476 if (m_record_lines_p && m_is_stmt)
19477 {
19478 if (m_last_subfile != current_subfile || end_sequence)
19479 {
19480 dwarf_finish_line (m_gdbarch, m_last_subfile,
19481 m_address, m_record_line_callback);
19482 }
19483
19484 if (!end_sequence)
19485 {
19486 if (dwarf_record_line_p (m_line, m_last_line,
19487 m_line_has_non_zero_discriminator,
19488 m_last_subfile))
19489 {
19490 dwarf_record_line_1 (m_gdbarch, current_subfile,
19491 m_line, m_address,
19492 m_record_line_callback);
19493 }
19494 m_last_subfile = current_subfile;
19495 m_last_line = m_line;
19496 }
19497 }
19498 }
19499 }
19500
19501 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
19502 bool record_lines_p)
19503 {
19504 m_gdbarch = arch;
19505 m_record_lines_p = record_lines_p;
19506 m_line_header = lh;
19507
19508 m_record_line_callback = ::record_line;
19509
19510 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
19511 was a line entry for it so that the backend has a chance to adjust it
19512 and also record it in case it needs it. This is currently used by MIPS
19513 code, cf. `mips_adjust_dwarf2_line'. */
19514 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
19515 m_is_stmt = lh->default_is_stmt;
19516 m_discriminator = 0;
19517 }
19518
19519 void
19520 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
19521 const gdb_byte *line_ptr,
19522 CORE_ADDR lowpc, CORE_ADDR address)
19523 {
19524 /* If address < lowpc then it's not a usable value, it's outside the
19525 pc range of the CU. However, we restrict the test to only address
19526 values of zero to preserve GDB's previous behaviour which is to
19527 handle the specific case of a function being GC'd by the linker. */
19528
19529 if (address == 0 && address < lowpc)
19530 {
19531 /* This line table is for a function which has been
19532 GCd by the linker. Ignore it. PR gdb/12528 */
19533
19534 struct objfile *objfile = cu->objfile;
19535 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
19536
19537 complaint (&symfile_complaints,
19538 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
19539 line_offset, objfile_name (objfile));
19540 m_record_line_callback = noop_record_line;
19541 /* Note: record_line_callback is left as noop_record_line until
19542 we see DW_LNE_end_sequence. */
19543 }
19544 }
19545
19546 /* Subroutine of dwarf_decode_lines to simplify it.
19547 Process the line number information in LH.
19548 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
19549 program in order to set included_p for every referenced header. */
19550
19551 static void
19552 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
19553 const int decode_for_pst_p, CORE_ADDR lowpc)
19554 {
19555 const gdb_byte *line_ptr, *extended_end;
19556 const gdb_byte *line_end;
19557 unsigned int bytes_read, extended_len;
19558 unsigned char op_code, extended_op;
19559 CORE_ADDR baseaddr;
19560 struct objfile *objfile = cu->objfile;
19561 bfd *abfd = objfile->obfd;
19562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19563 /* True if we're recording line info (as opposed to building partial
19564 symtabs and just interested in finding include files mentioned by
19565 the line number program). */
19566 bool record_lines_p = !decode_for_pst_p;
19567
19568 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19569
19570 line_ptr = lh->statement_program_start;
19571 line_end = lh->statement_program_end;
19572
19573 /* Read the statement sequences until there's nothing left. */
19574 while (line_ptr < line_end)
19575 {
19576 /* The DWARF line number program state machine. Reset the state
19577 machine at the start of each sequence. */
19578 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
19579 bool end_sequence = false;
19580
19581 if (record_lines_p)
19582 {
19583 /* Start a subfile for the current file of the state
19584 machine. */
19585 const file_entry *fe = state_machine.current_file ();
19586
19587 if (fe != NULL)
19588 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
19589 }
19590
19591 /* Decode the table. */
19592 while (line_ptr < line_end && !end_sequence)
19593 {
19594 op_code = read_1_byte (abfd, line_ptr);
19595 line_ptr += 1;
19596
19597 if (op_code >= lh->opcode_base)
19598 {
19599 /* Special opcode. */
19600 state_machine.handle_special_opcode (op_code);
19601 }
19602 else switch (op_code)
19603 {
19604 case DW_LNS_extended_op:
19605 extended_len = read_unsigned_leb128 (abfd, line_ptr,
19606 &bytes_read);
19607 line_ptr += bytes_read;
19608 extended_end = line_ptr + extended_len;
19609 extended_op = read_1_byte (abfd, line_ptr);
19610 line_ptr += 1;
19611 switch (extended_op)
19612 {
19613 case DW_LNE_end_sequence:
19614 state_machine.handle_end_sequence ();
19615 end_sequence = true;
19616 break;
19617 case DW_LNE_set_address:
19618 {
19619 CORE_ADDR address
19620 = read_address (abfd, line_ptr, cu, &bytes_read);
19621 line_ptr += bytes_read;
19622
19623 state_machine.check_line_address (cu, line_ptr,
19624 lowpc, address);
19625 state_machine.handle_set_address (baseaddr, address);
19626 }
19627 break;
19628 case DW_LNE_define_file:
19629 {
19630 const char *cur_file;
19631 unsigned int mod_time, length;
19632 dir_index dindex;
19633
19634 cur_file = read_direct_string (abfd, line_ptr,
19635 &bytes_read);
19636 line_ptr += bytes_read;
19637 dindex = (dir_index)
19638 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19639 line_ptr += bytes_read;
19640 mod_time =
19641 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19642 line_ptr += bytes_read;
19643 length =
19644 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19645 line_ptr += bytes_read;
19646 lh->add_file_name (cur_file, dindex, mod_time, length);
19647 }
19648 break;
19649 case DW_LNE_set_discriminator:
19650 {
19651 /* The discriminator is not interesting to the
19652 debugger; just ignore it. We still need to
19653 check its value though:
19654 if there are consecutive entries for the same
19655 (non-prologue) line we want to coalesce them.
19656 PR 17276. */
19657 unsigned int discr
19658 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19659 line_ptr += bytes_read;
19660
19661 state_machine.handle_set_discriminator (discr);
19662 }
19663 break;
19664 default:
19665 complaint (&symfile_complaints,
19666 _("mangled .debug_line section"));
19667 return;
19668 }
19669 /* Make sure that we parsed the extended op correctly. If e.g.
19670 we expected a different address size than the producer used,
19671 we may have read the wrong number of bytes. */
19672 if (line_ptr != extended_end)
19673 {
19674 complaint (&symfile_complaints,
19675 _("mangled .debug_line section"));
19676 return;
19677 }
19678 break;
19679 case DW_LNS_copy:
19680 state_machine.handle_copy ();
19681 break;
19682 case DW_LNS_advance_pc:
19683 {
19684 CORE_ADDR adjust
19685 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19686 line_ptr += bytes_read;
19687
19688 state_machine.handle_advance_pc (adjust);
19689 }
19690 break;
19691 case DW_LNS_advance_line:
19692 {
19693 int line_delta
19694 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19695 line_ptr += bytes_read;
19696
19697 state_machine.handle_advance_line (line_delta);
19698 }
19699 break;
19700 case DW_LNS_set_file:
19701 {
19702 file_name_index file
19703 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19704 &bytes_read);
19705 line_ptr += bytes_read;
19706
19707 state_machine.handle_set_file (file);
19708 }
19709 break;
19710 case DW_LNS_set_column:
19711 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19712 line_ptr += bytes_read;
19713 break;
19714 case DW_LNS_negate_stmt:
19715 state_machine.handle_negate_stmt ();
19716 break;
19717 case DW_LNS_set_basic_block:
19718 break;
19719 /* Add to the address register of the state machine the
19720 address increment value corresponding to special opcode
19721 255. I.e., this value is scaled by the minimum
19722 instruction length since special opcode 255 would have
19723 scaled the increment. */
19724 case DW_LNS_const_add_pc:
19725 state_machine.handle_const_add_pc ();
19726 break;
19727 case DW_LNS_fixed_advance_pc:
19728 {
19729 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
19730 line_ptr += 2;
19731
19732 state_machine.handle_fixed_advance_pc (addr_adj);
19733 }
19734 break;
19735 default:
19736 {
19737 /* Unknown standard opcode, ignore it. */
19738 int i;
19739
19740 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
19741 {
19742 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19743 line_ptr += bytes_read;
19744 }
19745 }
19746 }
19747 }
19748
19749 if (!end_sequence)
19750 dwarf2_debug_line_missing_end_sequence_complaint ();
19751
19752 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
19753 in which case we still finish recording the last line). */
19754 state_machine.record_line (true);
19755 }
19756 }
19757
19758 /* Decode the Line Number Program (LNP) for the given line_header
19759 structure and CU. The actual information extracted and the type
19760 of structures created from the LNP depends on the value of PST.
19761
19762 1. If PST is NULL, then this procedure uses the data from the program
19763 to create all necessary symbol tables, and their linetables.
19764
19765 2. If PST is not NULL, this procedure reads the program to determine
19766 the list of files included by the unit represented by PST, and
19767 builds all the associated partial symbol tables.
19768
19769 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19770 It is used for relative paths in the line table.
19771 NOTE: When processing partial symtabs (pst != NULL),
19772 comp_dir == pst->dirname.
19773
19774 NOTE: It is important that psymtabs have the same file name (via strcmp)
19775 as the corresponding symtab. Since COMP_DIR is not used in the name of the
19776 symtab we don't use it in the name of the psymtabs we create.
19777 E.g. expand_line_sal requires this when finding psymtabs to expand.
19778 A good testcase for this is mb-inline.exp.
19779
19780 LOWPC is the lowest address in CU (or 0 if not known).
19781
19782 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
19783 for its PC<->lines mapping information. Otherwise only the filename
19784 table is read in. */
19785
19786 static void
19787 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
19788 struct dwarf2_cu *cu, struct partial_symtab *pst,
19789 CORE_ADDR lowpc, int decode_mapping)
19790 {
19791 struct objfile *objfile = cu->objfile;
19792 const int decode_for_pst_p = (pst != NULL);
19793
19794 if (decode_mapping)
19795 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
19796
19797 if (decode_for_pst_p)
19798 {
19799 int file_index;
19800
19801 /* Now that we're done scanning the Line Header Program, we can
19802 create the psymtab of each included file. */
19803 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
19804 if (lh->file_names[file_index].included_p == 1)
19805 {
19806 const char *include_name =
19807 psymtab_include_file_name (lh, file_index, pst, comp_dir);
19808 if (include_name != NULL)
19809 dwarf2_create_include_psymtab (include_name, pst, objfile);
19810 }
19811 }
19812 else
19813 {
19814 /* Make sure a symtab is created for every file, even files
19815 which contain only variables (i.e. no code with associated
19816 line numbers). */
19817 struct compunit_symtab *cust = buildsym_compunit_symtab ();
19818 int i;
19819
19820 for (i = 0; i < lh->file_names.size (); i++)
19821 {
19822 file_entry &fe = lh->file_names[i];
19823
19824 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
19825
19826 if (current_subfile->symtab == NULL)
19827 {
19828 current_subfile->symtab
19829 = allocate_symtab (cust, current_subfile->name);
19830 }
19831 fe.symtab = current_subfile->symtab;
19832 }
19833 }
19834 }
19835
19836 /* Start a subfile for DWARF. FILENAME is the name of the file and
19837 DIRNAME the name of the source directory which contains FILENAME
19838 or NULL if not known.
19839 This routine tries to keep line numbers from identical absolute and
19840 relative file names in a common subfile.
19841
19842 Using the `list' example from the GDB testsuite, which resides in
19843 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
19844 of /srcdir/list0.c yields the following debugging information for list0.c:
19845
19846 DW_AT_name: /srcdir/list0.c
19847 DW_AT_comp_dir: /compdir
19848 files.files[0].name: list0.h
19849 files.files[0].dir: /srcdir
19850 files.files[1].name: list0.c
19851 files.files[1].dir: /srcdir
19852
19853 The line number information for list0.c has to end up in a single
19854 subfile, so that `break /srcdir/list0.c:1' works as expected.
19855 start_subfile will ensure that this happens provided that we pass the
19856 concatenation of files.files[1].dir and files.files[1].name as the
19857 subfile's name. */
19858
19859 static void
19860 dwarf2_start_subfile (const char *filename, const char *dirname)
19861 {
19862 char *copy = NULL;
19863
19864 /* In order not to lose the line information directory,
19865 we concatenate it to the filename when it makes sense.
19866 Note that the Dwarf3 standard says (speaking of filenames in line
19867 information): ``The directory index is ignored for file names
19868 that represent full path names''. Thus ignoring dirname in the
19869 `else' branch below isn't an issue. */
19870
19871 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
19872 {
19873 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
19874 filename = copy;
19875 }
19876
19877 start_subfile (filename);
19878
19879 if (copy != NULL)
19880 xfree (copy);
19881 }
19882
19883 /* Start a symtab for DWARF.
19884 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
19885
19886 static struct compunit_symtab *
19887 dwarf2_start_symtab (struct dwarf2_cu *cu,
19888 const char *name, const char *comp_dir, CORE_ADDR low_pc)
19889 {
19890 struct compunit_symtab *cust
19891 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
19892
19893 record_debugformat ("DWARF 2");
19894 record_producer (cu->producer);
19895
19896 /* We assume that we're processing GCC output. */
19897 processing_gcc_compilation = 2;
19898
19899 cu->processing_has_namespace_info = 0;
19900
19901 return cust;
19902 }
19903
19904 static void
19905 var_decode_location (struct attribute *attr, struct symbol *sym,
19906 struct dwarf2_cu *cu)
19907 {
19908 struct objfile *objfile = cu->objfile;
19909 struct comp_unit_head *cu_header = &cu->header;
19910
19911 /* NOTE drow/2003-01-30: There used to be a comment and some special
19912 code here to turn a symbol with DW_AT_external and a
19913 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19914 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19915 with some versions of binutils) where shared libraries could have
19916 relocations against symbols in their debug information - the
19917 minimal symbol would have the right address, but the debug info
19918 would not. It's no longer necessary, because we will explicitly
19919 apply relocations when we read in the debug information now. */
19920
19921 /* A DW_AT_location attribute with no contents indicates that a
19922 variable has been optimized away. */
19923 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19924 {
19925 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19926 return;
19927 }
19928
19929 /* Handle one degenerate form of location expression specially, to
19930 preserve GDB's previous behavior when section offsets are
19931 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19932 then mark this symbol as LOC_STATIC. */
19933
19934 if (attr_form_is_block (attr)
19935 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19936 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19937 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19938 && (DW_BLOCK (attr)->size
19939 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19940 {
19941 unsigned int dummy;
19942
19943 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19944 SYMBOL_VALUE_ADDRESS (sym) =
19945 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19946 else
19947 SYMBOL_VALUE_ADDRESS (sym) =
19948 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19949 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19950 fixup_symbol_section (sym, objfile);
19951 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19952 SYMBOL_SECTION (sym));
19953 return;
19954 }
19955
19956 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19957 expression evaluator, and use LOC_COMPUTED only when necessary
19958 (i.e. when the value of a register or memory location is
19959 referenced, or a thread-local block, etc.). Then again, it might
19960 not be worthwhile. I'm assuming that it isn't unless performance
19961 or memory numbers show me otherwise. */
19962
19963 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19964
19965 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19966 cu->has_loclist = 1;
19967 }
19968
19969 /* Given a pointer to a DWARF information entry, figure out if we need
19970 to make a symbol table entry for it, and if so, create a new entry
19971 and return a pointer to it.
19972 If TYPE is NULL, determine symbol type from the die, otherwise
19973 used the passed type.
19974 If SPACE is not NULL, use it to hold the new symbol. If it is
19975 NULL, allocate a new symbol on the objfile's obstack. */
19976
19977 static struct symbol *
19978 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19979 struct symbol *space)
19980 {
19981 struct objfile *objfile = cu->objfile;
19982 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19983 struct symbol *sym = NULL;
19984 const char *name;
19985 struct attribute *attr = NULL;
19986 struct attribute *attr2 = NULL;
19987 CORE_ADDR baseaddr;
19988 struct pending **list_to_add = NULL;
19989
19990 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19991
19992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19993
19994 name = dwarf2_name (die, cu);
19995 if (name)
19996 {
19997 const char *linkagename;
19998 int suppress_add = 0;
19999
20000 if (space)
20001 sym = space;
20002 else
20003 sym = allocate_symbol (objfile);
20004 OBJSTAT (objfile, n_syms++);
20005
20006 /* Cache this symbol's name and the name's demangled form (if any). */
20007 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
20008 linkagename = dwarf2_physname (name, die, cu);
20009 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
20010
20011 /* Fortran does not have mangling standard and the mangling does differ
20012 between gfortran, iFort etc. */
20013 if (cu->language == language_fortran
20014 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
20015 symbol_set_demangled_name (&(sym->ginfo),
20016 dwarf2_full_name (name, die, cu),
20017 NULL);
20018
20019 /* Default assumptions.
20020 Use the passed type or decode it from the die. */
20021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20022 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20023 if (type != NULL)
20024 SYMBOL_TYPE (sym) = type;
20025 else
20026 SYMBOL_TYPE (sym) = die_type (die, cu);
20027 attr = dwarf2_attr (die,
20028 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20029 cu);
20030 if (attr)
20031 {
20032 SYMBOL_LINE (sym) = DW_UNSND (attr);
20033 }
20034
20035 attr = dwarf2_attr (die,
20036 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20037 cu);
20038 if (attr)
20039 {
20040 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20041 struct file_entry *fe;
20042
20043 if (cu->line_header != NULL)
20044 fe = cu->line_header->file_name_at (file_index);
20045 else
20046 fe = NULL;
20047
20048 if (fe == NULL)
20049 complaint (&symfile_complaints,
20050 _("file index out of range"));
20051 else
20052 symbol_set_symtab (sym, fe->symtab);
20053 }
20054
20055 switch (die->tag)
20056 {
20057 case DW_TAG_label:
20058 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20059 if (attr)
20060 {
20061 CORE_ADDR addr;
20062
20063 addr = attr_value_as_address (attr);
20064 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20065 SYMBOL_VALUE_ADDRESS (sym) = addr;
20066 }
20067 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20068 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20069 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20070 add_symbol_to_list (sym, cu->list_in_scope);
20071 break;
20072 case DW_TAG_subprogram:
20073 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20074 finish_block. */
20075 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20076 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20077 if ((attr2 && (DW_UNSND (attr2) != 0))
20078 || cu->language == language_ada)
20079 {
20080 /* Subprograms marked external are stored as a global symbol.
20081 Ada subprograms, whether marked external or not, are always
20082 stored as a global symbol, because we want to be able to
20083 access them globally. For instance, we want to be able
20084 to break on a nested subprogram without having to
20085 specify the context. */
20086 list_to_add = &global_symbols;
20087 }
20088 else
20089 {
20090 list_to_add = cu->list_in_scope;
20091 }
20092 break;
20093 case DW_TAG_inlined_subroutine:
20094 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20095 finish_block. */
20096 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20097 SYMBOL_INLINED (sym) = 1;
20098 list_to_add = cu->list_in_scope;
20099 break;
20100 case DW_TAG_template_value_param:
20101 suppress_add = 1;
20102 /* Fall through. */
20103 case DW_TAG_constant:
20104 case DW_TAG_variable:
20105 case DW_TAG_member:
20106 /* Compilation with minimal debug info may result in
20107 variables with missing type entries. Change the
20108 misleading `void' type to something sensible. */
20109 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20110 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20111
20112 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20113 /* In the case of DW_TAG_member, we should only be called for
20114 static const members. */
20115 if (die->tag == DW_TAG_member)
20116 {
20117 /* dwarf2_add_field uses die_is_declaration,
20118 so we do the same. */
20119 gdb_assert (die_is_declaration (die, cu));
20120 gdb_assert (attr);
20121 }
20122 if (attr)
20123 {
20124 dwarf2_const_value (attr, sym, cu);
20125 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20126 if (!suppress_add)
20127 {
20128 if (attr2 && (DW_UNSND (attr2) != 0))
20129 list_to_add = &global_symbols;
20130 else
20131 list_to_add = cu->list_in_scope;
20132 }
20133 break;
20134 }
20135 attr = dwarf2_attr (die, DW_AT_location, cu);
20136 if (attr)
20137 {
20138 var_decode_location (attr, sym, cu);
20139 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20140
20141 /* Fortran explicitly imports any global symbols to the local
20142 scope by DW_TAG_common_block. */
20143 if (cu->language == language_fortran && die->parent
20144 && die->parent->tag == DW_TAG_common_block)
20145 attr2 = NULL;
20146
20147 if (SYMBOL_CLASS (sym) == LOC_STATIC
20148 && SYMBOL_VALUE_ADDRESS (sym) == 0
20149 && !dwarf2_per_objfile->has_section_at_zero)
20150 {
20151 /* When a static variable is eliminated by the linker,
20152 the corresponding debug information is not stripped
20153 out, but the variable address is set to null;
20154 do not add such variables into symbol table. */
20155 }
20156 else if (attr2 && (DW_UNSND (attr2) != 0))
20157 {
20158 /* Workaround gfortran PR debug/40040 - it uses
20159 DW_AT_location for variables in -fPIC libraries which may
20160 get overriden by other libraries/executable and get
20161 a different address. Resolve it by the minimal symbol
20162 which may come from inferior's executable using copy
20163 relocation. Make this workaround only for gfortran as for
20164 other compilers GDB cannot guess the minimal symbol
20165 Fortran mangling kind. */
20166 if (cu->language == language_fortran && die->parent
20167 && die->parent->tag == DW_TAG_module
20168 && cu->producer
20169 && startswith (cu->producer, "GNU Fortran"))
20170 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20171
20172 /* A variable with DW_AT_external is never static,
20173 but it may be block-scoped. */
20174 list_to_add = (cu->list_in_scope == &file_symbols
20175 ? &global_symbols : cu->list_in_scope);
20176 }
20177 else
20178 list_to_add = cu->list_in_scope;
20179 }
20180 else
20181 {
20182 /* We do not know the address of this symbol.
20183 If it is an external symbol and we have type information
20184 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20185 The address of the variable will then be determined from
20186 the minimal symbol table whenever the variable is
20187 referenced. */
20188 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20189
20190 /* Fortran explicitly imports any global symbols to the local
20191 scope by DW_TAG_common_block. */
20192 if (cu->language == language_fortran && die->parent
20193 && die->parent->tag == DW_TAG_common_block)
20194 {
20195 /* SYMBOL_CLASS doesn't matter here because
20196 read_common_block is going to reset it. */
20197 if (!suppress_add)
20198 list_to_add = cu->list_in_scope;
20199 }
20200 else if (attr2 && (DW_UNSND (attr2) != 0)
20201 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20202 {
20203 /* A variable with DW_AT_external is never static, but it
20204 may be block-scoped. */
20205 list_to_add = (cu->list_in_scope == &file_symbols
20206 ? &global_symbols : cu->list_in_scope);
20207
20208 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20209 }
20210 else if (!die_is_declaration (die, cu))
20211 {
20212 /* Use the default LOC_OPTIMIZED_OUT class. */
20213 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20214 if (!suppress_add)
20215 list_to_add = cu->list_in_scope;
20216 }
20217 }
20218 break;
20219 case DW_TAG_formal_parameter:
20220 /* If we are inside a function, mark this as an argument. If
20221 not, we might be looking at an argument to an inlined function
20222 when we do not have enough information to show inlined frames;
20223 pretend it's a local variable in that case so that the user can
20224 still see it. */
20225 if (context_stack_depth > 0
20226 && context_stack[context_stack_depth - 1].name != NULL)
20227 SYMBOL_IS_ARGUMENT (sym) = 1;
20228 attr = dwarf2_attr (die, DW_AT_location, cu);
20229 if (attr)
20230 {
20231 var_decode_location (attr, sym, cu);
20232 }
20233 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20234 if (attr)
20235 {
20236 dwarf2_const_value (attr, sym, cu);
20237 }
20238
20239 list_to_add = cu->list_in_scope;
20240 break;
20241 case DW_TAG_unspecified_parameters:
20242 /* From varargs functions; gdb doesn't seem to have any
20243 interest in this information, so just ignore it for now.
