Fix TAB-completion + .gdb_index slowness (generalize filename_seen_cache)
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
232
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241 private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248 public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
266
267 /* Back link. */
268 struct objfile *objfile = NULL;
269
270 /* Table of all the compilation units. This is used to locate
271 the target compilation unit of a particular reference. */
272 struct dwarf2_per_cu_data **all_comp_units = NULL;
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
275 int n_comp_units = 0;
276
277 /* The number of .debug_types-related CUs. */
278 int n_type_units = 0;
279
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
282 int n_allocated_type_units = 0;
283
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
286 struct signatured_type **all_type_units = NULL;
287
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
290 htab_t type_unit_groups {};
291
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
294 htab_t signatured_types {};
295
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
298 struct tu_stats tu_stats {};
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
302 dwarf2_per_cu_data *read_in_chain = NULL;
303
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
306 htab_t dwo_files {};
307
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
310
311 /* The DWP file if there is one, or NULL. */
312 struct dwp_file *dwp_file = NULL;
313
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
316 struct dwz_file *dwz_file = NULL;
317
318 /* A flag indicating whether this objfile has a section loaded at a
319 VMA of 0. */
320 bool has_section_at_zero = false;
321
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
324 bool using_index = false;
325
326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
327 mapped_index *index_table = NULL;
328
329 /* When using index_table, this keeps track of all quick_file_names entries.
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
336 htab_t quick_file_names_table {};
337
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
340 bool reading_partial_symbols = false;
341
342 /* Table mapping type DIEs to their struct type *.
343 This is NULL if not allocated yet.
344 The mapping is done via (CU/TU + DIE offset) -> type. */
345 htab_t die_type_hash {};
346
347 /* The CUs we recently read. */
348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
351 htab_t line_header_hash {};
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
356 };
357
358 static struct dwarf2_per_objfile *dwarf2_per_objfile;
359
360 /* Default names of the debugging sections. */
361
362 /* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
365 static const struct dwarf2_debug_sections dwarf2_elf_names =
366 {
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
371 { ".debug_loclists", ".zdebug_loclists" },
372 { ".debug_macinfo", ".zdebug_macinfo" },
373 { ".debug_macro", ".zdebug_macro" },
374 { ".debug_str", ".zdebug_str" },
375 { ".debug_line_str", ".zdebug_line_str" },
376 { ".debug_ranges", ".zdebug_ranges" },
377 { ".debug_rnglists", ".zdebug_rnglists" },
378 { ".debug_types", ".zdebug_types" },
379 { ".debug_addr", ".zdebug_addr" },
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
382 { ".gdb_index", ".zgdb_index" },
383 23
384 };
385
386 /* List of DWO/DWP sections. */
387
388 static const struct dwop_section_names
389 {
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
394 struct dwarf2_section_names loclists_dwo;
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
402 }
403 dwop_section_names =
404 {
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
417 };
418
419 /* local data types */
420
421 /* The data in a compilation unit header, after target2host
422 translation, looks like this. */
423 struct comp_unit_head
424 {
425 unsigned int length;
426 short version;
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
429 sect_offset abbrev_sect_off;
430
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
433
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
436
437 enum dwarf_unit_type unit_type;
438
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
441 sect_offset sect_off;
442
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
445 cu_offset first_die_cu_offset;
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
452 cu_offset type_cu_offset_in_tu;
453 };
454
455 /* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457 struct delayed_method_info
458 {
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473 };
474
475 typedef struct delayed_method_info delayed_method_info;
476 DEF_VEC_O (delayed_method_info);
477
478 /* Internal state when decoding a particular compilation unit. */
479 struct dwarf2_cu
480 {
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
484 /* The header of the compilation unit. */
485 struct comp_unit_head header;
486
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
497 const char *producer;
498
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
514
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
529 /* Backlink to our per_cu entry. */
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
537 htab_t die_hash;
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549
550 /* A list of methods which need to have physnames computed
551 after all type information has been read. */
552 VEC (delayed_method_info) *method_list;
553
554 /* To be copied to symtab->call_site_htab. */
555 htab_t call_site_htab;
556
557 /* Non-NULL if this CU came from a DWO file.
558 There is an invariant here that is important to remember:
559 Except for attributes copied from the top level DIE in the "main"
560 (or "stub") file in preparation for reading the DWO file
561 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
562 Either there isn't a DWO file (in which case this is NULL and the point
563 is moot), or there is and either we're not going to read it (in which
564 case this is NULL) or there is and we are reading it (in which case this
565 is non-NULL). */
566 struct dwo_unit *dwo_unit;
567
568 /* The DW_AT_addr_base attribute if present, zero otherwise
569 (zero is a valid value though).
570 Note this value comes from the Fission stub CU/TU's DIE. */
571 ULONGEST addr_base;
572
573 /* The DW_AT_ranges_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE.
576 Also note that the value is zero in the non-DWO case so this value can
577 be used without needing to know whether DWO files are in use or not.
578 N.B. This does not apply to DW_AT_ranges appearing in
579 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
580 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
581 DW_AT_ranges_base *would* have to be applied, and we'd have to care
582 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
583 ULONGEST ranges_base;
584
585 /* Mark used when releasing cached dies. */
586 unsigned int mark : 1;
587
588 /* This CU references .debug_loc. See the symtab->locations_valid field.
589 This test is imperfect as there may exist optimized debug code not using
590 any location list and still facing inlining issues if handled as
591 unoptimized code. For a future better test see GCC PR other/32998. */
592 unsigned int has_loclist : 1;
593
594 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
595 if all the producer_is_* fields are valid. This information is cached
596 because profiling CU expansion showed excessive time spent in
597 producer_is_gxx_lt_4_6. */
598 unsigned int checked_producer : 1;
599 unsigned int producer_is_gxx_lt_4_6 : 1;
600 unsigned int producer_is_gcc_lt_4_3 : 1;
601 unsigned int producer_is_icc : 1;
602
603 /* When set, the file that we're processing is known to have
604 debugging info for C++ namespaces. GCC 3.3.x did not produce
605 this information, but later versions do. */
606
607 unsigned int processing_has_namespace_info : 1;
608 };
609
610 /* Persistent data held for a compilation unit, even when not
611 processing it. We put a pointer to this structure in the
612 read_symtab_private field of the psymtab. */
613
614 struct dwarf2_per_cu_data
615 {
616 /* The start offset and length of this compilation unit.
617 NOTE: Unlike comp_unit_head.length, this length includes
618 initial_length_size.
619 If the DIE refers to a DWO file, this is always of the original die,
620 not the DWO file. */
621 sect_offset sect_off;
622 unsigned int length;
623
624 /* DWARF standard version this data has been read from (such as 4 or 5). */
625 short dwarf_version;
626
627 /* Flag indicating this compilation unit will be read in before
628 any of the current compilation units are processed. */
629 unsigned int queued : 1;
630
631 /* This flag will be set when reading partial DIEs if we need to load
632 absolutely all DIEs for this compilation unit, instead of just the ones
633 we think are interesting. It gets set if we look for a DIE in the
634 hash table and don't find it. */
635 unsigned int load_all_dies : 1;
636
637 /* Non-zero if this CU is from .debug_types.
638 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
639 this is non-zero. */
640 unsigned int is_debug_types : 1;
641
642 /* Non-zero if this CU is from the .dwz file. */
643 unsigned int is_dwz : 1;
644
645 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
646 This flag is only valid if is_debug_types is true.
647 We can't read a CU directly from a DWO file: There are required
648 attributes in the stub. */
649 unsigned int reading_dwo_directly : 1;
650
651 /* Non-zero if the TU has been read.
652 This is used to assist the "Stay in DWO Optimization" for Fission:
653 When reading a DWO, it's faster to read TUs from the DWO instead of
654 fetching them from random other DWOs (due to comdat folding).
655 If the TU has already been read, the optimization is unnecessary
656 (and unwise - we don't want to change where gdb thinks the TU lives
657 "midflight").
658 This flag is only valid if is_debug_types is true. */
659 unsigned int tu_read : 1;
660
661 /* The section this CU/TU lives in.
662 If the DIE refers to a DWO file, this is always the original die,
663 not the DWO file. */
664 struct dwarf2_section_info *section;
665
666 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
667 of the CU cache it gets reset to NULL again. This is left as NULL for
668 dummy CUs (a CU header, but nothing else). */
669 struct dwarf2_cu *cu;
670
671 /* The corresponding objfile.
672 Normally we can get the objfile from dwarf2_per_objfile.
673 However we can enter this file with just a "per_cu" handle. */
674 struct objfile *objfile;
675
676 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
677 is active. Otherwise, the 'psymtab' field is active. */
678 union
679 {
680 /* The partial symbol table associated with this compilation unit,
681 or NULL for unread partial units. */
682 struct partial_symtab *psymtab;
683
684 /* Data needed by the "quick" functions. */
685 struct dwarf2_per_cu_quick_data *quick;
686 } v;
687
688 /* The CUs we import using DW_TAG_imported_unit. This is filled in
689 while reading psymtabs, used to compute the psymtab dependencies,
690 and then cleared. Then it is filled in again while reading full
691 symbols, and only deleted when the objfile is destroyed.
692
693 This is also used to work around a difference between the way gold
694 generates .gdb_index version <=7 and the way gdb does. Arguably this
695 is a gold bug. For symbols coming from TUs, gold records in the index
696 the CU that includes the TU instead of the TU itself. This breaks
697 dw2_lookup_symbol: It assumes that if the index says symbol X lives
698 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
699 will find X. Alas TUs live in their own symtab, so after expanding CU Y
700 we need to look in TU Z to find X. Fortunately, this is akin to
701 DW_TAG_imported_unit, so we just use the same mechanism: For
702 .gdb_index version <=7 this also records the TUs that the CU referred
703 to. Concurrently with this change gdb was modified to emit version 8
704 indices so we only pay a price for gold generated indices.
705 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
706 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
707 };
708
709 /* Entry in the signatured_types hash table. */
710
711 struct signatured_type
712 {
713 /* The "per_cu" object of this type.
714 This struct is used iff per_cu.is_debug_types.
715 N.B.: This is the first member so that it's easy to convert pointers
716 between them. */
717 struct dwarf2_per_cu_data per_cu;
718
719 /* The type's signature. */
720 ULONGEST signature;
721
722 /* Offset in the TU of the type's DIE, as read from the TU header.
723 If this TU is a DWO stub and the definition lives in a DWO file
724 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
725 cu_offset type_offset_in_tu;
726
727 /* Offset in the section of the type's DIE.
728 If the definition lives in a DWO file, this is the offset in the
729 .debug_types.dwo section.
730 The value is zero until the actual value is known.
731 Zero is otherwise not a valid section offset. */
732 sect_offset type_offset_in_section;
733
734 /* Type units are grouped by their DW_AT_stmt_list entry so that they
735 can share them. This points to the containing symtab. */
736 struct type_unit_group *type_unit_group;
737
738 /* The type.
739 The first time we encounter this type we fully read it in and install it
740 in the symbol tables. Subsequent times we only need the type. */
741 struct type *type;
742
743 /* Containing DWO unit.
744 This field is valid iff per_cu.reading_dwo_directly. */
745 struct dwo_unit *dwo_unit;
746 };
747
748 typedef struct signatured_type *sig_type_ptr;
749 DEF_VEC_P (sig_type_ptr);
750
751 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
752 This includes type_unit_group and quick_file_names. */
753
754 struct stmt_list_hash
755 {
756 /* The DWO unit this table is from or NULL if there is none. */
757 struct dwo_unit *dwo_unit;
758
759 /* Offset in .debug_line or .debug_line.dwo. */
760 sect_offset line_sect_off;
761 };
762
763 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
764 an object of this type. */
765
766 struct type_unit_group
767 {
768 /* dwarf2read.c's main "handle" on a TU symtab.
769 To simplify things we create an artificial CU that "includes" all the
770 type units using this stmt_list so that the rest of the code still has
771 a "per_cu" handle on the symtab.
772 This PER_CU is recognized by having no section. */
773 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
774 struct dwarf2_per_cu_data per_cu;
775
776 /* The TUs that share this DW_AT_stmt_list entry.
777 This is added to while parsing type units to build partial symtabs,
778 and is deleted afterwards and not used again. */
779 VEC (sig_type_ptr) *tus;
780
781 /* The compunit symtab.
782 Type units in a group needn't all be defined in the same source file,
783 so we create an essentially anonymous symtab as the compunit symtab. */
784 struct compunit_symtab *compunit_symtab;
785
786 /* The data used to construct the hash key. */
787 struct stmt_list_hash hash;
788
789 /* The number of symtabs from the line header.
790 The value here must match line_header.num_file_names. */
791 unsigned int num_symtabs;
792
793 /* The symbol tables for this TU (obtained from the files listed in
794 DW_AT_stmt_list).
795 WARNING: The order of entries here must match the order of entries
796 in the line header. After the first TU using this type_unit_group, the
797 line header for the subsequent TUs is recreated from this. This is done
798 because we need to use the same symtabs for each TU using the same
799 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
800 there's no guarantee the line header doesn't have duplicate entries. */
801 struct symtab **symtabs;
802 };
803
804 /* These sections are what may appear in a (real or virtual) DWO file. */
805
806 struct dwo_sections
807 {
808 struct dwarf2_section_info abbrev;
809 struct dwarf2_section_info line;
810 struct dwarf2_section_info loc;
811 struct dwarf2_section_info loclists;
812 struct dwarf2_section_info macinfo;
813 struct dwarf2_section_info macro;
814 struct dwarf2_section_info str;
815 struct dwarf2_section_info str_offsets;
816 /* In the case of a virtual DWO file, these two are unused. */
817 struct dwarf2_section_info info;
818 VEC (dwarf2_section_info_def) *types;
819 };
820
821 /* CUs/TUs in DWP/DWO files. */
822
823 struct dwo_unit
824 {
825 /* Backlink to the containing struct dwo_file. */
826 struct dwo_file *dwo_file;
827
828 /* The "id" that distinguishes this CU/TU.
829 .debug_info calls this "dwo_id", .debug_types calls this "signature".
830 Since signatures came first, we stick with it for consistency. */
831 ULONGEST signature;
832
833 /* The section this CU/TU lives in, in the DWO file. */
834 struct dwarf2_section_info *section;
835
836 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
837 sect_offset sect_off;
838 unsigned int length;
839
840 /* For types, offset in the type's DIE of the type defined by this TU. */
841 cu_offset type_offset_in_tu;
842 };
843
844 /* include/dwarf2.h defines the DWP section codes.
845 It defines a max value but it doesn't define a min value, which we
846 use for error checking, so provide one. */
847
848 enum dwp_v2_section_ids
849 {
850 DW_SECT_MIN = 1
851 };
852
853 /* Data for one DWO file.
854
855 This includes virtual DWO files (a virtual DWO file is a DWO file as it
856 appears in a DWP file). DWP files don't really have DWO files per se -
857 comdat folding of types "loses" the DWO file they came from, and from
858 a high level view DWP files appear to contain a mass of random types.
859 However, to maintain consistency with the non-DWP case we pretend DWP
860 files contain virtual DWO files, and we assign each TU with one virtual
861 DWO file (generally based on the line and abbrev section offsets -
862 a heuristic that seems to work in practice). */
863
864 struct dwo_file
865 {
866 /* The DW_AT_GNU_dwo_name attribute.
867 For virtual DWO files the name is constructed from the section offsets
868 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
869 from related CU+TUs. */
870 const char *dwo_name;
871
872 /* The DW_AT_comp_dir attribute. */
873 const char *comp_dir;
874
875 /* The bfd, when the file is open. Otherwise this is NULL.
876 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
877 bfd *dbfd;
878
879 /* The sections that make up this DWO file.
880 Remember that for virtual DWO files in DWP V2, these are virtual
881 sections (for lack of a better name). */
882 struct dwo_sections sections;
883
884 /* The CUs in the file.
885 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
886 an extension to handle LLVM's Link Time Optimization output (where
887 multiple source files may be compiled into a single object/dwo pair). */
888 htab_t cus;
889
890 /* Table of TUs in the file.
891 Each element is a struct dwo_unit. */
892 htab_t tus;
893 };
894
895 /* These sections are what may appear in a DWP file. */
896
897 struct dwp_sections
898 {
899 /* These are used by both DWP version 1 and 2. */
900 struct dwarf2_section_info str;
901 struct dwarf2_section_info cu_index;
902 struct dwarf2_section_info tu_index;
903
904 /* These are only used by DWP version 2 files.
905 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
906 sections are referenced by section number, and are not recorded here.
907 In DWP version 2 there is at most one copy of all these sections, each
908 section being (effectively) comprised of the concatenation of all of the
909 individual sections that exist in the version 1 format.
910 To keep the code simple we treat each of these concatenated pieces as a
911 section itself (a virtual section?). */
912 struct dwarf2_section_info abbrev;
913 struct dwarf2_section_info info;
914 struct dwarf2_section_info line;
915 struct dwarf2_section_info loc;
916 struct dwarf2_section_info macinfo;
917 struct dwarf2_section_info macro;
918 struct dwarf2_section_info str_offsets;
919 struct dwarf2_section_info types;
920 };
921
922 /* These sections are what may appear in a virtual DWO file in DWP version 1.
923 A virtual DWO file is a DWO file as it appears in a DWP file. */
924
925 struct virtual_v1_dwo_sections
926 {
927 struct dwarf2_section_info abbrev;
928 struct dwarf2_section_info line;
929 struct dwarf2_section_info loc;
930 struct dwarf2_section_info macinfo;
931 struct dwarf2_section_info macro;
932 struct dwarf2_section_info str_offsets;
933 /* Each DWP hash table entry records one CU or one TU.
934 That is recorded here, and copied to dwo_unit.section. */
935 struct dwarf2_section_info info_or_types;
936 };
937
938 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
939 In version 2, the sections of the DWO files are concatenated together
940 and stored in one section of that name. Thus each ELF section contains
941 several "virtual" sections. */
942
943 struct virtual_v2_dwo_sections
944 {
945 bfd_size_type abbrev_offset;
946 bfd_size_type abbrev_size;
947
948 bfd_size_type line_offset;
949 bfd_size_type line_size;
950
951 bfd_size_type loc_offset;
952 bfd_size_type loc_size;
953
954 bfd_size_type macinfo_offset;
955 bfd_size_type macinfo_size;
956
957 bfd_size_type macro_offset;
958 bfd_size_type macro_size;
959
960 bfd_size_type str_offsets_offset;
961 bfd_size_type str_offsets_size;
962
963 /* Each DWP hash table entry records one CU or one TU.
964 That is recorded here, and copied to dwo_unit.section. */
965 bfd_size_type info_or_types_offset;
966 bfd_size_type info_or_types_size;
967 };
968
969 /* Contents of DWP hash tables. */
970
971 struct dwp_hash_table
972 {
973 uint32_t version, nr_columns;
974 uint32_t nr_units, nr_slots;
975 const gdb_byte *hash_table, *unit_table;
976 union
977 {
978 struct
979 {
980 const gdb_byte *indices;
981 } v1;
982 struct
983 {
984 /* This is indexed by column number and gives the id of the section
985 in that column. */
986 #define MAX_NR_V2_DWO_SECTIONS \
987 (1 /* .debug_info or .debug_types */ \
988 + 1 /* .debug_abbrev */ \
989 + 1 /* .debug_line */ \
990 + 1 /* .debug_loc */ \
991 + 1 /* .debug_str_offsets */ \
992 + 1 /* .debug_macro or .debug_macinfo */)
993 int section_ids[MAX_NR_V2_DWO_SECTIONS];
994 const gdb_byte *offsets;
995 const gdb_byte *sizes;
996 } v2;
997 } section_pool;
998 };
999
1000 /* Data for one DWP file. */
1001
1002 struct dwp_file
1003 {
1004 /* Name of the file. */
1005 const char *name;
1006
1007 /* File format version. */
1008 int version;
1009
1010 /* The bfd. */
1011 bfd *dbfd;
1012
1013 /* Section info for this file. */
1014 struct dwp_sections sections;
1015
1016 /* Table of CUs in the file. */
1017 const struct dwp_hash_table *cus;
1018
1019 /* Table of TUs in the file. */
1020 const struct dwp_hash_table *tus;
1021
1022 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1023 htab_t loaded_cus;
1024 htab_t loaded_tus;
1025
1026 /* Table to map ELF section numbers to their sections.
1027 This is only needed for the DWP V1 file format. */
1028 unsigned int num_sections;
1029 asection **elf_sections;
1030 };
1031
1032 /* This represents a '.dwz' file. */
1033
1034 struct dwz_file
1035 {
1036 /* A dwz file can only contain a few sections. */
1037 struct dwarf2_section_info abbrev;
1038 struct dwarf2_section_info info;
1039 struct dwarf2_section_info str;
1040 struct dwarf2_section_info line;
1041 struct dwarf2_section_info macro;
1042 struct dwarf2_section_info gdb_index;
1043
1044 /* The dwz's BFD. */
1045 bfd *dwz_bfd;
1046 };
1047
1048 /* Struct used to pass misc. parameters to read_die_and_children, et
1049 al. which are used for both .debug_info and .debug_types dies.
1050 All parameters here are unchanging for the life of the call. This
1051 struct exists to abstract away the constant parameters of die reading. */
1052
1053 struct die_reader_specs
1054 {
1055 /* The bfd of die_section. */
1056 bfd* abfd;
1057
1058 /* The CU of the DIE we are parsing. */
1059 struct dwarf2_cu *cu;
1060
1061 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1062 struct dwo_file *dwo_file;
1063
1064 /* The section the die comes from.
1065 This is either .debug_info or .debug_types, or the .dwo variants. */
1066 struct dwarf2_section_info *die_section;
1067
1068 /* die_section->buffer. */
1069 const gdb_byte *buffer;
1070
1071 /* The end of the buffer. */
1072 const gdb_byte *buffer_end;
1073
1074 /* The value of the DW_AT_comp_dir attribute. */
1075 const char *comp_dir;
1076 };
1077
1078 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1079 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1080 const gdb_byte *info_ptr,
1081 struct die_info *comp_unit_die,
1082 int has_children,
1083 void *data);
1084
1085 /* A 1-based directory index. This is a strong typedef to prevent
1086 accidentally using a directory index as a 0-based index into an
1087 array/vector. */
1088 enum class dir_index : unsigned int {};
1089
1090 /* Likewise, a 1-based file name index. */
1091 enum class file_name_index : unsigned int {};
1092
1093 struct file_entry
1094 {
1095 file_entry () = default;
1096
1097 file_entry (const char *name_, dir_index d_index_,
1098 unsigned int mod_time_, unsigned int length_)
1099 : name (name_),
1100 d_index (d_index_),
1101 mod_time (mod_time_),
1102 length (length_)
1103 {}
1104
1105 /* Return the include directory at D_INDEX stored in LH. Returns
1106 NULL if D_INDEX is out of bounds. */
1107 const char *include_dir (const line_header *lh) const;
1108
1109 /* The file name. Note this is an observing pointer. The memory is
1110 owned by debug_line_buffer. */
1111 const char *name {};
1112
1113 /* The directory index (1-based). */
1114 dir_index d_index {};
1115
1116 unsigned int mod_time {};
1117
1118 unsigned int length {};
1119
1120 /* True if referenced by the Line Number Program. */
1121 bool included_p {};
1122
1123 /* The associated symbol table, if any. */
1124 struct symtab *symtab {};
1125 };
1126
1127 /* The line number information for a compilation unit (found in the
1128 .debug_line section) begins with a "statement program header",
1129 which contains the following information. */
1130 struct line_header
1131 {
1132 line_header ()
1133 : offset_in_dwz {}
1134 {}
1135
1136 /* Add an entry to the include directory table. */
1137 void add_include_dir (const char *include_dir);
1138
1139 /* Add an entry to the file name table. */
1140 void add_file_name (const char *name, dir_index d_index,
1141 unsigned int mod_time, unsigned int length);
1142
1143 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1144 is out of bounds. */
1145 const char *include_dir_at (dir_index index) const
1146 {
1147 /* Convert directory index number (1-based) to vector index
1148 (0-based). */
1149 size_t vec_index = to_underlying (index) - 1;
1150
1151 if (vec_index >= include_dirs.size ())
1152 return NULL;
1153 return include_dirs[vec_index];
1154 }
1155
1156 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1157 is out of bounds. */
1158 file_entry *file_name_at (file_name_index index)
1159 {
1160 /* Convert file name index number (1-based) to vector index
1161 (0-based). */
1162 size_t vec_index = to_underlying (index) - 1;
1163
1164 if (vec_index >= file_names.size ())
1165 return NULL;
1166 return &file_names[vec_index];
1167 }
1168
1169 /* Const version of the above. */
1170 const file_entry *file_name_at (unsigned int index) const
1171 {
1172 if (index >= file_names.size ())
1173 return NULL;
1174 return &file_names[index];
1175 }
1176
1177 /* Offset of line number information in .debug_line section. */
1178 sect_offset sect_off {};
1179
1180 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1181 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1182
1183 unsigned int total_length {};
1184 unsigned short version {};
1185 unsigned int header_length {};
1186 unsigned char minimum_instruction_length {};
1187 unsigned char maximum_ops_per_instruction {};
1188 unsigned char default_is_stmt {};
1189 int line_base {};
1190 unsigned char line_range {};
1191 unsigned char opcode_base {};
1192
1193 /* standard_opcode_lengths[i] is the number of operands for the
1194 standard opcode whose value is i. This means that
1195 standard_opcode_lengths[0] is unused, and the last meaningful
1196 element is standard_opcode_lengths[opcode_base - 1]. */
1197 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1198
1199 /* The include_directories table. Note these are observing
1200 pointers. The memory is owned by debug_line_buffer. */
1201 std::vector<const char *> include_dirs;
1202
1203 /* The file_names table. */
1204 std::vector<file_entry> file_names;
1205
1206 /* The start and end of the statement program following this
1207 header. These point into dwarf2_per_objfile->line_buffer. */
1208 const gdb_byte *statement_program_start {}, *statement_program_end {};
1209 };
1210
1211 typedef std::unique_ptr<line_header> line_header_up;
1212
1213 const char *
1214 file_entry::include_dir (const line_header *lh) const
1215 {
1216 return lh->include_dir_at (d_index);
1217 }
1218
1219 /* When we construct a partial symbol table entry we only
1220 need this much information. */
1221 struct partial_die_info
1222 {
1223 /* Offset of this DIE. */
1224 sect_offset sect_off;
1225
1226 /* DWARF-2 tag for this DIE. */
1227 ENUM_BITFIELD(dwarf_tag) tag : 16;
1228
1229 /* Assorted flags describing the data found in this DIE. */
1230 unsigned int has_children : 1;
1231 unsigned int is_external : 1;
1232 unsigned int is_declaration : 1;
1233 unsigned int has_type : 1;
1234 unsigned int has_specification : 1;
1235 unsigned int has_pc_info : 1;
1236 unsigned int may_be_inlined : 1;
1237
1238 /* This DIE has been marked DW_AT_main_subprogram. */
1239 unsigned int main_subprogram : 1;
1240
1241 /* Flag set if the SCOPE field of this structure has been
1242 computed. */
1243 unsigned int scope_set : 1;
1244
1245 /* Flag set if the DIE has a byte_size attribute. */
1246 unsigned int has_byte_size : 1;
1247
1248 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1249 unsigned int has_const_value : 1;
1250
1251 /* Flag set if any of the DIE's children are template arguments. */
1252 unsigned int has_template_arguments : 1;
1253
1254 /* Flag set if fixup_partial_die has been called on this die. */
1255 unsigned int fixup_called : 1;
1256
1257 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1258 unsigned int is_dwz : 1;
1259
1260 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1261 unsigned int spec_is_dwz : 1;
1262
1263 /* The name of this DIE. Normally the value of DW_AT_name, but
1264 sometimes a default name for unnamed DIEs. */
1265 const char *name;
1266
1267 /* The linkage name, if present. */
1268 const char *linkage_name;
1269
1270 /* The scope to prepend to our children. This is generally
1271 allocated on the comp_unit_obstack, so will disappear
1272 when this compilation unit leaves the cache. */
1273 const char *scope;
1274
1275 /* Some data associated with the partial DIE. The tag determines
1276 which field is live. */
1277 union
1278 {
1279 /* The location description associated with this DIE, if any. */
1280 struct dwarf_block *locdesc;
1281 /* The offset of an import, for DW_TAG_imported_unit. */
1282 sect_offset sect_off;
1283 } d;
1284
1285 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1286 CORE_ADDR lowpc;
1287 CORE_ADDR highpc;
1288
1289 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1290 DW_AT_sibling, if any. */
1291 /* NOTE: This member isn't strictly necessary, read_partial_die could
1292 return DW_AT_sibling values to its caller load_partial_dies. */
1293 const gdb_byte *sibling;
1294
1295 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1296 DW_AT_specification (or DW_AT_abstract_origin or
1297 DW_AT_extension). */
1298 sect_offset spec_offset;
1299
1300 /* Pointers to this DIE's parent, first child, and next sibling,
1301 if any. */
1302 struct partial_die_info *die_parent, *die_child, *die_sibling;
1303 };
1304
1305 /* This data structure holds the information of an abbrev. */
1306 struct abbrev_info
1307 {
1308 unsigned int number; /* number identifying abbrev */
1309 enum dwarf_tag tag; /* dwarf tag */
1310 unsigned short has_children; /* boolean */
1311 unsigned short num_attrs; /* number of attributes */
1312 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1313 struct abbrev_info *next; /* next in chain */
1314 };
1315
1316 struct attr_abbrev
1317 {
1318 ENUM_BITFIELD(dwarf_attribute) name : 16;
1319 ENUM_BITFIELD(dwarf_form) form : 16;
1320
1321 /* It is valid only if FORM is DW_FORM_implicit_const. */
1322 LONGEST implicit_const;
1323 };
1324
1325 /* Size of abbrev_table.abbrev_hash_table. */
1326 #define ABBREV_HASH_SIZE 121
1327
1328 /* Top level data structure to contain an abbreviation table. */
1329
1330 struct abbrev_table
1331 {
1332 /* Where the abbrev table came from.
1333 This is used as a sanity check when the table is used. */
1334 sect_offset sect_off;
1335
1336 /* Storage for the abbrev table. */
1337 struct obstack abbrev_obstack;
1338
1339 /* Hash table of abbrevs.
1340 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1341 It could be statically allocated, but the previous code didn't so we
1342 don't either. */
1343 struct abbrev_info **abbrevs;
1344 };
1345
1346 /* Attributes have a name and a value. */
1347 struct attribute
1348 {
1349 ENUM_BITFIELD(dwarf_attribute) name : 16;
1350 ENUM_BITFIELD(dwarf_form) form : 15;
1351
1352 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1353 field should be in u.str (existing only for DW_STRING) but it is kept
1354 here for better struct attribute alignment. */
1355 unsigned int string_is_canonical : 1;
1356
1357 union
1358 {
1359 const char *str;
1360 struct dwarf_block *blk;
1361 ULONGEST unsnd;
1362 LONGEST snd;
1363 CORE_ADDR addr;
1364 ULONGEST signature;
1365 }
1366 u;
1367 };
1368
1369 /* This data structure holds a complete die structure. */
1370 struct die_info
1371 {
1372 /* DWARF-2 tag for this DIE. */
1373 ENUM_BITFIELD(dwarf_tag) tag : 16;
1374
1375 /* Number of attributes */
1376 unsigned char num_attrs;
1377
1378 /* True if we're presently building the full type name for the
1379 type derived from this DIE. */
1380 unsigned char building_fullname : 1;
1381
1382 /* True if this die is in process. PR 16581. */
1383 unsigned char in_process : 1;
1384
1385 /* Abbrev number */
1386 unsigned int abbrev;
1387
1388 /* Offset in .debug_info or .debug_types section. */
1389 sect_offset sect_off;
1390
1391 /* The dies in a compilation unit form an n-ary tree. PARENT
1392 points to this die's parent; CHILD points to the first child of
1393 this node; and all the children of a given node are chained
1394 together via their SIBLING fields. */
1395 struct die_info *child; /* Its first child, if any. */
1396 struct die_info *sibling; /* Its next sibling, if any. */
1397 struct die_info *parent; /* Its parent, if any. */
1398
1399 /* An array of attributes, with NUM_ATTRS elements. There may be
1400 zero, but it's not common and zero-sized arrays are not
1401 sufficiently portable C. */
1402 struct attribute attrs[1];
1403 };
1404
1405 /* Get at parts of an attribute structure. */
1406
1407 #define DW_STRING(attr) ((attr)->u.str)
1408 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1409 #define DW_UNSND(attr) ((attr)->u.unsnd)
1410 #define DW_BLOCK(attr) ((attr)->u.blk)
1411 #define DW_SND(attr) ((attr)->u.snd)
1412 #define DW_ADDR(attr) ((attr)->u.addr)
1413 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1414
1415 /* Blocks are a bunch of untyped bytes. */
1416 struct dwarf_block
1417 {
1418 size_t size;
1419
1420 /* Valid only if SIZE is not zero. */
1421 const gdb_byte *data;
1422 };
1423
1424 #ifndef ATTR_ALLOC_CHUNK
1425 #define ATTR_ALLOC_CHUNK 4
1426 #endif
1427
1428 /* Allocate fields for structs, unions and enums in this size. */
1429 #ifndef DW_FIELD_ALLOC_CHUNK
1430 #define DW_FIELD_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1434 but this would require a corresponding change in unpack_field_as_long
1435 and friends. */
1436 static int bits_per_byte = 8;
1437
1438 struct nextfield
1439 {
1440 struct nextfield *next;
1441 int accessibility;
1442 int virtuality;
1443 struct field field;
1444 };
1445
1446 struct nextfnfield
1447 {
1448 struct nextfnfield *next;
1449 struct fn_field fnfield;
1450 };
1451
1452 struct fnfieldlist
1453 {
1454 const char *name;
1455 int length;
1456 struct nextfnfield *head;
1457 };
1458
1459 struct typedef_field_list
1460 {
1461 struct typedef_field field;
1462 struct typedef_field_list *next;
1463 };
1464
1465 /* The routines that read and process dies for a C struct or C++ class
1466 pass lists of data member fields and lists of member function fields
1467 in an instance of a field_info structure, as defined below. */
1468 struct field_info
1469 {
1470 /* List of data member and baseclasses fields. */
1471 struct nextfield *fields, *baseclasses;
1472
1473 /* Number of fields (including baseclasses). */
1474 int nfields;
1475
1476 /* Number of baseclasses. */
1477 int nbaseclasses;
1478
1479 /* Set if the accesibility of one of the fields is not public. */
1480 int non_public_fields;
1481
1482 /* Member function fields array, entries are allocated in the order they
1483 are encountered in the object file. */
1484 struct nextfnfield *fnfields;
1485
1486 /* Member function fieldlist array, contains name of possibly overloaded
1487 member function, number of overloaded member functions and a pointer
1488 to the head of the member function field chain. */
1489 struct fnfieldlist *fnfieldlists;
1490
1491 /* Number of entries in the fnfieldlists array. */
1492 int nfnfields;
1493
1494 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1495 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1496 struct typedef_field_list *typedef_field_list;
1497 unsigned typedef_field_list_count;
1498 };
1499
1500 /* One item on the queue of compilation units to read in full symbols
1501 for. */
1502 struct dwarf2_queue_item
1503 {
1504 struct dwarf2_per_cu_data *per_cu;
1505 enum language pretend_language;
1506 struct dwarf2_queue_item *next;
1507 };
1508
1509 /* The current queue. */
1510 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1511
1512 /* Loaded secondary compilation units are kept in memory until they
1513 have not been referenced for the processing of this many
1514 compilation units. Set this to zero to disable caching. Cache
1515 sizes of up to at least twenty will improve startup time for
1516 typical inter-CU-reference binaries, at an obvious memory cost. */
1517 static int dwarf_max_cache_age = 5;
1518 static void
1519 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1520 struct cmd_list_element *c, const char *value)
1521 {
1522 fprintf_filtered (file, _("The upper bound on the age of cached "
1523 "DWARF compilation units is %s.\n"),
1524 value);
1525 }
1526 \f
1527 /* local function prototypes */
1528
1529 static const char *get_section_name (const struct dwarf2_section_info *);
1530
1531 static const char *get_section_file_name (const struct dwarf2_section_info *);
1532
1533 static void dwarf2_find_base_address (struct die_info *die,
1534 struct dwarf2_cu *cu);
1535
1536 static struct partial_symtab *create_partial_symtab
1537 (struct dwarf2_per_cu_data *per_cu, const char *name);
1538
1539 static void dwarf2_build_psymtabs_hard (struct objfile *);
1540
1541 static void scan_partial_symbols (struct partial_die_info *,
1542 CORE_ADDR *, CORE_ADDR *,
1543 int, struct dwarf2_cu *);
1544
1545 static void add_partial_symbol (struct partial_die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void add_partial_namespace (struct partial_die_info *pdi,
1549 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1550 int set_addrmap, struct dwarf2_cu *cu);
1551
1552 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1553 CORE_ADDR *highpc, int set_addrmap,
1554 struct dwarf2_cu *cu);
1555
1556 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1557 struct dwarf2_cu *cu);
1558
1559 static void add_partial_subprogram (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1561 int need_pc, struct dwarf2_cu *cu);
1562
1563 static void dwarf2_read_symtab (struct partial_symtab *,
1564 struct objfile *);
1565
1566 static void psymtab_to_symtab_1 (struct partial_symtab *);
1567
1568 static struct abbrev_info *abbrev_table_lookup_abbrev
1569 (const struct abbrev_table *, unsigned int);
1570
1571 static struct abbrev_table *abbrev_table_read_table
1572 (struct dwarf2_section_info *, sect_offset);
1573
1574 static void abbrev_table_free (struct abbrev_table *);
1575
1576 static void abbrev_table_free_cleanup (void *);
1577
1578 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1579 struct dwarf2_section_info *);
1580
1581 static void dwarf2_free_abbrev_table (void *);
1582
1583 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1584
1585 static struct partial_die_info *load_partial_dies
1586 (const struct die_reader_specs *, const gdb_byte *, int);
1587
1588 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1589 struct partial_die_info *,
1590 struct abbrev_info *,
1591 unsigned int,
1592 const gdb_byte *);
1593
1594 static struct partial_die_info *find_partial_die (sect_offset, int,
1595 struct dwarf2_cu *);
1596
1597 static void fixup_partial_die (struct partial_die_info *,
1598 struct dwarf2_cu *);
1599
1600 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1601 struct attribute *, struct attr_abbrev *,
1602 const gdb_byte *);
1603
1604 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1605
1606 static int read_1_signed_byte (bfd *, const gdb_byte *);
1607
1608 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1609
1610 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1611
1612 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1613
1614 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1615 unsigned int *);
1616
1617 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1618
1619 static LONGEST read_checked_initial_length_and_offset
1620 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1621 unsigned int *, unsigned int *);
1622
1623 static LONGEST read_offset (bfd *, const gdb_byte *,
1624 const struct comp_unit_head *,
1625 unsigned int *);
1626
1627 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1628
1629 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1630 sect_offset);
1631
1632 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1633
1634 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1635
1636 static const char *read_indirect_string (bfd *, const gdb_byte *,
1637 const struct comp_unit_head *,
1638 unsigned int *);
1639
1640 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1641 const struct comp_unit_head *,
1642 unsigned int *);
1643
1644 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1645
1646 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1647
1648 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1649 const gdb_byte *,
1650 unsigned int *);
1651
1652 static const char *read_str_index (const struct die_reader_specs *reader,
1653 ULONGEST str_index);
1654
1655 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1656
1657 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1658 struct dwarf2_cu *);
1659
1660 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1661 unsigned int);
1662
1663 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1664 struct dwarf2_cu *cu);
1665
1666 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1667 struct dwarf2_cu *cu);
1668
1669 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1670
1671 static struct die_info *die_specification (struct die_info *die,
1672 struct dwarf2_cu **);
1673
1674 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1675 struct dwarf2_cu *cu);
1676
1677 static void dwarf_decode_lines (struct line_header *, const char *,
1678 struct dwarf2_cu *, struct partial_symtab *,
1679 CORE_ADDR, int decode_mapping);
1680
1681 static void dwarf2_start_subfile (const char *, const char *);
1682
1683 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1684 const char *, const char *,
1685 CORE_ADDR);
1686
1687 static struct symbol *new_symbol (struct die_info *, struct type *,
1688 struct dwarf2_cu *);
1689
1690 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1691 struct dwarf2_cu *, struct symbol *);
1692
1693 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1694 struct dwarf2_cu *);
1695
1696 static void dwarf2_const_value_attr (const struct attribute *attr,
1697 struct type *type,
1698 const char *name,
1699 struct obstack *obstack,
1700 struct dwarf2_cu *cu, LONGEST *value,
1701 const gdb_byte **bytes,
1702 struct dwarf2_locexpr_baton **baton);
1703
1704 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1705
1706 static int need_gnat_info (struct dwarf2_cu *);
1707
1708 static struct type *die_descriptive_type (struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void set_descriptive_type (struct type *, struct die_info *,
1712 struct dwarf2_cu *);
1713
1714 static struct type *die_containing_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1721
1722 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1725
1726 static char *typename_concat (struct obstack *obs, const char *prefix,
1727 const char *suffix, int physname,
1728 struct dwarf2_cu *cu);
1729
1730 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1731
1732 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1733
1734 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1735
1736 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1739
1740 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1741 struct dwarf2_cu *, struct partial_symtab *);
1742
1743 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1744 values. Keep the items ordered with increasing constraints compliance. */
1745 enum pc_bounds_kind
1746 {
1747 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1748 PC_BOUNDS_NOT_PRESENT,
1749
1750 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1751 were present but they do not form a valid range of PC addresses. */
1752 PC_BOUNDS_INVALID,
1753
1754 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1755 PC_BOUNDS_RANGES,
1756
1757 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1758 PC_BOUNDS_HIGH_LOW,
1759 };
1760
1761 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1762 CORE_ADDR *, CORE_ADDR *,
1763 struct dwarf2_cu *,
1764 struct partial_symtab *);
1765
1766 static void get_scope_pc_bounds (struct die_info *,
1767 CORE_ADDR *, CORE_ADDR *,
1768 struct dwarf2_cu *);
1769
1770 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1771 CORE_ADDR, struct dwarf2_cu *);
1772
1773 static void dwarf2_add_field (struct field_info *, struct die_info *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_attach_fields_to_type (struct field_info *,
1777 struct type *, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_member_fn (struct field_info *,
1780 struct die_info *, struct type *,
1781 struct dwarf2_cu *);
1782
1783 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1784 struct type *,
1785 struct dwarf2_cu *);
1786
1787 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1788
1789 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1790
1791 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1792
1793 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static struct using_direct **using_directives (enum language);
1796
1797 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1798
1799 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct type *read_module_type (struct die_info *die,
1802 struct dwarf2_cu *cu);
1803
1804 static const char *namespace_name (struct die_info *die,
1805 int *is_anonymous, struct dwarf2_cu *);
1806
1807 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1808
1809 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1810
1811 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1812 struct dwarf2_cu *);
1813
1814 static struct die_info *read_die_and_siblings_1
1815 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1816 struct die_info *);
1817
1818 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1819 const gdb_byte *info_ptr,
1820 const gdb_byte **new_info_ptr,
1821 struct die_info *parent);
1822
1823 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1824 struct die_info **, const gdb_byte *,
1825 int *, int);
1826
1827 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1828 struct die_info **, const gdb_byte *,
1829 int *);
1830
1831 static void process_die (struct die_info *, struct dwarf2_cu *);
1832
1833 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1834 struct obstack *);
1835
1836 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1837
1838 static const char *dwarf2_full_name (const char *name,
1839 struct die_info *die,
1840 struct dwarf2_cu *cu);
1841
1842 static const char *dwarf2_physname (const char *name, struct die_info *die,
1843 struct dwarf2_cu *cu);
1844
1845 static struct die_info *dwarf2_extension (struct die_info *die,
1846 struct dwarf2_cu **);
1847
1848 static const char *dwarf_tag_name (unsigned int);
1849
1850 static const char *dwarf_attr_name (unsigned int);
1851
1852 static const char *dwarf_form_name (unsigned int);
1853
1854 static const char *dwarf_bool_name (unsigned int);
1855
1856 static const char *dwarf_type_encoding_name (unsigned int);
1857
1858 static struct die_info *sibling_die (struct die_info *);
1859
1860 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1861
1862 static void dump_die_for_error (struct die_info *);
1863
1864 static void dump_die_1 (struct ui_file *, int level, int max_level,
1865 struct die_info *);
1866
1867 /*static*/ void dump_die (struct die_info *, int max_level);
1868
1869 static void store_in_ref_table (struct die_info *,
1870 struct dwarf2_cu *);
1871
1872 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1873
1874 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1875
1876 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1877 const struct attribute *,
1878 struct dwarf2_cu **);
1879
1880 static struct die_info *follow_die_ref (struct die_info *,
1881 const struct attribute *,
1882 struct dwarf2_cu **);
1883
1884 static struct die_info *follow_die_sig (struct die_info *,
1885 const struct attribute *,
1886 struct dwarf2_cu **);
1887
1888 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1889 struct dwarf2_cu *);
1890
1891 static struct type *get_DW_AT_signature_type (struct die_info *,
1892 const struct attribute *,
1893 struct dwarf2_cu *);
1894
1895 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1896
1897 static void read_signatured_type (struct signatured_type *);
1898
1899 static int attr_to_dynamic_prop (const struct attribute *attr,
1900 struct die_info *die, struct dwarf2_cu *cu,
1901 struct dynamic_prop *prop);
1902
1903 /* memory allocation interface */
1904
1905 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1906
1907 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1908
1909 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1910
1911 static int attr_form_is_block (const struct attribute *);
1912
1913 static int attr_form_is_section_offset (const struct attribute *);
1914
1915 static int attr_form_is_constant (const struct attribute *);
1916
1917 static int attr_form_is_ref (const struct attribute *);
1918
1919 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1920 struct dwarf2_loclist_baton *baton,
1921 const struct attribute *attr);
1922
1923 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1924 struct symbol *sym,
1925 struct dwarf2_cu *cu,
1926 int is_block);
1927
1928 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1929 const gdb_byte *info_ptr,
1930 struct abbrev_info *abbrev);
1931
1932 static void free_stack_comp_unit (void *);
1933
1934 static hashval_t partial_die_hash (const void *item);
1935
1936 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1937
1938 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1939 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1940
1941 static void init_one_comp_unit (struct dwarf2_cu *cu,
1942 struct dwarf2_per_cu_data *per_cu);
1943
1944 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1945 struct die_info *comp_unit_die,
1946 enum language pretend_language);
1947
1948 static void free_heap_comp_unit (void *);
1949
1950 static void free_cached_comp_units (void *);
1951
1952 static void age_cached_comp_units (void);
1953
1954 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1955
1956 static struct type *set_die_type (struct die_info *, struct type *,
1957 struct dwarf2_cu *);
1958
1959 static void create_all_comp_units (struct objfile *);
1960
1961 static int create_all_type_units (struct objfile *);
1962
1963 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1964 enum language);
1965
1966 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1967 enum language);
1968
1969 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void dwarf2_add_dependence (struct dwarf2_cu *,
1973 struct dwarf2_per_cu_data *);
1974
1975 static void dwarf2_mark (struct dwarf2_cu *);
1976
1977 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1978
1979 static struct type *get_die_type_at_offset (sect_offset,
1980 struct dwarf2_per_cu_data *);
1981
1982 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1983
1984 static void dwarf2_release_queue (void *dummy);
1985
1986 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1987 enum language pretend_language);
1988
1989 static void process_queue (void);
1990
1991 /* The return type of find_file_and_directory. Note, the enclosed
1992 string pointers are only valid while this object is valid. */
1993
1994 struct file_and_directory
1995 {
1996 /* The filename. This is never NULL. */
1997 const char *name;
1998
1999 /* The compilation directory. NULL if not known. If we needed to
2000 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2001 points directly to the DW_AT_comp_dir string attribute owned by
2002 the obstack that owns the DIE. */
2003 const char *comp_dir;
2004
2005 /* If we needed to build a new string for comp_dir, this is what
2006 owns the storage. */
2007 std::string comp_dir_storage;
2008 };
2009
2010 static file_and_directory find_file_and_directory (struct die_info *die,
2011 struct dwarf2_cu *cu);
2012
2013 static char *file_full_name (int file, struct line_header *lh,
2014 const char *comp_dir);
2015
2016 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2017 enum class rcuh_kind { COMPILE, TYPE };
2018
2019 static const gdb_byte *read_and_check_comp_unit_head
2020 (struct comp_unit_head *header,
2021 struct dwarf2_section_info *section,
2022 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2023 rcuh_kind section_kind);
2024
2025 static void init_cutu_and_read_dies
2026 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2027 int use_existing_cu, int keep,
2028 die_reader_func_ftype *die_reader_func, void *data);
2029
2030 static void init_cutu_and_read_dies_simple
2031 (struct dwarf2_per_cu_data *this_cu,
2032 die_reader_func_ftype *die_reader_func, void *data);
2033
2034 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2035
2036 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2037
2038 static struct dwo_unit *lookup_dwo_unit_in_dwp
2039 (struct dwp_file *dwp_file, const char *comp_dir,
2040 ULONGEST signature, int is_debug_types);
2041
2042 static struct dwp_file *get_dwp_file (void);
2043
2044 static struct dwo_unit *lookup_dwo_comp_unit
2045 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2046
2047 static struct dwo_unit *lookup_dwo_type_unit
2048 (struct signatured_type *, const char *, const char *);
2049
2050 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2051
2052 static void free_dwo_file_cleanup (void *);
2053
2054 static void process_cu_includes (void);
2055
2056 static void check_producer (struct dwarf2_cu *cu);
2057
2058 static void free_line_header_voidp (void *arg);
2059 \f
2060 /* Various complaints about symbol reading that don't abort the process. */
2061
2062 static void
2063 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2064 {
2065 complaint (&symfile_complaints,
2066 _("statement list doesn't fit in .debug_line section"));
2067 }
2068
2069 static void
2070 dwarf2_debug_line_missing_file_complaint (void)
2071 {
2072 complaint (&symfile_complaints,
2073 _(".debug_line section has line data without a file"));
2074 }
2075
2076 static void
2077 dwarf2_debug_line_missing_end_sequence_complaint (void)
2078 {
2079 complaint (&symfile_complaints,
2080 _(".debug_line section has line "
2081 "program sequence without an end"));
2082 }
2083
2084 static void
2085 dwarf2_complex_location_expr_complaint (void)
2086 {
2087 complaint (&symfile_complaints, _("location expression too complex"));
2088 }
2089
2090 static void
2091 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2092 int arg3)
2093 {
2094 complaint (&symfile_complaints,
2095 _("const value length mismatch for '%s', got %d, expected %d"),
2096 arg1, arg2, arg3);
2097 }
2098
2099 static void
2100 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2101 {
2102 complaint (&symfile_complaints,
2103 _("debug info runs off end of %s section"
2104 " [in module %s]"),
2105 get_section_name (section),
2106 get_section_file_name (section));
2107 }
2108
2109 static void
2110 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2111 {
2112 complaint (&symfile_complaints,
2113 _("macro debug info contains a "
2114 "malformed macro definition:\n`%s'"),
2115 arg1);
2116 }
2117
2118 static void
2119 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2120 {
2121 complaint (&symfile_complaints,
2122 _("invalid attribute class or form for '%s' in '%s'"),
2123 arg1, arg2);
2124 }
2125
2126 /* Hash function for line_header_hash. */
2127
2128 static hashval_t
2129 line_header_hash (const struct line_header *ofs)
2130 {
2131 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2132 }
2133
2134 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2135
2136 static hashval_t
2137 line_header_hash_voidp (const void *item)
2138 {
2139 const struct line_header *ofs = (const struct line_header *) item;
2140
2141 return line_header_hash (ofs);
2142 }
2143
2144 /* Equality function for line_header_hash. */
2145
2146 static int
2147 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2148 {
2149 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2150 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2151
2152 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2153 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2154 }
2155
2156 \f
2157 #if WORDS_BIGENDIAN
2158
2159 /* Convert VALUE between big- and little-endian. */
2160 static offset_type
2161 byte_swap (offset_type value)
2162 {
2163 offset_type result;
2164
2165 result = (value & 0xff) << 24;
2166 result |= (value & 0xff00) << 8;
2167 result |= (value & 0xff0000) >> 8;
2168 result |= (value & 0xff000000) >> 24;
2169 return result;
2170 }
2171
2172 #define MAYBE_SWAP(V) byte_swap (V)
2173
2174 #else
2175 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2176 #endif /* WORDS_BIGENDIAN */
2177
2178 /* Read the given attribute value as an address, taking the attribute's
2179 form into account. */
2180
2181 static CORE_ADDR
2182 attr_value_as_address (struct attribute *attr)
2183 {
2184 CORE_ADDR addr;
2185
2186 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2187 {
2188 /* Aside from a few clearly defined exceptions, attributes that
2189 contain an address must always be in DW_FORM_addr form.
