Unbreak build for non-ELF ports
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89
90 typedef struct symbol *symbolp;
91 DEF_VEC_P (symbolp);
92
93 /* When == 1, print basic high level tracing messages.
94 When > 1, be more verbose.
95 This is in contrast to the low level DIE reading of dwarf_die_debug. */
96 static unsigned int dwarf_read_debug = 0;
97
98 /* When non-zero, dump DIEs after they are read in. */
99 static unsigned int dwarf_die_debug = 0;
100
101 /* When non-zero, dump line number entries as they are read in. */
102 static unsigned int dwarf_line_debug = 0;
103
104 /* When non-zero, cross-check physname against demangler. */
105 static int check_physname = 0;
106
107 /* When non-zero, do not reject deprecated .gdb_index sections. */
108 static int use_deprecated_index_sections = 0;
109
110 static const struct objfile_data *dwarf2_objfile_data_key;
111
112 /* The "aclass" indices for various kinds of computed DWARF symbols. */
113
114 static int dwarf2_locexpr_index;
115 static int dwarf2_loclist_index;
116 static int dwarf2_locexpr_block_index;
117 static int dwarf2_loclist_block_index;
118
119 /* A descriptor for dwarf sections.
120
121 S.ASECTION, SIZE are typically initialized when the objfile is first
122 scanned. BUFFER, READIN are filled in later when the section is read.
123 If the section contained compressed data then SIZE is updated to record
124 the uncompressed size of the section.
125
126 DWP file format V2 introduces a wrinkle that is easiest to handle by
127 creating the concept of virtual sections contained within a real section.
128 In DWP V2 the sections of the input DWO files are concatenated together
129 into one section, but section offsets are kept relative to the original
130 input section.
131 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
132 the real section this "virtual" section is contained in, and BUFFER,SIZE
133 describe the virtual section. */
134
135 struct dwarf2_section_info
136 {
137 union
138 {
139 /* If this is a real section, the bfd section. */
140 asection *section;
141 /* If this is a virtual section, pointer to the containing ("real")
142 section. */
143 struct dwarf2_section_info *containing_section;
144 } s;
145 /* Pointer to section data, only valid if readin. */
146 const gdb_byte *buffer;
147 /* The size of the section, real or virtual. */
148 bfd_size_type size;
149 /* If this is a virtual section, the offset in the real section.
150 Only valid if is_virtual. */
151 bfd_size_type virtual_offset;
152 /* True if we have tried to read this section. */
153 char readin;
154 /* True if this is a virtual section, False otherwise.
155 This specifies which of s.section and s.containing_section to use. */
156 char is_virtual;
157 };
158
159 typedef struct dwarf2_section_info dwarf2_section_info_def;
160 DEF_VEC_O (dwarf2_section_info_def);
161
162 /* All offsets in the index are of this type. It must be
163 architecture-independent. */
164 typedef uint32_t offset_type;
165
166 DEF_VEC_I (offset_type);
167
168 /* Ensure only legit values are used. */
169 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
170 do { \
171 gdb_assert ((unsigned int) (value) <= 1); \
172 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
173 } while (0)
174
175 /* Ensure only legit values are used. */
176 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
177 do { \
178 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
179 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
180 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
181 } while (0)
182
183 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
184 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
185 do { \
186 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
187 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
188 } while (0)
189
190 #if WORDS_BIGENDIAN
191
192 /* Convert VALUE between big- and little-endian. */
193
194 static offset_type
195 byte_swap (offset_type value)
196 {
197 offset_type result;
198
199 result = (value & 0xff) << 24;
200 result |= (value & 0xff00) << 8;
201 result |= (value & 0xff0000) >> 8;
202 result |= (value & 0xff000000) >> 24;
203 return result;
204 }
205
206 #define MAYBE_SWAP(V) byte_swap (V)
207
208 #else
209 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
210 #endif /* WORDS_BIGENDIAN */
211
212 /* An index into a (C++) symbol name component in a symbol name as
213 recorded in the mapped_index's symbol table. For each C++ symbol
214 in the symbol table, we record one entry for the start of each
215 component in the symbol in a table of name components, and then
216 sort the table, in order to be able to binary search symbol names,
217 ignoring leading namespaces, both completion and regular look up.
218 For example, for symbol "A::B::C", we'll have an entry that points
219 to "A::B::C", another that points to "B::C", and another for "C".
220 Note that function symbols in GDB index have no parameter
221 information, just the function/method names. You can convert a
222 name_component to a "const char *" using the
223 'mapped_index::symbol_name_at(offset_type)' method. */
224
225 struct name_component
226 {
227 /* Offset in the symbol name where the component starts. Stored as
228 a (32-bit) offset instead of a pointer to save memory and improve
229 locality on 64-bit architectures. */
230 offset_type name_offset;
231
232 /* The symbol's index in the symbol and constant pool tables of a
233 mapped_index. */
234 offset_type idx;
235 };
236
237 /* Base class containing bits shared by both .gdb_index and
238 .debug_name indexes. */
239
240 struct mapped_index_base
241 {
242 /* The name_component table (a sorted vector). See name_component's
243 description above. */
244 std::vector<name_component> name_components;
245
246 /* How NAME_COMPONENTS is sorted. */
247 enum case_sensitivity name_components_casing;
248
249 /* Return the number of names in the symbol table. */
250 virtual size_t symbol_name_count () const = 0;
251
252 /* Get the name of the symbol at IDX in the symbol table. */
253 virtual const char *symbol_name_at (offset_type idx) const = 0;
254
255 /* Return whether the name at IDX in the symbol table should be
256 ignored. */
257 virtual bool symbol_name_slot_invalid (offset_type idx) const
258 {
259 return false;
260 }
261
262 /* Build the symbol name component sorted vector, if we haven't
263 yet. */
264 void build_name_components ();
265
266 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
267 possible matches for LN_NO_PARAMS in the name component
268 vector. */
269 std::pair<std::vector<name_component>::const_iterator,
270 std::vector<name_component>::const_iterator>
271 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
272
273 /* Prevent deleting/destroying via a base class pointer. */
274 protected:
275 ~mapped_index_base() = default;
276 };
277
278 /* A description of the mapped index. The file format is described in
279 a comment by the code that writes the index. */
280 struct mapped_index : public mapped_index_base
281 {
282 /* A slot/bucket in the symbol table hash. */
283 struct symbol_table_slot
284 {
285 const offset_type name;
286 const offset_type vec;
287 };
288
289 /* Index data format version. */
290 int version;
291
292 /* The total length of the buffer. */
293 off_t total_size;
294
295 /* The address table data. */
296 gdb::array_view<const gdb_byte> address_table;
297
298 /* The symbol table, implemented as a hash table. */
299 gdb::array_view<symbol_table_slot> symbol_table;
300
301 /* A pointer to the constant pool. */
302 const char *constant_pool;
303
304 bool symbol_name_slot_invalid (offset_type idx) const override
305 {
306 const auto &bucket = this->symbol_table[idx];
307 return bucket.name == 0 && bucket.vec;
308 }
309
310 /* Convenience method to get at the name of the symbol at IDX in the
311 symbol table. */
312 const char *symbol_name_at (offset_type idx) const override
313 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
314
315 size_t symbol_name_count () const override
316 { return this->symbol_table.size (); }
317 };
318
319 /* A description of the mapped .debug_names.
320 Uninitialized map has CU_COUNT 0. */
321 struct mapped_debug_names : public mapped_index_base
322 {
323 bfd_endian dwarf5_byte_order;
324 bool dwarf5_is_dwarf64;
325 bool augmentation_is_gdb;
326 uint8_t offset_size;
327 uint32_t cu_count = 0;
328 uint32_t tu_count, bucket_count, name_count;
329 const gdb_byte *cu_table_reordered, *tu_table_reordered;
330 const uint32_t *bucket_table_reordered, *hash_table_reordered;
331 const gdb_byte *name_table_string_offs_reordered;
332 const gdb_byte *name_table_entry_offs_reordered;
333 const gdb_byte *entry_pool;
334
335 struct index_val
336 {
337 ULONGEST dwarf_tag;
338 struct attr
339 {
340 /* Attribute name DW_IDX_*. */
341 ULONGEST dw_idx;
342
343 /* Attribute form DW_FORM_*. */
344 ULONGEST form;
345
346 /* Value if FORM is DW_FORM_implicit_const. */
347 LONGEST implicit_const;
348 };
349 std::vector<attr> attr_vec;
350 };
351
352 std::unordered_map<ULONGEST, index_val> abbrev_map;
353
354 const char *namei_to_name (uint32_t namei) const;
355
356 /* Implementation of the mapped_index_base virtual interface, for
357 the name_components cache. */
358
359 const char *symbol_name_at (offset_type idx) const override
360 { return namei_to_name (idx); }
361
362 size_t symbol_name_count () const override
363 { return this->name_count; }
364 };
365
366 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
367 DEF_VEC_P (dwarf2_per_cu_ptr);
368
369 struct tu_stats
370 {
371 int nr_uniq_abbrev_tables;
372 int nr_symtabs;
373 int nr_symtab_sharers;
374 int nr_stmt_less_type_units;
375 int nr_all_type_units_reallocs;
376 };
377
378 /* Collection of data recorded per objfile.
379 This hangs off of dwarf2_objfile_data_key. */
380
381 struct dwarf2_per_objfile
382 {
383 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
384 dwarf2 section names, or is NULL if the standard ELF names are
385 used. */
386 dwarf2_per_objfile (struct objfile *objfile,
387 const dwarf2_debug_sections *names);
388
389 ~dwarf2_per_objfile ();
390
391 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
392
393 /* Free all cached compilation units. */
394 void free_cached_comp_units ();
395 private:
396 /* This function is mapped across the sections and remembers the
397 offset and size of each of the debugging sections we are
398 interested in. */
399 void locate_sections (bfd *abfd, asection *sectp,
400 const dwarf2_debug_sections &names);
401
402 public:
403 dwarf2_section_info info {};
404 dwarf2_section_info abbrev {};
405 dwarf2_section_info line {};
406 dwarf2_section_info loc {};
407 dwarf2_section_info loclists {};
408 dwarf2_section_info macinfo {};
409 dwarf2_section_info macro {};
410 dwarf2_section_info str {};
411 dwarf2_section_info line_str {};
412 dwarf2_section_info ranges {};
413 dwarf2_section_info rnglists {};
414 dwarf2_section_info addr {};
415 dwarf2_section_info frame {};
416 dwarf2_section_info eh_frame {};
417 dwarf2_section_info gdb_index {};
418 dwarf2_section_info debug_names {};
419 dwarf2_section_info debug_aranges {};
420
421 VEC (dwarf2_section_info_def) *types = NULL;
422
423 /* Back link. */
424 struct objfile *objfile = NULL;
425
426 /* Table of all the compilation units. This is used to locate
427 the target compilation unit of a particular reference. */
428 struct dwarf2_per_cu_data **all_comp_units = NULL;
429
430 /* The number of compilation units in ALL_COMP_UNITS. */
431 int n_comp_units = 0;
432
433 /* The number of .debug_types-related CUs. */
434 int n_type_units = 0;
435
436 /* The number of elements allocated in all_type_units.
437 If there are skeleton-less TUs, we add them to all_type_units lazily. */
438 int n_allocated_type_units = 0;
439
440 /* The .debug_types-related CUs (TUs).
441 This is stored in malloc space because we may realloc it. */
442 struct signatured_type **all_type_units = NULL;
443
444 /* Table of struct type_unit_group objects.
445 The hash key is the DW_AT_stmt_list value. */
446 htab_t type_unit_groups {};
447
448 /* A table mapping .debug_types signatures to its signatured_type entry.
449 This is NULL if the .debug_types section hasn't been read in yet. */
450 htab_t signatured_types {};
451
452 /* Type unit statistics, to see how well the scaling improvements
453 are doing. */
454 struct tu_stats tu_stats {};
455
456 /* A chain of compilation units that are currently read in, so that
457 they can be freed later. */
458 dwarf2_per_cu_data *read_in_chain = NULL;
459
460 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
461 This is NULL if the table hasn't been allocated yet. */
462 htab_t dwo_files {};
463
464 /* True if we've checked for whether there is a DWP file. */
465 bool dwp_checked = false;
466
467 /* The DWP file if there is one, or NULL. */
468 struct dwp_file *dwp_file = NULL;
469
470 /* The shared '.dwz' file, if one exists. This is used when the
471 original data was compressed using 'dwz -m'. */
472 struct dwz_file *dwz_file = NULL;
473
474 /* A flag indicating whether this objfile has a section loaded at a
475 VMA of 0. */
476 bool has_section_at_zero = false;
477
478 /* True if we are using the mapped index,
479 or we are faking it for OBJF_READNOW's sake. */
480 bool using_index = false;
481
482 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
483 mapped_index *index_table = NULL;
484
485 /* The mapped index, or NULL if .debug_names is missing or not being used. */
486 std::unique_ptr<mapped_debug_names> debug_names_table;
487
488 /* When using index_table, this keeps track of all quick_file_names entries.
489 TUs typically share line table entries with a CU, so we maintain a
490 separate table of all line table entries to support the sharing.
491 Note that while there can be way more TUs than CUs, we've already
492 sorted all the TUs into "type unit groups", grouped by their
493 DW_AT_stmt_list value. Therefore the only sharing done here is with a
494 CU and its associated TU group if there is one. */
495 htab_t quick_file_names_table {};
496
497 /* Set during partial symbol reading, to prevent queueing of full
498 symbols. */
499 bool reading_partial_symbols = false;
500
501 /* Table mapping type DIEs to their struct type *.
502 This is NULL if not allocated yet.
503 The mapping is done via (CU/TU + DIE offset) -> type. */
504 htab_t die_type_hash {};
505
506 /* The CUs we recently read. */
507 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
508
509 /* Table containing line_header indexed by offset and offset_in_dwz. */
510 htab_t line_header_hash {};
511
512 /* Table containing all filenames. This is an optional because the
513 table is lazily constructed on first access. */
514 gdb::optional<filename_seen_cache> filenames_cache;
515 };
516
517 static struct dwarf2_per_objfile *dwarf2_per_objfile;
518
519 /* Default names of the debugging sections. */
520
521 /* Note that if the debugging section has been compressed, it might
522 have a name like .zdebug_info. */
523
524 static const struct dwarf2_debug_sections dwarf2_elf_names =
525 {
526 { ".debug_info", ".zdebug_info" },
527 { ".debug_abbrev", ".zdebug_abbrev" },
528 { ".debug_line", ".zdebug_line" },
529 { ".debug_loc", ".zdebug_loc" },
530 { ".debug_loclists", ".zdebug_loclists" },
531 { ".debug_macinfo", ".zdebug_macinfo" },
532 { ".debug_macro", ".zdebug_macro" },
533 { ".debug_str", ".zdebug_str" },
534 { ".debug_line_str", ".zdebug_line_str" },
535 { ".debug_ranges", ".zdebug_ranges" },
536 { ".debug_rnglists", ".zdebug_rnglists" },
537 { ".debug_types", ".zdebug_types" },
538 { ".debug_addr", ".zdebug_addr" },
539 { ".debug_frame", ".zdebug_frame" },
540 { ".eh_frame", NULL },
541 { ".gdb_index", ".zgdb_index" },
542 { ".debug_names", ".zdebug_names" },
543 { ".debug_aranges", ".zdebug_aranges" },
544 23
545 };
546
547 /* List of DWO/DWP sections. */
548
549 static const struct dwop_section_names
550 {
551 struct dwarf2_section_names abbrev_dwo;
552 struct dwarf2_section_names info_dwo;
553 struct dwarf2_section_names line_dwo;
554 struct dwarf2_section_names loc_dwo;
555 struct dwarf2_section_names loclists_dwo;
556 struct dwarf2_section_names macinfo_dwo;
557 struct dwarf2_section_names macro_dwo;
558 struct dwarf2_section_names str_dwo;
559 struct dwarf2_section_names str_offsets_dwo;
560 struct dwarf2_section_names types_dwo;
561 struct dwarf2_section_names cu_index;
562 struct dwarf2_section_names tu_index;
563 }
564 dwop_section_names =
565 {
566 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
567 { ".debug_info.dwo", ".zdebug_info.dwo" },
568 { ".debug_line.dwo", ".zdebug_line.dwo" },
569 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
570 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
571 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
572 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
573 { ".debug_str.dwo", ".zdebug_str.dwo" },
574 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
575 { ".debug_types.dwo", ".zdebug_types.dwo" },
576 { ".debug_cu_index", ".zdebug_cu_index" },
577 { ".debug_tu_index", ".zdebug_tu_index" },
578 };
579
580 /* local data types */
581
582 /* The data in a compilation unit header, after target2host
583 translation, looks like this. */
584 struct comp_unit_head
585 {
586 unsigned int length;
587 short version;
588 unsigned char addr_size;
589 unsigned char signed_addr_p;
590 sect_offset abbrev_sect_off;
591
592 /* Size of file offsets; either 4 or 8. */
593 unsigned int offset_size;
594
595 /* Size of the length field; either 4 or 12. */
596 unsigned int initial_length_size;
597
598 enum dwarf_unit_type unit_type;
599
600 /* Offset to the first byte of this compilation unit header in the
601 .debug_info section, for resolving relative reference dies. */
602 sect_offset sect_off;
603
604 /* Offset to first die in this cu from the start of the cu.
605 This will be the first byte following the compilation unit header. */
606 cu_offset first_die_cu_offset;
607
608 /* 64-bit signature of this type unit - it is valid only for
609 UNIT_TYPE DW_UT_type. */
610 ULONGEST signature;
611
612 /* For types, offset in the type's DIE of the type defined by this TU. */
613 cu_offset type_cu_offset_in_tu;
614 };
615
616 /* Type used for delaying computation of method physnames.
617 See comments for compute_delayed_physnames. */
618 struct delayed_method_info
619 {
620 /* The type to which the method is attached, i.e., its parent class. */
621 struct type *type;
622
623 /* The index of the method in the type's function fieldlists. */
624 int fnfield_index;
625
626 /* The index of the method in the fieldlist. */
627 int index;
628
629 /* The name of the DIE. */
630 const char *name;
631
632 /* The DIE associated with this method. */
633 struct die_info *die;
634 };
635
636 typedef struct delayed_method_info delayed_method_info;
637 DEF_VEC_O (delayed_method_info);
638
639 /* Internal state when decoding a particular compilation unit. */
640 struct dwarf2_cu
641 {
642 /* The objfile containing this compilation unit. */
643 struct objfile *objfile;
644
645 /* The header of the compilation unit. */
646 struct comp_unit_head header;
647
648 /* Base address of this compilation unit. */
649 CORE_ADDR base_address;
650
651 /* Non-zero if base_address has been set. */
652 int base_known;
653
654 /* The language we are debugging. */
655 enum language language;
656 const struct language_defn *language_defn;
657
658 const char *producer;
659
660 /* The generic symbol table building routines have separate lists for
661 file scope symbols and all all other scopes (local scopes). So
662 we need to select the right one to pass to add_symbol_to_list().
663 We do it by keeping a pointer to the correct list in list_in_scope.
664
665 FIXME: The original dwarf code just treated the file scope as the
666 first local scope, and all other local scopes as nested local
667 scopes, and worked fine. Check to see if we really need to
668 distinguish these in buildsym.c. */
669 struct pending **list_in_scope;
670
671 /* The abbrev table for this CU.
672 Normally this points to the abbrev table in the objfile.
673 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
674 struct abbrev_table *abbrev_table;
675
676 /* Hash table holding all the loaded partial DIEs
677 with partial_die->offset.SECT_OFF as hash. */
678 htab_t partial_dies;
679
680 /* Storage for things with the same lifetime as this read-in compilation
681 unit, including partial DIEs. */
682 struct obstack comp_unit_obstack;
683
684 /* When multiple dwarf2_cu structures are living in memory, this field
685 chains them all together, so that they can be released efficiently.
686 We will probably also want a generation counter so that most-recently-used
687 compilation units are cached... */
688 struct dwarf2_per_cu_data *read_in_chain;
689
690 /* Backlink to our per_cu entry. */
691 struct dwarf2_per_cu_data *per_cu;
692
693 /* How many compilation units ago was this CU last referenced? */
694 int last_used;
695
696 /* A hash table of DIE cu_offset for following references with
697 die_info->offset.sect_off as hash. */
698 htab_t die_hash;
699
700 /* Full DIEs if read in. */
701 struct die_info *dies;
702
703 /* A set of pointers to dwarf2_per_cu_data objects for compilation
704 units referenced by this one. Only set during full symbol processing;
705 partial symbol tables do not have dependencies. */
706 htab_t dependencies;
707
708 /* Header data from the line table, during full symbol processing. */
709 struct line_header *line_header;
710 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
711 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
712 this is the DW_TAG_compile_unit die for this CU. We'll hold on
713 to the line header as long as this DIE is being processed. See
714 process_die_scope. */
715 die_info *line_header_die_owner;
716
717 /* A list of methods which need to have physnames computed
718 after all type information has been read. */
719 VEC (delayed_method_info) *method_list;
720
721 /* To be copied to symtab->call_site_htab. */
722 htab_t call_site_htab;
723
724 /* Non-NULL if this CU came from a DWO file.
725 There is an invariant here that is important to remember:
726 Except for attributes copied from the top level DIE in the "main"
727 (or "stub") file in preparation for reading the DWO file
728 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
729 Either there isn't a DWO file (in which case this is NULL and the point
730 is moot), or there is and either we're not going to read it (in which
731 case this is NULL) or there is and we are reading it (in which case this
732 is non-NULL). */
733 struct dwo_unit *dwo_unit;
734
735 /* The DW_AT_addr_base attribute if present, zero otherwise
736 (zero is a valid value though).
737 Note this value comes from the Fission stub CU/TU's DIE. */
738 ULONGEST addr_base;
739
740 /* The DW_AT_ranges_base attribute if present, zero otherwise
741 (zero is a valid value though).
742 Note this value comes from the Fission stub CU/TU's DIE.
743 Also note that the value is zero in the non-DWO case so this value can
744 be used without needing to know whether DWO files are in use or not.
745 N.B. This does not apply to DW_AT_ranges appearing in
746 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
747 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
748 DW_AT_ranges_base *would* have to be applied, and we'd have to care
749 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
750 ULONGEST ranges_base;
751
752 /* Mark used when releasing cached dies. */
753 unsigned int mark : 1;
754
755 /* This CU references .debug_loc. See the symtab->locations_valid field.
756 This test is imperfect as there may exist optimized debug code not using
757 any location list and still facing inlining issues if handled as
758 unoptimized code. For a future better test see GCC PR other/32998. */
759 unsigned int has_loclist : 1;
760
761 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
762 if all the producer_is_* fields are valid. This information is cached
763 because profiling CU expansion showed excessive time spent in
764 producer_is_gxx_lt_4_6. */
765 unsigned int checked_producer : 1;
766 unsigned int producer_is_gxx_lt_4_6 : 1;
767 unsigned int producer_is_gcc_lt_4_3 : 1;
768 unsigned int producer_is_icc_lt_14 : 1;
769
770 /* When set, the file that we're processing is known to have
771 debugging info for C++ namespaces. GCC 3.3.x did not produce
772 this information, but later versions do. */
773
774 unsigned int processing_has_namespace_info : 1;
775 };
776
777 /* Persistent data held for a compilation unit, even when not
778 processing it. We put a pointer to this structure in the
779 read_symtab_private field of the psymtab. */
780
781 struct dwarf2_per_cu_data
782 {
783 /* The start offset and length of this compilation unit.
784 NOTE: Unlike comp_unit_head.length, this length includes
785 initial_length_size.
786 If the DIE refers to a DWO file, this is always of the original die,
787 not the DWO file. */
788 sect_offset sect_off;
789 unsigned int length;
790
791 /* DWARF standard version this data has been read from (such as 4 or 5). */
792 short dwarf_version;
793
794 /* Flag indicating this compilation unit will be read in before
795 any of the current compilation units are processed. */
796 unsigned int queued : 1;
797
798 /* This flag will be set when reading partial DIEs if we need to load
799 absolutely all DIEs for this compilation unit, instead of just the ones
800 we think are interesting. It gets set if we look for a DIE in the
801 hash table and don't find it. */
802 unsigned int load_all_dies : 1;
803
804 /* Non-zero if this CU is from .debug_types.
805 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
806 this is non-zero. */
807 unsigned int is_debug_types : 1;
808
809 /* Non-zero if this CU is from the .dwz file. */
810 unsigned int is_dwz : 1;
811
812 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
813 This flag is only valid if is_debug_types is true.
814 We can't read a CU directly from a DWO file: There are required
815 attributes in the stub. */
816 unsigned int reading_dwo_directly : 1;
817
818 /* Non-zero if the TU has been read.
819 This is used to assist the "Stay in DWO Optimization" for Fission:
820 When reading a DWO, it's faster to read TUs from the DWO instead of
821 fetching them from random other DWOs (due to comdat folding).
822 If the TU has already been read, the optimization is unnecessary
823 (and unwise - we don't want to change where gdb thinks the TU lives
824 "midflight").
825 This flag is only valid if is_debug_types is true. */
826 unsigned int tu_read : 1;
827
828 /* The section this CU/TU lives in.
829 If the DIE refers to a DWO file, this is always the original die,
830 not the DWO file. */
831 struct dwarf2_section_info *section;
832
833 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
834 of the CU cache it gets reset to NULL again. This is left as NULL for
835 dummy CUs (a CU header, but nothing else). */
836 struct dwarf2_cu *cu;
837
838 /* The corresponding objfile.
839 Normally we can get the objfile from dwarf2_per_objfile.
840 However we can enter this file with just a "per_cu" handle. */
841 struct objfile *objfile;
842
843 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
844 is active. Otherwise, the 'psymtab' field is active. */
845 union
846 {
847 /* The partial symbol table associated with this compilation unit,
848 or NULL for unread partial units. */
849 struct partial_symtab *psymtab;
850
851 /* Data needed by the "quick" functions. */
852 struct dwarf2_per_cu_quick_data *quick;
853 } v;
854
855 /* The CUs we import using DW_TAG_imported_unit. This is filled in
856 while reading psymtabs, used to compute the psymtab dependencies,
857 and then cleared. Then it is filled in again while reading full
858 symbols, and only deleted when the objfile is destroyed.
859
860 This is also used to work around a difference between the way gold
861 generates .gdb_index version <=7 and the way gdb does. Arguably this
862 is a gold bug. For symbols coming from TUs, gold records in the index
863 the CU that includes the TU instead of the TU itself. This breaks
864 dw2_lookup_symbol: It assumes that if the index says symbol X lives
865 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
866 will find X. Alas TUs live in their own symtab, so after expanding CU Y
867 we need to look in TU Z to find X. Fortunately, this is akin to
868 DW_TAG_imported_unit, so we just use the same mechanism: For
869 .gdb_index version <=7 this also records the TUs that the CU referred
870 to. Concurrently with this change gdb was modified to emit version 8
871 indices so we only pay a price for gold generated indices.
872 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
873 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
874 };
875
876 /* Entry in the signatured_types hash table. */
877
878 struct signatured_type
879 {
880 /* The "per_cu" object of this type.
881 This struct is used iff per_cu.is_debug_types.
882 N.B.: This is the first member so that it's easy to convert pointers
883 between them. */
884 struct dwarf2_per_cu_data per_cu;
885
886 /* The type's signature. */
887 ULONGEST signature;
888
889 /* Offset in the TU of the type's DIE, as read from the TU header.
890 If this TU is a DWO stub and the definition lives in a DWO file
891 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
892 cu_offset type_offset_in_tu;
893
894 /* Offset in the section of the type's DIE.
895 If the definition lives in a DWO file, this is the offset in the
896 .debug_types.dwo section.
897 The value is zero until the actual value is known.
898 Zero is otherwise not a valid section offset. */
899 sect_offset type_offset_in_section;
900
901 /* Type units are grouped by their DW_AT_stmt_list entry so that they
902 can share them. This points to the containing symtab. */
903 struct type_unit_group *type_unit_group;
904
905 /* The type.
906 The first time we encounter this type we fully read it in and install it
907 in the symbol tables. Subsequent times we only need the type. */
908 struct type *type;
909
910 /* Containing DWO unit.
911 This field is valid iff per_cu.reading_dwo_directly. */
912 struct dwo_unit *dwo_unit;
913 };
914
915 typedef struct signatured_type *sig_type_ptr;
916 DEF_VEC_P (sig_type_ptr);
917
918 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
919 This includes type_unit_group and quick_file_names. */
920
921 struct stmt_list_hash
922 {
923 /* The DWO unit this table is from or NULL if there is none. */
924 struct dwo_unit *dwo_unit;
925
926 /* Offset in .debug_line or .debug_line.dwo. */
927 sect_offset line_sect_off;
928 };
929
930 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
931 an object of this type. */
932
933 struct type_unit_group
934 {
935 /* dwarf2read.c's main "handle" on a TU symtab.
936 To simplify things we create an artificial CU that "includes" all the
937 type units using this stmt_list so that the rest of the code still has
938 a "per_cu" handle on the symtab.
939 This PER_CU is recognized by having no section. */
940 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
941 struct dwarf2_per_cu_data per_cu;
942
943 /* The TUs that share this DW_AT_stmt_list entry.
944 This is added to while parsing type units to build partial symtabs,
945 and is deleted afterwards and not used again. */
946 VEC (sig_type_ptr) *tus;
947
948 /* The compunit symtab.
949 Type units in a group needn't all be defined in the same source file,
950 so we create an essentially anonymous symtab as the compunit symtab. */
951 struct compunit_symtab *compunit_symtab;
952
953 /* The data used to construct the hash key. */
954 struct stmt_list_hash hash;
955
956 /* The number of symtabs from the line header.
957 The value here must match line_header.num_file_names. */
958 unsigned int num_symtabs;
959
960 /* The symbol tables for this TU (obtained from the files listed in
961 DW_AT_stmt_list).
962 WARNING: The order of entries here must match the order of entries
963 in the line header. After the first TU using this type_unit_group, the
964 line header for the subsequent TUs is recreated from this. This is done
965 because we need to use the same symtabs for each TU using the same
966 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
967 there's no guarantee the line header doesn't have duplicate entries. */
968 struct symtab **symtabs;
969 };
970
971 /* These sections are what may appear in a (real or virtual) DWO file. */
972
973 struct dwo_sections
974 {
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info line;
977 struct dwarf2_section_info loc;
978 struct dwarf2_section_info loclists;
979 struct dwarf2_section_info macinfo;
980 struct dwarf2_section_info macro;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info str_offsets;
983 /* In the case of a virtual DWO file, these two are unused. */
984 struct dwarf2_section_info info;
985 VEC (dwarf2_section_info_def) *types;
986 };
987
988 /* CUs/TUs in DWP/DWO files. */
989
990 struct dwo_unit
991 {
992 /* Backlink to the containing struct dwo_file. */
993 struct dwo_file *dwo_file;
994
995 /* The "id" that distinguishes this CU/TU.
996 .debug_info calls this "dwo_id", .debug_types calls this "signature".
997 Since signatures came first, we stick with it for consistency. */
998 ULONGEST signature;
999
1000 /* The section this CU/TU lives in, in the DWO file. */
1001 struct dwarf2_section_info *section;
1002
1003 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1004 sect_offset sect_off;
1005 unsigned int length;
1006
1007 /* For types, offset in the type's DIE of the type defined by this TU. */
1008 cu_offset type_offset_in_tu;
1009 };
1010
1011 /* include/dwarf2.h defines the DWP section codes.
1012 It defines a max value but it doesn't define a min value, which we
1013 use for error checking, so provide one. */
1014
1015 enum dwp_v2_section_ids
1016 {
1017 DW_SECT_MIN = 1
1018 };
1019
1020 /* Data for one DWO file.
1021
1022 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1023 appears in a DWP file). DWP files don't really have DWO files per se -
1024 comdat folding of types "loses" the DWO file they came from, and from
1025 a high level view DWP files appear to contain a mass of random types.
1026 However, to maintain consistency with the non-DWP case we pretend DWP
1027 files contain virtual DWO files, and we assign each TU with one virtual
1028 DWO file (generally based on the line and abbrev section offsets -
1029 a heuristic that seems to work in practice). */
1030
1031 struct dwo_file
1032 {
1033 /* The DW_AT_GNU_dwo_name attribute.
1034 For virtual DWO files the name is constructed from the section offsets
1035 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1036 from related CU+TUs. */
1037 const char *dwo_name;
1038
1039 /* The DW_AT_comp_dir attribute. */
1040 const char *comp_dir;
1041
1042 /* The bfd, when the file is open. Otherwise this is NULL.
1043 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1044 bfd *dbfd;
1045
1046 /* The sections that make up this DWO file.
1047 Remember that for virtual DWO files in DWP V2, these are virtual
1048 sections (for lack of a better name). */
1049 struct dwo_sections sections;
1050
1051 /* The CUs in the file.
1052 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1053 an extension to handle LLVM's Link Time Optimization output (where
1054 multiple source files may be compiled into a single object/dwo pair). */
1055 htab_t cus;
1056
1057 /* Table of TUs in the file.
1058 Each element is a struct dwo_unit. */
1059 htab_t tus;
1060 };
1061
1062 /* These sections are what may appear in a DWP file. */
1063
1064 struct dwp_sections
1065 {
1066 /* These are used by both DWP version 1 and 2. */
1067 struct dwarf2_section_info str;
1068 struct dwarf2_section_info cu_index;
1069 struct dwarf2_section_info tu_index;
1070
1071 /* These are only used by DWP version 2 files.
1072 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1073 sections are referenced by section number, and are not recorded here.
1074 In DWP version 2 there is at most one copy of all these sections, each
1075 section being (effectively) comprised of the concatenation of all of the
1076 individual sections that exist in the version 1 format.
1077 To keep the code simple we treat each of these concatenated pieces as a
1078 section itself (a virtual section?). */
1079 struct dwarf2_section_info abbrev;
1080 struct dwarf2_section_info info;
1081 struct dwarf2_section_info line;
1082 struct dwarf2_section_info loc;
1083 struct dwarf2_section_info macinfo;
1084 struct dwarf2_section_info macro;
1085 struct dwarf2_section_info str_offsets;
1086 struct dwarf2_section_info types;
1087 };
1088
1089 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1090 A virtual DWO file is a DWO file as it appears in a DWP file. */
1091
1092 struct virtual_v1_dwo_sections
1093 {
1094 struct dwarf2_section_info abbrev;
1095 struct dwarf2_section_info line;
1096 struct dwarf2_section_info loc;
1097 struct dwarf2_section_info macinfo;
1098 struct dwarf2_section_info macro;
1099 struct dwarf2_section_info str_offsets;
1100 /* Each DWP hash table entry records one CU or one TU.
1101 That is recorded here, and copied to dwo_unit.section. */
1102 struct dwarf2_section_info info_or_types;
1103 };
1104
1105 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1106 In version 2, the sections of the DWO files are concatenated together
1107 and stored in one section of that name. Thus each ELF section contains
1108 several "virtual" sections. */
1109
1110 struct virtual_v2_dwo_sections
1111 {
1112 bfd_size_type abbrev_offset;
1113 bfd_size_type abbrev_size;
1114
1115 bfd_size_type line_offset;
1116 bfd_size_type line_size;
1117
1118 bfd_size_type loc_offset;
1119 bfd_size_type loc_size;
1120
1121 bfd_size_type macinfo_offset;
1122 bfd_size_type macinfo_size;
1123
1124 bfd_size_type macro_offset;
1125 bfd_size_type macro_size;
1126
1127 bfd_size_type str_offsets_offset;
1128 bfd_size_type str_offsets_size;
1129
1130 /* Each DWP hash table entry records one CU or one TU.
1131 That is recorded here, and copied to dwo_unit.section. */
1132 bfd_size_type info_or_types_offset;
1133 bfd_size_type info_or_types_size;
1134 };
1135
1136 /* Contents of DWP hash tables. */
1137
1138 struct dwp_hash_table
1139 {
1140 uint32_t version, nr_columns;
1141 uint32_t nr_units, nr_slots;
1142 const gdb_byte *hash_table, *unit_table;
1143 union
1144 {
1145 struct
1146 {
1147 const gdb_byte *indices;
1148 } v1;
1149 struct
1150 {
1151 /* This is indexed by column number and gives the id of the section
1152 in that column. */
1153 #define MAX_NR_V2_DWO_SECTIONS \
1154 (1 /* .debug_info or .debug_types */ \
1155 + 1 /* .debug_abbrev */ \
1156 + 1 /* .debug_line */ \
1157 + 1 /* .debug_loc */ \
1158 + 1 /* .debug_str_offsets */ \
1159 + 1 /* .debug_macro or .debug_macinfo */)
1160 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1161 const gdb_byte *offsets;
1162 const gdb_byte *sizes;
1163 } v2;
1164 } section_pool;
1165 };
1166
1167 /* Data for one DWP file. */
1168
1169 struct dwp_file
1170 {
1171 /* Name of the file. */
1172 const char *name;
1173
1174 /* File format version. */
1175 int version;
1176
1177 /* The bfd. */
1178 bfd *dbfd;
1179
1180 /* Section info for this file. */
1181 struct dwp_sections sections;
1182
1183 /* Table of CUs in the file. */
1184 const struct dwp_hash_table *cus;
1185
1186 /* Table of TUs in the file. */
1187 const struct dwp_hash_table *tus;
1188
1189 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1190 htab_t loaded_cus;
1191 htab_t loaded_tus;
1192
1193 /* Table to map ELF section numbers to their sections.
1194 This is only needed for the DWP V1 file format. */
1195 unsigned int num_sections;
1196 asection **elf_sections;
1197 };
1198
1199 /* This represents a '.dwz' file. */
1200
1201 struct dwz_file
1202 {
1203 /* A dwz file can only contain a few sections. */
1204 struct dwarf2_section_info abbrev;
1205 struct dwarf2_section_info info;
1206 struct dwarf2_section_info str;
1207 struct dwarf2_section_info line;
1208 struct dwarf2_section_info macro;
1209 struct dwarf2_section_info gdb_index;
1210 struct dwarf2_section_info debug_names;
1211
1212 /* The dwz's BFD. */
1213 bfd *dwz_bfd;
1214 };
1215
1216 /* Struct used to pass misc. parameters to read_die_and_children, et
1217 al. which are used for both .debug_info and .debug_types dies.
1218 All parameters here are unchanging for the life of the call. This
1219 struct exists to abstract away the constant parameters of die reading. */
1220
1221 struct die_reader_specs
1222 {
1223 /* The bfd of die_section. */
1224 bfd* abfd;
1225
1226 /* The CU of the DIE we are parsing. */
1227 struct dwarf2_cu *cu;
1228
1229 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1230 struct dwo_file *dwo_file;
1231
1232 /* The section the die comes from.
1233 This is either .debug_info or .debug_types, or the .dwo variants. */
1234 struct dwarf2_section_info *die_section;
1235
1236 /* die_section->buffer. */
1237 const gdb_byte *buffer;
1238
1239 /* The end of the buffer. */
1240 const gdb_byte *buffer_end;
1241
1242 /* The value of the DW_AT_comp_dir attribute. */
1243 const char *comp_dir;
1244 };
1245
1246 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1247 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1248 const gdb_byte *info_ptr,
1249 struct die_info *comp_unit_die,
1250 int has_children,
1251 void *data);
1252
1253 /* A 1-based directory index. This is a strong typedef to prevent
1254 accidentally using a directory index as a 0-based index into an
1255 array/vector. */
1256 enum class dir_index : unsigned int {};
1257
1258 /* Likewise, a 1-based file name index. */
1259 enum class file_name_index : unsigned int {};
1260
1261 struct file_entry
1262 {
1263 file_entry () = default;
1264
1265 file_entry (const char *name_, dir_index d_index_,
1266 unsigned int mod_time_, unsigned int length_)
1267 : name (name_),
1268 d_index (d_index_),
1269 mod_time (mod_time_),
1270 length (length_)
1271 {}
1272
1273 /* Return the include directory at D_INDEX stored in LH. Returns
1274 NULL if D_INDEX is out of bounds. */
1275 const char *include_dir (const line_header *lh) const;
1276
1277 /* The file name. Note this is an observing pointer. The memory is
1278 owned by debug_line_buffer. */
1279 const char *name {};
1280
1281 /* The directory index (1-based). */
1282 dir_index d_index {};
1283
1284 unsigned int mod_time {};
1285
1286 unsigned int length {};
1287
1288 /* True if referenced by the Line Number Program. */
1289 bool included_p {};
1290
1291 /* The associated symbol table, if any. */
1292 struct symtab *symtab {};
1293 };
1294
1295 /* The line number information for a compilation unit (found in the
1296 .debug_line section) begins with a "statement program header",
1297 which contains the following information. */
1298 struct line_header
1299 {
1300 line_header ()
1301 : offset_in_dwz {}
1302 {}
1303
1304 /* Add an entry to the include directory table. */
1305 void add_include_dir (const char *include_dir);
1306
1307 /* Add an entry to the file name table. */
1308 void add_file_name (const char *name, dir_index d_index,
1309 unsigned int mod_time, unsigned int length);
1310
1311 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1312 is out of bounds. */
1313 const char *include_dir_at (dir_index index) const
1314 {
1315 /* Convert directory index number (1-based) to vector index
1316 (0-based). */
1317 size_t vec_index = to_underlying (index) - 1;
1318
1319 if (vec_index >= include_dirs.size ())
1320 return NULL;
1321 return include_dirs[vec_index];
1322 }
1323
1324 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1325 is out of bounds. */
1326 file_entry *file_name_at (file_name_index index)
1327 {
1328 /* Convert file name index number (1-based) to vector index
1329 (0-based). */
1330 size_t vec_index = to_underlying (index) - 1;
1331
1332 if (vec_index >= file_names.size ())
1333 return NULL;
1334 return &file_names[vec_index];
1335 }
1336
1337 /* Const version of the above. */
1338 const file_entry *file_name_at (unsigned int index) const
1339 {
1340 if (index >= file_names.size ())
1341 return NULL;
1342 return &file_names[index];
1343 }
1344
1345 /* Offset of line number information in .debug_line section. */
1346 sect_offset sect_off {};
1347
1348 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1349 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1350
1351 unsigned int total_length {};
1352 unsigned short version {};
1353 unsigned int header_length {};
1354 unsigned char minimum_instruction_length {};
1355 unsigned char maximum_ops_per_instruction {};
1356 unsigned char default_is_stmt {};
1357 int line_base {};
1358 unsigned char line_range {};
1359 unsigned char opcode_base {};
1360
1361 /* standard_opcode_lengths[i] is the number of operands for the
1362 standard opcode whose value is i. This means that
1363 standard_opcode_lengths[0] is unused, and the last meaningful
1364 element is standard_opcode_lengths[opcode_base - 1]. */
1365 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1366
1367 /* The include_directories table. Note these are observing
1368 pointers. The memory is owned by debug_line_buffer. */
1369 std::vector<const char *> include_dirs;
1370
1371 /* The file_names table. */
1372 std::vector<file_entry> file_names;
1373
1374 /* The start and end of the statement program following this
1375 header. These point into dwarf2_per_objfile->line_buffer. */
1376 const gdb_byte *statement_program_start {}, *statement_program_end {};
1377 };
1378
1379 typedef std::unique_ptr<line_header> line_header_up;
1380
1381 const char *
1382 file_entry::include_dir (const line_header *lh) const
1383 {
1384 return lh->include_dir_at (d_index);
1385 }
1386
1387 /* When we construct a partial symbol table entry we only
1388 need this much information. */
1389 struct partial_die_info
1390 {
1391 /* Offset of this DIE. */
1392 sect_offset sect_off;
1393
1394 /* DWARF-2 tag for this DIE. */
1395 ENUM_BITFIELD(dwarf_tag) tag : 16;
1396
1397 /* Assorted flags describing the data found in this DIE. */
1398 unsigned int has_children : 1;
1399 unsigned int is_external : 1;
1400 unsigned int is_declaration : 1;
1401 unsigned int has_type : 1;
1402 unsigned int has_specification : 1;
1403 unsigned int has_pc_info : 1;
1404 unsigned int may_be_inlined : 1;
1405
1406 /* This DIE has been marked DW_AT_main_subprogram. */
1407 unsigned int main_subprogram : 1;
1408
1409 /* Flag set if the SCOPE field of this structure has been
1410 computed. */
1411 unsigned int scope_set : 1;
1412
1413 /* Flag set if the DIE has a byte_size attribute. */
1414 unsigned int has_byte_size : 1;
1415
1416 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1417 unsigned int has_const_value : 1;
1418
1419 /* Flag set if any of the DIE's children are template arguments. */
1420 unsigned int has_template_arguments : 1;
1421
1422 /* Flag set if fixup_partial_die has been called on this die. */
1423 unsigned int fixup_called : 1;
1424
1425 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1426 unsigned int is_dwz : 1;
1427
1428 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1429 unsigned int spec_is_dwz : 1;
1430
1431 /* The name of this DIE. Normally the value of DW_AT_name, but
1432 sometimes a default name for unnamed DIEs. */
1433 const char *name;
1434
1435 /* The linkage name, if present. */
1436 const char *linkage_name;
1437
1438 /* The scope to prepend to our children. This is generally
1439 allocated on the comp_unit_obstack, so will disappear
1440 when this compilation unit leaves the cache. */
1441 const char *scope;
1442
1443 /* Some data associated with the partial DIE. The tag determines
1444 which field is live. */
1445 union
1446 {
1447 /* The location description associated with this DIE, if any. */
1448 struct dwarf_block *locdesc;
1449 /* The offset of an import, for DW_TAG_imported_unit. */
1450 sect_offset sect_off;
1451 } d;
1452
1453 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1454 CORE_ADDR lowpc;
1455 CORE_ADDR highpc;
1456
1457 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1458 DW_AT_sibling, if any. */
1459 /* NOTE: This member isn't strictly necessary, read_partial_die could
1460 return DW_AT_sibling values to its caller load_partial_dies. */
1461 const gdb_byte *sibling;
1462
1463 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1464 DW_AT_specification (or DW_AT_abstract_origin or
1465 DW_AT_extension). */
1466 sect_offset spec_offset;
1467
1468 /* Pointers to this DIE's parent, first child, and next sibling,
1469 if any. */
1470 struct partial_die_info *die_parent, *die_child, *die_sibling;
1471 };
1472
1473 /* This data structure holds the information of an abbrev. */
1474 struct abbrev_info
1475 {
1476 unsigned int number; /* number identifying abbrev */
1477 enum dwarf_tag tag; /* dwarf tag */
1478 unsigned short has_children; /* boolean */
1479 unsigned short num_attrs; /* number of attributes */
1480 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1481 struct abbrev_info *next; /* next in chain */
1482 };
1483
1484 struct attr_abbrev
1485 {
1486 ENUM_BITFIELD(dwarf_attribute) name : 16;
1487 ENUM_BITFIELD(dwarf_form) form : 16;
1488
1489 /* It is valid only if FORM is DW_FORM_implicit_const. */
1490 LONGEST implicit_const;
1491 };
1492
1493 /* Size of abbrev_table.abbrev_hash_table. */
1494 #define ABBREV_HASH_SIZE 121
1495
1496 /* Top level data structure to contain an abbreviation table. */
1497
1498 struct abbrev_table
1499 {
1500 /* Where the abbrev table came from.
1501 This is used as a sanity check when the table is used. */
1502 sect_offset sect_off;
1503
1504 /* Storage for the abbrev table. */
1505 struct obstack abbrev_obstack;
1506
1507 /* Hash table of abbrevs.
1508 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1509 It could be statically allocated, but the previous code didn't so we
1510 don't either. */
1511 struct abbrev_info **abbrevs;
1512 };
1513
1514 /* Attributes have a name and a value. */
1515 struct attribute
1516 {
1517 ENUM_BITFIELD(dwarf_attribute) name : 16;
1518 ENUM_BITFIELD(dwarf_form) form : 15;
1519
1520 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1521 field should be in u.str (existing only for DW_STRING) but it is kept
1522 here for better struct attribute alignment. */
1523 unsigned int string_is_canonical : 1;
1524
1525 union
1526 {
1527 const char *str;
1528 struct dwarf_block *blk;
1529 ULONGEST unsnd;
1530 LONGEST snd;
1531 CORE_ADDR addr;
1532 ULONGEST signature;
1533 }
1534 u;
1535 };
1536
1537 /* This data structure holds a complete die structure. */
1538 struct die_info
1539 {
1540 /* DWARF-2 tag for this DIE. */
1541 ENUM_BITFIELD(dwarf_tag) tag : 16;
1542
1543 /* Number of attributes */
1544 unsigned char num_attrs;
1545
1546 /* True if we're presently building the full type name for the
1547 type derived from this DIE. */
1548 unsigned char building_fullname : 1;
1549
1550 /* True if this die is in process. PR 16581. */
1551 unsigned char in_process : 1;
1552
1553 /* Abbrev number */
1554 unsigned int abbrev;
1555
1556 /* Offset in .debug_info or .debug_types section. */
1557 sect_offset sect_off;
1558
1559 /* The dies in a compilation unit form an n-ary tree. PARENT
1560 points to this die's parent; CHILD points to the first child of
1561 this node; and all the children of a given node are chained
1562 together via their SIBLING fields. */
1563 struct die_info *child; /* Its first child, if any. */
1564 struct die_info *sibling; /* Its next sibling, if any. */
1565 struct die_info *parent; /* Its parent, if any. */
1566
1567 /* An array of attributes, with NUM_ATTRS elements. There may be
1568 zero, but it's not common and zero-sized arrays are not
1569 sufficiently portable C. */
1570 struct attribute attrs[1];
1571 };
1572
1573 /* Get at parts of an attribute structure. */
1574
1575 #define DW_STRING(attr) ((attr)->u.str)
1576 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1577 #define DW_UNSND(attr) ((attr)->u.unsnd)
1578 #define DW_BLOCK(attr) ((attr)->u.blk)
1579 #define DW_SND(attr) ((attr)->u.snd)
1580 #define DW_ADDR(attr) ((attr)->u.addr)
1581 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1582
1583 /* Blocks are a bunch of untyped bytes. */
1584 struct dwarf_block
1585 {
1586 size_t size;
1587
1588 /* Valid only if SIZE is not zero. */
1589 const gdb_byte *data;
1590 };
1591
1592 #ifndef ATTR_ALLOC_CHUNK
1593 #define ATTR_ALLOC_CHUNK 4
1594 #endif
1595
1596 /* Allocate fields for structs, unions and enums in this size. */
1597 #ifndef DW_FIELD_ALLOC_CHUNK
1598 #define DW_FIELD_ALLOC_CHUNK 4
1599 #endif
1600
1601 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1602 but this would require a corresponding change in unpack_field_as_long
1603 and friends. */
1604 static int bits_per_byte = 8;
1605
1606 struct nextfield
1607 {
1608 struct nextfield *next;
1609 int accessibility;
1610 int virtuality;
1611 struct field field;
1612 };
1613
1614 struct nextfnfield
1615 {
1616 struct nextfnfield *next;
1617 struct fn_field fnfield;
1618 };
1619
1620 struct fnfieldlist
1621 {
1622 const char *name;
1623 int length;
1624 struct nextfnfield *head;
1625 };
1626
1627 struct decl_field_list
1628 {
1629 struct decl_field field;
1630 struct decl_field_list *next;
1631 };
1632
1633 /* The routines that read and process dies for a C struct or C++ class
1634 pass lists of data member fields and lists of member function fields
1635 in an instance of a field_info structure, as defined below. */
1636 struct field_info
1637 {
1638 /* List of data member and baseclasses fields. */
1639 struct nextfield *fields, *baseclasses;
1640
1641 /* Number of fields (including baseclasses). */
1642 int nfields;
1643
1644 /* Number of baseclasses. */
1645 int nbaseclasses;
1646
1647 /* Set if the accesibility of one of the fields is not public. */
1648 int non_public_fields;
1649
1650 /* Member function fieldlist array, contains name of possibly overloaded
1651 member function, number of overloaded member functions and a pointer
1652 to the head of the member function field chain. */
1653 struct fnfieldlist *fnfieldlists;
1654
1655 /* Number of entries in the fnfieldlists array. */
1656 int nfnfields;
1657
1658 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1659 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1660 struct decl_field_list *typedef_field_list;
1661 unsigned typedef_field_list_count;
1662
1663 /* Nested types defined by this class and the number of elements in this
1664 list. */
1665 struct decl_field_list *nested_types_list;
1666 unsigned nested_types_list_count;
1667 };
1668
1669 /* One item on the queue of compilation units to read in full symbols
1670 for. */
1671 struct dwarf2_queue_item
1672 {
1673 struct dwarf2_per_cu_data *per_cu;
1674 enum language pretend_language;
1675 struct dwarf2_queue_item *next;
1676 };
1677
1678 /* The current queue. */
1679 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1680
1681 /* Loaded secondary compilation units are kept in memory until they
1682 have not been referenced for the processing of this many
1683 compilation units. Set this to zero to disable caching. Cache
1684 sizes of up to at least twenty will improve startup time for
1685 typical inter-CU-reference binaries, at an obvious memory cost. */
1686 static int dwarf_max_cache_age = 5;
1687 static void
1688 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1689 struct cmd_list_element *c, const char *value)
1690 {
1691 fprintf_filtered (file, _("The upper bound on the age of cached "
1692 "DWARF compilation units is %s.\n"),
1693 value);
1694 }
1695 \f
1696 /* local function prototypes */
1697
1698 static const char *get_section_name (const struct dwarf2_section_info *);
1699
1700 static const char *get_section_file_name (const struct dwarf2_section_info *);
1701
1702 static void dwarf2_find_base_address (struct die_info *die,
1703 struct dwarf2_cu *cu);
1704
1705 static struct partial_symtab *create_partial_symtab
1706 (struct dwarf2_per_cu_data *per_cu, const char *name);
1707
1708 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1709 const gdb_byte *info_ptr,
1710 struct die_info *type_unit_die,
1711 int has_children, void *data);
1712
1713 static void dwarf2_build_psymtabs_hard (struct objfile *);
1714
1715 static void scan_partial_symbols (struct partial_die_info *,
1716 CORE_ADDR *, CORE_ADDR *,
1717 int, struct dwarf2_cu *);
1718
1719 static void add_partial_symbol (struct partial_die_info *,
1720 struct dwarf2_cu *);
1721
1722 static void add_partial_namespace (struct partial_die_info *pdi,
1723 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1724 int set_addrmap, struct dwarf2_cu *cu);
1725
1726 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1727 CORE_ADDR *highpc, int set_addrmap,
1728 struct dwarf2_cu *cu);
1729
1730 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1731 struct dwarf2_cu *cu);
1732
1733 static void add_partial_subprogram (struct partial_die_info *pdi,
1734 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1735 int need_pc, struct dwarf2_cu *cu);
1736
1737 static void dwarf2_read_symtab (struct partial_symtab *,
1738 struct objfile *);
1739
1740 static void psymtab_to_symtab_1 (struct partial_symtab *);
1741
1742 static struct abbrev_info *abbrev_table_lookup_abbrev
1743 (const struct abbrev_table *, unsigned int);
1744
1745 static struct abbrev_table *abbrev_table_read_table
1746 (struct dwarf2_section_info *, sect_offset);
1747
1748 static void abbrev_table_free (struct abbrev_table *);
1749
1750 static void abbrev_table_free_cleanup (void *);
1751
1752 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1753 struct dwarf2_section_info *);
1754
1755 static void dwarf2_free_abbrev_table (void *);
1756
1757 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1758
1759 static struct partial_die_info *load_partial_dies
1760 (const struct die_reader_specs *, const gdb_byte *, int);
1761
1762 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1763 struct partial_die_info *,
1764 struct abbrev_info *,
1765 unsigned int,
1766 const gdb_byte *);
1767
1768 static struct partial_die_info *find_partial_die (sect_offset, int,
1769 struct dwarf2_cu *);
1770
1771 static void fixup_partial_die (struct partial_die_info *,
1772 struct dwarf2_cu *);
1773
1774 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1775 struct attribute *, struct attr_abbrev *,
1776 const gdb_byte *);
1777
1778 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1779
1780 static int read_1_signed_byte (bfd *, const gdb_byte *);
1781
1782 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1783
1784 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1785
1786 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1787
1788 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1789 unsigned int *);
1790
1791 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1792
1793 static LONGEST read_checked_initial_length_and_offset
1794 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1795 unsigned int *, unsigned int *);
1796
1797 static LONGEST read_offset (bfd *, const gdb_byte *,
1798 const struct comp_unit_head *,
1799 unsigned int *);
1800
1801 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1802
1803 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1804 sect_offset);
1805
1806 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1807
1808 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1809
1810 static const char *read_indirect_string (bfd *, const gdb_byte *,
1811 const struct comp_unit_head *,
1812 unsigned int *);
1813
1814 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1815 const struct comp_unit_head *,
1816 unsigned int *);
1817
1818 static const char *read_indirect_string_at_offset (bfd *abfd,
1819 LONGEST str_offset);
1820
1821 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1822
1823 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1824
1825 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1826 const gdb_byte *,
1827 unsigned int *);
1828
1829 static const char *read_str_index (const struct die_reader_specs *reader,
1830 ULONGEST str_index);
1831
1832 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1833
1834 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1835 struct dwarf2_cu *);
1836
1837 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1838 unsigned int);
1839
1840 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1841 struct dwarf2_cu *cu);
1842
1843 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1844 struct dwarf2_cu *cu);
1845
1846 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1847
1848 static struct die_info *die_specification (struct die_info *die,
1849 struct dwarf2_cu **);
1850
1851 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1852 struct dwarf2_cu *cu);
1853
1854 static void dwarf_decode_lines (struct line_header *, const char *,
1855 struct dwarf2_cu *, struct partial_symtab *,
1856 CORE_ADDR, int decode_mapping);
1857
1858 static void dwarf2_start_subfile (const char *, const char *);
1859
1860 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1861 const char *, const char *,
1862 CORE_ADDR);
1863
1864 static struct symbol *new_symbol (struct die_info *, struct type *,
1865 struct dwarf2_cu *);
1866
1867 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1868 struct dwarf2_cu *, struct symbol *);
1869
1870 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1871 struct dwarf2_cu *);
1872
1873 static void dwarf2_const_value_attr (const struct attribute *attr,
1874 struct type *type,
1875 const char *name,
1876 struct obstack *obstack,
1877 struct dwarf2_cu *cu, LONGEST *value,
1878 const gdb_byte **bytes,
1879 struct dwarf2_locexpr_baton **baton);
1880
1881 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1882
1883 static int need_gnat_info (struct dwarf2_cu *);
1884
1885 static struct type *die_descriptive_type (struct die_info *,
1886 struct dwarf2_cu *);
1887
1888 static void set_descriptive_type (struct type *, struct die_info *,
1889 struct dwarf2_cu *);
1890
1891 static struct type *die_containing_type (struct die_info *,
1892 struct dwarf2_cu *);
1893
1894 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1895 struct dwarf2_cu *);
1896
1897 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1898
1899 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1900
1901 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1902
1903 static char *typename_concat (struct obstack *obs, const char *prefix,
1904 const char *suffix, int physname,
1905 struct dwarf2_cu *cu);
1906
1907 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1908
1909 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1910
1911 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1912
1913 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1914
1915 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1916
1917 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1918
1919 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1920 struct dwarf2_cu *, struct partial_symtab *);
1921
1922 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1923 values. Keep the items ordered with increasing constraints compliance. */
1924 enum pc_bounds_kind
1925 {
1926 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1927 PC_BOUNDS_NOT_PRESENT,
1928
1929 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1930 were present but they do not form a valid range of PC addresses. */
1931 PC_BOUNDS_INVALID,
1932
1933 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1934 PC_BOUNDS_RANGES,
1935
1936 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1937 PC_BOUNDS_HIGH_LOW,
1938 };
1939
1940 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1941 CORE_ADDR *, CORE_ADDR *,
1942 struct dwarf2_cu *,
1943 struct partial_symtab *);
1944
1945 static void get_scope_pc_bounds (struct die_info *,
1946 CORE_ADDR *, CORE_ADDR *,
1947 struct dwarf2_cu *);
1948
1949 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1950 CORE_ADDR, struct dwarf2_cu *);
1951
1952 static void dwarf2_add_field (struct field_info *, struct die_info *,
1953 struct dwarf2_cu *);
1954
1955 static void dwarf2_attach_fields_to_type (struct field_info *,
1956 struct type *, struct dwarf2_cu *);
1957
1958 static void dwarf2_add_member_fn (struct field_info *,
1959 struct die_info *, struct type *,
1960 struct dwarf2_cu *);
1961
1962 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1963 struct type *,
1964 struct dwarf2_cu *);
1965
1966 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1967
1968 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1969
1970 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1971
1972 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1973
1974 static struct using_direct **using_directives (enum language);
1975
1976 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1977
1978 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1979
1980 static struct type *read_module_type (struct die_info *die,
1981 struct dwarf2_cu *cu);
1982
1983 static const char *namespace_name (struct die_info *die,
1984 int *is_anonymous, struct dwarf2_cu *);
1985
1986 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1987
1988 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1989
1990 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1991 struct dwarf2_cu *);
1992
1993 static struct die_info *read_die_and_siblings_1
1994 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1995 struct die_info *);
1996
1997 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1998 const gdb_byte *info_ptr,
1999 const gdb_byte **new_info_ptr,
2000 struct die_info *parent);
2001
2002 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2003 struct die_info **, const gdb_byte *,
2004 int *, int);
2005
2006 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2007 struct die_info **, const gdb_byte *,
2008 int *);
2009
2010 static void process_die (struct die_info *, struct dwarf2_cu *);
2011
2012 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2013 struct obstack *);
2014
2015 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2016
2017 static const char *dwarf2_full_name (const char *name,
2018 struct die_info *die,
2019 struct dwarf2_cu *cu);
2020
2021 static const char *dwarf2_physname (const char *name, struct die_info *die,
2022 struct dwarf2_cu *cu);
2023
2024 static struct die_info *dwarf2_extension (struct die_info *die,
2025 struct dwarf2_cu **);
2026
2027 static const char *dwarf_tag_name (unsigned int);
2028
2029 static const char *dwarf_attr_name (unsigned int);
2030
2031 static const char *dwarf_form_name (unsigned int);
2032
2033 static const char *dwarf_bool_name (unsigned int);
2034
2035 static const char *dwarf_type_encoding_name (unsigned int);
2036
2037 static struct die_info *sibling_die (struct die_info *);
2038
2039 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2040
2041 static void dump_die_for_error (struct die_info *);
2042
2043 static void dump_die_1 (struct ui_file *, int level, int max_level,
2044 struct die_info *);
2045
2046 /*static*/ void dump_die (struct die_info *, int max_level);
2047
2048 static void store_in_ref_table (struct die_info *,
2049 struct dwarf2_cu *);
2050
2051 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2052
2053 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2054
2055 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2056 const struct attribute *,
2057 struct dwarf2_cu **);
2058
2059 static struct die_info *follow_die_ref (struct die_info *,
2060 const struct attribute *,
2061 struct dwarf2_cu **);
2062
2063 static struct die_info *follow_die_sig (struct die_info *,
2064 const struct attribute *,
2065 struct dwarf2_cu **);
2066
2067 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2068 struct dwarf2_cu *);
2069
2070 static struct type *get_DW_AT_signature_type (struct die_info *,
2071 const struct attribute *,
2072 struct dwarf2_cu *);
2073
2074 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2075
2076 static void read_signatured_type (struct signatured_type *);
2077
2078 static int attr_to_dynamic_prop (const struct attribute *attr,
2079 struct die_info *die, struct dwarf2_cu *cu,
2080 struct dynamic_prop *prop);
2081
2082 /* memory allocation interface */
2083
2084 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2085
2086 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2087
2088 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2089
2090 static int attr_form_is_block (const struct attribute *);
2091
2092 static int attr_form_is_section_offset (const struct attribute *);
2093
2094 static int attr_form_is_constant (const struct attribute *);
2095
2096 static int attr_form_is_ref (const struct attribute *);
2097
2098 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2099 struct dwarf2_loclist_baton *baton,
2100 const struct attribute *attr);
2101
2102 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2103 struct symbol *sym,
2104 struct dwarf2_cu *cu,
2105 int is_block);
2106
2107 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2108 const gdb_byte *info_ptr,
2109 struct abbrev_info *abbrev);
2110
2111 static void free_stack_comp_unit (void *);
2112
2113 static hashval_t partial_die_hash (const void *item);
2114
2115 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2116
2117 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2118 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2119
2120 static void init_one_comp_unit (struct dwarf2_cu *cu,
2121 struct dwarf2_per_cu_data *per_cu);
2122
2123 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2124 struct die_info *comp_unit_die,
2125 enum language pretend_language);
2126
2127 static void free_heap_comp_unit (void *);
2128
2129 static void free_cached_comp_units (void *);
2130
2131 static void age_cached_comp_units (void);
2132
2133 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2134
2135 static struct type *set_die_type (struct die_info *, struct type *,
2136 struct dwarf2_cu *);
2137
2138 static void create_all_comp_units (struct objfile *);
2139
2140 static int create_all_type_units (struct objfile *);
2141
2142 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2143 enum language);
2144
2145 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2146 enum language);
2147
2148 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2149 enum language);
2150
2151 static void dwarf2_add_dependence (struct dwarf2_cu *,
2152 struct dwarf2_per_cu_data *);
2153
2154 static void dwarf2_mark (struct dwarf2_cu *);
2155
2156 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2157
2158 static struct type *get_die_type_at_offset (sect_offset,
2159 struct dwarf2_per_cu_data *);
2160
2161 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2162
2163 static void dwarf2_release_queue (void *dummy);
2164
2165 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2166 enum language pretend_language);
2167
2168 static void process_queue (void);
2169
2170 /* The return type of find_file_and_directory. Note, the enclosed
2171 string pointers are only valid while this object is valid. */
2172
2173 struct file_and_directory
2174 {
2175 /* The filename. This is never NULL. */
2176 const char *name;
2177
2178 /* The compilation directory. NULL if not known. If we needed to
2179 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2180 points directly to the DW_AT_comp_dir string attribute owned by
2181 the obstack that owns the DIE. */
2182 const char *comp_dir;
2183
2184 /* If we needed to build a new string for comp_dir, this is what
2185 owns the storage. */
2186 std::string comp_dir_storage;
2187 };
2188
2189 static file_and_directory find_file_and_directory (struct die_info *die,
2190 struct dwarf2_cu *cu);
2191
2192 static char *file_full_name (int file, struct line_header *lh,
2193 const char *comp_dir);
2194
2195 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2196 enum class rcuh_kind { COMPILE, TYPE };
2197
2198 static const gdb_byte *read_and_check_comp_unit_head
2199 (struct comp_unit_head *header,
2200 struct dwarf2_section_info *section,
2201 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2202 rcuh_kind section_kind);
2203
2204 static void init_cutu_and_read_dies
2205 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2206 int use_existing_cu, int keep,
2207 die_reader_func_ftype *die_reader_func, void *data);
2208
2209 static void init_cutu_and_read_dies_simple
2210 (struct dwarf2_per_cu_data *this_cu,
2211 die_reader_func_ftype *die_reader_func, void *data);
2212
2213 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2214
2215 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2216
2217 static struct dwo_unit *lookup_dwo_unit_in_dwp
2218 (struct dwp_file *dwp_file, const char *comp_dir,
2219 ULONGEST signature, int is_debug_types);
2220
2221 static struct dwp_file *get_dwp_file (void);
2222
2223 static struct dwo_unit *lookup_dwo_comp_unit
2224 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2225
2226 static struct dwo_unit *lookup_dwo_type_unit
2227 (struct signatured_type *, const char *, const char *);
2228
2229 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2230
2231 static void free_dwo_file_cleanup (void *);
2232
2233 static void process_cu_includes (void);
2234
2235 static void check_producer (struct dwarf2_cu *cu);
2236
2237 static void free_line_header_voidp (void *arg);
2238 \f
2239 /* Various complaints about symbol reading that don't abort the process. */
2240
2241 static void
2242 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2243 {
2244 complaint (&symfile_complaints,
2245 _("statement list doesn't fit in .debug_line section"));
2246 }
2247
2248 static void
2249 dwarf2_debug_line_missing_file_complaint (void)
2250 {
2251 complaint (&symfile_complaints,
2252 _(".debug_line section has line data without a file"));
2253 }
2254
2255 static void
2256 dwarf2_debug_line_missing_end_sequence_complaint (void)
2257 {
2258 complaint (&symfile_complaints,
2259 _(".debug_line section has line "
2260 "program sequence without an end"));
2261 }
2262
2263 static void
2264 dwarf2_complex_location_expr_complaint (void)
2265 {
2266 complaint (&symfile_complaints, _("location expression too complex"));
2267 }
2268
2269 static void
2270 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2271 int arg3)
2272 {
2273 complaint (&symfile_complaints,
2274 _("const value length mismatch for '%s', got %d, expected %d"),
2275 arg1, arg2, arg3);
2276 }
2277
2278 static void
2279 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2280 {
2281 complaint (&symfile_complaints,
2282 _("debug info runs off end of %s section"
2283 " [in module %s]"),
2284 get_section_name (section),
2285 get_section_file_name (section));
2286 }
2287
2288 static void
2289 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2290 {
2291 complaint (&symfile_complaints,
2292 _("macro debug info contains a "
2293 "malformed macro definition:\n`%s'"),
2294 arg1);
2295 }
2296
2297 static void
2298 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2299 {
2300 complaint (&symfile_complaints,
2301 _("invalid attribute class or form for '%s' in '%s'"),
2302 arg1, arg2);
2303 }
2304
2305 /* Hash function for line_header_hash. */
2306
2307 static hashval_t
2308 line_header_hash (const struct line_header *ofs)
2309 {
2310 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2311 }
2312
2313 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2314
2315 static hashval_t
2316 line_header_hash_voidp (const void *item)
2317 {
2318 const struct line_header *ofs = (const struct line_header *) item;
2319
2320 return line_header_hash (ofs);
2321 }
2322
2323 /* Equality function for line_header_hash. */
2324
2325 static int
2326 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2327 {
2328 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2329 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2330
2331 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2332 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2333 }
2334
2335 \f
2336
2337 /* Read the given attribute value as an address, taking the attribute's
2338 form into account. */
2339
2340 static CORE_ADDR
2341 attr_value_as_address (struct attribute *attr)
2342 {
2343 CORE_ADDR addr;
2344
2345 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2346 {
2347 /* Aside from a few clearly defined exceptions, attributes that
2348 contain an address must always be in DW_FORM_addr form.
2349 Unfortunately, some compilers happen to be violating this
2350 requirement by encoding addresses using other forms, such
2351 as DW_FORM_data4 for example. For those broken compilers,
2352 we try to do our best, without any guarantee of success,
2353 to interpret the address correctly. It would also be nice
2354 to generate a complaint, but that would require us to maintain
2355 a list of legitimate cases where a non-address form is allowed,
2356 as well as update callers to pass in at least the CU's DWARF
2357 version. This is more overhead than what we're willing to
2358 expand for a pretty rare case. */
2359 addr = DW_UNSND (attr);
2360 }
2361 else
2362 addr = DW_ADDR (attr);
2363
2364 return addr;
2365 }
2366
2367 /* The suffix for an index file. */
2368 #define INDEX4_SUFFIX ".gdb-index"
2369 #define INDEX5_SUFFIX ".debug_names"
2370 #define DEBUG_STR_SUFFIX ".debug_str"
2371
2372 /* See declaration. */
2373
2374 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2375 const dwarf2_debug_sections *names)
2376 : objfile (objfile_)
2377 {
2378 if (names == NULL)
2379 names = &dwarf2_elf_names;
2380
2381 bfd *obfd = objfile->obfd;
2382
2383 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2384 locate_sections (obfd, sec, *names);
2385 }
2386
2387 dwarf2_per_objfile::~dwarf2_per_objfile ()
2388 {
2389 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2390 free_cached_comp_units ();
2391
2392 if (quick_file_names_table)
2393 htab_delete (quick_file_names_table);
2394
2395 if (line_header_hash)
2396 htab_delete (line_header_hash);
2397
2398 /* Everything else should be on the objfile obstack. */
2399 }
2400
2401 /* See declaration. */
2402
2403 void
2404 dwarf2_per_objfile::free_cached_comp_units ()
2405 {
2406 dwarf2_per_cu_data *per_cu = read_in_chain;
2407 dwarf2_per_cu_data **last_chain = &read_in_chain;
2408 while (per_cu != NULL)
2409 {
2410 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2411
2412 free_heap_comp_unit (per_cu->cu);
2413 *last_chain = next_cu;
2414 per_cu = next_cu;
2415 }
2416 }
2417
2418 /* Try to locate the sections we need for DWARF 2 debugging
2419 information and return true if we have enough to do something.
2420 NAMES points to the dwarf2 section names, or is NULL if the standard
2421 ELF names are used. */
2422
2423 int
2424 dwarf2_has_info (struct objfile *objfile,
2425 const struct dwarf2_debug_sections *names)
2426 {
2427 if (objfile->flags & OBJF_READNEVER)
2428 return 0;
2429
2430 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2431 objfile_data (objfile, dwarf2_objfile_data_key));
2432 if (!dwarf2_per_objfile)
2433 {
2434 /* Initialize per-objfile state. */
2435 struct dwarf2_per_objfile *data
2436 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2437
2438 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2439 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2440 }
2441 return (!dwarf2_per_objfile->info.is_virtual
2442 && dwarf2_per_objfile->info.s.section != NULL
2443 && !dwarf2_per_objfile->abbrev.is_virtual
2444 && dwarf2_per_objfile->abbrev.s.section != NULL);
2445 }
2446
2447 /* Return the containing section of virtual section SECTION. */
2448
2449 static struct dwarf2_section_info *
2450 get_containing_section (const struct dwarf2_section_info *section)
2451 {
2452 gdb_assert (section->is_virtual);
2453 return section->s.containing_section;
2454 }
2455
2456 /* Return the bfd owner of SECTION. */
2457
2458 static struct bfd *
2459 get_section_bfd_owner (const struct dwarf2_section_info *section)
2460 {
2461 if (section->is_virtual)
2462 {
2463 section = get_containing_section (section);
2464 gdb_assert (!section->is_virtual);
2465 }
2466 return section->s.section->owner;
2467 }
2468
2469 /* Return the bfd section of SECTION.
2470 Returns NULL if the section is not present. */
2471
2472 static asection *
2473 get_section_bfd_section (const struct dwarf2_section_info *section)
2474 {
2475 if (section->is_virtual)
2476 {
2477 section = get_containing_section (section);
2478 gdb_assert (!section->is_virtual);
2479 }
2480 return section->s.section;
2481 }
2482
2483 /* Return the name of SECTION. */
2484
2485 static const char *
2486 get_section_name (const struct dwarf2_section_info *section)
2487 {
2488 asection *sectp = get_section_bfd_section (section);
2489
2490 gdb_assert (sectp != NULL);
2491 return bfd_section_name (get_section_bfd_owner (section), sectp);
2492 }
2493
2494 /* Return the name of the file SECTION is in. */
2495
2496 static const char *
2497 get_section_file_name (const struct dwarf2_section_info *section)
2498 {
2499 bfd *abfd = get_section_bfd_owner (section);
2500
2501 return bfd_get_filename (abfd);
2502 }
2503
2504 /* Return the id of SECTION.
2505 Returns 0 if SECTION doesn't exist. */
2506
2507 static int
2508 get_section_id (const struct dwarf2_section_info *section)
2509 {
2510 asection *sectp = get_section_bfd_section (section);
2511
2512 if (sectp == NULL)
2513 return 0;
2514 return sectp->id;
2515 }
2516
2517 /* Return the flags of SECTION.
2518 SECTION (or containing section if this is a virtual section) must exist. */
2519
2520 static int
2521 get_section_flags (const struct dwarf2_section_info *section)
2522 {
2523 asection *sectp = get_section_bfd_section (section);
2524
2525 gdb_assert (sectp != NULL);
2526 return bfd_get_section_flags (sectp->owner, sectp);
2527 }
2528
2529 /* When loading sections, we look either for uncompressed section or for
2530 compressed section names. */
2531
2532 static int
2533 section_is_p (const char *section_name,
2534 const struct dwarf2_section_names *names)
2535 {
2536 if (names->normal != NULL
2537 && strcmp (section_name, names->normal) == 0)
2538 return 1;
2539 if (names->compressed != NULL
2540 && strcmp (section_name, names->compressed) == 0)
2541 return 1;
2542 return 0;
2543 }
2544
2545 /* See declaration. */
2546
2547 void
2548 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2549 const dwarf2_debug_sections &names)
2550 {
2551 flagword aflag = bfd_get_section_flags (abfd, sectp);
2552
2553 if ((aflag & SEC_HAS_CONTENTS) == 0)
2554 {
2555 }
2556 else if (section_is_p (sectp->name, &names.info))
2557 {
2558 this->info.s.section = sectp;
2559 this->info.size = bfd_get_section_size (sectp);
2560 }
2561 else if (section_is_p (sectp->name, &names.abbrev))
2562 {
2563 this->abbrev.s.section = sectp;
2564 this->abbrev.size = bfd_get_section_size (sectp);
2565 }
2566 else if (section_is_p (sectp->name, &names.line))
2567 {
2568 this->line.s.section = sectp;
2569 this->line.size = bfd_get_section_size (sectp);
2570 }
2571 else if (section_is_p (sectp->name, &names.loc))
2572 {
2573 this->loc.s.section = sectp;
2574 this->loc.size = bfd_get_section_size (sectp);
2575 }
2576 else if (section_is_p (sectp->name, &names.loclists))
2577 {
2578 this->loclists.s.section = sectp;
2579 this->loclists.size = bfd_get_section_size (sectp);
2580 }
2581 else if (section_is_p (sectp->name, &names.macinfo))
2582 {
2583 this->macinfo.s.section = sectp;
2584 this->macinfo.size = bfd_get_section_size (sectp);
2585 }
2586 else if (section_is_p (sectp->name, &names.macro))
2587 {
2588 this->macro.s.section = sectp;
2589 this->macro.size = bfd_get_section_size (sectp);
2590 }
2591 else if (section_is_p (sectp->name, &names.str))
2592 {
2593 this->str.s.section = sectp;
2594 this->str.size = bfd_get_section_size (sectp);
2595 }
2596 else if (section_is_p (sectp->name, &names.line_str))
2597 {
2598 this->line_str.s.section = sectp;
2599 this->line_str.size = bfd_get_section_size (sectp);
2600 }
2601 else if (section_is_p (sectp->name, &names.addr))
2602 {
2603 this->addr.s.section = sectp;
2604 this->addr.size = bfd_get_section_size (sectp);
2605 }
2606 else if (section_is_p (sectp->name, &names.frame))
2607 {
2608 this->frame.s.section = sectp;
2609 this->frame.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &names.eh_frame))
2612 {
2613 this->eh_frame.s.section = sectp;
2614 this->eh_frame.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &names.ranges))
2617 {
2618 this->ranges.s.section = sectp;
2619 this->ranges.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &names.rnglists))
2622 {
2623 this->rnglists.s.section = sectp;
2624 this->rnglists.size = bfd_get_section_size (sectp);
2625 }
2626 else if (section_is_p (sectp->name, &names.types))
2627 {
2628 struct dwarf2_section_info type_section;
2629
2630 memset (&type_section, 0, sizeof (type_section));
2631 type_section.s.section = sectp;
2632 type_section.size = bfd_get_section_size (sectp);
2633
2634 VEC_safe_push (dwarf2_section_info_def, this->types,
2635 &type_section);
2636 }
2637 else if (section_is_p (sectp->name, &names.gdb_index))
2638 {
2639 this->gdb_index.s.section = sectp;
2640 this->gdb_index.size = bfd_get_section_size (sectp);
2641 }
2642 else if (section_is_p (sectp->name, &names.debug_names))
2643 {
2644 this->debug_names.s.section = sectp;
2645 this->debug_names.size = bfd_get_section_size (sectp);
2646 }
2647 else if (section_is_p (sectp->name, &names.debug_aranges))
2648 {
2649 this->debug_aranges.s.section = sectp;
2650 this->debug_aranges.size = bfd_get_section_size (sectp);
2651 }
2652
2653 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2654 && bfd_section_vma (abfd, sectp) == 0)
2655 this->has_section_at_zero = true;
2656 }
2657
2658 /* A helper function that decides whether a section is empty,
2659 or not present. */
2660
2661 static int
2662 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2663 {
2664 if (section->is_virtual)
2665 return section->size == 0;
2666 return section->s.section == NULL || section->size == 0;
2667 }
2668
2669 /* Read the contents of the section INFO.
2670 OBJFILE is the main object file, but not necessarily the file where
2671 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2672 of the DWO file.
2673 If the section is compressed, uncompress it before returning. */
2674
2675 static void
2676 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2677 {
2678 asection *sectp;
2679 bfd *abfd;
2680 gdb_byte *buf, *retbuf;
2681
2682 if (info->readin)
2683 return;
2684 info->buffer = NULL;
2685 info->readin = 1;
2686
2687 if (dwarf2_section_empty_p (info))
2688 return;
2689
2690 sectp = get_section_bfd_section (info);
2691
2692 /* If this is a virtual section we need to read in the real one first. */
2693 if (info->is_virtual)
2694 {
2695 struct dwarf2_section_info *containing_section =
2696 get_containing_section (info);
2697
2698 gdb_assert (sectp != NULL);
2699 if ((sectp->flags & SEC_RELOC) != 0)
2700 {
2701 error (_("Dwarf Error: DWP format V2 with relocations is not"
2702 " supported in section %s [in module %s]"),
2703 get_section_name (info), get_section_file_name (info));
2704 }
2705 dwarf2_read_section (objfile, containing_section);
2706 /* Other code should have already caught virtual sections that don't
2707 fit. */
2708 gdb_assert (info->virtual_offset + info->size
2709 <= containing_section->size);
2710 /* If the real section is empty or there was a problem reading the
2711 section we shouldn't get here. */
2712 gdb_assert (containing_section->buffer != NULL);
2713 info->buffer = containing_section->buffer + info->virtual_offset;
2714 return;
2715 }
2716
2717 /* If the section has relocations, we must read it ourselves.
2718 Otherwise we attach it to the BFD. */
2719 if ((sectp->flags & SEC_RELOC) == 0)
2720 {
2721 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2722 return;
2723 }
2724
2725 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2726 info->buffer = buf;
2727
2728 /* When debugging .o files, we may need to apply relocations; see
2729 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2730 We never compress sections in .o files, so we only need to
2731 try this when the section is not compressed. */
2732 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2733 if (retbuf != NULL)
2734 {
2735 info->buffer = retbuf;
2736 return;
2737 }
2738
2739 abfd = get_section_bfd_owner (info);
2740 gdb_assert (abfd != NULL);
2741
2742 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2743 || bfd_bread (buf, info->size, abfd) != info->size)
2744 {
2745 error (_("Dwarf Error: Can't read DWARF data"
2746 " in section %s [in module %s]"),
2747 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2748 }
2749 }
2750
2751 /* A helper function that returns the size of a section in a safe way.
2752 If you are positive that the section has been read before using the
2753 size, then it is safe to refer to the dwarf2_section_info object's
2754 "size" field directly. In other cases, you must call this
2755 function, because for compressed sections the size field is not set
2756 correctly until the section has been read. */
2757
2758 static bfd_size_type
2759 dwarf2_section_size (struct objfile *objfile,
2760 struct dwarf2_section_info *info)
2761 {
2762 if (!info->readin)
2763 dwarf2_read_section (objfile, info);
2764 return info->size;
2765 }
2766
2767 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2768 SECTION_NAME. */
2769
2770 void
2771 dwarf2_get_section_info (struct objfile *objfile,
2772 enum dwarf2_section_enum sect,
2773 asection **sectp, const gdb_byte **bufp,
2774 bfd_size_type *sizep)
2775 {
2776 struct dwarf2_per_objfile *data
2777 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2778 dwarf2_objfile_data_key);
2779 struct dwarf2_section_info *info;
2780
2781 /* We may see an objfile without any DWARF, in which case we just
2782 return nothing. */
2783 if (data == NULL)
2784 {
2785 *sectp = NULL;
2786 *bufp = NULL;
2787 *sizep = 0;
2788 return;
2789 }
2790 switch (sect)
2791 {
2792 case DWARF2_DEBUG_FRAME:
2793 info = &data->frame;
2794 break;
2795 case DWARF2_EH_FRAME:
2796 info = &data->eh_frame;
2797 break;
2798 default:
2799 gdb_assert_not_reached ("unexpected section");
2800 }
2801
2802 dwarf2_read_section (objfile, info);
2803
2804 *sectp = get_section_bfd_section (info);
2805 *bufp = info->buffer;
2806 *sizep = info->size;
2807 }
2808
2809 /* A helper function to find the sections for a .dwz file. */
2810
2811 static void
2812 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2813 {
2814 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2815
2816 /* Note that we only support the standard ELF names, because .dwz
2817 is ELF-only (at the time of writing). */
2818 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2819 {
2820 dwz_file->abbrev.s.section = sectp;
2821 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2822 }
2823 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2824 {
2825 dwz_file->info.s.section = sectp;
2826 dwz_file->info.size = bfd_get_section_size (sectp);
2827 }
2828 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2829 {
2830 dwz_file->str.s.section = sectp;
2831 dwz_file->str.size = bfd_get_section_size (sectp);
2832 }
2833 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2834 {
2835 dwz_file->line.s.section = sectp;
2836 dwz_file->line.size = bfd_get_section_size (sectp);
2837 }
2838 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2839 {
2840 dwz_file->macro.s.section = sectp;
2841 dwz_file->macro.size = bfd_get_section_size (sectp);
2842 }
2843 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2844 {
2845 dwz_file->gdb_index.s.section = sectp;
2846 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2847 }
2848 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2849 {
2850 dwz_file->debug_names.s.section = sectp;
2851 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2852 }
2853 }
2854
2855 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2856 there is no .gnu_debugaltlink section in the file. Error if there
2857 is such a section but the file cannot be found. */
2858
2859 static struct dwz_file *
2860 dwarf2_get_dwz_file (void)
2861 {
2862 const char *filename;
2863 struct dwz_file *result;
2864 bfd_size_type buildid_len_arg;
2865 size_t buildid_len;
2866 bfd_byte *buildid;
2867
2868 if (dwarf2_per_objfile->dwz_file != NULL)
2869 return dwarf2_per_objfile->dwz_file;
2870
2871 bfd_set_error (bfd_error_no_error);
2872 gdb::unique_xmalloc_ptr<char> data
2873 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2874 &buildid_len_arg, &buildid));
2875 if (data == NULL)
2876 {
2877 if (bfd_get_error () == bfd_error_no_error)
2878 return NULL;
2879 error (_("could not read '.gnu_debugaltlink' section: %s"),
2880 bfd_errmsg (bfd_get_error ()));
2881 }
2882
2883 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2884
2885 buildid_len = (size_t) buildid_len_arg;
2886
2887 filename = data.get ();
2888
2889 std::string abs_storage;
2890 if (!IS_ABSOLUTE_PATH (filename))
2891 {
2892 gdb::unique_xmalloc_ptr<char> abs
2893 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2894
2895 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2896 filename = abs_storage.c_str ();
2897 }
2898
2899 /* First try the file name given in the section. If that doesn't
2900 work, try to use the build-id instead. */
2901 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2902 if (dwz_bfd != NULL)
2903 {
2904 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2905 dwz_bfd.release ();
2906 }
2907
2908 if (dwz_bfd == NULL)
2909 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2910
2911 if (dwz_bfd == NULL)
2912 error (_("could not find '.gnu_debugaltlink' file for %s"),
2913 objfile_name (dwarf2_per_objfile->objfile));
2914
2915 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2916 struct dwz_file);
2917 result->dwz_bfd = dwz_bfd.release ();
2918
2919 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2920
2921 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2922 dwarf2_per_objfile->dwz_file = result;
2923 return result;
2924 }
2925 \f
2926 /* DWARF quick_symbols_functions support. */
2927
2928 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2929 unique line tables, so we maintain a separate table of all .debug_line
2930 derived entries to support the sharing.
2931 All the quick functions need is the list of file names. We discard the
2932 line_header when we're done and don't need to record it here. */
2933 struct quick_file_names
2934 {
2935 /* The data used to construct the hash key. */
2936 struct stmt_list_hash hash;
2937
2938 /* The number of entries in file_names, real_names. */
2939 unsigned int num_file_names;
2940
2941 /* The file names from the line table, after being run through
2942 file_full_name. */
2943 const char **file_names;
2944
2945 /* The file names from the line table after being run through
2946 gdb_realpath. These are computed lazily. */
2947 const char **real_names;
2948 };
2949
2950 /* When using the index (and thus not using psymtabs), each CU has an
2951 object of this type. This is used to hold information needed by
2952 the various "quick" methods. */
2953 struct dwarf2_per_cu_quick_data
2954 {
2955 /* The file table. This can be NULL if there was no file table
2956 or it's currently not read in.
2957 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2958 struct quick_file_names *file_names;
2959
2960 /* The corresponding symbol table. This is NULL if symbols for this
2961 CU have not yet been read. */
2962 struct compunit_symtab *compunit_symtab;
2963
2964 /* A temporary mark bit used when iterating over all CUs in
2965 expand_symtabs_matching. */
2966 unsigned int mark : 1;
2967
2968 /* True if we've tried to read the file table and found there isn't one.
2969 There will be no point in trying to read it again next time. */
2970 unsigned int no_file_data : 1;
2971 };
2972
2973 /* Utility hash function for a stmt_list_hash. */
2974
2975 static hashval_t
2976 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2977 {
2978 hashval_t v = 0;
2979
2980 if (stmt_list_hash->dwo_unit != NULL)
2981 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2982 v += to_underlying (stmt_list_hash->line_sect_off);
2983 return v;
2984 }
2985
2986 /* Utility equality function for a stmt_list_hash. */
2987
2988 static int
2989 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2990 const struct stmt_list_hash *rhs)
2991 {
2992 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2993 return 0;
2994 if (lhs->dwo_unit != NULL
2995 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2996 return 0;
2997
2998 return lhs->line_sect_off == rhs->line_sect_off;
2999 }
3000
3001 /* Hash function for a quick_file_names. */
3002
3003 static hashval_t
3004 hash_file_name_entry (const void *e)
3005 {
3006 const struct quick_file_names *file_data
3007 = (const struct quick_file_names *) e;
3008
3009 return hash_stmt_list_entry (&file_data->hash);
3010 }
3011
3012 /* Equality function for a quick_file_names. */
3013
3014 static int
3015 eq_file_name_entry (const void *a, const void *b)
3016 {
3017 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3018 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3019
3020 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3021 }
3022
3023 /* Delete function for a quick_file_names. */
3024
3025 static void
3026 delete_file_name_entry (void *e)
3027 {
3028 struct quick_file_names *file_data = (struct quick_file_names *) e;
3029 int i;
3030
3031 for (i = 0; i < file_data->num_file_names; ++i)
3032 {
3033 xfree ((void*) file_data->file_names[i]);
3034 if (file_data->real_names)
3035 xfree ((void*) file_data->real_names[i]);
3036 }
3037
3038 /* The space for the struct itself lives on objfile_obstack,
3039 so we don't free it here. */
3040 }
3041
3042 /* Create a quick_file_names hash table. */
3043
3044 static htab_t
3045 create_quick_file_names_table (unsigned int nr_initial_entries)
3046 {
3047 return htab_create_alloc (nr_initial_entries,
3048 hash_file_name_entry, eq_file_name_entry,
3049 delete_file_name_entry, xcalloc, xfree);
3050 }
3051
3052 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3053 have to be created afterwards. You should call age_cached_comp_units after
3054 processing PER_CU->CU. dw2_setup must have been already called. */
3055
3056 static void
3057 load_cu (struct dwarf2_per_cu_data *per_cu)
3058 {
3059 if (per_cu->is_debug_types)
3060 load_full_type_unit (per_cu);
3061 else
3062 load_full_comp_unit (per_cu, language_minimal);
3063
3064 if (per_cu->cu == NULL)
3065 return; /* Dummy CU. */
3066
3067 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3068 }
3069
3070 /* Read in the symbols for PER_CU. */
3071
3072 static void
3073 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3074 {
3075 struct cleanup *back_to;
3076
3077 /* Skip type_unit_groups, reading the type units they contain
3078 is handled elsewhere. */
3079 if (IS_TYPE_UNIT_GROUP (per_cu))
3080 return;
3081
3082 back_to = make_cleanup (dwarf2_release_queue, NULL);
3083
3084 if (dwarf2_per_objfile->using_index
3085 ? per_cu->v.quick->compunit_symtab == NULL
3086 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3087 {
3088 queue_comp_unit (per_cu, language_minimal);
3089 load_cu (per_cu);
3090
3091 /* If we just loaded a CU from a DWO, and we're working with an index
3092 that may badly handle TUs, load all the TUs in that DWO as well.
3093 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3094 if (!per_cu->is_debug_types
3095 && per_cu->cu != NULL
3096 && per_cu->cu->dwo_unit != NULL
3097 && dwarf2_per_objfile->index_table != NULL
3098 && dwarf2_per_objfile->index_table->version <= 7
3099 /* DWP files aren't supported yet. */
3100 && get_dwp_file () == NULL)
3101 queue_and_load_all_dwo_tus (per_cu);
3102 }
3103
3104 process_queue ();
3105
3106 /* Age the cache, releasing compilation units that have not
3107 been used recently. */
3108 age_cached_comp_units ();
3109
3110 do_cleanups (back_to);
3111 }
3112
3113 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3114 the objfile from which this CU came. Returns the resulting symbol
3115 table. */
3116
3117 static struct compunit_symtab *
3118 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3119 {
3120 gdb_assert (dwarf2_per_objfile->using_index);
3121 if (!per_cu->v.quick->compunit_symtab)
3122 {
3123 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
3124 scoped_restore decrementer = increment_reading_symtab ();
3125 dw2_do_instantiate_symtab (per_cu);
3126 process_cu_includes ();
3127 do_cleanups (back_to);
3128 }
3129
3130 return per_cu->v.quick->compunit_symtab;
3131 }
3132
3133 /* Return the CU/TU given its index.
3134
3135 This is intended for loops like:
3136
3137 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3138 + dwarf2_per_objfile->n_type_units); ++i)
3139 {
3140 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3141
3142 ...;
3143 }
3144 */
3145
3146 static struct dwarf2_per_cu_data *
3147 dw2_get_cutu (int index)
3148 {
3149 if (index >= dwarf2_per_objfile->n_comp_units)
3150 {
3151 index -= dwarf2_per_objfile->n_comp_units;
3152 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3153 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3154 }
3155
3156 return dwarf2_per_objfile->all_comp_units[index];
3157 }
3158
3159 /* Return the CU given its index.
3160 This differs from dw2_get_cutu in that it's for when you know INDEX
3161 refers to a CU. */
3162
3163 static struct dwarf2_per_cu_data *
3164 dw2_get_cu (int index)
3165 {
3166 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3167
3168 return dwarf2_per_objfile->all_comp_units[index];
3169 }
3170
3171 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3172 objfile_obstack, and constructed with the specified field
3173 values. */
3174
3175 static dwarf2_per_cu_data *
3176 create_cu_from_index_list (struct objfile *objfile,
3177 struct dwarf2_section_info *section,
3178 int is_dwz,
3179 sect_offset sect_off, ULONGEST length)
3180 {
3181 dwarf2_per_cu_data *the_cu
3182 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3183 struct dwarf2_per_cu_data);
3184 the_cu->sect_off = sect_off;
3185 the_cu->length = length;
3186 the_cu->objfile = objfile;
3187 the_cu->section = section;
3188 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3189 struct dwarf2_per_cu_quick_data);
3190 the_cu->is_dwz = is_dwz;
3191 return the_cu;
3192 }
3193
3194 /* A helper for create_cus_from_index that handles a given list of
3195 CUs. */
3196
3197 static void
3198 create_cus_from_index_list (struct objfile *objfile,
3199 const gdb_byte *cu_list, offset_type n_elements,
3200 struct dwarf2_section_info *section,
3201 int is_dwz,
3202 int base_offset)
3203 {
3204 offset_type i;
3205
3206 for (i = 0; i < n_elements; i += 2)
3207 {
3208 gdb_static_assert (sizeof (ULONGEST) >= 8);
3209
3210 sect_offset sect_off
3211 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3212 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3213 cu_list += 2 * 8;
3214
3215 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3216 = create_cu_from_index_list (objfile, section, is_dwz, sect_off, length);
3217 }
3218 }
3219
3220 /* Read the CU list from the mapped index, and use it to create all
3221 the CU objects for this objfile. */
3222
3223 static void
3224 create_cus_from_index (struct objfile *objfile,
3225 const gdb_byte *cu_list, offset_type cu_list_elements,
3226 const gdb_byte *dwz_list, offset_type dwz_elements)
3227 {
3228 struct dwz_file *dwz;
3229
3230 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3231 dwarf2_per_objfile->all_comp_units =
3232 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3233 dwarf2_per_objfile->n_comp_units);
3234
3235 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3236 &dwarf2_per_objfile->info, 0, 0);
3237
3238 if (dwz_elements == 0)
3239 return;
3240
3241 dwz = dwarf2_get_dwz_file ();
3242 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3243 cu_list_elements / 2);
3244 }
3245
3246 /* Create the signatured type hash table from the index. */
3247
3248 static void
3249 create_signatured_type_table_from_index (struct objfile *objfile,
3250 struct dwarf2_section_info *section,
3251 const gdb_byte *bytes,
3252 offset_type elements)
3253 {
3254 offset_type i;
3255 htab_t sig_types_hash;
3256
3257 dwarf2_per_objfile->n_type_units
3258 = dwarf2_per_objfile->n_allocated_type_units
3259 = elements / 3;
3260 dwarf2_per_objfile->all_type_units =
3261 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3262
3263 sig_types_hash = allocate_signatured_type_table (objfile);
3264
3265 for (i = 0; i < elements; i += 3)
3266 {
3267 struct signatured_type *sig_type;
3268 ULONGEST signature;
3269 void **slot;
3270 cu_offset type_offset_in_tu;
3271
3272 gdb_static_assert (sizeof (ULONGEST) >= 8);
3273 sect_offset sect_off
3274 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3275 type_offset_in_tu
3276 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3277 BFD_ENDIAN_LITTLE);
3278 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3279 bytes += 3 * 8;
3280
3281 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3282 struct signatured_type);
3283 sig_type->signature = signature;
3284 sig_type->type_offset_in_tu = type_offset_in_tu;
3285 sig_type->per_cu.is_debug_types = 1;
3286 sig_type->per_cu.section = section;
3287 sig_type->per_cu.sect_off = sect_off;
3288 sig_type->per_cu.objfile = objfile;
3289 sig_type->per_cu.v.quick
3290 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3291 struct dwarf2_per_cu_quick_data);
3292
3293 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3294 *slot = sig_type;
3295
3296 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3297 }
3298
3299 dwarf2_per_objfile->signatured_types = sig_types_hash;
3300 }
3301
3302 /* Create the signatured type hash table from .debug_names. */
3303
3304 static void
3305 create_signatured_type_table_from_debug_names
3306 (struct objfile *objfile,
3307 const mapped_debug_names &map,
3308 struct dwarf2_section_info *section,
3309 struct dwarf2_section_info *abbrev_section)
3310 {
3311 dwarf2_read_section (objfile, section);
3312 dwarf2_read_section (objfile, abbrev_section);
3313
3314 dwarf2_per_objfile->n_type_units
3315 = dwarf2_per_objfile->n_allocated_type_units
3316 = map.tu_count;
3317 dwarf2_per_objfile->all_type_units
3318 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3319
3320 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3321
3322 for (uint32_t i = 0; i < map.tu_count; ++i)
3323 {
3324 struct signatured_type *sig_type;
3325 ULONGEST signature;
3326 void **slot;
3327 cu_offset type_offset_in_tu;
3328
3329 sect_offset sect_off
3330 = (sect_offset) (extract_unsigned_integer
3331 (map.tu_table_reordered + i * map.offset_size,
3332 map.offset_size,
3333 map.dwarf5_byte_order));
3334
3335 comp_unit_head cu_header;
3336 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
3337 section->buffer + to_underlying (sect_off),
3338 rcuh_kind::TYPE);
3339
3340 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3341 struct signatured_type);
3342 sig_type->signature = cu_header.signature;
3343 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3344 sig_type->per_cu.is_debug_types = 1;
3345 sig_type->per_cu.section = section;
3346 sig_type->per_cu.sect_off = sect_off;
3347 sig_type->per_cu.objfile = objfile;
3348 sig_type->per_cu.v.quick
3349 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3350 struct dwarf2_per_cu_quick_data);
3351
3352 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3353 *slot = sig_type;
3354
3355 dwarf2_per_objfile->all_type_units[i] = sig_type;
3356 }
3357
3358 dwarf2_per_objfile->signatured_types = sig_types_hash;
3359 }
3360
3361 /* Read the address map data from the mapped index, and use it to
3362 populate the objfile's psymtabs_addrmap. */
3363
3364 static void
3365 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3366 {
3367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3368 const gdb_byte *iter, *end;
3369 struct addrmap *mutable_map;
3370 CORE_ADDR baseaddr;
3371
3372 auto_obstack temp_obstack;
3373
3374 mutable_map = addrmap_create_mutable (&temp_obstack);
3375
3376 iter = index->address_table.data ();
3377 end = iter + index->address_table.size ();
3378
3379 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3380
3381 while (iter < end)
3382 {
3383 ULONGEST hi, lo, cu_index;
3384 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3385 iter += 8;
3386 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3387 iter += 8;
3388 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3389 iter += 4;
3390
3391 if (lo > hi)
3392 {
3393 complaint (&symfile_complaints,
3394 _(".gdb_index address table has invalid range (%s - %s)"),
3395 hex_string (lo), hex_string (hi));
3396 continue;
3397 }
3398
3399 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3400 {
3401 complaint (&symfile_complaints,
3402 _(".gdb_index address table has invalid CU number %u"),
3403 (unsigned) cu_index);
3404 continue;
3405 }
3406
3407 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3408 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3409 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3410 }
3411
3412 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3413 &objfile->objfile_obstack);
3414 }
3415
3416 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3417 populate the objfile's psymtabs_addrmap. */
3418
3419 static void
3420 create_addrmap_from_aranges (struct objfile *objfile,
3421 struct dwarf2_section_info *section)
3422 {
3423 bfd *abfd = objfile->obfd;
3424 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3425 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3426 SECT_OFF_TEXT (objfile));
3427
3428 auto_obstack temp_obstack;
3429 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3430
3431 std::unordered_map<sect_offset,
3432 dwarf2_per_cu_data *,
3433 gdb::hash_enum<sect_offset>>
3434 debug_info_offset_to_per_cu;
3435 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3436 {
3437 dwarf2_per_cu_data *per_cu = dw2_get_cutu (cui);
3438 const auto insertpair
3439 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3440 if (!insertpair.second)
3441 {
3442 warning (_("Section .debug_aranges in %s has duplicate "
3443 "debug_info_offset %u, ignoring .debug_aranges."),
3444 objfile_name (objfile), to_underlying (per_cu->sect_off));
3445 return;
3446 }
3447 }
3448
3449 dwarf2_read_section (objfile, section);
3450
3451 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3452
3453 const gdb_byte *addr = section->buffer;
3454
3455 while (addr < section->buffer + section->size)
3456 {
3457 const gdb_byte *const entry_addr = addr;
3458 unsigned int bytes_read;
3459
3460 const LONGEST entry_length = read_initial_length (abfd, addr,
3461 &bytes_read);
3462 addr += bytes_read;
3463
3464 const gdb_byte *const entry_end = addr + entry_length;
3465 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3466 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3467 if (addr + entry_length > section->buffer + section->size)
3468 {
3469 warning (_("Section .debug_aranges in %s entry at offset %zu "
3470 "length %s exceeds section length %s, "
3471 "ignoring .debug_aranges."),
3472 objfile_name (objfile), entry_addr - section->buffer,
3473 plongest (bytes_read + entry_length),
3474 pulongest (section->size));
3475 return;
3476 }
3477
3478 /* The version number. */
3479 const uint16_t version = read_2_bytes (abfd, addr);
3480 addr += 2;
3481 if (version != 2)
3482 {
3483 warning (_("Section .debug_aranges in %s entry at offset %zu "
3484 "has unsupported version %d, ignoring .debug_aranges."),
3485 objfile_name (objfile), entry_addr - section->buffer,
3486 version);
3487 return;
3488 }
3489
3490 const uint64_t debug_info_offset
3491 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3492 addr += offset_size;
3493 const auto per_cu_it
3494 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3495 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3496 {
3497 warning (_("Section .debug_aranges in %s entry at offset %zu "
3498 "debug_info_offset %s does not exists, "
3499 "ignoring .debug_aranges."),
3500 objfile_name (objfile), entry_addr - section->buffer,
3501 pulongest (debug_info_offset));
3502 return;
3503 }
3504 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3505
3506 const uint8_t address_size = *addr++;
3507 if (address_size < 1 || address_size > 8)
3508 {
3509 warning (_("Section .debug_aranges in %s entry at offset %zu "
3510 "address_size %u is invalid, ignoring .debug_aranges."),
3511 objfile_name (objfile), entry_addr - section->buffer,
3512 address_size);
3513 return;
3514 }
3515
3516 const uint8_t segment_selector_size = *addr++;
3517 if (segment_selector_size != 0)
3518 {
3519 warning (_("Section .debug_aranges in %s entry at offset %zu "
3520 "segment_selector_size %u is not supported, "
3521 "ignoring .debug_aranges."),
3522 objfile_name (objfile), entry_addr - section->buffer,
3523 segment_selector_size);
3524 return;
3525 }
3526
3527 /* Must pad to an alignment boundary that is twice the address
3528 size. It is undocumented by the DWARF standard but GCC does
3529 use it. */
3530 for (size_t padding = ((-(addr - section->buffer))
3531 & (2 * address_size - 1));
3532 padding > 0; padding--)
3533 if (*addr++ != 0)
3534 {
3535 warning (_("Section .debug_aranges in %s entry at offset %zu "
3536 "padding is not zero, ignoring .debug_aranges."),
3537 objfile_name (objfile), entry_addr - section->buffer);
3538 return;
3539 }
3540
3541 for (;;)
3542 {
3543 if (addr + 2 * address_size > entry_end)
3544 {
3545 warning (_("Section .debug_aranges in %s entry at offset %zu "
3546 "address list is not properly terminated, "
3547 "ignoring .debug_aranges."),
3548 objfile_name (objfile), entry_addr - section->buffer);
3549 return;
3550 }
3551 ULONGEST start = extract_unsigned_integer (addr, address_size,
3552 dwarf5_byte_order);
3553 addr += address_size;
3554 ULONGEST length = extract_unsigned_integer (addr, address_size,
3555 dwarf5_byte_order);
3556 addr += address_size;
3557 if (start == 0 && length == 0)
3558 break;
3559 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3560 {
3561 /* Symbol was eliminated due to a COMDAT group. */
3562 continue;
3563 }
3564 ULONGEST end = start + length;
3565 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3566 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3567 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3568 }
3569 }
3570
3571 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3572 &objfile->objfile_obstack);
3573 }
3574
3575 /* The hash function for strings in the mapped index. This is the same as
3576 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3577 implementation. This is necessary because the hash function is tied to the
3578 format of the mapped index file. The hash values do not have to match with
3579 SYMBOL_HASH_NEXT.
3580
3581 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3582
3583 static hashval_t
3584 mapped_index_string_hash (int index_version, const void *p)
3585 {
3586 const unsigned char *str = (const unsigned char *) p;
3587 hashval_t r = 0;
3588 unsigned char c;
3589
3590 while ((c = *str++) != 0)
3591 {
3592 if (index_version >= 5)
3593 c = tolower (c);
3594 r = r * 67 + c - 113;
3595 }
3596
3597 return r;
3598 }
3599
3600 /* Find a slot in the mapped index INDEX for the object named NAME.