20244 (FIXME?) */
20245 break;
20246 case DW_TAG_template_type_param:
20247 suppress_add = 1;
20248 /* Fall through. */
20249 case DW_TAG_class_type:
20250 case DW_TAG_interface_type:
20251 case DW_TAG_structure_type:
20252 case DW_TAG_union_type:
20253 case DW_TAG_set_type:
20254 case DW_TAG_enumeration_type:
20255 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20256 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20257
20258 {
20259 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20260 really ever be static objects: otherwise, if you try
20261 to, say, break of a class's method and you're in a file
20262 which doesn't mention that class, it won't work unless
20263 the check for all static symbols in lookup_symbol_aux
20264 saves you. See the OtherFileClass tests in
20265 gdb.c++/namespace.exp. */
20266
20267 if (!suppress_add)
20268 {
20269 list_to_add = (cu->list_in_scope == &file_symbols
20270 && cu->language == language_cplus
20271 ? &global_symbols : cu->list_in_scope);
20272
20273 /* The semantics of C++ state that "struct foo {
20274 ... }" also defines a typedef for "foo". */
20275 if (cu->language == language_cplus
20276 || cu->language == language_ada
20277 || cu->language == language_d
20278 || cu->language == language_rust)
20279 {
20280 /* The symbol's name is already allocated along
20281 with this objfile, so we don't need to
20282 duplicate it for the type. */
20283 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20284 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
20285 }
20286 }
20287 }
20288 break;
20289 case DW_TAG_typedef:
20290 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20291 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20292 list_to_add = cu->list_in_scope;
20293 break;
20294 case DW_TAG_base_type:
20295 case DW_TAG_subrange_type:
20296 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20298 list_to_add = cu->list_in_scope;
20299 break;
20300 case DW_TAG_enumerator:
20301 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20302 if (attr)
20303 {
20304 dwarf2_const_value (attr, sym, cu);
20305 }
20306 {
20307 /* NOTE: carlton/2003-11-10: See comment above in the
20308 DW_TAG_class_type, etc. block. */
20309
20310 list_to_add = (cu->list_in_scope == &file_symbols
20311 && cu->language == language_cplus
20312 ? &global_symbols : cu->list_in_scope);
20313 }
20314 break;
20315 case DW_TAG_imported_declaration:
20316 case DW_TAG_namespace:
20317 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20318 list_to_add = &global_symbols;
20319 break;
20320 case DW_TAG_module:
20321 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20322 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20323 list_to_add = &global_symbols;
20324 break;
20325 case DW_TAG_common_block:
20326 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20327 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20328 add_symbol_to_list (sym, cu->list_in_scope);
20329 break;
20330 default:
20331 /* Not a tag we recognize. Hopefully we aren't processing
20332 trash data, but since we must specifically ignore things
20333 we don't recognize, there is nothing else we should do at
20334 this point. */
20335 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
20336 dwarf_tag_name (die->tag));
20337 break;
20338 }
20339
20340 if (suppress_add)
20341 {
20342 sym->hash_next = objfile->template_symbols;
20343 objfile->template_symbols = sym;
20344 list_to_add = NULL;
20345 }
20346
20347 if (list_to_add != NULL)
20348 add_symbol_to_list (sym, list_to_add);
20349
20350 /* For the benefit of old versions of GCC, check for anonymous
20351 namespaces based on the demangled name. */
20352 if (!cu->processing_has_namespace_info
20353 && cu->language == language_cplus)
20354 cp_scan_for_anonymous_namespaces (sym, objfile);
20355 }
20356 return (sym);
20357 }
20358
20359 /* A wrapper for new_symbol_full that always allocates a new symbol. */
20360
20361 static struct symbol *
20362 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20363 {
20364 return new_symbol_full (die, type, cu, NULL);
20365 }
20366
20367 /* Given an attr with a DW_FORM_dataN value in host byte order,
20368 zero-extend it as appropriate for the symbol's type. The DWARF
20369 standard (v4) is not entirely clear about the meaning of using
20370 DW_FORM_dataN for a constant with a signed type, where the type is
20371 wider than the data. The conclusion of a discussion on the DWARF
20372 list was that this is unspecified. We choose to always zero-extend
20373 because that is the interpretation long in use by GCC. */
20374
20375 static gdb_byte *
20376 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20377 struct dwarf2_cu *cu, LONGEST *value, int bits)
20378 {
20379 struct objfile *objfile = cu->objfile;
20380 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20381 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20382 LONGEST l = DW_UNSND (attr);
20383
20384 if (bits < sizeof (*value) * 8)
20385 {
20386 l &= ((LONGEST) 1 << bits) - 1;
20387 *value = l;
20388 }
20389 else if (bits == sizeof (*value) * 8)
20390 *value = l;
20391 else
20392 {
20393 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20394 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20395 return bytes;
20396 }
20397
20398 return NULL;
20399 }
20400
20401 /* Read a constant value from an attribute. Either set *VALUE, or if
20402 the value does not fit in *VALUE, set *BYTES - either already
20403 allocated on the objfile obstack, or newly allocated on OBSTACK,
20404 or, set *BATON, if we translated the constant to a location
20405 expression. */
20406
20407 static void
20408 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20409 const char *name, struct obstack *obstack,
20410 struct dwarf2_cu *cu,
20411 LONGEST *value, const gdb_byte **bytes,
20412 struct dwarf2_locexpr_baton **baton)
20413 {
20414 struct objfile *objfile = cu->objfile;
20415 struct comp_unit_head *cu_header = &cu->header;
20416 struct dwarf_block *blk;
20417 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20418 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20419
20420 *value = 0;
20421 *bytes = NULL;
20422 *baton = NULL;
20423
20424 switch (attr->form)
20425 {
20426 case DW_FORM_addr:
20427 case DW_FORM_GNU_addr_index:
20428 {
20429 gdb_byte *data;
20430
20431 if (TYPE_LENGTH (type) != cu_header->addr_size)
20432 dwarf2_const_value_length_mismatch_complaint (name,
20433 cu_header->addr_size,
20434 TYPE_LENGTH (type));
20435 /* Symbols of this form are reasonably rare, so we just
20436 piggyback on the existing location code rather than writing
20437 a new implementation of symbol_computed_ops. */
20438 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20439 (*baton)->per_cu = cu->per_cu;
20440 gdb_assert ((*baton)->per_cu);
20441
20442 (*baton)->size = 2 + cu_header->addr_size;
20443 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20444 (*baton)->data = data;
20445
20446 data[0] = DW_OP_addr;
20447 store_unsigned_integer (&data[1], cu_header->addr_size,
20448 byte_order, DW_ADDR (attr));
20449 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20450 }
20451 break;
20452 case DW_FORM_string:
20453 case DW_FORM_strp:
20454 case DW_FORM_GNU_str_index:
20455 case DW_FORM_GNU_strp_alt:
20456 /* DW_STRING is already allocated on the objfile obstack, point
20457 directly to it. */
20458 *bytes = (const gdb_byte *) DW_STRING (attr);
20459 break;
20460 case DW_FORM_block1:
20461 case DW_FORM_block2:
20462 case DW_FORM_block4:
20463 case DW_FORM_block:
20464 case DW_FORM_exprloc:
20465 case DW_FORM_data16:
20466 blk = DW_BLOCK (attr);
20467 if (TYPE_LENGTH (type) != blk->size)
20468 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20469 TYPE_LENGTH (type));
20470 *bytes = blk->data;
20471 break;
20472
20473 /* The DW_AT_const_value attributes are supposed to carry the
20474 symbol's value "represented as it would be on the target
20475 architecture." By the time we get here, it's already been
20476 converted to host endianness, so we just need to sign- or
20477 zero-extend it as appropriate. */
20478 case DW_FORM_data1:
20479 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20480 break;
20481 case DW_FORM_data2:
20482 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20483 break;
20484 case DW_FORM_data4:
20485 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20486 break;
20487 case DW_FORM_data8:
20488 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20489 break;
20490
20491 case DW_FORM_sdata:
20492 case DW_FORM_implicit_const:
20493 *value = DW_SND (attr);
20494 break;
20495
20496 case DW_FORM_udata:
20497 *value = DW_UNSND (attr);
20498 break;
20499
20500 default:
20501 complaint (&symfile_complaints,
20502 _("unsupported const value attribute form: '%s'"),
20503 dwarf_form_name (attr->form));
20504 *value = 0;
20505 break;
20506 }
20507 }
20508
20509
20510 /* Copy constant value from an attribute to a symbol. */
20511
20512 static void
20513 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
20514 struct dwarf2_cu *cu)
20515 {
20516 struct objfile *objfile = cu->objfile;
20517 LONGEST value;
20518 const gdb_byte *bytes;
20519 struct dwarf2_locexpr_baton *baton;
20520
20521 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
20522 SYMBOL_PRINT_NAME (sym),
20523 &objfile->objfile_obstack, cu,
20524 &value, &bytes, &baton);
20525
20526 if (baton != NULL)
20527 {
20528 SYMBOL_LOCATION_BATON (sym) = baton;
20529 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
20530 }
20531 else if (bytes != NULL)
20532 {
20533 SYMBOL_VALUE_BYTES (sym) = bytes;
20534 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
20535 }
20536 else
20537 {
20538 SYMBOL_VALUE (sym) = value;
20539 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
20540 }
20541 }
20542
20543 /* Return the type of the die in question using its DW_AT_type attribute. */
20544
20545 static struct type *
20546 die_type (struct die_info *die, struct dwarf2_cu *cu)
20547 {
20548 struct attribute *type_attr;
20549
20550 type_attr = dwarf2_attr (die, DW_AT_type, cu);
20551 if (!type_attr)
20552 {
20553 /* A missing DW_AT_type represents a void type. */
20554 return objfile_type (cu->objfile)->builtin_void;
20555 }
20556
20557 return lookup_die_type (die, type_attr, cu);
20558 }
20559
20560 /* True iff CU's producer generates GNAT Ada auxiliary information
20561 that allows to find parallel types through that information instead
20562 of having to do expensive parallel lookups by type name. */
20563
20564 static int
20565 need_gnat_info (struct dwarf2_cu *cu)
20566 {
20567 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
20568 of GNAT produces this auxiliary information, without any indication
20569 that it is produced. Part of enhancing the FSF version of GNAT
20570 to produce that information will be to put in place an indicator
20571 that we can use in order to determine whether the descriptive type
20572 info is available or not. One suggestion that has been made is
20573 to use a new attribute, attached to the CU die. For now, assume
20574 that the descriptive type info is not available. */
20575 return 0;
20576 }
20577
20578 /* Return the auxiliary type of the die in question using its
20579 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
20580 attribute is not present. */
20581
20582 static struct type *
20583 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
20584 {
20585 struct attribute *type_attr;
20586
20587 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
20588 if (!type_attr)
20589 return NULL;
20590
20591 return lookup_die_type (die, type_attr, cu);
20592 }
20593
20594 /* If DIE has a descriptive_type attribute, then set the TYPE's
20595 descriptive type accordingly. */
20596
20597 static void
20598 set_descriptive_type (struct type *type, struct die_info *die,
20599 struct dwarf2_cu *cu)
20600 {
20601 struct type *descriptive_type = die_descriptive_type (die, cu);
20602
20603 if (descriptive_type)
20604 {
20605 ALLOCATE_GNAT_AUX_TYPE (type);
20606 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
20607 }
20608 }
20609
20610 /* Return the containing type of the die in question using its
20611 DW_AT_containing_type attribute. */
20612
20613 static struct type *
20614 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
20615 {
20616 struct attribute *type_attr;
20617
20618 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
20619 if (!type_attr)
20620 error (_("Dwarf Error: Problem turning containing type into gdb type "
20621 "[in module %s]"), objfile_name (cu->objfile));
20622
20623 return lookup_die_type (die, type_attr, cu);
20624 }
20625
20626 /* Return an error marker type to use for the ill formed type in DIE/CU. */
20627
20628 static struct type *
20629 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
20630 {
20631 struct objfile *objfile = dwarf2_per_objfile->objfile;
20632 char *message, *saved;
20633
20634 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
20635 objfile_name (objfile),
20636 to_underlying (cu->header.sect_off),
20637 to_underlying (die->sect_off));
20638 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
20639 message, strlen (message));
20640 xfree (message);
20641
20642 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20643 }
20644
20645 /* Look up the type of DIE in CU using its type attribute ATTR.
20646 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20647 DW_AT_containing_type.
20648 If there is no type substitute an error marker. */
20649
20650 static struct type *
20651 lookup_die_type (struct die_info *die, const struct attribute *attr,
20652 struct dwarf2_cu *cu)
20653 {
20654 struct objfile *objfile = cu->objfile;
20655 struct type *this_type;
20656
20657 gdb_assert (attr->name == DW_AT_type
20658 || attr->name == DW_AT_GNAT_descriptive_type
20659 || attr->name == DW_AT_containing_type);
20660
20661 /* First see if we have it cached. */
20662
20663 if (attr->form == DW_FORM_GNU_ref_alt)
20664 {
20665 struct dwarf2_per_cu_data *per_cu;
20666 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20667
20668 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
20669 this_type = get_die_type_at_offset (sect_off, per_cu);
20670 }
20671 else if (attr_form_is_ref (attr))
20672 {
20673 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20674
20675 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20676 }
20677 else if (attr->form == DW_FORM_ref_sig8)
20678 {
20679 ULONGEST signature = DW_SIGNATURE (attr);
20680
20681 return get_signatured_type (die, signature, cu);
20682 }
20683 else
20684 {
20685 complaint (&symfile_complaints,
20686 _("Dwarf Error: Bad type attribute %s in DIE"
20687 " at 0x%x [in module %s]"),
20688 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
20689 objfile_name (objfile));
20690 return build_error_marker_type (cu, die);
20691 }
20692
20693 /* If not cached we need to read it in. */
20694
20695 if (this_type == NULL)
20696 {
20697 struct die_info *type_die = NULL;
20698 struct dwarf2_cu *type_cu = cu;
20699
20700 if (attr_form_is_ref (attr))
20701 type_die = follow_die_ref (die, attr, &type_cu);
20702 if (type_die == NULL)
20703 return build_error_marker_type (cu, die);
20704 /* If we find the type now, it's probably because the type came
20705 from an inter-CU reference and the type's CU got expanded before
20706 ours. */
20707 this_type = read_type_die (type_die, type_cu);
20708 }
20709
20710 /* If we still don't have a type use an error marker. */
20711
20712 if (this_type == NULL)
20713 return build_error_marker_type (cu, die);
20714
20715 return this_type;
20716 }
20717
20718 /* Return the type in DIE, CU.
20719 Returns NULL for invalid types.
20720
20721 This first does a lookup in die_type_hash,
20722 and only reads the die in if necessary.
20723
20724 NOTE: This can be called when reading in partial or full symbols. */
20725
20726 static struct type *
20727 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
20728 {
20729 struct type *this_type;
20730
20731 this_type = get_die_type (die, cu);
20732 if (this_type)
20733 return this_type;
20734
20735 return read_type_die_1 (die, cu);
20736 }
20737
20738 /* Read the type in DIE, CU.
20739 Returns NULL for invalid types. */
20740
20741 static struct type *
20742 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
20743 {
20744 struct type *this_type = NULL;
20745
20746 switch (die->tag)
20747 {
20748 case DW_TAG_class_type:
20749 case DW_TAG_interface_type:
20750 case DW_TAG_structure_type:
20751 case DW_TAG_union_type:
20752 this_type = read_structure_type (die, cu);
20753 break;
20754 case DW_TAG_enumeration_type:
20755 this_type = read_enumeration_type (die, cu);
20756 break;
20757 case DW_TAG_subprogram:
20758 case DW_TAG_subroutine_type:
20759 case DW_TAG_inlined_subroutine:
20760 this_type = read_subroutine_type (die, cu);
20761 break;
20762 case DW_TAG_array_type:
20763 this_type = read_array_type (die, cu);
20764 break;
20765 case DW_TAG_set_type:
20766 this_type = read_set_type (die, cu);
20767 break;
20768 case DW_TAG_pointer_type:
20769 this_type = read_tag_pointer_type (die, cu);
20770 break;
20771 case DW_TAG_ptr_to_member_type:
20772 this_type = read_tag_ptr_to_member_type (die, cu);
20773 break;
20774 case DW_TAG_reference_type:
20775 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
20776 break;
20777 case DW_TAG_rvalue_reference_type:
20778 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
20779 break;
20780 case DW_TAG_const_type:
20781 this_type = read_tag_const_type (die, cu);
20782 break;
20783 case DW_TAG_volatile_type:
20784 this_type = read_tag_volatile_type (die, cu);
20785 break;
20786 case DW_TAG_restrict_type:
20787 this_type = read_tag_restrict_type (die, cu);
20788 break;
20789 case DW_TAG_string_type:
20790 this_type = read_tag_string_type (die, cu);
20791 break;
20792 case DW_TAG_typedef:
20793 this_type = read_typedef (die, cu);
20794 break;
20795 case DW_TAG_subrange_type:
20796 this_type = read_subrange_type (die, cu);
20797 break;
20798 case DW_TAG_base_type:
20799 this_type = read_base_type (die, cu);
20800 break;
20801 case DW_TAG_unspecified_type:
20802 this_type = read_unspecified_type (die, cu);
20803 break;
20804 case DW_TAG_namespace:
20805 this_type = read_namespace_type (die, cu);
20806 break;
20807 case DW_TAG_module:
20808 this_type = read_module_type (die, cu);
20809 break;
20810 case DW_TAG_atomic_type:
20811 this_type = read_tag_atomic_type (die, cu);
20812 break;
20813 default:
20814 complaint (&symfile_complaints,
20815 _("unexpected tag in read_type_die: '%s'"),
20816 dwarf_tag_name (die->tag));
20817 break;
20818 }
20819
20820 return this_type;
20821 }
20822
20823 /* See if we can figure out if the class lives in a namespace. We do
20824 this by looking for a member function; its demangled name will
20825 contain namespace info, if there is any.
20826 Return the computed name or NULL.
20827 Space for the result is allocated on the objfile's obstack.
20828 This is the full-die version of guess_partial_die_structure_name.
20829 In this case we know DIE has no useful parent. */
20830
20831 static char *
20832 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
20833 {
20834 struct die_info *spec_die;
20835 struct dwarf2_cu *spec_cu;
20836 struct die_info *child;
20837
20838 spec_cu = cu;
20839 spec_die = die_specification (die, &spec_cu);
20840 if (spec_die != NULL)
20841 {
20842 die = spec_die;
20843 cu = spec_cu;
20844 }
20845
20846 for (child = die->child;
20847 child != NULL;
20848 child = child->sibling)
20849 {
20850 if (child->tag == DW_TAG_subprogram)
20851 {
20852 const char *linkage_name = dw2_linkage_name (child, cu);
20853
20854 if (linkage_name != NULL)
20855 {
20856 char *actual_name
20857 = language_class_name_from_physname (cu->language_defn,
20858 linkage_name);
20859 char *name = NULL;
20860
20861 if (actual_name != NULL)
20862 {
20863 const char *die_name = dwarf2_name (die, cu);
20864
20865 if (die_name != NULL
20866 && strcmp (die_name, actual_name) != 0)
20867 {
20868 /* Strip off the class name from the full name.
20869 We want the prefix. */
20870 int die_name_len = strlen (die_name);
20871 int actual_name_len = strlen (actual_name);
20872
20873 /* Test for '::' as a sanity check. */
20874 if (actual_name_len > die_name_len + 2
20875 && actual_name[actual_name_len
20876 - die_name_len - 1] == ':')
20877 name = (char *) obstack_copy0 (
20878 &cu->objfile->per_bfd->storage_obstack,
20879 actual_name, actual_name_len - die_name_len - 2);
20880 }
20881 }
20882 xfree (actual_name);
20883 return name;
20884 }
20885 }
20886 }
20887
20888 return NULL;
20889 }
20890
20891 /* GCC might emit a nameless typedef that has a linkage name. Determine the
20892 prefix part in such case. See
20893 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20894
20895 static const char *
20896 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
20897 {
20898 struct attribute *attr;
20899 const char *base;
20900
20901 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
20902 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
20903 return NULL;
20904
20905 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
20906 return NULL;
20907
20908 attr = dw2_linkage_name_attr (die, cu);
20909 if (attr == NULL || DW_STRING (attr) == NULL)
20910 return NULL;
20911
20912 /* dwarf2_name had to be already called. */
20913 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20914
20915 /* Strip the base name, keep any leading namespaces/classes. */
20916 base = strrchr (DW_STRING (attr), ':');
20917 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20918 return "";
20919
20920 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20921 DW_STRING (attr),
20922 &base[-1] - DW_STRING (attr));
20923 }
20924
20925 /* Return the name of the namespace/class that DIE is defined within,
20926 or "" if we can't tell. The caller should not xfree the result.
20927
20928 For example, if we're within the method foo() in the following
20929 code:
20930
20931 namespace N {
20932 class C {
20933 void foo () {
20934 }
20935 };
20936 }
20937
20938 then determine_prefix on foo's die will return "N::C". */
20939
20940 static const char *
20941 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20942 {
20943 struct die_info *parent, *spec_die;
20944 struct dwarf2_cu *spec_cu;
20945 struct type *parent_type;
20946 const char *retval;
20947
20948 if (cu->language != language_cplus
20949 && cu->language != language_fortran && cu->language != language_d
20950 && cu->language != language_rust)
20951 return "";
20952
20953 retval = anonymous_struct_prefix (die, cu);
20954 if (retval)
20955 return retval;
20956
20957 /* We have to be careful in the presence of DW_AT_specification.
20958 For example, with GCC 3.4, given the code
20959
20960 namespace N {
20961 void foo() {
20962 // Definition of N::foo.
20963 }
20964 }
20965
20966 then we'll have a tree of DIEs like this:
20967
20968 1: DW_TAG_compile_unit
20969 2: DW_TAG_namespace // N
20970 3: DW_TAG_subprogram // declaration of N::foo
20971 4: DW_TAG_subprogram // definition of N::foo
20972 DW_AT_specification // refers to die #3
20973
20974 Thus, when processing die #4, we have to pretend that we're in
20975 the context of its DW_AT_specification, namely the contex of die
20976 #3. */
20977 spec_cu = cu;
20978 spec_die = die_specification (die, &spec_cu);
20979 if (spec_die == NULL)
20980 parent = die->parent;
20981 else
20982 {
20983 parent = spec_die->parent;
20984 cu = spec_cu;
20985 }
20986
20987 if (parent == NULL)
20988 return "";
20989 else if (parent->building_fullname)
20990 {
20991 const char *name;
20992 const char *parent_name;
20993
20994 /* It has been seen on RealView 2.2 built binaries,
20995 DW_TAG_template_type_param types actually _defined_ as
20996 children of the parent class:
20997
20998 enum E {};
20999 template class <class Enum> Class{};
21000 Class<enum E> class_e;
21001
21002 1: DW_TAG_class_type (Class)
21003 2: DW_TAG_enumeration_type (E)
21004 3: DW_TAG_enumerator (enum1:0)
21005 3: DW_TAG_enumerator (enum2:1)
21006 ...
21007 2: DW_TAG_template_type_param
21008 DW_AT_type DW_FORM_ref_udata (E)
21009
21010 Besides being broken debug info, it can put GDB into an
21011 infinite loop. Consider:
21012
21013 When we're building the full name for Class<E>, we'll start
21014 at Class, and go look over its template type parameters,
21015 finding E. We'll then try to build the full name of E, and
21016 reach here. We're now trying to build the full name of E,
21017 and look over the parent DIE for containing scope. In the
21018 broken case, if we followed the parent DIE of E, we'd again
21019 find Class, and once again go look at its template type
21020 arguments, etc., etc. Simply don't consider such parent die
21021 as source-level parent of this die (it can't be, the language
21022 doesn't allow it), and break the loop here. */
21023 name = dwarf2_name (die, cu);
21024 parent_name = dwarf2_name (parent, cu);
21025 complaint (&symfile_complaints,
21026 _("template param type '%s' defined within parent '%s'"),
21027 name ? name : "<unknown>",
21028 parent_name ? parent_name : "<unknown>");
21029 return "";
21030 }
21031 else
21032 switch (parent->tag)
21033 {
21034 case DW_TAG_namespace:
21035 parent_type = read_type_die (parent, cu);
21036 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21037 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21038 Work around this problem here. */
21039 if (cu->language == language_cplus
21040 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
21041 return "";
21042 /* We give a name to even anonymous namespaces. */
21043 return TYPE_TAG_NAME (parent_type);
21044 case DW_TAG_class_type:
21045 case DW_TAG_interface_type:
21046 case DW_TAG_structure_type:
21047 case DW_TAG_union_type:
21048 case DW_TAG_module:
21049 parent_type = read_type_die (parent, cu);
21050 if (TYPE_TAG_NAME (parent_type) != NULL)
21051 return TYPE_TAG_NAME (parent_type);
21052 else
21053 /* An anonymous structure is only allowed non-static data
21054 members; no typedefs, no member functions, et cetera.