2190 Unfortunately, some compilers happen to be violating this
2191 requirement by encoding addresses using other forms, such
2192 as DW_FORM_data4 for example. For those broken compilers,
2193 we try to do our best, without any guarantee of success,
2194 to interpret the address correctly. It would also be nice
2195 to generate a complaint, but that would require us to maintain
2196 a list of legitimate cases where a non-address form is allowed,
2197 as well as update callers to pass in at least the CU's DWARF
2198 version. This is more overhead than what we're willing to
2199 expand for a pretty rare case. */
2200 addr = DW_UNSND (attr);
2201 }
2202 else
2203 addr = DW_ADDR (attr);
2204
2205 return addr;
2206 }
2207
2208 /* The suffix for an index file. */
2209 #define INDEX_SUFFIX ".gdb-index"
2210
2211 /* See declaration. */
2212
2213 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2214 const dwarf2_debug_sections *names)
2215 : objfile (objfile_)
2216 {
2217 if (names == NULL)
2218 names = &dwarf2_elf_names;
2219
2220 bfd *obfd = objfile->obfd;
2221
2222 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2223 locate_sections (obfd, sec, *names);
2224 }
2225
2226 dwarf2_per_objfile::~dwarf2_per_objfile ()
2227 {
2228 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2229 free_cached_comp_units ();
2230
2231 if (quick_file_names_table)
2232 htab_delete (quick_file_names_table);
2233
2234 if (line_header_hash)
2235 htab_delete (line_header_hash);
2236
2237 /* Everything else should be on the objfile obstack. */
2238 }
2239
2240 /* See declaration. */
2241
2242 void
2243 dwarf2_per_objfile::free_cached_comp_units ()
2244 {
2245 dwarf2_per_cu_data *per_cu = read_in_chain;
2246 dwarf2_per_cu_data **last_chain = &read_in_chain;
2247 while (per_cu != NULL)
2248 {
2249 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2250
2251 free_heap_comp_unit (per_cu->cu);
2252 *last_chain = next_cu;
2253 per_cu = next_cu;
2254 }
2255 }
2256
2257 /* Try to locate the sections we need for DWARF 2 debugging
2258 information and return true if we have enough to do something.
2259 NAMES points to the dwarf2 section names, or is NULL if the standard
2260 ELF names are used. */
2261
2262 int
2263 dwarf2_has_info (struct objfile *objfile,
2264 const struct dwarf2_debug_sections *names)
2265 {
2266 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2267 objfile_data (objfile, dwarf2_objfile_data_key));
2268 if (!dwarf2_per_objfile)
2269 {
2270 /* Initialize per-objfile state. */
2271 struct dwarf2_per_objfile *data
2272 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2273
2274 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2275 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2276 }
2277 return (!dwarf2_per_objfile->info.is_virtual
2278 && dwarf2_per_objfile->info.s.section != NULL
2279 && !dwarf2_per_objfile->abbrev.is_virtual
2280 && dwarf2_per_objfile->abbrev.s.section != NULL);
2281 }
2282
2283 /* Return the containing section of virtual section SECTION. */
2284
2285 static struct dwarf2_section_info *
2286 get_containing_section (const struct dwarf2_section_info *section)
2287 {
2288 gdb_assert (section->is_virtual);
2289 return section->s.containing_section;
2290 }
2291
2292 /* Return the bfd owner of SECTION. */
2293
2294 static struct bfd *
2295 get_section_bfd_owner (const struct dwarf2_section_info *section)
2296 {
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
2302 return section->s.section->owner;
2303 }
2304
2305 /* Return the bfd section of SECTION.
2306 Returns NULL if the section is not present. */
2307
2308 static asection *
2309 get_section_bfd_section (const struct dwarf2_section_info *section)
2310 {
2311 if (section->is_virtual)
2312 {
2313 section = get_containing_section (section);
2314 gdb_assert (!section->is_virtual);
2315 }
2316 return section->s.section;
2317 }
2318
2319 /* Return the name of SECTION. */
2320
2321 static const char *
2322 get_section_name (const struct dwarf2_section_info *section)
2323 {
2324 asection *sectp = get_section_bfd_section (section);
2325
2326 gdb_assert (sectp != NULL);
2327 return bfd_section_name (get_section_bfd_owner (section), sectp);
2328 }
2329
2330 /* Return the name of the file SECTION is in. */
2331
2332 static const char *
2333 get_section_file_name (const struct dwarf2_section_info *section)
2334 {
2335 bfd *abfd = get_section_bfd_owner (section);
2336
2337 return bfd_get_filename (abfd);
2338 }
2339
2340 /* Return the id of SECTION.
2341 Returns 0 if SECTION doesn't exist. */
2342
2343 static int
2344 get_section_id (const struct dwarf2_section_info *section)
2345 {
2346 asection *sectp = get_section_bfd_section (section);
2347
2348 if (sectp == NULL)
2349 return 0;
2350 return sectp->id;
2351 }
2352
2353 /* Return the flags of SECTION.
2354 SECTION (or containing section if this is a virtual section) must exist. */
2355
2356 static int
2357 get_section_flags (const struct dwarf2_section_info *section)
2358 {
2359 asection *sectp = get_section_bfd_section (section);
2360
2361 gdb_assert (sectp != NULL);
2362 return bfd_get_section_flags (sectp->owner, sectp);
2363 }
2364
2365 /* When loading sections, we look either for uncompressed section or for
2366 compressed section names. */
2367
2368 static int
2369 section_is_p (const char *section_name,
2370 const struct dwarf2_section_names *names)
2371 {
2372 if (names->normal != NULL
2373 && strcmp (section_name, names->normal) == 0)
2374 return 1;
2375 if (names->compressed != NULL
2376 && strcmp (section_name, names->compressed) == 0)
2377 return 1;
2378 return 0;
2379 }
2380
2381 /* See declaration. */
2382
2383 void
2384 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2385 const dwarf2_debug_sections &names)
2386 {
2387 flagword aflag = bfd_get_section_flags (abfd, sectp);
2388
2389 if ((aflag & SEC_HAS_CONTENTS) == 0)
2390 {
2391 }
2392 else if (section_is_p (sectp->name, &names.info))
2393 {
2394 this->info.s.section = sectp;
2395 this->info.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.abbrev))
2398 {
2399 this->abbrev.s.section = sectp;
2400 this->abbrev.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.line))
2403 {
2404 this->line.s.section = sectp;
2405 this->line.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.loc))
2408 {
2409 this->loc.s.section = sectp;
2410 this->loc.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.loclists))
2413 {
2414 this->loclists.s.section = sectp;
2415 this->loclists.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.macinfo))
2418 {
2419 this->macinfo.s.section = sectp;
2420 this->macinfo.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &names.macro))
2423 {
2424 this->macro.s.section = sectp;
2425 this->macro.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.str))
2428 {
2429 this->str.s.section = sectp;
2430 this->str.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.line_str))
2433 {
2434 this->line_str.s.section = sectp;
2435 this->line_str.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.addr))
2438 {
2439 this->addr.s.section = sectp;
2440 this->addr.size = bfd_get_section_size (sectp);
2441 }
2442 else if (section_is_p (sectp->name, &names.frame))
2443 {
2444 this->frame.s.section = sectp;
2445 this->frame.size = bfd_get_section_size (sectp);
2446 }
2447 else if (section_is_p (sectp->name, &names.eh_frame))
2448 {
2449 this->eh_frame.s.section = sectp;
2450 this->eh_frame.size = bfd_get_section_size (sectp);
2451 }
2452 else if (section_is_p (sectp->name, &names.ranges))
2453 {
2454 this->ranges.s.section = sectp;
2455 this->ranges.size = bfd_get_section_size (sectp);
2456 }
2457 else if (section_is_p (sectp->name, &names.rnglists))
2458 {
2459 this->rnglists.s.section = sectp;
2460 this->rnglists.size = bfd_get_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.types))
2463 {
2464 struct dwarf2_section_info type_section;
2465
2466 memset (&type_section, 0, sizeof (type_section));
2467 type_section.s.section = sectp;
2468 type_section.size = bfd_get_section_size (sectp);
2469
2470 VEC_safe_push (dwarf2_section_info_def, this->types,
2471 &type_section);
2472 }
2473 else if (section_is_p (sectp->name, &names.gdb_index))
2474 {
2475 this->gdb_index.s.section = sectp;
2476 this->gdb_index.size = bfd_get_section_size (sectp);
2477 }
2478
2479 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2480 && bfd_section_vma (abfd, sectp) == 0)
2481 this->has_section_at_zero = true;
2482 }
2483
2484 /* A helper function that decides whether a section is empty,
2485 or not present. */
2486
2487 static int
2488 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2489 {
2490 if (section->is_virtual)
2491 return section->size == 0;
2492 return section->s.section == NULL || section->size == 0;
2493 }
2494
2495 /* Read the contents of the section INFO.
2496 OBJFILE is the main object file, but not necessarily the file where
2497 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2498 of the DWO file.
2499 If the section is compressed, uncompress it before returning. */
2500
2501 static void
2502 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2503 {
2504 asection *sectp;
2505 bfd *abfd;
2506 gdb_byte *buf, *retbuf;
2507
2508 if (info->readin)
2509 return;
2510 info->buffer = NULL;
2511 info->readin = 1;
2512
2513 if (dwarf2_section_empty_p (info))
2514 return;
2515
2516 sectp = get_section_bfd_section (info);
2517
2518 /* If this is a virtual section we need to read in the real one first. */
2519 if (info->is_virtual)
2520 {
2521 struct dwarf2_section_info *containing_section =
2522 get_containing_section (info);
2523
2524 gdb_assert (sectp != NULL);
2525 if ((sectp->flags & SEC_RELOC) != 0)
2526 {
2527 error (_("Dwarf Error: DWP format V2 with relocations is not"
2528 " supported in section %s [in module %s]"),
2529 get_section_name (info), get_section_file_name (info));
2530 }
2531 dwarf2_read_section (objfile, containing_section);
2532 /* Other code should have already caught virtual sections that don't
2533 fit. */
2534 gdb_assert (info->virtual_offset + info->size
2535 <= containing_section->size);
2536 /* If the real section is empty or there was a problem reading the
2537 section we shouldn't get here. */
2538 gdb_assert (containing_section->buffer != NULL);
2539 info->buffer = containing_section->buffer + info->virtual_offset;
2540 return;
2541 }
2542
2543 /* If the section has relocations, we must read it ourselves.
2544 Otherwise we attach it to the BFD. */
2545 if ((sectp->flags & SEC_RELOC) == 0)
2546 {
2547 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2548 return;
2549 }
2550
2551 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2552 info->buffer = buf;
2553
2554 /* When debugging .o files, we may need to apply relocations; see
2555 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2556 We never compress sections in .o files, so we only need to
2557 try this when the section is not compressed. */
2558 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2559 if (retbuf != NULL)
2560 {
2561 info->buffer = retbuf;
2562 return;
2563 }
2564
2565 abfd = get_section_bfd_owner (info);
2566 gdb_assert (abfd != NULL);
2567
2568 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2569 || bfd_bread (buf, info->size, abfd) != info->size)
2570 {
2571 error (_("Dwarf Error: Can't read DWARF data"
2572 " in section %s [in module %s]"),
2573 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2574 }
2575 }
2576
2577 /* A helper function that returns the size of a section in a safe way.
2578 If you are positive that the section has been read before using the
2579 size, then it is safe to refer to the dwarf2_section_info object's
2580 "size" field directly. In other cases, you must call this
2581 function, because for compressed sections the size field is not set
2582 correctly until the section has been read. */
2583
2584 static bfd_size_type
2585 dwarf2_section_size (struct objfile *objfile,
2586 struct dwarf2_section_info *info)
2587 {
2588 if (!info->readin)
2589 dwarf2_read_section (objfile, info);
2590 return info->size;
2591 }
2592
2593 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2594 SECTION_NAME. */
2595
2596 void
2597 dwarf2_get_section_info (struct objfile *objfile,
2598 enum dwarf2_section_enum sect,
2599 asection **sectp, const gdb_byte **bufp,
2600 bfd_size_type *sizep)
2601 {
2602 struct dwarf2_per_objfile *data
2603 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2604 dwarf2_objfile_data_key);
2605 struct dwarf2_section_info *info;
2606
2607 /* We may see an objfile without any DWARF, in which case we just
2608 return nothing. */
2609 if (data == NULL)
2610 {
2611 *sectp = NULL;
2612 *bufp = NULL;
2613 *sizep = 0;
2614 return;
2615 }
2616 switch (sect)
2617 {
2618 case DWARF2_DEBUG_FRAME:
2619 info = &data->frame;
2620 break;
2621 case DWARF2_EH_FRAME:
2622 info = &data->eh_frame;
2623 break;
2624 default:
2625 gdb_assert_not_reached ("unexpected section");
2626 }
2627
2628 dwarf2_read_section (objfile, info);
2629
2630 *sectp = get_section_bfd_section (info);
2631 *bufp = info->buffer;
2632 *sizep = info->size;
2633 }
2634
2635 /* A helper function to find the sections for a .dwz file. */
2636
2637 static void
2638 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2639 {
2640 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2641
2642 /* Note that we only support the standard ELF names, because .dwz
2643 is ELF-only (at the time of writing). */
2644 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2645 {
2646 dwz_file->abbrev.s.section = sectp;
2647 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2650 {
2651 dwz_file->info.s.section = sectp;
2652 dwz_file->info.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2655 {
2656 dwz_file->str.s.section = sectp;
2657 dwz_file->str.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2660 {
2661 dwz_file->line.s.section = sectp;
2662 dwz_file->line.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2665 {
2666 dwz_file->macro.s.section = sectp;
2667 dwz_file->macro.size = bfd_get_section_size (sectp);
2668 }
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2670 {
2671 dwz_file->gdb_index.s.section = sectp;
2672 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2673 }
2674 }
2675
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2679
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (void)
2682 {
2683 char *data;
2684 struct cleanup *cleanup;
2685 const char *filename;
2686 struct dwz_file *result;
2687 bfd_size_type buildid_len_arg;
2688 size_t buildid_len;
2689 bfd_byte *buildid;
2690
2691 if (dwarf2_per_objfile->dwz_file != NULL)
2692 return dwarf2_per_objfile->dwz_file;
2693
2694 bfd_set_error (bfd_error_no_error);
2695 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2696 &buildid_len_arg, &buildid);
2697 if (data == NULL)
2698 {
2699 if (bfd_get_error () == bfd_error_no_error)
2700 return NULL;
2701 error (_("could not read '.gnu_debugaltlink' section: %s"),
2702 bfd_errmsg (bfd_get_error ()));
2703 }
2704 cleanup = make_cleanup (xfree, data);
2705 make_cleanup (xfree, buildid);
2706
2707 buildid_len = (size_t) buildid_len_arg;
2708
2709 filename = (const char *) data;
2710
2711 std::string abs_storage;
2712 if (!IS_ABSOLUTE_PATH (filename))
2713 {
2714 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2715
2716 make_cleanup (xfree, abs);
2717 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2718 filename = abs_storage.c_str ();
2719 }
2720
2721 /* First try the file name given in the section. If that doesn't
2722 work, try to use the build-id instead. */
2723 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2724 if (dwz_bfd != NULL)
2725 {
2726 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2727 dwz_bfd.release ();
2728 }
2729
2730 if (dwz_bfd == NULL)
2731 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2732
2733 if (dwz_bfd == NULL)
2734 error (_("could not find '.gnu_debugaltlink' file for %s"),
2735 objfile_name (dwarf2_per_objfile->objfile));
2736
2737 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2738 struct dwz_file);
2739 result->dwz_bfd = dwz_bfd.release ();
2740
2741 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2742
2743 do_cleanups (cleanup);
2744
2745 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2746 dwarf2_per_objfile->dwz_file = result;
2747 return result;
2748 }
2749 \f
2750 /* DWARF quick_symbols_functions support. */
2751
2752 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2753 unique line tables, so we maintain a separate table of all .debug_line
2754 derived entries to support the sharing.
2755 All the quick functions need is the list of file names. We discard the
2756 line_header when we're done and don't need to record it here. */
2757 struct quick_file_names
2758 {
2759 /* The data used to construct the hash key. */
2760 struct stmt_list_hash hash;
2761
2762 /* The number of entries in file_names, real_names. */
2763 unsigned int num_file_names;
2764
2765 /* The file names from the line table, after being run through
2766 file_full_name. */
2767 const char **file_names;
2768
2769 /* The file names from the line table after being run through
2770 gdb_realpath. These are computed lazily. */
2771 const char **real_names;
2772 };
2773
2774 /* When using the index (and thus not using psymtabs), each CU has an
2775 object of this type. This is used to hold information needed by
2776 the various "quick" methods. */
2777 struct dwarf2_per_cu_quick_data
2778 {
2779 /* The file table. This can be NULL if there was no file table
2780 or it's currently not read in.
2781 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2782 struct quick_file_names *file_names;
2783
2784 /* The corresponding symbol table. This is NULL if symbols for this
2785 CU have not yet been read. */
2786 struct compunit_symtab *compunit_symtab;
2787
2788 /* A temporary mark bit used when iterating over all CUs in
2789 expand_symtabs_matching. */
2790 unsigned int mark : 1;
2791
2792 /* True if we've tried to read the file table and found there isn't one.
2793 There will be no point in trying to read it again next time. */
2794 unsigned int no_file_data : 1;
2795 };
2796
2797 /* Utility hash function for a stmt_list_hash. */
2798
2799 static hashval_t
2800 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801 {
2802 hashval_t v = 0;
2803
2804 if (stmt_list_hash->dwo_unit != NULL)
2805 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2806 v += to_underlying (stmt_list_hash->line_sect_off);
2807 return v;
2808 }
2809
2810 /* Utility equality function for a stmt_list_hash. */
2811
2812 static int
2813 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2814 const struct stmt_list_hash *rhs)
2815 {
2816 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2817 return 0;
2818 if (lhs->dwo_unit != NULL
2819 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2820 return 0;
2821
2822 return lhs->line_sect_off == rhs->line_sect_off;
2823 }
2824
2825 /* Hash function for a quick_file_names. */
2826
2827 static hashval_t
2828 hash_file_name_entry (const void *e)
2829 {
2830 const struct quick_file_names *file_data
2831 = (const struct quick_file_names *) e;
2832
2833 return hash_stmt_list_entry (&file_data->hash);
2834 }
2835
2836 /* Equality function for a quick_file_names. */
2837
2838 static int
2839 eq_file_name_entry (const void *a, const void *b)
2840 {
2841 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2842 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2843
2844 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2845 }
2846
2847 /* Delete function for a quick_file_names. */
2848
2849 static void
2850 delete_file_name_entry (void *e)
2851 {
2852 struct quick_file_names *file_data = (struct quick_file_names *) e;
2853 int i;
2854
2855 for (i = 0; i < file_data->num_file_names; ++i)
2856 {
2857 xfree ((void*) file_data->file_names[i]);
2858 if (file_data->real_names)
2859 xfree ((void*) file_data->real_names[i]);
2860 }
2861
2862 /* The space for the struct itself lives on objfile_obstack,
2863 so we don't free it here. */
2864 }
2865
2866 /* Create a quick_file_names hash table. */
2867
2868 static htab_t
2869 create_quick_file_names_table (unsigned int nr_initial_entries)
2870 {
2871 return htab_create_alloc (nr_initial_entries,
2872 hash_file_name_entry, eq_file_name_entry,
2873 delete_file_name_entry, xcalloc, xfree);
2874 }
2875
2876 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2877 have to be created afterwards. You should call age_cached_comp_units after
2878 processing PER_CU->CU. dw2_setup must have been already called. */
2879
2880 static void
2881 load_cu (struct dwarf2_per_cu_data *per_cu)
2882 {
2883 if (per_cu->is_debug_types)
2884 load_full_type_unit (per_cu);
2885 else
2886 load_full_comp_unit (per_cu, language_minimal);
2887
2888 if (per_cu->cu == NULL)
2889 return; /* Dummy CU. */
2890
2891 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2892 }
2893
2894 /* Read in the symbols for PER_CU. */
2895
2896 static void
2897 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2898 {
2899 struct cleanup *back_to;
2900
2901 /* Skip type_unit_groups, reading the type units they contain
2902 is handled elsewhere. */
2903 if (IS_TYPE_UNIT_GROUP (per_cu))
2904 return;
2905
2906 back_to = make_cleanup (dwarf2_release_queue, NULL);
2907
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu);
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file () == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2926 }
2927
2928 process_queue ();
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units ();
2933
2934 do_cleanups (back_to);
2935 }
2936
2937 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2938 the objfile from which this CU came. Returns the resulting symbol
2939 table. */
2940
2941 static struct compunit_symtab *
2942 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2943 {
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2946 {
2947 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu);
2950 process_cu_includes ();
2951 do_cleanups (back_to);
2952 }
2953
2954 return per_cu->v.quick->compunit_symtab;
2955 }
2956
2957 /* Return the CU/TU given its index.
2958
2959 This is intended for loops like:
2960
2961 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2962 + dwarf2_per_objfile->n_type_units); ++i)
2963 {
2964 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2965
2966 ...;
2967 }
2968 */
2969
2970 static struct dwarf2_per_cu_data *
2971 dw2_get_cutu (int index)
2972 {
2973 if (index >= dwarf2_per_objfile->n_comp_units)
2974 {
2975 index -= dwarf2_per_objfile->n_comp_units;
2976 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2977 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2978 }
2979
2980 return dwarf2_per_objfile->all_comp_units[index];
2981 }
2982
2983 /* Return the CU given its index.
2984 This differs from dw2_get_cutu in that it's for when you know INDEX
2985 refers to a CU. */
2986
2987 static struct dwarf2_per_cu_data *
2988 dw2_get_cu (int index)
2989 {
2990 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2991
2992 return dwarf2_per_objfile->all_comp_units[index];
2993 }
2994
2995 /* A helper for create_cus_from_index that handles a given list of
2996 CUs. */
2997
2998 static void
2999 create_cus_from_index_list (struct objfile *objfile,
3000 const gdb_byte *cu_list, offset_type n_elements,
3001 struct dwarf2_section_info *section,
3002 int is_dwz,
3003 int base_offset)
3004 {
3005 offset_type i;
3006
3007 for (i = 0; i < n_elements; i += 2)
3008 {
3009 gdb_static_assert (sizeof (ULONGEST) >= 8);
3010
3011 sect_offset sect_off
3012 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3013 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3014 cu_list += 2 * 8;
3015
3016 dwarf2_per_cu_data *the_cu
3017 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3018 struct dwarf2_per_cu_data);
3019 the_cu->sect_off = sect_off;
3020 the_cu->length = length;
3021 the_cu->objfile = objfile;
3022 the_cu->section = section;
3023 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_quick_data);
3025 the_cu->is_dwz = is_dwz;
3026 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3027 }
3028 }
3029
3030 /* Read the CU list from the mapped index, and use it to create all
3031 the CU objects for this objfile. */
3032
3033 static void
3034 create_cus_from_index (struct objfile *objfile,
3035 const gdb_byte *cu_list, offset_type cu_list_elements,
3036 const gdb_byte *dwz_list, offset_type dwz_elements)
3037 {
3038 struct dwz_file *dwz;
3039
3040 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3041 dwarf2_per_objfile->all_comp_units =
3042 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3043 dwarf2_per_objfile->n_comp_units);
3044
3045 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3046 &dwarf2_per_objfile->info, 0, 0);
3047
3048 if (dwz_elements == 0)
3049 return;
3050
3051 dwz = dwarf2_get_dwz_file ();
3052 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3053 cu_list_elements / 2);
3054 }
3055
3056 /* Create the signatured type hash table from the index. */
3057
3058 static void
3059 create_signatured_type_table_from_index (struct objfile *objfile,
3060 struct dwarf2_section_info *section,
3061 const gdb_byte *bytes,
3062 offset_type elements)
3063 {
3064 offset_type i;
3065 htab_t sig_types_hash;
3066
3067 dwarf2_per_objfile->n_type_units
3068 = dwarf2_per_objfile->n_allocated_type_units
3069 = elements / 3;
3070 dwarf2_per_objfile->all_type_units =
3071 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3072
3073 sig_types_hash = allocate_signatured_type_table (objfile);
3074
3075 for (i = 0; i < elements; i += 3)
3076 {
3077 struct signatured_type *sig_type;
3078 ULONGEST signature;
3079 void **slot;
3080 cu_offset type_offset_in_tu;
3081
3082 gdb_static_assert (sizeof (ULONGEST) >= 8);
3083 sect_offset sect_off
3084 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3085 type_offset_in_tu
3086 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3087 BFD_ENDIAN_LITTLE);
3088 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3089 bytes += 3 * 8;
3090
3091 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3092 struct signatured_type);
3093 sig_type->signature = signature;
3094 sig_type->type_offset_in_tu = type_offset_in_tu;
3095 sig_type->per_cu.is_debug_types = 1;
3096 sig_type->per_cu.section = section;
3097 sig_type->per_cu.sect_off = sect_off;
3098 sig_type->per_cu.objfile = objfile;
3099 sig_type->per_cu.v.quick
3100 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3101 struct dwarf2_per_cu_quick_data);
3102
3103 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3104 *slot = sig_type;
3105
3106 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3107 }
3108
3109 dwarf2_per_objfile->signatured_types = sig_types_hash;
3110 }
3111
3112 /* Read the address map data from the mapped index, and use it to
3113 populate the objfile's psymtabs_addrmap. */
3114
3115 static void
3116 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3117 {
3118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3119 const gdb_byte *iter, *end;
3120 struct addrmap *mutable_map;
3121 CORE_ADDR baseaddr;
3122
3123 auto_obstack temp_obstack;
3124
3125 mutable_map = addrmap_create_mutable (&temp_obstack);
3126
3127 iter = index->address_table;
3128 end = iter + index->address_table_size;
3129
3130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3131
3132 while (iter < end)
3133 {
3134 ULONGEST hi, lo, cu_index;
3135 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3136 iter += 8;
3137 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3138 iter += 8;
3139 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3140 iter += 4;
3141
3142 if (lo > hi)
3143 {
3144 complaint (&symfile_complaints,
3145 _(".gdb_index address table has invalid range (%s - %s)"),
3146 hex_string (lo), hex_string (hi));
3147 continue;
3148 }
3149
3150 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3151 {
3152 complaint (&symfile_complaints,
3153 _(".gdb_index address table has invalid CU number %u"),
3154 (unsigned) cu_index);
3155 continue;
3156 }
3157
3158 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3159 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3160 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3161 }
3162
3163 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3164 &objfile->objfile_obstack);
3165 }
3166
3167 /* The hash function for strings in the mapped index. This is the same as
3168 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3169 implementation. This is necessary because the hash function is tied to the
3170 format of the mapped index file. The hash values do not have to match with
3171 SYMBOL_HASH_NEXT.
3172
3173 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3174
3175 static hashval_t
3176 mapped_index_string_hash (int index_version, const void *p)
3177 {
3178 const unsigned char *str = (const unsigned char *) p;
3179 hashval_t r = 0;
3180 unsigned char c;
3181
3182 while ((c = *str++) != 0)
3183 {
3184 if (index_version >= 5)
3185 c = tolower (c);
3186 r = r * 67 + c - 113;
3187 }
3188
3189 return r;
3190 }
3191
3192 /* Find a slot in the mapped index INDEX for the object named NAME.
3193 If NAME is found, set *VEC_OUT to point to the CU vector in the
3194 constant pool and return 1. If NAME cannot be found, return 0. */
3195
3196 static int
3197 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3198 offset_type **vec_out)
3199 {
3200 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3201 offset_type hash;
3202 offset_type slot, step;
3203 int (*cmp) (const char *, const char *);
3204
3205 if (current_language->la_language == language_cplus
3206 || current_language->la_language == language_fortran
3207 || current_language->la_language == language_d)
3208 {
3209 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3210 not contain any. */
3211
3212 if (strchr (name, '(') != NULL)
3213 {
3214 char *without_params = cp_remove_params (name);
3215
3216 if (without_params != NULL)
3217 {
3218 make_cleanup (xfree, without_params);
3219 name = without_params;
3220 }
3221 }
3222 }
3223
3224 /* Index version 4 did not support case insensitive searches. But the
3225 indices for case insensitive languages are built in lowercase, therefore
3226 simulate our NAME being searched is also lowercased. */
3227 hash = mapped_index_string_hash ((index->version == 4
3228 && case_sensitivity == case_sensitive_off
3229 ? 5 : index->version),
3230 name);
3231
3232 slot = hash & (index->symbol_table_slots - 1);
3233 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3234 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3235
3236 for (;;)
3237 {
3238 /* Convert a slot number to an offset into the table. */
3239 offset_type i = 2 * slot;
3240 const char *str;
3241 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3242 {
3243 do_cleanups (back_to);
3244 return 0;
3245 }
3246
3247 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3248 if (!cmp (name, str))
3249 {
3250 *vec_out = (offset_type *) (index->constant_pool
3251 + MAYBE_SWAP (index->symbol_table[i + 1]));
3252 do_cleanups (back_to);
3253 return 1;
3254 }
3255
3256 slot = (slot + step) & (index->symbol_table_slots - 1);
3257 }
3258 }
3259
3260 /* A helper function that reads the .gdb_index from SECTION and fills
3261 in MAP. FILENAME is the name of the file containing the section;
3262 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3263 ok to use deprecated sections.
3264
3265 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3266 out parameters that are filled in with information about the CU and
3267 TU lists in the section.
3268
3269 Returns 1 if all went well, 0 otherwise. */
3270
3271 static int
3272 read_index_from_section (struct objfile *objfile,
3273 const char *filename,
3274 int deprecated_ok,
3275 struct dwarf2_section_info *section,
3276 struct mapped_index *map,
3277 const gdb_byte **cu_list,
3278 offset_type *cu_list_elements,
3279 const gdb_byte **types_list,
3280 offset_type *types_list_elements)
3281 {
3282 const gdb_byte *addr;
3283 offset_type version;
3284 offset_type *metadata;
3285 int i;
3286
3287 if (dwarf2_section_empty_p (section))
3288 return 0;
3289
3290 /* Older elfutils strip versions could keep the section in the main
3291 executable while splitting it for the separate debug info file. */
3292 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3293 return 0;
3294
3295 dwarf2_read_section (objfile, section);
3296
3297 addr = section->buffer;
3298 /* Version check. */
3299 version = MAYBE_SWAP (*(offset_type *) addr);
3300 /* Versions earlier than 3 emitted every copy of a psymbol. This
3301 causes the index to behave very poorly for certain requests. Version 3
3302 contained incomplete addrmap. So, it seems better to just ignore such
3303 indices. */
3304 if (version < 4)
3305 {
3306 static int warning_printed = 0;
3307 if (!warning_printed)
3308 {
3309 warning (_("Skipping obsolete .gdb_index section in %s."),
3310 filename);
3311 warning_printed = 1;
3312 }
3313 return 0;
3314 }
3315 /* Index version 4 uses a different hash function than index version
3316 5 and later.
3317
3318 Versions earlier than 6 did not emit psymbols for inlined
3319 functions. Using these files will cause GDB not to be able to
3320 set breakpoints on inlined functions by name, so we ignore these
3321 indices unless the user has done
3322 "set use-deprecated-index-sections on". */
3323 if (version < 6 && !deprecated_ok)
3324 {
3325 static int warning_printed = 0;
3326 if (!warning_printed)
3327 {
3328 warning (_("\
3329 Skipping deprecated .gdb_index section in %s.\n\
3330 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3331 to use the section anyway."),
3332 filename);
3333 warning_printed = 1;
3334 }
3335 return 0;
3336 }
3337 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3338 of the TU (for symbols coming from TUs),
3339 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3340 Plus gold-generated indices can have duplicate entries for global symbols,
3341 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3342 These are just performance bugs, and we can't distinguish gdb-generated
3343 indices from gold-generated ones, so issue no warning here. */
3344
3345 /* Indexes with higher version than the one supported by GDB may be no
3346 longer backward compatible. */
3347 if (version > 8)
3348 return 0;
3349
3350 map->version = version;
3351 map->total_size = section->size;
3352
3353 metadata = (offset_type *) (addr + sizeof (offset_type));
3354
3355 i = 0;
3356 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3357 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3358 / 8);
3359 ++i;
3360
3361 *types_list = addr + MAYBE_SWAP (metadata[i]);
3362 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3363 - MAYBE_SWAP (metadata[i]))
3364 / 8);
3365 ++i;
3366
3367 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3368 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]));
3370 ++i;
3371
3372 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3373 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / (2 * sizeof (offset_type)));
3376 ++i;
3377
3378 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3379
3380 return 1;
3381 }
3382
3383
3384 /* Read the index file. If everything went ok, initialize the "quick"
3385 elements of all the CUs and return 1. Otherwise, return 0. */
3386
3387 static int
3388 dwarf2_read_index (struct objfile *objfile)
3389 {
3390 struct mapped_index local_map, *map;
3391 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3392 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3393 struct dwz_file *dwz;
3394
3395 if (!read_index_from_section (objfile, objfile_name (objfile),
3396 use_deprecated_index_sections,
3397 &dwarf2_per_objfile->gdb_index, &local_map,
3398 &cu_list, &cu_list_elements,
3399 &types_list, &types_list_elements))
3400 return 0;
3401
3402 /* Don't use the index if it's empty. */
3403 if (local_map.symbol_table_slots == 0)
3404 return 0;
3405
3406 /* If there is a .dwz file, read it so we can get its CU list as
3407 well. */
3408 dwz = dwarf2_get_dwz_file ();
3409 if (dwz != NULL)
3410 {
3411 struct mapped_index dwz_map;
3412 const gdb_byte *dwz_types_ignore;
3413 offset_type dwz_types_elements_ignore;
3414
3415 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3416 1,
3417 &dwz->gdb_index, &dwz_map,
3418 &dwz_list, &dwz_list_elements,
3419 &dwz_types_ignore,
3420 &dwz_types_elements_ignore))
3421 {
3422 warning (_("could not read '.gdb_index' section from %s; skipping"),
3423 bfd_get_filename (dwz->dwz_bfd));
3424 return 0;
3425 }
3426 }
3427
3428 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3429 dwz_list_elements);
3430
3431 if (types_list_elements)
3432 {
3433 struct dwarf2_section_info *section;
3434
3435 /* We can only handle a single .debug_types when we have an
3436 index. */
3437 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3438 return 0;
3439
3440 section = VEC_index (dwarf2_section_info_def,
3441 dwarf2_per_objfile->types, 0);
3442
3443 create_signatured_type_table_from_index (objfile, section, types_list,
3444 types_list_elements);
3445 }
3446
3447 create_addrmap_from_index (objfile, &local_map);
3448
3449 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3450 *map = local_map;
3451
3452 dwarf2_per_objfile->index_table = map;
3453 dwarf2_per_objfile->using_index = 1;
3454 dwarf2_per_objfile->quick_file_names_table =
3455 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3456
3457 return 1;
3458 }
3459
3460 /* A helper for the "quick" functions which sets the global
3461 dwarf2_per_objfile according to OBJFILE. */
3462
3463 static void
3464 dw2_setup (struct objfile *objfile)
3465 {
3466 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3467 objfile_data (objfile, dwarf2_objfile_data_key));
3468 gdb_assert (dwarf2_per_objfile);
3469 }
3470
3471 /* die_reader_func for dw2_get_file_names. */
3472
3473 static void
3474 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3475 const gdb_byte *info_ptr,
3476 struct die_info *comp_unit_die,
3477 int has_children,
3478 void *data)
3479 {
3480 struct dwarf2_cu *cu = reader->cu;
3481 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3482 struct objfile *objfile = dwarf2_per_objfile->objfile;
3483 struct dwarf2_per_cu_data *lh_cu;
3484 struct attribute *attr;
3485 int i;
3486 void **slot;
3487 struct quick_file_names *qfn;
3488
3489 gdb_assert (! this_cu->is_debug_types);
3490
3491 /* Our callers never want to match partial units -- instead they
3492 will match the enclosing full CU. */
3493 if (comp_unit_die->tag == DW_TAG_partial_unit)
3494 {
3495 this_cu->v.quick->no_file_data = 1;
3496 return;
3497 }
3498
3499 lh_cu = this_cu;
3500 slot = NULL;
3501
3502 line_header_up lh;
3503 sect_offset line_offset {};
3504
3505 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3506 if (attr)
3507 {
3508 struct quick_file_names find_entry;
3509
3510 line_offset = (sect_offset) DW_UNSND (attr);
3511
3512 /* We may have already read in this line header (TU line header sharing).
3513 If we have we're done. */
3514 find_entry.hash.dwo_unit = cu->dwo_unit;
3515 find_entry.hash.line_sect_off = line_offset;
3516 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3517 &find_entry, INSERT);
3518 if (*slot != NULL)
3519 {
3520 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3521 return;
3522 }
3523
3524 lh = dwarf_decode_line_header (line_offset, cu);
3525 }
3526 if (lh == NULL)
3527 {
3528 lh_cu->v.quick->no_file_data = 1;
3529 return;
3530 }
3531
3532 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3533 qfn->hash.dwo_unit = cu->dwo_unit;
3534 qfn->hash.line_sect_off = line_offset;
3535 gdb_assert (slot != NULL);
3536 *slot = qfn;
3537
3538 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3539
3540 qfn->num_file_names = lh->file_names.size ();
3541 qfn->file_names =
3542 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3543 for (i = 0; i < lh->file_names.size (); ++i)
3544 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3545 qfn->real_names = NULL;
3546
3547 lh_cu->v.quick->file_names = qfn;
3548 }
3549
3550 /* A helper for the "quick" functions which attempts to read the line
3551 table for THIS_CU. */
3552
3553 static struct quick_file_names *
3554 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3555 {
3556 /* This should never be called for TUs. */
3557 gdb_assert (! this_cu->is_debug_types);
3558 /* Nor type unit groups. */
3559 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3560
3561 if (this_cu->v.quick->file_names != NULL)
3562 return this_cu->v.quick->file_names;
3563 /* If we know there is no line data, no point in looking again. */
3564 if (this_cu->v.quick->no_file_data)
3565 return NULL;
3566
3567 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3568
3569 if (this_cu->v.quick->no_file_data)
3570 return NULL;
3571 return this_cu->v.quick->file_names;
3572 }
3573
3574 /* A helper for the "quick" functions which computes and caches the
3575 real path for a given file name from the line table. */
3576
3577 static const char *
3578 dw2_get_real_path (struct objfile *objfile,
3579 struct quick_file_names *qfn, int index)
3580 {
3581 if (qfn->real_names == NULL)
3582 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3583 qfn->num_file_names, const char *);
3584
3585 if (qfn->real_names[index] == NULL)
3586 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3587
3588 return qfn->real_names[index];
3589 }
3590
3591 static struct symtab *
3592 dw2_find_last_source_symtab (struct objfile *objfile)
3593 {
3594 struct compunit_symtab *cust;
3595 int index;
3596
3597 dw2_setup (objfile);
3598 index = dwarf2_per_objfile->n_comp_units - 1;
3599 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3600 if (cust == NULL)
3601 return NULL;
3602 return compunit_primary_filetab (cust);
3603 }
3604
3605 /* Traversal function for dw2_forget_cached_source_info. */
3606
3607 static int
3608 dw2_free_cached_file_names (void **slot, void *info)
3609 {
3610 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3611
3612 if (file_data->real_names)
3613 {
3614 int i;
3615
3616 for (i = 0; i < file_data->num_file_names; ++i)
3617 {
3618 xfree ((void*) file_data->real_names[i]);
3619 file_data->real_names[i] = NULL;
3620 }
3621 }
3622
3623 return 1;
3624 }
3625
3626 static void
3627 dw2_forget_cached_source_info (struct objfile *objfile)
3628 {
3629 dw2_setup (objfile);
3630
3631 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3632 dw2_free_cached_file_names, NULL);
3633 }
3634
3635 /* Helper function for dw2_map_symtabs_matching_filename that expands
3636 the symtabs and calls the iterator. */
3637
3638 static int
3639 dw2_map_expand_apply (struct objfile *objfile,
3640 struct dwarf2_per_cu_data *per_cu,
3641 const char *name, const char *real_path,
3642 gdb::function_view<bool (symtab *)> callback)
3643 {
3644 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3645
3646 /* Don't visit already-expanded CUs. */
3647 if (per_cu->v.quick->compunit_symtab)
3648 return 0;
3649
3650 /* This may expand more than one symtab, and we want to iterate over
3651 all of them. */
3652 dw2_instantiate_symtab (per_cu);
3653
3654 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3655 last_made, callback);
3656 }
3657
3658 /* Implementation of the map_symtabs_matching_filename method. */
3659
3660 static bool
3661 dw2_map_symtabs_matching_filename
3662 (struct objfile *objfile, const char *name, const char *real_path,
3663 gdb::function_view<bool (symtab *)> callback)
3664 {
3665 int i;
3666 const char *name_basename = lbasename (name);
3667
3668 dw2_setup (objfile);
3669
3670 /* The rule is CUs specify all the files, including those used by
3671 any TU, so there's no need to scan TUs here. */
3672
3673 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3674 {
3675 int j;
3676 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3677 struct quick_file_names *file_data;
3678
3679 /* We only need to look at symtabs not already expanded. */
3680 if (per_cu->v.quick->compunit_symtab)
3681 continue;
3682
3683 file_data = dw2_get_file_names (per_cu);
3684 if (file_data == NULL)
3685 continue;
3686
3687 for (j = 0; j < file_data->num_file_names; ++j)
3688 {
3689 const char *this_name = file_data->file_names[j];
3690 const char *this_real_name;
3691
3692 if (compare_filenames_for_search (this_name, name))
3693 {
3694 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3695 callback))
3696 return true;
3697 continue;
3698 }
3699
3700 /* Before we invoke realpath, which can get expensive when many
3701 files are involved, do a quick comparison of the basenames. */
3702 if (! basenames_may_differ
3703 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3704 continue;
3705
3706 this_real_name = dw2_get_real_path (objfile, file_data, j);
3707 if (compare_filenames_for_search (this_real_name, name))
3708 {
3709 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3710 callback))
3711 return true;
3712 continue;
3713 }
3714
3715 if (real_path != NULL)
3716 {
3717 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3718 gdb_assert (IS_ABSOLUTE_PATH (name));
3719 if (this_real_name != NULL
3720 && FILENAME_CMP (real_path, this_real_name) == 0)
3721 {
3722 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3723 callback))
3724 return true;
3725 continue;
3726 }
3727 }
3728 }
3729 }
3730
3731 return false;
3732 }
3733
3734 /* Struct used to manage iterating over all CUs looking for a symbol. */
3735
3736 struct dw2_symtab_iterator
3737 {
3738 /* The internalized form of .gdb_index. */
3739 struct mapped_index *index;
3740 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3741 int want_specific_block;
3742 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3743 Unused if !WANT_SPECIFIC_BLOCK. */
3744 int block_index;
3745 /* The kind of symbol we're looking for. */
3746 domain_enum domain;
3747 /* The list of CUs from the index entry of the symbol,
3748 or NULL if not found. */
3749 offset_type *vec;
3750 /* The next element in VEC to look at. */
3751 int next;
3752 /* The number of elements in VEC, or zero if there is no match. */
3753 int length;
3754 /* Have we seen a global version of the symbol?
3755 If so we can ignore all further global instances.
3756 This is to work around gold/15646, inefficient gold-generated
3757 indices. */
3758 int global_seen;
3759 };
3760
3761 /* Initialize the index symtab iterator ITER.
3762 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3763 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3764
3765 static void
3766 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3767 struct mapped_index *index,
3768 int want_specific_block,
3769 int block_index,
3770 domain_enum domain,
3771 const char *name)
3772 {
3773 iter->index = index;
3774 iter->want_specific_block = want_specific_block;
3775 iter->block_index = block_index;
3776 iter->domain = domain;
3777 iter->next = 0;
3778 iter->global_seen = 0;
3779
3780 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3781 iter->length = MAYBE_SWAP (*iter->vec);
3782 else
3783 {
3784 iter->vec = NULL;
3785 iter->length = 0;
3786 }
3787 }
3788
3789 /* Return the next matching CU or NULL if there are no more. */
3790
3791 static struct dwarf2_per_cu_data *
3792 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3793 {
3794 for ( ; iter->next < iter->length; ++iter->next)
3795 {
3796 offset_type cu_index_and_attrs =
3797 MAYBE_SWAP (iter->vec[iter->next + 1]);
3798 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3799 struct dwarf2_per_cu_data *per_cu;
3800 int want_static = iter->block_index != GLOBAL_BLOCK;
3801 /* This value is only valid for index versions >= 7. */
3802 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3803 gdb_index_symbol_kind symbol_kind =
3804 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3805 /* Only check the symbol attributes if they're present.
3806 Indices prior to version 7 don't record them,
3807 and indices >= 7 may elide them for certain symbols
3808 (gold does this). */
3809 int attrs_valid =
3810 (iter->index->version >= 7
3811 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3812
3813 /* Don't crash on bad data. */
3814 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3815 + dwarf2_per_objfile->n_type_units))
3816 {
3817 complaint (&symfile_complaints,
3818 _(".gdb_index entry has bad CU index"
3819 " [in module %s]"),
3820 objfile_name (dwarf2_per_objfile->objfile));
3821 continue;
3822 }
3823
3824 per_cu = dw2_get_cutu (cu_index);
3825
3826 /* Skip if already read in. */
3827 if (per_cu->v.quick->compunit_symtab)
3828 continue;
3829
3830 /* Check static vs global. */
3831 if (attrs_valid)
3832 {
3833 if (iter->want_specific_block
3834 && want_static != is_static)
3835 continue;
3836 /* Work around gold/15646. */
3837 if (!is_static && iter->global_seen)
3838 continue;
3839 if (!is_static)
3840 iter->global_seen = 1;
3841 }
3842
3843 /* Only check the symbol's kind if it has one. */
3844 if (attrs_valid)
3845 {
3846 switch (iter->domain)
3847 {
3848 case VAR_DOMAIN:
3849 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3850 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3851 /* Some types are also in VAR_DOMAIN. */
3852 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3853 continue;
3854 break;
3855 case STRUCT_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3857 continue;
3858 break;
3859 case LABEL_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3861 continue;
3862 break;
3863 default:
3864 break;
3865 }
3866 }
3867
3868 ++iter->next;
3869 return per_cu;
3870 }
3871
3872 return NULL;
3873 }
3874
3875 static struct compunit_symtab *
3876 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3877 const char *name, domain_enum domain)
3878 {
3879 struct compunit_symtab *stab_best = NULL;
3880 struct mapped_index *index;
3881
3882 dw2_setup (objfile);
3883
3884 index = dwarf2_per_objfile->index_table;
3885
3886 /* index is NULL if OBJF_READNOW. */
3887 if (index)
3888 {
3889 struct dw2_symtab_iterator iter;
3890 struct dwarf2_per_cu_data *per_cu;
3891
3892 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3893
3894 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3895 {
3896 struct symbol *sym, *with_opaque = NULL;
3897 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3898 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3899 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3900
3901 sym = block_find_symbol (block, name, domain,
3902 block_find_non_opaque_type_preferred,
3903 &with_opaque);
3904
3905 /* Some caution must be observed with overloaded functions
3906 and methods, since the index will not contain any overload
3907 information (but NAME might contain it). */
3908
3909 if (sym != NULL
3910 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3911 return stab;
3912 if (with_opaque != NULL
3913 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3914 stab_best = stab;
3915
3916 /* Keep looking through other CUs. */
3917 }
3918 }
3919
3920 return stab_best;
3921 }
3922
3923 static void
3924 dw2_print_stats (struct objfile *objfile)
3925 {
3926 int i, total, count;
3927
3928 dw2_setup (objfile);
3929 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3930 count = 0;
3931 for (i = 0; i < total; ++i)
3932 {
3933 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3934
3935 if (!per_cu->v.quick->compunit_symtab)
3936 ++count;
3937 }
3938 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3939 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3940 }
3941
3942 /* This dumps minimal information about the index.
3943 It is called via "mt print objfiles".
3944 One use is to verify .gdb_index has been loaded by the
3945 gdb.dwarf2/gdb-index.exp testcase. */
3946
3947 static void
3948 dw2_dump (struct objfile *objfile)
3949 {
3950 dw2_setup (objfile);
3951 gdb_assert (dwarf2_per_objfile->using_index);
3952 printf_filtered (".gdb_index:");
3953 if (dwarf2_per_objfile->index_table != NULL)
3954 {
3955 printf_filtered (" version %d\n",
3956 dwarf2_per_objfile->index_table->version);
3957 }
3958 else
3959 printf_filtered (" faked for \"readnow\"\n");
3960 printf_filtered ("\n");
3961 }
3962
3963 static void
3964 dw2_relocate (struct objfile *objfile,
3965 const struct section_offsets *new_offsets,
3966 const struct section_offsets *delta)
3967 {
3968 /* There's nothing to relocate here. */
3969 }
3970
3971 static void
3972 dw2_expand_symtabs_for_function (struct objfile *objfile,
3973 const char *func_name)
3974 {
3975 struct mapped_index *index;
3976
3977 dw2_setup (objfile);
3978
3979 index = dwarf2_per_objfile->index_table;
3980
3981 /* index is NULL if OBJF_READNOW. */
3982 if (index)
3983 {
3984 struct dw2_symtab_iterator iter;
3985 struct dwarf2_per_cu_data *per_cu;
3986
3987 /* Note: It doesn't matter what we pass for block_index here. */
3988 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3989 func_name);
3990
3991 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3992 dw2_instantiate_symtab (per_cu);
3993 }
3994 }
3995
3996 static void
3997 dw2_expand_all_symtabs (struct objfile *objfile)
3998 {
3999 int i;
4000
4001 dw2_setup (objfile);
4002
4003 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4004 + dwarf2_per_objfile->n_type_units); ++i)
4005 {
4006 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4007
4008 dw2_instantiate_symtab (per_cu);
4009 }
4010 }
4011
4012 static void
4013 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4014 const char *fullname)
4015 {
4016 int i;
4017
4018 dw2_setup (objfile);
4019
4020 /* We don't need to consider type units here.