3601 If NAME is found, set *VEC_OUT to point to the CU vector in the
3602 constant pool and return true. If NAME cannot be found, return
3603 false. */
3604
3605 static bool
3606 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3607 offset_type **vec_out)
3608 {
3609 offset_type hash;
3610 offset_type slot, step;
3611 int (*cmp) (const char *, const char *);
3612
3613 gdb::unique_xmalloc_ptr<char> without_params;
3614 if (current_language->la_language == language_cplus
3615 || current_language->la_language == language_fortran
3616 || current_language->la_language == language_d)
3617 {
3618 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3619 not contain any. */
3620
3621 if (strchr (name, '(') != NULL)
3622 {
3623 without_params = cp_remove_params (name);
3624
3625 if (without_params != NULL)
3626 name = without_params.get ();
3627 }
3628 }
3629
3630 /* Index version 4 did not support case insensitive searches. But the
3631 indices for case insensitive languages are built in lowercase, therefore
3632 simulate our NAME being searched is also lowercased. */
3633 hash = mapped_index_string_hash ((index->version == 4
3634 && case_sensitivity == case_sensitive_off
3635 ? 5 : index->version),
3636 name);
3637
3638 slot = hash & (index->symbol_table.size () - 1);
3639 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3640 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3641
3642 for (;;)
3643 {
3644 const char *str;
3645
3646 const auto &bucket = index->symbol_table[slot];
3647 if (bucket.name == 0 && bucket.vec == 0)
3648 return false;
3649
3650 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3651 if (!cmp (name, str))
3652 {
3653 *vec_out = (offset_type *) (index->constant_pool
3654 + MAYBE_SWAP (bucket.vec));
3655 return true;
3656 }
3657
3658 slot = (slot + step) & (index->symbol_table.size () - 1);
3659 }
3660 }
3661
3662 /* A helper function that reads the .gdb_index from SECTION and fills
3663 in MAP. FILENAME is the name of the file containing the section;
3664 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3665 ok to use deprecated sections.
3666
3667 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3668 out parameters that are filled in with information about the CU and
3669 TU lists in the section.
3670
3671 Returns 1 if all went well, 0 otherwise. */
3672
3673 static int
3674 read_index_from_section (struct objfile *objfile,
3675 const char *filename,
3676 int deprecated_ok,
3677 struct dwarf2_section_info *section,
3678 struct mapped_index *map,
3679 const gdb_byte **cu_list,
3680 offset_type *cu_list_elements,
3681 const gdb_byte **types_list,
3682 offset_type *types_list_elements)
3683 {
3684 const gdb_byte *addr;
3685 offset_type version;
3686 offset_type *metadata;
3687 int i;
3688
3689 if (dwarf2_section_empty_p (section))
3690 return 0;
3691
3692 /* Older elfutils strip versions could keep the section in the main
3693 executable while splitting it for the separate debug info file. */
3694 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3695 return 0;
3696
3697 dwarf2_read_section (objfile, section);
3698
3699 addr = section->buffer;
3700 /* Version check. */
3701 version = MAYBE_SWAP (*(offset_type *) addr);
3702 /* Versions earlier than 3 emitted every copy of a psymbol. This
3703 causes the index to behave very poorly for certain requests. Version 3
3704 contained incomplete addrmap. So, it seems better to just ignore such
3705 indices. */
3706 if (version < 4)
3707 {
3708 static int warning_printed = 0;
3709 if (!warning_printed)
3710 {
3711 warning (_("Skipping obsolete .gdb_index section in %s."),
3712 filename);
3713 warning_printed = 1;
3714 }
3715 return 0;
3716 }
3717 /* Index version 4 uses a different hash function than index version
3718 5 and later.
3719
3720 Versions earlier than 6 did not emit psymbols for inlined
3721 functions. Using these files will cause GDB not to be able to
3722 set breakpoints on inlined functions by name, so we ignore these
3723 indices unless the user has done
3724 "set use-deprecated-index-sections on". */
3725 if (version < 6 && !deprecated_ok)
3726 {
3727 static int warning_printed = 0;
3728 if (!warning_printed)
3729 {
3730 warning (_("\
3731 Skipping deprecated .gdb_index section in %s.\n\
3732 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3733 to use the section anyway."),
3734 filename);
3735 warning_printed = 1;
3736 }
3737 return 0;
3738 }
3739 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3740 of the TU (for symbols coming from TUs),
3741 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3742 Plus gold-generated indices can have duplicate entries for global symbols,
3743 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3744 These are just performance bugs, and we can't distinguish gdb-generated
3745 indices from gold-generated ones, so issue no warning here. */
3746
3747 /* Indexes with higher version than the one supported by GDB may be no
3748 longer backward compatible. */
3749 if (version > 8)
3750 return 0;
3751
3752 map->version = version;
3753 map->total_size = section->size;
3754
3755 metadata = (offset_type *) (addr + sizeof (offset_type));
3756
3757 i = 0;
3758 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3759 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3760 / 8);
3761 ++i;
3762
3763 *types_list = addr + MAYBE_SWAP (metadata[i]);
3764 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3765 - MAYBE_SWAP (metadata[i]))
3766 / 8);
3767 ++i;
3768
3769 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3770 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3771 map->address_table
3772 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3773 ++i;
3774
3775 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3776 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3777 map->symbol_table
3778 = gdb::array_view<mapped_index::symbol_table_slot>
3779 ((mapped_index::symbol_table_slot *) symbol_table,
3780 (mapped_index::symbol_table_slot *) symbol_table_end);
3781
3782 ++i;
3783 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3784
3785 return 1;
3786 }
3787
3788 /* Read .gdb_index. If everything went ok, initialize the "quick"
3789 elements of all the CUs and return 1. Otherwise, return 0. */
3790
3791 static int
3792 dwarf2_read_index (struct objfile *objfile)
3793 {
3794 struct mapped_index local_map, *map;
3795 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3796 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3797 struct dwz_file *dwz;
3798
3799 if (!read_index_from_section (objfile, objfile_name (objfile),
3800 use_deprecated_index_sections,
3801 &dwarf2_per_objfile->gdb_index, &local_map,
3802 &cu_list, &cu_list_elements,
3803 &types_list, &types_list_elements))
3804 return 0;
3805
3806 /* Don't use the index if it's empty. */
3807 if (local_map.symbol_table.empty ())
3808 return 0;
3809
3810 /* If there is a .dwz file, read it so we can get its CU list as
3811 well. */
3812 dwz = dwarf2_get_dwz_file ();
3813 if (dwz != NULL)
3814 {
3815 struct mapped_index dwz_map;
3816 const gdb_byte *dwz_types_ignore;
3817 offset_type dwz_types_elements_ignore;
3818
3819 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3820 1,
3821 &dwz->gdb_index, &dwz_map,
3822 &dwz_list, &dwz_list_elements,
3823 &dwz_types_ignore,
3824 &dwz_types_elements_ignore))
3825 {
3826 warning (_("could not read '.gdb_index' section from %s; skipping"),
3827 bfd_get_filename (dwz->dwz_bfd));
3828 return 0;
3829 }
3830 }
3831
3832 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3833 dwz_list_elements);
3834
3835 if (types_list_elements)
3836 {
3837 struct dwarf2_section_info *section;
3838
3839 /* We can only handle a single .debug_types when we have an
3840 index. */
3841 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3842 return 0;
3843
3844 section = VEC_index (dwarf2_section_info_def,
3845 dwarf2_per_objfile->types, 0);
3846
3847 create_signatured_type_table_from_index (objfile, section, types_list,
3848 types_list_elements);
3849 }
3850
3851 create_addrmap_from_index (objfile, &local_map);
3852
3853 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3854 map = new (map) mapped_index ();
3855 *map = local_map;
3856
3857 dwarf2_per_objfile->index_table = map;
3858 dwarf2_per_objfile->using_index = 1;
3859 dwarf2_per_objfile->quick_file_names_table =
3860 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3861
3862 return 1;
3863 }
3864
3865 /* A helper for the "quick" functions which sets the global
3866 dwarf2_per_objfile according to OBJFILE. */
3867
3868 static void
3869 dw2_setup (struct objfile *objfile)
3870 {
3871 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3872 objfile_data (objfile, dwarf2_objfile_data_key));
3873 gdb_assert (dwarf2_per_objfile);
3874 }
3875
3876 /* die_reader_func for dw2_get_file_names. */
3877
3878 static void
3879 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3880 const gdb_byte *info_ptr,
3881 struct die_info *comp_unit_die,
3882 int has_children,
3883 void *data)
3884 {
3885 struct dwarf2_cu *cu = reader->cu;
3886 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3887 struct objfile *objfile = dwarf2_per_objfile->objfile;
3888 struct dwarf2_per_cu_data *lh_cu;
3889 struct attribute *attr;
3890 int i;
3891 void **slot;
3892 struct quick_file_names *qfn;
3893
3894 gdb_assert (! this_cu->is_debug_types);
3895
3896 /* Our callers never want to match partial units -- instead they
3897 will match the enclosing full CU. */
3898 if (comp_unit_die->tag == DW_TAG_partial_unit)
3899 {
3900 this_cu->v.quick->no_file_data = 1;
3901 return;
3902 }
3903
3904 lh_cu = this_cu;
3905 slot = NULL;
3906
3907 line_header_up lh;
3908 sect_offset line_offset {};
3909
3910 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3911 if (attr)
3912 {
3913 struct quick_file_names find_entry;
3914
3915 line_offset = (sect_offset) DW_UNSND (attr);
3916
3917 /* We may have already read in this line header (TU line header sharing).
3918 If we have we're done. */
3919 find_entry.hash.dwo_unit = cu->dwo_unit;
3920 find_entry.hash.line_sect_off = line_offset;
3921 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3922 &find_entry, INSERT);
3923 if (*slot != NULL)
3924 {
3925 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3926 return;
3927 }
3928
3929 lh = dwarf_decode_line_header (line_offset, cu);
3930 }
3931 if (lh == NULL)
3932 {
3933 lh_cu->v.quick->no_file_data = 1;
3934 return;
3935 }
3936
3937 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3938 qfn->hash.dwo_unit = cu->dwo_unit;
3939 qfn->hash.line_sect_off = line_offset;
3940 gdb_assert (slot != NULL);
3941 *slot = qfn;
3942
3943 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3944
3945 qfn->num_file_names = lh->file_names.size ();
3946 qfn->file_names =
3947 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3948 for (i = 0; i < lh->file_names.size (); ++i)
3949 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3950 qfn->real_names = NULL;
3951
3952 lh_cu->v.quick->file_names = qfn;
3953 }
3954
3955 /* A helper for the "quick" functions which attempts to read the line
3956 table for THIS_CU. */
3957
3958 static struct quick_file_names *
3959 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3960 {
3961 /* This should never be called for TUs. */
3962 gdb_assert (! this_cu->is_debug_types);
3963 /* Nor type unit groups. */
3964 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3965
3966 if (this_cu->v.quick->file_names != NULL)
3967 return this_cu->v.quick->file_names;
3968 /* If we know there is no line data, no point in looking again. */
3969 if (this_cu->v.quick->no_file_data)
3970 return NULL;
3971
3972 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3973
3974 if (this_cu->v.quick->no_file_data)
3975 return NULL;
3976 return this_cu->v.quick->file_names;
3977 }
3978
3979 /* A helper for the "quick" functions which computes and caches the
3980 real path for a given file name from the line table. */
3981
3982 static const char *
3983 dw2_get_real_path (struct objfile *objfile,
3984 struct quick_file_names *qfn, int index)
3985 {
3986 if (qfn->real_names == NULL)
3987 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3988 qfn->num_file_names, const char *);
3989
3990 if (qfn->real_names[index] == NULL)
3991 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3992
3993 return qfn->real_names[index];
3994 }
3995
3996 static struct symtab *
3997 dw2_find_last_source_symtab (struct objfile *objfile)
3998 {
3999 struct compunit_symtab *cust;
4000 int index;
4001
4002 dw2_setup (objfile);
4003 index = dwarf2_per_objfile->n_comp_units - 1;
4004 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
4005 if (cust == NULL)
4006 return NULL;
4007 return compunit_primary_filetab (cust);
4008 }
4009
4010 /* Traversal function for dw2_forget_cached_source_info. */
4011
4012 static int
4013 dw2_free_cached_file_names (void **slot, void *info)
4014 {
4015 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4016
4017 if (file_data->real_names)
4018 {
4019 int i;
4020
4021 for (i = 0; i < file_data->num_file_names; ++i)
4022 {
4023 xfree ((void*) file_data->real_names[i]);
4024 file_data->real_names[i] = NULL;
4025 }
4026 }
4027
4028 return 1;
4029 }
4030
4031 static void
4032 dw2_forget_cached_source_info (struct objfile *objfile)
4033 {
4034 dw2_setup (objfile);
4035
4036 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4037 dw2_free_cached_file_names, NULL);
4038 }
4039
4040 /* Helper function for dw2_map_symtabs_matching_filename that expands
4041 the symtabs and calls the iterator. */
4042
4043 static int
4044 dw2_map_expand_apply (struct objfile *objfile,
4045 struct dwarf2_per_cu_data *per_cu,
4046 const char *name, const char *real_path,
4047 gdb::function_view<bool (symtab *)> callback)
4048 {
4049 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4050
4051 /* Don't visit already-expanded CUs. */
4052 if (per_cu->v.quick->compunit_symtab)
4053 return 0;
4054
4055 /* This may expand more than one symtab, and we want to iterate over
4056 all of them. */
4057 dw2_instantiate_symtab (per_cu);
4058
4059 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4060 last_made, callback);
4061 }
4062
4063 /* Implementation of the map_symtabs_matching_filename method. */
4064
4065 static bool
4066 dw2_map_symtabs_matching_filename
4067 (struct objfile *objfile, const char *name, const char *real_path,
4068 gdb::function_view<bool (symtab *)> callback)
4069 {
4070 int i;
4071 const char *name_basename = lbasename (name);
4072
4073 dw2_setup (objfile);
4074
4075 /* The rule is CUs specify all the files, including those used by
4076 any TU, so there's no need to scan TUs here. */
4077
4078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4079 {
4080 int j;
4081 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4082 struct quick_file_names *file_data;
4083
4084 /* We only need to look at symtabs not already expanded. */
4085 if (per_cu->v.quick->compunit_symtab)
4086 continue;
4087
4088 file_data = dw2_get_file_names (per_cu);
4089 if (file_data == NULL)
4090 continue;
4091
4092 for (j = 0; j < file_data->num_file_names; ++j)
4093 {
4094 const char *this_name = file_data->file_names[j];
4095 const char *this_real_name;
4096
4097 if (compare_filenames_for_search (this_name, name))
4098 {
4099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4100 callback))
4101 return true;
4102 continue;
4103 }
4104
4105 /* Before we invoke realpath, which can get expensive when many
4106 files are involved, do a quick comparison of the basenames. */
4107 if (! basenames_may_differ
4108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4109 continue;
4110
4111 this_real_name = dw2_get_real_path (objfile, file_data, j);
4112 if (compare_filenames_for_search (this_real_name, name))
4113 {
4114 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4115 callback))
4116 return true;
4117 continue;
4118 }
4119
4120 if (real_path != NULL)
4121 {
4122 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4123 gdb_assert (IS_ABSOLUTE_PATH (name));
4124 if (this_real_name != NULL
4125 && FILENAME_CMP (real_path, this_real_name) == 0)
4126 {
4127 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4128 callback))
4129 return true;
4130 continue;
4131 }
4132 }
4133 }
4134 }
4135
4136 return false;
4137 }
4138
4139 /* Struct used to manage iterating over all CUs looking for a symbol. */
4140
4141 struct dw2_symtab_iterator
4142 {
4143 /* The internalized form of .gdb_index. */
4144 struct mapped_index *index;
4145 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4146 int want_specific_block;
4147 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4148 Unused if !WANT_SPECIFIC_BLOCK. */
4149 int block_index;
4150 /* The kind of symbol we're looking for. */
4151 domain_enum domain;
4152 /* The list of CUs from the index entry of the symbol,
4153 or NULL if not found. */
4154 offset_type *vec;
4155 /* The next element in VEC to look at. */
4156 int next;
4157 /* The number of elements in VEC, or zero if there is no match. */
4158 int length;
4159 /* Have we seen a global version of the symbol?
4160 If so we can ignore all further global instances.
4161 This is to work around gold/15646, inefficient gold-generated
4162 indices. */
4163 int global_seen;
4164 };
4165
4166 /* Initialize the index symtab iterator ITER.
4167 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4168 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4169
4170 static void
4171 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4172 struct mapped_index *index,
4173 int want_specific_block,
4174 int block_index,
4175 domain_enum domain,
4176 const char *name)
4177 {
4178 iter->index = index;
4179 iter->want_specific_block = want_specific_block;
4180 iter->block_index = block_index;
4181 iter->domain = domain;
4182 iter->next = 0;
4183 iter->global_seen = 0;
4184
4185 if (find_slot_in_mapped_hash (index, name, &iter->vec))
4186 iter->length = MAYBE_SWAP (*iter->vec);
4187 else
4188 {
4189 iter->vec = NULL;
4190 iter->length = 0;
4191 }
4192 }
4193
4194 /* Return the next matching CU or NULL if there are no more. */
4195
4196 static struct dwarf2_per_cu_data *
4197 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4198 {
4199 for ( ; iter->next < iter->length; ++iter->next)
4200 {
4201 offset_type cu_index_and_attrs =
4202 MAYBE_SWAP (iter->vec[iter->next + 1]);
4203 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4204 struct dwarf2_per_cu_data *per_cu;
4205 int want_static = iter->block_index != GLOBAL_BLOCK;
4206 /* This value is only valid for index versions >= 7. */
4207 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4208 gdb_index_symbol_kind symbol_kind =
4209 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4210 /* Only check the symbol attributes if they're present.
4211 Indices prior to version 7 don't record them,
4212 and indices >= 7 may elide them for certain symbols
4213 (gold does this). */
4214 int attrs_valid =
4215 (iter->index->version >= 7
4216 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4217
4218 /* Don't crash on bad data. */
4219 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4220 + dwarf2_per_objfile->n_type_units))
4221 {
4222 complaint (&symfile_complaints,
4223 _(".gdb_index entry has bad CU index"
4224 " [in module %s]"),
4225 objfile_name (dwarf2_per_objfile->objfile));
4226 continue;
4227 }
4228
4229 per_cu = dw2_get_cutu (cu_index);
4230
4231 /* Skip if already read in. */
4232 if (per_cu->v.quick->compunit_symtab)
4233 continue;
4234
4235 /* Check static vs global. */
4236 if (attrs_valid)
4237 {
4238 if (iter->want_specific_block
4239 && want_static != is_static)
4240 continue;
4241 /* Work around gold/15646. */
4242 if (!is_static && iter->global_seen)
4243 continue;
4244 if (!is_static)
4245 iter->global_seen = 1;
4246 }
4247
4248 /* Only check the symbol's kind if it has one. */
4249 if (attrs_valid)
4250 {
4251 switch (iter->domain)
4252 {
4253 case VAR_DOMAIN:
4254 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4255 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4256 /* Some types are also in VAR_DOMAIN. */
4257 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4258 continue;
4259 break;
4260 case STRUCT_DOMAIN:
4261 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4262 continue;
4263 break;
4264 case LABEL_DOMAIN:
4265 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4266 continue;
4267 break;
4268 default:
4269 break;
4270 }
4271 }
4272
4273 ++iter->next;
4274 return per_cu;
4275 }
4276
4277 return NULL;
4278 }
4279
4280 static struct compunit_symtab *
4281 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4282 const char *name, domain_enum domain)
4283 {
4284 struct compunit_symtab *stab_best = NULL;
4285 struct mapped_index *index;
4286
4287 dw2_setup (objfile);
4288
4289 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4290
4291 index = dwarf2_per_objfile->index_table;
4292
4293 /* index is NULL if OBJF_READNOW. */
4294 if (index)
4295 {
4296 struct dw2_symtab_iterator iter;
4297 struct dwarf2_per_cu_data *per_cu;
4298
4299 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
4300
4301 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4302 {
4303 struct symbol *sym, *with_opaque = NULL;
4304 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4305 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4306 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4307
4308 sym = block_find_symbol (block, name, domain,
4309 block_find_non_opaque_type_preferred,
4310 &with_opaque);
4311
4312 /* Some caution must be observed with overloaded functions
4313 and methods, since the index will not contain any overload
4314 information (but NAME might contain it). */
4315
4316 if (sym != NULL
4317 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4318 return stab;
4319 if (with_opaque != NULL
4320 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4321 stab_best = stab;
4322
4323 /* Keep looking through other CUs. */
4324 }
4325 }
4326
4327 return stab_best;
4328 }
4329
4330 static void
4331 dw2_print_stats (struct objfile *objfile)
4332 {
4333 int i, total, count;
4334
4335 dw2_setup (objfile);
4336 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4337 count = 0;
4338 for (i = 0; i < total; ++i)
4339 {
4340 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4341
4342 if (!per_cu->v.quick->compunit_symtab)
4343 ++count;
4344 }
4345 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4346 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4347 }
4348
4349 /* This dumps minimal information about the index.
4350 It is called via "mt print objfiles".
4351 One use is to verify .gdb_index has been loaded by the
4352 gdb.dwarf2/gdb-index.exp testcase. */
4353
4354 static void
4355 dw2_dump (struct objfile *objfile)
4356 {
4357 dw2_setup (objfile);
4358 gdb_assert (dwarf2_per_objfile->using_index);
4359 printf_filtered (".gdb_index:");
4360 if (dwarf2_per_objfile->index_table != NULL)
4361 {
4362 printf_filtered (" version %d\n",
4363 dwarf2_per_objfile->index_table->version);
4364 }
4365 else
4366 printf_filtered (" faked for \"readnow\"\n");
4367 printf_filtered ("\n");
4368 }
4369
4370 static void
4371 dw2_relocate (struct objfile *objfile,
4372 const struct section_offsets *new_offsets,
4373 const struct section_offsets *delta)
4374 {
4375 /* There's nothing to relocate here. */
4376 }
4377
4378 static void
4379 dw2_expand_symtabs_for_function (struct objfile *objfile,
4380 const char *func_name)
4381 {
4382 struct mapped_index *index;
4383
4384 dw2_setup (objfile);
4385
4386 index = dwarf2_per_objfile->index_table;
4387
4388 /* index is NULL if OBJF_READNOW. */
4389 if (index)
4390 {
4391 struct dw2_symtab_iterator iter;
4392 struct dwarf2_per_cu_data *per_cu;
4393
4394 /* Note: It doesn't matter what we pass for block_index here. */
4395 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4396 func_name);
4397
4398 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4399 dw2_instantiate_symtab (per_cu);
4400 }
4401 }
4402
4403 static void
4404 dw2_expand_all_symtabs (struct objfile *objfile)
4405 {
4406 int i;
4407
4408 dw2_setup (objfile);
4409
4410 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4411 + dwarf2_per_objfile->n_type_units); ++i)
4412 {
4413 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4414
4415 dw2_instantiate_symtab (per_cu);
4416 }
4417 }
4418
4419 static void
4420 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4421 const char *fullname)
4422 {
4423 int i;
4424
4425 dw2_setup (objfile);
4426
4427 /* We don't need to consider type units here.
4428 This is only called for examining code, e.g. expand_line_sal.
4429 There can be an order of magnitude (or more) more type units
4430 than comp units, and we avoid them if we can. */
4431
4432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4433 {
4434 int j;
4435 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4436 struct quick_file_names *file_data;
4437
4438 /* We only need to look at symtabs not already expanded. */
4439 if (per_cu->v.quick->compunit_symtab)
4440 continue;
4441
4442 file_data = dw2_get_file_names (per_cu);
4443 if (file_data == NULL)
4444 continue;
4445
4446 for (j = 0; j < file_data->num_file_names; ++j)
4447 {
4448 const char *this_fullname = file_data->file_names[j];
4449
4450 if (filename_cmp (this_fullname, fullname) == 0)
4451 {
4452 dw2_instantiate_symtab (per_cu);
4453 break;
4454 }
4455 }
4456 }
4457 }
4458
4459 static void
4460 dw2_map_matching_symbols (struct objfile *objfile,
4461 const char * name, domain_enum domain,
4462 int global,
4463 int (*callback) (struct block *,
4464 struct symbol *, void *),
4465 void *data, symbol_name_match_type match,
4466 symbol_compare_ftype *ordered_compare)
4467 {
4468 /* Currently unimplemented; used for Ada. The function can be called if the
4469 current language is Ada for a non-Ada objfile using GNU index. As Ada
4470 does not look for non-Ada symbols this function should just return. */
4471 }
4472
4473 /* Symbol name matcher for .gdb_index names.
4474
4475 Symbol names in .gdb_index have a few particularities:
4476
4477 - There's no indication of which is the language of each symbol.
4478
4479 Since each language has its own symbol name matching algorithm,
4480 and we don't know which language is the right one, we must match
4481 each symbol against all languages. This would be a potential
4482 performance problem if it were not mitigated by the
4483 mapped_index::name_components lookup table, which significantly
4484 reduces the number of times we need to call into this matcher,
4485 making it a non-issue.
4486
4487 - Symbol names in the index have no overload (parameter)
4488 information. I.e., in C++, "foo(int)" and "foo(long)" both
4489 appear as "foo" in the index, for example.
4490
4491 This means that the lookup names passed to the symbol name
4492 matcher functions must have no parameter information either
4493 because (e.g.) symbol search name "foo" does not match
4494 lookup-name "foo(int)" [while swapping search name for lookup
4495 name would match].
4496 */
4497 class gdb_index_symbol_name_matcher
4498 {
4499 public:
4500 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4501 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4502
4503 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4504 Returns true if any matcher matches. */
4505 bool matches (const char *symbol_name);
4506
4507 private:
4508 /* A reference to the lookup name we're matching against. */
4509 const lookup_name_info &m_lookup_name;
4510
4511 /* A vector holding all the different symbol name matchers, for all
4512 languages. */
4513 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4514 };
4515
4516 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4517 (const lookup_name_info &lookup_name)
4518 : m_lookup_name (lookup_name)
4519 {
4520 /* Prepare the vector of comparison functions upfront, to avoid
4521 doing the same work for each symbol. Care is taken to avoid
4522 matching with the same matcher more than once if/when multiple
4523 languages use the same matcher function. */
4524 auto &matchers = m_symbol_name_matcher_funcs;
4525 matchers.reserve (nr_languages);
4526
4527 matchers.push_back (default_symbol_name_matcher);
4528
4529 for (int i = 0; i < nr_languages; i++)
4530 {
4531 const language_defn *lang = language_def ((enum language) i);
4532 if (lang->la_get_symbol_name_matcher != NULL)
4533 {
4534 symbol_name_matcher_ftype *name_matcher
4535 = lang->la_get_symbol_name_matcher (m_lookup_name);
4536
4537 /* Don't insert the same comparison routine more than once.
4538 Note that we do this linear walk instead of a cheaper
4539 sorted insert, or use a std::set or something like that,
4540 because relative order of function addresses is not
4541 stable. This is not a problem in practice because the
4542 number of supported languages is low, and the cost here
4543 is tiny compared to the number of searches we'll do
4544 afterwards using this object. */
4545 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4546 == matchers.end ())
4547 matchers.push_back (name_matcher);
4548 }
4549 }
4550 }
4551
4552 bool
4553 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4554 {
4555 for (auto matches_name : m_symbol_name_matcher_funcs)
4556 if (matches_name (symbol_name, m_lookup_name, NULL))
4557 return true;
4558
4559 return false;
4560 }
4561
4562 /* Starting from a search name, return the string that finds the upper
4563 bound of all strings that start with SEARCH_NAME in a sorted name
4564 list. Returns the empty string to indicate that the upper bound is
4565 the end of the list. */
4566
4567 static std::string
4568 make_sort_after_prefix_name (const char *search_name)
4569 {
4570 /* When looking to complete "func", we find the upper bound of all
4571 symbols that start with "func" by looking for where we'd insert
4572 the closest string that would follow "func" in lexicographical
4573 order. Usually, that's "func"-with-last-character-incremented,
4574 i.e. "fund". Mind non-ASCII characters, though. Usually those
4575 will be UTF-8 multi-byte sequences, but we can't be certain.
4576 Especially mind the 0xff character, which is a valid character in
4577 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4578 rule out compilers allowing it in identifiers. Note that
4579 conveniently, strcmp/strcasecmp are specified to compare
4580 characters interpreted as unsigned char. So what we do is treat
4581 the whole string as a base 256 number composed of a sequence of
4582 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4583 to 0, and carries 1 to the following more-significant position.
4584 If the very first character in SEARCH_NAME ends up incremented
4585 and carries/overflows, then the upper bound is the end of the
4586 list. The string after the empty string is also the empty
4587 string.
4588
4589 Some examples of this operation:
4590
4591 SEARCH_NAME => "+1" RESULT
4592
4593 "abc" => "abd"
4594 "ab\xff" => "ac"
4595 "\xff" "a" "\xff" => "\xff" "b"
4596 "\xff" => ""
4597 "\xff\xff" => ""
4598 "" => ""
4599
4600 Then, with these symbols for example:
4601
4602 func
4603 func1
4604 fund
4605
4606 completing "func" looks for symbols between "func" and
4607 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4608 which finds "func" and "func1", but not "fund".
4609
4610 And with:
4611
4612 funcÿ (Latin1 'ÿ' [0xff])
4613 funcÿ1
4614 fund
4615
4616 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4617 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4618
4619 And with:
4620
4621 ÿÿ (Latin1 'ÿ' [0xff])
4622 ÿÿ1
4623
4624 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4625 the end of the list.
4626 */
4627 std::string after = search_name;
4628 while (!after.empty () && (unsigned char) after.back () == 0xff)
4629 after.pop_back ();
4630 if (!after.empty ())
4631 after.back () = (unsigned char) after.back () + 1;
4632 return after;
4633 }
4634
4635 /* See declaration. */
4636
4637 std::pair<std::vector<name_component>::const_iterator,
4638 std::vector<name_component>::const_iterator>
4639 mapped_index_base::find_name_components_bounds
4640 (const lookup_name_info &lookup_name_without_params) const
4641 {
4642 auto *name_cmp
4643 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4644
4645 const char *cplus
4646 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4647
4648 /* Comparison function object for lower_bound that matches against a
4649 given symbol name. */
4650 auto lookup_compare_lower = [&] (const name_component &elem,
4651 const char *name)
4652 {
4653 const char *elem_qualified = this->symbol_name_at (elem.idx);
4654 const char *elem_name = elem_qualified + elem.name_offset;
4655 return name_cmp (elem_name, name) < 0;
4656 };
4657
4658 /* Comparison function object for upper_bound that matches against a
4659 given symbol name. */
4660 auto lookup_compare_upper = [&] (const char *name,
4661 const name_component &elem)
4662 {
4663 const char *elem_qualified = this->symbol_name_at (elem.idx);
4664 const char *elem_name = elem_qualified + elem.name_offset;
4665 return name_cmp (name, elem_name) < 0;
4666 };
4667
4668 auto begin = this->name_components.begin ();
4669 auto end = this->name_components.end ();
4670
4671 /* Find the lower bound. */
4672 auto lower = [&] ()
4673 {
4674 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4675 return begin;
4676 else
4677 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4678 } ();
4679
4680 /* Find the upper bound. */
4681 auto upper = [&] ()
4682 {
4683 if (lookup_name_without_params.completion_mode ())
4684 {
4685 /* In completion mode, we want UPPER to point past all
4686 symbols names that have the same prefix. I.e., with
4687 these symbols, and completing "func":
4688
4689 function << lower bound
4690 function1
4691 other_function << upper bound
4692
4693 We find the upper bound by looking for the insertion
4694 point of "func"-with-last-character-incremented,
4695 i.e. "fund". */
4696 std::string after = make_sort_after_prefix_name (cplus);
4697 if (after.empty ())
4698 return end;
4699 return std::lower_bound (lower, end, after.c_str (),
4700 lookup_compare_lower);
4701 }
4702 else
4703 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4704 } ();
4705
4706 return {lower, upper};
4707 }
4708
4709 /* See declaration. */
4710
4711 void
4712 mapped_index_base::build_name_components ()
4713 {
4714 if (!this->name_components.empty ())
4715 return;
4716
4717 this->name_components_casing = case_sensitivity;
4718 auto *name_cmp
4719 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4720
4721 /* The code below only knows how to break apart components of C++
4722 symbol names (and other languages that use '::' as
4723 namespace/module separator). If we add support for wild matching
4724 to some language that uses some other operator (E.g., Ada, Go and
4725 D use '.'), then we'll need to try splitting the symbol name
4726 according to that language too. Note that Ada does support wild
4727 matching, but doesn't currently support .gdb_index. */
4728 auto count = this->symbol_name_count ();
4729 for (offset_type idx = 0; idx < count; idx++)
4730 {
4731 if (this->symbol_name_slot_invalid (idx))
4732 continue;
4733
4734 const char *name = this->symbol_name_at (idx);
4735
4736 /* Add each name component to the name component table. */
4737 unsigned int previous_len = 0;
4738 for (unsigned int current_len = cp_find_first_component (name);
4739 name[current_len] != '\0';
4740 current_len += cp_find_first_component (name + current_len))
4741 {
4742 gdb_assert (name[current_len] == ':');
4743 this->name_components.push_back ({previous_len, idx});
4744 /* Skip the '::'. */
4745 current_len += 2;
4746 previous_len = current_len;
4747 }
4748 this->name_components.push_back ({previous_len, idx});
4749 }
4750
4751 /* Sort name_components elements by name. */
4752 auto name_comp_compare = [&] (const name_component &left,
4753 const name_component &right)
4754 {
4755 const char *left_qualified = this->symbol_name_at (left.idx);
4756 const char *right_qualified = this->symbol_name_at (right.idx);
4757
4758 const char *left_name = left_qualified + left.name_offset;
4759 const char *right_name = right_qualified + right.name_offset;
4760
4761 return name_cmp (left_name, right_name) < 0;
4762 };
4763
4764 std::sort (this->name_components.begin (),
4765 this->name_components.end (),
4766 name_comp_compare);
4767 }
4768
4769 /* Helper for dw2_expand_symtabs_matching that works with a
4770 mapped_index_base instead of the containing objfile. This is split
4771 to a separate function in order to be able to unit test the
4772 name_components matching using a mock mapped_index_base. For each
4773 symbol name that matches, calls MATCH_CALLBACK, passing it the
4774 symbol's index in the mapped_index_base symbol table. */
4775
4776 static void
4777 dw2_expand_symtabs_matching_symbol
4778 (mapped_index_base &index,
4779 const lookup_name_info &lookup_name_in,
4780 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4781 enum search_domain kind,
4782 gdb::function_view<void (offset_type)> match_callback)
4783 {
4784 lookup_name_info lookup_name_without_params
4785 = lookup_name_in.make_ignore_params ();
4786 gdb_index_symbol_name_matcher lookup_name_matcher
4787 (lookup_name_without_params);
4788
4789 /* Build the symbol name component sorted vector, if we haven't
4790 yet. */
4791 index.build_name_components ();
4792
4793 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4794
4795 /* Now for each symbol name in range, check to see if we have a name
4796 match, and if so, call the MATCH_CALLBACK callback. */
4797
4798 /* The same symbol may appear more than once in the range though.
4799 E.g., if we're looking for symbols that complete "w", and we have
4800 a symbol named "w1::w2", we'll find the two name components for
4801 that same symbol in the range. To be sure we only call the
4802 callback once per symbol, we first collect the symbol name
4803 indexes that matched in a temporary vector and ignore
4804 duplicates. */
4805 std::vector<offset_type> matches;
4806 matches.reserve (std::distance (bounds.first, bounds.second));
4807
4808 for (; bounds.first != bounds.second; ++bounds.first)
4809 {
4810 const char *qualified = index.symbol_name_at (bounds.first->idx);
4811
4812 if (!lookup_name_matcher.matches (qualified)
4813 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4814 continue;
4815
4816 matches.push_back (bounds.first->idx);
4817 }
4818
4819 std::sort (matches.begin (), matches.end ());
4820
4821 /* Finally call the callback, once per match. */
4822 ULONGEST prev = -1;
4823 for (offset_type idx : matches)
4824 {
4825 if (prev != idx)
4826 {
4827 match_callback (idx);
4828 prev = idx;
4829 }
4830 }
4831
4832 /* Above we use a type wider than idx's for 'prev', since 0 and
4833 (offset_type)-1 are both possible values. */
4834 static_assert (sizeof (prev) > sizeof (offset_type), "");
4835 }
4836
4837 #if GDB_SELF_TEST
4838
4839 namespace selftests { namespace dw2_expand_symtabs_matching {
4840
4841 /* A mock .gdb_index/.debug_names-like name index table, enough to
4842 exercise dw2_expand_symtabs_matching_symbol, which works with the
4843 mapped_index_base interface. Builds an index from the symbol list
4844 passed as parameter to the constructor. */
4845 class mock_mapped_index : public mapped_index_base
4846 {
4847 public:
4848 mock_mapped_index (gdb::array_view<const char *> symbols)
4849 : m_symbol_table (symbols)
4850 {}
4851
4852 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4853
4854 /* Return the number of names in the symbol table. */
4855 virtual size_t symbol_name_count () const
4856 {
4857 return m_symbol_table.size ();
4858 }
4859
4860 /* Get the name of the symbol at IDX in the symbol table. */
4861 virtual const char *symbol_name_at (offset_type idx) const
4862 {
4863 return m_symbol_table[idx];
4864 }
4865
4866 private:
4867 gdb::array_view<const char *> m_symbol_table;
4868 };
4869
4870 /* Convenience function that converts a NULL pointer to a "<null>"
4871 string, to pass to print routines. */
4872
4873 static const char *
4874 string_or_null (const char *str)
4875 {
4876 return str != NULL ? str : "<null>";
4877 }
4878
4879 /* Check if a lookup_name_info built from
4880 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4881 index. EXPECTED_LIST is the list of expected matches, in expected
4882 matching order. If no match expected, then an empty list is
4883 specified. Returns true on success. On failure prints a warning
4884 indicating the file:line that failed, and returns false. */
4885
4886 static bool
4887 check_match (const char *file, int line,
4888 mock_mapped_index &mock_index,
4889 const char *name, symbol_name_match_type match_type,
4890 bool completion_mode,
4891 std::initializer_list<const char *> expected_list)
4892 {
4893 lookup_name_info lookup_name (name, match_type, completion_mode);
4894
4895 bool matched = true;
4896
4897 auto mismatch = [&] (const char *expected_str,
4898 const char *got)
4899 {
4900 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4901 "expected=\"%s\", got=\"%s\"\n"),
4902 file, line,
4903 (match_type == symbol_name_match_type::FULL
4904 ? "FULL" : "WILD"),
4905 name, string_or_null (expected_str), string_or_null (got));
4906 matched = false;
4907 };
4908
4909 auto expected_it = expected_list.begin ();
4910 auto expected_end = expected_list.end ();
4911
4912 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4913 NULL, ALL_DOMAIN,
4914 [&] (offset_type idx)
4915 {
4916 const char *matched_name = mock_index.symbol_name_at (idx);
4917 const char *expected_str
4918 = expected_it == expected_end ? NULL : *expected_it++;
4919
4920 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4921 mismatch (expected_str, matched_name);
4922 });
4923
4924 const char *expected_str
4925 = expected_it == expected_end ? NULL : *expected_it++;
4926 if (expected_str != NULL)
4927 mismatch (expected_str, NULL);
4928
4929 return matched;
4930 }
4931
4932 /* The symbols added to the mock mapped_index for testing (in
4933 canonical form). */
4934 static const char *test_symbols[] = {
4935 "function",
4936 "std::bar",
4937 "std::zfunction",
4938 "std::zfunction2",
4939 "w1::w2",
4940 "ns::foo<char*>",
4941 "ns::foo<int>",
4942 "ns::foo<long>",
4943 "ns2::tmpl<int>::foo2",
4944 "(anonymous namespace)::A::B::C",
4945
4946 /* These are used to check that the increment-last-char in the
4947 matching algorithm for completion doesn't match "t1_fund" when
4948 completing "t1_func". */
4949 "t1_func",
4950 "t1_func1",
4951 "t1_fund",
4952 "t1_fund1",
4953
4954 /* A UTF-8 name with multi-byte sequences to make sure that
4955 cp-name-parser understands this as a single identifier ("função"
4956 is "function" in PT). */
4957 u8"u8função",
4958
4959 /* \377 (0xff) is Latin1 'ÿ'. */
4960 "yfunc\377",
4961
4962 /* \377 (0xff) is Latin1 'ÿ'. */
4963 "\377",
4964 "\377\377123",
4965
4966 /* A name with all sorts of complications. Starts with "z" to make
4967 it easier for the completion tests below. */
4968 #define Z_SYM_NAME \
4969 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4970 "::tuple<(anonymous namespace)::ui*, " \
4971 "std::default_delete<(anonymous namespace)::ui>, void>"
4972
4973 Z_SYM_NAME
4974 };
4975
4976 /* Returns true if the mapped_index_base::find_name_component_bounds
4977 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4978 in completion mode. */
4979
4980 static bool
4981 check_find_bounds_finds (mapped_index_base &index,
4982 const char *search_name,
4983 gdb::array_view<const char *> expected_syms)
4984 {
4985 lookup_name_info lookup_name (search_name,
4986 symbol_name_match_type::FULL, true);
4987
4988 auto bounds = index.find_name_components_bounds (lookup_name);
4989
4990 size_t distance = std::distance (bounds.first, bounds.second);
4991 if (distance != expected_syms.size ())
4992 return false;
4993
4994 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4995 {
4996 auto nc_elem = bounds.first + exp_elem;
4997 const char *qualified = index.symbol_name_at (nc_elem->idx);
4998 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4999 return false;
5000 }
5001
5002 return true;
5003 }
5004
5005 /* Test the lower-level mapped_index::find_name_component_bounds
5006 method. */
5007
5008 static void
5009 test_mapped_index_find_name_component_bounds ()
5010 {
5011 mock_mapped_index mock_index (test_symbols);
5012
5013 mock_index.build_name_components ();
5014
5015 /* Test the lower-level mapped_index::find_name_component_bounds
5016 method in completion mode. */
5017 {
5018 static const char *expected_syms[] = {
5019 "t1_func",
5020 "t1_func1",
5021 };
5022
5023 SELF_CHECK (check_find_bounds_finds (mock_index,
5024 "t1_func", expected_syms));
5025 }
5026
5027 /* Check that the increment-last-char in the name matching algorithm
5028 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5029 {
5030 static const char *expected_syms1[] = {
5031 "\377",
5032 "\377\377123",
5033 };
5034 SELF_CHECK (check_find_bounds_finds (mock_index,
5035 "\377", expected_syms1));
5036
5037 static const char *expected_syms2[] = {
5038 "\377\377123",
5039 };
5040 SELF_CHECK (check_find_bounds_finds (mock_index,
5041 "\377\377", expected_syms2));
5042 }
5043 }
5044
5045 /* Test dw2_expand_symtabs_matching_symbol. */
5046
5047 static void
5048 test_dw2_expand_symtabs_matching_symbol ()
5049 {
5050 mock_mapped_index mock_index (test_symbols);
5051
5052 /* We let all tests run until the end even if some fails, for debug
5053 convenience. */
5054 bool any_mismatch = false;
5055
5056 /* Create the expected symbols list (an initializer_list). Needed
5057 because lists have commas, and we need to pass them to CHECK,
5058 which is a macro. */
5059 #define EXPECT(...) { __VA_ARGS__ }
5060
5061 /* Wrapper for check_match that passes down the current
5062 __FILE__/__LINE__. */
5063 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5064 any_mismatch |= !check_match (__FILE__, __LINE__, \
5065 mock_index, \
5066 NAME, MATCH_TYPE, COMPLETION_MODE, \
5067 EXPECTED_LIST)
5068
5069 /* Identity checks. */
5070 for (const char *sym : test_symbols)
5071 {
5072 /* Should be able to match all existing symbols. */
5073 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5074 EXPECT (sym));
5075
5076 /* Should be able to match all existing symbols with
5077 parameters. */
5078 std::string with_params = std::string (sym) + "(int)";
5079 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5080 EXPECT (sym));
5081
5082 /* Should be able to match all existing symbols with
5083 parameters and qualifiers. */
5084 with_params = std::string (sym) + " ( int ) const";
5085 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5086 EXPECT (sym));
5087
5088 /* This should really find sym, but cp-name-parser.y doesn't
5089 know about lvalue/rvalue qualifiers yet. */
5090 with_params = std::string (sym) + " ( int ) &&";
5091 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5092 {});
5093 }
5094
5095 /* Check that the name matching algorithm for completion doesn't get
5096 confused with Latin1 'ÿ' / 0xff. */
5097 {
5098 static const char str[] = "\377";
5099 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5100 EXPECT ("\377", "\377\377123"));
5101 }
5102
5103 /* Check that the increment-last-char in the matching algorithm for
5104 completion doesn't match "t1_fund" when completing "t1_func". */
5105 {
5106 static const char str[] = "t1_func";
5107 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5108 EXPECT ("t1_func", "t1_func1"));
5109 }
5110
5111 /* Check that completion mode works at each prefix of the expected
5112 symbol name. */
5113 {
5114 static const char str[] = "function(int)";
5115 size_t len = strlen (str);
5116 std::string lookup;
5117
5118 for (size_t i = 1; i < len; i++)
5119 {
5120 lookup.assign (str, i);
5121 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5122 EXPECT ("function"));
5123 }
5124 }
5125
5126 /* While "w" is a prefix of both components, the match function
5127 should still only be called once. */
5128 {
5129 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5130 EXPECT ("w1::w2"));
5131 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5132 EXPECT ("w1::w2"));
5133 }
5134
5135 /* Same, with a "complicated" symbol. */
5136 {
5137 static const char str[] = Z_SYM_NAME;
5138 size_t len = strlen (str);
5139 std::string lookup;
5140
5141 for (size_t i = 1; i < len; i++)
5142 {
5143 lookup.assign (str, i);
5144 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5145 EXPECT (Z_SYM_NAME));
5146 }
5147 }
5148
5149 /* In FULL mode, an incomplete symbol doesn't match. */
5150 {
5151 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5152 {});
5153 }
5154
5155 /* A complete symbol with parameters matches any overload, since the
5156 index has no overload info. */
5157 {
5158 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5159 EXPECT ("std::zfunction", "std::zfunction2"));
5160 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5161 EXPECT ("std::zfunction", "std::zfunction2"));
5162 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5163 EXPECT ("std::zfunction", "std::zfunction2"));
5164 }
5165
5166 /* Check that whitespace is ignored appropriately. A symbol with a
5167 template argument list. */
5168 {
5169 static const char expected[] = "ns::foo<int>";
5170 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5171 EXPECT (expected));
5172 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5173 EXPECT (expected));
5174 }
5175
5176 /* Check that whitespace is ignored appropriately. A symbol with a
5177 template argument list that includes a pointer. */
5178 {
5179 static const char expected[] = "ns::foo<char*>";
5180 /* Try both completion and non-completion modes. */
5181 static const bool completion_mode[2] = {false, true};
5182 for (size_t i = 0; i < 2; i++)
5183 {
5184 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5185 completion_mode[i], EXPECT (expected));
5186 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5187 completion_mode[i], EXPECT (expected));
5188
5189 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5190 completion_mode[i], EXPECT (expected));
5191 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5192 completion_mode[i], EXPECT (expected));
5193 }
5194 }
5195
5196 {
5197 /* Check method qualifiers are ignored. */
5198 static const char expected[] = "ns::foo<char*>";
5199 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5200 symbol_name_match_type::FULL, true, EXPECT (expected));
5201 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5202 symbol_name_match_type::FULL, true, EXPECT (expected));
5203 CHECK_MATCH ("foo < char * > ( int ) const",
5204 symbol_name_match_type::WILD, true, EXPECT (expected));
5205 CHECK_MATCH ("foo < char * > ( int ) &&",
5206 symbol_name_match_type::WILD, true, EXPECT (expected));
5207 }
5208
5209 /* Test lookup names that don't match anything. */
5210 {
5211 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5212 {});
5213
5214 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5215 {});
5216 }
5217
5218 /* Some wild matching tests, exercising "(anonymous namespace)",
5219 which should not be confused with a parameter list. */
5220 {
5221 static const char *syms[] = {
5222 "A::B::C",
5223 "B::C",
5224 "C",
5225 "A :: B :: C ( int )",
5226 "B :: C ( int )",
5227 "C ( int )",
5228 };
5229
5230 for (const char *s : syms)
5231 {
5232 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5233 EXPECT ("(anonymous namespace)::A::B::C"));
5234 }
5235 }
5236
5237 {
5238 static const char expected[] = "ns2::tmpl<int>::foo2";
5239 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5240 EXPECT (expected));
5241 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5242 EXPECT (expected));
5243 }
5244
5245 SELF_CHECK (!any_mismatch);
5246
5247 #undef EXPECT
5248 #undef CHECK_MATCH
5249 }
5250
5251 static void
5252 run_test ()
5253 {
5254 test_mapped_index_find_name_component_bounds ();
5255 test_dw2_expand_symtabs_matching_symbol ();
5256 }
5257
5258 }} // namespace selftests::dw2_expand_symtabs_matching
5259
5260 #endif /* GDB_SELF_TEST */
5261
5262 /* If FILE_MATCHER is NULL or if PER_CU has
5263 dwarf2_per_cu_quick_data::MARK set (see
5264 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5265 EXPANSION_NOTIFY on it. */
5266
5267 static void
5268 dw2_expand_symtabs_matching_one
5269 (struct dwarf2_per_cu_data *per_cu,
5270 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5271 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5272 {
5273 if (file_matcher == NULL || per_cu->v.quick->mark)
5274 {
5275 bool symtab_was_null
5276 = (per_cu->v.quick->compunit_symtab == NULL);
5277
5278 dw2_instantiate_symtab (per_cu);
5279
5280 if (expansion_notify != NULL
5281 && symtab_was_null
5282 && per_cu->v.quick->compunit_symtab != NULL)
5283 expansion_notify (per_cu->v.quick->compunit_symtab);
5284 }
5285 }
5286
5287 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5288 matched, to expand corresponding CUs that were marked. IDX is the
5289 index of the symbol name that matched. */
5290
5291 static void
5292 dw2_expand_marked_cus
5293 (mapped_index &index, offset_type idx,
5294 struct objfile *objfile,
5295 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5296 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5297 search_domain kind)
5298 {
5299 offset_type *vec, vec_len, vec_idx;
5300 bool global_seen = false;
5301
5302 vec = (offset_type *) (index.constant_pool
5303 + MAYBE_SWAP (index.symbol_table[idx].vec));
5304 vec_len = MAYBE_SWAP (vec[0]);
5305 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5306 {
5307 struct dwarf2_per_cu_data *per_cu;
5308 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5309 /* This value is only valid for index versions >= 7. */
5310 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5311 gdb_index_symbol_kind symbol_kind =
5312 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5313 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5314 /* Only check the symbol attributes if they're present.
5315 Indices prior to version 7 don't record them,
5316 and indices >= 7 may elide them for certain symbols
5317 (gold does this). */
5318 int attrs_valid =
5319 (index.version >= 7
5320 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5321
5322 /* Work around gold/15646. */
5323 if (attrs_valid)
5324 {
5325 if (!is_static && global_seen)
5326 continue;
5327 if (!is_static)
5328 global_seen = true;
5329 }
5330
5331 /* Only check the symbol's kind if it has one. */
5332 if (attrs_valid)
5333 {
5334 switch (kind)
5335 {
5336 case VARIABLES_DOMAIN:
5337 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5338 continue;
5339 break;
5340 case FUNCTIONS_DOMAIN:
5341 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5342 continue;
5343 break;
5344 case TYPES_DOMAIN:
5345 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5346 continue;
5347 break;
5348 default:
5349 break;
5350 }
5351 }
5352
5353 /* Don't crash on bad data. */
5354 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5355 + dwarf2_per_objfile->n_type_units))
5356 {
5357 complaint (&symfile_complaints,
5358 _(".gdb_index entry has bad CU index"
5359 " [in module %s]"), objfile_name (objfile));
5360 continue;
5361 }
5362
5363 per_cu = dw2_get_cutu (cu_index);
5364 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5365 expansion_notify);
5366 }
5367 }
5368
5369 /* If FILE_MATCHER is non-NULL, set all the
5370 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5371 that match FILE_MATCHER. */
5372
5373 static void
5374 dw_expand_symtabs_matching_file_matcher
5375 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5376 {
5377 if (file_matcher == NULL)
5378 return;
5379
5380 objfile *const objfile = dwarf2_per_objfile->objfile;
5381
5382 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5383 htab_eq_pointer,
5384 NULL, xcalloc, xfree));
5385 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5386 htab_eq_pointer,
5387 NULL, xcalloc, xfree));
5388
5389 /* The rule is CUs specify all the files, including those used by
5390 any TU, so there's no need to scan TUs here. */
5391
5392 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5393 {
5394 int j;
5395 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5396 struct quick_file_names *file_data;
5397 void **slot;
5398
5399 QUIT;
5400
5401 per_cu->v.quick->mark = 0;
5402
5403 /* We only need to look at symtabs not already expanded. */
5404 if (per_cu->v.quick->compunit_symtab)
5405 continue;
5406
5407 file_data = dw2_get_file_names (per_cu);
5408 if (file_data == NULL)
5409 continue;
5410
5411 if (htab_find (visited_not_found.get (), file_data) != NULL)
5412 continue;
5413 else if (htab_find (visited_found.get (), file_data) != NULL)
5414 {
5415 per_cu->v.quick->mark = 1;
5416 continue;
5417 }
5418
5419 for (j = 0; j < file_data->num_file_names; ++j)
5420 {
5421 const char *this_real_name;
5422
5423 if (file_matcher (file_data->file_names[j], false))
5424 {
5425 per_cu->v.quick->mark = 1;
5426 break;
5427 }
5428
5429 /* Before we invoke realpath, which can get expensive when many
5430 files are involved, do a quick comparison of the basenames. */
5431 if (!basenames_may_differ
5432 && !file_matcher (lbasename (file_data->file_names[j]),
5433 true))
5434 continue;
5435
5436 this_real_name = dw2_get_real_path (objfile, file_data, j);
5437 if (file_matcher (this_real_name, false))
5438 {
5439 per_cu->v.quick->mark = 1;
5440 break;
5441 }
5442 }
5443
5444 slot = htab_find_slot (per_cu->v.quick->mark
5445 ? visited_found.get ()
5446 : visited_not_found.get (),
5447 file_data, INSERT);
5448 *slot = file_data;
5449 }
5450 }
5451
5452 static void
5453 dw2_expand_symtabs_matching
5454 (struct objfile *objfile,
5455 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5456 const lookup_name_info &lookup_name,
5457 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5458 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5459 enum search_domain kind)
5460 {
5461 dw2_setup (objfile);
5462
5463 /* index_table is NULL if OBJF_READNOW. */
5464 if (!dwarf2_per_objfile->index_table)
5465 return;
5466
5467 dw_expand_symtabs_matching_file_matcher (file_matcher);
5468
5469 mapped_index &index = *dwarf2_per_objfile->index_table;
5470
5471 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5472 symbol_matcher,
5473 kind, [&] (offset_type idx)
5474 {
5475 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
5476 expansion_notify, kind);
5477 });
5478 }
5479
5480 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5481 symtab. */
5482
5483 static struct compunit_symtab *
5484 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5485 CORE_ADDR pc)
5486 {
5487 int i;
5488
5489 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5490 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5491 return cust;
5492
5493 if (cust->includes == NULL)
5494 return NULL;
5495
5496 for (i = 0; cust->includes[i]; ++i)
5497 {
5498 struct compunit_symtab *s = cust->includes[i];
5499
5500 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5501 if (s != NULL)
5502 return s;
5503 }
5504
5505 return NULL;
5506 }
5507
5508 static struct compunit_symtab *
5509 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5510 struct bound_minimal_symbol msymbol,
5511 CORE_ADDR pc,
5512 struct obj_section *section,
5513 int warn_if_readin)
5514 {
5515 struct dwarf2_per_cu_data *data;
5516 struct compunit_symtab *result;
5517
5518 dw2_setup (objfile);
5519
5520 if (!objfile->psymtabs_addrmap)
5521 return NULL;
5522
5523 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5524 pc);
5525 if (!data)
5526 return NULL;
5527
5528 if (warn_if_readin && data->v.quick->compunit_symtab)
5529 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5530 paddress (get_objfile_arch (objfile), pc));
5531
5532 result
5533 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5534 pc);
5535 gdb_assert (result != NULL);
5536 return result;
5537 }
5538
5539 static void
5540 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5541 void *data, int need_fullname)
5542 {
5543 dw2_setup (objfile);
5544
5545 if (!dwarf2_per_objfile->filenames_cache)
5546 {
5547 dwarf2_per_objfile->filenames_cache.emplace ();
5548
5549 htab_up visited (htab_create_alloc (10,
5550 htab_hash_pointer, htab_eq_pointer,
5551 NULL, xcalloc, xfree));
5552
5553 /* The rule is CUs specify all the files, including those used
5554 by any TU, so there's no need to scan TUs here. We can
5555 ignore file names coming from already-expanded CUs. */
5556
5557 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5558 {
5559 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5560
5561 if (per_cu->v.quick->compunit_symtab)
5562 {
5563 void **slot = htab_find_slot (visited.get (),
5564 per_cu->v.quick->file_names,
5565 INSERT);
5566
5567 *slot = per_cu->v.quick->file_names;
5568 }
5569 }
5570
5571 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5572 {
5573 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5574 struct quick_file_names *file_data;
5575 void **slot;
5576
5577 /* We only need to look at symtabs not already expanded. */
5578 if (per_cu->v.quick->compunit_symtab)
5579 continue;
5580
5581 file_data = dw2_get_file_names (per_cu);
5582 if (file_data == NULL)
5583 continue;
5584
5585 slot = htab_find_slot (visited.get (), file_data, INSERT);
5586 if (*slot)
5587 {
5588 /* Already visited. */
5589 continue;
5590 }
5591 *slot = file_data;
5592
5593 for (int j = 0; j < file_data->num_file_names; ++j)
5594 {
5595 const char *filename = file_data->file_names[j];
5596 dwarf2_per_objfile->filenames_cache->seen (filename);
5597 }
5598 }
5599 }
5600
5601 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5602 {
5603 gdb::unique_xmalloc_ptr<char> this_real_name;
5604
5605 if (need_fullname)
5606 this_real_name = gdb_realpath (filename);
5607 (*fun) (filename, this_real_name.get (), data);
5608 });
5609 }
5610
5611 static int
5612 dw2_has_symbols (struct objfile *objfile)
5613 {
5614 return 1;
5615 }
5616
5617 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5618 {
5619 dw2_has_symbols,
5620 dw2_find_last_source_symtab,
5621 dw2_forget_cached_source_info,
5622 dw2_map_symtabs_matching_filename,
5623 dw2_lookup_symbol,
5624 dw2_print_stats,
5625 dw2_dump,
5626 dw2_relocate,
5627 dw2_expand_symtabs_for_function,
5628 dw2_expand_all_symtabs,
5629 dw2_expand_symtabs_with_fullname,
5630 dw2_map_matching_symbols,
5631 dw2_expand_symtabs_matching,
5632 dw2_find_pc_sect_compunit_symtab,
5633 NULL,
5634 dw2_map_symbol_filenames
5635 };
5636
5637 /* DWARF-5 debug_names reader. */
5638
5639 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5640 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5641
5642 /* A helper function that reads the .debug_names section in SECTION
5643 and fills in MAP. FILENAME is the name of the file containing the
5644 section; it is used for error reporting.
5645
5646 Returns true if all went well, false otherwise. */
5647
5648 static bool
5649 read_debug_names_from_section (struct objfile *objfile,
5650 const char *filename,
5651 struct dwarf2_section_info *section,
5652 mapped_debug_names &map)
5653 {
5654 if (dwarf2_section_empty_p (section))
5655 return false;
5656
5657 /* Older elfutils strip versions could keep the section in the main
5658 executable while splitting it for the separate debug info file. */
5659 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5660 return false;
5661
5662 dwarf2_read_section (objfile, section);
5663
5664 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5665
5666 const gdb_byte *addr = section->buffer;
5667
5668 bfd *const abfd = get_section_bfd_owner (section);
5669
5670 unsigned int bytes_read;
5671 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5672 addr += bytes_read;
5673
5674 map.dwarf5_is_dwarf64 = bytes_read != 4;
5675 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5676 if (bytes_read + length != section->size)
5677 {
5678 /* There may be multiple per-CU indices. */
5679 warning (_("Section .debug_names in %s length %s does not match "
5680 "section length %s, ignoring .debug_names."),
5681 filename, plongest (bytes_read + length),
5682 pulongest (section->size));
5683 return false;
5684 }
5685
5686 /* The version number. */
5687 uint16_t version = read_2_bytes (abfd, addr);
5688 addr += 2;
5689 if (version != 5)
5690 {
5691 warning (_("Section .debug_names in %s has unsupported version %d, "
5692 "ignoring .debug_names."),
5693 filename, version);
5694 return false;
5695 }
5696
5697 /* Padding. */
5698 uint16_t padding = read_2_bytes (abfd, addr);
5699 addr += 2;
5700 if (padding != 0)
5701 {
5702 warning (_("Section .debug_names in %s has unsupported padding %d, "
5703 "ignoring .debug_names."),
5704 filename, padding);
5705 return false;
5706 }
5707
5708 /* comp_unit_count - The number of CUs in the CU list. */
5709 map.cu_count = read_4_bytes (abfd, addr);
5710 addr += 4;
5711
5712 /* local_type_unit_count - The number of TUs in the local TU
5713 list. */
5714 map.tu_count = read_4_bytes (abfd, addr);
5715 addr += 4;
5716
5717 /* foreign_type_unit_count - The number of TUs in the foreign TU
5718 list. */
5719 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5720 addr += 4;
5721 if (foreign_tu_count != 0)
5722 {
5723 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5724 "ignoring .debug_names."),
5725 filename, static_cast<unsigned long> (foreign_tu_count));
5726 return false;
5727 }
5728
5729 /* bucket_count - The number of hash buckets in the hash lookup
5730 table. */
5731 map.bucket_count = read_4_bytes (abfd, addr);
5732 addr += 4;
5733
5734 /* name_count - The number of unique names in the index. */
5735 map.name_count = read_4_bytes (abfd, addr);
5736 addr += 4;
5737
5738 /* abbrev_table_size - The size in bytes of the abbreviations
5739 table. */
5740 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5741 addr += 4;
5742
5743 /* augmentation_string_size - The size in bytes of the augmentation
5744 string. This value is rounded up to a multiple of 4. */
5745 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5746 addr += 4;
5747 map.augmentation_is_gdb = ((augmentation_string_size
5748 == sizeof (dwarf5_augmentation))
5749 && memcmp (addr, dwarf5_augmentation,
5750 sizeof (dwarf5_augmentation)) == 0);
5751 augmentation_string_size += (-augmentation_string_size) & 3;
5752 addr += augmentation_string_size;
5753
5754 /* List of CUs */
5755 map.cu_table_reordered = addr;
5756 addr += map.cu_count * map.offset_size;
5757
5758 /* List of Local TUs */
5759 map.tu_table_reordered = addr;
5760 addr += map.tu_count * map.offset_size;
5761
5762 /* Hash Lookup Table */
5763 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5764 addr += map.bucket_count * 4;
5765 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5766 addr += map.name_count * 4;
5767
5768 /* Name Table */
5769 map.name_table_string_offs_reordered = addr;
5770 addr += map.name_count * map.offset_size;
5771 map.name_table_entry_offs_reordered = addr;
5772 addr += map.name_count * map.offset_size;
5773
5774 const gdb_byte *abbrev_table_start = addr;
5775 for (;;)
5776 {
5777 unsigned int bytes_read;
5778 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5779 addr += bytes_read;
5780 if (index_num == 0)
5781 break;
5782
5783 const auto insertpair
5784 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5785 if (!insertpair.second)
5786 {
5787 warning (_("Section .debug_names in %s has duplicate index %s, "
5788 "ignoring .debug_names."),
5789 filename, pulongest (index_num));
5790 return false;
5791 }
5792 mapped_debug_names::index_val &indexval = insertpair.first->second;
5793 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5794 addr += bytes_read;
5795
5796 for (;;)
5797 {
5798 mapped_debug_names::index_val::attr attr;
5799 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5800 addr += bytes_read;
5801 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5802 addr += bytes_read;
5803 if (attr.form == DW_FORM_implicit_const)
5804 {
5805 attr.implicit_const = read_signed_leb128 (abfd, addr,
5806 &bytes_read);
5807 addr += bytes_read;
5808 }
5809 if (attr.dw_idx == 0 && attr.form == 0)
5810 break;
5811 indexval.attr_vec.push_back (std::move (attr));
5812 }
5813 }
5814 if (addr != abbrev_table_start + abbrev_table_size)
5815 {
5816 warning (_("Section .debug_names in %s has abbreviation_table "
5817 "of size %zu vs. written as %u, ignoring .debug_names."),
5818 filename, addr - abbrev_table_start, abbrev_table_size);
5819 return false;
5820 }
5821 map.entry_pool = addr;
5822
5823 return true;
5824 }
5825
5826 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5827 list. */
5828
5829 static void
5830 create_cus_from_debug_names_list (struct objfile *objfile,
5831 const mapped_debug_names &map,
5832 dwarf2_section_info &section,
5833 bool is_dwz, int base_offset)
5834 {
5835 sect_offset sect_off_prev;
5836 for (uint32_t i = 0; i <= map.cu_count; ++i)
5837 {
5838 sect_offset sect_off_next;
5839 if (i < map.cu_count)
5840 {
5841 sect_off_next
5842 = (sect_offset) (extract_unsigned_integer
5843 (map.cu_table_reordered + i * map.offset_size,
5844 map.offset_size,
5845 map.dwarf5_byte_order));
5846 }
5847 else
5848 sect_off_next = (sect_offset) section.size;
5849 if (i >= 1)
5850 {
5851 const ULONGEST length = sect_off_next - sect_off_prev;
5852 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5853 = create_cu_from_index_list (objfile, &section, is_dwz,
5854 sect_off_prev, length);
5855 }
5856 sect_off_prev = sect_off_next;
5857 }
5858 }
5859
5860 /* Read the CU list from the mapped index, and use it to create all
5861 the CU objects for this objfile. */
5862
5863 static void
5864 create_cus_from_debug_names (struct objfile *objfile,
5865 const mapped_debug_names &map,
5866 const mapped_debug_names &dwz_map)
5867 {
5868
5869 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5870 dwarf2_per_objfile->all_comp_units
5871 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5872 dwarf2_per_objfile->n_comp_units);
5873
5874 create_cus_from_debug_names_list (objfile, map, dwarf2_per_objfile->info,
5875 false /* is_dwz */,
5876 0 /* base_offset */);
5877
5878 if (dwz_map.cu_count == 0)
5879 return;
5880
5881 dwz_file *dwz = dwarf2_get_dwz_file ();
5882 create_cus_from_debug_names_list (objfile, dwz_map, dwz->info,
5883 true /* is_dwz */,
5884 map.cu_count /* base_offset */);
5885 }
5886
5887 /* Read .debug_names. If everything went ok, initialize the "quick"
5888 elements of all the CUs and return true. Otherwise, return false. */
5889
5890 static bool
5891 dwarf2_read_debug_names (struct objfile *objfile)
5892 {
5893 mapped_debug_names local_map, dwz_map;
5894
5895 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5896 &dwarf2_per_objfile->debug_names,
5897 local_map))
5898 return false;
5899
5900 /* Don't use the index if it's empty. */
5901 if (local_map.name_count == 0)
5902 return false;
5903
5904 /* If there is a .dwz file, read it so we can get its CU list as
5905 well. */
5906 dwz_file *dwz = dwarf2_get_dwz_file ();
5907 if (dwz != NULL)
5908 {
5909 if (!read_debug_names_from_section (objfile,
5910 bfd_get_filename (dwz->dwz_bfd),
5911 &dwz->debug_names, dwz_map))
5912 {
5913 warning (_("could not read '.debug_names' section from %s; skipping"),
5914 bfd_get_filename (dwz->dwz_bfd));
5915 return false;
5916 }
5917 }
5918
5919 create_cus_from_debug_names (objfile, local_map, dwz_map);
5920
5921 if (local_map.tu_count != 0)
5922 {
5923 /* We can only handle a single .debug_types when we have an
5924 index. */
5925 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5926 return false;
5927
5928 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5929 dwarf2_per_objfile->types, 0);
5930
5931 create_signatured_type_table_from_debug_names
5932 (objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5933 }
5934
5935 create_addrmap_from_aranges (objfile, &dwarf2_per_objfile->debug_aranges);
5936
5937 dwarf2_per_objfile->debug_names_table.reset (new mapped_debug_names);
5938 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5939 dwarf2_per_objfile->using_index = 1;
5940 dwarf2_per_objfile->quick_file_names_table =
5941 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5942
5943 return true;
5944 }
5945
5946 /* Symbol name hashing function as specified by DWARF-5. */
5947
5948 static uint32_t
5949 dwarf5_djb_hash (const char *str_)
5950 {
5951 const unsigned char *str = (const unsigned char *) str_;
5952
5953 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
5954 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
5955
5956 uint32_t hash = 5381;
5957 while (int c = *str++)
5958 hash = hash * 33 + tolower (c);
5959 return hash;
5960 }
5961
5962 /* Type used to manage iterating over all CUs looking for a symbol for
5963 .debug_names. */
5964
5965 class dw2_debug_names_iterator
5966 {
5967 public:
5968 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5969 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5970 dw2_debug_names_iterator (const mapped_debug_names &map,
5971 bool want_specific_block,
5972 block_enum block_index, domain_enum domain,
5973 const char *name)
5974 : m_map (map), m_want_specific_block (want_specific_block),
5975 m_block_index (block_index), m_domain (domain),
5976 m_addr (find_vec_in_debug_names (map, name))
5977 {}
5978
5979 dw2_debug_names_iterator (const mapped_debug_names &map,
5980 search_domain search, uint32_t namei)
5981 : m_map (map),
5982 m_search (search),
5983 m_addr (find_vec_in_debug_names (map, namei))
5984 {}
5985
5986 /* Return the next matching CU or NULL if there are no more. */
5987 dwarf2_per_cu_data *next ();
5988
5989 private:
5990 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5991 const char *name);
5992 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5993 uint32_t namei);
5994
5995 /* The internalized form of .debug_names. */
5996 const mapped_debug_names &m_map;
5997
5998 /* If true, only look for symbols that match BLOCK_INDEX. */
5999 const bool m_want_specific_block = false;
6000
6001 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6002 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6003 value. */
6004 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6005
6006 /* The kind of symbol we're looking for. */
6007 const domain_enum m_domain = UNDEF_DOMAIN;
6008 const search_domain m_search = ALL_DOMAIN;
6009
6010 /* The list of CUs from the index entry of the symbol, or NULL if
6011 not found. */
6012 const gdb_byte *m_addr;
6013 };
6014
6015 const char *
6016 mapped_debug_names::namei_to_name (uint32_t namei) const
6017 {
6018 const ULONGEST namei_string_offs
6019 = extract_unsigned_integer ((name_table_string_offs_reordered
6020 + namei * offset_size),
6021 offset_size,
6022 dwarf5_byte_order);
6023 return read_indirect_string_at_offset
6024 (dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6025 }
6026
6027 /* Find a slot in .debug_names for the object named NAME. If NAME is
6028 found, return pointer to its pool data. If NAME cannot be found,
6029 return NULL. */
6030
6031 const gdb_byte *
6032 dw2_debug_names_iterator::find_vec_in_debug_names
6033 (const mapped_debug_names &map, const char *name)
6034 {
6035 int (*cmp) (const char *, const char *);
6036
6037 if (current_language->la_language == language_cplus
6038 || current_language->la_language == language_fortran
6039 || current_language->la_language == language_d)
6040 {
6041 /* NAME is already canonical. Drop any qualifiers as
6042 .debug_names does not contain any. */
6043
6044 if (strchr (name, '(') != NULL)
6045 {
6046 gdb::unique_xmalloc_ptr<char> without_params
6047 = cp_remove_params (name);
6048
6049 if (without_params != NULL)
6050 {
6051 name = without_params.get();
6052 }
6053 }
6054 }
6055
6056 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6057
6058 const uint32_t full_hash = dwarf5_djb_hash (name);
6059 uint32_t namei
6060 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6061 (map.bucket_table_reordered
6062 + (full_hash % map.bucket_count)), 4,
6063 map.dwarf5_byte_order);
6064 if (namei == 0)
6065 return NULL;
6066 --namei;
6067 if (namei >= map.name_count)
6068 {
6069 complaint (&symfile_complaints,
6070 _("Wrong .debug_names with name index %u but name_count=%u "
6071 "[in module %s]"),
6072 namei, map.name_count,
6073 objfile_name (dwarf2_per_objfile->objfile));
6074 return NULL;
6075 }
6076
6077 for (;;)
6078 {
6079 const uint32_t namei_full_hash
6080 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6081 (map.hash_table_reordered + namei), 4,
6082 map.dwarf5_byte_order);
6083 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6084 return NULL;
6085
6086 if (full_hash == namei_full_hash)
6087 {
6088 const char *const namei_string = map.namei_to_name (namei);
6089
6090 #if 0 /* An expensive sanity check. */
6091 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6092 {
6093 complaint (&symfile_complaints,
6094 _("Wrong .debug_names hash for string at index %u "
6095 "[in module %s]"),
6096 namei, objfile_name (dwarf2_per_objfile->objfile));
6097 return NULL;
6098 }
6099 #endif
6100
6101 if (cmp (namei_string, name) == 0)
6102 {
6103 const ULONGEST namei_entry_offs
6104 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6105 + namei * map.offset_size),
6106 map.offset_size, map.dwarf5_byte_order);
6107 return map.entry_pool + namei_entry_offs;
6108 }
6109 }
6110
6111 ++namei;
6112 if (namei >= map.name_count)
6113 return NULL;
6114 }
6115 }
6116
6117 const gdb_byte *
6118 dw2_debug_names_iterator::find_vec_in_debug_names
6119 (const mapped_debug_names &map, uint32_t namei)
6120 {
6121 if (namei >= map.name_count)
6122 {
6123 complaint (&symfile_complaints,
6124 _("Wrong .debug_names with name index %u but name_count=%u "
6125 "[in module %s]"),
6126 namei, map.name_count,
6127 objfile_name (dwarf2_per_objfile->objfile));
6128 return NULL;
6129 }
6130
6131 const ULONGEST namei_entry_offs
6132 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6133 + namei * map.offset_size),
6134 map.offset_size, map.dwarf5_byte_order);
6135 return map.entry_pool + namei_entry_offs;
6136 }
6137
6138 /* See dw2_debug_names_iterator. */
6139
6140 dwarf2_per_cu_data *
6141 dw2_debug_names_iterator::next ()
6142 {
6143 if (m_addr == NULL)
6144 return NULL;
6145
6146 bfd *const abfd = dwarf2_per_objfile->objfile->obfd;
6147
6148 again:
6149
6150 unsigned int bytes_read;
6151 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6152 m_addr += bytes_read;
6153 if (abbrev == 0)
6154 return NULL;
6155
6156 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6157 if (indexval_it == m_map.abbrev_map.cend ())
6158 {
6159 complaint (&symfile_complaints,
6160 _("Wrong .debug_names undefined abbrev code %s "
6161 "[in module %s]"),
6162 pulongest (abbrev), objfile_name (dwarf2_per_objfile->objfile));
6163 return NULL;
6164 }
6165 const mapped_debug_names::index_val &indexval = indexval_it->second;
6166 bool have_is_static = false;
6167 bool is_static;
6168 dwarf2_per_cu_data *per_cu = NULL;
6169 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6170 {
6171 ULONGEST ull;
6172 switch (attr.form)
6173 {
6174 case DW_FORM_implicit_const:
6175 ull = attr.implicit_const;
6176 break;
6177 case DW_FORM_flag_present:
6178 ull = 1;
6179 break;
6180 case DW_FORM_udata:
6181 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6182 m_addr += bytes_read;
6183 break;
6184 default:
6185 complaint (&symfile_complaints,
6186 _("Unsupported .debug_names form %s [in module %s]"),
6187 dwarf_form_name (attr.form),
6188 objfile_name (dwarf2_per_objfile->objfile));
6189 return NULL;
6190 }
6191 switch (attr.dw_idx)
6192 {
6193 case DW_IDX_compile_unit:
6194 /* Don't crash on bad data. */
6195 if (ull >= (dwarf2_per_objfile->n_comp_units
6196 + dwarf2_per_objfile->n_type_units))
6197 {
6198 complaint (&symfile_complaints,
6199 _(".debug_names entry has bad CU index %s"
6200 " [in module %s]"),
6201 pulongest (ull),
6202 objfile_name (dwarf2_per_objfile->objfile));
6203 continue;
6204 }
6205 per_cu = dw2_get_cutu (ull);
6206 break;
6207 case DW_IDX_GNU_internal:
6208 if (!m_map.augmentation_is_gdb)
6209 break;
6210 have_is_static = true;
6211 is_static = true;
6212 break;
6213 case DW_IDX_GNU_external:
6214 if (!m_map.augmentation_is_gdb)
6215 break;
6216 have_is_static = true;
6217 is_static = false;
6218 break;
6219 }
6220 }
6221
6222 /* Skip if already read in. */
6223 if (per_cu->v.quick->compunit_symtab)
6224 goto again;
6225
6226 /* Check static vs global. */
6227 if (have_is_static)
6228 {
6229 const bool want_static = m_block_index != GLOBAL_BLOCK;
6230 if (m_want_specific_block && want_static != is_static)
6231 goto again;
6232 }
6233
6234 /* Match dw2_symtab_iter_next, symbol_kind
6235 and debug_names::psymbol_tag. */
6236 switch (m_domain)
6237 {
6238 case VAR_DOMAIN:
6239 switch (indexval.dwarf_tag)
6240 {
6241 case DW_TAG_variable:
6242 case DW_TAG_subprogram:
6243 /* Some types are also in VAR_DOMAIN. */
6244 case DW_TAG_typedef:
6245 case DW_TAG_structure_type:
6246 break;
6247 default:
6248 goto again;
6249 }
6250 break;
6251 case STRUCT_DOMAIN:
6252 switch (indexval.dwarf_tag)
6253 {
6254 case DW_TAG_typedef:
6255 case DW_TAG_structure_type:
6256 break;
6257 default:
6258 goto again;
6259 }
6260 break;
6261 case LABEL_DOMAIN:
6262 switch (indexval.dwarf_tag)
6263 {
6264 case 0:
6265 case DW_TAG_variable:
6266 break;
6267 default:
6268 goto again;
6269 }
6270 break;
6271 default:
6272 break;
6273 }
6274
6275 /* Match dw2_expand_symtabs_matching, symbol_kind and
6276 debug_names::psymbol_tag. */
6277 switch (m_search)
6278 {
6279 case VARIABLES_DOMAIN:
6280 switch (indexval.dwarf_tag)
6281 {
6282 case DW_TAG_variable:
6283 break;
6284 default:
6285 goto again;
6286 }
6287 break;
6288 case FUNCTIONS_DOMAIN:
6289 switch (indexval.dwarf_tag)
6290 {
6291 case DW_TAG_subprogram:
6292 break;
6293 default:
6294 goto again;
6295 }
6296 break;
6297 case TYPES_DOMAIN:
6298 switch (indexval.dwarf_tag)
6299 {
6300 case DW_TAG_typedef:
6301 case DW_TAG_structure_type:
6302 break;
6303 default:
6304 goto again;
6305 }
6306 break;
6307 default:
6308 break;
6309 }
6310
6311 return per_cu;
6312 }
6313
6314 static struct compunit_symtab *
6315 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6316 const char *name, domain_enum domain)
6317 {
6318 const block_enum block_index = static_cast<block_enum> (block_index_int);
6319 dw2_setup (objfile);
6320
6321 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6322 if (!mapp)
6323 {
6324 /* index is NULL if OBJF_READNOW. */
6325 return NULL;
6326 }
6327 const auto &map = *mapp;
6328
6329 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6330 block_index, domain, name);
6331
6332 struct compunit_symtab *stab_best = NULL;
6333 struct dwarf2_per_cu_data *per_cu;
6334 while ((per_cu = iter.next ()) != NULL)
6335 {
6336 struct symbol *sym, *with_opaque = NULL;
6337 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6338 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6339 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6340
6341 sym = block_find_symbol (block, name, domain,
6342 block_find_non_opaque_type_preferred,
6343 &with_opaque);
6344
6345 /* Some caution must be observed with overloaded functions and
6346 methods, since the index will not contain any overload
6347 information (but NAME might contain it). */
6348
6349 if (sym != NULL
6350 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6351 return stab;
6352 if (with_opaque != NULL
6353 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6354 stab_best = stab;
6355
6356 /* Keep looking through other CUs. */
6357 }
6358
6359 return stab_best;
6360 }
6361
6362 /* This dumps minimal information about .debug_names. It is called
6363 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6364 uses this to verify that .debug_names has been loaded. */
6365
6366 static void
6367 dw2_debug_names_dump (struct objfile *objfile)
6368 {
6369 dw2_setup (objfile);
6370 gdb_assert (dwarf2_per_objfile->using_index);
6371 printf_filtered (".debug_names:");
6372 if (dwarf2_per_objfile->debug_names_table)
6373 printf_filtered (" exists\n");
6374 else
6375 printf_filtered (" faked for \"readnow\"\n");
6376 printf_filtered ("\n");
6377 }
6378
6379 static void
6380 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6381 const char *func_name)
6382 {
6383 dw2_setup (objfile);
6384
6385 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6386 if (dwarf2_per_objfile->debug_names_table)
6387 {
6388 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6389
6390 /* Note: It doesn't matter what we pass for block_index here. */
6391 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6392 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6393
6394 struct dwarf2_per_cu_data *per_cu;
6395 while ((per_cu = iter.next ()) != NULL)
6396 dw2_instantiate_symtab (per_cu);
6397 }
6398 }
6399
6400 static void
6401 dw2_debug_names_expand_symtabs_matching
6402 (struct objfile *objfile,
6403 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6404 const lookup_name_info &lookup_name,
6405 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6406 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6407 enum search_domain kind)
6408 {
6409 dw2_setup (objfile);
6410
6411 /* debug_names_table is NULL if OBJF_READNOW. */
6412 if (!dwarf2_per_objfile->debug_names_table)
6413 return;
6414
6415 dw_expand_symtabs_matching_file_matcher (file_matcher);
6416
6417 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6418
6419 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6420 symbol_matcher,
6421 kind, [&] (offset_type namei)
6422 {
6423 /* The name was matched, now expand corresponding CUs that were
6424 marked. */
6425 dw2_debug_names_iterator iter (map, kind, namei);
6426
6427 struct dwarf2_per_cu_data *per_cu;
6428 while ((per_cu = iter.next ()) != NULL)
6429 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6430 expansion_notify);
6431 });
6432 }
6433
6434 const struct quick_symbol_functions dwarf2_debug_names_functions =
6435 {
6436 dw2_has_symbols,
6437 dw2_find_last_source_symtab,
6438 dw2_forget_cached_source_info,
6439 dw2_map_symtabs_matching_filename,
6440 dw2_debug_names_lookup_symbol,
6441 dw2_print_stats,
6442 dw2_debug_names_dump,
6443 dw2_relocate,
6444 dw2_debug_names_expand_symtabs_for_function,
6445 dw2_expand_all_symtabs,
6446 dw2_expand_symtabs_with_fullname,
6447 dw2_map_matching_symbols,
6448 dw2_debug_names_expand_symtabs_matching,
6449 dw2_find_pc_sect_compunit_symtab,
6450 NULL,
6451 dw2_map_symbol_filenames
6452 };
6453
6454 /* See symfile.h. */
6455
6456 bool
6457 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6458 {
6459 /* If we're about to read full symbols, don't bother with the
6460 indices. In this case we also don't care if some other debug
6461 format is making psymtabs, because they are all about to be
6462 expanded anyway. */
6463 if ((objfile->flags & OBJF_READNOW))
6464 {
6465 int i;
6466
6467 dwarf2_per_objfile->using_index = 1;
6468 create_all_comp_units (objfile);
6469 create_all_type_units (objfile);
6470 dwarf2_per_objfile->quick_file_names_table =
6471 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6472
6473 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6474 + dwarf2_per_objfile->n_type_units); ++i)
6475 {
6476 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6477
6478 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6479 struct dwarf2_per_cu_quick_data);
6480 }
6481
6482 /* Return 1 so that gdb sees the "quick" functions. However,
6483 these functions will be no-ops because we will have expanded
6484 all symtabs. */
6485 *index_kind = dw_index_kind::GDB_INDEX;
6486 return true;
6487 }
6488
6489 if (dwarf2_read_debug_names (objfile))
6490 {
6491 *index_kind = dw_index_kind::DEBUG_NAMES;
6492 return true;
6493 }
6494
6495 if (dwarf2_read_index (objfile))
6496 {
6497 *index_kind = dw_index_kind::GDB_INDEX;
6498 return true;
6499 }
6500
6501 return false;
6502 }
6503
6504 \f
6505
6506 /* Build a partial symbol table. */
6507
6508 void
6509 dwarf2_build_psymtabs (struct objfile *objfile)
6510 {
6511
6512 if (objfile->global_psymbols.capacity () == 0
6513 && objfile->static_psymbols.capacity () == 0)
6514 init_psymbol_list (objfile, 1024);
6515
6516 TRY
6517 {
6518 /* This isn't really ideal: all the data we allocate on the
6519 objfile's obstack is still uselessly kept around. However,
6520 freeing it seems unsafe. */
6521 psymtab_discarder psymtabs (objfile);
6522 dwarf2_build_psymtabs_hard (objfile);
6523 psymtabs.keep ();
6524 }
6525 CATCH (except, RETURN_MASK_ERROR)
6526 {
6527 exception_print (gdb_stderr, except);
6528 }
6529 END_CATCH
6530 }
6531
6532 /* Return the total length of the CU described by HEADER. */
6533
6534 static unsigned int
6535 get_cu_length (const struct comp_unit_head *header)
6536 {
6537 return header->initial_length_size + header->length;
6538 }
6539
6540 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6541
6542 static inline bool
6543 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6544 {
6545 sect_offset bottom = cu_header->sect_off;
6546 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6547
6548 return sect_off >= bottom && sect_off < top;
6549 }
6550
6551 /* Find the base address of the compilation unit for range lists and
6552 location lists. It will normally be specified by DW_AT_low_pc.
6553 In DWARF-3 draft 4, the base address could be overridden by
6554 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6555 compilation units with discontinuous ranges. */
6556
6557 static void
6558 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6559 {
6560 struct attribute *attr;
6561
6562 cu->base_known = 0;
6563 cu->base_address = 0;
6564
6565 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6566 if (attr)
6567 {
6568 cu->base_address = attr_value_as_address (attr);
6569 cu->base_known = 1;
6570 }
6571 else
6572 {
6573 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6574 if (attr)
6575 {
6576 cu->base_address = attr_value_as_address (attr);
6577 cu->base_known = 1;
6578 }
6579 }
6580 }
6581
6582 /* Read in the comp unit header information from the debug_info at info_ptr.
6583 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6584 NOTE: This leaves members offset, first_die_offset to be filled in
6585 by the caller. */
6586
6587 static const gdb_byte *
6588 read_comp_unit_head (struct comp_unit_head *cu_header,
6589 const gdb_byte *info_ptr,
6590 struct dwarf2_section_info *section,
6591 rcuh_kind section_kind)
6592 {
6593 int signed_addr;
6594 unsigned int bytes_read;
6595 const char *filename = get_section_file_name (section);
6596 bfd *abfd = get_section_bfd_owner (section);
6597
6598 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6599 cu_header->initial_length_size = bytes_read;
6600 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6601 info_ptr += bytes_read;
6602 cu_header->version = read_2_bytes (abfd, info_ptr);
6603 info_ptr += 2;
6604 if (cu_header->version < 5)
6605 switch (section_kind)
6606 {
6607 case rcuh_kind::COMPILE:
6608 cu_header->unit_type = DW_UT_compile;
6609 break;
6610 case rcuh_kind::TYPE:
6611 cu_header->unit_type = DW_UT_type;
6612 break;
6613 default:
6614 internal_error (__FILE__, __LINE__,
6615 _("read_comp_unit_head: invalid section_kind"));
6616 }
6617 else
6618 {
6619 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6620 (read_1_byte (abfd, info_ptr));
6621 info_ptr += 1;
6622 switch (cu_header->unit_type)
6623 {
6624 case DW_UT_compile:
6625 if (section_kind != rcuh_kind::COMPILE)
6626 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6627 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6628 filename);
6629 break;
6630 case DW_UT_type:
6631 section_kind = rcuh_kind::TYPE;
6632 break;
6633 default:
6634 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6635 "(is %d, should be %d or %d) [in module %s]"),
6636 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6637 }
6638
6639 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6640 info_ptr += 1;
6641 }
6642 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6643 cu_header,
6644 &bytes_read);
6645 info_ptr += bytes_read;
6646 if (cu_header->version < 5)
6647 {
6648 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6649 info_ptr += 1;
6650 }
6651 signed_addr = bfd_get_sign_extend_vma (abfd);
6652 if (signed_addr < 0)
6653 internal_error (__FILE__, __LINE__,
6654 _("read_comp_unit_head: dwarf from non elf file"));
6655 cu_header->signed_addr_p = signed_addr;
6656
6657 if (section_kind == rcuh_kind::TYPE)
6658 {
6659 LONGEST type_offset;
6660
6661 cu_header->signature = read_8_bytes (abfd, info_ptr);
6662 info_ptr += 8;
6663
6664 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6665 info_ptr += bytes_read;
6666 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6667 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6668 error (_("Dwarf Error: Too big type_offset in compilation unit "
6669 "header (is %s) [in module %s]"), plongest (type_offset),
6670 filename);
6671 }
6672
6673 return info_ptr;
6674 }
6675
6676 /* Helper function that returns the proper abbrev section for
6677 THIS_CU. */
6678
6679 static struct dwarf2_section_info *
6680 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6681 {
6682 struct dwarf2_section_info *abbrev;
6683
6684 if (this_cu->is_dwz)
6685 abbrev = &dwarf2_get_dwz_file ()->abbrev;
6686 else
6687 abbrev = &dwarf2_per_objfile->abbrev;
6688
6689 return abbrev;
6690 }
6691
6692 /* Subroutine of read_and_check_comp_unit_head and
6693 read_and_check_type_unit_head to simplify them.
6694 Perform various error checking on the header. */
6695
6696 static void
6697 error_check_comp_unit_head (struct comp_unit_head *header,
6698 struct dwarf2_section_info *section,
6699 struct dwarf2_section_info *abbrev_section)
6700 {
6701 const char *filename = get_section_file_name (section);
6702
6703 if (header->version < 2 || header->version > 5)
6704 error (_("Dwarf Error: wrong version in compilation unit header "
6705 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6706 filename);
6707
6708 if (to_underlying (header->abbrev_sect_off)
6709 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6710 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
6711 "(offset 0x%x + 6) [in module %s]"),
6712 to_underlying (header->abbrev_sect_off),
6713 to_underlying (header->sect_off),
6714 filename);
6715
6716 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6717 avoid potential 32-bit overflow. */
6718 if (((ULONGEST) header->sect_off + get_cu_length (header))
6719 > section->size)
6720 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6721 "(offset 0x%x + 0) [in module %s]"),
6722 header->length, to_underlying (header->sect_off),
6723 filename);
6724 }
6725
6726 /* Read in a CU/TU header and perform some basic error checking.