21055 So it does not need a prefix. */
21056 return "";
21057 case DW_TAG_compile_unit:
21058 case DW_TAG_partial_unit:
21059 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21060 if (cu->language == language_cplus
21061 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
21062 && die->child != NULL
21063 && (die->tag == DW_TAG_class_type
21064 || die->tag == DW_TAG_structure_type
21065 || die->tag == DW_TAG_union_type))
21066 {
21067 char *name = guess_full_die_structure_name (die, cu);
21068 if (name != NULL)
21069 return name;
21070 }
21071 return "";
21072 case DW_TAG_enumeration_type:
21073 parent_type = read_type_die (parent, cu);
21074 if (TYPE_DECLARED_CLASS (parent_type))
21075 {
21076 if (TYPE_TAG_NAME (parent_type) != NULL)
21077 return TYPE_TAG_NAME (parent_type);
21078 return "";
21079 }
21080 /* Fall through. */
21081 default:
21082 return determine_prefix (parent, cu);
21083 }
21084 }
21085
21086 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21087 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21088 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21089 an obconcat, otherwise allocate storage for the result. The CU argument is
21090 used to determine the language and hence, the appropriate separator. */
21091
21092 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21093
21094 static char *
21095 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21096 int physname, struct dwarf2_cu *cu)
21097 {
21098 const char *lead = "";
21099 const char *sep;
21100
21101 if (suffix == NULL || suffix[0] == '\0'
21102 || prefix == NULL || prefix[0] == '\0')
21103 sep = "";
21104 else if (cu->language == language_d)
21105 {
21106 /* For D, the 'main' function could be defined in any module, but it
21107 should never be prefixed. */
21108 if (strcmp (suffix, "D main") == 0)
21109 {
21110 prefix = "";
21111 sep = "";
21112 }
21113 else
21114 sep = ".";
21115 }
21116 else if (cu->language == language_fortran && physname)
21117 {
21118 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21119 DW_AT_MIPS_linkage_name is preferred and used instead. */
21120
21121 lead = "__";
21122 sep = "_MOD_";
21123 }
21124 else
21125 sep = "::";
21126
21127 if (prefix == NULL)
21128 prefix = "";
21129 if (suffix == NULL)
21130 suffix = "";
21131
21132 if (obs == NULL)
21133 {
21134 char *retval
21135 = ((char *)
21136 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21137
21138 strcpy (retval, lead);
21139 strcat (retval, prefix);
21140 strcat (retval, sep);
21141 strcat (retval, suffix);
21142 return retval;
21143 }
21144 else
21145 {
21146 /* We have an obstack. */
21147 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21148 }
21149 }
21150
21151 /* Return sibling of die, NULL if no sibling. */
21152
21153 static struct die_info *
21154 sibling_die (struct die_info *die)
21155 {
21156 return die->sibling;
21157 }
21158
21159 /* Get name of a die, return NULL if not found. */
21160
21161 static const char *
21162 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21163 struct obstack *obstack)
21164 {
21165 if (name && cu->language == language_cplus)
21166 {
21167 std::string canon_name = cp_canonicalize_string (name);
21168
21169 if (!canon_name.empty ())
21170 {
21171 if (canon_name != name)
21172 name = (const char *) obstack_copy0 (obstack,
21173 canon_name.c_str (),
21174 canon_name.length ());
21175 }
21176 }
21177
21178 return name;
21179 }
21180
21181 /* Get name of a die, return NULL if not found.
21182 Anonymous namespaces are converted to their magic string. */
21183
21184 static const char *
21185 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21186 {
21187 struct attribute *attr;
21188
21189 attr = dwarf2_attr (die, DW_AT_name, cu);
21190 if ((!attr || !DW_STRING (attr))
21191 && die->tag != DW_TAG_namespace
21192 && die->tag != DW_TAG_class_type
21193 && die->tag != DW_TAG_interface_type
21194 && die->tag != DW_TAG_structure_type
21195 && die->tag != DW_TAG_union_type)
21196 return NULL;
21197
21198 switch (die->tag)
21199 {
21200 case DW_TAG_compile_unit:
21201 case DW_TAG_partial_unit:
21202 /* Compilation units have a DW_AT_name that is a filename, not
21203 a source language identifier. */
21204 case DW_TAG_enumeration_type:
21205 case DW_TAG_enumerator:
21206 /* These tags always have simple identifiers already; no need
21207 to canonicalize them. */
21208 return DW_STRING (attr);
21209
21210 case DW_TAG_namespace:
21211 if (attr != NULL && DW_STRING (attr) != NULL)
21212 return DW_STRING (attr);
21213 return CP_ANONYMOUS_NAMESPACE_STR;
21214
21215 case DW_TAG_class_type:
21216 case DW_TAG_interface_type:
21217 case DW_TAG_structure_type:
21218 case DW_TAG_union_type:
21219 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21220 structures or unions. These were of the form "._%d" in GCC 4.1,
21221 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21222 and GCC 4.4. We work around this problem by ignoring these. */
21223 if (attr && DW_STRING (attr)
21224 && (startswith (DW_STRING (attr), "._")
21225 || startswith (DW_STRING (attr), "<anonymous")))
21226 return NULL;
21227
21228 /* GCC might emit a nameless typedef that has a linkage name. See
21229 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21230 if (!attr || DW_STRING (attr) == NULL)
21231 {
21232 char *demangled = NULL;
21233
21234 attr = dw2_linkage_name_attr (die, cu);
21235 if (attr == NULL || DW_STRING (attr) == NULL)
21236 return NULL;
21237
21238 /* Avoid demangling DW_STRING (attr) the second time on a second
21239 call for the same DIE. */
21240 if (!DW_STRING_IS_CANONICAL (attr))
21241 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
21242
21243 if (demangled)
21244 {
21245 const char *base;
21246
21247 /* FIXME: we already did this for the partial symbol... */
21248 DW_STRING (attr)
21249 = ((const char *)
21250 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
21251 demangled, strlen (demangled)));
21252 DW_STRING_IS_CANONICAL (attr) = 1;
21253 xfree (demangled);
21254
21255 /* Strip any leading namespaces/classes, keep only the base name.
21256 DW_AT_name for named DIEs does not contain the prefixes. */
21257 base = strrchr (DW_STRING (attr), ':');
21258 if (base && base > DW_STRING (attr) && base[-1] == ':')
21259 return &base[1];
21260 else
21261 return DW_STRING (attr);
21262 }
21263 }
21264 break;
21265
21266 default:
21267 break;
21268 }
21269
21270 if (!DW_STRING_IS_CANONICAL (attr))
21271 {
21272 DW_STRING (attr)
21273 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21274 &cu->objfile->per_bfd->storage_obstack);
21275 DW_STRING_IS_CANONICAL (attr) = 1;
21276 }
21277 return DW_STRING (attr);
21278 }
21279
21280 /* Return the die that this die in an extension of, or NULL if there
21281 is none. *EXT_CU is the CU containing DIE on input, and the CU
21282 containing the return value on output. */
21283
21284 static struct die_info *
21285 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21286 {
21287 struct attribute *attr;
21288
21289 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21290 if (attr == NULL)
21291 return NULL;
21292
21293 return follow_die_ref (die, attr, ext_cu);
21294 }
21295
21296 /* Convert a DIE tag into its string name. */
21297
21298 static const char *
21299 dwarf_tag_name (unsigned tag)
21300 {
21301 const char *name = get_DW_TAG_name (tag);
21302
21303 if (name == NULL)
21304 return "DW_TAG_<unknown>";
21305
21306 return name;
21307 }
21308
21309 /* Convert a DWARF attribute code into its string name. */
21310
21311 static const char *
21312 dwarf_attr_name (unsigned attr)
21313 {
21314 const char *name;
21315
21316 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21317 if (attr == DW_AT_MIPS_fde)
21318 return "DW_AT_MIPS_fde";
21319 #else
21320 if (attr == DW_AT_HP_block_index)
21321 return "DW_AT_HP_block_index";
21322 #endif
21323
21324 name = get_DW_AT_name (attr);
21325
21326 if (name == NULL)
21327 return "DW_AT_<unknown>";
21328
21329 return name;
21330 }
21331
21332 /* Convert a DWARF value form code into its string name. */
21333
21334 static const char *
21335 dwarf_form_name (unsigned form)
21336 {
21337 const char *name = get_DW_FORM_name (form);
21338
21339 if (name == NULL)
21340 return "DW_FORM_<unknown>";
21341
21342 return name;
21343 }
21344
21345 static const char *
21346 dwarf_bool_name (unsigned mybool)
21347 {
21348 if (mybool)
21349 return "TRUE";
21350 else
21351 return "FALSE";
21352 }
21353
21354 /* Convert a DWARF type code into its string name. */
21355
21356 static const char *
21357 dwarf_type_encoding_name (unsigned enc)
21358 {
21359 const char *name = get_DW_ATE_name (enc);
21360
21361 if (name == NULL)
21362 return "DW_ATE_<unknown>";
21363
21364 return name;
21365 }
21366
21367 static void
21368 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21369 {
21370 unsigned int i;
21371
21372 print_spaces (indent, f);
21373 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
21374 dwarf_tag_name (die->tag), die->abbrev,
21375 to_underlying (die->sect_off));
21376
21377 if (die->parent != NULL)
21378 {
21379 print_spaces (indent, f);
21380 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
21381 to_underlying (die->parent->sect_off));
21382 }
21383
21384 print_spaces (indent, f);
21385 fprintf_unfiltered (f, " has children: %s\n",
21386 dwarf_bool_name (die->child != NULL));
21387
21388 print_spaces (indent, f);
21389 fprintf_unfiltered (f, " attributes:\n");
21390
21391 for (i = 0; i < die->num_attrs; ++i)
21392 {
21393 print_spaces (indent, f);
21394 fprintf_unfiltered (f, " %s (%s) ",
21395 dwarf_attr_name (die->attrs[i].name),
21396 dwarf_form_name (die->attrs[i].form));
21397
21398 switch (die->attrs[i].form)
21399 {
21400 case DW_FORM_addr:
21401 case DW_FORM_GNU_addr_index:
21402 fprintf_unfiltered (f, "address: ");
21403 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21404 break;
21405 case DW_FORM_block2:
21406 case DW_FORM_block4:
21407 case DW_FORM_block:
21408 case DW_FORM_block1:
21409 fprintf_unfiltered (f, "block: size %s",
21410 pulongest (DW_BLOCK (&die->attrs[i])->size));
21411 break;
21412 case DW_FORM_exprloc:
21413 fprintf_unfiltered (f, "expression: size %s",
21414 pulongest (DW_BLOCK (&die->attrs[i])->size));
21415 break;
21416 case DW_FORM_data16:
21417 fprintf_unfiltered (f, "constant of 16 bytes");
21418 break;
21419 case DW_FORM_ref_addr:
21420 fprintf_unfiltered (f, "ref address: ");
21421 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21422 break;
21423 case DW_FORM_GNU_ref_alt:
21424 fprintf_unfiltered (f, "alt ref address: ");
21425 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21426 break;
21427 case DW_FORM_ref1:
21428 case DW_FORM_ref2:
21429 case DW_FORM_ref4:
21430 case DW_FORM_ref8:
21431 case DW_FORM_ref_udata:
21432 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21433 (long) (DW_UNSND (&die->attrs[i])));
21434 break;
21435 case DW_FORM_data1:
21436 case DW_FORM_data2:
21437 case DW_FORM_data4:
21438 case DW_FORM_data8:
21439 case DW_FORM_udata:
21440 case DW_FORM_sdata:
21441 fprintf_unfiltered (f, "constant: %s",
21442 pulongest (DW_UNSND (&die->attrs[i])));
21443 break;
21444 case DW_FORM_sec_offset:
21445 fprintf_unfiltered (f, "section offset: %s",
21446 pulongest (DW_UNSND (&die->attrs[i])));
21447 break;
21448 case DW_FORM_ref_sig8:
21449 fprintf_unfiltered (f, "signature: %s",
21450 hex_string (DW_SIGNATURE (&die->attrs[i])));
21451 break;
21452 case DW_FORM_string:
21453 case DW_FORM_strp:
21454 case DW_FORM_line_strp:
21455 case DW_FORM_GNU_str_index:
21456 case DW_FORM_GNU_strp_alt:
21457 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21458 DW_STRING (&die->attrs[i])
21459 ? DW_STRING (&die->attrs[i]) : "",
21460 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21461 break;
21462 case DW_FORM_flag:
21463 if (DW_UNSND (&die->attrs[i]))
21464 fprintf_unfiltered (f, "flag: TRUE");
21465 else
21466 fprintf_unfiltered (f, "flag: FALSE");
21467 break;
21468 case DW_FORM_flag_present:
21469 fprintf_unfiltered (f, "flag: TRUE");
21470 break;
21471 case DW_FORM_indirect:
21472 /* The reader will have reduced the indirect form to
21473 the "base form" so this form should not occur. */
21474 fprintf_unfiltered (f,
21475 "unexpected attribute form: DW_FORM_indirect");
21476 break;
21477 case DW_FORM_implicit_const:
21478 fprintf_unfiltered (f, "constant: %s",
21479 plongest (DW_SND (&die->attrs[i])));
21480 break;
21481 default:
21482 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21483 die->attrs[i].form);
21484 break;
21485 }
21486 fprintf_unfiltered (f, "\n");
21487 }
21488 }
21489
21490 static void
21491 dump_die_for_error (struct die_info *die)
21492 {
21493 dump_die_shallow (gdb_stderr, 0, die);
21494 }
21495
21496 static void
21497 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21498 {
21499 int indent = level * 4;
21500
21501 gdb_assert (die != NULL);
21502
21503 if (level >= max_level)
21504 return;
21505
21506 dump_die_shallow (f, indent, die);
21507
21508 if (die->child != NULL)
21509 {
21510 print_spaces (indent, f);
21511 fprintf_unfiltered (f, " Children:");
21512 if (level + 1 < max_level)
21513 {
21514 fprintf_unfiltered (f, "\n");
21515 dump_die_1 (f, level + 1, max_level, die->child);
21516 }
21517 else
21518 {
21519 fprintf_unfiltered (f,
21520 " [not printed, max nesting level reached]\n");
21521 }
21522 }
21523
21524 if (die->sibling != NULL && level > 0)
21525 {
21526 dump_die_1 (f, level, max_level, die->sibling);
21527 }
21528 }
21529
21530 /* This is called from the pdie macro in gdbinit.in.
21531 It's not static so gcc will keep a copy callable from gdb. */
21532
21533 void
21534 dump_die (struct die_info *die, int max_level)
21535 {
21536 dump_die_1 (gdb_stdlog, 0, max_level, die);
21537 }
21538
21539 static void
21540 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
21541 {
21542 void **slot;
21543
21544 slot = htab_find_slot_with_hash (cu->die_hash, die,
21545 to_underlying (die->sect_off),
21546 INSERT);
21547
21548 *slot = die;
21549 }
21550
21551 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
21552 required kind. */
21553
21554 static sect_offset
21555 dwarf2_get_ref_die_offset (const struct attribute *attr)
21556 {
21557 if (attr_form_is_ref (attr))
21558 return (sect_offset) DW_UNSND (attr);
21559
21560 complaint (&symfile_complaints,
21561 _("unsupported die ref attribute form: '%s'"),
21562 dwarf_form_name (attr->form));
21563 return {};
21564 }
21565
21566 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
21567 * the value held by the attribute is not constant. */
21568
21569 static LONGEST
21570 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
21571 {
21572 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
21573 return DW_SND (attr);
21574 else if (attr->form == DW_FORM_udata
21575 || attr->form == DW_FORM_data1
21576 || attr->form == DW_FORM_data2
21577 || attr->form == DW_FORM_data4
21578 || attr->form == DW_FORM_data8)
21579 return DW_UNSND (attr);
21580 else
21581 {
21582 /* For DW_FORM_data16 see attr_form_is_constant. */
21583 complaint (&symfile_complaints,
21584 _("Attribute value is not a constant (%s)"),
21585 dwarf_form_name (attr->form));
21586 return default_value;
21587 }
21588 }
21589
21590 /* Follow reference or signature attribute ATTR of SRC_DIE.
21591 On entry *REF_CU is the CU of SRC_DIE.
21592 On exit *REF_CU is the CU of the result. */
21593
21594 static struct die_info *
21595 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
21596 struct dwarf2_cu **ref_cu)
21597 {
21598 struct die_info *die;
21599
21600 if (attr_form_is_ref (attr))
21601 die = follow_die_ref (src_die, attr, ref_cu);
21602 else if (attr->form == DW_FORM_ref_sig8)
21603 die = follow_die_sig (src_die, attr, ref_cu);
21604 else
21605 {
21606 dump_die_for_error (src_die);
21607 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
21608 objfile_name ((*ref_cu)->objfile));
21609 }
21610
21611 return die;
21612 }
21613
21614 /* Follow reference OFFSET.
21615 On entry *REF_CU is the CU of the source die referencing OFFSET.
21616 On exit *REF_CU is the CU of the result.
21617 Returns NULL if OFFSET is invalid. */
21618
21619 static struct die_info *
21620 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
21621 struct dwarf2_cu **ref_cu)
21622 {
21623 struct die_info temp_die;
21624 struct dwarf2_cu *target_cu, *cu = *ref_cu;
21625
21626 gdb_assert (cu->per_cu != NULL);
21627
21628 target_cu = cu;
21629
21630 if (cu->per_cu->is_debug_types)
21631 {
21632 /* .debug_types CUs cannot reference anything outside their CU.
21633 If they need to, they have to reference a signatured type via
21634 DW_FORM_ref_sig8. */
21635 if (!offset_in_cu_p (&cu->header, sect_off))
21636 return NULL;
21637 }
21638 else if (offset_in_dwz != cu->per_cu->is_dwz
21639 || !offset_in_cu_p (&cu->header, sect_off))
21640 {
21641 struct dwarf2_per_cu_data *per_cu;
21642
21643 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21644 cu->objfile);
21645
21646 /* If necessary, add it to the queue and load its DIEs. */
21647 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21648 load_full_comp_unit (per_cu, cu->language);
21649
21650 target_cu = per_cu->cu;
21651 }
21652 else if (cu->dies == NULL)
21653 {
21654 /* We're loading full DIEs during partial symbol reading. */
21655 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21656 load_full_comp_unit (cu->per_cu, language_minimal);
21657 }
21658
21659 *ref_cu = target_cu;
21660 temp_die.sect_off = sect_off;
21661 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21662 &temp_die,
21663 to_underlying (sect_off));
21664 }
21665
21666 /* Follow reference attribute ATTR of SRC_DIE.
21667 On entry *REF_CU is the CU of SRC_DIE.
21668 On exit *REF_CU is the CU of the result. */
21669
21670 static struct die_info *
21671 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21672 struct dwarf2_cu **ref_cu)
21673 {
21674 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21675 struct dwarf2_cu *cu = *ref_cu;
21676 struct die_info *die;
21677
21678 die = follow_die_offset (sect_off,
21679 (attr->form == DW_FORM_GNU_ref_alt
21680 || cu->per_cu->is_dwz),
21681 ref_cu);
21682 if (!die)
21683 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
21684 "at 0x%x [in module %s]"),
21685 to_underlying (sect_off), to_underlying (src_die->sect_off),
21686 objfile_name (cu->objfile));
21687
21688 return die;
21689 }
21690
21691 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
21692 Returned value is intended for DW_OP_call*. Returned
21693 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
21694
21695 struct dwarf2_locexpr_baton
21696 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21697 struct dwarf2_per_cu_data *per_cu,
21698 CORE_ADDR (*get_frame_pc) (void *baton),
21699 void *baton)
21700 {
21701 struct dwarf2_cu *cu;
21702 struct die_info *die;
21703 struct attribute *attr;
21704 struct dwarf2_locexpr_baton retval;
21705
21706 dw2_setup (per_cu->objfile);
21707
21708 if (per_cu->cu == NULL)
21709 load_cu (per_cu);
21710 cu = per_cu->cu;
21711 if (cu == NULL)
21712 {
21713 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21714 Instead just throw an error, not much else we can do. */
21715 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21716 to_underlying (sect_off), objfile_name (per_cu->objfile));
21717 }
21718
21719 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21720 if (!die)
21721 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21722 to_underlying (sect_off), objfile_name (per_cu->objfile));
21723
21724 attr = dwarf2_attr (die, DW_AT_location, cu);
21725 if (!attr)
21726 {
21727 /* DWARF: "If there is no such attribute, then there is no effect.".
21728 DATA is ignored if SIZE is 0. */
21729
21730 retval.data = NULL;
21731 retval.size = 0;
21732 }
21733 else if (attr_form_is_section_offset (attr))
21734 {
21735 struct dwarf2_loclist_baton loclist_baton;
21736 CORE_ADDR pc = (*get_frame_pc) (baton);
21737 size_t size;
21738
21739 fill_in_loclist_baton (cu, &loclist_baton, attr);
21740
21741 retval.data = dwarf2_find_location_expression (&loclist_baton,
21742 &size, pc);
21743 retval.size = size;
21744 }
21745 else
21746 {
21747 if (!attr_form_is_block (attr))
21748 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
21749 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21750 to_underlying (sect_off), objfile_name (per_cu->objfile));
21751
21752 retval.data = DW_BLOCK (attr)->data;
21753 retval.size = DW_BLOCK (attr)->size;
21754 }
21755 retval.per_cu = cu->per_cu;
21756
21757 age_cached_comp_units ();
21758
21759 return retval;
21760 }
21761
21762 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
21763 offset. */
21764
21765 struct dwarf2_locexpr_baton
21766 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21767 struct dwarf2_per_cu_data *per_cu,
21768 CORE_ADDR (*get_frame_pc) (void *baton),
21769 void *baton)
21770 {
21771 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21772
21773 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21774 }
21775
21776 /* Write a constant of a given type as target-ordered bytes into
21777 OBSTACK. */
21778
21779 static const gdb_byte *
21780 write_constant_as_bytes (struct obstack *obstack,
21781 enum bfd_endian byte_order,
21782 struct type *type,
21783 ULONGEST value,
21784 LONGEST *len)
21785 {
21786 gdb_byte *result;
21787
21788 *len = TYPE_LENGTH (type);
21789 result = (gdb_byte *) obstack_alloc (obstack, *len);
21790 store_unsigned_integer (result, *len, byte_order, value);
21791
21792 return result;
21793 }
21794
21795 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
21796 pointer to the constant bytes and set LEN to the length of the
21797 data. If memory is needed, allocate it on OBSTACK. If the DIE
21798 does not have a DW_AT_const_value, return NULL. */
21799
21800 const gdb_byte *
21801 dwarf2_fetch_constant_bytes (sect_offset sect_off,
21802 struct dwarf2_per_cu_data *per_cu,
21803 struct obstack *obstack,
21804 LONGEST *len)
21805 {
21806 struct dwarf2_cu *cu;
21807 struct die_info *die;
21808 struct attribute *attr;
21809 const gdb_byte *result = NULL;
21810 struct type *type;
21811 LONGEST value;
21812 enum bfd_endian byte_order;
21813
21814 dw2_setup (per_cu->objfile);
21815
21816 if (per_cu->cu == NULL)
21817 load_cu (per_cu);
21818 cu = per_cu->cu;
21819 if (cu == NULL)
21820 {
21821 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21822 Instead just throw an error, not much else we can do. */
21823 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21824 to_underlying (sect_off), objfile_name (per_cu->objfile));
21825 }
21826
21827 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21828 if (!die)
21829 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21830 to_underlying (sect_off), objfile_name (per_cu->objfile));
21831
21832
21833 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21834 if (attr == NULL)
21835 return NULL;
21836
21837 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
21838 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21839
21840 switch (attr->form)
21841 {
21842 case DW_FORM_addr:
21843 case DW_FORM_GNU_addr_index:
21844 {
21845 gdb_byte *tem;
21846
21847 *len = cu->header.addr_size;
21848 tem = (gdb_byte *) obstack_alloc (obstack, *len);
21849 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
21850 result = tem;
21851 }
21852 break;
21853 case DW_FORM_string:
21854 case DW_FORM_strp:
21855 case DW_FORM_GNU_str_index:
21856 case DW_FORM_GNU_strp_alt:
21857 /* DW_STRING is already allocated on the objfile obstack, point
21858 directly to it. */
21859 result = (const gdb_byte *) DW_STRING (attr);
21860 *len = strlen (DW_STRING (attr));
21861 break;
21862 case DW_FORM_block1:
21863 case DW_FORM_block2:
21864 case DW_FORM_block4:
21865 case DW_FORM_block:
21866 case DW_FORM_exprloc:
21867 case DW_FORM_data16:
21868 result = DW_BLOCK (attr)->data;
21869 *len = DW_BLOCK (attr)->size;
21870 break;
21871
21872 /* The DW_AT_const_value attributes are supposed to carry the
21873 symbol's value "represented as it would be on the target
21874 architecture." By the time we get here, it's already been
21875 converted to host endianness, so we just need to sign- or
21876 zero-extend it as appropriate. */
21877 case DW_FORM_data1:
21878 type = die_type (die, cu);
21879 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
21880 if (result == NULL)
21881 result = write_constant_as_bytes (obstack, byte_order,
21882 type, value, len);
21883 break;
21884 case DW_FORM_data2:
21885 type = die_type (die, cu);
21886 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
21887 if (result == NULL)
21888 result = write_constant_as_bytes (obstack, byte_order,
21889 type, value, len);
21890 break;
21891 case DW_FORM_data4:
21892 type = die_type (die, cu);
21893 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
21894 if (result == NULL)
21895 result = write_constant_as_bytes (obstack, byte_order,
21896 type, value, len);
21897 break;
21898 case DW_FORM_data8:
21899 type = die_type (die, cu);
21900 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
21901 if (result == NULL)
21902 result = write_constant_as_bytes (obstack, byte_order,
21903 type, value, len);
21904 break;
21905
21906 case DW_FORM_sdata:
21907 case DW_FORM_implicit_const:
21908 type = die_type (die, cu);
21909 result = write_constant_as_bytes (obstack, byte_order,
21910 type, DW_SND (attr), len);
21911 break;
21912
21913 case DW_FORM_udata:
21914 type = die_type (die, cu);
21915 result = write_constant_as_bytes (obstack, byte_order,
21916 type, DW_UNSND (attr), len);
21917 break;
21918
21919 default:
21920 complaint (&symfile_complaints,
21921 _("unsupported const value attribute form: '%s'"),
21922 dwarf_form_name (attr->form));
21923 break;
21924 }
21925
21926 return result;
21927 }
21928
21929 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21930 valid type for this die is found. */
21931
21932 struct type *
21933 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21934 struct dwarf2_per_cu_data *per_cu)
21935 {
21936 struct dwarf2_cu *cu;
21937 struct die_info *die;
21938
21939 dw2_setup (per_cu->objfile);
21940
21941 if (per_cu->cu == NULL)
21942 load_cu (per_cu);
21943 cu = per_cu->cu;
21944 if (!cu)
21945 return NULL;
21946
21947 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21948 if (!die)
21949 return NULL;
21950
21951 return die_type (die, cu);
21952 }
21953
21954 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21955 PER_CU. */
21956
21957 struct type *
21958 dwarf2_get_die_type (cu_offset die_offset,
21959 struct dwarf2_per_cu_data *per_cu)
21960 {
21961 dw2_setup (per_cu->objfile);
21962
21963 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21964 return get_die_type_at_offset (die_offset_sect, per_cu);
21965 }
21966
21967 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21968 On entry *REF_CU is the CU of SRC_DIE.