4021 This is only called for examining code, e.g. expand_line_sal.
4022 There can be an order of magnitude (or more) more type units
4023 than comp units, and we avoid them if we can. */
4024
4025 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4026 {
4027 int j;
4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4029 struct quick_file_names *file_data;
4030
4031 /* We only need to look at symtabs not already expanded. */
4032 if (per_cu->v.quick->compunit_symtab)
4033 continue;
4034
4035 file_data = dw2_get_file_names (per_cu);
4036 if (file_data == NULL)
4037 continue;
4038
4039 for (j = 0; j < file_data->num_file_names; ++j)
4040 {
4041 const char *this_fullname = file_data->file_names[j];
4042
4043 if (filename_cmp (this_fullname, fullname) == 0)
4044 {
4045 dw2_instantiate_symtab (per_cu);
4046 break;
4047 }
4048 }
4049 }
4050 }
4051
4052 static void
4053 dw2_map_matching_symbols (struct objfile *objfile,
4054 const char * name, domain_enum domain,
4055 int global,
4056 int (*callback) (struct block *,
4057 struct symbol *, void *),
4058 void *data, symbol_compare_ftype *match,
4059 symbol_compare_ftype *ordered_compare)
4060 {
4061 /* Currently unimplemented; used for Ada. The function can be called if the
4062 current language is Ada for a non-Ada objfile using GNU index. As Ada
4063 does not look for non-Ada symbols this function should just return. */
4064 }
4065
4066 static void
4067 dw2_expand_symtabs_matching
4068 (struct objfile *objfile,
4069 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4070 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4071 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4072 enum search_domain kind)
4073 {
4074 int i;
4075 offset_type iter;
4076 struct mapped_index *index;
4077
4078 dw2_setup (objfile);
4079
4080 /* index_table is NULL if OBJF_READNOW. */
4081 if (!dwarf2_per_objfile->index_table)
4082 return;
4083 index = dwarf2_per_objfile->index_table;
4084
4085 if (file_matcher != NULL)
4086 {
4087 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
4090 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4091 htab_eq_pointer,
4092 NULL, xcalloc, xfree));
4093
4094 /* The rule is CUs specify all the files, including those used by
4095 any TU, so there's no need to scan TUs here. */
4096
4097 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4098 {
4099 int j;
4100 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4101 struct quick_file_names *file_data;
4102 void **slot;
4103
4104 QUIT;
4105
4106 per_cu->v.quick->mark = 0;
4107
4108 /* We only need to look at symtabs not already expanded. */
4109 if (per_cu->v.quick->compunit_symtab)
4110 continue;
4111
4112 file_data = dw2_get_file_names (per_cu);
4113 if (file_data == NULL)
4114 continue;
4115
4116 if (htab_find (visited_not_found.get (), file_data) != NULL)
4117 continue;
4118 else if (htab_find (visited_found.get (), file_data) != NULL)
4119 {
4120 per_cu->v.quick->mark = 1;
4121 continue;
4122 }
4123
4124 for (j = 0; j < file_data->num_file_names; ++j)
4125 {
4126 const char *this_real_name;
4127
4128 if (file_matcher (file_data->file_names[j], false))
4129 {
4130 per_cu->v.quick->mark = 1;
4131 break;
4132 }
4133
4134 /* Before we invoke realpath, which can get expensive when many
4135 files are involved, do a quick comparison of the basenames. */
4136 if (!basenames_may_differ
4137 && !file_matcher (lbasename (file_data->file_names[j]),
4138 true))
4139 continue;
4140
4141 this_real_name = dw2_get_real_path (objfile, file_data, j);
4142 if (file_matcher (this_real_name, false))
4143 {
4144 per_cu->v.quick->mark = 1;
4145 break;
4146 }
4147 }
4148
4149 slot = htab_find_slot (per_cu->v.quick->mark
4150 ? visited_found.get ()
4151 : visited_not_found.get (),
4152 file_data, INSERT);
4153 *slot = file_data;
4154 }
4155 }
4156
4157 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4158 {
4159 offset_type idx = 2 * iter;
4160 const char *name;
4161 offset_type *vec, vec_len, vec_idx;
4162 int global_seen = 0;
4163
4164 QUIT;
4165
4166 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4167 continue;
4168
4169 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4170
4171 if (!symbol_matcher (name))
4172 continue;
4173
4174 /* The name was matched, now expand corresponding CUs that were
4175 marked. */
4176 vec = (offset_type *) (index->constant_pool
4177 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4178 vec_len = MAYBE_SWAP (vec[0]);
4179 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4180 {
4181 struct dwarf2_per_cu_data *per_cu;
4182 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4183 /* This value is only valid for index versions >= 7. */
4184 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4185 gdb_index_symbol_kind symbol_kind =
4186 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4187 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4188 /* Only check the symbol attributes if they're present.
4189 Indices prior to version 7 don't record them,
4190 and indices >= 7 may elide them for certain symbols
4191 (gold does this). */
4192 int attrs_valid =
4193 (index->version >= 7
4194 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4195
4196 /* Work around gold/15646. */
4197 if (attrs_valid)
4198 {
4199 if (!is_static && global_seen)
4200 continue;
4201 if (!is_static)
4202 global_seen = 1;
4203 }
4204
4205 /* Only check the symbol's kind if it has one. */
4206 if (attrs_valid)
4207 {
4208 switch (kind)
4209 {
4210 case VARIABLES_DOMAIN:
4211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4212 continue;
4213 break;
4214 case FUNCTIONS_DOMAIN:
4215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4216 continue;
4217 break;
4218 case TYPES_DOMAIN:
4219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4220 continue;
4221 break;
4222 default:
4223 break;
4224 }
4225 }
4226
4227 /* Don't crash on bad data. */
4228 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4229 + dwarf2_per_objfile->n_type_units))
4230 {
4231 complaint (&symfile_complaints,
4232 _(".gdb_index entry has bad CU index"
4233 " [in module %s]"), objfile_name (objfile));
4234 continue;
4235 }
4236
4237 per_cu = dw2_get_cutu (cu_index);
4238 if (file_matcher == NULL || per_cu->v.quick->mark)
4239 {
4240 int symtab_was_null =
4241 (per_cu->v.quick->compunit_symtab == NULL);
4242
4243 dw2_instantiate_symtab (per_cu);
4244
4245 if (expansion_notify != NULL
4246 && symtab_was_null
4247 && per_cu->v.quick->compunit_symtab != NULL)
4248 {
4249 expansion_notify (per_cu->v.quick->compunit_symtab);
4250 }
4251 }
4252 }
4253 }
4254 }
4255
4256 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4257 symtab. */
4258
4259 static struct compunit_symtab *
4260 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4261 CORE_ADDR pc)
4262 {
4263 int i;
4264
4265 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4266 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4267 return cust;
4268
4269 if (cust->includes == NULL)
4270 return NULL;
4271
4272 for (i = 0; cust->includes[i]; ++i)
4273 {
4274 struct compunit_symtab *s = cust->includes[i];
4275
4276 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4277 if (s != NULL)
4278 return s;
4279 }
4280
4281 return NULL;
4282 }
4283
4284 static struct compunit_symtab *
4285 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4286 struct bound_minimal_symbol msymbol,
4287 CORE_ADDR pc,
4288 struct obj_section *section,
4289 int warn_if_readin)
4290 {
4291 struct dwarf2_per_cu_data *data;
4292 struct compunit_symtab *result;
4293
4294 dw2_setup (objfile);
4295
4296 if (!objfile->psymtabs_addrmap)
4297 return NULL;
4298
4299 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4300 pc);
4301 if (!data)
4302 return NULL;
4303
4304 if (warn_if_readin && data->v.quick->compunit_symtab)
4305 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4306 paddress (get_objfile_arch (objfile), pc));
4307
4308 result
4309 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4310 pc);
4311 gdb_assert (result != NULL);
4312 return result;
4313 }
4314
4315 static void
4316 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4317 void *data, int need_fullname)
4318 {
4319 dw2_setup (objfile);
4320
4321 if (!dwarf2_per_objfile->filenames_cache)
4322 {
4323 dwarf2_per_objfile->filenames_cache.emplace ();
4324
4325 htab_up visited (htab_create_alloc (10,
4326 htab_hash_pointer, htab_eq_pointer,
4327 NULL, xcalloc, xfree));
4328
4329 /* The rule is CUs specify all the files, including those used
4330 by any TU, so there's no need to scan TUs here. We can
4331 ignore file names coming from already-expanded CUs. */
4332
4333 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4334 {
4335 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4336
4337 if (per_cu->v.quick->compunit_symtab)
4338 {
4339 void **slot = htab_find_slot (visited.get (),
4340 per_cu->v.quick->file_names,
4341 INSERT);
4342
4343 *slot = per_cu->v.quick->file_names;
4344 }
4345 }
4346
4347 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4348 {
4349 int j;
4350 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4351 struct quick_file_names *file_data;
4352 void **slot;
4353
4354 /* We only need to look at symtabs not already expanded. */
4355 if (per_cu->v.quick->compunit_symtab)
4356 continue;
4357
4358 file_data = dw2_get_file_names (per_cu);
4359 if (file_data == NULL)
4360 continue;
4361
4362 slot = htab_find_slot (visited.get (), file_data, INSERT);
4363 if (*slot)
4364 {
4365 /* Already visited. */
4366 continue;
4367 }
4368 *slot = file_data;
4369
4370 for (int j = 0; j < file_data->num_file_names; ++j)
4371 {
4372 const char *filename = file_data->file_names[j];
4373 dwarf2_per_objfile->filenames_cache->seen (filename);
4374 }
4375 }
4376 }
4377
4378 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4379 {
4380 const char *this_real_name;
4381
4382 if (need_fullname)
4383 this_real_name = gdb_realpath (filename);
4384 else
4385 this_real_name = NULL;
4386 (*fun) (filename, this_real_name, data);
4387 });
4388 }
4389
4390 static int
4391 dw2_has_symbols (struct objfile *objfile)
4392 {
4393 return 1;
4394 }
4395
4396 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4397 {
4398 dw2_has_symbols,
4399 dw2_find_last_source_symtab,
4400 dw2_forget_cached_source_info,
4401 dw2_map_symtabs_matching_filename,
4402 dw2_lookup_symbol,
4403 dw2_print_stats,
4404 dw2_dump,
4405 dw2_relocate,
4406 dw2_expand_symtabs_for_function,
4407 dw2_expand_all_symtabs,
4408 dw2_expand_symtabs_with_fullname,
4409 dw2_map_matching_symbols,
4410 dw2_expand_symtabs_matching,
4411 dw2_find_pc_sect_compunit_symtab,
4412 dw2_map_symbol_filenames
4413 };
4414
4415 /* Initialize for reading DWARF for this objfile. Return 0 if this
4416 file will use psymtabs, or 1 if using the GNU index. */
4417
4418 int
4419 dwarf2_initialize_objfile (struct objfile *objfile)
4420 {
4421 /* If we're about to read full symbols, don't bother with the
4422 indices. In this case we also don't care if some other debug
4423 format is making psymtabs, because they are all about to be
4424 expanded anyway. */
4425 if ((objfile->flags & OBJF_READNOW))
4426 {
4427 int i;
4428
4429 dwarf2_per_objfile->using_index = 1;
4430 create_all_comp_units (objfile);
4431 create_all_type_units (objfile);
4432 dwarf2_per_objfile->quick_file_names_table =
4433 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4434
4435 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4436 + dwarf2_per_objfile->n_type_units); ++i)
4437 {
4438 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4439
4440 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4441 struct dwarf2_per_cu_quick_data);
4442 }
4443
4444 /* Return 1 so that gdb sees the "quick" functions. However,
4445 these functions will be no-ops because we will have expanded
4446 all symtabs. */
4447 return 1;
4448 }
4449
4450 if (dwarf2_read_index (objfile))
4451 return 1;
4452
4453 return 0;
4454 }
4455
4456 \f
4457
4458 /* Build a partial symbol table. */
4459
4460 void
4461 dwarf2_build_psymtabs (struct objfile *objfile)
4462 {
4463
4464 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4465 {
4466 init_psymbol_list (objfile, 1024);
4467 }
4468
4469 TRY
4470 {
4471 /* This isn't really ideal: all the data we allocate on the
4472 objfile's obstack is still uselessly kept around. However,
4473 freeing it seems unsafe. */
4474 psymtab_discarder psymtabs (objfile);
4475 dwarf2_build_psymtabs_hard (objfile);
4476 psymtabs.keep ();
4477 }
4478 CATCH (except, RETURN_MASK_ERROR)
4479 {
4480 exception_print (gdb_stderr, except);
4481 }
4482 END_CATCH
4483 }
4484
4485 /* Return the total length of the CU described by HEADER. */
4486
4487 static unsigned int
4488 get_cu_length (const struct comp_unit_head *header)
4489 {
4490 return header->initial_length_size + header->length;
4491 }
4492
4493 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4494
4495 static inline bool
4496 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4497 {
4498 sect_offset bottom = cu_header->sect_off;
4499 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4500
4501 return sect_off >= bottom && sect_off < top;
4502 }
4503
4504 /* Find the base address of the compilation unit for range lists and
4505 location lists. It will normally be specified by DW_AT_low_pc.
4506 In DWARF-3 draft 4, the base address could be overridden by
4507 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4508 compilation units with discontinuous ranges. */
4509
4510 static void
4511 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4512 {
4513 struct attribute *attr;
4514
4515 cu->base_known = 0;
4516 cu->base_address = 0;
4517
4518 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4519 if (attr)
4520 {
4521 cu->base_address = attr_value_as_address (attr);
4522 cu->base_known = 1;
4523 }
4524 else
4525 {
4526 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4527 if (attr)
4528 {
4529 cu->base_address = attr_value_as_address (attr);
4530 cu->base_known = 1;
4531 }
4532 }
4533 }
4534
4535 /* Read in the comp unit header information from the debug_info at info_ptr.
4536 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4537 NOTE: This leaves members offset, first_die_offset to be filled in
4538 by the caller. */
4539
4540 static const gdb_byte *
4541 read_comp_unit_head (struct comp_unit_head *cu_header,
4542 const gdb_byte *info_ptr,
4543 struct dwarf2_section_info *section,
4544 rcuh_kind section_kind)
4545 {
4546 int signed_addr;
4547 unsigned int bytes_read;
4548 const char *filename = get_section_file_name (section);
4549 bfd *abfd = get_section_bfd_owner (section);
4550
4551 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4552 cu_header->initial_length_size = bytes_read;
4553 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4554 info_ptr += bytes_read;
4555 cu_header->version = read_2_bytes (abfd, info_ptr);
4556 info_ptr += 2;
4557 if (cu_header->version < 5)
4558 switch (section_kind)
4559 {
4560 case rcuh_kind::COMPILE:
4561 cu_header->unit_type = DW_UT_compile;
4562 break;
4563 case rcuh_kind::TYPE:
4564 cu_header->unit_type = DW_UT_type;
4565 break;
4566 default:
4567 internal_error (__FILE__, __LINE__,
4568 _("read_comp_unit_head: invalid section_kind"));
4569 }
4570 else
4571 {
4572 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4573 (read_1_byte (abfd, info_ptr));
4574 info_ptr += 1;
4575 switch (cu_header->unit_type)
4576 {
4577 case DW_UT_compile:
4578 if (section_kind != rcuh_kind::COMPILE)
4579 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4580 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4581 filename);
4582 break;
4583 case DW_UT_type:
4584 section_kind = rcuh_kind::TYPE;
4585 break;
4586 default:
4587 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4588 "(is %d, should be %d or %d) [in module %s]"),
4589 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4590 }
4591
4592 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4593 info_ptr += 1;
4594 }
4595 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4596 cu_header,
4597 &bytes_read);
4598 info_ptr += bytes_read;
4599 if (cu_header->version < 5)
4600 {
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
4604 signed_addr = bfd_get_sign_extend_vma (abfd);
4605 if (signed_addr < 0)
4606 internal_error (__FILE__, __LINE__,
4607 _("read_comp_unit_head: dwarf from non elf file"));
4608 cu_header->signed_addr_p = signed_addr;
4609
4610 if (section_kind == rcuh_kind::TYPE)
4611 {
4612 LONGEST type_offset;
4613
4614 cu_header->signature = read_8_bytes (abfd, info_ptr);
4615 info_ptr += 8;
4616
4617 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4618 info_ptr += bytes_read;
4619 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4620 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4621 error (_("Dwarf Error: Too big type_offset in compilation unit "
4622 "header (is %s) [in module %s]"), plongest (type_offset),
4623 filename);
4624 }
4625
4626 return info_ptr;
4627 }
4628
4629 /* Helper function that returns the proper abbrev section for
4630 THIS_CU. */
4631
4632 static struct dwarf2_section_info *
4633 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4634 {
4635 struct dwarf2_section_info *abbrev;
4636
4637 if (this_cu->is_dwz)
4638 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4639 else
4640 abbrev = &dwarf2_per_objfile->abbrev;
4641
4642 return abbrev;
4643 }
4644
4645 /* Subroutine of read_and_check_comp_unit_head and
4646 read_and_check_type_unit_head to simplify them.
4647 Perform various error checking on the header. */
4648
4649 static void
4650 error_check_comp_unit_head (struct comp_unit_head *header,
4651 struct dwarf2_section_info *section,
4652 struct dwarf2_section_info *abbrev_section)
4653 {
4654 const char *filename = get_section_file_name (section);
4655
4656 if (header->version < 2 || header->version > 5)
4657 error (_("Dwarf Error: wrong version in compilation unit header "
4658 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4659 filename);
4660
4661 if (to_underlying (header->abbrev_sect_off)
4662 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4663 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4664 "(offset 0x%x + 6) [in module %s]"),
4665 to_underlying (header->abbrev_sect_off),
4666 to_underlying (header->sect_off),
4667 filename);
4668
4669 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4670 avoid potential 32-bit overflow. */
4671 if (((ULONGEST) header->sect_off + get_cu_length (header))
4672 > section->size)
4673 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4674 "(offset 0x%x + 0) [in module %s]"),
4675 header->length, to_underlying (header->sect_off),
4676 filename);
4677 }
4678
4679 /* Read in a CU/TU header and perform some basic error checking.
4680 The contents of the header are stored in HEADER.
4681 The result is a pointer to the start of the first DIE. */
4682
4683 static const gdb_byte *
4684 read_and_check_comp_unit_head (struct comp_unit_head *header,
4685 struct dwarf2_section_info *section,
4686 struct dwarf2_section_info *abbrev_section,
4687 const gdb_byte *info_ptr,
4688 rcuh_kind section_kind)
4689 {
4690 const gdb_byte *beg_of_comp_unit = info_ptr;
4691 bfd *abfd = get_section_bfd_owner (section);
4692
4693 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4694
4695 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4696
4697 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4698
4699 error_check_comp_unit_head (header, section, abbrev_section);
4700
4701 return info_ptr;
4702 }
4703
4704 /* Fetch the abbreviation table offset from a comp or type unit header. */
4705
4706 static sect_offset
4707 read_abbrev_offset (struct dwarf2_section_info *section,
4708 sect_offset sect_off)
4709 {
4710 bfd *abfd = get_section_bfd_owner (section);
4711 const gdb_byte *info_ptr;
4712 unsigned int initial_length_size, offset_size;
4713 uint16_t version;
4714
4715 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4716 info_ptr = section->buffer + to_underlying (sect_off);
4717 read_initial_length (abfd, info_ptr, &initial_length_size);
4718 offset_size = initial_length_size == 4 ? 4 : 8;
4719 info_ptr += initial_length_size;
4720
4721 version = read_2_bytes (abfd, info_ptr);
4722 info_ptr += 2;
4723 if (version >= 5)
4724 {
4725 /* Skip unit type and address size. */
4726 info_ptr += 2;
4727 }
4728
4729 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4730 }
4731
4732 /* Allocate a new partial symtab for file named NAME and mark this new
4733 partial symtab as being an include of PST. */
4734
4735 static void
4736 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4737 struct objfile *objfile)
4738 {
4739 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4740
4741 if (!IS_ABSOLUTE_PATH (subpst->filename))
4742 {
4743 /* It shares objfile->objfile_obstack. */
4744 subpst->dirname = pst->dirname;
4745 }
4746
4747 subpst->textlow = 0;
4748 subpst->texthigh = 0;
4749
4750 subpst->dependencies
4751 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4752 subpst->dependencies[0] = pst;
4753 subpst->number_of_dependencies = 1;
4754
4755 subpst->globals_offset = 0;
4756 subpst->n_global_syms = 0;
4757 subpst->statics_offset = 0;
4758 subpst->n_static_syms = 0;
4759 subpst->compunit_symtab = NULL;
4760 subpst->read_symtab = pst->read_symtab;
4761 subpst->readin = 0;
4762
4763 /* No private part is necessary for include psymtabs. This property
4764 can be used to differentiate between such include psymtabs and
4765 the regular ones. */
4766 subpst->read_symtab_private = NULL;
4767 }
4768
4769 /* Read the Line Number Program data and extract the list of files
4770 included by the source file represented by PST. Build an include
4771 partial symtab for each of these included files. */
4772
4773 static void
4774 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4775 struct die_info *die,
4776 struct partial_symtab *pst)
4777 {
4778 line_header_up lh;
4779 struct attribute *attr;
4780
4781 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4782 if (attr)
4783 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4784 if (lh == NULL)
4785 return; /* No linetable, so no includes. */
4786
4787 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4788 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4789 }
4790
4791 static hashval_t
4792 hash_signatured_type (const void *item)
4793 {
4794 const struct signatured_type *sig_type
4795 = (const struct signatured_type *) item;
4796
4797 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4798 return sig_type->signature;
4799 }
4800
4801 static int
4802 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4803 {
4804 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4805 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4806
4807 return lhs->signature == rhs->signature;
4808 }
4809
4810 /* Allocate a hash table for signatured types. */
4811
4812 static htab_t
4813 allocate_signatured_type_table (struct objfile *objfile)
4814 {
4815 return htab_create_alloc_ex (41,
4816 hash_signatured_type,
4817 eq_signatured_type,
4818 NULL,
4819 &objfile->objfile_obstack,
4820 hashtab_obstack_allocate,
4821 dummy_obstack_deallocate);
4822 }
4823
4824 /* A helper function to add a signatured type CU to a table. */
4825
4826 static int
4827 add_signatured_type_cu_to_table (void **slot, void *datum)
4828 {
4829 struct signatured_type *sigt = (struct signatured_type *) *slot;
4830 struct signatured_type ***datap = (struct signatured_type ***) datum;
4831
4832 **datap = sigt;
4833 ++*datap;
4834
4835 return 1;
4836 }
4837
4838 /* A helper for create_debug_types_hash_table. Read types from SECTION
4839 and fill them into TYPES_HTAB. It will process only type units,
4840 therefore DW_UT_type. */
4841
4842 static void
4843 create_debug_type_hash_table (struct dwo_file *dwo_file,
4844 dwarf2_section_info *section, htab_t &types_htab,
4845 rcuh_kind section_kind)
4846 {
4847 struct objfile *objfile = dwarf2_per_objfile->objfile;
4848 struct dwarf2_section_info *abbrev_section;
4849 bfd *abfd;
4850 const gdb_byte *info_ptr, *end_ptr;
4851
4852 abbrev_section = (dwo_file != NULL
4853 ? &dwo_file->sections.abbrev
4854 : &dwarf2_per_objfile->abbrev);
4855
4856 if (dwarf_read_debug)
4857 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4858 get_section_name (section),
4859 get_section_file_name (abbrev_section));
4860
4861 dwarf2_read_section (objfile, section);
4862 info_ptr = section->buffer;
4863
4864 if (info_ptr == NULL)
4865 return;
4866
4867 /* We can't set abfd until now because the section may be empty or
4868 not present, in which case the bfd is unknown. */
4869 abfd = get_section_bfd_owner (section);
4870
4871 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4872 because we don't need to read any dies: the signature is in the
4873 header. */
4874
4875 end_ptr = info_ptr + section->size;
4876 while (info_ptr < end_ptr)
4877 {
4878 struct signatured_type *sig_type;
4879 struct dwo_unit *dwo_tu;
4880 void **slot;
4881 const gdb_byte *ptr = info_ptr;
4882 struct comp_unit_head header;
4883 unsigned int length;
4884
4885 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4886
4887 /* Initialize it due to a false compiler warning. */
4888 header.signature = -1;
4889 header.type_cu_offset_in_tu = (cu_offset) -1;
4890
4891 /* We need to read the type's signature in order to build the hash
4892 table, but we don't need anything else just yet. */
4893
4894 ptr = read_and_check_comp_unit_head (&header, section,
4895 abbrev_section, ptr, section_kind);
4896
4897 length = get_cu_length (&header);
4898
4899 /* Skip dummy type units. */
4900 if (ptr >= info_ptr + length
4901 || peek_abbrev_code (abfd, ptr) == 0
4902 || header.unit_type != DW_UT_type)
4903 {
4904 info_ptr += length;
4905 continue;
4906 }
4907
4908 if (types_htab == NULL)
4909 {
4910 if (dwo_file)
4911 types_htab = allocate_dwo_unit_table (objfile);
4912 else
4913 types_htab = allocate_signatured_type_table (objfile);
4914 }
4915
4916 if (dwo_file)
4917 {
4918 sig_type = NULL;
4919 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4920 struct dwo_unit);
4921 dwo_tu->dwo_file = dwo_file;
4922 dwo_tu->signature = header.signature;
4923 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4924 dwo_tu->section = section;
4925 dwo_tu->sect_off = sect_off;
4926 dwo_tu->length = length;
4927 }
4928 else
4929 {
4930 /* N.B.: type_offset is not usable if this type uses a DWO file.
4931 The real type_offset is in the DWO file. */
4932 dwo_tu = NULL;
4933 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4934 struct signatured_type);
4935 sig_type->signature = header.signature;
4936 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4937 sig_type->per_cu.objfile = objfile;
4938 sig_type->per_cu.is_debug_types = 1;
4939 sig_type->per_cu.section = section;
4940 sig_type->per_cu.sect_off = sect_off;
4941 sig_type->per_cu.length = length;
4942 }
4943
4944 slot = htab_find_slot (types_htab,
4945 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4946 INSERT);
4947 gdb_assert (slot != NULL);
4948 if (*slot != NULL)
4949 {
4950 sect_offset dup_sect_off;
4951
4952 if (dwo_file)
4953 {
4954 const struct dwo_unit *dup_tu
4955 = (const struct dwo_unit *) *slot;
4956
4957 dup_sect_off = dup_tu->sect_off;
4958 }
4959 else
4960 {
4961 const struct signatured_type *dup_tu
4962 = (const struct signatured_type *) *slot;
4963
4964 dup_sect_off = dup_tu->per_cu.sect_off;
4965 }
4966
4967 complaint (&symfile_complaints,
4968 _("debug type entry at offset 0x%x is duplicate to"
4969 " the entry at offset 0x%x, signature %s"),
4970 to_underlying (sect_off), to_underlying (dup_sect_off),
4971 hex_string (header.signature));
4972 }
4973 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4974
4975 if (dwarf_read_debug > 1)
4976 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4977 to_underlying (sect_off),
4978 hex_string (header.signature));
4979
4980 info_ptr += length;
4981 }
4982 }
4983
4984 /* Create the hash table of all entries in the .debug_types
4985 (or .debug_types.dwo) section(s).
4986 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4987 otherwise it is NULL.
4988
4989 The result is a pointer to the hash table or NULL if there are no types.
4990
4991 Note: This function processes DWO files only, not DWP files. */
4992
4993 static void
4994 create_debug_types_hash_table (struct dwo_file *dwo_file,
4995 VEC (dwarf2_section_info_def) *types,
4996 htab_t &types_htab)
4997 {
4998 int ix;
4999 struct dwarf2_section_info *section;
5000
5001 if (VEC_empty (dwarf2_section_info_def, types))
5002 return;
5003
5004 for (ix = 0;
5005 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5006 ++ix)
5007 create_debug_type_hash_table (dwo_file, section, types_htab,
5008 rcuh_kind::TYPE);
5009 }
5010
5011 /* Create the hash table of all entries in the .debug_types section,
5012 and initialize all_type_units.
5013 The result is zero if there is an error (e.g. missing .debug_types section),
5014 otherwise non-zero. */
5015
5016 static int
5017 create_all_type_units (struct objfile *objfile)
5018 {
5019 htab_t types_htab = NULL;
5020 struct signatured_type **iter;
5021
5022 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5023 rcuh_kind::COMPILE);
5024 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5025 if (types_htab == NULL)
5026 {
5027 dwarf2_per_objfile->signatured_types = NULL;
5028 return 0;
5029 }
5030
5031 dwarf2_per_objfile->signatured_types = types_htab;
5032
5033 dwarf2_per_objfile->n_type_units
5034 = dwarf2_per_objfile->n_allocated_type_units
5035 = htab_elements (types_htab);
5036 dwarf2_per_objfile->all_type_units =
5037 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5038 iter = &dwarf2_per_objfile->all_type_units[0];
5039 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5040 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5041 == dwarf2_per_objfile->n_type_units);
5042
5043 return 1;
5044 }
5045
5046 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5047 If SLOT is non-NULL, it is the entry to use in the hash table.
5048 Otherwise we find one. */
5049
5050 static struct signatured_type *
5051 add_type_unit (ULONGEST sig, void **slot)
5052 {
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 int n_type_units = dwarf2_per_objfile->n_type_units;
5055 struct signatured_type *sig_type;
5056
5057 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5058 ++n_type_units;
5059 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5060 {
5061 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5062 dwarf2_per_objfile->n_allocated_type_units = 1;
5063 dwarf2_per_objfile->n_allocated_type_units *= 2;
5064 dwarf2_per_objfile->all_type_units
5065 = XRESIZEVEC (struct signatured_type *,
5066 dwarf2_per_objfile->all_type_units,
5067 dwarf2_per_objfile->n_allocated_type_units);
5068 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5069 }
5070 dwarf2_per_objfile->n_type_units = n_type_units;
5071
5072 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5073 struct signatured_type);
5074 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5075 sig_type->signature = sig;
5076 sig_type->per_cu.is_debug_types = 1;
5077 if (dwarf2_per_objfile->using_index)
5078 {
5079 sig_type->per_cu.v.quick =
5080 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5081 struct dwarf2_per_cu_quick_data);
5082 }
5083
5084 if (slot == NULL)
5085 {
5086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5087 sig_type, INSERT);
5088 }
5089 gdb_assert (*slot == NULL);
5090 *slot = sig_type;
5091 /* The rest of sig_type must be filled in by the caller. */
5092 return sig_type;
5093 }
5094
5095 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5096 Fill in SIG_ENTRY with DWO_ENTRY. */
5097
5098 static void
5099 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5100 struct signatured_type *sig_entry,
5101 struct dwo_unit *dwo_entry)
5102 {
5103 /* Make sure we're not clobbering something we don't expect to. */
5104 gdb_assert (! sig_entry->per_cu.queued);
5105 gdb_assert (sig_entry->per_cu.cu == NULL);
5106 if (dwarf2_per_objfile->using_index)
5107 {
5108 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5109 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5110 }
5111 else
5112 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5113 gdb_assert (sig_entry->signature == dwo_entry->signature);
5114 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5115 gdb_assert (sig_entry->type_unit_group == NULL);
5116 gdb_assert (sig_entry->dwo_unit == NULL);
5117
5118 sig_entry->per_cu.section = dwo_entry->section;
5119 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5120 sig_entry->per_cu.length = dwo_entry->length;
5121 sig_entry->per_cu.reading_dwo_directly = 1;
5122 sig_entry->per_cu.objfile = objfile;
5123 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5124 sig_entry->dwo_unit = dwo_entry;
5125 }
5126
5127 /* Subroutine of lookup_signatured_type.
5128 If we haven't read the TU yet, create the signatured_type data structure
5129 for a TU to be read in directly from a DWO file, bypassing the stub.
5130 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5131 using .gdb_index, then when reading a CU we want to stay in the DWO file
5132 containing that CU. Otherwise we could end up reading several other DWO
5133 files (due to comdat folding) to process the transitive closure of all the
5134 mentioned TUs, and that can be slow. The current DWO file will have every
5135 type signature that it needs.
5136 We only do this for .gdb_index because in the psymtab case we already have
5137 to read all the DWOs to build the type unit groups. */
5138
5139 static struct signatured_type *
5140 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5141 {
5142 struct objfile *objfile = dwarf2_per_objfile->objfile;
5143 struct dwo_file *dwo_file;
5144 struct dwo_unit find_dwo_entry, *dwo_entry;
5145 struct signatured_type find_sig_entry, *sig_entry;
5146 void **slot;
5147
5148 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5149
5150 /* If TU skeletons have been removed then we may not have read in any
5151 TUs yet. */
5152 if (dwarf2_per_objfile->signatured_types == NULL)
5153 {
5154 dwarf2_per_objfile->signatured_types
5155 = allocate_signatured_type_table (objfile);
5156 }
5157
5158 /* We only ever need to read in one copy of a signatured type.
5159 Use the global signatured_types array to do our own comdat-folding
5160 of types. If this is the first time we're reading this TU, and
5161 the TU has an entry in .gdb_index, replace the recorded data from
5162 .gdb_index with this TU. */
5163
5164 find_sig_entry.signature = sig;
5165 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5166 &find_sig_entry, INSERT);
5167 sig_entry = (struct signatured_type *) *slot;
5168
5169 /* We can get here with the TU already read, *or* in the process of being
5170 read. Don't reassign the global entry to point to this DWO if that's
5171 the case. Also note that if the TU is already being read, it may not
5172 have come from a DWO, the program may be a mix of Fission-compiled
5173 code and non-Fission-compiled code. */
5174
5175 /* Have we already tried to read this TU?
5176 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5177 needn't exist in the global table yet). */
5178 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5179 return sig_entry;
5180
5181 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5182 dwo_unit of the TU itself. */
5183 dwo_file = cu->dwo_unit->dwo_file;
5184
5185 /* Ok, this is the first time we're reading this TU. */
5186 if (dwo_file->tus == NULL)
5187 return NULL;
5188 find_dwo_entry.signature = sig;
5189 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5190 if (dwo_entry == NULL)
5191 return NULL;
5192
5193 /* If the global table doesn't have an entry for this TU, add one. */
5194 if (sig_entry == NULL)
5195 sig_entry = add_type_unit (sig, slot);
5196
5197 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5198 sig_entry->per_cu.tu_read = 1;
5199 return sig_entry;
5200 }
5201
5202 /* Subroutine of lookup_signatured_type.
5203 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5204 then try the DWP file. If the TU stub (skeleton) has been removed then
5205 it won't be in .gdb_index. */
5206
5207 static struct signatured_type *
5208 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5209 {
5210 struct objfile *objfile = dwarf2_per_objfile->objfile;
5211 struct dwp_file *dwp_file = get_dwp_file ();
5212 struct dwo_unit *dwo_entry;
5213 struct signatured_type find_sig_entry, *sig_entry;
5214 void **slot;
5215
5216 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5217 gdb_assert (dwp_file != NULL);
5218
5219 /* If TU skeletons have been removed then we may not have read in any
5220 TUs yet. */
5221 if (dwarf2_per_objfile->signatured_types == NULL)
5222 {
5223 dwarf2_per_objfile->signatured_types
5224 = allocate_signatured_type_table (objfile);
5225 }
5226
5227 find_sig_entry.signature = sig;
5228 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5229 &find_sig_entry, INSERT);
5230 sig_entry = (struct signatured_type *) *slot;
5231
5232 /* Have we already tried to read this TU?
5233 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5234 needn't exist in the global table yet). */
5235 if (sig_entry != NULL)
5236 return sig_entry;
5237
5238 if (dwp_file->tus == NULL)
5239 return NULL;
5240 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5241 sig, 1 /* is_debug_types */);
5242 if (dwo_entry == NULL)
5243 return NULL;
5244
5245 sig_entry = add_type_unit (sig, slot);
5246 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5247
5248 return sig_entry;
5249 }
5250
5251 /* Lookup a signature based type for DW_FORM_ref_sig8.
5252 Returns NULL if signature SIG is not present in the table.
5253 It is up to the caller to complain about this. */
5254
5255 static struct signatured_type *
5256 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5257 {
5258 if (cu->dwo_unit
5259 && dwarf2_per_objfile->using_index)
5260 {
5261 /* We're in a DWO/DWP file, and we're using .gdb_index.
5262 These cases require special processing. */
5263 if (get_dwp_file () == NULL)
5264 return lookup_dwo_signatured_type (cu, sig);
5265 else
5266 return lookup_dwp_signatured_type (cu, sig);
5267 }
5268 else
5269 {
5270 struct signatured_type find_entry, *entry;
5271
5272 if (dwarf2_per_objfile->signatured_types == NULL)
5273 return NULL;
5274 find_entry.signature = sig;
5275 entry = ((struct signatured_type *)
5276 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5277 return entry;
5278 }
5279 }
5280 \f
5281 /* Low level DIE reading support. */
5282
5283 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5284
5285 static void
5286 init_cu_die_reader (struct die_reader_specs *reader,
5287 struct dwarf2_cu *cu,
5288 struct dwarf2_section_info *section,
5289 struct dwo_file *dwo_file)
5290 {
5291 gdb_assert (section->readin && section->buffer != NULL);
5292 reader->abfd = get_section_bfd_owner (section);
5293 reader->cu = cu;
5294 reader->dwo_file = dwo_file;
5295 reader->die_section = section;
5296 reader->buffer = section->buffer;
5297 reader->buffer_end = section->buffer + section->size;
5298 reader->comp_dir = NULL;
5299 }
5300
5301 /* Subroutine of init_cutu_and_read_dies to simplify it.
5302 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5303 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5304 already.
5305
5306 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5307 from it to the DIE in the DWO. If NULL we are skipping the stub.
5308 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5309 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5310 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5311 STUB_COMP_DIR may be non-NULL.
5312 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5313 are filled in with the info of the DIE from the DWO file.
5314 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5315 provided an abbrev table to use.
5316 The result is non-zero if a valid (non-dummy) DIE was found. */
5317
5318 static int
5319 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5320 struct dwo_unit *dwo_unit,
5321 int abbrev_table_provided,
5322 struct die_info *stub_comp_unit_die,
5323 const char *stub_comp_dir,
5324 struct die_reader_specs *result_reader,
5325 const gdb_byte **result_info_ptr,
5326 struct die_info **result_comp_unit_die,
5327 int *result_has_children)
5328 {
5329 struct objfile *objfile = dwarf2_per_objfile->objfile;
5330 struct dwarf2_cu *cu = this_cu->cu;
5331 struct dwarf2_section_info *section;
5332 bfd *abfd;
5333 const gdb_byte *begin_info_ptr, *info_ptr;
5334 ULONGEST signature; /* Or dwo_id. */
5335 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5336 int i,num_extra_attrs;
5337 struct dwarf2_section_info *dwo_abbrev_section;
5338 struct attribute *attr;
5339 struct die_info *comp_unit_die;
5340
5341 /* At most one of these may be provided. */
5342 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5343
5344 /* These attributes aren't processed until later:
5345 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5346 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5347 referenced later. However, these attributes are found in the stub
5348 which we won't have later. In order to not impose this complication
5349 on the rest of the code, we read them here and copy them to the
5350 DWO CU/TU die. */
5351
5352 stmt_list = NULL;
5353 low_pc = NULL;
5354 high_pc = NULL;
5355 ranges = NULL;
5356 comp_dir = NULL;
5357
5358 if (stub_comp_unit_die != NULL)
5359 {
5360 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5361 DWO file. */
5362 if (! this_cu->is_debug_types)
5363 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5364 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5365 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5366 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5367 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5368
5369 /* There should be a DW_AT_addr_base attribute here (if needed).
5370 We need the value before we can process DW_FORM_GNU_addr_index. */
5371 cu->addr_base = 0;
5372 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5373 if (attr)
5374 cu->addr_base = DW_UNSND (attr);
5375
5376 /* There should be a DW_AT_ranges_base attribute here (if needed).
5377 We need the value before we can process DW_AT_ranges. */
5378 cu->ranges_base = 0;
5379 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5380 if (attr)
5381 cu->ranges_base = DW_UNSND (attr);
5382 }
5383 else if (stub_comp_dir != NULL)
5384 {
5385 /* Reconstruct the comp_dir attribute to simplify the code below. */
5386 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5387 comp_dir->name = DW_AT_comp_dir;
5388 comp_dir->form = DW_FORM_string;
5389 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5390 DW_STRING (comp_dir) = stub_comp_dir;
5391 }
5392
5393 /* Set up for reading the DWO CU/TU. */
5394 cu->dwo_unit = dwo_unit;
5395 section = dwo_unit->section;
5396 dwarf2_read_section (objfile, section);
5397 abfd = get_section_bfd_owner (section);
5398 begin_info_ptr = info_ptr = (section->buffer
5399 + to_underlying (dwo_unit->sect_off));
5400 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5401 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5402
5403 if (this_cu->is_debug_types)
5404 {
5405 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5406
5407 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5408 dwo_abbrev_section,
5409 info_ptr, rcuh_kind::TYPE);
5410 /* This is not an assert because it can be caused by bad debug info. */
5411 if (sig_type->signature != cu->header.signature)
5412 {
5413 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5414 " TU at offset 0x%x [in module %s]"),
5415 hex_string (sig_type->signature),
5416 hex_string (cu->header.signature),
5417 to_underlying (dwo_unit->sect_off),
5418 bfd_get_filename (abfd));
5419 }
5420 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5421 /* For DWOs coming from DWP files, we don't know the CU length
5422 nor the type's offset in the TU until now. */
5423 dwo_unit->length = get_cu_length (&cu->header);
5424 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5425
5426 /* Establish the type offset that can be used to lookup the type.
5427 For DWO files, we don't know it until now. */
5428 sig_type->type_offset_in_section
5429 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5430 }
5431 else
5432 {
5433 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5434 dwo_abbrev_section,
5435 info_ptr, rcuh_kind::COMPILE);
5436 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5437 /* For DWOs coming from DWP files, we don't know the CU length
5438 until now. */
5439 dwo_unit->length = get_cu_length (&cu->header);
5440 }
5441
5442 /* Replace the CU's original abbrev table with the DWO's.
5443 Reminder: We can't read the abbrev table until we've read the header. */
5444 if (abbrev_table_provided)
5445 {
5446 /* Don't free the provided abbrev table, the caller of
5447 init_cutu_and_read_dies owns it. */
5448 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5449 /* Ensure the DWO abbrev table gets freed. */
5450 make_cleanup (dwarf2_free_abbrev_table, cu);
5451 }
5452 else
5453 {
5454 dwarf2_free_abbrev_table (cu);
5455 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5456 /* Leave any existing abbrev table cleanup as is. */
5457 }
5458
5459 /* Read in the die, but leave space to copy over the attributes
5460 from the stub. This has the benefit of simplifying the rest of
5461 the code - all the work to maintain the illusion of a single
5462 DW_TAG_{compile,type}_unit DIE is done here. */
5463 num_extra_attrs = ((stmt_list != NULL)
5464 + (low_pc != NULL)
5465 + (high_pc != NULL)
5466 + (ranges != NULL)
5467 + (comp_dir != NULL));
5468 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5469 result_has_children, num_extra_attrs);
5470
5471 /* Copy over the attributes from the stub to the DIE we just read in. */
5472 comp_unit_die = *result_comp_unit_die;
5473 i = comp_unit_die->num_attrs;
5474 if (stmt_list != NULL)
5475 comp_unit_die->attrs[i++] = *stmt_list;
5476 if (low_pc != NULL)
5477 comp_unit_die->attrs[i++] = *low_pc;
5478 if (high_pc != NULL)
5479 comp_unit_die->attrs[i++] = *high_pc;
5480 if (ranges != NULL)
5481 comp_unit_die->attrs[i++] = *ranges;
5482 if (comp_dir != NULL)
5483 comp_unit_die->attrs[i++] = *comp_dir;
5484 comp_unit_die->num_attrs += num_extra_attrs;
5485
5486 if (dwarf_die_debug)
5487 {
5488 fprintf_unfiltered (gdb_stdlog,
5489 "Read die from %s@0x%x of %s:\n",
5490 get_section_name (section),
5491 (unsigned) (begin_info_ptr - section->buffer),
5492 bfd_get_filename (abfd));
5493 dump_die (comp_unit_die, dwarf_die_debug);
5494 }
5495
5496 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5497 TUs by skipping the stub and going directly to the entry in the DWO file.
5498 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5499 to get it via circuitous means. Blech. */
5500 if (comp_dir != NULL)
5501 result_reader->comp_dir = DW_STRING (comp_dir);
5502
5503 /* Skip dummy compilation units. */
5504 if (info_ptr >= begin_info_ptr + dwo_unit->length
5505 || peek_abbrev_code (abfd, info_ptr) == 0)
5506 return 0;
5507
5508 *result_info_ptr = info_ptr;
5509 return 1;
5510 }
5511
5512 /* Subroutine of init_cutu_and_read_dies to simplify it.
5513 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5514 Returns NULL if the specified DWO unit cannot be found. */
5515
5516 static struct dwo_unit *
5517 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5518 struct die_info *comp_unit_die)
5519 {
5520 struct dwarf2_cu *cu = this_cu->cu;
5521 struct attribute *attr;
5522 ULONGEST signature;
5523 struct dwo_unit *dwo_unit;
5524 const char *comp_dir, *dwo_name;
5525
5526 gdb_assert (cu != NULL);
5527
5528 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5529 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5530 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5531
5532 if (this_cu->is_debug_types)
5533 {
5534 struct signatured_type *sig_type;
5535
5536 /* Since this_cu is the first member of struct signatured_type,
5537 we can go from a pointer to one to a pointer to the other. */
5538 sig_type = (struct signatured_type *) this_cu;
5539 signature = sig_type->signature;
5540 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5541 }
5542 else
5543 {
5544 struct attribute *attr;
5545
5546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5547 if (! attr)
5548 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5549 " [in module %s]"),
5550 dwo_name, objfile_name (this_cu->objfile));
5551 signature = DW_UNSND (attr);
5552 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5553 signature);
5554 }
5555
5556 return dwo_unit;
5557 }
5558
5559 /* Subroutine of init_cutu_and_read_dies to simplify it.
5560 See it for a description of the parameters.
5561 Read a TU directly from a DWO file, bypassing the stub.
5562
5563 Note: This function could be a little bit simpler if we shared cleanups
5564 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5565 to do, so we keep this function self-contained. Or we could move this
5566 into our caller, but it's complex enough already. */
5567
5568 static void
5569 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5570 int use_existing_cu, int keep,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573 {
5574 struct dwarf2_cu *cu;
5575 struct signatured_type *sig_type;
5576 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5577 struct die_reader_specs reader;
5578 const gdb_byte *info_ptr;
5579 struct die_info *comp_unit_die;
5580 int has_children;
5581
5582 /* Verify we can do the following downcast, and that we have the
5583 data we need. */
5584 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5585 sig_type = (struct signatured_type *) this_cu;
5586 gdb_assert (sig_type->dwo_unit != NULL);
5587
5588 cleanups = make_cleanup (null_cleanup, NULL);
5589
5590 if (use_existing_cu && this_cu->cu != NULL)
5591 {
5592 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5593 cu = this_cu->cu;
5594 /* There's no need to do the rereading_dwo_cu handling that
5595 init_cutu_and_read_dies does since we don't read the stub. */
5596 }
5597 else
5598 {
5599 /* If !use_existing_cu, this_cu->cu must be NULL. */
5600 gdb_assert (this_cu->cu == NULL);
5601 cu = XNEW (struct dwarf2_cu);
5602 init_one_comp_unit (cu, this_cu);
5603 /* If an error occurs while loading, release our storage. */
5604 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5605 }
5606
5607 /* A future optimization, if needed, would be to use an existing
5608 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5609 could share abbrev tables. */
5610
5611 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5612 0 /* abbrev_table_provided */,
5613 NULL /* stub_comp_unit_die */,
5614 sig_type->dwo_unit->dwo_file->comp_dir,
5615 &reader, &info_ptr,
5616 &comp_unit_die, &has_children) == 0)
5617 {
5618 /* Dummy die. */
5619 do_cleanups (cleanups);
5620 return;
5621 }
5622
5623 /* All the "real" work is done here. */
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
5626 /* This duplicates the code in init_cutu_and_read_dies,
5627 but the alternative is making the latter more complex.
5628 This function is only for the special case of using DWO files directly:
5629 no point in overly complicating the general case just to handle this. */
5630 if (free_cu_cleanup != NULL)
5631 {
5632 if (keep)
5633 {
5634 /* We've successfully allocated this compilation unit. Let our
5635 caller clean it up when finished with it. */
5636 discard_cleanups (free_cu_cleanup);
5637
5638 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5639 So we have to manually free the abbrev table. */
5640 dwarf2_free_abbrev_table (cu);
5641
5642 /* Link this CU into read_in_chain. */
5643 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5644 dwarf2_per_objfile->read_in_chain = this_cu;
5645 }
5646 else
5647 do_cleanups (free_cu_cleanup);
5648 }
5649
5650 do_cleanups (cleanups);
5651 }
5652
5653 /* Initialize a CU (or TU) and read its DIEs.
5654 If the CU defers to a DWO file, read the DWO file as well.
5655
5656 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5657 Otherwise the table specified in the comp unit header is read in and used.
5658 This is an optimization for when we already have the abbrev table.
5659
5660 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5661 Otherwise, a new CU is allocated with xmalloc.
5662
5663 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5664 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5665
5666 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5667 linker) then DIE_READER_FUNC will not get called. */
5668
5669 static void
5670 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5671 struct abbrev_table *abbrev_table,
5672 int use_existing_cu, int keep,
5673 die_reader_func_ftype *die_reader_func,
5674 void *data)
5675 {
5676 struct objfile *objfile = dwarf2_per_objfile->objfile;
5677 struct dwarf2_section_info *section = this_cu->section;
5678 bfd *abfd = get_section_bfd_owner (section);
5679 struct dwarf2_cu *cu;
5680 const gdb_byte *begin_info_ptr, *info_ptr;
5681 struct die_reader_specs reader;
5682 struct die_info *comp_unit_die;
5683 int has_children;
5684 struct attribute *attr;
5685 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5686 struct signatured_type *sig_type = NULL;
5687 struct dwarf2_section_info *abbrev_section;
5688 /* Non-zero if CU currently points to a DWO file and we need to
5689 reread it. When this happens we need to reread the skeleton die
5690 before we can reread the DWO file (this only applies to CUs, not TUs). */
5691 int rereading_dwo_cu = 0;
5692
5693 if (dwarf_die_debug)
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
5696 to_underlying (this_cu->sect_off));
5697
5698 if (use_existing_cu)
5699 gdb_assert (keep);
5700
5701 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5702 file (instead of going through the stub), short-circuit all of this. */
5703 if (this_cu->reading_dwo_directly)
5704 {
5705 /* Narrow down the scope of possibilities to have to understand. */
5706 gdb_assert (this_cu->is_debug_types);
5707 gdb_assert (abbrev_table == NULL);
5708 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5709 die_reader_func, data);
5710 return;
5711 }
5712
5713 cleanups = make_cleanup (null_cleanup, NULL);
5714
5715 /* This is cheap if the section is already read in. */
5716 dwarf2_read_section (objfile, section);
5717
5718 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5719
5720 abbrev_section = get_abbrev_section_for_cu (this_cu);
5721
5722 if (use_existing_cu && this_cu->cu != NULL)
5723 {
5724 cu = this_cu->cu;
5725 /* If this CU is from a DWO file we need to start over, we need to
5726 refetch the attributes from the skeleton CU.
5727 This could be optimized by retrieving those attributes from when we
5728 were here the first time: the previous comp_unit_die was stored in
5729 comp_unit_obstack. But there's no data yet that we need this
5730 optimization. */
5731 if (cu->dwo_unit != NULL)
5732 rereading_dwo_cu = 1;
5733 }
5734 else
5735 {
5736 /* If !use_existing_cu, this_cu->cu must be NULL. */
5737 gdb_assert (this_cu->cu == NULL);
5738 cu = XNEW (struct dwarf2_cu);
5739 init_one_comp_unit (cu, this_cu);
5740 /* If an error occurs while loading, release our storage. */
5741 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5742 }
5743
5744 /* Get the header. */
5745 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5746 {
5747 /* We already have the header, there's no need to read it in again. */
5748 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5749 }
5750 else
5751 {
5752 if (this_cu->is_debug_types)
5753 {
5754 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5755 abbrev_section, info_ptr,
5756 rcuh_kind::TYPE);
5757
5758 /* Since per_cu is the first member of struct signatured_type,
5759 we can go from a pointer to one to a pointer to the other. */
5760 sig_type = (struct signatured_type *) this_cu;
5761 gdb_assert (sig_type->signature == cu->header.signature);
5762 gdb_assert (sig_type->type_offset_in_tu
5763 == cu->header.type_cu_offset_in_tu);
5764 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5765
5766 /* LENGTH has not been set yet for type units if we're
5767 using .gdb_index. */
5768 this_cu->length = get_cu_length (&cu->header);
5769
5770 /* Establish the type offset that can be used to lookup the type. */
5771 sig_type->type_offset_in_section =
5772 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5773
5774 this_cu->dwarf_version = cu->header.version;
5775 }
5776 else
5777 {
5778 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5779 abbrev_section,
5780 info_ptr,
5781 rcuh_kind::COMPILE);
5782
5783 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5784 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5785 this_cu->dwarf_version = cu->header.version;
5786 }
5787 }
5788
5789 /* Skip dummy compilation units. */
5790 if (info_ptr >= begin_info_ptr + this_cu->length
5791 || peek_abbrev_code (abfd, info_ptr) == 0)
5792 {
5793 do_cleanups (cleanups);
5794 return;
5795 }
5796
5797 /* If we don't have them yet, read the abbrevs for this compilation unit.