6727 The contents of the header are stored in HEADER.
6728 The result is a pointer to the start of the first DIE. */
6729
6730 static const gdb_byte *
6731 read_and_check_comp_unit_head (struct comp_unit_head *header,
6732 struct dwarf2_section_info *section,
6733 struct dwarf2_section_info *abbrev_section,
6734 const gdb_byte *info_ptr,
6735 rcuh_kind section_kind)
6736 {
6737 const gdb_byte *beg_of_comp_unit = info_ptr;
6738
6739 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6740
6741 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6742
6743 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6744
6745 error_check_comp_unit_head (header, section, abbrev_section);
6746
6747 return info_ptr;
6748 }
6749
6750 /* Fetch the abbreviation table offset from a comp or type unit header. */
6751
6752 static sect_offset
6753 read_abbrev_offset (struct dwarf2_section_info *section,
6754 sect_offset sect_off)
6755 {
6756 bfd *abfd = get_section_bfd_owner (section);
6757 const gdb_byte *info_ptr;
6758 unsigned int initial_length_size, offset_size;
6759 uint16_t version;
6760
6761 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6762 info_ptr = section->buffer + to_underlying (sect_off);
6763 read_initial_length (abfd, info_ptr, &initial_length_size);
6764 offset_size = initial_length_size == 4 ? 4 : 8;
6765 info_ptr += initial_length_size;
6766
6767 version = read_2_bytes (abfd, info_ptr);
6768 info_ptr += 2;
6769 if (version >= 5)
6770 {
6771 /* Skip unit type and address size. */
6772 info_ptr += 2;
6773 }
6774
6775 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6776 }
6777
6778 /* Allocate a new partial symtab for file named NAME and mark this new
6779 partial symtab as being an include of PST. */
6780
6781 static void
6782 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6783 struct objfile *objfile)
6784 {
6785 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6786
6787 if (!IS_ABSOLUTE_PATH (subpst->filename))
6788 {
6789 /* It shares objfile->objfile_obstack. */
6790 subpst->dirname = pst->dirname;
6791 }
6792
6793 subpst->textlow = 0;
6794 subpst->texthigh = 0;
6795
6796 subpst->dependencies
6797 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6798 subpst->dependencies[0] = pst;
6799 subpst->number_of_dependencies = 1;
6800
6801 subpst->globals_offset = 0;
6802 subpst->n_global_syms = 0;
6803 subpst->statics_offset = 0;
6804 subpst->n_static_syms = 0;
6805 subpst->compunit_symtab = NULL;
6806 subpst->read_symtab = pst->read_symtab;
6807 subpst->readin = 0;
6808
6809 /* No private part is necessary for include psymtabs. This property
6810 can be used to differentiate between such include psymtabs and
6811 the regular ones. */
6812 subpst->read_symtab_private = NULL;
6813 }
6814
6815 /* Read the Line Number Program data and extract the list of files
6816 included by the source file represented by PST. Build an include
6817 partial symtab for each of these included files. */
6818
6819 static void
6820 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6821 struct die_info *die,
6822 struct partial_symtab *pst)
6823 {
6824 line_header_up lh;
6825 struct attribute *attr;
6826
6827 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6828 if (attr)
6829 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6830 if (lh == NULL)
6831 return; /* No linetable, so no includes. */
6832
6833 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6834 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6835 }
6836
6837 static hashval_t
6838 hash_signatured_type (const void *item)
6839 {
6840 const struct signatured_type *sig_type
6841 = (const struct signatured_type *) item;
6842
6843 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6844 return sig_type->signature;
6845 }
6846
6847 static int
6848 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6849 {
6850 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6851 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6852
6853 return lhs->signature == rhs->signature;
6854 }
6855
6856 /* Allocate a hash table for signatured types. */
6857
6858 static htab_t
6859 allocate_signatured_type_table (struct objfile *objfile)
6860 {
6861 return htab_create_alloc_ex (41,
6862 hash_signatured_type,
6863 eq_signatured_type,
6864 NULL,
6865 &objfile->objfile_obstack,
6866 hashtab_obstack_allocate,
6867 dummy_obstack_deallocate);
6868 }
6869
6870 /* A helper function to add a signatured type CU to a table. */
6871
6872 static int
6873 add_signatured_type_cu_to_table (void **slot, void *datum)
6874 {
6875 struct signatured_type *sigt = (struct signatured_type *) *slot;
6876 struct signatured_type ***datap = (struct signatured_type ***) datum;
6877
6878 **datap = sigt;
6879 ++*datap;
6880
6881 return 1;
6882 }
6883
6884 /* A helper for create_debug_types_hash_table. Read types from SECTION
6885 and fill them into TYPES_HTAB. It will process only type units,
6886 therefore DW_UT_type. */
6887
6888 static void
6889 create_debug_type_hash_table (struct dwo_file *dwo_file,
6890 dwarf2_section_info *section, htab_t &types_htab,
6891 rcuh_kind section_kind)
6892 {
6893 struct objfile *objfile = dwarf2_per_objfile->objfile;
6894 struct dwarf2_section_info *abbrev_section;
6895 bfd *abfd;
6896 const gdb_byte *info_ptr, *end_ptr;
6897
6898 abbrev_section = (dwo_file != NULL
6899 ? &dwo_file->sections.abbrev
6900 : &dwarf2_per_objfile->abbrev);
6901
6902 if (dwarf_read_debug)
6903 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6904 get_section_name (section),
6905 get_section_file_name (abbrev_section));
6906
6907 dwarf2_read_section (objfile, section);
6908 info_ptr = section->buffer;
6909
6910 if (info_ptr == NULL)
6911 return;
6912
6913 /* We can't set abfd until now because the section may be empty or
6914 not present, in which case the bfd is unknown. */
6915 abfd = get_section_bfd_owner (section);
6916
6917 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6918 because we don't need to read any dies: the signature is in the
6919 header. */
6920
6921 end_ptr = info_ptr + section->size;
6922 while (info_ptr < end_ptr)
6923 {
6924 struct signatured_type *sig_type;
6925 struct dwo_unit *dwo_tu;
6926 void **slot;
6927 const gdb_byte *ptr = info_ptr;
6928 struct comp_unit_head header;
6929 unsigned int length;
6930
6931 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6932
6933 /* Initialize it due to a false compiler warning. */
6934 header.signature = -1;
6935 header.type_cu_offset_in_tu = (cu_offset) -1;
6936
6937 /* We need to read the type's signature in order to build the hash
6938 table, but we don't need anything else just yet. */
6939
6940 ptr = read_and_check_comp_unit_head (&header, section,
6941 abbrev_section, ptr, section_kind);
6942
6943 length = get_cu_length (&header);
6944
6945 /* Skip dummy type units. */
6946 if (ptr >= info_ptr + length
6947 || peek_abbrev_code (abfd, ptr) == 0
6948 || header.unit_type != DW_UT_type)
6949 {
6950 info_ptr += length;
6951 continue;
6952 }
6953
6954 if (types_htab == NULL)
6955 {
6956 if (dwo_file)
6957 types_htab = allocate_dwo_unit_table (objfile);
6958 else
6959 types_htab = allocate_signatured_type_table (objfile);
6960 }
6961
6962 if (dwo_file)
6963 {
6964 sig_type = NULL;
6965 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6966 struct dwo_unit);
6967 dwo_tu->dwo_file = dwo_file;
6968 dwo_tu->signature = header.signature;
6969 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6970 dwo_tu->section = section;
6971 dwo_tu->sect_off = sect_off;
6972 dwo_tu->length = length;
6973 }
6974 else
6975 {
6976 /* N.B.: type_offset is not usable if this type uses a DWO file.
6977 The real type_offset is in the DWO file. */
6978 dwo_tu = NULL;
6979 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6980 struct signatured_type);
6981 sig_type->signature = header.signature;
6982 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6983 sig_type->per_cu.objfile = objfile;
6984 sig_type->per_cu.is_debug_types = 1;
6985 sig_type->per_cu.section = section;
6986 sig_type->per_cu.sect_off = sect_off;
6987 sig_type->per_cu.length = length;
6988 }
6989
6990 slot = htab_find_slot (types_htab,
6991 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6992 INSERT);
6993 gdb_assert (slot != NULL);
6994 if (*slot != NULL)
6995 {
6996 sect_offset dup_sect_off;
6997
6998 if (dwo_file)
6999 {
7000 const struct dwo_unit *dup_tu
7001 = (const struct dwo_unit *) *slot;
7002
7003 dup_sect_off = dup_tu->sect_off;
7004 }
7005 else
7006 {
7007 const struct signatured_type *dup_tu
7008 = (const struct signatured_type *) *slot;
7009
7010 dup_sect_off = dup_tu->per_cu.sect_off;
7011 }
7012
7013 complaint (&symfile_complaints,
7014 _("debug type entry at offset 0x%x is duplicate to"
7015 " the entry at offset 0x%x, signature %s"),
7016 to_underlying (sect_off), to_underlying (dup_sect_off),
7017 hex_string (header.signature));
7018 }
7019 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7020
7021 if (dwarf_read_debug > 1)
7022 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
7023 to_underlying (sect_off),
7024 hex_string (header.signature));
7025
7026 info_ptr += length;
7027 }
7028 }
7029
7030 /* Create the hash table of all entries in the .debug_types
7031 (or .debug_types.dwo) section(s).
7032 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7033 otherwise it is NULL.
7034
7035 The result is a pointer to the hash table or NULL if there are no types.
7036
7037 Note: This function processes DWO files only, not DWP files. */
7038
7039 static void
7040 create_debug_types_hash_table (struct dwo_file *dwo_file,
7041 VEC (dwarf2_section_info_def) *types,
7042 htab_t &types_htab)
7043 {
7044 int ix;
7045 struct dwarf2_section_info *section;
7046
7047 if (VEC_empty (dwarf2_section_info_def, types))
7048 return;
7049
7050 for (ix = 0;
7051 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7052 ++ix)
7053 create_debug_type_hash_table (dwo_file, section, types_htab,
7054 rcuh_kind::TYPE);
7055 }
7056
7057 /* Create the hash table of all entries in the .debug_types section,
7058 and initialize all_type_units.
7059 The result is zero if there is an error (e.g. missing .debug_types section),
7060 otherwise non-zero. */
7061
7062 static int
7063 create_all_type_units (struct objfile *objfile)
7064 {
7065 htab_t types_htab = NULL;
7066 struct signatured_type **iter;
7067
7068 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
7069 rcuh_kind::COMPILE);
7070 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
7071 if (types_htab == NULL)
7072 {
7073 dwarf2_per_objfile->signatured_types = NULL;
7074 return 0;
7075 }
7076
7077 dwarf2_per_objfile->signatured_types = types_htab;
7078
7079 dwarf2_per_objfile->n_type_units
7080 = dwarf2_per_objfile->n_allocated_type_units
7081 = htab_elements (types_htab);
7082 dwarf2_per_objfile->all_type_units =
7083 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7084 iter = &dwarf2_per_objfile->all_type_units[0];
7085 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7086 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7087 == dwarf2_per_objfile->n_type_units);
7088
7089 return 1;
7090 }
7091
7092 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7093 If SLOT is non-NULL, it is the entry to use in the hash table.
7094 Otherwise we find one. */
7095
7096 static struct signatured_type *
7097 add_type_unit (ULONGEST sig, void **slot)
7098 {
7099 struct objfile *objfile = dwarf2_per_objfile->objfile;
7100 int n_type_units = dwarf2_per_objfile->n_type_units;
7101 struct signatured_type *sig_type;
7102
7103 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7104 ++n_type_units;
7105 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7106 {
7107 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7108 dwarf2_per_objfile->n_allocated_type_units = 1;
7109 dwarf2_per_objfile->n_allocated_type_units *= 2;
7110 dwarf2_per_objfile->all_type_units
7111 = XRESIZEVEC (struct signatured_type *,
7112 dwarf2_per_objfile->all_type_units,
7113 dwarf2_per_objfile->n_allocated_type_units);
7114 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7115 }
7116 dwarf2_per_objfile->n_type_units = n_type_units;
7117
7118 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7119 struct signatured_type);
7120 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7121 sig_type->signature = sig;
7122 sig_type->per_cu.is_debug_types = 1;
7123 if (dwarf2_per_objfile->using_index)
7124 {
7125 sig_type->per_cu.v.quick =
7126 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7127 struct dwarf2_per_cu_quick_data);
7128 }
7129
7130 if (slot == NULL)
7131 {
7132 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7133 sig_type, INSERT);
7134 }
7135 gdb_assert (*slot == NULL);
7136 *slot = sig_type;
7137 /* The rest of sig_type must be filled in by the caller. */
7138 return sig_type;
7139 }
7140
7141 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7142 Fill in SIG_ENTRY with DWO_ENTRY. */
7143
7144 static void
7145 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
7146 struct signatured_type *sig_entry,
7147 struct dwo_unit *dwo_entry)
7148 {
7149 /* Make sure we're not clobbering something we don't expect to. */
7150 gdb_assert (! sig_entry->per_cu.queued);
7151 gdb_assert (sig_entry->per_cu.cu == NULL);
7152 if (dwarf2_per_objfile->using_index)
7153 {
7154 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7155 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7156 }
7157 else
7158 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7159 gdb_assert (sig_entry->signature == dwo_entry->signature);
7160 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7161 gdb_assert (sig_entry->type_unit_group == NULL);
7162 gdb_assert (sig_entry->dwo_unit == NULL);
7163
7164 sig_entry->per_cu.section = dwo_entry->section;
7165 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7166 sig_entry->per_cu.length = dwo_entry->length;
7167 sig_entry->per_cu.reading_dwo_directly = 1;
7168 sig_entry->per_cu.objfile = objfile;
7169 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7170 sig_entry->dwo_unit = dwo_entry;
7171 }
7172
7173 /* Subroutine of lookup_signatured_type.
7174 If we haven't read the TU yet, create the signatured_type data structure
7175 for a TU to be read in directly from a DWO file, bypassing the stub.
7176 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7177 using .gdb_index, then when reading a CU we want to stay in the DWO file
7178 containing that CU. Otherwise we could end up reading several other DWO
7179 files (due to comdat folding) to process the transitive closure of all the
7180 mentioned TUs, and that can be slow. The current DWO file will have every
7181 type signature that it needs.
7182 We only do this for .gdb_index because in the psymtab case we already have
7183 to read all the DWOs to build the type unit groups. */
7184
7185 static struct signatured_type *
7186 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7187 {
7188 struct objfile *objfile = dwarf2_per_objfile->objfile;
7189 struct dwo_file *dwo_file;
7190 struct dwo_unit find_dwo_entry, *dwo_entry;
7191 struct signatured_type find_sig_entry, *sig_entry;
7192 void **slot;
7193
7194 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7195
7196 /* If TU skeletons have been removed then we may not have read in any
7197 TUs yet. */
7198 if (dwarf2_per_objfile->signatured_types == NULL)
7199 {
7200 dwarf2_per_objfile->signatured_types
7201 = allocate_signatured_type_table (objfile);
7202 }
7203
7204 /* We only ever need to read in one copy of a signatured type.
7205 Use the global signatured_types array to do our own comdat-folding
7206 of types. If this is the first time we're reading this TU, and
7207 the TU has an entry in .gdb_index, replace the recorded data from
7208 .gdb_index with this TU. */
7209
7210 find_sig_entry.signature = sig;
7211 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7212 &find_sig_entry, INSERT);
7213 sig_entry = (struct signatured_type *) *slot;
7214
7215 /* We can get here with the TU already read, *or* in the process of being
7216 read. Don't reassign the global entry to point to this DWO if that's
7217 the case. Also note that if the TU is already being read, it may not
7218 have come from a DWO, the program may be a mix of Fission-compiled
7219 code and non-Fission-compiled code. */
7220
7221 /* Have we already tried to read this TU?
7222 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7223 needn't exist in the global table yet). */
7224 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7225 return sig_entry;
7226
7227 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7228 dwo_unit of the TU itself. */
7229 dwo_file = cu->dwo_unit->dwo_file;
7230
7231 /* Ok, this is the first time we're reading this TU. */
7232 if (dwo_file->tus == NULL)
7233 return NULL;
7234 find_dwo_entry.signature = sig;
7235 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7236 if (dwo_entry == NULL)
7237 return NULL;
7238
7239 /* If the global table doesn't have an entry for this TU, add one. */
7240 if (sig_entry == NULL)
7241 sig_entry = add_type_unit (sig, slot);
7242
7243 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
7244 sig_entry->per_cu.tu_read = 1;
7245 return sig_entry;
7246 }
7247
7248 /* Subroutine of lookup_signatured_type.
7249 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7250 then try the DWP file. If the TU stub (skeleton) has been removed then
7251 it won't be in .gdb_index. */
7252
7253 static struct signatured_type *
7254 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7255 {
7256 struct objfile *objfile = dwarf2_per_objfile->objfile;
7257 struct dwp_file *dwp_file = get_dwp_file ();
7258 struct dwo_unit *dwo_entry;
7259 struct signatured_type find_sig_entry, *sig_entry;
7260 void **slot;
7261
7262 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7263 gdb_assert (dwp_file != NULL);
7264
7265 /* If TU skeletons have been removed then we may not have read in any
7266 TUs yet. */
7267 if (dwarf2_per_objfile->signatured_types == NULL)
7268 {
7269 dwarf2_per_objfile->signatured_types
7270 = allocate_signatured_type_table (objfile);
7271 }
7272
7273 find_sig_entry.signature = sig;
7274 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7275 &find_sig_entry, INSERT);
7276 sig_entry = (struct signatured_type *) *slot;
7277
7278 /* Have we already tried to read this TU?
7279 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7280 needn't exist in the global table yet). */
7281 if (sig_entry != NULL)
7282 return sig_entry;
7283
7284 if (dwp_file->tus == NULL)
7285 return NULL;
7286 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
7287 sig, 1 /* is_debug_types */);
7288 if (dwo_entry == NULL)
7289 return NULL;
7290
7291 sig_entry = add_type_unit (sig, slot);
7292 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
7293
7294 return sig_entry;
7295 }
7296
7297 /* Lookup a signature based type for DW_FORM_ref_sig8.
7298 Returns NULL if signature SIG is not present in the table.
7299 It is up to the caller to complain about this. */
7300
7301 static struct signatured_type *
7302 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7303 {
7304 if (cu->dwo_unit
7305 && dwarf2_per_objfile->using_index)
7306 {
7307 /* We're in a DWO/DWP file, and we're using .gdb_index.
7308 These cases require special processing. */
7309 if (get_dwp_file () == NULL)
7310 return lookup_dwo_signatured_type (cu, sig);
7311 else
7312 return lookup_dwp_signatured_type (cu, sig);
7313 }
7314 else
7315 {
7316 struct signatured_type find_entry, *entry;
7317
7318 if (dwarf2_per_objfile->signatured_types == NULL)
7319 return NULL;
7320 find_entry.signature = sig;
7321 entry = ((struct signatured_type *)
7322 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7323 return entry;
7324 }
7325 }
7326 \f
7327 /* Low level DIE reading support. */
7328
7329 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7330
7331 static void
7332 init_cu_die_reader (struct die_reader_specs *reader,
7333 struct dwarf2_cu *cu,
7334 struct dwarf2_section_info *section,
7335 struct dwo_file *dwo_file)
7336 {
7337 gdb_assert (section->readin && section->buffer != NULL);
7338 reader->abfd = get_section_bfd_owner (section);
7339 reader->cu = cu;
7340 reader->dwo_file = dwo_file;
7341 reader->die_section = section;
7342 reader->buffer = section->buffer;
7343 reader->buffer_end = section->buffer + section->size;
7344 reader->comp_dir = NULL;
7345 }
7346
7347 /* Subroutine of init_cutu_and_read_dies to simplify it.
7348 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7349 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7350 already.
7351
7352 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7353 from it to the DIE in the DWO. If NULL we are skipping the stub.
7354 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7355 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7356 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7357 STUB_COMP_DIR may be non-NULL.
7358 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7359 are filled in with the info of the DIE from the DWO file.
7360 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
7361 provided an abbrev table to use.
7362 The result is non-zero if a valid (non-dummy) DIE was found. */
7363
7364 static int
7365 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7366 struct dwo_unit *dwo_unit,
7367 int abbrev_table_provided,
7368 struct die_info *stub_comp_unit_die,
7369 const char *stub_comp_dir,
7370 struct die_reader_specs *result_reader,
7371 const gdb_byte **result_info_ptr,
7372 struct die_info **result_comp_unit_die,
7373 int *result_has_children)
7374 {
7375 struct objfile *objfile = dwarf2_per_objfile->objfile;
7376 struct dwarf2_cu *cu = this_cu->cu;
7377 struct dwarf2_section_info *section;
7378 bfd *abfd;
7379 const gdb_byte *begin_info_ptr, *info_ptr;
7380 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7381 int i,num_extra_attrs;
7382 struct dwarf2_section_info *dwo_abbrev_section;
7383 struct attribute *attr;
7384 struct die_info *comp_unit_die;
7385
7386 /* At most one of these may be provided. */
7387 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7388
7389 /* These attributes aren't processed until later:
7390 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7391 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7392 referenced later. However, these attributes are found in the stub
7393 which we won't have later. In order to not impose this complication
7394 on the rest of the code, we read them here and copy them to the
7395 DWO CU/TU die. */
7396
7397 stmt_list = NULL;
7398 low_pc = NULL;
7399 high_pc = NULL;
7400 ranges = NULL;
7401 comp_dir = NULL;
7402
7403 if (stub_comp_unit_die != NULL)
7404 {
7405 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7406 DWO file. */
7407 if (! this_cu->is_debug_types)
7408 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7409 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7410 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7411 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7412 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7413
7414 /* There should be a DW_AT_addr_base attribute here (if needed).
7415 We need the value before we can process DW_FORM_GNU_addr_index. */
7416 cu->addr_base = 0;
7417 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7418 if (attr)
7419 cu->addr_base = DW_UNSND (attr);
7420
7421 /* There should be a DW_AT_ranges_base attribute here (if needed).
7422 We need the value before we can process DW_AT_ranges. */
7423 cu->ranges_base = 0;
7424 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7425 if (attr)
7426 cu->ranges_base = DW_UNSND (attr);
7427 }
7428 else if (stub_comp_dir != NULL)
7429 {
7430 /* Reconstruct the comp_dir attribute to simplify the code below. */
7431 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7432 comp_dir->name = DW_AT_comp_dir;
7433 comp_dir->form = DW_FORM_string;
7434 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7435 DW_STRING (comp_dir) = stub_comp_dir;
7436 }
7437
7438 /* Set up for reading the DWO CU/TU. */
7439 cu->dwo_unit = dwo_unit;
7440 section = dwo_unit->section;
7441 dwarf2_read_section (objfile, section);
7442 abfd = get_section_bfd_owner (section);
7443 begin_info_ptr = info_ptr = (section->buffer
7444 + to_underlying (dwo_unit->sect_off));
7445 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7446 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
7447
7448 if (this_cu->is_debug_types)
7449 {
7450 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7451
7452 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
7453 dwo_abbrev_section,
7454 info_ptr, rcuh_kind::TYPE);
7455 /* This is not an assert because it can be caused by bad debug info. */
7456 if (sig_type->signature != cu->header.signature)
7457 {
7458 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7459 " TU at offset 0x%x [in module %s]"),
7460 hex_string (sig_type->signature),
7461 hex_string (cu->header.signature),
7462 to_underlying (dwo_unit->sect_off),
7463 bfd_get_filename (abfd));
7464 }
7465 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7466 /* For DWOs coming from DWP files, we don't know the CU length
7467 nor the type's offset in the TU until now. */
7468 dwo_unit->length = get_cu_length (&cu->header);
7469 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7470
7471 /* Establish the type offset that can be used to lookup the type.
7472 For DWO files, we don't know it until now. */
7473 sig_type->type_offset_in_section
7474 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7475 }
7476 else
7477 {
7478 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
7479 dwo_abbrev_section,
7480 info_ptr, rcuh_kind::COMPILE);
7481 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7482 /* For DWOs coming from DWP files, we don't know the CU length
7483 until now. */
7484 dwo_unit->length = get_cu_length (&cu->header);
7485 }
7486
7487 /* Replace the CU's original abbrev table with the DWO's.
7488 Reminder: We can't read the abbrev table until we've read the header. */
7489 if (abbrev_table_provided)
7490 {
7491 /* Don't free the provided abbrev table, the caller of
7492 init_cutu_and_read_dies owns it. */
7493 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
7494 /* Ensure the DWO abbrev table gets freed. */
7495 make_cleanup (dwarf2_free_abbrev_table, cu);
7496 }
7497 else
7498 {
7499 dwarf2_free_abbrev_table (cu);
7500 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
7501 /* Leave any existing abbrev table cleanup as is. */
7502 }
7503
7504 /* Read in the die, but leave space to copy over the attributes
7505 from the stub. This has the benefit of simplifying the rest of
7506 the code - all the work to maintain the illusion of a single
7507 DW_TAG_{compile,type}_unit DIE is done here. */
7508 num_extra_attrs = ((stmt_list != NULL)
7509 + (low_pc != NULL)
7510 + (high_pc != NULL)
7511 + (ranges != NULL)
7512 + (comp_dir != NULL));
7513 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7514 result_has_children, num_extra_attrs);
7515
7516 /* Copy over the attributes from the stub to the DIE we just read in. */
7517 comp_unit_die = *result_comp_unit_die;
7518 i = comp_unit_die->num_attrs;
7519 if (stmt_list != NULL)
7520 comp_unit_die->attrs[i++] = *stmt_list;
7521 if (low_pc != NULL)
7522 comp_unit_die->attrs[i++] = *low_pc;
7523 if (high_pc != NULL)
7524 comp_unit_die->attrs[i++] = *high_pc;
7525 if (ranges != NULL)
7526 comp_unit_die->attrs[i++] = *ranges;
7527 if (comp_dir != NULL)
7528 comp_unit_die->attrs[i++] = *comp_dir;
7529 comp_unit_die->num_attrs += num_extra_attrs;
7530
7531 if (dwarf_die_debug)
7532 {
7533 fprintf_unfiltered (gdb_stdlog,
7534 "Read die from %s@0x%x of %s:\n",
7535 get_section_name (section),
7536 (unsigned) (begin_info_ptr - section->buffer),
7537 bfd_get_filename (abfd));
7538 dump_die (comp_unit_die, dwarf_die_debug);
7539 }
7540
7541 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7542 TUs by skipping the stub and going directly to the entry in the DWO file.
7543 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7544 to get it via circuitous means. Blech. */
7545 if (comp_dir != NULL)
7546 result_reader->comp_dir = DW_STRING (comp_dir);
7547
7548 /* Skip dummy compilation units. */
7549 if (info_ptr >= begin_info_ptr + dwo_unit->length
7550 || peek_abbrev_code (abfd, info_ptr) == 0)
7551 return 0;
7552
7553 *result_info_ptr = info_ptr;
7554 return 1;
7555 }
7556
7557 /* Subroutine of init_cutu_and_read_dies to simplify it.
7558 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7559 Returns NULL if the specified DWO unit cannot be found. */
7560
7561 static struct dwo_unit *
7562 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7563 struct die_info *comp_unit_die)
7564 {
7565 struct dwarf2_cu *cu = this_cu->cu;
7566 ULONGEST signature;
7567 struct dwo_unit *dwo_unit;
7568 const char *comp_dir, *dwo_name;
7569
7570 gdb_assert (cu != NULL);
7571
7572 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7573 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7574 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7575
7576 if (this_cu->is_debug_types)
7577 {
7578 struct signatured_type *sig_type;
7579
7580 /* Since this_cu is the first member of struct signatured_type,
7581 we can go from a pointer to one to a pointer to the other. */
7582 sig_type = (struct signatured_type *) this_cu;
7583 signature = sig_type->signature;
7584 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7585 }
7586 else
7587 {
7588 struct attribute *attr;
7589
7590 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7591 if (! attr)
7592 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7593 " [in module %s]"),
7594 dwo_name, objfile_name (this_cu->objfile));
7595 signature = DW_UNSND (attr);
7596 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7597 signature);
7598 }
7599
7600 return dwo_unit;
7601 }
7602
7603 /* Subroutine of init_cutu_and_read_dies to simplify it.
7604 See it for a description of the parameters.
7605 Read a TU directly from a DWO file, bypassing the stub.
7606
7607 Note: This function could be a little bit simpler if we shared cleanups
7608 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
7609 to do, so we keep this function self-contained. Or we could move this
7610 into our caller, but it's complex enough already. */
7611
7612 static void
7613 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7614 int use_existing_cu, int keep,
7615 die_reader_func_ftype *die_reader_func,
7616 void *data)
7617 {
7618 struct dwarf2_cu *cu;
7619 struct signatured_type *sig_type;
7620 struct cleanup *cleanups, *free_cu_cleanup = NULL;
7621 struct die_reader_specs reader;
7622 const gdb_byte *info_ptr;
7623 struct die_info *comp_unit_die;
7624 int has_children;
7625
7626 /* Verify we can do the following downcast, and that we have the
7627 data we need. */
7628 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7629 sig_type = (struct signatured_type *) this_cu;
7630 gdb_assert (sig_type->dwo_unit != NULL);
7631
7632 cleanups = make_cleanup (null_cleanup, NULL);
7633
7634 if (use_existing_cu && this_cu->cu != NULL)
7635 {
7636 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7637 cu = this_cu->cu;
7638 /* There's no need to do the rereading_dwo_cu handling that
7639 init_cutu_and_read_dies does since we don't read the stub. */
7640 }
7641 else
7642 {
7643 /* If !use_existing_cu, this_cu->cu must be NULL. */
7644 gdb_assert (this_cu->cu == NULL);
7645 cu = XNEW (struct dwarf2_cu);
7646 init_one_comp_unit (cu, this_cu);
7647 /* If an error occurs while loading, release our storage. */
7648 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
7649 }
7650
7651 /* A future optimization, if needed, would be to use an existing
7652 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7653 could share abbrev tables. */
7654
7655 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7656 0 /* abbrev_table_provided */,
7657 NULL /* stub_comp_unit_die */,
7658 sig_type->dwo_unit->dwo_file->comp_dir,
7659 &reader, &info_ptr,
7660 &comp_unit_die, &has_children) == 0)
7661 {
7662 /* Dummy die. */
7663 do_cleanups (cleanups);
7664 return;
7665 }
7666
7667 /* All the "real" work is done here. */
7668 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7669
7670 /* This duplicates the code in init_cutu_and_read_dies,
7671 but the alternative is making the latter more complex.
7672 This function is only for the special case of using DWO files directly:
7673 no point in overly complicating the general case just to handle this. */
7674 if (free_cu_cleanup != NULL)
7675 {
7676 if (keep)
7677 {
7678 /* We've successfully allocated this compilation unit. Let our
7679 caller clean it up when finished with it. */
7680 discard_cleanups (free_cu_cleanup);
7681
7682 /* We can only discard free_cu_cleanup and all subsequent cleanups.
7683 So we have to manually free the abbrev table. */
7684 dwarf2_free_abbrev_table (cu);
7685
7686 /* Link this CU into read_in_chain. */
7687 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7688 dwarf2_per_objfile->read_in_chain = this_cu;
7689 }
7690 else
7691 do_cleanups (free_cu_cleanup);
7692 }
7693
7694 do_cleanups (cleanups);
7695 }
7696
7697 /* Initialize a CU (or TU) and read its DIEs.
7698 If the CU defers to a DWO file, read the DWO file as well.
7699
7700 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7701 Otherwise the table specified in the comp unit header is read in and used.
7702 This is an optimization for when we already have the abbrev table.
7703
7704 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7705 Otherwise, a new CU is allocated with xmalloc.
7706
7707 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7708 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7709
7710 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7711 linker) then DIE_READER_FUNC will not get called. */
7712
7713 static void
7714 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7715 struct abbrev_table *abbrev_table,
7716 int use_existing_cu, int keep,
7717 die_reader_func_ftype *die_reader_func,
7718 void *data)
7719 {
7720 struct objfile *objfile = dwarf2_per_objfile->objfile;
7721 struct dwarf2_section_info *section = this_cu->section;
7722 bfd *abfd = get_section_bfd_owner (section);
7723 struct dwarf2_cu *cu;
7724 const gdb_byte *begin_info_ptr, *info_ptr;
7725 struct die_reader_specs reader;
7726 struct die_info *comp_unit_die;
7727 int has_children;
7728 struct attribute *attr;
7729 struct cleanup *cleanups, *free_cu_cleanup = NULL;
7730 struct signatured_type *sig_type = NULL;
7731 struct dwarf2_section_info *abbrev_section;
7732 /* Non-zero if CU currently points to a DWO file and we need to
7733 reread it. When this happens we need to reread the skeleton die
7734 before we can reread the DWO file (this only applies to CUs, not TUs). */
7735 int rereading_dwo_cu = 0;
7736
7737 if (dwarf_die_debug)
7738 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
7739 this_cu->is_debug_types ? "type" : "comp",
7740 to_underlying (this_cu->sect_off));
7741
7742 if (use_existing_cu)
7743 gdb_assert (keep);
7744
7745 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7746 file (instead of going through the stub), short-circuit all of this. */
7747 if (this_cu->reading_dwo_directly)
7748 {
7749 /* Narrow down the scope of possibilities to have to understand. */
7750 gdb_assert (this_cu->is_debug_types);
7751 gdb_assert (abbrev_table == NULL);
7752 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7753 die_reader_func, data);
7754 return;
7755 }
7756
7757 cleanups = make_cleanup (null_cleanup, NULL);
7758
7759 /* This is cheap if the section is already read in. */
7760 dwarf2_read_section (objfile, section);
7761
7762 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7763
7764 abbrev_section = get_abbrev_section_for_cu (this_cu);
7765
7766 if (use_existing_cu && this_cu->cu != NULL)
7767 {
7768 cu = this_cu->cu;
7769 /* If this CU is from a DWO file we need to start over, we need to
7770 refetch the attributes from the skeleton CU.
7771 This could be optimized by retrieving those attributes from when we
7772 were here the first time: the previous comp_unit_die was stored in
7773 comp_unit_obstack. But there's no data yet that we need this
7774 optimization. */
7775 if (cu->dwo_unit != NULL)
7776 rereading_dwo_cu = 1;
7777 }
7778 else
7779 {
7780 /* If !use_existing_cu, this_cu->cu must be NULL. */
7781 gdb_assert (this_cu->cu == NULL);
7782 cu = XNEW (struct dwarf2_cu);
7783 init_one_comp_unit (cu, this_cu);
7784 /* If an error occurs while loading, release our storage. */
7785 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
7786 }
7787
7788 /* Get the header. */
7789 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7790 {
7791 /* We already have the header, there's no need to read it in again. */
7792 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7793 }
7794 else
7795 {
7796 if (this_cu->is_debug_types)
7797 {
7798 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
7799 abbrev_section, info_ptr,
7800 rcuh_kind::TYPE);
7801
7802 /* Since per_cu is the first member of struct signatured_type,
7803 we can go from a pointer to one to a pointer to the other. */
7804 sig_type = (struct signatured_type *) this_cu;
7805 gdb_assert (sig_type->signature == cu->header.signature);
7806 gdb_assert (sig_type->type_offset_in_tu
7807 == cu->header.type_cu_offset_in_tu);
7808 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7809
7810 /* LENGTH has not been set yet for type units if we're
7811 using .gdb_index. */
7812 this_cu->length = get_cu_length (&cu->header);
7813
7814 /* Establish the type offset that can be used to lookup the type. */
7815 sig_type->type_offset_in_section =
7816 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7817
7818 this_cu->dwarf_version = cu->header.version;
7819 }
7820 else
7821 {
7822 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
7823 abbrev_section,
7824 info_ptr,
7825 rcuh_kind::COMPILE);
7826
7827 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7828 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7829 this_cu->dwarf_version = cu->header.version;
7830 }
7831 }
7832
7833 /* Skip dummy compilation units. */
7834 if (info_ptr >= begin_info_ptr + this_cu->length
7835 || peek_abbrev_code (abfd, info_ptr) == 0)
7836 {
7837 do_cleanups (cleanups);
7838 return;
7839 }
7840
7841 /* If we don't have them yet, read the abbrevs for this compilation unit.
7842 And if we need to read them now, make sure they're freed when we're
7843 done. Note that it's important that if the CU had an abbrev table
7844 on entry we don't free it when we're done: Somewhere up the call stack
7845 it may be in use. */
7846 if (abbrev_table != NULL)
7847 {
7848 gdb_assert (cu->abbrev_table == NULL);
7849 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7850 cu->abbrev_table = abbrev_table;
7851 }
7852 else if (cu->abbrev_table == NULL)
7853 {
7854 dwarf2_read_abbrevs (cu, abbrev_section);
7855 make_cleanup (dwarf2_free_abbrev_table, cu);
7856 }
7857 else if (rereading_dwo_cu)
7858 {
7859 dwarf2_free_abbrev_table (cu);
7860 dwarf2_read_abbrevs (cu, abbrev_section);
7861 }
7862
7863 /* Read the top level CU/TU die. */
7864 init_cu_die_reader (&reader, cu, section, NULL);
7865 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7866
7867 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7868 from the DWO file.
7869 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7870 DWO CU, that this test will fail (the attribute will not be present). */
7871 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7872 if (attr)
7873 {
7874 struct dwo_unit *dwo_unit;
7875 struct die_info *dwo_comp_unit_die;
7876
7877 if (has_children)
7878 {
7879 complaint (&symfile_complaints,
7880 _("compilation unit with DW_AT_GNU_dwo_name"
7881 " has children (offset 0x%x) [in module %s]"),
7882 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
7883 }
7884 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7885 if (dwo_unit != NULL)
7886 {
7887 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7888 abbrev_table != NULL,
7889 comp_unit_die, NULL,
7890 &reader, &info_ptr,
7891 &dwo_comp_unit_die, &has_children) == 0)
7892 {
7893 /* Dummy die. */
7894 do_cleanups (cleanups);
7895 return;
7896 }
7897 comp_unit_die = dwo_comp_unit_die;
7898 }
7899 else
7900 {
7901 /* Yikes, we couldn't find the rest of the DIE, we only have
7902 the stub. A complaint has already been logged. There's
7903 not much more we can do except pass on the stub DIE to
7904 die_reader_func. We don't want to throw an error on bad
7905 debug info. */
7906 }
7907 }
7908
7909 /* All of the above is setup for this call. Yikes. */
7910 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7911
7912 /* Done, clean up. */
7913 if (free_cu_cleanup != NULL)
7914 {
7915 if (keep)
7916 {
7917 /* We've successfully allocated this compilation unit. Let our
7918 caller clean it up when finished with it. */
7919 discard_cleanups (free_cu_cleanup);
7920
7921 /* We can only discard free_cu_cleanup and all subsequent cleanups.
7922 So we have to manually free the abbrev table. */
7923 dwarf2_free_abbrev_table (cu);
7924
7925 /* Link this CU into read_in_chain. */
7926 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7927 dwarf2_per_objfile->read_in_chain = this_cu;
7928 }
7929 else
7930 do_cleanups (free_cu_cleanup);
7931 }
7932
7933 do_cleanups (cleanups);
7934 }
7935
7936 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7937 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7938 to have already done the lookup to find the DWO file).
7939
7940 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7941 THIS_CU->is_debug_types, but nothing else.
7942
7943 We fill in THIS_CU->length.
7944
7945 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7946 linker) then DIE_READER_FUNC will not get called.
7947
7948 THIS_CU->cu is always freed when done.
7949 This is done in order to not leave THIS_CU->cu in a state where we have
7950 to care whether it refers to the "main" CU or the DWO CU. */
7951
7952 static void
7953 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7954 struct dwo_file *dwo_file,
7955 die_reader_func_ftype *die_reader_func,
7956 void *data)
7957 {
7958 struct objfile *objfile = dwarf2_per_objfile->objfile;
7959 struct dwarf2_section_info *section = this_cu->section;
7960 bfd *abfd = get_section_bfd_owner (section);
7961 struct dwarf2_section_info *abbrev_section;
7962 struct dwarf2_cu cu;
7963 const gdb_byte *begin_info_ptr, *info_ptr;
7964 struct die_reader_specs reader;
7965 struct cleanup *cleanups;
7966 struct die_info *comp_unit_die;
7967 int has_children;
7968
7969 if (dwarf_die_debug)
7970 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
7971 this_cu->is_debug_types ? "type" : "comp",
7972 to_underlying (this_cu->sect_off));
7973
7974 gdb_assert (this_cu->cu == NULL);
7975
7976 abbrev_section = (dwo_file != NULL
7977 ? &dwo_file->sections.abbrev
7978 : get_abbrev_section_for_cu (this_cu));
7979
7980 /* This is cheap if the section is already read in. */
7981 dwarf2_read_section (objfile, section);
7982
7983 init_one_comp_unit (&cu, this_cu);
7984
7985 cleanups = make_cleanup (free_stack_comp_unit, &cu);
7986
7987 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7988 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
7989 abbrev_section, info_ptr,
7990 (this_cu->is_debug_types
7991 ? rcuh_kind::TYPE
7992 : rcuh_kind::COMPILE));
7993
7994 this_cu->length = get_cu_length (&cu.header);
7995
7996 /* Skip dummy compilation units. */
7997 if (info_ptr >= begin_info_ptr + this_cu->length
7998 || peek_abbrev_code (abfd, info_ptr) == 0)
7999 {
8000 do_cleanups (cleanups);
8001 return;
8002 }
8003
8004 dwarf2_read_abbrevs (&cu, abbrev_section);
8005 make_cleanup (dwarf2_free_abbrev_table, &cu);
8006
8007 init_cu_die_reader (&reader, &cu, section, dwo_file);
8008 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8009
8010 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8011
8012 do_cleanups (cleanups);
8013 }
8014
8015 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8016 does not lookup the specified DWO file.
8017 This cannot be used to read DWO files.
8018
8019 THIS_CU->cu is always freed when done.
8020 This is done in order to not leave THIS_CU->cu in a state where we have
8021 to care whether it refers to the "main" CU or the DWO CU.
8022 We can revisit this if the data shows there's a performance issue. */
8023
8024 static void
8025 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8026 die_reader_func_ftype *die_reader_func,
8027 void *data)
8028 {
8029 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8030 }
8031 \f
8032 /* Type Unit Groups.
8033
8034 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8035 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8036 so that all types coming from the same compilation (.o file) are grouped
8037 together. A future step could be to put the types in the same symtab as
8038 the CU the types ultimately came from. */
8039
8040 static hashval_t
8041 hash_type_unit_group (const void *item)
8042 {
8043 const struct type_unit_group *tu_group
8044 = (const struct type_unit_group *) item;
8045
8046 return hash_stmt_list_entry (&tu_group->hash);
8047 }
8048
8049 static int
8050 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8051 {
8052 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8053 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8054
8055 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8056 }
8057
8058 /* Allocate a hash table for type unit groups. */
8059
8060 static htab_t
8061 allocate_type_unit_groups_table (void)
8062 {
8063 return htab_create_alloc_ex (3,
8064 hash_type_unit_group,
8065 eq_type_unit_group,
8066 NULL,
8067 &dwarf2_per_objfile->objfile->objfile_obstack,
8068 hashtab_obstack_allocate,
8069 dummy_obstack_deallocate);
8070 }
8071
8072 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8073 partial symtabs. We combine several TUs per psymtab to not let the size
8074 of any one psymtab grow too big. */
8075 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8076 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8077
8078 /* Helper routine for get_type_unit_group.
8079 Create the type_unit_group object used to hold one or more TUs. */
8080
8081 static struct type_unit_group *
8082 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8083 {
8084 struct objfile *objfile = dwarf2_per_objfile->objfile;
8085 struct dwarf2_per_cu_data *per_cu;
8086 struct type_unit_group *tu_group;
8087
8088 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8089 struct type_unit_group);
8090 per_cu = &tu_group->per_cu;
8091 per_cu->objfile = objfile;
8092
8093 if (dwarf2_per_objfile->using_index)
8094 {
8095 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8096 struct dwarf2_per_cu_quick_data);
8097 }
8098 else
8099 {
8100 unsigned int line_offset = to_underlying (line_offset_struct);
8101 struct partial_symtab *pst;
8102 char *name;
8103
8104 /* Give the symtab a useful name for debug purposes. */
8105 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8106 name = xstrprintf ("<type_units_%d>",
8107 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8108 else
8109 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8110
8111 pst = create_partial_symtab (per_cu, name);
8112 pst->anonymous = 1;
8113
8114 xfree (name);
8115 }
8116
8117 tu_group->hash.dwo_unit = cu->dwo_unit;
8118 tu_group->hash.line_sect_off = line_offset_struct;
8119
8120 return tu_group;
8121 }
8122
8123 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8124 STMT_LIST is a DW_AT_stmt_list attribute. */
8125
8126 static struct type_unit_group *
8127 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8128 {
8129 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8130 struct type_unit_group *tu_group;
8131 void **slot;
8132 unsigned int line_offset;
8133 struct type_unit_group type_unit_group_for_lookup;
8134
8135 if (dwarf2_per_objfile->type_unit_groups == NULL)
8136 {
8137 dwarf2_per_objfile->type_unit_groups =
8138 allocate_type_unit_groups_table ();
8139 }
8140
8141 /* Do we need to create a new group, or can we use an existing one? */
8142
8143 if (stmt_list)
8144 {
8145 line_offset = DW_UNSND (stmt_list);
8146 ++tu_stats->nr_symtab_sharers;
8147 }
8148 else
8149 {
8150 /* Ugh, no stmt_list. Rare, but we have to handle it.
8151 We can do various things here like create one group per TU or
8152 spread them over multiple groups to split up the expansion work.
8153 To avoid worst case scenarios (too many groups or too large groups)
8154 we, umm, group them in bunches. */
8155 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8156 | (tu_stats->nr_stmt_less_type_units
8157 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8158 ++tu_stats->nr_stmt_less_type_units;
8159 }
8160
8161 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8162 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8163 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8164 &type_unit_group_for_lookup, INSERT);
8165 if (*slot != NULL)
8166 {
8167 tu_group = (struct type_unit_group *) *slot;
8168 gdb_assert (tu_group != NULL);
8169 }
8170 else
8171 {
8172 sect_offset line_offset_struct = (sect_offset) line_offset;
8173 tu_group = create_type_unit_group (cu, line_offset_struct);
8174 *slot = tu_group;
8175 ++tu_stats->nr_symtabs;
8176 }
8177
8178 return tu_group;
8179 }
8180 \f
8181 /* Partial symbol tables. */
8182
8183 /* Create a psymtab named NAME and assign it to PER_CU.
8184
8185 The caller must fill in the following details:
8186 dirname, textlow, texthigh. */
8187
8188 static struct partial_symtab *
8189 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8190 {
8191 struct objfile *objfile = per_cu->objfile;
8192 struct partial_symtab *pst;
8193
8194 pst = start_psymtab_common (objfile, name, 0,
8195 objfile->global_psymbols,
8196 objfile->static_psymbols);
8197
8198 pst->psymtabs_addrmap_supported = 1;
8199
8200 /* This is the glue that links PST into GDB's symbol API. */
8201 pst->read_symtab_private = per_cu;
8202 pst->read_symtab = dwarf2_read_symtab;
8203 per_cu->v.psymtab = pst;
8204
8205 return pst;
8206 }
8207
8208 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8209 type. */
8210
8211 struct process_psymtab_comp_unit_data
8212 {
8213 /* True if we are reading a DW_TAG_partial_unit. */
8214
8215 int want_partial_unit;
8216
8217 /* The "pretend" language that is used if the CU doesn't declare a
8218 language. */
8219
8220 enum language pretend_language;
8221 };
8222
8223 /* die_reader_func for process_psymtab_comp_unit. */
8224
8225 static void
8226 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8227 const gdb_byte *info_ptr,
8228 struct die_info *comp_unit_die,
8229 int has_children,
8230 void *data)
8231 {
8232 struct dwarf2_cu *cu = reader->cu;
8233 struct objfile *objfile = cu->objfile;
8234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8235 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8236 CORE_ADDR baseaddr;
8237 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8238 struct partial_symtab *pst;
8239 enum pc_bounds_kind cu_bounds_kind;
8240 const char *filename;
8241 struct process_psymtab_comp_unit_data *info
8242 = (struct process_psymtab_comp_unit_data *) data;
8243
8244 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8245 return;
8246
8247 gdb_assert (! per_cu->is_debug_types);
8248
8249 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8250
8251 cu->list_in_scope = &file_symbols;
8252
8253 /* Allocate a new partial symbol table structure. */
8254 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8255 if (filename == NULL)
8256 filename = "";
8257
8258 pst = create_partial_symtab (per_cu, filename);
8259
8260 /* This must be done before calling dwarf2_build_include_psymtabs. */
8261 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8262
8263 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8264
8265 dwarf2_find_base_address (comp_unit_die, cu);
8266
8267 /* Possibly set the default values of LOWPC and HIGHPC from
8268 `DW_AT_ranges'. */
8269 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8270 &best_highpc, cu, pst);
8271 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8272 /* Store the contiguous range if it is not empty; it can be empty for
8273 CUs with no code. */
8274 addrmap_set_empty (objfile->psymtabs_addrmap,
8275 gdbarch_adjust_dwarf2_addr (gdbarch,
8276 best_lowpc + baseaddr),
8277 gdbarch_adjust_dwarf2_addr (gdbarch,
8278 best_highpc + baseaddr) - 1,
8279 pst);
8280
8281 /* Check if comp unit has_children.
8282 If so, read the rest of the partial symbols from this comp unit.
8283 If not, there's no more debug_info for this comp unit. */
8284 if (has_children)
8285 {
8286 struct partial_die_info *first_die;
8287 CORE_ADDR lowpc, highpc;
8288
8289 lowpc = ((CORE_ADDR) -1);
8290 highpc = ((CORE_ADDR) 0);
8291
8292 first_die = load_partial_dies (reader, info_ptr, 1);
8293
8294 scan_partial_symbols (first_die, &lowpc, &highpc,
8295 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8296
8297 /* If we didn't find a lowpc, set it to highpc to avoid
8298 complaints from `maint check'. */
8299 if (lowpc == ((CORE_ADDR) -1))
8300 lowpc = highpc;
8301
8302 /* If the compilation unit didn't have an explicit address range,
8303 then use the information extracted from its child dies. */
8304 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8305 {
8306 best_lowpc = lowpc;
8307 best_highpc = highpc;
8308 }
8309 }
8310 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8311 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8312
8313 end_psymtab_common (objfile, pst);
8314
8315 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8316 {
8317 int i;
8318 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8319 struct dwarf2_per_cu_data *iter;
8320
8321 /* Fill in 'dependencies' here; we fill in 'users' in a
8322 post-pass. */
8323 pst->number_of_dependencies = len;
8324 pst->dependencies =
8325 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8326 for (i = 0;
8327 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8328 i, iter);
8329 ++i)
8330 pst->dependencies[i] = iter->v.psymtab;
8331
8332 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8333 }
8334
8335 /* Get the list of files included in the current compilation unit,
8336 and build a psymtab for each of them. */
8337 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8338
8339 if (dwarf_read_debug)
8340 {
8341 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8342
8343 fprintf_unfiltered (gdb_stdlog,
8344 "Psymtab for %s unit @0x%x: %s - %s"
8345 ", %d global, %d static syms\n",
8346 per_cu->is_debug_types ? "type" : "comp",
8347 to_underlying (per_cu->sect_off),
8348 paddress (gdbarch, pst->textlow),
8349 paddress (gdbarch, pst->texthigh),
8350 pst->n_global_syms, pst->n_static_syms);
8351 }
8352 }
8353
8354 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8355 Process compilation unit THIS_CU for a psymtab. */
8356
8357 static void
8358 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8359 int want_partial_unit,
8360 enum language pretend_language)
8361 {
8362 /* If this compilation unit was already read in, free the
8363 cached copy in order to read it in again. This is
8364 necessary because we skipped some symbols when we first
8365 read in the compilation unit (see load_partial_dies).
8366 This problem could be avoided, but the benefit is unclear. */
8367 if (this_cu->cu != NULL)
8368 free_one_cached_comp_unit (this_cu);
8369
8370 if (this_cu->is_debug_types)
8371 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8372 NULL);
8373 else
8374 {
8375 process_psymtab_comp_unit_data info;
8376 info.want_partial_unit = want_partial_unit;
8377 info.pretend_language = pretend_language;
8378 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8379 process_psymtab_comp_unit_reader, &info);
8380 }
8381
8382 /* Age out any secondary CUs. */
8383 age_cached_comp_units ();
8384 }
8385
8386 /* Reader function for build_type_psymtabs. */
8387
8388 static void
8389 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8390 const gdb_byte *info_ptr,
8391 struct die_info *type_unit_die,
8392 int has_children,
8393 void *data)
8394 {
8395 struct objfile *objfile = dwarf2_per_objfile->objfile;
8396 struct dwarf2_cu *cu = reader->cu;
8397 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8398 struct signatured_type *sig_type;
8399 struct type_unit_group *tu_group;
8400 struct attribute *attr;
8401 struct partial_die_info *first_die;
8402 CORE_ADDR lowpc, highpc;
8403 struct partial_symtab *pst;
8404
8405 gdb_assert (data == NULL);
8406 gdb_assert (per_cu->is_debug_types);
8407 sig_type = (struct signatured_type *) per_cu;
8408
8409 if (! has_children)
8410 return;
8411
8412 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8413 tu_group = get_type_unit_group (cu, attr);
8414
8415 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8416
8417 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8418 cu->list_in_scope = &file_symbols;
8419 pst = create_partial_symtab (per_cu, "");
8420 pst->anonymous = 1;
8421
8422 first_die = load_partial_dies (reader, info_ptr, 1);
8423
8424 lowpc = (CORE_ADDR) -1;
8425 highpc = (CORE_ADDR) 0;
8426 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8427
8428 end_psymtab_common (objfile, pst);
8429 }
8430
8431 /* Struct used to sort TUs by their abbreviation table offset. */
8432
8433 struct tu_abbrev_offset
8434 {
8435 struct signatured_type *sig_type;
8436 sect_offset abbrev_offset;
8437 };
8438
8439 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8440
8441 static int
8442 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8443 {
8444 const struct tu_abbrev_offset * const *a
8445 = (const struct tu_abbrev_offset * const*) ap;
8446 const struct tu_abbrev_offset * const *b
8447 = (const struct tu_abbrev_offset * const*) bp;
8448 sect_offset aoff = (*a)->abbrev_offset;
8449 sect_offset boff = (*b)->abbrev_offset;
8450
8451 return (aoff > boff) - (aoff < boff);
8452 }
8453
8454 /* Efficiently read all the type units.
8455 This does the bulk of the work for build_type_psymtabs.
8456
8457 The efficiency is because we sort TUs by the abbrev table they use and
8458 only read each abbrev table once. In one program there are 200K TUs
8459 sharing 8K abbrev tables.
8460
8461 The main purpose of this function is to support building the
8462 dwarf2_per_objfile->type_unit_groups table.
8463 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8464 can collapse the search space by grouping them by stmt_list.
8465 The savings can be significant, in the same program from above the 200K TUs
8466 share 8K stmt_list tables.
8467
8468 FUNC is expected to call get_type_unit_group, which will create the
8469 struct type_unit_group if necessary and add it to
8470 dwarf2_per_objfile->type_unit_groups. */
8471
8472 static void
8473 build_type_psymtabs_1 (void)
8474 {
8475 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8476 struct cleanup *cleanups;
8477 struct abbrev_table *abbrev_table;
8478 sect_offset abbrev_offset;
8479 struct tu_abbrev_offset *sorted_by_abbrev;
8480 int i;
8481
8482 /* It's up to the caller to not call us multiple times. */
8483 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8484
8485 if (dwarf2_per_objfile->n_type_units == 0)
8486 return;
8487
8488 /* TUs typically share abbrev tables, and there can be way more TUs than
8489 abbrev tables. Sort by abbrev table to reduce the number of times we
8490 read each abbrev table in.
8491 Alternatives are to punt or to maintain a cache of abbrev tables.
8492 This is simpler and efficient enough for now.
8493
8494 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8495 symtab to use). Typically TUs with the same abbrev offset have the same
8496 stmt_list value too so in practice this should work well.
8497
8498 The basic algorithm here is:
8499
8500 sort TUs by abbrev table
8501 for each TU with same abbrev table:
8502 read abbrev table if first user
8503 read TU top level DIE
8504 [IWBN if DWO skeletons had DW_AT_stmt_list]
8505 call FUNC */
8506
8507 if (dwarf_read_debug)
8508 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8509
8510 /* Sort in a separate table to maintain the order of all_type_units
8511 for .gdb_index: TU indices directly index all_type_units. */
8512 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8513 dwarf2_per_objfile->n_type_units);
8514 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8515 {
8516 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8517
8518 sorted_by_abbrev[i].sig_type = sig_type;
8519 sorted_by_abbrev[i].abbrev_offset =
8520 read_abbrev_offset (sig_type->per_cu.section,
8521 sig_type->per_cu.sect_off);
8522 }
8523 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8524 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8525 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8526
8527 abbrev_offset = (sect_offset) ~(unsigned) 0;
8528 abbrev_table = NULL;
8529 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
8530
8531 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8532 {
8533 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8534
8535 /* Switch to the next abbrev table if necessary. */
8536 if (abbrev_table == NULL
8537 || tu->abbrev_offset != abbrev_offset)
8538 {
8539 if (abbrev_table != NULL)
8540 {
8541 abbrev_table_free (abbrev_table);
8542 /* Reset to NULL in case abbrev_table_read_table throws
8543 an error: abbrev_table_free_cleanup will get called. */
8544 abbrev_table = NULL;
8545 }
8546 abbrev_offset = tu->abbrev_offset;
8547 abbrev_table =
8548 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
8549 abbrev_offset);
8550 ++tu_stats->nr_uniq_abbrev_tables;
8551 }
8552
8553 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
8554 build_type_psymtabs_reader, NULL);
8555 }
8556
8557 do_cleanups (cleanups);
8558 }
8559
8560 /* Print collected type unit statistics. */
8561
8562 static void
8563 print_tu_stats (void)
8564 {
8565 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8566
8567 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8568 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8569 dwarf2_per_objfile->n_type_units);
8570 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8571 tu_stats->nr_uniq_abbrev_tables);
8572 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8573 tu_stats->nr_symtabs);
8574 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8575 tu_stats->nr_symtab_sharers);
8576 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8577 tu_stats->nr_stmt_less_type_units);
8578 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8579 tu_stats->nr_all_type_units_reallocs);
8580 }
8581
8582 /* Traversal function for build_type_psymtabs. */
8583
8584 static int
8585 build_type_psymtab_dependencies (void **slot, void *info)
8586 {
8587 struct objfile *objfile = dwarf2_per_objfile->objfile;
8588 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8589 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8590 struct partial_symtab *pst = per_cu->v.psymtab;
8591 int len = VEC_length (sig_type_ptr, tu_group->tus);
8592 struct signatured_type *iter;
8593 int i;
8594
8595 gdb_assert (len > 0);
8596 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8597
8598 pst->number_of_dependencies = len;
8599 pst->dependencies =
8600 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8601 for (i = 0;
8602 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8603 ++i)
8604 {
8605 gdb_assert (iter->per_cu.is_debug_types);
8606 pst->dependencies[i] = iter->per_cu.v.psymtab;
8607 iter->type_unit_group = tu_group;
8608 }
8609
8610 VEC_free (sig_type_ptr, tu_group->tus);
8611
8612 return 1;
8613 }
8614
8615 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8616 Build partial symbol tables for the .debug_types comp-units. */
8617
8618 static void
8619 build_type_psymtabs (struct objfile *objfile)
8620 {
8621 if (! create_all_type_units (objfile))
8622 return;
8623
8624 build_type_psymtabs_1 ();
8625 }
8626
8627 /* Traversal function for process_skeletonless_type_unit.
8628 Read a TU in a DWO file and build partial symbols for it. */
8629
8630 static int
8631 process_skeletonless_type_unit (void **slot, void *info)
8632 {
8633 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8634 struct objfile *objfile = (struct objfile *) info;
8635 struct signatured_type find_entry, *entry;
8636
8637 /* If this TU doesn't exist in the global table, add it and read it in. */
8638
8639 if (dwarf2_per_objfile->signatured_types == NULL)
8640 {
8641 dwarf2_per_objfile->signatured_types
8642 = allocate_signatured_type_table (objfile);
8643 }
8644
8645 find_entry.signature = dwo_unit->signature;
8646 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8647 INSERT);
8648 /* If we've already seen this type there's nothing to do. What's happening
8649 is we're doing our own version of comdat-folding here. */
8650 if (*slot != NULL)
8651 return 1;
8652
8653 /* This does the job that create_all_type_units would have done for
8654 this TU. */
8655 entry = add_type_unit (dwo_unit->signature, slot);
8656 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
8657 *slot = entry;
8658
8659 /* This does the job that build_type_psymtabs_1 would have done. */
8660 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8661 build_type_psymtabs_reader, NULL);
8662
8663 return 1;
8664 }
8665
8666 /* Traversal function for process_skeletonless_type_units. */
8667
8668 static int
8669 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8670 {
8671 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8672
8673 if (dwo_file->tus != NULL)
8674 {
8675 htab_traverse_noresize (dwo_file->tus,
8676 process_skeletonless_type_unit, info);
8677 }
8678
8679 return 1;
8680 }
8681
8682 /* Scan all TUs of DWO files, verifying we've processed them.
8683 This is needed in case a TU was emitted without its skeleton.
8684 Note: This can't be done until we know what all the DWO files are. */
8685
8686 static void
8687 process_skeletonless_type_units (struct objfile *objfile)
8688 {
8689 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8690 if (get_dwp_file () == NULL
8691 && dwarf2_per_objfile->dwo_files != NULL)
8692 {
8693 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8694 process_dwo_file_for_skeletonless_type_units,
8695 objfile);
8696 }
8697 }
8698
8699 /* Compute the 'user' field for each psymtab in OBJFILE. */
8700
8701 static void
8702 set_partial_user (struct objfile *objfile)
8703 {
8704 int i;
8705
8706 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8707 {
8708 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
8709 struct partial_symtab *pst = per_cu->v.psymtab;
8710 int j;
8711
8712 if (pst == NULL)
8713 continue;
8714
8715 for (j = 0; j < pst->number_of_dependencies; ++j)
8716 {
8717 /* Set the 'user' field only if it is not already set. */
8718 if (pst->dependencies[j]->user == NULL)
8719 pst->dependencies[j]->user = pst;
8720 }
8721 }
8722 }
8723
8724 /* Build the partial symbol table by doing a quick pass through the
8725 .debug_info and .debug_abbrev sections. */
8726
8727 static void
8728 dwarf2_build_psymtabs_hard (struct objfile *objfile)
8729 {
8730 struct cleanup *back_to;
8731 int i;
8732
8733 if (dwarf_read_debug)
8734 {
8735 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8736 objfile_name (objfile));
8737 }
8738
8739 dwarf2_per_objfile->reading_partial_symbols = 1;
8740
8741 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8742
8743 /* Any cached compilation units will be linked by the per-objfile
8744 read_in_chain. Make sure to free them when we're done. */
8745 back_to = make_cleanup (free_cached_comp_units, NULL);
8746
8747 build_type_psymtabs (objfile);
8748
8749 create_all_comp_units (objfile);
8750
8751 /* Create a temporary address map on a temporary obstack. We later
8752 copy this to the final obstack. */
8753 auto_obstack temp_obstack;
8754
8755 scoped_restore save_psymtabs_addrmap
8756 = make_scoped_restore (&objfile->psymtabs_addrmap,
8757 addrmap_create_mutable (&temp_obstack));
8758
8759 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8760 {
8761 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
8762
8763 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8764 }
8765
8766 /* This has to wait until we read the CUs, we need the list of DWOs. */
8767 process_skeletonless_type_units (objfile);
8768
8769 /* Now that all TUs have been processed we can fill in the dependencies. */
8770 if (dwarf2_per_objfile->type_unit_groups != NULL)
8771 {
8772 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8773 build_type_psymtab_dependencies, NULL);
8774 }
8775
8776 if (dwarf_read_debug)
8777 print_tu_stats ();
8778
8779 set_partial_user (objfile);
8780
8781 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8782 &objfile->objfile_obstack);
8783 /* At this point we want to keep the address map. */
8784 save_psymtabs_addrmap.release ();
8785
8786 do_cleanups (back_to);
8787
8788 if (dwarf_read_debug)
8789 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8790 objfile_name (objfile));
8791 }
8792
8793 /* die_reader_func for load_partial_comp_unit. */
8794
8795 static void
8796 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8797 const gdb_byte *info_ptr,
8798 struct die_info *comp_unit_die,
8799 int has_children,
8800 void *data)
8801 {
8802 struct dwarf2_cu *cu = reader->cu;
8803
8804 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8805
8806 /* Check if comp unit has_children.
8807 If so, read the rest of the partial symbols from this comp unit.
8808 If not, there's no more debug_info for this comp unit. */
8809 if (has_children)
8810 load_partial_dies (reader, info_ptr, 0);
8811 }
8812
8813 /* Load the partial DIEs for a secondary CU into memory.
8814 This is also used when rereading a primary CU with load_all_dies. */
8815
8816 static void
8817 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8818 {
8819 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8820 load_partial_comp_unit_reader, NULL);
8821 }
8822
8823 static void
8824 read_comp_units_from_section (struct objfile *objfile,
8825 struct dwarf2_section_info *section,
8826 struct dwarf2_section_info *abbrev_section,
8827 unsigned int is_dwz,
8828 int *n_allocated,
8829 int *n_comp_units,
8830 struct dwarf2_per_cu_data ***all_comp_units)
8831 {
8832 const gdb_byte *info_ptr;
8833
8834 if (dwarf_read_debug)
8835 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8836 get_section_name (section),
8837 get_section_file_name (section));
8838
8839 dwarf2_read_section (objfile, section);
8840
8841 info_ptr = section->buffer;
8842
8843 while (info_ptr < section->buffer + section->size)
8844 {
8845 struct dwarf2_per_cu_data *this_cu;
8846
8847 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8848
8849 comp_unit_head cu_header;
8850 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
8851 info_ptr, rcuh_kind::COMPILE);
8852
8853 /* Save the compilation unit for later lookup. */
8854 if (cu_header.unit_type != DW_UT_type)
8855 {
8856 this_cu = XOBNEW (&objfile->objfile_obstack,
8857 struct dwarf2_per_cu_data);
8858 memset (this_cu, 0, sizeof (*this_cu));
8859 }
8860 else
8861 {
8862 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8863 struct signatured_type);
8864 memset (sig_type, 0, sizeof (*sig_type));
8865 sig_type->signature = cu_header.signature;
8866 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8867 this_cu = &sig_type->per_cu;
8868 }
8869 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8870 this_cu->sect_off = sect_off;
8871 this_cu->length = cu_header.length + cu_header.initial_length_size;
8872 this_cu->is_dwz = is_dwz;
8873 this_cu->objfile = objfile;
8874 this_cu->section = section;
8875
8876 if (*n_comp_units == *n_allocated)
8877 {
8878 *n_allocated *= 2;
8879 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8880 *all_comp_units, *n_allocated);
8881 }
8882 (*all_comp_units)[*n_comp_units] = this_cu;
8883 ++*n_comp_units;
8884
8885 info_ptr = info_ptr + this_cu->length;
8886 }
8887 }
8888
8889 /* Create a list of all compilation units in OBJFILE.
8890 This is only done for -readnow and building partial symtabs. */
8891
8892 static void
8893 create_all_comp_units (struct objfile *objfile)
8894 {
8895 int n_allocated;
8896 int n_comp_units;
8897 struct dwarf2_per_cu_data **all_comp_units;
8898 struct dwz_file *dwz;
8899
8900 n_comp_units = 0;
8901 n_allocated = 10;
8902 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
8903
8904 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
8905 &dwarf2_per_objfile->abbrev, 0,
8906 &n_allocated, &n_comp_units, &all_comp_units);
8907
8908 dwz = dwarf2_get_dwz_file ();
8909 if (dwz != NULL)
8910 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
8911 &n_allocated, &n_comp_units,
8912 &all_comp_units);
8913
8914 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
8915 struct dwarf2_per_cu_data *,
8916 n_comp_units);
8917 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
8918 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
8919 xfree (all_comp_units);
8920 dwarf2_per_objfile->n_comp_units = n_comp_units;
8921 }
8922
8923 /* Process all loaded DIEs for compilation unit CU, starting at
8924 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8925 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8926 DW_AT_ranges). See the comments of add_partial_subprogram on how
8927 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8928
8929 static void
8930 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8931 CORE_ADDR *highpc, int set_addrmap,
8932 struct dwarf2_cu *cu)
8933 {
8934 struct partial_die_info *pdi;
8935
8936 /* Now, march along the PDI's, descending into ones which have
8937 interesting children but skipping the children of the other ones,
8938 until we reach the end of the compilation unit. */
8939
8940 pdi = first_die;
8941
8942 while (pdi != NULL)
8943 {
8944 fixup_partial_die (pdi, cu);
8945
8946 /* Anonymous namespaces or modules have no name but have interesting
8947 children, so we need to look at them. Ditto for anonymous
8948 enums. */
8949
8950 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8951 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8952 || pdi->tag == DW_TAG_imported_unit)
8953 {
8954 switch (pdi->tag)
8955 {
8956 case DW_TAG_subprogram:
8957 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8958 break;
8959 case DW_TAG_constant:
8960 case DW_TAG_variable:
8961 case DW_TAG_typedef:
8962 case DW_TAG_union_type:
8963 if (!pdi->is_declaration)
8964 {
8965 add_partial_symbol (pdi, cu);
8966 }
8967 break;
8968 case DW_TAG_class_type:
8969 case DW_TAG_interface_type:
8970 case DW_TAG_structure_type:
8971 if (!pdi->is_declaration)
8972 {
8973 add_partial_symbol (pdi, cu);
8974 }
8975 if (cu->language == language_rust && pdi->has_children)
8976 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8977 set_addrmap, cu);
8978 break;
8979 case DW_TAG_enumeration_type:
8980 if (!pdi->is_declaration)
8981 add_partial_enumeration (pdi, cu);
8982 break;
8983 case DW_TAG_base_type:
8984 case DW_TAG_subrange_type:
8985 /* File scope base type definitions are added to the partial
8986 symbol table. */
8987 add_partial_symbol (pdi, cu);
8988 break;
8989 case DW_TAG_namespace:
8990 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8991 break;
8992 case DW_TAG_module:
8993 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8994 break;
8995 case DW_TAG_imported_unit:
8996 {
8997 struct dwarf2_per_cu_data *per_cu;
8998
8999 /* For now we don't handle imported units in type units. */
9000 if (cu->per_cu->is_debug_types)
9001 {
9002 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9003 " supported in type units [in module %s]"),
9004 objfile_name (cu->objfile));
9005 }
9006
9007 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
9008 pdi->is_dwz,
9009 cu->objfile);
9010
9011 /* Go read the partial unit, if needed. */
9012 if (per_cu->v.psymtab == NULL)
9013 process_psymtab_comp_unit (per_cu, 1, cu->language);
9014
9015 VEC_safe_push (dwarf2_per_cu_ptr,
9016 cu->per_cu->imported_symtabs, per_cu);
9017 }
9018 break;
9019 case DW_TAG_imported_declaration:
9020 add_partial_symbol (pdi, cu);
9021 break;
9022 default:
9023 break;
9024 }
9025 }
9026
9027 /* If the die has a sibling, skip to the sibling. */
9028
9029 pdi = pdi->die_sibling;
9030 }
9031 }
9032
9033 /* Functions used to compute the fully scoped name of a partial DIE.
9034
9035 Normally, this is simple. For C++, the parent DIE's fully scoped
9036 name is concatenated with "::" and the partial DIE's name.
9037 Enumerators are an exception; they use the scope of their parent
9038 enumeration type, i.e. the name of the enumeration type is not
9039 prepended to the enumerator.
9040
9041 There are two complexities. One is DW_AT_specification; in this
9042 case "parent" means the parent of the target of the specification,
9043 instead of the direct parent of the DIE. The other is compilers
9044 which do not emit DW_TAG_namespace; in this case we try to guess
9045 the fully qualified name of structure types from their members'
9046 linkage names. This must be done using the DIE's children rather
9047 than the children of any DW_AT_specification target. We only need
9048 to do this for structures at the top level, i.e. if the target of
9049 any DW_AT_specification (if any; otherwise the DIE itself) does not
9050 have a parent. */
9051
9052 /* Compute the scope prefix associated with PDI's parent, in
9053 compilation unit CU. The result will be allocated on CU's
9054 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9055 field. NULL is returned if no prefix is necessary. */
9056 static const char *
9057 partial_die_parent_scope (struct partial_die_info *pdi,
9058 struct dwarf2_cu *cu)
9059 {
9060 const char *grandparent_scope;
9061 struct partial_die_info *parent, *real_pdi;
9062
9063 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9064 then this means the parent of the specification DIE. */
9065
9066 real_pdi = pdi;
9067 while (real_pdi->has_specification)
9068 real_pdi = find_partial_die (real_pdi->spec_offset,
9069 real_pdi->spec_is_dwz, cu);
9070
9071 parent = real_pdi->die_parent;
9072 if (parent == NULL)
9073 return NULL;
9074
9075 if (parent->scope_set)
9076 return parent->scope;
9077
9078 fixup_partial_die (parent, cu);
9079
9080 grandparent_scope = partial_die_parent_scope (parent, cu);
9081
9082 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9083 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9084 Work around this problem here. */
9085 if (cu->language == language_cplus
9086 && parent->tag == DW_TAG_namespace
9087 && strcmp (parent->name, "::") == 0
9088 && grandparent_scope == NULL)
9089 {
9090 parent->scope = NULL;
9091 parent->scope_set = 1;
9092 return NULL;
9093 }
9094
9095 if (pdi->tag == DW_TAG_enumerator)
9096 /* Enumerators should not get the name of the enumeration as a prefix. */
9097 parent->scope = grandparent_scope;
9098 else if (parent->tag == DW_TAG_namespace
9099 || parent->tag == DW_TAG_module
9100 || parent->tag == DW_TAG_structure_type
9101 || parent->tag == DW_TAG_class_type
9102 || parent->tag == DW_TAG_interface_type
9103 || parent->tag == DW_TAG_union_type
9104 || parent->tag == DW_TAG_enumeration_type)
9105 {
9106 if (grandparent_scope == NULL)
9107 parent->scope = parent->name;
9108 else
9109 parent->scope = typename_concat (&cu->comp_unit_obstack,
9110 grandparent_scope,
9111 parent->name, 0, cu);
9112 }
9113 else
9114 {
9115 /* FIXME drow/2004-04-01: What should we be doing with
9116 function-local names? For partial symbols, we should probably be
9117 ignoring them. */
9118 complaint (&symfile_complaints,
9119 _("unhandled containing DIE tag %d for DIE at %d"),
9120 parent->tag, to_underlying (pdi->sect_off));
9121 parent->scope = grandparent_scope;
9122 }
9123
9124 parent->scope_set = 1;
9125 return parent->scope;
9126 }
9127
9128 /* Return the fully scoped name associated with PDI, from compilation unit
9129 CU. The result will be allocated with malloc. */
9130
9131 static char *
9132 partial_die_full_name (struct partial_die_info *pdi,
9133 struct dwarf2_cu *cu)
9134 {
9135 const char *parent_scope;
9136
9137 /* If this is a template instantiation, we can not work out the
9138 template arguments from partial DIEs. So, unfortunately, we have
9139 to go through the full DIEs. At least any work we do building
9140 types here will be reused if full symbols are loaded later. */
9141 if (pdi->has_template_arguments)
9142 {
9143 fixup_partial_die (pdi, cu);
9144
9145 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9146 {
9147 struct die_info *die;
9148 struct attribute attr;
9149 struct dwarf2_cu *ref_cu = cu;
9150
9151 /* DW_FORM_ref_addr is using section offset. */
9152 attr.name = (enum dwarf_attribute) 0;
9153 attr.form = DW_FORM_ref_addr;
9154 attr.u.unsnd = to_underlying (pdi->sect_off);
9155 die = follow_die_ref (NULL, &attr, &ref_cu);
9156
9157 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9158 }
9159 }
9160
9161 parent_scope = partial_die_parent_scope (pdi, cu);
9162 if (parent_scope == NULL)
9163 return NULL;
9164 else
9165 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9166 }
9167
9168 static void
9169 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9170 {
9171 struct objfile *objfile = cu->objfile;
9172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9173 CORE_ADDR addr = 0;
9174 const char *actual_name = NULL;
9175 CORE_ADDR baseaddr;
9176 char *built_actual_name;
9177
9178 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9179
9180 built_actual_name = partial_die_full_name (pdi, cu);
9181 if (built_actual_name != NULL)
9182 actual_name = built_actual_name;
9183
9184 if (actual_name == NULL)
9185 actual_name = pdi->name;
9186
9187 switch (pdi->tag)
9188 {
9189 case DW_TAG_subprogram:
9190 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9191 if (pdi->is_external || cu->language == language_ada)
9192 {
9193 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9194 of the global scope. But in Ada, we want to be able to access
9195 nested procedures globally. So all Ada subprograms are stored
9196 in the global scope. */
9197 add_psymbol_to_list (actual_name, strlen (actual_name),
9198 built_actual_name != NULL,
9199 VAR_DOMAIN, LOC_BLOCK,
9200 &objfile->global_psymbols,
9201 addr, cu->language, objfile);
9202 }
9203 else
9204 {
9205 add_psymbol_to_list (actual_name, strlen (actual_name),
9206 built_actual_name != NULL,
9207 VAR_DOMAIN, LOC_BLOCK,
9208 &objfile->static_psymbols,
9209 addr, cu->language, objfile);
9210 }
9211
9212 if (pdi->main_subprogram && actual_name != NULL)
9213 set_objfile_main_name (objfile, actual_name, cu->language);
9214 break;
9215 case DW_TAG_constant:
9216 {
9217 std::vector<partial_symbol *> *list;
9218
9219 if (pdi->is_external)
9220 list = &objfile->global_psymbols;
9221 else
9222 list = &objfile->static_psymbols;
9223 add_psymbol_to_list (actual_name, strlen (actual_name),
9224 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9225 list, 0, cu->language, objfile);
9226 }
9227 break;
9228 case DW_TAG_variable:
9229 if (pdi->d.locdesc)
9230 addr = decode_locdesc (pdi->d.locdesc, cu);
9231
9232 if (pdi->d.locdesc
9233 && addr == 0
9234 && !dwarf2_per_objfile->has_section_at_zero)
9235 {
9236 /* A global or static variable may also have been stripped
9237 out by the linker if unused, in which case its address
9238 will be nullified; do not add such variables into partial
9239 symbol table then. */
9240 }
9241 else if (pdi->is_external)
9242 {
9243 /* Global Variable.
9244 Don't enter into the minimal symbol tables as there is
9245 a minimal symbol table entry from the ELF symbols already.
9246 Enter into partial symbol table if it has a location
9247 descriptor or a type.
9248 If the location descriptor is missing, new_symbol will create
9249 a LOC_UNRESOLVED symbol, the address of the variable will then
9250 be determined from the minimal symbol table whenever the variable
9251 is referenced.
9252 The address for the partial symbol table entry is not
9253 used by GDB, but it comes in handy for debugging partial symbol
9254 table building. */
9255
9256 if (pdi->d.locdesc || pdi->has_type)
9257 add_psymbol_to_list (actual_name, strlen (actual_name),
9258 built_actual_name != NULL,
9259 VAR_DOMAIN, LOC_STATIC,
9260 &objfile->global_psymbols,
9261 addr + baseaddr,
9262 cu->language, objfile);
9263 }
9264 else
9265 {
9266 int has_loc = pdi->d.locdesc != NULL;
9267
9268 /* Static Variable. Skip symbols whose value we cannot know (those
9269 without location descriptors or constant values). */
9270 if (!has_loc && !pdi->has_const_value)
9271 {
9272 xfree (built_actual_name);
9273 return;
9274 }
9275
9276 add_psymbol_to_list (actual_name, strlen (actual_name),
9277 built_actual_name != NULL,
9278 VAR_DOMAIN, LOC_STATIC,
9279 &objfile->static_psymbols,
9280 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9281 cu->language, objfile);
9282 }
9283 break;
9284 case DW_TAG_typedef:
9285 case DW_TAG_base_type:
9286 case DW_TAG_subrange_type:
9287 add_psymbol_to_list (actual_name, strlen (actual_name),
9288 built_actual_name != NULL,
9289 VAR_DOMAIN, LOC_TYPEDEF,
9290 &objfile->static_psymbols,
9291 0, cu->language, objfile);
9292 break;
9293 case DW_TAG_imported_declaration:
9294 case DW_TAG_namespace:
9295 add_psymbol_to_list (actual_name, strlen (actual_name),
9296 built_actual_name != NULL,
9297 VAR_DOMAIN, LOC_TYPEDEF,
9298 &objfile->global_psymbols,
9299 0, cu->language, objfile);
9300 break;
9301 case DW_TAG_module:
9302 add_psymbol_to_list (actual_name, strlen (actual_name),
9303 built_actual_name != NULL,
9304 MODULE_DOMAIN, LOC_TYPEDEF,
9305 &objfile->global_psymbols,
9306 0, cu->language, objfile);
9307 break;
9308 case DW_TAG_class_type:
9309 case DW_TAG_interface_type:
9310 case DW_TAG_structure_type:
9311 case DW_TAG_union_type:
9312 case DW_TAG_enumeration_type:
9313 /* Skip external references. The DWARF standard says in the section
9314 about "Structure, Union, and Class Type Entries": "An incomplete
9315 structure, union or class type is represented by a structure,
9316 union or class entry that does not have a byte size attribute
9317 and that has a DW_AT_declaration attribute." */
9318 if (!pdi->has_byte_size && pdi->is_declaration)
9319 {
9320 xfree (built_actual_name);
9321 return;
9322 }
9323
9324 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9325 static vs. global. */
9326 add_psymbol_to_list (actual_name, strlen (actual_name),
9327 built_actual_name != NULL,
9328 STRUCT_DOMAIN, LOC_TYPEDEF,
9329 cu->language == language_cplus
9330 ? &objfile->global_psymbols
9331 : &objfile->static_psymbols,
9332 0, cu->language, objfile);
9333
9334 break;
9335 case DW_TAG_enumerator:
9336 add_psymbol_to_list (actual_name, strlen (actual_name),
9337 built_actual_name != NULL,
9338 VAR_DOMAIN, LOC_CONST,
9339 cu->language == language_cplus
9340 ? &objfile->global_psymbols
9341 : &objfile->static_psymbols,
9342 0, cu->language, objfile);
9343 break;
9344 default:
9345 break;
9346 }
9347
9348 xfree (built_actual_name);
9349 }
9350
9351 /* Read a partial die corresponding to a namespace; also, add a symbol
9352 corresponding to that namespace to the symbol table. NAMESPACE is
9353 the name of the enclosing namespace. */
9354
9355 static void
9356 add_partial_namespace (struct partial_die_info *pdi,
9357 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9358 int set_addrmap, struct dwarf2_cu *cu)
9359 {
9360 /* Add a symbol for the namespace. */
9361
9362 add_partial_symbol (pdi, cu);
9363
9364 /* Now scan partial symbols in that namespace. */
9365
9366 if (pdi->has_children)
9367 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9368 }
9369
9370 /* Read a partial die corresponding to a Fortran module. */
9371
9372 static void
9373 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9374 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9375 {
9376 /* Add a symbol for the namespace. */
9377
9378 add_partial_symbol (pdi, cu);
9379
9380 /* Now scan partial symbols in that module. */
9381
9382 if (pdi->has_children)
9383 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9384 }
9385
9386 /* Read a partial die corresponding to a subprogram and create a partial
9387 symbol for that subprogram. When the CU language allows it, this
9388 routine also defines a partial symbol for each nested subprogram
9389 that this subprogram contains. If SET_ADDRMAP is true, record the
9390 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
9391 and highest PC values found in PDI.
9392
9393 PDI may also be a lexical block, in which case we simply search
9394 recursively for subprograms defined inside that lexical block.
9395 Again, this is only performed when the CU language allows this
9396 type of definitions. */
9397
9398 static void
9399 add_partial_subprogram (struct partial_die_info *pdi,
9400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9401 int set_addrmap, struct dwarf2_cu *cu)
9402 {
9403 if (pdi->tag == DW_TAG_subprogram)
9404 {
9405 if (pdi->has_pc_info)
9406 {
9407 if (pdi->lowpc < *lowpc)
9408 *lowpc = pdi->lowpc;
9409 if (pdi->highpc > *highpc)
9410 *highpc = pdi->highpc;
9411 if (set_addrmap)
9412 {
9413 struct objfile *objfile = cu->objfile;
9414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9415 CORE_ADDR baseaddr;
9416 CORE_ADDR highpc;
9417 CORE_ADDR lowpc;
9418
9419 baseaddr = ANOFFSET (objfile->section_offsets,
9420 SECT_OFF_TEXT (objfile));
9421 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9422 pdi->lowpc + baseaddr);
9423 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9424 pdi->highpc + baseaddr);
9425 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9426 cu->per_cu->v.psymtab);
9427 }
9428 }
9429
9430 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9431 {
9432 if (!pdi->is_declaration)
9433 /* Ignore subprogram DIEs that do not have a name, they are
9434 illegal. Do not emit a complaint at this point, we will
9435 do so when we convert this psymtab into a symtab. */
9436 if (pdi->name)
9437 add_partial_symbol (pdi, cu);
9438 }
9439 }
9440
9441 if (! pdi->has_children)
9442 return;
9443
9444 if (cu->language == language_ada)
9445 {
9446 pdi = pdi->die_child;
9447 while (pdi != NULL)
9448 {
9449 fixup_partial_die (pdi, cu);
9450 if (pdi->tag == DW_TAG_subprogram
9451 || pdi->tag == DW_TAG_lexical_block)
9452 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9453 pdi = pdi->die_sibling;
9454 }
9455 }
9456 }
9457
9458 /* Read a partial die corresponding to an enumeration type. */
9459
9460 static void
9461 add_partial_enumeration (struct partial_die_info *enum_pdi,
9462 struct dwarf2_cu *cu)
9463 {
9464 struct partial_die_info *pdi;
9465
9466 if (enum_pdi->name != NULL)
9467 add_partial_symbol (enum_pdi, cu);
9468
9469 pdi = enum_pdi->die_child;
9470 while (pdi)
9471 {
9472 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9473 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9474 else
9475 add_partial_symbol (pdi, cu);
9476 pdi = pdi->die_sibling;
9477 }
9478 }
9479
9480 /* Return the initial uleb128 in the die at INFO_PTR. */
9481
9482 static unsigned int
9483 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9484 {
9485 unsigned int bytes_read;
9486
9487 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9488 }
9489
9490 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
9491 Return the corresponding abbrev, or NULL if the number is zero (indicating
9492 an empty DIE). In either case *BYTES_READ will be set to the length of
9493 the initial number. */
9494
9495 static struct abbrev_info *
9496 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
9497 struct dwarf2_cu *cu)
9498 {
9499 bfd *abfd = cu->objfile->obfd;
9500 unsigned int abbrev_number;
9501 struct abbrev_info *abbrev;
9502
9503 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9504
9505 if (abbrev_number == 0)
9506 return NULL;
9507
9508 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
9509 if (!abbrev)
9510 {
9511 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9512 " at offset 0x%x [in module %s]"),
9513 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9514 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
9515 }
9516
9517 return abbrev;
9518 }
9519
9520 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9521 Returns a pointer to the end of a series of DIEs, terminated by an empty
9522 DIE. Any children of the skipped DIEs will also be skipped. */
9523
9524 static const gdb_byte *
9525 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9526 {
9527 struct dwarf2_cu *cu = reader->cu;
9528 struct abbrev_info *abbrev;
9529 unsigned int bytes_read;
9530
9531 while (1)
9532 {
9533 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9534 if (abbrev == NULL)
9535 return info_ptr + bytes_read;
9536 else
9537 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9538 }
9539 }
9540
9541 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9542 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9543 abbrev corresponding to that skipped uleb128 should be passed in
9544 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9545 children. */
9546
9547 static const gdb_byte *
9548 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9549 struct abbrev_info *abbrev)
9550 {
9551 unsigned int bytes_read;
9552 struct attribute attr;
9553 bfd *abfd = reader->abfd;
9554 struct dwarf2_cu *cu = reader->cu;
9555 const gdb_byte *buffer = reader->buffer;
9556 const gdb_byte *buffer_end = reader->buffer_end;
9557 unsigned int form, i;
9558
9559 for (i = 0; i < abbrev->num_attrs; i++)
9560 {
9561 /* The only abbrev we care about is DW_AT_sibling. */
9562 if (abbrev->attrs[i].name == DW_AT_sibling)
9563 {
9564 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9565 if (attr.form == DW_FORM_ref_addr)
9566 complaint (&symfile_complaints,
9567 _("ignoring absolute DW_AT_sibling"));
9568 else
9569 {
9570 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9571 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9572
9573 if (sibling_ptr < info_ptr)
9574 complaint (&symfile_complaints,
9575 _("DW_AT_sibling points backwards"));
9576 else if (sibling_ptr > reader->buffer_end)
9577 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9578 else
9579 return sibling_ptr;
9580 }
9581 }
9582
9583 /* If it isn't DW_AT_sibling, skip this attribute. */
9584 form = abbrev->attrs[i].form;
9585 skip_attribute:
9586 switch (form)
9587 {
9588 case DW_FORM_ref_addr:
9589 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9590 and later it is offset sized. */
9591 if (cu->header.version == 2)
9592 info_ptr += cu->header.addr_size;
9593 else
9594 info_ptr += cu->header.offset_size;
9595 break;
9596 case DW_FORM_GNU_ref_alt:
9597 info_ptr += cu->header.offset_size;
9598 break;
9599 case DW_FORM_addr:
9600 info_ptr += cu->header.addr_size;
9601 break;
9602 case DW_FORM_data1:
9603 case DW_FORM_ref1:
9604 case DW_FORM_flag:
9605 info_ptr += 1;
9606 break;
9607 case DW_FORM_flag_present:
9608 case DW_FORM_implicit_const:
9609 break;
9610 case DW_FORM_data2:
9611 case DW_FORM_ref2:
9612 info_ptr += 2;
9613 break;
9614 case DW_FORM_data4:
9615 case DW_FORM_ref4:
9616 info_ptr += 4;
9617 break;
9618 case DW_FORM_data8:
9619 case DW_FORM_ref8:
9620 case DW_FORM_ref_sig8:
9621 info_ptr += 8;
9622 break;
9623 case DW_FORM_data16:
9624 info_ptr += 16;
9625 break;
9626 case DW_FORM_string:
9627 read_direct_string (abfd, info_ptr, &bytes_read);
9628 info_ptr += bytes_read;
9629 break;
9630 case DW_FORM_sec_offset:
9631 case DW_FORM_strp:
9632 case DW_FORM_GNU_strp_alt:
9633 info_ptr += cu->header.offset_size;
9634 break;
9635 case DW_FORM_exprloc:
9636 case DW_FORM_block:
9637 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9638 info_ptr += bytes_read;
9639 break;
9640 case DW_FORM_block1:
9641 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9642 break;
9643 case DW_FORM_block2:
9644 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9645 break;
9646 case DW_FORM_block4:
9647 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9648 break;
9649 case DW_FORM_sdata:
9650 case DW_FORM_udata:
9651 case DW_FORM_ref_udata:
9652 case DW_FORM_GNU_addr_index:
9653 case DW_FORM_GNU_str_index:
9654 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9655 break;
9656 case DW_FORM_indirect:
9657 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9658 info_ptr += bytes_read;
9659 /* We need to continue parsing from here, so just go back to
9660 the top. */
9661 goto skip_attribute;
9662
9663 default:
9664 error (_("Dwarf Error: Cannot handle %s "
9665 "in DWARF reader [in module %s]"),
9666 dwarf_form_name (form),
9667 bfd_get_filename (abfd));
9668 }
9669 }
9670
9671 if (abbrev->has_children)
9672 return skip_children (reader, info_ptr);
9673 else
9674 return info_ptr;
9675 }
9676
9677 /* Locate ORIG_PDI's sibling.
9678 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9679
9680 static const gdb_byte *
9681 locate_pdi_sibling (const struct die_reader_specs *reader,
9682 struct partial_die_info *orig_pdi,
9683 const gdb_byte *info_ptr)
9684 {
9685 /* Do we know the sibling already? */
9686
9687 if (orig_pdi->sibling)
9688 return orig_pdi->sibling;
9689
9690 /* Are there any children to deal with? */
9691
9692 if (!orig_pdi->has_children)
9693 return info_ptr;
9694
9695 /* Skip the children the long way. */
9696
9697 return skip_children (reader, info_ptr);
9698 }
9699
9700 /* Expand this partial symbol table into a full symbol table. SELF is
9701 not NULL. */
9702
9703 static void
9704 dwarf2_read_symtab (struct partial_symtab *self,
9705 struct objfile *objfile)
9706 {
9707 if (self->readin)
9708 {
9709 warning (_("bug: psymtab for %s is already read in."),
9710 self->filename);
9711 }
9712 else
9713 {
9714 if (info_verbose)
9715 {
9716 printf_filtered (_("Reading in symbols for %s..."),
9717 self->filename);
9718 gdb_flush (gdb_stdout);
9719 }
9720
9721 /* Restore our global data. */
9722 dwarf2_per_objfile
9723 = (struct dwarf2_per_objfile *) objfile_data (objfile,
9724 dwarf2_objfile_data_key);
9725
9726 /* If this psymtab is constructed from a debug-only objfile, the
9727 has_section_at_zero flag will not necessarily be correct. We
9728 can get the correct value for this flag by looking at the data
9729 associated with the (presumably stripped) associated objfile. */
9730 if (objfile->separate_debug_objfile_backlink)
9731 {
9732 struct dwarf2_per_objfile *dpo_backlink
9733 = ((struct dwarf2_per_objfile *)
9734 objfile_data (objfile->separate_debug_objfile_backlink,
9735 dwarf2_objfile_data_key));
9736
9737 dwarf2_per_objfile->has_section_at_zero
9738 = dpo_backlink->has_section_at_zero;
9739 }
9740
9741 dwarf2_per_objfile->reading_partial_symbols = 0;
9742
9743 psymtab_to_symtab_1 (self);
9744
9745 /* Finish up the debug error message. */
9746 if (info_verbose)
9747 printf_filtered (_("done.\n"));
9748 }
9749
9750 process_cu_includes ();
9751 }
9752 \f
9753 /* Reading in full CUs. */
9754
9755 /* Add PER_CU to the queue. */
9756
9757 static void
9758 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9759 enum language pretend_language)
9760 {
9761 struct dwarf2_queue_item *item;
9762
9763 per_cu->queued = 1;
9764 item = XNEW (struct dwarf2_queue_item);
9765 item->per_cu = per_cu;
9766 item->pretend_language = pretend_language;
9767 item->next = NULL;
9768
9769 if (dwarf2_queue == NULL)
9770 dwarf2_queue = item;
9771 else
9772 dwarf2_queue_tail->next = item;
9773
9774 dwarf2_queue_tail = item;
9775 }
9776
9777 /* If PER_CU is not yet queued, add it to the queue.
9778 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9779 dependency.
9780 The result is non-zero if PER_CU was queued, otherwise the result is zero
9781 meaning either PER_CU is already queued or it is already loaded.
9782
9783 N.B. There is an invariant here that if a CU is queued then it is loaded.
9784 The caller is required to load PER_CU if we return non-zero. */
9785
9786 static int
9787 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9788 struct dwarf2_per_cu_data *per_cu,
9789 enum language pretend_language)
9790 {
9791 /* We may arrive here during partial symbol reading, if we need full
9792 DIEs to process an unusual case (e.g. template arguments). Do
9793 not queue PER_CU, just tell our caller to load its DIEs. */
9794 if (dwarf2_per_objfile->reading_partial_symbols)
9795 {
9796 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9797 return 1;
9798 return 0;
9799 }
9800
9801 /* Mark the dependence relation so that we don't flush PER_CU
9802 too early. */
9803 if (dependent_cu != NULL)
9804 dwarf2_add_dependence (dependent_cu, per_cu);
9805
9806 /* If it's already on the queue, we have nothing to do. */
9807 if (per_cu->queued)
9808 return 0;
9809
9810 /* If the compilation unit is already loaded, just mark it as
9811 used. */
9812 if (per_cu->cu != NULL)
9813 {
9814 per_cu->cu->last_used = 0;
9815 return 0;
9816 }
9817
9818 /* Add it to the queue. */
9819 queue_comp_unit (per_cu, pretend_language);
9820
9821 return 1;
9822 }
9823
9824 /* Process the queue. */
9825
9826 static void
9827 process_queue (void)
9828 {
9829 struct dwarf2_queue_item *item, *next_item;
9830
9831 if (dwarf_read_debug)
9832 {
9833 fprintf_unfiltered (gdb_stdlog,
9834 "Expanding one or more symtabs of objfile %s ...\n",
9835 objfile_name (dwarf2_per_objfile->objfile));
9836 }
9837
9838 /* The queue starts out with one item, but following a DIE reference
9839 may load a new CU, adding it to the end of the queue. */
9840 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9841 {
9842 if ((dwarf2_per_objfile->using_index
9843 ? !item->per_cu->v.quick->compunit_symtab
9844 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9845 /* Skip dummy CUs. */
9846 && item->per_cu->cu != NULL)
9847 {
9848 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9849 unsigned int debug_print_threshold;
9850 char buf[100];
9851
9852 if (per_cu->is_debug_types)
9853 {
9854 struct signatured_type *sig_type =
9855 (struct signatured_type *) per_cu;
9856
9857 sprintf (buf, "TU %s at offset 0x%x",
9858 hex_string (sig_type->signature),
9859 to_underlying (per_cu->sect_off));
9860 /* There can be 100s of TUs.
9861 Only print them in verbose mode. */
9862 debug_print_threshold = 2;
9863 }
9864 else
9865 {
9866 sprintf (buf, "CU at offset 0x%x",
9867 to_underlying (per_cu->sect_off));
9868 debug_print_threshold = 1;
9869 }
9870
9871 if (dwarf_read_debug >= debug_print_threshold)
9872 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9873
9874 if (per_cu->is_debug_types)
9875 process_full_type_unit (per_cu, item->pretend_language);
9876 else
9877 process_full_comp_unit (per_cu, item->pretend_language);
9878
9879 if (dwarf_read_debug >= debug_print_threshold)
9880 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9881 }
9882
9883 item->per_cu->queued = 0;
9884 next_item = item->next;
9885 xfree (item);
9886 }
9887
9888 dwarf2_queue_tail = NULL;
9889
9890 if (dwarf_read_debug)
9891 {
9892 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9893 objfile_name (dwarf2_per_objfile->objfile));
9894 }
9895 }
9896
9897 /* Free all allocated queue entries. This function only releases anything if
9898 an error was thrown; if the queue was processed then it would have been
9899 freed as we went along. */
9900
9901 static void
9902 dwarf2_release_queue (void *dummy)
9903 {
9904 struct dwarf2_queue_item *item, *last;
9905
9906 item = dwarf2_queue;
9907 while (item)
9908 {
9909 /* Anything still marked queued is likely to be in an
9910 inconsistent state, so discard it. */
9911 if (item->per_cu->queued)
9912 {
9913 if (item->per_cu->cu != NULL)
9914 free_one_cached_comp_unit (item->per_cu);
9915 item->per_cu->queued = 0;
9916 }
9917
9918 last = item;
9919 item = item->next;
9920 xfree (last);
9921 }
9922
9923 dwarf2_queue = dwarf2_queue_tail = NULL;
9924 }
9925
9926 /* Read in full symbols for PST, and anything it depends on. */
9927
9928 static void
9929 psymtab_to_symtab_1 (struct partial_symtab *pst)
9930 {
9931 struct dwarf2_per_cu_data *per_cu;
9932 int i;
9933
9934 if (pst->readin)
9935 return;
9936
9937 for (i = 0; i < pst->number_of_dependencies; i++)
9938 if (!pst->dependencies[i]->readin
9939 && pst->dependencies[i]->user == NULL)
9940 {
9941 /* Inform about additional files that need to be read in. */
9942 if (info_verbose)
9943 {
9944 /* FIXME: i18n: Need to make this a single string. */
9945 fputs_filtered (" ", gdb_stdout);
9946 wrap_here ("");
9947 fputs_filtered ("and ", gdb_stdout);
9948 wrap_here ("");
9949 printf_filtered ("%s...", pst->dependencies[i]->filename);
9950 wrap_here (""); /* Flush output. */
9951 gdb_flush (gdb_stdout);
9952 }
9953 psymtab_to_symtab_1 (pst->dependencies[i]);
9954 }
9955
9956 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9957
9958 if (per_cu == NULL)
9959 {
9960 /* It's an include file, no symbols to read for it.
9961 Everything is in the parent symtab. */
9962 pst->readin = 1;
9963 return;
9964 }
9965
9966 dw2_do_instantiate_symtab (per_cu);
9967 }
9968
9969 /* Trivial hash function for die_info: the hash value of a DIE
9970 is its offset in .debug_info for this objfile. */
9971
9972 static hashval_t
9973 die_hash (const void *item)
9974 {
9975 const struct die_info *die = (const struct die_info *) item;
9976
9977 return to_underlying (die->sect_off);
9978 }
9979
9980 /* Trivial comparison function for die_info structures: two DIEs
9981 are equal if they have the same offset. */
9982
9983 static int
9984 die_eq (const void *item_lhs, const void *item_rhs)
9985 {
9986 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9987 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9988
9989 return die_lhs->sect_off == die_rhs->sect_off;
9990 }
9991
9992 /* die_reader_func for load_full_comp_unit.
9993 This is identical to read_signatured_type_reader,
9994 but is kept separate for now. */
9995
9996 static void
9997 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9998 const gdb_byte *info_ptr,
9999 struct die_info *comp_unit_die,
10000 int has_children,
10001 void *data)
10002 {
10003 struct dwarf2_cu *cu = reader->cu;
10004 enum language *language_ptr = (enum language *) data;
10005
10006 gdb_assert (cu->die_hash == NULL);
10007 cu->die_hash =
10008 htab_create_alloc_ex (cu->header.length / 12,
10009 die_hash,
10010 die_eq,
10011 NULL,
10012 &cu->comp_unit_obstack,
10013 hashtab_obstack_allocate,
10014 dummy_obstack_deallocate);
10015
10016 if (has_children)
10017 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10018 &info_ptr, comp_unit_die);
10019 cu->dies = comp_unit_die;
10020 /* comp_unit_die is not stored in die_hash, no need. */
10021
10022 /* We try not to read any attributes in this function, because not
10023 all CUs needed for references have been loaded yet, and symbol
10024 table processing isn't initialized. But we have to set the CU language,
10025 or we won't be able to build types correctly.
10026 Similarly, if we do not read the producer, we can not apply
10027 producer-specific interpretation. */
10028 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10029 }
10030
10031 /* Load the DIEs associated with PER_CU into memory. */
10032
10033 static void
10034 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10035 enum language pretend_language)
10036 {
10037 gdb_assert (! this_cu->is_debug_types);
10038
10039 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10040 load_full_comp_unit_reader, &pretend_language);
10041 }
10042
10043 /* Add a DIE to the delayed physname list. */
10044
10045 static void
10046 add_to_method_list (struct type *type, int fnfield_index, int index,
10047 const char *name, struct die_info *die,
10048 struct dwarf2_cu *cu)
10049 {
10050 struct delayed_method_info mi;
10051 mi.type = type;
10052 mi.fnfield_index = fnfield_index;
10053 mi.index = index;
10054 mi.name = name;
10055 mi.die = die;
10056 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
10057 }
10058
10059 /* A cleanup for freeing the delayed method list. */
10060
10061 static void
10062 free_delayed_list (void *ptr)
10063 {
10064 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
10065 if (cu->method_list != NULL)
10066 {
10067 VEC_free (delayed_method_info, cu->method_list);
10068 cu->method_list = NULL;
10069 }
10070 }
10071
10072 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10073 "const" / "volatile". If so, decrements LEN by the length of the
10074 modifier and return true. Otherwise return false. */
10075
10076 template<size_t N>
10077 static bool
10078 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10079 {
10080 size_t mod_len = sizeof (mod) - 1;
10081 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10082 {
10083 len -= mod_len;
10084 return true;
10085 }
10086 return false;
10087 }
10088
10089 /* Compute the physnames of any methods on the CU's method list.