21969 On exit *REF_CU is the CU of the result.
21970 Returns NULL if the referenced DIE isn't found. */
21971
21972 static struct die_info *
21973 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21974 struct dwarf2_cu **ref_cu)
21975 {
21976 struct die_info temp_die;
21977 struct dwarf2_cu *sig_cu;
21978 struct die_info *die;
21979
21980 /* While it might be nice to assert sig_type->type == NULL here,
21981 we can get here for DW_AT_imported_declaration where we need
21982 the DIE not the type. */
21983
21984 /* If necessary, add it to the queue and load its DIEs. */
21985
21986 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21987 read_signatured_type (sig_type);
21988
21989 sig_cu = sig_type->per_cu.cu;
21990 gdb_assert (sig_cu != NULL);
21991 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21992 temp_die.sect_off = sig_type->type_offset_in_section;
21993 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21994 to_underlying (temp_die.sect_off));
21995 if (die)
21996 {
21997 /* For .gdb_index version 7 keep track of included TUs.
21998 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21999 if (dwarf2_per_objfile->index_table != NULL
22000 && dwarf2_per_objfile->index_table->version <= 7)
22001 {
22002 VEC_safe_push (dwarf2_per_cu_ptr,
22003 (*ref_cu)->per_cu->imported_symtabs,
22004 sig_cu->per_cu);
22005 }
22006
22007 *ref_cu = sig_cu;
22008 return die;
22009 }
22010
22011 return NULL;
22012 }
22013
22014 /* Follow signatured type referenced by ATTR in SRC_DIE.
22015 On entry *REF_CU is the CU of SRC_DIE.
22016 On exit *REF_CU is the CU of the result.
22017 The result is the DIE of the type.
22018 If the referenced type cannot be found an error is thrown. */
22019
22020 static struct die_info *
22021 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22022 struct dwarf2_cu **ref_cu)
22023 {
22024 ULONGEST signature = DW_SIGNATURE (attr);
22025 struct signatured_type *sig_type;
22026 struct die_info *die;
22027
22028 gdb_assert (attr->form == DW_FORM_ref_sig8);
22029
22030 sig_type = lookup_signatured_type (*ref_cu, signature);
22031 /* sig_type will be NULL if the signatured type is missing from
22032 the debug info. */
22033 if (sig_type == NULL)
22034 {
22035 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22036 " from DIE at 0x%x [in module %s]"),
22037 hex_string (signature), to_underlying (src_die->sect_off),
22038 objfile_name ((*ref_cu)->objfile));
22039 }
22040
22041 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22042 if (die == NULL)
22043 {
22044 dump_die_for_error (src_die);
22045 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22046 " from DIE at 0x%x [in module %s]"),
22047 hex_string (signature), to_underlying (src_die->sect_off),
22048 objfile_name ((*ref_cu)->objfile));
22049 }
22050
22051 return die;
22052 }
22053
22054 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22055 reading in and processing the type unit if necessary. */
22056
22057 static struct type *
22058 get_signatured_type (struct die_info *die, ULONGEST signature,
22059 struct dwarf2_cu *cu)
22060 {
22061 struct signatured_type *sig_type;
22062 struct dwarf2_cu *type_cu;
22063 struct die_info *type_die;
22064 struct type *type;
22065
22066 sig_type = lookup_signatured_type (cu, signature);
22067 /* sig_type will be NULL if the signatured type is missing from
22068 the debug info. */
22069 if (sig_type == NULL)
22070 {
22071 complaint (&symfile_complaints,
22072 _("Dwarf Error: Cannot find signatured DIE %s referenced"
22073 " from DIE at 0x%x [in module %s]"),
22074 hex_string (signature), to_underlying (die->sect_off),
22075 objfile_name (dwarf2_per_objfile->objfile));
22076 return build_error_marker_type (cu, die);
22077 }
22078
22079 /* If we already know the type we're done. */
22080 if (sig_type->type != NULL)
22081 return sig_type->type;
22082
22083 type_cu = cu;
22084 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22085 if (type_die != NULL)
22086 {
22087 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22088 is created. This is important, for example, because for c++ classes
22089 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22090 type = read_type_die (type_die, type_cu);
22091 if (type == NULL)
22092 {
22093 complaint (&symfile_complaints,
22094 _("Dwarf Error: Cannot build signatured type %s"
22095 " referenced from DIE at 0x%x [in module %s]"),
22096 hex_string (signature), to_underlying (die->sect_off),
22097 objfile_name (dwarf2_per_objfile->objfile));
22098 type = build_error_marker_type (cu, die);
22099 }
22100 }
22101 else
22102 {
22103 complaint (&symfile_complaints,
22104 _("Dwarf Error: Problem reading signatured DIE %s referenced"
22105 " from DIE at 0x%x [in module %s]"),
22106 hex_string (signature), to_underlying (die->sect_off),
22107 objfile_name (dwarf2_per_objfile->objfile));
22108 type = build_error_marker_type (cu, die);
22109 }
22110 sig_type->type = type;
22111
22112 return type;
22113 }
22114
22115 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22116 reading in and processing the type unit if necessary. */
22117
22118 static struct type *
22119 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22120 struct dwarf2_cu *cu) /* ARI: editCase function */
22121 {
22122 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22123 if (attr_form_is_ref (attr))
22124 {
22125 struct dwarf2_cu *type_cu = cu;
22126 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22127
22128 return read_type_die (type_die, type_cu);
22129 }
22130 else if (attr->form == DW_FORM_ref_sig8)
22131 {
22132 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22133 }
22134 else
22135 {
22136 complaint (&symfile_complaints,
22137 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22138 " at 0x%x [in module %s]"),
22139 dwarf_form_name (attr->form), to_underlying (die->sect_off),
22140 objfile_name (dwarf2_per_objfile->objfile));
22141 return build_error_marker_type (cu, die);
22142 }
22143 }
22144
22145 /* Load the DIEs associated with type unit PER_CU into memory. */
22146
22147 static void
22148 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22149 {
22150 struct signatured_type *sig_type;
22151
22152 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22153 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
22154
22155 /* We have the per_cu, but we need the signatured_type.
22156 Fortunately this is an easy translation. */
22157 gdb_assert (per_cu->is_debug_types);
22158 sig_type = (struct signatured_type *) per_cu;
22159
22160 gdb_assert (per_cu->cu == NULL);
22161
22162 read_signatured_type (sig_type);
22163
22164 gdb_assert (per_cu->cu != NULL);
22165 }
22166
22167 /* die_reader_func for read_signatured_type.
22168 This is identical to load_full_comp_unit_reader,
22169 but is kept separate for now. */
22170
22171 static void
22172 read_signatured_type_reader (const struct die_reader_specs *reader,
22173 const gdb_byte *info_ptr,
22174 struct die_info *comp_unit_die,
22175 int has_children,
22176 void *data)
22177 {
22178 struct dwarf2_cu *cu = reader->cu;
22179
22180 gdb_assert (cu->die_hash == NULL);
22181 cu->die_hash =
22182 htab_create_alloc_ex (cu->header.length / 12,
22183 die_hash,
22184 die_eq,
22185 NULL,
22186 &cu->comp_unit_obstack,
22187 hashtab_obstack_allocate,
22188 dummy_obstack_deallocate);
22189
22190 if (has_children)
22191 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
22192 &info_ptr, comp_unit_die);
22193 cu->dies = comp_unit_die;
22194 /* comp_unit_die is not stored in die_hash, no need. */
22195
22196 /* We try not to read any attributes in this function, because not
22197 all CUs needed for references have been loaded yet, and symbol
22198 table processing isn't initialized. But we have to set the CU language,
22199 or we won't be able to build types correctly.
22200 Similarly, if we do not read the producer, we can not apply
22201 producer-specific interpretation. */
22202 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22203 }
22204
22205 /* Read in a signatured type and build its CU and DIEs.
22206 If the type is a stub for the real type in a DWO file,
22207 read in the real type from the DWO file as well. */
22208
22209 static void
22210 read_signatured_type (struct signatured_type *sig_type)
22211 {
22212 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22213
22214 gdb_assert (per_cu->is_debug_types);
22215 gdb_assert (per_cu->cu == NULL);
22216
22217 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
22218 read_signatured_type_reader, NULL);
22219 sig_type->per_cu.tu_read = 1;
22220 }
22221
22222 /* Decode simple location descriptions.
22223 Given a pointer to a dwarf block that defines a location, compute
22224 the location and return the value.
22225
22226 NOTE drow/2003-11-18: This function is called in two situations
22227 now: for the address of static or global variables (partial symbols
22228 only) and for offsets into structures which are expected to be
22229 (more or less) constant. The partial symbol case should go away,
22230 and only the constant case should remain. That will let this
22231 function complain more accurately. A few special modes are allowed
22232 without complaint for global variables (for instance, global
22233 register values and thread-local values).
22234
22235 A location description containing no operations indicates that the
22236 object is optimized out. The return value is 0 for that case.
22237 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22238 callers will only want a very basic result and this can become a
22239 complaint.
22240
22241 Note that stack[0] is unused except as a default error return. */
22242
22243 static CORE_ADDR
22244 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22245 {
22246 struct objfile *objfile = cu->objfile;
22247 size_t i;
22248 size_t size = blk->size;
22249 const gdb_byte *data = blk->data;
22250 CORE_ADDR stack[64];
22251 int stacki;
22252 unsigned int bytes_read, unsnd;
22253 gdb_byte op;
22254
22255 i = 0;
22256 stacki = 0;
22257 stack[stacki] = 0;
22258 stack[++stacki] = 0;
22259
22260 while (i < size)
22261 {
22262 op = data[i++];
22263 switch (op)
22264 {
22265 case DW_OP_lit0:
22266 case DW_OP_lit1:
22267 case DW_OP_lit2:
22268 case DW_OP_lit3:
22269 case DW_OP_lit4:
22270 case DW_OP_lit5:
22271 case DW_OP_lit6:
22272 case DW_OP_lit7:
22273 case DW_OP_lit8:
22274 case DW_OP_lit9:
22275 case DW_OP_lit10:
22276 case DW_OP_lit11:
22277 case DW_OP_lit12:
22278 case DW_OP_lit13:
22279 case DW_OP_lit14:
22280 case DW_OP_lit15:
22281 case DW_OP_lit16:
22282 case DW_OP_lit17:
22283 case DW_OP_lit18:
22284 case DW_OP_lit19:
22285 case DW_OP_lit20:
22286 case DW_OP_lit21:
22287 case DW_OP_lit22:
22288 case DW_OP_lit23:
22289 case DW_OP_lit24:
22290 case DW_OP_lit25:
22291 case DW_OP_lit26:
22292 case DW_OP_lit27:
22293 case DW_OP_lit28:
22294 case DW_OP_lit29:
22295 case DW_OP_lit30:
22296 case DW_OP_lit31:
22297 stack[++stacki] = op - DW_OP_lit0;
22298 break;
22299
22300 case DW_OP_reg0:
22301 case DW_OP_reg1:
22302 case DW_OP_reg2:
22303 case DW_OP_reg3:
22304 case DW_OP_reg4:
22305 case DW_OP_reg5:
22306 case DW_OP_reg6:
22307 case DW_OP_reg7:
22308 case DW_OP_reg8:
22309 case DW_OP_reg9:
22310 case DW_OP_reg10:
22311 case DW_OP_reg11:
22312 case DW_OP_reg12:
22313 case DW_OP_reg13:
22314 case DW_OP_reg14:
22315 case DW_OP_reg15:
22316 case DW_OP_reg16:
22317 case DW_OP_reg17:
22318 case DW_OP_reg18:
22319 case DW_OP_reg19:
22320 case DW_OP_reg20:
22321 case DW_OP_reg21:
22322 case DW_OP_reg22:
22323 case DW_OP_reg23:
22324 case DW_OP_reg24:
22325 case DW_OP_reg25:
22326 case DW_OP_reg26:
22327 case DW_OP_reg27:
22328 case DW_OP_reg28:
22329 case DW_OP_reg29:
22330 case DW_OP_reg30:
22331 case DW_OP_reg31:
22332 stack[++stacki] = op - DW_OP_reg0;
22333 if (i < size)
22334 dwarf2_complex_location_expr_complaint ();
22335 break;
22336
22337 case DW_OP_regx:
22338 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22339 i += bytes_read;
22340 stack[++stacki] = unsnd;
22341 if (i < size)
22342 dwarf2_complex_location_expr_complaint ();
22343 break;
22344
22345 case DW_OP_addr:
22346 stack[++stacki] = read_address (objfile->obfd, &data[i],
22347 cu, &bytes_read);
22348 i += bytes_read;
22349 break;
22350
22351 case DW_OP_const1u:
22352 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22353 i += 1;
22354 break;
22355
22356 case DW_OP_const1s:
22357 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22358 i += 1;
22359 break;
22360
22361 case DW_OP_const2u:
22362 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22363 i += 2;
22364 break;
22365
22366 case DW_OP_const2s:
22367 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22368 i += 2;
22369 break;
22370
22371 case DW_OP_const4u:
22372 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22373 i += 4;
22374 break;
22375
22376 case DW_OP_const4s:
22377 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22378 i += 4;
22379 break;
22380
22381 case DW_OP_const8u:
22382 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22383 i += 8;
22384 break;
22385
22386 case DW_OP_constu:
22387 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22388 &bytes_read);
22389 i += bytes_read;
22390 break;
22391
22392 case DW_OP_consts:
22393 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22394 i += bytes_read;
22395 break;
22396
22397 case DW_OP_dup:
22398 stack[stacki + 1] = stack[stacki];
22399 stacki++;
22400 break;
22401
22402 case DW_OP_plus:
22403 stack[stacki - 1] += stack[stacki];
22404 stacki--;
22405 break;
22406
22407 case DW_OP_plus_uconst:
22408 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22409 &bytes_read);
22410 i += bytes_read;
22411 break;
22412
22413 case DW_OP_minus:
22414 stack[stacki - 1] -= stack[stacki];
22415 stacki--;
22416 break;
22417
22418 case DW_OP_deref:
22419 /* If we're not the last op, then we definitely can't encode
22420 this using GDB's address_class enum. This is valid for partial
22421 global symbols, although the variable's address will be bogus
22422 in the psymtab. */
22423 if (i < size)
22424 dwarf2_complex_location_expr_complaint ();
22425 break;
22426
22427 case DW_OP_GNU_push_tls_address:
22428 case DW_OP_form_tls_address:
22429 /* The top of the stack has the offset from the beginning
22430 of the thread control block at which the variable is located. */
22431 /* Nothing should follow this operator, so the top of stack would
22432 be returned. */
22433 /* This is valid for partial global symbols, but the variable's
22434 address will be bogus in the psymtab. Make it always at least
22435 non-zero to not look as a variable garbage collected by linker
22436 which have DW_OP_addr 0. */
22437 if (i < size)
22438 dwarf2_complex_location_expr_complaint ();
22439 stack[stacki]++;
22440 break;
22441
22442 case DW_OP_GNU_uninit:
22443 break;
22444
22445 case DW_OP_GNU_addr_index:
22446 case DW_OP_GNU_const_index:
22447 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22448 &bytes_read);
22449 i += bytes_read;
22450 break;
22451
22452 default:
22453 {
22454 const char *name = get_DW_OP_name (op);
22455
22456 if (name)
22457 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
22458 name);
22459 else
22460 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
22461 op);
22462 }
22463
22464 return (stack[stacki]);
22465 }
22466
22467 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22468 outside of the allocated space. Also enforce minimum>0. */
22469 if (stacki >= ARRAY_SIZE (stack) - 1)
22470 {
22471 complaint (&symfile_complaints,
22472 _("location description stack overflow"));
22473 return 0;
22474 }
22475
22476 if (stacki <= 0)
22477 {
22478 complaint (&symfile_complaints,
22479 _("location description stack underflow"));
22480 return 0;
22481 }
22482 }
22483 return (stack[stacki]);
22484 }
22485
22486 /* memory allocation interface */
22487
22488 static struct dwarf_block *
22489 dwarf_alloc_block (struct dwarf2_cu *cu)
22490 {
22491 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22492 }
22493
22494 static struct die_info *
22495 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22496 {
22497 struct die_info *die;
22498 size_t size = sizeof (struct die_info);
22499
22500 if (num_attrs > 1)
22501 size += (num_attrs - 1) * sizeof (struct attribute);
22502
22503 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
22504 memset (die, 0, sizeof (struct die_info));
22505 return (die);
22506 }
22507
22508 \f
22509 /* Macro support. */
22510
22511 /* Return file name relative to the compilation directory of file number I in
22512 *LH's file name table. The result is allocated using xmalloc; the caller is
22513 responsible for freeing it. */
22514
22515 static char *
22516 file_file_name (int file, struct line_header *lh)
22517 {
22518 /* Is the file number a valid index into the line header's file name
22519 table? Remember that file numbers start with one, not zero. */
22520 if (1 <= file && file <= lh->file_names.size ())
22521 {
22522 const file_entry &fe = lh->file_names[file - 1];
22523
22524 if (!IS_ABSOLUTE_PATH (fe.name))
22525 {
22526 const char *dir = fe.include_dir (lh);
22527 if (dir != NULL)
22528 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
22529 }
22530 return xstrdup (fe.name);
22531 }
22532 else
22533 {
22534 /* The compiler produced a bogus file number. We can at least
22535 record the macro definitions made in the file, even if we
22536 won't be able to find the file by name. */
22537 char fake_name[80];
22538
22539 xsnprintf (fake_name, sizeof (fake_name),
22540 "<bad macro file number %d>", file);
22541
22542 complaint (&symfile_complaints,
22543 _("bad file number in macro information (%d)"),
22544 file);
22545
22546 return xstrdup (fake_name);
22547 }
22548 }
22549
22550 /* Return the full name of file number I in *LH's file name table.
22551 Use COMP_DIR as the name of the current directory of the
22552 compilation. The result is allocated using xmalloc; the caller is
22553 responsible for freeing it. */
22554 static char *
22555 file_full_name (int file, struct line_header *lh, const char *comp_dir)
22556 {
22557 /* Is the file number a valid index into the line header's file name
22558 table? Remember that file numbers start with one, not zero. */
22559 if (1 <= file && file <= lh->file_names.size ())
22560 {
22561 char *relative = file_file_name (file, lh);
22562
22563 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
22564 return relative;
22565 return reconcat (relative, comp_dir, SLASH_STRING,
22566 relative, (char *) NULL);
22567 }
22568 else
22569 return file_file_name (file, lh);
22570 }
22571
22572
22573 static struct macro_source_file *
22574 macro_start_file (int file, int line,
22575 struct macro_source_file *current_file,
22576 struct line_header *lh)
22577 {
22578 /* File name relative to the compilation directory of this source file. */
22579 char *file_name = file_file_name (file, lh);
22580
22581 if (! current_file)
22582 {
22583 /* Note: We don't create a macro table for this compilation unit
22584 at all until we actually get a filename. */
22585 struct macro_table *macro_table = get_macro_table ();
22586
22587 /* If we have no current file, then this must be the start_file
22588 directive for the compilation unit's main source file. */
22589 current_file = macro_set_main (macro_table, file_name);
22590 macro_define_special (macro_table);
22591 }
22592 else
22593 current_file = macro_include (current_file, line, file_name);
22594
22595 xfree (file_name);
22596
22597 return current_file;
22598 }
22599
22600 static const char *
22601 consume_improper_spaces (const char *p, const char *body)
22602 {
22603 if (*p == ' ')
22604 {
22605 complaint (&symfile_complaints,
22606 _("macro definition contains spaces "
22607 "in formal argument list:\n`%s'"),
22608 body);
22609
22610 while (*p == ' ')
22611 p++;
22612 }
22613
22614 return p;
22615 }
22616
22617
22618 static void
22619 parse_macro_definition (struct macro_source_file *file, int line,
22620 const char *body)
22621 {
22622 const char *p;
22623
22624 /* The body string takes one of two forms. For object-like macro
22625 definitions, it should be:
22626
22627 <macro name> " " <definition>
22628
22629 For function-like macro definitions, it should be:
22630
22631 <macro name> "() " <definition>
22632 or
22633 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
22634
22635 Spaces may appear only where explicitly indicated, and in the
22636 <definition>.
22637
22638 The Dwarf 2 spec says that an object-like macro's name is always
22639 followed by a space, but versions of GCC around March 2002 omit
22640 the space when the macro's definition is the empty string.
22641
22642 The Dwarf 2 spec says that there should be no spaces between the
22643 formal arguments in a function-like macro's formal argument list,
22644 but versions of GCC around March 2002 include spaces after the
22645 commas. */
22646
22647
22648 /* Find the extent of the macro name. The macro name is terminated
22649 by either a space or null character (for an object-like macro) or
22650 an opening paren (for a function-like macro). */
22651 for (p = body; *p; p++)
22652 if (*p == ' ' || *p == '(')
22653 break;
22654
22655 if (*p == ' ' || *p == '\0')
22656 {
22657 /* It's an object-like macro. */
22658 int name_len = p - body;
22659 char *name = savestring (body, name_len);
22660 const char *replacement;
22661
22662 if (*p == ' ')
22663 replacement = body + name_len + 1;
22664 else
22665 {
22666 dwarf2_macro_malformed_definition_complaint (body);
22667 replacement = body + name_len;
22668 }
22669
22670 macro_define_object (file, line, name, replacement);
22671
22672 xfree (name);
22673 }
22674 else if (*p == '(')
22675 {
22676 /* It's a function-like macro. */
22677 char *name = savestring (body, p - body);
22678 int argc = 0;
22679 int argv_size = 1;
22680 char **argv = XNEWVEC (char *, argv_size);
22681
22682 p++;
22683
22684 p = consume_improper_spaces (p, body);
22685
22686 /* Parse the formal argument list. */
22687 while (*p && *p != ')')
22688 {
22689 /* Find the extent of the current argument name. */
22690 const char *arg_start = p;
22691
22692 while (*p && *p != ',' && *p != ')' && *p != ' ')
22693 p++;
22694
22695 if (! *p || p == arg_start)
22696 dwarf2_macro_malformed_definition_complaint (body);
22697 else
22698 {
22699 /* Make sure argv has room for the new argument. */
22700 if (argc >= argv_size)
22701 {
22702 argv_size *= 2;
22703 argv = XRESIZEVEC (char *, argv, argv_size);
22704 }
22705
22706 argv[argc++] = savestring (arg_start, p - arg_start);
22707 }
22708
22709 p = consume_improper_spaces (p, body);
22710
22711 /* Consume the comma, if present. */
22712 if (*p == ',')
22713 {
22714 p++;
22715
22716 p = consume_improper_spaces (p, body);
22717 }
22718 }
22719
22720 if (*p == ')')
22721 {
22722 p++;
22723
22724 if (*p == ' ')
22725 /* Perfectly formed definition, no complaints. */
22726 macro_define_function (file, line, name,
22727 argc, (const char **) argv,
22728 p + 1);
22729 else if (*p == '\0')
22730 {
22731 /* Complain, but do define it. */
22732 dwarf2_macro_malformed_definition_complaint (body);
22733 macro_define_function (file, line, name,
22734 argc, (const char **) argv,
22735 p);
22736 }
22737 else
22738 /* Just complain. */
22739 dwarf2_macro_malformed_definition_complaint (body);
22740 }
22741 else
22742 /* Just complain. */
22743 dwarf2_macro_malformed_definition_complaint (body);
22744
22745 xfree (name);
22746 {
22747 int i;
22748
22749 for (i = 0; i < argc; i++)
22750 xfree (argv[i]);
22751 }
22752 xfree (argv);
22753 }
22754 else
22755 dwarf2_macro_malformed_definition_complaint (body);
22756 }
22757
22758 /* Skip some bytes from BYTES according to the form given in FORM.