5798 And if we need to read them now, make sure they're freed when we're
5799 done. Note that it's important that if the CU had an abbrev table
5800 on entry we don't free it when we're done: Somewhere up the call stack
5801 it may be in use. */
5802 if (abbrev_table != NULL)
5803 {
5804 gdb_assert (cu->abbrev_table == NULL);
5805 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5806 cu->abbrev_table = abbrev_table;
5807 }
5808 else if (cu->abbrev_table == NULL)
5809 {
5810 dwarf2_read_abbrevs (cu, abbrev_section);
5811 make_cleanup (dwarf2_free_abbrev_table, cu);
5812 }
5813 else if (rereading_dwo_cu)
5814 {
5815 dwarf2_free_abbrev_table (cu);
5816 dwarf2_read_abbrevs (cu, abbrev_section);
5817 }
5818
5819 /* Read the top level CU/TU die. */
5820 init_cu_die_reader (&reader, cu, section, NULL);
5821 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5822
5823 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5824 from the DWO file.
5825 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5826 DWO CU, that this test will fail (the attribute will not be present). */
5827 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5828 if (attr)
5829 {
5830 struct dwo_unit *dwo_unit;
5831 struct die_info *dwo_comp_unit_die;
5832
5833 if (has_children)
5834 {
5835 complaint (&symfile_complaints,
5836 _("compilation unit with DW_AT_GNU_dwo_name"
5837 " has children (offset 0x%x) [in module %s]"),
5838 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5839 }
5840 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5841 if (dwo_unit != NULL)
5842 {
5843 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5844 abbrev_table != NULL,
5845 comp_unit_die, NULL,
5846 &reader, &info_ptr,
5847 &dwo_comp_unit_die, &has_children) == 0)
5848 {
5849 /* Dummy die. */
5850 do_cleanups (cleanups);
5851 return;
5852 }
5853 comp_unit_die = dwo_comp_unit_die;
5854 }
5855 else
5856 {
5857 /* Yikes, we couldn't find the rest of the DIE, we only have
5858 the stub. A complaint has already been logged. There's
5859 not much more we can do except pass on the stub DIE to
5860 die_reader_func. We don't want to throw an error on bad
5861 debug info. */
5862 }
5863 }
5864
5865 /* All of the above is setup for this call. Yikes. */
5866 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5867
5868 /* Done, clean up. */
5869 if (free_cu_cleanup != NULL)
5870 {
5871 if (keep)
5872 {
5873 /* We've successfully allocated this compilation unit. Let our
5874 caller clean it up when finished with it. */
5875 discard_cleanups (free_cu_cleanup);
5876
5877 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5878 So we have to manually free the abbrev table. */
5879 dwarf2_free_abbrev_table (cu);
5880
5881 /* Link this CU into read_in_chain. */
5882 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5883 dwarf2_per_objfile->read_in_chain = this_cu;
5884 }
5885 else
5886 do_cleanups (free_cu_cleanup);
5887 }
5888
5889 do_cleanups (cleanups);
5890 }
5891
5892 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5893 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5894 to have already done the lookup to find the DWO file).
5895
5896 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5897 THIS_CU->is_debug_types, but nothing else.
5898
5899 We fill in THIS_CU->length.
5900
5901 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5902 linker) then DIE_READER_FUNC will not get called.
5903
5904 THIS_CU->cu is always freed when done.
5905 This is done in order to not leave THIS_CU->cu in a state where we have
5906 to care whether it refers to the "main" CU or the DWO CU. */
5907
5908 static void
5909 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5910 struct dwo_file *dwo_file,
5911 die_reader_func_ftype *die_reader_func,
5912 void *data)
5913 {
5914 struct objfile *objfile = dwarf2_per_objfile->objfile;
5915 struct dwarf2_section_info *section = this_cu->section;
5916 bfd *abfd = get_section_bfd_owner (section);
5917 struct dwarf2_section_info *abbrev_section;
5918 struct dwarf2_cu cu;
5919 const gdb_byte *begin_info_ptr, *info_ptr;
5920 struct die_reader_specs reader;
5921 struct cleanup *cleanups;
5922 struct die_info *comp_unit_die;
5923 int has_children;
5924
5925 if (dwarf_die_debug)
5926 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5927 this_cu->is_debug_types ? "type" : "comp",
5928 to_underlying (this_cu->sect_off));
5929
5930 gdb_assert (this_cu->cu == NULL);
5931
5932 abbrev_section = (dwo_file != NULL
5933 ? &dwo_file->sections.abbrev
5934 : get_abbrev_section_for_cu (this_cu));
5935
5936 /* This is cheap if the section is already read in. */
5937 dwarf2_read_section (objfile, section);
5938
5939 init_one_comp_unit (&cu, this_cu);
5940
5941 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5942
5943 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5944 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5945 abbrev_section, info_ptr,
5946 (this_cu->is_debug_types
5947 ? rcuh_kind::TYPE
5948 : rcuh_kind::COMPILE));
5949
5950 this_cu->length = get_cu_length (&cu.header);
5951
5952 /* Skip dummy compilation units. */
5953 if (info_ptr >= begin_info_ptr + this_cu->length
5954 || peek_abbrev_code (abfd, info_ptr) == 0)
5955 {
5956 do_cleanups (cleanups);
5957 return;
5958 }
5959
5960 dwarf2_read_abbrevs (&cu, abbrev_section);
5961 make_cleanup (dwarf2_free_abbrev_table, &cu);
5962
5963 init_cu_die_reader (&reader, &cu, section, dwo_file);
5964 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5965
5966 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5967
5968 do_cleanups (cleanups);
5969 }
5970
5971 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5972 does not lookup the specified DWO file.
5973 This cannot be used to read DWO files.
5974
5975 THIS_CU->cu is always freed when done.
5976 This is done in order to not leave THIS_CU->cu in a state where we have
5977 to care whether it refers to the "main" CU or the DWO CU.
5978 We can revisit this if the data shows there's a performance issue. */
5979
5980 static void
5981 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5982 die_reader_func_ftype *die_reader_func,
5983 void *data)
5984 {
5985 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5986 }
5987 \f
5988 /* Type Unit Groups.
5989
5990 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5991 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5992 so that all types coming from the same compilation (.o file) are grouped
5993 together. A future step could be to put the types in the same symtab as
5994 the CU the types ultimately came from. */
5995
5996 static hashval_t
5997 hash_type_unit_group (const void *item)
5998 {
5999 const struct type_unit_group *tu_group
6000 = (const struct type_unit_group *) item;
6001
6002 return hash_stmt_list_entry (&tu_group->hash);
6003 }
6004
6005 static int
6006 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6007 {
6008 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6009 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6010
6011 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6012 }
6013
6014 /* Allocate a hash table for type unit groups. */
6015
6016 static htab_t
6017 allocate_type_unit_groups_table (void)
6018 {
6019 return htab_create_alloc_ex (3,
6020 hash_type_unit_group,
6021 eq_type_unit_group,
6022 NULL,
6023 &dwarf2_per_objfile->objfile->objfile_obstack,
6024 hashtab_obstack_allocate,
6025 dummy_obstack_deallocate);
6026 }
6027
6028 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6029 partial symtabs. We combine several TUs per psymtab to not let the size
6030 of any one psymtab grow too big. */
6031 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6032 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6033
6034 /* Helper routine for get_type_unit_group.
6035 Create the type_unit_group object used to hold one or more TUs. */
6036
6037 static struct type_unit_group *
6038 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6039 {
6040 struct objfile *objfile = dwarf2_per_objfile->objfile;
6041 struct dwarf2_per_cu_data *per_cu;
6042 struct type_unit_group *tu_group;
6043
6044 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6045 struct type_unit_group);
6046 per_cu = &tu_group->per_cu;
6047 per_cu->objfile = objfile;
6048
6049 if (dwarf2_per_objfile->using_index)
6050 {
6051 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6052 struct dwarf2_per_cu_quick_data);
6053 }
6054 else
6055 {
6056 unsigned int line_offset = to_underlying (line_offset_struct);
6057 struct partial_symtab *pst;
6058 char *name;
6059
6060 /* Give the symtab a useful name for debug purposes. */
6061 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6062 name = xstrprintf ("<type_units_%d>",
6063 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6064 else
6065 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6066
6067 pst = create_partial_symtab (per_cu, name);
6068 pst->anonymous = 1;
6069
6070 xfree (name);
6071 }
6072
6073 tu_group->hash.dwo_unit = cu->dwo_unit;
6074 tu_group->hash.line_sect_off = line_offset_struct;
6075
6076 return tu_group;
6077 }
6078
6079 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6080 STMT_LIST is a DW_AT_stmt_list attribute. */
6081
6082 static struct type_unit_group *
6083 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6084 {
6085 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6086 struct type_unit_group *tu_group;
6087 void **slot;
6088 unsigned int line_offset;
6089 struct type_unit_group type_unit_group_for_lookup;
6090
6091 if (dwarf2_per_objfile->type_unit_groups == NULL)
6092 {
6093 dwarf2_per_objfile->type_unit_groups =
6094 allocate_type_unit_groups_table ();
6095 }
6096
6097 /* Do we need to create a new group, or can we use an existing one? */
6098
6099 if (stmt_list)
6100 {
6101 line_offset = DW_UNSND (stmt_list);
6102 ++tu_stats->nr_symtab_sharers;
6103 }
6104 else
6105 {
6106 /* Ugh, no stmt_list. Rare, but we have to handle it.
6107 We can do various things here like create one group per TU or
6108 spread them over multiple groups to split up the expansion work.
6109 To avoid worst case scenarios (too many groups or too large groups)
6110 we, umm, group them in bunches. */
6111 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6112 | (tu_stats->nr_stmt_less_type_units
6113 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6114 ++tu_stats->nr_stmt_less_type_units;
6115 }
6116
6117 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6118 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6119 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6120 &type_unit_group_for_lookup, INSERT);
6121 if (*slot != NULL)
6122 {
6123 tu_group = (struct type_unit_group *) *slot;
6124 gdb_assert (tu_group != NULL);
6125 }
6126 else
6127 {
6128 sect_offset line_offset_struct = (sect_offset) line_offset;
6129 tu_group = create_type_unit_group (cu, line_offset_struct);
6130 *slot = tu_group;
6131 ++tu_stats->nr_symtabs;
6132 }
6133
6134 return tu_group;
6135 }
6136 \f
6137 /* Partial symbol tables. */
6138
6139 /* Create a psymtab named NAME and assign it to PER_CU.
6140
6141 The caller must fill in the following details:
6142 dirname, textlow, texthigh. */
6143
6144 static struct partial_symtab *
6145 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6146 {
6147 struct objfile *objfile = per_cu->objfile;
6148 struct partial_symtab *pst;
6149
6150 pst = start_psymtab_common (objfile, name, 0,
6151 objfile->global_psymbols.next,
6152 objfile->static_psymbols.next);
6153
6154 pst->psymtabs_addrmap_supported = 1;
6155
6156 /* This is the glue that links PST into GDB's symbol API. */
6157 pst->read_symtab_private = per_cu;
6158 pst->read_symtab = dwarf2_read_symtab;
6159 per_cu->v.psymtab = pst;
6160
6161 return pst;
6162 }
6163
6164 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6165 type. */
6166
6167 struct process_psymtab_comp_unit_data
6168 {
6169 /* True if we are reading a DW_TAG_partial_unit. */
6170
6171 int want_partial_unit;
6172
6173 /* The "pretend" language that is used if the CU doesn't declare a
6174 language. */
6175
6176 enum language pretend_language;
6177 };
6178
6179 /* die_reader_func for process_psymtab_comp_unit. */
6180
6181 static void
6182 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6183 const gdb_byte *info_ptr,
6184 struct die_info *comp_unit_die,
6185 int has_children,
6186 void *data)
6187 {
6188 struct dwarf2_cu *cu = reader->cu;
6189 struct objfile *objfile = cu->objfile;
6190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6191 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6192 CORE_ADDR baseaddr;
6193 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6194 struct partial_symtab *pst;
6195 enum pc_bounds_kind cu_bounds_kind;
6196 const char *filename;
6197 struct process_psymtab_comp_unit_data *info
6198 = (struct process_psymtab_comp_unit_data *) data;
6199
6200 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6201 return;
6202
6203 gdb_assert (! per_cu->is_debug_types);
6204
6205 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6206
6207 cu->list_in_scope = &file_symbols;
6208
6209 /* Allocate a new partial symbol table structure. */
6210 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6211 if (filename == NULL)
6212 filename = "";
6213
6214 pst = create_partial_symtab (per_cu, filename);
6215
6216 /* This must be done before calling dwarf2_build_include_psymtabs. */
6217 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6218
6219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6220
6221 dwarf2_find_base_address (comp_unit_die, cu);
6222
6223 /* Possibly set the default values of LOWPC and HIGHPC from
6224 `DW_AT_ranges'. */
6225 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6226 &best_highpc, cu, pst);
6227 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6228 /* Store the contiguous range if it is not empty; it can be empty for
6229 CUs with no code. */
6230 addrmap_set_empty (objfile->psymtabs_addrmap,
6231 gdbarch_adjust_dwarf2_addr (gdbarch,
6232 best_lowpc + baseaddr),
6233 gdbarch_adjust_dwarf2_addr (gdbarch,
6234 best_highpc + baseaddr) - 1,
6235 pst);
6236
6237 /* Check if comp unit has_children.
6238 If so, read the rest of the partial symbols from this comp unit.
6239 If not, there's no more debug_info for this comp unit. */
6240 if (has_children)
6241 {
6242 struct partial_die_info *first_die;
6243 CORE_ADDR lowpc, highpc;
6244
6245 lowpc = ((CORE_ADDR) -1);
6246 highpc = ((CORE_ADDR) 0);
6247
6248 first_die = load_partial_dies (reader, info_ptr, 1);
6249
6250 scan_partial_symbols (first_die, &lowpc, &highpc,
6251 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6252
6253 /* If we didn't find a lowpc, set it to highpc to avoid
6254 complaints from `maint check'. */
6255 if (lowpc == ((CORE_ADDR) -1))
6256 lowpc = highpc;
6257
6258 /* If the compilation unit didn't have an explicit address range,
6259 then use the information extracted from its child dies. */
6260 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6261 {
6262 best_lowpc = lowpc;
6263 best_highpc = highpc;
6264 }
6265 }
6266 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6267 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6268
6269 end_psymtab_common (objfile, pst);
6270
6271 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6272 {
6273 int i;
6274 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6275 struct dwarf2_per_cu_data *iter;
6276
6277 /* Fill in 'dependencies' here; we fill in 'users' in a
6278 post-pass. */
6279 pst->number_of_dependencies = len;
6280 pst->dependencies =
6281 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6282 for (i = 0;
6283 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6284 i, iter);
6285 ++i)
6286 pst->dependencies[i] = iter->v.psymtab;
6287
6288 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6289 }
6290
6291 /* Get the list of files included in the current compilation unit,
6292 and build a psymtab for each of them. */
6293 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6294
6295 if (dwarf_read_debug)
6296 {
6297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6298
6299 fprintf_unfiltered (gdb_stdlog,
6300 "Psymtab for %s unit @0x%x: %s - %s"
6301 ", %d global, %d static syms\n",
6302 per_cu->is_debug_types ? "type" : "comp",
6303 to_underlying (per_cu->sect_off),
6304 paddress (gdbarch, pst->textlow),
6305 paddress (gdbarch, pst->texthigh),
6306 pst->n_global_syms, pst->n_static_syms);
6307 }
6308 }
6309
6310 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6311 Process compilation unit THIS_CU for a psymtab. */
6312
6313 static void
6314 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6315 int want_partial_unit,
6316 enum language pretend_language)
6317 {
6318 struct process_psymtab_comp_unit_data info;
6319
6320 /* If this compilation unit was already read in, free the
6321 cached copy in order to read it in again. This is
6322 necessary because we skipped some symbols when we first
6323 read in the compilation unit (see load_partial_dies).
6324 This problem could be avoided, but the benefit is unclear. */
6325 if (this_cu->cu != NULL)
6326 free_one_cached_comp_unit (this_cu);
6327
6328 gdb_assert (! this_cu->is_debug_types);
6329 info.want_partial_unit = want_partial_unit;
6330 info.pretend_language = pretend_language;
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6332 process_psymtab_comp_unit_reader,
6333 &info);
6334
6335 /* Age out any secondary CUs. */
6336 age_cached_comp_units ();
6337 }
6338
6339 /* Reader function for build_type_psymtabs. */
6340
6341 static void
6342 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6343 const gdb_byte *info_ptr,
6344 struct die_info *type_unit_die,
6345 int has_children,
6346 void *data)
6347 {
6348 struct objfile *objfile = dwarf2_per_objfile->objfile;
6349 struct dwarf2_cu *cu = reader->cu;
6350 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6351 struct signatured_type *sig_type;
6352 struct type_unit_group *tu_group;
6353 struct attribute *attr;
6354 struct partial_die_info *first_die;
6355 CORE_ADDR lowpc, highpc;
6356 struct partial_symtab *pst;
6357
6358 gdb_assert (data == NULL);
6359 gdb_assert (per_cu->is_debug_types);
6360 sig_type = (struct signatured_type *) per_cu;
6361
6362 if (! has_children)
6363 return;
6364
6365 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6366 tu_group = get_type_unit_group (cu, attr);
6367
6368 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6369
6370 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6371 cu->list_in_scope = &file_symbols;
6372 pst = create_partial_symtab (per_cu, "");
6373 pst->anonymous = 1;
6374
6375 first_die = load_partial_dies (reader, info_ptr, 1);
6376
6377 lowpc = (CORE_ADDR) -1;
6378 highpc = (CORE_ADDR) 0;
6379 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6380
6381 end_psymtab_common (objfile, pst);
6382 }
6383
6384 /* Struct used to sort TUs by their abbreviation table offset. */
6385
6386 struct tu_abbrev_offset
6387 {
6388 struct signatured_type *sig_type;
6389 sect_offset abbrev_offset;
6390 };
6391
6392 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6393
6394 static int
6395 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6396 {
6397 const struct tu_abbrev_offset * const *a
6398 = (const struct tu_abbrev_offset * const*) ap;
6399 const struct tu_abbrev_offset * const *b
6400 = (const struct tu_abbrev_offset * const*) bp;
6401 sect_offset aoff = (*a)->abbrev_offset;
6402 sect_offset boff = (*b)->abbrev_offset;
6403
6404 return (aoff > boff) - (aoff < boff);
6405 }
6406
6407 /* Efficiently read all the type units.
6408 This does the bulk of the work for build_type_psymtabs.
6409
6410 The efficiency is because we sort TUs by the abbrev table they use and
6411 only read each abbrev table once. In one program there are 200K TUs
6412 sharing 8K abbrev tables.
6413
6414 The main purpose of this function is to support building the
6415 dwarf2_per_objfile->type_unit_groups table.
6416 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6417 can collapse the search space by grouping them by stmt_list.
6418 The savings can be significant, in the same program from above the 200K TUs
6419 share 8K stmt_list tables.
6420
6421 FUNC is expected to call get_type_unit_group, which will create the
6422 struct type_unit_group if necessary and add it to
6423 dwarf2_per_objfile->type_unit_groups. */
6424
6425 static void
6426 build_type_psymtabs_1 (void)
6427 {
6428 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6429 struct cleanup *cleanups;
6430 struct abbrev_table *abbrev_table;
6431 sect_offset abbrev_offset;
6432 struct tu_abbrev_offset *sorted_by_abbrev;
6433 int i;
6434
6435 /* It's up to the caller to not call us multiple times. */
6436 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6437
6438 if (dwarf2_per_objfile->n_type_units == 0)
6439 return;
6440
6441 /* TUs typically share abbrev tables, and there can be way more TUs than
6442 abbrev tables. Sort by abbrev table to reduce the number of times we
6443 read each abbrev table in.
6444 Alternatives are to punt or to maintain a cache of abbrev tables.
6445 This is simpler and efficient enough for now.
6446
6447 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6448 symtab to use). Typically TUs with the same abbrev offset have the same
6449 stmt_list value too so in practice this should work well.
6450
6451 The basic algorithm here is:
6452
6453 sort TUs by abbrev table
6454 for each TU with same abbrev table:
6455 read abbrev table if first user
6456 read TU top level DIE
6457 [IWBN if DWO skeletons had DW_AT_stmt_list]
6458 call FUNC */
6459
6460 if (dwarf_read_debug)
6461 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6462
6463 /* Sort in a separate table to maintain the order of all_type_units
6464 for .gdb_index: TU indices directly index all_type_units. */
6465 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6466 dwarf2_per_objfile->n_type_units);
6467 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6468 {
6469 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6470
6471 sorted_by_abbrev[i].sig_type = sig_type;
6472 sorted_by_abbrev[i].abbrev_offset =
6473 read_abbrev_offset (sig_type->per_cu.section,
6474 sig_type->per_cu.sect_off);
6475 }
6476 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6477 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6478 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6479
6480 abbrev_offset = (sect_offset) ~(unsigned) 0;
6481 abbrev_table = NULL;
6482 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6483
6484 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6485 {
6486 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6487
6488 /* Switch to the next abbrev table if necessary. */
6489 if (abbrev_table == NULL
6490 || tu->abbrev_offset != abbrev_offset)
6491 {
6492 if (abbrev_table != NULL)
6493 {
6494 abbrev_table_free (abbrev_table);
6495 /* Reset to NULL in case abbrev_table_read_table throws
6496 an error: abbrev_table_free_cleanup will get called. */
6497 abbrev_table = NULL;
6498 }
6499 abbrev_offset = tu->abbrev_offset;
6500 abbrev_table =
6501 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6502 abbrev_offset);
6503 ++tu_stats->nr_uniq_abbrev_tables;
6504 }
6505
6506 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6507 build_type_psymtabs_reader, NULL);
6508 }
6509
6510 do_cleanups (cleanups);
6511 }
6512
6513 /* Print collected type unit statistics. */
6514
6515 static void
6516 print_tu_stats (void)
6517 {
6518 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6519
6520 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6521 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6522 dwarf2_per_objfile->n_type_units);
6523 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6524 tu_stats->nr_uniq_abbrev_tables);
6525 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6526 tu_stats->nr_symtabs);
6527 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6528 tu_stats->nr_symtab_sharers);
6529 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6530 tu_stats->nr_stmt_less_type_units);
6531 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6532 tu_stats->nr_all_type_units_reallocs);
6533 }
6534
6535 /* Traversal function for build_type_psymtabs. */
6536
6537 static int
6538 build_type_psymtab_dependencies (void **slot, void *info)
6539 {
6540 struct objfile *objfile = dwarf2_per_objfile->objfile;
6541 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6542 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6543 struct partial_symtab *pst = per_cu->v.psymtab;
6544 int len = VEC_length (sig_type_ptr, tu_group->tus);
6545 struct signatured_type *iter;
6546 int i;
6547
6548 gdb_assert (len > 0);
6549 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6550
6551 pst->number_of_dependencies = len;
6552 pst->dependencies =
6553 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6554 for (i = 0;
6555 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6556 ++i)
6557 {
6558 gdb_assert (iter->per_cu.is_debug_types);
6559 pst->dependencies[i] = iter->per_cu.v.psymtab;
6560 iter->type_unit_group = tu_group;
6561 }
6562
6563 VEC_free (sig_type_ptr, tu_group->tus);
6564
6565 return 1;
6566 }
6567
6568 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6569 Build partial symbol tables for the .debug_types comp-units. */
6570
6571 static void
6572 build_type_psymtabs (struct objfile *objfile)
6573 {
6574 if (! create_all_type_units (objfile))
6575 return;
6576
6577 build_type_psymtabs_1 ();
6578 }
6579
6580 /* Traversal function for process_skeletonless_type_unit.
6581 Read a TU in a DWO file and build partial symbols for it. */
6582
6583 static int
6584 process_skeletonless_type_unit (void **slot, void *info)
6585 {
6586 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6587 struct objfile *objfile = (struct objfile *) info;
6588 struct signatured_type find_entry, *entry;
6589
6590 /* If this TU doesn't exist in the global table, add it and read it in. */
6591
6592 if (dwarf2_per_objfile->signatured_types == NULL)
6593 {
6594 dwarf2_per_objfile->signatured_types
6595 = allocate_signatured_type_table (objfile);
6596 }
6597
6598 find_entry.signature = dwo_unit->signature;
6599 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6600 INSERT);
6601 /* If we've already seen this type there's nothing to do. What's happening
6602 is we're doing our own version of comdat-folding here. */
6603 if (*slot != NULL)
6604 return 1;
6605
6606 /* This does the job that create_all_type_units would have done for
6607 this TU. */
6608 entry = add_type_unit (dwo_unit->signature, slot);
6609 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6610 *slot = entry;
6611
6612 /* This does the job that build_type_psymtabs_1 would have done. */
6613 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6614 build_type_psymtabs_reader, NULL);
6615
6616 return 1;
6617 }
6618
6619 /* Traversal function for process_skeletonless_type_units. */
6620
6621 static int
6622 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6623 {
6624 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6625
6626 if (dwo_file->tus != NULL)
6627 {
6628 htab_traverse_noresize (dwo_file->tus,
6629 process_skeletonless_type_unit, info);
6630 }
6631
6632 return 1;
6633 }
6634
6635 /* Scan all TUs of DWO files, verifying we've processed them.
6636 This is needed in case a TU was emitted without its skeleton.
6637 Note: This can't be done until we know what all the DWO files are. */
6638
6639 static void
6640 process_skeletonless_type_units (struct objfile *objfile)
6641 {
6642 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6643 if (get_dwp_file () == NULL
6644 && dwarf2_per_objfile->dwo_files != NULL)
6645 {
6646 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6647 process_dwo_file_for_skeletonless_type_units,
6648 objfile);
6649 }
6650 }
6651
6652 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6653
6654 static void
6655 psymtabs_addrmap_cleanup (void *o)
6656 {
6657 struct objfile *objfile = (struct objfile *) o;
6658
6659 objfile->psymtabs_addrmap = NULL;
6660 }
6661
6662 /* Compute the 'user' field for each psymtab in OBJFILE. */
6663
6664 static void
6665 set_partial_user (struct objfile *objfile)
6666 {
6667 int i;
6668
6669 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6670 {
6671 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6672 struct partial_symtab *pst = per_cu->v.psymtab;
6673 int j;
6674
6675 if (pst == NULL)
6676 continue;
6677
6678 for (j = 0; j < pst->number_of_dependencies; ++j)
6679 {
6680 /* Set the 'user' field only if it is not already set. */
6681 if (pst->dependencies[j]->user == NULL)
6682 pst->dependencies[j]->user = pst;
6683 }
6684 }
6685 }
6686
6687 /* Build the partial symbol table by doing a quick pass through the
6688 .debug_info and .debug_abbrev sections. */
6689
6690 static void
6691 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6692 {
6693 struct cleanup *back_to, *addrmap_cleanup;
6694 int i;
6695
6696 if (dwarf_read_debug)
6697 {
6698 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6699 objfile_name (objfile));
6700 }
6701
6702 dwarf2_per_objfile->reading_partial_symbols = 1;
6703
6704 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6705
6706 /* Any cached compilation units will be linked by the per-objfile
6707 read_in_chain. Make sure to free them when we're done. */
6708 back_to = make_cleanup (free_cached_comp_units, NULL);
6709
6710 build_type_psymtabs (objfile);
6711
6712 create_all_comp_units (objfile);
6713
6714 /* Create a temporary address map on a temporary obstack. We later
6715 copy this to the final obstack. */
6716 auto_obstack temp_obstack;
6717 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6718 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6719
6720 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6721 {
6722 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6723
6724 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6725 }
6726
6727 /* This has to wait until we read the CUs, we need the list of DWOs. */
6728 process_skeletonless_type_units (objfile);
6729
6730 /* Now that all TUs have been processed we can fill in the dependencies. */
6731 if (dwarf2_per_objfile->type_unit_groups != NULL)
6732 {
6733 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6734 build_type_psymtab_dependencies, NULL);
6735 }
6736
6737 if (dwarf_read_debug)
6738 print_tu_stats ();
6739
6740 set_partial_user (objfile);
6741
6742 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6743 &objfile->objfile_obstack);
6744 discard_cleanups (addrmap_cleanup);
6745
6746 do_cleanups (back_to);
6747
6748 if (dwarf_read_debug)
6749 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6750 objfile_name (objfile));
6751 }
6752
6753 /* die_reader_func for load_partial_comp_unit. */
6754
6755 static void
6756 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6757 const gdb_byte *info_ptr,
6758 struct die_info *comp_unit_die,
6759 int has_children,
6760 void *data)
6761 {
6762 struct dwarf2_cu *cu = reader->cu;
6763
6764 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6765
6766 /* Check if comp unit has_children.
6767 If so, read the rest of the partial symbols from this comp unit.
6768 If not, there's no more debug_info for this comp unit. */
6769 if (has_children)
6770 load_partial_dies (reader, info_ptr, 0);
6771 }
6772
6773 /* Load the partial DIEs for a secondary CU into memory.
6774 This is also used when rereading a primary CU with load_all_dies. */
6775
6776 static void
6777 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6778 {
6779 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6780 load_partial_comp_unit_reader, NULL);
6781 }
6782
6783 static void
6784 read_comp_units_from_section (struct objfile *objfile,
6785 struct dwarf2_section_info *section,
6786 unsigned int is_dwz,
6787 int *n_allocated,
6788 int *n_comp_units,
6789 struct dwarf2_per_cu_data ***all_comp_units)
6790 {
6791 const gdb_byte *info_ptr;
6792 bfd *abfd = get_section_bfd_owner (section);
6793
6794 if (dwarf_read_debug)
6795 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6796 get_section_name (section),
6797 get_section_file_name (section));
6798
6799 dwarf2_read_section (objfile, section);
6800
6801 info_ptr = section->buffer;
6802
6803 while (info_ptr < section->buffer + section->size)
6804 {
6805 unsigned int length, initial_length_size;
6806 struct dwarf2_per_cu_data *this_cu;
6807
6808 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6809
6810 /* Read just enough information to find out where the next
6811 compilation unit is. */
6812 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6813
6814 /* Save the compilation unit for later lookup. */
6815 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6816 memset (this_cu, 0, sizeof (*this_cu));
6817 this_cu->sect_off = sect_off;
6818 this_cu->length = length + initial_length_size;
6819 this_cu->is_dwz = is_dwz;
6820 this_cu->objfile = objfile;
6821 this_cu->section = section;
6822
6823 if (*n_comp_units == *n_allocated)
6824 {
6825 *n_allocated *= 2;
6826 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6827 *all_comp_units, *n_allocated);
6828 }
6829 (*all_comp_units)[*n_comp_units] = this_cu;
6830 ++*n_comp_units;
6831
6832 info_ptr = info_ptr + this_cu->length;
6833 }
6834 }
6835
6836 /* Create a list of all compilation units in OBJFILE.
6837 This is only done for -readnow and building partial symtabs. */
6838
6839 static void
6840 create_all_comp_units (struct objfile *objfile)
6841 {
6842 int n_allocated;
6843 int n_comp_units;
6844 struct dwarf2_per_cu_data **all_comp_units;
6845 struct dwz_file *dwz;
6846
6847 n_comp_units = 0;
6848 n_allocated = 10;
6849 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6850
6851 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6852 &n_allocated, &n_comp_units, &all_comp_units);
6853
6854 dwz = dwarf2_get_dwz_file ();
6855 if (dwz != NULL)
6856 read_comp_units_from_section (objfile, &dwz->info, 1,
6857 &n_allocated, &n_comp_units,
6858 &all_comp_units);
6859
6860 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6861 struct dwarf2_per_cu_data *,
6862 n_comp_units);
6863 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6864 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6865 xfree (all_comp_units);
6866 dwarf2_per_objfile->n_comp_units = n_comp_units;
6867 }
6868
6869 /* Process all loaded DIEs for compilation unit CU, starting at
6870 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6871 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6872 DW_AT_ranges). See the comments of add_partial_subprogram on how
6873 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6874
6875 static void
6876 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6877 CORE_ADDR *highpc, int set_addrmap,
6878 struct dwarf2_cu *cu)
6879 {
6880 struct partial_die_info *pdi;
6881
6882 /* Now, march along the PDI's, descending into ones which have
6883 interesting children but skipping the children of the other ones,
6884 until we reach the end of the compilation unit. */
6885
6886 pdi = first_die;
6887
6888 while (pdi != NULL)
6889 {
6890 fixup_partial_die (pdi, cu);
6891
6892 /* Anonymous namespaces or modules have no name but have interesting
6893 children, so we need to look at them. Ditto for anonymous
6894 enums. */
6895
6896 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6897 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6898 || pdi->tag == DW_TAG_imported_unit)
6899 {
6900 switch (pdi->tag)
6901 {
6902 case DW_TAG_subprogram:
6903 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6904 break;
6905 case DW_TAG_constant:
6906 case DW_TAG_variable:
6907 case DW_TAG_typedef:
6908 case DW_TAG_union_type:
6909 if (!pdi->is_declaration)
6910 {
6911 add_partial_symbol (pdi, cu);
6912 }
6913 break;
6914 case DW_TAG_class_type:
6915 case DW_TAG_interface_type:
6916 case DW_TAG_structure_type:
6917 if (!pdi->is_declaration)
6918 {
6919 add_partial_symbol (pdi, cu);
6920 }
6921 if (cu->language == language_rust && pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6923 set_addrmap, cu);
6924 break;
6925 case DW_TAG_enumeration_type:
6926 if (!pdi->is_declaration)
6927 add_partial_enumeration (pdi, cu);
6928 break;
6929 case DW_TAG_base_type:
6930 case DW_TAG_subrange_type:
6931 /* File scope base type definitions are added to the partial
6932 symbol table. */
6933 add_partial_symbol (pdi, cu);
6934 break;
6935 case DW_TAG_namespace:
6936 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6937 break;
6938 case DW_TAG_module:
6939 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6940 break;
6941 case DW_TAG_imported_unit:
6942 {
6943 struct dwarf2_per_cu_data *per_cu;
6944
6945 /* For now we don't handle imported units in type units. */
6946 if (cu->per_cu->is_debug_types)
6947 {
6948 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6949 " supported in type units [in module %s]"),
6950 objfile_name (cu->objfile));
6951 }
6952
6953 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6954 pdi->is_dwz,
6955 cu->objfile);
6956
6957 /* Go read the partial unit, if needed. */
6958 if (per_cu->v.psymtab == NULL)
6959 process_psymtab_comp_unit (per_cu, 1, cu->language);
6960
6961 VEC_safe_push (dwarf2_per_cu_ptr,
6962 cu->per_cu->imported_symtabs, per_cu);
6963 }
6964 break;
6965 case DW_TAG_imported_declaration:
6966 add_partial_symbol (pdi, cu);
6967 break;
6968 default:
6969 break;
6970 }
6971 }
6972
6973 /* If the die has a sibling, skip to the sibling. */
6974
6975 pdi = pdi->die_sibling;
6976 }
6977 }
6978
6979 /* Functions used to compute the fully scoped name of a partial DIE.
6980
6981 Normally, this is simple. For C++, the parent DIE's fully scoped
6982 name is concatenated with "::" and the partial DIE's name.
6983 Enumerators are an exception; they use the scope of their parent
6984 enumeration type, i.e. the name of the enumeration type is not
6985 prepended to the enumerator.
6986
6987 There are two complexities. One is DW_AT_specification; in this
6988 case "parent" means the parent of the target of the specification,
6989 instead of the direct parent of the DIE. The other is compilers
6990 which do not emit DW_TAG_namespace; in this case we try to guess
6991 the fully qualified name of structure types from their members'
6992 linkage names. This must be done using the DIE's children rather
6993 than the children of any DW_AT_specification target. We only need
6994 to do this for structures at the top level, i.e. if the target of
6995 any DW_AT_specification (if any; otherwise the DIE itself) does not
6996 have a parent. */
6997
6998 /* Compute the scope prefix associated with PDI's parent, in
6999 compilation unit CU. The result will be allocated on CU's
7000 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7001 field. NULL is returned if no prefix is necessary. */
7002 static const char *
7003 partial_die_parent_scope (struct partial_die_info *pdi,
7004 struct dwarf2_cu *cu)
7005 {
7006 const char *grandparent_scope;
7007 struct partial_die_info *parent, *real_pdi;
7008
7009 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7010 then this means the parent of the specification DIE. */
7011
7012 real_pdi = pdi;
7013 while (real_pdi->has_specification)
7014 real_pdi = find_partial_die (real_pdi->spec_offset,
7015 real_pdi->spec_is_dwz, cu);
7016
7017 parent = real_pdi->die_parent;
7018 if (parent == NULL)
7019 return NULL;
7020
7021 if (parent->scope_set)
7022 return parent->scope;
7023
7024 fixup_partial_die (parent, cu);
7025
7026 grandparent_scope = partial_die_parent_scope (parent, cu);
7027
7028 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7029 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7030 Work around this problem here. */
7031 if (cu->language == language_cplus
7032 && parent->tag == DW_TAG_namespace
7033 && strcmp (parent->name, "::") == 0
7034 && grandparent_scope == NULL)
7035 {
7036 parent->scope = NULL;
7037 parent->scope_set = 1;
7038 return NULL;
7039 }
7040
7041 if (pdi->tag == DW_TAG_enumerator)
7042 /* Enumerators should not get the name of the enumeration as a prefix. */
7043 parent->scope = grandparent_scope;
7044 else if (parent->tag == DW_TAG_namespace
7045 || parent->tag == DW_TAG_module
7046 || parent->tag == DW_TAG_structure_type
7047 || parent->tag == DW_TAG_class_type
7048 || parent->tag == DW_TAG_interface_type
7049 || parent->tag == DW_TAG_union_type
7050 || parent->tag == DW_TAG_enumeration_type)
7051 {
7052 if (grandparent_scope == NULL)
7053 parent->scope = parent->name;
7054 else
7055 parent->scope = typename_concat (&cu->comp_unit_obstack,
7056 grandparent_scope,
7057 parent->name, 0, cu);
7058 }
7059 else
7060 {
7061 /* FIXME drow/2004-04-01: What should we be doing with
7062 function-local names? For partial symbols, we should probably be
7063 ignoring them. */
7064 complaint (&symfile_complaints,
7065 _("unhandled containing DIE tag %d for DIE at %d"),
7066 parent->tag, to_underlying (pdi->sect_off));
7067 parent->scope = grandparent_scope;
7068 }
7069
7070 parent->scope_set = 1;
7071 return parent->scope;
7072 }
7073
7074 /* Return the fully scoped name associated with PDI, from compilation unit
7075 CU. The result will be allocated with malloc. */
7076
7077 static char *
7078 partial_die_full_name (struct partial_die_info *pdi,
7079 struct dwarf2_cu *cu)
7080 {
7081 const char *parent_scope;
7082
7083 /* If this is a template instantiation, we can not work out the
7084 template arguments from partial DIEs. So, unfortunately, we have
7085 to go through the full DIEs. At least any work we do building
7086 types here will be reused if full symbols are loaded later. */
7087 if (pdi->has_template_arguments)
7088 {
7089 fixup_partial_die (pdi, cu);
7090
7091 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7092 {
7093 struct die_info *die;
7094 struct attribute attr;
7095 struct dwarf2_cu *ref_cu = cu;
7096
7097 /* DW_FORM_ref_addr is using section offset. */
7098 attr.name = (enum dwarf_attribute) 0;
7099 attr.form = DW_FORM_ref_addr;
7100 attr.u.unsnd = to_underlying (pdi->sect_off);
7101 die = follow_die_ref (NULL, &attr, &ref_cu);
7102
7103 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7104 }
7105 }
7106
7107 parent_scope = partial_die_parent_scope (pdi, cu);
7108 if (parent_scope == NULL)
7109 return NULL;
7110 else
7111 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7112 }
7113
7114 static void
7115 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR addr = 0;
7120 const char *actual_name = NULL;
7121 CORE_ADDR baseaddr;
7122 char *built_actual_name;
7123
7124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7125
7126 built_actual_name = partial_die_full_name (pdi, cu);
7127 if (built_actual_name != NULL)
7128 actual_name = built_actual_name;
7129
7130 if (actual_name == NULL)
7131 actual_name = pdi->name;
7132
7133 switch (pdi->tag)
7134 {
7135 case DW_TAG_subprogram:
7136 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7137 if (pdi->is_external || cu->language == language_ada)
7138 {
7139 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7140 of the global scope. But in Ada, we want to be able to access
7141 nested procedures globally. So all Ada subprograms are stored
7142 in the global scope. */
7143 add_psymbol_to_list (actual_name, strlen (actual_name),
7144 built_actual_name != NULL,
7145 VAR_DOMAIN, LOC_BLOCK,
7146 &objfile->global_psymbols,
7147 addr, cu->language, objfile);
7148 }
7149 else
7150 {
7151 add_psymbol_to_list (actual_name, strlen (actual_name),
7152 built_actual_name != NULL,
7153 VAR_DOMAIN, LOC_BLOCK,
7154 &objfile->static_psymbols,
7155 addr, cu->language, objfile);
7156 }
7157
7158 if (pdi->main_subprogram && actual_name != NULL)
7159 set_objfile_main_name (objfile, actual_name, cu->language);
7160 break;
7161 case DW_TAG_constant:
7162 {
7163 struct psymbol_allocation_list *list;
7164
7165 if (pdi->is_external)
7166 list = &objfile->global_psymbols;
7167 else
7168 list = &objfile->static_psymbols;
7169 add_psymbol_to_list (actual_name, strlen (actual_name),
7170 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7171 list, 0, cu->language, objfile);
7172 }
7173 break;
7174 case DW_TAG_variable:
7175 if (pdi->d.locdesc)
7176 addr = decode_locdesc (pdi->d.locdesc, cu);
7177
7178 if (pdi->d.locdesc
7179 && addr == 0
7180 && !dwarf2_per_objfile->has_section_at_zero)
7181 {
7182 /* A global or static variable may also have been stripped
7183 out by the linker if unused, in which case its address
7184 will be nullified; do not add such variables into partial
7185 symbol table then. */
7186 }
7187 else if (pdi->is_external)
7188 {
7189 /* Global Variable.
7190 Don't enter into the minimal symbol tables as there is
7191 a minimal symbol table entry from the ELF symbols already.
7192 Enter into partial symbol table if it has a location
7193 descriptor or a type.
7194 If the location descriptor is missing, new_symbol will create
7195 a LOC_UNRESOLVED symbol, the address of the variable will then
7196 be determined from the minimal symbol table whenever the variable
7197 is referenced.
7198 The address for the partial symbol table entry is not
7199 used by GDB, but it comes in handy for debugging partial symbol
7200 table building. */
7201
7202 if (pdi->d.locdesc || pdi->has_type)
7203 add_psymbol_to_list (actual_name, strlen (actual_name),
7204 built_actual_name != NULL,
7205 VAR_DOMAIN, LOC_STATIC,
7206 &objfile->global_psymbols,
7207 addr + baseaddr,
7208 cu->language, objfile);
7209 }
7210 else
7211 {
7212 int has_loc = pdi->d.locdesc != NULL;
7213
7214 /* Static Variable. Skip symbols whose value we cannot know (those
7215 without location descriptors or constant values). */
7216 if (!has_loc && !pdi->has_const_value)
7217 {
7218 xfree (built_actual_name);
7219 return;
7220 }
7221
7222 add_psymbol_to_list (actual_name, strlen (actual_name),
7223 built_actual_name != NULL,
7224 VAR_DOMAIN, LOC_STATIC,
7225 &objfile->static_psymbols,
7226 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7227 cu->language, objfile);
7228 }
7229 break;
7230 case DW_TAG_typedef:
7231 case DW_TAG_base_type:
7232 case DW_TAG_subrange_type:
7233 add_psymbol_to_list (actual_name, strlen (actual_name),
7234 built_actual_name != NULL,
7235 VAR_DOMAIN, LOC_TYPEDEF,
7236 &objfile->static_psymbols,
7237 0, cu->language, objfile);
7238 break;
7239 case DW_TAG_imported_declaration:
7240 case DW_TAG_namespace:
7241 add_psymbol_to_list (actual_name, strlen (actual_name),
7242 built_actual_name != NULL,
7243 VAR_DOMAIN, LOC_TYPEDEF,
7244 &objfile->global_psymbols,
7245 0, cu->language, objfile);
7246 break;
7247 case DW_TAG_module:
7248 add_psymbol_to_list (actual_name, strlen (actual_name),
7249 built_actual_name != NULL,
7250 MODULE_DOMAIN, LOC_TYPEDEF,
7251 &objfile->global_psymbols,
7252 0, cu->language, objfile);
7253 break;
7254 case DW_TAG_class_type:
7255 case DW_TAG_interface_type:
7256 case DW_TAG_structure_type:
7257 case DW_TAG_union_type:
7258 case DW_TAG_enumeration_type:
7259 /* Skip external references. The DWARF standard says in the section
7260 about "Structure, Union, and Class Type Entries": "An incomplete
7261 structure, union or class type is represented by a structure,
7262 union or class entry that does not have a byte size attribute
7263 and that has a DW_AT_declaration attribute." */
7264 if (!pdi->has_byte_size && pdi->is_declaration)
7265 {
7266 xfree (built_actual_name);
7267 return;
7268 }
7269
7270 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7271 static vs. global. */
7272 add_psymbol_to_list (actual_name, strlen (actual_name),
7273 built_actual_name != NULL,
7274 STRUCT_DOMAIN, LOC_TYPEDEF,
7275 cu->language == language_cplus
7276 ? &objfile->global_psymbols
7277 : &objfile->static_psymbols,
7278 0, cu->language, objfile);
7279
7280 break;
7281 case DW_TAG_enumerator:
7282 add_psymbol_to_list (actual_name, strlen (actual_name),
7283 built_actual_name != NULL,
7284 VAR_DOMAIN, LOC_CONST,
7285 cu->language == language_cplus
7286 ? &objfile->global_psymbols
7287 : &objfile->static_psymbols,
7288 0, cu->language, objfile);
7289 break;
7290 default:
7291 break;
7292 }
7293
7294 xfree (built_actual_name);
7295 }
7296
7297 /* Read a partial die corresponding to a namespace; also, add a symbol
7298 corresponding to that namespace to the symbol table. NAMESPACE is
7299 the name of the enclosing namespace. */
7300
7301 static void
7302 add_partial_namespace (struct partial_die_info *pdi,
7303 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7304 int set_addrmap, struct dwarf2_cu *cu)
7305 {
7306 /* Add a symbol for the namespace. */
7307
7308 add_partial_symbol (pdi, cu);
7309
7310 /* Now scan partial symbols in that namespace. */
7311
7312 if (pdi->has_children)
7313 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7314 }
7315
7316 /* Read a partial die corresponding to a Fortran module. */
7317
7318 static void
7319 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7320 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7321 {
7322 /* Add a symbol for the namespace. */
7323
7324 add_partial_symbol (pdi, cu);
7325
7326 /* Now scan partial symbols in that module. */
7327
7328 if (pdi->has_children)
7329 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7330 }
7331
7332 /* Read a partial die corresponding to a subprogram and create a partial
7333 symbol for that subprogram. When the CU language allows it, this
7334 routine also defines a partial symbol for each nested subprogram
7335 that this subprogram contains. If SET_ADDRMAP is true, record the
7336 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7337 and highest PC values found in PDI.
7338
7339 PDI may also be a lexical block, in which case we simply search
7340 recursively for subprograms defined inside that lexical block.
7341 Again, this is only performed when the CU language allows this
7342 type of definitions. */
7343
7344 static void
7345 add_partial_subprogram (struct partial_die_info *pdi,
7346 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7347 int set_addrmap, struct dwarf2_cu *cu)
7348 {
7349 if (pdi->tag == DW_TAG_subprogram)
7350 {
7351 if (pdi->has_pc_info)
7352 {
7353 if (pdi->lowpc < *lowpc)
7354 *lowpc = pdi->lowpc;
7355 if (pdi->highpc > *highpc)
7356 *highpc = pdi->highpc;
7357 if (set_addrmap)
7358 {
7359 struct objfile *objfile = cu->objfile;
7360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7361 CORE_ADDR baseaddr;
7362 CORE_ADDR highpc;
7363 CORE_ADDR lowpc;
7364
7365 baseaddr = ANOFFSET (objfile->section_offsets,
7366 SECT_OFF_TEXT (objfile));
7367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7368 pdi->lowpc + baseaddr);
7369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7370 pdi->highpc + baseaddr);
7371 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7372 cu->per_cu->v.psymtab);
7373 }
7374 }
7375
7376 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7377 {
7378 if (!pdi->is_declaration)
7379 /* Ignore subprogram DIEs that do not have a name, they are
7380 illegal. Do not emit a complaint at this point, we will
7381 do so when we convert this psymtab into a symtab. */
7382 if (pdi->name)
7383 add_partial_symbol (pdi, cu);
7384 }
7385 }
7386
7387 if (! pdi->has_children)
7388 return;
7389
7390 if (cu->language == language_ada)
7391 {
7392 pdi = pdi->die_child;
7393 while (pdi != NULL)
7394 {
7395 fixup_partial_die (pdi, cu);
7396 if (pdi->tag == DW_TAG_subprogram
7397 || pdi->tag == DW_TAG_lexical_block)
7398 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7399 pdi = pdi->die_sibling;
7400 }
7401 }
7402 }
7403
7404 /* Read a partial die corresponding to an enumeration type. */
7405
7406 static void
7407 add_partial_enumeration (struct partial_die_info *enum_pdi,
7408 struct dwarf2_cu *cu)
7409 {
7410 struct partial_die_info *pdi;
7411
7412 if (enum_pdi->name != NULL)
7413 add_partial_symbol (enum_pdi, cu);
7414
7415 pdi = enum_pdi->die_child;
7416 while (pdi)
7417 {
7418 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7419 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7420 else
7421 add_partial_symbol (pdi, cu);
7422 pdi = pdi->die_sibling;
7423 }
7424 }
7425
7426 /* Return the initial uleb128 in the die at INFO_PTR. */
7427
7428 static unsigned int
7429 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7430 {
7431 unsigned int bytes_read;
7432
7433 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7434 }
7435
7436 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7437 Return the corresponding abbrev, or NULL if the number is zero (indicating
7438 an empty DIE). In either case *BYTES_READ will be set to the length of
7439 the initial number. */
7440
7441 static struct abbrev_info *
7442 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7443 struct dwarf2_cu *cu)
7444 {
7445 bfd *abfd = cu->objfile->obfd;
7446 unsigned int abbrev_number;
7447 struct abbrev_info *abbrev;
7448
7449 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7450
7451 if (abbrev_number == 0)
7452 return NULL;
7453
7454 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7455 if (!abbrev)
7456 {
7457 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7458 " at offset 0x%x [in module %s]"),
7459 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7460 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7461 }
7462
7463 return abbrev;
7464 }
7465
7466 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7467 Returns a pointer to the end of a series of DIEs, terminated by an empty
7468 DIE. Any children of the skipped DIEs will also be skipped. */
7469
7470 static const gdb_byte *
7471 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7472 {
7473 struct dwarf2_cu *cu = reader->cu;
7474 struct abbrev_info *abbrev;
7475 unsigned int bytes_read;
7476
7477 while (1)
7478 {
7479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7480 if (abbrev == NULL)
7481 return info_ptr + bytes_read;
7482 else
7483 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7484 }
7485 }
7486
7487 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7488 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7489 abbrev corresponding to that skipped uleb128 should be passed in
7490 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7491 children. */
7492
7493 static const gdb_byte *
7494 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7495 struct abbrev_info *abbrev)
7496 {
7497 unsigned int bytes_read;
7498 struct attribute attr;
7499 bfd *abfd = reader->abfd;
7500 struct dwarf2_cu *cu = reader->cu;
7501 const gdb_byte *buffer = reader->buffer;
7502 const gdb_byte *buffer_end = reader->buffer_end;
7503 unsigned int form, i;
7504
7505 for (i = 0; i < abbrev->num_attrs; i++)
7506 {
7507 /* The only abbrev we care about is DW_AT_sibling. */
7508 if (abbrev->attrs[i].name == DW_AT_sibling)
7509 {
7510 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7511 if (attr.form == DW_FORM_ref_addr)
7512 complaint (&symfile_complaints,
7513 _("ignoring absolute DW_AT_sibling"));
7514 else
7515 {
7516 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7517 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7518
7519 if (sibling_ptr < info_ptr)
7520 complaint (&symfile_complaints,
7521 _("DW_AT_sibling points backwards"));
7522 else if (sibling_ptr > reader->buffer_end)
7523 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7524 else
7525 return sibling_ptr;
7526 }
7527 }
7528
7529 /* If it isn't DW_AT_sibling, skip this attribute. */
7530 form = abbrev->attrs[i].form;
7531 skip_attribute:
7532 switch (form)
7533 {
7534 case DW_FORM_ref_addr:
7535 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7536 and later it is offset sized. */
7537 if (cu->header.version == 2)
7538 info_ptr += cu->header.addr_size;
7539 else
7540 info_ptr += cu->header.offset_size;
7541 break;
7542 case DW_FORM_GNU_ref_alt:
7543 info_ptr += cu->header.offset_size;
7544 break;
7545 case DW_FORM_addr:
7546 info_ptr += cu->header.addr_size;
7547 break;
7548 case DW_FORM_data1:
7549 case DW_FORM_ref1:
7550 case DW_FORM_flag:
7551 info_ptr += 1;
7552 break;
7553 case DW_FORM_flag_present:
7554 case DW_FORM_implicit_const:
7555 break;
7556 case DW_FORM_data2:
7557 case DW_FORM_ref2:
7558 info_ptr += 2;
7559 break;
7560 case DW_FORM_data4:
7561 case DW_FORM_ref4:
7562 info_ptr += 4;
7563 break;
7564 case DW_FORM_data8:
7565 case DW_FORM_ref8:
7566 case DW_FORM_ref_sig8:
7567 info_ptr += 8;
7568 break;
7569 case DW_FORM_data16:
7570 info_ptr += 16;
7571 break;
7572 case DW_FORM_string:
7573 read_direct_string (abfd, info_ptr, &bytes_read);
7574 info_ptr += bytes_read;
7575 break;
7576 case DW_FORM_sec_offset:
7577 case DW_FORM_strp:
7578 case DW_FORM_GNU_strp_alt:
7579 info_ptr += cu->header.offset_size;
7580 break;
7581 case DW_FORM_exprloc:
7582 case DW_FORM_block:
7583 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7584 info_ptr += bytes_read;
7585 break;
7586 case DW_FORM_block1:
7587 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7588 break;
7589 case DW_FORM_block2:
7590 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7591 break;
7592 case DW_FORM_block4:
7593 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7594 break;
7595 case DW_FORM_sdata:
7596 case DW_FORM_udata:
7597 case DW_FORM_ref_udata:
7598 case DW_FORM_GNU_addr_index:
7599 case DW_FORM_GNU_str_index:
7600 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7601 break;
7602 case DW_FORM_indirect:
7603 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7604 info_ptr += bytes_read;
7605 /* We need to continue parsing from here, so just go back to
7606 the top. */
7607 goto skip_attribute;
7608
7609 default:
7610 error (_("Dwarf Error: Cannot handle %s "
7611 "in DWARF reader [in module %s]"),
7612 dwarf_form_name (form),
7613 bfd_get_filename (abfd));
7614 }
7615 }
7616
7617 if (abbrev->has_children)
7618 return skip_children (reader, info_ptr);
7619 else
7620 return info_ptr;
7621 }
7622
7623 /* Locate ORIG_PDI's sibling.