10090
10091 The computation of method physnames is delayed in order to avoid the
10092 (bad) condition that one of the method's formal parameters is of an as yet
10093 incomplete type. */
10094
10095 static void
10096 compute_delayed_physnames (struct dwarf2_cu *cu)
10097 {
10098 int i;
10099 struct delayed_method_info *mi;
10100
10101 /* Only C++ delays computing physnames. */
10102 if (VEC_empty (delayed_method_info, cu->method_list))
10103 return;
10104 gdb_assert (cu->language == language_cplus);
10105
10106 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
10107 {
10108 const char *physname;
10109 struct fn_fieldlist *fn_flp
10110 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
10111 physname = dwarf2_physname (mi->name, mi->die, cu);
10112 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
10113 = physname ? physname : "";
10114
10115 /* Since there's no tag to indicate whether a method is a
10116 const/volatile overload, extract that information out of the
10117 demangled name. */
10118 if (physname != NULL)
10119 {
10120 size_t len = strlen (physname);
10121
10122 while (1)
10123 {
10124 if (physname[len] == ')') /* shortcut */
10125 break;
10126 else if (check_modifier (physname, len, " const"))
10127 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
10128 else if (check_modifier (physname, len, " volatile"))
10129 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
10130 else
10131 break;
10132 }
10133 }
10134 }
10135 }
10136
10137 /* Go objects should be embedded in a DW_TAG_module DIE,
10138 and it's not clear if/how imported objects will appear.
10139 To keep Go support simple until that's worked out,
10140 go back through what we've read and create something usable.
10141 We could do this while processing each DIE, and feels kinda cleaner,
10142 but that way is more invasive.
10143 This is to, for example, allow the user to type "p var" or "b main"
10144 without having to specify the package name, and allow lookups
10145 of module.object to work in contexts that use the expression
10146 parser. */
10147
10148 static void
10149 fixup_go_packaging (struct dwarf2_cu *cu)
10150 {
10151 char *package_name = NULL;
10152 struct pending *list;
10153 int i;
10154
10155 for (list = global_symbols; list != NULL; list = list->next)
10156 {
10157 for (i = 0; i < list->nsyms; ++i)
10158 {
10159 struct symbol *sym = list->symbol[i];
10160
10161 if (SYMBOL_LANGUAGE (sym) == language_go
10162 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10163 {
10164 char *this_package_name = go_symbol_package_name (sym);
10165
10166 if (this_package_name == NULL)
10167 continue;
10168 if (package_name == NULL)
10169 package_name = this_package_name;
10170 else
10171 {
10172 if (strcmp (package_name, this_package_name) != 0)
10173 complaint (&symfile_complaints,
10174 _("Symtab %s has objects from two different Go packages: %s and %s"),
10175 (symbol_symtab (sym) != NULL
10176 ? symtab_to_filename_for_display
10177 (symbol_symtab (sym))
10178 : objfile_name (cu->objfile)),
10179 this_package_name, package_name);
10180 xfree (this_package_name);
10181 }
10182 }
10183 }
10184 }
10185
10186 if (package_name != NULL)
10187 {
10188 struct objfile *objfile = cu->objfile;
10189 const char *saved_package_name
10190 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10191 package_name,
10192 strlen (package_name));
10193 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10194 saved_package_name);
10195 struct symbol *sym;
10196
10197 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10198
10199 sym = allocate_symbol (objfile);
10200 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10201 SYMBOL_SET_NAMES (sym, saved_package_name,
10202 strlen (saved_package_name), 0, objfile);
10203 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10204 e.g., "main" finds the "main" module and not C's main(). */
10205 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10206 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10207 SYMBOL_TYPE (sym) = type;
10208
10209 add_symbol_to_list (sym, &global_symbols);
10210
10211 xfree (package_name);
10212 }
10213 }
10214
10215 /* Return the symtab for PER_CU. This works properly regardless of
10216 whether we're using the index or psymtabs. */
10217
10218 static struct compunit_symtab *
10219 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10220 {
10221 return (dwarf2_per_objfile->using_index
10222 ? per_cu->v.quick->compunit_symtab
10223 : per_cu->v.psymtab->compunit_symtab);
10224 }
10225
10226 /* A helper function for computing the list of all symbol tables
10227 included by PER_CU. */
10228
10229 static void
10230 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10231 htab_t all_children, htab_t all_type_symtabs,
10232 struct dwarf2_per_cu_data *per_cu,
10233 struct compunit_symtab *immediate_parent)
10234 {
10235 void **slot;
10236 int ix;
10237 struct compunit_symtab *cust;
10238 struct dwarf2_per_cu_data *iter;
10239
10240 slot = htab_find_slot (all_children, per_cu, INSERT);
10241 if (*slot != NULL)
10242 {
10243 /* This inclusion and its children have been processed. */
10244 return;
10245 }
10246
10247 *slot = per_cu;
10248 /* Only add a CU if it has a symbol table. */
10249 cust = get_compunit_symtab (per_cu);
10250 if (cust != NULL)
10251 {
10252 /* If this is a type unit only add its symbol table if we haven't
10253 seen it yet (type unit per_cu's can share symtabs). */
10254 if (per_cu->is_debug_types)
10255 {
10256 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10257 if (*slot == NULL)
10258 {
10259 *slot = cust;
10260 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10261 if (cust->user == NULL)
10262 cust->user = immediate_parent;
10263 }
10264 }
10265 else
10266 {
10267 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10268 if (cust->user == NULL)
10269 cust->user = immediate_parent;
10270 }
10271 }
10272
10273 for (ix = 0;
10274 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10275 ++ix)
10276 {
10277 recursively_compute_inclusions (result, all_children,
10278 all_type_symtabs, iter, cust);
10279 }
10280 }
10281
10282 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10283 PER_CU. */
10284
10285 static void
10286 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10287 {
10288 gdb_assert (! per_cu->is_debug_types);
10289
10290 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10291 {
10292 int ix, len;
10293 struct dwarf2_per_cu_data *per_cu_iter;
10294 struct compunit_symtab *compunit_symtab_iter;
10295 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10296 htab_t all_children, all_type_symtabs;
10297 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10298
10299 /* If we don't have a symtab, we can just skip this case. */
10300 if (cust == NULL)
10301 return;
10302
10303 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10304 NULL, xcalloc, xfree);
10305 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10306 NULL, xcalloc, xfree);
10307
10308 for (ix = 0;
10309 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10310 ix, per_cu_iter);
10311 ++ix)
10312 {
10313 recursively_compute_inclusions (&result_symtabs, all_children,
10314 all_type_symtabs, per_cu_iter,
10315 cust);
10316 }
10317
10318 /* Now we have a transitive closure of all the included symtabs. */
10319 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10320 cust->includes
10321 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
10322 struct compunit_symtab *, len + 1);
10323 for (ix = 0;
10324 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10325 compunit_symtab_iter);
10326 ++ix)
10327 cust->includes[ix] = compunit_symtab_iter;
10328 cust->includes[len] = NULL;
10329
10330 VEC_free (compunit_symtab_ptr, result_symtabs);
10331 htab_delete (all_children);
10332 htab_delete (all_type_symtabs);
10333 }
10334 }
10335
10336 /* Compute the 'includes' field for the symtabs of all the CUs we just
10337 read. */
10338
10339 static void
10340 process_cu_includes (void)
10341 {
10342 int ix;
10343 struct dwarf2_per_cu_data *iter;
10344
10345 for (ix = 0;
10346 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10347 ix, iter);
10348 ++ix)
10349 {
10350 if (! iter->is_debug_types)
10351 compute_compunit_symtab_includes (iter);
10352 }
10353
10354 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10355 }
10356
10357 /* Generate full symbol information for PER_CU, whose DIEs have
10358 already been loaded into memory. */
10359
10360 static void
10361 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10362 enum language pretend_language)
10363 {
10364 struct dwarf2_cu *cu = per_cu->cu;
10365 struct objfile *objfile = per_cu->objfile;
10366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10367 CORE_ADDR lowpc, highpc;
10368 struct compunit_symtab *cust;
10369 struct cleanup *delayed_list_cleanup;
10370 CORE_ADDR baseaddr;
10371 struct block *static_block;
10372 CORE_ADDR addr;
10373
10374 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10375
10376 buildsym_init ();
10377 scoped_free_pendings free_pending;
10378 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10379
10380 cu->list_in_scope = &file_symbols;
10381
10382 cu->language = pretend_language;
10383 cu->language_defn = language_def (cu->language);
10384
10385 /* Do line number decoding in read_file_scope () */
10386 process_die (cu->dies, cu);
10387
10388 /* For now fudge the Go package. */
10389 if (cu->language == language_go)
10390 fixup_go_packaging (cu);
10391
10392 /* Now that we have processed all the DIEs in the CU, all the types
10393 should be complete, and it should now be safe to compute all of the
10394 physnames. */
10395 compute_delayed_physnames (cu);
10396 do_cleanups (delayed_list_cleanup);
10397
10398 /* Some compilers don't define a DW_AT_high_pc attribute for the
10399 compilation unit. If the DW_AT_high_pc is missing, synthesize
10400 it, by scanning the DIE's below the compilation unit. */
10401 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10402
10403 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10404 static_block = end_symtab_get_static_block (addr, 0, 1);
10405
10406 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10407 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10408 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10409 addrmap to help ensure it has an accurate map of pc values belonging to
10410 this comp unit. */
10411 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10412
10413 cust = end_symtab_from_static_block (static_block,
10414 SECT_OFF_TEXT (objfile), 0);
10415
10416 if (cust != NULL)
10417 {
10418 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10419
10420 /* Set symtab language to language from DW_AT_language. If the
10421 compilation is from a C file generated by language preprocessors, do
10422 not set the language if it was already deduced by start_subfile. */
10423 if (!(cu->language == language_c
10424 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10425 COMPUNIT_FILETABS (cust)->language = cu->language;
10426
10427 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10428 produce DW_AT_location with location lists but it can be possibly
10429 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10430 there were bugs in prologue debug info, fixed later in GCC-4.5
10431 by "unwind info for epilogues" patch (which is not directly related).
10432
10433 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10434 needed, it would be wrong due to missing DW_AT_producer there.
10435
10436 Still one can confuse GDB by using non-standard GCC compilation
10437 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10438 */
10439 if (cu->has_loclist && gcc_4_minor >= 5)
10440 cust->locations_valid = 1;
10441
10442 if (gcc_4_minor >= 5)
10443 cust->epilogue_unwind_valid = 1;
10444
10445 cust->call_site_htab = cu->call_site_htab;
10446 }
10447
10448 if (dwarf2_per_objfile->using_index)
10449 per_cu->v.quick->compunit_symtab = cust;
10450 else
10451 {
10452 struct partial_symtab *pst = per_cu->v.psymtab;
10453 pst->compunit_symtab = cust;
10454 pst->readin = 1;
10455 }
10456
10457 /* Push it for inclusion processing later. */
10458 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10459 }
10460
10461 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10462 already been loaded into memory. */
10463
10464 static void
10465 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10466 enum language pretend_language)
10467 {
10468 struct dwarf2_cu *cu = per_cu->cu;
10469 struct objfile *objfile = per_cu->objfile;
10470 struct compunit_symtab *cust;
10471 struct cleanup *delayed_list_cleanup;
10472 struct signatured_type *sig_type;
10473
10474 gdb_assert (per_cu->is_debug_types);
10475 sig_type = (struct signatured_type *) per_cu;
10476
10477 buildsym_init ();
10478 scoped_free_pendings free_pending;
10479 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10480
10481 cu->list_in_scope = &file_symbols;
10482
10483 cu->language = pretend_language;
10484 cu->language_defn = language_def (cu->language);
10485
10486 /* The symbol tables are set up in read_type_unit_scope. */
10487 process_die (cu->dies, cu);
10488
10489 /* For now fudge the Go package. */
10490 if (cu->language == language_go)
10491 fixup_go_packaging (cu);
10492
10493 /* Now that we have processed all the DIEs in the CU, all the types
10494 should be complete, and it should now be safe to compute all of the
10495 physnames. */
10496 compute_delayed_physnames (cu);
10497 do_cleanups (delayed_list_cleanup);
10498
10499 /* TUs share symbol tables.
10500 If this is the first TU to use this symtab, complete the construction
10501 of it with end_expandable_symtab. Otherwise, complete the addition of
10502 this TU's symbols to the existing symtab. */
10503 if (sig_type->type_unit_group->compunit_symtab == NULL)
10504 {
10505 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10506 sig_type->type_unit_group->compunit_symtab = cust;
10507
10508 if (cust != NULL)
10509 {
10510 /* Set symtab language to language from DW_AT_language. If the
10511 compilation is from a C file generated by language preprocessors,
10512 do not set the language if it was already deduced by
10513 start_subfile. */
10514 if (!(cu->language == language_c
10515 && COMPUNIT_FILETABS (cust)->language != language_c))
10516 COMPUNIT_FILETABS (cust)->language = cu->language;
10517 }
10518 }
10519 else
10520 {
10521 augment_type_symtab ();
10522 cust = sig_type->type_unit_group->compunit_symtab;
10523 }
10524
10525 if (dwarf2_per_objfile->using_index)
10526 per_cu->v.quick->compunit_symtab = cust;
10527 else
10528 {
10529 struct partial_symtab *pst = per_cu->v.psymtab;
10530 pst->compunit_symtab = cust;
10531 pst->readin = 1;
10532 }
10533 }
10534
10535 /* Process an imported unit DIE. */
10536
10537 static void
10538 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10539 {
10540 struct attribute *attr;
10541
10542 /* For now we don't handle imported units in type units. */
10543 if (cu->per_cu->is_debug_types)
10544 {
10545 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10546 " supported in type units [in module %s]"),
10547 objfile_name (cu->objfile));
10548 }
10549
10550 attr = dwarf2_attr (die, DW_AT_import, cu);
10551 if (attr != NULL)
10552 {
10553 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10554 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10555 dwarf2_per_cu_data *per_cu
10556 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
10557
10558 /* If necessary, add it to the queue and load its DIEs. */
10559 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10560 load_full_comp_unit (per_cu, cu->language);
10561
10562 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10563 per_cu);
10564 }
10565 }
10566
10567 /* RAII object that represents a process_die scope: i.e.,
10568 starts/finishes processing a DIE. */
10569 class process_die_scope
10570 {
10571 public:
10572 process_die_scope (die_info *die, dwarf2_cu *cu)
10573 : m_die (die), m_cu (cu)
10574 {
10575 /* We should only be processing DIEs not already in process. */
10576 gdb_assert (!m_die->in_process);
10577 m_die->in_process = true;
10578 }
10579
10580 ~process_die_scope ()
10581 {
10582 m_die->in_process = false;
10583
10584 /* If we're done processing the DIE for the CU that owns the line
10585 header, we don't need the line header anymore. */
10586 if (m_cu->line_header_die_owner == m_die)
10587 {
10588 delete m_cu->line_header;
10589 m_cu->line_header = NULL;
10590 m_cu->line_header_die_owner = NULL;
10591 }
10592 }
10593
10594 private:
10595 die_info *m_die;
10596 dwarf2_cu *m_cu;
10597 };
10598
10599 /* Process a die and its children. */
10600
10601 static void
10602 process_die (struct die_info *die, struct dwarf2_cu *cu)
10603 {
10604 process_die_scope scope (die, cu);
10605
10606 switch (die->tag)
10607 {
10608 case DW_TAG_padding:
10609 break;
10610 case DW_TAG_compile_unit:
10611 case DW_TAG_partial_unit:
10612 read_file_scope (die, cu);
10613 break;
10614 case DW_TAG_type_unit:
10615 read_type_unit_scope (die, cu);
10616 break;
10617 case DW_TAG_subprogram:
10618 case DW_TAG_inlined_subroutine:
10619 read_func_scope (die, cu);
10620 break;
10621 case DW_TAG_lexical_block:
10622 case DW_TAG_try_block:
10623 case DW_TAG_catch_block:
10624 read_lexical_block_scope (die, cu);
10625 break;
10626 case DW_TAG_call_site:
10627 case DW_TAG_GNU_call_site:
10628 read_call_site_scope (die, cu);
10629 break;
10630 case DW_TAG_class_type:
10631 case DW_TAG_interface_type:
10632 case DW_TAG_structure_type:
10633 case DW_TAG_union_type:
10634 process_structure_scope (die, cu);
10635 break;
10636 case DW_TAG_enumeration_type:
10637 process_enumeration_scope (die, cu);
10638 break;
10639
10640 /* These dies have a type, but processing them does not create
10641 a symbol or recurse to process the children. Therefore we can
10642 read them on-demand through read_type_die. */
10643 case DW_TAG_subroutine_type:
10644 case DW_TAG_set_type:
10645 case DW_TAG_array_type:
10646 case DW_TAG_pointer_type:
10647 case DW_TAG_ptr_to_member_type:
10648 case DW_TAG_reference_type:
10649 case DW_TAG_rvalue_reference_type:
10650 case DW_TAG_string_type:
10651 break;
10652
10653 case DW_TAG_base_type:
10654 case DW_TAG_subrange_type:
10655 case DW_TAG_typedef:
10656 /* Add a typedef symbol for the type definition, if it has a
10657 DW_AT_name. */
10658 new_symbol (die, read_type_die (die, cu), cu);
10659 break;
10660 case DW_TAG_common_block:
10661 read_common_block (die, cu);
10662 break;
10663 case DW_TAG_common_inclusion:
10664 break;
10665 case DW_TAG_namespace:
10666 cu->processing_has_namespace_info = 1;
10667 read_namespace (die, cu);
10668 break;
10669 case DW_TAG_module:
10670 cu->processing_has_namespace_info = 1;
10671 read_module (die, cu);
10672 break;
10673 case DW_TAG_imported_declaration:
10674 cu->processing_has_namespace_info = 1;
10675 if (read_namespace_alias (die, cu))
10676 break;
10677 /* The declaration is not a global namespace alias: fall through. */
10678 case DW_TAG_imported_module:
10679 cu->processing_has_namespace_info = 1;
10680 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10681 || cu->language != language_fortran))
10682 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10683 dwarf_tag_name (die->tag));
10684 read_import_statement (die, cu);
10685 break;
10686
10687 case DW_TAG_imported_unit:
10688 process_imported_unit_die (die, cu);
10689 break;
10690
10691 case DW_TAG_variable:
10692 read_variable (die, cu);
10693 break;
10694
10695 default:
10696 new_symbol (die, NULL, cu);
10697 break;
10698 }
10699 }
10700 \f
10701 /* DWARF name computation. */
10702
10703 /* A helper function for dwarf2_compute_name which determines whether DIE
10704 needs to have the name of the scope prepended to the name listed in the
10705 die. */
10706
10707 static int
10708 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10709 {
10710 struct attribute *attr;
10711
10712 switch (die->tag)
10713 {
10714 case DW_TAG_namespace:
10715 case DW_TAG_typedef:
10716 case DW_TAG_class_type:
10717 case DW_TAG_interface_type:
10718 case DW_TAG_structure_type:
10719 case DW_TAG_union_type:
10720 case DW_TAG_enumeration_type:
10721 case DW_TAG_enumerator:
10722 case DW_TAG_subprogram:
10723 case DW_TAG_inlined_subroutine:
10724 case DW_TAG_member:
10725 case DW_TAG_imported_declaration:
10726 return 1;
10727
10728 case DW_TAG_variable:
10729 case DW_TAG_constant:
10730 /* We only need to prefix "globally" visible variables. These include
10731 any variable marked with DW_AT_external or any variable that
10732 lives in a namespace. [Variables in anonymous namespaces
10733 require prefixing, but they are not DW_AT_external.] */
10734
10735 if (dwarf2_attr (die, DW_AT_specification, cu))
10736 {
10737 struct dwarf2_cu *spec_cu = cu;
10738
10739 return die_needs_namespace (die_specification (die, &spec_cu),
10740 spec_cu);
10741 }
10742
10743 attr = dwarf2_attr (die, DW_AT_external, cu);
10744 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10745 && die->parent->tag != DW_TAG_module)
10746 return 0;
10747 /* A variable in a lexical block of some kind does not need a
10748 namespace, even though in C++ such variables may be external
10749 and have a mangled name. */
10750 if (die->parent->tag == DW_TAG_lexical_block
10751 || die->parent->tag == DW_TAG_try_block
10752 || die->parent->tag == DW_TAG_catch_block
10753 || die->parent->tag == DW_TAG_subprogram)
10754 return 0;
10755 return 1;
10756
10757 default:
10758 return 0;
10759 }
10760 }
10761
10762 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10763 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10764 defined for the given DIE. */
10765
10766 static struct attribute *
10767 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10768 {
10769 struct attribute *attr;
10770
10771 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10772 if (attr == NULL)
10773 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10774
10775 return attr;
10776 }
10777
10778 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10779 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10780 defined for the given DIE. */
10781
10782 static const char *
10783 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10784 {
10785 const char *linkage_name;
10786
10787 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10788 if (linkage_name == NULL)
10789 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10790
10791 return linkage_name;
10792 }
10793
10794 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10795 compute the physname for the object, which include a method's:
10796 - formal parameters (C++),
10797 - receiver type (Go),
10798
10799 The term "physname" is a bit confusing.
10800 For C++, for example, it is the demangled name.
10801 For Go, for example, it's the mangled name.
10802
10803 For Ada, return the DIE's linkage name rather than the fully qualified
10804 name. PHYSNAME is ignored..
10805
10806 The result is allocated on the objfile_obstack and canonicalized. */
10807
10808 static const char *
10809 dwarf2_compute_name (const char *name,
10810 struct die_info *die, struct dwarf2_cu *cu,
10811 int physname)
10812 {
10813 struct objfile *objfile = cu->objfile;
10814
10815 if (name == NULL)
10816 name = dwarf2_name (die, cu);
10817
10818 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10819 but otherwise compute it by typename_concat inside GDB.
10820 FIXME: Actually this is not really true, or at least not always true.
10821 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10822 Fortran names because there is no mangling standard. So new_symbol_full
10823 will set the demangled name to the result of dwarf2_full_name, and it is
10824 the demangled name that GDB uses if it exists. */
10825 if (cu->language == language_ada
10826 || (cu->language == language_fortran && physname))
10827 {
10828 /* For Ada unit, we prefer the linkage name over the name, as
10829 the former contains the exported name, which the user expects
10830 to be able to reference. Ideally, we want the user to be able
10831 to reference this entity using either natural or linkage name,
10832 but we haven't started looking at this enhancement yet. */
10833 const char *linkage_name = dw2_linkage_name (die, cu);
10834
10835 if (linkage_name != NULL)
10836 return linkage_name;
10837 }
10838
10839 /* These are the only languages we know how to qualify names in. */
10840 if (name != NULL
10841 && (cu->language == language_cplus
10842 || cu->language == language_fortran || cu->language == language_d
10843 || cu->language == language_rust))
10844 {
10845 if (die_needs_namespace (die, cu))
10846 {
10847 const char *prefix;
10848 const char *canonical_name = NULL;
10849
10850 string_file buf;
10851
10852 prefix = determine_prefix (die, cu);
10853 if (*prefix != '\0')
10854 {
10855 char *prefixed_name = typename_concat (NULL, prefix, name,
10856 physname, cu);
10857
10858 buf.puts (prefixed_name);
10859 xfree (prefixed_name);
10860 }
10861 else
10862 buf.puts (name);
10863
10864 /* Template parameters may be specified in the DIE's DW_AT_name, or
10865 as children with DW_TAG_template_type_param or
10866 DW_TAG_value_type_param. If the latter, add them to the name
10867 here. If the name already has template parameters, then
10868 skip this step; some versions of GCC emit both, and
10869 it is more efficient to use the pre-computed name.
10870
10871 Something to keep in mind about this process: it is very
10872 unlikely, or in some cases downright impossible, to produce
10873 something that will match the mangled name of a function.
10874 If the definition of the function has the same debug info,
10875 we should be able to match up with it anyway. But fallbacks
10876 using the minimal symbol, for instance to find a method
10877 implemented in a stripped copy of libstdc++, will not work.
10878 If we do not have debug info for the definition, we will have to
10879 match them up some other way.
10880
10881 When we do name matching there is a related problem with function
10882 templates; two instantiated function templates are allowed to
10883 differ only by their return types, which we do not add here. */
10884
10885 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10886 {
10887 struct attribute *attr;
10888 struct die_info *child;
10889 int first = 1;
10890
10891 die->building_fullname = 1;
10892
10893 for (child = die->child; child != NULL; child = child->sibling)
10894 {
10895 struct type *type;
10896 LONGEST value;
10897 const gdb_byte *bytes;
10898 struct dwarf2_locexpr_baton *baton;
10899 struct value *v;
10900
10901 if (child->tag != DW_TAG_template_type_param
10902 && child->tag != DW_TAG_template_value_param)
10903 continue;
10904
10905 if (first)
10906 {
10907 buf.puts ("<");
10908 first = 0;
10909 }
10910 else
10911 buf.puts (", ");
10912
10913 attr = dwarf2_attr (child, DW_AT_type, cu);
10914 if (attr == NULL)
10915 {
10916 complaint (&symfile_complaints,
10917 _("template parameter missing DW_AT_type"));
10918 buf.puts ("UNKNOWN_TYPE");
10919 continue;
10920 }
10921 type = die_type (child, cu);
10922
10923 if (child->tag == DW_TAG_template_type_param)
10924 {
10925 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10926 continue;
10927 }
10928
10929 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10930 if (attr == NULL)
10931 {
10932 complaint (&symfile_complaints,
10933 _("template parameter missing "
10934 "DW_AT_const_value"));
10935 buf.puts ("UNKNOWN_VALUE");
10936 continue;
10937 }
10938
10939 dwarf2_const_value_attr (attr, type, name,
10940 &cu->comp_unit_obstack, cu,
10941 &value, &bytes, &baton);
10942
10943 if (TYPE_NOSIGN (type))
10944 /* GDB prints characters as NUMBER 'CHAR'. If that's
10945 changed, this can use value_print instead. */
10946 c_printchar (value, type, &buf);
10947 else
10948 {
10949 struct value_print_options opts;
10950
10951 if (baton != NULL)
10952 v = dwarf2_evaluate_loc_desc (type, NULL,
10953 baton->data,
10954 baton->size,
10955 baton->per_cu);
10956 else if (bytes != NULL)
10957 {
10958 v = allocate_value (type);
10959 memcpy (value_contents_writeable (v), bytes,
10960 TYPE_LENGTH (type));
10961 }
10962 else
10963 v = value_from_longest (type, value);
10964
10965 /* Specify decimal so that we do not depend on
10966 the radix. */
10967 get_formatted_print_options (&opts, 'd');
10968 opts.raw = 1;
10969 value_print (v, &buf, &opts);
10970 release_value (v);
10971 value_free (v);
10972 }
10973 }
10974
10975 die->building_fullname = 0;
10976
10977 if (!first)
10978 {
10979 /* Close the argument list, with a space if necessary
10980 (nested templates). */
10981 if (!buf.empty () && buf.string ().back () == '>')
10982 buf.puts (" >");
10983 else
10984 buf.puts (">");
10985 }
10986 }
10987
10988 /* For C++ methods, append formal parameter type
10989 information, if PHYSNAME. */
10990
10991 if (physname && die->tag == DW_TAG_subprogram
10992 && cu->language == language_cplus)
10993 {
10994 struct type *type = read_type_die (die, cu);
10995
10996 c_type_print_args (type, &buf, 1, cu->language,
10997 &type_print_raw_options);
10998
10999 if (cu->language == language_cplus)
11000 {
11001 /* Assume that an artificial first parameter is
11002 "this", but do not crash if it is not. RealView
11003 marks unnamed (and thus unused) parameters as
11004 artificial; there is no way to differentiate
11005 the two cases. */
11006 if (TYPE_NFIELDS (type) > 0
11007 && TYPE_FIELD_ARTIFICIAL (type, 0)
11008 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11009 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11010 0))))
11011 buf.puts (" const");
11012 }
11013 }
11014
11015 const std::string &intermediate_name = buf.string ();
11016
11017 if (cu->language == language_cplus)
11018 canonical_name
11019 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11020 &objfile->per_bfd->storage_obstack);
11021
11022 /* If we only computed INTERMEDIATE_NAME, or if
11023 INTERMEDIATE_NAME is already canonical, then we need to
11024 copy it to the appropriate obstack. */
11025 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11026 name = ((const char *)
11027 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11028 intermediate_name.c_str (),
11029 intermediate_name.length ()));
11030 else
11031 name = canonical_name;
11032 }
11033 }
11034
11035 return name;
11036 }
11037
11038 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11039 If scope qualifiers are appropriate they will be added. The result
11040 will be allocated on the storage_obstack, or NULL if the DIE does
11041 not have a name. NAME may either be from a previous call to
11042 dwarf2_name or NULL.
11043
11044 The output string will be canonicalized (if C++). */
11045
11046 static const char *
11047 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11048 {
11049 return dwarf2_compute_name (name, die, cu, 0);
11050 }
11051
11052 /* Construct a physname for the given DIE in CU. NAME may either be
11053 from a previous call to dwarf2_name or NULL. The result will be
11054 allocated on the objfile_objstack or NULL if the DIE does not have a
11055 name.
11056
11057 The output string will be canonicalized (if C++). */
11058
11059 static const char *
11060 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11061 {
11062 struct objfile *objfile = cu->objfile;
11063 const char *retval, *mangled = NULL, *canon = NULL;
11064 int need_copy = 1;
11065
11066 /* In this case dwarf2_compute_name is just a shortcut not building anything
11067 on its own. */
11068 if (!die_needs_namespace (die, cu))
11069 return dwarf2_compute_name (name, die, cu, 1);
11070
11071 mangled = dw2_linkage_name (die, cu);
11072
11073 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11074 See https://github.com/rust-lang/rust/issues/32925. */
11075 if (cu->language == language_rust && mangled != NULL
11076 && strchr (mangled, '{') != NULL)
11077 mangled = NULL;
11078
11079 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11080 has computed. */
11081 gdb::unique_xmalloc_ptr<char> demangled;
11082 if (mangled != NULL)
11083 {
11084 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
11085 type. It is easier for GDB users to search for such functions as
11086 `name(params)' than `long name(params)'. In such case the minimal
11087 symbol names do not match the full symbol names but for template
11088 functions there is never a need to look up their definition from their
11089 declaration so the only disadvantage remains the minimal symbol
11090 variant `long name(params)' does not have the proper inferior type.
11091 */
11092
11093 if (cu->language == language_go)
11094 {
11095 /* This is a lie, but we already lie to the caller new_symbol_full.
11096 new_symbol_full assumes we return the mangled name.
11097 This just undoes that lie until things are cleaned up. */
11098 }
11099 else
11100 {
11101 demangled.reset (gdb_demangle (mangled,
11102 (DMGL_PARAMS | DMGL_ANSI
11103 | DMGL_RET_DROP)));
11104 }
11105 if (demangled)
11106 canon = demangled.get ();
11107 else
11108 {
11109 canon = mangled;
11110 need_copy = 0;
11111 }
11112 }
11113
11114 if (canon == NULL || check_physname)
11115 {
11116 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11117
11118 if (canon != NULL && strcmp (physname, canon) != 0)
11119 {
11120 /* It may not mean a bug in GDB. The compiler could also
11121 compute DW_AT_linkage_name incorrectly. But in such case
11122 GDB would need to be bug-to-bug compatible. */
11123
11124 complaint (&symfile_complaints,
11125 _("Computed physname <%s> does not match demangled <%s> "
11126 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
11127 physname, canon, mangled, to_underlying (die->sect_off),
11128 objfile_name (objfile));
11129
11130 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11131 is available here - over computed PHYSNAME. It is safer
11132 against both buggy GDB and buggy compilers. */
11133
11134 retval = canon;
11135 }
11136 else
11137 {
11138 retval = physname;
11139 need_copy = 0;
11140 }
11141 }
11142 else
11143 retval = canon;
11144
11145 if (need_copy)
11146 retval = ((const char *)
11147 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11148 retval, strlen (retval)));
11149
11150 return retval;
11151 }
11152
11153 /* Inspect DIE in CU for a namespace alias. If one exists, record
11154 a new symbol for it.
11155
11156 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11157
11158 static int
11159 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11160 {
11161 struct attribute *attr;
11162
11163 /* If the die does not have a name, this is not a namespace
11164 alias. */
11165 attr = dwarf2_attr (die, DW_AT_name, cu);
11166 if (attr != NULL)
11167 {
11168 int num;
11169 struct die_info *d = die;
11170 struct dwarf2_cu *imported_cu = cu;
11171
11172 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11173 keep inspecting DIEs until we hit the underlying import. */
11174 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11175 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11176 {
11177 attr = dwarf2_attr (d, DW_AT_import, cu);
11178 if (attr == NULL)
11179 break;
11180
11181 d = follow_die_ref (d, attr, &imported_cu);
11182 if (d->tag != DW_TAG_imported_declaration)
11183 break;
11184 }
11185
11186 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11187 {
11188 complaint (&symfile_complaints,
11189 _("DIE at 0x%x has too many recursively imported "
11190 "declarations"), to_underlying (d->sect_off));
11191 return 0;
11192 }
11193
11194 if (attr != NULL)
11195 {
11196 struct type *type;
11197 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11198
11199 type = get_die_type_at_offset (sect_off, cu->per_cu);
11200 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11201 {
11202 /* This declaration is a global namespace alias. Add
11203 a symbol for it whose type is the aliased namespace. */
11204 new_symbol (die, type, cu);
11205 return 1;
11206 }
11207 }
11208 }
11209
11210 return 0;
11211 }
11212
11213 /* Return the using directives repository (global or local?) to use in the
11214 current context for LANGUAGE.
11215
11216 For Ada, imported declarations can materialize renamings, which *may* be
11217 global. However it is impossible (for now?) in DWARF to distinguish
11218 "external" imported declarations and "static" ones. As all imported
11219 declarations seem to be static in all other languages, make them all CU-wide
11220 global only in Ada. */
11221
11222 static struct using_direct **
11223 using_directives (enum language language)
11224 {
11225 if (language == language_ada && context_stack_depth == 0)
11226 return &global_using_directives;
11227 else
11228 return &local_using_directives;
11229 }
11230
11231 /* Read the import statement specified by the given die and record it. */
11232
11233 static void
11234 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11235 {
11236 struct objfile *objfile = cu->objfile;
11237 struct attribute *import_attr;
11238 struct die_info *imported_die, *child_die;
11239 struct dwarf2_cu *imported_cu;
11240 const char *imported_name;
11241 const char *imported_name_prefix;
11242 const char *canonical_name;
11243 const char *import_alias;
11244 const char *imported_declaration = NULL;
11245 const char *import_prefix;
11246 std::vector<const char *> excludes;
11247
11248 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11249 if (import_attr == NULL)
11250 {
11251 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11252 dwarf_tag_name (die->tag));
11253 return;
11254 }
11255
11256 imported_cu = cu;
11257 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11258 imported_name = dwarf2_name (imported_die, imported_cu);
11259 if (imported_name == NULL)
11260 {
11261 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11262
11263 The import in the following code:
11264 namespace A
11265 {
11266 typedef int B;
11267 }
11268
11269 int main ()
11270 {
11271 using A::B;
11272 B b;
11273 return b;
11274 }
11275
11276 ...
11277 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11278 <52> DW_AT_decl_file : 1
11279 <53> DW_AT_decl_line : 6
11280 <54> DW_AT_import : <0x75>
11281 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11282 <59> DW_AT_name : B
11283 <5b> DW_AT_decl_file : 1
11284 <5c> DW_AT_decl_line : 2
11285 <5d> DW_AT_type : <0x6e>
11286 ...
11287 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11288 <76> DW_AT_byte_size : 4
11289 <77> DW_AT_encoding : 5 (signed)
11290
11291 imports the wrong die ( 0x75 instead of 0x58 ).
11292 This case will be ignored until the gcc bug is fixed. */
11293 return;
11294 }
11295
11296 /* Figure out the local name after import. */
11297 import_alias = dwarf2_name (die, cu);
11298
11299 /* Figure out where the statement is being imported to. */
11300 import_prefix = determine_prefix (die, cu);
11301
11302 /* Figure out what the scope of the imported die is and prepend it
11303 to the name of the imported die. */
11304 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11305
11306 if (imported_die->tag != DW_TAG_namespace
11307 && imported_die->tag != DW_TAG_module)
11308 {
11309 imported_declaration = imported_name;
11310 canonical_name = imported_name_prefix;
11311 }
11312 else if (strlen (imported_name_prefix) > 0)
11313 canonical_name = obconcat (&objfile->objfile_obstack,
11314 imported_name_prefix,
11315 (cu->language == language_d ? "." : "::"),
11316 imported_name, (char *) NULL);
11317 else
11318 canonical_name = imported_name;
11319
11320 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11321 for (child_die = die->child; child_die && child_die->tag;
11322 child_die = sibling_die (child_die))
11323 {
11324 /* DWARF-4: A Fortran use statement with a “rename list” may be
11325 represented by an imported module entry with an import attribute
11326 referring to the module and owned entries corresponding to those
11327 entities that are renamed as part of being imported. */
11328
11329 if (child_die->tag != DW_TAG_imported_declaration)
11330 {
11331 complaint (&symfile_complaints,
11332 _("child DW_TAG_imported_declaration expected "
11333 "- DIE at 0x%x [in module %s]"),
11334 to_underlying (child_die->sect_off), objfile_name (objfile));
11335 continue;
11336 }
11337
11338 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11339 if (import_attr == NULL)
11340 {
11341 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11342 dwarf_tag_name (child_die->tag));
11343 continue;
11344 }
11345
11346 imported_cu = cu;
11347 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11348 &imported_cu);
11349 imported_name = dwarf2_name (imported_die, imported_cu);
11350 if (imported_name == NULL)
11351 {
11352 complaint (&symfile_complaints,
11353 _("child DW_TAG_imported_declaration has unknown "
11354 "imported name - DIE at 0x%x [in module %s]"),
11355 to_underlying (child_die->sect_off), objfile_name (objfile));
11356 continue;
11357 }
11358
11359 excludes.push_back (imported_name);
11360
11361 process_die (child_die, cu);
11362 }
11363
11364 add_using_directive (using_directives (cu->language),
11365 import_prefix,
11366 canonical_name,
11367 import_alias,
11368 imported_declaration,
11369 excludes,
11370 0,
11371 &objfile->objfile_obstack);
11372 }
11373
11374 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11375 types, but gives them a size of zero. Starting with version 14,
11376 ICC is compatible with GCC. */
11377
11378 static int
11379 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11380 {
11381 if (!cu->checked_producer)
11382 check_producer (cu);
11383
11384 return cu->producer_is_icc_lt_14;
11385 }
11386
11387 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11388 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11389 this, it was first present in GCC release 4.3.0. */
11390
11391 static int
11392 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11393 {
11394 if (!cu->checked_producer)
11395 check_producer (cu);
11396
11397 return cu->producer_is_gcc_lt_4_3;
11398 }
11399
11400 static file_and_directory
11401 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11402 {
11403 file_and_directory res;
11404
11405 /* Find the filename. Do not use dwarf2_name here, since the filename
11406 is not a source language identifier. */
11407 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11408 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11409
11410 if (res.comp_dir == NULL
11411 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11412 && IS_ABSOLUTE_PATH (res.name))
11413 {
11414 res.comp_dir_storage = ldirname (res.name);
11415 if (!res.comp_dir_storage.empty ())
11416 res.comp_dir = res.comp_dir_storage.c_str ();
11417 }
11418 if (res.comp_dir != NULL)
11419 {
11420 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11421 directory, get rid of it. */
11422 const char *cp = strchr (res.comp_dir, ':');
11423
11424 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11425 res.comp_dir = cp + 1;
11426 }
11427
11428 if (res.name == NULL)
11429 res.name = "<unknown>";
11430
11431 return res;
11432 }
11433
11434 /* Handle DW_AT_stmt_list for a compilation unit.
11435 DIE is the DW_TAG_compile_unit die for CU.
11436 COMP_DIR is the compilation directory. LOWPC is passed to
11437 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11438
11439 static void
11440 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11441 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11442 {
11443 struct objfile *objfile = dwarf2_per_objfile->objfile;
11444 struct attribute *attr;
11445 struct line_header line_header_local;
11446 hashval_t line_header_local_hash;
11447 void **slot;
11448 int decode_mapping;
11449
11450 gdb_assert (! cu->per_cu->is_debug_types);
11451
11452 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11453 if (attr == NULL)
11454 return;
11455
11456 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11457
11458 /* The line header hash table is only created if needed (it exists to
11459 prevent redundant reading of the line table for partial_units).
11460 If we're given a partial_unit, we'll need it. If we're given a
11461 compile_unit, then use the line header hash table if it's already
11462 created, but don't create one just yet. */
11463
11464 if (dwarf2_per_objfile->line_header_hash == NULL
11465 && die->tag == DW_TAG_partial_unit)
11466 {
11467 dwarf2_per_objfile->line_header_hash
11468 = htab_create_alloc_ex (127, line_header_hash_voidp,
11469 line_header_eq_voidp,
11470 free_line_header_voidp,
11471 &objfile->objfile_obstack,
11472 hashtab_obstack_allocate,
11473 dummy_obstack_deallocate);
11474 }
11475
11476 line_header_local.sect_off = line_offset;
11477 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11478 line_header_local_hash = line_header_hash (&line_header_local);
11479 if (dwarf2_per_objfile->line_header_hash != NULL)
11480 {
11481 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11482 &line_header_local,
11483 line_header_local_hash, NO_INSERT);
11484
11485 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11486 is not present in *SLOT (since if there is something in *SLOT then
11487 it will be for a partial_unit). */
11488 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11489 {
11490 gdb_assert (*slot != NULL);
11491 cu->line_header = (struct line_header *) *slot;
11492 return;
11493 }
11494 }
11495
11496 /* dwarf_decode_line_header does not yet provide sufficient information.
11497 We always have to call also dwarf_decode_lines for it. */
11498 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11499 if (lh == NULL)
11500 return;
11501
11502 cu->line_header = lh.release ();
11503 cu->line_header_die_owner = die;
11504
11505 if (dwarf2_per_objfile->line_header_hash == NULL)
11506 slot = NULL;
11507 else
11508 {
11509 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11510 &line_header_local,
11511 line_header_local_hash, INSERT);
11512 gdb_assert (slot != NULL);
11513 }
11514 if (slot != NULL && *slot == NULL)
11515 {
11516 /* This newly decoded line number information unit will be owned
11517 by line_header_hash hash table. */
11518 *slot = cu->line_header;
11519 cu->line_header_die_owner = NULL;
11520 }
11521 else
11522 {
11523 /* We cannot free any current entry in (*slot) as that struct line_header
11524 may be already used by multiple CUs. Create only temporary decoded
11525 line_header for this CU - it may happen at most once for each line
11526 number information unit. And if we're not using line_header_hash
11527 then this is what we want as well. */
11528 gdb_assert (die->tag != DW_TAG_partial_unit);
11529 }
11530 decode_mapping = (die->tag != DW_TAG_partial_unit);
11531 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11532 decode_mapping);
11533
11534 }
11535
11536 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11537
11538 static void
11539 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11540 {
11541 struct objfile *objfile = dwarf2_per_objfile->objfile;
11542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11543 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11544 CORE_ADDR highpc = ((CORE_ADDR) 0);
11545 struct attribute *attr;
11546 struct die_info *child_die;
11547 CORE_ADDR baseaddr;
11548
11549 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11550
11551 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11552
11553 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11554 from finish_block. */
11555 if (lowpc == ((CORE_ADDR) -1))
11556 lowpc = highpc;
11557 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11558
11559 file_and_directory fnd = find_file_and_directory (die, cu);
11560
11561 prepare_one_comp_unit (cu, die, cu->language);
11562
11563 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11564 standardised yet. As a workaround for the language detection we fall
11565 back to the DW_AT_producer string. */
11566 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11567 cu->language = language_opencl;
11568
11569 /* Similar hack for Go. */
11570 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11571 set_cu_language (DW_LANG_Go, cu);
11572
11573 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11574
11575 /* Decode line number information if present. We do this before
11576 processing child DIEs, so that the line header table is available
11577 for DW_AT_decl_file. */
11578 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11579
11580 /* Process all dies in compilation unit. */
11581 if (die->child != NULL)
11582 {
11583 child_die = die->child;
11584 while (child_die && child_die->tag)
11585 {
11586 process_die (child_die, cu);
11587 child_die = sibling_die (child_die);
11588 }
11589 }
11590
11591 /* Decode macro information, if present. Dwarf 2 macro information
11592 refers to information in the line number info statement program
11593 header, so we can only read it if we've read the header
11594 successfully. */
11595 attr = dwarf2_attr (die, DW_AT_macros, cu);
11596 if (attr == NULL)
11597 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11598 if (attr && cu->line_header)
11599 {
11600 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11601 complaint (&symfile_complaints,
11602 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11603
11604 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11605 }
11606 else
11607 {
11608 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11609 if (attr && cu->line_header)
11610 {
11611 unsigned int macro_offset = DW_UNSND (attr);
11612
11613 dwarf_decode_macros (cu, macro_offset, 0);
11614 }
11615 }
11616 }
11617
11618 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11619 Create the set of symtabs used by this TU, or if this TU is sharing
11620 symtabs with another TU and the symtabs have already been created
11621 then restore those symtabs in the line header.
11622 We don't need the pc/line-number mapping for type units. */
11623
11624 static void
11625 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11626 {
11627 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11628 struct type_unit_group *tu_group;
11629 int first_time;
11630 struct attribute *attr;
11631 unsigned int i;
11632 struct signatured_type *sig_type;
11633
11634 gdb_assert (per_cu->is_debug_types);
11635 sig_type = (struct signatured_type *) per_cu;
11636
11637 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11638
11639 /* If we're using .gdb_index (includes -readnow) then
11640 per_cu->type_unit_group may not have been set up yet. */
11641 if (sig_type->type_unit_group == NULL)
11642 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11643 tu_group = sig_type->type_unit_group;
11644
11645 /* If we've already processed this stmt_list there's no real need to
11646 do it again, we could fake it and just recreate the part we need
11647 (file name,index -> symtab mapping). If data shows this optimization
11648 is useful we can do it then. */
11649 first_time = tu_group->compunit_symtab == NULL;
11650
11651 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11652 debug info. */
11653 line_header_up lh;
11654 if (attr != NULL)
11655 {
11656 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11657 lh = dwarf_decode_line_header (line_offset, cu);
11658 }
11659 if (lh == NULL)
11660 {
11661 if (first_time)
11662 dwarf2_start_symtab (cu, "", NULL, 0);
11663 else
11664 {
11665 gdb_assert (tu_group->symtabs == NULL);
11666 restart_symtab (tu_group->compunit_symtab, "", 0);
11667 }
11668 return;
11669 }
11670
11671 cu->line_header = lh.release ();
11672 cu->line_header_die_owner = die;
11673
11674 if (first_time)
11675 {
11676 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11677
11678 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11679 still initializing it, and our caller (a few levels up)
11680 process_full_type_unit still needs to know if this is the first
11681 time. */
11682
11683 tu_group->num_symtabs = cu->line_header->file_names.size ();
11684 tu_group->symtabs = XNEWVEC (struct symtab *,
11685 cu->line_header->file_names.size ());
11686
11687 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11688 {
11689 file_entry &fe = cu->line_header->file_names[i];
11690
11691 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11692
11693 if (current_subfile->symtab == NULL)
11694 {
11695 /* NOTE: start_subfile will recognize when it's been
11696 passed a file it has already seen. So we can't
11697 assume there's a simple mapping from
11698 cu->line_header->file_names to subfiles, plus
11699 cu->line_header->file_names may contain dups. */
11700 current_subfile->symtab
11701 = allocate_symtab (cust, current_subfile->name);
11702 }
11703
11704 fe.symtab = current_subfile->symtab;
11705 tu_group->symtabs[i] = fe.symtab;
11706 }
11707 }
11708 else
11709 {
11710 restart_symtab (tu_group->compunit_symtab, "", 0);
11711
11712 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11713 {
11714 file_entry &fe = cu->line_header->file_names[i];
11715
11716 fe.symtab = tu_group->symtabs[i];
11717 }
11718 }
11719
11720 /* The main symtab is allocated last. Type units don't have DW_AT_name
11721 so they don't have a "real" (so to speak) symtab anyway.
11722 There is later code that will assign the main symtab to all symbols
11723 that don't have one. We need to handle the case of a symbol with a
11724 missing symtab (DW_AT_decl_file) anyway. */
11725 }
11726
11727 /* Process DW_TAG_type_unit.
11728 For TUs we want to skip the first top level sibling if it's not the
11729 actual type being defined by this TU. In this case the first top
11730 level sibling is there to provide context only. */
11731
11732 static void
11733 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11734 {
11735 struct die_info *child_die;
11736
11737 prepare_one_comp_unit (cu, die, language_minimal);
11738
11739 /* Initialize (or reinitialize) the machinery for building symtabs.
11740 We do this before processing child DIEs, so that the line header table
11741 is available for DW_AT_decl_file. */
11742 setup_type_unit_groups (die, cu);
11743
11744 if (die->child != NULL)
11745 {
11746 child_die = die->child;
11747 while (child_die && child_die->tag)
11748 {
11749 process_die (child_die, cu);
11750 child_die = sibling_die (child_die);
11751 }
11752 }
11753 }
11754 \f
11755 /* DWO/DWP files.
11756
11757 http://gcc.gnu.org/wiki/DebugFission
11758 http://gcc.gnu.org/wiki/DebugFissionDWP
11759
11760 To simplify handling of both DWO files ("object" files with the DWARF info)
11761 and DWP files (a file with the DWOs packaged up into one file), we treat
11762 DWP files as having a collection of virtual DWO files. */
11763
11764 static hashval_t
11765 hash_dwo_file (const void *item)
11766 {
11767 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11768 hashval_t hash;
11769
11770 hash = htab_hash_string (dwo_file->dwo_name);
11771 if (dwo_file->comp_dir != NULL)
11772 hash += htab_hash_string (dwo_file->comp_dir);
11773 return hash;
11774 }
11775
11776 static int
11777 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11778 {
11779 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11780 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11781
11782 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11783 return 0;
11784 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11785 return lhs->comp_dir == rhs->comp_dir;
11786 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11787 }
11788
11789 /* Allocate a hash table for DWO files. */
11790
11791 static htab_t
11792 allocate_dwo_file_hash_table (void)
11793 {
11794 struct objfile *objfile = dwarf2_per_objfile->objfile;
11795
11796 return htab_create_alloc_ex (41,
11797 hash_dwo_file,
11798 eq_dwo_file,
11799 NULL,
11800 &objfile->objfile_obstack,
11801 hashtab_obstack_allocate,
11802 dummy_obstack_deallocate);
11803 }
11804
11805 /* Lookup DWO file DWO_NAME. */
11806
11807 static void **
11808 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
11809 {
11810 struct dwo_file find_entry;
11811 void **slot;
11812
11813 if (dwarf2_per_objfile->dwo_files == NULL)
11814 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11815
11816 memset (&find_entry, 0, sizeof (find_entry));
11817 find_entry.dwo_name = dwo_name;
11818 find_entry.comp_dir = comp_dir;
11819 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11820
11821 return slot;
11822 }
11823
11824 static hashval_t
11825 hash_dwo_unit (const void *item)
11826 {
11827 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11828
11829 /* This drops the top 32 bits of the id, but is ok for a hash. */
11830 return dwo_unit->signature;
11831 }
11832
11833 static int
11834 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11835 {
11836 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11837 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11838
11839 /* The signature is assumed to be unique within the DWO file.
11840 So while object file CU dwo_id's always have the value zero,
11841 that's OK, assuming each object file DWO file has only one CU,
11842 and that's the rule for now. */
11843 return lhs->signature == rhs->signature;
11844 }
11845
11846 /* Allocate a hash table for DWO CUs,TUs.
11847 There is one of these tables for each of CUs,TUs for each DWO file. */
11848
11849 static htab_t
11850 allocate_dwo_unit_table (struct objfile *objfile)
11851 {
11852 /* Start out with a pretty small number.
11853 Generally DWO files contain only one CU and maybe some TUs. */
11854 return htab_create_alloc_ex (3,
11855 hash_dwo_unit,
11856 eq_dwo_unit,
11857 NULL,
11858 &objfile->objfile_obstack,
11859 hashtab_obstack_allocate,
11860 dummy_obstack_deallocate);
11861 }
11862
11863 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11864
11865 struct create_dwo_cu_data
11866 {
11867 struct dwo_file *dwo_file;
11868 struct dwo_unit dwo_unit;
11869 };
11870
11871 /* die_reader_func for create_dwo_cu. */
11872
11873 static void
11874 create_dwo_cu_reader (const struct die_reader_specs *reader,
11875 const gdb_byte *info_ptr,
11876 struct die_info *comp_unit_die,
11877 int has_children,
11878 void *datap)
11879 {
11880 struct dwarf2_cu *cu = reader->cu;
11881 sect_offset sect_off = cu->per_cu->sect_off;
11882 struct dwarf2_section_info *section = cu->per_cu->section;
11883 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11884 struct dwo_file *dwo_file = data->dwo_file;
11885 struct dwo_unit *dwo_unit = &data->dwo_unit;
11886 struct attribute *attr;
11887
11888 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11889 if (attr == NULL)
11890 {
11891 complaint (&symfile_complaints,
11892 _("Dwarf Error: debug entry at offset 0x%x is missing"
11893 " its dwo_id [in module %s]"),
11894 to_underlying (sect_off), dwo_file->dwo_name);
11895 return;
11896 }
11897
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = DW_UNSND (attr);
11900 dwo_unit->section = section;
11901 dwo_unit->sect_off = sect_off;
11902 dwo_unit->length = cu->per_cu->length;
11903
11904 if (dwarf_read_debug)
11905 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
11906 to_underlying (sect_off),
11907 hex_string (dwo_unit->signature));
11908 }
11909
11910 /* Create the dwo_units for the CUs in a DWO_FILE.
11911 Note: This function processes DWO files only, not DWP files. */
11912
11913 static void
11914 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
11915 htab_t &cus_htab)
11916 {
11917 struct objfile *objfile = dwarf2_per_objfile->objfile;
11918 const gdb_byte *info_ptr, *end_ptr;
11919
11920 dwarf2_read_section (objfile, &section);
11921 info_ptr = section.buffer;
11922
11923 if (info_ptr == NULL)
11924 return;
11925
11926 if (dwarf_read_debug)
11927 {
11928 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11929 get_section_name (&section),
11930 get_section_file_name (&section));
11931 }
11932
11933 end_ptr = info_ptr + section.size;
11934 while (info_ptr < end_ptr)
11935 {
11936 struct dwarf2_per_cu_data per_cu;
11937 struct create_dwo_cu_data create_dwo_cu_data;
11938 struct dwo_unit *dwo_unit;
11939 void **slot;
11940 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11941
11942 memset (&create_dwo_cu_data.dwo_unit, 0,
11943 sizeof (create_dwo_cu_data.dwo_unit));
11944 memset (&per_cu, 0, sizeof (per_cu));
11945 per_cu.objfile = objfile;
11946 per_cu.is_debug_types = 0;
11947 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11948 per_cu.section = &section;
11949 create_dwo_cu_data.dwo_file = &dwo_file;
11950
11951 init_cutu_and_read_dies_no_follow (
11952 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11953 info_ptr += per_cu.length;
11954
11955 // If the unit could not be parsed, skip it.
11956 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11957 continue;
11958
11959 if (cus_htab == NULL)
11960 cus_htab = allocate_dwo_unit_table (objfile);
11961
11962 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11963 *dwo_unit = create_dwo_cu_data.dwo_unit;
11964 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11965 gdb_assert (slot != NULL);
11966 if (*slot != NULL)
11967 {
11968 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11969 sect_offset dup_sect_off = dup_cu->sect_off;
11970
11971 complaint (&symfile_complaints,
11972 _("debug cu entry at offset 0x%x is duplicate to"
11973 " the entry at offset 0x%x, signature %s"),
11974 to_underlying (sect_off), to_underlying (dup_sect_off),
11975 hex_string (dwo_unit->signature));
11976 }
11977 *slot = (void *)dwo_unit;
11978 }
11979 }
11980
11981 /* DWP file .debug_{cu,tu}_index section format:
11982 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11983
11984 DWP Version 1:
11985
11986 Both index sections have the same format, and serve to map a 64-bit
11987 signature to a set of section numbers. Each section begins with a header,
11988 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11989 indexes, and a pool of 32-bit section numbers. The index sections will be
11990 aligned at 8-byte boundaries in the file.
11991
11992 The index section header consists of:
11993
11994 V, 32 bit version number
11995 -, 32 bits unused
11996 N, 32 bit number of compilation units or type units in the index
11997 M, 32 bit number of slots in the hash table
11998
11999 Numbers are recorded using the byte order of the application binary.
12000
12001 The hash table begins at offset 16 in the section, and consists of an array
12002 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12003 order of the application binary). Unused slots in the hash table are 0.
12004 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12005
12006 The parallel table begins immediately after the hash table
12007 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12008 array of 32-bit indexes (using the byte order of the application binary),
12009 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12010 table contains a 32-bit index into the pool of section numbers. For unused
12011 hash table slots, the corresponding entry in the parallel table will be 0.
12012
12013 The pool of section numbers begins immediately following the hash table
12014 (at offset 16 + 12 * M from the beginning of the section). The pool of
12015 section numbers consists of an array of 32-bit words (using the byte order
12016 of the application binary). Each item in the array is indexed starting
12017 from 0. The hash table entry provides the index of the first section
12018 number in the set. Additional section numbers in the set follow, and the
12019 set is terminated by a 0 entry (section number 0 is not used in ELF).
12020
12021 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12022 section must be the first entry in the set, and the .debug_abbrev.dwo must
12023 be the second entry. Other members of the set may follow in any order.
12024
12025 ---
12026
12027 DWP Version 2:
12028
12029 DWP Version 2 combines all the .debug_info, etc. sections into one,
12030 and the entries in the index tables are now offsets into these sections.
12031 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12032 section.
12033
12034 Index Section Contents:
12035 Header
12036 Hash Table of Signatures dwp_hash_table.hash_table
12037 Parallel Table of Indices dwp_hash_table.unit_table
12038 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12039 Table of Section Sizes dwp_hash_table.v2.sizes
12040
12041 The index section header consists of:
12042
12043 V, 32 bit version number
12044 L, 32 bit number of columns in the table of section offsets
12045 N, 32 bit number of compilation units or type units in the index
12046 M, 32 bit number of slots in the hash table
12047
12048 Numbers are recorded using the byte order of the application binary.
12049
12050 The hash table has the same format as version 1.
12051 The parallel table of indices has the same format as version 1,
12052 except that the entries are origin-1 indices into the table of sections
12053 offsets and the table of section sizes.
12054
12055 The table of offsets begins immediately following the parallel table
12056 (at offset 16 + 12 * M from the beginning of the section). The table is
12057 a two-dimensional array of 32-bit words (using the byte order of the
12058 application binary), with L columns and N+1 rows, in row-major order.
12059 Each row in the array is indexed starting from 0. The first row provides
12060 a key to the remaining rows: each column in this row provides an identifier
12061 for a debug section, and the offsets in the same column of subsequent rows
12062 refer to that section. The section identifiers are:
12063
12064 DW_SECT_INFO 1 .debug_info.dwo
12065 DW_SECT_TYPES 2 .debug_types.dwo
12066 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12067 DW_SECT_LINE 4 .debug_line.dwo
12068 DW_SECT_LOC 5 .debug_loc.dwo
12069 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12070 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12071 DW_SECT_MACRO 8 .debug_macro.dwo
12072
12073 The offsets provided by the CU and TU index sections are the base offsets
12074 for the contributions made by each CU or TU to the corresponding section
12075 in the package file. Each CU and TU header contains an abbrev_offset
12076 field, used to find the abbreviations table for that CU or TU within the
12077 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12078 be interpreted as relative to the base offset given in the index section.
12079 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12080 should be interpreted as relative to the base offset for .debug_line.dwo,
12081 and offsets into other debug sections obtained from DWARF attributes should
12082 also be interpreted as relative to the corresponding base offset.
12083
12084 The table of sizes begins immediately following the table of offsets.
12085 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12086 with L columns and N rows, in row-major order. Each row in the array is
12087 indexed starting from 1 (row 0 is shared by the two tables).
12088
12089 ---
12090
12091 Hash table lookup is handled the same in version 1 and 2:
12092
12093 We assume that N and M will not exceed 2^32 - 1.
12094 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12095
12096 Given a 64-bit compilation unit signature or a type signature S, an entry
12097 in the hash table is located as follows:
12098
12099 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12100 the low-order k bits all set to 1.
12101
12102 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12103
12104 3) If the hash table entry at index H matches the signature, use that
12105 entry. If the hash table entry at index H is unused (all zeroes),
12106 terminate the search: the signature is not present in the table.
12107
12108 4) Let H = (H + H') modulo M. Repeat at Step 3.
12109
12110 Because M > N and H' and M are relatively prime, the search is guaranteed
12111 to stop at an unused slot or find the match. */
12112
12113 /* Create a hash table to map DWO IDs to their CU/TU entry in
12114 .debug_{info,types}.dwo in DWP_FILE.
12115 Returns NULL if there isn't one.
12116 Note: This function processes DWP files only, not DWO files. */
12117
12118 static struct dwp_hash_table *
12119 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
12120 {
12121 struct objfile *objfile = dwarf2_per_objfile->objfile;
12122 bfd *dbfd = dwp_file->dbfd;
12123 const gdb_byte *index_ptr, *index_end;
12124 struct dwarf2_section_info *index;
12125 uint32_t version, nr_columns, nr_units, nr_slots;
12126 struct dwp_hash_table *htab;
12127
12128 if (is_debug_types)
12129 index = &dwp_file->sections.tu_index;
12130 else
12131 index = &dwp_file->sections.cu_index;
12132
12133 if (dwarf2_section_empty_p (index))
12134 return NULL;
12135 dwarf2_read_section (objfile, index);
12136
12137 index_ptr = index->buffer;
12138 index_end = index_ptr + index->size;
12139
12140 version = read_4_bytes (dbfd, index_ptr);
12141 index_ptr += 4;
12142 if (version == 2)
12143 nr_columns = read_4_bytes (dbfd, index_ptr);
12144 else
12145 nr_columns = 0;
12146 index_ptr += 4;
12147 nr_units = read_4_bytes (dbfd, index_ptr);
12148 index_ptr += 4;
12149 nr_slots = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151
12152 if (version != 1 && version != 2)
12153 {
12154 error (_("Dwarf Error: unsupported DWP file version (%s)"
12155 " [in module %s]"),
12156 pulongest (version), dwp_file->name);
12157 }
12158 if (nr_slots != (nr_slots & -nr_slots))
12159 {
12160 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12161 " is not power of 2 [in module %s]"),
12162 pulongest (nr_slots), dwp_file->name);
12163 }
12164
12165 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12166 htab->version = version;
12167 htab->nr_columns = nr_columns;
12168 htab->nr_units = nr_units;
12169 htab->nr_slots = nr_slots;
12170 htab->hash_table = index_ptr;
12171 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12172
12173 /* Exit early if the table is empty. */
12174 if (nr_slots == 0 || nr_units == 0
12175 || (version == 2 && nr_columns == 0))
12176 {
12177 /* All must be zero. */
12178 if (nr_slots != 0 || nr_units != 0
12179 || (version == 2 && nr_columns != 0))
12180 {
12181 complaint (&symfile_complaints,
12182 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12183 " all zero [in modules %s]"),
12184 dwp_file->name);
12185 }
12186 return htab;
12187 }
12188
12189 if (version == 1)
12190 {
12191 htab->section_pool.v1.indices =
12192 htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 /* It's harder to decide whether the section is too small in v1.
12194 V1 is deprecated anyway so we punt. */
12195 }
12196 else
12197 {
12198 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 int *ids = htab->section_pool.v2.section_ids;
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
12216 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12217 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
12266
12267 return htab;
12268 }
12269
12270 /* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
12274 read comes from the DWP V1 hash table, not the full ELF section table.
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278 static int
12279 locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
12281 {
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
12287 if (sections->abbrev.s.section != NULL)
12288 return 0;
12289 sections->abbrev.s.section = sectp;
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->info_or_types.s.section != NULL)
12297 return 0;
12298 sections->info_or_types.s.section = sectp;
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
12304 if (sections->line.s.section != NULL)
12305 return 0;
12306 sections->line.s.section = sectp;
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
12312 if (sections->loc.s.section != NULL)
12313 return 0;
12314 sections->loc.s.section = sectp;
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
12320 if (sections->macinfo.s.section != NULL)
12321 return 0;
12322 sections->macinfo.s.section = sectp;
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
12328 if (sections->macro.s.section != NULL)
12329 return 0;
12330 sections->macro.s.section = sectp;
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
12336 if (sections->str_offsets.s.section != NULL)
12337 return 0;
12338 sections->str_offsets.s.section = sectp;
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348 }
12349
12350 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
12354
12355 static struct dwo_unit *
12356 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
12357 uint32_t unit_index,
12358 const char *comp_dir,
12359 ULONGEST signature, int is_debug_types)
12360 {
12361 struct objfile *objfile = dwarf2_per_objfile->objfile;
12362 const struct dwp_hash_table *dwp_htab =
12363 is_debug_types ? dwp_file->tus : dwp_file->cus;
12364 bfd *dbfd = dwp_file->dbfd;
12365 const char *kind = is_debug_types ? "TU" : "CU";
12366 struct dwo_file *dwo_file;
12367 struct dwo_unit *dwo_unit;
12368 struct virtual_v1_dwo_sections sections;
12369 void **dwo_file_slot;
12370 int i;
12371
12372 gdb_assert (dwp_file->version == 1);
12373
12374 if (dwarf_read_debug)
12375 {
12376 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12377 kind,
12378 pulongest (unit_index), hex_string (signature),
12379 dwp_file->name);
12380 }
12381
12382 /* Fetch the sections of this DWO unit.
12383 Put a limit on the number of sections we look for so that bad data
12384 doesn't cause us to loop forever. */
12385
12386 #define MAX_NR_V1_DWO_SECTIONS \
12387 (1 /* .debug_info or .debug_types */ \
12388 + 1 /* .debug_abbrev */ \
12389 + 1 /* .debug_line */ \
12390 + 1 /* .debug_loc */ \
12391 + 1 /* .debug_str_offsets */ \
12392 + 1 /* .debug_macro or .debug_macinfo */ \
12393 + 1 /* trailing zero */)
12394
12395 memset (&sections, 0, sizeof (sections));
12396
12397 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12398 {
12399 asection *sectp;
12400 uint32_t section_nr =
12401 read_4_bytes (dbfd,
12402 dwp_htab->section_pool.v1.indices
12403 + (unit_index + i) * sizeof (uint32_t));
12404
12405 if (section_nr == 0)
12406 break;
12407 if (section_nr >= dwp_file->num_sections)
12408 {
12409 error (_("Dwarf Error: bad DWP hash table, section number too large"
12410 " [in module %s]"),
12411 dwp_file->name);
12412 }
12413
12414 sectp = dwp_file->elf_sections[section_nr];
12415 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12416 {
12417 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12418 " [in module %s]"),
12419 dwp_file->name);
12420 }
12421 }
12422
12423 if (i < 2
12424 || dwarf2_section_empty_p (&sections.info_or_types)
12425 || dwarf2_section_empty_p (&sections.abbrev))
12426 {
12427 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12428 " [in module %s]"),
12429 dwp_file->name);
12430 }
12431 if (i == MAX_NR_V1_DWO_SECTIONS)
12432 {
12433 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12434 " [in module %s]"),
12435 dwp_file->name);
12436 }
12437
12438 /* It's easier for the rest of the code if we fake a struct dwo_file and
12439 have dwo_unit "live" in that. At least for now.
12440
12441 The DWP file can be made up of a random collection of CUs and TUs.
12442 However, for each CU + set of TUs that came from the same original DWO
12443 file, we can combine them back into a virtual DWO file to save space
12444 (fewer struct dwo_file objects to allocate). Remember that for really
12445 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12446
12447 std::string virtual_dwo_name =
12448 string_printf ("virtual-dwo/%d-%d-%d-%d",
12449 get_section_id (&sections.abbrev),
12450 get_section_id (&sections.line),
12451 get_section_id (&sections.loc),
12452 get_section_id (&sections.str_offsets));
12453 /* Can we use an existing virtual DWO file? */
12454 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
12455 /* Create one if necessary. */
12456 if (*dwo_file_slot == NULL)
12457 {
12458 if (dwarf_read_debug)
12459 {
12460 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12461 virtual_dwo_name.c_str ());
12462 }
12463 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12464 dwo_file->dwo_name
12465 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12466 virtual_dwo_name.c_str (),
12467 virtual_dwo_name.size ());
12468 dwo_file->comp_dir = comp_dir;
12469 dwo_file->sections.abbrev = sections.abbrev;
12470 dwo_file->sections.line = sections.line;
12471 dwo_file->sections.loc = sections.loc;
12472 dwo_file->sections.macinfo = sections.macinfo;
12473 dwo_file->sections.macro = sections.macro;
12474 dwo_file->sections.str_offsets = sections.str_offsets;
12475 /* The "str" section is global to the entire DWP file. */
12476 dwo_file->sections.str = dwp_file->sections.str;
12477 /* The info or types section is assigned below to dwo_unit,
12478 there's no need to record it in dwo_file.
12479 Also, we can't simply record type sections in dwo_file because
12480 we record a pointer into the vector in dwo_unit. As we collect more
12481 types we'll grow the vector and eventually have to reallocate space
12482 for it, invalidating all copies of pointers into the previous
12483 contents. */
12484 *dwo_file_slot = dwo_file;
12485 }
12486 else
12487 {
12488 if (dwarf_read_debug)
12489 {
12490 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12491 virtual_dwo_name.c_str ());
12492 }
12493 dwo_file = (struct dwo_file *) *dwo_file_slot;
12494 }
12495
12496 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12497 dwo_unit->dwo_file = dwo_file;
12498 dwo_unit->signature = signature;
12499 dwo_unit->section =
12500 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12501 *dwo_unit->section = sections.info_or_types;
12502 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12503
12504 return dwo_unit;
12505 }
12506
12507 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12508 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12509 piece within that section used by a TU/CU, return a virtual section
12510 of just that piece. */
12511
12512 static struct dwarf2_section_info
12513 create_dwp_v2_section (struct dwarf2_section_info *section,
12514 bfd_size_type offset, bfd_size_type size)
12515 {
12516 struct dwarf2_section_info result;
12517 asection *sectp;
12518
12519 gdb_assert (section != NULL);
12520 gdb_assert (!section->is_virtual);
12521
12522 memset (&result, 0, sizeof (result));
12523 result.s.containing_section = section;
12524 result.is_virtual = 1;
12525
12526 if (size == 0)
12527 return result;
12528
12529 sectp = get_section_bfd_section (section);
12530
12531 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12532 bounds of the real section. This is a pretty-rare event, so just
12533 flag an error (easier) instead of a warning and trying to cope. */
12534 if (sectp == NULL
12535 || offset + size > bfd_get_section_size (sectp))
12536 {
12537 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12538 " in section %s [in module %s]"),
12539 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12540 objfile_name (dwarf2_per_objfile->objfile));
12541 }
12542
12543 result.virtual_offset = offset;
12544 result.size = size;
12545 return result;
12546 }
12547
12548 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12549 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12550 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12551 This is for DWP version 2 files. */
12552
12553 static struct dwo_unit *
12554 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
12555 uint32_t unit_index,
12556 const char *comp_dir,
12557 ULONGEST signature, int is_debug_types)
12558 {
12559 struct objfile *objfile = dwarf2_per_objfile->objfile;
12560 const struct dwp_hash_table *dwp_htab =
12561 is_debug_types ? dwp_file->tus : dwp_file->cus;
12562 bfd *dbfd = dwp_file->dbfd;
12563 const char *kind = is_debug_types ? "TU" : "CU";
12564 struct dwo_file *dwo_file;
12565 struct dwo_unit *dwo_unit;
12566 struct virtual_v2_dwo_sections sections;
12567 void **dwo_file_slot;
12568 int i;
12569
12570 gdb_assert (dwp_file->version == 2);
12571
12572 if (dwarf_read_debug)
12573 {
12574 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12575 kind,
12576 pulongest (unit_index), hex_string (signature),
12577 dwp_file->name);
12578 }
12579
12580 /* Fetch the section offsets of this DWO unit. */
12581
12582 memset (&sections, 0, sizeof (sections));
12583
12584 for (i = 0; i < dwp_htab->nr_columns; ++i)
12585 {
12586 uint32_t offset = read_4_bytes (dbfd,
12587 dwp_htab->section_pool.v2.offsets
12588 + (((unit_index - 1) * dwp_htab->nr_columns
12589 + i)
12590 * sizeof (uint32_t)));
12591 uint32_t size = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.sizes
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596
12597 switch (dwp_htab->section_pool.v2.section_ids[i])
12598 {
12599 case DW_SECT_INFO:
12600 case DW_SECT_TYPES:
12601 sections.info_or_types_offset = offset;
12602 sections.info_or_types_size = size;
12603 break;
12604 case DW_SECT_ABBREV:
12605 sections.abbrev_offset = offset;
12606 sections.abbrev_size = size;
12607 break;
12608 case DW_SECT_LINE:
12609 sections.line_offset = offset;
12610 sections.line_size = size;
12611 break;
12612 case DW_SECT_LOC:
12613 sections.loc_offset = offset;
12614 sections.loc_size = size;
12615 break;
12616 case DW_SECT_STR_OFFSETS:
12617 sections.str_offsets_offset = offset;
12618 sections.str_offsets_size = size;
12619 break;
12620 case DW_SECT_MACINFO:
12621 sections.macinfo_offset = offset;
12622 sections.macinfo_size = size;
12623 break;
12624 case DW_SECT_MACRO:
12625 sections.macro_offset = offset;
12626 sections.macro_size = size;
12627 break;
12628 }
12629 }
12630
12631 /* It's easier for the rest of the code if we fake a struct dwo_file and
12632 have dwo_unit "live" in that. At least for now.
12633
12634 The DWP file can be made up of a random collection of CUs and TUs.
12635 However, for each CU + set of TUs that came from the same original DWO
12636 file, we can combine them back into a virtual DWO file to save space
12637 (fewer struct dwo_file objects to allocate). Remember that for really
12638 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12639
12640 std::string virtual_dwo_name =
12641 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12642 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12643 (long) (sections.line_size ? sections.line_offset : 0),
12644 (long) (sections.loc_size ? sections.loc_offset : 0),
12645 (long) (sections.str_offsets_size
12646 ? sections.str_offsets_offset : 0));
12647 /* Can we use an existing virtual DWO file? */
12648 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
12649 /* Create one if necessary. */
12650 if (*dwo_file_slot == NULL)
12651 {
12652 if (dwarf_read_debug)
12653 {
12654 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12655 virtual_dwo_name.c_str ());
12656 }
12657 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12658 dwo_file->dwo_name
12659 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12660 virtual_dwo_name.c_str (),
12661 virtual_dwo_name.size ());
12662 dwo_file->comp_dir = comp_dir;
12663 dwo_file->sections.abbrev =
12664 create_dwp_v2_section (&dwp_file->sections.abbrev,
12665 sections.abbrev_offset, sections.abbrev_size);
12666 dwo_file->sections.line =
12667 create_dwp_v2_section (&dwp_file->sections.line,
12668 sections.line_offset, sections.line_size);
12669 dwo_file->sections.loc =
12670 create_dwp_v2_section (&dwp_file->sections.loc,
12671 sections.loc_offset, sections.loc_size);
12672 dwo_file->sections.macinfo =
12673 create_dwp_v2_section (&dwp_file->sections.macinfo,
12674 sections.macinfo_offset, sections.macinfo_size);
12675 dwo_file->sections.macro =
12676 create_dwp_v2_section (&dwp_file->sections.macro,
12677 sections.macro_offset, sections.macro_size);
12678 dwo_file->sections.str_offsets =
12679 create_dwp_v2_section (&dwp_file->sections.str_offsets,
12680 sections.str_offsets_offset,
12681 sections.str_offsets_size);
12682 /* The "str" section is global to the entire DWP file. */
12683 dwo_file->sections.str = dwp_file->sections.str;
12684 /* The info or types section is assigned below to dwo_unit,
12685 there's no need to record it in dwo_file.
12686 Also, we can't simply record type sections in dwo_file because
12687 we record a pointer into the vector in dwo_unit. As we collect more
12688 types we'll grow the vector and eventually have to reallocate space
12689 for it, invalidating all copies of pointers into the previous
12690 contents. */
12691 *dwo_file_slot = dwo_file;
12692 }
12693 else
12694 {
12695 if (dwarf_read_debug)
12696 {
12697 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12698 virtual_dwo_name.c_str ());
12699 }
12700 dwo_file = (struct dwo_file *) *dwo_file_slot;
12701 }
12702
12703 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12704 dwo_unit->dwo_file = dwo_file;
12705 dwo_unit->signature = signature;
12706 dwo_unit->section =
12707 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12708 *dwo_unit->section = create_dwp_v2_section (is_debug_types
12709 ? &dwp_file->sections.types
12710 : &dwp_file->sections.info,
12711 sections.info_or_types_offset,
12712 sections.info_or_types_size);
12713 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12714
12715 return dwo_unit;
12716 }
12717
12718 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12719 Returns NULL if the signature isn't found. */
12720
12721 static struct dwo_unit *
12722 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
12723 ULONGEST signature, int is_debug_types)
12724 {
12725 const struct dwp_hash_table *dwp_htab =
12726 is_debug_types ? dwp_file->tus : dwp_file->cus;
12727 bfd *dbfd = dwp_file->dbfd;
12728 uint32_t mask = dwp_htab->nr_slots - 1;
12729 uint32_t hash = signature & mask;
12730 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12731 unsigned int i;
12732 void **slot;
12733 struct dwo_unit find_dwo_cu;
12734
12735 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12736 find_dwo_cu.signature = signature;
12737 slot = htab_find_slot (is_debug_types
12738 ? dwp_file->loaded_tus
12739 : dwp_file->loaded_cus,
12740 &find_dwo_cu, INSERT);
12741
12742 if (*slot != NULL)
12743 return (struct dwo_unit *) *slot;
12744
12745 /* Use a for loop so that we don't loop forever on bad debug info. */
12746 for (i = 0; i < dwp_htab->nr_slots; ++i)
12747 {
12748 ULONGEST signature_in_table;
12749
12750 signature_in_table =
12751 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12752 if (signature_in_table == signature)
12753 {
12754 uint32_t unit_index =
12755 read_4_bytes (dbfd,
12756 dwp_htab->unit_table + hash * sizeof (uint32_t));
12757
12758 if (dwp_file->version == 1)
12759 {
12760 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
12761 comp_dir, signature,
12762 is_debug_types);
12763 }
12764 else
12765 {
12766 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
12767 comp_dir, signature,
12768 is_debug_types);
12769 }
12770 return (struct dwo_unit *) *slot;
12771 }
12772 if (signature_in_table == 0)
12773 return NULL;
12774 hash = (hash + hash2) & mask;
12775 }
12776
12777 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12778 " [in module %s]"),
12779 dwp_file->name);
12780 }
12781
12782 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12783 Open the file specified by FILE_NAME and hand it off to BFD for
12784 preliminary analysis. Return a newly initialized bfd *, which
12785 includes a canonicalized copy of FILE_NAME.
12786 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12787 SEARCH_CWD is true if the current directory is to be searched.
12788 It will be searched before debug-file-directory.
12789 If successful, the file is added to the bfd include table of the
12790 objfile's bfd (see gdb_bfd_record_inclusion).
12791 If unable to find/open the file, return NULL.
12792 NOTE: This function is derived from symfile_bfd_open. */
12793
12794 static gdb_bfd_ref_ptr
12795 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
12796 {
12797 int desc, flags;
12798 char *absolute_name;
12799 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12800 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12801 to debug_file_directory. */
12802 char *search_path;
12803 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12804
12805 if (search_cwd)
12806 {
12807 if (*debug_file_directory != '\0')
12808 search_path = concat (".", dirname_separator_string,
12809 debug_file_directory, (char *) NULL);
12810 else
12811 search_path = xstrdup (".");
12812 }
12813 else
12814 search_path = xstrdup (debug_file_directory);
12815
12816 flags = OPF_RETURN_REALPATH;
12817 if (is_dwp)
12818 flags |= OPF_SEARCH_IN_PATH;
12819 desc = openp (search_path, flags, file_name,
12820 O_RDONLY | O_BINARY, &absolute_name);
12821 xfree (search_path);
12822 if (desc < 0)
12823 return NULL;
12824
12825 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
12826 xfree (absolute_name);
12827 if (sym_bfd == NULL)
12828 return NULL;
12829 bfd_set_cacheable (sym_bfd.get (), 1);
12830
12831 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12832 return NULL;
12833
12834 /* Success. Record the bfd as having been included by the objfile's bfd.
12835 This is important because things like demangled_names_hash lives in the
12836 objfile's per_bfd space and may have references to things like symbol
12837 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12838 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12839
12840 return sym_bfd;
12841 }
12842
12843 /* Try to open DWO file FILE_NAME.
12844 COMP_DIR is the DW_AT_comp_dir attribute.
12845 The result is the bfd handle of the file.
12846 If there is a problem finding or opening the file, return NULL.
12847 Upon success, the canonicalized path of the file is stored in the bfd,
12848 same as symfile_bfd_open. */
12849
12850 static gdb_bfd_ref_ptr
12851 open_dwo_file (const char *file_name, const char *comp_dir)
12852 {
12853 if (IS_ABSOLUTE_PATH (file_name))
12854 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
12855
12856 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12857
12858 if (comp_dir != NULL)
12859 {
12860 char *path_to_try = concat (comp_dir, SLASH_STRING,
12861 file_name, (char *) NULL);
12862
12863 /* NOTE: If comp_dir is a relative path, this will also try the
12864 search path, which seems useful. */
12865 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
12866 1 /*search_cwd*/));
12867 xfree (path_to_try);
12868 if (abfd != NULL)
12869 return abfd;
12870 }
12871
12872 /* That didn't work, try debug-file-directory, which, despite its name,
12873 is a list of paths. */
12874
12875 if (*debug_file_directory == '\0')
12876 return NULL;
12877
12878 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
12879 }
12880
12881 /* This function is mapped across the sections and remembers the offset and
12882 size of each of the DWO debugging sections we are interested in. */
12883
12884 static void
12885 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12886 {
12887 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12888 const struct dwop_section_names *names = &dwop_section_names;
12889
12890 if (section_is_p (sectp->name, &names->abbrev_dwo))
12891 {
12892 dwo_sections->abbrev.s.section = sectp;
12893 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12894 }
12895 else if (section_is_p (sectp->name, &names->info_dwo))
12896 {
12897 dwo_sections->info.s.section = sectp;
12898 dwo_sections->info.size = bfd_get_section_size (sectp);
12899 }
12900 else if (section_is_p (sectp->name, &names->line_dwo))
12901 {
12902 dwo_sections->line.s.section = sectp;
12903 dwo_sections->line.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->loc_dwo))
12906 {
12907 dwo_sections->loc.s.section = sectp;
12908 dwo_sections->loc.size = bfd_get_section_size (sectp);
12909 }
12910 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12911 {
12912 dwo_sections->macinfo.s.section = sectp;
12913 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12914 }
12915 else if (section_is_p (sectp->name, &names->macro_dwo))
12916 {
12917 dwo_sections->macro.s.section = sectp;
12918 dwo_sections->macro.size = bfd_get_section_size (sectp);
12919 }
12920 else if (section_is_p (sectp->name, &names->str_dwo))
12921 {
12922 dwo_sections->str.s.section = sectp;
12923 dwo_sections->str.size = bfd_get_section_size (sectp);
12924 }
12925 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12926 {
12927 dwo_sections->str_offsets.s.section = sectp;
12928 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->types_dwo))
12931 {
12932 struct dwarf2_section_info type_section;
12933
12934 memset (&type_section, 0, sizeof (type_section));
12935 type_section.s.section = sectp;
12936 type_section.size = bfd_get_section_size (sectp);
12937 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12938 &type_section);
12939 }
12940 }
12941
12942 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12943 by PER_CU. This is for the non-DWP case.
12944 The result is NULL if DWO_NAME can't be found. */
12945
12946 static struct dwo_file *
12947 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12948 const char *dwo_name, const char *comp_dir)
12949 {
12950 struct objfile *objfile = dwarf2_per_objfile->objfile;
12951 struct dwo_file *dwo_file;
12952 struct cleanup *cleanups;
12953
12954 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
12955 if (dbfd == NULL)
12956 {
12957 if (dwarf_read_debug)
12958 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12959 return NULL;
12960 }
12961 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12962 dwo_file->dwo_name = dwo_name;
12963 dwo_file->comp_dir = comp_dir;
12964 dwo_file->dbfd = dbfd.release ();
12965
12966 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
12967
12968 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12969 &dwo_file->sections);
12970
12971 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
12972
12973 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
12974 dwo_file->tus);
12975
12976 discard_cleanups (cleanups);
12977
12978 if (dwarf_read_debug)
12979 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12980
12981 return dwo_file;
12982 }
12983
12984 /* This function is mapped across the sections and remembers the offset and
12985 size of each of the DWP debugging sections common to version 1 and 2 that
12986 we are interested in. */
12987
12988 static void
12989 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12990 void *dwp_file_ptr)
12991 {
12992 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12993 const struct dwop_section_names *names = &dwop_section_names;
12994 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12995
12996 /* Record the ELF section number for later lookup: this is what the
12997 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12998 gdb_assert (elf_section_nr < dwp_file->num_sections);
12999 dwp_file->elf_sections[elf_section_nr] = sectp;
13000
13001 /* Look for specific sections that we need. */
13002 if (section_is_p (sectp->name, &names->str_dwo))
13003 {
13004 dwp_file->sections.str.s.section = sectp;
13005 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13006 }
13007 else if (section_is_p (sectp->name, &names->cu_index))
13008 {
13009 dwp_file->sections.cu_index.s.section = sectp;
13010 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13011 }
13012 else if (section_is_p (sectp->name, &names->tu_index))
13013 {
13014 dwp_file->sections.tu_index.s.section = sectp;
13015 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13016 }
13017 }
13018
13019 /* This function is mapped across the sections and remembers the offset and
13020 size of each of the DWP version 2 debugging sections that we are interested
13021 in. This is split into a separate function because we don't know if we
13022 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13023
13024 static void
13025 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13026 {
13027 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13028 const struct dwop_section_names *names = &dwop_section_names;
13029 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13030
13031 /* Record the ELF section number for later lookup: this is what the
13032 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13033 gdb_assert (elf_section_nr < dwp_file->num_sections);
13034 dwp_file->elf_sections[elf_section_nr] = sectp;
13035
13036 /* Look for specific sections that we need. */
13037 if (section_is_p (sectp->name, &names->abbrev_dwo))
13038 {
13039 dwp_file->sections.abbrev.s.section = sectp;
13040 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->info_dwo))
13043 {
13044 dwp_file->sections.info.s.section = sectp;
13045 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13046 }
13047 else if (section_is_p (sectp->name, &names->line_dwo))
13048 {
13049 dwp_file->sections.line.s.section = sectp;
13050 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13051 }
13052 else if (section_is_p (sectp->name, &names->loc_dwo))
13053 {
13054 dwp_file->sections.loc.s.section = sectp;
13055 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13056 }
13057 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13058 {
13059 dwp_file->sections.macinfo.s.section = sectp;
13060 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13061 }
13062 else if (section_is_p (sectp->name, &names->macro_dwo))
13063 {
13064 dwp_file->sections.macro.s.section = sectp;
13065 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13066 }
13067 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13068 {
13069 dwp_file->sections.str_offsets.s.section = sectp;
13070 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13071 }
13072 else if (section_is_p (sectp->name, &names->types_dwo))
13073 {
13074 dwp_file->sections.types.s.section = sectp;
13075 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13076 }
13077 }
13078
13079 /* Hash function for dwp_file loaded CUs/TUs. */
13080
13081 static hashval_t
13082 hash_dwp_loaded_cutus (const void *item)
13083 {
13084 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13085
13086 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13087 return dwo_unit->signature;
13088 }
13089
13090 /* Equality function for dwp_file loaded CUs/TUs. */
13091
13092 static int
13093 eq_dwp_loaded_cutus (const void *a, const void *b)
13094 {
13095 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13096 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13097
13098 return dua->signature == dub->signature;
13099 }
13100
13101 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13102
13103 static htab_t
13104 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13105 {
13106 return htab_create_alloc_ex (3,
13107 hash_dwp_loaded_cutus,
13108 eq_dwp_loaded_cutus,
13109 NULL,
13110 &objfile->objfile_obstack,
13111 hashtab_obstack_allocate,
13112 dummy_obstack_deallocate);
13113 }
13114
13115 /* Try to open DWP file FILE_NAME.
13116 The result is the bfd handle of the file.
13117 If there is a problem finding or opening the file, return NULL.
13118 Upon success, the canonicalized path of the file is stored in the bfd,
13119 same as symfile_bfd_open. */
13120
13121 static gdb_bfd_ref_ptr
13122 open_dwp_file (const char *file_name)
13123 {
13124 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
13125 1 /*search_cwd*/));
13126 if (abfd != NULL)
13127 return abfd;
13128
13129 /* Work around upstream bug 15652.
13130 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13131 [Whether that's a "bug" is debatable, but it is getting in our way.]
13132 We have no real idea where the dwp file is, because gdb's realpath-ing
13133 of the executable's path may have discarded the needed info.
13134 [IWBN if the dwp file name was recorded in the executable, akin to
13135 .gnu_debuglink, but that doesn't exist yet.]
13136 Strip the directory from FILE_NAME and search again. */
13137 if (*debug_file_directory != '\0')
13138 {
13139 /* Don't implicitly search the current directory here.
13140 If the user wants to search "." to handle this case,
13141 it must be added to debug-file-directory. */
13142 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
13143 0 /*search_cwd*/);
13144 }
13145
13146 return NULL;
13147 }
13148
13149 /* Initialize the use of the DWP file for the current objfile.
13150 By convention the name of the DWP file is ${objfile}.dwp.
13151 The result is NULL if it can't be found. */
13152
13153 static struct dwp_file *
13154 open_and_init_dwp_file (void)
13155 {
13156 struct objfile *objfile = dwarf2_per_objfile->objfile;
13157 struct dwp_file *dwp_file;
13158
13159 /* Try to find first .dwp for the binary file before any symbolic links
13160 resolving. */
13161
13162 /* If the objfile is a debug file, find the name of the real binary
13163 file and get the name of dwp file from there. */
13164 std::string dwp_name;
13165 if (objfile->separate_debug_objfile_backlink != NULL)
13166 {
13167 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13168 const char *backlink_basename = lbasename (backlink->original_name);
13169
13170 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13171 }
13172 else
13173 dwp_name = objfile->original_name;
13174
13175 dwp_name += ".dwp";
13176
13177 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
13178 if (dbfd == NULL
13179 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13180 {
13181 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13182 dwp_name = objfile_name (objfile);
13183 dwp_name += ".dwp";
13184 dbfd = open_dwp_file (dwp_name.c_str ());
13185 }
13186
13187 if (dbfd == NULL)
13188 {
13189 if (dwarf_read_debug)
13190 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13191 return NULL;
13192 }
13193 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13194 dwp_file->name = bfd_get_filename (dbfd.get ());
13195 dwp_file->dbfd = dbfd.release ();
13196
13197 /* +1: section 0 is unused */
13198 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13199 dwp_file->elf_sections =
13200 OBSTACK_CALLOC (&objfile->objfile_obstack,
13201 dwp_file->num_sections, asection *);
13202
13203 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13204 dwp_file);
13205
13206 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
13207
13208 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
13209
13210 /* The DWP file version is stored in the hash table. Oh well. */
13211 if (dwp_file->cus && dwp_file->tus
13212 && dwp_file->cus->version != dwp_file->tus->version)
13213 {
13214 /* Technically speaking, we should try to limp along, but this is
13215 pretty bizarre. We use pulongest here because that's the established
13216 portability solution (e.g, we cannot use %u for uint32_t). */
13217 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13218 " TU version %s [in DWP file %s]"),
13219 pulongest (dwp_file->cus->version),
13220 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13221 }
13222
13223 if (dwp_file->cus)
13224 dwp_file->version = dwp_file->cus->version;
13225 else if (dwp_file->tus)
13226 dwp_file->version = dwp_file->tus->version;
13227 else
13228 dwp_file->version = 2;
13229
13230 if (dwp_file->version == 2)
13231 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13232 dwp_file);
13233
13234 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13235 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13236
13237 if (dwarf_read_debug)
13238 {
13239 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13240 fprintf_unfiltered (gdb_stdlog,
13241 " %s CUs, %s TUs\n",
13242 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13243 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13244 }
13245
13246 return dwp_file;
13247 }
13248
13249 /* Wrapper around open_and_init_dwp_file, only open it once. */
13250
13251 static struct dwp_file *
13252 get_dwp_file (void)
13253 {
13254 if (! dwarf2_per_objfile->dwp_checked)
13255 {
13256 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
13257 dwarf2_per_objfile->dwp_checked = 1;
13258 }
13259 return dwarf2_per_objfile->dwp_file;
13260 }
13261
13262 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13263 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13264 or in the DWP file for the objfile, referenced by THIS_UNIT.
13265 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13266 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13267
13268 This is called, for example, when wanting to read a variable with a
13269 complex location. Therefore we don't want to do file i/o for every call.
13270 Therefore we don't want to look for a DWO file on every call.
13271 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13272 then we check if we've already seen DWO_NAME, and only THEN do we check
13273 for a DWO file.
13274
13275 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13276 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13277
13278 static struct dwo_unit *
13279 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13280 const char *dwo_name, const char *comp_dir,
13281 ULONGEST signature, int is_debug_types)
13282 {
13283 struct objfile *objfile = dwarf2_per_objfile->objfile;
13284 const char *kind = is_debug_types ? "TU" : "CU";
13285 void **dwo_file_slot;
13286 struct dwo_file *dwo_file;
13287 struct dwp_file *dwp_file;
13288
13289 /* First see if there's a DWP file.
13290 If we have a DWP file but didn't find the DWO inside it, don't
13291 look for the original DWO file. It makes gdb behave differently
13292 depending on whether one is debugging in the build tree. */
13293
13294 dwp_file = get_dwp_file ();
13295 if (dwp_file != NULL)
13296 {
13297 const struct dwp_hash_table *dwp_htab =
13298 is_debug_types ? dwp_file->tus : dwp_file->cus;
13299
13300 if (dwp_htab != NULL)
13301 {
13302 struct dwo_unit *dwo_cutu =
13303 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
13304 signature, is_debug_types);
13305
13306 if (dwo_cutu != NULL)
13307 {
13308 if (dwarf_read_debug)
13309 {
13310 fprintf_unfiltered (gdb_stdlog,
13311 "Virtual DWO %s %s found: @%s\n",
13312 kind, hex_string (signature),
13313 host_address_to_string (dwo_cutu));
13314 }
13315 return dwo_cutu;
13316 }
13317 }
13318 }
13319 else
13320 {
13321 /* No DWP file, look for the DWO file. */
13322
13323 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
13324 if (*dwo_file_slot == NULL)
13325 {
13326 /* Read in the file and build a table of the CUs/TUs it contains. */
13327 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13328 }
13329 /* NOTE: This will be NULL if unable to open the file. */
13330 dwo_file = (struct dwo_file *) *dwo_file_slot;
13331
13332 if (dwo_file != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu = NULL;
13335
13336 if (is_debug_types && dwo_file->tus)
13337 {
13338 struct dwo_unit find_dwo_cutu;
13339
13340 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13341 find_dwo_cutu.signature = signature;
13342 dwo_cutu
13343 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13344 }
13345 else if (!is_debug_types && dwo_file->cus)
13346 {
13347 struct dwo_unit find_dwo_cutu;
13348
13349 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13350 find_dwo_cutu.signature = signature;
13351 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13352 &find_dwo_cutu);
13353 }
13354
13355 if (dwo_cutu != NULL)
13356 {
13357 if (dwarf_read_debug)
13358 {
13359 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13360 kind, dwo_name, hex_string (signature),
13361 host_address_to_string (dwo_cutu));
13362 }
13363 return dwo_cutu;
13364 }
13365 }
13366 }
13367
13368 /* We didn't find it. This could mean a dwo_id mismatch, or
13369 someone deleted the DWO/DWP file, or the search path isn't set up
13370 correctly to find the file. */
13371
13372 if (dwarf_read_debug)
13373 {
13374 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13375 kind, dwo_name, hex_string (signature));
13376 }
13377
13378 /* This is a warning and not a complaint because it can be caused by
13379 pilot error (e.g., user accidentally deleting the DWO). */
13380 {
13381 /* Print the name of the DWP file if we looked there, helps the user
13382 better diagnose the problem. */
13383 std::string dwp_text;
13384
13385 if (dwp_file != NULL)
13386 dwp_text = string_printf (" [in DWP file %s]",
13387 lbasename (dwp_file->name));
13388
13389 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
13390 " [in module %s]"),
13391 kind, dwo_name, hex_string (signature),
13392 dwp_text.c_str (),
13393 this_unit->is_debug_types ? "TU" : "CU",
13394 to_underlying (this_unit->sect_off), objfile_name (objfile));
13395 }
13396 return NULL;
13397 }
13398
13399 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13400 See lookup_dwo_cutu_unit for details. */
13401
13402 static struct dwo_unit *
13403 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13404 const char *dwo_name, const char *comp_dir,
13405 ULONGEST signature)
13406 {
13407 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13408 }
13409
13410 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13411 See lookup_dwo_cutu_unit for details. */
13412
13413 static struct dwo_unit *
13414 lookup_dwo_type_unit (struct signatured_type *this_tu,
13415 const char *dwo_name, const char *comp_dir)
13416 {
13417 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13418 }
13419
13420 /* Traversal function for queue_and_load_all_dwo_tus. */
13421
13422 static int
13423 queue_and_load_dwo_tu (void **slot, void *info)
13424 {
13425 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13426 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13427 ULONGEST signature = dwo_unit->signature;
13428 struct signatured_type *sig_type =
13429 lookup_dwo_signatured_type (per_cu->cu, signature);
13430
13431 if (sig_type != NULL)
13432 {
13433 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13434
13435 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13436 a real dependency of PER_CU on SIG_TYPE. That is detected later
13437 while processing PER_CU. */
13438 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13439 load_full_type_unit (sig_cu);
13440 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13441 }
13442
13443 return 1;
13444 }
13445
13446 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13447 The DWO may have the only definition of the type, though it may not be
13448 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13449 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13450
13451 static void
13452 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13453 {
13454 struct dwo_unit *dwo_unit;
13455 struct dwo_file *dwo_file;
13456
13457 gdb_assert (!per_cu->is_debug_types);
13458 gdb_assert (get_dwp_file () == NULL);
13459 gdb_assert (per_cu->cu != NULL);
13460
13461 dwo_unit = per_cu->cu->dwo_unit;
13462 gdb_assert (dwo_unit != NULL);
13463
13464 dwo_file = dwo_unit->dwo_file;
13465 if (dwo_file->tus != NULL)
13466 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13467 }
13468
13469 /* Free all resources associated with DWO_FILE.