22759 Returns the new pointer. */
22760
22761 static const gdb_byte *
22762 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
22763 enum dwarf_form form,
22764 unsigned int offset_size,
22765 struct dwarf2_section_info *section)
22766 {
22767 unsigned int bytes_read;
22768
22769 switch (form)
22770 {
22771 case DW_FORM_data1:
22772 case DW_FORM_flag:
22773 ++bytes;
22774 break;
22775
22776 case DW_FORM_data2:
22777 bytes += 2;
22778 break;
22779
22780 case DW_FORM_data4:
22781 bytes += 4;
22782 break;
22783
22784 case DW_FORM_data8:
22785 bytes += 8;
22786 break;
22787
22788 case DW_FORM_data16:
22789 bytes += 16;
22790 break;
22791
22792 case DW_FORM_string:
22793 read_direct_string (abfd, bytes, &bytes_read);
22794 bytes += bytes_read;
22795 break;
22796
22797 case DW_FORM_sec_offset:
22798 case DW_FORM_strp:
22799 case DW_FORM_GNU_strp_alt:
22800 bytes += offset_size;
22801 break;
22802
22803 case DW_FORM_block:
22804 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
22805 bytes += bytes_read;
22806 break;
22807
22808 case DW_FORM_block1:
22809 bytes += 1 + read_1_byte (abfd, bytes);
22810 break;
22811 case DW_FORM_block2:
22812 bytes += 2 + read_2_bytes (abfd, bytes);
22813 break;
22814 case DW_FORM_block4:
22815 bytes += 4 + read_4_bytes (abfd, bytes);
22816 break;
22817
22818 case DW_FORM_sdata:
22819 case DW_FORM_udata:
22820 case DW_FORM_GNU_addr_index:
22821 case DW_FORM_GNU_str_index:
22822 bytes = gdb_skip_leb128 (bytes, buffer_end);
22823 if (bytes == NULL)
22824 {
22825 dwarf2_section_buffer_overflow_complaint (section);
22826 return NULL;
22827 }
22828 break;
22829
22830 case DW_FORM_implicit_const:
22831 break;
22832
22833 default:
22834 {
22835 complaint (&symfile_complaints,
22836 _("invalid form 0x%x in `%s'"),
22837 form, get_section_name (section));
22838 return NULL;
22839 }
22840 }
22841
22842 return bytes;
22843 }
22844
22845 /* A helper for dwarf_decode_macros that handles skipping an unknown
22846 opcode. Returns an updated pointer to the macro data buffer; or,
22847 on error, issues a complaint and returns NULL. */
22848
22849 static const gdb_byte *
22850 skip_unknown_opcode (unsigned int opcode,
22851 const gdb_byte **opcode_definitions,
22852 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22853 bfd *abfd,
22854 unsigned int offset_size,
22855 struct dwarf2_section_info *section)
22856 {
22857 unsigned int bytes_read, i;
22858 unsigned long arg;
22859 const gdb_byte *defn;
22860
22861 if (opcode_definitions[opcode] == NULL)
22862 {
22863 complaint (&symfile_complaints,
22864 _("unrecognized DW_MACFINO opcode 0x%x"),
22865 opcode);
22866 return NULL;
22867 }
22868
22869 defn = opcode_definitions[opcode];
22870 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
22871 defn += bytes_read;
22872
22873 for (i = 0; i < arg; ++i)
22874 {
22875 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
22876 (enum dwarf_form) defn[i], offset_size,
22877 section);
22878 if (mac_ptr == NULL)
22879 {
22880 /* skip_form_bytes already issued the complaint. */
22881 return NULL;
22882 }
22883 }
22884
22885 return mac_ptr;
22886 }
22887
22888 /* A helper function which parses the header of a macro section.
22889 If the macro section is the extended (for now called "GNU") type,
22890 then this updates *OFFSET_SIZE. Returns a pointer to just after
22891 the header, or issues a complaint and returns NULL on error. */
22892
22893 static const gdb_byte *
22894 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22895 bfd *abfd,
22896 const gdb_byte *mac_ptr,
22897 unsigned int *offset_size,
22898 int section_is_gnu)
22899 {
22900 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22901
22902 if (section_is_gnu)
22903 {
22904 unsigned int version, flags;
22905
22906 version = read_2_bytes (abfd, mac_ptr);
22907 if (version != 4 && version != 5)
22908 {
22909 complaint (&symfile_complaints,
22910 _("unrecognized version `%d' in .debug_macro section"),
22911 version);
22912 return NULL;
22913 }
22914 mac_ptr += 2;
22915
22916 flags = read_1_byte (abfd, mac_ptr);
22917 ++mac_ptr;
22918 *offset_size = (flags & 1) ? 8 : 4;
22919
22920 if ((flags & 2) != 0)
22921 /* We don't need the line table offset. */
22922 mac_ptr += *offset_size;
22923
22924 /* Vendor opcode descriptions. */
22925 if ((flags & 4) != 0)
22926 {
22927 unsigned int i, count;
22928
22929 count = read_1_byte (abfd, mac_ptr);
22930 ++mac_ptr;
22931 for (i = 0; i < count; ++i)
22932 {
22933 unsigned int opcode, bytes_read;
22934 unsigned long arg;
22935
22936 opcode = read_1_byte (abfd, mac_ptr);
22937 ++mac_ptr;
22938 opcode_definitions[opcode] = mac_ptr;
22939 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22940 mac_ptr += bytes_read;
22941 mac_ptr += arg;
22942 }
22943 }
22944 }
22945
22946 return mac_ptr;
22947 }
22948
22949 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22950 including DW_MACRO_import. */
22951
22952 static void
22953 dwarf_decode_macro_bytes (bfd *abfd,
22954 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22955 struct macro_source_file *current_file,
22956 struct line_header *lh,
22957 struct dwarf2_section_info *section,
22958 int section_is_gnu, int section_is_dwz,
22959 unsigned int offset_size,
22960 htab_t include_hash)
22961 {
22962 struct objfile *objfile = dwarf2_per_objfile->objfile;
22963 enum dwarf_macro_record_type macinfo_type;
22964 int at_commandline;
22965 const gdb_byte *opcode_definitions[256];
22966
22967 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22968 &offset_size, section_is_gnu);
22969 if (mac_ptr == NULL)
22970 {
22971 /* We already issued a complaint. */
22972 return;
22973 }
22974
22975 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22976 GDB is still reading the definitions from command line. First
22977 DW_MACINFO_start_file will need to be ignored as it was already executed
22978 to create CURRENT_FILE for the main source holding also the command line
22979 definitions. On first met DW_MACINFO_start_file this flag is reset to
22980 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22981
22982 at_commandline = 1;
22983
22984 do
22985 {
22986 /* Do we at least have room for a macinfo type byte? */
22987 if (mac_ptr >= mac_end)
22988 {
22989 dwarf2_section_buffer_overflow_complaint (section);
22990 break;
22991 }
22992
22993 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22994 mac_ptr++;
22995
22996 /* Note that we rely on the fact that the corresponding GNU and
22997 DWARF constants are the same. */
22998 switch (macinfo_type)
22999 {
23000 /* A zero macinfo type indicates the end of the macro
23001 information. */
23002 case 0:
23003 break;
23004
23005 case DW_MACRO_define:
23006 case DW_MACRO_undef:
23007 case DW_MACRO_define_strp:
23008 case DW_MACRO_undef_strp:
23009 case DW_MACRO_define_sup:
23010 case DW_MACRO_undef_sup:
23011 {
23012 unsigned int bytes_read;
23013 int line;
23014 const char *body;
23015 int is_define;
23016
23017 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23018 mac_ptr += bytes_read;
23019
23020 if (macinfo_type == DW_MACRO_define
23021 || macinfo_type == DW_MACRO_undef)
23022 {
23023 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23024 mac_ptr += bytes_read;
23025 }
23026 else
23027 {
23028 LONGEST str_offset;
23029
23030 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
23031 mac_ptr += offset_size;
23032
23033 if (macinfo_type == DW_MACRO_define_sup
23034 || macinfo_type == DW_MACRO_undef_sup
23035 || section_is_dwz)
23036 {
23037 struct dwz_file *dwz = dwarf2_get_dwz_file ();
23038
23039 body = read_indirect_string_from_dwz (dwz, str_offset);
23040 }
23041 else
23042 body = read_indirect_string_at_offset (abfd, str_offset);
23043 }
23044
23045 is_define = (macinfo_type == DW_MACRO_define
23046 || macinfo_type == DW_MACRO_define_strp
23047 || macinfo_type == DW_MACRO_define_sup);
23048 if (! current_file)
23049 {
23050 /* DWARF violation as no main source is present. */
23051 complaint (&symfile_complaints,
23052 _("debug info with no main source gives macro %s "
23053 "on line %d: %s"),
23054 is_define ? _("definition") : _("undefinition"),
23055 line, body);
23056 break;
23057 }
23058 if ((line == 0 && !at_commandline)
23059 || (line != 0 && at_commandline))
23060 complaint (&symfile_complaints,
23061 _("debug info gives %s macro %s with %s line %d: %s"),
23062 at_commandline ? _("command-line") : _("in-file"),
23063 is_define ? _("definition") : _("undefinition"),
23064 line == 0 ? _("zero") : _("non-zero"), line, body);
23065
23066 if (is_define)
23067 parse_macro_definition (current_file, line, body);
23068 else
23069 {
23070 gdb_assert (macinfo_type == DW_MACRO_undef
23071 || macinfo_type == DW_MACRO_undef_strp
23072 || macinfo_type == DW_MACRO_undef_sup);
23073 macro_undef (current_file, line, body);
23074 }
23075 }
23076 break;
23077
23078 case DW_MACRO_start_file:
23079 {
23080 unsigned int bytes_read;
23081 int line, file;
23082
23083 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23084 mac_ptr += bytes_read;
23085 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23086 mac_ptr += bytes_read;
23087
23088 if ((line == 0 && !at_commandline)
23089 || (line != 0 && at_commandline))
23090 complaint (&symfile_complaints,
23091 _("debug info gives source %d included "
23092 "from %s at %s line %d"),
23093 file, at_commandline ? _("command-line") : _("file"),
23094 line == 0 ? _("zero") : _("non-zero"), line);
23095
23096 if (at_commandline)
23097 {
23098 /* This DW_MACRO_start_file was executed in the
23099 pass one. */
23100 at_commandline = 0;
23101 }
23102 else
23103 current_file = macro_start_file (file, line, current_file, lh);
23104 }
23105 break;
23106
23107 case DW_MACRO_end_file:
23108 if (! current_file)
23109 complaint (&symfile_complaints,
23110 _("macro debug info has an unmatched "
23111 "`close_file' directive"));
23112 else
23113 {
23114 current_file = current_file->included_by;
23115 if (! current_file)
23116 {
23117 enum dwarf_macro_record_type next_type;
23118
23119 /* GCC circa March 2002 doesn't produce the zero
23120 type byte marking the end of the compilation
23121 unit. Complain if it's not there, but exit no
23122 matter what. */
23123
23124 /* Do we at least have room for a macinfo type byte? */
23125 if (mac_ptr >= mac_end)
23126 {
23127 dwarf2_section_buffer_overflow_complaint (section);
23128 return;
23129 }
23130
23131 /* We don't increment mac_ptr here, so this is just
23132 a look-ahead. */
23133 next_type
23134 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23135 mac_ptr);
23136 if (next_type != 0)
23137 complaint (&symfile_complaints,
23138 _("no terminating 0-type entry for "
23139 "macros in `.debug_macinfo' section"));
23140
23141 return;
23142 }
23143 }
23144 break;
23145
23146 case DW_MACRO_import:
23147 case DW_MACRO_import_sup:
23148 {
23149 LONGEST offset;
23150 void **slot;
23151 bfd *include_bfd = abfd;
23152 struct dwarf2_section_info *include_section = section;
23153 const gdb_byte *include_mac_end = mac_end;
23154 int is_dwz = section_is_dwz;
23155 const gdb_byte *new_mac_ptr;
23156
23157 offset = read_offset_1 (abfd, mac_ptr, offset_size);
23158 mac_ptr += offset_size;
23159
23160 if (macinfo_type == DW_MACRO_import_sup)
23161 {
23162 struct dwz_file *dwz = dwarf2_get_dwz_file ();
23163
23164 dwarf2_read_section (objfile, &dwz->macro);
23165
23166 include_section = &dwz->macro;
23167 include_bfd = get_section_bfd_owner (include_section);
23168 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23169 is_dwz = 1;
23170 }
23171
23172 new_mac_ptr = include_section->buffer + offset;
23173 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23174
23175 if (*slot != NULL)
23176 {
23177 /* This has actually happened; see
23178 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23179 complaint (&symfile_complaints,
23180 _("recursive DW_MACRO_import in "
23181 ".debug_macro section"));
23182 }
23183 else
23184 {
23185 *slot = (void *) new_mac_ptr;
23186
23187 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
23188 include_mac_end, current_file, lh,
23189 section, section_is_gnu, is_dwz,
23190 offset_size, include_hash);
23191
23192 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23193 }
23194 }
23195 break;
23196
23197 case DW_MACINFO_vendor_ext:
23198 if (!section_is_gnu)
23199 {
23200 unsigned int bytes_read;
23201
23202 /* This reads the constant, but since we don't recognize
23203 any vendor extensions, we ignore it. */
23204 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23205 mac_ptr += bytes_read;
23206 read_direct_string (abfd, mac_ptr, &bytes_read);
23207 mac_ptr += bytes_read;
23208
23209 /* We don't recognize any vendor extensions. */
23210 break;
23211 }
23212 /* FALLTHROUGH */
23213
23214 default:
23215 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23216 mac_ptr, mac_end, abfd, offset_size,
23217 section);
23218 if (mac_ptr == NULL)
23219 return;
23220 break;
23221 }
23222 } while (macinfo_type != 0);
23223 }
23224
23225 static void
23226 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23227 int section_is_gnu)
23228 {
23229 struct objfile *objfile = dwarf2_per_objfile->objfile;
23230 struct line_header *lh = cu->line_header;
23231 bfd *abfd;
23232 const gdb_byte *mac_ptr, *mac_end;
23233 struct macro_source_file *current_file = 0;
23234 enum dwarf_macro_record_type macinfo_type;
23235 unsigned int offset_size = cu->header.offset_size;
23236 const gdb_byte *opcode_definitions[256];
23237 void **slot;
23238 struct dwarf2_section_info *section;
23239 const char *section_name;
23240
23241 if (cu->dwo_unit != NULL)
23242 {
23243 if (section_is_gnu)
23244 {
23245 section = &cu->dwo_unit->dwo_file->sections.macro;
23246 section_name = ".debug_macro.dwo";
23247 }
23248 else
23249 {
23250 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23251 section_name = ".debug_macinfo.dwo";
23252 }
23253 }
23254 else
23255 {
23256 if (section_is_gnu)
23257 {
23258 section = &dwarf2_per_objfile->macro;
23259 section_name = ".debug_macro";
23260 }
23261 else
23262 {
23263 section = &dwarf2_per_objfile->macinfo;
23264 section_name = ".debug_macinfo";
23265 }
23266 }
23267
23268 dwarf2_read_section (objfile, section);
23269 if (section->buffer == NULL)
23270 {
23271 complaint (&symfile_complaints, _("missing %s section"), section_name);
23272 return;
23273 }
23274 abfd = get_section_bfd_owner (section);
23275
23276 /* First pass: Find the name of the base filename.
23277 This filename is needed in order to process all macros whose definition
23278 (or undefinition) comes from the command line. These macros are defined
23279 before the first DW_MACINFO_start_file entry, and yet still need to be
23280 associated to the base file.
23281
23282 To determine the base file name, we scan the macro definitions until we
23283 reach the first DW_MACINFO_start_file entry. We then initialize
23284 CURRENT_FILE accordingly so that any macro definition found before the
23285 first DW_MACINFO_start_file can still be associated to the base file. */
23286
23287 mac_ptr = section->buffer + offset;
23288 mac_end = section->buffer + section->size;
23289
23290 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23291 &offset_size, section_is_gnu);
23292 if (mac_ptr == NULL)
23293 {
23294 /* We already issued a complaint. */
23295 return;
23296 }
23297
23298 do
23299 {
23300 /* Do we at least have room for a macinfo type byte? */
23301 if (mac_ptr >= mac_end)
23302 {
23303 /* Complaint is printed during the second pass as GDB will probably
23304 stop the first pass earlier upon finding
23305 DW_MACINFO_start_file. */
23306 break;
23307 }
23308
23309 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23310 mac_ptr++;
23311
23312 /* Note that we rely on the fact that the corresponding GNU and
23313 DWARF constants are the same. */
23314 switch (macinfo_type)
23315 {
23316 /* A zero macinfo type indicates the end of the macro
23317 information. */
23318 case 0:
23319 break;
23320
23321 case DW_MACRO_define:
23322 case DW_MACRO_undef:
23323 /* Only skip the data by MAC_PTR. */
23324 {
23325 unsigned int bytes_read;
23326
23327 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23328 mac_ptr += bytes_read;
23329 read_direct_string (abfd, mac_ptr, &bytes_read);
23330 mac_ptr += bytes_read;
23331 }
23332 break;
23333
23334 case DW_MACRO_start_file:
23335 {
23336 unsigned int bytes_read;
23337 int line, file;
23338
23339 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23340 mac_ptr += bytes_read;
23341 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23342 mac_ptr += bytes_read;
23343
23344 current_file = macro_start_file (file, line, current_file, lh);
23345 }
23346 break;
23347
23348 case DW_MACRO_end_file:
23349 /* No data to skip by MAC_PTR. */
23350 break;
23351
23352 case DW_MACRO_define_strp:
23353 case DW_MACRO_undef_strp:
23354 case DW_MACRO_define_sup:
23355 case DW_MACRO_undef_sup:
23356 {
23357 unsigned int bytes_read;
23358
23359 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23360 mac_ptr += bytes_read;
23361 mac_ptr += offset_size;
23362 }
23363 break;
23364
23365 case DW_MACRO_import:
23366 case DW_MACRO_import_sup:
23367 /* Note that, according to the spec, a transparent include
23368 chain cannot call DW_MACRO_start_file. So, we can just
23369 skip this opcode. */
23370 mac_ptr += offset_size;
23371 break;
23372
23373 case DW_MACINFO_vendor_ext:
23374 /* Only skip the data by MAC_PTR. */
23375 if (!section_is_gnu)
23376 {
23377 unsigned int bytes_read;
23378
23379 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23380 mac_ptr += bytes_read;
23381 read_direct_string (abfd, mac_ptr, &bytes_read);
23382 mac_ptr += bytes_read;
23383 }
23384 /* FALLTHROUGH */
23385
23386 default:
23387 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23388 mac_ptr, mac_end, abfd, offset_size,
23389 section);
23390 if (mac_ptr == NULL)
23391 return;
23392 break;
23393 }
23394 } while (macinfo_type != 0 && current_file == NULL);
23395
23396 /* Second pass: Process all entries.
23397
23398 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23399 command-line macro definitions/undefinitions. This flag is unset when we
23400 reach the first DW_MACINFO_start_file entry. */
23401
23402 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23403 htab_eq_pointer,
23404 NULL, xcalloc, xfree));
23405 mac_ptr = section->buffer + offset;
23406 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23407 *slot = (void *) mac_ptr;
23408 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
23409 current_file, lh, section,
23410 section_is_gnu, 0, offset_size,
23411 include_hash.get ());
23412 }
23413
23414 /* Check if the attribute's form is a DW_FORM_block*
23415 if so return true else false. */
23416
23417 static int
23418 attr_form_is_block (const struct attribute *attr)
23419 {
23420 return (attr == NULL ? 0 :
23421 attr->form == DW_FORM_block1
23422 || attr->form == DW_FORM_block2
23423 || attr->form == DW_FORM_block4
23424 || attr->form == DW_FORM_block
23425 || attr->form == DW_FORM_exprloc);
23426 }
23427
23428 /* Return non-zero if ATTR's value is a section offset --- classes
23429 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
23430 You may use DW_UNSND (attr) to retrieve such offsets.
23431
23432 Section 7.5.4, "Attribute Encodings", explains that no attribute
23433 may have a value that belongs to more than one of these classes; it
23434 would be ambiguous if we did, because we use the same forms for all
23435 of them. */
23436
23437 static int
23438 attr_form_is_section_offset (const struct attribute *attr)
23439 {
23440 return (attr->form == DW_FORM_data4
23441 || attr->form == DW_FORM_data8
23442 || attr->form == DW_FORM_sec_offset);
23443 }
23444
23445 /* Return non-zero if ATTR's value falls in the 'constant' class, or
23446 zero otherwise. When this function returns true, you can apply
23447 dwarf2_get_attr_constant_value to it.
23448
23449 However, note that for some attributes you must check
23450 attr_form_is_section_offset before using this test. DW_FORM_data4
23451 and DW_FORM_data8 are members of both the constant class, and of
23452 the classes that contain offsets into other debug sections
23453 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
23454 that, if an attribute's can be either a constant or one of the
23455 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
23456 taken as section offsets, not constants.
23457
23458 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
23459 cannot handle that. */
23460
23461 static int
23462 attr_form_is_constant (const struct attribute *attr)
23463 {
23464 switch (attr->form)
23465 {
23466 case DW_FORM_sdata:
23467 case DW_FORM_udata:
23468 case DW_FORM_data1:
23469 case DW_FORM_data2:
23470 case DW_FORM_data4:
23471 case DW_FORM_data8:
23472 case DW_FORM_implicit_const:
23473 return 1;
23474 default:
23475 return 0;
23476 }
23477 }
23478
23479
23480 /* DW_ADDR is always stored already as sect_offset; despite for the forms
23481 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
23482
23483 static int
23484 attr_form_is_ref (const struct attribute *attr)
23485 {
23486 switch (attr->form)
23487 {
23488 case DW_FORM_ref_addr:
23489 case DW_FORM_ref1:
23490 case DW_FORM_ref2:
23491 case DW_FORM_ref4:
23492 case DW_FORM_ref8:
23493 case DW_FORM_ref_udata:
23494 case DW_FORM_GNU_ref_alt:
23495 return 1;
23496 default:
23497 return 0;
23498 }
23499 }
23500
23501 /* Return the .debug_loc section to use for CU.