7624 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7625
7626 static const gdb_byte *
7627 locate_pdi_sibling (const struct die_reader_specs *reader,
7628 struct partial_die_info *orig_pdi,
7629 const gdb_byte *info_ptr)
7630 {
7631 /* Do we know the sibling already? */
7632
7633 if (orig_pdi->sibling)
7634 return orig_pdi->sibling;
7635
7636 /* Are there any children to deal with? */
7637
7638 if (!orig_pdi->has_children)
7639 return info_ptr;
7640
7641 /* Skip the children the long way. */
7642
7643 return skip_children (reader, info_ptr);
7644 }
7645
7646 /* Expand this partial symbol table into a full symbol table. SELF is
7647 not NULL. */
7648
7649 static void
7650 dwarf2_read_symtab (struct partial_symtab *self,
7651 struct objfile *objfile)
7652 {
7653 if (self->readin)
7654 {
7655 warning (_("bug: psymtab for %s is already read in."),
7656 self->filename);
7657 }
7658 else
7659 {
7660 if (info_verbose)
7661 {
7662 printf_filtered (_("Reading in symbols for %s..."),
7663 self->filename);
7664 gdb_flush (gdb_stdout);
7665 }
7666
7667 /* Restore our global data. */
7668 dwarf2_per_objfile
7669 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7670 dwarf2_objfile_data_key);
7671
7672 /* If this psymtab is constructed from a debug-only objfile, the
7673 has_section_at_zero flag will not necessarily be correct. We
7674 can get the correct value for this flag by looking at the data
7675 associated with the (presumably stripped) associated objfile. */
7676 if (objfile->separate_debug_objfile_backlink)
7677 {
7678 struct dwarf2_per_objfile *dpo_backlink
7679 = ((struct dwarf2_per_objfile *)
7680 objfile_data (objfile->separate_debug_objfile_backlink,
7681 dwarf2_objfile_data_key));
7682
7683 dwarf2_per_objfile->has_section_at_zero
7684 = dpo_backlink->has_section_at_zero;
7685 }
7686
7687 dwarf2_per_objfile->reading_partial_symbols = 0;
7688
7689 psymtab_to_symtab_1 (self);
7690
7691 /* Finish up the debug error message. */
7692 if (info_verbose)
7693 printf_filtered (_("done.\n"));
7694 }
7695
7696 process_cu_includes ();
7697 }
7698 \f
7699 /* Reading in full CUs. */
7700
7701 /* Add PER_CU to the queue. */
7702
7703 static void
7704 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7705 enum language pretend_language)
7706 {
7707 struct dwarf2_queue_item *item;
7708
7709 per_cu->queued = 1;
7710 item = XNEW (struct dwarf2_queue_item);
7711 item->per_cu = per_cu;
7712 item->pretend_language = pretend_language;
7713 item->next = NULL;
7714
7715 if (dwarf2_queue == NULL)
7716 dwarf2_queue = item;
7717 else
7718 dwarf2_queue_tail->next = item;
7719
7720 dwarf2_queue_tail = item;
7721 }
7722
7723 /* If PER_CU is not yet queued, add it to the queue.
7724 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7725 dependency.
7726 The result is non-zero if PER_CU was queued, otherwise the result is zero
7727 meaning either PER_CU is already queued or it is already loaded.
7728
7729 N.B. There is an invariant here that if a CU is queued then it is loaded.
7730 The caller is required to load PER_CU if we return non-zero. */
7731
7732 static int
7733 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7734 struct dwarf2_per_cu_data *per_cu,
7735 enum language pretend_language)
7736 {
7737 /* We may arrive here during partial symbol reading, if we need full
7738 DIEs to process an unusual case (e.g. template arguments). Do
7739 not queue PER_CU, just tell our caller to load its DIEs. */
7740 if (dwarf2_per_objfile->reading_partial_symbols)
7741 {
7742 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7743 return 1;
7744 return 0;
7745 }
7746
7747 /* Mark the dependence relation so that we don't flush PER_CU
7748 too early. */
7749 if (dependent_cu != NULL)
7750 dwarf2_add_dependence (dependent_cu, per_cu);
7751
7752 /* If it's already on the queue, we have nothing to do. */
7753 if (per_cu->queued)
7754 return 0;
7755
7756 /* If the compilation unit is already loaded, just mark it as
7757 used. */
7758 if (per_cu->cu != NULL)
7759 {
7760 per_cu->cu->last_used = 0;
7761 return 0;
7762 }
7763
7764 /* Add it to the queue. */
7765 queue_comp_unit (per_cu, pretend_language);
7766
7767 return 1;
7768 }
7769
7770 /* Process the queue. */
7771
7772 static void
7773 process_queue (void)
7774 {
7775 struct dwarf2_queue_item *item, *next_item;
7776
7777 if (dwarf_read_debug)
7778 {
7779 fprintf_unfiltered (gdb_stdlog,
7780 "Expanding one or more symtabs of objfile %s ...\n",
7781 objfile_name (dwarf2_per_objfile->objfile));
7782 }
7783
7784 /* The queue starts out with one item, but following a DIE reference
7785 may load a new CU, adding it to the end of the queue. */
7786 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7787 {
7788 if ((dwarf2_per_objfile->using_index
7789 ? !item->per_cu->v.quick->compunit_symtab
7790 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7791 /* Skip dummy CUs. */
7792 && item->per_cu->cu != NULL)
7793 {
7794 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7795 unsigned int debug_print_threshold;
7796 char buf[100];
7797
7798 if (per_cu->is_debug_types)
7799 {
7800 struct signatured_type *sig_type =
7801 (struct signatured_type *) per_cu;
7802
7803 sprintf (buf, "TU %s at offset 0x%x",
7804 hex_string (sig_type->signature),
7805 to_underlying (per_cu->sect_off));
7806 /* There can be 100s of TUs.
7807 Only print them in verbose mode. */
7808 debug_print_threshold = 2;
7809 }
7810 else
7811 {
7812 sprintf (buf, "CU at offset 0x%x",
7813 to_underlying (per_cu->sect_off));
7814 debug_print_threshold = 1;
7815 }
7816
7817 if (dwarf_read_debug >= debug_print_threshold)
7818 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7819
7820 if (per_cu->is_debug_types)
7821 process_full_type_unit (per_cu, item->pretend_language);
7822 else
7823 process_full_comp_unit (per_cu, item->pretend_language);
7824
7825 if (dwarf_read_debug >= debug_print_threshold)
7826 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7827 }
7828
7829 item->per_cu->queued = 0;
7830 next_item = item->next;
7831 xfree (item);
7832 }
7833
7834 dwarf2_queue_tail = NULL;
7835
7836 if (dwarf_read_debug)
7837 {
7838 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7839 objfile_name (dwarf2_per_objfile->objfile));
7840 }
7841 }
7842
7843 /* Free all allocated queue entries. This function only releases anything if
7844 an error was thrown; if the queue was processed then it would have been
7845 freed as we went along. */
7846
7847 static void
7848 dwarf2_release_queue (void *dummy)
7849 {
7850 struct dwarf2_queue_item *item, *last;
7851
7852 item = dwarf2_queue;
7853 while (item)
7854 {
7855 /* Anything still marked queued is likely to be in an
7856 inconsistent state, so discard it. */
7857 if (item->per_cu->queued)
7858 {
7859 if (item->per_cu->cu != NULL)
7860 free_one_cached_comp_unit (item->per_cu);
7861 item->per_cu->queued = 0;
7862 }
7863
7864 last = item;
7865 item = item->next;
7866 xfree (last);
7867 }
7868
7869 dwarf2_queue = dwarf2_queue_tail = NULL;
7870 }
7871
7872 /* Read in full symbols for PST, and anything it depends on. */
7873
7874 static void
7875 psymtab_to_symtab_1 (struct partial_symtab *pst)
7876 {
7877 struct dwarf2_per_cu_data *per_cu;
7878 int i;
7879
7880 if (pst->readin)
7881 return;
7882
7883 for (i = 0; i < pst->number_of_dependencies; i++)
7884 if (!pst->dependencies[i]->readin
7885 && pst->dependencies[i]->user == NULL)
7886 {
7887 /* Inform about additional files that need to be read in. */
7888 if (info_verbose)
7889 {
7890 /* FIXME: i18n: Need to make this a single string. */
7891 fputs_filtered (" ", gdb_stdout);
7892 wrap_here ("");
7893 fputs_filtered ("and ", gdb_stdout);
7894 wrap_here ("");
7895 printf_filtered ("%s...", pst->dependencies[i]->filename);
7896 wrap_here (""); /* Flush output. */
7897 gdb_flush (gdb_stdout);
7898 }
7899 psymtab_to_symtab_1 (pst->dependencies[i]);
7900 }
7901
7902 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7903
7904 if (per_cu == NULL)
7905 {
7906 /* It's an include file, no symbols to read for it.
7907 Everything is in the parent symtab. */
7908 pst->readin = 1;
7909 return;
7910 }
7911
7912 dw2_do_instantiate_symtab (per_cu);
7913 }
7914
7915 /* Trivial hash function for die_info: the hash value of a DIE
7916 is its offset in .debug_info for this objfile. */
7917
7918 static hashval_t
7919 die_hash (const void *item)
7920 {
7921 const struct die_info *die = (const struct die_info *) item;
7922
7923 return to_underlying (die->sect_off);
7924 }
7925
7926 /* Trivial comparison function for die_info structures: two DIEs
7927 are equal if they have the same offset. */
7928
7929 static int
7930 die_eq (const void *item_lhs, const void *item_rhs)
7931 {
7932 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7933 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7934
7935 return die_lhs->sect_off == die_rhs->sect_off;
7936 }
7937
7938 /* die_reader_func for load_full_comp_unit.
7939 This is identical to read_signatured_type_reader,
7940 but is kept separate for now. */
7941
7942 static void
7943 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7944 const gdb_byte *info_ptr,
7945 struct die_info *comp_unit_die,
7946 int has_children,
7947 void *data)
7948 {
7949 struct dwarf2_cu *cu = reader->cu;
7950 enum language *language_ptr = (enum language *) data;
7951
7952 gdb_assert (cu->die_hash == NULL);
7953 cu->die_hash =
7954 htab_create_alloc_ex (cu->header.length / 12,
7955 die_hash,
7956 die_eq,
7957 NULL,
7958 &cu->comp_unit_obstack,
7959 hashtab_obstack_allocate,
7960 dummy_obstack_deallocate);
7961
7962 if (has_children)
7963 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7964 &info_ptr, comp_unit_die);
7965 cu->dies = comp_unit_die;
7966 /* comp_unit_die is not stored in die_hash, no need. */
7967
7968 /* We try not to read any attributes in this function, because not
7969 all CUs needed for references have been loaded yet, and symbol
7970 table processing isn't initialized. But we have to set the CU language,
7971 or we won't be able to build types correctly.
7972 Similarly, if we do not read the producer, we can not apply
7973 producer-specific interpretation. */
7974 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7975 }
7976
7977 /* Load the DIEs associated with PER_CU into memory. */
7978
7979 static void
7980 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7981 enum language pretend_language)
7982 {
7983 gdb_assert (! this_cu->is_debug_types);
7984
7985 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7986 load_full_comp_unit_reader, &pretend_language);
7987 }
7988
7989 /* Add a DIE to the delayed physname list. */
7990
7991 static void
7992 add_to_method_list (struct type *type, int fnfield_index, int index,
7993 const char *name, struct die_info *die,
7994 struct dwarf2_cu *cu)
7995 {
7996 struct delayed_method_info mi;
7997 mi.type = type;
7998 mi.fnfield_index = fnfield_index;
7999 mi.index = index;
8000 mi.name = name;
8001 mi.die = die;
8002 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8003 }
8004
8005 /* A cleanup for freeing the delayed method list. */
8006
8007 static void
8008 free_delayed_list (void *ptr)
8009 {
8010 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8011 if (cu->method_list != NULL)
8012 {
8013 VEC_free (delayed_method_info, cu->method_list);
8014 cu->method_list = NULL;
8015 }
8016 }
8017
8018 /* Compute the physnames of any methods on the CU's method list.
8019
8020 The computation of method physnames is delayed in order to avoid the
8021 (bad) condition that one of the method's formal parameters is of an as yet
8022 incomplete type. */
8023
8024 static void
8025 compute_delayed_physnames (struct dwarf2_cu *cu)
8026 {
8027 int i;
8028 struct delayed_method_info *mi;
8029 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8030 {
8031 const char *physname;
8032 struct fn_fieldlist *fn_flp
8033 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8034 physname = dwarf2_physname (mi->name, mi->die, cu);
8035 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8036 = physname ? physname : "";
8037 }
8038 }
8039
8040 /* Go objects should be embedded in a DW_TAG_module DIE,
8041 and it's not clear if/how imported objects will appear.
8042 To keep Go support simple until that's worked out,
8043 go back through what we've read and create something usable.
8044 We could do this while processing each DIE, and feels kinda cleaner,
8045 but that way is more invasive.
8046 This is to, for example, allow the user to type "p var" or "b main"
8047 without having to specify the package name, and allow lookups
8048 of module.object to work in contexts that use the expression
8049 parser. */
8050
8051 static void
8052 fixup_go_packaging (struct dwarf2_cu *cu)
8053 {
8054 char *package_name = NULL;
8055 struct pending *list;
8056 int i;
8057
8058 for (list = global_symbols; list != NULL; list = list->next)
8059 {
8060 for (i = 0; i < list->nsyms; ++i)
8061 {
8062 struct symbol *sym = list->symbol[i];
8063
8064 if (SYMBOL_LANGUAGE (sym) == language_go
8065 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8066 {
8067 char *this_package_name = go_symbol_package_name (sym);
8068
8069 if (this_package_name == NULL)
8070 continue;
8071 if (package_name == NULL)
8072 package_name = this_package_name;
8073 else
8074 {
8075 if (strcmp (package_name, this_package_name) != 0)
8076 complaint (&symfile_complaints,
8077 _("Symtab %s has objects from two different Go packages: %s and %s"),
8078 (symbol_symtab (sym) != NULL
8079 ? symtab_to_filename_for_display
8080 (symbol_symtab (sym))
8081 : objfile_name (cu->objfile)),
8082 this_package_name, package_name);
8083 xfree (this_package_name);
8084 }
8085 }
8086 }
8087 }
8088
8089 if (package_name != NULL)
8090 {
8091 struct objfile *objfile = cu->objfile;
8092 const char *saved_package_name
8093 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8094 package_name,
8095 strlen (package_name));
8096 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8097 saved_package_name);
8098 struct symbol *sym;
8099
8100 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8101
8102 sym = allocate_symbol (objfile);
8103 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8104 SYMBOL_SET_NAMES (sym, saved_package_name,
8105 strlen (saved_package_name), 0, objfile);
8106 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8107 e.g., "main" finds the "main" module and not C's main(). */
8108 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8109 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8110 SYMBOL_TYPE (sym) = type;
8111
8112 add_symbol_to_list (sym, &global_symbols);
8113
8114 xfree (package_name);
8115 }
8116 }
8117
8118 /* Return the symtab for PER_CU. This works properly regardless of
8119 whether we're using the index or psymtabs. */
8120
8121 static struct compunit_symtab *
8122 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8123 {
8124 return (dwarf2_per_objfile->using_index
8125 ? per_cu->v.quick->compunit_symtab
8126 : per_cu->v.psymtab->compunit_symtab);
8127 }
8128
8129 /* A helper function for computing the list of all symbol tables
8130 included by PER_CU. */
8131
8132 static void
8133 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8134 htab_t all_children, htab_t all_type_symtabs,
8135 struct dwarf2_per_cu_data *per_cu,
8136 struct compunit_symtab *immediate_parent)
8137 {
8138 void **slot;
8139 int ix;
8140 struct compunit_symtab *cust;
8141 struct dwarf2_per_cu_data *iter;
8142
8143 slot = htab_find_slot (all_children, per_cu, INSERT);
8144 if (*slot != NULL)
8145 {
8146 /* This inclusion and its children have been processed. */
8147 return;
8148 }
8149
8150 *slot = per_cu;
8151 /* Only add a CU if it has a symbol table. */
8152 cust = get_compunit_symtab (per_cu);
8153 if (cust != NULL)
8154 {
8155 /* If this is a type unit only add its symbol table if we haven't
8156 seen it yet (type unit per_cu's can share symtabs). */
8157 if (per_cu->is_debug_types)
8158 {
8159 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8160 if (*slot == NULL)
8161 {
8162 *slot = cust;
8163 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8164 if (cust->user == NULL)
8165 cust->user = immediate_parent;
8166 }
8167 }
8168 else
8169 {
8170 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8171 if (cust->user == NULL)
8172 cust->user = immediate_parent;
8173 }
8174 }
8175
8176 for (ix = 0;
8177 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8178 ++ix)
8179 {
8180 recursively_compute_inclusions (result, all_children,
8181 all_type_symtabs, iter, cust);
8182 }
8183 }
8184
8185 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8186 PER_CU. */
8187
8188 static void
8189 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8190 {
8191 gdb_assert (! per_cu->is_debug_types);
8192
8193 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8194 {
8195 int ix, len;
8196 struct dwarf2_per_cu_data *per_cu_iter;
8197 struct compunit_symtab *compunit_symtab_iter;
8198 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8199 htab_t all_children, all_type_symtabs;
8200 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8201
8202 /* If we don't have a symtab, we can just skip this case. */
8203 if (cust == NULL)
8204 return;
8205
8206 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8207 NULL, xcalloc, xfree);
8208 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8209 NULL, xcalloc, xfree);
8210
8211 for (ix = 0;
8212 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8213 ix, per_cu_iter);
8214 ++ix)
8215 {
8216 recursively_compute_inclusions (&result_symtabs, all_children,
8217 all_type_symtabs, per_cu_iter,
8218 cust);
8219 }
8220
8221 /* Now we have a transitive closure of all the included symtabs. */
8222 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8223 cust->includes
8224 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8225 struct compunit_symtab *, len + 1);
8226 for (ix = 0;
8227 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8228 compunit_symtab_iter);
8229 ++ix)
8230 cust->includes[ix] = compunit_symtab_iter;
8231 cust->includes[len] = NULL;
8232
8233 VEC_free (compunit_symtab_ptr, result_symtabs);
8234 htab_delete (all_children);
8235 htab_delete (all_type_symtabs);
8236 }
8237 }
8238
8239 /* Compute the 'includes' field for the symtabs of all the CUs we just
8240 read. */
8241
8242 static void
8243 process_cu_includes (void)
8244 {
8245 int ix;
8246 struct dwarf2_per_cu_data *iter;
8247
8248 for (ix = 0;
8249 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8250 ix, iter);
8251 ++ix)
8252 {
8253 if (! iter->is_debug_types)
8254 compute_compunit_symtab_includes (iter);
8255 }
8256
8257 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8258 }
8259
8260 /* Generate full symbol information for PER_CU, whose DIEs have
8261 already been loaded into memory. */
8262
8263 static void
8264 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8265 enum language pretend_language)
8266 {
8267 struct dwarf2_cu *cu = per_cu->cu;
8268 struct objfile *objfile = per_cu->objfile;
8269 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8270 CORE_ADDR lowpc, highpc;
8271 struct compunit_symtab *cust;
8272 struct cleanup *back_to, *delayed_list_cleanup;
8273 CORE_ADDR baseaddr;
8274 struct block *static_block;
8275 CORE_ADDR addr;
8276
8277 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8278
8279 buildsym_init ();
8280 back_to = make_cleanup (really_free_pendings, NULL);
8281 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8282
8283 cu->list_in_scope = &file_symbols;
8284
8285 cu->language = pretend_language;
8286 cu->language_defn = language_def (cu->language);
8287
8288 /* Do line number decoding in read_file_scope () */
8289 process_die (cu->dies, cu);
8290
8291 /* For now fudge the Go package. */
8292 if (cu->language == language_go)
8293 fixup_go_packaging (cu);
8294
8295 /* Now that we have processed all the DIEs in the CU, all the types
8296 should be complete, and it should now be safe to compute all of the
8297 physnames. */
8298 compute_delayed_physnames (cu);
8299 do_cleanups (delayed_list_cleanup);
8300
8301 /* Some compilers don't define a DW_AT_high_pc attribute for the
8302 compilation unit. If the DW_AT_high_pc is missing, synthesize
8303 it, by scanning the DIE's below the compilation unit. */
8304 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8305
8306 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8307 static_block = end_symtab_get_static_block (addr, 0, 1);
8308
8309 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8310 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8311 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8312 addrmap to help ensure it has an accurate map of pc values belonging to
8313 this comp unit. */
8314 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8315
8316 cust = end_symtab_from_static_block (static_block,
8317 SECT_OFF_TEXT (objfile), 0);
8318
8319 if (cust != NULL)
8320 {
8321 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8322
8323 /* Set symtab language to language from DW_AT_language. If the
8324 compilation is from a C file generated by language preprocessors, do
8325 not set the language if it was already deduced by start_subfile. */
8326 if (!(cu->language == language_c
8327 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8328 COMPUNIT_FILETABS (cust)->language = cu->language;
8329
8330 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8331 produce DW_AT_location with location lists but it can be possibly
8332 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8333 there were bugs in prologue debug info, fixed later in GCC-4.5
8334 by "unwind info for epilogues" patch (which is not directly related).
8335
8336 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8337 needed, it would be wrong due to missing DW_AT_producer there.
8338
8339 Still one can confuse GDB by using non-standard GCC compilation
8340 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8341 */
8342 if (cu->has_loclist && gcc_4_minor >= 5)
8343 cust->locations_valid = 1;
8344
8345 if (gcc_4_minor >= 5)
8346 cust->epilogue_unwind_valid = 1;
8347
8348 cust->call_site_htab = cu->call_site_htab;
8349 }
8350
8351 if (dwarf2_per_objfile->using_index)
8352 per_cu->v.quick->compunit_symtab = cust;
8353 else
8354 {
8355 struct partial_symtab *pst = per_cu->v.psymtab;
8356 pst->compunit_symtab = cust;
8357 pst->readin = 1;
8358 }
8359
8360 /* Push it for inclusion processing later. */
8361 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8362
8363 do_cleanups (back_to);
8364 }
8365
8366 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8367 already been loaded into memory. */
8368
8369 static void
8370 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8371 enum language pretend_language)
8372 {
8373 struct dwarf2_cu *cu = per_cu->cu;
8374 struct objfile *objfile = per_cu->objfile;
8375 struct compunit_symtab *cust;
8376 struct cleanup *back_to, *delayed_list_cleanup;
8377 struct signatured_type *sig_type;
8378
8379 gdb_assert (per_cu->is_debug_types);
8380 sig_type = (struct signatured_type *) per_cu;
8381
8382 buildsym_init ();
8383 back_to = make_cleanup (really_free_pendings, NULL);
8384 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8385
8386 cu->list_in_scope = &file_symbols;
8387
8388 cu->language = pretend_language;
8389 cu->language_defn = language_def (cu->language);
8390
8391 /* The symbol tables are set up in read_type_unit_scope. */
8392 process_die (cu->dies, cu);
8393
8394 /* For now fudge the Go package. */
8395 if (cu->language == language_go)
8396 fixup_go_packaging (cu);
8397
8398 /* Now that we have processed all the DIEs in the CU, all the types
8399 should be complete, and it should now be safe to compute all of the
8400 physnames. */
8401 compute_delayed_physnames (cu);
8402 do_cleanups (delayed_list_cleanup);
8403
8404 /* TUs share symbol tables.
8405 If this is the first TU to use this symtab, complete the construction
8406 of it with end_expandable_symtab. Otherwise, complete the addition of
8407 this TU's symbols to the existing symtab. */
8408 if (sig_type->type_unit_group->compunit_symtab == NULL)
8409 {
8410 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8411 sig_type->type_unit_group->compunit_symtab = cust;
8412
8413 if (cust != NULL)
8414 {
8415 /* Set symtab language to language from DW_AT_language. If the
8416 compilation is from a C file generated by language preprocessors,
8417 do not set the language if it was already deduced by
8418 start_subfile. */
8419 if (!(cu->language == language_c
8420 && COMPUNIT_FILETABS (cust)->language != language_c))
8421 COMPUNIT_FILETABS (cust)->language = cu->language;
8422 }
8423 }
8424 else
8425 {
8426 augment_type_symtab ();
8427 cust = sig_type->type_unit_group->compunit_symtab;
8428 }
8429
8430 if (dwarf2_per_objfile->using_index)
8431 per_cu->v.quick->compunit_symtab = cust;
8432 else
8433 {
8434 struct partial_symtab *pst = per_cu->v.psymtab;
8435 pst->compunit_symtab = cust;
8436 pst->readin = 1;
8437 }
8438
8439 do_cleanups (back_to);
8440 }
8441
8442 /* Process an imported unit DIE. */
8443
8444 static void
8445 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8446 {
8447 struct attribute *attr;
8448
8449 /* For now we don't handle imported units in type units. */
8450 if (cu->per_cu->is_debug_types)
8451 {
8452 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8453 " supported in type units [in module %s]"),
8454 objfile_name (cu->objfile));
8455 }
8456
8457 attr = dwarf2_attr (die, DW_AT_import, cu);
8458 if (attr != NULL)
8459 {
8460 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8461 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8462 dwarf2_per_cu_data *per_cu
8463 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8464
8465 /* If necessary, add it to the queue and load its DIEs. */
8466 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8467 load_full_comp_unit (per_cu, cu->language);
8468
8469 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8470 per_cu);
8471 }
8472 }
8473
8474 /* Reset the in_process bit of a die. */
8475
8476 static void
8477 reset_die_in_process (void *arg)
8478 {
8479 struct die_info *die = (struct die_info *) arg;
8480
8481 die->in_process = 0;
8482 }
8483
8484 /* Process a die and its children. */
8485
8486 static void
8487 process_die (struct die_info *die, struct dwarf2_cu *cu)
8488 {
8489 struct cleanup *in_process;
8490
8491 /* We should only be processing those not already in process. */
8492 gdb_assert (!die->in_process);
8493
8494 die->in_process = 1;
8495 in_process = make_cleanup (reset_die_in_process,die);
8496
8497 switch (die->tag)
8498 {
8499 case DW_TAG_padding:
8500 break;
8501 case DW_TAG_compile_unit:
8502 case DW_TAG_partial_unit:
8503 read_file_scope (die, cu);
8504 break;
8505 case DW_TAG_type_unit:
8506 read_type_unit_scope (die, cu);
8507 break;
8508 case DW_TAG_subprogram:
8509 case DW_TAG_inlined_subroutine:
8510 read_func_scope (die, cu);
8511 break;
8512 case DW_TAG_lexical_block:
8513 case DW_TAG_try_block:
8514 case DW_TAG_catch_block:
8515 read_lexical_block_scope (die, cu);
8516 break;
8517 case DW_TAG_call_site:
8518 case DW_TAG_GNU_call_site:
8519 read_call_site_scope (die, cu);
8520 break;
8521 case DW_TAG_class_type:
8522 case DW_TAG_interface_type:
8523 case DW_TAG_structure_type:
8524 case DW_TAG_union_type:
8525 process_structure_scope (die, cu);
8526 break;
8527 case DW_TAG_enumeration_type:
8528 process_enumeration_scope (die, cu);
8529 break;
8530
8531 /* These dies have a type, but processing them does not create
8532 a symbol or recurse to process the children. Therefore we can
8533 read them on-demand through read_type_die. */
8534 case DW_TAG_subroutine_type:
8535 case DW_TAG_set_type:
8536 case DW_TAG_array_type:
8537 case DW_TAG_pointer_type:
8538 case DW_TAG_ptr_to_member_type:
8539 case DW_TAG_reference_type:
8540 case DW_TAG_rvalue_reference_type:
8541 case DW_TAG_string_type:
8542 break;
8543
8544 case DW_TAG_base_type:
8545 case DW_TAG_subrange_type:
8546 case DW_TAG_typedef:
8547 /* Add a typedef symbol for the type definition, if it has a
8548 DW_AT_name. */
8549 new_symbol (die, read_type_die (die, cu), cu);
8550 break;
8551 case DW_TAG_common_block:
8552 read_common_block (die, cu);
8553 break;
8554 case DW_TAG_common_inclusion:
8555 break;
8556 case DW_TAG_namespace:
8557 cu->processing_has_namespace_info = 1;
8558 read_namespace (die, cu);
8559 break;
8560 case DW_TAG_module:
8561 cu->processing_has_namespace_info = 1;
8562 read_module (die, cu);
8563 break;
8564 case DW_TAG_imported_declaration:
8565 cu->processing_has_namespace_info = 1;
8566 if (read_namespace_alias (die, cu))
8567 break;
8568 /* The declaration is not a global namespace alias: fall through. */
8569 case DW_TAG_imported_module:
8570 cu->processing_has_namespace_info = 1;
8571 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8572 || cu->language != language_fortran))
8573 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8574 dwarf_tag_name (die->tag));
8575 read_import_statement (die, cu);
8576 break;
8577
8578 case DW_TAG_imported_unit:
8579 process_imported_unit_die (die, cu);
8580 break;
8581
8582 default:
8583 new_symbol (die, NULL, cu);
8584 break;
8585 }
8586
8587 do_cleanups (in_process);
8588 }
8589 \f
8590 /* DWARF name computation. */
8591
8592 /* A helper function for dwarf2_compute_name which determines whether DIE
8593 needs to have the name of the scope prepended to the name listed in the
8594 die. */
8595
8596 static int
8597 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8598 {
8599 struct attribute *attr;
8600
8601 switch (die->tag)
8602 {
8603 case DW_TAG_namespace:
8604 case DW_TAG_typedef:
8605 case DW_TAG_class_type:
8606 case DW_TAG_interface_type:
8607 case DW_TAG_structure_type:
8608 case DW_TAG_union_type:
8609 case DW_TAG_enumeration_type:
8610 case DW_TAG_enumerator:
8611 case DW_TAG_subprogram:
8612 case DW_TAG_inlined_subroutine:
8613 case DW_TAG_member:
8614 case DW_TAG_imported_declaration:
8615 return 1;
8616
8617 case DW_TAG_variable:
8618 case DW_TAG_constant:
8619 /* We only need to prefix "globally" visible variables. These include
8620 any variable marked with DW_AT_external or any variable that
8621 lives in a namespace. [Variables in anonymous namespaces
8622 require prefixing, but they are not DW_AT_external.] */
8623
8624 if (dwarf2_attr (die, DW_AT_specification, cu))
8625 {
8626 struct dwarf2_cu *spec_cu = cu;
8627
8628 return die_needs_namespace (die_specification (die, &spec_cu),
8629 spec_cu);
8630 }
8631
8632 attr = dwarf2_attr (die, DW_AT_external, cu);
8633 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8634 && die->parent->tag != DW_TAG_module)
8635 return 0;
8636 /* A variable in a lexical block of some kind does not need a
8637 namespace, even though in C++ such variables may be external
8638 and have a mangled name. */
8639 if (die->parent->tag == DW_TAG_lexical_block
8640 || die->parent->tag == DW_TAG_try_block
8641 || die->parent->tag == DW_TAG_catch_block
8642 || die->parent->tag == DW_TAG_subprogram)
8643 return 0;
8644 return 1;
8645
8646 default:
8647 return 0;
8648 }
8649 }
8650
8651 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8652 compute the physname for the object, which include a method's:
8653 - formal parameters (C++),
8654 - receiver type (Go),
8655
8656 The term "physname" is a bit confusing.
8657 For C++, for example, it is the demangled name.
8658 For Go, for example, it's the mangled name.
8659
8660 For Ada, return the DIE's linkage name rather than the fully qualified
8661 name. PHYSNAME is ignored..
8662
8663 The result is allocated on the objfile_obstack and canonicalized. */
8664
8665 static const char *
8666 dwarf2_compute_name (const char *name,
8667 struct die_info *die, struct dwarf2_cu *cu,
8668 int physname)
8669 {
8670 struct objfile *objfile = cu->objfile;
8671
8672 if (name == NULL)
8673 name = dwarf2_name (die, cu);
8674
8675 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8676 but otherwise compute it by typename_concat inside GDB.
8677 FIXME: Actually this is not really true, or at least not always true.
8678 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8679 Fortran names because there is no mangling standard. So new_symbol_full
8680 will set the demangled name to the result of dwarf2_full_name, and it is
8681 the demangled name that GDB uses if it exists. */
8682 if (cu->language == language_ada
8683 || (cu->language == language_fortran && physname))
8684 {
8685 /* For Ada unit, we prefer the linkage name over the name, as
8686 the former contains the exported name, which the user expects
8687 to be able to reference. Ideally, we want the user to be able
8688 to reference this entity using either natural or linkage name,
8689 but we haven't started looking at this enhancement yet. */
8690 const char *linkage_name;
8691
8692 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8693 if (linkage_name == NULL)
8694 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8695 if (linkage_name != NULL)
8696 return linkage_name;
8697 }
8698
8699 /* These are the only languages we know how to qualify names in. */
8700 if (name != NULL
8701 && (cu->language == language_cplus
8702 || cu->language == language_fortran || cu->language == language_d
8703 || cu->language == language_rust))
8704 {
8705 if (die_needs_namespace (die, cu))
8706 {
8707 long length;
8708 const char *prefix;
8709 const char *canonical_name = NULL;
8710
8711 string_file buf;
8712
8713 prefix = determine_prefix (die, cu);
8714 if (*prefix != '\0')
8715 {
8716 char *prefixed_name = typename_concat (NULL, prefix, name,
8717 physname, cu);
8718
8719 buf.puts (prefixed_name);
8720 xfree (prefixed_name);
8721 }
8722 else
8723 buf.puts (name);
8724
8725 /* Template parameters may be specified in the DIE's DW_AT_name, or
8726 as children with DW_TAG_template_type_param or
8727 DW_TAG_value_type_param. If the latter, add them to the name
8728 here. If the name already has template parameters, then
8729 skip this step; some versions of GCC emit both, and
8730 it is more efficient to use the pre-computed name.
8731
8732 Something to keep in mind about this process: it is very
8733 unlikely, or in some cases downright impossible, to produce
8734 something that will match the mangled name of a function.
8735 If the definition of the function has the same debug info,
8736 we should be able to match up with it anyway. But fallbacks
8737 using the minimal symbol, for instance to find a method
8738 implemented in a stripped copy of libstdc++, will not work.
8739 If we do not have debug info for the definition, we will have to
8740 match them up some other way.
8741
8742 When we do name matching there is a related problem with function
8743 templates; two instantiated function templates are allowed to
8744 differ only by their return types, which we do not add here. */
8745
8746 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8747 {
8748 struct attribute *attr;
8749 struct die_info *child;
8750 int first = 1;
8751
8752 die->building_fullname = 1;
8753
8754 for (child = die->child; child != NULL; child = child->sibling)
8755 {
8756 struct type *type;
8757 LONGEST value;
8758 const gdb_byte *bytes;
8759 struct dwarf2_locexpr_baton *baton;
8760 struct value *v;
8761
8762 if (child->tag != DW_TAG_template_type_param
8763 && child->tag != DW_TAG_template_value_param)
8764 continue;
8765
8766 if (first)
8767 {
8768 buf.puts ("<");
8769 first = 0;
8770 }
8771 else
8772 buf.puts (", ");
8773
8774 attr = dwarf2_attr (child, DW_AT_type, cu);
8775 if (attr == NULL)
8776 {
8777 complaint (&symfile_complaints,
8778 _("template parameter missing DW_AT_type"));
8779 buf.puts ("UNKNOWN_TYPE");
8780 continue;
8781 }
8782 type = die_type (child, cu);
8783
8784 if (child->tag == DW_TAG_template_type_param)
8785 {
8786 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8787 continue;
8788 }
8789
8790 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8791 if (attr == NULL)
8792 {
8793 complaint (&symfile_complaints,
8794 _("template parameter missing "
8795 "DW_AT_const_value"));
8796 buf.puts ("UNKNOWN_VALUE");
8797 continue;
8798 }
8799
8800 dwarf2_const_value_attr (attr, type, name,
8801 &cu->comp_unit_obstack, cu,
8802 &value, &bytes, &baton);
8803
8804 if (TYPE_NOSIGN (type))
8805 /* GDB prints characters as NUMBER 'CHAR'. If that's
8806 changed, this can use value_print instead. */
8807 c_printchar (value, type, &buf);
8808 else
8809 {
8810 struct value_print_options opts;
8811
8812 if (baton != NULL)
8813 v = dwarf2_evaluate_loc_desc (type, NULL,
8814 baton->data,
8815 baton->size,
8816 baton->per_cu);
8817 else if (bytes != NULL)
8818 {
8819 v = allocate_value (type);
8820 memcpy (value_contents_writeable (v), bytes,
8821 TYPE_LENGTH (type));
8822 }
8823 else
8824 v = value_from_longest (type, value);
8825
8826 /* Specify decimal so that we do not depend on
8827 the radix. */
8828 get_formatted_print_options (&opts, 'd');
8829 opts.raw = 1;
8830 value_print (v, &buf, &opts);
8831 release_value (v);
8832 value_free (v);
8833 }
8834 }
8835
8836 die->building_fullname = 0;
8837
8838 if (!first)
8839 {
8840 /* Close the argument list, with a space if necessary
8841 (nested templates). */
8842 if (!buf.empty () && buf.string ().back () == '>')
8843 buf.puts (" >");
8844 else
8845 buf.puts (">");
8846 }
8847 }
8848
8849 /* For C++ methods, append formal parameter type
8850 information, if PHYSNAME. */
8851
8852 if (physname && die->tag == DW_TAG_subprogram
8853 && cu->language == language_cplus)
8854 {
8855 struct type *type = read_type_die (die, cu);
8856
8857 c_type_print_args (type, &buf, 1, cu->language,
8858 &type_print_raw_options);
8859
8860 if (cu->language == language_cplus)
8861 {
8862 /* Assume that an artificial first parameter is
8863 "this", but do not crash if it is not. RealView
8864 marks unnamed (and thus unused) parameters as
8865 artificial; there is no way to differentiate
8866 the two cases. */
8867 if (TYPE_NFIELDS (type) > 0
8868 && TYPE_FIELD_ARTIFICIAL (type, 0)
8869 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8870 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8871 0))))
8872 buf.puts (" const");
8873 }
8874 }
8875
8876 const std::string &intermediate_name = buf.string ();
8877
8878 if (cu->language == language_cplus)
8879 canonical_name
8880 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8881 &objfile->per_bfd->storage_obstack);
8882
8883 /* If we only computed INTERMEDIATE_NAME, or if
8884 INTERMEDIATE_NAME is already canonical, then we need to
8885 copy it to the appropriate obstack. */
8886 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8887 name = ((const char *)
8888 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8889 intermediate_name.c_str (),
8890 intermediate_name.length ()));
8891 else
8892 name = canonical_name;
8893 }
8894 }
8895
8896 return name;
8897 }
8898
8899 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8900 If scope qualifiers are appropriate they will be added. The result
8901 will be allocated on the storage_obstack, or NULL if the DIE does
8902 not have a name. NAME may either be from a previous call to
8903 dwarf2_name or NULL.
8904
8905 The output string will be canonicalized (if C++). */
8906
8907 static const char *
8908 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8909 {
8910 return dwarf2_compute_name (name, die, cu, 0);
8911 }
8912
8913 /* Construct a physname for the given DIE in CU. NAME may either be
8914 from a previous call to dwarf2_name or NULL. The result will be
8915 allocated on the objfile_objstack or NULL if the DIE does not have a
8916 name.
8917
8918 The output string will be canonicalized (if C++). */
8919
8920 static const char *
8921 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8922 {
8923 struct objfile *objfile = cu->objfile;
8924 const char *retval, *mangled = NULL, *canon = NULL;
8925 struct cleanup *back_to;
8926 int need_copy = 1;
8927
8928 /* In this case dwarf2_compute_name is just a shortcut not building anything
8929 on its own. */
8930 if (!die_needs_namespace (die, cu))
8931 return dwarf2_compute_name (name, die, cu, 1);
8932
8933 back_to = make_cleanup (null_cleanup, NULL);
8934
8935 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8936 if (mangled == NULL)
8937 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8938
8939 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8940 See https://github.com/rust-lang/rust/issues/32925. */
8941 if (cu->language == language_rust && mangled != NULL
8942 && strchr (mangled, '{') != NULL)
8943 mangled = NULL;
8944
8945 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8946 has computed. */
8947 if (mangled != NULL)
8948 {
8949 char *demangled;
8950
8951 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8952 type. It is easier for GDB users to search for such functions as
8953 `name(params)' than `long name(params)'. In such case the minimal
8954 symbol names do not match the full symbol names but for template
8955 functions there is never a need to look up their definition from their
8956 declaration so the only disadvantage remains the minimal symbol
8957 variant `long name(params)' does not have the proper inferior type.
8958 */
8959
8960 if (cu->language == language_go)
8961 {
8962 /* This is a lie, but we already lie to the caller new_symbol_full.
8963 new_symbol_full assumes we return the mangled name.
8964 This just undoes that lie until things are cleaned up. */
8965 demangled = NULL;
8966 }
8967 else
8968 {
8969 demangled = gdb_demangle (mangled,
8970 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8971 }
8972 if (demangled)
8973 {
8974 make_cleanup (xfree, demangled);
8975 canon = demangled;
8976 }
8977 else
8978 {
8979 canon = mangled;
8980 need_copy = 0;
8981 }
8982 }
8983
8984 if (canon == NULL || check_physname)
8985 {
8986 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8987
8988 if (canon != NULL && strcmp (physname, canon) != 0)
8989 {
8990 /* It may not mean a bug in GDB. The compiler could also
8991 compute DW_AT_linkage_name incorrectly. But in such case
8992 GDB would need to be bug-to-bug compatible. */
8993
8994 complaint (&symfile_complaints,
8995 _("Computed physname <%s> does not match demangled <%s> "
8996 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8997 physname, canon, mangled, to_underlying (die->sect_off),
8998 objfile_name (objfile));
8999
9000 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9001 is available here - over computed PHYSNAME. It is safer
9002 against both buggy GDB and buggy compilers. */
9003
9004 retval = canon;
9005 }
9006 else
9007 {
9008 retval = physname;
9009 need_copy = 0;
9010 }
9011 }
9012 else
9013 retval = canon;
9014
9015 if (need_copy)
9016 retval = ((const char *)
9017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9018 retval, strlen (retval)));
9019
9020 do_cleanups (back_to);
9021 return retval;
9022 }
9023
9024 /* Inspect DIE in CU for a namespace alias. If one exists, record
9025 a new symbol for it.
9026
9027 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9028
9029 static int
9030 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9031 {
9032 struct attribute *attr;
9033
9034 /* If the die does not have a name, this is not a namespace
9035 alias. */
9036 attr = dwarf2_attr (die, DW_AT_name, cu);
9037 if (attr != NULL)
9038 {
9039 int num;
9040 struct die_info *d = die;
9041 struct dwarf2_cu *imported_cu = cu;
9042
9043 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9044 keep inspecting DIEs until we hit the underlying import. */
9045 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9046 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9047 {
9048 attr = dwarf2_attr (d, DW_AT_import, cu);
9049 if (attr == NULL)
9050 break;
9051
9052 d = follow_die_ref (d, attr, &imported_cu);
9053 if (d->tag != DW_TAG_imported_declaration)
9054 break;
9055 }
9056
9057 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9058 {
9059 complaint (&symfile_complaints,
9060 _("DIE at 0x%x has too many recursively imported "
9061 "declarations"), to_underlying (d->sect_off));
9062 return 0;
9063 }
9064
9065 if (attr != NULL)
9066 {
9067 struct type *type;
9068 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9069
9070 type = get_die_type_at_offset (sect_off, cu->per_cu);
9071 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9072 {
9073 /* This declaration is a global namespace alias. Add
9074 a symbol for it whose type is the aliased namespace. */
9075 new_symbol (die, type, cu);
9076 return 1;
9077 }
9078 }
9079 }
9080
9081 return 0;
9082 }
9083
9084 /* Return the using directives repository (global or local?) to use in the
9085 current context for LANGUAGE.
9086
9087 For Ada, imported declarations can materialize renamings, which *may* be
9088 global. However it is impossible (for now?) in DWARF to distinguish
9089 "external" imported declarations and "static" ones. As all imported
9090 declarations seem to be static in all other languages, make them all CU-wide
9091 global only in Ada. */
9092
9093 static struct using_direct **
9094 using_directives (enum language language)
9095 {
9096 if (language == language_ada && context_stack_depth == 0)
9097 return &global_using_directives;
9098 else
9099 return &local_using_directives;
9100 }
9101
9102 /* Read the import statement specified by the given die and record it. */
9103
9104 static void
9105 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9106 {
9107 struct objfile *objfile = cu->objfile;
9108 struct attribute *import_attr;
9109 struct die_info *imported_die, *child_die;
9110 struct dwarf2_cu *imported_cu;
9111 const char *imported_name;
9112 const char *imported_name_prefix;
9113 const char *canonical_name;
9114 const char *import_alias;
9115 const char *imported_declaration = NULL;
9116 const char *import_prefix;
9117 VEC (const_char_ptr) *excludes = NULL;
9118 struct cleanup *cleanups;
9119
9120 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9121 if (import_attr == NULL)
9122 {
9123 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9124 dwarf_tag_name (die->tag));
9125 return;
9126 }
9127
9128 imported_cu = cu;
9129 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9130 imported_name = dwarf2_name (imported_die, imported_cu);
9131 if (imported_name == NULL)
9132 {
9133 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9134
9135 The import in the following code:
9136 namespace A
9137 {
9138 typedef int B;
9139 }
9140
9141 int main ()
9142 {
9143 using A::B;
9144 B b;
9145 return b;
9146 }
9147
9148 ...
9149 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9150 <52> DW_AT_decl_file : 1
9151 <53> DW_AT_decl_line : 6
9152 <54> DW_AT_import : <0x75>
9153 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9154 <59> DW_AT_name : B
9155 <5b> DW_AT_decl_file : 1
9156 <5c> DW_AT_decl_line : 2
9157 <5d> DW_AT_type : <0x6e>
9158 ...
9159 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9160 <76> DW_AT_byte_size : 4
9161 <77> DW_AT_encoding : 5 (signed)
9162
9163 imports the wrong die ( 0x75 instead of 0x58 ).
9164 This case will be ignored until the gcc bug is fixed. */
9165 return;
9166 }
9167
9168 /* Figure out the local name after import. */
9169 import_alias = dwarf2_name (die, cu);
9170
9171 /* Figure out where the statement is being imported to. */
9172 import_prefix = determine_prefix (die, cu);
9173
9174 /* Figure out what the scope of the imported die is and prepend it
9175 to the name of the imported die. */
9176 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9177
9178 if (imported_die->tag != DW_TAG_namespace
9179 && imported_die->tag != DW_TAG_module)
9180 {
9181 imported_declaration = imported_name;
9182 canonical_name = imported_name_prefix;
9183 }
9184 else if (strlen (imported_name_prefix) > 0)
9185 canonical_name = obconcat (&objfile->objfile_obstack,
9186 imported_name_prefix,
9187 (cu->language == language_d ? "." : "::"),
9188 imported_name, (char *) NULL);
9189 else
9190 canonical_name = imported_name;
9191
9192 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9193
9194 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9195 for (child_die = die->child; child_die && child_die->tag;
9196 child_die = sibling_die (child_die))
9197 {
9198 /* DWARF-4: A Fortran use statement with a “rename list” may be
9199 represented by an imported module entry with an import attribute
9200 referring to the module and owned entries corresponding to those
9201 entities that are renamed as part of being imported. */
9202
9203 if (child_die->tag != DW_TAG_imported_declaration)
9204 {
9205 complaint (&symfile_complaints,
9206 _("child DW_TAG_imported_declaration expected "
9207 "- DIE at 0x%x [in module %s]"),
9208 to_underlying (child_die->sect_off), objfile_name (objfile));
9209 continue;
9210 }
9211
9212 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9213 if (import_attr == NULL)
9214 {
9215 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9216 dwarf_tag_name (child_die->tag));
9217 continue;
9218 }
9219
9220 imported_cu = cu;
9221 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9222 &imported_cu);
9223 imported_name = dwarf2_name (imported_die, imported_cu);
9224 if (imported_name == NULL)
9225 {
9226 complaint (&symfile_complaints,
9227 _("child DW_TAG_imported_declaration has unknown "
9228 "imported name - DIE at 0x%x [in module %s]"),
9229 to_underlying (child_die->sect_off), objfile_name (objfile));
9230 continue;
9231 }
9232
9233 VEC_safe_push (const_char_ptr, excludes, imported_name);
9234
9235 process_die (child_die, cu);
9236 }
9237
9238 add_using_directive (using_directives (cu->language),
9239 import_prefix,
9240 canonical_name,
9241 import_alias,
9242 imported_declaration,
9243 excludes,
9244 0,
9245 &objfile->objfile_obstack);
9246
9247 do_cleanups (cleanups);
9248 }
9249
9250 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9251 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9252 this, it was first present in GCC release 4.3.0. */
9253
9254 static int
9255 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9256 {
9257 if (!cu->checked_producer)
9258 check_producer (cu);
9259
9260 return cu->producer_is_gcc_lt_4_3;
9261 }
9262
9263 static file_and_directory
9264 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9265 {
9266 file_and_directory res;
9267
9268 /* Find the filename. Do not use dwarf2_name here, since the filename
9269 is not a source language identifier. */
9270 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9271 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9272
9273 if (res.comp_dir == NULL
9274 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9275 && IS_ABSOLUTE_PATH (res.name))
9276 {
9277 res.comp_dir_storage = ldirname (res.name);
9278 if (!res.comp_dir_storage.empty ())
9279 res.comp_dir = res.comp_dir_storage.c_str ();
9280 }
9281 if (res.comp_dir != NULL)
9282 {
9283 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9284 directory, get rid of it. */
9285 const char *cp = strchr (res.comp_dir, ':');
9286
9287 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9288 res.comp_dir = cp + 1;
9289 }
9290
9291 if (res.name == NULL)
9292 res.name = "<unknown>";
9293
9294 return res;
9295 }
9296
9297 /* Handle DW_AT_stmt_list for a compilation unit.