13470 Close the DWO file and munmap the sections.
13471 All memory should be on the objfile obstack. */
13472
13473 static void
13474 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13475 {
13476
13477 /* Note: dbfd is NULL for virtual DWO files. */
13478 gdb_bfd_unref (dwo_file->dbfd);
13479
13480 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13481 }
13482
13483 /* Wrapper for free_dwo_file for use in cleanups. */
13484
13485 static void
13486 free_dwo_file_cleanup (void *arg)
13487 {
13488 struct dwo_file *dwo_file = (struct dwo_file *) arg;
13489 struct objfile *objfile = dwarf2_per_objfile->objfile;
13490
13491 free_dwo_file (dwo_file, objfile);
13492 }
13493
13494 /* Traversal function for free_dwo_files. */
13495
13496 static int
13497 free_dwo_file_from_slot (void **slot, void *info)
13498 {
13499 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13500 struct objfile *objfile = (struct objfile *) info;
13501
13502 free_dwo_file (dwo_file, objfile);
13503
13504 return 1;
13505 }
13506
13507 /* Free all resources associated with DWO_FILES. */
13508
13509 static void
13510 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13511 {
13512 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13513 }
13514 \f
13515 /* Read in various DIEs. */
13516
13517 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13518 Inherit only the children of the DW_AT_abstract_origin DIE not being
13519 already referenced by DW_AT_abstract_origin from the children of the
13520 current DIE. */
13521
13522 static void
13523 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13524 {
13525 struct die_info *child_die;
13526 sect_offset *offsetp;
13527 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13528 struct die_info *origin_die;
13529 /* Iterator of the ORIGIN_DIE children. */
13530 struct die_info *origin_child_die;
13531 struct attribute *attr;
13532 struct dwarf2_cu *origin_cu;
13533 struct pending **origin_previous_list_in_scope;
13534
13535 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13536 if (!attr)
13537 return;
13538
13539 /* Note that following die references may follow to a die in a
13540 different cu. */
13541
13542 origin_cu = cu;
13543 origin_die = follow_die_ref (die, attr, &origin_cu);
13544
13545 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13546 symbols in. */
13547 origin_previous_list_in_scope = origin_cu->list_in_scope;
13548 origin_cu->list_in_scope = cu->list_in_scope;
13549
13550 if (die->tag != origin_die->tag
13551 && !(die->tag == DW_TAG_inlined_subroutine
13552 && origin_die->tag == DW_TAG_subprogram))
13553 complaint (&symfile_complaints,
13554 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
13555 to_underlying (die->sect_off),
13556 to_underlying (origin_die->sect_off));
13557
13558 std::vector<sect_offset> offsets;
13559
13560 for (child_die = die->child;
13561 child_die && child_die->tag;
13562 child_die = sibling_die (child_die))
13563 {
13564 struct die_info *child_origin_die;
13565 struct dwarf2_cu *child_origin_cu;
13566
13567 /* We are trying to process concrete instance entries:
13568 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13569 it's not relevant to our analysis here. i.e. detecting DIEs that are
13570 present in the abstract instance but not referenced in the concrete
13571 one. */
13572 if (child_die->tag == DW_TAG_call_site
13573 || child_die->tag == DW_TAG_GNU_call_site)
13574 continue;
13575
13576 /* For each CHILD_DIE, find the corresponding child of
13577 ORIGIN_DIE. If there is more than one layer of
13578 DW_AT_abstract_origin, follow them all; there shouldn't be,
13579 but GCC versions at least through 4.4 generate this (GCC PR
13580 40573). */
13581 child_origin_die = child_die;
13582 child_origin_cu = cu;
13583 while (1)
13584 {
13585 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13586 child_origin_cu);
13587 if (attr == NULL)
13588 break;
13589 child_origin_die = follow_die_ref (child_origin_die, attr,
13590 &child_origin_cu);
13591 }
13592
13593 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13594 counterpart may exist. */
13595 if (child_origin_die != child_die)
13596 {
13597 if (child_die->tag != child_origin_die->tag
13598 && !(child_die->tag == DW_TAG_inlined_subroutine
13599 && child_origin_die->tag == DW_TAG_subprogram))
13600 complaint (&symfile_complaints,
13601 _("Child DIE 0x%x and its abstract origin 0x%x have "
13602 "different tags"),
13603 to_underlying (child_die->sect_off),
13604 to_underlying (child_origin_die->sect_off));
13605 if (child_origin_die->parent != origin_die)
13606 complaint (&symfile_complaints,
13607 _("Child DIE 0x%x and its abstract origin 0x%x have "
13608 "different parents"),
13609 to_underlying (child_die->sect_off),
13610 to_underlying (child_origin_die->sect_off));
13611 else
13612 offsets.push_back (child_origin_die->sect_off);
13613 }
13614 }
13615 std::sort (offsets.begin (), offsets.end ());
13616 sect_offset *offsets_end = offsets.data () + offsets.size ();
13617 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13618 if (offsetp[-1] == *offsetp)
13619 complaint (&symfile_complaints,
13620 _("Multiple children of DIE 0x%x refer "
13621 "to DIE 0x%x as their abstract origin"),
13622 to_underlying (die->sect_off), to_underlying (*offsetp));
13623
13624 offsetp = offsets.data ();
13625 origin_child_die = origin_die->child;
13626 while (origin_child_die && origin_child_die->tag)
13627 {
13628 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13629 while (offsetp < offsets_end
13630 && *offsetp < origin_child_die->sect_off)
13631 offsetp++;
13632 if (offsetp >= offsets_end
13633 || *offsetp > origin_child_die->sect_off)
13634 {
13635 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13636 Check whether we're already processing ORIGIN_CHILD_DIE.
13637 This can happen with mutually referenced abstract_origins.
13638 PR 16581. */
13639 if (!origin_child_die->in_process)
13640 process_die (origin_child_die, origin_cu);
13641 }
13642 origin_child_die = sibling_die (origin_child_die);
13643 }
13644 origin_cu->list_in_scope = origin_previous_list_in_scope;
13645 }
13646
13647 static void
13648 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13649 {
13650 struct objfile *objfile = cu->objfile;
13651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13652 struct context_stack *newobj;
13653 CORE_ADDR lowpc;
13654 CORE_ADDR highpc;
13655 struct die_info *child_die;
13656 struct attribute *attr, *call_line, *call_file;
13657 const char *name;
13658 CORE_ADDR baseaddr;
13659 struct block *block;
13660 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13661 std::vector<struct symbol *> template_args;
13662 struct template_symbol *templ_func = NULL;
13663
13664 if (inlined_func)
13665 {
13666 /* If we do not have call site information, we can't show the
13667 caller of this inlined function. That's too confusing, so
13668 only use the scope for local variables. */
13669 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13670 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13671 if (call_line == NULL || call_file == NULL)
13672 {
13673 read_lexical_block_scope (die, cu);
13674 return;
13675 }
13676 }
13677
13678 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13679
13680 name = dwarf2_name (die, cu);
13681
13682 /* Ignore functions with missing or empty names. These are actually
13683 illegal according to the DWARF standard. */
13684 if (name == NULL)
13685 {
13686 complaint (&symfile_complaints,
13687 _("missing name for subprogram DIE at %d"),
13688 to_underlying (die->sect_off));
13689 return;
13690 }
13691
13692 /* Ignore functions with missing or invalid low and high pc attributes. */
13693 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13694 <= PC_BOUNDS_INVALID)
13695 {
13696 attr = dwarf2_attr (die, DW_AT_external, cu);
13697 if (!attr || !DW_UNSND (attr))
13698 complaint (&symfile_complaints,
13699 _("cannot get low and high bounds "
13700 "for subprogram DIE at %d"),
13701 to_underlying (die->sect_off));
13702 return;
13703 }
13704
13705 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13706 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13707
13708 /* If we have any template arguments, then we must allocate a
13709 different sort of symbol. */
13710 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13711 {
13712 if (child_die->tag == DW_TAG_template_type_param
13713 || child_die->tag == DW_TAG_template_value_param)
13714 {
13715 templ_func = allocate_template_symbol (objfile);
13716 templ_func->subclass = SYMBOL_TEMPLATE;
13717 break;
13718 }
13719 }
13720
13721 newobj = push_context (0, lowpc);
13722 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
13723 (struct symbol *) templ_func);
13724
13725 /* If there is a location expression for DW_AT_frame_base, record
13726 it. */
13727 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13728 if (attr)
13729 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13730
13731 /* If there is a location for the static link, record it. */
13732 newobj->static_link = NULL;
13733 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13734 if (attr)
13735 {
13736 newobj->static_link
13737 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13738 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13739 }
13740
13741 cu->list_in_scope = &local_symbols;
13742
13743 if (die->child != NULL)
13744 {
13745 child_die = die->child;
13746 while (child_die && child_die->tag)
13747 {
13748 if (child_die->tag == DW_TAG_template_type_param
13749 || child_die->tag == DW_TAG_template_value_param)
13750 {
13751 struct symbol *arg = new_symbol (child_die, NULL, cu);
13752
13753 if (arg != NULL)
13754 template_args.push_back (arg);
13755 }
13756 else
13757 process_die (child_die, cu);
13758 child_die = sibling_die (child_die);
13759 }
13760 }
13761
13762 inherit_abstract_dies (die, cu);
13763
13764 /* If we have a DW_AT_specification, we might need to import using
13765 directives from the context of the specification DIE. See the
13766 comment in determine_prefix. */
13767 if (cu->language == language_cplus
13768 && dwarf2_attr (die, DW_AT_specification, cu))
13769 {
13770 struct dwarf2_cu *spec_cu = cu;
13771 struct die_info *spec_die = die_specification (die, &spec_cu);
13772
13773 while (spec_die)
13774 {
13775 child_die = spec_die->child;
13776 while (child_die && child_die->tag)
13777 {
13778 if (child_die->tag == DW_TAG_imported_module)
13779 process_die (child_die, spec_cu);
13780 child_die = sibling_die (child_die);
13781 }
13782
13783 /* In some cases, GCC generates specification DIEs that
13784 themselves contain DW_AT_specification attributes. */
13785 spec_die = die_specification (spec_die, &spec_cu);
13786 }
13787 }
13788
13789 newobj = pop_context ();
13790 /* Make a block for the local symbols within. */
13791 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13792 newobj->static_link, lowpc, highpc);
13793
13794 /* For C++, set the block's scope. */
13795 if ((cu->language == language_cplus
13796 || cu->language == language_fortran
13797 || cu->language == language_d
13798 || cu->language == language_rust)
13799 && cu->processing_has_namespace_info)
13800 block_set_scope (block, determine_prefix (die, cu),
13801 &objfile->objfile_obstack);
13802
13803 /* If we have address ranges, record them. */
13804 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13805
13806 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13807
13808 /* Attach template arguments to function. */
13809 if (!template_args.empty ())
13810 {
13811 gdb_assert (templ_func != NULL);
13812
13813 templ_func->n_template_arguments = template_args.size ();
13814 templ_func->template_arguments
13815 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13816 templ_func->n_template_arguments);
13817 memcpy (templ_func->template_arguments,
13818 template_args.data (),
13819 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13820 }
13821
13822 /* In C++, we can have functions nested inside functions (e.g., when
13823 a function declares a class that has methods). This means that
13824 when we finish processing a function scope, we may need to go
13825 back to building a containing block's symbol lists. */
13826 local_symbols = newobj->locals;
13827 local_using_directives = newobj->local_using_directives;
13828
13829 /* If we've finished processing a top-level function, subsequent
13830 symbols go in the file symbol list. */
13831 if (outermost_context_p ())
13832 cu->list_in_scope = &file_symbols;
13833 }
13834
13835 /* Process all the DIES contained within a lexical block scope. Start
13836 a new scope, process the dies, and then close the scope. */
13837
13838 static void
13839 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13840 {
13841 struct objfile *objfile = cu->objfile;
13842 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13843 struct context_stack *newobj;
13844 CORE_ADDR lowpc, highpc;
13845 struct die_info *child_die;
13846 CORE_ADDR baseaddr;
13847
13848 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13849
13850 /* Ignore blocks with missing or invalid low and high pc attributes. */
13851 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13852 as multiple lexical blocks? Handling children in a sane way would
13853 be nasty. Might be easier to properly extend generic blocks to
13854 describe ranges. */
13855 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13856 {
13857 case PC_BOUNDS_NOT_PRESENT:
13858 /* DW_TAG_lexical_block has no attributes, process its children as if
13859 there was no wrapping by that DW_TAG_lexical_block.
13860 GCC does no longer produces such DWARF since GCC r224161. */
13861 for (child_die = die->child;
13862 child_die != NULL && child_die->tag;
13863 child_die = sibling_die (child_die))
13864 process_die (child_die, cu);
13865 return;
13866 case PC_BOUNDS_INVALID:
13867 return;
13868 }
13869 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13870 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13871
13872 push_context (0, lowpc);
13873 if (die->child != NULL)
13874 {
13875 child_die = die->child;
13876 while (child_die && child_die->tag)
13877 {
13878 process_die (child_die, cu);
13879 child_die = sibling_die (child_die);
13880 }
13881 }
13882 inherit_abstract_dies (die, cu);
13883 newobj = pop_context ();
13884
13885 if (local_symbols != NULL || local_using_directives != NULL)
13886 {
13887 struct block *block
13888 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13889 newobj->start_addr, highpc);
13890
13891 /* Note that recording ranges after traversing children, as we
13892 do here, means that recording a parent's ranges entails
13893 walking across all its children's ranges as they appear in
13894 the address map, which is quadratic behavior.
13895
13896 It would be nicer to record the parent's ranges before
13897 traversing its children, simply overriding whatever you find
13898 there. But since we don't even decide whether to create a
13899 block until after we've traversed its children, that's hard
13900 to do. */
13901 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13902 }
13903 local_symbols = newobj->locals;
13904 local_using_directives = newobj->local_using_directives;
13905 }
13906
13907 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13908
13909 static void
13910 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13911 {
13912 struct objfile *objfile = cu->objfile;
13913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13914 CORE_ADDR pc, baseaddr;
13915 struct attribute *attr;
13916 struct call_site *call_site, call_site_local;
13917 void **slot;
13918 int nparams;
13919 struct die_info *child_die;
13920
13921 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13922
13923 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13924 if (attr == NULL)
13925 {
13926 /* This was a pre-DWARF-5 GNU extension alias
13927 for DW_AT_call_return_pc. */
13928 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13929 }
13930 if (!attr)
13931 {
13932 complaint (&symfile_complaints,
13933 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13934 "DIE 0x%x [in module %s]"),
13935 to_underlying (die->sect_off), objfile_name (objfile));
13936 return;
13937 }
13938 pc = attr_value_as_address (attr) + baseaddr;
13939 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13940
13941 if (cu->call_site_htab == NULL)
13942 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13943 NULL, &objfile->objfile_obstack,
13944 hashtab_obstack_allocate, NULL);
13945 call_site_local.pc = pc;
13946 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13947 if (*slot != NULL)
13948 {
13949 complaint (&symfile_complaints,
13950 _("Duplicate PC %s for DW_TAG_call_site "
13951 "DIE 0x%x [in module %s]"),
13952 paddress (gdbarch, pc), to_underlying (die->sect_off),
13953 objfile_name (objfile));
13954 return;
13955 }
13956
13957 /* Count parameters at the caller. */
13958
13959 nparams = 0;
13960 for (child_die = die->child; child_die && child_die->tag;
13961 child_die = sibling_die (child_die))
13962 {
13963 if (child_die->tag != DW_TAG_call_site_parameter
13964 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13965 {
13966 complaint (&symfile_complaints,
13967 _("Tag %d is not DW_TAG_call_site_parameter in "
13968 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
13969 child_die->tag, to_underlying (child_die->sect_off),
13970 objfile_name (objfile));
13971 continue;
13972 }
13973
13974 nparams++;
13975 }
13976
13977 call_site
13978 = ((struct call_site *)
13979 obstack_alloc (&objfile->objfile_obstack,
13980 sizeof (*call_site)
13981 + (sizeof (*call_site->parameter) * (nparams - 1))));
13982 *slot = call_site;
13983 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13984 call_site->pc = pc;
13985
13986 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13987 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13988 {
13989 struct die_info *func_die;
13990
13991 /* Skip also over DW_TAG_inlined_subroutine. */
13992 for (func_die = die->parent;
13993 func_die && func_die->tag != DW_TAG_subprogram
13994 && func_die->tag != DW_TAG_subroutine_type;
13995 func_die = func_die->parent);
13996
13997 /* DW_AT_call_all_calls is a superset
13998 of DW_AT_call_all_tail_calls. */
13999 if (func_die
14000 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14001 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14002 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14003 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14004 {
14005 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14006 not complete. But keep CALL_SITE for look ups via call_site_htab,
14007 both the initial caller containing the real return address PC and
14008 the final callee containing the current PC of a chain of tail
14009 calls do not need to have the tail call list complete. But any
14010 function candidate for a virtual tail call frame searched via
14011 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14012 determined unambiguously. */
14013 }
14014 else
14015 {
14016 struct type *func_type = NULL;
14017
14018 if (func_die)
14019 func_type = get_die_type (func_die, cu);
14020 if (func_type != NULL)
14021 {
14022 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14023
14024 /* Enlist this call site to the function. */
14025 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14026 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14027 }
14028 else
14029 complaint (&symfile_complaints,
14030 _("Cannot find function owning DW_TAG_call_site "
14031 "DIE 0x%x [in module %s]"),
14032 to_underlying (die->sect_off), objfile_name (objfile));
14033 }
14034 }
14035
14036 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14037 if (attr == NULL)
14038 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14039 if (attr == NULL)
14040 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14041 if (attr == NULL)
14042 {
14043 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14044 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14045 }
14046 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14047 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14048 /* Keep NULL DWARF_BLOCK. */;
14049 else if (attr_form_is_block (attr))
14050 {
14051 struct dwarf2_locexpr_baton *dlbaton;
14052
14053 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14054 dlbaton->data = DW_BLOCK (attr)->data;
14055 dlbaton->size = DW_BLOCK (attr)->size;
14056 dlbaton->per_cu = cu->per_cu;
14057
14058 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14059 }
14060 else if (attr_form_is_ref (attr))
14061 {
14062 struct dwarf2_cu *target_cu = cu;
14063 struct die_info *target_die;
14064
14065 target_die = follow_die_ref (die, attr, &target_cu);
14066 gdb_assert (target_cu->objfile == objfile);
14067 if (die_is_declaration (target_die, target_cu))
14068 {
14069 const char *target_physname;
14070
14071 /* Prefer the mangled name; otherwise compute the demangled one. */
14072 target_physname = dw2_linkage_name (target_die, target_cu);
14073 if (target_physname == NULL)
14074 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14075 if (target_physname == NULL)
14076 complaint (&symfile_complaints,
14077 _("DW_AT_call_target target DIE has invalid "
14078 "physname, for referencing DIE 0x%x [in module %s]"),
14079 to_underlying (die->sect_off), objfile_name (objfile));
14080 else
14081 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14082 }
14083 else
14084 {
14085 CORE_ADDR lowpc;
14086
14087 /* DW_AT_entry_pc should be preferred. */
14088 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14089 <= PC_BOUNDS_INVALID)
14090 complaint (&symfile_complaints,
14091 _("DW_AT_call_target target DIE has invalid "
14092 "low pc, for referencing DIE 0x%x [in module %s]"),
14093 to_underlying (die->sect_off), objfile_name (objfile));
14094 else
14095 {
14096 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14097 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14098 }
14099 }
14100 }
14101 else
14102 complaint (&symfile_complaints,
14103 _("DW_TAG_call_site DW_AT_call_target is neither "
14104 "block nor reference, for DIE 0x%x [in module %s]"),
14105 to_underlying (die->sect_off), objfile_name (objfile));
14106
14107 call_site->per_cu = cu->per_cu;
14108
14109 for (child_die = die->child;
14110 child_die && child_die->tag;
14111 child_die = sibling_die (child_die))
14112 {
14113 struct call_site_parameter *parameter;
14114 struct attribute *loc, *origin;
14115
14116 if (child_die->tag != DW_TAG_call_site_parameter
14117 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14118 {
14119 /* Already printed the complaint above. */
14120 continue;
14121 }
14122
14123 gdb_assert (call_site->parameter_count < nparams);
14124 parameter = &call_site->parameter[call_site->parameter_count];
14125
14126 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14127 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14128 register is contained in DW_AT_call_value. */
14129
14130 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14131 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14132 if (origin == NULL)
14133 {
14134 /* This was a pre-DWARF-5 GNU extension alias
14135 for DW_AT_call_parameter. */
14136 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14137 }
14138 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14139 {
14140 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14141
14142 sect_offset sect_off
14143 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14144 if (!offset_in_cu_p (&cu->header, sect_off))
14145 {
14146 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14147 binding can be done only inside one CU. Such referenced DIE
14148 therefore cannot be even moved to DW_TAG_partial_unit. */
14149 complaint (&symfile_complaints,
14150 _("DW_AT_call_parameter offset is not in CU for "
14151 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14152 to_underlying (child_die->sect_off),
14153 objfile_name (objfile));
14154 continue;
14155 }
14156 parameter->u.param_cu_off
14157 = (cu_offset) (sect_off - cu->header.sect_off);
14158 }
14159 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14160 {
14161 complaint (&symfile_complaints,
14162 _("No DW_FORM_block* DW_AT_location for "
14163 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14164 to_underlying (child_die->sect_off), objfile_name (objfile));
14165 continue;
14166 }
14167 else
14168 {
14169 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14170 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14171 if (parameter->u.dwarf_reg != -1)
14172 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14173 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14174 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14175 &parameter->u.fb_offset))
14176 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14177 else
14178 {
14179 complaint (&symfile_complaints,
14180 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14181 "for DW_FORM_block* DW_AT_location is supported for "
14182 "DW_TAG_call_site child DIE 0x%x "
14183 "[in module %s]"),
14184 to_underlying (child_die->sect_off),
14185 objfile_name (objfile));
14186 continue;
14187 }
14188 }
14189
14190 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14191 if (attr == NULL)
14192 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14193 if (!attr_form_is_block (attr))
14194 {
14195 complaint (&symfile_complaints,
14196 _("No DW_FORM_block* DW_AT_call_value for "
14197 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14198 to_underlying (child_die->sect_off),
14199 objfile_name (objfile));
14200 continue;
14201 }
14202 parameter->value = DW_BLOCK (attr)->data;
14203 parameter->value_size = DW_BLOCK (attr)->size;
14204
14205 /* Parameters are not pre-cleared by memset above. */
14206 parameter->data_value = NULL;
14207 parameter->data_value_size = 0;
14208 call_site->parameter_count++;
14209
14210 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14211 if (attr == NULL)
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14213 if (attr)
14214 {
14215 if (!attr_form_is_block (attr))
14216 complaint (&symfile_complaints,
14217 _("No DW_FORM_block* DW_AT_call_data_value for "
14218 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14219 to_underlying (child_die->sect_off),
14220 objfile_name (objfile));
14221 else
14222 {
14223 parameter->data_value = DW_BLOCK (attr)->data;
14224 parameter->data_value_size = DW_BLOCK (attr)->size;
14225 }
14226 }
14227 }
14228 }
14229
14230 /* Helper function for read_variable. If DIE represents a virtual
14231 table, then return the type of the concrete object that is
14232 associated with the virtual table. Otherwise, return NULL. */
14233
14234 static struct type *
14235 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14236 {
14237 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14238 if (attr == NULL)
14239 return NULL;
14240
14241 /* Find the type DIE. */
14242 struct die_info *type_die = NULL;
14243 struct dwarf2_cu *type_cu = cu;
14244
14245 if (attr_form_is_ref (attr))
14246 type_die = follow_die_ref (die, attr, &type_cu);
14247 if (type_die == NULL)
14248 return NULL;
14249
14250 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14251 return NULL;
14252 return die_containing_type (type_die, type_cu);
14253 }
14254
14255 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14256
14257 static void
14258 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14259 {
14260 struct rust_vtable_symbol *storage = NULL;
14261
14262 if (cu->language == language_rust)
14263 {
14264 struct type *containing_type = rust_containing_type (die, cu);
14265
14266 if (containing_type != NULL)
14267 {
14268 struct objfile *objfile = cu->objfile;
14269
14270 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14271 struct rust_vtable_symbol);
14272 initialize_objfile_symbol (storage);
14273 storage->concrete_type = containing_type;
14274 storage->subclass = SYMBOL_RUST_VTABLE;
14275 }
14276 }
14277
14278 new_symbol_full (die, NULL, cu, storage);
14279 }
14280
14281 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14282 reading .debug_rnglists.
14283 Callback's type should be:
14284 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14285 Return true if the attributes are present and valid, otherwise,
14286 return false. */
14287
14288 template <typename Callback>
14289 static bool
14290 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14291 Callback &&callback)
14292 {
14293 struct objfile *objfile = cu->objfile;
14294 bfd *obfd = objfile->obfd;
14295 /* Base address selection entry. */
14296 CORE_ADDR base;
14297 int found_base;
14298 const gdb_byte *buffer;
14299 CORE_ADDR baseaddr;
14300 bool overflow = false;
14301
14302 found_base = cu->base_known;
14303 base = cu->base_address;
14304
14305 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14306 if (offset >= dwarf2_per_objfile->rnglists.size)
14307 {
14308 complaint (&symfile_complaints,
14309 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14310 offset);
14311 return false;
14312 }
14313 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14314
14315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14316
14317 while (1)
14318 {
14319 /* Initialize it due to a false compiler warning. */
14320 CORE_ADDR range_beginning = 0, range_end = 0;
14321 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14322 + dwarf2_per_objfile->rnglists.size);
14323 unsigned int bytes_read;
14324
14325 if (buffer == buf_end)
14326 {
14327 overflow = true;
14328 break;
14329 }
14330 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14331 switch (rlet)
14332 {
14333 case DW_RLE_end_of_list:
14334 break;
14335 case DW_RLE_base_address:
14336 if (buffer + cu->header.addr_size > buf_end)
14337 {
14338 overflow = true;
14339 break;
14340 }
14341 base = read_address (obfd, buffer, cu, &bytes_read);
14342 found_base = 1;
14343 buffer += bytes_read;
14344 break;
14345 case DW_RLE_start_length:
14346 if (buffer + cu->header.addr_size > buf_end)
14347 {
14348 overflow = true;
14349 break;
14350 }
14351 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14352 buffer += bytes_read;
14353 range_end = (range_beginning
14354 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14355 buffer += bytes_read;
14356 if (buffer > buf_end)
14357 {
14358 overflow = true;
14359 break;
14360 }
14361 break;
14362 case DW_RLE_offset_pair:
14363 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14364 buffer += bytes_read;
14365 if (buffer > buf_end)
14366 {
14367 overflow = true;
14368 break;
14369 }
14370 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14371 buffer += bytes_read;
14372 if (buffer > buf_end)
14373 {
14374 overflow = true;
14375 break;
14376 }
14377 break;
14378 case DW_RLE_start_end:
14379 if (buffer + 2 * cu->header.addr_size > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14385 buffer += bytes_read;
14386 range_end = read_address (obfd, buffer, cu, &bytes_read);
14387 buffer += bytes_read;
14388 break;
14389 default:
14390 complaint (&symfile_complaints,
14391 _("Invalid .debug_rnglists data (no base address)"));
14392 return false;
14393 }
14394 if (rlet == DW_RLE_end_of_list || overflow)
14395 break;
14396 if (rlet == DW_RLE_base_address)
14397 continue;
14398
14399 if (!found_base)
14400 {
14401 /* We have no valid base address for the ranges
14402 data. */
14403 complaint (&symfile_complaints,
14404 _("Invalid .debug_rnglists data (no base address)"));
14405 return false;
14406 }
14407
14408 if (range_beginning > range_end)
14409 {
14410 /* Inverted range entries are invalid. */
14411 complaint (&symfile_complaints,
14412 _("Invalid .debug_rnglists data (inverted range)"));
14413 return false;
14414 }
14415
14416 /* Empty range entries have no effect. */
14417 if (range_beginning == range_end)
14418 continue;
14419
14420 range_beginning += base;
14421 range_end += base;
14422
14423 /* A not-uncommon case of bad debug info.
14424 Don't pollute the addrmap with bad data. */
14425 if (range_beginning + baseaddr == 0
14426 && !dwarf2_per_objfile->has_section_at_zero)
14427 {
14428 complaint (&symfile_complaints,
14429 _(".debug_rnglists entry has start address of zero"
14430 " [in module %s]"), objfile_name (objfile));
14431 continue;
14432 }
14433
14434 callback (range_beginning, range_end);
14435 }
14436
14437 if (overflow)
14438 {
14439 complaint (&symfile_complaints,
14440 _("Offset %d is not terminated "
14441 "for DW_AT_ranges attribute"),
14442 offset);
14443 return false;
14444 }
14445
14446 return true;
14447 }
14448
14449 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14450 Callback's type should be:
14451 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14452 Return 1 if the attributes are present and valid, otherwise, return 0. */
14453
14454 template <typename Callback>
14455 static int
14456 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14457 Callback &&callback)
14458 {
14459 struct objfile *objfile = cu->objfile;
14460 struct comp_unit_head *cu_header = &cu->header;
14461 bfd *obfd = objfile->obfd;
14462 unsigned int addr_size = cu_header->addr_size;
14463 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14464 /* Base address selection entry. */
14465 CORE_ADDR base;
14466 int found_base;
14467 unsigned int dummy;
14468 const gdb_byte *buffer;
14469 CORE_ADDR baseaddr;
14470
14471 if (cu_header->version >= 5)
14472 return dwarf2_rnglists_process (offset, cu, callback);
14473
14474 found_base = cu->base_known;
14475 base = cu->base_address;
14476
14477 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14478 if (offset >= dwarf2_per_objfile->ranges.size)
14479 {
14480 complaint (&symfile_complaints,
14481 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14482 offset);
14483 return 0;
14484 }
14485 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14486
14487 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14488
14489 while (1)
14490 {
14491 CORE_ADDR range_beginning, range_end;
14492
14493 range_beginning = read_address (obfd, buffer, cu, &dummy);
14494 buffer += addr_size;
14495 range_end = read_address (obfd, buffer, cu, &dummy);
14496 buffer += addr_size;
14497 offset += 2 * addr_size;
14498
14499 /* An end of list marker is a pair of zero addresses. */
14500 if (range_beginning == 0 && range_end == 0)
14501 /* Found the end of list entry. */
14502 break;
14503
14504 /* Each base address selection entry is a pair of 2 values.
14505 The first is the largest possible address, the second is
14506 the base address. Check for a base address here. */
14507 if ((range_beginning & mask) == mask)
14508 {
14509 /* If we found the largest possible address, then we already
14510 have the base address in range_end. */
14511 base = range_end;
14512 found_base = 1;
14513 continue;
14514 }
14515
14516 if (!found_base)
14517 {
14518 /* We have no valid base address for the ranges
14519 data. */
14520 complaint (&symfile_complaints,
14521 _("Invalid .debug_ranges data (no base address)"));
14522 return 0;
14523 }
14524
14525 if (range_beginning > range_end)
14526 {
14527 /* Inverted range entries are invalid. */
14528 complaint (&symfile_complaints,
14529 _("Invalid .debug_ranges data (inverted range)"));
14530 return 0;
14531 }
14532
14533 /* Empty range entries have no effect. */
14534 if (range_beginning == range_end)
14535 continue;
14536
14537 range_beginning += base;
14538 range_end += base;
14539
14540 /* A not-uncommon case of bad debug info.
14541 Don't pollute the addrmap with bad data. */
14542 if (range_beginning + baseaddr == 0
14543 && !dwarf2_per_objfile->has_section_at_zero)
14544 {
14545 complaint (&symfile_complaints,
14546 _(".debug_ranges entry has start address of zero"
14547 " [in module %s]"), objfile_name (objfile));
14548 continue;
14549 }
14550
14551 callback (range_beginning, range_end);
14552 }
14553
14554 return 1;
14555 }
14556
14557 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14558 Return 1 if the attributes are present and valid, otherwise, return 0.
14559 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14560
14561 static int
14562 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14563 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14564 struct partial_symtab *ranges_pst)
14565 {
14566 struct objfile *objfile = cu->objfile;
14567 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14568 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14569 SECT_OFF_TEXT (objfile));
14570 int low_set = 0;
14571 CORE_ADDR low = 0;
14572 CORE_ADDR high = 0;
14573 int retval;
14574
14575 retval = dwarf2_ranges_process (offset, cu,
14576 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14577 {
14578 if (ranges_pst != NULL)
14579 {
14580 CORE_ADDR lowpc;
14581 CORE_ADDR highpc;
14582
14583 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14584 range_beginning + baseaddr);
14585 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14586 range_end + baseaddr);
14587 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14588 ranges_pst);
14589 }
14590
14591 /* FIXME: This is recording everything as a low-high
14592 segment of consecutive addresses. We should have a
14593 data structure for discontiguous block ranges
14594 instead. */
14595 if (! low_set)
14596 {
14597 low = range_beginning;
14598 high = range_end;
14599 low_set = 1;
14600 }
14601 else
14602 {
14603 if (range_beginning < low)
14604 low = range_beginning;
14605 if (range_end > high)
14606 high = range_end;
14607 }
14608 });
14609 if (!retval)
14610 return 0;
14611
14612 if (! low_set)
14613 /* If the first entry is an end-of-list marker, the range
14614 describes an empty scope, i.e. no instructions. */
14615 return 0;
14616
14617 if (low_return)
14618 *low_return = low;
14619 if (high_return)
14620 *high_return = high;
14621 return 1;
14622 }
14623
14624 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14625 definition for the return value. *LOWPC and *HIGHPC are set iff
14626 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14627
14628 static enum pc_bounds_kind
14629 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14630 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14631 struct partial_symtab *pst)
14632 {
14633 struct attribute *attr;
14634 struct attribute *attr_high;
14635 CORE_ADDR low = 0;
14636 CORE_ADDR high = 0;
14637 enum pc_bounds_kind ret;
14638
14639 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14640 if (attr_high)
14641 {
14642 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14643 if (attr)
14644 {
14645 low = attr_value_as_address (attr);
14646 high = attr_value_as_address (attr_high);
14647 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14648 high += low;
14649 }
14650 else
14651 /* Found high w/o low attribute. */
14652 return PC_BOUNDS_INVALID;
14653
14654 /* Found consecutive range of addresses. */
14655 ret = PC_BOUNDS_HIGH_LOW;
14656 }
14657 else
14658 {
14659 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14660 if (attr != NULL)
14661 {
14662 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14663 We take advantage of the fact that DW_AT_ranges does not appear
14664 in DW_TAG_compile_unit of DWO files. */
14665 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14666 unsigned int ranges_offset = (DW_UNSND (attr)
14667 + (need_ranges_base
14668 ? cu->ranges_base
14669 : 0));
14670
14671 /* Value of the DW_AT_ranges attribute is the offset in the
14672 .debug_ranges section. */
14673 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14674 return PC_BOUNDS_INVALID;
14675 /* Found discontinuous range of addresses. */
14676 ret = PC_BOUNDS_RANGES;
14677 }
14678 else
14679 return PC_BOUNDS_NOT_PRESENT;
14680 }
14681
14682 /* read_partial_die has also the strict LOW < HIGH requirement. */
14683 if (high <= low)
14684 return PC_BOUNDS_INVALID;
14685
14686 /* When using the GNU linker, .gnu.linkonce. sections are used to
14687 eliminate duplicate copies of functions and vtables and such.
14688 The linker will arbitrarily choose one and discard the others.
14689 The AT_*_pc values for such functions refer to local labels in
14690 these sections. If the section from that file was discarded, the
14691 labels are not in the output, so the relocs get a value of 0.
14692 If this is a discarded function, mark the pc bounds as invalid,
14693 so that GDB will ignore it. */
14694 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14695 return PC_BOUNDS_INVALID;
14696
14697 *lowpc = low;
14698 if (highpc)
14699 *highpc = high;
14700 return ret;
14701 }
14702
14703 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14704 its low and high PC addresses. Do nothing if these addresses could not
14705 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14706 and HIGHPC to the high address if greater than HIGHPC. */
14707
14708 static void
14709 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14710 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14711 struct dwarf2_cu *cu)
14712 {
14713 CORE_ADDR low, high;
14714 struct die_info *child = die->child;
14715
14716 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14717 {
14718 *lowpc = std::min (*lowpc, low);
14719 *highpc = std::max (*highpc, high);
14720 }
14721
14722 /* If the language does not allow nested subprograms (either inside
14723 subprograms or lexical blocks), we're done. */
14724 if (cu->language != language_ada)
14725 return;
14726
14727 /* Check all the children of the given DIE. If it contains nested
14728 subprograms, then check their pc bounds. Likewise, we need to
14729 check lexical blocks as well, as they may also contain subprogram
14730 definitions. */
14731 while (child && child->tag)
14732 {
14733 if (child->tag == DW_TAG_subprogram
14734 || child->tag == DW_TAG_lexical_block)
14735 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14736 child = sibling_die (child);
14737 }
14738 }
14739
14740 /* Get the low and high pc's represented by the scope DIE, and store
14741 them in *LOWPC and *HIGHPC. If the correct values can't be
14742 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14743
14744 static void
14745 get_scope_pc_bounds (struct die_info *die,
14746 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14747 struct dwarf2_cu *cu)
14748 {
14749 CORE_ADDR best_low = (CORE_ADDR) -1;
14750 CORE_ADDR best_high = (CORE_ADDR) 0;
14751 CORE_ADDR current_low, current_high;
14752
14753 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14754 >= PC_BOUNDS_RANGES)
14755 {
14756 best_low = current_low;
14757 best_high = current_high;
14758 }
14759 else
14760 {
14761 struct die_info *child = die->child;
14762
14763 while (child && child->tag)
14764 {
14765 switch (child->tag) {
14766 case DW_TAG_subprogram:
14767 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14768 break;
14769 case DW_TAG_namespace:
14770 case DW_TAG_module:
14771 /* FIXME: carlton/2004-01-16: Should we do this for
14772 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14773 that current GCC's always emit the DIEs corresponding
14774 to definitions of methods of classes as children of a
14775 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14776 the DIEs giving the declarations, which could be
14777 anywhere). But I don't see any reason why the
14778 standards says that they have to be there. */
14779 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14780
14781 if (current_low != ((CORE_ADDR) -1))
14782 {
14783 best_low = std::min (best_low, current_low);
14784 best_high = std::max (best_high, current_high);
14785 }
14786 break;
14787 default:
14788 /* Ignore. */
14789 break;
14790 }
14791
14792 child = sibling_die (child);
14793 }
14794 }
14795
14796 *lowpc = best_low;
14797 *highpc = best_high;
14798 }
14799
14800 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14801 in DIE. */
14802
14803 static void
14804 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14805 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14806 {
14807 struct objfile *objfile = cu->objfile;
14808 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14809 struct attribute *attr;
14810 struct attribute *attr_high;
14811
14812 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14813 if (attr_high)
14814 {
14815 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14816 if (attr)
14817 {
14818 CORE_ADDR low = attr_value_as_address (attr);
14819 CORE_ADDR high = attr_value_as_address (attr_high);
14820
14821 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14822 high += low;
14823
14824 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14825 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14826 record_block_range (block, low, high - 1);
14827 }
14828 }
14829
14830 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14831 if (attr)
14832 {
14833 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14834 We take advantage of the fact that DW_AT_ranges does not appear
14835 in DW_TAG_compile_unit of DWO files. */
14836 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14837
14838 /* The value of the DW_AT_ranges attribute is the offset of the
14839 address range list in the .debug_ranges section. */
14840 unsigned long offset = (DW_UNSND (attr)
14841 + (need_ranges_base ? cu->ranges_base : 0));
14842 const gdb_byte *buffer;
14843
14844 /* For some target architectures, but not others, the
14845 read_address function sign-extends the addresses it returns.
14846 To recognize base address selection entries, we need a
14847 mask. */
14848 unsigned int addr_size = cu->header.addr_size;
14849 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14850
14851 /* The base address, to which the next pair is relative. Note
14852 that this 'base' is a DWARF concept: most entries in a range
14853 list are relative, to reduce the number of relocs against the
14854 debugging information. This is separate from this function's
14855 'baseaddr' argument, which GDB uses to relocate debugging
14856 information from a shared library based on the address at
14857 which the library was loaded. */
14858 CORE_ADDR base = cu->base_address;
14859 int base_known = cu->base_known;
14860
14861 dwarf2_ranges_process (offset, cu,
14862 [&] (CORE_ADDR start, CORE_ADDR end)
14863 {
14864 start += baseaddr;
14865 end += baseaddr;
14866 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14867 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14868 record_block_range (block, start, end - 1);
14869 });
14870 }
14871 }
14872
14873 /* Check whether the producer field indicates either of GCC < 4.6, or the
14874 Intel C/C++ compiler, and cache the result in CU. */
14875
14876 static void
14877 check_producer (struct dwarf2_cu *cu)
14878 {
14879 int major, minor;
14880
14881 if (cu->producer == NULL)
14882 {
14883 /* For unknown compilers expect their behavior is DWARF version
14884 compliant.
14885
14886 GCC started to support .debug_types sections by -gdwarf-4 since
14887 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14888 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14889 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14890 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14891 }
14892 else if (producer_is_gcc (cu->producer, &major, &minor))
14893 {
14894 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14895 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14896 }
14897 else if (producer_is_icc (cu->producer, &major, &minor))
14898 cu->producer_is_icc_lt_14 = major < 14;
14899 else
14900 {
14901 /* For other non-GCC compilers, expect their behavior is DWARF version
14902 compliant. */
14903 }
14904
14905 cu->checked_producer = 1;
14906 }
14907
14908 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14909 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14910 during 4.6.0 experimental. */
14911
14912 static int
14913 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14914 {
14915 if (!cu->checked_producer)
14916 check_producer (cu);
14917
14918 return cu->producer_is_gxx_lt_4_6;
14919 }
14920
14921 /* Return the default accessibility type if it is not overriden by
14922 DW_AT_accessibility. */
14923
14924 static enum dwarf_access_attribute
14925 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14926 {
14927 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14928 {
14929 /* The default DWARF 2 accessibility for members is public, the default
14930 accessibility for inheritance is private. */
14931
14932 if (die->tag != DW_TAG_inheritance)
14933 return DW_ACCESS_public;
14934 else
14935 return DW_ACCESS_private;
14936 }
14937 else
14938 {
14939 /* DWARF 3+ defines the default accessibility a different way. The same
14940 rules apply now for DW_TAG_inheritance as for the members and it only
14941 depends on the container kind. */
14942
14943 if (die->parent->tag == DW_TAG_class_type)
14944 return DW_ACCESS_private;
14945 else
14946 return DW_ACCESS_public;
14947 }
14948 }
14949
14950 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14951 offset. If the attribute was not found return 0, otherwise return
14952 1. If it was found but could not properly be handled, set *OFFSET
14953 to 0. */
14954
14955 static int
14956 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14957 LONGEST *offset)
14958 {
14959 struct attribute *attr;
14960
14961 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14962 if (attr != NULL)
14963 {
14964 *offset = 0;
14965
14966 /* Note that we do not check for a section offset first here.
14967 This is because DW_AT_data_member_location is new in DWARF 4,
14968 so if we see it, we can assume that a constant form is really
14969 a constant and not a section offset. */
14970 if (attr_form_is_constant (attr))
14971 *offset = dwarf2_get_attr_constant_value (attr, 0);
14972 else if (attr_form_is_section_offset (attr))
14973 dwarf2_complex_location_expr_complaint ();
14974 else if (attr_form_is_block (attr))
14975 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14976 else
14977 dwarf2_complex_location_expr_complaint ();
14978
14979 return 1;
14980 }
14981
14982 return 0;
14983 }
14984
14985 /* Add an aggregate field to the field list. */
14986
14987 static void
14988 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14989 struct dwarf2_cu *cu)
14990 {
14991 struct objfile *objfile = cu->objfile;
14992 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14993 struct nextfield *new_field;
14994 struct attribute *attr;
14995 struct field *fp;
14996 const char *fieldname = "";
14997
14998 /* Allocate a new field list entry and link it in. */
14999 new_field = XNEW (struct nextfield);
15000 make_cleanup (xfree, new_field);
15001 memset (new_field, 0, sizeof (struct nextfield));
15002
15003 if (die->tag == DW_TAG_inheritance)
15004 {
15005 new_field->next = fip->baseclasses;
15006 fip->baseclasses = new_field;
15007 }
15008 else
15009 {
15010 new_field->next = fip->fields;
15011 fip->fields = new_field;
15012 }
15013 fip->nfields++;
15014
15015 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15016 if (attr)
15017 new_field->accessibility = DW_UNSND (attr);
15018 else
15019 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15020 if (new_field->accessibility != DW_ACCESS_public)
15021 fip->non_public_fields = 1;
15022
15023 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15024 if (attr)
15025 new_field->virtuality = DW_UNSND (attr);
15026 else
15027 new_field->virtuality = DW_VIRTUALITY_none;
15028
15029 fp = &new_field->field;
15030
15031 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15032 {
15033 LONGEST offset;
15034
15035 /* Data member other than a C++ static data member. */
15036
15037 /* Get type of field. */
15038 fp->type = die_type (die, cu);
15039
15040 SET_FIELD_BITPOS (*fp, 0);
15041
15042 /* Get bit size of field (zero if none). */
15043 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15044 if (attr)
15045 {
15046 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15047 }
15048 else
15049 {
15050 FIELD_BITSIZE (*fp) = 0;
15051 }
15052
15053 /* Get bit offset of field. */
15054 if (handle_data_member_location (die, cu, &offset))
15055 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15056 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15057 if (attr)
15058 {
15059 if (gdbarch_bits_big_endian (gdbarch))
15060 {
15061 /* For big endian bits, the DW_AT_bit_offset gives the
15062 additional bit offset from the MSB of the containing
15063 anonymous object to the MSB of the field. We don't
15064 have to do anything special since we don't need to
15065 know the size of the anonymous object. */
15066 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15067 }
15068 else
15069 {
15070 /* For little endian bits, compute the bit offset to the
15071 MSB of the anonymous object, subtract off the number of
15072 bits from the MSB of the field to the MSB of the
15073 object, and then subtract off the number of bits of
15074 the field itself. The result is the bit offset of
15075 the LSB of the field. */
15076 int anonymous_size;
15077 int bit_offset = DW_UNSND (attr);
15078
15079 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15080 if (attr)
15081 {
15082 /* The size of the anonymous object containing
15083 the bit field is explicit, so use the
15084 indicated size (in bytes). */
15085 anonymous_size = DW_UNSND (attr);
15086 }
15087 else
15088 {
15089 /* The size of the anonymous object containing
15090 the bit field must be inferred from the type
15091 attribute of the data member containing the
15092 bit field. */
15093 anonymous_size = TYPE_LENGTH (fp->type);
15094 }
15095 SET_FIELD_BITPOS (*fp,
15096 (FIELD_BITPOS (*fp)
15097 + anonymous_size * bits_per_byte
15098 - bit_offset - FIELD_BITSIZE (*fp)));
15099 }
15100 }
15101 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15102 if (attr != NULL)
15103 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15104 + dwarf2_get_attr_constant_value (attr, 0)));
15105
15106 /* Get name of field. */
15107 fieldname = dwarf2_name (die, cu);
15108 if (fieldname == NULL)
15109 fieldname = "";
15110
15111 /* The name is already allocated along with this objfile, so we don't
15112 need to duplicate it for the type. */
15113 fp->name = fieldname;
15114
15115 /* Change accessibility for artificial fields (e.g. virtual table
15116 pointer or virtual base class pointer) to private. */
15117 if (dwarf2_attr (die, DW_AT_artificial, cu))
15118 {
15119 FIELD_ARTIFICIAL (*fp) = 1;
15120 new_field->accessibility = DW_ACCESS_private;
15121 fip->non_public_fields = 1;
15122 }
15123 }
15124 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15125 {
15126 /* C++ static member. */
15127
15128 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15129 is a declaration, but all versions of G++ as of this writing
15130 (so through at least 3.2.1) incorrectly generate
15131 DW_TAG_variable tags. */
15132
15133 const char *physname;
15134
15135 /* Get name of field. */
15136 fieldname = dwarf2_name (die, cu);
15137 if (fieldname == NULL)
15138 return;
15139
15140 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15141 if (attr
15142 /* Only create a symbol if this is an external value.
15143 new_symbol checks this and puts the value in the global symbol
15144 table, which we want. If it is not external, new_symbol
15145 will try to put the value in cu->list_in_scope which is wrong. */
15146 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15147 {
15148 /* A static const member, not much different than an enum as far as
15149 we're concerned, except that we can support more types. */
15150 new_symbol (die, NULL, cu);
15151 }
15152
15153 /* Get physical name. */
15154 physname = dwarf2_physname (fieldname, die, cu);
15155
15156 /* The name is already allocated along with this objfile, so we don't
15157 need to duplicate it for the type. */
15158 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15159 FIELD_TYPE (*fp) = die_type (die, cu);
15160 FIELD_NAME (*fp) = fieldname;
15161 }
15162 else if (die->tag == DW_TAG_inheritance)
15163 {
15164 LONGEST offset;
15165
15166 /* C++ base class field. */
15167 if (handle_data_member_location (die, cu, &offset))
15168 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15169 FIELD_BITSIZE (*fp) = 0;
15170 FIELD_TYPE (*fp) = die_type (die, cu);
15171 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15172 fip->nbaseclasses++;
15173 }
15174 }
15175
15176 /* Can the type given by DIE define another type? */
15177
15178 static bool
15179 type_can_define_types (const struct die_info *die)
15180 {
15181 switch (die->tag)
15182 {
15183 case DW_TAG_typedef:
15184 case DW_TAG_class_type:
15185 case DW_TAG_structure_type:
15186 case DW_TAG_union_type:
15187 case DW_TAG_enumeration_type:
15188 return true;
15189
15190 default:
15191 return false;
15192 }
15193 }
15194
15195 /* Add a type definition defined in the scope of the FIP's class. */
15196
15197 static void
15198 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15199 struct dwarf2_cu *cu)
15200 {
15201 struct decl_field_list *new_field;
15202 struct decl_field *fp;
15203
15204 /* Allocate a new field list entry and link it in. */
15205 new_field = XCNEW (struct decl_field_list);
15206 make_cleanup (xfree, new_field);
15207
15208 gdb_assert (type_can_define_types (die));
15209
15210 fp = &new_field->field;
15211
15212 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15213 fp->name = dwarf2_name (die, cu);
15214 fp->type = read_type_die (die, cu);
15215
15216 /* Save accessibility. */
15217 enum dwarf_access_attribute accessibility;
15218 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15219 if (attr != NULL)
15220 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15221 else
15222 accessibility = dwarf2_default_access_attribute (die, cu);
15223 switch (accessibility)
15224 {
15225 case DW_ACCESS_public:
15226 /* The assumed value if neither private nor protected. */
15227 break;
15228 case DW_ACCESS_private:
15229 fp->is_private = 1;
15230 break;
15231 case DW_ACCESS_protected:
15232 fp->is_protected = 1;
15233 break;
15234 default:
15235 complaint (&symfile_complaints,
15236 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15237 }
15238
15239 if (die->tag == DW_TAG_typedef)
15240 {
15241 new_field->next = fip->typedef_field_list;
15242 fip->typedef_field_list = new_field;
15243 fip->typedef_field_list_count++;
15244 }
15245 else
15246 {
15247 new_field->next = fip->nested_types_list;
15248 fip->nested_types_list = new_field;
15249 fip->nested_types_list_count++;
15250 }
15251 }
15252
15253 /* Create the vector of fields, and attach it to the type. */
15254
15255 static void
15256 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15257 struct dwarf2_cu *cu)
15258 {
15259 int nfields = fip->nfields;
15260
15261 /* Record the field count, allocate space for the array of fields,
15262 and create blank accessibility bitfields if necessary. */
15263 TYPE_NFIELDS (type) = nfields;
15264 TYPE_FIELDS (type) = (struct field *)
15265 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15266 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15267
15268 if (fip->non_public_fields && cu->language != language_ada)
15269 {
15270 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15271
15272 TYPE_FIELD_PRIVATE_BITS (type) =
15273 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15274 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15275
15276 TYPE_FIELD_PROTECTED_BITS (type) =
15277 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15278 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15279
15280 TYPE_FIELD_IGNORE_BITS (type) =
15281 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15282 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15283 }
15284
15285 /* If the type has baseclasses, allocate and clear a bit vector for
15286 TYPE_FIELD_VIRTUAL_BITS. */
15287 if (fip->nbaseclasses && cu->language != language_ada)
15288 {
15289 int num_bytes = B_BYTES (fip->nbaseclasses);
15290 unsigned char *pointer;
15291
15292 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15293 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15294 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15295 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15296 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15297 }
15298
15299 /* Copy the saved-up fields into the field vector. Start from the head of
15300 the list, adding to the tail of the field array, so that they end up in
15301 the same order in the array in which they were added to the list. */
15302 while (nfields-- > 0)
15303 {
15304 struct nextfield *fieldp;
15305
15306 if (fip->fields)
15307 {
15308 fieldp = fip->fields;
15309 fip->fields = fieldp->next;
15310 }
15311 else
15312 {
15313 fieldp = fip->baseclasses;
15314 fip->baseclasses = fieldp->next;
15315 }
15316
15317 TYPE_FIELD (type, nfields) = fieldp->field;
15318 switch (fieldp->accessibility)
15319 {
15320 case DW_ACCESS_private:
15321 if (cu->language != language_ada)
15322 SET_TYPE_FIELD_PRIVATE (type, nfields);
15323 break;
15324
15325 case DW_ACCESS_protected:
15326 if (cu->language != language_ada)
15327 SET_TYPE_FIELD_PROTECTED (type, nfields);
15328 break;
15329
15330 case DW_ACCESS_public:
15331 break;
15332
15333 default:
15334 /* Unknown accessibility. Complain and treat it as public. */
15335 {
15336 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15337 fieldp->accessibility);
15338 }
15339 break;
15340 }
15341 if (nfields < fip->nbaseclasses)
15342 {
15343 switch (fieldp->virtuality)
15344 {
15345 case DW_VIRTUALITY_virtual:
15346 case DW_VIRTUALITY_pure_virtual:
15347 if (cu->language == language_ada)
15348 error (_("unexpected virtuality in component of Ada type"));
15349 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15350 break;
15351 }
15352 }
15353 }
15354 }
15355
15356 /* Return true if this member function is a constructor, false
15357 otherwise. */
15358
15359 static int
15360 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15361 {
15362 const char *fieldname;
15363 const char *type_name;
15364 int len;
15365
15366 if (die->parent == NULL)
15367 return 0;
15368
15369 if (die->parent->tag != DW_TAG_structure_type
15370 && die->parent->tag != DW_TAG_union_type
15371 && die->parent->tag != DW_TAG_class_type)
15372 return 0;
15373
15374 fieldname = dwarf2_name (die, cu);
15375 type_name = dwarf2_name (die->parent, cu);
15376 if (fieldname == NULL || type_name == NULL)
15377 return 0;
15378
15379 len = strlen (fieldname);
15380 return (strncmp (fieldname, type_name, len) == 0
15381 && (type_name[len] == '\0' || type_name[len] == '<'));
15382 }
15383
15384 /* Add a member function to the proper fieldlist. */
15385
15386 static void
15387 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15388 struct type *type, struct dwarf2_cu *cu)
15389 {
15390 struct objfile *objfile = cu->objfile;
15391 struct attribute *attr;
15392 struct fnfieldlist *flp;
15393 int i;
15394 struct fn_field *fnp;
15395 const char *fieldname;
15396 struct nextfnfield *new_fnfield;
15397 struct type *this_type;
15398 enum dwarf_access_attribute accessibility;
15399
15400 if (cu->language == language_ada)
15401 error (_("unexpected member function in Ada type"));
15402
15403 /* Get name of member function. */
15404 fieldname = dwarf2_name (die, cu);
15405 if (fieldname == NULL)
15406 return;
15407
15408 /* Look up member function name in fieldlist. */
15409 for (i = 0; i < fip->nfnfields; i++)
15410 {
15411 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15412 break;
15413 }
15414
15415 /* Create new list element if necessary. */
15416 if (i < fip->nfnfields)
15417 flp = &fip->fnfieldlists[i];
15418 else
15419 {
15420 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15421 {
15422 fip->fnfieldlists = (struct fnfieldlist *)
15423 xrealloc (fip->fnfieldlists,
15424 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15425 * sizeof (struct fnfieldlist));
15426 if (fip->nfnfields == 0)
15427 make_cleanup (free_current_contents, &fip->fnfieldlists);
15428 }
15429 flp = &fip->fnfieldlists[fip->nfnfields];
15430 flp->name = fieldname;
15431 flp->length = 0;
15432 flp->head = NULL;
15433 i = fip->nfnfields++;
15434 }
15435
15436 /* Create a new member function field and chain it to the field list
15437 entry. */
15438 new_fnfield = XNEW (struct nextfnfield);
15439 make_cleanup (xfree, new_fnfield);
15440 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15441 new_fnfield->next = flp->head;
15442 flp->head = new_fnfield;
15443 flp->length++;
15444
15445 /* Fill in the member function field info. */
15446 fnp = &new_fnfield->fnfield;
15447
15448 /* Delay processing of the physname until later. */
15449 if (cu->language == language_cplus)
15450 {
15451 add_to_method_list (type, i, flp->length - 1, fieldname,
15452 die, cu);
15453 }
15454 else
15455 {
15456 const char *physname = dwarf2_physname (fieldname, die, cu);
15457 fnp->physname = physname ? physname : "";
15458 }
15459
15460 fnp->type = alloc_type (objfile);
15461 this_type = read_type_die (die, cu);
15462 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15463 {
15464 int nparams = TYPE_NFIELDS (this_type);
15465
15466 /* TYPE is the domain of this method, and THIS_TYPE is the type
15467 of the method itself (TYPE_CODE_METHOD). */
15468 smash_to_method_type (fnp->type, type,
15469 TYPE_TARGET_TYPE (this_type),
15470 TYPE_FIELDS (this_type),
15471 TYPE_NFIELDS (this_type),
15472 TYPE_VARARGS (this_type));
15473
15474 /* Handle static member functions.
15475 Dwarf2 has no clean way to discern C++ static and non-static
15476 member functions. G++ helps GDB by marking the first
15477 parameter for non-static member functions (which is the this
15478 pointer) as artificial. We obtain this information from
15479 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15480 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15481 fnp->voffset = VOFFSET_STATIC;
15482 }
15483 else
15484 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15485 dwarf2_full_name (fieldname, die, cu));
15486
15487 /* Get fcontext from DW_AT_containing_type if present. */
15488 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15489 fnp->fcontext = die_containing_type (die, cu);
15490
15491 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15492 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15493
15494 /* Get accessibility. */
15495 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15496 if (attr)
15497 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15498 else
15499 accessibility = dwarf2_default_access_attribute (die, cu);
15500 switch (accessibility)
15501 {
15502 case DW_ACCESS_private:
15503 fnp->is_private = 1;
15504 break;
15505 case DW_ACCESS_protected:
15506 fnp->is_protected = 1;
15507 break;
15508 }
15509
15510 /* Check for artificial methods. */
15511 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15512 if (attr && DW_UNSND (attr) != 0)
15513 fnp->is_artificial = 1;
15514
15515 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15516
15517 /* Get index in virtual function table if it is a virtual member
15518 function. For older versions of GCC, this is an offset in the
15519 appropriate virtual table, as specified by DW_AT_containing_type.
15520 For everyone else, it is an expression to be evaluated relative
15521 to the object address. */
15522
15523 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15524 if (attr)
15525 {
15526 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15527 {
15528 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15529 {
15530 /* Old-style GCC. */
15531 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15532 }
15533 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15534 || (DW_BLOCK (attr)->size > 1
15535 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15536 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15537 {
15538 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15539 if ((fnp->voffset % cu->header.addr_size) != 0)
15540 dwarf2_complex_location_expr_complaint ();
15541 else
15542 fnp->voffset /= cu->header.addr_size;
15543 fnp->voffset += 2;
15544 }
15545 else
15546 dwarf2_complex_location_expr_complaint ();
15547
15548 if (!fnp->fcontext)
15549 {
15550 /* If there is no `this' field and no DW_AT_containing_type,
15551 we cannot actually find a base class context for the
15552 vtable! */
15553 if (TYPE_NFIELDS (this_type) == 0
15554 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15555 {
15556 complaint (&symfile_complaints,
15557 _("cannot determine context for virtual member "
15558 "function \"%s\" (offset %d)"),
15559 fieldname, to_underlying (die->sect_off));
15560 }
15561 else
15562 {
15563 fnp->fcontext
15564 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15565 }
15566 }
15567 }
15568 else if (attr_form_is_section_offset (attr))
15569 {
15570 dwarf2_complex_location_expr_complaint ();
15571 }
15572 else
15573 {
15574 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15575 fieldname);
15576 }
15577 }
15578 else
15579 {
15580 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15581 if (attr && DW_UNSND (attr))
15582 {
15583 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15584 complaint (&symfile_complaints,
15585 _("Member function \"%s\" (offset %d) is virtual "
15586 "but the vtable offset is not specified"),
15587 fieldname, to_underlying (die->sect_off));
15588 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15589 TYPE_CPLUS_DYNAMIC (type) = 1;
15590 }
15591 }
15592 }
15593
15594 /* Create the vector of member function fields, and attach it to the type. */
15595
15596 static void
15597 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15598 struct dwarf2_cu *cu)
15599 {
15600 struct fnfieldlist *flp;
15601 int i;
15602
15603 if (cu->language == language_ada)
15604 error (_("unexpected member functions in Ada type"));
15605
15606 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15607 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15608 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
15609
15610 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
15611 {
15612 struct nextfnfield *nfp = flp->head;
15613 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15614 int k;
15615
15616 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
15617 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
15618 fn_flp->fn_fields = (struct fn_field *)
15619 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
15620 for (k = flp->length; (k--, nfp); nfp = nfp->next)
15621 fn_flp->fn_fields[k] = nfp->fnfield;
15622 }
15623
15624 TYPE_NFN_FIELDS (type) = fip->nfnfields;
15625 }
15626
15627 /* Returns non-zero if NAME is the name of a vtable member in CU's
15628 language, zero otherwise. */
15629 static int
15630 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15631 {
15632 static const char vptr[] = "_vptr";
15633
15634 /* Look for the C++ form of the vtable. */
15635 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15636 return 1;
15637
15638 return 0;
15639 }
15640
15641 /* GCC outputs unnamed structures that are really pointers to member
15642 functions, with the ABI-specified layout. If TYPE describes
15643 such a structure, smash it into a member function type.
15644
15645 GCC shouldn't do this; it should just output pointer to member DIEs.
15646 This is GCC PR debug/28767. */
15647
15648 static void
15649 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15650 {
15651 struct type *pfn_type, *self_type, *new_type;
15652
15653 /* Check for a structure with no name and two children. */
15654 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15655 return;
15656
15657 /* Check for __pfn and __delta members. */
15658 if (TYPE_FIELD_NAME (type, 0) == NULL
15659 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15660 || TYPE_FIELD_NAME (type, 1) == NULL
15661 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15662 return;
15663
15664 /* Find the type of the method. */
15665 pfn_type = TYPE_FIELD_TYPE (type, 0);
15666 if (pfn_type == NULL
15667 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15668 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15669 return;
15670
15671 /* Look for the "this" argument. */
15672 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15673 if (TYPE_NFIELDS (pfn_type) == 0
15674 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15675 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15676 return;
15677
15678 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15679 new_type = alloc_type (objfile);
15680 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15681 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15682 TYPE_VARARGS (pfn_type));
15683 smash_to_methodptr_type (type, new_type);
15684 }
15685
15686
15687 /* Called when we find the DIE that starts a structure or union scope
15688 (definition) to create a type for the structure or union. Fill in
15689 the type's name and general properties; the members will not be
15690 processed until process_structure_scope. A symbol table entry for
15691 the type will also not be done until process_structure_scope (assuming
15692 the type has a name).
15693
15694 NOTE: we need to call these functions regardless of whether or not the
15695 DIE has a DW_AT_name attribute, since it might be an anonymous
15696 structure or union. This gets the type entered into our set of
15697 user defined types. */
15698
15699 static struct type *
15700 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15701 {
15702 struct objfile *objfile = cu->objfile;
15703 struct type *type;
15704 struct attribute *attr;
15705 const char *name;
15706
15707 /* If the definition of this type lives in .debug_types, read that type.
15708 Don't follow DW_AT_specification though, that will take us back up
15709 the chain and we want to go down. */
15710 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15711 if (attr)
15712 {
15713 type = get_DW_AT_signature_type (die, attr, cu);
15714
15715 /* The type's CU may not be the same as CU.
15716 Ensure TYPE is recorded with CU in die_type_hash. */
15717 return set_die_type (die, type, cu);
15718 }
15719
15720 type = alloc_type (objfile);
15721 INIT_CPLUS_SPECIFIC (type);
15722
15723 name = dwarf2_name (die, cu);
15724 if (name != NULL)
15725 {
15726 if (cu->language == language_cplus
15727 || cu->language == language_d
15728 || cu->language == language_rust)
15729 {
15730 const char *full_name = dwarf2_full_name (name, die, cu);
15731
15732 /* dwarf2_full_name might have already finished building the DIE's
15733 type. If so, there is no need to continue. */
15734 if (get_die_type (die, cu) != NULL)
15735 return get_die_type (die, cu);
15736
15737 TYPE_TAG_NAME (type) = full_name;
15738 if (die->tag == DW_TAG_structure_type
15739 || die->tag == DW_TAG_class_type)
15740 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15741 }
15742 else
15743 {
15744 /* The name is already allocated along with this objfile, so
15745 we don't need to duplicate it for the type. */
15746 TYPE_TAG_NAME (type) = name;
15747 if (die->tag == DW_TAG_class_type)
15748 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15749 }
15750 }
15751
15752 if (die->tag == DW_TAG_structure_type)
15753 {
15754 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15755 }
15756 else if (die->tag == DW_TAG_union_type)
15757 {
15758 TYPE_CODE (type) = TYPE_CODE_UNION;
15759 }
15760 else
15761 {
15762 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15763 }
15764
15765 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15766 TYPE_DECLARED_CLASS (type) = 1;
15767
15768 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15769 if (attr)
15770 {
15771 if (attr_form_is_constant (attr))
15772 TYPE_LENGTH (type) = DW_UNSND (attr);
15773 else
15774 {
15775 /* For the moment, dynamic type sizes are not supported
15776 by GDB's struct type. The actual size is determined
15777 on-demand when resolving the type of a given object,
15778 so set the type's length to zero for now. Otherwise,
15779 we record an expression as the length, and that expression
15780 could lead to a very large value, which could eventually
15781 lead to us trying to allocate that much memory when creating
15782 a value of that type. */
15783 TYPE_LENGTH (type) = 0;
15784 }
15785 }
15786 else
15787 {
15788 TYPE_LENGTH (type) = 0;
15789 }
15790
15791 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15792 {
15793 /* ICC<14 does not output the required DW_AT_declaration on
15794 incomplete types, but gives them a size of zero. */
15795 TYPE_STUB (type) = 1;
15796 }
15797 else
15798 TYPE_STUB_SUPPORTED (type) = 1;
15799
15800 if (die_is_declaration (die, cu))
15801 TYPE_STUB (type) = 1;
15802 else if (attr == NULL && die->child == NULL
15803 && producer_is_realview (cu->producer))
15804 /* RealView does not output the required DW_AT_declaration
15805 on incomplete types. */
15806 TYPE_STUB (type) = 1;
15807
15808 /* We need to add the type field to the die immediately so we don't
15809 infinitely recurse when dealing with pointers to the structure
15810 type within the structure itself. */
15811 set_die_type (die, type, cu);
15812
15813 /* set_die_type should be already done. */
15814 set_descriptive_type (type, die, cu);
15815
15816 return type;
15817 }
15818
15819 /* Finish creating a structure or union type, including filling in
15820 its members and creating a symbol for it. */
15821
15822 static void
15823 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15824 {
15825 struct objfile *objfile = cu->objfile;
15826 struct die_info *child_die;
15827 struct type *type;
15828
15829 type = get_die_type (die, cu);
15830 if (type == NULL)
15831 type = read_structure_type (die, cu);
15832
15833 if (die->child != NULL && ! die_is_declaration (die, cu))
15834 {
15835 struct field_info fi;
15836 std::vector<struct symbol *> template_args;
15837 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
15838
15839 memset (&fi, 0, sizeof (struct field_info));
15840
15841 child_die = die->child;
15842
15843 while (child_die && child_die->tag)
15844 {
15845 if (child_die->tag == DW_TAG_member
15846 || child_die->tag == DW_TAG_variable)
15847 {
15848 /* NOTE: carlton/2002-11-05: A C++ static data member
15849 should be a DW_TAG_member that is a declaration, but
15850 all versions of G++ as of this writing (so through at
15851 least 3.2.1) incorrectly generate DW_TAG_variable
15852 tags for them instead. */
15853 dwarf2_add_field (&fi, child_die, cu);
15854 }
15855 else if (child_die->tag == DW_TAG_subprogram)
15856 {
15857 /* Rust doesn't have member functions in the C++ sense.
15858 However, it does emit ordinary functions as children
15859 of a struct DIE. */
15860 if (cu->language == language_rust)
15861 read_func_scope (child_die, cu);
15862 else
15863 {
15864 /* C++ member function. */
15865 dwarf2_add_member_fn (&fi, child_die, type, cu);
15866 }
15867 }
15868 else if (child_die->tag == DW_TAG_inheritance)
15869 {
15870 /* C++ base class field. */
15871 dwarf2_add_field (&fi, child_die, cu);
15872 }
15873 else if (type_can_define_types (child_die))
15874 dwarf2_add_type_defn (&fi, child_die, cu);
15875 else if (child_die->tag == DW_TAG_template_type_param
15876 || child_die->tag == DW_TAG_template_value_param)
15877 {
15878 struct symbol *arg = new_symbol (child_die, NULL, cu);
15879
15880 if (arg != NULL)
15881 template_args.push_back (arg);
15882 }
15883
15884 child_die = sibling_die (child_die);
15885 }
15886
15887 /* Attach template arguments to type. */
15888 if (!template_args.empty ())
15889 {
15890 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15891 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15892 TYPE_TEMPLATE_ARGUMENTS (type)
15893 = XOBNEWVEC (&objfile->objfile_obstack,
15894 struct symbol *,
15895 TYPE_N_TEMPLATE_ARGUMENTS (type));
15896 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15897 template_args.data (),
15898 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15899 * sizeof (struct symbol *)));
15900 }
15901
15902 /* Attach fields and member functions to the type. */
15903 if (fi.nfields)
15904 dwarf2_attach_fields_to_type (&fi, type, cu);
15905 if (fi.nfnfields)
15906 {
15907 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15908
15909 /* Get the type which refers to the base class (possibly this
15910 class itself) which contains the vtable pointer for the current
15911 class from the DW_AT_containing_type attribute. This use of
15912 DW_AT_containing_type is a GNU extension. */
15913
15914 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15915 {
15916 struct type *t = die_containing_type (die, cu);
15917
15918 set_type_vptr_basetype (type, t);
15919 if (type == t)
15920 {
15921 int i;
15922
15923 /* Our own class provides vtbl ptr. */
15924 for (i = TYPE_NFIELDS (t) - 1;
15925 i >= TYPE_N_BASECLASSES (t);
15926 --i)
15927 {
15928 const char *fieldname = TYPE_FIELD_NAME (t, i);
15929
15930 if (is_vtable_name (fieldname, cu))
15931 {
15932 set_type_vptr_fieldno (type, i);
15933 break;
15934 }
15935 }
15936
15937 /* Complain if virtual function table field not found. */
15938 if (i < TYPE_N_BASECLASSES (t))
15939 complaint (&symfile_complaints,
15940 _("virtual function table pointer "
15941 "not found when defining class '%s'"),
15942 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
15943 "");
15944 }
15945 else
15946 {
15947 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15948 }
15949 }
15950 else if (cu->producer
15951 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15952 {
15953 /* The IBM XLC compiler does not provide direct indication
15954 of the containing type, but the vtable pointer is
15955 always named __vfp. */
15956
15957 int i;
15958
15959 for (i = TYPE_NFIELDS (type) - 1;
15960 i >= TYPE_N_BASECLASSES (type);
15961 --i)
15962 {
15963 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15964 {
15965 set_type_vptr_fieldno (type, i);
15966 set_type_vptr_basetype (type, type);
15967 break;
15968 }
15969 }
15970 }
15971 }
15972
15973 /* Copy fi.typedef_field_list linked list elements content into the
15974 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15975 if (fi.typedef_field_list)
15976 {
15977 int i = fi.typedef_field_list_count;
15978
15979 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15980 TYPE_TYPEDEF_FIELD_ARRAY (type)
15981 = ((struct decl_field *)
15982 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
15983 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
15984
15985 /* Reverse the list order to keep the debug info elements order. */
15986 while (--i >= 0)
15987 {
15988 struct decl_field *dest, *src;
15989
15990 dest = &TYPE_TYPEDEF_FIELD (type, i);
15991 src = &fi.typedef_field_list->field;
15992 fi.typedef_field_list = fi.typedef_field_list->next;
15993 *dest = *src;
15994 }
15995 }
15996
15997 /* Copy fi.nested_types_list linked list elements content into the
15998 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15999 if (fi.nested_types_list != NULL && cu->language != language_ada)
16000 {
16001 int i = fi.nested_types_list_count;
16002
16003 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16004 TYPE_NESTED_TYPES_ARRAY (type)
16005 = ((struct decl_field *)
16006 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16007 TYPE_NESTED_TYPES_COUNT (type) = i;
16008
16009 /* Reverse the list order to keep the debug info elements order. */
16010 while (--i >= 0)
16011 {
16012 struct decl_field *dest, *src;
16013
16014 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16015 src = &fi.nested_types_list->field;
16016 fi.nested_types_list = fi.nested_types_list->next;
16017 *dest = *src;
16018 }
16019 }
16020
16021 do_cleanups (back_to);
16022 }
16023
16024 quirk_gcc_member_function_pointer (type, objfile);
16025
16026 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16027 snapshots) has been known to create a die giving a declaration
16028 for a class that has, as a child, a die giving a definition for a
16029 nested class. So we have to process our children even if the
16030 current die is a declaration. Normally, of course, a declaration
16031 won't have any children at all. */
16032
16033 child_die = die->child;
16034
16035 while (child_die != NULL && child_die->tag)
16036 {
16037 if (child_die->tag == DW_TAG_member
16038 || child_die->tag == DW_TAG_variable
16039 || child_die->tag == DW_TAG_inheritance
16040 || child_die->tag == DW_TAG_template_value_param
16041 || child_die->tag == DW_TAG_template_type_param)
16042 {
16043 /* Do nothing. */
16044 }
16045 else
16046 process_die (child_die, cu);
16047
16048 child_die = sibling_die (child_die);
16049 }
16050
16051 /* Do not consider external references. According to the DWARF standard,
16052 these DIEs are identified by the fact that they have no byte_size
16053 attribute, and a declaration attribute. */
16054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16055 || !die_is_declaration (die, cu))
16056 new_symbol (die, type, cu);
16057 }
16058
16059 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16060 update TYPE using some information only available in DIE's children. */
16061
16062 static void
16063 update_enumeration_type_from_children (struct die_info *die,
16064 struct type *type,
16065 struct dwarf2_cu *cu)
16066 {
16067 struct die_info *child_die;
16068 int unsigned_enum = 1;
16069 int flag_enum = 1;
16070 ULONGEST mask = 0;
16071
16072 auto_obstack obstack;
16073
16074 for (child_die = die->child;
16075 child_die != NULL && child_die->tag;
16076 child_die = sibling_die (child_die))
16077 {
16078 struct attribute *attr;
16079 LONGEST value;
16080 const gdb_byte *bytes;
16081 struct dwarf2_locexpr_baton *baton;
16082 const char *name;
16083
16084 if (child_die->tag != DW_TAG_enumerator)
16085 continue;
16086
16087 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16088 if (attr == NULL)
16089 continue;
16090
16091 name = dwarf2_name (child_die, cu);
16092 if (name == NULL)
16093 name = "<anonymous enumerator>";
16094
16095 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16096 &value, &bytes, &baton);
16097 if (value < 0)
16098 {
16099 unsigned_enum = 0;
16100 flag_enum = 0;
16101 }
16102 else if ((mask & value) != 0)
16103 flag_enum = 0;
16104 else
16105 mask |= value;
16106
16107 /* If we already know that the enum type is neither unsigned, nor
16108 a flag type, no need to look at the rest of the enumerates. */
16109 if (!unsigned_enum && !flag_enum)
16110 break;
16111 }
16112
16113 if (unsigned_enum)
16114 TYPE_UNSIGNED (type) = 1;
16115 if (flag_enum)
16116 TYPE_FLAG_ENUM (type) = 1;
16117 }
16118
16119 /* Given a DW_AT_enumeration_type die, set its type. We do not
16120 complete the type's fields yet, or create any symbols. */
16121
16122 static struct type *
16123 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16124 {
16125 struct objfile *objfile = cu->objfile;
16126 struct type *type;
16127 struct attribute *attr;
16128 const char *name;
16129
16130 /* If the definition of this type lives in .debug_types, read that type.
16131 Don't follow DW_AT_specification though, that will take us back up
16132 the chain and we want to go down. */
16133 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16134 if (attr)
16135 {
16136 type = get_DW_AT_signature_type (die, attr, cu);
16137
16138 /* The type's CU may not be the same as CU.
16139 Ensure TYPE is recorded with CU in die_type_hash. */
16140 return set_die_type (die, type, cu);
16141 }
16142
16143 type = alloc_type (objfile);
16144
16145 TYPE_CODE (type) = TYPE_CODE_ENUM;
16146 name = dwarf2_full_name (NULL, die, cu);
16147 if (name != NULL)
16148 TYPE_TAG_NAME (type) = name;
16149
16150 attr = dwarf2_attr (die, DW_AT_type, cu);
16151 if (attr != NULL)
16152 {
16153 struct type *underlying_type = die_type (die, cu);
16154
16155 TYPE_TARGET_TYPE (type) = underlying_type;
16156 }
16157
16158 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16159 if (attr)
16160 {
16161 TYPE_LENGTH (type) = DW_UNSND (attr);
16162 }
16163 else
16164 {
16165 TYPE_LENGTH (type) = 0;
16166 }
16167
16168 /* The enumeration DIE can be incomplete. In Ada, any type can be
16169 declared as private in the package spec, and then defined only
16170 inside the package body. Such types are known as Taft Amendment
16171 Types. When another package uses such a type, an incomplete DIE
16172 may be generated by the compiler. */
16173 if (die_is_declaration (die, cu))
16174 TYPE_STUB (type) = 1;
16175
16176 /* Finish the creation of this type by using the enum's children.
16177 We must call this even when the underlying type has been provided
16178 so that we can determine if we're looking at a "flag" enum. */
16179 update_enumeration_type_from_children (die, type, cu);
16180
16181 /* If this type has an underlying type that is not a stub, then we
16182 may use its attributes. We always use the "unsigned" attribute
16183 in this situation, because ordinarily we guess whether the type
16184 is unsigned -- but the guess can be wrong and the underlying type
16185 can tell us the reality. However, we defer to a local size
16186 attribute if one exists, because this lets the compiler override
16187 the underlying type if needed. */
16188 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16189 {
16190 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16191 if (TYPE_LENGTH (type) == 0)
16192 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16193 }
16194
16195 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16196
16197 return set_die_type (die, type, cu);
16198 }
16199
16200 /* Given a pointer to a die which begins an enumeration, process all
16201 the dies that define the members of the enumeration, and create the
16202 symbol for the enumeration type.
16203
16204 NOTE: We reverse the order of the element list. */
16205
16206 static void
16207 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16208 {
16209 struct type *this_type;
16210
16211 this_type = get_die_type (die, cu);
16212 if (this_type == NULL)
16213 this_type = read_enumeration_type (die, cu);
16214
16215 if (die->child != NULL)
16216 {
16217 struct die_info *child_die;
16218 struct symbol *sym;
16219 struct field *fields = NULL;
16220 int num_fields = 0;
16221 const char *name;
16222
16223 child_die = die->child;
16224 while (child_die && child_die->tag)
16225 {
16226 if (child_die->tag != DW_TAG_enumerator)
16227 {
16228 process_die (child_die, cu);
16229 }
16230 else
16231 {
16232 name = dwarf2_name (child_die, cu);
16233 if (name)
16234 {
16235 sym = new_symbol (child_die, this_type, cu);
16236
16237 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16238 {
16239 fields = (struct field *)
16240 xrealloc (fields,
16241 (num_fields + DW_FIELD_ALLOC_CHUNK)
16242 * sizeof (struct field));
16243 }
16244
16245 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16246 FIELD_TYPE (fields[num_fields]) = NULL;
16247 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16248 FIELD_BITSIZE (fields[num_fields]) = 0;
16249
16250 num_fields++;
16251 }
16252 }
16253
16254 child_die = sibling_die (child_die);
16255 }
16256
16257 if (num_fields)
16258 {
16259 TYPE_NFIELDS (this_type) = num_fields;
16260 TYPE_FIELDS (this_type) = (struct field *)
16261 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16262 memcpy (TYPE_FIELDS (this_type), fields,
16263 sizeof (struct field) * num_fields);
16264 xfree (fields);
16265 }
16266 }
16267
16268 /* If we are reading an enum from a .debug_types unit, and the enum
16269 is a declaration, and the enum is not the signatured type in the
16270 unit, then we do not want to add a symbol for it. Adding a
16271 symbol would in some cases obscure the true definition of the
16272 enum, giving users an incomplete type when the definition is
16273 actually available. Note that we do not want to do this for all
16274 enums which are just declarations, because C++0x allows forward
16275 enum declarations. */
16276 if (cu->per_cu->is_debug_types
16277 && die_is_declaration (die, cu))
16278 {
16279 struct signatured_type *sig_type;
16280
16281 sig_type = (struct signatured_type *) cu->per_cu;
16282 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16283 if (sig_type->type_offset_in_section != die->sect_off)
16284 return;
16285 }
16286
16287 new_symbol (die, this_type, cu);
16288 }
16289
16290 /* Extract all information from a DW_TAG_array_type DIE and put it in
16291 the DIE's type field. For now, this only handles one dimensional
16292 arrays. */
16293
16294 static struct type *
16295 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16296 {
16297 struct objfile *objfile = cu->objfile;
16298 struct die_info *child_die;
16299 struct type *type;
16300 struct type *element_type, *range_type, *index_type;
16301 struct attribute *attr;
16302 const char *name;
16303 unsigned int bit_stride = 0;
16304
16305 element_type = die_type (die, cu);
16306
16307 /* The die_type call above may have already set the type for this DIE. */
16308 type = get_die_type (die, cu);
16309 if (type)
16310 return type;
16311
16312 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16313 if (attr != NULL)
16314 bit_stride = DW_UNSND (attr) * 8;
16315
16316 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16317 if (attr != NULL)
16318 bit_stride = DW_UNSND (attr);
16319
16320 /* Irix 6.2 native cc creates array types without children for
16321 arrays with unspecified length. */
16322 if (die->child == NULL)
16323 {
16324 index_type = objfile_type (objfile)->builtin_int;
16325 range_type = create_static_range_type (NULL, index_type, 0, -1);
16326 type = create_array_type_with_stride (NULL, element_type, range_type,
16327 bit_stride);
16328 return set_die_type (die, type, cu);
16329 }
16330
16331 std::vector<struct type *> range_types;
16332 child_die = die->child;
16333 while (child_die && child_die->tag)
16334 {
16335 if (child_die->tag == DW_TAG_subrange_type)
16336 {
16337 struct type *child_type = read_type_die (child_die, cu);
16338
16339 if (child_type != NULL)
16340 {
16341 /* The range type was succesfully read. Save it for the
16342 array type creation. */
16343 range_types.push_back (child_type);
16344 }
16345 }
16346 child_die = sibling_die (child_die);
16347 }
16348
16349 /* Dwarf2 dimensions are output from left to right, create the
16350 necessary array types in backwards order. */
16351
16352 type = element_type;
16353
16354 if (read_array_order (die, cu) == DW_ORD_col_major)
16355 {
16356 int i = 0;
16357
16358 while (i < range_types.size ())
16359 type = create_array_type_with_stride (NULL, type, range_types[i++],
16360 bit_stride);
16361 }
16362 else
16363 {
16364 size_t ndim = range_types.size ();
16365 while (ndim-- > 0)
16366 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16367 bit_stride);
16368 }
16369
16370 /* Understand Dwarf2 support for vector types (like they occur on
16371 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16372 array type. This is not part of the Dwarf2/3 standard yet, but a
16373 custom vendor extension. The main difference between a regular
16374 array and the vector variant is that vectors are passed by value
16375 to functions. */
16376 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16377 if (attr)
16378 make_vector_type (type);
16379
16380 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16381 implementation may choose to implement triple vectors using this
16382 attribute. */
16383 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16384 if (attr)
16385 {
16386 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16387 TYPE_LENGTH (type) = DW_UNSND (attr);
16388 else
16389 complaint (&symfile_complaints,
16390 _("DW_AT_byte_size for array type smaller "
16391 "than the total size of elements"));
16392 }
16393
16394 name = dwarf2_name (die, cu);
16395 if (name)
16396 TYPE_NAME (type) = name;
16397
16398 /* Install the type in the die. */
16399 set_die_type (die, type, cu);
16400
16401 /* set_die_type should be already done. */
16402 set_descriptive_type (type, die, cu);
16403
16404 return type;
16405 }
16406
16407 static enum dwarf_array_dim_ordering
16408 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16409 {
16410 struct attribute *attr;
16411
16412 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16413
16414 if (attr)
16415 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16416
16417 /* GNU F77 is a special case, as at 08/2004 array type info is the
16418 opposite order to the dwarf2 specification, but data is still
16419 laid out as per normal fortran.
16420
16421 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16422 version checking. */
16423
16424 if (cu->language == language_fortran
16425 && cu->producer && strstr (cu->producer, "GNU F77"))
16426 {
16427 return DW_ORD_row_major;
16428 }
16429
16430 switch (cu->language_defn->la_array_ordering)
16431 {
16432 case array_column_major:
16433 return DW_ORD_col_major;
16434 case array_row_major:
16435 default:
16436 return DW_ORD_row_major;
16437 };
16438 }
16439
16440 /* Extract all information from a DW_TAG_set_type DIE and put it in
16441 the DIE's type field. */
16442
16443 static struct type *
16444 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16445 {
16446 struct type *domain_type, *set_type;
16447 struct attribute *attr;
16448
16449 domain_type = die_type (die, cu);
16450
16451 /* The die_type call above may have already set the type for this DIE. */
16452 set_type = get_die_type (die, cu);
16453 if (set_type)
16454 return set_type;
16455
16456 set_type = create_set_type (NULL, domain_type);
16457
16458 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16459 if (attr)
16460 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16461
16462 return set_die_type (die, set_type, cu);
16463 }
16464
16465 /* A helper for read_common_block that creates a locexpr baton.
16466 SYM is the symbol which we are marking as computed.
16467 COMMON_DIE is the DIE for the common block.
16468 COMMON_LOC is the location expression attribute for the common
16469 block itself.
16470 MEMBER_LOC is the location expression attribute for the particular
16471 member of the common block that we are processing.
16472 CU is the CU from which the above come. */
16473
16474 static void
16475 mark_common_block_symbol_computed (struct symbol *sym,
16476 struct die_info *common_die,
16477 struct attribute *common_loc,
16478 struct attribute *member_loc,
16479 struct dwarf2_cu *cu)
16480 {
16481 struct objfile *objfile = dwarf2_per_objfile->objfile;
16482 struct dwarf2_locexpr_baton *baton;
16483 gdb_byte *ptr;
16484 unsigned int cu_off;
16485 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16486 LONGEST offset = 0;
16487
16488 gdb_assert (common_loc && member_loc);
16489 gdb_assert (attr_form_is_block (common_loc));
16490 gdb_assert (attr_form_is_block (member_loc)
16491 || attr_form_is_constant (member_loc));
16492
16493 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16494 baton->per_cu = cu->per_cu;
16495 gdb_assert (baton->per_cu);
16496
16497 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16498
16499 if (attr_form_is_constant (member_loc))
16500 {
16501 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16502 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16503 }
16504 else
16505 baton->size += DW_BLOCK (member_loc)->size;
16506
16507 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16508 baton->data = ptr;
16509
16510 *ptr++ = DW_OP_call4;
16511 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16512 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16513 ptr += 4;
16514
16515 if (attr_form_is_constant (member_loc))
16516 {
16517 *ptr++ = DW_OP_addr;
16518 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16519 ptr += cu->header.addr_size;
16520 }
16521 else
16522 {
16523 /* We have to copy the data here, because DW_OP_call4 will only
16524 use a DW_AT_location attribute. */
16525 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16526 ptr += DW_BLOCK (member_loc)->size;
16527 }
16528
16529 *ptr++ = DW_OP_plus;
16530 gdb_assert (ptr - baton->data == baton->size);
16531
16532 SYMBOL_LOCATION_BATON (sym) = baton;
16533 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16534 }
16535
16536 /* Create appropriate locally-scoped variables for all the
16537 DW_TAG_common_block entries. Also create a struct common_block
16538 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16539 is used to sepate the common blocks name namespace from regular
16540 variable names. */
16541
16542 static void
16543 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16544 {
16545 struct attribute *attr;
16546
16547 attr = dwarf2_attr (die, DW_AT_location, cu);
16548 if (attr)
16549 {
16550 /* Support the .debug_loc offsets. */
16551 if (attr_form_is_block (attr))
16552 {
16553 /* Ok. */
16554 }
16555 else if (attr_form_is_section_offset (attr))
16556 {
16557 dwarf2_complex_location_expr_complaint ();
16558 attr = NULL;
16559 }
16560 else
16561 {
16562 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16563 "common block member");
16564 attr = NULL;
16565 }
16566 }
16567
16568 if (die->child != NULL)
16569 {
16570 struct objfile *objfile = cu->objfile;
16571 struct die_info *child_die;
16572 size_t n_entries = 0, size;
16573 struct common_block *common_block;
16574 struct symbol *sym;
16575
16576 for (child_die = die->child;
16577 child_die && child_die->tag;
16578 child_die = sibling_die (child_die))
16579 ++n_entries;
16580
16581 size = (sizeof (struct common_block)
16582 + (n_entries - 1) * sizeof (struct symbol *));
16583 common_block
16584 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16585 size);
16586 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16587 common_block->n_entries = 0;
16588
16589 for (child_die = die->child;
16590 child_die && child_die->tag;
16591 child_die = sibling_die (child_die))
16592 {
16593 /* Create the symbol in the DW_TAG_common_block block in the current
16594 symbol scope. */
16595 sym = new_symbol (child_die, NULL, cu);
16596 if (sym != NULL)
16597 {
16598 struct attribute *member_loc;
16599
16600 common_block->contents[common_block->n_entries++] = sym;
16601
16602 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16603 cu);
16604 if (member_loc)
16605 {
16606 /* GDB has handled this for a long time, but it is
16607 not specified by DWARF. It seems to have been
16608 emitted by gfortran at least as recently as:
16609 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16610 complaint (&symfile_complaints,
16611 _("Variable in common block has "
16612 "DW_AT_data_member_location "
16613 "- DIE at 0x%x [in module %s]"),
16614 to_underlying (child_die->sect_off),
16615 objfile_name (cu->objfile));
16616
16617 if (attr_form_is_section_offset (member_loc))
16618 dwarf2_complex_location_expr_complaint ();
16619 else if (attr_form_is_constant (member_loc)
16620 || attr_form_is_block (member_loc))
16621 {
16622 if (attr)
16623 mark_common_block_symbol_computed (sym, die, attr,
16624 member_loc, cu);
16625 }
16626 else
16627 dwarf2_complex_location_expr_complaint ();
16628 }
16629 }
16630 }
16631
16632 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16633 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16634 }
16635 }
16636
16637 /* Create a type for a C++ namespace. */
16638
16639 static struct type *
16640 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16641 {
16642 struct objfile *objfile = cu->objfile;
16643 const char *previous_prefix, *name;
16644 int is_anonymous;
16645 struct type *type;
16646
16647 /* For extensions, reuse the type of the original namespace. */
16648 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16649 {
16650 struct die_info *ext_die;
16651 struct dwarf2_cu *ext_cu = cu;
16652
16653 ext_die = dwarf2_extension (die, &ext_cu);
16654 type = read_type_die (ext_die, ext_cu);
16655
16656 /* EXT_CU may not be the same as CU.
16657 Ensure TYPE is recorded with CU in die_type_hash. */
16658 return set_die_type (die, type, cu);
16659 }
16660
16661 name = namespace_name (die, &is_anonymous, cu);
16662
16663 /* Now build the name of the current namespace. */
16664
16665 previous_prefix = determine_prefix (die, cu);
16666 if (previous_prefix[0] != '\0')
16667 name = typename_concat (&objfile->objfile_obstack,
16668 previous_prefix, name, 0, cu);
16669
16670 /* Create the type. */
16671 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16672 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16673
16674 return set_die_type (die, type, cu);
16675 }
16676
16677 /* Read a namespace scope. */
16678
16679 static void
16680 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16681 {
16682 struct objfile *objfile = cu->objfile;
16683 int is_anonymous;
16684
16685 /* Add a symbol associated to this if we haven't seen the namespace
16686 before. Also, add a using directive if it's an anonymous
16687 namespace. */
16688
16689 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16690 {
16691 struct type *type;
16692
16693 type = read_type_die (die, cu);
16694 new_symbol (die, type, cu);
16695
16696 namespace_name (die, &is_anonymous, cu);
16697 if (is_anonymous)
16698 {
16699 const char *previous_prefix = determine_prefix (die, cu);
16700
16701 std::vector<const char *> excludes;
16702 add_using_directive (using_directives (cu->language),
16703 previous_prefix, TYPE_NAME (type), NULL,
16704 NULL, excludes, 0, &objfile->objfile_obstack);
16705 }
16706 }
16707
16708 if (die->child != NULL)
16709 {
16710 struct die_info *child_die = die->child;
16711
16712 while (child_die && child_die->tag)
16713 {
16714 process_die (child_die, cu);
16715 child_die = sibling_die (child_die);
16716 }
16717 }
16718 }
16719
16720 /* Read a Fortran module as type. This DIE can be only a declaration used for
16721 imported module. Still we need that type as local Fortran "use ... only"
16722 declaration imports depend on the created type in determine_prefix. */
16723
16724 static struct type *
16725 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16726 {
16727 struct objfile *objfile = cu->objfile;
16728 const char *module_name;
16729 struct type *type;
16730
16731 module_name = dwarf2_name (die, cu);
16732 if (!module_name)
16733 complaint (&symfile_complaints,
16734 _("DW_TAG_module has no name, offset 0x%x"),
16735 to_underlying (die->sect_off));
16736 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16737
16738 /* determine_prefix uses TYPE_TAG_NAME. */
16739 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16740
16741 return set_die_type (die, type, cu);
16742 }
16743
16744 /* Read a Fortran module. */
16745
16746 static void
16747 read_module (struct die_info *die, struct dwarf2_cu *cu)
16748 {
16749 struct die_info *child_die = die->child;
16750 struct type *type;
16751
16752 type = read_type_die (die, cu);
16753 new_symbol (die, type, cu);
16754
16755 while (child_die && child_die->tag)
16756 {
16757 process_die (child_die, cu);
16758 child_die = sibling_die (child_die);
16759 }
16760 }
16761
16762 /* Return the name of the namespace represented by DIE. Set
16763 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16764 namespace. */
16765
16766 static const char *
16767 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16768 {
16769 struct die_info *current_die;
16770 const char *name = NULL;
16771
16772 /* Loop through the extensions until we find a name. */
16773
16774 for (current_die = die;
16775 current_die != NULL;
16776 current_die = dwarf2_extension (die, &cu))
16777 {
16778 /* We don't use dwarf2_name here so that we can detect the absence
16779 of a name -> anonymous namespace. */
16780 name = dwarf2_string_attr (die, DW_AT_name, cu);
16781
16782 if (name != NULL)
16783 break;
16784 }
16785
16786 /* Is it an anonymous namespace? */
16787
16788 *is_anonymous = (name == NULL);
16789 if (*is_anonymous)
16790 name = CP_ANONYMOUS_NAMESPACE_STR;
16791
16792 return name;
16793 }
16794
16795 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16796 the user defined type vector. */
16797
16798 static struct type *
16799 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16800 {
16801 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
16802 struct comp_unit_head *cu_header = &cu->header;
16803 struct type *type;
16804 struct attribute *attr_byte_size;
16805 struct attribute *attr_address_class;
16806 int byte_size, addr_class;
16807 struct type *target_type;
16808
16809 target_type = die_type (die, cu);
16810
16811 /* The die_type call above may have already set the type for this DIE. */
16812 type = get_die_type (die, cu);
16813 if (type)
16814 return type;
16815
16816 type = lookup_pointer_type (target_type);
16817
16818 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16819 if (attr_byte_size)
16820 byte_size = DW_UNSND (attr_byte_size);
16821 else
16822 byte_size = cu_header->addr_size;
16823
16824 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16825 if (attr_address_class)
16826 addr_class = DW_UNSND (attr_address_class);
16827 else
16828 addr_class = DW_ADDR_none;
16829
16830 /* If the pointer size or address class is different than the
16831 default, create a type variant marked as such and set the
16832 length accordingly. */
16833 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16834 {
16835 if (gdbarch_address_class_type_flags_p (gdbarch))
16836 {
16837 int type_flags;
16838
16839 type_flags = gdbarch_address_class_type_flags
16840 (gdbarch, byte_size, addr_class);
16841 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16842 == 0);
16843 type = make_type_with_address_space (type, type_flags);
16844 }
16845 else if (TYPE_LENGTH (type) != byte_size)
16846 {
16847 complaint (&symfile_complaints,
16848 _("invalid pointer size %d"), byte_size);
16849 }
16850 else
16851 {
16852 /* Should we also complain about unhandled address classes? */
16853 }
16854 }
16855
16856 TYPE_LENGTH (type) = byte_size;
16857 return set_die_type (die, type, cu);
16858 }
16859
16860 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16861 the user defined type vector. */
16862
16863 static struct type *
16864 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16865 {
16866 struct type *type;
16867 struct type *to_type;
16868 struct type *domain;
16869
16870 to_type = die_type (die, cu);
16871 domain = die_containing_type (die, cu);
16872
16873 /* The calls above may have already set the type for this DIE. */
16874 type = get_die_type (die, cu);
16875 if (type)
16876 return type;
16877
16878 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16879 type = lookup_methodptr_type (to_type);
16880 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16881 {
16882 struct type *new_type = alloc_type (cu->objfile);
16883
16884 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16885 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16886 TYPE_VARARGS (to_type));
16887 type = lookup_methodptr_type (new_type);
16888 }
16889 else
16890 type = lookup_memberptr_type (to_type, domain);
16891
16892 return set_die_type (die, type, cu);
16893 }
16894
16895 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16896 the user defined type vector. */
16897
16898 static struct type *
16899 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16900 enum type_code refcode)
16901 {
16902 struct comp_unit_head *cu_header = &cu->header;
16903 struct type *type, *target_type;
16904 struct attribute *attr;
16905
16906 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16907
16908 target_type = die_type (die, cu);
16909
16910 /* The die_type call above may have already set the type for this DIE. */
16911 type = get_die_type (die, cu);
16912 if (type)
16913 return type;
16914
16915 type = lookup_reference_type (target_type, refcode);
16916 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16917 if (attr)
16918 {
16919 TYPE_LENGTH (type) = DW_UNSND (attr);
16920 }
16921 else
16922 {
16923 TYPE_LENGTH (type) = cu_header->addr_size;
16924 }
16925 return set_die_type (die, type, cu);
16926 }
16927
16928 /* Add the given cv-qualifiers to the element type of the array. GCC
16929 outputs DWARF type qualifiers that apply to an array, not the
16930 element type. But GDB relies on the array element type to carry
16931 the cv-qualifiers. This mimics section 6.7.3 of the C99
16932 specification. */
16933
16934 static struct type *
16935 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16936 struct type *base_type, int cnst, int voltl)
16937 {
16938 struct type *el_type, *inner_array;
16939
16940 base_type = copy_type (base_type);
16941 inner_array = base_type;
16942
16943 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16944 {
16945 TYPE_TARGET_TYPE (inner_array) =
16946 copy_type (TYPE_TARGET_TYPE (inner_array));
16947 inner_array = TYPE_TARGET_TYPE (inner_array);
16948 }
16949
16950 el_type = TYPE_TARGET_TYPE (inner_array);
16951 cnst |= TYPE_CONST (el_type);
16952 voltl |= TYPE_VOLATILE (el_type);
16953 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16954
16955 return set_die_type (die, base_type, cu);
16956 }
16957
16958 static struct type *
16959 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16960 {
16961 struct type *base_type, *cv_type;
16962
16963 base_type = die_type (die, cu);
16964
16965 /* The die_type call above may have already set the type for this DIE. */
16966 cv_type = get_die_type (die, cu);
16967 if (cv_type)
16968 return cv_type;
16969
16970 /* In case the const qualifier is applied to an array type, the element type
16971 is so qualified, not the array type (section 6.7.3 of C99). */
16972 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16973 return add_array_cv_type (die, cu, base_type, 1, 0);
16974
16975 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16976 return set_die_type (die, cv_type, cu);
16977 }
16978
16979 static struct type *
16980 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16981 {
16982 struct type *base_type, *cv_type;
16983
16984 base_type = die_type (die, cu);
16985
16986 /* The die_type call above may have already set the type for this DIE. */
16987 cv_type = get_die_type (die, cu);
16988 if (cv_type)
16989 return cv_type;
16990
16991 /* In case the volatile qualifier is applied to an array type, the
16992 element type is so qualified, not the array type (section 6.7.3
16993 of C99). */
16994 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16995 return add_array_cv_type (die, cu, base_type, 0, 1);
16996
16997 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16998 return set_die_type (die, cv_type, cu);
16999 }
17000
17001 /* Handle DW_TAG_restrict_type. */
17002
17003 static struct type *
17004 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17005 {
17006 struct type *base_type, *cv_type;
17007
17008 base_type = die_type (die, cu);
17009
17010 /* The die_type call above may have already set the type for this DIE. */
17011 cv_type = get_die_type (die, cu);
17012 if (cv_type)
17013 return cv_type;
17014
17015 cv_type = make_restrict_type (base_type);
17016 return set_die_type (die, cv_type, cu);
17017 }
17018
17019 /* Handle DW_TAG_atomic_type. */
17020
17021 static struct type *
17022 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17023 {
17024 struct type *base_type, *cv_type;
17025
17026 base_type = die_type (die, cu);
17027
17028 /* The die_type call above may have already set the type for this DIE. */
17029 cv_type = get_die_type (die, cu);
17030 if (cv_type)
17031 return cv_type;
17032
17033 cv_type = make_atomic_type (base_type);
17034 return set_die_type (die, cv_type, cu);
17035 }
17036
17037 /* Extract all information from a DW_TAG_string_type DIE and add to
17038 the user defined type vector. It isn't really a user defined type,
17039 but it behaves like one, with other DIE's using an AT_user_def_type
17040 attribute to reference it. */
17041
17042 static struct type *
17043 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17044 {
17045 struct objfile *objfile = cu->objfile;
17046 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17047 struct type *type, *range_type, *index_type, *char_type;
17048 struct attribute *attr;
17049 unsigned int length;
17050
17051 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17052 if (attr)
17053 {
17054 length = DW_UNSND (attr);
17055 }
17056 else
17057 {
17058 /* Check for the DW_AT_byte_size attribute. */
17059 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17060 if (attr)
17061 {
17062 length = DW_UNSND (attr);
17063 }
17064 else
17065 {
17066 length = 1;
17067 }
17068 }
17069
17070 index_type = objfile_type (objfile)->builtin_int;
17071 range_type = create_static_range_type (NULL, index_type, 1, length);
17072 char_type = language_string_char_type (cu->language_defn, gdbarch);
17073 type = create_string_type (NULL, char_type, range_type);
17074
17075 return set_die_type (die, type, cu);
17076 }
17077
17078 /* Assuming that DIE corresponds to a function, returns nonzero
17079 if the function is prototyped. */
17080
17081 static int
17082 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17083 {
17084 struct attribute *attr;
17085
17086 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17087 if (attr && (DW_UNSND (attr) != 0))
17088 return 1;
17089
17090 /* The DWARF standard implies that the DW_AT_prototyped attribute
17091 is only meaninful for C, but the concept also extends to other
17092 languages that allow unprototyped functions (Eg: Objective C).