23502 For DWO files use .debug_loc.dwo. */
23503
23504 static struct dwarf2_section_info *
23505 cu_debug_loc_section (struct dwarf2_cu *cu)
23506 {
23507 if (cu->dwo_unit)
23508 {
23509 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23510
23511 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23512 }
23513 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23514 : &dwarf2_per_objfile->loc);
23515 }
23516
23517 /* A helper function that fills in a dwarf2_loclist_baton. */
23518
23519 static void
23520 fill_in_loclist_baton (struct dwarf2_cu *cu,
23521 struct dwarf2_loclist_baton *baton,
23522 const struct attribute *attr)
23523 {
23524 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23525
23526 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
23527
23528 baton->per_cu = cu->per_cu;
23529 gdb_assert (baton->per_cu);
23530 /* We don't know how long the location list is, but make sure we
23531 don't run off the edge of the section. */
23532 baton->size = section->size - DW_UNSND (attr);
23533 baton->data = section->buffer + DW_UNSND (attr);
23534 baton->base_address = cu->base_address;
23535 baton->from_dwo = cu->dwo_unit != NULL;
23536 }
23537
23538 static void
23539 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23540 struct dwarf2_cu *cu, int is_block)
23541 {
23542 struct objfile *objfile = dwarf2_per_objfile->objfile;
23543 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23544
23545 if (attr_form_is_section_offset (attr)
23546 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23547 the section. If so, fall through to the complaint in the
23548 other branch. */
23549 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
23550 {
23551 struct dwarf2_loclist_baton *baton;
23552
23553 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23554
23555 fill_in_loclist_baton (cu, baton, attr);
23556
23557 if (cu->base_known == 0)
23558 complaint (&symfile_complaints,
23559 _("Location list used without "
23560 "specifying the CU base address."));
23561
23562 SYMBOL_ACLASS_INDEX (sym) = (is_block
23563 ? dwarf2_loclist_block_index
23564 : dwarf2_loclist_index);
23565 SYMBOL_LOCATION_BATON (sym) = baton;
23566 }
23567 else
23568 {
23569 struct dwarf2_locexpr_baton *baton;
23570
23571 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23572 baton->per_cu = cu->per_cu;
23573 gdb_assert (baton->per_cu);
23574
23575 if (attr_form_is_block (attr))
23576 {
23577 /* Note that we're just copying the block's data pointer
23578 here, not the actual data. We're still pointing into the
23579 info_buffer for SYM's objfile; right now we never release
23580 that buffer, but when we do clean up properly this may
23581 need to change. */
23582 baton->size = DW_BLOCK (attr)->size;
23583 baton->data = DW_BLOCK (attr)->data;
23584 }
23585 else
23586 {
23587 dwarf2_invalid_attrib_class_complaint ("location description",
23588 SYMBOL_NATURAL_NAME (sym));
23589 baton->size = 0;
23590 }
23591
23592 SYMBOL_ACLASS_INDEX (sym) = (is_block
23593 ? dwarf2_locexpr_block_index
23594 : dwarf2_locexpr_index);
23595 SYMBOL_LOCATION_BATON (sym) = baton;
23596 }
23597 }
23598
23599 /* Return the OBJFILE associated with the compilation unit CU. If CU
23600 came from a separate debuginfo file, then the master objfile is
23601 returned. */
23602
23603 struct objfile *
23604 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
23605 {
23606 struct objfile *objfile = per_cu->objfile;
23607
23608 /* Return the master objfile, so that we can report and look up the
23609 correct file containing this variable. */
23610 if (objfile->separate_debug_objfile_backlink)
23611 objfile = objfile->separate_debug_objfile_backlink;
23612
23613 return objfile;
23614 }
23615
23616 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23617 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23618 CU_HEADERP first. */
23619
23620 static const struct comp_unit_head *
23621 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23622 struct dwarf2_per_cu_data *per_cu)
23623 {
23624 const gdb_byte *info_ptr;
23625
23626 if (per_cu->cu)
23627 return &per_cu->cu->header;
23628
23629 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23630
23631 memset (cu_headerp, 0, sizeof (*cu_headerp));
23632 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23633 rcuh_kind::COMPILE);
23634
23635 return cu_headerp;
23636 }
23637
23638 /* Return the address size given in the compilation unit header for CU. */
23639
23640 int
23641 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
23642 {
23643 struct comp_unit_head cu_header_local;
23644 const struct comp_unit_head *cu_headerp;
23645
23646 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23647
23648 return cu_headerp->addr_size;
23649 }
23650
23651 /* Return the offset size given in the compilation unit header for CU. */
23652
23653 int
23654 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
23655 {
23656 struct comp_unit_head cu_header_local;
23657 const struct comp_unit_head *cu_headerp;
23658
23659 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23660
23661 return cu_headerp->offset_size;
23662 }
23663
23664 /* See its dwarf2loc.h declaration. */
23665
23666 int
23667 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
23668 {
23669 struct comp_unit_head cu_header_local;
23670 const struct comp_unit_head *cu_headerp;
23671
23672 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23673
23674 if (cu_headerp->version == 2)
23675 return cu_headerp->addr_size;
23676 else
23677 return cu_headerp->offset_size;
23678 }
23679
23680 /* Return the text offset of the CU. The returned offset comes from
23681 this CU's objfile. If this objfile came from a separate debuginfo
23682 file, then the offset may be different from the corresponding
23683 offset in the parent objfile. */
23684
23685 CORE_ADDR
23686 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
23687 {
23688 struct objfile *objfile = per_cu->objfile;
23689
23690 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23691 }
23692
23693 /* Return DWARF version number of PER_CU. */
23694
23695 short
23696 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
23697 {
23698 return per_cu->dwarf_version;
23699 }
23700
23701 /* Locate the .debug_info compilation unit from CU's objfile which contains
23702 the DIE at OFFSET. Raises an error on failure. */
23703
23704 static struct dwarf2_per_cu_data *
23705 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23706 unsigned int offset_in_dwz,
23707 struct objfile *objfile)
23708 {
23709 struct dwarf2_per_cu_data *this_cu;
23710 int low, high;
23711 const sect_offset *cu_off;
23712
23713 low = 0;
23714 high = dwarf2_per_objfile->n_comp_units - 1;
23715 while (high > low)
23716 {
23717 struct dwarf2_per_cu_data *mid_cu;
23718 int mid = low + (high - low) / 2;
23719
23720 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
23721 cu_off = &mid_cu->sect_off;
23722 if (mid_cu->is_dwz > offset_in_dwz
23723 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
23724 high = mid;
23725 else
23726 low = mid + 1;
23727 }
23728 gdb_assert (low == high);
23729 this_cu = dwarf2_per_objfile->all_comp_units[low];
23730 cu_off = &this_cu->sect_off;
23731 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
23732 {
23733 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23734 error (_("Dwarf Error: could not find partial DIE containing "
23735 "offset 0x%x [in module %s]"),
23736 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
23737
23738 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23739 <= sect_off);
23740 return dwarf2_per_objfile->all_comp_units[low-1];
23741 }
23742 else
23743 {
23744 this_cu = dwarf2_per_objfile->all_comp_units[low];
23745 if (low == dwarf2_per_objfile->n_comp_units - 1
23746 && sect_off >= this_cu->sect_off + this_cu->length)
23747 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
23748 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23749 return this_cu;
23750 }
23751 }
23752
23753 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23754
23755 static void
23756 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
23757 {
23758 memset (cu, 0, sizeof (*cu));
23759 per_cu->cu = cu;
23760 cu->per_cu = per_cu;
23761 cu->objfile = per_cu->objfile;
23762 obstack_init (&cu->comp_unit_obstack);
23763 }
23764
23765 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23766
23767 static void
23768 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23769 enum language pretend_language)
23770 {
23771 struct attribute *attr;
23772
23773 /* Set the language we're debugging. */
23774 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23775 if (attr)
23776 set_cu_language (DW_UNSND (attr), cu);
23777 else
23778 {
23779 cu->language = pretend_language;
23780 cu->language_defn = language_def (cu->language);
23781 }
23782
23783 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23784 }
23785
23786 /* Release one cached compilation unit, CU. We unlink it from the tree
23787 of compilation units, but we don't remove it from the read_in_chain;
23788 the caller is responsible for that.
23789 NOTE: DATA is a void * because this function is also used as a
23790 cleanup routine. */
23791
23792 static void
23793 free_heap_comp_unit (void *data)
23794 {
23795 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23796
23797 gdb_assert (cu->per_cu != NULL);
23798 cu->per_cu->cu = NULL;
23799 cu->per_cu = NULL;
23800
23801 obstack_free (&cu->comp_unit_obstack, NULL);
23802
23803 xfree (cu);
23804 }
23805
23806 /* This cleanup function is passed the address of a dwarf2_cu on the stack
23807 when we're finished with it. We can't free the pointer itself, but be
23808 sure to unlink it from the cache. Also release any associated storage. */
23809
23810 static void
23811 free_stack_comp_unit (void *data)
23812 {
23813 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23814
23815 gdb_assert (cu->per_cu != NULL);
23816 cu->per_cu->cu = NULL;
23817 cu->per_cu = NULL;
23818
23819 obstack_free (&cu->comp_unit_obstack, NULL);
23820 cu->partial_dies = NULL;
23821 }
23822
23823 /* Free all cached compilation units. */
23824
23825 static void
23826 free_cached_comp_units (void *data)
23827 {
23828 dwarf2_per_objfile->free_cached_comp_units ();
23829 }
23830
23831 /* Increase the age counter on each cached compilation unit, and free
23832 any that are too old. */
23833
23834 static void
23835 age_cached_comp_units (void)
23836 {
23837 struct dwarf2_per_cu_data *per_cu, **last_chain;
23838
23839 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23840 per_cu = dwarf2_per_objfile->read_in_chain;
23841 while (per_cu != NULL)
23842 {
23843 per_cu->cu->last_used ++;
23844 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23845 dwarf2_mark (per_cu->cu);
23846 per_cu = per_cu->cu->read_in_chain;
23847 }
23848
23849 per_cu = dwarf2_per_objfile->read_in_chain;
23850 last_chain = &dwarf2_per_objfile->read_in_chain;
23851 while (per_cu != NULL)
23852 {
23853 struct dwarf2_per_cu_data *next_cu;
23854
23855 next_cu = per_cu->cu->read_in_chain;
23856
23857 if (!per_cu->cu->mark)
23858 {
23859 free_heap_comp_unit (per_cu->cu);
23860 *last_chain = next_cu;
23861 }
23862 else
23863 last_chain = &per_cu->cu->read_in_chain;
23864
23865 per_cu = next_cu;
23866 }
23867 }
23868
23869 /* Remove a single compilation unit from the cache. */
23870
23871 static void
23872 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23873 {
23874 struct dwarf2_per_cu_data *per_cu, **last_chain;
23875
23876 per_cu = dwarf2_per_objfile->read_in_chain;
23877 last_chain = &dwarf2_per_objfile->read_in_chain;
23878 while (per_cu != NULL)
23879 {
23880 struct dwarf2_per_cu_data *next_cu;
23881
23882 next_cu = per_cu->cu->read_in_chain;
23883
23884 if (per_cu == target_per_cu)
23885 {
23886 free_heap_comp_unit (per_cu->cu);
23887 per_cu->cu = NULL;
23888 *last_chain = next_cu;
23889 break;
23890 }
23891 else
23892 last_chain = &per_cu->cu->read_in_chain;
23893
23894 per_cu = next_cu;
23895 }
23896 }
23897
23898 /* Release all extra memory associated with OBJFILE. */
23899
23900 void
23901 dwarf2_free_objfile (struct objfile *objfile)
23902 {
23903 dwarf2_per_objfile
23904 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23905 dwarf2_objfile_data_key);
23906
23907 if (dwarf2_per_objfile == NULL)
23908 return;
23909
23910 dwarf2_per_objfile->~dwarf2_per_objfile ();
23911 }
23912
23913 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23914 We store these in a hash table separate from the DIEs, and preserve them
23915 when the DIEs are flushed out of cache.
23916
23917 The CU "per_cu" pointer is needed because offset alone is not enough to
23918 uniquely identify the type. A file may have multiple .debug_types sections,
23919 or the type may come from a DWO file. Furthermore, while it's more logical
23920 to use per_cu->section+offset, with Fission the section with the data is in
23921 the DWO file but we don't know that section at the point we need it.
23922 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23923 because we can enter the lookup routine, get_die_type_at_offset, from
23924 outside this file, and thus won't necessarily have PER_CU->cu.
23925 Fortunately, PER_CU is stable for the life of the objfile. */
23926
23927 struct dwarf2_per_cu_offset_and_type
23928 {
23929 const struct dwarf2_per_cu_data *per_cu;
23930 sect_offset sect_off;
23931 struct type *type;
23932 };
23933
23934 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23935
23936 static hashval_t
23937 per_cu_offset_and_type_hash (const void *item)
23938 {
23939 const struct dwarf2_per_cu_offset_and_type *ofs
23940 = (const struct dwarf2_per_cu_offset_and_type *) item;
23941
23942 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23943 }
23944
23945 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23946
23947 static int
23948 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23949 {
23950 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23951 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23952 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23953 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23954
23955 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23956 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23957 }
23958
23959 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23960 table if necessary. For convenience, return TYPE.
23961
23962 The DIEs reading must have careful ordering to:
23963 * Not cause infite loops trying to read in DIEs as a prerequisite for
23964 reading current DIE.
23965 * Not trying to dereference contents of still incompletely read in types
23966 while reading in other DIEs.
23967 * Enable referencing still incompletely read in types just by a pointer to
23968 the type without accessing its fields.
23969
23970 Therefore caller should follow these rules:
23971 * Try to fetch any prerequisite types we may need to build this DIE type
23972 before building the type and calling set_die_type.
23973 * After building type call set_die_type for current DIE as soon as
23974 possible before fetching more types to complete the current type.
23975 * Make the type as complete as possible before fetching more types. */
23976
23977 static struct type *
23978 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23979 {
23980 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23981 struct objfile *objfile = cu->objfile;
23982 struct attribute *attr;
23983 struct dynamic_prop prop;
23984
23985 /* For Ada types, make sure that the gnat-specific data is always
23986 initialized (if not already set). There are a few types where
23987 we should not be doing so, because the type-specific area is
23988 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23989 where the type-specific area is used to store the floatformat).
23990 But this is not a problem, because the gnat-specific information
23991 is actually not needed for these types. */
23992 if (need_gnat_info (cu)
23993 && TYPE_CODE (type) != TYPE_CODE_FUNC
23994 && TYPE_CODE (type) != TYPE_CODE_FLT
23995 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23996 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23997 && TYPE_CODE (type) != TYPE_CODE_METHOD
23998 && !HAVE_GNAT_AUX_INFO (type))
23999 INIT_GNAT_SPECIFIC (type);
24000
24001 /* Read DW_AT_allocated and set in type. */
24002 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24003 if (attr_form_is_block (attr))
24004 {
24005 if (attr_to_dynamic_prop (attr, die, cu, &prop))
24006 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
24007 }
24008 else if (attr != NULL)
24009 {
24010 complaint (&symfile_complaints,
24011 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
24012 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24013 to_underlying (die->sect_off));
24014 }
24015
24016 /* Read DW_AT_associated and set in type. */
24017 attr = dwarf2_attr (die, DW_AT_associated, cu);
24018 if (attr_form_is_block (attr))
24019 {
24020 if (attr_to_dynamic_prop (attr, die, cu, &prop))
24021 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
24022 }
24023 else if (attr != NULL)
24024 {
24025 complaint (&symfile_complaints,
24026 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
24027 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24028 to_underlying (die->sect_off));
24029 }
24030
24031 /* Read DW_AT_data_location and set in type. */
24032 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24033 if (attr_to_dynamic_prop (attr, die, cu, &prop))
24034 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
24035
24036 if (dwarf2_per_objfile->die_type_hash == NULL)
24037 {
24038 dwarf2_per_objfile->die_type_hash =
24039 htab_create_alloc_ex (127,
24040 per_cu_offset_and_type_hash,
24041 per_cu_offset_and_type_eq,
24042 NULL,
24043 &objfile->objfile_obstack,
24044 hashtab_obstack_allocate,
24045 dummy_obstack_deallocate);
24046 }
24047
24048 ofs.per_cu = cu->per_cu;
24049 ofs.sect_off = die->sect_off;
24050 ofs.type = type;
24051 slot = (struct dwarf2_per_cu_offset_and_type **)
24052 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
24053 if (*slot)
24054 complaint (&symfile_complaints,
24055 _("A problem internal to GDB: DIE 0x%x has type already set"),
24056 to_underlying (die->sect_off));
24057 *slot = XOBNEW (&objfile->objfile_obstack,
24058 struct dwarf2_per_cu_offset_and_type);
24059 **slot = ofs;
24060 return type;
24061 }
24062
24063 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24064 or return NULL if the die does not have a saved type. */
24065
24066 static struct type *
24067 get_die_type_at_offset (sect_offset sect_off,
24068 struct dwarf2_per_cu_data *per_cu)
24069 {
24070 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24071
24072 if (dwarf2_per_objfile->die_type_hash == NULL)
24073 return NULL;
24074
24075 ofs.per_cu = per_cu;
24076 ofs.sect_off = sect_off;
24077 slot = ((struct dwarf2_per_cu_offset_and_type *)
24078 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
24079 if (slot)
24080 return slot->type;
24081 else
24082 return NULL;
24083 }
24084
24085 /* Look up the type for DIE in CU in die_type_hash,
24086 or return NULL if DIE does not have a saved type. */
24087
24088 static struct type *
24089 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24090 {
24091 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24092 }
24093
24094 /* Add a dependence relationship from CU to REF_PER_CU. */
24095
24096 static void
24097 dwarf2_add_dependence (struct dwarf2_cu *cu,
24098 struct dwarf2_per_cu_data *ref_per_cu)
24099 {
24100 void **slot;
24101
24102 if (cu->dependencies == NULL)
24103 cu->dependencies
24104 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24105 NULL, &cu->comp_unit_obstack,
24106 hashtab_obstack_allocate,
24107 dummy_obstack_deallocate);
24108
24109 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24110 if (*slot == NULL)
24111 *slot = ref_per_cu;
24112 }
24113
24114 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24115 Set the mark field in every compilation unit in the
24116 cache that we must keep because we are keeping CU. */
24117
24118 static int
24119 dwarf2_mark_helper (void **slot, void *data)
24120 {
24121 struct dwarf2_per_cu_data *per_cu;
24122
24123 per_cu = (struct dwarf2_per_cu_data *) *slot;
24124
24125 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24126 reading of the chain. As such dependencies remain valid it is not much
24127 useful to track and undo them during QUIT cleanups. */
24128 if (per_cu->cu == NULL)
24129 return 1;
24130
24131 if (per_cu->cu->mark)
24132 return 1;
24133 per_cu->cu->mark = 1;
24134
24135 if (per_cu->cu->dependencies != NULL)
24136 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24137
24138 return 1;
24139 }
24140
24141 /* Set the mark field in CU and in every other compilation unit in the
24142 cache that we must keep because we are keeping CU. */
24143
24144 static void
24145 dwarf2_mark (struct dwarf2_cu *cu)
24146 {
24147 if (cu->mark)
24148 return;
24149 cu->mark = 1;
24150 if (cu->dependencies != NULL)
24151 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24152 }
24153
24154 static void
24155 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24156 {
24157 while (per_cu)
24158 {
24159 per_cu->cu->mark = 0;
24160 per_cu = per_cu->cu->read_in_chain;
24161 }
24162 }
24163
24164 /* Trivial hash function for partial_die_info: the hash value of a DIE
24165 is its offset in .debug_info for this objfile. */
24166
24167 static hashval_t
24168 partial_die_hash (const void *item)
24169 {
24170 const struct partial_die_info *part_die
24171 = (const struct partial_die_info *) item;
24172
24173 return to_underlying (part_die->sect_off);
24174 }
24175
24176 /* Trivial comparison function for partial_die_info structures: two DIEs
24177 are equal if they have the same offset. */
24178
24179 static int
24180 partial_die_eq (const void *item_lhs, const void *item_rhs)
24181 {
24182 const struct partial_die_info *part_die_lhs
24183 = (const struct partial_die_info *) item_lhs;
24184 const struct partial_die_info *part_die_rhs
24185 = (const struct partial_die_info *) item_rhs;
24186
24187 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24188 }
24189
24190 static struct cmd_list_element *set_dwarf_cmdlist;
24191 static struct cmd_list_element *show_dwarf_cmdlist;
24192
24193 static void
24194 set_dwarf_cmd (const char *args, int from_tty)
24195 {
24196 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24197 gdb_stdout);
24198 }
24199
24200 static void
24201 show_dwarf_cmd (const char *args, int from_tty)
24202 {
24203 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24204 }
24205
24206 /* Free data associated with OBJFILE, if necessary. */
24207
24208 static void
24209 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
24210 {
24211 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
24212 int ix;
24213
24214 /* Make sure we don't accidentally use dwarf2_per_objfile while
24215 cleaning up. */
24216 dwarf2_per_objfile = NULL;
24217
24218 for (ix = 0; ix < data->n_comp_units; ++ix)
24219 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
24220
24221 for (ix = 0; ix < data->n_type_units; ++ix)
24222 VEC_free (dwarf2_per_cu_ptr,
24223 data->all_type_units[ix]->per_cu.imported_symtabs);
24224 xfree (data->all_type_units);
24225
24226 VEC_free (dwarf2_section_info_def, data->types);
24227
24228 if (data->dwo_files)
24229 free_dwo_files (data->dwo_files, objfile);
24230 if (data->dwp_file)
24231 gdb_bfd_unref (data->dwp_file->dbfd);
24232
24233 if (data->dwz_file && data->dwz_file->dwz_bfd)
24234 gdb_bfd_unref (data->dwz_file->dwz_bfd);
24235
24236 if (data->index_table != NULL)
24237 data->index_table->~mapped_index ();
24238 }
24239
24240 \f
24241 /* The "save gdb-index" command. */
24242
24243 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
24244 error checking. */
24245
24246 static void
24247 file_write (FILE *file, const void *data, size_t size)
24248 {
24249 if (fwrite (data, 1, size, file) != size)
24250 error (_("couldn't data write to file"));
24251 }
24252
24253 /* Write the contents of VEC to FILE, with error checking. */
24254
24255 template<typename Elem, typename Alloc>
24256 static void
24257 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
24258 {
24259 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
24260 }
24261
24262 /* In-memory buffer to prepare data to be written later to a file. */
24263 class data_buf
24264 {
24265 public:
24266 /* Copy DATA to the end of the buffer. */
24267 template<typename T>
24268 void append_data (const T &data)
24269 {
24270 std::copy (reinterpret_cast<const gdb_byte *> (&data),
24271 reinterpret_cast<const gdb_byte *> (&data + 1),
24272 grow (sizeof (data)));
24273 }
24274
24275 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
24276 terminating zero is appended too. */
24277 void append_cstr0 (const char *cstr)
24278 {
24279 const size_t size = strlen (cstr) + 1;
24280 std::copy (cstr, cstr + size, grow (size));
24281 }
24282
24283 /* Store INPUT as ULEB128 to the end of buffer. */
24284 void append_unsigned_leb128 (ULONGEST input)
24285 {
24286 for (;;)
24287 {
24288 gdb_byte output = input & 0x7f;
24289 input >>= 7;
24290 if (input)
24291 output |= 0x80;
24292 append_data (output);
24293 if (input == 0)
24294 break;
24295 }
24296 }
24297
24298 /* Accept a host-format integer in VAL and append it to the buffer
24299 as a target-format integer which is LEN bytes long. */
24300 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
24301 {
24302 ::store_unsigned_integer (grow (len), len, byte_order, val);
24303 }
24304
24305 /* Return the size of the buffer. */
24306 size_t size () const
24307 {
24308 return m_vec.size ();
24309 }
24310
24311 /* Return true iff the buffer is empty. */
24312 bool empty () const
24313 {
24314 return m_vec.empty ();
24315 }
24316
24317 /* Write the buffer to FILE. */
24318 void file_write (FILE *file) const
24319 {
24320 ::file_write (file, m_vec);
24321 }
24322
24323 private:
24324 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
24325 the start of the new block. */
24326 gdb_byte *grow (size_t size)
24327 {
24328 m_vec.resize (m_vec.size () + size);
24329 return &*m_vec.end () - size;
24330 }
24331
24332 gdb::byte_vector m_vec;
24333 };
24334
24335 /* An entry in the symbol table. */
24336 struct symtab_index_entry
24337 {
24338 /* The name of the symbol. */
24339 const char *name;
24340 /* The offset of the name in the constant pool. */
24341 offset_type index_offset;
24342 /* A sorted vector of the indices of all the CUs that hold an object
24343 of this name. */
24344 std::vector<offset_type> cu_indices;
24345 };
24346
24347 /* The symbol table. This is a power-of-2-sized hash table. */
24348 struct mapped_symtab
24349 {
24350 mapped_symtab ()
24351 {
24352 data.resize (1024);
24353 }
24354
24355 offset_type n_elements = 0;
24356 std::vector<symtab_index_entry> data;
24357 };
24358
24359 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
24360 the slot.
24361
24362 Function is used only during write_hash_table so no index format backward
24363 compatibility is needed. */
24364
24365 static symtab_index_entry &
24366 find_slot (struct mapped_symtab *symtab, const char *name)
24367 {
24368 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
24369
24370 index = hash & (symtab->data.size () - 1);
24371 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
24372
24373 for (;;)
24374 {
24375 if (symtab->data[index].name == NULL
24376 || strcmp (name, symtab->data[index].name) == 0)
24377 return symtab->data[index];
24378 index = (index + step) & (symtab->data.size () - 1);
24379 }
24380 }
24381
24382 /* Expand SYMTAB's hash table. */
24383
24384 static void
24385 hash_expand (struct mapped_symtab *symtab)
24386 {
24387 auto old_entries = std::move (symtab->data);
24388
24389 symtab->data.clear ();
24390 symtab->data.resize (old_entries.size () * 2);
24391
24392 for (auto &it : old_entries)
24393 if (it.name != NULL)
24394 {
24395 auto &ref = find_slot (symtab, it.name);
24396 ref = std::move (it);
24397 }
24398 }
24399
24400 /* Add an entry to SYMTAB. NAME is the name of the symbol.