9298 DIE is the DW_TAG_compile_unit die for CU.
9299 COMP_DIR is the compilation directory. LOWPC is passed to
9300 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9301
9302 static void
9303 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9304 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9305 {
9306 struct objfile *objfile = dwarf2_per_objfile->objfile;
9307 struct attribute *attr;
9308 struct line_header line_header_local;
9309 hashval_t line_header_local_hash;
9310 unsigned u;
9311 void **slot;
9312 int decode_mapping;
9313
9314 gdb_assert (! cu->per_cu->is_debug_types);
9315
9316 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9317 if (attr == NULL)
9318 return;
9319
9320 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9321
9322 /* The line header hash table is only created if needed (it exists to
9323 prevent redundant reading of the line table for partial_units).
9324 If we're given a partial_unit, we'll need it. If we're given a
9325 compile_unit, then use the line header hash table if it's already
9326 created, but don't create one just yet. */
9327
9328 if (dwarf2_per_objfile->line_header_hash == NULL
9329 && die->tag == DW_TAG_partial_unit)
9330 {
9331 dwarf2_per_objfile->line_header_hash
9332 = htab_create_alloc_ex (127, line_header_hash_voidp,
9333 line_header_eq_voidp,
9334 free_line_header_voidp,
9335 &objfile->objfile_obstack,
9336 hashtab_obstack_allocate,
9337 dummy_obstack_deallocate);
9338 }
9339
9340 line_header_local.sect_off = line_offset;
9341 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9342 line_header_local_hash = line_header_hash (&line_header_local);
9343 if (dwarf2_per_objfile->line_header_hash != NULL)
9344 {
9345 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9346 &line_header_local,
9347 line_header_local_hash, NO_INSERT);
9348
9349 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9350 is not present in *SLOT (since if there is something in *SLOT then
9351 it will be for a partial_unit). */
9352 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9353 {
9354 gdb_assert (*slot != NULL);
9355 cu->line_header = (struct line_header *) *slot;
9356 return;
9357 }
9358 }
9359
9360 /* dwarf_decode_line_header does not yet provide sufficient information.
9361 We always have to call also dwarf_decode_lines for it. */
9362 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9363 if (lh == NULL)
9364 return;
9365 cu->line_header = lh.get ();
9366
9367 if (dwarf2_per_objfile->line_header_hash == NULL)
9368 slot = NULL;
9369 else
9370 {
9371 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9372 &line_header_local,
9373 line_header_local_hash, INSERT);
9374 gdb_assert (slot != NULL);
9375 }
9376 if (slot != NULL && *slot == NULL)
9377 {
9378 /* This newly decoded line number information unit will be owned
9379 by line_header_hash hash table. */
9380 *slot = cu->line_header;
9381 }
9382 else
9383 {
9384 /* We cannot free any current entry in (*slot) as that struct line_header
9385 may be already used by multiple CUs. Create only temporary decoded
9386 line_header for this CU - it may happen at most once for each line
9387 number information unit. And if we're not using line_header_hash
9388 then this is what we want as well. */
9389 gdb_assert (die->tag != DW_TAG_partial_unit);
9390 }
9391 decode_mapping = (die->tag != DW_TAG_partial_unit);
9392 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9393 decode_mapping);
9394
9395 lh.release ();
9396 }
9397
9398 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9399
9400 static void
9401 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9402 {
9403 struct objfile *objfile = dwarf2_per_objfile->objfile;
9404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9405 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9406 CORE_ADDR highpc = ((CORE_ADDR) 0);
9407 struct attribute *attr;
9408 struct die_info *child_die;
9409 CORE_ADDR baseaddr;
9410
9411 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9412
9413 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9414
9415 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9416 from finish_block. */
9417 if (lowpc == ((CORE_ADDR) -1))
9418 lowpc = highpc;
9419 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9420
9421 file_and_directory fnd = find_file_and_directory (die, cu);
9422
9423 prepare_one_comp_unit (cu, die, cu->language);
9424
9425 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9426 standardised yet. As a workaround for the language detection we fall
9427 back to the DW_AT_producer string. */
9428 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9429 cu->language = language_opencl;
9430
9431 /* Similar hack for Go. */
9432 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9433 set_cu_language (DW_LANG_Go, cu);
9434
9435 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9436
9437 /* Decode line number information if present. We do this before
9438 processing child DIEs, so that the line header table is available
9439 for DW_AT_decl_file. */
9440 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9441
9442 /* Process all dies in compilation unit. */
9443 if (die->child != NULL)
9444 {
9445 child_die = die->child;
9446 while (child_die && child_die->tag)
9447 {
9448 process_die (child_die, cu);
9449 child_die = sibling_die (child_die);
9450 }
9451 }
9452
9453 /* Decode macro information, if present. Dwarf 2 macro information
9454 refers to information in the line number info statement program
9455 header, so we can only read it if we've read the header
9456 successfully. */
9457 attr = dwarf2_attr (die, DW_AT_macros, cu);
9458 if (attr == NULL)
9459 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9460 if (attr && cu->line_header)
9461 {
9462 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9463 complaint (&symfile_complaints,
9464 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9465
9466 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9467 }
9468 else
9469 {
9470 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9471 if (attr && cu->line_header)
9472 {
9473 unsigned int macro_offset = DW_UNSND (attr);
9474
9475 dwarf_decode_macros (cu, macro_offset, 0);
9476 }
9477 }
9478 }
9479
9480 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9481 Create the set of symtabs used by this TU, or if this TU is sharing
9482 symtabs with another TU and the symtabs have already been created
9483 then restore those symtabs in the line header.
9484 We don't need the pc/line-number mapping for type units. */
9485
9486 static void
9487 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9488 {
9489 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9490 struct type_unit_group *tu_group;
9491 int first_time;
9492 struct attribute *attr;
9493 unsigned int i;
9494 struct signatured_type *sig_type;
9495
9496 gdb_assert (per_cu->is_debug_types);
9497 sig_type = (struct signatured_type *) per_cu;
9498
9499 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9500
9501 /* If we're using .gdb_index (includes -readnow) then
9502 per_cu->type_unit_group may not have been set up yet. */
9503 if (sig_type->type_unit_group == NULL)
9504 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9505 tu_group = sig_type->type_unit_group;
9506
9507 /* If we've already processed this stmt_list there's no real need to
9508 do it again, we could fake it and just recreate the part we need
9509 (file name,index -> symtab mapping). If data shows this optimization
9510 is useful we can do it then. */
9511 first_time = tu_group->compunit_symtab == NULL;
9512
9513 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9514 debug info. */
9515 line_header_up lh;
9516 if (attr != NULL)
9517 {
9518 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9519 lh = dwarf_decode_line_header (line_offset, cu);
9520 }
9521 if (lh == NULL)
9522 {
9523 if (first_time)
9524 dwarf2_start_symtab (cu, "", NULL, 0);
9525 else
9526 {
9527 gdb_assert (tu_group->symtabs == NULL);
9528 restart_symtab (tu_group->compunit_symtab, "", 0);
9529 }
9530 return;
9531 }
9532
9533 cu->line_header = lh.get ();
9534
9535 if (first_time)
9536 {
9537 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9538
9539 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9540 still initializing it, and our caller (a few levels up)
9541 process_full_type_unit still needs to know if this is the first
9542 time. */
9543
9544 tu_group->num_symtabs = lh->file_names.size ();
9545 tu_group->symtabs = XNEWVEC (struct symtab *, lh->file_names.size ());
9546
9547 for (i = 0; i < lh->file_names.size (); ++i)
9548 {
9549 file_entry &fe = lh->file_names[i];
9550
9551 dwarf2_start_subfile (fe.name, fe.include_dir (lh.get ()));
9552
9553 if (current_subfile->symtab == NULL)
9554 {
9555 /* NOTE: start_subfile will recognize when it's been passed
9556 a file it has already seen. So we can't assume there's a
9557 simple mapping from lh->file_names to subfiles, plus
9558 lh->file_names may contain dups. */
9559 current_subfile->symtab
9560 = allocate_symtab (cust, current_subfile->name);
9561 }
9562
9563 fe.symtab = current_subfile->symtab;
9564 tu_group->symtabs[i] = fe.symtab;
9565 }
9566 }
9567 else
9568 {
9569 restart_symtab (tu_group->compunit_symtab, "", 0);
9570
9571 for (i = 0; i < lh->file_names.size (); ++i)
9572 {
9573 struct file_entry *fe = &lh->file_names[i];
9574
9575 fe->symtab = tu_group->symtabs[i];
9576 }
9577 }
9578
9579 lh.release ();
9580
9581 /* The main symtab is allocated last. Type units don't have DW_AT_name
9582 so they don't have a "real" (so to speak) symtab anyway.
9583 There is later code that will assign the main symtab to all symbols
9584 that don't have one. We need to handle the case of a symbol with a
9585 missing symtab (DW_AT_decl_file) anyway. */
9586 }
9587
9588 /* Process DW_TAG_type_unit.
9589 For TUs we want to skip the first top level sibling if it's not the
9590 actual type being defined by this TU. In this case the first top
9591 level sibling is there to provide context only. */
9592
9593 static void
9594 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9595 {
9596 struct die_info *child_die;
9597
9598 prepare_one_comp_unit (cu, die, language_minimal);
9599
9600 /* Initialize (or reinitialize) the machinery for building symtabs.
9601 We do this before processing child DIEs, so that the line header table
9602 is available for DW_AT_decl_file. */
9603 setup_type_unit_groups (die, cu);
9604
9605 if (die->child != NULL)
9606 {
9607 child_die = die->child;
9608 while (child_die && child_die->tag)
9609 {
9610 process_die (child_die, cu);
9611 child_die = sibling_die (child_die);
9612 }
9613 }
9614 }
9615 \f
9616 /* DWO/DWP files.
9617
9618 http://gcc.gnu.org/wiki/DebugFission
9619 http://gcc.gnu.org/wiki/DebugFissionDWP
9620
9621 To simplify handling of both DWO files ("object" files with the DWARF info)
9622 and DWP files (a file with the DWOs packaged up into one file), we treat
9623 DWP files as having a collection of virtual DWO files. */
9624
9625 static hashval_t
9626 hash_dwo_file (const void *item)
9627 {
9628 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9629 hashval_t hash;
9630
9631 hash = htab_hash_string (dwo_file->dwo_name);
9632 if (dwo_file->comp_dir != NULL)
9633 hash += htab_hash_string (dwo_file->comp_dir);
9634 return hash;
9635 }
9636
9637 static int
9638 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9639 {
9640 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9641 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9642
9643 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9644 return 0;
9645 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9646 return lhs->comp_dir == rhs->comp_dir;
9647 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9648 }
9649
9650 /* Allocate a hash table for DWO files. */
9651
9652 static htab_t
9653 allocate_dwo_file_hash_table (void)
9654 {
9655 struct objfile *objfile = dwarf2_per_objfile->objfile;
9656
9657 return htab_create_alloc_ex (41,
9658 hash_dwo_file,
9659 eq_dwo_file,
9660 NULL,
9661 &objfile->objfile_obstack,
9662 hashtab_obstack_allocate,
9663 dummy_obstack_deallocate);
9664 }
9665
9666 /* Lookup DWO file DWO_NAME. */
9667
9668 static void **
9669 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9670 {
9671 struct dwo_file find_entry;
9672 void **slot;
9673
9674 if (dwarf2_per_objfile->dwo_files == NULL)
9675 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9676
9677 memset (&find_entry, 0, sizeof (find_entry));
9678 find_entry.dwo_name = dwo_name;
9679 find_entry.comp_dir = comp_dir;
9680 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9681
9682 return slot;
9683 }
9684
9685 static hashval_t
9686 hash_dwo_unit (const void *item)
9687 {
9688 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9689
9690 /* This drops the top 32 bits of the id, but is ok for a hash. */
9691 return dwo_unit->signature;
9692 }
9693
9694 static int
9695 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9696 {
9697 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9698 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9699
9700 /* The signature is assumed to be unique within the DWO file.
9701 So while object file CU dwo_id's always have the value zero,
9702 that's OK, assuming each object file DWO file has only one CU,
9703 and that's the rule for now. */
9704 return lhs->signature == rhs->signature;
9705 }
9706
9707 /* Allocate a hash table for DWO CUs,TUs.
9708 There is one of these tables for each of CUs,TUs for each DWO file. */
9709
9710 static htab_t
9711 allocate_dwo_unit_table (struct objfile *objfile)
9712 {
9713 /* Start out with a pretty small number.
9714 Generally DWO files contain only one CU and maybe some TUs. */
9715 return htab_create_alloc_ex (3,
9716 hash_dwo_unit,
9717 eq_dwo_unit,
9718 NULL,
9719 &objfile->objfile_obstack,
9720 hashtab_obstack_allocate,
9721 dummy_obstack_deallocate);
9722 }
9723
9724 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9725
9726 struct create_dwo_cu_data
9727 {
9728 struct dwo_file *dwo_file;
9729 struct dwo_unit dwo_unit;
9730 };
9731
9732 /* die_reader_func for create_dwo_cu. */
9733
9734 static void
9735 create_dwo_cu_reader (const struct die_reader_specs *reader,
9736 const gdb_byte *info_ptr,
9737 struct die_info *comp_unit_die,
9738 int has_children,
9739 void *datap)
9740 {
9741 struct dwarf2_cu *cu = reader->cu;
9742 sect_offset sect_off = cu->per_cu->sect_off;
9743 struct dwarf2_section_info *section = cu->per_cu->section;
9744 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9745 struct dwo_file *dwo_file = data->dwo_file;
9746 struct dwo_unit *dwo_unit = &data->dwo_unit;
9747 struct attribute *attr;
9748
9749 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9750 if (attr == NULL)
9751 {
9752 complaint (&symfile_complaints,
9753 _("Dwarf Error: debug entry at offset 0x%x is missing"
9754 " its dwo_id [in module %s]"),
9755 to_underlying (sect_off), dwo_file->dwo_name);
9756 return;
9757 }
9758
9759 dwo_unit->dwo_file = dwo_file;
9760 dwo_unit->signature = DW_UNSND (attr);
9761 dwo_unit->section = section;
9762 dwo_unit->sect_off = sect_off;
9763 dwo_unit->length = cu->per_cu->length;
9764
9765 if (dwarf_read_debug)
9766 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9767 to_underlying (sect_off),
9768 hex_string (dwo_unit->signature));
9769 }
9770
9771 /* Create the dwo_units for the CUs in a DWO_FILE.
9772 Note: This function processes DWO files only, not DWP files. */
9773
9774 static void
9775 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9776 htab_t &cus_htab)
9777 {
9778 struct objfile *objfile = dwarf2_per_objfile->objfile;
9779 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9780 const gdb_byte *info_ptr, *end_ptr;
9781
9782 dwarf2_read_section (objfile, &section);
9783 info_ptr = section.buffer;
9784
9785 if (info_ptr == NULL)
9786 return;
9787
9788 if (dwarf_read_debug)
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9791 get_section_name (&section),
9792 get_section_file_name (&section));
9793 }
9794
9795 end_ptr = info_ptr + section.size;
9796 while (info_ptr < end_ptr)
9797 {
9798 struct dwarf2_per_cu_data per_cu;
9799 struct create_dwo_cu_data create_dwo_cu_data;
9800 struct dwo_unit *dwo_unit;
9801 void **slot;
9802 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9803
9804 memset (&create_dwo_cu_data.dwo_unit, 0,
9805 sizeof (create_dwo_cu_data.dwo_unit));
9806 memset (&per_cu, 0, sizeof (per_cu));
9807 per_cu.objfile = objfile;
9808 per_cu.is_debug_types = 0;
9809 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9810 per_cu.section = &section;
9811
9812 init_cutu_and_read_dies_no_follow (
9813 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9814 info_ptr += per_cu.length;
9815
9816 // If the unit could not be parsed, skip it.
9817 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9818 continue;
9819
9820 if (cus_htab == NULL)
9821 cus_htab = allocate_dwo_unit_table (objfile);
9822
9823 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9824 *dwo_unit = create_dwo_cu_data.dwo_unit;
9825 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9826 gdb_assert (slot != NULL);
9827 if (*slot != NULL)
9828 {
9829 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9830 sect_offset dup_sect_off = dup_cu->sect_off;
9831
9832 complaint (&symfile_complaints,
9833 _("debug cu entry at offset 0x%x is duplicate to"
9834 " the entry at offset 0x%x, signature %s"),
9835 to_underlying (sect_off), to_underlying (dup_sect_off),
9836 hex_string (dwo_unit->signature));
9837 }
9838 *slot = (void *)dwo_unit;
9839 }
9840 }
9841
9842 /* DWP file .debug_{cu,tu}_index section format:
9843 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9844
9845 DWP Version 1:
9846
9847 Both index sections have the same format, and serve to map a 64-bit
9848 signature to a set of section numbers. Each section begins with a header,
9849 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9850 indexes, and a pool of 32-bit section numbers. The index sections will be
9851 aligned at 8-byte boundaries in the file.
9852
9853 The index section header consists of:
9854
9855 V, 32 bit version number
9856 -, 32 bits unused
9857 N, 32 bit number of compilation units or type units in the index
9858 M, 32 bit number of slots in the hash table
9859
9860 Numbers are recorded using the byte order of the application binary.
9861
9862 The hash table begins at offset 16 in the section, and consists of an array
9863 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9864 order of the application binary). Unused slots in the hash table are 0.
9865 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9866
9867 The parallel table begins immediately after the hash table
9868 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9869 array of 32-bit indexes (using the byte order of the application binary),
9870 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9871 table contains a 32-bit index into the pool of section numbers. For unused
9872 hash table slots, the corresponding entry in the parallel table will be 0.
9873
9874 The pool of section numbers begins immediately following the hash table
9875 (at offset 16 + 12 * M from the beginning of the section). The pool of
9876 section numbers consists of an array of 32-bit words (using the byte order
9877 of the application binary). Each item in the array is indexed starting
9878 from 0. The hash table entry provides the index of the first section
9879 number in the set. Additional section numbers in the set follow, and the
9880 set is terminated by a 0 entry (section number 0 is not used in ELF).
9881
9882 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9883 section must be the first entry in the set, and the .debug_abbrev.dwo must
9884 be the second entry. Other members of the set may follow in any order.
9885
9886 ---
9887
9888 DWP Version 2:
9889
9890 DWP Version 2 combines all the .debug_info, etc. sections into one,
9891 and the entries in the index tables are now offsets into these sections.
9892 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9893 section.
9894
9895 Index Section Contents:
9896 Header
9897 Hash Table of Signatures dwp_hash_table.hash_table
9898 Parallel Table of Indices dwp_hash_table.unit_table
9899 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9900 Table of Section Sizes dwp_hash_table.v2.sizes
9901
9902 The index section header consists of:
9903
9904 V, 32 bit version number
9905 L, 32 bit number of columns in the table of section offsets
9906 N, 32 bit number of compilation units or type units in the index
9907 M, 32 bit number of slots in the hash table
9908
9909 Numbers are recorded using the byte order of the application binary.
9910
9911 The hash table has the same format as version 1.
9912 The parallel table of indices has the same format as version 1,
9913 except that the entries are origin-1 indices into the table of sections
9914 offsets and the table of section sizes.
9915
9916 The table of offsets begins immediately following the parallel table
9917 (at offset 16 + 12 * M from the beginning of the section). The table is
9918 a two-dimensional array of 32-bit words (using the byte order of the
9919 application binary), with L columns and N+1 rows, in row-major order.
9920 Each row in the array is indexed starting from 0. The first row provides
9921 a key to the remaining rows: each column in this row provides an identifier
9922 for a debug section, and the offsets in the same column of subsequent rows
9923 refer to that section. The section identifiers are:
9924
9925 DW_SECT_INFO 1 .debug_info.dwo
9926 DW_SECT_TYPES 2 .debug_types.dwo
9927 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9928 DW_SECT_LINE 4 .debug_line.dwo
9929 DW_SECT_LOC 5 .debug_loc.dwo
9930 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9931 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9932 DW_SECT_MACRO 8 .debug_macro.dwo
9933
9934 The offsets provided by the CU and TU index sections are the base offsets
9935 for the contributions made by each CU or TU to the corresponding section
9936 in the package file. Each CU and TU header contains an abbrev_offset
9937 field, used to find the abbreviations table for that CU or TU within the
9938 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9939 be interpreted as relative to the base offset given in the index section.
9940 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9941 should be interpreted as relative to the base offset for .debug_line.dwo,
9942 and offsets into other debug sections obtained from DWARF attributes should
9943 also be interpreted as relative to the corresponding base offset.
9944
9945 The table of sizes begins immediately following the table of offsets.
9946 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9947 with L columns and N rows, in row-major order. Each row in the array is
9948 indexed starting from 1 (row 0 is shared by the two tables).
9949
9950 ---
9951
9952 Hash table lookup is handled the same in version 1 and 2:
9953
9954 We assume that N and M will not exceed 2^32 - 1.
9955 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9956
9957 Given a 64-bit compilation unit signature or a type signature S, an entry
9958 in the hash table is located as follows:
9959
9960 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9961 the low-order k bits all set to 1.
9962
9963 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9964
9965 3) If the hash table entry at index H matches the signature, use that
9966 entry. If the hash table entry at index H is unused (all zeroes),
9967 terminate the search: the signature is not present in the table.
9968
9969 4) Let H = (H + H') modulo M. Repeat at Step 3.
9970
9971 Because M > N and H' and M are relatively prime, the search is guaranteed
9972 to stop at an unused slot or find the match. */
9973
9974 /* Create a hash table to map DWO IDs to their CU/TU entry in
9975 .debug_{info,types}.dwo in DWP_FILE.
9976 Returns NULL if there isn't one.
9977 Note: This function processes DWP files only, not DWO files. */
9978
9979 static struct dwp_hash_table *
9980 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9981 {
9982 struct objfile *objfile = dwarf2_per_objfile->objfile;
9983 bfd *dbfd = dwp_file->dbfd;
9984 const gdb_byte *index_ptr, *index_end;
9985 struct dwarf2_section_info *index;
9986 uint32_t version, nr_columns, nr_units, nr_slots;
9987 struct dwp_hash_table *htab;
9988
9989 if (is_debug_types)
9990 index = &dwp_file->sections.tu_index;
9991 else
9992 index = &dwp_file->sections.cu_index;
9993
9994 if (dwarf2_section_empty_p (index))
9995 return NULL;
9996 dwarf2_read_section (objfile, index);
9997
9998 index_ptr = index->buffer;
9999 index_end = index_ptr + index->size;
10000
10001 version = read_4_bytes (dbfd, index_ptr);
10002 index_ptr += 4;
10003 if (version == 2)
10004 nr_columns = read_4_bytes (dbfd, index_ptr);
10005 else
10006 nr_columns = 0;
10007 index_ptr += 4;
10008 nr_units = read_4_bytes (dbfd, index_ptr);
10009 index_ptr += 4;
10010 nr_slots = read_4_bytes (dbfd, index_ptr);
10011 index_ptr += 4;
10012
10013 if (version != 1 && version != 2)
10014 {
10015 error (_("Dwarf Error: unsupported DWP file version (%s)"
10016 " [in module %s]"),
10017 pulongest (version), dwp_file->name);
10018 }
10019 if (nr_slots != (nr_slots & -nr_slots))
10020 {
10021 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10022 " is not power of 2 [in module %s]"),
10023 pulongest (nr_slots), dwp_file->name);
10024 }
10025
10026 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10027 htab->version = version;
10028 htab->nr_columns = nr_columns;
10029 htab->nr_units = nr_units;
10030 htab->nr_slots = nr_slots;
10031 htab->hash_table = index_ptr;
10032 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10033
10034 /* Exit early if the table is empty. */
10035 if (nr_slots == 0 || nr_units == 0
10036 || (version == 2 && nr_columns == 0))
10037 {
10038 /* All must be zero. */
10039 if (nr_slots != 0 || nr_units != 0
10040 || (version == 2 && nr_columns != 0))
10041 {
10042 complaint (&symfile_complaints,
10043 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10044 " all zero [in modules %s]"),
10045 dwp_file->name);
10046 }
10047 return htab;
10048 }
10049
10050 if (version == 1)
10051 {
10052 htab->section_pool.v1.indices =
10053 htab->unit_table + sizeof (uint32_t) * nr_slots;
10054 /* It's harder to decide whether the section is too small in v1.
10055 V1 is deprecated anyway so we punt. */
10056 }
10057 else
10058 {
10059 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10060 int *ids = htab->section_pool.v2.section_ids;
10061 /* Reverse map for error checking. */
10062 int ids_seen[DW_SECT_MAX + 1];
10063 int i;
10064
10065 if (nr_columns < 2)
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, too few columns"
10068 " in section table [in module %s]"),
10069 dwp_file->name);
10070 }
10071 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10072 {
10073 error (_("Dwarf Error: bad DWP hash table, too many columns"
10074 " in section table [in module %s]"),
10075 dwp_file->name);
10076 }
10077 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10078 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10079 for (i = 0; i < nr_columns; ++i)
10080 {
10081 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10082
10083 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10084 {
10085 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10086 " in section table [in module %s]"),
10087 id, dwp_file->name);
10088 }
10089 if (ids_seen[id] != -1)
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10092 " id %d in section table [in module %s]"),
10093 id, dwp_file->name);
10094 }
10095 ids_seen[id] = i;
10096 ids[i] = id;
10097 }
10098 /* Must have exactly one info or types section. */
10099 if (((ids_seen[DW_SECT_INFO] != -1)
10100 + (ids_seen[DW_SECT_TYPES] != -1))
10101 != 1)
10102 {
10103 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10104 " DWO info/types section [in module %s]"),
10105 dwp_file->name);
10106 }
10107 /* Must have an abbrev section. */
10108 if (ids_seen[DW_SECT_ABBREV] == -1)
10109 {
10110 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10111 " section [in module %s]"),
10112 dwp_file->name);
10113 }
10114 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10115 htab->section_pool.v2.sizes =
10116 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10117 * nr_units * nr_columns);
10118 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10119 * nr_units * nr_columns))
10120 > index_end)
10121 {
10122 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10123 " [in module %s]"),
10124 dwp_file->name);
10125 }
10126 }
10127
10128 return htab;
10129 }
10130
10131 /* Update SECTIONS with the data from SECTP.
10132
10133 This function is like the other "locate" section routines that are
10134 passed to bfd_map_over_sections, but in this context the sections to
10135 read comes from the DWP V1 hash table, not the full ELF section table.
10136
10137 The result is non-zero for success, or zero if an error was found. */
10138
10139 static int
10140 locate_v1_virtual_dwo_sections (asection *sectp,
10141 struct virtual_v1_dwo_sections *sections)
10142 {
10143 const struct dwop_section_names *names = &dwop_section_names;
10144
10145 if (section_is_p (sectp->name, &names->abbrev_dwo))
10146 {
10147 /* There can be only one. */
10148 if (sections->abbrev.s.section != NULL)
10149 return 0;
10150 sections->abbrev.s.section = sectp;
10151 sections->abbrev.size = bfd_get_section_size (sectp);
10152 }
10153 else if (section_is_p (sectp->name, &names->info_dwo)
10154 || section_is_p (sectp->name, &names->types_dwo))
10155 {
10156 /* There can be only one. */
10157 if (sections->info_or_types.s.section != NULL)
10158 return 0;
10159 sections->info_or_types.s.section = sectp;
10160 sections->info_or_types.size = bfd_get_section_size (sectp);
10161 }
10162 else if (section_is_p (sectp->name, &names->line_dwo))
10163 {
10164 /* There can be only one. */
10165 if (sections->line.s.section != NULL)
10166 return 0;
10167 sections->line.s.section = sectp;
10168 sections->line.size = bfd_get_section_size (sectp);
10169 }
10170 else if (section_is_p (sectp->name, &names->loc_dwo))
10171 {
10172 /* There can be only one. */
10173 if (sections->loc.s.section != NULL)
10174 return 0;
10175 sections->loc.s.section = sectp;
10176 sections->loc.size = bfd_get_section_size (sectp);
10177 }
10178 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10179 {
10180 /* There can be only one. */
10181 if (sections->macinfo.s.section != NULL)
10182 return 0;
10183 sections->macinfo.s.section = sectp;
10184 sections->macinfo.size = bfd_get_section_size (sectp);
10185 }
10186 else if (section_is_p (sectp->name, &names->macro_dwo))
10187 {
10188 /* There can be only one. */
10189 if (sections->macro.s.section != NULL)
10190 return 0;
10191 sections->macro.s.section = sectp;
10192 sections->macro.size = bfd_get_section_size (sectp);
10193 }
10194 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10195 {
10196 /* There can be only one. */
10197 if (sections->str_offsets.s.section != NULL)
10198 return 0;
10199 sections->str_offsets.s.section = sectp;
10200 sections->str_offsets.size = bfd_get_section_size (sectp);
10201 }
10202 else
10203 {
10204 /* No other kind of section is valid. */
10205 return 0;
10206 }
10207
10208 return 1;
10209 }
10210
10211 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10212 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10213 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10214 This is for DWP version 1 files. */
10215
10216 static struct dwo_unit *
10217 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10218 uint32_t unit_index,
10219 const char *comp_dir,
10220 ULONGEST signature, int is_debug_types)
10221 {
10222 struct objfile *objfile = dwarf2_per_objfile->objfile;
10223 const struct dwp_hash_table *dwp_htab =
10224 is_debug_types ? dwp_file->tus : dwp_file->cus;
10225 bfd *dbfd = dwp_file->dbfd;
10226 const char *kind = is_debug_types ? "TU" : "CU";
10227 struct dwo_file *dwo_file;
10228 struct dwo_unit *dwo_unit;
10229 struct virtual_v1_dwo_sections sections;
10230 void **dwo_file_slot;
10231 char *virtual_dwo_name;
10232 struct cleanup *cleanups;
10233 int i;
10234
10235 gdb_assert (dwp_file->version == 1);
10236
10237 if (dwarf_read_debug)
10238 {
10239 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10240 kind,
10241 pulongest (unit_index), hex_string (signature),
10242 dwp_file->name);
10243 }
10244
10245 /* Fetch the sections of this DWO unit.
10246 Put a limit on the number of sections we look for so that bad data
10247 doesn't cause us to loop forever. */
10248
10249 #define MAX_NR_V1_DWO_SECTIONS \
10250 (1 /* .debug_info or .debug_types */ \
10251 + 1 /* .debug_abbrev */ \
10252 + 1 /* .debug_line */ \
10253 + 1 /* .debug_loc */ \
10254 + 1 /* .debug_str_offsets */ \
10255 + 1 /* .debug_macro or .debug_macinfo */ \
10256 + 1 /* trailing zero */)
10257
10258 memset (&sections, 0, sizeof (sections));
10259 cleanups = make_cleanup (null_cleanup, 0);
10260
10261 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10262 {
10263 asection *sectp;
10264 uint32_t section_nr =
10265 read_4_bytes (dbfd,
10266 dwp_htab->section_pool.v1.indices
10267 + (unit_index + i) * sizeof (uint32_t));
10268
10269 if (section_nr == 0)
10270 break;
10271 if (section_nr >= dwp_file->num_sections)
10272 {
10273 error (_("Dwarf Error: bad DWP hash table, section number too large"
10274 " [in module %s]"),
10275 dwp_file->name);
10276 }
10277
10278 sectp = dwp_file->elf_sections[section_nr];
10279 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10280 {
10281 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10282 " [in module %s]"),
10283 dwp_file->name);
10284 }
10285 }
10286
10287 if (i < 2
10288 || dwarf2_section_empty_p (&sections.info_or_types)
10289 || dwarf2_section_empty_p (&sections.abbrev))
10290 {
10291 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10292 " [in module %s]"),
10293 dwp_file->name);
10294 }
10295 if (i == MAX_NR_V1_DWO_SECTIONS)
10296 {
10297 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10298 " [in module %s]"),
10299 dwp_file->name);
10300 }
10301
10302 /* It's easier for the rest of the code if we fake a struct dwo_file and
10303 have dwo_unit "live" in that. At least for now.
10304
10305 The DWP file can be made up of a random collection of CUs and TUs.
10306 However, for each CU + set of TUs that came from the same original DWO
10307 file, we can combine them back into a virtual DWO file to save space
10308 (fewer struct dwo_file objects to allocate). Remember that for really
10309 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10310
10311 virtual_dwo_name =
10312 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10313 get_section_id (&sections.abbrev),
10314 get_section_id (&sections.line),
10315 get_section_id (&sections.loc),
10316 get_section_id (&sections.str_offsets));
10317 make_cleanup (xfree, virtual_dwo_name);
10318 /* Can we use an existing virtual DWO file? */
10319 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10320 /* Create one if necessary. */
10321 if (*dwo_file_slot == NULL)
10322 {
10323 if (dwarf_read_debug)
10324 {
10325 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10326 virtual_dwo_name);
10327 }
10328 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10329 dwo_file->dwo_name
10330 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10331 virtual_dwo_name,
10332 strlen (virtual_dwo_name));
10333 dwo_file->comp_dir = comp_dir;
10334 dwo_file->sections.abbrev = sections.abbrev;
10335 dwo_file->sections.line = sections.line;
10336 dwo_file->sections.loc = sections.loc;
10337 dwo_file->sections.macinfo = sections.macinfo;
10338 dwo_file->sections.macro = sections.macro;
10339 dwo_file->sections.str_offsets = sections.str_offsets;
10340 /* The "str" section is global to the entire DWP file. */
10341 dwo_file->sections.str = dwp_file->sections.str;
10342 /* The info or types section is assigned below to dwo_unit,
10343 there's no need to record it in dwo_file.
10344 Also, we can't simply record type sections in dwo_file because
10345 we record a pointer into the vector in dwo_unit. As we collect more
10346 types we'll grow the vector and eventually have to reallocate space
10347 for it, invalidating all copies of pointers into the previous
10348 contents. */
10349 *dwo_file_slot = dwo_file;
10350 }
10351 else
10352 {
10353 if (dwarf_read_debug)
10354 {
10355 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10356 virtual_dwo_name);
10357 }
10358 dwo_file = (struct dwo_file *) *dwo_file_slot;
10359 }
10360 do_cleanups (cleanups);
10361
10362 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10363 dwo_unit->dwo_file = dwo_file;
10364 dwo_unit->signature = signature;
10365 dwo_unit->section =
10366 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10367 *dwo_unit->section = sections.info_or_types;
10368 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10369
10370 return dwo_unit;
10371 }
10372
10373 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10374 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10375 piece within that section used by a TU/CU, return a virtual section
10376 of just that piece. */
10377
10378 static struct dwarf2_section_info
10379 create_dwp_v2_section (struct dwarf2_section_info *section,
10380 bfd_size_type offset, bfd_size_type size)
10381 {
10382 struct dwarf2_section_info result;
10383 asection *sectp;
10384
10385 gdb_assert (section != NULL);
10386 gdb_assert (!section->is_virtual);
10387
10388 memset (&result, 0, sizeof (result));
10389 result.s.containing_section = section;
10390 result.is_virtual = 1;
10391
10392 if (size == 0)
10393 return result;
10394
10395 sectp = get_section_bfd_section (section);
10396
10397 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10398 bounds of the real section. This is a pretty-rare event, so just
10399 flag an error (easier) instead of a warning and trying to cope. */
10400 if (sectp == NULL
10401 || offset + size > bfd_get_section_size (sectp))
10402 {
10403 bfd *abfd = sectp->owner;
10404
10405 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10406 " in section %s [in module %s]"),
10407 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10408 objfile_name (dwarf2_per_objfile->objfile));
10409 }
10410
10411 result.virtual_offset = offset;
10412 result.size = size;
10413 return result;
10414 }
10415
10416 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10417 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10418 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10419 This is for DWP version 2 files. */
10420
10421 static struct dwo_unit *
10422 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10423 uint32_t unit_index,
10424 const char *comp_dir,
10425 ULONGEST signature, int is_debug_types)
10426 {
10427 struct objfile *objfile = dwarf2_per_objfile->objfile;
10428 const struct dwp_hash_table *dwp_htab =
10429 is_debug_types ? dwp_file->tus : dwp_file->cus;
10430 bfd *dbfd = dwp_file->dbfd;
10431 const char *kind = is_debug_types ? "TU" : "CU";
10432 struct dwo_file *dwo_file;
10433 struct dwo_unit *dwo_unit;
10434 struct virtual_v2_dwo_sections sections;
10435 void **dwo_file_slot;
10436 char *virtual_dwo_name;
10437 struct cleanup *cleanups;
10438 int i;
10439
10440 gdb_assert (dwp_file->version == 2);
10441
10442 if (dwarf_read_debug)
10443 {
10444 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10445 kind,
10446 pulongest (unit_index), hex_string (signature),
10447 dwp_file->name);
10448 }
10449
10450 /* Fetch the section offsets of this DWO unit. */
10451
10452 memset (&sections, 0, sizeof (sections));
10453 cleanups = make_cleanup (null_cleanup, 0);
10454
10455 for (i = 0; i < dwp_htab->nr_columns; ++i)
10456 {
10457 uint32_t offset = read_4_bytes (dbfd,
10458 dwp_htab->section_pool.v2.offsets
10459 + (((unit_index - 1) * dwp_htab->nr_columns
10460 + i)
10461 * sizeof (uint32_t)));
10462 uint32_t size = read_4_bytes (dbfd,
10463 dwp_htab->section_pool.v2.sizes
10464 + (((unit_index - 1) * dwp_htab->nr_columns
10465 + i)
10466 * sizeof (uint32_t)));
10467
10468 switch (dwp_htab->section_pool.v2.section_ids[i])
10469 {
10470 case DW_SECT_INFO:
10471 case DW_SECT_TYPES:
10472 sections.info_or_types_offset = offset;
10473 sections.info_or_types_size = size;
10474 break;
10475 case DW_SECT_ABBREV:
10476 sections.abbrev_offset = offset;
10477 sections.abbrev_size = size;
10478 break;
10479 case DW_SECT_LINE:
10480 sections.line_offset = offset;
10481 sections.line_size = size;
10482 break;
10483 case DW_SECT_LOC:
10484 sections.loc_offset = offset;
10485 sections.loc_size = size;
10486 break;
10487 case DW_SECT_STR_OFFSETS:
10488 sections.str_offsets_offset = offset;
10489 sections.str_offsets_size = size;
10490 break;
10491 case DW_SECT_MACINFO:
10492 sections.macinfo_offset = offset;
10493 sections.macinfo_size = size;
10494 break;
10495 case DW_SECT_MACRO:
10496 sections.macro_offset = offset;
10497 sections.macro_size = size;
10498 break;
10499 }
10500 }
10501
10502 /* It's easier for the rest of the code if we fake a struct dwo_file and
10503 have dwo_unit "live" in that. At least for now.
10504
10505 The DWP file can be made up of a random collection of CUs and TUs.
10506 However, for each CU + set of TUs that came from the same original DWO
10507 file, we can combine them back into a virtual DWO file to save space
10508 (fewer struct dwo_file objects to allocate). Remember that for really
10509 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10510
10511 virtual_dwo_name =
10512 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10513 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10514 (long) (sections.line_size ? sections.line_offset : 0),
10515 (long) (sections.loc_size ? sections.loc_offset : 0),
10516 (long) (sections.str_offsets_size
10517 ? sections.str_offsets_offset : 0));
10518 make_cleanup (xfree, virtual_dwo_name);
10519 /* Can we use an existing virtual DWO file? */
10520 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10521 /* Create one if necessary. */
10522 if (*dwo_file_slot == NULL)
10523 {
10524 if (dwarf_read_debug)
10525 {
10526 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10527 virtual_dwo_name);
10528 }
10529 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10530 dwo_file->dwo_name
10531 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10532 virtual_dwo_name,
10533 strlen (virtual_dwo_name));
10534 dwo_file->comp_dir = comp_dir;
10535 dwo_file->sections.abbrev =
10536 create_dwp_v2_section (&dwp_file->sections.abbrev,
10537 sections.abbrev_offset, sections.abbrev_size);
10538 dwo_file->sections.line =
10539 create_dwp_v2_section (&dwp_file->sections.line,
10540 sections.line_offset, sections.line_size);
10541 dwo_file->sections.loc =
10542 create_dwp_v2_section (&dwp_file->sections.loc,
10543 sections.loc_offset, sections.loc_size);
10544 dwo_file->sections.macinfo =
10545 create_dwp_v2_section (&dwp_file->sections.macinfo,
10546 sections.macinfo_offset, sections.macinfo_size);
10547 dwo_file->sections.macro =
10548 create_dwp_v2_section (&dwp_file->sections.macro,
10549 sections.macro_offset, sections.macro_size);
10550 dwo_file->sections.str_offsets =
10551 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10552 sections.str_offsets_offset,
10553 sections.str_offsets_size);
10554 /* The "str" section is global to the entire DWP file. */
10555 dwo_file->sections.str = dwp_file->sections.str;
10556 /* The info or types section is assigned below to dwo_unit,
10557 there's no need to record it in dwo_file.
10558 Also, we can't simply record type sections in dwo_file because
10559 we record a pointer into the vector in dwo_unit. As we collect more
10560 types we'll grow the vector and eventually have to reallocate space
10561 for it, invalidating all copies of pointers into the previous
10562 contents. */
10563 *dwo_file_slot = dwo_file;
10564 }
10565 else
10566 {
10567 if (dwarf_read_debug)
10568 {
10569 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10570 virtual_dwo_name);
10571 }
10572 dwo_file = (struct dwo_file *) *dwo_file_slot;
10573 }
10574 do_cleanups (cleanups);
10575
10576 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10577 dwo_unit->dwo_file = dwo_file;
10578 dwo_unit->signature = signature;
10579 dwo_unit->section =
10580 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10581 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10582 ? &dwp_file->sections.types
10583 : &dwp_file->sections.info,
10584 sections.info_or_types_offset,
10585 sections.info_or_types_size);
10586 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10587
10588 return dwo_unit;
10589 }
10590
10591 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10592 Returns NULL if the signature isn't found. */
10593
10594 static struct dwo_unit *
10595 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10596 ULONGEST signature, int is_debug_types)
10597 {
10598 const struct dwp_hash_table *dwp_htab =
10599 is_debug_types ? dwp_file->tus : dwp_file->cus;
10600 bfd *dbfd = dwp_file->dbfd;
10601 uint32_t mask = dwp_htab->nr_slots - 1;
10602 uint32_t hash = signature & mask;
10603 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10604 unsigned int i;
10605 void **slot;
10606 struct dwo_unit find_dwo_cu;
10607
10608 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10609 find_dwo_cu.signature = signature;
10610 slot = htab_find_slot (is_debug_types
10611 ? dwp_file->loaded_tus
10612 : dwp_file->loaded_cus,
10613 &find_dwo_cu, INSERT);
10614
10615 if (*slot != NULL)
10616 return (struct dwo_unit *) *slot;
10617
10618 /* Use a for loop so that we don't loop forever on bad debug info. */
10619 for (i = 0; i < dwp_htab->nr_slots; ++i)
10620 {
10621 ULONGEST signature_in_table;
10622
10623 signature_in_table =
10624 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10625 if (signature_in_table == signature)
10626 {
10627 uint32_t unit_index =
10628 read_4_bytes (dbfd,
10629 dwp_htab->unit_table + hash * sizeof (uint32_t));
10630
10631 if (dwp_file->version == 1)
10632 {
10633 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10634 comp_dir, signature,
10635 is_debug_types);
10636 }
10637 else
10638 {
10639 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10640 comp_dir, signature,
10641 is_debug_types);
10642 }
10643 return (struct dwo_unit *) *slot;
10644 }
10645 if (signature_in_table == 0)
10646 return NULL;
10647 hash = (hash + hash2) & mask;
10648 }
10649
10650 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10651 " [in module %s]"),
10652 dwp_file->name);
10653 }
10654
10655 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10656 Open the file specified by FILE_NAME and hand it off to BFD for
10657 preliminary analysis. Return a newly initialized bfd *, which
10658 includes a canonicalized copy of FILE_NAME.
10659 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10660 SEARCH_CWD is true if the current directory is to be searched.
10661 It will be searched before debug-file-directory.
10662 If successful, the file is added to the bfd include table of the
10663 objfile's bfd (see gdb_bfd_record_inclusion).
10664 If unable to find/open the file, return NULL.
10665 NOTE: This function is derived from symfile_bfd_open. */
10666
10667 static gdb_bfd_ref_ptr
10668 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10669 {
10670 int desc, flags;
10671 char *absolute_name;
10672 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10673 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10674 to debug_file_directory. */
10675 char *search_path;
10676 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10677
10678 if (search_cwd)
10679 {
10680 if (*debug_file_directory != '\0')
10681 search_path = concat (".", dirname_separator_string,
10682 debug_file_directory, (char *) NULL);
10683 else
10684 search_path = xstrdup (".");
10685 }
10686 else
10687 search_path = xstrdup (debug_file_directory);
10688
10689 flags = OPF_RETURN_REALPATH;
10690 if (is_dwp)
10691 flags |= OPF_SEARCH_IN_PATH;
10692 desc = openp (search_path, flags, file_name,
10693 O_RDONLY | O_BINARY, &absolute_name);
10694 xfree (search_path);
10695 if (desc < 0)
10696 return NULL;
10697
10698 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10699 xfree (absolute_name);
10700 if (sym_bfd == NULL)
10701 return NULL;
10702 bfd_set_cacheable (sym_bfd.get (), 1);
10703
10704 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10705 return NULL;
10706
10707 /* Success. Record the bfd as having been included by the objfile's bfd.
10708 This is important because things like demangled_names_hash lives in the
10709 objfile's per_bfd space and may have references to things like symbol
10710 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10711 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10712
10713 return sym_bfd;
10714 }
10715
10716 /* Try to open DWO file FILE_NAME.
10717 COMP_DIR is the DW_AT_comp_dir attribute.
10718 The result is the bfd handle of the file.
10719 If there is a problem finding or opening the file, return NULL.
10720 Upon success, the canonicalized path of the file is stored in the bfd,
10721 same as symfile_bfd_open. */
10722
10723 static gdb_bfd_ref_ptr
10724 open_dwo_file (const char *file_name, const char *comp_dir)
10725 {
10726 if (IS_ABSOLUTE_PATH (file_name))
10727 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10728
10729 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10730
10731 if (comp_dir != NULL)
10732 {
10733 char *path_to_try = concat (comp_dir, SLASH_STRING,
10734 file_name, (char *) NULL);
10735
10736 /* NOTE: If comp_dir is a relative path, this will also try the
10737 search path, which seems useful. */
10738 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10739 1 /*search_cwd*/));
10740 xfree (path_to_try);
10741 if (abfd != NULL)
10742 return abfd;
10743 }
10744
10745 /* That didn't work, try debug-file-directory, which, despite its name,
10746 is a list of paths. */
10747
10748 if (*debug_file_directory == '\0')
10749 return NULL;
10750
10751 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10752 }
10753
10754 /* This function is mapped across the sections and remembers the offset and
10755 size of each of the DWO debugging sections we are interested in. */
10756
10757 static void
10758 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10759 {
10760 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10761 const struct dwop_section_names *names = &dwop_section_names;
10762
10763 if (section_is_p (sectp->name, &names->abbrev_dwo))
10764 {
10765 dwo_sections->abbrev.s.section = sectp;
10766 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10767 }
10768 else if (section_is_p (sectp->name, &names->info_dwo))
10769 {
10770 dwo_sections->info.s.section = sectp;
10771 dwo_sections->info.size = bfd_get_section_size (sectp);
10772 }
10773 else if (section_is_p (sectp->name, &names->line_dwo))
10774 {
10775 dwo_sections->line.s.section = sectp;
10776 dwo_sections->line.size = bfd_get_section_size (sectp);
10777 }
10778 else if (section_is_p (sectp->name, &names->loc_dwo))
10779 {
10780 dwo_sections->loc.s.section = sectp;
10781 dwo_sections->loc.size = bfd_get_section_size (sectp);
10782 }
10783 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10784 {
10785 dwo_sections->macinfo.s.section = sectp;
10786 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10787 }
10788 else if (section_is_p (sectp->name, &names->macro_dwo))
10789 {
10790 dwo_sections->macro.s.section = sectp;
10791 dwo_sections->macro.size = bfd_get_section_size (sectp);
10792 }
10793 else if (section_is_p (sectp->name, &names->str_dwo))
10794 {
10795 dwo_sections->str.s.section = sectp;
10796 dwo_sections->str.size = bfd_get_section_size (sectp);
10797 }
10798 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10799 {
10800 dwo_sections->str_offsets.s.section = sectp;
10801 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10802 }
10803 else if (section_is_p (sectp->name, &names->types_dwo))
10804 {
10805 struct dwarf2_section_info type_section;
10806
10807 memset (&type_section, 0, sizeof (type_section));
10808 type_section.s.section = sectp;
10809 type_section.size = bfd_get_section_size (sectp);
10810 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10811 &type_section);
10812 }
10813 }
10814
10815 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10816 by PER_CU. This is for the non-DWP case.