17093 For all other languages, assume that functions are always
17094 prototyped. */
17095 if (cu->language != language_c
17096 && cu->language != language_objc
17097 && cu->language != language_opencl)
17098 return 1;
17099
17100 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17101 prototyped and unprototyped functions; default to prototyped,
17102 since that is more common in modern code (and RealView warns
17103 about unprototyped functions). */
17104 if (producer_is_realview (cu->producer))
17105 return 1;
17106
17107 return 0;
17108 }
17109
17110 /* Handle DIES due to C code like:
17111
17112 struct foo
17113 {
17114 int (*funcp)(int a, long l);
17115 int b;
17116 };
17117
17118 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17119
17120 static struct type *
17121 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 struct objfile *objfile = cu->objfile;
17124 struct type *type; /* Type that this function returns. */
17125 struct type *ftype; /* Function that returns above type. */
17126 struct attribute *attr;
17127
17128 type = die_type (die, cu);
17129
17130 /* The die_type call above may have already set the type for this DIE. */
17131 ftype = get_die_type (die, cu);
17132 if (ftype)
17133 return ftype;
17134
17135 ftype = lookup_function_type (type);
17136
17137 if (prototyped_function_p (die, cu))
17138 TYPE_PROTOTYPED (ftype) = 1;
17139
17140 /* Store the calling convention in the type if it's available in
17141 the subroutine die. Otherwise set the calling convention to
17142 the default value DW_CC_normal. */
17143 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17144 if (attr)
17145 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17146 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17147 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17148 else
17149 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17150
17151 /* Record whether the function returns normally to its caller or not
17152 if the DWARF producer set that information. */
17153 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17154 if (attr && (DW_UNSND (attr) != 0))
17155 TYPE_NO_RETURN (ftype) = 1;
17156
17157 /* We need to add the subroutine type to the die immediately so
17158 we don't infinitely recurse when dealing with parameters
17159 declared as the same subroutine type. */
17160 set_die_type (die, ftype, cu);
17161
17162 if (die->child != NULL)
17163 {
17164 struct type *void_type = objfile_type (objfile)->builtin_void;
17165 struct die_info *child_die;
17166 int nparams, iparams;
17167
17168 /* Count the number of parameters.
17169 FIXME: GDB currently ignores vararg functions, but knows about
17170 vararg member functions. */
17171 nparams = 0;
17172 child_die = die->child;
17173 while (child_die && child_die->tag)
17174 {
17175 if (child_die->tag == DW_TAG_formal_parameter)
17176 nparams++;
17177 else if (child_die->tag == DW_TAG_unspecified_parameters)
17178 TYPE_VARARGS (ftype) = 1;
17179 child_die = sibling_die (child_die);
17180 }
17181
17182 /* Allocate storage for parameters and fill them in. */
17183 TYPE_NFIELDS (ftype) = nparams;
17184 TYPE_FIELDS (ftype) = (struct field *)
17185 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17186
17187 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17188 even if we error out during the parameters reading below. */
17189 for (iparams = 0; iparams < nparams; iparams++)
17190 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17191
17192 iparams = 0;
17193 child_die = die->child;
17194 while (child_die && child_die->tag)
17195 {
17196 if (child_die->tag == DW_TAG_formal_parameter)
17197 {
17198 struct type *arg_type;
17199
17200 /* DWARF version 2 has no clean way to discern C++
17201 static and non-static member functions. G++ helps
17202 GDB by marking the first parameter for non-static
17203 member functions (which is the this pointer) as
17204 artificial. We pass this information to
17205 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17206
17207 DWARF version 3 added DW_AT_object_pointer, which GCC
17208 4.5 does not yet generate. */
17209 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17210 if (attr)
17211 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17212 else
17213 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17214 arg_type = die_type (child_die, cu);
17215
17216 /* RealView does not mark THIS as const, which the testsuite
17217 expects. GCC marks THIS as const in method definitions,
17218 but not in the class specifications (GCC PR 43053). */
17219 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17220 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17221 {
17222 int is_this = 0;
17223 struct dwarf2_cu *arg_cu = cu;
17224 const char *name = dwarf2_name (child_die, cu);
17225
17226 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17227 if (attr)
17228 {
17229 /* If the compiler emits this, use it. */
17230 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17231 is_this = 1;
17232 }
17233 else if (name && strcmp (name, "this") == 0)
17234 /* Function definitions will have the argument names. */
17235 is_this = 1;
17236 else if (name == NULL && iparams == 0)
17237 /* Declarations may not have the names, so like
17238 elsewhere in GDB, assume an artificial first
17239 argument is "this". */
17240 is_this = 1;
17241
17242 if (is_this)
17243 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17244 arg_type, 0);
17245 }
17246
17247 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17248 iparams++;
17249 }
17250 child_die = sibling_die (child_die);
17251 }
17252 }
17253
17254 return ftype;
17255 }
17256
17257 static struct type *
17258 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17259 {
17260 struct objfile *objfile = cu->objfile;
17261 const char *name = NULL;
17262 struct type *this_type, *target_type;
17263
17264 name = dwarf2_full_name (NULL, die, cu);
17265 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17266 TYPE_TARGET_STUB (this_type) = 1;
17267 set_die_type (die, this_type, cu);
17268 target_type = die_type (die, cu);
17269 if (target_type != this_type)
17270 TYPE_TARGET_TYPE (this_type) = target_type;
17271 else
17272 {
17273 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17274 spec and cause infinite loops in GDB. */
17275 complaint (&symfile_complaints,
17276 _("Self-referential DW_TAG_typedef "
17277 "- DIE at 0x%x [in module %s]"),
17278 to_underlying (die->sect_off), objfile_name (objfile));
17279 TYPE_TARGET_TYPE (this_type) = NULL;
17280 }
17281 return this_type;
17282 }
17283
17284 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17285 (which may be different from NAME) to the architecture back-end to allow
17286 it to guess the correct format if necessary. */
17287
17288 static struct type *
17289 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17290 const char *name_hint)
17291 {
17292 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17293 const struct floatformat **format;
17294 struct type *type;
17295
17296 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17297 if (format)
17298 type = init_float_type (objfile, bits, name, format);
17299 else
17300 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17301
17302 return type;
17303 }
17304
17305 /* Find a representation of a given base type and install
17306 it in the TYPE field of the die. */
17307
17308 static struct type *
17309 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17310 {
17311 struct objfile *objfile = cu->objfile;
17312 struct type *type;
17313 struct attribute *attr;
17314 int encoding = 0, bits = 0;
17315 const char *name;
17316
17317 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17318 if (attr)
17319 {
17320 encoding = DW_UNSND (attr);
17321 }
17322 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17323 if (attr)
17324 {
17325 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17326 }
17327 name = dwarf2_name (die, cu);
17328 if (!name)
17329 {
17330 complaint (&symfile_complaints,
17331 _("DW_AT_name missing from DW_TAG_base_type"));
17332 }
17333
17334 switch (encoding)
17335 {
17336 case DW_ATE_address:
17337 /* Turn DW_ATE_address into a void * pointer. */
17338 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17339 type = init_pointer_type (objfile, bits, name, type);
17340 break;
17341 case DW_ATE_boolean:
17342 type = init_boolean_type (objfile, bits, 1, name);
17343 break;
17344 case DW_ATE_complex_float:
17345 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17346 type = init_complex_type (objfile, name, type);
17347 break;
17348 case DW_ATE_decimal_float:
17349 type = init_decfloat_type (objfile, bits, name);
17350 break;
17351 case DW_ATE_float:
17352 type = dwarf2_init_float_type (objfile, bits, name, name);
17353 break;
17354 case DW_ATE_signed:
17355 type = init_integer_type (objfile, bits, 0, name);
17356 break;
17357 case DW_ATE_unsigned:
17358 if (cu->language == language_fortran
17359 && name
17360 && startswith (name, "character("))
17361 type = init_character_type (objfile, bits, 1, name);
17362 else
17363 type = init_integer_type (objfile, bits, 1, name);
17364 break;
17365 case DW_ATE_signed_char:
17366 if (cu->language == language_ada || cu->language == language_m2
17367 || cu->language == language_pascal
17368 || cu->language == language_fortran)
17369 type = init_character_type (objfile, bits, 0, name);
17370 else
17371 type = init_integer_type (objfile, bits, 0, name);
17372 break;
17373 case DW_ATE_unsigned_char:
17374 if (cu->language == language_ada || cu->language == language_m2
17375 || cu->language == language_pascal
17376 || cu->language == language_fortran
17377 || cu->language == language_rust)
17378 type = init_character_type (objfile, bits, 1, name);
17379 else
17380 type = init_integer_type (objfile, bits, 1, name);
17381 break;
17382 case DW_ATE_UTF:
17383 {
17384 gdbarch *arch = get_objfile_arch (objfile);
17385
17386 if (bits == 16)
17387 type = builtin_type (arch)->builtin_char16;
17388 else if (bits == 32)
17389 type = builtin_type (arch)->builtin_char32;
17390 else
17391 {
17392 complaint (&symfile_complaints,
17393 _("unsupported DW_ATE_UTF bit size: '%d'"),
17394 bits);
17395 type = init_integer_type (objfile, bits, 1, name);
17396 }
17397 return set_die_type (die, type, cu);
17398 }
17399 break;
17400
17401 default:
17402 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17403 dwarf_type_encoding_name (encoding));
17404 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17405 break;
17406 }
17407
17408 if (name && strcmp (name, "char") == 0)
17409 TYPE_NOSIGN (type) = 1;
17410
17411 return set_die_type (die, type, cu);
17412 }
17413
17414 /* Parse dwarf attribute if it's a block, reference or constant and put the
17415 resulting value of the attribute into struct bound_prop.
17416 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17417
17418 static int
17419 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17420 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17421 {
17422 struct dwarf2_property_baton *baton;
17423 struct obstack *obstack = &cu->objfile->objfile_obstack;
17424
17425 if (attr == NULL || prop == NULL)
17426 return 0;
17427
17428 if (attr_form_is_block (attr))
17429 {
17430 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17431 baton->referenced_type = NULL;
17432 baton->locexpr.per_cu = cu->per_cu;
17433 baton->locexpr.size = DW_BLOCK (attr)->size;
17434 baton->locexpr.data = DW_BLOCK (attr)->data;
17435 prop->data.baton = baton;
17436 prop->kind = PROP_LOCEXPR;
17437 gdb_assert (prop->data.baton != NULL);
17438 }
17439 else if (attr_form_is_ref (attr))
17440 {
17441 struct dwarf2_cu *target_cu = cu;
17442 struct die_info *target_die;
17443 struct attribute *target_attr;
17444
17445 target_die = follow_die_ref (die, attr, &target_cu);
17446 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17447 if (target_attr == NULL)
17448 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17449 target_cu);
17450 if (target_attr == NULL)
17451 return 0;
17452
17453 switch (target_attr->name)
17454 {
17455 case DW_AT_location:
17456 if (attr_form_is_section_offset (target_attr))
17457 {
17458 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17459 baton->referenced_type = die_type (target_die, target_cu);
17460 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17461 prop->data.baton = baton;
17462 prop->kind = PROP_LOCLIST;
17463 gdb_assert (prop->data.baton != NULL);
17464 }
17465 else if (attr_form_is_block (target_attr))
17466 {
17467 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17468 baton->referenced_type = die_type (target_die, target_cu);
17469 baton->locexpr.per_cu = cu->per_cu;
17470 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17471 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17472 prop->data.baton = baton;
17473 prop->kind = PROP_LOCEXPR;
17474 gdb_assert (prop->data.baton != NULL);
17475 }
17476 else
17477 {
17478 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17479 "dynamic property");
17480 return 0;
17481 }
17482 break;
17483 case DW_AT_data_member_location:
17484 {
17485 LONGEST offset;
17486
17487 if (!handle_data_member_location (target_die, target_cu,
17488 &offset))
17489 return 0;
17490
17491 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17492 baton->referenced_type = read_type_die (target_die->parent,
17493 target_cu);
17494 baton->offset_info.offset = offset;
17495 baton->offset_info.type = die_type (target_die, target_cu);
17496 prop->data.baton = baton;
17497 prop->kind = PROP_ADDR_OFFSET;
17498 break;
17499 }
17500 }
17501 }
17502 else if (attr_form_is_constant (attr))
17503 {
17504 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17505 prop->kind = PROP_CONST;
17506 }
17507 else
17508 {
17509 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17510 dwarf2_name (die, cu));
17511 return 0;
17512 }
17513
17514 return 1;
17515 }
17516
17517 /* Read the given DW_AT_subrange DIE. */
17518
17519 static struct type *
17520 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17521 {
17522 struct type *base_type, *orig_base_type;
17523 struct type *range_type;
17524 struct attribute *attr;
17525 struct dynamic_prop low, high;
17526 int low_default_is_valid;
17527 int high_bound_is_count = 0;
17528 const char *name;
17529 LONGEST negative_mask;
17530
17531 orig_base_type = die_type (die, cu);
17532 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17533 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17534 creating the range type, but we use the result of check_typedef
17535 when examining properties of the type. */
17536 base_type = check_typedef (orig_base_type);
17537
17538 /* The die_type call above may have already set the type for this DIE. */
17539 range_type = get_die_type (die, cu);
17540 if (range_type)
17541 return range_type;
17542
17543 low.kind = PROP_CONST;
17544 high.kind = PROP_CONST;
17545 high.data.const_val = 0;
17546
17547 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17548 omitting DW_AT_lower_bound. */
17549 switch (cu->language)
17550 {
17551 case language_c:
17552 case language_cplus:
17553 low.data.const_val = 0;
17554 low_default_is_valid = 1;
17555 break;
17556 case language_fortran:
17557 low.data.const_val = 1;
17558 low_default_is_valid = 1;
17559 break;
17560 case language_d:
17561 case language_objc:
17562 case language_rust:
17563 low.data.const_val = 0;
17564 low_default_is_valid = (cu->header.version >= 4);
17565 break;
17566 case language_ada:
17567 case language_m2:
17568 case language_pascal:
17569 low.data.const_val = 1;
17570 low_default_is_valid = (cu->header.version >= 4);
17571 break;
17572 default:
17573 low.data.const_val = 0;
17574 low_default_is_valid = 0;
17575 break;
17576 }
17577
17578 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17579 if (attr)
17580 attr_to_dynamic_prop (attr, die, cu, &low);
17581 else if (!low_default_is_valid)
17582 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17583 "- DIE at 0x%x [in module %s]"),
17584 to_underlying (die->sect_off), objfile_name (cu->objfile));
17585
17586 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17587 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17588 {
17589 attr = dwarf2_attr (die, DW_AT_count, cu);
17590 if (attr_to_dynamic_prop (attr, die, cu, &high))
17591 {
17592 /* If bounds are constant do the final calculation here. */
17593 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17594 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17595 else
17596 high_bound_is_count = 1;
17597 }
17598 }
17599
17600 /* Dwarf-2 specifications explicitly allows to create subrange types
17601 without specifying a base type.
17602 In that case, the base type must be set to the type of
17603 the lower bound, upper bound or count, in that order, if any of these
17604 three attributes references an object that has a type.
17605 If no base type is found, the Dwarf-2 specifications say that
17606 a signed integer type of size equal to the size of an address should
17607 be used.
17608 For the following C code: `extern char gdb_int [];'
17609 GCC produces an empty range DIE.
17610 FIXME: muller/2010-05-28: Possible references to object for low bound,
17611 high bound or count are not yet handled by this code. */
17612 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17613 {
17614 struct objfile *objfile = cu->objfile;
17615 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17616 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17617 struct type *int_type = objfile_type (objfile)->builtin_int;
17618
17619 /* Test "int", "long int", and "long long int" objfile types,
17620 and select the first one having a size above or equal to the
17621 architecture address size. */
17622 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17623 base_type = int_type;
17624 else
17625 {
17626 int_type = objfile_type (objfile)->builtin_long;
17627 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17628 base_type = int_type;
17629 else
17630 {
17631 int_type = objfile_type (objfile)->builtin_long_long;
17632 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17633 base_type = int_type;
17634 }
17635 }
17636 }
17637
17638 /* Normally, the DWARF producers are expected to use a signed
17639 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17640 But this is unfortunately not always the case, as witnessed
17641 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17642 is used instead. To work around that ambiguity, we treat
17643 the bounds as signed, and thus sign-extend their values, when
17644 the base type is signed. */
17645 negative_mask =
17646 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17647 if (low.kind == PROP_CONST
17648 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17649 low.data.const_val |= negative_mask;
17650 if (high.kind == PROP_CONST
17651 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17652 high.data.const_val |= negative_mask;
17653
17654 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17655
17656 if (high_bound_is_count)
17657 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17658
17659 /* Ada expects an empty array on no boundary attributes. */
17660 if (attr == NULL && cu->language != language_ada)
17661 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17662
17663 name = dwarf2_name (die, cu);
17664 if (name)
17665 TYPE_NAME (range_type) = name;
17666
17667 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17668 if (attr)
17669 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17670
17671 set_die_type (die, range_type, cu);
17672
17673 /* set_die_type should be already done. */
17674 set_descriptive_type (range_type, die, cu);
17675
17676 return range_type;
17677 }
17678
17679 static struct type *
17680 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17681 {
17682 struct type *type;
17683
17684 /* For now, we only support the C meaning of an unspecified type: void. */
17685
17686 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
17687 TYPE_NAME (type) = dwarf2_name (die, cu);
17688
17689 return set_die_type (die, type, cu);
17690 }
17691
17692 /* Read a single die and all its descendents. Set the die's sibling
17693 field to NULL; set other fields in the die correctly, and set all
17694 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17695 location of the info_ptr after reading all of those dies. PARENT
17696 is the parent of the die in question. */
17697
17698 static struct die_info *
17699 read_die_and_children (const struct die_reader_specs *reader,
17700 const gdb_byte *info_ptr,
17701 const gdb_byte **new_info_ptr,
17702 struct die_info *parent)
17703 {
17704 struct die_info *die;
17705 const gdb_byte *cur_ptr;
17706 int has_children;
17707
17708 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17709 if (die == NULL)
17710 {
17711 *new_info_ptr = cur_ptr;
17712 return NULL;
17713 }
17714 store_in_ref_table (die, reader->cu);
17715
17716 if (has_children)
17717 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17718 else
17719 {
17720 die->child = NULL;
17721 *new_info_ptr = cur_ptr;
17722 }
17723
17724 die->sibling = NULL;
17725 die->parent = parent;
17726 return die;
17727 }
17728
17729 /* Read a die, all of its descendents, and all of its siblings; set
17730 all of the fields of all of the dies correctly. Arguments are as
17731 in read_die_and_children. */
17732
17733 static struct die_info *
17734 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17735 const gdb_byte *info_ptr,
17736 const gdb_byte **new_info_ptr,
17737 struct die_info *parent)
17738 {
17739 struct die_info *first_die, *last_sibling;
17740 const gdb_byte *cur_ptr;
17741
17742 cur_ptr = info_ptr;
17743 first_die = last_sibling = NULL;
17744
17745 while (1)
17746 {
17747 struct die_info *die
17748 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17749
17750 if (die == NULL)
17751 {
17752 *new_info_ptr = cur_ptr;
17753 return first_die;
17754 }
17755
17756 if (!first_die)
17757 first_die = die;
17758 else
17759 last_sibling->sibling = die;
17760
17761 last_sibling = die;
17762 }
17763 }
17764
17765 /* Read a die, all of its descendents, and all of its siblings; set
17766 all of the fields of all of the dies correctly. Arguments are as
17767 in read_die_and_children.
17768 This the main entry point for reading a DIE and all its children. */
17769
17770 static struct die_info *
17771 read_die_and_siblings (const struct die_reader_specs *reader,
17772 const gdb_byte *info_ptr,
17773 const gdb_byte **new_info_ptr,
17774 struct die_info *parent)
17775 {
17776 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17777 new_info_ptr, parent);
17778
17779 if (dwarf_die_debug)
17780 {
17781 fprintf_unfiltered (gdb_stdlog,
17782 "Read die from %s@0x%x of %s:\n",
17783 get_section_name (reader->die_section),
17784 (unsigned) (info_ptr - reader->die_section->buffer),
17785 bfd_get_filename (reader->abfd));
17786 dump_die (die, dwarf_die_debug);
17787 }
17788
17789 return die;
17790 }
17791
17792 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17793 attributes.
17794 The caller is responsible for filling in the extra attributes
17795 and updating (*DIEP)->num_attrs.
17796 Set DIEP to point to a newly allocated die with its information,
17797 except for its child, sibling, and parent fields.
17798 Set HAS_CHILDREN to tell whether the die has children or not. */
17799
17800 static const gdb_byte *
17801 read_full_die_1 (const struct die_reader_specs *reader,
17802 struct die_info **diep, const gdb_byte *info_ptr,
17803 int *has_children, int num_extra_attrs)
17804 {
17805 unsigned int abbrev_number, bytes_read, i;
17806 struct abbrev_info *abbrev;
17807 struct die_info *die;
17808 struct dwarf2_cu *cu = reader->cu;
17809 bfd *abfd = reader->abfd;
17810
17811 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17812 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17813 info_ptr += bytes_read;
17814 if (!abbrev_number)
17815 {
17816 *diep = NULL;
17817 *has_children = 0;
17818 return info_ptr;
17819 }
17820
17821 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
17822 if (!abbrev)
17823 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17824 abbrev_number,
17825 bfd_get_filename (abfd));
17826
17827 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17828 die->sect_off = sect_off;
17829 die->tag = abbrev->tag;
17830 die->abbrev = abbrev_number;
17831
17832 /* Make the result usable.
17833 The caller needs to update num_attrs after adding the extra
17834 attributes. */
17835 die->num_attrs = abbrev->num_attrs;
17836
17837 for (i = 0; i < abbrev->num_attrs; ++i)
17838 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17839 info_ptr);
17840
17841 *diep = die;
17842 *has_children = abbrev->has_children;
17843 return info_ptr;
17844 }
17845
17846 /* Read a die and all its attributes.
17847 Set DIEP to point to a newly allocated die with its information,
17848 except for its child, sibling, and parent fields.
17849 Set HAS_CHILDREN to tell whether the die has children or not. */
17850
17851 static const gdb_byte *
17852 read_full_die (const struct die_reader_specs *reader,
17853 struct die_info **diep, const gdb_byte *info_ptr,
17854 int *has_children)
17855 {
17856 const gdb_byte *result;
17857
17858 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17859
17860 if (dwarf_die_debug)
17861 {
17862 fprintf_unfiltered (gdb_stdlog,
17863 "Read die from %s@0x%x of %s:\n",
17864 get_section_name (reader->die_section),
17865 (unsigned) (info_ptr - reader->die_section->buffer),
17866 bfd_get_filename (reader->abfd));
17867 dump_die (*diep, dwarf_die_debug);
17868 }
17869
17870 return result;
17871 }
17872 \f
17873 /* Abbreviation tables.
17874
17875 In DWARF version 2, the description of the debugging information is
17876 stored in a separate .debug_abbrev section. Before we read any
17877 dies from a section we read in all abbreviations and install them
17878 in a hash table. */
17879
17880 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17881
17882 static struct abbrev_info *
17883 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
17884 {
17885 struct abbrev_info *abbrev;
17886
17887 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
17888 memset (abbrev, 0, sizeof (struct abbrev_info));
17889
17890 return abbrev;
17891 }
17892
17893 /* Add an abbreviation to the table. */
17894
17895 static void
17896 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
17897 unsigned int abbrev_number,
17898 struct abbrev_info *abbrev)
17899 {
17900 unsigned int hash_number;
17901
17902 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17903 abbrev->next = abbrev_table->abbrevs[hash_number];
17904 abbrev_table->abbrevs[hash_number] = abbrev;
17905 }
17906
17907 /* Look up an abbrev in the table.
17908 Returns NULL if the abbrev is not found. */
17909
17910 static struct abbrev_info *
17911 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
17912 unsigned int abbrev_number)
17913 {
17914 unsigned int hash_number;
17915 struct abbrev_info *abbrev;
17916
17917 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17918 abbrev = abbrev_table->abbrevs[hash_number];
17919
17920 while (abbrev)
17921 {
17922 if (abbrev->number == abbrev_number)
17923 return abbrev;
17924 abbrev = abbrev->next;
17925 }
17926 return NULL;
17927 }
17928
17929 /* Read in an abbrev table. */
17930
17931 static struct abbrev_table *
17932 abbrev_table_read_table (struct dwarf2_section_info *section,
17933 sect_offset sect_off)
17934 {
17935 struct objfile *objfile = dwarf2_per_objfile->objfile;
17936 bfd *abfd = get_section_bfd_owner (section);
17937 struct abbrev_table *abbrev_table;
17938 const gdb_byte *abbrev_ptr;
17939 struct abbrev_info *cur_abbrev;
17940 unsigned int abbrev_number, bytes_read, abbrev_name;
17941 unsigned int abbrev_form;
17942 struct attr_abbrev *cur_attrs;
17943 unsigned int allocated_attrs;
17944
17945 abbrev_table = XNEW (struct abbrev_table);
17946 abbrev_table->sect_off = sect_off;
17947 obstack_init (&abbrev_table->abbrev_obstack);
17948 abbrev_table->abbrevs =
17949 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
17950 ABBREV_HASH_SIZE);
17951 memset (abbrev_table->abbrevs, 0,
17952 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
17953
17954 dwarf2_read_section (objfile, section);
17955 abbrev_ptr = section->buffer + to_underlying (sect_off);
17956 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17957 abbrev_ptr += bytes_read;
17958
17959 allocated_attrs = ATTR_ALLOC_CHUNK;
17960 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17961
17962 /* Loop until we reach an abbrev number of 0. */
17963 while (abbrev_number)
17964 {
17965 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
17966
17967 /* read in abbrev header */
17968 cur_abbrev->number = abbrev_number;
17969 cur_abbrev->tag
17970 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17971 abbrev_ptr += bytes_read;
17972 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17973 abbrev_ptr += 1;
17974
17975 /* now read in declarations */
17976 for (;;)
17977 {
17978 LONGEST implicit_const;
17979
17980 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17981 abbrev_ptr += bytes_read;
17982 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17983 abbrev_ptr += bytes_read;
17984 if (abbrev_form == DW_FORM_implicit_const)
17985 {
17986 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17987 &bytes_read);
17988 abbrev_ptr += bytes_read;
17989 }
17990 else
17991 {
17992 /* Initialize it due to a false compiler warning. */
17993 implicit_const = -1;
17994 }
17995
17996 if (abbrev_name == 0)
17997 break;
17998
17999 if (cur_abbrev->num_attrs == allocated_attrs)
18000 {
18001 allocated_attrs += ATTR_ALLOC_CHUNK;
18002 cur_attrs
18003 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18004 }
18005
18006 cur_attrs[cur_abbrev->num_attrs].name
18007 = (enum dwarf_attribute) abbrev_name;
18008 cur_attrs[cur_abbrev->num_attrs].form
18009 = (enum dwarf_form) abbrev_form;
18010 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18011 ++cur_abbrev->num_attrs;
18012 }
18013
18014 cur_abbrev->attrs =
18015 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18016 cur_abbrev->num_attrs);
18017 memcpy (cur_abbrev->attrs, cur_attrs,
18018 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18019
18020 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
18021
18022 /* Get next abbreviation.
18023 Under Irix6 the abbreviations for a compilation unit are not
18024 always properly terminated with an abbrev number of 0.
18025 Exit loop if we encounter an abbreviation which we have
18026 already read (which means we are about to read the abbreviations
18027 for the next compile unit) or if the end of the abbreviation
18028 table is reached. */
18029 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18030 break;
18031 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18032 abbrev_ptr += bytes_read;
18033 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
18034 break;
18035 }
18036
18037 xfree (cur_attrs);
18038 return abbrev_table;
18039 }
18040
18041 /* Free the resources held by ABBREV_TABLE. */
18042
18043 static void
18044 abbrev_table_free (struct abbrev_table *abbrev_table)
18045 {
18046 obstack_free (&abbrev_table->abbrev_obstack, NULL);
18047 xfree (abbrev_table);
18048 }
18049
18050 /* Same as abbrev_table_free but as a cleanup.
18051 We pass in a pointer to the pointer to the table so that we can
18052 set the pointer to NULL when we're done. It also simplifies
18053 build_type_psymtabs_1. */
18054
18055 static void
18056 abbrev_table_free_cleanup (void *table_ptr)
18057 {
18058 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
18059
18060 if (*abbrev_table_ptr != NULL)
18061 abbrev_table_free (*abbrev_table_ptr);
18062 *abbrev_table_ptr = NULL;
18063 }
18064
18065 /* Read the abbrev table for CU from ABBREV_SECTION. */
18066
18067 static void
18068 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
18069 struct dwarf2_section_info *abbrev_section)
18070 {
18071 cu->abbrev_table =
18072 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
18073 }
18074
18075 /* Release the memory used by the abbrev table for a compilation unit. */
18076
18077 static void
18078 dwarf2_free_abbrev_table (void *ptr_to_cu)
18079 {
18080 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
18081
18082 if (cu->abbrev_table != NULL)
18083 abbrev_table_free (cu->abbrev_table);
18084 /* Set this to NULL so that we SEGV if we try to read it later,
18085 and also because free_comp_unit verifies this is NULL. */
18086 cu->abbrev_table = NULL;
18087 }
18088 \f
18089 /* Returns nonzero if TAG represents a type that we might generate a partial
18090 symbol for. */
18091
18092 static int
18093 is_type_tag_for_partial (int tag)
18094 {
18095 switch (tag)
18096 {
18097 #if 0
18098 /* Some types that would be reasonable to generate partial symbols for,
18099 that we don't at present. */
18100 case DW_TAG_array_type:
18101 case DW_TAG_file_type:
18102 case DW_TAG_ptr_to_member_type:
18103 case DW_TAG_set_type:
18104 case DW_TAG_string_type:
18105 case DW_TAG_subroutine_type:
18106 #endif
18107 case DW_TAG_base_type:
18108 case DW_TAG_class_type:
18109 case DW_TAG_interface_type:
18110 case DW_TAG_enumeration_type:
18111 case DW_TAG_structure_type:
18112 case DW_TAG_subrange_type:
18113 case DW_TAG_typedef:
18114 case DW_TAG_union_type:
18115 return 1;
18116 default:
18117 return 0;
18118 }
18119 }
18120
18121 /* Load all DIEs that are interesting for partial symbols into memory. */
18122
18123 static struct partial_die_info *
18124 load_partial_dies (const struct die_reader_specs *reader,
18125 const gdb_byte *info_ptr, int building_psymtab)
18126 {
18127 struct dwarf2_cu *cu = reader->cu;
18128 struct objfile *objfile = cu->objfile;
18129 struct partial_die_info *part_die;
18130 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18131 struct abbrev_info *abbrev;
18132 unsigned int bytes_read;
18133 unsigned int load_all = 0;
18134 int nesting_level = 1;
18135
18136 parent_die = NULL;
18137 last_die = NULL;
18138
18139 gdb_assert (cu->per_cu != NULL);
18140 if (cu->per_cu->load_all_dies)
18141 load_all = 1;
18142
18143 cu->partial_dies
18144 = htab_create_alloc_ex (cu->header.length / 12,
18145 partial_die_hash,
18146 partial_die_eq,
18147 NULL,
18148 &cu->comp_unit_obstack,
18149 hashtab_obstack_allocate,
18150 dummy_obstack_deallocate);
18151
18152 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18153
18154 while (1)
18155 {
18156 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
18157
18158 /* A NULL abbrev means the end of a series of children. */
18159 if (abbrev == NULL)
18160 {
18161 if (--nesting_level == 0)
18162 {
18163 /* PART_DIE was probably the last thing allocated on the
18164 comp_unit_obstack, so we could call obstack_free
18165 here. We don't do that because the waste is small,
18166 and will be cleaned up when we're done with this
18167 compilation unit. This way, we're also more robust
18168 against other users of the comp_unit_obstack. */
18169 return first_die;
18170 }
18171 info_ptr += bytes_read;
18172 last_die = parent_die;
18173 parent_die = parent_die->die_parent;
18174 continue;
18175 }
18176
18177 /* Check for template arguments. We never save these; if
18178 they're seen, we just mark the parent, and go on our way. */
18179 if (parent_die != NULL
18180 && cu->language == language_cplus
18181 && (abbrev->tag == DW_TAG_template_type_param
18182 || abbrev->tag == DW_TAG_template_value_param))
18183 {
18184 parent_die->has_template_arguments = 1;
18185
18186 if (!load_all)
18187 {
18188 /* We don't need a partial DIE for the template argument. */
18189 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18190 continue;
18191 }
18192 }
18193
18194 /* We only recurse into c++ subprograms looking for template arguments.
18195 Skip their other children. */
18196 if (!load_all
18197 && cu->language == language_cplus
18198 && parent_die != NULL
18199 && parent_die->tag == DW_TAG_subprogram)
18200 {
18201 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18202 continue;
18203 }
18204
18205 /* Check whether this DIE is interesting enough to save. Normally
18206 we would not be interested in members here, but there may be
18207 later variables referencing them via DW_AT_specification (for
18208 static members). */
18209 if (!load_all
18210 && !is_type_tag_for_partial (abbrev->tag)
18211 && abbrev->tag != DW_TAG_constant
18212 && abbrev->tag != DW_TAG_enumerator
18213 && abbrev->tag != DW_TAG_subprogram
18214 && abbrev->tag != DW_TAG_lexical_block
18215 && abbrev->tag != DW_TAG_variable
18216 && abbrev->tag != DW_TAG_namespace
18217 && abbrev->tag != DW_TAG_module
18218 && abbrev->tag != DW_TAG_member
18219 && abbrev->tag != DW_TAG_imported_unit
18220 && abbrev->tag != DW_TAG_imported_declaration)
18221 {
18222 /* Otherwise we skip to the next sibling, if any. */
18223 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18224 continue;
18225 }
18226
18227 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
18228 info_ptr);
18229
18230 /* This two-pass algorithm for processing partial symbols has a
18231 high cost in cache pressure. Thus, handle some simple cases
18232 here which cover the majority of C partial symbols. DIEs
18233 which neither have specification tags in them, nor could have
18234 specification tags elsewhere pointing at them, can simply be
18235 processed and discarded.
18236
18237 This segment is also optional; scan_partial_symbols and
18238 add_partial_symbol will handle these DIEs if we chain
18239 them in normally. When compilers which do not emit large
18240 quantities of duplicate debug information are more common,
18241 this code can probably be removed. */
18242
18243 /* Any complete simple types at the top level (pretty much all
18244 of them, for a language without namespaces), can be processed
18245 directly. */
18246 if (parent_die == NULL
18247 && part_die->has_specification == 0
18248 && part_die->is_declaration == 0
18249 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
18250 || part_die->tag == DW_TAG_base_type
18251 || part_die->tag == DW_TAG_subrange_type))
18252 {
18253 if (building_psymtab && part_die->name != NULL)
18254 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
18255 VAR_DOMAIN, LOC_TYPEDEF,
18256 &objfile->static_psymbols,
18257 0, cu->language, objfile);
18258 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
18259 continue;
18260 }
18261
18262 /* The exception for DW_TAG_typedef with has_children above is
18263 a workaround of GCC PR debug/47510. In the case of this complaint
18264 type_name_no_tag_or_error will error on such types later.
18265
18266 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18267 it could not find the child DIEs referenced later, this is checked
18268 above. In correct DWARF DW_TAG_typedef should have no children. */
18269
18270 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
18271 complaint (&symfile_complaints,
18272 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18273 "- DIE at 0x%x [in module %s]"),
18274 to_underlying (part_die->sect_off), objfile_name (objfile));
18275
18276 /* If we're at the second level, and we're an enumerator, and
18277 our parent has no specification (meaning possibly lives in a
18278 namespace elsewhere), then we can add the partial symbol now
18279 instead of queueing it. */
18280 if (part_die->tag == DW_TAG_enumerator
18281 && parent_die != NULL
18282 && parent_die->die_parent == NULL
18283 && parent_die->tag == DW_TAG_enumeration_type
18284 && parent_die->has_specification == 0)
18285 {
18286 if (part_die->name == NULL)
18287 complaint (&symfile_complaints,
18288 _("malformed enumerator DIE ignored"));
18289 else if (building_psymtab)
18290 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
18291 VAR_DOMAIN, LOC_CONST,
18292 cu->language == language_cplus
18293 ? &objfile->global_psymbols
18294 : &objfile->static_psymbols,
18295 0, cu->language, objfile);
18296
18297 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
18298 continue;
18299 }
18300
18301 /* We'll save this DIE so link it in. */
18302 part_die->die_parent = parent_die;
18303 part_die->die_sibling = NULL;
18304 part_die->die_child = NULL;
18305
18306 if (last_die && last_die == parent_die)
18307 last_die->die_child = part_die;
18308 else if (last_die)
18309 last_die->die_sibling = part_die;
18310
18311 last_die = part_die;
18312
18313 if (first_die == NULL)
18314 first_die = part_die;
18315
18316 /* Maybe add the DIE to the hash table. Not all DIEs that we
18317 find interesting need to be in the hash table, because we
18318 also have the parent/sibling/child chains; only those that we
18319 might refer to by offset later during partial symbol reading.
18320
18321 For now this means things that might have be the target of a
18322 DW_AT_specification, DW_AT_abstract_origin, or
18323 DW_AT_extension. DW_AT_extension will refer only to
18324 namespaces; DW_AT_abstract_origin refers to functions (and
18325 many things under the function DIE, but we do not recurse
18326 into function DIEs during partial symbol reading) and
18327 possibly variables as well; DW_AT_specification refers to
18328 declarations. Declarations ought to have the DW_AT_declaration
18329 flag. It happens that GCC forgets to put it in sometimes, but
18330 only for functions, not for types.
18331
18332 Adding more things than necessary to the hash table is harmless
18333 except for the performance cost. Adding too few will result in
18334 wasted time in find_partial_die, when we reread the compilation
18335 unit with load_all_dies set. */
18336
18337 if (load_all
18338 || abbrev->tag == DW_TAG_constant
18339 || abbrev->tag == DW_TAG_subprogram
18340 || abbrev->tag == DW_TAG_variable
18341 || abbrev->tag == DW_TAG_namespace
18342 || part_die->is_declaration)
18343 {
18344 void **slot;
18345
18346 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18347 to_underlying (part_die->sect_off),
18348 INSERT);
18349 *slot = part_die;
18350 }
18351
18352 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18353
18354 /* For some DIEs we want to follow their children (if any). For C
18355 we have no reason to follow the children of structures; for other
18356 languages we have to, so that we can get at method physnames
18357 to infer fully qualified class names, for DW_AT_specification,
18358 and for C++ template arguments. For C++, we also look one level
18359 inside functions to find template arguments (if the name of the
18360 function does not already contain the template arguments).
18361
18362 For Ada, we need to scan the children of subprograms and lexical
18363 blocks as well because Ada allows the definition of nested
18364 entities that could be interesting for the debugger, such as
18365 nested subprograms for instance. */
18366 if (last_die->has_children
18367 && (load_all
18368 || last_die->tag == DW_TAG_namespace
18369 || last_die->tag == DW_TAG_module
18370 || last_die->tag == DW_TAG_enumeration_type
18371 || (cu->language == language_cplus
18372 && last_die->tag == DW_TAG_subprogram
18373 && (last_die->name == NULL
18374 || strchr (last_die->name, '<') == NULL))
18375 || (cu->language != language_c
18376 && (last_die->tag == DW_TAG_class_type
18377 || last_die->tag == DW_TAG_interface_type
18378 || last_die->tag == DW_TAG_structure_type
18379 || last_die->tag == DW_TAG_union_type))
18380 || (cu->language == language_ada
18381 && (last_die->tag == DW_TAG_subprogram
18382 || last_die->tag == DW_TAG_lexical_block))))
18383 {
18384 nesting_level++;
18385 parent_die = last_die;
18386 continue;
18387 }
18388
18389 /* Otherwise we skip to the next sibling, if any. */
18390 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18391
18392 /* Back to the top, do it again. */
18393 }
18394 }
18395
18396 /* Read a minimal amount of information into the minimal die structure. */
18397
18398 static const gdb_byte *
18399 read_partial_die (const struct die_reader_specs *reader,
18400 struct partial_die_info *part_die,
18401 struct abbrev_info *abbrev, unsigned int abbrev_len,
18402 const gdb_byte *info_ptr)
18403 {
18404 struct dwarf2_cu *cu = reader->cu;
18405 struct objfile *objfile = cu->objfile;
18406 const gdb_byte *buffer = reader->buffer;
18407 unsigned int i;
18408 struct attribute attr;
18409 int has_low_pc_attr = 0;
18410 int has_high_pc_attr = 0;
18411 int high_pc_relative = 0;
18412
18413 memset (part_die, 0, sizeof (struct partial_die_info));
18414
18415 part_die->sect_off = (sect_offset) (info_ptr - buffer);
18416
18417 info_ptr += abbrev_len;
18418
18419 if (abbrev == NULL)
18420 return info_ptr;
18421
18422 part_die->tag = abbrev->tag;
18423 part_die->has_children = abbrev->has_children;
18424
18425 for (i = 0; i < abbrev->num_attrs; ++i)
18426 {
18427 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
18428
18429 /* Store the data if it is of an attribute we want to keep in a
18430 partial symbol table. */
18431 switch (attr.name)
18432 {
18433 case DW_AT_name:
18434 switch (part_die->tag)
18435 {
18436 case DW_TAG_compile_unit:
18437 case DW_TAG_partial_unit:
18438 case DW_TAG_type_unit:
18439 /* Compilation units have a DW_AT_name that is a filename, not
18440 a source language identifier. */
18441 case DW_TAG_enumeration_type:
18442 case DW_TAG_enumerator:
18443 /* These tags always have simple identifiers already; no need
18444 to canonicalize them. */
18445 part_die->name = DW_STRING (&attr);
18446 break;
18447 default:
18448 part_die->name
18449 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18450 &objfile->per_bfd->storage_obstack);
18451 break;
18452 }
18453 break;
18454 case DW_AT_linkage_name:
18455 case DW_AT_MIPS_linkage_name:
18456 /* Note that both forms of linkage name might appear. We
18457 assume they will be the same, and we only store the last
18458 one we see. */
18459 if (cu->language == language_ada)
18460 part_die->name = DW_STRING (&attr);
18461 part_die->linkage_name = DW_STRING (&attr);
18462 break;
18463 case DW_AT_low_pc:
18464 has_low_pc_attr = 1;
18465 part_die->lowpc = attr_value_as_address (&attr);
18466 break;
18467 case DW_AT_high_pc:
18468 has_high_pc_attr = 1;
18469 part_die->highpc = attr_value_as_address (&attr);
18470 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18471 high_pc_relative = 1;
18472 break;
18473 case DW_AT_location:
18474 /* Support the .debug_loc offsets. */
18475 if (attr_form_is_block (&attr))
18476 {
18477 part_die->d.locdesc = DW_BLOCK (&attr);
18478 }
18479 else if (attr_form_is_section_offset (&attr))
18480 {
18481 dwarf2_complex_location_expr_complaint ();
18482 }
18483 else
18484 {
18485 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18486 "partial symbol information");
18487 }
18488 break;
18489 case DW_AT_external:
18490 part_die->is_external = DW_UNSND (&attr);
18491 break;
18492 case DW_AT_declaration:
18493 part_die->is_declaration = DW_UNSND (&attr);
18494 break;
18495 case DW_AT_type:
18496 part_die->has_type = 1;
18497 break;
18498 case DW_AT_abstract_origin:
18499 case DW_AT_specification:
18500 case DW_AT_extension:
18501 part_die->has_specification = 1;
18502 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
18503 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18504 || cu->per_cu->is_dwz);
18505 break;
18506 case DW_AT_sibling:
18507 /* Ignore absolute siblings, they might point outside of
18508 the current compile unit. */
18509 if (attr.form == DW_FORM_ref_addr)
18510 complaint (&symfile_complaints,
18511 _("ignoring absolute DW_AT_sibling"));
18512 else
18513 {
18514 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18515 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18516
18517 if (sibling_ptr < info_ptr)
18518 complaint (&symfile_complaints,
18519 _("DW_AT_sibling points backwards"));
18520 else if (sibling_ptr > reader->buffer_end)
18521 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18522 else
18523 part_die->sibling = sibling_ptr;
18524 }
18525 break;
18526 case DW_AT_byte_size:
18527 part_die->has_byte_size = 1;
18528 break;
18529 case DW_AT_const_value:
18530 part_die->has_const_value = 1;
18531 break;
18532 case DW_AT_calling_convention:
18533 /* DWARF doesn't provide a way to identify a program's source-level
18534 entry point. DW_AT_calling_convention attributes are only meant
18535 to describe functions' calling conventions.
18536
18537 However, because it's a necessary piece of information in
18538 Fortran, and before DWARF 4 DW_CC_program was the only
18539 piece of debugging information whose definition refers to
18540 a 'main program' at all, several compilers marked Fortran
18541 main programs with DW_CC_program --- even when those
18542 functions use the standard calling conventions.
18543
18544 Although DWARF now specifies a way to provide this
18545 information, we support this practice for backward
18546 compatibility. */
18547 if (DW_UNSND (&attr) == DW_CC_program
18548 && cu->language == language_fortran)
18549 part_die->main_subprogram = 1;
18550 break;
18551 case DW_AT_inline:
18552 if (DW_UNSND (&attr) == DW_INL_inlined
18553 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18554 part_die->may_be_inlined = 1;
18555 break;
18556
18557 case DW_AT_import:
18558 if (part_die->tag == DW_TAG_imported_unit)
18559 {
18560 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
18561 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18562 || cu->per_cu->is_dwz);
18563 }
18564 break;
18565
18566 case DW_AT_main_subprogram:
18567 part_die->main_subprogram = DW_UNSND (&attr);
18568 break;
18569
18570 default:
18571 break;
18572 }
18573 }
18574
18575 if (high_pc_relative)
18576 part_die->highpc += part_die->lowpc;
18577
18578 if (has_low_pc_attr && has_high_pc_attr)
18579 {
18580 /* When using the GNU linker, .gnu.linkonce. sections are used to
18581 eliminate duplicate copies of functions and vtables and such.
18582 The linker will arbitrarily choose one and discard the others.
18583 The AT_*_pc values for such functions refer to local labels in
18584 these sections. If the section from that file was discarded, the
18585 labels are not in the output, so the relocs get a value of 0.
18586 If this is a discarded function, mark the pc bounds as invalid,
18587 so that GDB will ignore it. */
18588 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18589 {
18590 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18591
18592 complaint (&symfile_complaints,
18593 _("DW_AT_low_pc %s is zero "
18594 "for DIE at 0x%x [in module %s]"),
18595 paddress (gdbarch, part_die->lowpc),
18596 to_underlying (part_die->sect_off), objfile_name (objfile));
18597 }
18598 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18599 else if (part_die->lowpc >= part_die->highpc)
18600 {
18601 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18602
18603 complaint (&symfile_complaints,
18604 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18605 "for DIE at 0x%x [in module %s]"),
18606 paddress (gdbarch, part_die->lowpc),
18607 paddress (gdbarch, part_die->highpc),
18608 to_underlying (part_die->sect_off),
18609 objfile_name (objfile));
18610 }
18611 else
18612 part_die->has_pc_info = 1;
18613 }
18614
18615 return info_ptr;
18616 }
18617
18618 /* Find a cached partial DIE at OFFSET in CU. */
18619
18620 static struct partial_die_info *
18621 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
18622 {
18623 struct partial_die_info *lookup_die = NULL;
18624 struct partial_die_info part_die;
18625
18626 part_die.sect_off = sect_off;
18627 lookup_die = ((struct partial_die_info *)
18628 htab_find_with_hash (cu->partial_dies, &part_die,
18629 to_underlying (sect_off)));
18630
18631 return lookup_die;
18632 }
18633
18634 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18635 except in the case of .debug_types DIEs which do not reference
18636 outside their CU (they do however referencing other types via
18637 DW_FORM_ref_sig8). */
18638
18639 static struct partial_die_info *
18640 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18641 {
18642 struct objfile *objfile = cu->objfile;
18643 struct dwarf2_per_cu_data *per_cu = NULL;
18644 struct partial_die_info *pd = NULL;
18645
18646 if (offset_in_dwz == cu->per_cu->is_dwz
18647 && offset_in_cu_p (&cu->header, sect_off))
18648 {
18649 pd = find_partial_die_in_comp_unit (sect_off, cu);
18650 if (pd != NULL)
18651 return pd;
18652 /* We missed recording what we needed.
18653 Load all dies and try again. */
18654 per_cu = cu->per_cu;
18655 }
18656 else
18657 {
18658 /* TUs don't reference other CUs/TUs (except via type signatures). */
18659 if (cu->per_cu->is_debug_types)
18660 {
18661 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
18662 " external reference to offset 0x%x [in module %s].\n"),
18663 to_underlying (cu->header.sect_off), to_underlying (sect_off),
18664 bfd_get_filename (objfile->obfd));
18665 }
18666 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18667 objfile);
18668
18669 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18670 load_partial_comp_unit (per_cu);
18671
18672 per_cu->cu->last_used = 0;
18673 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
18674 }
18675
18676 /* If we didn't find it, and not all dies have been loaded,
18677 load them all and try again. */
18678
18679 if (pd == NULL && per_cu->load_all_dies == 0)
18680 {
18681 per_cu->load_all_dies = 1;
18682
18683 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18684 THIS_CU->cu may already be in use. So we can't just free it and
18685 replace its DIEs with the ones we read in. Instead, we leave those
18686 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18687 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18688 set. */
18689 load_partial_comp_unit (per_cu);
18690
18691 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
18692 }
18693
18694 if (pd == NULL)
18695 internal_error (__FILE__, __LINE__,
18696 _("could not find partial DIE 0x%x "
18697 "in cache [from module %s]\n"),
18698 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
18699 return pd;
18700 }
18701
18702 /* See if we can figure out if the class lives in a namespace. We do
18703 this by looking for a member function; its demangled name will
18704 contain namespace info, if there is any. */
18705
18706 static void
18707 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18708 struct dwarf2_cu *cu)
18709 {
18710 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18711 what template types look like, because the demangler
18712 frequently doesn't give the same name as the debug info. We
18713 could fix this by only using the demangled name to get the
18714 prefix (but see comment in read_structure_type). */
18715
18716 struct partial_die_info *real_pdi;
18717 struct partial_die_info *child_pdi;
18718
18719 /* If this DIE (this DIE's specification, if any) has a parent, then
18720 we should not do this. We'll prepend the parent's fully qualified
18721 name when we create the partial symbol. */
18722
18723 real_pdi = struct_pdi;
18724 while (real_pdi->has_specification)
18725 real_pdi = find_partial_die (real_pdi->spec_offset,
18726 real_pdi->spec_is_dwz, cu);
18727
18728 if (real_pdi->die_parent != NULL)
18729 return;
18730
18731 for (child_pdi = struct_pdi->die_child;
18732 child_pdi != NULL;
18733 child_pdi = child_pdi->die_sibling)
18734 {
18735 if (child_pdi->tag == DW_TAG_subprogram
18736 && child_pdi->linkage_name != NULL)
18737 {
18738 char *actual_class_name
18739 = language_class_name_from_physname (cu->language_defn,
18740 child_pdi->linkage_name);
18741 if (actual_class_name != NULL)
18742 {
18743 struct_pdi->name
18744 = ((const char *)
18745 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18746 actual_class_name,
18747 strlen (actual_class_name)));
18748 xfree (actual_class_name);
18749 }
18750 break;
18751 }
18752 }
18753 }
18754
18755 /* Adjust PART_DIE before generating a symbol for it. This function
18756 may set the is_external flag or change the DIE's name. */
18757
18758 static void
18759 fixup_partial_die (struct partial_die_info *part_die,
18760 struct dwarf2_cu *cu)
18761 {
18762 /* Once we've fixed up a die, there's no point in doing so again.
18763 This also avoids a memory leak if we were to call
18764 guess_partial_die_structure_name multiple times. */
18765 if (part_die->fixup_called)
18766 return;
18767
18768 /* If we found a reference attribute and the DIE has no name, try
18769 to find a name in the referred to DIE. */
18770
18771 if (part_die->name == NULL && part_die->has_specification)
18772 {
18773 struct partial_die_info *spec_die;
18774
18775 spec_die = find_partial_die (part_die->spec_offset,
18776 part_die->spec_is_dwz, cu);
18777
18778 fixup_partial_die (spec_die, cu);
18779
18780 if (spec_die->name)
18781 {
18782 part_die->name = spec_die->name;
18783
18784 /* Copy DW_AT_external attribute if it is set. */
18785 if (spec_die->is_external)
18786 part_die->is_external = spec_die->is_external;
18787 }
18788 }
18789
18790 /* Set default names for some unnamed DIEs. */
18791
18792 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
18793 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
18794
18795 /* If there is no parent die to provide a namespace, and there are
18796 children, see if we can determine the namespace from their linkage
18797 name. */
18798 if (cu->language == language_cplus
18799 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18800 && part_die->die_parent == NULL
18801 && part_die->has_children
18802 && (part_die->tag == DW_TAG_class_type
18803 || part_die->tag == DW_TAG_structure_type
18804 || part_die->tag == DW_TAG_union_type))
18805 guess_partial_die_structure_name (part_die, cu);
18806
18807 /* GCC might emit a nameless struct or union that has a linkage
18808 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18809 if (part_die->name == NULL
18810 && (part_die->tag == DW_TAG_class_type
18811 || part_die->tag == DW_TAG_interface_type
18812 || part_die->tag == DW_TAG_structure_type
18813 || part_die->tag == DW_TAG_union_type)
18814 && part_die->linkage_name != NULL)
18815 {
18816 char *demangled;
18817
18818 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
18819 if (demangled)
18820 {
18821 const char *base;
18822
18823 /* Strip any leading namespaces/classes, keep only the base name.
18824 DW_AT_name for named DIEs does not contain the prefixes. */
18825 base = strrchr (demangled, ':');
18826 if (base && base > demangled && base[-1] == ':')
18827 base++;
18828 else
18829 base = demangled;
18830
18831 part_die->name
18832 = ((const char *)
18833 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18834 base, strlen (base)));
18835 xfree (demangled);
18836 }
18837 }
18838
18839 part_die->fixup_called = 1;
18840 }
18841
18842 /* Read an attribute value described by an attribute form. */
18843
18844 static const gdb_byte *
18845 read_attribute_value (const struct die_reader_specs *reader,
18846 struct attribute *attr, unsigned form,
18847 LONGEST implicit_const, const gdb_byte *info_ptr)
18848 {
18849 struct dwarf2_cu *cu = reader->cu;
18850 struct objfile *objfile = cu->objfile;
18851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18852 bfd *abfd = reader->abfd;
18853 struct comp_unit_head *cu_header = &cu->header;
18854 unsigned int bytes_read;
18855 struct dwarf_block *blk;
18856
18857 attr->form = (enum dwarf_form) form;
18858 switch (form)
18859 {
18860 case DW_FORM_ref_addr:
18861 if (cu->header.version == 2)
18862 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18863 else
18864 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18865 &cu->header, &bytes_read);
18866 info_ptr += bytes_read;
18867 break;
18868 case DW_FORM_GNU_ref_alt:
18869 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18870 info_ptr += bytes_read;
18871 break;
18872 case DW_FORM_addr:
18873 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18874 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18875 info_ptr += bytes_read;
18876 break;
18877 case DW_FORM_block2:
18878 blk = dwarf_alloc_block (cu);
18879 blk->size = read_2_bytes (abfd, info_ptr);
18880 info_ptr += 2;
18881 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18882 info_ptr += blk->size;
18883 DW_BLOCK (attr) = blk;
18884 break;
18885 case DW_FORM_block4:
18886 blk = dwarf_alloc_block (cu);
18887 blk->size = read_4_bytes (abfd, info_ptr);
18888 info_ptr += 4;
18889 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18890 info_ptr += blk->size;
18891 DW_BLOCK (attr) = blk;
18892 break;
18893 case DW_FORM_data2:
18894 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18895 info_ptr += 2;
18896 break;
18897 case DW_FORM_data4:
18898 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18899 info_ptr += 4;
18900 break;
18901 case DW_FORM_data8:
18902 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18903 info_ptr += 8;
18904 break;
18905 case DW_FORM_data16:
18906 blk = dwarf_alloc_block (cu);
18907 blk->size = 16;
18908 blk->data = read_n_bytes (abfd, info_ptr, 16);
18909 info_ptr += 16;
18910 DW_BLOCK (attr) = blk;
18911 break;
18912 case DW_FORM_sec_offset:
18913 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18914 info_ptr += bytes_read;
18915 break;
18916 case DW_FORM_string:
18917 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18918 DW_STRING_IS_CANONICAL (attr) = 0;
18919 info_ptr += bytes_read;
18920 break;
18921 case DW_FORM_strp:
18922 if (!cu->per_cu->is_dwz)
18923 {
18924 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
18925 &bytes_read);
18926 DW_STRING_IS_CANONICAL (attr) = 0;
18927 info_ptr += bytes_read;
18928 break;
18929 }
18930 /* FALLTHROUGH */
18931 case DW_FORM_line_strp:
18932 if (!cu->per_cu->is_dwz)
18933 {
18934 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
18935 cu_header, &bytes_read);
18936 DW_STRING_IS_CANONICAL (attr) = 0;
18937 info_ptr += bytes_read;
18938 break;
18939 }
18940 /* FALLTHROUGH */
18941 case DW_FORM_GNU_strp_alt:
18942 {
18943 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18944 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18945 &bytes_read);
18946
18947 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
18948 DW_STRING_IS_CANONICAL (attr) = 0;
18949 info_ptr += bytes_read;
18950 }
18951 break;
18952 case DW_FORM_exprloc:
18953 case DW_FORM_block:
18954 blk = dwarf_alloc_block (cu);
18955 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18956 info_ptr += bytes_read;
18957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18958 info_ptr += blk->size;
18959 DW_BLOCK (attr) = blk;
18960 break;
18961 case DW_FORM_block1:
18962 blk = dwarf_alloc_block (cu);
18963 blk->size = read_1_byte (abfd, info_ptr);
18964 info_ptr += 1;
18965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18966 info_ptr += blk->size;
18967 DW_BLOCK (attr) = blk;
18968 break;
18969 case DW_FORM_data1:
18970 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18971 info_ptr += 1;
18972 break;
18973 case DW_FORM_flag:
18974 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18975 info_ptr += 1;
18976 break;
18977 case DW_FORM_flag_present:
18978 DW_UNSND (attr) = 1;
18979 break;
18980 case DW_FORM_sdata:
18981 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18982 info_ptr += bytes_read;
18983 break;
18984 case DW_FORM_udata:
18985 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18986 info_ptr += bytes_read;
18987 break;
18988 case DW_FORM_ref1:
18989 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18990 + read_1_byte (abfd, info_ptr));
18991 info_ptr += 1;
18992 break;
18993 case DW_FORM_ref2:
18994 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18995 + read_2_bytes (abfd, info_ptr));
18996 info_ptr += 2;
18997 break;
18998 case DW_FORM_ref4:
18999 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19000 + read_4_bytes (abfd, info_ptr));
19001 info_ptr += 4;
19002 break;
19003 case DW_FORM_ref8:
19004 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19005 + read_8_bytes (abfd, info_ptr));
19006 info_ptr += 8;
19007 break;
19008 case DW_FORM_ref_sig8:
19009 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19010 info_ptr += 8;
19011 break;
19012 case DW_FORM_ref_udata:
19013 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19014 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19015 info_ptr += bytes_read;
19016 break;
19017 case DW_FORM_indirect:
19018 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19019 info_ptr += bytes_read;
19020 if (form == DW_FORM_implicit_const)
19021 {
19022 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19023 info_ptr += bytes_read;
19024 }
19025 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19026 info_ptr);
19027 break;
19028 case DW_FORM_implicit_const:
19029 DW_SND (attr) = implicit_const;
19030 break;
19031 case DW_FORM_GNU_addr_index:
19032 if (reader->dwo_file == NULL)
19033 {
19034 /* For now flag a hard error.
19035 Later we can turn this into a complaint. */
19036 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19037 dwarf_form_name (form),
19038 bfd_get_filename (abfd));
19039 }
19040 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19041 info_ptr += bytes_read;
19042 break;
19043 case DW_FORM_GNU_str_index:
19044 if (reader->dwo_file == NULL)
19045 {
19046 /* For now flag a hard error.
19047 Later we can turn this into a complaint if warranted. */
19048 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19049 dwarf_form_name (form),
19050 bfd_get_filename (abfd));
19051 }
19052 {
19053 ULONGEST str_index =
19054 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19055
19056 DW_STRING (attr) = read_str_index (reader, str_index);
19057 DW_STRING_IS_CANONICAL (attr) = 0;
19058 info_ptr += bytes_read;
19059 }
19060 break;
19061 default:
19062 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19063 dwarf_form_name (form),
19064 bfd_get_filename (abfd));
19065 }
19066
19067 /* Super hack. */
19068 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19069 attr->form = DW_FORM_GNU_ref_alt;
19070
19071 /* We have seen instances where the compiler tried to emit a byte
19072 size attribute of -1 which ended up being encoded as an unsigned
19073 0xffffffff. Although 0xffffffff is technically a valid size value,
19074 an object of this size seems pretty unlikely so we can relatively
19075 safely treat these cases as if the size attribute was invalid and
19076 treat them as zero by default. */
19077 if (attr->name == DW_AT_byte_size
19078 && form == DW_FORM_data4
19079 && DW_UNSND (attr) >= 0xffffffff)
19080 {
19081 complaint
19082 (&symfile_complaints,
19083 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19084 hex_string (DW_UNSND (attr)));
19085 DW_UNSND (attr) = 0;
19086 }
19087
19088 return info_ptr;
19089 }
19090
19091 /* Read an attribute described by an abbreviated attribute. */
19092
19093 static const gdb_byte *
19094 read_attribute (const struct die_reader_specs *reader,
19095 struct attribute *attr, struct attr_abbrev *abbrev,
19096 const gdb_byte *info_ptr)
19097 {
19098 attr->name = abbrev->name;
19099 return read_attribute_value (reader, attr, abbrev->form,
19100 abbrev->implicit_const, info_ptr);
19101 }
19102
19103 /* Read dwarf information from a buffer. */
19104
19105 static unsigned int
19106 read_1_byte (bfd *abfd, const gdb_byte *buf)
19107 {
19108 return bfd_get_8 (abfd, buf);
19109 }
19110
19111 static int
19112 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19113 {
19114 return bfd_get_signed_8 (abfd, buf);
19115 }
19116
19117 static unsigned int
19118 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19119 {
19120 return bfd_get_16 (abfd, buf);
19121 }
19122
19123 static int
19124 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19125 {
19126 return bfd_get_signed_16 (abfd, buf);
19127 }
19128
19129 static unsigned int
19130 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19131 {
19132 return bfd_get_32 (abfd, buf);
19133 }
19134
19135 static int
19136 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19137 {
19138 return bfd_get_signed_32 (abfd, buf);
19139 }
19140
19141 static ULONGEST
19142 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19143 {
19144 return bfd_get_64 (abfd, buf);
19145 }
19146
19147 static CORE_ADDR
19148 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19149 unsigned int *bytes_read)
19150 {
19151 struct comp_unit_head *cu_header = &cu->header;
19152 CORE_ADDR retval = 0;
19153
19154 if (cu_header->signed_addr_p)
19155 {
19156 switch (cu_header->addr_size)
19157 {
19158 case 2:
19159 retval = bfd_get_signed_16 (abfd, buf);
19160 break;
19161 case 4:
19162 retval = bfd_get_signed_32 (abfd, buf);
19163 break;
19164 case 8:
19165 retval = bfd_get_signed_64 (abfd, buf);
19166 break;
19167 default:
19168 internal_error (__FILE__, __LINE__,
19169 _("read_address: bad switch, signed [in module %s]"),
19170 bfd_get_filename (abfd));
19171 }
19172 }
19173 else
19174 {
19175 switch (cu_header->addr_size)
19176 {
19177 case 2:
19178 retval = bfd_get_16 (abfd, buf);
19179 break;
19180 case 4:
19181 retval = bfd_get_32 (abfd, buf);
19182 break;
19183 case 8:
19184 retval = bfd_get_64 (abfd, buf);
19185 break;
19186 default:
19187 internal_error (__FILE__, __LINE__,
19188 _("read_address: bad switch, "
19189 "unsigned [in module %s]"),
19190 bfd_get_filename (abfd));
19191 }
19192 }
19193
19194 *bytes_read = cu_header->addr_size;
19195 return retval;
19196 }
19197
19198 /* Read the initial length from a section. The (draft) DWARF 3
19199 specification allows the initial length to take up either 4 bytes
19200 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19201 bytes describe the length and all offsets will be 8 bytes in length
19202 instead of 4.
19203
19204 An older, non-standard 64-bit format is also handled by this
19205 function. The older format in question stores the initial length
19206 as an 8-byte quantity without an escape value. Lengths greater
19207 than 2^32 aren't very common which means that the initial 4 bytes
19208 is almost always zero. Since a length value of zero doesn't make
19209 sense for the 32-bit format, this initial zero can be considered to
19210 be an escape value which indicates the presence of the older 64-bit
19211 format. As written, the code can't detect (old format) lengths
19212 greater than 4GB. If it becomes necessary to handle lengths
19213 somewhat larger than 4GB, we could allow other small values (such
19214 as the non-sensical values of 1, 2, and 3) to also be used as
19215 escape values indicating the presence of the old format.
19216
19217 The value returned via bytes_read should be used to increment the
19218 relevant pointer after calling read_initial_length().
19219
19220 [ Note: read_initial_length() and read_offset() are based on the
19221 document entitled "DWARF Debugging Information Format", revision
19222 3, draft 8, dated November 19, 2001. This document was obtained
19223 from:
19224
19225 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19226
19227 This document is only a draft and is subject to change. (So beware.)
19228
19229 Details regarding the older, non-standard 64-bit format were
19230 determined empirically by examining 64-bit ELF files produced by
19231 the SGI toolchain on an IRIX 6.5 machine.
19232
19233 - Kevin, July 16, 2002
19234 ] */
19235
19236 static LONGEST
19237 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19238 {
19239 LONGEST length = bfd_get_32 (abfd, buf);
19240
19241 if (length == 0xffffffff)
19242 {
19243 length = bfd_get_64 (abfd, buf + 4);
19244 *bytes_read = 12;
19245 }
19246 else if (length == 0)
19247 {
19248 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19249 length = bfd_get_64 (abfd, buf);
19250 *bytes_read = 8;
19251 }
19252 else
19253 {
19254 *bytes_read = 4;
19255 }
19256
19257 return length;
19258 }
19259
19260 /* Cover function for read_initial_length.
19261 Returns the length of the object at BUF, and stores the size of the
19262 initial length in *BYTES_READ and stores the size that offsets will be in
19263 *OFFSET_SIZE.
19264 If the initial length size is not equivalent to that specified in
19265 CU_HEADER then issue a complaint.
19266 This is useful when reading non-comp-unit headers. */
19267
19268 static LONGEST
19269 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19270 const struct comp_unit_head *cu_header,
19271 unsigned int *bytes_read,
19272 unsigned int *offset_size)
19273 {
19274 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19275
19276 gdb_assert (cu_header->initial_length_size == 4
19277 || cu_header->initial_length_size == 8
19278 || cu_header->initial_length_size == 12);
19279
19280 if (cu_header->initial_length_size != *bytes_read)
19281 complaint (&symfile_complaints,
19282 _("intermixed 32-bit and 64-bit DWARF sections"));
19283
19284 *offset_size = (*bytes_read == 4) ? 4 : 8;
19285 return length;
19286 }
19287
19288 /* Read an offset from the data stream. The size of the offset is
19289 given by cu_header->offset_size. */
19290
19291 static LONGEST
19292 read_offset (bfd *abfd, const gdb_byte *buf,
19293 const struct comp_unit_head *cu_header,
19294 unsigned int *bytes_read)
19295 {
19296 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19297
19298 *bytes_read = cu_header->offset_size;
19299 return offset;
19300 }
19301
19302 /* Read an offset from the data stream. */
19303
19304 static LONGEST
19305 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19306 {
19307 LONGEST retval = 0;
19308
19309 switch (offset_size)
19310 {
19311 case 4:
19312 retval = bfd_get_32 (abfd, buf);
19313 break;
19314 case 8:
19315 retval = bfd_get_64 (abfd, buf);
19316 break;
19317 default:
19318 internal_error (__FILE__, __LINE__,
19319 _("read_offset_1: bad switch [in module %s]"),
19320 bfd_get_filename (abfd));
19321 }
19322
19323 return retval;
19324 }
19325
19326 static const gdb_byte *
19327 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19328 {
19329 /* If the size of a host char is 8 bits, we can return a pointer
19330 to the buffer, otherwise we have to copy the data to a buffer
19331 allocated on the temporary obstack. */
19332 gdb_assert (HOST_CHAR_BIT == 8);
19333 return buf;
19334 }
19335
19336 static const char *
19337 read_direct_string (bfd *abfd, const gdb_byte *buf,
19338 unsigned int *bytes_read_ptr)
19339 {
19340 /* If the size of a host char is 8 bits, we can return a pointer
19341 to the string, otherwise we have to copy the string to a buffer
19342 allocated on the temporary obstack. */
19343 gdb_assert (HOST_CHAR_BIT == 8);
19344 if (*buf == '\0')
19345 {
19346 *bytes_read_ptr = 1;
19347 return NULL;
19348 }
19349 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19350 return (const char *) buf;
19351 }
19352
19353 /* Return pointer to string at section SECT offset STR_OFFSET with error
19354 reporting strings FORM_NAME and SECT_NAME. */
19355
19356 static const char *
19357 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
19358 struct dwarf2_section_info *sect,
19359 const char *form_name,
19360 const char *sect_name)
19361 {
19362 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
19363 if (sect->buffer == NULL)
19364 error (_("%s used without %s section [in module %s]"),
19365 form_name, sect_name, bfd_get_filename (abfd));
19366 if (str_offset >= sect->size)
19367 error (_("%s pointing outside of %s section [in module %s]"),
19368 form_name, sect_name, bfd_get_filename (abfd));
19369 gdb_assert (HOST_CHAR_BIT == 8);
19370 if (sect->buffer[str_offset] == '\0')
19371 return NULL;
19372 return (const char *) (sect->buffer + str_offset);
19373 }
19374
19375 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19376
19377 static const char *
19378 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
19379 {
19380 return read_indirect_string_at_offset_from (abfd, str_offset,
19381 &dwarf2_per_objfile->str,
19382 "DW_FORM_strp", ".debug_str");
19383 }
19384
19385 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19386
19387 static const char *
19388 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
19389 {
19390 return read_indirect_string_at_offset_from (abfd, str_offset,
19391 &dwarf2_per_objfile->line_str,
19392 "DW_FORM_line_strp",
19393 ".debug_line_str");
19394 }
19395
19396 /* Read a string at offset STR_OFFSET in the .debug_str section from
19397 the .dwz file DWZ. Throw an error if the offset is too large. If
19398 the string consists of a single NUL byte, return NULL; otherwise
19399 return a pointer to the string. */
19400
19401 static const char *
19402 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
19403 {
19404 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
19405
19406 if (dwz->str.buffer == NULL)
19407 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19408 "section [in module %s]"),
19409 bfd_get_filename (dwz->dwz_bfd));
19410 if (str_offset >= dwz->str.size)
19411 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19412 ".debug_str section [in module %s]"),
19413 bfd_get_filename (dwz->dwz_bfd));
19414 gdb_assert (HOST_CHAR_BIT == 8);
19415 if (dwz->str.buffer[str_offset] == '\0')
19416 return NULL;
19417 return (const char *) (dwz->str.buffer + str_offset);
19418 }
19419
19420 /* Return pointer to string at .debug_str offset as read from BUF.
19421 BUF is assumed to be in a compilation unit described by CU_HEADER.
19422 Return *BYTES_READ_PTR count of bytes read from BUF. */
19423
19424 static const char *
19425 read_indirect_string (bfd *abfd, const gdb_byte *buf,
19426 const struct comp_unit_head *cu_header,
19427 unsigned int *bytes_read_ptr)
19428 {
19429 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19430
19431 return read_indirect_string_at_offset (abfd, str_offset);
19432 }
19433
19434 /* Return pointer to string at .debug_line_str offset as read from BUF.
19435 BUF is assumed to be in a compilation unit described by CU_HEADER.
19436 Return *BYTES_READ_PTR count of bytes read from BUF. */
19437
19438 static const char *
19439 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
19440 const struct comp_unit_head *cu_header,
19441 unsigned int *bytes_read_ptr)
19442 {
19443 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19444
19445 return read_indirect_line_string_at_offset (abfd, str_offset);
19446 }
19447
19448 ULONGEST
19449 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19450 unsigned int *bytes_read_ptr)
19451 {
19452 ULONGEST result;
19453 unsigned int num_read;
19454 int shift;
19455 unsigned char byte;
19456
19457 result = 0;
19458 shift = 0;
19459 num_read = 0;
19460 while (1)
19461 {
19462 byte = bfd_get_8 (abfd, buf);
19463 buf++;
19464 num_read++;
19465 result |= ((ULONGEST) (byte & 127) << shift);
19466 if ((byte & 128) == 0)
19467 {
19468 break;
19469 }
19470 shift += 7;
19471 }
19472 *bytes_read_ptr = num_read;
19473 return result;
19474 }
19475
19476 static LONGEST
19477 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19478 unsigned int *bytes_read_ptr)
19479 {
19480 LONGEST result;
19481 int shift, num_read;
19482 unsigned char byte;
19483
19484 result = 0;
19485 shift = 0;
19486 num_read = 0;
19487 while (1)
19488 {
19489 byte = bfd_get_8 (abfd, buf);
19490 buf++;
19491 num_read++;
19492 result |= ((LONGEST) (byte & 127) << shift);
19493 shift += 7;
19494 if ((byte & 128) == 0)
19495 {
19496 break;
19497 }
19498 }
19499 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19500 result |= -(((LONGEST) 1) << shift);
19501 *bytes_read_ptr = num_read;
19502 return result;
19503 }
19504
19505 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19506 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19507 ADDR_SIZE is the size of addresses from the CU header. */
19508
19509 static CORE_ADDR
19510 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
19511 {
19512 struct objfile *objfile = dwarf2_per_objfile->objfile;
19513 bfd *abfd = objfile->obfd;
19514 const gdb_byte *info_ptr;
19515
19516 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19517 if (dwarf2_per_objfile->addr.buffer == NULL)
19518 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19519 objfile_name (objfile));
19520 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19521 error (_("DW_FORM_addr_index pointing outside of "
19522 ".debug_addr section [in module %s]"),
19523 objfile_name (objfile));
19524 info_ptr = (dwarf2_per_objfile->addr.buffer
19525 + addr_base + addr_index * addr_size);
19526 if (addr_size == 4)
19527 return bfd_get_32 (abfd, info_ptr);
19528 else
19529 return bfd_get_64 (abfd, info_ptr);
19530 }
19531
19532 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19533
19534 static CORE_ADDR
19535 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19536 {
19537 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
19538 }
19539
19540 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19541
19542 static CORE_ADDR
19543 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19544 unsigned int *bytes_read)
19545 {
19546 bfd *abfd = cu->objfile->obfd;
19547 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19548
19549 return read_addr_index (cu, addr_index);
19550 }
19551
19552 /* Data structure to pass results from dwarf2_read_addr_index_reader
19553 back to dwarf2_read_addr_index. */
19554
19555 struct dwarf2_read_addr_index_data
19556 {
19557 ULONGEST addr_base;
19558 int addr_size;
19559 };
19560
19561 /* die_reader_func for dwarf2_read_addr_index. */
19562
19563 static void
19564 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19565 const gdb_byte *info_ptr,
19566 struct die_info *comp_unit_die,
19567 int has_children,
19568 void *data)
19569 {
19570 struct dwarf2_cu *cu = reader->cu;
19571 struct dwarf2_read_addr_index_data *aidata =
19572 (struct dwarf2_read_addr_index_data *) data;
19573
19574 aidata->addr_base = cu->addr_base;
19575 aidata->addr_size = cu->header.addr_size;
19576 }
19577
19578 /* Given an index in .debug_addr, fetch the value.
19579 NOTE: This can be called during dwarf expression evaluation,
19580 long after the debug information has been read, and thus per_cu->cu
19581 may no longer exist. */
19582
19583 CORE_ADDR
19584 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19585 unsigned int addr_index)
19586 {
19587 struct objfile *objfile = per_cu->objfile;
19588 struct dwarf2_cu *cu = per_cu->cu;
19589 ULONGEST addr_base;
19590 int addr_size;
19591
19592 /* This is intended to be called from outside this file. */
19593 dw2_setup (objfile);
19594
19595 /* We need addr_base and addr_size.
19596 If we don't have PER_CU->cu, we have to get it.
19597 Nasty, but the alternative is storing the needed info in PER_CU,
19598 which at this point doesn't seem justified: it's not clear how frequently
19599 it would get used and it would increase the size of every PER_CU.
19600 Entry points like dwarf2_per_cu_addr_size do a similar thing
19601 so we're not in uncharted territory here.
19602 Alas we need to be a bit more complicated as addr_base is contained
19603 in the DIE.
19604
19605 We don't need to read the entire CU(/TU).
19606 We just need the header and top level die.
19607
19608 IWBN to use the aging mechanism to let us lazily later discard the CU.
19609 For now we skip this optimization. */
19610
19611 if (cu != NULL)
19612 {
19613 addr_base = cu->addr_base;
19614 addr_size = cu->header.addr_size;
19615 }
19616 else
19617 {
19618 struct dwarf2_read_addr_index_data aidata;
19619
19620 /* Note: We can't use init_cutu_and_read_dies_simple here,
19621 we need addr_base. */
19622 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19623 dwarf2_read_addr_index_reader, &aidata);
19624 addr_base = aidata.addr_base;
19625 addr_size = aidata.addr_size;
19626 }
19627
19628 return read_addr_index_1 (addr_index, addr_base, addr_size);
19629 }
19630
19631 /* Given a DW_FORM_GNU_str_index, fetch the string.
19632 This is only used by the Fission support. */
19633
19634 static const char *
19635 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19636 {
19637 struct objfile *objfile = dwarf2_per_objfile->objfile;
19638 const char *objf_name = objfile_name (objfile);
19639 bfd *abfd = objfile->obfd;
19640 struct dwarf2_cu *cu = reader->cu;
19641 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19642 struct dwarf2_section_info *str_offsets_section =
19643 &reader->dwo_file->sections.str_offsets;
19644 const gdb_byte *info_ptr;
19645 ULONGEST str_offset;
19646 static const char form_name[] = "DW_FORM_GNU_str_index";
19647
19648 dwarf2_read_section (objfile, str_section);
19649 dwarf2_read_section (objfile, str_offsets_section);
19650 if (str_section->buffer == NULL)
19651 error (_("%s used without .debug_str.dwo section"
19652 " in CU at offset 0x%x [in module %s]"),
19653 form_name, to_underlying (cu->header.sect_off), objf_name);
19654 if (str_offsets_section->buffer == NULL)
19655 error (_("%s used without .debug_str_offsets.dwo section"
19656 " in CU at offset 0x%x [in module %s]"),
19657 form_name, to_underlying (cu->header.sect_off), objf_name);
19658 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19659 error (_("%s pointing outside of .debug_str_offsets.dwo"
19660 " section in CU at offset 0x%x [in module %s]"),
19661 form_name, to_underlying (cu->header.sect_off), objf_name);
19662 info_ptr = (str_offsets_section->buffer
19663 + str_index * cu->header.offset_size);
19664 if (cu->header.offset_size == 4)
19665 str_offset = bfd_get_32 (abfd, info_ptr);
19666 else
19667 str_offset = bfd_get_64 (abfd, info_ptr);
19668 if (str_offset >= str_section->size)
19669 error (_("Offset from %s pointing outside of"
19670 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
19671 form_name, to_underlying (cu->header.sect_off), objf_name);
19672 return (const char *) (str_section->buffer + str_offset);
19673 }
19674
19675 /* Return the length of an LEB128 number in BUF. */
19676
19677 static int
19678 leb128_size (const gdb_byte *buf)
19679 {
19680 const gdb_byte *begin = buf;
19681 gdb_byte byte;
19682
19683 while (1)
19684 {
19685 byte = *buf++;
19686 if ((byte & 128) == 0)
19687 return buf - begin;
19688 }
19689 }
19690
19691 static void
19692 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19693 {
19694 switch (lang)
19695 {
19696 case DW_LANG_C89:
19697 case DW_LANG_C99:
19698 case DW_LANG_C11:
19699 case DW_LANG_C:
19700 case DW_LANG_UPC:
19701 cu->language = language_c;
19702 break;
19703 case DW_LANG_Java:
19704 case DW_LANG_C_plus_plus:
19705 case DW_LANG_C_plus_plus_11:
19706 case DW_LANG_C_plus_plus_14:
19707 cu->language = language_cplus;
19708 break;
19709 case DW_LANG_D:
19710 cu->language = language_d;
19711 break;
19712 case DW_LANG_Fortran77:
19713 case DW_LANG_Fortran90:
19714 case DW_LANG_Fortran95:
19715 case DW_LANG_Fortran03:
19716 case DW_LANG_Fortran08:
19717 cu->language = language_fortran;
19718 break;
19719 case DW_LANG_Go:
19720 cu->language = language_go;
19721 break;
19722 case DW_LANG_Mips_Assembler:
19723 cu->language = language_asm;
19724 break;
19725 case DW_LANG_Ada83:
19726 case DW_LANG_Ada95:
19727 cu->language = language_ada;
19728 break;
19729 case DW_LANG_Modula2:
19730 cu->language = language_m2;
19731 break;
19732 case DW_LANG_Pascal83:
19733 cu->language = language_pascal;
19734 break;
19735 case DW_LANG_ObjC:
19736 cu->language = language_objc;
19737 break;
19738 case DW_LANG_Rust:
19739 case DW_LANG_Rust_old:
19740 cu->language = language_rust;
19741 break;
19742 case DW_LANG_Cobol74:
19743 case DW_LANG_Cobol85:
19744 default:
19745 cu->language = language_minimal;
19746 break;
19747 }
19748 cu->language_defn = language_def (cu->language);
19749 }
19750
19751 /* Return the named attribute or NULL if not there. */
19752
19753 static struct attribute *
19754 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19755 {
19756 for (;;)
19757 {
19758 unsigned int i;
19759 struct attribute *spec = NULL;
19760
19761 for (i = 0; i < die->num_attrs; ++i)
19762 {
19763 if (die->attrs[i].name == name)
19764 return &die->attrs[i];
19765 if (die->attrs[i].name == DW_AT_specification
19766 || die->attrs[i].name == DW_AT_abstract_origin)
19767 spec = &die->attrs[i];
19768 }
19769
19770 if (!spec)
19771 break;
19772
19773 die = follow_die_ref (die, spec, &cu);
19774 }
19775
19776 return NULL;
19777 }
19778
19779 /* Return the named attribute or NULL if not there,
19780 but do not follow DW_AT_specification, etc.
19781 This is for use in contexts where we're reading .debug_types dies.
19782 Following DW_AT_specification, DW_AT_abstract_origin will take us
19783 back up the chain, and we want to go down. */
19784
19785 static struct attribute *
19786 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19787 {
19788 unsigned int i;
19789
19790 for (i = 0; i < die->num_attrs; ++i)
19791 if (die->attrs[i].name == name)
19792 return &die->attrs[i];
19793
19794 return NULL;
19795 }
19796
19797 /* Return the string associated with a string-typed attribute, or NULL if it
19798 is either not found or is of an incorrect type. */
19799
19800 static const char *
19801 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19802 {
19803 struct attribute *attr;
19804 const char *str = NULL;
19805
19806 attr = dwarf2_attr (die, name, cu);
19807
19808 if (attr != NULL)
19809 {
19810 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19811 || attr->form == DW_FORM_string
19812 || attr->form == DW_FORM_GNU_str_index
19813 || attr->form == DW_FORM_GNU_strp_alt)
19814 str = DW_STRING (attr);
19815 else
19816 complaint (&symfile_complaints,
19817 _("string type expected for attribute %s for "
19818 "DIE at 0x%x in module %s"),
19819 dwarf_attr_name (name), to_underlying (die->sect_off),
19820 objfile_name (cu->objfile));
19821 }
19822
19823 return str;
19824 }
19825
19826 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19827 and holds a non-zero value. This function should only be used for
19828 DW_FORM_flag or DW_FORM_flag_present attributes. */
19829
19830 static int
19831 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19832 {
19833 struct attribute *attr = dwarf2_attr (die, name, cu);
19834
19835 return (attr && DW_UNSND (attr));
19836 }
19837
19838 static int
19839 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19840 {
19841 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19842 which value is non-zero. However, we have to be careful with
19843 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19844 (via dwarf2_flag_true_p) follows this attribute. So we may
19845 end up accidently finding a declaration attribute that belongs
19846 to a different DIE referenced by the specification attribute,
19847 even though the given DIE does not have a declaration attribute. */
19848 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19849 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19850 }
19851
19852 /* Return the die giving the specification for DIE, if there is
19853 one. *SPEC_CU is the CU containing DIE on input, and the CU
19854 containing the return value on output. If there is no
19855 specification, but there is an abstract origin, that is
19856 returned. */
19857
19858 static struct die_info *
19859 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19860 {
19861 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19862 *spec_cu);
19863
19864 if (spec_attr == NULL)
19865 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19866
19867 if (spec_attr == NULL)
19868 return NULL;
19869 else
19870 return follow_die_ref (die, spec_attr, spec_cu);
19871 }
19872
19873 /* Stub for free_line_header to match void * callback types. */
19874
19875 static void
19876 free_line_header_voidp (void *arg)
19877 {
19878 struct line_header *lh = (struct line_header *) arg;
19879
19880 delete lh;
19881 }
19882
19883 void
19884 line_header::add_include_dir (const char *include_dir)
19885 {
19886 if (dwarf_line_debug >= 2)
19887 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19888 include_dirs.size () + 1, include_dir);
19889
19890 include_dirs.push_back (include_dir);
19891 }
19892
19893 void
19894 line_header::add_file_name (const char *name,
19895 dir_index d_index,
19896 unsigned int mod_time,
19897 unsigned int length)
19898 {
19899 if (dwarf_line_debug >= 2)
19900 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19901 (unsigned) file_names.size () + 1, name);
19902
19903 file_names.emplace_back (name, d_index, mod_time, length);
19904 }
19905
19906 /* A convenience function to find the proper .debug_line section for a CU. */
19907
19908 static struct dwarf2_section_info *
19909 get_debug_line_section (struct dwarf2_cu *cu)
19910 {
19911 struct dwarf2_section_info *section;
19912
19913 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19914 DWO file. */
19915 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19916 section = &cu->dwo_unit->dwo_file->sections.line;
19917 else if (cu->per_cu->is_dwz)
19918 {
19919 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19920
19921 section = &dwz->line;
19922 }
19923 else
19924 section = &dwarf2_per_objfile->line;
19925
19926 return section;
19927 }
19928
19929 /* Read directory or file name entry format, starting with byte of
19930 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19931 entries count and the entries themselves in the described entry
19932 format. */
19933
19934 static void
19935 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
19936 struct line_header *lh,
19937 const struct comp_unit_head *cu_header,
19938 void (*callback) (struct line_header *lh,
19939 const char *name,
19940 dir_index d_index,
19941 unsigned int mod_time,
19942 unsigned int length))
19943 {
19944 gdb_byte format_count, formati;
19945 ULONGEST data_count, datai;
19946 const gdb_byte *buf = *bufp;
19947 const gdb_byte *format_header_data;
19948 unsigned int bytes_read;
19949
19950 format_count = read_1_byte (abfd, buf);
19951 buf += 1;
19952 format_header_data = buf;
19953 for (formati = 0; formati < format_count; formati++)
19954 {
19955 read_unsigned_leb128 (abfd, buf, &bytes_read);
19956 buf += bytes_read;
19957 read_unsigned_leb128 (abfd, buf, &bytes_read);
19958 buf += bytes_read;
19959 }
19960
19961 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19962 buf += bytes_read;
19963 for (datai = 0; datai < data_count; datai++)
19964 {
19965 const gdb_byte *format = format_header_data;
19966 struct file_entry fe;
19967
19968 for (formati = 0; formati < format_count; formati++)
19969 {
19970 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19971 format += bytes_read;
19972
19973 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19974 format += bytes_read;
19975
19976 gdb::optional<const char *> string;
19977 gdb::optional<unsigned int> uint;
19978
19979 switch (form)
19980 {
19981 case DW_FORM_string:
19982 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19983 buf += bytes_read;
19984 break;
19985
19986 case DW_FORM_line_strp:
19987 string.emplace (read_indirect_line_string (abfd, buf,
19988 cu_header,
19989 &bytes_read));
19990 buf += bytes_read;
19991 break;
19992
19993 case DW_FORM_data1:
19994 uint.emplace (read_1_byte (abfd, buf));
19995 buf += 1;
19996 break;
19997
19998 case DW_FORM_data2:
19999 uint.emplace (read_2_bytes (abfd, buf));
20000 buf += 2;
20001 break;
20002
20003 case DW_FORM_data4:
20004 uint.emplace (read_4_bytes (abfd, buf));
20005 buf += 4;
20006 break;
20007
20008 case DW_FORM_data8:
20009 uint.emplace (read_8_bytes (abfd, buf));
20010 buf += 8;
20011 break;
20012
20013 case DW_FORM_udata:
20014 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20015 buf += bytes_read;
20016 break;
20017
20018 case DW_FORM_block:
20019 /* It is valid only for DW_LNCT_timestamp which is ignored by
20020 current GDB. */
20021 break;
20022 }
20023
20024 switch (content_type)
20025 {
20026 case DW_LNCT_path:
20027 if (string.has_value ())
20028 fe.name = *string;
20029 break;
20030 case DW_LNCT_directory_index:
20031 if (uint.has_value ())
20032 fe.d_index = (dir_index) *uint;
20033 break;
20034 case DW_LNCT_timestamp:
20035 if (uint.has_value ())
20036 fe.mod_time = *uint;
20037 break;
20038 case DW_LNCT_size:
20039 if (uint.has_value ())
20040 fe.length = *uint;
20041 break;
20042 case DW_LNCT_MD5:
20043 break;
20044 default:
20045 complaint (&symfile_complaints,
20046 _("Unknown format content type %s"),
20047 pulongest (content_type));
20048 }
20049 }
20050
20051 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20052 }
20053
20054 *bufp = buf;
20055 }
20056
20057 /* Read the statement program header starting at OFFSET in
20058 .debug_line, or .debug_line.dwo. Return a pointer
20059 to a struct line_header, allocated using xmalloc.
20060 Returns NULL if there is a problem reading the header, e.g., if it
20061 has a version we don't understand.
20062
20063 NOTE: the strings in the include directory and file name tables of
20064 the returned object point into the dwarf line section buffer,
20065 and must not be freed. */
20066
20067 static line_header_up
20068 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20069 {
20070 const gdb_byte *line_ptr;
20071 unsigned int bytes_read, offset_size;
20072 int i;
20073 const char *cur_dir, *cur_file;
20074 struct dwarf2_section_info *section;
20075 bfd *abfd;
20076
20077 section = get_debug_line_section (cu);
20078 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20079 if (section->buffer == NULL)
20080 {
20081 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20082 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20083 else
20084 complaint (&symfile_complaints, _("missing .debug_line section"));
20085 return 0;
20086 }
20087
20088 /* We can't do this until we know the section is non-empty.
20089 Only then do we know we have such a section. */
20090 abfd = get_section_bfd_owner (section);
20091
20092 /* Make sure that at least there's room for the total_length field.
20093 That could be 12 bytes long, but we're just going to fudge that. */
20094 if (to_underlying (sect_off) + 4 >= section->size)
20095 {
20096 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20097 return 0;
20098 }
20099
20100 line_header_up lh (new line_header ());
20101
20102 lh->sect_off = sect_off;
20103 lh->offset_in_dwz = cu->per_cu->is_dwz;
20104
20105 line_ptr = section->buffer + to_underlying (sect_off);
20106
20107 /* Read in the header. */
20108 lh->total_length =
20109 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20110 &bytes_read, &offset_size);
20111 line_ptr += bytes_read;
20112 if (line_ptr + lh->total_length > (section->buffer + section->size))
20113 {
20114 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20115 return 0;
20116 }
20117 lh->statement_program_end = line_ptr + lh->total_length;
20118 lh->version = read_2_bytes (abfd, line_ptr);
20119 line_ptr += 2;
20120 if (lh->version > 5)
20121 {
20122 /* This is a version we don't understand. The format could have
20123 changed in ways we don't handle properly so just punt. */
20124 complaint (&symfile_complaints,
20125 _("unsupported version in .debug_line section"));
20126 return NULL;
20127 }
20128 if (lh->version >= 5)
20129 {
20130 gdb_byte segment_selector_size;
20131
20132 /* Skip address size. */
20133 read_1_byte (abfd, line_ptr);
20134 line_ptr += 1;
20135
20136 segment_selector_size = read_1_byte (abfd, line_ptr);
20137 line_ptr += 1;
20138 if (segment_selector_size != 0)
20139 {
20140 complaint (&symfile_complaints,
20141 _("unsupported segment selector size %u "
20142 "in .debug_line section"),
20143 segment_selector_size);
20144 return NULL;
20145 }
20146 }
20147 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20148 line_ptr += offset_size;
20149 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20150 line_ptr += 1;
20151 if (lh->version >= 4)
20152 {
20153 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20154 line_ptr += 1;
20155 }
20156 else
20157 lh->maximum_ops_per_instruction = 1;
20158
20159 if (lh->maximum_ops_per_instruction == 0)
20160 {
20161 lh->maximum_ops_per_instruction = 1;
20162 complaint (&symfile_complaints,
20163 _("invalid maximum_ops_per_instruction "
20164 "in `.debug_line' section"));
20165 }
20166
20167 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20168 line_ptr += 1;
20169 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20170 line_ptr += 1;
20171 lh->line_range = read_1_byte (abfd, line_ptr);
20172 line_ptr += 1;
20173 lh->opcode_base = read_1_byte (abfd, line_ptr);
20174 line_ptr += 1;
20175 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20176
20177 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20178 for (i = 1; i < lh->opcode_base; ++i)
20179 {
20180 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20181 line_ptr += 1;
20182 }
20183
20184 if (lh->version >= 5)
20185 {
20186 /* Read directory table. */
20187 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
20188 [] (struct line_header *lh, const char *name,
20189 dir_index d_index, unsigned int mod_time,
20190 unsigned int length)
20191 {
20192 lh->add_include_dir (name);
20193 });
20194
20195 /* Read file name table. */
20196 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
20197 [] (struct line_header *lh, const char *name,
20198 dir_index d_index, unsigned int mod_time,
20199 unsigned int length)
20200 {
20201 lh->add_file_name (name, d_index, mod_time, length);
20202 });
20203 }
20204 else
20205 {
20206 /* Read directory table. */
20207 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20208 {
20209 line_ptr += bytes_read;
20210 lh->add_include_dir (cur_dir);
20211 }
20212 line_ptr += bytes_read;
20213
20214 /* Read file name table. */
20215 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20216 {
20217 unsigned int mod_time, length;
20218 dir_index d_index;
20219
20220 line_ptr += bytes_read;
20221 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20222 line_ptr += bytes_read;
20223 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20224 line_ptr += bytes_read;
20225 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20226 line_ptr += bytes_read;
20227
20228 lh->add_file_name (cur_file, d_index, mod_time, length);
20229 }
20230 line_ptr += bytes_read;
20231 }
20232 lh->statement_program_start = line_ptr;
20233
20234 if (line_ptr > (section->buffer + section->size))
20235 complaint (&symfile_complaints,
20236 _("line number info header doesn't "
20237 "fit in `.debug_line' section"));
20238
20239 return lh;
20240 }
20241
20242 /* Subroutine of dwarf_decode_lines to simplify it.
20243 Return the file name of the psymtab for included file FILE_INDEX
20244 in line header LH of PST.
20245 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20246 If space for the result is malloc'd, it will be freed by a cleanup.
20247 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
20248
20249 The function creates dangling cleanup registration. */
20250
20251 static const char *
20252 psymtab_include_file_name (const struct line_header *lh, int file_index,
20253 const struct partial_symtab *pst,
20254 const char *comp_dir)
20255 {
20256 const file_entry &fe = lh->file_names[file_index];
20257 const char *include_name = fe.name;
20258 const char *include_name_to_compare = include_name;
20259 const char *pst_filename;
20260 char *copied_name = NULL;
20261 int file_is_pst;
20262
20263 const char *dir_name = fe.include_dir (lh);
20264
20265 if (!IS_ABSOLUTE_PATH (include_name)
20266 && (dir_name != NULL || comp_dir != NULL))
20267 {
20268 /* Avoid creating a duplicate psymtab for PST.
20269 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20270 Before we do the comparison, however, we need to account
20271 for DIR_NAME and COMP_DIR.
20272 First prepend dir_name (if non-NULL). If we still don't
20273 have an absolute path prepend comp_dir (if non-NULL).
20274 However, the directory we record in the include-file's
20275 psymtab does not contain COMP_DIR (to match the
20276 corresponding symtab(s)).
20277
20278 Example:
20279
20280 bash$ cd /tmp
20281 bash$ gcc -g ./hello.c
20282 include_name = "hello.c"
20283 dir_name = "."
20284 DW_AT_comp_dir = comp_dir = "/tmp"
20285 DW_AT_name = "./hello.c"
20286
20287 */
20288
20289 if (dir_name != NULL)
20290 {
20291 char *tem = concat (dir_name, SLASH_STRING,
20292 include_name, (char *)NULL);
20293
20294 make_cleanup (xfree, tem);
20295 include_name = tem;
20296 include_name_to_compare = include_name;
20297 }
20298 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20299 {
20300 char *tem = concat (comp_dir, SLASH_STRING,
20301 include_name, (char *)NULL);
20302
20303 make_cleanup (xfree, tem);
20304 include_name_to_compare = tem;
20305 }
20306 }
20307
20308 pst_filename = pst->filename;
20309 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20310 {
20311 copied_name = concat (pst->dirname, SLASH_STRING,
20312 pst_filename, (char *)NULL);
20313 pst_filename = copied_name;
20314 }
20315
20316 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20317
20318 if (copied_name != NULL)
20319 xfree (copied_name);
20320
20321 if (file_is_pst)
20322 return NULL;
20323 return include_name;
20324 }
20325
20326 /* State machine to track the state of the line number program. */
20327
20328 class lnp_state_machine
20329 {
20330 public:
20331 /* Initialize a machine state for the start of a line number
20332 program. */
20333 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20334
20335 file_entry *current_file ()
20336 {
20337 /* lh->file_names is 0-based, but the file name numbers in the
20338 statement program are 1-based. */
20339 return m_line_header->file_name_at (m_file);
20340 }
20341
20342 /* Record the line in the state machine. END_SEQUENCE is true if
20343 we're processing the end of a sequence. */
20344 void record_line (bool end_sequence);
20345
20346 /* Check address and if invalid nop-out the rest of the lines in this
20347 sequence. */
20348 void check_line_address (struct dwarf2_cu *cu,
20349 const gdb_byte *line_ptr,
20350 CORE_ADDR lowpc, CORE_ADDR address);
20351
20352 void handle_set_discriminator (unsigned int discriminator)
20353 {
20354 m_discriminator = discriminator;
20355 m_line_has_non_zero_discriminator |= discriminator != 0;
20356 }
20357
20358 /* Handle DW_LNE_set_address. */
20359 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20360 {
20361 m_op_index = 0;
20362 address += baseaddr;
20363 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20364 }
20365
20366 /* Handle DW_LNS_advance_pc. */
20367 void handle_advance_pc (CORE_ADDR adjust);
20368
20369 /* Handle a special opcode. */
20370 void handle_special_opcode (unsigned char op_code);
20371
20372 /* Handle DW_LNS_advance_line. */
20373 void handle_advance_line (int line_delta)
20374 {
20375 advance_line (line_delta);
20376 }
20377
20378 /* Handle DW_LNS_set_file. */
20379 void handle_set_file (file_name_index file);
20380
20381 /* Handle DW_LNS_negate_stmt. */
20382 void handle_negate_stmt ()
20383 {
20384 m_is_stmt = !m_is_stmt;
20385 }
20386
20387 /* Handle DW_LNS_const_add_pc. */
20388 void handle_const_add_pc ();
20389
20390 /* Handle DW_LNS_fixed_advance_pc. */
20391 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20392 {
20393 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20394 m_op_index = 0;
20395 }
20396
20397 /* Handle DW_LNS_copy. */
20398 void handle_copy ()
20399 {
20400 record_line (false);
20401 m_discriminator = 0;
20402 }
20403
20404 /* Handle DW_LNE_end_sequence. */
20405 void handle_end_sequence ()
20406 {
20407 m_record_line_callback = ::record_line;
20408 }
20409
20410 private:
20411 /* Advance the line by LINE_DELTA. */
20412 void advance_line (int line_delta)
20413 {
20414 m_line += line_delta;
20415
20416 if (line_delta != 0)
20417 m_line_has_non_zero_discriminator = m_discriminator != 0;
20418 }
20419
20420 gdbarch *m_gdbarch;
20421
20422 /* True if we're recording lines.