24401 CU_INDEX is the index of the CU in which the symbol appears.
24402 IS_STATIC is one if the symbol is static, otherwise zero (global). */
24403
24404 static void
24405 add_index_entry (struct mapped_symtab *symtab, const char *name,
24406 int is_static, gdb_index_symbol_kind kind,
24407 offset_type cu_index)
24408 {
24409 offset_type cu_index_and_attrs;
24410
24411 ++symtab->n_elements;
24412 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
24413 hash_expand (symtab);
24414
24415 symtab_index_entry &slot = find_slot (symtab, name);
24416 if (slot.name == NULL)
24417 {
24418 slot.name = name;
24419 /* index_offset is set later. */
24420 }
24421
24422 cu_index_and_attrs = 0;
24423 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
24424 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
24425 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
24426
24427 /* We don't want to record an index value twice as we want to avoid the
24428 duplication.
24429 We process all global symbols and then all static symbols
24430 (which would allow us to avoid the duplication by only having to check
24431 the last entry pushed), but a symbol could have multiple kinds in one CU.
24432 To keep things simple we don't worry about the duplication here and
24433 sort and uniqufy the list after we've processed all symbols. */
24434 slot.cu_indices.push_back (cu_index_and_attrs);
24435 }
24436
24437 /* Sort and remove duplicates of all symbols' cu_indices lists. */
24438
24439 static void
24440 uniquify_cu_indices (struct mapped_symtab *symtab)
24441 {
24442 for (auto &entry : symtab->data)
24443 {
24444 if (entry.name != NULL && !entry.cu_indices.empty ())
24445 {
24446 auto &cu_indices = entry.cu_indices;
24447 std::sort (cu_indices.begin (), cu_indices.end ());
24448 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
24449 cu_indices.erase (from, cu_indices.end ());
24450 }
24451 }
24452 }
24453
24454 /* A form of 'const char *' suitable for container keys. Only the
24455 pointer is stored. The strings themselves are compared, not the
24456 pointers. */
24457 class c_str_view
24458 {
24459 public:
24460 c_str_view (const char *cstr)
24461 : m_cstr (cstr)
24462 {}
24463
24464 bool operator== (const c_str_view &other) const
24465 {
24466 return strcmp (m_cstr, other.m_cstr) == 0;
24467 }
24468
24469 /* Return the underlying C string. Note, the returned string is
24470 only a reference with lifetime of this object. */
24471 const char *c_str () const
24472 {
24473 return m_cstr;
24474 }
24475
24476 private:
24477 friend class c_str_view_hasher;
24478 const char *const m_cstr;
24479 };
24480
24481 /* A std::unordered_map::hasher for c_str_view that uses the right
24482 hash function for strings in a mapped index. */
24483 class c_str_view_hasher
24484 {
24485 public:
24486 size_t operator () (const c_str_view &x) const
24487 {
24488 return mapped_index_string_hash (INT_MAX, x.m_cstr);
24489 }
24490 };
24491
24492 /* A std::unordered_map::hasher for std::vector<>. */
24493 template<typename T>
24494 class vector_hasher
24495 {
24496 public:
24497 size_t operator () (const std::vector<T> &key) const
24498 {
24499 return iterative_hash (key.data (),
24500 sizeof (key.front ()) * key.size (), 0);
24501 }
24502 };
24503
24504 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
24505 constant pool entries going into the data buffer CPOOL. */
24506
24507 static void
24508 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
24509 {
24510 {
24511 /* Elements are sorted vectors of the indices of all the CUs that
24512 hold an object of this name. */
24513 std::unordered_map<std::vector<offset_type>, offset_type,
24514 vector_hasher<offset_type>>
24515 symbol_hash_table;
24516
24517 /* We add all the index vectors to the constant pool first, to
24518 ensure alignment is ok. */
24519 for (symtab_index_entry &entry : symtab->data)
24520 {
24521 if (entry.name == NULL)
24522 continue;
24523 gdb_assert (entry.index_offset == 0);
24524
24525 /* Finding before inserting is faster than always trying to
24526 insert, because inserting always allocates a node, does the
24527 lookup, and then destroys the new node if another node
24528 already had the same key. C++17 try_emplace will avoid
24529 this. */
24530 const auto found
24531 = symbol_hash_table.find (entry.cu_indices);
24532 if (found != symbol_hash_table.end ())
24533 {
24534 entry.index_offset = found->second;
24535 continue;
24536 }
24537
24538 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
24539 entry.index_offset = cpool.size ();
24540 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
24541 for (const auto index : entry.cu_indices)
24542 cpool.append_data (MAYBE_SWAP (index));
24543 }
24544 }
24545
24546 /* Now write out the hash table. */
24547 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
24548 for (const auto &entry : symtab->data)
24549 {
24550 offset_type str_off, vec_off;
24551
24552 if (entry.name != NULL)
24553 {
24554 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
24555 if (insertpair.second)
24556 cpool.append_cstr0 (entry.name);
24557 str_off = insertpair.first->second;
24558 vec_off = entry.index_offset;
24559 }
24560 else
24561 {
24562 /* While 0 is a valid constant pool index, it is not valid
24563 to have 0 for both offsets. */
24564 str_off = 0;
24565 vec_off = 0;
24566 }
24567
24568 output.append_data (MAYBE_SWAP (str_off));
24569 output.append_data (MAYBE_SWAP (vec_off));
24570 }
24571 }
24572
24573 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
24574
24575 /* Helper struct for building the address table. */
24576 struct addrmap_index_data
24577 {
24578 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
24579 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
24580 {}
24581
24582 struct objfile *objfile;
24583 data_buf &addr_vec;
24584 psym_index_map &cu_index_htab;
24585
24586 /* Non-zero if the previous_* fields are valid.
24587 We can't write an entry until we see the next entry (since it is only then
24588 that we know the end of the entry). */
24589 int previous_valid;
24590 /* Index of the CU in the table of all CUs in the index file. */
24591 unsigned int previous_cu_index;
24592 /* Start address of the CU. */
24593 CORE_ADDR previous_cu_start;
24594 };
24595
24596 /* Write an address entry to ADDR_VEC. */
24597
24598 static void
24599 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
24600 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
24601 {
24602 CORE_ADDR baseaddr;
24603
24604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24605
24606 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
24607 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
24608 addr_vec.append_data (MAYBE_SWAP (cu_index));
24609 }
24610
24611 /* Worker function for traversing an addrmap to build the address table. */
24612
24613 static int
24614 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
24615 {
24616 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
24617 struct partial_symtab *pst = (struct partial_symtab *) obj;
24618
24619 if (data->previous_valid)
24620 add_address_entry (data->objfile, data->addr_vec,
24621 data->previous_cu_start, start_addr,
24622 data->previous_cu_index);
24623
24624 data->previous_cu_start = start_addr;
24625 if (pst != NULL)
24626 {
24627 const auto it = data->cu_index_htab.find (pst);
24628 gdb_assert (it != data->cu_index_htab.cend ());
24629 data->previous_cu_index = it->second;
24630 data->previous_valid = 1;
24631 }
24632 else
24633 data->previous_valid = 0;
24634
24635 return 0;
24636 }
24637
24638 /* Write OBJFILE's address map to ADDR_VEC.
24639 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
24640 in the index file. */
24641
24642 static void
24643 write_address_map (struct objfile *objfile, data_buf &addr_vec,
24644 psym_index_map &cu_index_htab)
24645 {
24646 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
24647
24648 /* When writing the address table, we have to cope with the fact that
24649 the addrmap iterator only provides the start of a region; we have to
24650 wait until the next invocation to get the start of the next region. */
24651
24652 addrmap_index_data.objfile = objfile;
24653 addrmap_index_data.previous_valid = 0;
24654
24655 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
24656 &addrmap_index_data);
24657
24658 /* It's highly unlikely the last entry (end address = 0xff...ff)
24659 is valid, but we should still handle it.
24660 The end address is recorded as the start of the next region, but that
24661 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
24662 anyway. */
24663 if (addrmap_index_data.previous_valid)
24664 add_address_entry (objfile, addr_vec,
24665 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
24666 addrmap_index_data.previous_cu_index);
24667 }
24668
24669 /* Return the symbol kind of PSYM. */
24670
24671 static gdb_index_symbol_kind
24672 symbol_kind (struct partial_symbol *psym)
24673 {
24674 domain_enum domain = PSYMBOL_DOMAIN (psym);
24675 enum address_class aclass = PSYMBOL_CLASS (psym);
24676
24677 switch (domain)
24678 {
24679 case VAR_DOMAIN:
24680 switch (aclass)
24681 {
24682 case LOC_BLOCK:
24683 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
24684 case LOC_TYPEDEF:
24685 return GDB_INDEX_SYMBOL_KIND_TYPE;
24686 case LOC_COMPUTED:
24687 case LOC_CONST_BYTES:
24688 case LOC_OPTIMIZED_OUT:
24689 case LOC_STATIC:
24690 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24691 case LOC_CONST:
24692 /* Note: It's currently impossible to recognize psyms as enum values
24693 short of reading the type info. For now punt. */
24694 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24695 default:
24696 /* There are other LOC_FOO values that one might want to classify
24697 as variables, but dwarf2read.c doesn't currently use them. */
24698 return GDB_INDEX_SYMBOL_KIND_OTHER;
24699 }
24700 case STRUCT_DOMAIN:
24701 return GDB_INDEX_SYMBOL_KIND_TYPE;
24702 default:
24703 return GDB_INDEX_SYMBOL_KIND_OTHER;
24704 }
24705 }
24706
24707 /* Add a list of partial symbols to SYMTAB. */
24708
24709 static void
24710 write_psymbols (struct mapped_symtab *symtab,
24711 std::unordered_set<partial_symbol *> &psyms_seen,
24712 struct partial_symbol **psymp,
24713 int count,
24714 offset_type cu_index,
24715 int is_static)
24716 {
24717 for (; count-- > 0; ++psymp)
24718 {
24719 struct partial_symbol *psym = *psymp;
24720
24721 if (SYMBOL_LANGUAGE (psym) == language_ada)
24722 error (_("Ada is not currently supported by the index"));
24723
24724 /* Only add a given psymbol once. */
24725 if (psyms_seen.insert (psym).second)
24726 {
24727 gdb_index_symbol_kind kind = symbol_kind (psym);
24728
24729 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
24730 is_static, kind, cu_index);
24731 }
24732 }
24733 }
24734
24735 /* A helper struct used when iterating over debug_types. */
24736 struct signatured_type_index_data
24737 {
24738 signatured_type_index_data (data_buf &types_list_,
24739 std::unordered_set<partial_symbol *> &psyms_seen_)
24740 : types_list (types_list_), psyms_seen (psyms_seen_)
24741 {}
24742
24743 struct objfile *objfile;
24744 struct mapped_symtab *symtab;
24745 data_buf &types_list;
24746 std::unordered_set<partial_symbol *> &psyms_seen;
24747 int cu_index;
24748 };
24749
24750 /* A helper function that writes a single signatured_type to an
24751 obstack. */
24752
24753 static int
24754 write_one_signatured_type (void **slot, void *d)
24755 {
24756 struct signatured_type_index_data *info
24757 = (struct signatured_type_index_data *) d;
24758 struct signatured_type *entry = (struct signatured_type *) *slot;
24759 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
24760
24761 write_psymbols (info->symtab,
24762 info->psyms_seen,
24763 &info->objfile->global_psymbols[psymtab->globals_offset],
24764 psymtab->n_global_syms, info->cu_index,
24765 0);
24766 write_psymbols (info->symtab,
24767 info->psyms_seen,
24768 &info->objfile->static_psymbols[psymtab->statics_offset],
24769 psymtab->n_static_syms, info->cu_index,
24770 1);
24771
24772 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24773 to_underlying (entry->per_cu.sect_off));
24774 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24775 to_underlying (entry->type_offset_in_tu));
24776 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
24777
24778 ++info->cu_index;
24779
24780 return 1;
24781 }
24782
24783 /* Recurse into all "included" dependencies and count their symbols as
24784 if they appeared in this psymtab. */
24785
24786 static void
24787 recursively_count_psymbols (struct partial_symtab *psymtab,
24788 size_t &psyms_seen)
24789 {
24790 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
24791 if (psymtab->dependencies[i]->user != NULL)
24792 recursively_count_psymbols (psymtab->dependencies[i],
24793 psyms_seen);
24794
24795 psyms_seen += psymtab->n_global_syms;
24796 psyms_seen += psymtab->n_static_syms;
24797 }
24798
24799 /* Recurse into all "included" dependencies and write their symbols as
24800 if they appeared in this psymtab. */
24801
24802 static void
24803 recursively_write_psymbols (struct objfile *objfile,
24804 struct partial_symtab *psymtab,
24805 struct mapped_symtab *symtab,
24806 std::unordered_set<partial_symbol *> &psyms_seen,
24807 offset_type cu_index)
24808 {
24809 int i;
24810
24811 for (i = 0; i < psymtab->number_of_dependencies; ++i)
24812 if (psymtab->dependencies[i]->user != NULL)
24813 recursively_write_psymbols (objfile, psymtab->dependencies[i],
24814 symtab, psyms_seen, cu_index);
24815
24816 write_psymbols (symtab,
24817 psyms_seen,
24818 &objfile->global_psymbols[psymtab->globals_offset],
24819 psymtab->n_global_syms, cu_index,
24820 0);
24821 write_psymbols (symtab,
24822 psyms_seen,
24823 &objfile->static_psymbols[psymtab->statics_offset],
24824 psymtab->n_static_syms, cu_index,
24825 1);
24826 }
24827
24828 /* Symbol name hashing function as specified by DWARF-5. */
24829
24830 static uint32_t
24831 dwarf5_djb_hash (const char *str_)
24832 {
24833 const unsigned char *str = (const unsigned char *) str_;
24834
24835 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
24836 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
24837
24838 uint32_t hash = 5381;
24839 while (int c = *str++)
24840 hash = hash * 33 + tolower (c);
24841 return hash;
24842 }
24843
24844 /* DWARF-5 .debug_names builder. */
24845 class debug_names
24846 {
24847 public:
24848 debug_names (bool is_dwarf64, bfd_endian dwarf5_byte_order)
24849 : m_dwarf5_byte_order (dwarf5_byte_order),
24850 m_dwarf32 (dwarf5_byte_order),
24851 m_dwarf64 (dwarf5_byte_order),
24852 m_dwarf (is_dwarf64
24853 ? static_cast<dwarf &> (m_dwarf64)
24854 : static_cast<dwarf &> (m_dwarf32)),
24855 m_name_table_string_offs (m_dwarf.name_table_string_offs),
24856 m_name_table_entry_offs (m_dwarf.name_table_entry_offs)
24857 {}
24858
24859 /* Insert one symbol. */
24860 void insert (const partial_symbol *psym, int cu_index, bool is_static)
24861 {
24862 const int dwarf_tag = psymbol_tag (psym);
24863 if (dwarf_tag == 0)
24864 return;
24865 const char *const name = SYMBOL_SEARCH_NAME (psym);
24866 const auto insertpair
24867 = m_name_to_value_set.emplace (c_str_view (name),
24868 std::set<symbol_value> ());
24869 std::set<symbol_value> &value_set = insertpair.first->second;
24870 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static));
24871 }
24872
24873 /* Build all the tables. All symbols must be already inserted.
24874 This function does not call file_write, caller has to do it
24875 afterwards. */
24876 void build ()
24877 {
24878 /* Verify the build method has not be called twice. */
24879 gdb_assert (m_abbrev_table.empty ());
24880 const size_t name_count = m_name_to_value_set.size ();
24881 m_bucket_table.resize
24882 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
24883 m_hash_table.reserve (name_count);
24884 m_name_table_string_offs.reserve (name_count);
24885 m_name_table_entry_offs.reserve (name_count);
24886
24887 /* Map each hash of symbol to its name and value. */
24888 struct hash_it_pair
24889 {
24890 uint32_t hash;
24891 decltype (m_name_to_value_set)::const_iterator it;
24892 };
24893 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
24894 bucket_hash.resize (m_bucket_table.size ());
24895 for (decltype (m_name_to_value_set)::const_iterator it
24896 = m_name_to_value_set.cbegin ();
24897 it != m_name_to_value_set.cend ();
24898 ++it)
24899 {
24900 const char *const name = it->first.c_str ();
24901 const uint32_t hash = dwarf5_djb_hash (name);
24902 hash_it_pair hashitpair;
24903 hashitpair.hash = hash;
24904 hashitpair.it = it;
24905 auto &slot = bucket_hash[hash % bucket_hash.size()];
24906 slot.push_front (std::move (hashitpair));
24907 }
24908 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
24909 {
24910 const std::forward_list<hash_it_pair> &hashitlist
24911 = bucket_hash[bucket_ix];
24912 if (hashitlist.empty ())
24913 continue;
24914 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
24915 /* The hashes array is indexed starting at 1. */
24916 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
24917 sizeof (bucket_slot), m_dwarf5_byte_order,
24918 m_hash_table.size () + 1);
24919 for (const hash_it_pair &hashitpair : hashitlist)
24920 {
24921 m_hash_table.push_back (0);
24922 store_unsigned_integer (reinterpret_cast<gdb_byte *>
24923 (&m_hash_table.back ()),
24924 sizeof (m_hash_table.back ()),
24925 m_dwarf5_byte_order, hashitpair.hash);
24926 const c_str_view &name = hashitpair.it->first;
24927 const std::set<symbol_value> &value_set = hashitpair.it->second;
24928 m_name_table_string_offs.push_back_reorder
24929 (m_debugstrlookup.lookup (name.c_str ()));
24930 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
24931 gdb_assert (!value_set.empty ());
24932 for (const symbol_value &value : value_set)
24933 {
24934 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
24935 value.is_static)];
24936 if (idx == 0)
24937 {
24938 idx = m_idx_next++;
24939 m_abbrev_table.append_unsigned_leb128 (idx);
24940 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
24941 m_abbrev_table.append_unsigned_leb128 (DW_IDX_compile_unit);
24942 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
24943 m_abbrev_table.append_unsigned_leb128 (value.is_static
24944 ? DW_IDX_GNU_internal
24945 : DW_IDX_GNU_external);
24946 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
24947
24948 /* Terminate attributes list. */
24949 m_abbrev_table.append_unsigned_leb128 (0);
24950 m_abbrev_table.append_unsigned_leb128 (0);
24951 }
24952
24953 m_entry_pool.append_unsigned_leb128 (idx);
24954 m_entry_pool.append_unsigned_leb128 (value.cu_index);
24955 }
24956
24957 /* Terminate the list of CUs. */
24958 m_entry_pool.append_unsigned_leb128 (0);
24959 }
24960 }
24961 gdb_assert (m_hash_table.size () == name_count);
24962
24963 /* Terminate tags list. */
24964 m_abbrev_table.append_unsigned_leb128 (0);
24965 }
24966
24967 /* Return .debug_names bucket count. This must be called only after
24968 calling the build method. */
24969 uint32_t bucket_count () const
24970 {
24971 /* Verify the build method has been already called. */
24972 gdb_assert (!m_abbrev_table.empty ());
24973 const uint32_t retval = m_bucket_table.size ();
24974
24975 /* Check for overflow. */
24976 gdb_assert (retval == m_bucket_table.size ());
24977 return retval;
24978 }
24979
24980 /* Return .debug_names names count. This must be called only after
24981 calling the build method. */
24982 uint32_t name_count () const
24983 {
24984 /* Verify the build method has been already called. */
24985 gdb_assert (!m_abbrev_table.empty ());
24986 const uint32_t retval = m_hash_table.size ();
24987
24988 /* Check for overflow. */
24989 gdb_assert (retval == m_hash_table.size ());
24990 return retval;
24991 }
24992
24993 /* Return number of bytes of .debug_names abbreviation table. This
24994 must be called only after calling the build method. */
24995 uint32_t abbrev_table_bytes () const
24996 {
24997 gdb_assert (!m_abbrev_table.empty ());
24998 return m_abbrev_table.size ();
24999 }
25000
25001 /* Recurse into all "included" dependencies and store their symbols
25002 as if they appeared in this psymtab. */
25003 void recursively_write_psymbols
25004 (struct objfile *objfile,
25005 struct partial_symtab *psymtab,
25006 std::unordered_set<partial_symbol *> &psyms_seen,
25007 int cu_index)
25008 {
25009 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
25010 if (psymtab->dependencies[i]->user != NULL)
25011 recursively_write_psymbols (objfile, psymtab->dependencies[i],
25012 psyms_seen, cu_index);
25013
25014 write_psymbols (psyms_seen,
25015 &objfile->global_psymbols[psymtab->globals_offset],
25016 psymtab->n_global_syms, cu_index, false);
25017 write_psymbols (psyms_seen,
25018 &objfile->static_psymbols[psymtab->statics_offset],
25019 psymtab->n_static_syms, cu_index, true);
25020 }
25021
25022 /* Return number of bytes the .debug_names section will have. This
25023 must be called only after calling the build method. */
25024 size_t bytes () const
25025 {
25026 /* Verify the build method has been already called. */
25027 gdb_assert (!m_abbrev_table.empty ());
25028 size_t expected_bytes = 0;
25029 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
25030 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
25031 expected_bytes += m_name_table_string_offs.bytes ();
25032 expected_bytes += m_name_table_entry_offs.bytes ();
25033 expected_bytes += m_abbrev_table.size ();
25034 expected_bytes += m_entry_pool.size ();
25035 return expected_bytes;
25036 }
25037
25038 /* Write .debug_names to FILE_NAMES and .debug_str addition to
25039 FILE_STR. This must be called only after calling the build
25040 method. */
25041 void file_write (FILE *file_names, FILE *file_str) const
25042 {
25043 /* Verify the build method has been already called. */
25044 gdb_assert (!m_abbrev_table.empty ());
25045 ::file_write (file_names, m_bucket_table);
25046 ::file_write (file_names, m_hash_table);
25047 m_name_table_string_offs.file_write (file_names);
25048 m_name_table_entry_offs.file_write (file_names);
25049 m_abbrev_table.file_write (file_names);
25050 m_entry_pool.file_write (file_names);
25051 m_debugstrlookup.file_write (file_str);
25052 }
25053
25054 private:
25055
25056 /* Storage for symbol names mapping them to their .debug_str section
25057 offsets. */
25058 class debug_str_lookup
25059 {
25060 public:
25061
25062 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
25063 All .debug_str section strings are automatically stored. */
25064 debug_str_lookup ()
25065 : m_abfd (dwarf2_per_objfile->objfile->obfd)
25066 {
25067 dwarf2_read_section (dwarf2_per_objfile->objfile,
25068 &dwarf2_per_objfile->str);
25069 if (dwarf2_per_objfile->str.buffer == NULL)
25070 return;
25071 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
25072 data < (dwarf2_per_objfile->str.buffer
25073 + dwarf2_per_objfile->str.size);)
25074 {
25075 const char *const s = reinterpret_cast<const char *> (data);
25076 const auto insertpair
25077 = m_str_table.emplace (c_str_view (s),
25078 data - dwarf2_per_objfile->str.buffer);
25079 if (!insertpair.second)
25080 complaint (&symfile_complaints,
25081 _("Duplicate string \"%s\" in "
25082 ".debug_str section [in module %s]"),
25083 s, bfd_get_filename (m_abfd));
25084 data += strlen (s) + 1;
25085 }
25086 }
25087
25088 /* Return offset of symbol name S in the .debug_str section. Add
25089 such symbol to the section's end if it does not exist there
25090 yet. */
25091 size_t lookup (const char *s)
25092 {
25093 const auto it = m_str_table.find (c_str_view (s));
25094 if (it != m_str_table.end ())
25095 return it->second;
25096 const size_t offset = (dwarf2_per_objfile->str.size
25097 + m_str_add_buf.size ());
25098 m_str_table.emplace (c_str_view (s), offset);
25099 m_str_add_buf.append_cstr0 (s);
25100 return offset;
25101 }
25102
25103 /* Append the end of the .debug_str section to FILE. */
25104 void file_write (FILE *file) const
25105 {
25106 m_str_add_buf.file_write (file);
25107 }
25108
25109 private:
25110 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
25111 bfd *const m_abfd;
25112
25113 /* Data to add at the end of .debug_str for new needed symbol names. */
25114 data_buf m_str_add_buf;
25115 };
25116
25117 /* Container to map used DWARF tags to their .debug_names abbreviation
25118 tags. */
25119 class index_key
25120 {
25121 public:
25122 index_key (int dwarf_tag_, bool is_static_)
25123 : dwarf_tag (dwarf_tag_), is_static (is_static_)
25124 {
25125 }
25126
25127 bool
25128 operator== (const index_key &other) const
25129 {
25130 return dwarf_tag == other.dwarf_tag && is_static == other.is_static;
25131 }
25132
25133 const int dwarf_tag;
25134 const bool is_static;
25135 };
25136
25137 /* Provide std::unordered_map::hasher for index_key. */
25138 class index_key_hasher
25139 {
25140 public:
25141 size_t
25142 operator () (const index_key &key) const
25143 {
25144 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
25145 }
25146 };
25147
25148 /* Parameters of one symbol entry. */
25149 class symbol_value
25150 {
25151 public:
25152 const int dwarf_tag, cu_index;
25153 const bool is_static;
25154
25155 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_)
25156 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_)
25157 {}
25158
25159 bool
25160 operator< (const symbol_value &other) const
25161 {
25162 #define X(n) \
25163 do \
25164 { \
25165 if (n < other.n) \
25166 return true; \
25167 if (n > other.n) \
25168 return false; \
25169 } \
25170 while (0)
25171 X (dwarf_tag);
25172 X (is_static);
25173 X (cu_index);
25174 #undef X
25175 return false;
25176 }
25177 };
25178
25179 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
25180 output. */
25181 class offset_vec
25182 {
25183 protected:
25184 const bfd_endian dwarf5_byte_order;
25185 public:
25186 explicit offset_vec (bfd_endian dwarf5_byte_order_)
25187 : dwarf5_byte_order (dwarf5_byte_order_)
25188 {}
25189
25190 /* Call std::vector::reserve for NELEM elements. */
25191 virtual void reserve (size_t nelem) = 0;
25192
25193 /* Call std::vector::push_back with store_unsigned_integer byte
25194 reordering for ELEM. */
25195 virtual void push_back_reorder (size_t elem) = 0;
25196
25197 /* Return expected output size in bytes. */
25198 virtual size_t bytes () const = 0;
25199
25200 /* Write name table to FILE. */
25201 virtual void file_write (FILE *file) const = 0;
25202 };
25203
25204 /* Template to unify DWARF-32 and DWARF-64 output. */
25205 template<typename OffsetSize>
25206 class offset_vec_tmpl : public offset_vec
25207 {
25208 public:
25209 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
25210 : offset_vec (dwarf5_byte_order_)
25211 {}
25212
25213 /* Implement offset_vec::reserve. */
25214 void reserve (size_t nelem) override
25215 {
25216 m_vec.reserve (nelem);
25217 }
25218
25219 /* Implement offset_vec::push_back_reorder. */
25220 void push_back_reorder (size_t elem) override
25221 {
25222 m_vec.push_back (elem);
25223 /* Check for overflow. */
25224 gdb_assert (m_vec.back () == elem);
25225 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
25226 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
25227 }
25228
25229 /* Implement offset_vec::bytes. */
25230 size_t bytes () const override
25231 {
25232 return m_vec.size () * sizeof (m_vec[0]);
25233 }
25234
25235 /* Implement offset_vec::file_write. */
25236 void file_write (FILE *file) const override
25237 {
25238 ::file_write (file, m_vec);
25239 }
25240
25241 private:
25242 std::vector<OffsetSize> m_vec;
25243 };
25244
25245 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
25246 respecting name table width. */
25247 class dwarf
25248 {
25249 public:
25250 offset_vec &name_table_string_offs, &name_table_entry_offs;
25251
25252 dwarf (offset_vec &name_table_string_offs_,
25253 offset_vec &name_table_entry_offs_)
25254 : name_table_string_offs (name_table_string_offs_),
25255 name_table_entry_offs (name_table_entry_offs_)
25256 {
25257 }
25258 };
25259
25260 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
25261 respecting name table width. */
25262 template<typename OffsetSize>
25263 class dwarf_tmpl : public dwarf
25264 {
25265 public:
25266 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
25267 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
25268 m_name_table_string_offs (dwarf5_byte_order_),
25269 m_name_table_entry_offs (dwarf5_byte_order_)
25270 {}
25271
25272 private:
25273 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
25274 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
25275 };
25276
25277 /* Try to reconstruct original DWARF tag for given partial_symbol.