10817 The result is NULL if DWO_NAME can't be found. */
10818
10819 static struct dwo_file *
10820 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10821 const char *dwo_name, const char *comp_dir)
10822 {
10823 struct objfile *objfile = dwarf2_per_objfile->objfile;
10824 struct dwo_file *dwo_file;
10825 struct cleanup *cleanups;
10826
10827 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10828 if (dbfd == NULL)
10829 {
10830 if (dwarf_read_debug)
10831 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10832 return NULL;
10833 }
10834 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10835 dwo_file->dwo_name = dwo_name;
10836 dwo_file->comp_dir = comp_dir;
10837 dwo_file->dbfd = dbfd.release ();
10838
10839 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10840
10841 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10842 &dwo_file->sections);
10843
10844 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10845
10846 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10847 dwo_file->tus);
10848
10849 discard_cleanups (cleanups);
10850
10851 if (dwarf_read_debug)
10852 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10853
10854 return dwo_file;
10855 }
10856
10857 /* This function is mapped across the sections and remembers the offset and
10858 size of each of the DWP debugging sections common to version 1 and 2 that
10859 we are interested in. */
10860
10861 static void
10862 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10863 void *dwp_file_ptr)
10864 {
10865 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10866 const struct dwop_section_names *names = &dwop_section_names;
10867 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10868
10869 /* Record the ELF section number for later lookup: this is what the
10870 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10871 gdb_assert (elf_section_nr < dwp_file->num_sections);
10872 dwp_file->elf_sections[elf_section_nr] = sectp;
10873
10874 /* Look for specific sections that we need. */
10875 if (section_is_p (sectp->name, &names->str_dwo))
10876 {
10877 dwp_file->sections.str.s.section = sectp;
10878 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10879 }
10880 else if (section_is_p (sectp->name, &names->cu_index))
10881 {
10882 dwp_file->sections.cu_index.s.section = sectp;
10883 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10884 }
10885 else if (section_is_p (sectp->name, &names->tu_index))
10886 {
10887 dwp_file->sections.tu_index.s.section = sectp;
10888 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10889 }
10890 }
10891
10892 /* This function is mapped across the sections and remembers the offset and
10893 size of each of the DWP version 2 debugging sections that we are interested
10894 in. This is split into a separate function because we don't know if we
10895 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10896
10897 static void
10898 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10899 {
10900 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10901 const struct dwop_section_names *names = &dwop_section_names;
10902 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10903
10904 /* Record the ELF section number for later lookup: this is what the
10905 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10906 gdb_assert (elf_section_nr < dwp_file->num_sections);
10907 dwp_file->elf_sections[elf_section_nr] = sectp;
10908
10909 /* Look for specific sections that we need. */
10910 if (section_is_p (sectp->name, &names->abbrev_dwo))
10911 {
10912 dwp_file->sections.abbrev.s.section = sectp;
10913 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10914 }
10915 else if (section_is_p (sectp->name, &names->info_dwo))
10916 {
10917 dwp_file->sections.info.s.section = sectp;
10918 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10919 }
10920 else if (section_is_p (sectp->name, &names->line_dwo))
10921 {
10922 dwp_file->sections.line.s.section = sectp;
10923 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10924 }
10925 else if (section_is_p (sectp->name, &names->loc_dwo))
10926 {
10927 dwp_file->sections.loc.s.section = sectp;
10928 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10929 }
10930 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10931 {
10932 dwp_file->sections.macinfo.s.section = sectp;
10933 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10934 }
10935 else if (section_is_p (sectp->name, &names->macro_dwo))
10936 {
10937 dwp_file->sections.macro.s.section = sectp;
10938 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10939 }
10940 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10941 {
10942 dwp_file->sections.str_offsets.s.section = sectp;
10943 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10944 }
10945 else if (section_is_p (sectp->name, &names->types_dwo))
10946 {
10947 dwp_file->sections.types.s.section = sectp;
10948 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10949 }
10950 }
10951
10952 /* Hash function for dwp_file loaded CUs/TUs. */
10953
10954 static hashval_t
10955 hash_dwp_loaded_cutus (const void *item)
10956 {
10957 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10958
10959 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10960 return dwo_unit->signature;
10961 }
10962
10963 /* Equality function for dwp_file loaded CUs/TUs. */
10964
10965 static int
10966 eq_dwp_loaded_cutus (const void *a, const void *b)
10967 {
10968 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10969 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10970
10971 return dua->signature == dub->signature;
10972 }
10973
10974 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10975
10976 static htab_t
10977 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10978 {
10979 return htab_create_alloc_ex (3,
10980 hash_dwp_loaded_cutus,
10981 eq_dwp_loaded_cutus,
10982 NULL,
10983 &objfile->objfile_obstack,
10984 hashtab_obstack_allocate,
10985 dummy_obstack_deallocate);
10986 }
10987
10988 /* Try to open DWP file FILE_NAME.
10989 The result is the bfd handle of the file.
10990 If there is a problem finding or opening the file, return NULL.
10991 Upon success, the canonicalized path of the file is stored in the bfd,
10992 same as symfile_bfd_open. */
10993
10994 static gdb_bfd_ref_ptr
10995 open_dwp_file (const char *file_name)
10996 {
10997 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10998 1 /*search_cwd*/));
10999 if (abfd != NULL)
11000 return abfd;
11001
11002 /* Work around upstream bug 15652.
11003 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11004 [Whether that's a "bug" is debatable, but it is getting in our way.]
11005 We have no real idea where the dwp file is, because gdb's realpath-ing
11006 of the executable's path may have discarded the needed info.
11007 [IWBN if the dwp file name was recorded in the executable, akin to
11008 .gnu_debuglink, but that doesn't exist yet.]
11009 Strip the directory from FILE_NAME and search again. */
11010 if (*debug_file_directory != '\0')
11011 {
11012 /* Don't implicitly search the current directory here.
11013 If the user wants to search "." to handle this case,
11014 it must be added to debug-file-directory. */
11015 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11016 0 /*search_cwd*/);
11017 }
11018
11019 return NULL;
11020 }
11021
11022 /* Initialize the use of the DWP file for the current objfile.
11023 By convention the name of the DWP file is ${objfile}.dwp.
11024 The result is NULL if it can't be found. */
11025
11026 static struct dwp_file *
11027 open_and_init_dwp_file (void)
11028 {
11029 struct objfile *objfile = dwarf2_per_objfile->objfile;
11030 struct dwp_file *dwp_file;
11031
11032 /* Try to find first .dwp for the binary file before any symbolic links
11033 resolving. */
11034
11035 /* If the objfile is a debug file, find the name of the real binary
11036 file and get the name of dwp file from there. */
11037 std::string dwp_name;
11038 if (objfile->separate_debug_objfile_backlink != NULL)
11039 {
11040 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11041 const char *backlink_basename = lbasename (backlink->original_name);
11042
11043 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11044 }
11045 else
11046 dwp_name = objfile->original_name;
11047
11048 dwp_name += ".dwp";
11049
11050 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11051 if (dbfd == NULL
11052 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11053 {
11054 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11055 dwp_name = objfile_name (objfile);
11056 dwp_name += ".dwp";
11057 dbfd = open_dwp_file (dwp_name.c_str ());
11058 }
11059
11060 if (dbfd == NULL)
11061 {
11062 if (dwarf_read_debug)
11063 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11064 return NULL;
11065 }
11066 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11067 dwp_file->name = bfd_get_filename (dbfd.get ());
11068 dwp_file->dbfd = dbfd.release ();
11069
11070 /* +1: section 0 is unused */
11071 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11072 dwp_file->elf_sections =
11073 OBSTACK_CALLOC (&objfile->objfile_obstack,
11074 dwp_file->num_sections, asection *);
11075
11076 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11077 dwp_file);
11078
11079 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11080
11081 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11082
11083 /* The DWP file version is stored in the hash table. Oh well. */
11084 if (dwp_file->cus->version != dwp_file->tus->version)
11085 {
11086 /* Technically speaking, we should try to limp along, but this is
11087 pretty bizarre. We use pulongest here because that's the established
11088 portability solution (e.g, we cannot use %u for uint32_t). */
11089 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11090 " TU version %s [in DWP file %s]"),
11091 pulongest (dwp_file->cus->version),
11092 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11093 }
11094 dwp_file->version = dwp_file->cus->version;
11095
11096 if (dwp_file->version == 2)
11097 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11098 dwp_file);
11099
11100 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11101 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11102
11103 if (dwarf_read_debug)
11104 {
11105 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11106 fprintf_unfiltered (gdb_stdlog,
11107 " %s CUs, %s TUs\n",
11108 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11109 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11110 }
11111
11112 return dwp_file;
11113 }
11114
11115 /* Wrapper around open_and_init_dwp_file, only open it once. */
11116
11117 static struct dwp_file *
11118 get_dwp_file (void)
11119 {
11120 if (! dwarf2_per_objfile->dwp_checked)
11121 {
11122 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11123 dwarf2_per_objfile->dwp_checked = 1;
11124 }
11125 return dwarf2_per_objfile->dwp_file;
11126 }
11127
11128 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11129 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11130 or in the DWP file for the objfile, referenced by THIS_UNIT.
11131 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11132 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11133
11134 This is called, for example, when wanting to read a variable with a
11135 complex location. Therefore we don't want to do file i/o for every call.
11136 Therefore we don't want to look for a DWO file on every call.
11137 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11138 then we check if we've already seen DWO_NAME, and only THEN do we check
11139 for a DWO file.
11140
11141 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11142 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11143
11144 static struct dwo_unit *
11145 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11146 const char *dwo_name, const char *comp_dir,
11147 ULONGEST signature, int is_debug_types)
11148 {
11149 struct objfile *objfile = dwarf2_per_objfile->objfile;
11150 const char *kind = is_debug_types ? "TU" : "CU";
11151 void **dwo_file_slot;
11152 struct dwo_file *dwo_file;
11153 struct dwp_file *dwp_file;
11154
11155 /* First see if there's a DWP file.
11156 If we have a DWP file but didn't find the DWO inside it, don't
11157 look for the original DWO file. It makes gdb behave differently
11158 depending on whether one is debugging in the build tree. */
11159
11160 dwp_file = get_dwp_file ();
11161 if (dwp_file != NULL)
11162 {
11163 const struct dwp_hash_table *dwp_htab =
11164 is_debug_types ? dwp_file->tus : dwp_file->cus;
11165
11166 if (dwp_htab != NULL)
11167 {
11168 struct dwo_unit *dwo_cutu =
11169 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11170 signature, is_debug_types);
11171
11172 if (dwo_cutu != NULL)
11173 {
11174 if (dwarf_read_debug)
11175 {
11176 fprintf_unfiltered (gdb_stdlog,
11177 "Virtual DWO %s %s found: @%s\n",
11178 kind, hex_string (signature),
11179 host_address_to_string (dwo_cutu));
11180 }
11181 return dwo_cutu;
11182 }
11183 }
11184 }
11185 else
11186 {
11187 /* No DWP file, look for the DWO file. */
11188
11189 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11190 if (*dwo_file_slot == NULL)
11191 {
11192 /* Read in the file and build a table of the CUs/TUs it contains. */
11193 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11194 }
11195 /* NOTE: This will be NULL if unable to open the file. */
11196 dwo_file = (struct dwo_file *) *dwo_file_slot;
11197
11198 if (dwo_file != NULL)
11199 {
11200 struct dwo_unit *dwo_cutu = NULL;
11201
11202 if (is_debug_types && dwo_file->tus)
11203 {
11204 struct dwo_unit find_dwo_cutu;
11205
11206 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11207 find_dwo_cutu.signature = signature;
11208 dwo_cutu
11209 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11210 }
11211 else if (!is_debug_types && dwo_file->cus)
11212 {
11213 struct dwo_unit find_dwo_cutu;
11214
11215 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11216 find_dwo_cutu.signature = signature;
11217 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11218 &find_dwo_cutu);
11219 }
11220
11221 if (dwo_cutu != NULL)
11222 {
11223 if (dwarf_read_debug)
11224 {
11225 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11226 kind, dwo_name, hex_string (signature),
11227 host_address_to_string (dwo_cutu));
11228 }
11229 return dwo_cutu;
11230 }
11231 }
11232 }
11233
11234 /* We didn't find it. This could mean a dwo_id mismatch, or
11235 someone deleted the DWO/DWP file, or the search path isn't set up
11236 correctly to find the file. */
11237
11238 if (dwarf_read_debug)
11239 {
11240 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11241 kind, dwo_name, hex_string (signature));
11242 }
11243
11244 /* This is a warning and not a complaint because it can be caused by
11245 pilot error (e.g., user accidentally deleting the DWO). */
11246 {
11247 /* Print the name of the DWP file if we looked there, helps the user
11248 better diagnose the problem. */
11249 char *dwp_text = NULL;
11250 struct cleanup *cleanups;
11251
11252 if (dwp_file != NULL)
11253 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11254 cleanups = make_cleanup (xfree, dwp_text);
11255
11256 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11257 " [in module %s]"),
11258 kind, dwo_name, hex_string (signature),
11259 dwp_text != NULL ? dwp_text : "",
11260 this_unit->is_debug_types ? "TU" : "CU",
11261 to_underlying (this_unit->sect_off), objfile_name (objfile));
11262
11263 do_cleanups (cleanups);
11264 }
11265 return NULL;
11266 }
11267
11268 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11269 See lookup_dwo_cutu_unit for details. */
11270
11271 static struct dwo_unit *
11272 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11273 const char *dwo_name, const char *comp_dir,
11274 ULONGEST signature)
11275 {
11276 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11277 }
11278
11279 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11280 See lookup_dwo_cutu_unit for details. */
11281
11282 static struct dwo_unit *
11283 lookup_dwo_type_unit (struct signatured_type *this_tu,
11284 const char *dwo_name, const char *comp_dir)
11285 {
11286 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11287 }
11288
11289 /* Traversal function for queue_and_load_all_dwo_tus. */
11290
11291 static int
11292 queue_and_load_dwo_tu (void **slot, void *info)
11293 {
11294 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11295 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11296 ULONGEST signature = dwo_unit->signature;
11297 struct signatured_type *sig_type =
11298 lookup_dwo_signatured_type (per_cu->cu, signature);
11299
11300 if (sig_type != NULL)
11301 {
11302 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11303
11304 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11305 a real dependency of PER_CU on SIG_TYPE. That is detected later
11306 while processing PER_CU. */
11307 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11308 load_full_type_unit (sig_cu);
11309 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11310 }
11311
11312 return 1;
11313 }
11314
11315 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11316 The DWO may have the only definition of the type, though it may not be
11317 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11318 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11319
11320 static void
11321 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11322 {
11323 struct dwo_unit *dwo_unit;
11324 struct dwo_file *dwo_file;
11325
11326 gdb_assert (!per_cu->is_debug_types);
11327 gdb_assert (get_dwp_file () == NULL);
11328 gdb_assert (per_cu->cu != NULL);
11329
11330 dwo_unit = per_cu->cu->dwo_unit;
11331 gdb_assert (dwo_unit != NULL);
11332
11333 dwo_file = dwo_unit->dwo_file;
11334 if (dwo_file->tus != NULL)
11335 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11336 }
11337
11338 /* Free all resources associated with DWO_FILE.
11339 Close the DWO file and munmap the sections.
11340 All memory should be on the objfile obstack. */
11341
11342 static void
11343 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11344 {
11345
11346 /* Note: dbfd is NULL for virtual DWO files. */
11347 gdb_bfd_unref (dwo_file->dbfd);
11348
11349 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11350 }
11351
11352 /* Wrapper for free_dwo_file for use in cleanups. */
11353
11354 static void
11355 free_dwo_file_cleanup (void *arg)
11356 {
11357 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11358 struct objfile *objfile = dwarf2_per_objfile->objfile;
11359
11360 free_dwo_file (dwo_file, objfile);
11361 }
11362
11363 /* Traversal function for free_dwo_files. */
11364
11365 static int
11366 free_dwo_file_from_slot (void **slot, void *info)
11367 {
11368 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11369 struct objfile *objfile = (struct objfile *) info;
11370
11371 free_dwo_file (dwo_file, objfile);
11372
11373 return 1;
11374 }
11375
11376 /* Free all resources associated with DWO_FILES. */
11377
11378 static void
11379 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11380 {
11381 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11382 }
11383 \f
11384 /* Read in various DIEs. */
11385
11386 /* qsort helper for inherit_abstract_dies. */
11387
11388 static int
11389 unsigned_int_compar (const void *ap, const void *bp)
11390 {
11391 unsigned int a = *(unsigned int *) ap;
11392 unsigned int b = *(unsigned int *) bp;
11393
11394 return (a > b) - (b > a);
11395 }
11396
11397 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11398 Inherit only the children of the DW_AT_abstract_origin DIE not being
11399 already referenced by DW_AT_abstract_origin from the children of the
11400 current DIE. */
11401
11402 static void
11403 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11404 {
11405 struct die_info *child_die;
11406 unsigned die_children_count;
11407 /* CU offsets which were referenced by children of the current DIE. */
11408 sect_offset *offsets;
11409 sect_offset *offsets_end, *offsetp;
11410 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11411 struct die_info *origin_die;
11412 /* Iterator of the ORIGIN_DIE children. */
11413 struct die_info *origin_child_die;
11414 struct cleanup *cleanups;
11415 struct attribute *attr;
11416 struct dwarf2_cu *origin_cu;
11417 struct pending **origin_previous_list_in_scope;
11418
11419 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11420 if (!attr)
11421 return;
11422
11423 /* Note that following die references may follow to a die in a
11424 different cu. */
11425
11426 origin_cu = cu;
11427 origin_die = follow_die_ref (die, attr, &origin_cu);
11428
11429 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11430 symbols in. */
11431 origin_previous_list_in_scope = origin_cu->list_in_scope;
11432 origin_cu->list_in_scope = cu->list_in_scope;
11433
11434 if (die->tag != origin_die->tag
11435 && !(die->tag == DW_TAG_inlined_subroutine
11436 && origin_die->tag == DW_TAG_subprogram))
11437 complaint (&symfile_complaints,
11438 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11439 to_underlying (die->sect_off),
11440 to_underlying (origin_die->sect_off));
11441
11442 child_die = die->child;
11443 die_children_count = 0;
11444 while (child_die && child_die->tag)
11445 {
11446 child_die = sibling_die (child_die);
11447 die_children_count++;
11448 }
11449 offsets = XNEWVEC (sect_offset, die_children_count);
11450 cleanups = make_cleanup (xfree, offsets);
11451
11452 offsets_end = offsets;
11453 for (child_die = die->child;
11454 child_die && child_die->tag;
11455 child_die = sibling_die (child_die))
11456 {
11457 struct die_info *child_origin_die;
11458 struct dwarf2_cu *child_origin_cu;
11459
11460 /* We are trying to process concrete instance entries:
11461 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11462 it's not relevant to our analysis here. i.e. detecting DIEs that are
11463 present in the abstract instance but not referenced in the concrete
11464 one. */
11465 if (child_die->tag == DW_TAG_call_site
11466 || child_die->tag == DW_TAG_GNU_call_site)
11467 continue;
11468
11469 /* For each CHILD_DIE, find the corresponding child of
11470 ORIGIN_DIE. If there is more than one layer of
11471 DW_AT_abstract_origin, follow them all; there shouldn't be,
11472 but GCC versions at least through 4.4 generate this (GCC PR
11473 40573). */
11474 child_origin_die = child_die;
11475 child_origin_cu = cu;
11476 while (1)
11477 {
11478 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11479 child_origin_cu);
11480 if (attr == NULL)
11481 break;
11482 child_origin_die = follow_die_ref (child_origin_die, attr,
11483 &child_origin_cu);
11484 }
11485
11486 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11487 counterpart may exist. */
11488 if (child_origin_die != child_die)
11489 {
11490 if (child_die->tag != child_origin_die->tag
11491 && !(child_die->tag == DW_TAG_inlined_subroutine
11492 && child_origin_die->tag == DW_TAG_subprogram))
11493 complaint (&symfile_complaints,
11494 _("Child DIE 0x%x and its abstract origin 0x%x have "
11495 "different tags"),
11496 to_underlying (child_die->sect_off),
11497 to_underlying (child_origin_die->sect_off));
11498 if (child_origin_die->parent != origin_die)
11499 complaint (&symfile_complaints,
11500 _("Child DIE 0x%x and its abstract origin 0x%x have "
11501 "different parents"),
11502 to_underlying (child_die->sect_off),
11503 to_underlying (child_origin_die->sect_off));
11504 else
11505 *offsets_end++ = child_origin_die->sect_off;
11506 }
11507 }
11508 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11509 unsigned_int_compar);
11510 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11511 if (offsetp[-1] == *offsetp)
11512 complaint (&symfile_complaints,
11513 _("Multiple children of DIE 0x%x refer "
11514 "to DIE 0x%x as their abstract origin"),
11515 to_underlying (die->sect_off), to_underlying (*offsetp));
11516
11517 offsetp = offsets;
11518 origin_child_die = origin_die->child;
11519 while (origin_child_die && origin_child_die->tag)
11520 {
11521 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11522 while (offsetp < offsets_end
11523 && *offsetp < origin_child_die->sect_off)
11524 offsetp++;
11525 if (offsetp >= offsets_end
11526 || *offsetp > origin_child_die->sect_off)
11527 {
11528 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11529 Check whether we're already processing ORIGIN_CHILD_DIE.
11530 This can happen with mutually referenced abstract_origins.
11531 PR 16581. */
11532 if (!origin_child_die->in_process)
11533 process_die (origin_child_die, origin_cu);
11534 }
11535 origin_child_die = sibling_die (origin_child_die);
11536 }
11537 origin_cu->list_in_scope = origin_previous_list_in_scope;
11538
11539 do_cleanups (cleanups);
11540 }
11541
11542 static void
11543 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11544 {
11545 struct objfile *objfile = cu->objfile;
11546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11547 struct context_stack *newobj;
11548 CORE_ADDR lowpc;
11549 CORE_ADDR highpc;
11550 struct die_info *child_die;
11551 struct attribute *attr, *call_line, *call_file;
11552 const char *name;
11553 CORE_ADDR baseaddr;
11554 struct block *block;
11555 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11556 VEC (symbolp) *template_args = NULL;
11557 struct template_symbol *templ_func = NULL;
11558
11559 if (inlined_func)
11560 {
11561 /* If we do not have call site information, we can't show the
11562 caller of this inlined function. That's too confusing, so
11563 only use the scope for local variables. */
11564 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11565 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11566 if (call_line == NULL || call_file == NULL)
11567 {
11568 read_lexical_block_scope (die, cu);
11569 return;
11570 }
11571 }
11572
11573 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11574
11575 name = dwarf2_name (die, cu);
11576
11577 /* Ignore functions with missing or empty names. These are actually
11578 illegal according to the DWARF standard. */
11579 if (name == NULL)
11580 {
11581 complaint (&symfile_complaints,
11582 _("missing name for subprogram DIE at %d"),
11583 to_underlying (die->sect_off));
11584 return;
11585 }
11586
11587 /* Ignore functions with missing or invalid low and high pc attributes. */
11588 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11589 <= PC_BOUNDS_INVALID)
11590 {
11591 attr = dwarf2_attr (die, DW_AT_external, cu);
11592 if (!attr || !DW_UNSND (attr))
11593 complaint (&symfile_complaints,
11594 _("cannot get low and high bounds "
11595 "for subprogram DIE at %d"),
11596 to_underlying (die->sect_off));
11597 return;
11598 }
11599
11600 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11601 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11602
11603 /* If we have any template arguments, then we must allocate a
11604 different sort of symbol. */
11605 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11606 {
11607 if (child_die->tag == DW_TAG_template_type_param
11608 || child_die->tag == DW_TAG_template_value_param)
11609 {
11610 templ_func = allocate_template_symbol (objfile);
11611 templ_func->base.is_cplus_template_function = 1;
11612 break;
11613 }
11614 }
11615
11616 newobj = push_context (0, lowpc);
11617 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11618 (struct symbol *) templ_func);
11619
11620 /* If there is a location expression for DW_AT_frame_base, record
11621 it. */
11622 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11623 if (attr)
11624 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11625
11626 /* If there is a location for the static link, record it. */
11627 newobj->static_link = NULL;
11628 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11629 if (attr)
11630 {
11631 newobj->static_link
11632 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11633 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11634 }
11635
11636 cu->list_in_scope = &local_symbols;
11637
11638 if (die->child != NULL)
11639 {
11640 child_die = die->child;
11641 while (child_die && child_die->tag)
11642 {
11643 if (child_die->tag == DW_TAG_template_type_param
11644 || child_die->tag == DW_TAG_template_value_param)
11645 {
11646 struct symbol *arg = new_symbol (child_die, NULL, cu);
11647
11648 if (arg != NULL)
11649 VEC_safe_push (symbolp, template_args, arg);
11650 }
11651 else
11652 process_die (child_die, cu);
11653 child_die = sibling_die (child_die);
11654 }
11655 }
11656
11657 inherit_abstract_dies (die, cu);
11658
11659 /* If we have a DW_AT_specification, we might need to import using
11660 directives from the context of the specification DIE. See the
11661 comment in determine_prefix. */
11662 if (cu->language == language_cplus
11663 && dwarf2_attr (die, DW_AT_specification, cu))
11664 {
11665 struct dwarf2_cu *spec_cu = cu;
11666 struct die_info *spec_die = die_specification (die, &spec_cu);
11667
11668 while (spec_die)
11669 {
11670 child_die = spec_die->child;
11671 while (child_die && child_die->tag)
11672 {
11673 if (child_die->tag == DW_TAG_imported_module)
11674 process_die (child_die, spec_cu);
11675 child_die = sibling_die (child_die);
11676 }
11677
11678 /* In some cases, GCC generates specification DIEs that
11679 themselves contain DW_AT_specification attributes. */
11680 spec_die = die_specification (spec_die, &spec_cu);
11681 }
11682 }
11683
11684 newobj = pop_context ();
11685 /* Make a block for the local symbols within. */
11686 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11687 newobj->static_link, lowpc, highpc);
11688
11689 /* For C++, set the block's scope. */
11690 if ((cu->language == language_cplus
11691 || cu->language == language_fortran
11692 || cu->language == language_d
11693 || cu->language == language_rust)
11694 && cu->processing_has_namespace_info)
11695 block_set_scope (block, determine_prefix (die, cu),
11696 &objfile->objfile_obstack);
11697
11698 /* If we have address ranges, record them. */
11699 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11700
11701 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11702
11703 /* Attach template arguments to function. */
11704 if (! VEC_empty (symbolp, template_args))
11705 {
11706 gdb_assert (templ_func != NULL);
11707
11708 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11709 templ_func->template_arguments
11710 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11711 templ_func->n_template_arguments);
11712 memcpy (templ_func->template_arguments,
11713 VEC_address (symbolp, template_args),
11714 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11715 VEC_free (symbolp, template_args);
11716 }
11717
11718 /* In C++, we can have functions nested inside functions (e.g., when
11719 a function declares a class that has methods). This means that
11720 when we finish processing a function scope, we may need to go
11721 back to building a containing block's symbol lists. */
11722 local_symbols = newobj->locals;
11723 local_using_directives = newobj->local_using_directives;
11724
11725 /* If we've finished processing a top-level function, subsequent
11726 symbols go in the file symbol list. */
11727 if (outermost_context_p ())
11728 cu->list_in_scope = &file_symbols;
11729 }
11730
11731 /* Process all the DIES contained within a lexical block scope. Start
11732 a new scope, process the dies, and then close the scope. */
11733
11734 static void
11735 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11736 {
11737 struct objfile *objfile = cu->objfile;
11738 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11739 struct context_stack *newobj;
11740 CORE_ADDR lowpc, highpc;
11741 struct die_info *child_die;
11742 CORE_ADDR baseaddr;
11743
11744 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11745
11746 /* Ignore blocks with missing or invalid low and high pc attributes. */
11747 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11748 as multiple lexical blocks? Handling children in a sane way would
11749 be nasty. Might be easier to properly extend generic blocks to
11750 describe ranges. */
11751 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11752 {
11753 case PC_BOUNDS_NOT_PRESENT:
11754 /* DW_TAG_lexical_block has no attributes, process its children as if
11755 there was no wrapping by that DW_TAG_lexical_block.
11756 GCC does no longer produces such DWARF since GCC r224161. */
11757 for (child_die = die->child;
11758 child_die != NULL && child_die->tag;
11759 child_die = sibling_die (child_die))
11760 process_die (child_die, cu);
11761 return;
11762 case PC_BOUNDS_INVALID:
11763 return;
11764 }
11765 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11766 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11767
11768 push_context (0, lowpc);
11769 if (die->child != NULL)
11770 {
11771 child_die = die->child;
11772 while (child_die && child_die->tag)
11773 {
11774 process_die (child_die, cu);
11775 child_die = sibling_die (child_die);
11776 }
11777 }
11778 inherit_abstract_dies (die, cu);
11779 newobj = pop_context ();
11780
11781 if (local_symbols != NULL || local_using_directives != NULL)
11782 {
11783 struct block *block
11784 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11785 newobj->start_addr, highpc);
11786
11787 /* Note that recording ranges after traversing children, as we
11788 do here, means that recording a parent's ranges entails
11789 walking across all its children's ranges as they appear in
11790 the address map, which is quadratic behavior.
11791
11792 It would be nicer to record the parent's ranges before
11793 traversing its children, simply overriding whatever you find
11794 there. But since we don't even decide whether to create a
11795 block until after we've traversed its children, that's hard
11796 to do. */
11797 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11798 }
11799 local_symbols = newobj->locals;
11800 local_using_directives = newobj->local_using_directives;
11801 }
11802
11803 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11804
11805 static void
11806 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11807 {
11808 struct objfile *objfile = cu->objfile;
11809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11810 CORE_ADDR pc, baseaddr;
11811 struct attribute *attr;
11812 struct call_site *call_site, call_site_local;
11813 void **slot;
11814 int nparams;
11815 struct die_info *child_die;
11816
11817 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11818
11819 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11820 if (attr == NULL)
11821 {
11822 /* This was a pre-DWARF-5 GNU extension alias
11823 for DW_AT_call_return_pc. */
11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11825 }
11826 if (!attr)
11827 {
11828 complaint (&symfile_complaints,
11829 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11830 "DIE 0x%x [in module %s]"),
11831 to_underlying (die->sect_off), objfile_name (objfile));
11832 return;
11833 }
11834 pc = attr_value_as_address (attr) + baseaddr;
11835 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11836
11837 if (cu->call_site_htab == NULL)
11838 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11839 NULL, &objfile->objfile_obstack,
11840 hashtab_obstack_allocate, NULL);
11841 call_site_local.pc = pc;
11842 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11843 if (*slot != NULL)
11844 {
11845 complaint (&symfile_complaints,
11846 _("Duplicate PC %s for DW_TAG_call_site "
11847 "DIE 0x%x [in module %s]"),
11848 paddress (gdbarch, pc), to_underlying (die->sect_off),
11849 objfile_name (objfile));
11850 return;
11851 }
11852
11853 /* Count parameters at the caller. */
11854
11855 nparams = 0;
11856 for (child_die = die->child; child_die && child_die->tag;
11857 child_die = sibling_die (child_die))
11858 {
11859 if (child_die->tag != DW_TAG_call_site_parameter
11860 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11861 {
11862 complaint (&symfile_complaints,
11863 _("Tag %d is not DW_TAG_call_site_parameter in "
11864 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11865 child_die->tag, to_underlying (child_die->sect_off),
11866 objfile_name (objfile));
11867 continue;
11868 }
11869
11870 nparams++;
11871 }
11872
11873 call_site
11874 = ((struct call_site *)
11875 obstack_alloc (&objfile->objfile_obstack,
11876 sizeof (*call_site)
11877 + (sizeof (*call_site->parameter) * (nparams - 1))));
11878 *slot = call_site;
11879 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11880 call_site->pc = pc;
11881
11882 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11883 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11884 {
11885 struct die_info *func_die;
11886
11887 /* Skip also over DW_TAG_inlined_subroutine. */
11888 for (func_die = die->parent;
11889 func_die && func_die->tag != DW_TAG_subprogram
11890 && func_die->tag != DW_TAG_subroutine_type;
11891 func_die = func_die->parent);
11892
11893 /* DW_AT_call_all_calls is a superset
11894 of DW_AT_call_all_tail_calls. */
11895 if (func_die
11896 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11897 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11898 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11899 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11900 {
11901 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11902 not complete. But keep CALL_SITE for look ups via call_site_htab,
11903 both the initial caller containing the real return address PC and
11904 the final callee containing the current PC of a chain of tail
11905 calls do not need to have the tail call list complete. But any
11906 function candidate for a virtual tail call frame searched via
11907 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11908 determined unambiguously. */
11909 }
11910 else
11911 {
11912 struct type *func_type = NULL;
11913
11914 if (func_die)
11915 func_type = get_die_type (func_die, cu);
11916 if (func_type != NULL)
11917 {
11918 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11919
11920 /* Enlist this call site to the function. */
11921 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11922 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11923 }
11924 else
11925 complaint (&symfile_complaints,
11926 _("Cannot find function owning DW_TAG_call_site "
11927 "DIE 0x%x [in module %s]"),
11928 to_underlying (die->sect_off), objfile_name (objfile));
11929 }
11930 }
11931
11932 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11933 if (attr == NULL)
11934 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11935 if (attr == NULL)
11936 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11937 if (attr == NULL)
11938 {
11939 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11940 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11941 }
11942 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11943 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11944 /* Keep NULL DWARF_BLOCK. */;
11945 else if (attr_form_is_block (attr))
11946 {
11947 struct dwarf2_locexpr_baton *dlbaton;
11948
11949 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11950 dlbaton->data = DW_BLOCK (attr)->data;
11951 dlbaton->size = DW_BLOCK (attr)->size;
11952 dlbaton->per_cu = cu->per_cu;
11953
11954 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11955 }
11956 else if (attr_form_is_ref (attr))
11957 {
11958 struct dwarf2_cu *target_cu = cu;
11959 struct die_info *target_die;
11960
11961 target_die = follow_die_ref (die, attr, &target_cu);
11962 gdb_assert (target_cu->objfile == objfile);
11963 if (die_is_declaration (target_die, target_cu))
11964 {
11965 const char *target_physname;
11966
11967 /* Prefer the mangled name; otherwise compute the demangled one. */
11968 target_physname = dwarf2_string_attr (target_die,
11969 DW_AT_linkage_name,
11970 target_cu);
11971 if (target_physname == NULL)
11972 target_physname = dwarf2_string_attr (target_die,
11973 DW_AT_MIPS_linkage_name,
11974 target_cu);
11975 if (target_physname == NULL)
11976 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11977 if (target_physname == NULL)
11978 complaint (&symfile_complaints,
11979 _("DW_AT_call_target target DIE has invalid "
11980 "physname, for referencing DIE 0x%x [in module %s]"),
11981 to_underlying (die->sect_off), objfile_name (objfile));
11982 else
11983 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11984 }
11985 else
11986 {
11987 CORE_ADDR lowpc;
11988
11989 /* DW_AT_entry_pc should be preferred. */
11990 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11991 <= PC_BOUNDS_INVALID)
11992 complaint (&symfile_complaints,
11993 _("DW_AT_call_target target DIE has invalid "
11994 "low pc, for referencing DIE 0x%x [in module %s]"),
11995 to_underlying (die->sect_off), objfile_name (objfile));
11996 else
11997 {
11998 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11999 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12000 }
12001 }
12002 }
12003 else
12004 complaint (&symfile_complaints,
12005 _("DW_TAG_call_site DW_AT_call_target is neither "
12006 "block nor reference, for DIE 0x%x [in module %s]"),
12007 to_underlying (die->sect_off), objfile_name (objfile));
12008
12009 call_site->per_cu = cu->per_cu;
12010
12011 for (child_die = die->child;
12012 child_die && child_die->tag;
12013 child_die = sibling_die (child_die))
12014 {
12015 struct call_site_parameter *parameter;
12016 struct attribute *loc, *origin;
12017
12018 if (child_die->tag != DW_TAG_call_site_parameter
12019 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12020 {
12021 /* Already printed the complaint above. */
12022 continue;
12023 }
12024
12025 gdb_assert (call_site->parameter_count < nparams);
12026 parameter = &call_site->parameter[call_site->parameter_count];
12027
12028 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12029 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12030 register is contained in DW_AT_call_value. */
12031
12032 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12033 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12034 if (origin == NULL)
12035 {
12036 /* This was a pre-DWARF-5 GNU extension alias
12037 for DW_AT_call_parameter. */
12038 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12039 }
12040 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12041 {
12042 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12043
12044 sect_offset sect_off
12045 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12046 if (!offset_in_cu_p (&cu->header, sect_off))
12047 {
12048 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12049 binding can be done only inside one CU. Such referenced DIE
12050 therefore cannot be even moved to DW_TAG_partial_unit. */
12051 complaint (&symfile_complaints,
12052 _("DW_AT_call_parameter offset is not in CU for "
12053 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12054 to_underlying (child_die->sect_off),
12055 objfile_name (objfile));
12056 continue;
12057 }
12058 parameter->u.param_cu_off
12059 = (cu_offset) (sect_off - cu->header.sect_off);
12060 }
12061 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12062 {
12063 complaint (&symfile_complaints,
12064 _("No DW_FORM_block* DW_AT_location for "
12065 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12066 to_underlying (child_die->sect_off), objfile_name (objfile));
12067 continue;
12068 }
12069 else
12070 {
12071 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12072 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12073 if (parameter->u.dwarf_reg != -1)
12074 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12075 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12076 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12077 &parameter->u.fb_offset))
12078 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12079 else
12080 {
12081 complaint (&symfile_complaints,
12082 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12083 "for DW_FORM_block* DW_AT_location is supported for "
12084 "DW_TAG_call_site child DIE 0x%x "
12085 "[in module %s]"),
12086 to_underlying (child_die->sect_off),
12087 objfile_name (objfile));
12088 continue;
12089 }
12090 }
12091
12092 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12093 if (attr == NULL)
12094 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12095 if (!attr_form_is_block (attr))
12096 {
12097 complaint (&symfile_complaints,
12098 _("No DW_FORM_block* DW_AT_call_value for "
12099 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12100 to_underlying (child_die->sect_off),
12101 objfile_name (objfile));
12102 continue;
12103 }
12104 parameter->value = DW_BLOCK (attr)->data;
12105 parameter->value_size = DW_BLOCK (attr)->size;
12106
12107 /* Parameters are not pre-cleared by memset above. */
12108 parameter->data_value = NULL;
12109 parameter->data_value_size = 0;
12110 call_site->parameter_count++;
12111
12112 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12113 if (attr == NULL)
12114 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12115 if (attr)
12116 {
12117 if (!attr_form_is_block (attr))
12118 complaint (&symfile_complaints,
12119 _("No DW_FORM_block* DW_AT_call_data_value for "
12120 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12121 to_underlying (child_die->sect_off),
12122 objfile_name (objfile));
12123 else
12124 {
12125 parameter->data_value = DW_BLOCK (attr)->data;
12126 parameter->data_value_size = DW_BLOCK (attr)->size;
12127 }
12128 }
12129 }
12130 }
12131
12132 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12133 reading .debug_rnglists.
12134 Callback's type should be:
12135 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12136 Return true if the attributes are present and valid, otherwise,
12137 return false. */
12138
12139 template <typename Callback>
12140 static bool
12141 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12142 Callback &&callback)
12143 {
12144 struct objfile *objfile = cu->objfile;
12145 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12146 struct comp_unit_head *cu_header = &cu->header;
12147 bfd *obfd = objfile->obfd;
12148 unsigned int addr_size = cu_header->addr_size;
12149 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12150 /* Base address selection entry. */
12151 CORE_ADDR base;
12152 int found_base;
12153 unsigned int dummy;
12154 const gdb_byte *buffer;
12155 CORE_ADDR low = 0;
12156 CORE_ADDR high = 0;
12157 CORE_ADDR baseaddr;
12158 bool overflow = false;
12159
12160 found_base = cu->base_known;
12161 base = cu->base_address;
12162
12163 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12164 if (offset >= dwarf2_per_objfile->rnglists.size)
12165 {
12166 complaint (&symfile_complaints,
12167 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12168 offset);
12169 return false;
12170 }
12171 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12172
12173 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12174
12175 while (1)
12176 {
12177 /* Initialize it due to a false compiler warning. */
12178 CORE_ADDR range_beginning = 0, range_end = 0;
12179 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12180 + dwarf2_per_objfile->rnglists.size);
12181 unsigned int bytes_read;
12182
12183 if (buffer == buf_end)
12184 {
12185 overflow = true;
12186 break;
12187 }
12188 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12189 switch (rlet)
12190 {
12191 case DW_RLE_end_of_list:
12192 break;
12193 case DW_RLE_base_address:
12194 if (buffer + cu->header.addr_size > buf_end)
12195 {
12196 overflow = true;
12197 break;
12198 }
12199 base = read_address (obfd, buffer, cu, &bytes_read);
12200 found_base = 1;
12201 buffer += bytes_read;
12202 break;
12203 case DW_RLE_start_length:
12204 if (buffer + cu->header.addr_size > buf_end)
12205 {
12206 overflow = true;
12207 break;
12208 }
12209 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12210 buffer += bytes_read;
12211 range_end = (range_beginning
12212 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12213 buffer += bytes_read;
12214 if (buffer > buf_end)
12215 {
12216 overflow = true;
12217 break;
12218 }
12219 break;
12220 case DW_RLE_offset_pair:
12221 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12222 buffer += bytes_read;
12223 if (buffer > buf_end)
12224 {
12225 overflow = true;
12226 break;
12227 }
12228 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12229 buffer += bytes_read;
12230 if (buffer > buf_end)
12231 {
12232 overflow = true;
12233 break;
12234 }
12235 break;
12236 case DW_RLE_start_end:
12237 if (buffer + 2 * cu->header.addr_size > buf_end)
12238 {
12239 overflow = true;
12240 break;
12241 }
12242 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12243 buffer += bytes_read;
12244 range_end = read_address (obfd, buffer, cu, &bytes_read);
12245 buffer += bytes_read;
12246 break;
12247 default:
12248 complaint (&symfile_complaints,
12249 _("Invalid .debug_rnglists data (no base address)"));
12250 return false;
12251 }
12252 if (rlet == DW_RLE_end_of_list || overflow)
12253 break;
12254 if (rlet == DW_RLE_base_address)
12255 continue;
12256
12257 if (!found_base)
12258 {
12259 /* We have no valid base address for the ranges
12260 data. */
12261 complaint (&symfile_complaints,
12262 _("Invalid .debug_rnglists data (no base address)"));
12263 return false;
12264 }
12265
12266 if (range_beginning > range_end)
12267 {
12268 /* Inverted range entries are invalid. */
12269 complaint (&symfile_complaints,
12270 _("Invalid .debug_rnglists data (inverted range)"));
12271 return false;
12272 }
12273
12274 /* Empty range entries have no effect. */
12275 if (range_beginning == range_end)
12276 continue;
12277
12278 range_beginning += base;
12279 range_end += base;
12280
12281 /* A not-uncommon case of bad debug info.
12282 Don't pollute the addrmap with bad data. */
12283 if (range_beginning + baseaddr == 0
12284 && !dwarf2_per_objfile->has_section_at_zero)
12285 {
12286 complaint (&symfile_complaints,
12287 _(".debug_rnglists entry has start address of zero"
12288 " [in module %s]"), objfile_name (objfile));
12289 continue;
12290 }
12291
12292 callback (range_beginning, range_end);
12293 }
12294
12295 if (overflow)
12296 {
12297 complaint (&symfile_complaints,
12298 _("Offset %d is not terminated "
12299 "for DW_AT_ranges attribute"),
12300 offset);
12301 return false;
12302 }
12303
12304 return true;
12305 }
12306
12307 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12308 Callback's type should be:
12309 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12310 Return 1 if the attributes are present and valid, otherwise, return 0. */
12311
12312 template <typename Callback>
12313 static int
12314 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12315 Callback &&callback)
12316 {
12317 struct objfile *objfile = cu->objfile;
12318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12319 struct comp_unit_head *cu_header = &cu->header;
12320 bfd *obfd = objfile->obfd;
12321 unsigned int addr_size = cu_header->addr_size;
12322 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12323 /* Base address selection entry. */
12324 CORE_ADDR base;
12325 int found_base;
12326 unsigned int dummy;
12327 const gdb_byte *buffer;
12328 CORE_ADDR baseaddr;
12329
12330 if (cu_header->version >= 5)
12331 return dwarf2_rnglists_process (offset, cu, callback);
12332
12333 found_base = cu->base_known;
12334 base = cu->base_address;
12335
12336 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12337 if (offset >= dwarf2_per_objfile->ranges.size)
12338 {
12339 complaint (&symfile_complaints,
12340 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12341 offset);
12342 return 0;
12343 }
12344 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12345
12346 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12347
12348 while (1)
12349 {
12350 CORE_ADDR range_beginning, range_end;
12351
12352 range_beginning = read_address (obfd, buffer, cu, &dummy);
12353 buffer += addr_size;
12354 range_end = read_address (obfd, buffer, cu, &dummy);
12355 buffer += addr_size;
12356 offset += 2 * addr_size;
12357
12358 /* An end of list marker is a pair of zero addresses. */
12359 if (range_beginning == 0 && range_end == 0)
12360 /* Found the end of list entry. */
12361 break;
12362
12363 /* Each base address selection entry is a pair of 2 values.
12364 The first is the largest possible address, the second is
12365 the base address. Check for a base address here. */
12366 if ((range_beginning & mask) == mask)
12367 {
12368 /* If we found the largest possible address, then we already
12369 have the base address in range_end. */
12370 base = range_end;
12371 found_base = 1;
12372 continue;
12373 }
12374
12375 if (!found_base)
12376 {
12377 /* We have no valid base address for the ranges
12378 data. */
12379 complaint (&symfile_complaints,
12380 _("Invalid .debug_ranges data (no base address)"));
12381 return 0;
12382 }
12383
12384 if (range_beginning > range_end)
12385 {
12386 /* Inverted range entries are invalid. */
12387 complaint (&symfile_complaints,
12388 _("Invalid .debug_ranges data (inverted range)"));
12389 return 0;
12390 }
12391
12392 /* Empty range entries have no effect. */
12393 if (range_beginning == range_end)
12394 continue;
12395
12396 range_beginning += base;
12397 range_end += base;
12398
12399 /* A not-uncommon case of bad debug info.
12400 Don't pollute the addrmap with bad data. */
12401 if (range_beginning + baseaddr == 0
12402 && !dwarf2_per_objfile->has_section_at_zero)
12403 {
12404 complaint (&symfile_complaints,
12405 _(".debug_ranges entry has start address of zero"
12406 " [in module %s]"), objfile_name (objfile));
12407 continue;
12408 }
12409
12410 callback (range_beginning, range_end);
12411 }
12412
12413 return 1;
12414 }
12415
12416 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12417 Return 1 if the attributes are present and valid, otherwise, return 0.
12418 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12419
12420 static int
12421 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12422 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12423 struct partial_symtab *ranges_pst)
12424 {
12425 struct objfile *objfile = cu->objfile;
12426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12427 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12428 SECT_OFF_TEXT (objfile));
12429 int low_set = 0;
12430 CORE_ADDR low = 0;
12431 CORE_ADDR high = 0;
12432 int retval;
12433
12434 retval = dwarf2_ranges_process (offset, cu,
12435 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12436 {
12437 if (ranges_pst != NULL)
12438 {
12439 CORE_ADDR lowpc;
12440 CORE_ADDR highpc;
12441
12442 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12443 range_beginning + baseaddr);
12444 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12445 range_end + baseaddr);
12446 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12447 ranges_pst);
12448 }
12449
12450 /* FIXME: This is recording everything as a low-high
12451 segment of consecutive addresses. We should have a
12452 data structure for discontiguous block ranges
12453 instead. */
12454 if (! low_set)
12455 {
12456 low = range_beginning;
12457 high = range_end;
12458 low_set = 1;
12459 }
12460 else
12461 {
12462 if (range_beginning < low)
12463 low = range_beginning;
12464 if (range_end > high)
12465 high = range_end;
12466 }
12467 });
12468 if (!retval)
12469 return 0;
12470
12471 if (! low_set)
12472 /* If the first entry is an end-of-list marker, the range
12473 describes an empty scope, i.e. no instructions. */
12474 return 0;
12475
12476 if (low_return)
12477 *low_return = low;
12478 if (high_return)
12479 *high_return = high;
12480 return 1;
12481 }
12482
12483 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12484 definition for the return value. *LOWPC and *HIGHPC are set iff
12485 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12486
12487 static enum pc_bounds_kind
12488 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12489 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12490 struct partial_symtab *pst)
12491 {
12492 struct attribute *attr;
12493 struct attribute *attr_high;
12494 CORE_ADDR low = 0;
12495 CORE_ADDR high = 0;
12496 enum pc_bounds_kind ret;
12497
12498 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12499 if (attr_high)
12500 {
12501 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12502 if (attr)
12503 {
12504 low = attr_value_as_address (attr);
12505 high = attr_value_as_address (attr_high);
12506 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12507 high += low;
12508 }
12509 else
12510 /* Found high w/o low attribute. */
12511 return PC_BOUNDS_INVALID;
12512
12513 /* Found consecutive range of addresses. */
12514 ret = PC_BOUNDS_HIGH_LOW;
12515 }
12516 else
12517 {
12518 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12519 if (attr != NULL)
12520 {
12521 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12522 We take advantage of the fact that DW_AT_ranges does not appear
12523 in DW_TAG_compile_unit of DWO files. */
12524 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12525 unsigned int ranges_offset = (DW_UNSND (attr)
12526 + (need_ranges_base
12527 ? cu->ranges_base
12528 : 0));
12529
12530 /* Value of the DW_AT_ranges attribute is the offset in the
12531 .debug_ranges section. */
12532 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12533 return PC_BOUNDS_INVALID;
12534 /* Found discontinuous range of addresses. */
12535 ret = PC_BOUNDS_RANGES;
12536 }
12537 else
12538 return PC_BOUNDS_NOT_PRESENT;
12539 }
12540
12541 /* read_partial_die has also the strict LOW < HIGH requirement. */
12542 if (high <= low)
12543 return PC_BOUNDS_INVALID;
12544
12545 /* When using the GNU linker, .gnu.linkonce. sections are used to
12546 eliminate duplicate copies of functions and vtables and such.
12547 The linker will arbitrarily choose one and discard the others.
12548 The AT_*_pc values for such functions refer to local labels in
12549 these sections. If the section from that file was discarded, the
12550 labels are not in the output, so the relocs get a value of 0.
12551 If this is a discarded function, mark the pc bounds as invalid,
12552 so that GDB will ignore it. */
12553 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12554 return PC_BOUNDS_INVALID;
12555
12556 *lowpc = low;
12557 if (highpc)
12558 *highpc = high;
12559 return ret;
12560 }
12561
12562 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12563 its low and high PC addresses. Do nothing if these addresses could not
12564 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12565 and HIGHPC to the high address if greater than HIGHPC. */
12566
12567 static void
12568 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12569 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12570 struct dwarf2_cu *cu)
12571 {
12572 CORE_ADDR low, high;
12573 struct die_info *child = die->child;
12574
12575 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12576 {
12577 *lowpc = std::min (*lowpc, low);
12578 *highpc = std::max (*highpc, high);
12579 }
12580
12581 /* If the language does not allow nested subprograms (either inside
12582 subprograms or lexical blocks), we're done. */
12583 if (cu->language != language_ada)
12584 return;
12585
12586 /* Check all the children of the given DIE. If it contains nested
12587 subprograms, then check their pc bounds. Likewise, we need to
12588 check lexical blocks as well, as they may also contain subprogram
12589 definitions. */
12590 while (child && child->tag)
12591 {
12592 if (child->tag == DW_TAG_subprogram
12593 || child->tag == DW_TAG_lexical_block)
12594 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12595 child = sibling_die (child);
12596 }
12597 }
12598
12599 /* Get the low and high pc's represented by the scope DIE, and store
12600 them in *LOWPC and *HIGHPC. If the correct values can't be
12601 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12602
12603 static void
12604 get_scope_pc_bounds (struct die_info *die,
12605 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12606 struct dwarf2_cu *cu)
12607 {
12608 CORE_ADDR best_low = (CORE_ADDR) -1;
12609 CORE_ADDR best_high = (CORE_ADDR) 0;
12610 CORE_ADDR current_low, current_high;
12611
12612 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12613 >= PC_BOUNDS_RANGES)
12614 {
12615 best_low = current_low;
12616 best_high = current_high;
12617 }
12618 else
12619 {
12620 struct die_info *child = die->child;
12621
12622 while (child && child->tag)
12623 {
12624 switch (child->tag) {
12625 case DW_TAG_subprogram:
12626 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12627 break;
12628 case DW_TAG_namespace:
12629 case DW_TAG_module:
12630 /* FIXME: carlton/2004-01-16: Should we do this for
12631 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12632 that current GCC's always emit the DIEs corresponding
12633 to definitions of methods of classes as children of a
12634 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12635 the DIEs giving the declarations, which could be
12636 anywhere). But I don't see any reason why the
12637 standards says that they have to be there. */
12638 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12639
12640 if (current_low != ((CORE_ADDR) -1))
12641 {
12642 best_low = std::min (best_low, current_low);
12643 best_high = std::max (best_high, current_high);
12644 }
12645 break;
12646 default:
12647 /* Ignore. */
12648 break;
12649 }
12650
12651 child = sibling_die (child);
12652 }
12653 }
12654
12655 *lowpc = best_low;
12656 *highpc = best_high;
12657 }
12658
12659 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12660 in DIE. */
12661
12662 static void
12663 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12664 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12665 {
12666 struct objfile *objfile = cu->objfile;
12667 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12668 struct attribute *attr;
12669 struct attribute *attr_high;
12670
12671 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12672 if (attr_high)
12673 {
12674 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12675 if (attr)
12676 {
12677 CORE_ADDR low = attr_value_as_address (attr);
12678 CORE_ADDR high = attr_value_as_address (attr_high);
12679
12680 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12681 high += low;
12682
12683 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12684 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12685 record_block_range (block, low, high - 1);
12686 }
12687 }
12688
12689 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12690 if (attr)
12691 {
12692 bfd *obfd = objfile->obfd;
12693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12694 We take advantage of the fact that DW_AT_ranges does not appear
12695 in DW_TAG_compile_unit of DWO files. */
12696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12697
12698 /* The value of the DW_AT_ranges attribute is the offset of the
12699 address range list in the .debug_ranges section. */
12700 unsigned long offset = (DW_UNSND (attr)
12701 + (need_ranges_base ? cu->ranges_base : 0));
12702 const gdb_byte *buffer;
12703
12704 /* For some target architectures, but not others, the
12705 read_address function sign-extends the addresses it returns.