20423 Otherwise we're building partial symtabs and are just interested in
20424 finding include files mentioned by the line number program. */
20425 bool m_record_lines_p;
20426
20427 /* The line number header. */
20428 line_header *m_line_header;
20429
20430 /* These are part of the standard DWARF line number state machine,
20431 and initialized according to the DWARF spec. */
20432
20433 unsigned char m_op_index = 0;
20434 /* The line table index (1-based) of the current file. */
20435 file_name_index m_file = (file_name_index) 1;
20436 unsigned int m_line = 1;
20437
20438 /* These are initialized in the constructor. */
20439
20440 CORE_ADDR m_address;
20441 bool m_is_stmt;
20442 unsigned int m_discriminator;
20443
20444 /* Additional bits of state we need to track. */
20445
20446 /* The last file that we called dwarf2_start_subfile for.
20447 This is only used for TLLs. */
20448 unsigned int m_last_file = 0;
20449 /* The last file a line number was recorded for. */
20450 struct subfile *m_last_subfile = NULL;
20451
20452 /* The function to call to record a line. */
20453 record_line_ftype *m_record_line_callback = NULL;
20454
20455 /* The last line number that was recorded, used to coalesce
20456 consecutive entries for the same line. This can happen, for
20457 example, when discriminators are present. PR 17276. */
20458 unsigned int m_last_line = 0;
20459 bool m_line_has_non_zero_discriminator = false;
20460 };
20461
20462 void
20463 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20464 {
20465 CORE_ADDR addr_adj = (((m_op_index + adjust)
20466 / m_line_header->maximum_ops_per_instruction)
20467 * m_line_header->minimum_instruction_length);
20468 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20469 m_op_index = ((m_op_index + adjust)
20470 % m_line_header->maximum_ops_per_instruction);
20471 }
20472
20473 void
20474 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20475 {
20476 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20477 CORE_ADDR addr_adj = (((m_op_index
20478 + (adj_opcode / m_line_header->line_range))
20479 / m_line_header->maximum_ops_per_instruction)
20480 * m_line_header->minimum_instruction_length);
20481 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20482 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20483 % m_line_header->maximum_ops_per_instruction);
20484
20485 int line_delta = (m_line_header->line_base
20486 + (adj_opcode % m_line_header->line_range));
20487 advance_line (line_delta);
20488 record_line (false);
20489 m_discriminator = 0;
20490 }
20491
20492 void
20493 lnp_state_machine::handle_set_file (file_name_index file)
20494 {
20495 m_file = file;
20496
20497 const file_entry *fe = current_file ();
20498 if (fe == NULL)
20499 dwarf2_debug_line_missing_file_complaint ();
20500 else if (m_record_lines_p)
20501 {
20502 const char *dir = fe->include_dir (m_line_header);
20503
20504 m_last_subfile = current_subfile;
20505 m_line_has_non_zero_discriminator = m_discriminator != 0;
20506 dwarf2_start_subfile (fe->name, dir);
20507 }
20508 }
20509
20510 void
20511 lnp_state_machine::handle_const_add_pc ()
20512 {
20513 CORE_ADDR adjust
20514 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20515
20516 CORE_ADDR addr_adj
20517 = (((m_op_index + adjust)
20518 / m_line_header->maximum_ops_per_instruction)
20519 * m_line_header->minimum_instruction_length);
20520
20521 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20522 m_op_index = ((m_op_index + adjust)
20523 % m_line_header->maximum_ops_per_instruction);
20524 }
20525
20526 /* Ignore this record_line request. */
20527
20528 static void
20529 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20530 {
20531 return;
20532 }
20533
20534 /* Return non-zero if we should add LINE to the line number table.
20535 LINE is the line to add, LAST_LINE is the last line that was added,
20536 LAST_SUBFILE is the subfile for LAST_LINE.
20537 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20538 had a non-zero discriminator.
20539
20540 We have to be careful in the presence of discriminators.
20541 E.g., for this line:
20542
20543 for (i = 0; i < 100000; i++);
20544
20545 clang can emit four line number entries for that one line,
20546 each with a different discriminator.
20547 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20548
20549 However, we want gdb to coalesce all four entries into one.
20550 Otherwise the user could stepi into the middle of the line and
20551 gdb would get confused about whether the pc really was in the
20552 middle of the line.
20553
20554 Things are further complicated by the fact that two consecutive
20555 line number entries for the same line is a heuristic used by gcc
20556 to denote the end of the prologue. So we can't just discard duplicate
20557 entries, we have to be selective about it. The heuristic we use is
20558 that we only collapse consecutive entries for the same line if at least
20559 one of those entries has a non-zero discriminator. PR 17276.
20560
20561 Note: Addresses in the line number state machine can never go backwards
20562 within one sequence, thus this coalescing is ok. */
20563
20564 static int
20565 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20566 int line_has_non_zero_discriminator,
20567 struct subfile *last_subfile)
20568 {
20569 if (current_subfile != last_subfile)
20570 return 1;
20571 if (line != last_line)
20572 return 1;
20573 /* Same line for the same file that we've seen already.
20574 As a last check, for pr 17276, only record the line if the line
20575 has never had a non-zero discriminator. */
20576 if (!line_has_non_zero_discriminator)
20577 return 1;
20578 return 0;
20579 }
20580
20581 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20582 in the line table of subfile SUBFILE. */
20583
20584 static void
20585 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20586 unsigned int line, CORE_ADDR address,
20587 record_line_ftype p_record_line)
20588 {
20589 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20590
20591 if (dwarf_line_debug)
20592 {
20593 fprintf_unfiltered (gdb_stdlog,
20594 "Recording line %u, file %s, address %s\n",
20595 line, lbasename (subfile->name),
20596 paddress (gdbarch, address));
20597 }
20598
20599 (*p_record_line) (subfile, line, addr);
20600 }
20601
20602 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20603 Mark the end of a set of line number records.
20604 The arguments are the same as for dwarf_record_line_1.
20605 If SUBFILE is NULL the request is ignored. */
20606
20607 static void
20608 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20609 CORE_ADDR address, record_line_ftype p_record_line)
20610 {
20611 if (subfile == NULL)
20612 return;
20613
20614 if (dwarf_line_debug)
20615 {
20616 fprintf_unfiltered (gdb_stdlog,
20617 "Finishing current line, file %s, address %s\n",
20618 lbasename (subfile->name),
20619 paddress (gdbarch, address));
20620 }
20621
20622 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20623 }
20624
20625 void
20626 lnp_state_machine::record_line (bool end_sequence)
20627 {
20628 if (dwarf_line_debug)
20629 {
20630 fprintf_unfiltered (gdb_stdlog,
20631 "Processing actual line %u: file %u,"
20632 " address %s, is_stmt %u, discrim %u\n",
20633 m_line, to_underlying (m_file),
20634 paddress (m_gdbarch, m_address),
20635 m_is_stmt, m_discriminator);
20636 }
20637
20638 file_entry *fe = current_file ();
20639
20640 if (fe == NULL)
20641 dwarf2_debug_line_missing_file_complaint ();
20642 /* For now we ignore lines not starting on an instruction boundary.
20643 But not when processing end_sequence for compatibility with the
20644 previous version of the code. */
20645 else if (m_op_index == 0 || end_sequence)
20646 {
20647 fe->included_p = 1;
20648 if (m_record_lines_p && m_is_stmt)
20649 {
20650 if (m_last_subfile != current_subfile || end_sequence)
20651 {
20652 dwarf_finish_line (m_gdbarch, m_last_subfile,
20653 m_address, m_record_line_callback);
20654 }
20655
20656 if (!end_sequence)
20657 {
20658 if (dwarf_record_line_p (m_line, m_last_line,
20659 m_line_has_non_zero_discriminator,
20660 m_last_subfile))
20661 {
20662 dwarf_record_line_1 (m_gdbarch, current_subfile,
20663 m_line, m_address,
20664 m_record_line_callback);
20665 }
20666 m_last_subfile = current_subfile;
20667 m_last_line = m_line;
20668 }
20669 }
20670 }
20671 }
20672
20673 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20674 bool record_lines_p)
20675 {
20676 m_gdbarch = arch;
20677 m_record_lines_p = record_lines_p;
20678 m_line_header = lh;
20679
20680 m_record_line_callback = ::record_line;
20681
20682 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20683 was a line entry for it so that the backend has a chance to adjust it
20684 and also record it in case it needs it. This is currently used by MIPS
20685 code, cf. `mips_adjust_dwarf2_line'. */
20686 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20687 m_is_stmt = lh->default_is_stmt;
20688 m_discriminator = 0;
20689 }
20690
20691 void
20692 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20693 const gdb_byte *line_ptr,
20694 CORE_ADDR lowpc, CORE_ADDR address)
20695 {
20696 /* If address < lowpc then it's not a usable value, it's outside the
20697 pc range of the CU. However, we restrict the test to only address
20698 values of zero to preserve GDB's previous behaviour which is to
20699 handle the specific case of a function being GC'd by the linker. */
20700
20701 if (address == 0 && address < lowpc)
20702 {
20703 /* This line table is for a function which has been
20704 GCd by the linker. Ignore it. PR gdb/12528 */
20705
20706 struct objfile *objfile = cu->objfile;
20707 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20708
20709 complaint (&symfile_complaints,
20710 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20711 line_offset, objfile_name (objfile));
20712 m_record_line_callback = noop_record_line;
20713 /* Note: record_line_callback is left as noop_record_line until
20714 we see DW_LNE_end_sequence. */
20715 }
20716 }
20717
20718 /* Subroutine of dwarf_decode_lines to simplify it.
20719 Process the line number information in LH.
20720 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20721 program in order to set included_p for every referenced header. */
20722
20723 static void
20724 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20725 const int decode_for_pst_p, CORE_ADDR lowpc)
20726 {
20727 const gdb_byte *line_ptr, *extended_end;
20728 const gdb_byte *line_end;
20729 unsigned int bytes_read, extended_len;
20730 unsigned char op_code, extended_op;
20731 CORE_ADDR baseaddr;
20732 struct objfile *objfile = cu->objfile;
20733 bfd *abfd = objfile->obfd;
20734 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20735 /* True if we're recording line info (as opposed to building partial
20736 symtabs and just interested in finding include files mentioned by
20737 the line number program). */
20738 bool record_lines_p = !decode_for_pst_p;
20739
20740 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20741
20742 line_ptr = lh->statement_program_start;
20743 line_end = lh->statement_program_end;
20744
20745 /* Read the statement sequences until there's nothing left. */
20746 while (line_ptr < line_end)
20747 {
20748 /* The DWARF line number program state machine. Reset the state
20749 machine at the start of each sequence. */
20750 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20751 bool end_sequence = false;
20752
20753 if (record_lines_p)
20754 {
20755 /* Start a subfile for the current file of the state
20756 machine. */
20757 const file_entry *fe = state_machine.current_file ();
20758
20759 if (fe != NULL)
20760 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20761 }
20762
20763 /* Decode the table. */
20764 while (line_ptr < line_end && !end_sequence)
20765 {
20766 op_code = read_1_byte (abfd, line_ptr);
20767 line_ptr += 1;
20768
20769 if (op_code >= lh->opcode_base)
20770 {
20771 /* Special opcode. */
20772 state_machine.handle_special_opcode (op_code);
20773 }
20774 else switch (op_code)
20775 {
20776 case DW_LNS_extended_op:
20777 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20778 &bytes_read);
20779 line_ptr += bytes_read;
20780 extended_end = line_ptr + extended_len;
20781 extended_op = read_1_byte (abfd, line_ptr);
20782 line_ptr += 1;
20783 switch (extended_op)
20784 {
20785 case DW_LNE_end_sequence:
20786 state_machine.handle_end_sequence ();
20787 end_sequence = true;
20788 break;
20789 case DW_LNE_set_address:
20790 {
20791 CORE_ADDR address
20792 = read_address (abfd, line_ptr, cu, &bytes_read);
20793 line_ptr += bytes_read;
20794
20795 state_machine.check_line_address (cu, line_ptr,
20796 lowpc, address);
20797 state_machine.handle_set_address (baseaddr, address);
20798 }
20799 break;
20800 case DW_LNE_define_file:
20801 {
20802 const char *cur_file;
20803 unsigned int mod_time, length;
20804 dir_index dindex;
20805
20806 cur_file = read_direct_string (abfd, line_ptr,
20807 &bytes_read);
20808 line_ptr += bytes_read;
20809 dindex = (dir_index)
20810 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20811 line_ptr += bytes_read;
20812 mod_time =
20813 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20814 line_ptr += bytes_read;
20815 length =
20816 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20817 line_ptr += bytes_read;
20818 lh->add_file_name (cur_file, dindex, mod_time, length);
20819 }
20820 break;
20821 case DW_LNE_set_discriminator:
20822 {
20823 /* The discriminator is not interesting to the
20824 debugger; just ignore it. We still need to
20825 check its value though:
20826 if there are consecutive entries for the same
20827 (non-prologue) line we want to coalesce them.
20828 PR 17276. */
20829 unsigned int discr
20830 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20831 line_ptr += bytes_read;
20832
20833 state_machine.handle_set_discriminator (discr);
20834 }
20835 break;
20836 default:
20837 complaint (&symfile_complaints,
20838 _("mangled .debug_line section"));
20839 return;
20840 }
20841 /* Make sure that we parsed the extended op correctly. If e.g.
20842 we expected a different address size than the producer used,
20843 we may have read the wrong number of bytes. */
20844 if (line_ptr != extended_end)
20845 {
20846 complaint (&symfile_complaints,
20847 _("mangled .debug_line section"));
20848 return;
20849 }
20850 break;
20851 case DW_LNS_copy:
20852 state_machine.handle_copy ();
20853 break;
20854 case DW_LNS_advance_pc:
20855 {
20856 CORE_ADDR adjust
20857 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20858 line_ptr += bytes_read;
20859
20860 state_machine.handle_advance_pc (adjust);
20861 }
20862 break;
20863 case DW_LNS_advance_line:
20864 {
20865 int line_delta
20866 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20867 line_ptr += bytes_read;
20868
20869 state_machine.handle_advance_line (line_delta);
20870 }
20871 break;
20872 case DW_LNS_set_file:
20873 {
20874 file_name_index file
20875 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20876 &bytes_read);
20877 line_ptr += bytes_read;
20878
20879 state_machine.handle_set_file (file);
20880 }
20881 break;
20882 case DW_LNS_set_column:
20883 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20884 line_ptr += bytes_read;
20885 break;
20886 case DW_LNS_negate_stmt:
20887 state_machine.handle_negate_stmt ();
20888 break;
20889 case DW_LNS_set_basic_block:
20890 break;
20891 /* Add to the address register of the state machine the
20892 address increment value corresponding to special opcode
20893 255. I.e., this value is scaled by the minimum
20894 instruction length since special opcode 255 would have
20895 scaled the increment. */
20896 case DW_LNS_const_add_pc:
20897 state_machine.handle_const_add_pc ();
20898 break;
20899 case DW_LNS_fixed_advance_pc:
20900 {
20901 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20902 line_ptr += 2;
20903
20904 state_machine.handle_fixed_advance_pc (addr_adj);
20905 }
20906 break;
20907 default:
20908 {
20909 /* Unknown standard opcode, ignore it. */
20910 int i;
20911
20912 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20913 {
20914 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20915 line_ptr += bytes_read;
20916 }
20917 }
20918 }
20919 }
20920
20921 if (!end_sequence)
20922 dwarf2_debug_line_missing_end_sequence_complaint ();
20923
20924 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20925 in which case we still finish recording the last line). */
20926 state_machine.record_line (true);
20927 }
20928 }
20929
20930 /* Decode the Line Number Program (LNP) for the given line_header
20931 structure and CU. The actual information extracted and the type
20932 of structures created from the LNP depends on the value of PST.
20933
20934 1. If PST is NULL, then this procedure uses the data from the program
20935 to create all necessary symbol tables, and their linetables.
20936
20937 2. If PST is not NULL, this procedure reads the program to determine
20938 the list of files included by the unit represented by PST, and
20939 builds all the associated partial symbol tables.
20940
20941 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20942 It is used for relative paths in the line table.
20943 NOTE: When processing partial symtabs (pst != NULL),
20944 comp_dir == pst->dirname.
20945
20946 NOTE: It is important that psymtabs have the same file name (via strcmp)
20947 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20948 symtab we don't use it in the name of the psymtabs we create.
20949 E.g. expand_line_sal requires this when finding psymtabs to expand.
20950 A good testcase for this is mb-inline.exp.
20951
20952 LOWPC is the lowest address in CU (or 0 if not known).
20953
20954 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20955 for its PC<->lines mapping information. Otherwise only the filename
20956 table is read in. */
20957
20958 static void
20959 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20960 struct dwarf2_cu *cu, struct partial_symtab *pst,
20961 CORE_ADDR lowpc, int decode_mapping)
20962 {
20963 struct objfile *objfile = cu->objfile;
20964 const int decode_for_pst_p = (pst != NULL);
20965
20966 if (decode_mapping)
20967 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20968
20969 if (decode_for_pst_p)
20970 {
20971 int file_index;
20972
20973 /* Now that we're done scanning the Line Header Program, we can
20974 create the psymtab of each included file. */
20975 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20976 if (lh->file_names[file_index].included_p == 1)
20977 {
20978 const char *include_name =
20979 psymtab_include_file_name (lh, file_index, pst, comp_dir);
20980 if (include_name != NULL)
20981 dwarf2_create_include_psymtab (include_name, pst, objfile);
20982 }
20983 }
20984 else
20985 {
20986 /* Make sure a symtab is created for every file, even files
20987 which contain only variables (i.e. no code with associated
20988 line numbers). */
20989 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20990 int i;
20991
20992 for (i = 0; i < lh->file_names.size (); i++)
20993 {
20994 file_entry &fe = lh->file_names[i];
20995
20996 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20997
20998 if (current_subfile->symtab == NULL)
20999 {
21000 current_subfile->symtab
21001 = allocate_symtab (cust, current_subfile->name);
21002 }
21003 fe.symtab = current_subfile->symtab;
21004 }
21005 }
21006 }
21007
21008 /* Start a subfile for DWARF. FILENAME is the name of the file and
21009 DIRNAME the name of the source directory which contains FILENAME
21010 or NULL if not known.
21011 This routine tries to keep line numbers from identical absolute and
21012 relative file names in a common subfile.
21013
21014 Using the `list' example from the GDB testsuite, which resides in
21015 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21016 of /srcdir/list0.c yields the following debugging information for list0.c:
21017
21018 DW_AT_name: /srcdir/list0.c
21019 DW_AT_comp_dir: /compdir
21020 files.files[0].name: list0.h
21021 files.files[0].dir: /srcdir
21022 files.files[1].name: list0.c
21023 files.files[1].dir: /srcdir
21024
21025 The line number information for list0.c has to end up in a single
21026 subfile, so that `break /srcdir/list0.c:1' works as expected.
21027 start_subfile will ensure that this happens provided that we pass the
21028 concatenation of files.files[1].dir and files.files[1].name as the
21029 subfile's name. */
21030
21031 static void
21032 dwarf2_start_subfile (const char *filename, const char *dirname)
21033 {
21034 char *copy = NULL;
21035
21036 /* In order not to lose the line information directory,
21037 we concatenate it to the filename when it makes sense.
21038 Note that the Dwarf3 standard says (speaking of filenames in line
21039 information): ``The directory index is ignored for file names
21040 that represent full path names''. Thus ignoring dirname in the
21041 `else' branch below isn't an issue. */
21042
21043 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21044 {
21045 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21046 filename = copy;
21047 }
21048
21049 start_subfile (filename);
21050
21051 if (copy != NULL)
21052 xfree (copy);
21053 }
21054
21055 /* Start a symtab for DWARF.
21056 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21057
21058 static struct compunit_symtab *
21059 dwarf2_start_symtab (struct dwarf2_cu *cu,
21060 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21061 {
21062 struct compunit_symtab *cust
21063 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
21064
21065 record_debugformat ("DWARF 2");
21066 record_producer (cu->producer);
21067
21068 /* We assume that we're processing GCC output. */
21069 processing_gcc_compilation = 2;
21070
21071 cu->processing_has_namespace_info = 0;
21072
21073 return cust;
21074 }
21075
21076 static void
21077 var_decode_location (struct attribute *attr, struct symbol *sym,
21078 struct dwarf2_cu *cu)
21079 {
21080 struct objfile *objfile = cu->objfile;
21081 struct comp_unit_head *cu_header = &cu->header;
21082
21083 /* NOTE drow/2003-01-30: There used to be a comment and some special
21084 code here to turn a symbol with DW_AT_external and a
21085 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21086 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21087 with some versions of binutils) where shared libraries could have
21088 relocations against symbols in their debug information - the
21089 minimal symbol would have the right address, but the debug info
21090 would not. It's no longer necessary, because we will explicitly
21091 apply relocations when we read in the debug information now. */
21092
21093 /* A DW_AT_location attribute with no contents indicates that a
21094 variable has been optimized away. */
21095 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21096 {
21097 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21098 return;
21099 }
21100
21101 /* Handle one degenerate form of location expression specially, to
21102 preserve GDB's previous behavior when section offsets are
21103 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21104 then mark this symbol as LOC_STATIC. */
21105
21106 if (attr_form_is_block (attr)
21107 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21108 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21109 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21110 && (DW_BLOCK (attr)->size
21111 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21112 {
21113 unsigned int dummy;
21114
21115 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21116 SYMBOL_VALUE_ADDRESS (sym) =
21117 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21118 else
21119 SYMBOL_VALUE_ADDRESS (sym) =
21120 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21121 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21122 fixup_symbol_section (sym, objfile);
21123 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21124 SYMBOL_SECTION (sym));
21125 return;
21126 }
21127
21128 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21129 expression evaluator, and use LOC_COMPUTED only when necessary
21130 (i.e. when the value of a register or memory location is
21131 referenced, or a thread-local block, etc.). Then again, it might
21132 not be worthwhile. I'm assuming that it isn't unless performance
21133 or memory numbers show me otherwise. */
21134
21135 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21136
21137 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21138 cu->has_loclist = 1;
21139 }
21140
21141 /* Given a pointer to a DWARF information entry, figure out if we need
21142 to make a symbol table entry for it, and if so, create a new entry
21143 and return a pointer to it.
21144 If TYPE is NULL, determine symbol type from the die, otherwise
21145 used the passed type.
21146 If SPACE is not NULL, use it to hold the new symbol. If it is
21147 NULL, allocate a new symbol on the objfile's obstack. */
21148
21149 static struct symbol *
21150 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21151 struct symbol *space)
21152 {
21153 struct objfile *objfile = cu->objfile;
21154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21155 struct symbol *sym = NULL;
21156 const char *name;
21157 struct attribute *attr = NULL;
21158 struct attribute *attr2 = NULL;
21159 CORE_ADDR baseaddr;
21160 struct pending **list_to_add = NULL;
21161
21162 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21163
21164 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21165
21166 name = dwarf2_name (die, cu);
21167 if (name)
21168 {
21169 const char *linkagename;
21170 int suppress_add = 0;
21171
21172 if (space)
21173 sym = space;
21174 else
21175 sym = allocate_symbol (objfile);
21176 OBJSTAT (objfile, n_syms++);
21177
21178 /* Cache this symbol's name and the name's demangled form (if any). */
21179 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21180 linkagename = dwarf2_physname (name, die, cu);
21181 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21182
21183 /* Fortran does not have mangling standard and the mangling does differ
21184 between gfortran, iFort etc. */
21185 if (cu->language == language_fortran
21186 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21187 symbol_set_demangled_name (&(sym->ginfo),
21188 dwarf2_full_name (name, die, cu),
21189 NULL);
21190
21191 /* Default assumptions.
21192 Use the passed type or decode it from the die. */
21193 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21194 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21195 if (type != NULL)
21196 SYMBOL_TYPE (sym) = type;
21197 else
21198 SYMBOL_TYPE (sym) = die_type (die, cu);
21199 attr = dwarf2_attr (die,
21200 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21201 cu);
21202 if (attr)
21203 {
21204 SYMBOL_LINE (sym) = DW_UNSND (attr);
21205 }
21206
21207 attr = dwarf2_attr (die,
21208 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21209 cu);
21210 if (attr)
21211 {
21212 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21213 struct file_entry *fe;
21214
21215 if (cu->line_header != NULL)
21216 fe = cu->line_header->file_name_at (file_index);
21217 else
21218 fe = NULL;
21219
21220 if (fe == NULL)
21221 complaint (&symfile_complaints,
21222 _("file index out of range"));
21223 else
21224 symbol_set_symtab (sym, fe->symtab);
21225 }
21226
21227 switch (die->tag)
21228 {
21229 case DW_TAG_label:
21230 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21231 if (attr)
21232 {
21233 CORE_ADDR addr;
21234
21235 addr = attr_value_as_address (attr);
21236 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21237 SYMBOL_VALUE_ADDRESS (sym) = addr;
21238 }
21239 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21240 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21241 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21242 add_symbol_to_list (sym, cu->list_in_scope);
21243 break;
21244 case DW_TAG_subprogram:
21245 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21246 finish_block. */
21247 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21248 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21249 if ((attr2 && (DW_UNSND (attr2) != 0))
21250 || cu->language == language_ada)
21251 {
21252 /* Subprograms marked external are stored as a global symbol.
21253 Ada subprograms, whether marked external or not, are always
21254 stored as a global symbol, because we want to be able to
21255 access them globally. For instance, we want to be able
21256 to break on a nested subprogram without having to
21257 specify the context. */
21258 list_to_add = &global_symbols;
21259 }
21260 else
21261 {
21262 list_to_add = cu->list_in_scope;
21263 }
21264 break;
21265 case DW_TAG_inlined_subroutine:
21266 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21267 finish_block. */
21268 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21269 SYMBOL_INLINED (sym) = 1;
21270 list_to_add = cu->list_in_scope;
21271 break;
21272 case DW_TAG_template_value_param:
21273 suppress_add = 1;
21274 /* Fall through. */
21275 case DW_TAG_constant:
21276 case DW_TAG_variable:
21277 case DW_TAG_member:
21278 /* Compilation with minimal debug info may result in
21279 variables with missing type entries. Change the
21280 misleading `void' type to something sensible. */
21281 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21282 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21283
21284 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21285 /* In the case of DW_TAG_member, we should only be called for
21286 static const members. */
21287 if (die->tag == DW_TAG_member)
21288 {
21289 /* dwarf2_add_field uses die_is_declaration,
21290 so we do the same. */
21291 gdb_assert (die_is_declaration (die, cu));
21292 gdb_assert (attr);
21293 }
21294 if (attr)
21295 {
21296 dwarf2_const_value (attr, sym, cu);
21297 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21298 if (!suppress_add)
21299 {
21300 if (attr2 && (DW_UNSND (attr2) != 0))
21301 list_to_add = &global_symbols;
21302 else
21303 list_to_add = cu->list_in_scope;
21304 }
21305 break;
21306 }
21307 attr = dwarf2_attr (die, DW_AT_location, cu);
21308 if (attr)
21309 {
21310 var_decode_location (attr, sym, cu);
21311 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21312
21313 /* Fortran explicitly imports any global symbols to the local
21314 scope by DW_TAG_common_block. */
21315 if (cu->language == language_fortran && die->parent
21316 && die->parent->tag == DW_TAG_common_block)
21317 attr2 = NULL;
21318
21319 if (SYMBOL_CLASS (sym) == LOC_STATIC
21320 && SYMBOL_VALUE_ADDRESS (sym) == 0
21321 && !dwarf2_per_objfile->has_section_at_zero)
21322 {
21323 /* When a static variable is eliminated by the linker,
21324 the corresponding debug information is not stripped
21325 out, but the variable address is set to null;
21326 do not add such variables into symbol table. */
21327 }
21328 else if (attr2 && (DW_UNSND (attr2) != 0))
21329 {
21330 /* Workaround gfortran PR debug/40040 - it uses
21331 DW_AT_location for variables in -fPIC libraries which may
21332 get overriden by other libraries/executable and get
21333 a different address. Resolve it by the minimal symbol
21334 which may come from inferior's executable using copy
21335 relocation. Make this workaround only for gfortran as for
21336 other compilers GDB cannot guess the minimal symbol
21337 Fortran mangling kind. */
21338 if (cu->language == language_fortran && die->parent
21339 && die->parent->tag == DW_TAG_module
21340 && cu->producer
21341 && startswith (cu->producer, "GNU Fortran"))
21342 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21343
21344 /* A variable with DW_AT_external is never static,
21345 but it may be block-scoped. */
21346 list_to_add = (cu->list_in_scope == &file_symbols
21347 ? &global_symbols : cu->list_in_scope);
21348 }
21349 else
21350 list_to_add = cu->list_in_scope;
21351 }
21352 else
21353 {
21354 /* We do not know the address of this symbol.
21355 If it is an external symbol and we have type information
21356 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21357 The address of the variable will then be determined from
21358 the minimal symbol table whenever the variable is
21359 referenced. */
21360 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21361
21362 /* Fortran explicitly imports any global symbols to the local
21363 scope by DW_TAG_common_block. */
21364 if (cu->language == language_fortran && die->parent
21365 && die->parent->tag == DW_TAG_common_block)
21366 {
21367 /* SYMBOL_CLASS doesn't matter here because
21368 read_common_block is going to reset it. */
21369 if (!suppress_add)
21370 list_to_add = cu->list_in_scope;
21371 }
21372 else if (attr2 && (DW_UNSND (attr2) != 0)
21373 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21374 {
21375 /* A variable with DW_AT_external is never static, but it
21376 may be block-scoped. */
21377 list_to_add = (cu->list_in_scope == &file_symbols
21378 ? &global_symbols : cu->list_in_scope);
21379
21380 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21381 }
21382 else if (!die_is_declaration (die, cu))
21383 {
21384 /* Use the default LOC_OPTIMIZED_OUT class. */
21385 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21386 if (!suppress_add)
21387 list_to_add = cu->list_in_scope;
21388 }
21389 }
21390 break;
21391 case DW_TAG_formal_parameter:
21392 /* If we are inside a function, mark this as an argument. If
21393 not, we might be looking at an argument to an inlined function
21394 when we do not have enough information to show inlined frames;
21395 pretend it's a local variable in that case so that the user can
21396 still see it. */
21397 if (context_stack_depth > 0
21398 && context_stack[context_stack_depth - 1].name != NULL)
21399 SYMBOL_IS_ARGUMENT (sym) = 1;
21400 attr = dwarf2_attr (die, DW_AT_location, cu);
21401 if (attr)
21402 {
21403 var_decode_location (attr, sym, cu);
21404 }
21405 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21406 if (attr)
21407 {
21408 dwarf2_const_value (attr, sym, cu);
21409 }
21410
21411 list_to_add = cu->list_in_scope;
21412 break;
21413 case DW_TAG_unspecified_parameters:
21414 /* From varargs functions; gdb doesn't seem to have any
21415 interest in this information, so just ignore it for now.
21416 (FIXME?) */
21417 break;
21418 case DW_TAG_template_type_param:
21419 suppress_add = 1;
21420 /* Fall through. */
21421 case DW_TAG_class_type:
21422 case DW_TAG_interface_type:
21423 case DW_TAG_structure_type:
21424 case DW_TAG_union_type:
21425 case DW_TAG_set_type:
21426 case DW_TAG_enumeration_type:
21427 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21428 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21429
21430 {
21431 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21432 really ever be static objects: otherwise, if you try
21433 to, say, break of a class's method and you're in a file
21434 which doesn't mention that class, it won't work unless
21435 the check for all static symbols in lookup_symbol_aux
21436 saves you. See the OtherFileClass tests in
21437 gdb.c++/namespace.exp. */
21438
21439 if (!suppress_add)
21440 {
21441 list_to_add = (cu->list_in_scope == &file_symbols
21442 && cu->language == language_cplus
21443 ? &global_symbols : cu->list_in_scope);
21444
21445 /* The semantics of C++ state that "struct foo {
21446 ... }" also defines a typedef for "foo". */
21447 if (cu->language == language_cplus
21448 || cu->language == language_ada
21449 || cu->language == language_d
21450 || cu->language == language_rust)
21451 {
21452 /* The symbol's name is already allocated along
21453 with this objfile, so we don't need to
21454 duplicate it for the type. */
21455 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21456 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21457 }
21458 }
21459 }
21460 break;
21461 case DW_TAG_typedef:
21462 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21463 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21464 list_to_add = cu->list_in_scope;
21465 break;
21466 case DW_TAG_base_type:
21467 case DW_TAG_subrange_type:
21468 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21469 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21470 list_to_add = cu->list_in_scope;
21471 break;
21472 case DW_TAG_enumerator:
21473 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21474 if (attr)
21475 {
21476 dwarf2_const_value (attr, sym, cu);
21477 }
21478 {
21479 /* NOTE: carlton/2003-11-10: See comment above in the
21480 DW_TAG_class_type, etc. block. */
21481
21482 list_to_add = (cu->list_in_scope == &file_symbols
21483 && cu->language == language_cplus
21484 ? &global_symbols : cu->list_in_scope);
21485 }
21486 break;
21487 case DW_TAG_imported_declaration:
21488 case DW_TAG_namespace:
21489 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21490 list_to_add = &global_symbols;
21491 break;
21492 case DW_TAG_module:
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21494 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21495 list_to_add = &global_symbols;
21496 break;
21497 case DW_TAG_common_block:
21498 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21499 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21500 add_symbol_to_list (sym, cu->list_in_scope);
21501 break;
21502 default:
21503 /* Not a tag we recognize. Hopefully we aren't processing
21504 trash data, but since we must specifically ignore things
21505 we don't recognize, there is nothing else we should do at
21506 this point. */
21507 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21508 dwarf_tag_name (die->tag));
21509 break;
21510 }
21511
21512 if (suppress_add)
21513 {
21514 sym->hash_next = objfile->template_symbols;
21515 objfile->template_symbols = sym;
21516 list_to_add = NULL;
21517 }
21518
21519 if (list_to_add != NULL)
21520 add_symbol_to_list (sym, list_to_add);
21521
21522 /* For the benefit of old versions of GCC, check for anonymous
21523 namespaces based on the demangled name. */
21524 if (!cu->processing_has_namespace_info
21525 && cu->language == language_cplus)
21526 cp_scan_for_anonymous_namespaces (sym, objfile);
21527 }
21528 return (sym);
21529 }
21530
21531 /* A wrapper for new_symbol_full that always allocates a new symbol. */
21532
21533 static struct symbol *
21534 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21535 {
21536 return new_symbol_full (die, type, cu, NULL);
21537 }
21538
21539 /* Given an attr with a DW_FORM_dataN value in host byte order,
21540 zero-extend it as appropriate for the symbol's type. The DWARF
21541 standard (v4) is not entirely clear about the meaning of using
21542 DW_FORM_dataN for a constant with a signed type, where the type is
21543 wider than the data. The conclusion of a discussion on the DWARF
21544 list was that this is unspecified. We choose to always zero-extend
21545 because that is the interpretation long in use by GCC. */
21546
21547 static gdb_byte *
21548 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21549 struct dwarf2_cu *cu, LONGEST *value, int bits)
21550 {
21551 struct objfile *objfile = cu->objfile;
21552 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21553 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21554 LONGEST l = DW_UNSND (attr);
21555
21556 if (bits < sizeof (*value) * 8)
21557 {
21558 l &= ((LONGEST) 1 << bits) - 1;
21559 *value = l;
21560 }
21561 else if (bits == sizeof (*value) * 8)
21562 *value = l;
21563 else
21564 {
21565 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21566 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21567 return bytes;
21568 }
21569
21570 return NULL;
21571 }
21572
21573 /* Read a constant value from an attribute. Either set *VALUE, or if
21574 the value does not fit in *VALUE, set *BYTES - either already
21575 allocated on the objfile obstack, or newly allocated on OBSTACK,
21576 or, set *BATON, if we translated the constant to a location
21577 expression. */
21578
21579 static void
21580 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21581 const char *name, struct obstack *obstack,
21582 struct dwarf2_cu *cu,
21583 LONGEST *value, const gdb_byte **bytes,
21584 struct dwarf2_locexpr_baton **baton)
21585 {
21586 struct objfile *objfile = cu->objfile;
21587 struct comp_unit_head *cu_header = &cu->header;
21588 struct dwarf_block *blk;
21589 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21590 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21591
21592 *value = 0;
21593 *bytes = NULL;
21594 *baton = NULL;
21595
21596 switch (attr->form)
21597 {
21598 case DW_FORM_addr:
21599 case DW_FORM_GNU_addr_index:
21600 {
21601 gdb_byte *data;
21602
21603 if (TYPE_LENGTH (type) != cu_header->addr_size)
21604 dwarf2_const_value_length_mismatch_complaint (name,
21605 cu_header->addr_size,
21606 TYPE_LENGTH (type));
21607 /* Symbols of this form are reasonably rare, so we just
21608 piggyback on the existing location code rather than writing
21609 a new implementation of symbol_computed_ops. */
21610 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21611 (*baton)->per_cu = cu->per_cu;
21612 gdb_assert ((*baton)->per_cu);
21613
21614 (*baton)->size = 2 + cu_header->addr_size;
21615 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21616 (*baton)->data = data;
21617
21618 data[0] = DW_OP_addr;
21619 store_unsigned_integer (&data[1], cu_header->addr_size,
21620 byte_order, DW_ADDR (attr));
21621 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21622 }
21623 break;
21624 case DW_FORM_string:
21625 case DW_FORM_strp:
21626 case DW_FORM_GNU_str_index:
21627 case DW_FORM_GNU_strp_alt:
21628 /* DW_STRING is already allocated on the objfile obstack, point
21629 directly to it. */
21630 *bytes = (const gdb_byte *) DW_STRING (attr);
21631 break;
21632 case DW_FORM_block1:
21633 case DW_FORM_block2:
21634 case DW_FORM_block4:
21635 case DW_FORM_block:
21636 case DW_FORM_exprloc:
21637 case DW_FORM_data16:
21638 blk = DW_BLOCK (attr);
21639 if (TYPE_LENGTH (type) != blk->size)
21640 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21641 TYPE_LENGTH (type));
21642 *bytes = blk->data;
21643 break;
21644
21645 /* The DW_AT_const_value attributes are supposed to carry the
21646 symbol's value "represented as it would be on the target
21647 architecture." By the time we get here, it's already been
21648 converted to host endianness, so we just need to sign- or
21649 zero-extend it as appropriate. */
21650 case DW_FORM_data1:
21651 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21652 break;
21653 case DW_FORM_data2:
21654 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21655 break;
21656 case DW_FORM_data4:
21657 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21658 break;
21659 case DW_FORM_data8:
21660 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21661 break;
21662
21663 case DW_FORM_sdata:
21664 case DW_FORM_implicit_const:
21665 *value = DW_SND (attr);
21666 break;
21667
21668 case DW_FORM_udata:
21669 *value = DW_UNSND (attr);
21670 break;
21671
21672 default:
21673 complaint (&symfile_complaints,
21674 _("unsupported const value attribute form: '%s'"),
21675 dwarf_form_name (attr->form));
21676 *value = 0;
21677 break;
21678 }
21679 }
21680
21681
21682 /* Copy constant value from an attribute to a symbol. */
21683
21684 static void
21685 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21686 struct dwarf2_cu *cu)
21687 {
21688 struct objfile *objfile = cu->objfile;
21689 LONGEST value;
21690 const gdb_byte *bytes;
21691 struct dwarf2_locexpr_baton *baton;
21692
21693 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21694 SYMBOL_PRINT_NAME (sym),
21695 &objfile->objfile_obstack, cu,
21696 &value, &bytes, &baton);
21697
21698 if (baton != NULL)
21699 {
21700 SYMBOL_LOCATION_BATON (sym) = baton;
21701 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21702 }
21703 else if (bytes != NULL)
21704 {
21705 SYMBOL_VALUE_BYTES (sym) = bytes;
21706 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21707 }
21708 else
21709 {
21710 SYMBOL_VALUE (sym) = value;
21711 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21712 }
21713 }
21714
21715 /* Return the type of the die in question using its DW_AT_type attribute. */
21716
21717 static struct type *
21718 die_type (struct die_info *die, struct dwarf2_cu *cu)
21719 {
21720 struct attribute *type_attr;
21721
21722 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21723 if (!type_attr)
21724 {
21725 /* A missing DW_AT_type represents a void type. */
21726 return objfile_type (cu->objfile)->builtin_void;
21727 }
21728
21729 return lookup_die_type (die, type_attr, cu);
21730 }
21731
21732 /* True iff CU's producer generates GNAT Ada auxiliary information
21733 that allows to find parallel types through that information instead
21734 of having to do expensive parallel lookups by type name. */
21735
21736 static int
21737 need_gnat_info (struct dwarf2_cu *cu)
21738 {
21739 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
21740 of GNAT produces this auxiliary information, without any indication
21741 that it is produced. Part of enhancing the FSF version of GNAT
21742 to produce that information will be to put in place an indicator
21743 that we can use in order to determine whether the descriptive type
21744 info is available or not. One suggestion that has been made is
21745 to use a new attribute, attached to the CU die. For now, assume
21746 that the descriptive type info is not available. */
21747 return 0;
21748 }
21749
21750 /* Return the auxiliary type of the die in question using its
21751 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21752 attribute is not present. */
21753
21754 static struct type *
21755 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21756 {
21757 struct attribute *type_attr;
21758
21759 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21760 if (!type_attr)
21761 return NULL;
21762
21763 return lookup_die_type (die, type_attr, cu);
21764 }
21765
21766 /* If DIE has a descriptive_type attribute, then set the TYPE's
21767 descriptive type accordingly. */
21768
21769 static void
21770 set_descriptive_type (struct type *type, struct die_info *die,
21771 struct dwarf2_cu *cu)
21772 {
21773 struct type *descriptive_type = die_descriptive_type (die, cu);
21774
21775 if (descriptive_type)
21776 {
21777 ALLOCATE_GNAT_AUX_TYPE (type);
21778 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21779 }
21780 }
21781
21782 /* Return the containing type of the die in question using its
21783 DW_AT_containing_type attribute. */
21784
21785 static struct type *
21786 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21787 {
21788 struct attribute *type_attr;
21789
21790 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21791 if (!type_attr)
21792 error (_("Dwarf Error: Problem turning containing type into gdb type "
21793 "[in module %s]"), objfile_name (cu->objfile));
21794
21795 return lookup_die_type (die, type_attr, cu);
21796 }
21797
21798 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21799
21800 static struct type *
21801 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21802 {
21803 struct objfile *objfile = dwarf2_per_objfile->objfile;
21804 char *message, *saved;
21805
21806 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
21807 objfile_name (objfile),
21808 to_underlying (cu->header.sect_off),
21809 to_underlying (die->sect_off));
21810 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21811 message, strlen (message));
21812 xfree (message);
21813
21814 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21815 }
21816
21817 /* Look up the type of DIE in CU using its type attribute ATTR.
21818 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21819 DW_AT_containing_type.
21820 If there is no type substitute an error marker. */
21821
21822 static struct type *
21823 lookup_die_type (struct die_info *die, const struct attribute *attr,
21824 struct dwarf2_cu *cu)
21825 {
21826 struct objfile *objfile = cu->objfile;
21827 struct type *this_type;
21828
21829 gdb_assert (attr->name == DW_AT_type
21830 || attr->name == DW_AT_GNAT_descriptive_type
21831 || attr->name == DW_AT_containing_type);
21832
21833 /* First see if we have it cached. */
21834
21835 if (attr->form == DW_FORM_GNU_ref_alt)
21836 {
21837 struct dwarf2_per_cu_data *per_cu;
21838 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21839
21840 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
21841 this_type = get_die_type_at_offset (sect_off, per_cu);
21842 }
21843 else if (attr_form_is_ref (attr))
21844 {
21845 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21846
21847 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21848 }
21849 else if (attr->form == DW_FORM_ref_sig8)
21850 {
21851 ULONGEST signature = DW_SIGNATURE (attr);
21852
21853 return get_signatured_type (die, signature, cu);
21854 }
21855 else
21856 {
21857 complaint (&symfile_complaints,
21858 _("Dwarf Error: Bad type attribute %s in DIE"
21859 " at 0x%x [in module %s]"),
21860 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
21861 objfile_name (objfile));
21862 return build_error_marker_type (cu, die);
21863 }
21864
21865 /* If not cached we need to read it in. */
21866
21867 if (this_type == NULL)
21868 {
21869 struct die_info *type_die = NULL;
21870 struct dwarf2_cu *type_cu = cu;
21871
21872 if (attr_form_is_ref (attr))
21873 type_die = follow_die_ref (die, attr, &type_cu);
21874 if (type_die == NULL)
21875 return build_error_marker_type (cu, die);
21876 /* If we find the type now, it's probably because the type came
21877 from an inter-CU reference and the type's CU got expanded before
21878 ours. */
21879 this_type = read_type_die (type_die, type_cu);
21880 }
21881
21882 /* If we still don't have a type use an error marker. */
21883
21884 if (this_type == NULL)
21885 return build_error_marker_type (cu, die);
21886
21887 return this_type;
21888 }
21889
21890 /* Return the type in DIE, CU.
21891 Returns NULL for invalid types.
21892
21893 This first does a lookup in die_type_hash,
21894 and only reads the die in if necessary.
21895
21896 NOTE: This can be called when reading in partial or full symbols. */
21897
21898 static struct type *
21899 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21900 {
21901 struct type *this_type;
21902
21903 this_type = get_die_type (die, cu);
21904 if (this_type)
21905 return this_type;
21906
21907 return read_type_die_1 (die, cu);
21908 }
21909
21910 /* Read the type in DIE, CU.
21911 Returns NULL for invalid types. */
21912
21913 static struct type *
21914 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21915 {
21916 struct type *this_type = NULL;
21917
21918 switch (die->tag)
21919 {
21920 case DW_TAG_class_type:
21921 case DW_TAG_interface_type:
21922 case DW_TAG_structure_type:
21923 case DW_TAG_union_type:
21924 this_type = read_structure_type (die, cu);
21925 break;
21926 case DW_TAG_enumeration_type:
21927 this_type = read_enumeration_type (die, cu);
21928 break;
21929 case DW_TAG_subprogram:
21930 case DW_TAG_subroutine_type:
21931 case DW_TAG_inlined_subroutine:
21932 this_type = read_subroutine_type (die, cu);
21933 break;
21934 case DW_TAG_array_type:
21935 this_type = read_array_type (die, cu);
21936 break;
21937 case DW_TAG_set_type:
21938 this_type = read_set_type (die, cu);
21939 break;
21940 case DW_TAG_pointer_type:
21941 this_type = read_tag_pointer_type (die, cu);
21942 break;
21943 case DW_TAG_ptr_to_member_type:
21944 this_type = read_tag_ptr_to_member_type (die, cu);
21945 break;
21946 case DW_TAG_reference_type:
21947 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21948 break;
21949 case DW_TAG_rvalue_reference_type:
21950 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21951 break;
21952 case DW_TAG_const_type:
21953 this_type = read_tag_const_type (die, cu);
21954 break;
21955 case DW_TAG_volatile_type:
21956 this_type = read_tag_volatile_type (die, cu);
21957 break;
21958 case DW_TAG_restrict_type:
21959 this_type = read_tag_restrict_type (die, cu);
21960 break;
21961 case DW_TAG_string_type:
21962 this_type = read_tag_string_type (die, cu);
21963 break;
21964 case DW_TAG_typedef:
21965 this_type = read_typedef (die, cu);
21966 break;
21967 case DW_TAG_subrange_type:
21968 this_type = read_subrange_type (die, cu);
21969 break;
21970 case DW_TAG_base_type:
21971 this_type = read_base_type (die, cu);
21972 break;
21973 case DW_TAG_unspecified_type:
21974 this_type = read_unspecified_type (die, cu);
21975 break;
21976 case DW_TAG_namespace:
21977 this_type = read_namespace_type (die, cu);
21978 break;
21979 case DW_TAG_module:
21980 this_type = read_module_type (die, cu);
21981 break;
21982 case DW_TAG_atomic_type:
21983 this_type = read_tag_atomic_type (die, cu);
21984 break;
21985 default:
21986 complaint (&symfile_complaints,
21987 _("unexpected tag in read_type_die: '%s'"),
21988 dwarf_tag_name (die->tag));
21989 break;
21990 }
21991
21992 return this_type;
21993 }
21994
21995 /* See if we can figure out if the class lives in a namespace. We do
21996 this by looking for a member function; its demangled name will
21997 contain namespace info, if there is any.
21998 Return the computed name or NULL.
21999 Space for the result is allocated on the objfile's obstack.
22000 This is the full-die version of guess_partial_die_structure_name.
22001 In this case we know DIE has no useful parent. */
22002
22003 static char *
22004 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22005 {
22006 struct die_info *spec_die;
22007 struct dwarf2_cu *spec_cu;
22008 struct die_info *child;
22009
22010 spec_cu = cu;
22011 spec_die = die_specification (die, &spec_cu);
22012 if (spec_die != NULL)
22013 {
22014 die = spec_die;
22015 cu = spec_cu;
22016 }
22017
22018 for (child = die->child;
22019 child != NULL;
22020 child = child->sibling)
22021 {
22022 if (child->tag == DW_TAG_subprogram)
22023 {
22024 const char *linkage_name = dw2_linkage_name (child, cu);
22025
22026 if (linkage_name != NULL)
22027 {
22028 char *actual_name
22029 = language_class_name_from_physname (cu->language_defn,
22030 linkage_name);
22031 char *name = NULL;
22032
22033 if (actual_name != NULL)
22034 {
22035 const char *die_name = dwarf2_name (die, cu);
22036
22037 if (die_name != NULL
22038 && strcmp (die_name, actual_name) != 0)
22039 {
22040 /* Strip off the class name from the full name.
22041 We want the prefix. */
22042 int die_name_len = strlen (die_name);
22043 int actual_name_len = strlen (actual_name);
22044
22045 /* Test for '::' as a sanity check. */
22046 if (actual_name_len > die_name_len + 2
22047 && actual_name[actual_name_len
22048 - die_name_len - 1] == ':')
22049 name = (char *) obstack_copy0 (
22050 &cu->objfile->per_bfd->storage_obstack,
22051 actual_name, actual_name_len - die_name_len - 2);
22052 }
22053 }
22054 xfree (actual_name);
22055 return name;
22056 }
22057 }
22058 }
22059
22060 return NULL;
22061 }
22062
22063 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22064 prefix part in such case. See
22065 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22066
22067 static const char *
22068 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22069 {
22070 struct attribute *attr;
22071 const char *base;
22072
22073 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22074 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22075 return NULL;
22076
22077 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22078 return NULL;
22079
22080 attr = dw2_linkage_name_attr (die, cu);
22081 if (attr == NULL || DW_STRING (attr) == NULL)
22082 return NULL;
22083
22084 /* dwarf2_name had to be already called. */
22085 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22086
22087 /* Strip the base name, keep any leading namespaces/classes. */
22088 base = strrchr (DW_STRING (attr), ':');
22089 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22090 return "";
22091
22092 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
22093 DW_STRING (attr),
22094 &base[-1] - DW_STRING (attr));
22095 }
22096
22097 /* Return the name of the namespace/class that DIE is defined within,
22098 or "" if we can't tell. The caller should not xfree the result.
22099
22100 For example, if we're within the method foo() in the following
22101 code:
22102
22103 namespace N {
22104 class C {
22105 void foo () {
22106 }
22107 };
22108 }
22109
22110 then determine_prefix on foo's die will return "N::C". */
22111
22112 static const char *
22113 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22114 {
22115 struct die_info *parent, *spec_die;
22116 struct dwarf2_cu *spec_cu;
22117 struct type *parent_type;
22118 const char *retval;
22119
22120 if (cu->language != language_cplus
22121 && cu->language != language_fortran && cu->language != language_d
22122 && cu->language != language_rust)
22123 return "";
22124
22125 retval = anonymous_struct_prefix (die, cu);
22126 if (retval)
22127 return retval;
22128
22129 /* We have to be careful in the presence of DW_AT_specification.
22130 For example, with GCC 3.4, given the code
22131
22132 namespace N {
22133 void foo() {
22134 // Definition of N::foo.
22135 }
22136 }
22137
22138 then we'll have a tree of DIEs like this:
22139
22140 1: DW_TAG_compile_unit
22141 2: DW_TAG_namespace // N
22142 3: DW_TAG_subprogram // declaration of N::foo
22143 4: DW_TAG_subprogram // definition of N::foo
22144 DW_AT_specification // refers to die #3
22145
22146 Thus, when processing die #4, we have to pretend that we're in
22147 the context of its DW_AT_specification, namely the contex of die
22148 #3. */
22149 spec_cu = cu;
22150 spec_die = die_specification (die, &spec_cu);
22151 if (spec_die == NULL)
22152 parent = die->parent;
22153 else
22154 {
22155 parent = spec_die->parent;
22156 cu = spec_cu;
22157 }
22158
22159 if (parent == NULL)
22160 return "";
22161 else if (parent->building_fullname)
22162 {
22163 const char *name;
22164 const char *parent_name;
22165
22166 /* It has been seen on RealView 2.2 built binaries,
22167 DW_TAG_template_type_param types actually _defined_ as
22168 children of the parent class:
22169
22170 enum E {};
22171 template class <class Enum> Class{};
22172 Class<enum E> class_e;
22173
22174 1: DW_TAG_class_type (Class)
22175 2: DW_TAG_enumeration_type (E)
22176 3: DW_TAG_enumerator (enum1:0)
22177 3: DW_TAG_enumerator (enum2:1)
22178 ...
22179 2: DW_TAG_template_type_param
22180 DW_AT_type DW_FORM_ref_udata (E)
22181
22182 Besides being broken debug info, it can put GDB into an
22183 infinite loop. Consider:
22184
22185 When we're building the full name for Class<E>, we'll start
22186 at Class, and go look over its template type parameters,
22187 finding E. We'll then try to build the full name of E, and
22188 reach here. We're now trying to build the full name of E,
22189 and look over the parent DIE for containing scope. In the
22190 broken case, if we followed the parent DIE of E, we'd again
22191 find Class, and once again go look at its template type
22192 arguments, etc., etc. Simply don't consider such parent die
22193 as source-level parent of this die (it can't be, the language
22194 doesn't allow it), and break the loop here. */
22195 name = dwarf2_name (die, cu);
22196 parent_name = dwarf2_name (parent, cu);
22197 complaint (&symfile_complaints,
22198 _("template param type '%s' defined within parent '%s'"),
22199 name ? name : "<unknown>",
22200 parent_name ? parent_name : "<unknown>");
22201 return "";
22202 }
22203 else
22204 switch (parent->tag)
22205 {
22206 case DW_TAG_namespace:
22207 parent_type = read_type_die (parent, cu);
22208 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22209 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22210 Work around this problem here. */
22211 if (cu->language == language_cplus
22212 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22213 return "";
22214 /* We give a name to even anonymous namespaces. */
22215 return TYPE_TAG_NAME (parent_type);
22216 case DW_TAG_class_type:
22217 case DW_TAG_interface_type:
22218 case DW_TAG_structure_type:
22219 case DW_TAG_union_type:
22220 case DW_TAG_module:
22221 parent_type = read_type_die (parent, cu);
22222 if (TYPE_TAG_NAME (parent_type) != NULL)
22223 return TYPE_TAG_NAME (parent_type);
22224 else
22225 /* An anonymous structure is only allowed non-static data
22226 members; no typedefs, no member functions, et cetera.
22227 So it does not need a prefix. */
22228 return "";
22229 case DW_TAG_compile_unit:
22230 case DW_TAG_partial_unit:
22231 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22232 if (cu->language == language_cplus
22233 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22234 && die->child != NULL
22235 && (die->tag == DW_TAG_class_type
22236 || die->tag == DW_TAG_structure_type
22237 || die->tag == DW_TAG_union_type))
22238 {
22239 char *name = guess_full_die_structure_name (die, cu);
22240 if (name != NULL)
22241 return name;
22242 }
22243 return "";
22244 case DW_TAG_enumeration_type:
22245 parent_type = read_type_die (parent, cu);
22246 if (TYPE_DECLARED_CLASS (parent_type))
22247 {
22248 if (TYPE_TAG_NAME (parent_type) != NULL)
22249 return TYPE_TAG_NAME (parent_type);
22250 return "";
22251 }
22252 /* Fall through. */
22253 default:
22254 return determine_prefix (parent, cu);
22255 }
22256 }
22257
22258 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22259 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22260 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22261 an obconcat, otherwise allocate storage for the result. The CU argument is
22262 used to determine the language and hence, the appropriate separator. */
22263
22264 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22265
22266 static char *
22267 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22268 int physname, struct dwarf2_cu *cu)
22269 {
22270 const char *lead = "";
22271 const char *sep;
22272
22273 if (suffix == NULL || suffix[0] == '\0'
22274 || prefix == NULL || prefix[0] == '\0')
22275 sep = "";
22276 else if (cu->language == language_d)
22277 {
22278 /* For D, the 'main' function could be defined in any module, but it
22279 should never be prefixed. */
22280 if (strcmp (suffix, "D main") == 0)
22281 {
22282 prefix = "";
22283 sep = "";
22284 }
22285 else
22286 sep = ".";
22287 }
22288 else if (cu->language == language_fortran && physname)
22289 {
22290 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22291 DW_AT_MIPS_linkage_name is preferred and used instead. */
22292
22293 lead = "__";
22294 sep = "_MOD_";
22295 }
22296 else
22297 sep = "::";
22298
22299 if (prefix == NULL)
22300 prefix = "";
22301 if (suffix == NULL)
22302 suffix = "";
22303
22304 if (obs == NULL)
22305 {
22306 char *retval
22307 = ((char *)
22308 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22309
22310 strcpy (retval, lead);
22311 strcat (retval, prefix);
22312 strcat (retval, sep);
22313 strcat (retval, suffix);
22314 return retval;
22315 }
22316 else
22317 {
22318 /* We have an obstack. */
22319 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22320 }
22321 }
22322
22323 /* Return sibling of die, NULL if no sibling. */
22324
22325 static struct die_info *
22326 sibling_die (struct die_info *die)
22327 {
22328 return die->sibling;
22329 }
22330
22331 /* Get name of a die, return NULL if not found. */
22332
22333 static const char *
22334 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22335 struct obstack *obstack)
22336 {
22337 if (name && cu->language == language_cplus)
22338 {
22339 std::string canon_name = cp_canonicalize_string (name);
22340
22341 if (!canon_name.empty ())
22342 {
22343 if (canon_name != name)
22344 name = (const char *) obstack_copy0 (obstack,
22345 canon_name.c_str (),
22346 canon_name.length ());
22347 }
22348 }
22349
22350 return name;
22351 }
22352
22353 /* Get name of a die, return NULL if not found.
22354 Anonymous namespaces are converted to their magic string. */
22355
22356 static const char *
22357 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22358 {
22359 struct attribute *attr;
22360
22361 attr = dwarf2_attr (die, DW_AT_name, cu);
22362 if ((!attr || !DW_STRING (attr))
22363 && die->tag != DW_TAG_namespace
22364 && die->tag != DW_TAG_class_type
22365 && die->tag != DW_TAG_interface_type
22366 && die->tag != DW_TAG_structure_type
22367 && die->tag != DW_TAG_union_type)
22368 return NULL;
22369
22370 switch (die->tag)
22371 {
22372 case DW_TAG_compile_unit:
22373 case DW_TAG_partial_unit:
22374 /* Compilation units have a DW_AT_name that is a filename, not
22375 a source language identifier. */
22376 case DW_TAG_enumeration_type:
22377 case DW_TAG_enumerator:
22378 /* These tags always have simple identifiers already; no need
22379 to canonicalize them. */
22380 return DW_STRING (attr);
22381
22382 case DW_TAG_namespace:
22383 if (attr != NULL && DW_STRING (attr) != NULL)
22384 return DW_STRING (attr);
22385 return CP_ANONYMOUS_NAMESPACE_STR;
22386
22387 case DW_TAG_class_type:
22388 case DW_TAG_interface_type:
22389 case DW_TAG_structure_type:
22390 case DW_TAG_union_type:
22391 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22392 structures or unions. These were of the form "._%d" in GCC 4.1,
22393 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22394 and GCC 4.4. We work around this problem by ignoring these. */
22395 if (attr && DW_STRING (attr)
22396 && (startswith (DW_STRING (attr), "._")
22397 || startswith (DW_STRING (attr), "<anonymous")))
22398 return NULL;
22399
22400 /* GCC might emit a nameless typedef that has a linkage name. See
22401 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22402 if (!attr || DW_STRING (attr) == NULL)
22403 {
22404 char *demangled = NULL;
22405
22406 attr = dw2_linkage_name_attr (die, cu);
22407 if (attr == NULL || DW_STRING (attr) == NULL)
22408 return NULL;
22409
22410 /* Avoid demangling DW_STRING (attr) the second time on a second
22411 call for the same DIE. */
22412 if (!DW_STRING_IS_CANONICAL (attr))
22413 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22414
22415 if (demangled)
22416 {
22417 const char *base;
22418
22419 /* FIXME: we already did this for the partial symbol... */
22420 DW_STRING (attr)
22421 = ((const char *)
22422 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
22423 demangled, strlen (demangled)));
22424 DW_STRING_IS_CANONICAL (attr) = 1;
22425 xfree (demangled);
22426
22427 /* Strip any leading namespaces/classes, keep only the base name.
22428 DW_AT_name for named DIEs does not contain the prefixes. */
22429 base = strrchr (DW_STRING (attr), ':');
22430 if (base && base > DW_STRING (attr) && base[-1] == ':')
22431 return &base[1];
22432 else
22433 return DW_STRING (attr);
22434 }
22435 }
22436 break;
22437
22438 default:
22439 break;
22440 }
22441
22442 if (!DW_STRING_IS_CANONICAL (attr))
22443 {
22444 DW_STRING (attr)
22445 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22446 &cu->objfile->per_bfd->storage_obstack);
22447 DW_STRING_IS_CANONICAL (attr) = 1;
22448 }
22449 return DW_STRING (attr);
22450 }
22451
22452 /* Return the die that this die in an extension of, or NULL if there
22453 is none. *EXT_CU is the CU containing DIE on input, and the CU
22454 containing the return value on output. */
22455
22456 static struct die_info *
22457 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22458 {
22459 struct attribute *attr;
22460
22461 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22462 if (attr == NULL)
22463 return NULL;
22464
22465 return follow_die_ref (die, attr, ext_cu);
22466 }
22467
22468 /* Convert a DIE tag into its string name. */
22469
22470 static const char *
22471 dwarf_tag_name (unsigned tag)
22472 {
22473 const char *name = get_DW_TAG_name (tag);
22474
22475 if (name == NULL)
22476 return "DW_TAG_<unknown>";
22477
22478 return name;
22479 }
22480
22481 /* Convert a DWARF attribute code into its string name. */
22482
22483 static const char *
22484 dwarf_attr_name (unsigned attr)
22485 {
22486 const char *name;
22487
22488 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22489 if (attr == DW_AT_MIPS_fde)
22490 return "DW_AT_MIPS_fde";
22491 #else
22492 if (attr == DW_AT_HP_block_index)
22493 return "DW_AT_HP_block_index";
22494 #endif
22495
22496 name = get_DW_AT_name (attr);
22497
22498 if (name == NULL)
22499 return "DW_AT_<unknown>";
22500
22501 return name;
22502 }
22503
22504 /* Convert a DWARF value form code into its string name. */
22505
22506 static const char *
22507 dwarf_form_name (unsigned form)
22508 {
22509 const char *name = get_DW_FORM_name (form);
22510
22511 if (name == NULL)
22512 return "DW_FORM_<unknown>";
22513
22514 return name;
22515 }
22516
22517 static const char *
22518 dwarf_bool_name (unsigned mybool)
22519 {
22520 if (mybool)
22521 return "TRUE";
22522 else
22523 return "FALSE";
22524 }
22525
22526 /* Convert a DWARF type code into its string name. */
22527
22528 static const char *
22529 dwarf_type_encoding_name (unsigned enc)
22530 {
22531 const char *name = get_DW_ATE_name (enc);
22532
22533 if (name == NULL)
22534 return "DW_ATE_<unknown>";
22535
22536 return name;
22537 }
22538
22539 static void
22540 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22541 {
22542 unsigned int i;
22543
22544 print_spaces (indent, f);
22545 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
22546 dwarf_tag_name (die->tag), die->abbrev,
22547 to_underlying (die->sect_off));
22548
22549 if (die->parent != NULL)
22550 {
22551 print_spaces (indent, f);
22552 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
22553 to_underlying (die->parent->sect_off));
22554 }
22555
22556 print_spaces (indent, f);
22557 fprintf_unfiltered (f, " has children: %s\n",
22558 dwarf_bool_name (die->child != NULL));
22559
22560 print_spaces (indent, f);
22561 fprintf_unfiltered (f, " attributes:\n");
22562
22563 for (i = 0; i < die->num_attrs; ++i)
22564 {
22565 print_spaces (indent, f);
22566 fprintf_unfiltered (f, " %s (%s) ",
22567 dwarf_attr_name (die->attrs[i].name),
22568 dwarf_form_name (die->attrs[i].form));
22569
22570 switch (die->attrs[i].form)
22571 {
22572 case DW_FORM_addr:
22573 case DW_FORM_GNU_addr_index:
22574 fprintf_unfiltered (f, "address: ");
22575 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22576 break;
22577 case DW_FORM_block2:
22578 case DW_FORM_block4:
22579 case DW_FORM_block:
22580 case DW_FORM_block1:
22581 fprintf_unfiltered (f, "block: size %s",
22582 pulongest (DW_BLOCK (&die->attrs[i])->size));
22583 break;
22584 case DW_FORM_exprloc:
22585 fprintf_unfiltered (f, "expression: size %s",
22586 pulongest (DW_BLOCK (&die->attrs[i])->size));
22587 break;
22588 case DW_FORM_data16:
22589 fprintf_unfiltered (f, "constant of 16 bytes");
22590 break;
22591 case DW_FORM_ref_addr:
22592 fprintf_unfiltered (f, "ref address: ");
22593 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22594 break;
22595 case DW_FORM_GNU_ref_alt:
22596 fprintf_unfiltered (f, "alt ref address: ");
22597 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22598 break;
22599 case DW_FORM_ref1:
22600 case DW_FORM_ref2:
22601 case DW_FORM_ref4:
22602 case DW_FORM_ref8:
22603 case DW_FORM_ref_udata:
22604 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22605 (long) (DW_UNSND (&die->attrs[i])));
22606 break;
22607 case DW_FORM_data1:
22608 case DW_FORM_data2:
22609 case DW_FORM_data4:
22610 case DW_FORM_data8:
22611 case DW_FORM_udata:
22612 case DW_FORM_sdata:
22613 fprintf_unfiltered (f, "constant: %s",
22614 pulongest (DW_UNSND (&die->attrs[i])));
22615 break;
22616 case DW_FORM_sec_offset:
22617 fprintf_unfiltered (f, "section offset: %s",
22618 pulongest (DW_UNSND (&die->attrs[i])));
22619 break;
22620 case DW_FORM_ref_sig8:
22621 fprintf_unfiltered (f, "signature: %s",
22622 hex_string (DW_SIGNATURE (&die->attrs[i])));
22623 break;
22624 case DW_FORM_string:
22625 case DW_FORM_strp:
22626 case DW_FORM_line_strp:
22627 case DW_FORM_GNU_str_index:
22628 case DW_FORM_GNU_strp_alt:
22629 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22630 DW_STRING (&die->attrs[i])
22631 ? DW_STRING (&die->attrs[i]) : "",
22632 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22633 break;
22634 case DW_FORM_flag:
22635 if (DW_UNSND (&die->attrs[i]))
22636 fprintf_unfiltered (f, "flag: TRUE");
22637 else
22638 fprintf_unfiltered (f, "flag: FALSE");
22639 break;
22640 case DW_FORM_flag_present:
22641 fprintf_unfiltered (f, "flag: TRUE");
22642 break;
22643 case DW_FORM_indirect:
22644 /* The reader will have reduced the indirect form to
22645 the "base form" so this form should not occur. */
22646 fprintf_unfiltered (f,
22647 "unexpected attribute form: DW_FORM_indirect");
22648 break;
22649 case DW_FORM_implicit_const:
22650 fprintf_unfiltered (f, "constant: %s",
22651 plongest (DW_SND (&die->attrs[i])));
22652 break;
22653 default:
22654 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22655 die->attrs[i].form);
22656 break;
22657 }
22658 fprintf_unfiltered (f, "\n");
22659 }
22660 }
22661
22662 static void
22663 dump_die_for_error (struct die_info *die)
22664 {
22665 dump_die_shallow (gdb_stderr, 0, die);
22666 }
22667
22668 static void
22669 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22670 {
22671 int indent = level * 4;
22672
22673 gdb_assert (die != NULL);
22674
22675 if (level >= max_level)
22676 return;
22677
22678 dump_die_shallow (f, indent, die);
22679
22680 if (die->child != NULL)
22681 {
22682 print_spaces (indent, f);
22683 fprintf_unfiltered (f, " Children:");
22684 if (level + 1 < max_level)
22685 {
22686 fprintf_unfiltered (f, "\n");
22687 dump_die_1 (f, level + 1, max_level, die->child);
22688 }
22689 else
22690 {
22691 fprintf_unfiltered (f,
22692 " [not printed, max nesting level reached]\n");
22693 }
22694 }
22695
22696 if (die->sibling != NULL && level > 0)
22697 {
22698 dump_die_1 (f, level, max_level, die->sibling);
22699 }
22700 }
22701
22702 /* This is called from the pdie macro in gdbinit.in.
22703 It's not static so gcc will keep a copy callable from gdb. */
22704
22705 void
22706 dump_die (struct die_info *die, int max_level)
22707 {
22708 dump_die_1 (gdb_stdlog, 0, max_level, die);
22709 }
22710
22711 static void
22712 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22713 {
22714 void **slot;
22715
22716 slot = htab_find_slot_with_hash (cu->die_hash, die,
22717 to_underlying (die->sect_off),
22718 INSERT);
22719
22720 *slot = die;
22721 }
22722
22723 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22724 required kind. */
22725
22726 static sect_offset
22727 dwarf2_get_ref_die_offset (const struct attribute *attr)
22728 {
22729 if (attr_form_is_ref (attr))
22730 return (sect_offset) DW_UNSND (attr);
22731
22732 complaint (&symfile_complaints,
22733 _("unsupported die ref attribute form: '%s'"),
22734 dwarf_form_name (attr->form));
22735 return {};
22736 }
22737
22738 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22739 * the value held by the attribute is not constant. */
22740
22741 static LONGEST
22742 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22743 {
22744 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22745 return DW_SND (attr);
22746 else if (attr->form == DW_FORM_udata
22747 || attr->form == DW_FORM_data1
22748 || attr->form == DW_FORM_data2
22749 || attr->form == DW_FORM_data4
22750 || attr->form == DW_FORM_data8)
22751 return DW_UNSND (attr);
22752 else
22753 {
22754 /* For DW_FORM_data16 see attr_form_is_constant. */
22755 complaint (&symfile_complaints,
22756 _("Attribute value is not a constant (%s)"),
22757 dwarf_form_name (attr->form));
22758 return default_value;
22759 }
22760 }
22761
22762 /* Follow reference or signature attribute ATTR of SRC_DIE.
22763 On entry *REF_CU is the CU of SRC_DIE.
22764 On exit *REF_CU is the CU of the result. */
22765
22766 static struct die_info *
22767 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22768 struct dwarf2_cu **ref_cu)
22769 {
22770 struct die_info *die;
22771
22772 if (attr_form_is_ref (attr))
22773 die = follow_die_ref (src_die, attr, ref_cu);
22774 else if (attr->form == DW_FORM_ref_sig8)
22775 die = follow_die_sig (src_die, attr, ref_cu);
22776 else
22777 {
22778 dump_die_for_error (src_die);
22779 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22780 objfile_name ((*ref_cu)->objfile));
22781 }
22782
22783 return die;
22784 }
22785
22786 /* Follow reference OFFSET.
22787 On entry *REF_CU is the CU of the source die referencing OFFSET.
22788 On exit *REF_CU is the CU of the result.
22789 Returns NULL if OFFSET is invalid. */
22790
22791 static struct die_info *
22792 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22793 struct dwarf2_cu **ref_cu)
22794 {
22795 struct die_info temp_die;
22796 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22797
22798 gdb_assert (cu->per_cu != NULL);
22799
22800 target_cu = cu;
22801
22802 if (cu->per_cu->is_debug_types)
22803 {
22804 /* .debug_types CUs cannot reference anything outside their CU.
22805 If they need to, they have to reference a signatured type via
22806 DW_FORM_ref_sig8. */
22807 if (!offset_in_cu_p (&cu->header, sect_off))
22808 return NULL;
22809 }
22810 else if (offset_in_dwz != cu->per_cu->is_dwz
22811 || !offset_in_cu_p (&cu->header, sect_off))
22812 {
22813 struct dwarf2_per_cu_data *per_cu;
22814
22815 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22816 cu->objfile);
22817
22818 /* If necessary, add it to the queue and load its DIEs. */
22819 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22820 load_full_comp_unit (per_cu, cu->language);
22821
22822 target_cu = per_cu->cu;
22823 }
22824 else if (cu->dies == NULL)
22825 {
22826 /* We're loading full DIEs during partial symbol reading. */
22827 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22828 load_full_comp_unit (cu->per_cu, language_minimal);
22829 }
22830
22831 *ref_cu = target_cu;
22832 temp_die.sect_off = sect_off;
22833 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22834 &temp_die,
22835 to_underlying (sect_off));
22836 }
22837
22838 /* Follow reference attribute ATTR of SRC_DIE.
22839 On entry *REF_CU is the CU of SRC_DIE.
22840 On exit *REF_CU is the CU of the result. */
22841
22842 static struct die_info *
22843 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22844 struct dwarf2_cu **ref_cu)
22845 {
22846 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22847 struct dwarf2_cu *cu = *ref_cu;
22848 struct die_info *die;
22849
22850 die = follow_die_offset (sect_off,
22851 (attr->form == DW_FORM_GNU_ref_alt
22852 || cu->per_cu->is_dwz),
22853 ref_cu);
22854 if (!die)
22855 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
22856 "at 0x%x [in module %s]"),
22857 to_underlying (sect_off), to_underlying (src_die->sect_off),
22858 objfile_name (cu->objfile));
22859
22860 return die;
22861 }
22862
22863 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22864 Returned value is intended for DW_OP_call*. Returned
22865 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
22866
22867 struct dwarf2_locexpr_baton
22868 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22869 struct dwarf2_per_cu_data *per_cu,
22870 CORE_ADDR (*get_frame_pc) (void *baton),
22871 void *baton)
22872 {
22873 struct dwarf2_cu *cu;
22874 struct die_info *die;
22875 struct attribute *attr;
22876 struct dwarf2_locexpr_baton retval;
22877
22878 dw2_setup (per_cu->objfile);
22879
22880 if (per_cu->cu == NULL)
22881 load_cu (per_cu);
22882 cu = per_cu->cu;
22883 if (cu == NULL)
22884 {
22885 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22886 Instead just throw an error, not much else we can do. */
22887 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
22888 to_underlying (sect_off), objfile_name (per_cu->objfile));
22889 }
22890
22891 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22892 if (!die)
22893 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
22894 to_underlying (sect_off), objfile_name (per_cu->objfile));
22895
22896 attr = dwarf2_attr (die, DW_AT_location, cu);
22897 if (!attr)
22898 {
22899 /* DWARF: "If there is no such attribute, then there is no effect.".
22900 DATA is ignored if SIZE is 0. */
22901
22902 retval.data = NULL;
22903 retval.size = 0;
22904 }
22905 else if (attr_form_is_section_offset (attr))
22906 {
22907 struct dwarf2_loclist_baton loclist_baton;
22908 CORE_ADDR pc = (*get_frame_pc) (baton);
22909 size_t size;
22910
22911 fill_in_loclist_baton (cu, &loclist_baton, attr);
22912
22913 retval.data = dwarf2_find_location_expression (&loclist_baton,
22914 &size, pc);
22915 retval.size = size;
22916 }
22917 else
22918 {
22919 if (!attr_form_is_block (attr))
22920 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
22921 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22922 to_underlying (sect_off), objfile_name (per_cu->objfile));
22923
22924 retval.data = DW_BLOCK (attr)->data;
22925 retval.size = DW_BLOCK (attr)->size;
22926 }
22927 retval.per_cu = cu->per_cu;
22928
22929 age_cached_comp_units ();
22930
22931 return retval;
22932 }
22933
22934 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22935 offset. */
22936
22937 struct dwarf2_locexpr_baton
22938 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22939 struct dwarf2_per_cu_data *per_cu,
22940 CORE_ADDR (*get_frame_pc) (void *baton),
22941 void *baton)
22942 {
22943 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22944
22945 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22946 }
22947
22948 /* Write a constant of a given type as target-ordered bytes into
22949 OBSTACK. */
22950
22951 static const gdb_byte *
22952 write_constant_as_bytes (struct obstack *obstack,
22953 enum bfd_endian byte_order,
22954 struct type *type,
22955 ULONGEST value,
22956 LONGEST *len)
22957 {
22958 gdb_byte *result;
22959
22960 *len = TYPE_LENGTH (type);
22961 result = (gdb_byte *) obstack_alloc (obstack, *len);
22962 store_unsigned_integer (result, *len, byte_order, value);
22963
22964 return result;
22965 }
22966
22967 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22968 pointer to the constant bytes and set LEN to the length of the
22969 data. If memory is needed, allocate it on OBSTACK. If the DIE
22970 does not have a DW_AT_const_value, return NULL. */
22971
22972 const gdb_byte *
22973 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22974 struct dwarf2_per_cu_data *per_cu,
22975 struct obstack *obstack,
22976 LONGEST *len)
22977 {
22978 struct dwarf2_cu *cu;
22979 struct die_info *die;
22980 struct attribute *attr;
22981 const gdb_byte *result = NULL;
22982 struct type *type;
22983 LONGEST value;
22984 enum bfd_endian byte_order;
22985
22986 dw2_setup (per_cu->objfile);
22987
22988 if (per_cu->cu == NULL)
22989 load_cu (per_cu);
22990 cu = per_cu->cu;
22991 if (cu == NULL)
22992 {
22993 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22994 Instead just throw an error, not much else we can do. */
22995 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
22996 to_underlying (sect_off), objfile_name (per_cu->objfile));
22997 }
22998
22999 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23000 if (!die)
23001 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23002 to_underlying (sect_off), objfile_name (per_cu->objfile));
23003
23004
23005 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23006 if (attr == NULL)
23007 return NULL;
23008
23009 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
23010 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23011
23012 switch (attr->form)
23013 {
23014 case DW_FORM_addr:
23015 case DW_FORM_GNU_addr_index:
23016 {
23017 gdb_byte *tem;
23018
23019 *len = cu->header.addr_size;
23020 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23021 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23022 result = tem;
23023 }
23024 break;
23025 case DW_FORM_string:
23026 case DW_FORM_strp:
23027 case DW_FORM_GNU_str_index:
23028 case DW_FORM_GNU_strp_alt:
23029 /* DW_STRING is already allocated on the objfile obstack, point
23030 directly to it. */
23031 result = (const gdb_byte *) DW_STRING (attr);
23032 *len = strlen (DW_STRING (attr));
23033 break;
23034 case DW_FORM_block1:
23035 case DW_FORM_block2:
23036 case DW_FORM_block4:
23037 case DW_FORM_block:
23038 case DW_FORM_exprloc:
23039 case DW_FORM_data16:
23040 result = DW_BLOCK (attr)->data;
23041 *len = DW_BLOCK (attr)->size;
23042 break;
23043
23044 /* The DW_AT_const_value attributes are supposed to carry the
23045 symbol's value "represented as it would be on the target
23046 architecture." By the time we get here, it's already been
23047 converted to host endianness, so we just need to sign- or
23048 zero-extend it as appropriate. */
23049 case DW_FORM_data1:
23050 type = die_type (die, cu);
23051 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23052 if (result == NULL)
23053 result = write_constant_as_bytes (obstack, byte_order,
23054 type, value, len);
23055 break;
23056 case DW_FORM_data2:
23057 type = die_type (die, cu);
23058 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23059 if (result == NULL)
23060 result = write_constant_as_bytes (obstack, byte_order,
23061 type, value, len);
23062 break;
23063 case DW_FORM_data4:
23064 type = die_type (die, cu);
23065 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23066 if (result == NULL)
23067 result = write_constant_as_bytes (obstack, byte_order,
23068 type, value, len);
23069 break;
23070 case DW_FORM_data8:
23071 type = die_type (die, cu);
23072 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23073 if (result == NULL)
23074 result = write_constant_as_bytes (obstack, byte_order,
23075 type, value, len);
23076 break;
23077
23078 case DW_FORM_sdata:
23079 case DW_FORM_implicit_const:
23080 type = die_type (die, cu);
23081 result = write_constant_as_bytes (obstack, byte_order,
23082 type, DW_SND (attr), len);
23083 break;
23084
23085 case DW_FORM_udata:
23086 type = die_type (die, cu);
23087 result = write_constant_as_bytes (obstack, byte_order,
23088 type, DW_UNSND (attr), len);
23089 break;
23090
23091 default:
23092 complaint (&symfile_complaints,
23093 _("unsupported const value attribute form: '%s'"),
23094 dwarf_form_name (attr->form));
23095 break;
23096 }
23097
23098 return result;
23099 }
23100
23101 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23102 valid type for this die is found. */
23103
23104 struct type *
23105 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23106 struct dwarf2_per_cu_data *per_cu)
23107 {
23108 struct dwarf2_cu *cu;
23109 struct die_info *die;
23110
23111 dw2_setup (per_cu->objfile);
23112
23113 if (per_cu->cu == NULL)
23114 load_cu (per_cu);
23115 cu = per_cu->cu;
23116 if (!cu)
23117 return NULL;
23118
23119 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23120 if (!die)
23121 return NULL;
23122
23123 return die_type (die, cu);
23124 }
23125
23126 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23127 PER_CU. */
23128
23129 struct type *
23130 dwarf2_get_die_type (cu_offset die_offset,
23131 struct dwarf2_per_cu_data *per_cu)
23132 {
23133 dw2_setup (per_cu->objfile);
23134
23135 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23136 return get_die_type_at_offset (die_offset_sect, per_cu);
23137 }
23138
23139 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23140 On entry *REF_CU is the CU of SRC_DIE.
23141 On exit *REF_CU is the CU of the result.
23142 Returns NULL if the referenced DIE isn't found. */
23143
23144 static struct die_info *
23145 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23146 struct dwarf2_cu **ref_cu)
23147 {
23148 struct die_info temp_die;
23149 struct dwarf2_cu *sig_cu;
23150 struct die_info *die;
23151
23152 /* While it might be nice to assert sig_type->type == NULL here,
23153 we can get here for DW_AT_imported_declaration where we need
23154 the DIE not the type. */
23155
23156 /* If necessary, add it to the queue and load its DIEs. */
23157
23158 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23159 read_signatured_type (sig_type);
23160
23161 sig_cu = sig_type->per_cu.cu;
23162 gdb_assert (sig_cu != NULL);
23163 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23164 temp_die.sect_off = sig_type->type_offset_in_section;
23165 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23166 to_underlying (temp_die.sect_off));
23167 if (die)
23168 {
23169 /* For .gdb_index version 7 keep track of included TUs.
23170 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23171 if (dwarf2_per_objfile->index_table != NULL
23172 && dwarf2_per_objfile->index_table->version <= 7)
23173 {
23174 VEC_safe_push (dwarf2_per_cu_ptr,
23175 (*ref_cu)->per_cu->imported_symtabs,
23176 sig_cu->per_cu);
23177 }
23178
23179 *ref_cu = sig_cu;
23180 return die;
23181 }
23182
23183 return NULL;
23184 }
23185
23186 /* Follow signatured type referenced by ATTR in SRC_DIE.
23187 On entry *REF_CU is the CU of SRC_DIE.
23188 On exit *REF_CU is the CU of the result.
23189 The result is the DIE of the type.
23190 If the referenced type cannot be found an error is thrown. */
23191
23192 static struct die_info *
23193 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23194 struct dwarf2_cu **ref_cu)
23195 {
23196 ULONGEST signature = DW_SIGNATURE (attr);
23197 struct signatured_type *sig_type;
23198 struct die_info *die;
23199
23200 gdb_assert (attr->form == DW_FORM_ref_sig8);
23201
23202 sig_type = lookup_signatured_type (*ref_cu, signature);
23203 /* sig_type will be NULL if the signatured type is missing from
23204 the debug info. */
23205 if (sig_type == NULL)
23206 {
23207 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23208 " from DIE at 0x%x [in module %s]"),
23209 hex_string (signature), to_underlying (src_die->sect_off),
23210 objfile_name ((*ref_cu)->objfile));
23211 }
23212
23213 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23214 if (die == NULL)
23215 {
23216 dump_die_for_error (src_die);
23217 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23218 " from DIE at 0x%x [in module %s]"),
23219 hex_string (signature), to_underlying (src_die->sect_off),
23220 objfile_name ((*ref_cu)->objfile));
23221 }
23222
23223 return die;
23224 }
23225
23226 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23227 reading in and processing the type unit if necessary. */
23228
23229 static struct type *
23230 get_signatured_type (struct die_info *die, ULONGEST signature,
23231 struct dwarf2_cu *cu)
23232 {
23233 struct signatured_type *sig_type;
23234 struct dwarf2_cu *type_cu;
23235 struct die_info *type_die;
23236 struct type *type;
23237
23238 sig_type = lookup_signatured_type (cu, signature);
23239 /* sig_type will be NULL if the signatured type is missing from
23240 the debug info. */
23241 if (sig_type == NULL)
23242 {
23243 complaint (&symfile_complaints,
23244 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23245 " from DIE at 0x%x [in module %s]"),
23246 hex_string (signature), to_underlying (die->sect_off),
23247 objfile_name (dwarf2_per_objfile->objfile));
23248 return build_error_marker_type (cu, die);
23249 }
23250
23251 /* If we already know the type we're done. */
23252 if (sig_type->type != NULL)
23253 return sig_type->type;
23254
23255 type_cu = cu;
23256 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23257 if (type_die != NULL)
23258 {
23259 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23260 is created. This is important, for example, because for c++ classes
23261 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23262 type = read_type_die (type_die, type_cu);
23263 if (type == NULL)
23264 {
23265 complaint (&symfile_complaints,
23266 _("Dwarf Error: Cannot build signatured type %s"
23267 " referenced from DIE at 0x%x [in module %s]"),
23268 hex_string (signature), to_underlying (die->sect_off),
23269 objfile_name (dwarf2_per_objfile->objfile));
23270 type = build_error_marker_type (cu, die);
23271 }
23272 }
23273 else
23274 {
23275 complaint (&symfile_complaints,
23276 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23277 " from DIE at 0x%x [in module %s]"),
23278 hex_string (signature), to_underlying (die->sect_off),
23279 objfile_name (dwarf2_per_objfile->objfile));
23280 type = build_error_marker_type (cu, die);
23281 }
23282 sig_type->type = type;
23283
23284 return type;
23285 }
23286
23287 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23288 reading in and processing the type unit if necessary. */
23289
23290 static struct type *
23291 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23292 struct dwarf2_cu *cu) /* ARI: editCase function */
23293 {
23294 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23295 if (attr_form_is_ref (attr))
23296 {
23297 struct dwarf2_cu *type_cu = cu;
23298 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23299
23300 return read_type_die (type_die, type_cu);
23301 }
23302 else if (attr->form == DW_FORM_ref_sig8)
23303 {
23304 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23305 }
23306 else
23307 {
23308 complaint (&symfile_complaints,
23309 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23310 " at 0x%x [in module %s]"),
23311 dwarf_form_name (attr->form), to_underlying (die->sect_off),
23312 objfile_name (dwarf2_per_objfile->objfile));
23313 return build_error_marker_type (cu, die);
23314 }
23315 }
23316
23317 /* Load the DIEs associated with type unit PER_CU into memory. */
23318
23319 static void
23320 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23321 {
23322 struct signatured_type *sig_type;
23323
23324 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23325 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23326
23327 /* We have the per_cu, but we need the signatured_type.
23328 Fortunately this is an easy translation. */
23329 gdb_assert (per_cu->is_debug_types);
23330 sig_type = (struct signatured_type *) per_cu;
23331
23332 gdb_assert (per_cu->cu == NULL);
23333
23334 read_signatured_type (sig_type);
23335
23336 gdb_assert (per_cu->cu != NULL);
23337 }
23338
23339 /* die_reader_func for read_signatured_type.
23340 This is identical to load_full_comp_unit_reader,
23341 but is kept separate for now. */
23342
23343 static void
23344 read_signatured_type_reader (const struct die_reader_specs *reader,
23345 const gdb_byte *info_ptr,
23346 struct die_info *comp_unit_die,
23347 int has_children,
23348 void *data)
23349 {
23350 struct dwarf2_cu *cu = reader->cu;
23351
23352 gdb_assert (cu->die_hash == NULL);
23353 cu->die_hash =
23354 htab_create_alloc_ex (cu->header.length / 12,
23355 die_hash,
23356 die_eq,
23357 NULL,
23358 &cu->comp_unit_obstack,
23359 hashtab_obstack_allocate,
23360 dummy_obstack_deallocate);
23361
23362 if (has_children)
23363 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23364 &info_ptr, comp_unit_die);
23365 cu->dies = comp_unit_die;
23366 /* comp_unit_die is not stored in die_hash, no need. */
23367
23368 /* We try not to read any attributes in this function, because not
23369 all CUs needed for references have been loaded yet, and symbol
23370 table processing isn't initialized. But we have to set the CU language,
23371 or we won't be able to build types correctly.
23372 Similarly, if we do not read the producer, we can not apply
23373 producer-specific interpretation. */
23374 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23375 }
23376
23377 /* Read in a signatured type and build its CU and DIEs.
23378 If the type is a stub for the real type in a DWO file,
23379 read in the real type from the DWO file as well. */
23380
23381 static void
23382 read_signatured_type (struct signatured_type *sig_type)
23383 {
23384 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23385
23386 gdb_assert (per_cu->is_debug_types);
23387 gdb_assert (per_cu->cu == NULL);
23388
23389 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23390 read_signatured_type_reader, NULL);
23391 sig_type->per_cu.tu_read = 1;
23392 }
23393
23394 /* Decode simple location descriptions.
23395 Given a pointer to a dwarf block that defines a location, compute
23396 the location and return the value.
23397
23398 NOTE drow/2003-11-18: This function is called in two situations
23399 now: for the address of static or global variables (partial symbols
23400 only) and for offsets into structures which are expected to be
23401 (more or less) constant. The partial symbol case should go away,
23402 and only the constant case should remain. That will let this
23403 function complain more accurately. A few special modes are allowed
23404 without complaint for global variables (for instance, global
23405 register values and thread-local values).
23406
23407 A location description containing no operations indicates that the
23408 object is optimized out. The return value is 0 for that case.
23409 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23410 callers will only want a very basic result and this can become a
23411 complaint.
23412
23413 Note that stack[0] is unused except as a default error return. */
23414
23415 static CORE_ADDR
23416 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23417 {
23418 struct objfile *objfile = cu->objfile;
23419 size_t i;
23420 size_t size = blk->size;
23421 const gdb_byte *data = blk->data;
23422 CORE_ADDR stack[64];
23423 int stacki;
23424 unsigned int bytes_read, unsnd;
23425 gdb_byte op;
23426
23427 i = 0;
23428 stacki = 0;
23429 stack[stacki] = 0;
23430 stack[++stacki] = 0;
23431
23432 while (i < size)
23433 {
23434 op = data[i++];
23435 switch (op)
23436 {
23437 case DW_OP_lit0:
23438 case DW_OP_lit1:
23439 case DW_OP_lit2:
23440 case DW_OP_lit3:
23441 case DW_OP_lit4:
23442 case DW_OP_lit5:
23443 case DW_OP_lit6:
23444 case DW_OP_lit7:
23445 case DW_OP_lit8:
23446 case DW_OP_lit9:
23447 case DW_OP_lit10:
23448 case DW_OP_lit11:
23449 case DW_OP_lit12:
23450 case DW_OP_lit13:
23451 case DW_OP_lit14:
23452 case DW_OP_lit15:
23453 case DW_OP_lit16:
23454 case DW_OP_lit17:
23455 case DW_OP_lit18:
23456 case DW_OP_lit19:
23457 case DW_OP_lit20:
23458 case DW_OP_lit21:
23459 case DW_OP_lit22:
23460 case DW_OP_lit23:
23461 case DW_OP_lit24:
23462 case DW_OP_lit25:
23463 case DW_OP_lit26:
23464 case DW_OP_lit27:
23465 case DW_OP_lit28:
23466 case DW_OP_lit29:
23467 case DW_OP_lit30:
23468 case DW_OP_lit31:
23469 stack[++stacki] = op - DW_OP_lit0;
23470 break;
23471
23472 case DW_OP_reg0:
23473 case DW_OP_reg1:
23474 case DW_OP_reg2:
23475 case DW_OP_reg3:
23476 case DW_OP_reg4:
23477 case DW_OP_reg5:
23478 case DW_OP_reg6:
23479 case DW_OP_reg7:
23480 case DW_OP_reg8:
23481 case DW_OP_reg9:
23482 case DW_OP_reg10:
23483 case DW_OP_reg11:
23484 case DW_OP_reg12:
23485 case DW_OP_reg13:
23486 case DW_OP_reg14:
23487 case DW_OP_reg15:
23488 case DW_OP_reg16:
23489 case DW_OP_reg17:
23490 case DW_OP_reg18:
23491 case DW_OP_reg19:
23492 case DW_OP_reg20:
23493 case DW_OP_reg21:
23494 case DW_OP_reg22:
23495 case DW_OP_reg23:
23496 case DW_OP_reg24:
23497 case DW_OP_reg25:
23498 case DW_OP_reg26:
23499 case DW_OP_reg27:
23500 case DW_OP_reg28:
23501 case DW_OP_reg29:
23502 case DW_OP_reg30:
23503 case DW_OP_reg31:
23504 stack[++stacki] = op - DW_OP_reg0;
23505 if (i < size)
23506 dwarf2_complex_location_expr_complaint ();
23507 break;
23508
23509 case DW_OP_regx:
23510 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23511 i += bytes_read;
23512 stack[++stacki] = unsnd;
23513 if (i < size)
23514 dwarf2_complex_location_expr_complaint ();
23515 break;
23516
23517 case DW_OP_addr:
23518 stack[++stacki] = read_address (objfile->obfd, &data[i],
23519 cu, &bytes_read);
23520 i += bytes_read;
23521 break;
23522
23523 case DW_OP_const1u:
23524 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23525 i += 1;
23526 break;
23527
23528 case DW_OP_const1s:
23529 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23530 i += 1;
23531 break;
23532
23533 case DW_OP_const2u:
23534 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23535 i += 2;
23536 break;
23537
23538 case DW_OP_const2s:
23539 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23540 i += 2;
23541 break;
23542
23543 case DW_OP_const4u:
23544 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23545 i += 4;
23546 break;
23547
23548 case DW_OP_const4s:
23549 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23550 i += 4;
23551 break;
23552
23553 case DW_OP_const8u:
23554 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23555 i += 8;
23556 break;
23557
23558 case DW_OP_constu:
23559 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23560 &bytes_read);
23561 i += bytes_read;
23562 break;
23563
23564 case DW_OP_consts:
23565 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23566 i += bytes_read;
23567 break;
23568
23569 case DW_OP_dup:
23570 stack[stacki + 1] = stack[stacki];
23571 stacki++;
23572 break;
23573
23574 case DW_OP_plus:
23575 stack[stacki - 1] += stack[stacki];
23576 stacki--;
23577 break;
23578
23579 case DW_OP_plus_uconst:
23580 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23581 &bytes_read);
23582 i += bytes_read;
23583 break;
23584
23585 case DW_OP_minus:
23586 stack[stacki - 1] -= stack[stacki];
23587 stacki--;
23588 break;
23589
23590 case DW_OP_deref:
23591 /* If we're not the last op, then we definitely can't encode
23592 this using GDB's address_class enum. This is valid for partial
23593 global symbols, although the variable's address will be bogus
23594 in the psymtab. */
23595 if (i < size)
23596 dwarf2_complex_location_expr_complaint ();
23597 break;
23598
23599 case DW_OP_GNU_push_tls_address:
23600 case DW_OP_form_tls_address:
23601 /* The top of the stack has the offset from the beginning
23602 of the thread control block at which the variable is located. */
23603 /* Nothing should follow this operator, so the top of stack would
23604 be returned. */
23605 /* This is valid for partial global symbols, but the variable's
23606 address will be bogus in the psymtab. Make it always at least
23607 non-zero to not look as a variable garbage collected by linker
23608 which have DW_OP_addr 0. */
23609 if (i < size)
23610 dwarf2_complex_location_expr_complaint ();
23611 stack[stacki]++;
23612 break;
23613
23614 case DW_OP_GNU_uninit:
23615 break;
23616
23617 case DW_OP_GNU_addr_index:
23618 case DW_OP_GNU_const_index:
23619 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23620 &bytes_read);
23621 i += bytes_read;
23622 break;
23623
23624 default:
23625 {
23626 const char *name = get_DW_OP_name (op);
23627
23628 if (name)
23629 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23630 name);
23631 else
23632 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23633 op);
23634 }
23635
23636 return (stack[stacki]);
23637 }
23638
23639 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23640 outside of the allocated space. Also enforce minimum>0. */
23641 if (stacki >= ARRAY_SIZE (stack) - 1)
23642 {
23643 complaint (&symfile_complaints,
23644 _("location description stack overflow"));
23645 return 0;
23646 }
23647
23648 if (stacki <= 0)
23649 {
23650 complaint (&symfile_complaints,
23651 _("location description stack underflow"));
23652 return 0;
23653 }
23654 }
23655 return (stack[stacki]);
23656 }
23657
23658 /* memory allocation interface */
23659
23660 static struct dwarf_block *
23661 dwarf_alloc_block (struct dwarf2_cu *cu)
23662 {
23663 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23664 }
23665
23666 static struct die_info *
23667 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23668 {
23669 struct die_info *die;
23670 size_t size = sizeof (struct die_info);
23671
23672 if (num_attrs > 1)
23673 size += (num_attrs - 1) * sizeof (struct attribute);
23674
23675 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23676 memset (die, 0, sizeof (struct die_info));
23677 return (die);
23678 }
23679
23680 \f
23681 /* Macro support. */
23682
23683 /* Return file name relative to the compilation directory of file number I in
23684 *LH's file name table. The result is allocated using xmalloc; the caller is
23685 responsible for freeing it. */
23686
23687 static char *
23688 file_file_name (int file, struct line_header *lh)
23689 {
23690 /* Is the file number a valid index into the line header's file name
23691 table? Remember that file numbers start with one, not zero. */
23692 if (1 <= file && file <= lh->file_names.size ())
23693 {
23694 const file_entry &fe = lh->file_names[file - 1];
23695
23696 if (!IS_ABSOLUTE_PATH (fe.name))
23697 {
23698 const char *dir = fe.include_dir (lh);
23699 if (dir != NULL)
23700 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23701 }
23702 return xstrdup (fe.name);
23703 }
23704 else
23705 {
23706 /* The compiler produced a bogus file number. We can at least
23707 record the macro definitions made in the file, even if we
23708 won't be able to find the file by name. */
23709 char fake_name[80];
23710
23711 xsnprintf (fake_name, sizeof (fake_name),
23712 "<bad macro file number %d>", file);
23713
23714 complaint (&symfile_complaints,
23715 _("bad file number in macro information (%d)"),
23716 file);
23717
23718 return xstrdup (fake_name);
23719 }
23720 }
23721
23722 /* Return the full name of file number I in *LH's file name table.