25278 This function is not DWARF-5 compliant but it is sufficient for
25279 GDB as a DWARF-5 index consumer. */
25280 static int psymbol_tag (const struct partial_symbol *psym)
25281 {
25282 domain_enum domain = PSYMBOL_DOMAIN (psym);
25283 enum address_class aclass = PSYMBOL_CLASS (psym);
25284
25285 switch (domain)
25286 {
25287 case VAR_DOMAIN:
25288 switch (aclass)
25289 {
25290 case LOC_BLOCK:
25291 return DW_TAG_subprogram;
25292 case LOC_TYPEDEF:
25293 return DW_TAG_typedef;
25294 case LOC_COMPUTED:
25295 case LOC_CONST_BYTES:
25296 case LOC_OPTIMIZED_OUT:
25297 case LOC_STATIC:
25298 return DW_TAG_variable;
25299 case LOC_CONST:
25300 /* Note: It's currently impossible to recognize psyms as enum values
25301 short of reading the type info. For now punt. */
25302 return DW_TAG_variable;
25303 default:
25304 /* There are other LOC_FOO values that one might want to classify
25305 as variables, but dwarf2read.c doesn't currently use them. */
25306 return DW_TAG_variable;
25307 }
25308 case STRUCT_DOMAIN:
25309 return DW_TAG_structure_type;
25310 default:
25311 return 0;
25312 }
25313 }
25314
25315 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
25316 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
25317 struct partial_symbol **psymp, int count, int cu_index,
25318 bool is_static)
25319 {
25320 for (; count-- > 0; ++psymp)
25321 {
25322 struct partial_symbol *psym = *psymp;
25323
25324 if (SYMBOL_LANGUAGE (psym) == language_ada)
25325 error (_("Ada is not currently supported by the index"));
25326
25327 /* Only add a given psymbol once. */
25328 if (psyms_seen.insert (psym).second)
25329 insert (psym, cu_index, is_static);
25330 }
25331 }
25332
25333 /* Store value of each symbol. */
25334 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
25335 m_name_to_value_set;
25336
25337 /* Tables of DWARF-5 .debug_names. They are in object file byte
25338 order. */
25339 std::vector<uint32_t> m_bucket_table;
25340 std::vector<uint32_t> m_hash_table;
25341
25342 const bfd_endian m_dwarf5_byte_order;
25343 dwarf_tmpl<uint32_t> m_dwarf32;
25344 dwarf_tmpl<uint64_t> m_dwarf64;
25345 dwarf &m_dwarf;
25346 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
25347 debug_str_lookup m_debugstrlookup;
25348
25349 /* Map each used .debug_names abbreviation tag parameter to its
25350 index value. */
25351 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
25352
25353 /* Next unused .debug_names abbreviation tag for
25354 m_indexkey_to_idx. */
25355 int m_idx_next = 1;
25356
25357 /* .debug_names abbreviation table. */
25358 data_buf m_abbrev_table;
25359
25360 /* .debug_names entry pool. */
25361 data_buf m_entry_pool;
25362 };
25363
25364 /* Return iff any of the needed offsets does not fit into 32-bit
25365 .debug_names section. */
25366
25367 static bool
25368 check_dwarf64_offsets ()
25369 {
25370 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
25371 {
25372 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
25373
25374 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
25375 return true;
25376 }
25377 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
25378 {
25379 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
25380 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
25381
25382 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
25383 return true;
25384 }
25385 return false;
25386 }
25387
25388 /* The psyms_seen set is potentially going to be largish (~40k
25389 elements when indexing a -g3 build of GDB itself). Estimate the
25390 number of elements in order to avoid too many rehashes, which
25391 require rebuilding buckets and thus many trips to
25392 malloc/free. */
25393
25394 static size_t
25395 psyms_seen_size ()
25396 {
25397 size_t psyms_count = 0;
25398 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
25399 {
25400 struct dwarf2_per_cu_data *per_cu
25401 = dwarf2_per_objfile->all_comp_units[i];
25402 struct partial_symtab *psymtab = per_cu->v.psymtab;
25403
25404 if (psymtab != NULL && psymtab->user == NULL)
25405 recursively_count_psymbols (psymtab, psyms_count);
25406 }
25407 /* Generating an index for gdb itself shows a ratio of
25408 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
25409 return psyms_count / 4;
25410 }
25411
25412 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
25413 Return how many bytes were expected to be written into OUT_FILE. */
25414
25415 static size_t
25416 write_gdbindex (struct objfile *objfile, FILE *out_file)
25417 {
25418 mapped_symtab symtab;
25419 data_buf cu_list;
25420
25421 /* While we're scanning CU's create a table that maps a psymtab pointer
25422 (which is what addrmap records) to its index (which is what is recorded
25423 in the index file). This will later be needed to write the address
25424 table. */
25425 psym_index_map cu_index_htab;
25426 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
25427
25428 /* The CU list is already sorted, so we don't need to do additional
25429 work here. Also, the debug_types entries do not appear in
25430 all_comp_units, but only in their own hash table. */
25431
25432 std::unordered_set<partial_symbol *> psyms_seen (psyms_seen_size ());
25433 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
25434 {
25435 struct dwarf2_per_cu_data *per_cu
25436 = dwarf2_per_objfile->all_comp_units[i];
25437 struct partial_symtab *psymtab = per_cu->v.psymtab;
25438
25439 /* CU of a shared file from 'dwz -m' may be unused by this main file.
25440 It may be referenced from a local scope but in such case it does not
25441 need to be present in .gdb_index. */
25442 if (psymtab == NULL)
25443 continue;
25444
25445 if (psymtab->user == NULL)
25446 recursively_write_psymbols (objfile, psymtab, &symtab,
25447 psyms_seen, i);
25448
25449 const auto insertpair = cu_index_htab.emplace (psymtab, i);
25450 gdb_assert (insertpair.second);
25451
25452 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
25453 to_underlying (per_cu->sect_off));
25454 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
25455 }
25456
25457 /* Dump the address map. */
25458 data_buf addr_vec;
25459 write_address_map (objfile, addr_vec, cu_index_htab);
25460
25461 /* Write out the .debug_type entries, if any. */
25462 data_buf types_cu_list;
25463 if (dwarf2_per_objfile->signatured_types)
25464 {
25465 signatured_type_index_data sig_data (types_cu_list,
25466 psyms_seen);
25467
25468 sig_data.objfile = objfile;
25469 sig_data.symtab = &symtab;
25470 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
25471 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
25472 write_one_signatured_type, &sig_data);
25473 }
25474
25475 /* Now that we've processed all symbols we can shrink their cu_indices
25476 lists. */
25477 uniquify_cu_indices (&symtab);
25478
25479 data_buf symtab_vec, constant_pool;
25480 write_hash_table (&symtab, symtab_vec, constant_pool);
25481
25482 data_buf contents;
25483 const offset_type size_of_contents = 6 * sizeof (offset_type);
25484 offset_type total_len = size_of_contents;
25485
25486 /* The version number. */
25487 contents.append_data (MAYBE_SWAP (8));
25488
25489 /* The offset of the CU list from the start of the file. */
25490 contents.append_data (MAYBE_SWAP (total_len));
25491 total_len += cu_list.size ();
25492
25493 /* The offset of the types CU list from the start of the file. */
25494 contents.append_data (MAYBE_SWAP (total_len));
25495 total_len += types_cu_list.size ();
25496
25497 /* The offset of the address table from the start of the file. */
25498 contents.append_data (MAYBE_SWAP (total_len));
25499 total_len += addr_vec.size ();
25500
25501 /* The offset of the symbol table from the start of the file. */
25502 contents.append_data (MAYBE_SWAP (total_len));
25503 total_len += symtab_vec.size ();
25504
25505 /* The offset of the constant pool from the start of the file. */
25506 contents.append_data (MAYBE_SWAP (total_len));
25507 total_len += constant_pool.size ();
25508
25509 gdb_assert (contents.size () == size_of_contents);
25510
25511 contents.file_write (out_file);
25512 cu_list.file_write (out_file);
25513 types_cu_list.file_write (out_file);
25514 addr_vec.file_write (out_file);
25515 symtab_vec.file_write (out_file);
25516 constant_pool.file_write (out_file);
25517
25518 return total_len;
25519 }
25520
25521 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
25522 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
25523
25524 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
25525 needed addition to .debug_str section to OUT_FILE_STR. Return how
25526 many bytes were expected to be written into OUT_FILE. */
25527
25528 static size_t
25529 write_debug_names (struct objfile *objfile, FILE *out_file, FILE *out_file_str)
25530 {
25531 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets ();
25532 const int dwarf5_offset_size = dwarf5_is_dwarf64 ? 8 : 4;
25533 const enum bfd_endian dwarf5_byte_order
25534 = gdbarch_byte_order (get_objfile_arch (objfile));
25535
25536 /* The CU list is already sorted, so we don't need to do additional
25537 work here. Also, the debug_types entries do not appear in
25538 all_comp_units, but only in their own hash table. */
25539 data_buf cu_list;
25540 debug_names nametable (dwarf5_is_dwarf64, dwarf5_byte_order);
25541 std::unordered_set<partial_symbol *> psyms_seen (psyms_seen_size ());
25542 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
25543 {
25544 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
25545 partial_symtab *psymtab = per_cu->v.psymtab;
25546
25547 /* CU of a shared file from 'dwz -m' may be unused by this main
25548 file. It may be referenced from a local scope but in such
25549 case it does not need to be present in .debug_names. */
25550 if (psymtab == NULL)
25551 continue;
25552
25553 if (psymtab->user == NULL)
25554 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
25555
25556 cu_list.append_uint (dwarf5_offset_size, dwarf5_byte_order,
25557 to_underlying (per_cu->sect_off));
25558 }
25559 nametable.build ();
25560
25561 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
25562
25563 data_buf types_cu_list;
25564 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
25565 {
25566 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
25567 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
25568
25569 types_cu_list.append_uint (dwarf5_offset_size, dwarf5_byte_order,
25570 to_underlying (per_cu.sect_off));
25571 }
25572
25573 const offset_type bytes_of_header
25574 = ((dwarf5_is_dwarf64 ? 12 : 4)
25575 + 2 + 2 + 7 * 4
25576 + sizeof (dwarf5_gdb_augmentation));
25577 size_t expected_bytes = 0;
25578 expected_bytes += bytes_of_header;
25579 expected_bytes += cu_list.size ();
25580 expected_bytes += types_cu_list.size ();
25581 expected_bytes += nametable.bytes ();
25582 data_buf header;
25583
25584 if (!dwarf5_is_dwarf64)
25585 {
25586 const uint64_t size64 = expected_bytes - 4;
25587 gdb_assert (size64 < 0xfffffff0);
25588 header.append_uint (4, dwarf5_byte_order, size64);
25589 }
25590 else
25591 {
25592 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
25593 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
25594 }
25595
25596 /* The version number. */
25597 header.append_uint (2, dwarf5_byte_order, 5);
25598
25599 /* Padding. */
25600 header.append_uint (2, dwarf5_byte_order, 0);
25601
25602 /* comp_unit_count - The number of CUs in the CU list. */
25603 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
25604
25605 /* local_type_unit_count - The number of TUs in the local TU
25606 list. */
25607 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
25608
25609 /* foreign_type_unit_count - The number of TUs in the foreign TU
25610 list. */
25611 header.append_uint (4, dwarf5_byte_order, 0);
25612
25613 /* bucket_count - The number of hash buckets in the hash lookup
25614 table. */
25615 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
25616
25617 /* name_count - The number of unique names in the index. */
25618 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
25619
25620 /* abbrev_table_size - The size in bytes of the abbreviations
25621 table. */
25622 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
25623
25624 /* augmentation_string_size - The size in bytes of the augmentation
25625 string. This value is rounded up to a multiple of 4. */
25626 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
25627 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
25628 header.append_data (dwarf5_gdb_augmentation);
25629
25630 gdb_assert (header.size () == bytes_of_header);
25631
25632 header.file_write (out_file);
25633 cu_list.file_write (out_file);
25634 types_cu_list.file_write (out_file);
25635 nametable.file_write (out_file, out_file_str);
25636
25637 return expected_bytes;
25638 }
25639
25640 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
25641 position is at the end of the file. */
25642
25643 static void
25644 assert_file_size (FILE *file, const char *filename, size_t expected_size)
25645 {
25646 const auto file_size = ftell (file);
25647 if (file_size == -1)
25648 error (_("Can't get `%s' size"), filename);
25649 gdb_assert (file_size == expected_size);
25650 }
25651
25652 /* An index variant. */
25653 enum dw_index_kind
25654 {
25655 /* GDB's own .gdb_index format. */
25656 GDB_INDEX,
25657
25658 /* DWARF5 .debug_names. */
25659 DEBUG_NAMES,
25660 };
25661
25662 /* Create an index file for OBJFILE in the directory DIR. */
25663
25664 static void
25665 write_psymtabs_to_index (struct objfile *objfile, const char *dir,
25666 dw_index_kind index_kind)
25667 {
25668 if (dwarf2_per_objfile->using_index)
25669 error (_("Cannot use an index to create the index"));
25670
25671 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
25672 error (_("Cannot make an index when the file has multiple .debug_types sections"));
25673
25674 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
25675 return;
25676
25677 struct stat st;
25678 if (stat (objfile_name (objfile), &st) < 0)
25679 perror_with_name (objfile_name (objfile));
25680
25681 std::string filename (std::string (dir) + SLASH_STRING
25682 + lbasename (objfile_name (objfile))
25683 + (index_kind == dw_index_kind::DEBUG_NAMES
25684 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
25685
25686 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
25687 if (!out_file)
25688 error (_("Can't open `%s' for writing"), filename.c_str ());
25689
25690 /* Order matters here; we want FILE to be closed before FILENAME is
25691 unlinked, because on MS-Windows one cannot delete a file that is
25692 still open. (Don't call anything here that might throw until
25693 file_closer is created.) */
25694 gdb::unlinker unlink_file (filename.c_str ());
25695 gdb_file_up close_out_file (out_file);
25696
25697 if (index_kind == dw_index_kind::DEBUG_NAMES)
25698 {
25699 std::string filename_str (std::string (dir) + SLASH_STRING
25700 + lbasename (objfile_name (objfile))
25701 + DEBUG_STR_SUFFIX);
25702 FILE *out_file_str
25703 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
25704 if (!out_file_str)
25705 error (_("Can't open `%s' for writing"), filename_str.c_str ());
25706 gdb::unlinker unlink_file_str (filename_str.c_str ());
25707 gdb_file_up close_out_file_str (out_file_str);
25708
25709 const size_t total_len
25710 = write_debug_names (objfile, out_file, out_file_str);
25711 assert_file_size (out_file, filename.c_str (), total_len);
25712
25713 /* We want to keep the file .debug_str file too. */
25714 unlink_file_str.keep ();
25715 }
25716 else
25717 {
25718 const size_t total_len
25719 = write_gdbindex (objfile, out_file);
25720 assert_file_size (out_file, filename.c_str (), total_len);
25721 }
25722
25723 /* We want to keep the file. */
25724 unlink_file.keep ();
25725 }
25726
25727 /* Implementation of the `save gdb-index' command.
25728
25729 Note that the .gdb_index file format used by this command is
25730 documented in the GDB manual. Any changes here must be documented
25731 there. */
25732
25733 static void
25734 save_gdb_index_command (const char *arg, int from_tty)
25735 {
25736 struct objfile *objfile;
25737 const char dwarf5space[] = "-dwarf-5 ";
25738 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
25739
25740 if (!arg)
25741 arg = "";
25742
25743 arg = skip_spaces (arg);
25744 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
25745 {
25746 index_kind = dw_index_kind::DEBUG_NAMES;
25747 arg += strlen (dwarf5space);
25748 arg = skip_spaces (arg);
25749 }
25750
25751 if (!*arg)
25752 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
25753
25754 ALL_OBJFILES (objfile)
25755 {
25756 struct stat st;
25757
25758 /* If the objfile does not correspond to an actual file, skip it. */
25759 if (stat (objfile_name (objfile), &st) < 0)
25760 continue;
25761
25762 dwarf2_per_objfile
25763 = (struct dwarf2_per_objfile *) objfile_data (objfile,
25764 dwarf2_objfile_data_key);
25765 if (dwarf2_per_objfile)
25766 {
25767
25768 TRY
25769 {
25770 write_psymtabs_to_index (objfile, arg, index_kind);
25771 }
25772 CATCH (except, RETURN_MASK_ERROR)
25773 {
25774 exception_fprintf (gdb_stderr, except,
25775 _("Error while writing index for `%s': "),
25776 objfile_name (objfile));
25777 }
25778 END_CATCH
25779 }
25780 }
25781 }
25782
25783 \f
25784
25785 int dwarf_always_disassemble;
25786
25787 static void
25788 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25789 struct cmd_list_element *c, const char *value)
25790 {
25791 fprintf_filtered (file,
25792 _("Whether to always disassemble "
25793 "DWARF expressions is %s.\n"),
25794 value);
25795 }
25796
25797 static void
25798 show_check_physname (struct ui_file *file, int from_tty,
25799 struct cmd_list_element *c, const char *value)
25800 {
25801 fprintf_filtered (file,
25802 _("Whether to check \"physname\" is %s.\n"),
25803 value);
25804 }
25805
25806 void
25807 _initialize_dwarf2_read (void)
25808 {
25809 struct cmd_list_element *c;
25810
25811 dwarf2_objfile_data_key
25812 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
25813
25814 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25815 Set DWARF specific variables.\n\
25816 Configure DWARF variables such as the cache size"),
25817 &set_dwarf_cmdlist, "maintenance set dwarf ",
25818 0/*allow-unknown*/, &maintenance_set_cmdlist);
25819
25820 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25821 Show DWARF specific variables\n\
25822 Show DWARF variables such as the cache size"),
25823 &show_dwarf_cmdlist, "maintenance show dwarf ",
25824 0/*allow-unknown*/, &maintenance_show_cmdlist);
25825
25826 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25827 &dwarf_max_cache_age, _("\
25828 Set the upper bound on the age of cached DWARF compilation units."), _("\
25829 Show the upper bound on the age of cached DWARF compilation units."), _("\
25830 A higher limit means that cached compilation units will be stored\n\
25831 in memory longer, and more total memory will be used. Zero disables\n\
25832 caching, which can slow down startup."),
25833 NULL,
25834 show_dwarf_max_cache_age,
25835 &set_dwarf_cmdlist,
25836 &show_dwarf_cmdlist);
25837
25838 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25839 &dwarf_always_disassemble, _("\
25840 Set whether `info address' always disassembles DWARF expressions."), _("\
25841 Show whether `info address' always disassembles DWARF expressions."), _("\
25842 When enabled, DWARF expressions are always printed in an assembly-like\n\
25843 syntax. When disabled, expressions will be printed in a more\n\
25844 conversational style, when possible."),
25845 NULL,
25846 show_dwarf_always_disassemble,
25847 &set_dwarf_cmdlist,
25848 &show_dwarf_cmdlist);
25849
25850 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25851 Set debugging of the DWARF reader."), _("\
25852 Show debugging of the DWARF reader."), _("\
25853 When enabled (non-zero), debugging messages are printed during DWARF\n\
25854 reading and symtab expansion. A value of 1 (one) provides basic\n\
25855 information. A value greater than 1 provides more verbose information."),
25856 NULL,
25857 NULL,
25858 &setdebuglist, &showdebuglist);
25859
25860 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25861 Set debugging of the DWARF DIE reader."), _("\
25862 Show debugging of the DWARF DIE reader."), _("\
25863 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25864 The value is the maximum depth to print."),
25865 NULL,
25866 NULL,
25867 &setdebuglist, &showdebuglist);
25868
25869 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25870 Set debugging of the dwarf line reader."), _("\
25871 Show debugging of the dwarf line reader."), _("\
25872 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25873 A value of 1 (one) provides basic information.\n\
25874 A value greater than 1 provides more verbose information."),
25875 NULL,
25876 NULL,
25877 &setdebuglist, &showdebuglist);
25878
25879 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25880 Set cross-checking of \"physname\" code against demangler."), _("\
25881 Show cross-checking of \"physname\" code against demangler."), _("\
25882 When enabled, GDB's internal \"physname\" code is checked against\n\
25883 the demangler."),
25884 NULL, show_check_physname,
25885 &setdebuglist, &showdebuglist);
25886
25887 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25888 no_class, &use_deprecated_index_sections, _("\
25889 Set whether to use deprecated gdb_index sections."), _("\
25890 Show whether to use deprecated gdb_index sections."), _("\
25891 When enabled, deprecated .gdb_index sections are used anyway.\n\
25892 Normally they are ignored either because of a missing feature or\n\
25893 performance issue.\n\
25894 Warning: This option must be enabled before gdb reads the file."),
25895 NULL,
25896 NULL,
25897 &setlist, &showlist);
25898
25899 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
25900 _("\
25901 Save a gdb-index file.\n\
25902 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
25903 \n\
25904 No options create one file with .gdb-index extension for pre-DWARF-5\n\
25905 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
25906 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
25907 &save_cmdlist);
25908 set_cmd_completer (c, filename_completer);
25909
25910 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25911 &dwarf2_locexpr_funcs);
25912 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25913 &dwarf2_loclist_funcs);
25914
25915 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25916 &dwarf2_block_frame_base_locexpr_funcs);
25917 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25918 &dwarf2_block_frame_base_loclist_funcs);
25919
25920 #if GDB_SELF_TEST
25921 selftests::register_test ("dw2_expand_symtabs_matching",
25922 selftests::dw2_expand_symtabs_matching::run_test);
25923 #endif
25924 }
This page took 0.588424 seconds and 4 git commands to generate.