23723 Use COMP_DIR as the name of the current directory of the
23724 compilation. The result is allocated using xmalloc; the caller is
23725 responsible for freeing it. */
23726 static char *
23727 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23728 {
23729 /* Is the file number a valid index into the line header's file name
23730 table? Remember that file numbers start with one, not zero. */
23731 if (1 <= file && file <= lh->file_names.size ())
23732 {
23733 char *relative = file_file_name (file, lh);
23734
23735 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23736 return relative;
23737 return reconcat (relative, comp_dir, SLASH_STRING,
23738 relative, (char *) NULL);
23739 }
23740 else
23741 return file_file_name (file, lh);
23742 }
23743
23744
23745 static struct macro_source_file *
23746 macro_start_file (int file, int line,
23747 struct macro_source_file *current_file,
23748 struct line_header *lh)
23749 {
23750 /* File name relative to the compilation directory of this source file. */
23751 char *file_name = file_file_name (file, lh);
23752
23753 if (! current_file)
23754 {
23755 /* Note: We don't create a macro table for this compilation unit
23756 at all until we actually get a filename. */
23757 struct macro_table *macro_table = get_macro_table ();
23758
23759 /* If we have no current file, then this must be the start_file
23760 directive for the compilation unit's main source file. */
23761 current_file = macro_set_main (macro_table, file_name);
23762 macro_define_special (macro_table);
23763 }
23764 else
23765 current_file = macro_include (current_file, line, file_name);
23766
23767 xfree (file_name);
23768
23769 return current_file;
23770 }
23771
23772 static const char *
23773 consume_improper_spaces (const char *p, const char *body)
23774 {
23775 if (*p == ' ')
23776 {
23777 complaint (&symfile_complaints,
23778 _("macro definition contains spaces "
23779 "in formal argument list:\n`%s'"),
23780 body);
23781
23782 while (*p == ' ')
23783 p++;
23784 }
23785
23786 return p;
23787 }
23788
23789
23790 static void
23791 parse_macro_definition (struct macro_source_file *file, int line,
23792 const char *body)
23793 {
23794 const char *p;
23795
23796 /* The body string takes one of two forms. For object-like macro
23797 definitions, it should be:
23798
23799 <macro name> " " <definition>
23800
23801 For function-like macro definitions, it should be:
23802
23803 <macro name> "() " <definition>
23804 or
23805 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23806
23807 Spaces may appear only where explicitly indicated, and in the
23808 <definition>.
23809
23810 The Dwarf 2 spec says that an object-like macro's name is always
23811 followed by a space, but versions of GCC around March 2002 omit
23812 the space when the macro's definition is the empty string.
23813
23814 The Dwarf 2 spec says that there should be no spaces between the
23815 formal arguments in a function-like macro's formal argument list,
23816 but versions of GCC around March 2002 include spaces after the
23817 commas. */
23818
23819
23820 /* Find the extent of the macro name. The macro name is terminated
23821 by either a space or null character (for an object-like macro) or
23822 an opening paren (for a function-like macro). */
23823 for (p = body; *p; p++)
23824 if (*p == ' ' || *p == '(')
23825 break;
23826
23827 if (*p == ' ' || *p == '\0')
23828 {
23829 /* It's an object-like macro. */
23830 int name_len = p - body;
23831 char *name = savestring (body, name_len);
23832 const char *replacement;
23833
23834 if (*p == ' ')
23835 replacement = body + name_len + 1;
23836 else
23837 {
23838 dwarf2_macro_malformed_definition_complaint (body);
23839 replacement = body + name_len;
23840 }
23841
23842 macro_define_object (file, line, name, replacement);
23843
23844 xfree (name);
23845 }
23846 else if (*p == '(')
23847 {
23848 /* It's a function-like macro. */
23849 char *name = savestring (body, p - body);
23850 int argc = 0;
23851 int argv_size = 1;
23852 char **argv = XNEWVEC (char *, argv_size);
23853
23854 p++;
23855
23856 p = consume_improper_spaces (p, body);
23857
23858 /* Parse the formal argument list. */
23859 while (*p && *p != ')')
23860 {
23861 /* Find the extent of the current argument name. */
23862 const char *arg_start = p;
23863
23864 while (*p && *p != ',' && *p != ')' && *p != ' ')
23865 p++;
23866
23867 if (! *p || p == arg_start)
23868 dwarf2_macro_malformed_definition_complaint (body);
23869 else
23870 {
23871 /* Make sure argv has room for the new argument. */
23872 if (argc >= argv_size)
23873 {
23874 argv_size *= 2;
23875 argv = XRESIZEVEC (char *, argv, argv_size);
23876 }
23877
23878 argv[argc++] = savestring (arg_start, p - arg_start);
23879 }
23880
23881 p = consume_improper_spaces (p, body);
23882
23883 /* Consume the comma, if present. */
23884 if (*p == ',')
23885 {
23886 p++;
23887
23888 p = consume_improper_spaces (p, body);
23889 }
23890 }
23891
23892 if (*p == ')')
23893 {
23894 p++;
23895
23896 if (*p == ' ')
23897 /* Perfectly formed definition, no complaints. */
23898 macro_define_function (file, line, name,
23899 argc, (const char **) argv,
23900 p + 1);
23901 else if (*p == '\0')
23902 {
23903 /* Complain, but do define it. */
23904 dwarf2_macro_malformed_definition_complaint (body);
23905 macro_define_function (file, line, name,
23906 argc, (const char **) argv,
23907 p);
23908 }
23909 else
23910 /* Just complain. */
23911 dwarf2_macro_malformed_definition_complaint (body);
23912 }
23913 else
23914 /* Just complain. */
23915 dwarf2_macro_malformed_definition_complaint (body);
23916
23917 xfree (name);
23918 {
23919 int i;
23920
23921 for (i = 0; i < argc; i++)
23922 xfree (argv[i]);
23923 }
23924 xfree (argv);
23925 }
23926 else
23927 dwarf2_macro_malformed_definition_complaint (body);
23928 }
23929
23930 /* Skip some bytes from BYTES according to the form given in FORM.
23931 Returns the new pointer. */
23932
23933 static const gdb_byte *
23934 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23935 enum dwarf_form form,
23936 unsigned int offset_size,
23937 struct dwarf2_section_info *section)
23938 {
23939 unsigned int bytes_read;
23940
23941 switch (form)
23942 {
23943 case DW_FORM_data1:
23944 case DW_FORM_flag:
23945 ++bytes;
23946 break;
23947
23948 case DW_FORM_data2:
23949 bytes += 2;
23950 break;
23951
23952 case DW_FORM_data4:
23953 bytes += 4;
23954 break;
23955
23956 case DW_FORM_data8:
23957 bytes += 8;
23958 break;
23959
23960 case DW_FORM_data16:
23961 bytes += 16;
23962 break;
23963
23964 case DW_FORM_string:
23965 read_direct_string (abfd, bytes, &bytes_read);
23966 bytes += bytes_read;
23967 break;
23968
23969 case DW_FORM_sec_offset:
23970 case DW_FORM_strp:
23971 case DW_FORM_GNU_strp_alt:
23972 bytes += offset_size;
23973 break;
23974
23975 case DW_FORM_block:
23976 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23977 bytes += bytes_read;
23978 break;
23979
23980 case DW_FORM_block1:
23981 bytes += 1 + read_1_byte (abfd, bytes);
23982 break;
23983 case DW_FORM_block2:
23984 bytes += 2 + read_2_bytes (abfd, bytes);
23985 break;
23986 case DW_FORM_block4:
23987 bytes += 4 + read_4_bytes (abfd, bytes);
23988 break;
23989
23990 case DW_FORM_sdata:
23991 case DW_FORM_udata:
23992 case DW_FORM_GNU_addr_index:
23993 case DW_FORM_GNU_str_index:
23994 bytes = gdb_skip_leb128 (bytes, buffer_end);
23995 if (bytes == NULL)
23996 {
23997 dwarf2_section_buffer_overflow_complaint (section);
23998 return NULL;
23999 }
24000 break;
24001
24002 case DW_FORM_implicit_const:
24003 break;
24004
24005 default:
24006 {
24007 complaint (&symfile_complaints,
24008 _("invalid form 0x%x in `%s'"),
24009 form, get_section_name (section));
24010 return NULL;
24011 }
24012 }
24013
24014 return bytes;
24015 }
24016
24017 /* A helper for dwarf_decode_macros that handles skipping an unknown
24018 opcode. Returns an updated pointer to the macro data buffer; or,
24019 on error, issues a complaint and returns NULL. */
24020
24021 static const gdb_byte *
24022 skip_unknown_opcode (unsigned int opcode,
24023 const gdb_byte **opcode_definitions,
24024 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24025 bfd *abfd,
24026 unsigned int offset_size,
24027 struct dwarf2_section_info *section)
24028 {
24029 unsigned int bytes_read, i;
24030 unsigned long arg;
24031 const gdb_byte *defn;
24032
24033 if (opcode_definitions[opcode] == NULL)
24034 {
24035 complaint (&symfile_complaints,
24036 _("unrecognized DW_MACFINO opcode 0x%x"),
24037 opcode);
24038 return NULL;
24039 }
24040
24041 defn = opcode_definitions[opcode];
24042 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24043 defn += bytes_read;
24044
24045 for (i = 0; i < arg; ++i)
24046 {
24047 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24048 (enum dwarf_form) defn[i], offset_size,
24049 section);
24050 if (mac_ptr == NULL)
24051 {
24052 /* skip_form_bytes already issued the complaint. */
24053 return NULL;
24054 }
24055 }
24056
24057 return mac_ptr;
24058 }
24059
24060 /* A helper function which parses the header of a macro section.
24061 If the macro section is the extended (for now called "GNU") type,
24062 then this updates *OFFSET_SIZE. Returns a pointer to just after
24063 the header, or issues a complaint and returns NULL on error. */
24064
24065 static const gdb_byte *
24066 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24067 bfd *abfd,
24068 const gdb_byte *mac_ptr,
24069 unsigned int *offset_size,
24070 int section_is_gnu)
24071 {
24072 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24073
24074 if (section_is_gnu)
24075 {
24076 unsigned int version, flags;
24077
24078 version = read_2_bytes (abfd, mac_ptr);
24079 if (version != 4 && version != 5)
24080 {
24081 complaint (&symfile_complaints,
24082 _("unrecognized version `%d' in .debug_macro section"),
24083 version);
24084 return NULL;
24085 }
24086 mac_ptr += 2;
24087
24088 flags = read_1_byte (abfd, mac_ptr);
24089 ++mac_ptr;
24090 *offset_size = (flags & 1) ? 8 : 4;
24091
24092 if ((flags & 2) != 0)
24093 /* We don't need the line table offset. */
24094 mac_ptr += *offset_size;
24095
24096 /* Vendor opcode descriptions. */
24097 if ((flags & 4) != 0)
24098 {
24099 unsigned int i, count;
24100
24101 count = read_1_byte (abfd, mac_ptr);
24102 ++mac_ptr;
24103 for (i = 0; i < count; ++i)
24104 {
24105 unsigned int opcode, bytes_read;
24106 unsigned long arg;
24107
24108 opcode = read_1_byte (abfd, mac_ptr);
24109 ++mac_ptr;
24110 opcode_definitions[opcode] = mac_ptr;
24111 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24112 mac_ptr += bytes_read;
24113 mac_ptr += arg;
24114 }
24115 }
24116 }
24117
24118 return mac_ptr;
24119 }
24120
24121 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24122 including DW_MACRO_import. */
24123
24124 static void
24125 dwarf_decode_macro_bytes (bfd *abfd,
24126 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24127 struct macro_source_file *current_file,
24128 struct line_header *lh,
24129 struct dwarf2_section_info *section,
24130 int section_is_gnu, int section_is_dwz,
24131 unsigned int offset_size,
24132 htab_t include_hash)
24133 {
24134 struct objfile *objfile = dwarf2_per_objfile->objfile;
24135 enum dwarf_macro_record_type macinfo_type;
24136 int at_commandline;
24137 const gdb_byte *opcode_definitions[256];
24138
24139 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24140 &offset_size, section_is_gnu);
24141 if (mac_ptr == NULL)
24142 {
24143 /* We already issued a complaint. */
24144 return;
24145 }
24146
24147 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24148 GDB is still reading the definitions from command line. First
24149 DW_MACINFO_start_file will need to be ignored as it was already executed
24150 to create CURRENT_FILE for the main source holding also the command line
24151 definitions. On first met DW_MACINFO_start_file this flag is reset to
24152 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24153
24154 at_commandline = 1;
24155
24156 do
24157 {
24158 /* Do we at least have room for a macinfo type byte? */
24159 if (mac_ptr >= mac_end)
24160 {
24161 dwarf2_section_buffer_overflow_complaint (section);
24162 break;
24163 }
24164
24165 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24166 mac_ptr++;
24167
24168 /* Note that we rely on the fact that the corresponding GNU and
24169 DWARF constants are the same. */
24170 switch (macinfo_type)
24171 {
24172 /* A zero macinfo type indicates the end of the macro
24173 information. */
24174 case 0:
24175 break;
24176
24177 case DW_MACRO_define:
24178 case DW_MACRO_undef:
24179 case DW_MACRO_define_strp:
24180 case DW_MACRO_undef_strp:
24181 case DW_MACRO_define_sup:
24182 case DW_MACRO_undef_sup:
24183 {
24184 unsigned int bytes_read;
24185 int line;
24186 const char *body;
24187 int is_define;
24188
24189 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24190 mac_ptr += bytes_read;
24191
24192 if (macinfo_type == DW_MACRO_define
24193 || macinfo_type == DW_MACRO_undef)
24194 {
24195 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24196 mac_ptr += bytes_read;
24197 }
24198 else
24199 {
24200 LONGEST str_offset;
24201
24202 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24203 mac_ptr += offset_size;
24204
24205 if (macinfo_type == DW_MACRO_define_sup
24206 || macinfo_type == DW_MACRO_undef_sup
24207 || section_is_dwz)
24208 {
24209 struct dwz_file *dwz = dwarf2_get_dwz_file ();
24210
24211 body = read_indirect_string_from_dwz (dwz, str_offset);
24212 }
24213 else
24214 body = read_indirect_string_at_offset (abfd, str_offset);
24215 }
24216
24217 is_define = (macinfo_type == DW_MACRO_define
24218 || macinfo_type == DW_MACRO_define_strp
24219 || macinfo_type == DW_MACRO_define_sup);
24220 if (! current_file)
24221 {
24222 /* DWARF violation as no main source is present. */
24223 complaint (&symfile_complaints,
24224 _("debug info with no main source gives macro %s "
24225 "on line %d: %s"),
24226 is_define ? _("definition") : _("undefinition"),
24227 line, body);
24228 break;
24229 }
24230 if ((line == 0 && !at_commandline)
24231 || (line != 0 && at_commandline))
24232 complaint (&symfile_complaints,
24233 _("debug info gives %s macro %s with %s line %d: %s"),
24234 at_commandline ? _("command-line") : _("in-file"),
24235 is_define ? _("definition") : _("undefinition"),
24236 line == 0 ? _("zero") : _("non-zero"), line, body);
24237
24238 if (is_define)
24239 parse_macro_definition (current_file, line, body);
24240 else
24241 {
24242 gdb_assert (macinfo_type == DW_MACRO_undef
24243 || macinfo_type == DW_MACRO_undef_strp
24244 || macinfo_type == DW_MACRO_undef_sup);
24245 macro_undef (current_file, line, body);
24246 }
24247 }
24248 break;
24249
24250 case DW_MACRO_start_file:
24251 {
24252 unsigned int bytes_read;
24253 int line, file;
24254
24255 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24256 mac_ptr += bytes_read;
24257 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24258 mac_ptr += bytes_read;
24259
24260 if ((line == 0 && !at_commandline)
24261 || (line != 0 && at_commandline))
24262 complaint (&symfile_complaints,
24263 _("debug info gives source %d included "
24264 "from %s at %s line %d"),
24265 file, at_commandline ? _("command-line") : _("file"),
24266 line == 0 ? _("zero") : _("non-zero"), line);
24267
24268 if (at_commandline)
24269 {
24270 /* This DW_MACRO_start_file was executed in the
24271 pass one. */
24272 at_commandline = 0;
24273 }
24274 else
24275 current_file = macro_start_file (file, line, current_file, lh);
24276 }
24277 break;
24278
24279 case DW_MACRO_end_file:
24280 if (! current_file)
24281 complaint (&symfile_complaints,
24282 _("macro debug info has an unmatched "
24283 "`close_file' directive"));
24284 else
24285 {
24286 current_file = current_file->included_by;
24287 if (! current_file)
24288 {
24289 enum dwarf_macro_record_type next_type;
24290
24291 /* GCC circa March 2002 doesn't produce the zero
24292 type byte marking the end of the compilation
24293 unit. Complain if it's not there, but exit no
24294 matter what. */
24295
24296 /* Do we at least have room for a macinfo type byte? */
24297 if (mac_ptr >= mac_end)
24298 {
24299 dwarf2_section_buffer_overflow_complaint (section);
24300 return;
24301 }
24302
24303 /* We don't increment mac_ptr here, so this is just
24304 a look-ahead. */
24305 next_type
24306 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24307 mac_ptr);
24308 if (next_type != 0)
24309 complaint (&symfile_complaints,
24310 _("no terminating 0-type entry for "
24311 "macros in `.debug_macinfo' section"));
24312
24313 return;
24314 }
24315 }
24316 break;
24317
24318 case DW_MACRO_import:
24319 case DW_MACRO_import_sup:
24320 {
24321 LONGEST offset;
24322 void **slot;
24323 bfd *include_bfd = abfd;
24324 struct dwarf2_section_info *include_section = section;
24325 const gdb_byte *include_mac_end = mac_end;
24326 int is_dwz = section_is_dwz;
24327 const gdb_byte *new_mac_ptr;
24328
24329 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24330 mac_ptr += offset_size;
24331
24332 if (macinfo_type == DW_MACRO_import_sup)
24333 {
24334 struct dwz_file *dwz = dwarf2_get_dwz_file ();
24335
24336 dwarf2_read_section (objfile, &dwz->macro);
24337
24338 include_section = &dwz->macro;
24339 include_bfd = get_section_bfd_owner (include_section);
24340 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24341 is_dwz = 1;
24342 }
24343
24344 new_mac_ptr = include_section->buffer + offset;
24345 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24346
24347 if (*slot != NULL)
24348 {
24349 /* This has actually happened; see
24350 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24351 complaint (&symfile_complaints,
24352 _("recursive DW_MACRO_import in "
24353 ".debug_macro section"));
24354 }
24355 else
24356 {
24357 *slot = (void *) new_mac_ptr;
24358
24359 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
24360 include_mac_end, current_file, lh,
24361 section, section_is_gnu, is_dwz,
24362 offset_size, include_hash);
24363
24364 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24365 }
24366 }
24367 break;
24368
24369 case DW_MACINFO_vendor_ext:
24370 if (!section_is_gnu)
24371 {
24372 unsigned int bytes_read;
24373
24374 /* This reads the constant, but since we don't recognize
24375 any vendor extensions, we ignore it. */
24376 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24377 mac_ptr += bytes_read;
24378 read_direct_string (abfd, mac_ptr, &bytes_read);
24379 mac_ptr += bytes_read;
24380
24381 /* We don't recognize any vendor extensions. */
24382 break;
24383 }
24384 /* FALLTHROUGH */
24385
24386 default:
24387 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24388 mac_ptr, mac_end, abfd, offset_size,
24389 section);
24390 if (mac_ptr == NULL)
24391 return;
24392 break;
24393 }
24394 } while (macinfo_type != 0);
24395 }
24396
24397 static void
24398 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24399 int section_is_gnu)
24400 {
24401 struct objfile *objfile = dwarf2_per_objfile->objfile;
24402 struct line_header *lh = cu->line_header;
24403 bfd *abfd;
24404 const gdb_byte *mac_ptr, *mac_end;
24405 struct macro_source_file *current_file = 0;
24406 enum dwarf_macro_record_type macinfo_type;
24407 unsigned int offset_size = cu->header.offset_size;
24408 const gdb_byte *opcode_definitions[256];
24409 void **slot;
24410 struct dwarf2_section_info *section;
24411 const char *section_name;
24412
24413 if (cu->dwo_unit != NULL)
24414 {
24415 if (section_is_gnu)
24416 {
24417 section = &cu->dwo_unit->dwo_file->sections.macro;
24418 section_name = ".debug_macro.dwo";
24419 }
24420 else
24421 {
24422 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24423 section_name = ".debug_macinfo.dwo";
24424 }
24425 }
24426 else
24427 {
24428 if (section_is_gnu)
24429 {
24430 section = &dwarf2_per_objfile->macro;
24431 section_name = ".debug_macro";
24432 }
24433 else
24434 {
24435 section = &dwarf2_per_objfile->macinfo;
24436 section_name = ".debug_macinfo";
24437 }
24438 }
24439
24440 dwarf2_read_section (objfile, section);
24441 if (section->buffer == NULL)
24442 {
24443 complaint (&symfile_complaints, _("missing %s section"), section_name);
24444 return;
24445 }
24446 abfd = get_section_bfd_owner (section);
24447
24448 /* First pass: Find the name of the base filename.
24449 This filename is needed in order to process all macros whose definition
24450 (or undefinition) comes from the command line. These macros are defined
24451 before the first DW_MACINFO_start_file entry, and yet still need to be
24452 associated to the base file.
24453
24454 To determine the base file name, we scan the macro definitions until we
24455 reach the first DW_MACINFO_start_file entry. We then initialize
24456 CURRENT_FILE accordingly so that any macro definition found before the
24457 first DW_MACINFO_start_file can still be associated to the base file. */
24458
24459 mac_ptr = section->buffer + offset;
24460 mac_end = section->buffer + section->size;
24461
24462 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24463 &offset_size, section_is_gnu);
24464 if (mac_ptr == NULL)
24465 {
24466 /* We already issued a complaint. */
24467 return;
24468 }
24469
24470 do
24471 {
24472 /* Do we at least have room for a macinfo type byte? */
24473 if (mac_ptr >= mac_end)
24474 {
24475 /* Complaint is printed during the second pass as GDB will probably
24476 stop the first pass earlier upon finding
24477 DW_MACINFO_start_file. */
24478 break;
24479 }
24480
24481 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24482 mac_ptr++;
24483
24484 /* Note that we rely on the fact that the corresponding GNU and
24485 DWARF constants are the same. */
24486 switch (macinfo_type)
24487 {
24488 /* A zero macinfo type indicates the end of the macro
24489 information. */
24490 case 0:
24491 break;
24492
24493 case DW_MACRO_define:
24494 case DW_MACRO_undef:
24495 /* Only skip the data by MAC_PTR. */
24496 {
24497 unsigned int bytes_read;
24498
24499 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24500 mac_ptr += bytes_read;
24501 read_direct_string (abfd, mac_ptr, &bytes_read);
24502 mac_ptr += bytes_read;
24503 }
24504 break;
24505
24506 case DW_MACRO_start_file:
24507 {
24508 unsigned int bytes_read;
24509 int line, file;
24510
24511 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24512 mac_ptr += bytes_read;
24513 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24514 mac_ptr += bytes_read;
24515
24516 current_file = macro_start_file (file, line, current_file, lh);
24517 }
24518 break;
24519
24520 case DW_MACRO_end_file:
24521 /* No data to skip by MAC_PTR. */
24522 break;
24523
24524 case DW_MACRO_define_strp:
24525 case DW_MACRO_undef_strp:
24526 case DW_MACRO_define_sup:
24527 case DW_MACRO_undef_sup:
24528 {
24529 unsigned int bytes_read;
24530
24531 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24532 mac_ptr += bytes_read;
24533 mac_ptr += offset_size;
24534 }
24535 break;
24536
24537 case DW_MACRO_import:
24538 case DW_MACRO_import_sup:
24539 /* Note that, according to the spec, a transparent include
24540 chain cannot call DW_MACRO_start_file. So, we can just
24541 skip this opcode. */
24542 mac_ptr += offset_size;
24543 break;
24544
24545 case DW_MACINFO_vendor_ext:
24546 /* Only skip the data by MAC_PTR. */
24547 if (!section_is_gnu)
24548 {
24549 unsigned int bytes_read;
24550
24551 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24552 mac_ptr += bytes_read;
24553 read_direct_string (abfd, mac_ptr, &bytes_read);
24554 mac_ptr += bytes_read;
24555 }
24556 /* FALLTHROUGH */
24557
24558 default:
24559 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24560 mac_ptr, mac_end, abfd, offset_size,
24561 section);
24562 if (mac_ptr == NULL)
24563 return;
24564 break;
24565 }
24566 } while (macinfo_type != 0 && current_file == NULL);
24567
24568 /* Second pass: Process all entries.
24569
24570 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24571 command-line macro definitions/undefinitions. This flag is unset when we
24572 reach the first DW_MACINFO_start_file entry. */
24573
24574 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24575 htab_eq_pointer,
24576 NULL, xcalloc, xfree));
24577 mac_ptr = section->buffer + offset;
24578 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24579 *slot = (void *) mac_ptr;
24580 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
24581 current_file, lh, section,
24582 section_is_gnu, 0, offset_size,
24583 include_hash.get ());
24584 }
24585
24586 /* Check if the attribute's form is a DW_FORM_block*
24587 if so return true else false. */
24588
24589 static int
24590 attr_form_is_block (const struct attribute *attr)
24591 {
24592 return (attr == NULL ? 0 :
24593 attr->form == DW_FORM_block1
24594 || attr->form == DW_FORM_block2
24595 || attr->form == DW_FORM_block4
24596 || attr->form == DW_FORM_block
24597 || attr->form == DW_FORM_exprloc);
24598 }
24599
24600 /* Return non-zero if ATTR's value is a section offset --- classes
24601 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24602 You may use DW_UNSND (attr) to retrieve such offsets.
24603
24604 Section 7.5.4, "Attribute Encodings", explains that no attribute
24605 may have a value that belongs to more than one of these classes; it
24606 would be ambiguous if we did, because we use the same forms for all
24607 of them. */
24608
24609 static int
24610 attr_form_is_section_offset (const struct attribute *attr)
24611 {
24612 return (attr->form == DW_FORM_data4
24613 || attr->form == DW_FORM_data8
24614 || attr->form == DW_FORM_sec_offset);
24615 }
24616
24617 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24618 zero otherwise. When this function returns true, you can apply
24619 dwarf2_get_attr_constant_value to it.
24620
24621 However, note that for some attributes you must check
24622 attr_form_is_section_offset before using this test. DW_FORM_data4
24623 and DW_FORM_data8 are members of both the constant class, and of
24624 the classes that contain offsets into other debug sections
24625 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24626 that, if an attribute's can be either a constant or one of the
24627 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24628 taken as section offsets, not constants.
24629
24630 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24631 cannot handle that. */
24632
24633 static int
24634 attr_form_is_constant (const struct attribute *attr)
24635 {
24636 switch (attr->form)
24637 {
24638 case DW_FORM_sdata:
24639 case DW_FORM_udata:
24640 case DW_FORM_data1:
24641 case DW_FORM_data2:
24642 case DW_FORM_data4:
24643 case DW_FORM_data8:
24644 case DW_FORM_implicit_const:
24645 return 1;
24646 default:
24647 return 0;
24648 }
24649 }
24650
24651
24652 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24653 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24654
24655 static int
24656 attr_form_is_ref (const struct attribute *attr)
24657 {
24658 switch (attr->form)
24659 {
24660 case DW_FORM_ref_addr:
24661 case DW_FORM_ref1:
24662 case DW_FORM_ref2:
24663 case DW_FORM_ref4:
24664 case DW_FORM_ref8:
24665 case DW_FORM_ref_udata:
24666 case DW_FORM_GNU_ref_alt:
24667 return 1;
24668 default:
24669 return 0;
24670 }
24671 }
24672
24673 /* Return the .debug_loc section to use for CU.
24674 For DWO files use .debug_loc.dwo. */
24675
24676 static struct dwarf2_section_info *
24677 cu_debug_loc_section (struct dwarf2_cu *cu)
24678 {
24679 if (cu->dwo_unit)
24680 {
24681 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24682
24683 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24684 }
24685 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24686 : &dwarf2_per_objfile->loc);
24687 }
24688
24689 /* A helper function that fills in a dwarf2_loclist_baton. */
24690
24691 static void
24692 fill_in_loclist_baton (struct dwarf2_cu *cu,
24693 struct dwarf2_loclist_baton *baton,
24694 const struct attribute *attr)
24695 {
24696 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24697
24698 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24699
24700 baton->per_cu = cu->per_cu;
24701 gdb_assert (baton->per_cu);
24702 /* We don't know how long the location list is, but make sure we
24703 don't run off the edge of the section. */
24704 baton->size = section->size - DW_UNSND (attr);
24705 baton->data = section->buffer + DW_UNSND (attr);
24706 baton->base_address = cu->base_address;
24707 baton->from_dwo = cu->dwo_unit != NULL;
24708 }
24709
24710 static void
24711 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24712 struct dwarf2_cu *cu, int is_block)
24713 {
24714 struct objfile *objfile = dwarf2_per_objfile->objfile;
24715 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24716
24717 if (attr_form_is_section_offset (attr)
24718 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24719 the section. If so, fall through to the complaint in the
24720 other branch. */
24721 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24722 {
24723 struct dwarf2_loclist_baton *baton;
24724
24725 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24726
24727 fill_in_loclist_baton (cu, baton, attr);
24728
24729 if (cu->base_known == 0)
24730 complaint (&symfile_complaints,
24731 _("Location list used without "
24732 "specifying the CU base address."));
24733
24734 SYMBOL_ACLASS_INDEX (sym) = (is_block
24735 ? dwarf2_loclist_block_index
24736 : dwarf2_loclist_index);
24737 SYMBOL_LOCATION_BATON (sym) = baton;
24738 }
24739 else
24740 {
24741 struct dwarf2_locexpr_baton *baton;
24742
24743 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24744 baton->per_cu = cu->per_cu;
24745 gdb_assert (baton->per_cu);
24746
24747 if (attr_form_is_block (attr))
24748 {
24749 /* Note that we're just copying the block's data pointer
24750 here, not the actual data. We're still pointing into the
24751 info_buffer for SYM's objfile; right now we never release
24752 that buffer, but when we do clean up properly this may
24753 need to change. */
24754 baton->size = DW_BLOCK (attr)->size;
24755 baton->data = DW_BLOCK (attr)->data;
24756 }
24757 else
24758 {
24759 dwarf2_invalid_attrib_class_complaint ("location description",
24760 SYMBOL_NATURAL_NAME (sym));
24761 baton->size = 0;
24762 }
24763
24764 SYMBOL_ACLASS_INDEX (sym) = (is_block
24765 ? dwarf2_locexpr_block_index
24766 : dwarf2_locexpr_index);
24767 SYMBOL_LOCATION_BATON (sym) = baton;
24768 }
24769 }
24770
24771 /* Return the OBJFILE associated with the compilation unit CU. If CU
24772 came from a separate debuginfo file, then the master objfile is
24773 returned. */
24774
24775 struct objfile *
24776 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24777 {
24778 struct objfile *objfile = per_cu->objfile;
24779
24780 /* Return the master objfile, so that we can report and look up the
24781 correct file containing this variable. */
24782 if (objfile->separate_debug_objfile_backlink)
24783 objfile = objfile->separate_debug_objfile_backlink;
24784
24785 return objfile;
24786 }
24787
24788 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24789 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24790 CU_HEADERP first. */
24791
24792 static const struct comp_unit_head *
24793 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24794 struct dwarf2_per_cu_data *per_cu)
24795 {
24796 const gdb_byte *info_ptr;
24797
24798 if (per_cu->cu)
24799 return &per_cu->cu->header;
24800
24801 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24802
24803 memset (cu_headerp, 0, sizeof (*cu_headerp));
24804 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24805 rcuh_kind::COMPILE);
24806
24807 return cu_headerp;
24808 }
24809
24810 /* Return the address size given in the compilation unit header for CU. */
24811
24812 int
24813 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24814 {
24815 struct comp_unit_head cu_header_local;
24816 const struct comp_unit_head *cu_headerp;
24817
24818 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24819
24820 return cu_headerp->addr_size;
24821 }
24822
24823 /* Return the offset size given in the compilation unit header for CU. */
24824
24825 int
24826 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24827 {
24828 struct comp_unit_head cu_header_local;
24829 const struct comp_unit_head *cu_headerp;
24830
24831 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24832
24833 return cu_headerp->offset_size;
24834 }
24835
24836 /* See its dwarf2loc.h declaration. */
24837
24838 int
24839 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24840 {
24841 struct comp_unit_head cu_header_local;
24842 const struct comp_unit_head *cu_headerp;
24843
24844 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24845
24846 if (cu_headerp->version == 2)
24847 return cu_headerp->addr_size;
24848 else
24849 return cu_headerp->offset_size;
24850 }
24851
24852 /* Return the text offset of the CU. The returned offset comes from
24853 this CU's objfile. If this objfile came from a separate debuginfo
24854 file, then the offset may be different from the corresponding
24855 offset in the parent objfile. */
24856
24857 CORE_ADDR
24858 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24859 {
24860 struct objfile *objfile = per_cu->objfile;
24861
24862 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24863 }
24864
24865 /* Return DWARF version number of PER_CU. */
24866
24867 short
24868 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24869 {
24870 return per_cu->dwarf_version;
24871 }
24872
24873 /* Locate the .debug_info compilation unit from CU's objfile which contains
24874 the DIE at OFFSET. Raises an error on failure. */
24875
24876 static struct dwarf2_per_cu_data *
24877 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24878 unsigned int offset_in_dwz,
24879 struct objfile *objfile)
24880 {
24881 struct dwarf2_per_cu_data *this_cu;
24882 int low, high;
24883 const sect_offset *cu_off;
24884
24885 low = 0;
24886 high = dwarf2_per_objfile->n_comp_units - 1;
24887 while (high > low)
24888 {
24889 struct dwarf2_per_cu_data *mid_cu;
24890 int mid = low + (high - low) / 2;
24891
24892 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24893 cu_off = &mid_cu->sect_off;
24894 if (mid_cu->is_dwz > offset_in_dwz
24895 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24896 high = mid;
24897 else
24898 low = mid + 1;
24899 }
24900 gdb_assert (low == high);
24901 this_cu = dwarf2_per_objfile->all_comp_units[low];
24902 cu_off = &this_cu->sect_off;
24903 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24904 {
24905 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24906 error (_("Dwarf Error: could not find partial DIE containing "
24907 "offset 0x%x [in module %s]"),
24908 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
24909
24910 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24911 <= sect_off);
24912 return dwarf2_per_objfile->all_comp_units[low-1];
24913 }
24914 else
24915 {
24916 this_cu = dwarf2_per_objfile->all_comp_units[low];
24917 if (low == dwarf2_per_objfile->n_comp_units - 1
24918 && sect_off >= this_cu->sect_off + this_cu->length)
24919 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
24920 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24921 return this_cu;
24922 }
24923 }
24924
24925 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24926
24927 static void
24928 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
24929 {
24930 memset (cu, 0, sizeof (*cu));
24931 per_cu->cu = cu;
24932 cu->per_cu = per_cu;
24933 cu->objfile = per_cu->objfile;
24934 obstack_init (&cu->comp_unit_obstack);
24935 }
24936
24937 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24938
24939 static void
24940 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24941 enum language pretend_language)
24942 {
24943 struct attribute *attr;
24944
24945 /* Set the language we're debugging. */
24946 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24947 if (attr)
24948 set_cu_language (DW_UNSND (attr), cu);
24949 else
24950 {
24951 cu->language = pretend_language;
24952 cu->language_defn = language_def (cu->language);
24953 }
24954
24955 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24956 }
24957
24958 /* Release one cached compilation unit, CU. We unlink it from the tree
24959 of compilation units, but we don't remove it from the read_in_chain;
24960 the caller is responsible for that.
24961 NOTE: DATA is a void * because this function is also used as a
24962 cleanup routine. */
24963
24964 static void
24965 free_heap_comp_unit (void *data)
24966 {
24967 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
24968
24969 gdb_assert (cu->per_cu != NULL);
24970 cu->per_cu->cu = NULL;
24971 cu->per_cu = NULL;
24972
24973 obstack_free (&cu->comp_unit_obstack, NULL);
24974
24975 xfree (cu);
24976 }
24977
24978 /* This cleanup function is passed the address of a dwarf2_cu on the stack
24979 when we're finished with it. We can't free the pointer itself, but be
24980 sure to unlink it from the cache. Also release any associated storage. */
24981
24982 static void
24983 free_stack_comp_unit (void *data)
24984 {
24985 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
24986
24987 gdb_assert (cu->per_cu != NULL);
24988 cu->per_cu->cu = NULL;
24989 cu->per_cu = NULL;
24990
24991 obstack_free (&cu->comp_unit_obstack, NULL);
24992 cu->partial_dies = NULL;
24993 }
24994
24995 /* Free all cached compilation units. */
24996
24997 static void
24998 free_cached_comp_units (void *data)
24999 {
25000 dwarf2_per_objfile->free_cached_comp_units ();
25001 }
25002
25003 /* Increase the age counter on each cached compilation unit, and free
25004 any that are too old. */
25005
25006 static void
25007 age_cached_comp_units (void)
25008 {
25009 struct dwarf2_per_cu_data *per_cu, **last_chain;
25010
25011 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25012 per_cu = dwarf2_per_objfile->read_in_chain;
25013 while (per_cu != NULL)
25014 {
25015 per_cu->cu->last_used ++;
25016 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25017 dwarf2_mark (per_cu->cu);
25018 per_cu = per_cu->cu->read_in_chain;
25019 }
25020
25021 per_cu = dwarf2_per_objfile->read_in_chain;
25022 last_chain = &dwarf2_per_objfile->read_in_chain;
25023 while (per_cu != NULL)
25024 {
25025 struct dwarf2_per_cu_data *next_cu;
25026
25027 next_cu = per_cu->cu->read_in_chain;
25028
25029 if (!per_cu->cu->mark)
25030 {
25031 free_heap_comp_unit (per_cu->cu);
25032 *last_chain = next_cu;
25033 }
25034 else
25035 last_chain = &per_cu->cu->read_in_chain;
25036
25037 per_cu = next_cu;
25038 }
25039 }
25040
25041 /* Remove a single compilation unit from the cache. */
25042
25043 static void
25044 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25045 {
25046 struct dwarf2_per_cu_data *per_cu, **last_chain;
25047
25048 per_cu = dwarf2_per_objfile->read_in_chain;
25049 last_chain = &dwarf2_per_objfile->read_in_chain;
25050 while (per_cu != NULL)
25051 {
25052 struct dwarf2_per_cu_data *next_cu;
25053
25054 next_cu = per_cu->cu->read_in_chain;
25055
25056 if (per_cu == target_per_cu)
25057 {
25058 free_heap_comp_unit (per_cu->cu);
25059 per_cu->cu = NULL;
25060 *last_chain = next_cu;
25061 break;
25062 }
25063 else
25064 last_chain = &per_cu->cu->read_in_chain;
25065
25066 per_cu = next_cu;
25067 }
25068 }
25069
25070 /* Release all extra memory associated with OBJFILE. */
25071
25072 void
25073 dwarf2_free_objfile (struct objfile *objfile)
25074 {
25075 dwarf2_per_objfile
25076 = (struct dwarf2_per_objfile *) objfile_data (objfile,
25077 dwarf2_objfile_data_key);
25078
25079 if (dwarf2_per_objfile == NULL)
25080 return;
25081
25082 dwarf2_per_objfile->~dwarf2_per_objfile ();
25083 }
25084
25085 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25086 We store these in a hash table separate from the DIEs, and preserve them
25087 when the DIEs are flushed out of cache.
25088
25089 The CU "per_cu" pointer is needed because offset alone is not enough to
25090 uniquely identify the type. A file may have multiple .debug_types sections,
25091 or the type may come from a DWO file. Furthermore, while it's more logical
25092 to use per_cu->section+offset, with Fission the section with the data is in
25093 the DWO file but we don't know that section at the point we need it.
25094 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25095 because we can enter the lookup routine, get_die_type_at_offset, from
25096 outside this file, and thus won't necessarily have PER_CU->cu.
25097 Fortunately, PER_CU is stable for the life of the objfile. */
25098
25099 struct dwarf2_per_cu_offset_and_type
25100 {
25101 const struct dwarf2_per_cu_data *per_cu;
25102 sect_offset sect_off;
25103 struct type *type;
25104 };
25105
25106 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25107
25108 static hashval_t
25109 per_cu_offset_and_type_hash (const void *item)
25110 {
25111 const struct dwarf2_per_cu_offset_and_type *ofs
25112 = (const struct dwarf2_per_cu_offset_and_type *) item;
25113
25114 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25115 }
25116
25117 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25118
25119 static int
25120 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25121 {
25122 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25123 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25124 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25125 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25126
25127 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25128 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25129 }
25130
25131 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25132 table if necessary. For convenience, return TYPE.
25133
25134 The DIEs reading must have careful ordering to:
25135 * Not cause infite loops trying to read in DIEs as a prerequisite for
25136 reading current DIE.
25137 * Not trying to dereference contents of still incompletely read in types
25138 while reading in other DIEs.
25139 * Enable referencing still incompletely read in types just by a pointer to
25140 the type without accessing its fields.
25141
25142 Therefore caller should follow these rules:
25143 * Try to fetch any prerequisite types we may need to build this DIE type
25144 before building the type and calling set_die_type.
25145 * After building type call set_die_type for current DIE as soon as
25146 possible before fetching more types to complete the current type.
25147 * Make the type as complete as possible before fetching more types. */
25148
25149 static struct type *
25150 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25151 {
25152 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25153 struct objfile *objfile = cu->objfile;
25154 struct attribute *attr;
25155 struct dynamic_prop prop;
25156
25157 /* For Ada types, make sure that the gnat-specific data is always
25158 initialized (if not already set). There are a few types where
25159 we should not be doing so, because the type-specific area is
25160 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25161 where the type-specific area is used to store the floatformat).
25162 But this is not a problem, because the gnat-specific information
25163 is actually not needed for these types. */
25164 if (need_gnat_info (cu)
25165 && TYPE_CODE (type) != TYPE_CODE_FUNC
25166 && TYPE_CODE (type) != TYPE_CODE_FLT
25167 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25168 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25169 && TYPE_CODE (type) != TYPE_CODE_METHOD
25170 && !HAVE_GNAT_AUX_INFO (type))
25171 INIT_GNAT_SPECIFIC (type);
25172
25173 /* Read DW_AT_allocated and set in type. */
25174 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25175 if (attr_form_is_block (attr))
25176 {
25177 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25178 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
25179 }
25180 else if (attr != NULL)
25181 {
25182 complaint (&symfile_complaints,
25183 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
25184 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25185 to_underlying (die->sect_off));
25186 }
25187
25188 /* Read DW_AT_associated and set in type. */
25189 attr = dwarf2_attr (die, DW_AT_associated, cu);
25190 if (attr_form_is_block (attr))
25191 {
25192 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25193 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
25194 }
25195 else if (attr != NULL)
25196 {
25197 complaint (&symfile_complaints,
25198 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
25199 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25200 to_underlying (die->sect_off));
25201 }
25202
25203 /* Read DW_AT_data_location and set in type. */
25204 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25205 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25206 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
25207
25208 if (dwarf2_per_objfile->die_type_hash == NULL)
25209 {
25210 dwarf2_per_objfile->die_type_hash =
25211 htab_create_alloc_ex (127,
25212 per_cu_offset_and_type_hash,
25213 per_cu_offset_and_type_eq,
25214 NULL,
25215 &objfile->objfile_obstack,
25216 hashtab_obstack_allocate,
25217 dummy_obstack_deallocate);
25218 }
25219
25220 ofs.per_cu = cu->per_cu;
25221 ofs.sect_off = die->sect_off;
25222 ofs.type = type;
25223 slot = (struct dwarf2_per_cu_offset_and_type **)
25224 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25225 if (*slot)
25226 complaint (&symfile_complaints,
25227 _("A problem internal to GDB: DIE 0x%x has type already set"),
25228 to_underlying (die->sect_off));
25229 *slot = XOBNEW (&objfile->objfile_obstack,
25230 struct dwarf2_per_cu_offset_and_type);
25231 **slot = ofs;
25232 return type;
25233 }
25234
25235 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25236 or return NULL if the die does not have a saved type. */
25237
25238 static struct type *
25239 get_die_type_at_offset (sect_offset sect_off,
25240 struct dwarf2_per_cu_data *per_cu)
25241 {
25242 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25243
25244 if (dwarf2_per_objfile->die_type_hash == NULL)
25245 return NULL;
25246
25247 ofs.per_cu = per_cu;
25248 ofs.sect_off = sect_off;
25249 slot = ((struct dwarf2_per_cu_offset_and_type *)
25250 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25251 if (slot)
25252 return slot->type;
25253 else
25254 return NULL;
25255 }
25256
25257 /* Look up the type for DIE in CU in die_type_hash,
25258 or return NULL if DIE does not have a saved type. */
25259
25260 static struct type *
25261 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25262 {
25263 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25264 }
25265
25266 /* Add a dependence relationship from CU to REF_PER_CU. */
25267
25268 static void
25269 dwarf2_add_dependence (struct dwarf2_cu *cu,
25270 struct dwarf2_per_cu_data *ref_per_cu)
25271 {
25272 void **slot;
25273
25274 if (cu->dependencies == NULL)
25275 cu->dependencies
25276 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25277 NULL, &cu->comp_unit_obstack,
25278 hashtab_obstack_allocate,
25279 dummy_obstack_deallocate);
25280
25281 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25282 if (*slot == NULL)
25283 *slot = ref_per_cu;
25284 }
25285
25286 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25287 Set the mark field in every compilation unit in the
25288 cache that we must keep because we are keeping CU. */
25289
25290 static int
25291 dwarf2_mark_helper (void **slot, void *data)
25292 {
25293 struct dwarf2_per_cu_data *per_cu;
25294
25295 per_cu = (struct dwarf2_per_cu_data *) *slot;
25296
25297 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25298 reading of the chain. As such dependencies remain valid it is not much
25299 useful to track and undo them during QUIT cleanups. */
25300 if (per_cu->cu == NULL)
25301 return 1;
25302
25303 if (per_cu->cu->mark)
25304 return 1;
25305 per_cu->cu->mark = 1;
25306
25307 if (per_cu->cu->dependencies != NULL)
25308 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25309
25310 return 1;
25311 }
25312
25313 /* Set the mark field in CU and in every other compilation unit in the
25314 cache that we must keep because we are keeping CU. */
25315
25316 static void
25317 dwarf2_mark (struct dwarf2_cu *cu)
25318 {
25319 if (cu->mark)
25320 return;
25321 cu->mark = 1;
25322 if (cu->dependencies != NULL)
25323 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25324 }
25325
25326 static void
25327 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25328 {
25329 while (per_cu)
25330 {
25331 per_cu->cu->mark = 0;
25332 per_cu = per_cu->cu->read_in_chain;
25333 }
25334 }
25335
25336 /* Trivial hash function for partial_die_info: the hash value of a DIE
25337 is its offset in .debug_info for this objfile. */
25338
25339 static hashval_t
25340 partial_die_hash (const void *item)
25341 {
25342 const struct partial_die_info *part_die
25343 = (const struct partial_die_info *) item;
25344
25345 return to_underlying (part_die->sect_off);
25346 }
25347
25348 /* Trivial comparison function for partial_die_info structures: two DIEs
25349 are equal if they have the same offset. */
25350
25351 static int
25352 partial_die_eq (const void *item_lhs, const void *item_rhs)
25353 {
25354 const struct partial_die_info *part_die_lhs
25355 = (const struct partial_die_info *) item_lhs;
25356 const struct partial_die_info *part_die_rhs
25357 = (const struct partial_die_info *) item_rhs;
25358
25359 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25360 }
25361
25362 static struct cmd_list_element *set_dwarf_cmdlist;
25363 static struct cmd_list_element *show_dwarf_cmdlist;
25364
25365 static void
25366 set_dwarf_cmd (const char *args, int from_tty)
25367 {
25368 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25369 gdb_stdout);
25370 }
25371
25372 static void
25373 show_dwarf_cmd (const char *args, int from_tty)
25374 {
25375 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25376 }
25377
25378 /* Free data associated with OBJFILE, if necessary. */
25379
25380 static void
25381 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
25382 {
25383 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
25384 int ix;
25385
25386 /* Make sure we don't accidentally use dwarf2_per_objfile while
25387 cleaning up. */
25388 dwarf2_per_objfile = NULL;
25389
25390 for (ix = 0; ix < data->n_comp_units; ++ix)
25391 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
25392
25393 for (ix = 0; ix < data->n_type_units; ++ix)
25394 VEC_free (dwarf2_per_cu_ptr,
25395 data->all_type_units[ix]->per_cu.imported_symtabs);
25396 xfree (data->all_type_units);
25397
25398 VEC_free (dwarf2_section_info_def, data->types);
25399
25400 if (data->dwo_files)
25401 free_dwo_files (data->dwo_files, objfile);
25402 if (data->dwp_file)
25403 gdb_bfd_unref (data->dwp_file->dbfd);
25404
25405 if (data->dwz_file && data->dwz_file->dwz_bfd)
25406 gdb_bfd_unref (data->dwz_file->dwz_bfd);
25407
25408 if (data->index_table != NULL)
25409 data->index_table->~mapped_index ();
25410 }
25411
25412 \f
25413 /* The "save gdb-index" command. */
25414
25415 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25416 error checking. */
25417
25418 static void
25419 file_write (FILE *file, const void *data, size_t size)
25420 {
25421 if (fwrite (data, 1, size, file) != size)
25422 error (_("couldn't data write to file"));
25423 }
25424
25425 /* Write the contents of VEC to FILE, with error checking. */
25426
25427 template<typename Elem, typename Alloc>
25428 static void
25429 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
25430 {
25431 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
25432 }
25433
25434 /* In-memory buffer to prepare data to be written later to a file. */
25435 class data_buf
25436 {
25437 public:
25438 /* Copy DATA to the end of the buffer. */
25439 template<typename T>
25440 void append_data (const T &data)
25441 {
25442 std::copy (reinterpret_cast<const gdb_byte *> (&data),
25443 reinterpret_cast<const gdb_byte *> (&data + 1),
25444 grow (sizeof (data)));
25445 }
25446
25447 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25448 terminating zero is appended too. */
25449 void append_cstr0 (const char *cstr)
25450 {
25451 const size_t size = strlen (cstr) + 1;
25452 std::copy (cstr, cstr + size, grow (size));
25453 }
25454
25455 /* Store INPUT as ULEB128 to the end of buffer. */
25456 void append_unsigned_leb128 (ULONGEST input)
25457 {
25458 for (;;)
25459 {
25460 gdb_byte output = input & 0x7f;
25461 input >>= 7;
25462 if (input)
25463 output |= 0x80;
25464 append_data (output);
25465 if (input == 0)
25466 break;
25467 }
25468 }
25469
25470 /* Accept a host-format integer in VAL and append it to the buffer
25471 as a target-format integer which is LEN bytes long. */
25472 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
25473 {
25474 ::store_unsigned_integer (grow (len), len, byte_order, val);
25475 }
25476
25477 /* Return the size of the buffer. */
25478 size_t size () const
25479 {
25480 return m_vec.size ();
25481 }
25482
25483 /* Return true iff the buffer is empty. */
25484 bool empty () const
25485 {
25486 return m_vec.empty ();
25487 }
25488
25489 /* Write the buffer to FILE. */
25490 void file_write (FILE *file) const
25491 {
25492 ::file_write (file, m_vec);
25493 }
25494
25495 private:
25496 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25497 the start of the new block. */
25498 gdb_byte *grow (size_t size)
25499 {
25500 m_vec.resize (m_vec.size () + size);
25501 return &*m_vec.end () - size;
25502 }
25503
25504 gdb::byte_vector m_vec;
25505 };
25506
25507 /* An entry in the symbol table. */
25508 struct symtab_index_entry
25509 {
25510 /* The name of the symbol. */
25511 const char *name;
25512 /* The offset of the name in the constant pool. */
25513 offset_type index_offset;
25514 /* A sorted vector of the indices of all the CUs that hold an object
25515 of this name. */
25516 std::vector<offset_type> cu_indices;
25517 };
25518
25519 /* The symbol table. This is a power-of-2-sized hash table. */
25520 struct mapped_symtab
25521 {
25522 mapped_symtab ()
25523 {
25524 data.resize (1024);
25525 }
25526
25527 offset_type n_elements = 0;
25528 std::vector<symtab_index_entry> data;
25529 };
25530
25531 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25532 the slot.
25533
25534 Function is used only during write_hash_table so no index format backward
25535 compatibility is needed. */
25536
25537 static symtab_index_entry &
25538 find_slot (struct mapped_symtab *symtab, const char *name)
25539 {
25540 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
25541
25542 index = hash & (symtab->data.size () - 1);
25543 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
25544
25545 for (;;)
25546 {
25547 if (symtab->data[index].name == NULL
25548 || strcmp (name, symtab->data[index].name) == 0)
25549 return symtab->data[index];
25550 index = (index + step) & (symtab->data.size () - 1);
25551 }
25552 }
25553
25554 /* Expand SYMTAB's hash table. */
25555
25556 static void
25557 hash_expand (struct mapped_symtab *symtab)
25558 {
25559 auto old_entries = std::move (symtab->data);
25560
25561 symtab->data.clear ();
25562 symtab->data.resize (old_entries.size () * 2);
25563
25564 for (auto &it : old_entries)
25565 if (it.name != NULL)
25566 {
25567 auto &ref = find_slot (symtab, it.name);
25568 ref = std::move (it);
25569 }
25570 }
25571
25572 /* Add an entry to SYMTAB. NAME is the name of the symbol.
25573 CU_INDEX is the index of the CU in which the symbol appears.
25574 IS_STATIC is one if the symbol is static, otherwise zero (global). */
25575
25576 static void
25577 add_index_entry (struct mapped_symtab *symtab, const char *name,
25578 int is_static, gdb_index_symbol_kind kind,
25579 offset_type cu_index)
25580 {
25581 offset_type cu_index_and_attrs;
25582
25583 ++symtab->n_elements;
25584 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
25585 hash_expand (symtab);
25586
25587 symtab_index_entry &slot = find_slot (symtab, name);
25588 if (slot.name == NULL)
25589 {
25590 slot.name = name;
25591 /* index_offset is set later. */
25592 }
25593
25594 cu_index_and_attrs = 0;
25595 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
25596 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
25597 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
25598
25599 /* We don't want to record an index value twice as we want to avoid the
25600 duplication.
25601 We process all global symbols and then all static symbols
25602 (which would allow us to avoid the duplication by only having to check
25603 the last entry pushed), but a symbol could have multiple kinds in one CU.
25604 To keep things simple we don't worry about the duplication here and
25605 sort and uniqufy the list after we've processed all symbols. */
25606 slot.cu_indices.push_back (cu_index_and_attrs);
25607 }
25608
25609 /* Sort and remove duplicates of all symbols' cu_indices lists. */
25610
25611 static void
25612 uniquify_cu_indices (struct mapped_symtab *symtab)
25613 {
25614 for (auto &entry : symtab->data)
25615 {
25616 if (entry.name != NULL && !entry.cu_indices.empty ())
25617 {
25618 auto &cu_indices = entry.cu_indices;
25619 std::sort (cu_indices.begin (), cu_indices.end ());
25620 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
25621 cu_indices.erase (from, cu_indices.end ());
25622 }
25623 }
25624 }
25625
25626 /* A form of 'const char *' suitable for container keys. Only the
25627 pointer is stored. The strings themselves are compared, not the
25628 pointers. */
25629 class c_str_view
25630 {
25631 public:
25632 c_str_view (const char *cstr)
25633 : m_cstr (cstr)
25634 {}
25635
25636 bool operator== (const c_str_view &other) const
25637 {
25638 return strcmp (m_cstr, other.m_cstr) == 0;
25639 }
25640
25641 /* Return the underlying C string. Note, the returned string is
25642 only a reference with lifetime of this object. */
25643 const char *c_str () const
25644 {
25645 return m_cstr;
25646 }
25647
25648 private:
25649 friend class c_str_view_hasher;
25650 const char *const m_cstr;
25651 };
25652
25653 /* A std::unordered_map::hasher for c_str_view that uses the right
25654 hash function for strings in a mapped index. */
25655 class c_str_view_hasher
25656 {
25657 public:
25658 size_t operator () (const c_str_view &x) const
25659 {
25660 return mapped_index_string_hash (INT_MAX, x.m_cstr);
25661 }
25662 };
25663
25664 /* A std::unordered_map::hasher for std::vector<>. */
25665 template<typename T>
25666 class vector_hasher
25667 {
25668 public:
25669 size_t operator () (const std::vector<T> &key) const
25670 {
25671 return iterative_hash (key.data (),
25672 sizeof (key.front ()) * key.size (), 0);
25673 }
25674 };
25675
25676 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
25677 constant pool entries going into the data buffer CPOOL. */
25678
25679 static void
25680 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
25681 {
25682 {
25683 /* Elements are sorted vectors of the indices of all the CUs that
25684 hold an object of this name. */
25685 std::unordered_map<std::vector<offset_type>, offset_type,
25686 vector_hasher<offset_type>>
25687 symbol_hash_table;
25688
25689 /* We add all the index vectors to the constant pool first, to
25690 ensure alignment is ok. */
25691 for (symtab_index_entry &entry : symtab->data)
25692 {
25693 if (entry.name == NULL)
25694 continue;
25695 gdb_assert (entry.index_offset == 0);
25696
25697 /* Finding before inserting is faster than always trying to
25698 insert, because inserting always allocates a node, does the
25699 lookup, and then destroys the new node if another node
25700 already had the same key. C++17 try_emplace will avoid
25701 this. */
25702 const auto found
25703 = symbol_hash_table.find (entry.cu_indices);
25704 if (found != symbol_hash_table.end ())
25705 {
25706 entry.index_offset = found->second;
25707 continue;
25708 }
25709
25710 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
25711 entry.index_offset = cpool.size ();
25712 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
25713 for (const auto index : entry.cu_indices)
25714 cpool.append_data (MAYBE_SWAP (index));
25715 }
25716 }
25717
25718 /* Now write out the hash table. */
25719 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
25720 for (const auto &entry : symtab->data)
25721 {
25722 offset_type str_off, vec_off;
25723
25724 if (entry.name != NULL)
25725 {
25726 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
25727 if (insertpair.second)
25728 cpool.append_cstr0 (entry.name);
25729 str_off = insertpair.first->second;
25730 vec_off = entry.index_offset;
25731 }
25732 else
25733 {
25734 /* While 0 is a valid constant pool index, it is not valid
25735 to have 0 for both offsets. */
25736 str_off = 0;
25737 vec_off = 0;
25738 }
25739
25740 output.append_data (MAYBE_SWAP (str_off));
25741 output.append_data (MAYBE_SWAP (vec_off));
25742 }
25743 }
25744
25745 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
25746
25747 /* Helper struct for building the address table. */
25748 struct addrmap_index_data
25749 {
25750 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
25751 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
25752 {}
25753
25754 struct objfile *objfile;
25755 data_buf &addr_vec;
25756 psym_index_map &cu_index_htab;
25757
25758 /* Non-zero if the previous_* fields are valid.
25759 We can't write an entry until we see the next entry (since it is only then
25760 that we know the end of the entry). */
25761 int previous_valid;
25762 /* Index of the CU in the table of all CUs in the index file. */
25763 unsigned int previous_cu_index;
25764 /* Start address of the CU. */
25765 CORE_ADDR previous_cu_start;
25766 };
25767
25768 /* Write an address entry to ADDR_VEC. */
25769
25770 static void
25771 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
25772 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
25773 {
25774 CORE_ADDR baseaddr;
25775
25776 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25777
25778 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
25779 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
25780 addr_vec.append_data (MAYBE_SWAP (cu_index));
25781 }
25782
25783 /* Worker function for traversing an addrmap to build the address table. */
25784
25785 static int
25786 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
25787 {
25788 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
25789 struct partial_symtab *pst = (struct partial_symtab *) obj;
25790
25791 if (data->previous_valid)
25792 add_address_entry (data->objfile, data->addr_vec,
25793 data->previous_cu_start, start_addr,
25794 data->previous_cu_index);
25795
25796 data->previous_cu_start = start_addr;
25797 if (pst != NULL)
25798 {
25799 const auto it = data->cu_index_htab.find (pst);
25800 gdb_assert (it != data->cu_index_htab.cend ());
25801 data->previous_cu_index = it->second;
25802 data->previous_valid = 1;
25803 }
25804 else
25805 data->previous_valid = 0;
25806
25807 return 0;
25808 }
25809
25810 /* Write OBJFILE's address map to ADDR_VEC.
25811 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
25812 in the index file. */
25813
25814 static void
25815 write_address_map (struct objfile *objfile, data_buf &addr_vec,
25816 psym_index_map &cu_index_htab)
25817 {
25818 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
25819
25820 /* When writing the address table, we have to cope with the fact that
25821 the addrmap iterator only provides the start of a region; we have to
25822 wait until the next invocation to get the start of the next region. */
25823
25824 addrmap_index_data.objfile = objfile;
25825 addrmap_index_data.previous_valid = 0;
25826
25827 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
25828 &addrmap_index_data);
25829
25830 /* It's highly unlikely the last entry (end address = 0xff...ff)
25831 is valid, but we should still handle it.
25832 The end address is recorded as the start of the next region, but that
25833 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
25834 anyway. */
25835 if (addrmap_index_data.previous_valid)
25836 add_address_entry (objfile, addr_vec,
25837 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
25838 addrmap_index_data.previous_cu_index);
25839 }
25840
25841 /* Return the symbol kind of PSYM. */
25842
25843 static gdb_index_symbol_kind
25844 symbol_kind (struct partial_symbol *psym)
25845 {
25846 domain_enum domain = PSYMBOL_DOMAIN (psym);
25847 enum address_class aclass = PSYMBOL_CLASS (psym);
25848
25849 switch (domain)
25850 {
25851 case VAR_DOMAIN:
25852 switch (aclass)
25853 {
25854 case LOC_BLOCK:
25855 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
25856 case LOC_TYPEDEF:
25857 return GDB_INDEX_SYMBOL_KIND_TYPE;
25858 case LOC_COMPUTED:
25859 case LOC_CONST_BYTES:
25860 case LOC_OPTIMIZED_OUT:
25861 case LOC_STATIC:
25862 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25863 case LOC_CONST:
25864 /* Note: It's currently impossible to recognize psyms as enum values
25865 short of reading the type info. For now punt. */
25866 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25867 default:
25868 /* There are other LOC_FOO values that one might want to classify
25869 as variables, but dwarf2read.c doesn't currently use them. */
25870 return GDB_INDEX_SYMBOL_KIND_OTHER;
25871 }
25872 case STRUCT_DOMAIN:
25873 return GDB_INDEX_SYMBOL_KIND_TYPE;
25874 default:
25875 return GDB_INDEX_SYMBOL_KIND_OTHER;
25876 }
25877 }
25878
25879 /* Add a list of partial symbols to SYMTAB. */
25880
25881 static void
25882 write_psymbols (struct mapped_symtab *symtab,
25883 std::unordered_set<partial_symbol *> &psyms_seen,
25884 struct partial_symbol **psymp,
25885 int count,
25886 offset_type cu_index,
25887 int is_static)
25888 {
25889 for (; count-- > 0; ++psymp)
25890 {
25891 struct partial_symbol *psym = *psymp;
25892
25893 if (SYMBOL_LANGUAGE (psym) == language_ada)
25894 error (_("Ada is not currently supported by the index"));
25895
25896 /* Only add a given psymbol once. */
25897 if (psyms_seen.insert (psym).second)
25898 {
25899 gdb_index_symbol_kind kind = symbol_kind (psym);
25900
25901 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
25902 is_static, kind, cu_index);
25903 }
25904 }
25905 }
25906
25907 /* A helper struct used when iterating over debug_types. */
25908 struct signatured_type_index_data
25909 {
25910 signatured_type_index_data (data_buf &types_list_,
25911 std::unordered_set<partial_symbol *> &psyms_seen_)
25912 : types_list (types_list_), psyms_seen (psyms_seen_)
25913 {}
25914
25915 struct objfile *objfile;
25916 struct mapped_symtab *symtab;
25917 data_buf &types_list;
25918 std::unordered_set<partial_symbol *> &psyms_seen;
25919 int cu_index;
25920 };
25921
25922 /* A helper function that writes a single signatured_type to an
25923 obstack. */
25924
25925 static int
25926 write_one_signatured_type (void **slot, void *d)
25927 {
25928 struct signatured_type_index_data *info
25929 = (struct signatured_type_index_data *) d;
25930 struct signatured_type *entry = (struct signatured_type *) *slot;
25931 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
25932
25933 write_psymbols (info->symtab,
25934 info->psyms_seen,
25935 &info->objfile->global_psymbols[psymtab->globals_offset],
25936 psymtab->n_global_syms, info->cu_index,
25937 0);
25938 write_psymbols (info->symtab,
25939 info->psyms_seen,
25940 &info->objfile->static_psymbols[psymtab->statics_offset],
25941 psymtab->n_static_syms, info->cu_index,
25942 1);
25943
25944 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
25945 to_underlying (entry->per_cu.sect_off));
25946 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
25947 to_underlying (entry->type_offset_in_tu));
25948 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
25949
25950 ++info->cu_index;
25951
25952 return 1;
25953 }
25954
25955 /* Recurse into all "included" dependencies and count their symbols as
25956 if they appeared in this psymtab. */
25957
25958 static void
25959 recursively_count_psymbols (struct partial_symtab *psymtab,
25960 size_t &psyms_seen)
25961 {
25962 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
25963 if (psymtab->dependencies[i]->user != NULL)
25964 recursively_count_psymbols (psymtab->dependencies[i],
25965 psyms_seen);
25966
25967 psyms_seen += psymtab->n_global_syms;
25968 psyms_seen += psymtab->n_static_syms;
25969 }
25970
25971 /* Recurse into all "included" dependencies and write their symbols as
25972 if they appeared in this psymtab. */
25973
25974 static void
25975 recursively_write_psymbols (struct objfile *objfile,
25976 struct partial_symtab *psymtab,
25977 struct mapped_symtab *symtab,
25978 std::unordered_set<partial_symbol *> &psyms_seen,
25979 offset_type cu_index)
25980 {
25981 int i;
25982
25983 for (i = 0; i < psymtab->number_of_dependencies; ++i)
25984 if (psymtab->dependencies[i]->user != NULL)
25985 recursively_write_psymbols (objfile, psymtab->dependencies[i],
25986 symtab, psyms_seen, cu_index);
25987
25988 write_psymbols (symtab,
25989 psyms_seen,
25990 &objfile->global_psymbols[psymtab->globals_offset],
25991 psymtab->n_global_syms, cu_index,
25992 0);
25993 write_psymbols (symtab,
25994 psyms_seen,
25995 &objfile->static_psymbols[psymtab->statics_offset],
25996 psymtab->n_static_syms, cu_index,
25997 1);
25998 }
25999
26000 /* DWARF-5 .debug_names builder. */
26001 class debug_names
26002 {
26003 public:
26004 debug_names (bool is_dwarf64, bfd_endian dwarf5_byte_order)
26005 : m_dwarf5_byte_order (dwarf5_byte_order),
26006 m_dwarf32 (dwarf5_byte_order),
26007 m_dwarf64 (dwarf5_byte_order),
26008 m_dwarf (is_dwarf64
26009 ? static_cast<dwarf &> (m_dwarf64)
26010 : static_cast<dwarf &> (m_dwarf32)),
26011 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26012 m_name_table_entry_offs (m_dwarf.name_table_entry_offs)
26013 {}
26014
26015 /* Insert one symbol. */
26016 void insert (const partial_symbol *psym, int cu_index, bool is_static)
26017 {
26018 const int dwarf_tag = psymbol_tag (psym);
26019 if (dwarf_tag == 0)
26020 return;
26021 const char *const name = SYMBOL_SEARCH_NAME (psym);
26022 const auto insertpair
26023 = m_name_to_value_set.emplace (c_str_view (name),
26024 std::set<symbol_value> ());
26025 std::set<symbol_value> &value_set = insertpair.first->second;
26026 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static));
26027 }
26028
26029 /* Build all the tables. All symbols must be already inserted.
26030 This function does not call file_write, caller has to do it
26031 afterwards. */
26032 void build ()
26033 {
26034 /* Verify the build method has not be called twice. */
26035 gdb_assert (m_abbrev_table.empty ());
26036 const size_t name_count = m_name_to_value_set.size ();
26037 m_bucket_table.resize
26038 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26039 m_hash_table.reserve (name_count);
26040 m_name_table_string_offs.reserve (name_count);
26041 m_name_table_entry_offs.reserve (name_count);
26042
26043 /* Map each hash of symbol to its name and value. */
26044 struct hash_it_pair
26045 {
26046 uint32_t hash;
26047 decltype (m_name_to_value_set)::const_iterator it;
26048 };
26049 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26050 bucket_hash.resize (m_bucket_table.size ());
26051 for (decltype (m_name_to_value_set)::const_iterator it
26052 = m_name_to_value_set.cbegin ();
26053 it != m_name_to_value_set.cend ();
26054 ++it)
26055 {
26056 const char *const name = it->first.c_str ();
26057 const uint32_t hash = dwarf5_djb_hash (name);
26058 hash_it_pair hashitpair;
26059 hashitpair.hash = hash;
26060 hashitpair.it = it;
26061 auto &slot = bucket_hash[hash % bucket_hash.size()];
26062 slot.push_front (std::move (hashitpair));
26063 }
26064 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26065 {
26066 const std::forward_list<hash_it_pair> &hashitlist
26067 = bucket_hash[bucket_ix];
26068 if (hashitlist.empty ())
26069 continue;
26070 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26071 /* The hashes array is indexed starting at 1. */
26072 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26073 sizeof (bucket_slot), m_dwarf5_byte_order,
26074 m_hash_table.size () + 1);
26075 for (const hash_it_pair &hashitpair : hashitlist)
26076 {
26077 m_hash_table.push_back (0);
26078 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26079 (&m_hash_table.back ()),
26080 sizeof (m_hash_table.back ()),
26081 m_dwarf5_byte_order, hashitpair.hash);
26082 const c_str_view &name = hashitpair.it->first;
26083 const std::set<symbol_value> &value_set = hashitpair.it->second;
26084 m_name_table_string_offs.push_back_reorder
26085 (m_debugstrlookup.lookup (name.c_str ()));
26086 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26087 gdb_assert (!value_set.empty ());
26088 for (const symbol_value &value : value_set)
26089 {
26090 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26091 value.is_static)];
26092 if (idx == 0)
26093 {
26094 idx = m_idx_next++;
26095 m_abbrev_table.append_unsigned_leb128 (idx);
26096 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26097 m_abbrev_table.append_unsigned_leb128 (DW_IDX_compile_unit);
26098 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26099 m_abbrev_table.append_unsigned_leb128 (value.is_static
26100 ? DW_IDX_GNU_internal
26101 : DW_IDX_GNU_external);
26102 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26103
26104 /* Terminate attributes list. */
26105 m_abbrev_table.append_unsigned_leb128 (0);
26106 m_abbrev_table.append_unsigned_leb128 (0);
26107 }
26108
26109 m_entry_pool.append_unsigned_leb128 (idx);
26110 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26111 }
26112
26113 /* Terminate the list of CUs. */
26114 m_entry_pool.append_unsigned_leb128 (0);
26115 }
26116 }
26117 gdb_assert (m_hash_table.size () == name_count);
26118
26119 /* Terminate tags list. */
26120 m_abbrev_table.append_unsigned_leb128 (0);
26121 }
26122
26123 /* Return .debug_names bucket count. This must be called only after
26124 calling the build method. */
26125 uint32_t bucket_count () const
26126 {
26127 /* Verify the build method has been already called. */
26128 gdb_assert (!m_abbrev_table.empty ());
26129 const uint32_t retval = m_bucket_table.size ();
26130
26131 /* Check for overflow. */
26132 gdb_assert (retval == m_bucket_table.size ());
26133 return retval;
26134 }
26135
26136 /* Return .debug_names names count. This must be called only after
26137 calling the build method. */
26138 uint32_t name_count () const
26139 {
26140 /* Verify the build method has been already called. */
26141 gdb_assert (!m_abbrev_table.empty ());
26142 const uint32_t retval = m_hash_table.size ();
26143
26144 /* Check for overflow. */
26145 gdb_assert (retval == m_hash_table.size ());
26146 return retval;
26147 }
26148
26149 /* Return number of bytes of .debug_names abbreviation table. This
26150 must be called only after calling the build method. */
26151 uint32_t abbrev_table_bytes () const
26152 {
26153 gdb_assert (!m_abbrev_table.empty ());
26154 return m_abbrev_table.size ();
26155 }
26156
26157 /* Recurse into all "included" dependencies and store their symbols
26158 as if they appeared in this psymtab. */
26159 void recursively_write_psymbols
26160 (struct objfile *objfile,
26161 struct partial_symtab *psymtab,
26162 std::unordered_set<partial_symbol *> &psyms_seen,
26163 int cu_index)
26164 {
26165 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26166 if (psymtab->dependencies[i]->user != NULL)
26167 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26168 psyms_seen, cu_index);
26169
26170 write_psymbols (psyms_seen,
26171 &objfile->global_psymbols[psymtab->globals_offset],
26172 psymtab->n_global_syms, cu_index, false);
26173 write_psymbols (psyms_seen,
26174 &objfile->static_psymbols[psymtab->statics_offset],
26175 psymtab->n_static_syms, cu_index, true);
26176 }
26177
26178 /* Return number of bytes the .debug_names section will have. This
26179 must be called only after calling the build method. */
26180 size_t bytes () const
26181 {
26182 /* Verify the build method has been already called. */
26183 gdb_assert (!m_abbrev_table.empty ());
26184 size_t expected_bytes = 0;
26185 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26186 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26187 expected_bytes += m_name_table_string_offs.bytes ();
26188 expected_bytes += m_name_table_entry_offs.bytes ();
26189 expected_bytes += m_abbrev_table.size ();
26190 expected_bytes += m_entry_pool.size ();
26191 return expected_bytes;
26192 }
26193
26194 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26195 FILE_STR. This must be called only after calling the build
26196 method. */
26197 void file_write (FILE *file_names, FILE *file_str) const
26198 {
26199 /* Verify the build method has been already called. */
26200 gdb_assert (!m_abbrev_table.empty ());
26201 ::file_write (file_names, m_bucket_table);
26202 ::file_write (file_names, m_hash_table);
26203 m_name_table_string_offs.file_write (file_names);
26204 m_name_table_entry_offs.file_write (file_names);
26205 m_abbrev_table.file_write (file_names);
26206 m_entry_pool.file_write (file_names);
26207 m_debugstrlookup.file_write (file_str);
26208 }
26209
26210 private:
26211
26212 /* Storage for symbol names mapping them to their .debug_str section
26213 offsets. */
26214 class debug_str_lookup
26215 {
26216 public:
26217
26218 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26219 All .debug_str section strings are automatically stored. */
26220 debug_str_lookup ()
26221 : m_abfd (dwarf2_per_objfile->objfile->obfd)
26222 {
26223 dwarf2_read_section (dwarf2_per_objfile->objfile,
26224 &dwarf2_per_objfile->str);
26225 if (dwarf2_per_objfile->str.buffer == NULL)
26226 return;
26227 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26228 data < (dwarf2_per_objfile->str.buffer
26229 + dwarf2_per_objfile->str.size);)
26230 {
26231 const char *const s = reinterpret_cast<const char *> (data);
26232 const auto insertpair
26233 = m_str_table.emplace (c_str_view (s),
26234 data - dwarf2_per_objfile->str.buffer);
26235 if (!insertpair.second)
26236 complaint (&symfile_complaints,
26237 _("Duplicate string \"%s\" in "
26238 ".debug_str section [in module %s]"),
26239 s, bfd_get_filename (m_abfd));
26240 data += strlen (s) + 1;
26241 }
26242 }
26243
26244 /* Return offset of symbol name S in the .debug_str section. Add
26245 such symbol to the section's end if it does not exist there
26246 yet. */
26247 size_t lookup (const char *s)
26248 {
26249 const auto it = m_str_table.find (c_str_view (s));
26250 if (it != m_str_table.end ())
26251 return it->second;
26252 const size_t offset = (dwarf2_per_objfile->str.size
26253 + m_str_add_buf.size ());
26254 m_str_table.emplace (c_str_view (s), offset);
26255 m_str_add_buf.append_cstr0 (s);
26256 return offset;
26257 }
26258
26259 /* Append the end of the .debug_str section to FILE. */
26260 void file_write (FILE *file) const
26261 {
26262 m_str_add_buf.file_write (file);
26263 }
26264
26265 private:
26266 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26267 bfd *const m_abfd;
26268
26269 /* Data to add at the end of .debug_str for new needed symbol names. */
26270 data_buf m_str_add_buf;
26271 };
26272
26273 /* Container to map used DWARF tags to their .debug_names abbreviation
26274 tags. */
26275 class index_key
26276 {
26277 public:
26278 index_key (int dwarf_tag_, bool is_static_)
26279 : dwarf_tag (dwarf_tag_), is_static (is_static_)
26280 {
26281 }
26282
26283 bool
26284 operator== (const index_key &other) const
26285 {
26286 return dwarf_tag == other.dwarf_tag && is_static == other.is_static;
26287 }
26288
26289 const int dwarf_tag;
26290 const bool is_static;
26291 };
26292
26293 /* Provide std::unordered_map::hasher for index_key. */
26294 class index_key_hasher
26295 {
26296 public:
26297 size_t
26298 operator () (const index_key &key) const
26299 {
26300 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26301 }
26302 };
26303
26304 /* Parameters of one symbol entry. */
26305 class symbol_value
26306 {
26307 public:
26308 const int dwarf_tag, cu_index;
26309 const bool is_static;
26310
26311 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_)
26312 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_)
26313 {}
26314
26315 bool
26316 operator< (const symbol_value &other) const
26317 {
26318 #define X(n) \
26319 do \
26320 { \
26321 if (n < other.n) \
26322 return true; \
26323 if (n > other.n) \
26324 return false; \
26325 } \
26326 while (0)
26327 X (dwarf_tag);
26328 X (is_static);
26329 X (cu_index);
26330 #undef X
26331 return false;
26332 }
26333 };
26334
26335 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26336 output. */
26337 class offset_vec
26338 {
26339 protected:
26340 const bfd_endian dwarf5_byte_order;
26341 public:
26342 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26343 : dwarf5_byte_order (dwarf5_byte_order_)
26344 {}
26345
26346 /* Call std::vector::reserve for NELEM elements. */
26347 virtual void reserve (size_t nelem) = 0;
26348
26349 /* Call std::vector::push_back with store_unsigned_integer byte
26350 reordering for ELEM. */
26351 virtual void push_back_reorder (size_t elem) = 0;
26352
26353 /* Return expected output size in bytes. */
26354 virtual size_t bytes () const = 0;
26355
26356 /* Write name table to FILE. */
26357 virtual void file_write (FILE *file) const = 0;
26358 };
26359
26360 /* Template to unify DWARF-32 and DWARF-64 output. */
26361 template<typename OffsetSize>
26362 class offset_vec_tmpl : public offset_vec
26363 {
26364 public:
26365 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26366 : offset_vec (dwarf5_byte_order_)
26367 {}
26368
26369 /* Implement offset_vec::reserve. */
26370 void reserve (size_t nelem) override
26371 {
26372 m_vec.reserve (nelem);
26373 }
26374
26375 /* Implement offset_vec::push_back_reorder. */
26376 void push_back_reorder (size_t elem) override
26377 {
26378 m_vec.push_back (elem);
26379 /* Check for overflow. */
26380 gdb_assert (m_vec.back () == elem);
26381 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
26382 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
26383 }
26384
26385 /* Implement offset_vec::bytes. */
26386 size_t bytes () const override
26387 {
26388 return m_vec.size () * sizeof (m_vec[0]);
26389 }
26390
26391 /* Implement offset_vec::file_write. */
26392 void file_write (FILE *file) const override
26393 {
26394 ::file_write (file, m_vec);
26395 }
26396
26397 private:
26398 std::vector<OffsetSize> m_vec;
26399 };
26400
26401 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26402 respecting name table width. */
26403 class dwarf
26404 {
26405 public:
26406 offset_vec &name_table_string_offs, &name_table_entry_offs;
26407
26408 dwarf (offset_vec &name_table_string_offs_,
26409 offset_vec &name_table_entry_offs_)
26410 : name_table_string_offs (name_table_string_offs_),
26411 name_table_entry_offs (name_table_entry_offs_)
26412 {
26413 }
26414 };
26415
26416 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26417 respecting name table width. */
26418 template<typename OffsetSize>
26419 class dwarf_tmpl : public dwarf
26420 {
26421 public:
26422 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
26423 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
26424 m_name_table_string_offs (dwarf5_byte_order_),
26425 m_name_table_entry_offs (dwarf5_byte_order_)
26426 {}
26427
26428 private:
26429 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
26430 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
26431 };
26432
26433 /* Try to reconstruct original DWARF tag for given partial_symbol.
26434 This function is not DWARF-5 compliant but it is sufficient for
26435 GDB as a DWARF-5 index consumer. */
26436 static int psymbol_tag (const struct partial_symbol *psym)
26437 {
26438 domain_enum domain = PSYMBOL_DOMAIN (psym);
26439 enum address_class aclass = PSYMBOL_CLASS (psym);
26440
26441 switch (domain)
26442 {
26443 case VAR_DOMAIN:
26444 switch (aclass)
26445 {
26446 case LOC_BLOCK:
26447 return DW_TAG_subprogram;
26448 case LOC_TYPEDEF:
26449 return DW_TAG_typedef;
26450 case LOC_COMPUTED:
26451 case LOC_CONST_BYTES:
26452 case LOC_OPTIMIZED_OUT:
26453 case LOC_STATIC:
26454 return DW_TAG_variable;
26455 case LOC_CONST:
26456 /* Note: It's currently impossible to recognize psyms as enum values
26457 short of reading the type info. For now punt. */
26458 return DW_TAG_variable;
26459 default:
26460 /* There are other LOC_FOO values that one might want to classify
26461 as variables, but dwarf2read.c doesn't currently use them. */
26462 return DW_TAG_variable;
26463 }
26464 case STRUCT_DOMAIN:
26465 return DW_TAG_structure_type;
26466 default:
26467 return 0;
26468 }
26469 }
26470
26471 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26472 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
26473 struct partial_symbol **psymp, int count, int cu_index,
26474 bool is_static)
26475 {
26476 for (; count-- > 0; ++psymp)
26477 {
26478 struct partial_symbol *psym = *psymp;
26479
26480 if (SYMBOL_LANGUAGE (psym) == language_ada)
26481 error (_("Ada is not currently supported by the index"));
26482
26483 /* Only add a given psymbol once. */
26484 if (psyms_seen.insert (psym).second)
26485 insert (psym, cu_index, is_static);
26486 }
26487 }
26488
26489 /* Store value of each symbol. */
26490 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
26491 m_name_to_value_set;
26492
26493 /* Tables of DWARF-5 .debug_names. They are in object file byte
26494 order. */
26495 std::vector<uint32_t> m_bucket_table;
26496 std::vector<uint32_t> m_hash_table;
26497
26498 const bfd_endian m_dwarf5_byte_order;
26499 dwarf_tmpl<uint32_t> m_dwarf32;
26500 dwarf_tmpl<uint64_t> m_dwarf64;
26501 dwarf &m_dwarf;
26502 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
26503 debug_str_lookup m_debugstrlookup;
26504
26505 /* Map each used .debug_names abbreviation tag parameter to its
26506 index value. */
26507 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
26508
26509 /* Next unused .debug_names abbreviation tag for
26510 m_indexkey_to_idx. */
26511 int m_idx_next = 1;
26512
26513 /* .debug_names abbreviation table. */
26514 data_buf m_abbrev_table;
26515
26516 /* .debug_names entry pool. */
26517 data_buf m_entry_pool;
26518 };
26519
26520 /* Return iff any of the needed offsets does not fit into 32-bit
26521 .debug_names section. */
26522
26523 static bool
26524 check_dwarf64_offsets ()
26525 {
26526 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26527 {
26528 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
26529
26530 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26531 return true;
26532 }
26533 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
26534 {
26535 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
26536 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
26537
26538 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26539 return true;
26540 }
26541 return false;
26542 }
26543
26544 /* The psyms_seen set is potentially going to be largish (~40k
26545 elements when indexing a -g3 build of GDB itself). Estimate the
26546 number of elements in order to avoid too many rehashes, which
26547 require rebuilding buckets and thus many trips to
26548 malloc/free. */
26549
26550 static size_t
26551 psyms_seen_size ()
26552 {
26553 size_t psyms_count = 0;
26554 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26555 {
26556 struct dwarf2_per_cu_data *per_cu
26557 = dwarf2_per_objfile->all_comp_units[i];
26558 struct partial_symtab *psymtab = per_cu->v.psymtab;
26559
26560 if (psymtab != NULL && psymtab->user == NULL)
26561 recursively_count_psymbols (psymtab, psyms_count);
26562 }
26563 /* Generating an index for gdb itself shows a ratio of
26564 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
26565 return psyms_count / 4;
26566 }
26567
26568 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
26569 Return how many bytes were expected to be written into OUT_FILE. */
26570
26571 static size_t
26572 write_gdbindex (struct objfile *objfile, FILE *out_file)
26573 {
26574 mapped_symtab symtab;
26575 data_buf cu_list;
26576
26577 /* While we're scanning CU's create a table that maps a psymtab pointer
26578 (which is what addrmap records) to its index (which is what is recorded
26579 in the index file). This will later be needed to write the address
26580 table. */
26581 psym_index_map cu_index_htab;
26582 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
26583
26584 /* The CU list is already sorted, so we don't need to do additional
26585 work here. Also, the debug_types entries do not appear in
26586 all_comp_units, but only in their own hash table. */
26587
26588 std::unordered_set<partial_symbol *> psyms_seen (psyms_seen_size ());
26589 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26590 {
26591 struct dwarf2_per_cu_data *per_cu
26592 = dwarf2_per_objfile->all_comp_units[i];
26593 struct partial_symtab *psymtab = per_cu->v.psymtab;
26594
26595 /* CU of a shared file from 'dwz -m' may be unused by this main file.
26596 It may be referenced from a local scope but in such case it does not
26597 need to be present in .gdb_index. */
26598 if (psymtab == NULL)
26599 continue;
26600
26601 if (psymtab->user == NULL)
26602 recursively_write_psymbols (objfile, psymtab, &symtab,
26603 psyms_seen, i);
26604
26605 const auto insertpair = cu_index_htab.emplace (psymtab, i);
26606 gdb_assert (insertpair.second);
26607
26608 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
26609 to_underlying (per_cu->sect_off));
26610 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
26611 }
26612
26613 /* Dump the address map. */
26614 data_buf addr_vec;
26615 write_address_map (objfile, addr_vec, cu_index_htab);
26616
26617 /* Write out the .debug_type entries, if any. */
26618 data_buf types_cu_list;
26619 if (dwarf2_per_objfile->signatured_types)
26620 {
26621 signatured_type_index_data sig_data (types_cu_list,
26622 psyms_seen);
26623
26624 sig_data.objfile = objfile;
26625 sig_data.symtab = &symtab;
26626 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
26627 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26628 write_one_signatured_type, &sig_data);
26629 }
26630
26631 /* Now that we've processed all symbols we can shrink their cu_indices
26632 lists. */
26633 uniquify_cu_indices (&symtab);
26634
26635 data_buf symtab_vec, constant_pool;
26636 write_hash_table (&symtab, symtab_vec, constant_pool);
26637
26638 data_buf contents;
26639 const offset_type size_of_contents = 6 * sizeof (offset_type);
26640 offset_type total_len = size_of_contents;
26641
26642 /* The version number. */
26643 contents.append_data (MAYBE_SWAP (8));
26644
26645 /* The offset of the CU list from the start of the file. */
26646 contents.append_data (MAYBE_SWAP (total_len));
26647 total_len += cu_list.size ();
26648
26649 /* The offset of the types CU list from the start of the file. */
26650 contents.append_data (MAYBE_SWAP (total_len));
26651 total_len += types_cu_list.size ();
26652
26653 /* The offset of the address table from the start of the file. */
26654 contents.append_data (MAYBE_SWAP (total_len));
26655 total_len += addr_vec.size ();
26656
26657 /* The offset of the symbol table from the start of the file. */
26658 contents.append_data (MAYBE_SWAP (total_len));
26659 total_len += symtab_vec.size ();
26660
26661 /* The offset of the constant pool from the start of the file. */
26662 contents.append_data (MAYBE_SWAP (total_len));
26663 total_len += constant_pool.size ();
26664
26665 gdb_assert (contents.size () == size_of_contents);
26666
26667 contents.file_write (out_file);
26668 cu_list.file_write (out_file);
26669 types_cu_list.file_write (out_file);
26670 addr_vec.file_write (out_file);
26671 symtab_vec.file_write (out_file);
26672 constant_pool.file_write (out_file);
26673
26674 return total_len;
26675 }
26676
26677 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
26678 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
26679
26680 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
26681 needed addition to .debug_str section to OUT_FILE_STR. Return how
26682 many bytes were expected to be written into OUT_FILE. */
26683
26684 static size_t
26685 write_debug_names (struct objfile *objfile, FILE *out_file, FILE *out_file_str)
26686 {
26687 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets ();
26688 const int dwarf5_offset_size = dwarf5_is_dwarf64 ? 8 : 4;
26689 const enum bfd_endian dwarf5_byte_order
26690 = gdbarch_byte_order (get_objfile_arch (objfile));
26691
26692 /* The CU list is already sorted, so we don't need to do additional
26693 work here. Also, the debug_types entries do not appear in
26694 all_comp_units, but only in their own hash table. */
26695 data_buf cu_list;
26696 debug_names nametable (dwarf5_is_dwarf64, dwarf5_byte_order);
26697 std::unordered_set<partial_symbol *> psyms_seen (psyms_seen_size ());
26698 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26699 {
26700 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
26701 partial_symtab *psymtab = per_cu->v.psymtab;
26702
26703 /* CU of a shared file from 'dwz -m' may be unused by this main
26704 file. It may be referenced from a local scope but in such
26705 case it does not need to be present in .debug_names. */
26706 if (psymtab == NULL)
26707 continue;
26708
26709 if (psymtab->user == NULL)
26710 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
26711
26712 cu_list.append_uint (dwarf5_offset_size, dwarf5_byte_order,
26713 to_underlying (per_cu->sect_off));
26714 }
26715 nametable.build ();
26716
26717 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
26718
26719 data_buf types_cu_list;
26720 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
26721 {
26722 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
26723 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
26724
26725 types_cu_list.append_uint (dwarf5_offset_size, dwarf5_byte_order,
26726 to_underlying (per_cu.sect_off));
26727 }
26728
26729 const offset_type bytes_of_header
26730 = ((dwarf5_is_dwarf64 ? 12 : 4)
26731 + 2 + 2 + 7 * 4
26732 + sizeof (dwarf5_gdb_augmentation));
26733 size_t expected_bytes = 0;
26734 expected_bytes += bytes_of_header;
26735 expected_bytes += cu_list.size ();
26736 expected_bytes += types_cu_list.size ();
26737 expected_bytes += nametable.bytes ();
26738 data_buf header;
26739
26740 if (!dwarf5_is_dwarf64)
26741 {
26742 const uint64_t size64 = expected_bytes - 4;
26743 gdb_assert (size64 < 0xfffffff0);
26744 header.append_uint (4, dwarf5_byte_order, size64);
26745 }
26746 else
26747 {
26748 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
26749 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
26750 }
26751
26752 /* The version number. */
26753 header.append_uint (2, dwarf5_byte_order, 5);
26754
26755 /* Padding. */
26756 header.append_uint (2, dwarf5_byte_order, 0);
26757
26758 /* comp_unit_count - The number of CUs in the CU list. */
26759 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
26760
26761 /* local_type_unit_count - The number of TUs in the local TU
26762 list. */
26763 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
26764
26765 /* foreign_type_unit_count - The number of TUs in the foreign TU
26766 list. */
26767 header.append_uint (4, dwarf5_byte_order, 0);
26768
26769 /* bucket_count - The number of hash buckets in the hash lookup
26770 table. */
26771 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
26772
26773 /* name_count - The number of unique names in the index. */
26774 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
26775
26776 /* abbrev_table_size - The size in bytes of the abbreviations
26777 table. */
26778 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
26779
26780 /* augmentation_string_size - The size in bytes of the augmentation
26781 string. This value is rounded up to a multiple of 4. */
26782 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
26783 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
26784 header.append_data (dwarf5_gdb_augmentation);
26785
26786 gdb_assert (header.size () == bytes_of_header);
26787
26788 header.file_write (out_file);
26789 cu_list.file_write (out_file);
26790 types_cu_list.file_write (out_file);
26791 nametable.file_write (out_file, out_file_str);
26792
26793 return expected_bytes;
26794 }
26795
26796 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
26797 position is at the end of the file. */
26798
26799 static void
26800 assert_file_size (FILE *file, const char *filename, size_t expected_size)
26801 {
26802 const auto file_size = ftell (file);
26803 if (file_size == -1)
26804 error (_("Can't get `%s' size"), filename);
26805 gdb_assert (file_size == expected_size);
26806 }
26807
26808 /* Create an index file for OBJFILE in the directory DIR. */
26809
26810 static void
26811 write_psymtabs_to_index (struct objfile *objfile, const char *dir,
26812 dw_index_kind index_kind)
26813 {
26814 if (dwarf2_per_objfile->using_index)
26815 error (_("Cannot use an index to create the index"));
26816
26817 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
26818 error (_("Cannot make an index when the file has multiple .debug_types sections"));
26819
26820 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
26821 return;
26822
26823 struct stat st;
26824 if (stat (objfile_name (objfile), &st) < 0)
26825 perror_with_name (objfile_name (objfile));
26826
26827 std::string filename (std::string (dir) + SLASH_STRING
26828 + lbasename (objfile_name (objfile))
26829 + (index_kind == dw_index_kind::DEBUG_NAMES
26830 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
26831
26832 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
26833 if (!out_file)
26834 error (_("Can't open `%s' for writing"), filename.c_str ());
26835
26836 /* Order matters here; we want FILE to be closed before FILENAME is
26837 unlinked, because on MS-Windows one cannot delete a file that is
26838 still open. (Don't call anything here that might throw until
26839 file_closer is created.) */
26840 gdb::unlinker unlink_file (filename.c_str ());
26841 gdb_file_up close_out_file (out_file);
26842
26843 if (index_kind == dw_index_kind::DEBUG_NAMES)
26844 {
26845 std::string filename_str (std::string (dir) + SLASH_STRING
26846 + lbasename (objfile_name (objfile))
26847 + DEBUG_STR_SUFFIX);
26848 FILE *out_file_str
26849 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
26850 if (!out_file_str)
26851 error (_("Can't open `%s' for writing"), filename_str.c_str ());
26852 gdb::unlinker unlink_file_str (filename_str.c_str ());
26853 gdb_file_up close_out_file_str (out_file_str);
26854
26855 const size_t total_len
26856 = write_debug_names (objfile, out_file, out_file_str);
26857 assert_file_size (out_file, filename.c_str (), total_len);
26858
26859 /* We want to keep the file .debug_str file too. */
26860 unlink_file_str.keep ();
26861 }
26862 else
26863 {
26864 const size_t total_len
26865 = write_gdbindex (objfile, out_file);
26866 assert_file_size (out_file, filename.c_str (), total_len);
26867 }
26868
26869 /* We want to keep the file. */
26870 unlink_file.keep ();
26871 }
26872
26873 /* Implementation of the `save gdb-index' command.
26874
26875 Note that the .gdb_index file format used by this command is
26876 documented in the GDB manual. Any changes here must be documented
26877 there. */
26878
26879 static void
26880 save_gdb_index_command (const char *arg, int from_tty)
26881 {
26882 struct objfile *objfile;
26883 const char dwarf5space[] = "-dwarf-5 ";
26884 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
26885
26886 if (!arg)
26887 arg = "";
26888
26889 arg = skip_spaces (arg);
26890 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
26891 {
26892 index_kind = dw_index_kind::DEBUG_NAMES;
26893 arg += strlen (dwarf5space);
26894 arg = skip_spaces (arg);
26895 }
26896
26897 if (!*arg)
26898 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
26899
26900 ALL_OBJFILES (objfile)
26901 {
26902 struct stat st;
26903
26904 /* If the objfile does not correspond to an actual file, skip it. */
26905 if (stat (objfile_name (objfile), &st) < 0)
26906 continue;
26907
26908 dwarf2_per_objfile
26909 = (struct dwarf2_per_objfile *) objfile_data (objfile,
26910 dwarf2_objfile_data_key);
26911 if (dwarf2_per_objfile)
26912 {
26913
26914 TRY
26915 {
26916 write_psymtabs_to_index (objfile, arg, index_kind);
26917 }
26918 CATCH (except, RETURN_MASK_ERROR)
26919 {
26920 exception_fprintf (gdb_stderr, except,
26921 _("Error while writing index for `%s': "),
26922 objfile_name (objfile));
26923 }
26924 END_CATCH
26925 }
26926 }
26927 }
26928
26929 \f
26930
26931 int dwarf_always_disassemble;
26932
26933 static void
26934 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
26935 struct cmd_list_element *c, const char *value)
26936 {
26937 fprintf_filtered (file,
26938 _("Whether to always disassemble "
26939 "DWARF expressions is %s.\n"),
26940 value);
26941 }
26942
26943 static void
26944 show_check_physname (struct ui_file *file, int from_tty,
26945 struct cmd_list_element *c, const char *value)
26946 {
26947 fprintf_filtered (file,
26948 _("Whether to check \"physname\" is %s.\n"),
26949 value);
26950 }
26951
26952 void
26953 _initialize_dwarf2_read (void)
26954 {
26955 struct cmd_list_element *c;
26956
26957 dwarf2_objfile_data_key
26958 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
26959
26960 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
26961 Set DWARF specific variables.\n\
26962 Configure DWARF variables such as the cache size"),
26963 &set_dwarf_cmdlist, "maintenance set dwarf ",
26964 0/*allow-unknown*/, &maintenance_set_cmdlist);
26965
26966 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
26967 Show DWARF specific variables\n\
26968 Show DWARF variables such as the cache size"),
26969 &show_dwarf_cmdlist, "maintenance show dwarf ",
26970 0/*allow-unknown*/, &maintenance_show_cmdlist);
26971
26972 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
26973 &dwarf_max_cache_age, _("\
26974 Set the upper bound on the age of cached DWARF compilation units."), _("\
26975 Show the upper bound on the age of cached DWARF compilation units."), _("\
26976 A higher limit means that cached compilation units will be stored\n\
26977 in memory longer, and more total memory will be used. Zero disables\n\
26978 caching, which can slow down startup."),
26979 NULL,
26980 show_dwarf_max_cache_age,
26981 &set_dwarf_cmdlist,
26982 &show_dwarf_cmdlist);
26983
26984 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
26985 &dwarf_always_disassemble, _("\
26986 Set whether `info address' always disassembles DWARF expressions."), _("\
26987 Show whether `info address' always disassembles DWARF expressions."), _("\
26988 When enabled, DWARF expressions are always printed in an assembly-like\n\
26989 syntax. When disabled, expressions will be printed in a more\n\
26990 conversational style, when possible."),
26991 NULL,
26992 show_dwarf_always_disassemble,
26993 &set_dwarf_cmdlist,
26994 &show_dwarf_cmdlist);
26995
26996 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
26997 Set debugging of the DWARF reader."), _("\
26998 Show debugging of the DWARF reader."), _("\
26999 When enabled (non-zero), debugging messages are printed during DWARF\n\
27000 reading and symtab expansion. A value of 1 (one) provides basic\n\
27001 information. A value greater than 1 provides more verbose information."),
27002 NULL,
27003 NULL,
27004 &setdebuglist, &showdebuglist);
27005
27006 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27007 Set debugging of the DWARF DIE reader."), _("\
27008 Show debugging of the DWARF DIE reader."), _("\
27009 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27010 The value is the maximum depth to print."),
27011 NULL,
27012 NULL,
27013 &setdebuglist, &showdebuglist);
27014
27015 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27016 Set debugging of the dwarf line reader."), _("\
27017 Show debugging of the dwarf line reader."), _("\
27018 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27019 A value of 1 (one) provides basic information.\n\
27020 A value greater than 1 provides more verbose information."),
27021 NULL,
27022 NULL,
27023 &setdebuglist, &showdebuglist);
27024
27025 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27026 Set cross-checking of \"physname\" code against demangler."), _("\
27027 Show cross-checking of \"physname\" code against demangler."), _("\
27028 When enabled, GDB's internal \"physname\" code is checked against\n\
27029 the demangler."),
27030 NULL, show_check_physname,
27031 &setdebuglist, &showdebuglist);
27032
27033 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27034 no_class, &use_deprecated_index_sections, _("\
27035 Set whether to use deprecated gdb_index sections."), _("\
27036 Show whether to use deprecated gdb_index sections."), _("\
27037 When enabled, deprecated .gdb_index sections are used anyway.\n\
27038 Normally they are ignored either because of a missing feature or\n\
27039 performance issue.\n\
27040 Warning: This option must be enabled before gdb reads the file."),
27041 NULL,
27042 NULL,
27043 &setlist, &showlist);
27044
27045 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27046 _("\
27047 Save a gdb-index file.\n\
27048 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27049 \n\
27050 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27051 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27052 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27053 &save_cmdlist);
27054 set_cmd_completer (c, filename_completer);
27055
27056 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27057 &dwarf2_locexpr_funcs);
27058 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27059 &dwarf2_loclist_funcs);
27060
27061 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27062 &dwarf2_block_frame_base_locexpr_funcs);
27063 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27064 &dwarf2_block_frame_base_loclist_funcs);
27065
27066 #if GDB_SELF_TEST
27067 selftests::register_test ("dw2_expand_symtabs_matching",
27068 selftests::dw2_expand_symtabs_matching::run_test);
27069 #endif
27070 }
This page took 0.938238 seconds and 4 git commands to generate.