12706 To recognize base address selection entries, we need a
12707 mask. */
12708 unsigned int addr_size = cu->header.addr_size;
12709 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12710
12711 /* The base address, to which the next pair is relative. Note
12712 that this 'base' is a DWARF concept: most entries in a range
12713 list are relative, to reduce the number of relocs against the
12714 debugging information. This is separate from this function's
12715 'baseaddr' argument, which GDB uses to relocate debugging
12716 information from a shared library based on the address at
12717 which the library was loaded. */
12718 CORE_ADDR base = cu->base_address;
12719 int base_known = cu->base_known;
12720
12721 dwarf2_ranges_process (offset, cu,
12722 [&] (CORE_ADDR start, CORE_ADDR end)
12723 {
12724 start += baseaddr;
12725 end += baseaddr;
12726 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12727 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12728 record_block_range (block, start, end - 1);
12729 });
12730 }
12731 }
12732
12733 /* Check whether the producer field indicates either of GCC < 4.6, or the
12734 Intel C/C++ compiler, and cache the result in CU. */
12735
12736 static void
12737 check_producer (struct dwarf2_cu *cu)
12738 {
12739 int major, minor;
12740
12741 if (cu->producer == NULL)
12742 {
12743 /* For unknown compilers expect their behavior is DWARF version
12744 compliant.
12745
12746 GCC started to support .debug_types sections by -gdwarf-4 since
12747 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12748 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12749 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12750 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12751 }
12752 else if (producer_is_gcc (cu->producer, &major, &minor))
12753 {
12754 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12755 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12756 }
12757 else if (startswith (cu->producer, "Intel(R) C"))
12758 cu->producer_is_icc = 1;
12759 else
12760 {
12761 /* For other non-GCC compilers, expect their behavior is DWARF version
12762 compliant. */
12763 }
12764
12765 cu->checked_producer = 1;
12766 }
12767
12768 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12769 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12770 during 4.6.0 experimental. */
12771
12772 static int
12773 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12774 {
12775 if (!cu->checked_producer)
12776 check_producer (cu);
12777
12778 return cu->producer_is_gxx_lt_4_6;
12779 }
12780
12781 /* Return the default accessibility type if it is not overriden by
12782 DW_AT_accessibility. */
12783
12784 static enum dwarf_access_attribute
12785 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12786 {
12787 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12788 {
12789 /* The default DWARF 2 accessibility for members is public, the default
12790 accessibility for inheritance is private. */
12791
12792 if (die->tag != DW_TAG_inheritance)
12793 return DW_ACCESS_public;
12794 else
12795 return DW_ACCESS_private;
12796 }
12797 else
12798 {
12799 /* DWARF 3+ defines the default accessibility a different way. The same
12800 rules apply now for DW_TAG_inheritance as for the members and it only
12801 depends on the container kind. */
12802
12803 if (die->parent->tag == DW_TAG_class_type)
12804 return DW_ACCESS_private;
12805 else
12806 return DW_ACCESS_public;
12807 }
12808 }
12809
12810 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12811 offset. If the attribute was not found return 0, otherwise return
12812 1. If it was found but could not properly be handled, set *OFFSET
12813 to 0. */
12814
12815 static int
12816 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12817 LONGEST *offset)
12818 {
12819 struct attribute *attr;
12820
12821 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12822 if (attr != NULL)
12823 {
12824 *offset = 0;
12825
12826 /* Note that we do not check for a section offset first here.
12827 This is because DW_AT_data_member_location is new in DWARF 4,
12828 so if we see it, we can assume that a constant form is really
12829 a constant and not a section offset. */
12830 if (attr_form_is_constant (attr))
12831 *offset = dwarf2_get_attr_constant_value (attr, 0);
12832 else if (attr_form_is_section_offset (attr))
12833 dwarf2_complex_location_expr_complaint ();
12834 else if (attr_form_is_block (attr))
12835 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12836 else
12837 dwarf2_complex_location_expr_complaint ();
12838
12839 return 1;
12840 }
12841
12842 return 0;
12843 }
12844
12845 /* Add an aggregate field to the field list. */
12846
12847 static void
12848 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12849 struct dwarf2_cu *cu)
12850 {
12851 struct objfile *objfile = cu->objfile;
12852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12853 struct nextfield *new_field;
12854 struct attribute *attr;
12855 struct field *fp;
12856 const char *fieldname = "";
12857
12858 /* Allocate a new field list entry and link it in. */
12859 new_field = XNEW (struct nextfield);
12860 make_cleanup (xfree, new_field);
12861 memset (new_field, 0, sizeof (struct nextfield));
12862
12863 if (die->tag == DW_TAG_inheritance)
12864 {
12865 new_field->next = fip->baseclasses;
12866 fip->baseclasses = new_field;
12867 }
12868 else
12869 {
12870 new_field->next = fip->fields;
12871 fip->fields = new_field;
12872 }
12873 fip->nfields++;
12874
12875 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12876 if (attr)
12877 new_field->accessibility = DW_UNSND (attr);
12878 else
12879 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12880 if (new_field->accessibility != DW_ACCESS_public)
12881 fip->non_public_fields = 1;
12882
12883 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12884 if (attr)
12885 new_field->virtuality = DW_UNSND (attr);
12886 else
12887 new_field->virtuality = DW_VIRTUALITY_none;
12888
12889 fp = &new_field->field;
12890
12891 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12892 {
12893 LONGEST offset;
12894
12895 /* Data member other than a C++ static data member. */
12896
12897 /* Get type of field. */
12898 fp->type = die_type (die, cu);
12899
12900 SET_FIELD_BITPOS (*fp, 0);
12901
12902 /* Get bit size of field (zero if none). */
12903 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12904 if (attr)
12905 {
12906 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12907 }
12908 else
12909 {
12910 FIELD_BITSIZE (*fp) = 0;
12911 }
12912
12913 /* Get bit offset of field. */
12914 if (handle_data_member_location (die, cu, &offset))
12915 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12916 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12917 if (attr)
12918 {
12919 if (gdbarch_bits_big_endian (gdbarch))
12920 {
12921 /* For big endian bits, the DW_AT_bit_offset gives the
12922 additional bit offset from the MSB of the containing
12923 anonymous object to the MSB of the field. We don't
12924 have to do anything special since we don't need to
12925 know the size of the anonymous object. */
12926 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12927 }
12928 else
12929 {
12930 /* For little endian bits, compute the bit offset to the
12931 MSB of the anonymous object, subtract off the number of
12932 bits from the MSB of the field to the MSB of the
12933 object, and then subtract off the number of bits of
12934 the field itself. The result is the bit offset of
12935 the LSB of the field. */
12936 int anonymous_size;
12937 int bit_offset = DW_UNSND (attr);
12938
12939 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12940 if (attr)
12941 {
12942 /* The size of the anonymous object containing
12943 the bit field is explicit, so use the
12944 indicated size (in bytes). */
12945 anonymous_size = DW_UNSND (attr);
12946 }
12947 else
12948 {
12949 /* The size of the anonymous object containing
12950 the bit field must be inferred from the type
12951 attribute of the data member containing the
12952 bit field. */
12953 anonymous_size = TYPE_LENGTH (fp->type);
12954 }
12955 SET_FIELD_BITPOS (*fp,
12956 (FIELD_BITPOS (*fp)
12957 + anonymous_size * bits_per_byte
12958 - bit_offset - FIELD_BITSIZE (*fp)));
12959 }
12960 }
12961 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12962 if (attr != NULL)
12963 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12964 + dwarf2_get_attr_constant_value (attr, 0)));
12965
12966 /* Get name of field. */
12967 fieldname = dwarf2_name (die, cu);
12968 if (fieldname == NULL)
12969 fieldname = "";
12970
12971 /* The name is already allocated along with this objfile, so we don't
12972 need to duplicate it for the type. */
12973 fp->name = fieldname;
12974
12975 /* Change accessibility for artificial fields (e.g. virtual table
12976 pointer or virtual base class pointer) to private. */
12977 if (dwarf2_attr (die, DW_AT_artificial, cu))
12978 {
12979 FIELD_ARTIFICIAL (*fp) = 1;
12980 new_field->accessibility = DW_ACCESS_private;
12981 fip->non_public_fields = 1;
12982 }
12983 }
12984 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12985 {
12986 /* C++ static member. */
12987
12988 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12989 is a declaration, but all versions of G++ as of this writing
12990 (so through at least 3.2.1) incorrectly generate
12991 DW_TAG_variable tags. */
12992
12993 const char *physname;
12994
12995 /* Get name of field. */
12996 fieldname = dwarf2_name (die, cu);
12997 if (fieldname == NULL)
12998 return;
12999
13000 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13001 if (attr
13002 /* Only create a symbol if this is an external value.
13003 new_symbol checks this and puts the value in the global symbol
13004 table, which we want. If it is not external, new_symbol
13005 will try to put the value in cu->list_in_scope which is wrong. */
13006 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13007 {
13008 /* A static const member, not much different than an enum as far as
13009 we're concerned, except that we can support more types. */
13010 new_symbol (die, NULL, cu);
13011 }
13012
13013 /* Get physical name. */
13014 physname = dwarf2_physname (fieldname, die, cu);
13015
13016 /* The name is already allocated along with this objfile, so we don't
13017 need to duplicate it for the type. */
13018 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13019 FIELD_TYPE (*fp) = die_type (die, cu);
13020 FIELD_NAME (*fp) = fieldname;
13021 }
13022 else if (die->tag == DW_TAG_inheritance)
13023 {
13024 LONGEST offset;
13025
13026 /* C++ base class field. */
13027 if (handle_data_member_location (die, cu, &offset))
13028 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13029 FIELD_BITSIZE (*fp) = 0;
13030 FIELD_TYPE (*fp) = die_type (die, cu);
13031 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13032 fip->nbaseclasses++;
13033 }
13034 }
13035
13036 /* Add a typedef defined in the scope of the FIP's class. */
13037
13038 static void
13039 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13040 struct dwarf2_cu *cu)
13041 {
13042 struct typedef_field_list *new_field;
13043 struct typedef_field *fp;
13044
13045 /* Allocate a new field list entry and link it in. */
13046 new_field = XCNEW (struct typedef_field_list);
13047 make_cleanup (xfree, new_field);
13048
13049 gdb_assert (die->tag == DW_TAG_typedef);
13050
13051 fp = &new_field->field;
13052
13053 /* Get name of field. */
13054 fp->name = dwarf2_name (die, cu);
13055 if (fp->name == NULL)
13056 return;
13057
13058 fp->type = read_type_die (die, cu);
13059
13060 new_field->next = fip->typedef_field_list;
13061 fip->typedef_field_list = new_field;
13062 fip->typedef_field_list_count++;
13063 }
13064
13065 /* Create the vector of fields, and attach it to the type. */
13066
13067 static void
13068 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13069 struct dwarf2_cu *cu)
13070 {
13071 int nfields = fip->nfields;
13072
13073 /* Record the field count, allocate space for the array of fields,
13074 and create blank accessibility bitfields if necessary. */
13075 TYPE_NFIELDS (type) = nfields;
13076 TYPE_FIELDS (type) = (struct field *)
13077 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13078 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13079
13080 if (fip->non_public_fields && cu->language != language_ada)
13081 {
13082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13083
13084 TYPE_FIELD_PRIVATE_BITS (type) =
13085 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13086 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13087
13088 TYPE_FIELD_PROTECTED_BITS (type) =
13089 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13090 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13091
13092 TYPE_FIELD_IGNORE_BITS (type) =
13093 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13094 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13095 }
13096
13097 /* If the type has baseclasses, allocate and clear a bit vector for
13098 TYPE_FIELD_VIRTUAL_BITS. */
13099 if (fip->nbaseclasses && cu->language != language_ada)
13100 {
13101 int num_bytes = B_BYTES (fip->nbaseclasses);
13102 unsigned char *pointer;
13103
13104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13105 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13106 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13107 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13108 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13109 }
13110
13111 /* Copy the saved-up fields into the field vector. Start from the head of
13112 the list, adding to the tail of the field array, so that they end up in
13113 the same order in the array in which they were added to the list. */
13114 while (nfields-- > 0)
13115 {
13116 struct nextfield *fieldp;
13117
13118 if (fip->fields)
13119 {
13120 fieldp = fip->fields;
13121 fip->fields = fieldp->next;
13122 }
13123 else
13124 {
13125 fieldp = fip->baseclasses;
13126 fip->baseclasses = fieldp->next;
13127 }
13128
13129 TYPE_FIELD (type, nfields) = fieldp->field;
13130 switch (fieldp->accessibility)
13131 {
13132 case DW_ACCESS_private:
13133 if (cu->language != language_ada)
13134 SET_TYPE_FIELD_PRIVATE (type, nfields);
13135 break;
13136
13137 case DW_ACCESS_protected:
13138 if (cu->language != language_ada)
13139 SET_TYPE_FIELD_PROTECTED (type, nfields);
13140 break;
13141
13142 case DW_ACCESS_public:
13143 break;
13144
13145 default:
13146 /* Unknown accessibility. Complain and treat it as public. */
13147 {
13148 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13149 fieldp->accessibility);
13150 }
13151 break;
13152 }
13153 if (nfields < fip->nbaseclasses)
13154 {
13155 switch (fieldp->virtuality)
13156 {
13157 case DW_VIRTUALITY_virtual:
13158 case DW_VIRTUALITY_pure_virtual:
13159 if (cu->language == language_ada)
13160 error (_("unexpected virtuality in component of Ada type"));
13161 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13162 break;
13163 }
13164 }
13165 }
13166 }
13167
13168 /* Return true if this member function is a constructor, false
13169 otherwise. */
13170
13171 static int
13172 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13173 {
13174 const char *fieldname;
13175 const char *type_name;
13176 int len;
13177
13178 if (die->parent == NULL)
13179 return 0;
13180
13181 if (die->parent->tag != DW_TAG_structure_type
13182 && die->parent->tag != DW_TAG_union_type
13183 && die->parent->tag != DW_TAG_class_type)
13184 return 0;
13185
13186 fieldname = dwarf2_name (die, cu);
13187 type_name = dwarf2_name (die->parent, cu);
13188 if (fieldname == NULL || type_name == NULL)
13189 return 0;
13190
13191 len = strlen (fieldname);
13192 return (strncmp (fieldname, type_name, len) == 0
13193 && (type_name[len] == '\0' || type_name[len] == '<'));
13194 }
13195
13196 /* Add a member function to the proper fieldlist. */
13197
13198 static void
13199 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13200 struct type *type, struct dwarf2_cu *cu)
13201 {
13202 struct objfile *objfile = cu->objfile;
13203 struct attribute *attr;
13204 struct fnfieldlist *flp;
13205 int i;
13206 struct fn_field *fnp;
13207 const char *fieldname;
13208 struct nextfnfield *new_fnfield;
13209 struct type *this_type;
13210 enum dwarf_access_attribute accessibility;
13211
13212 if (cu->language == language_ada)
13213 error (_("unexpected member function in Ada type"));
13214
13215 /* Get name of member function. */
13216 fieldname = dwarf2_name (die, cu);
13217 if (fieldname == NULL)
13218 return;
13219
13220 /* Look up member function name in fieldlist. */
13221 for (i = 0; i < fip->nfnfields; i++)
13222 {
13223 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13224 break;
13225 }
13226
13227 /* Create new list element if necessary. */
13228 if (i < fip->nfnfields)
13229 flp = &fip->fnfieldlists[i];
13230 else
13231 {
13232 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13233 {
13234 fip->fnfieldlists = (struct fnfieldlist *)
13235 xrealloc (fip->fnfieldlists,
13236 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13237 * sizeof (struct fnfieldlist));
13238 if (fip->nfnfields == 0)
13239 make_cleanup (free_current_contents, &fip->fnfieldlists);
13240 }
13241 flp = &fip->fnfieldlists[fip->nfnfields];
13242 flp->name = fieldname;
13243 flp->length = 0;
13244 flp->head = NULL;
13245 i = fip->nfnfields++;
13246 }
13247
13248 /* Create a new member function field and chain it to the field list
13249 entry. */
13250 new_fnfield = XNEW (struct nextfnfield);
13251 make_cleanup (xfree, new_fnfield);
13252 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13253 new_fnfield->next = flp->head;
13254 flp->head = new_fnfield;
13255 flp->length++;
13256
13257 /* Fill in the member function field info. */
13258 fnp = &new_fnfield->fnfield;
13259
13260 /* Delay processing of the physname until later. */
13261 if (cu->language == language_cplus)
13262 {
13263 add_to_method_list (type, i, flp->length - 1, fieldname,
13264 die, cu);
13265 }
13266 else
13267 {
13268 const char *physname = dwarf2_physname (fieldname, die, cu);
13269 fnp->physname = physname ? physname : "";
13270 }
13271
13272 fnp->type = alloc_type (objfile);
13273 this_type = read_type_die (die, cu);
13274 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13275 {
13276 int nparams = TYPE_NFIELDS (this_type);
13277
13278 /* TYPE is the domain of this method, and THIS_TYPE is the type
13279 of the method itself (TYPE_CODE_METHOD). */
13280 smash_to_method_type (fnp->type, type,
13281 TYPE_TARGET_TYPE (this_type),
13282 TYPE_FIELDS (this_type),
13283 TYPE_NFIELDS (this_type),
13284 TYPE_VARARGS (this_type));
13285
13286 /* Handle static member functions.
13287 Dwarf2 has no clean way to discern C++ static and non-static
13288 member functions. G++ helps GDB by marking the first
13289 parameter for non-static member functions (which is the this
13290 pointer) as artificial. We obtain this information from
13291 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13292 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13293 fnp->voffset = VOFFSET_STATIC;
13294 }
13295 else
13296 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13297 dwarf2_full_name (fieldname, die, cu));
13298
13299 /* Get fcontext from DW_AT_containing_type if present. */
13300 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13301 fnp->fcontext = die_containing_type (die, cu);
13302
13303 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13304 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13305
13306 /* Get accessibility. */
13307 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13308 if (attr)
13309 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13310 else
13311 accessibility = dwarf2_default_access_attribute (die, cu);
13312 switch (accessibility)
13313 {
13314 case DW_ACCESS_private:
13315 fnp->is_private = 1;
13316 break;
13317 case DW_ACCESS_protected:
13318 fnp->is_protected = 1;
13319 break;
13320 }
13321
13322 /* Check for artificial methods. */
13323 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13324 if (attr && DW_UNSND (attr) != 0)
13325 fnp->is_artificial = 1;
13326
13327 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13328
13329 /* Get index in virtual function table if it is a virtual member
13330 function. For older versions of GCC, this is an offset in the
13331 appropriate virtual table, as specified by DW_AT_containing_type.
13332 For everyone else, it is an expression to be evaluated relative
13333 to the object address. */
13334
13335 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13336 if (attr)
13337 {
13338 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13339 {
13340 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13341 {
13342 /* Old-style GCC. */
13343 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13344 }
13345 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13346 || (DW_BLOCK (attr)->size > 1
13347 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13348 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13349 {
13350 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13351 if ((fnp->voffset % cu->header.addr_size) != 0)
13352 dwarf2_complex_location_expr_complaint ();
13353 else
13354 fnp->voffset /= cu->header.addr_size;
13355 fnp->voffset += 2;
13356 }
13357 else
13358 dwarf2_complex_location_expr_complaint ();
13359
13360 if (!fnp->fcontext)
13361 {
13362 /* If there is no `this' field and no DW_AT_containing_type,
13363 we cannot actually find a base class context for the
13364 vtable! */
13365 if (TYPE_NFIELDS (this_type) == 0
13366 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13367 {
13368 complaint (&symfile_complaints,
13369 _("cannot determine context for virtual member "
13370 "function \"%s\" (offset %d)"),
13371 fieldname, to_underlying (die->sect_off));
13372 }
13373 else
13374 {
13375 fnp->fcontext
13376 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13377 }
13378 }
13379 }
13380 else if (attr_form_is_section_offset (attr))
13381 {
13382 dwarf2_complex_location_expr_complaint ();
13383 }
13384 else
13385 {
13386 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13387 fieldname);
13388 }
13389 }
13390 else
13391 {
13392 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13393 if (attr && DW_UNSND (attr))
13394 {
13395 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13396 complaint (&symfile_complaints,
13397 _("Member function \"%s\" (offset %d) is virtual "
13398 "but the vtable offset is not specified"),
13399 fieldname, to_underlying (die->sect_off));
13400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13401 TYPE_CPLUS_DYNAMIC (type) = 1;
13402 }
13403 }
13404 }
13405
13406 /* Create the vector of member function fields, and attach it to the type. */
13407
13408 static void
13409 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13410 struct dwarf2_cu *cu)
13411 {
13412 struct fnfieldlist *flp;
13413 int i;
13414
13415 if (cu->language == language_ada)
13416 error (_("unexpected member functions in Ada type"));
13417
13418 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13419 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13420 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13421
13422 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13423 {
13424 struct nextfnfield *nfp = flp->head;
13425 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13426 int k;
13427
13428 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13429 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13430 fn_flp->fn_fields = (struct fn_field *)
13431 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13432 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13433 fn_flp->fn_fields[k] = nfp->fnfield;
13434 }
13435
13436 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13437 }
13438
13439 /* Returns non-zero if NAME is the name of a vtable member in CU's
13440 language, zero otherwise. */
13441 static int
13442 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13443 {
13444 static const char vptr[] = "_vptr";
13445 static const char vtable[] = "vtable";
13446
13447 /* Look for the C++ form of the vtable. */
13448 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13449 return 1;
13450
13451 return 0;
13452 }
13453
13454 /* GCC outputs unnamed structures that are really pointers to member
13455 functions, with the ABI-specified layout. If TYPE describes
13456 such a structure, smash it into a member function type.
13457
13458 GCC shouldn't do this; it should just output pointer to member DIEs.
13459 This is GCC PR debug/28767. */
13460
13461 static void
13462 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13463 {
13464 struct type *pfn_type, *self_type, *new_type;
13465
13466 /* Check for a structure with no name and two children. */
13467 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13468 return;
13469
13470 /* Check for __pfn and __delta members. */
13471 if (TYPE_FIELD_NAME (type, 0) == NULL
13472 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13473 || TYPE_FIELD_NAME (type, 1) == NULL
13474 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13475 return;
13476
13477 /* Find the type of the method. */
13478 pfn_type = TYPE_FIELD_TYPE (type, 0);
13479 if (pfn_type == NULL
13480 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13481 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13482 return;
13483
13484 /* Look for the "this" argument. */
13485 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13486 if (TYPE_NFIELDS (pfn_type) == 0
13487 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13488 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13489 return;
13490
13491 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13492 new_type = alloc_type (objfile);
13493 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13494 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13495 TYPE_VARARGS (pfn_type));
13496 smash_to_methodptr_type (type, new_type);
13497 }
13498
13499 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13500 (icc). */
13501
13502 static int
13503 producer_is_icc (struct dwarf2_cu *cu)
13504 {
13505 if (!cu->checked_producer)
13506 check_producer (cu);
13507
13508 return cu->producer_is_icc;
13509 }
13510
13511 /* Called when we find the DIE that starts a structure or union scope
13512 (definition) to create a type for the structure or union. Fill in
13513 the type's name and general properties; the members will not be
13514 processed until process_structure_scope. A symbol table entry for
13515 the type will also not be done until process_structure_scope (assuming
13516 the type has a name).
13517
13518 NOTE: we need to call these functions regardless of whether or not the
13519 DIE has a DW_AT_name attribute, since it might be an anonymous
13520 structure or union. This gets the type entered into our set of
13521 user defined types. */
13522
13523 static struct type *
13524 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13525 {
13526 struct objfile *objfile = cu->objfile;
13527 struct type *type;
13528 struct attribute *attr;
13529 const char *name;
13530
13531 /* If the definition of this type lives in .debug_types, read that type.
13532 Don't follow DW_AT_specification though, that will take us back up
13533 the chain and we want to go down. */
13534 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13535 if (attr)
13536 {
13537 type = get_DW_AT_signature_type (die, attr, cu);
13538
13539 /* The type's CU may not be the same as CU.
13540 Ensure TYPE is recorded with CU in die_type_hash. */
13541 return set_die_type (die, type, cu);
13542 }
13543
13544 type = alloc_type (objfile);
13545 INIT_CPLUS_SPECIFIC (type);
13546
13547 name = dwarf2_name (die, cu);
13548 if (name != NULL)
13549 {
13550 if (cu->language == language_cplus
13551 || cu->language == language_d
13552 || cu->language == language_rust)
13553 {
13554 const char *full_name = dwarf2_full_name (name, die, cu);
13555
13556 /* dwarf2_full_name might have already finished building the DIE's
13557 type. If so, there is no need to continue. */
13558 if (get_die_type (die, cu) != NULL)
13559 return get_die_type (die, cu);
13560
13561 TYPE_TAG_NAME (type) = full_name;
13562 if (die->tag == DW_TAG_structure_type
13563 || die->tag == DW_TAG_class_type)
13564 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13565 }
13566 else
13567 {
13568 /* The name is already allocated along with this objfile, so
13569 we don't need to duplicate it for the type. */
13570 TYPE_TAG_NAME (type) = name;
13571 if (die->tag == DW_TAG_class_type)
13572 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13573 }
13574 }
13575
13576 if (die->tag == DW_TAG_structure_type)
13577 {
13578 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13579 }
13580 else if (die->tag == DW_TAG_union_type)
13581 {
13582 TYPE_CODE (type) = TYPE_CODE_UNION;
13583 }
13584 else
13585 {
13586 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13587 }
13588
13589 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13590 TYPE_DECLARED_CLASS (type) = 1;
13591
13592 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13593 if (attr)
13594 {
13595 if (attr_form_is_constant (attr))
13596 TYPE_LENGTH (type) = DW_UNSND (attr);
13597 else
13598 {
13599 /* For the moment, dynamic type sizes are not supported
13600 by GDB's struct type. The actual size is determined
13601 on-demand when resolving the type of a given object,
13602 so set the type's length to zero for now. Otherwise,
13603 we record an expression as the length, and that expression
13604 could lead to a very large value, which could eventually
13605 lead to us trying to allocate that much memory when creating
13606 a value of that type. */
13607 TYPE_LENGTH (type) = 0;
13608 }
13609 }
13610 else
13611 {
13612 TYPE_LENGTH (type) = 0;
13613 }
13614
13615 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13616 {
13617 /* ICC does not output the required DW_AT_declaration
13618 on incomplete types, but gives them a size of zero. */
13619 TYPE_STUB (type) = 1;
13620 }
13621 else
13622 TYPE_STUB_SUPPORTED (type) = 1;
13623
13624 if (die_is_declaration (die, cu))
13625 TYPE_STUB (type) = 1;
13626 else if (attr == NULL && die->child == NULL
13627 && producer_is_realview (cu->producer))
13628 /* RealView does not output the required DW_AT_declaration
13629 on incomplete types. */
13630 TYPE_STUB (type) = 1;
13631
13632 /* We need to add the type field to the die immediately so we don't
13633 infinitely recurse when dealing with pointers to the structure
13634 type within the structure itself. */
13635 set_die_type (die, type, cu);
13636
13637 /* set_die_type should be already done. */
13638 set_descriptive_type (type, die, cu);
13639
13640 return type;
13641 }
13642
13643 /* Finish creating a structure or union type, including filling in
13644 its members and creating a symbol for it. */
13645
13646 static void
13647 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13648 {
13649 struct objfile *objfile = cu->objfile;
13650 struct die_info *child_die;
13651 struct type *type;
13652
13653 type = get_die_type (die, cu);
13654 if (type == NULL)
13655 type = read_structure_type (die, cu);
13656
13657 if (die->child != NULL && ! die_is_declaration (die, cu))
13658 {
13659 struct field_info fi;
13660 VEC (symbolp) *template_args = NULL;
13661 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13662
13663 memset (&fi, 0, sizeof (struct field_info));
13664
13665 child_die = die->child;
13666
13667 while (child_die && child_die->tag)
13668 {
13669 if (child_die->tag == DW_TAG_member
13670 || child_die->tag == DW_TAG_variable)
13671 {
13672 /* NOTE: carlton/2002-11-05: A C++ static data member
13673 should be a DW_TAG_member that is a declaration, but
13674 all versions of G++ as of this writing (so through at
13675 least 3.2.1) incorrectly generate DW_TAG_variable
13676 tags for them instead. */
13677 dwarf2_add_field (&fi, child_die, cu);
13678 }
13679 else if (child_die->tag == DW_TAG_subprogram)
13680 {
13681 /* Rust doesn't have member functions in the C++ sense.
13682 However, it does emit ordinary functions as children
13683 of a struct DIE. */
13684 if (cu->language == language_rust)
13685 read_func_scope (child_die, cu);
13686 else
13687 {
13688 /* C++ member function. */
13689 dwarf2_add_member_fn (&fi, child_die, type, cu);
13690 }
13691 }
13692 else if (child_die->tag == DW_TAG_inheritance)
13693 {
13694 /* C++ base class field. */
13695 dwarf2_add_field (&fi, child_die, cu);
13696 }
13697 else if (child_die->tag == DW_TAG_typedef)
13698 dwarf2_add_typedef (&fi, child_die, cu);
13699 else if (child_die->tag == DW_TAG_template_type_param
13700 || child_die->tag == DW_TAG_template_value_param)
13701 {
13702 struct symbol *arg = new_symbol (child_die, NULL, cu);
13703
13704 if (arg != NULL)
13705 VEC_safe_push (symbolp, template_args, arg);
13706 }
13707
13708 child_die = sibling_die (child_die);
13709 }
13710
13711 /* Attach template arguments to type. */
13712 if (! VEC_empty (symbolp, template_args))
13713 {
13714 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13715 TYPE_N_TEMPLATE_ARGUMENTS (type)
13716 = VEC_length (symbolp, template_args);
13717 TYPE_TEMPLATE_ARGUMENTS (type)
13718 = XOBNEWVEC (&objfile->objfile_obstack,
13719 struct symbol *,
13720 TYPE_N_TEMPLATE_ARGUMENTS (type));
13721 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13722 VEC_address (symbolp, template_args),
13723 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13724 * sizeof (struct symbol *)));
13725 VEC_free (symbolp, template_args);
13726 }
13727
13728 /* Attach fields and member functions to the type. */
13729 if (fi.nfields)
13730 dwarf2_attach_fields_to_type (&fi, type, cu);
13731 if (fi.nfnfields)
13732 {
13733 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13734
13735 /* Get the type which refers to the base class (possibly this
13736 class itself) which contains the vtable pointer for the current
13737 class from the DW_AT_containing_type attribute. This use of
13738 DW_AT_containing_type is a GNU extension. */
13739
13740 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13741 {
13742 struct type *t = die_containing_type (die, cu);
13743
13744 set_type_vptr_basetype (type, t);
13745 if (type == t)
13746 {
13747 int i;
13748
13749 /* Our own class provides vtbl ptr. */
13750 for (i = TYPE_NFIELDS (t) - 1;
13751 i >= TYPE_N_BASECLASSES (t);
13752 --i)
13753 {
13754 const char *fieldname = TYPE_FIELD_NAME (t, i);
13755
13756 if (is_vtable_name (fieldname, cu))
13757 {
13758 set_type_vptr_fieldno (type, i);
13759 break;
13760 }
13761 }
13762
13763 /* Complain if virtual function table field not found. */
13764 if (i < TYPE_N_BASECLASSES (t))
13765 complaint (&symfile_complaints,
13766 _("virtual function table pointer "
13767 "not found when defining class '%s'"),
13768 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13769 "");
13770 }
13771 else
13772 {
13773 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13774 }
13775 }
13776 else if (cu->producer
13777 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13778 {
13779 /* The IBM XLC compiler does not provide direct indication
13780 of the containing type, but the vtable pointer is
13781 always named __vfp. */
13782
13783 int i;
13784
13785 for (i = TYPE_NFIELDS (type) - 1;
13786 i >= TYPE_N_BASECLASSES (type);
13787 --i)
13788 {
13789 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13790 {
13791 set_type_vptr_fieldno (type, i);
13792 set_type_vptr_basetype (type, type);
13793 break;
13794 }
13795 }
13796 }
13797 }
13798
13799 /* Copy fi.typedef_field_list linked list elements content into the
13800 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13801 if (fi.typedef_field_list)
13802 {
13803 int i = fi.typedef_field_list_count;
13804
13805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13806 TYPE_TYPEDEF_FIELD_ARRAY (type)
13807 = ((struct typedef_field *)
13808 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13809 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13810
13811 /* Reverse the list order to keep the debug info elements order. */
13812 while (--i >= 0)
13813 {
13814 struct typedef_field *dest, *src;
13815
13816 dest = &TYPE_TYPEDEF_FIELD (type, i);
13817 src = &fi.typedef_field_list->field;
13818 fi.typedef_field_list = fi.typedef_field_list->next;
13819 *dest = *src;
13820 }
13821 }
13822
13823 do_cleanups (back_to);
13824 }
13825
13826 quirk_gcc_member_function_pointer (type, objfile);
13827
13828 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13829 snapshots) has been known to create a die giving a declaration
13830 for a class that has, as a child, a die giving a definition for a
13831 nested class. So we have to process our children even if the
13832 current die is a declaration. Normally, of course, a declaration
13833 won't have any children at all. */
13834
13835 child_die = die->child;
13836
13837 while (child_die != NULL && child_die->tag)
13838 {
13839 if (child_die->tag == DW_TAG_member
13840 || child_die->tag == DW_TAG_variable
13841 || child_die->tag == DW_TAG_inheritance
13842 || child_die->tag == DW_TAG_template_value_param
13843 || child_die->tag == DW_TAG_template_type_param)
13844 {
13845 /* Do nothing. */
13846 }
13847 else
13848 process_die (child_die, cu);
13849
13850 child_die = sibling_die (child_die);
13851 }
13852
13853 /* Do not consider external references. According to the DWARF standard,
13854 these DIEs are identified by the fact that they have no byte_size
13855 attribute, and a declaration attribute. */
13856 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13857 || !die_is_declaration (die, cu))
13858 new_symbol (die, type, cu);
13859 }
13860
13861 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13862 update TYPE using some information only available in DIE's children. */
13863
13864 static void
13865 update_enumeration_type_from_children (struct die_info *die,
13866 struct type *type,
13867 struct dwarf2_cu *cu)
13868 {
13869 struct die_info *child_die;
13870 int unsigned_enum = 1;
13871 int flag_enum = 1;
13872 ULONGEST mask = 0;
13873
13874 auto_obstack obstack;
13875
13876 for (child_die = die->child;
13877 child_die != NULL && child_die->tag;
13878 child_die = sibling_die (child_die))
13879 {
13880 struct attribute *attr;
13881 LONGEST value;
13882 const gdb_byte *bytes;
13883 struct dwarf2_locexpr_baton *baton;
13884 const char *name;
13885
13886 if (child_die->tag != DW_TAG_enumerator)
13887 continue;
13888
13889 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13890 if (attr == NULL)
13891 continue;
13892
13893 name = dwarf2_name (child_die, cu);
13894 if (name == NULL)
13895 name = "<anonymous enumerator>";
13896
13897 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13898 &value, &bytes, &baton);
13899 if (value < 0)
13900 {
13901 unsigned_enum = 0;
13902 flag_enum = 0;
13903 }
13904 else if ((mask & value) != 0)
13905 flag_enum = 0;
13906 else
13907 mask |= value;
13908
13909 /* If we already know that the enum type is neither unsigned, nor
13910 a flag type, no need to look at the rest of the enumerates. */
13911 if (!unsigned_enum && !flag_enum)
13912 break;
13913 }
13914
13915 if (unsigned_enum)
13916 TYPE_UNSIGNED (type) = 1;
13917 if (flag_enum)
13918 TYPE_FLAG_ENUM (type) = 1;
13919 }
13920
13921 /* Given a DW_AT_enumeration_type die, set its type. We do not
13922 complete the type's fields yet, or create any symbols. */
13923
13924 static struct type *
13925 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13926 {
13927 struct objfile *objfile = cu->objfile;
13928 struct type *type;
13929 struct attribute *attr;
13930 const char *name;
13931
13932 /* If the definition of this type lives in .debug_types, read that type.
13933 Don't follow DW_AT_specification though, that will take us back up
13934 the chain and we want to go down. */
13935 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13936 if (attr)
13937 {
13938 type = get_DW_AT_signature_type (die, attr, cu);
13939
13940 /* The type's CU may not be the same as CU.
13941 Ensure TYPE is recorded with CU in die_type_hash. */
13942 return set_die_type (die, type, cu);
13943 }
13944
13945 type = alloc_type (objfile);
13946
13947 TYPE_CODE (type) = TYPE_CODE_ENUM;
13948 name = dwarf2_full_name (NULL, die, cu);
13949 if (name != NULL)
13950 TYPE_TAG_NAME (type) = name;
13951
13952 attr = dwarf2_attr (die, DW_AT_type, cu);
13953 if (attr != NULL)
13954 {
13955 struct type *underlying_type = die_type (die, cu);
13956
13957 TYPE_TARGET_TYPE (type) = underlying_type;
13958 }
13959
13960 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13961 if (attr)
13962 {
13963 TYPE_LENGTH (type) = DW_UNSND (attr);
13964 }
13965 else
13966 {
13967 TYPE_LENGTH (type) = 0;
13968 }
13969
13970 /* The enumeration DIE can be incomplete. In Ada, any type can be
13971 declared as private in the package spec, and then defined only
13972 inside the package body. Such types are known as Taft Amendment
13973 Types. When another package uses such a type, an incomplete DIE
13974 may be generated by the compiler. */
13975 if (die_is_declaration (die, cu))
13976 TYPE_STUB (type) = 1;
13977
13978 /* Finish the creation of this type by using the enum's children.
13979 We must call this even when the underlying type has been provided
13980 so that we can determine if we're looking at a "flag" enum. */
13981 update_enumeration_type_from_children (die, type, cu);
13982
13983 /* If this type has an underlying type that is not a stub, then we
13984 may use its attributes. We always use the "unsigned" attribute
13985 in this situation, because ordinarily we guess whether the type
13986 is unsigned -- but the guess can be wrong and the underlying type
13987 can tell us the reality. However, we defer to a local size
13988 attribute if one exists, because this lets the compiler override
13989 the underlying type if needed. */
13990 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13991 {
13992 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13993 if (TYPE_LENGTH (type) == 0)
13994 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13995 }
13996
13997 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13998
13999 return set_die_type (die, type, cu);
14000 }
14001
14002 /* Given a pointer to a die which begins an enumeration, process all
14003 the dies that define the members of the enumeration, and create the
14004 symbol for the enumeration type.
14005
14006 NOTE: We reverse the order of the element list. */
14007
14008 static void
14009 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14010 {
14011 struct type *this_type;
14012
14013 this_type = get_die_type (die, cu);
14014 if (this_type == NULL)
14015 this_type = read_enumeration_type (die, cu);
14016
14017 if (die->child != NULL)
14018 {
14019 struct die_info *child_die;
14020 struct symbol *sym;
14021 struct field *fields = NULL;
14022 int num_fields = 0;
14023 const char *name;
14024
14025 child_die = die->child;
14026 while (child_die && child_die->tag)
14027 {
14028 if (child_die->tag != DW_TAG_enumerator)
14029 {
14030 process_die (child_die, cu);
14031 }
14032 else
14033 {
14034 name = dwarf2_name (child_die, cu);
14035 if (name)
14036 {
14037 sym = new_symbol (child_die, this_type, cu);
14038
14039 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14040 {
14041 fields = (struct field *)
14042 xrealloc (fields,
14043 (num_fields + DW_FIELD_ALLOC_CHUNK)
14044 * sizeof (struct field));
14045 }
14046
14047 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14048 FIELD_TYPE (fields[num_fields]) = NULL;
14049 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14050 FIELD_BITSIZE (fields[num_fields]) = 0;
14051
14052 num_fields++;
14053 }
14054 }
14055
14056 child_die = sibling_die (child_die);
14057 }
14058
14059 if (num_fields)
14060 {
14061 TYPE_NFIELDS (this_type) = num_fields;
14062 TYPE_FIELDS (this_type) = (struct field *)
14063 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14064 memcpy (TYPE_FIELDS (this_type), fields,
14065 sizeof (struct field) * num_fields);
14066 xfree (fields);
14067 }
14068 }
14069
14070 /* If we are reading an enum from a .debug_types unit, and the enum
14071 is a declaration, and the enum is not the signatured type in the
14072 unit, then we do not want to add a symbol for it. Adding a
14073 symbol would in some cases obscure the true definition of the
14074 enum, giving users an incomplete type when the definition is
14075 actually available. Note that we do not want to do this for all
14076 enums which are just declarations, because C++0x allows forward
14077 enum declarations. */
14078 if (cu->per_cu->is_debug_types
14079 && die_is_declaration (die, cu))
14080 {
14081 struct signatured_type *sig_type;
14082
14083 sig_type = (struct signatured_type *) cu->per_cu;
14084 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14085 if (sig_type->type_offset_in_section != die->sect_off)
14086 return;
14087 }
14088
14089 new_symbol (die, this_type, cu);
14090 }
14091
14092 /* Extract all information from a DW_TAG_array_type DIE and put it in
14093 the DIE's type field. For now, this only handles one dimensional
14094 arrays. */
14095
14096 static struct type *
14097 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14098 {
14099 struct objfile *objfile = cu->objfile;
14100 struct die_info *child_die;
14101 struct type *type;
14102 struct type *element_type, *range_type, *index_type;
14103 struct type **range_types = NULL;
14104 struct attribute *attr;
14105 int ndim = 0;
14106 struct cleanup *back_to;
14107 const char *name;
14108 unsigned int bit_stride = 0;
14109
14110 element_type = die_type (die, cu);
14111
14112 /* The die_type call above may have already set the type for this DIE. */
14113 type = get_die_type (die, cu);
14114 if (type)
14115 return type;
14116
14117 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14118 if (attr != NULL)
14119 bit_stride = DW_UNSND (attr) * 8;
14120
14121 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14122 if (attr != NULL)
14123 bit_stride = DW_UNSND (attr);
14124
14125 /* Irix 6.2 native cc creates array types without children for
14126 arrays with unspecified length. */
14127 if (die->child == NULL)
14128 {
14129 index_type = objfile_type (objfile)->builtin_int;
14130 range_type = create_static_range_type (NULL, index_type, 0, -1);
14131 type = create_array_type_with_stride (NULL, element_type, range_type,
14132 bit_stride);
14133 return set_die_type (die, type, cu);
14134 }
14135
14136 back_to = make_cleanup (null_cleanup, NULL);
14137 child_die = die->child;
14138 while (child_die && child_die->tag)
14139 {
14140 if (child_die->tag == DW_TAG_subrange_type)
14141 {
14142 struct type *child_type = read_type_die (child_die, cu);
14143
14144 if (child_type != NULL)
14145 {
14146 /* The range type was succesfully read. Save it for the
14147 array type creation. */
14148 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14149 {
14150 range_types = (struct type **)
14151 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14152 * sizeof (struct type *));
14153 if (ndim == 0)
14154 make_cleanup (free_current_contents, &range_types);
14155 }
14156 range_types[ndim++] = child_type;
14157 }
14158 }
14159 child_die = sibling_die (child_die);
14160 }
14161
14162 /* Dwarf2 dimensions are output from left to right, create the
14163 necessary array types in backwards order. */
14164
14165 type = element_type;
14166
14167 if (read_array_order (die, cu) == DW_ORD_col_major)
14168 {
14169 int i = 0;
14170
14171 while (i < ndim)
14172 type = create_array_type_with_stride (NULL, type, range_types[i++],
14173 bit_stride);
14174 }
14175 else
14176 {
14177 while (ndim-- > 0)
14178 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14179 bit_stride);
14180 }
14181
14182 /* Understand Dwarf2 support for vector types (like they occur on
14183 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14184 array type. This is not part of the Dwarf2/3 standard yet, but a
14185 custom vendor extension. The main difference between a regular
14186 array and the vector variant is that vectors are passed by value
14187 to functions. */
14188 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14189 if (attr)
14190 make_vector_type (type);
14191
14192 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14193 implementation may choose to implement triple vectors using this
14194 attribute. */
14195 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14196 if (attr)
14197 {
14198 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14199 TYPE_LENGTH (type) = DW_UNSND (attr);
14200 else
14201 complaint (&symfile_complaints,
14202 _("DW_AT_byte_size for array type smaller "
14203 "than the total size of elements"));
14204 }
14205
14206 name = dwarf2_name (die, cu);
14207 if (name)
14208 TYPE_NAME (type) = name;
14209
14210 /* Install the type in the die. */
14211 set_die_type (die, type, cu);
14212
14213 /* set_die_type should be already done. */
14214 set_descriptive_type (type, die, cu);
14215
14216 do_cleanups (back_to);
14217
14218 return type;
14219 }
14220
14221 static enum dwarf_array_dim_ordering
14222 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14223 {
14224 struct attribute *attr;
14225
14226 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14227
14228 if (attr)
14229 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14230
14231 /* GNU F77 is a special case, as at 08/2004 array type info is the
14232 opposite order to the dwarf2 specification, but data is still
14233 laid out as per normal fortran.
14234
14235 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14236 version checking. */
14237
14238 if (cu->language == language_fortran
14239 && cu->producer && strstr (cu->producer, "GNU F77"))
14240 {
14241 return DW_ORD_row_major;
14242 }
14243
14244 switch (cu->language_defn->la_array_ordering)
14245 {
14246 case array_column_major:
14247 return DW_ORD_col_major;
14248 case array_row_major:
14249 default:
14250 return DW_ORD_row_major;
14251 };
14252 }
14253
14254 /* Extract all information from a DW_TAG_set_type DIE and put it in
14255 the DIE's type field. */
14256
14257 static struct type *
14258 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14259 {
14260 struct type *domain_type, *set_type;
14261 struct attribute *attr;
14262
14263 domain_type = die_type (die, cu);
14264
14265 /* The die_type call above may have already set the type for this DIE. */
14266 set_type = get_die_type (die, cu);
14267 if (set_type)
14268 return set_type;
14269
14270 set_type = create_set_type (NULL, domain_type);
14271
14272 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14273 if (attr)
14274 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14275
14276 return set_die_type (die, set_type, cu);
14277 }
14278
14279 /* A helper for read_common_block that creates a locexpr baton.
14280 SYM is the symbol which we are marking as computed.
14281 COMMON_DIE is the DIE for the common block.
14282 COMMON_LOC is the location expression attribute for the common
14283 block itself.
14284 MEMBER_LOC is the location expression attribute for the particular
14285 member of the common block that we are processing.
14286 CU is the CU from which the above come. */
14287
14288 static void
14289 mark_common_block_symbol_computed (struct symbol *sym,
14290 struct die_info *common_die,
14291 struct attribute *common_loc,
14292 struct attribute *member_loc,
14293 struct dwarf2_cu *cu)
14294 {
14295 struct objfile *objfile = dwarf2_per_objfile->objfile;
14296 struct dwarf2_locexpr_baton *baton;
14297 gdb_byte *ptr;
14298 unsigned int cu_off;
14299 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14300 LONGEST offset = 0;
14301
14302 gdb_assert (common_loc && member_loc);
14303 gdb_assert (attr_form_is_block (common_loc));
14304 gdb_assert (attr_form_is_block (member_loc)
14305 || attr_form_is_constant (member_loc));
14306
14307 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14308 baton->per_cu = cu->per_cu;
14309 gdb_assert (baton->per_cu);
14310
14311 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14312
14313 if (attr_form_is_constant (member_loc))
14314 {
14315 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14316 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14317 }
14318 else
14319 baton->size += DW_BLOCK (member_loc)->size;
14320
14321 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14322 baton->data = ptr;
14323
14324 *ptr++ = DW_OP_call4;
14325 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14326 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14327 ptr += 4;
14328
14329 if (attr_form_is_constant (member_loc))
14330 {
14331 *ptr++ = DW_OP_addr;
14332 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14333 ptr += cu->header.addr_size;
14334 }
14335 else
14336 {
14337 /* We have to copy the data here, because DW_OP_call4 will only
14338 use a DW_AT_location attribute. */
14339 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14340 ptr += DW_BLOCK (member_loc)->size;
14341 }
14342
14343 *ptr++ = DW_OP_plus;
14344 gdb_assert (ptr - baton->data == baton->size);
14345
14346 SYMBOL_LOCATION_BATON (sym) = baton;
14347 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14348 }
14349
14350 /* Create appropriate locally-scoped variables for all the
14351 DW_TAG_common_block entries. Also create a struct common_block
14352 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14353 is used to sepate the common blocks name namespace from regular
14354 variable names. */
14355
14356 static void
14357 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14358 {
14359 struct attribute *attr;
14360
14361 attr = dwarf2_attr (die, DW_AT_location, cu);
14362 if (attr)
14363 {
14364 /* Support the .debug_loc offsets. */
14365 if (attr_form_is_block (attr))
14366 {
14367 /* Ok. */
14368 }
14369 else if (attr_form_is_section_offset (attr))
14370 {
14371 dwarf2_complex_location_expr_complaint ();
14372 attr = NULL;
14373 }
14374 else
14375 {
14376 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14377 "common block member");
14378 attr = NULL;
14379 }
14380 }
14381
14382 if (die->child != NULL)
14383 {
14384 struct objfile *objfile = cu->objfile;
14385 struct die_info *child_die;
14386 size_t n_entries = 0, size;
14387 struct common_block *common_block;
14388 struct symbol *sym;
14389
14390 for (child_die = die->child;
14391 child_die && child_die->tag;
14392 child_die = sibling_die (child_die))
14393 ++n_entries;
14394
14395 size = (sizeof (struct common_block)
14396 + (n_entries - 1) * sizeof (struct symbol *));
14397 common_block
14398 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14399 size);
14400 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14401 common_block->n_entries = 0;
14402
14403 for (child_die = die->child;
14404 child_die && child_die->tag;
14405 child_die = sibling_die (child_die))
14406 {
14407 /* Create the symbol in the DW_TAG_common_block block in the current
14408 symbol scope. */
14409 sym = new_symbol (child_die, NULL, cu);
14410 if (sym != NULL)
14411 {
14412 struct attribute *member_loc;
14413
14414 common_block->contents[common_block->n_entries++] = sym;
14415
14416 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14417 cu);
14418 if (member_loc)
14419 {
14420 /* GDB has handled this for a long time, but it is
14421 not specified by DWARF. It seems to have been
14422 emitted by gfortran at least as recently as:
14423 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14424 complaint (&symfile_complaints,
14425 _("Variable in common block has "
14426 "DW_AT_data_member_location "
14427 "- DIE at 0x%x [in module %s]"),
14428 to_underlying (child_die->sect_off),
14429 objfile_name (cu->objfile));
14430
14431 if (attr_form_is_section_offset (member_loc))
14432 dwarf2_complex_location_expr_complaint ();
14433 else if (attr_form_is_constant (member_loc)
14434 || attr_form_is_block (member_loc))
14435 {
14436 if (attr)
14437 mark_common_block_symbol_computed (sym, die, attr,
14438 member_loc, cu);
14439 }
14440 else
14441 dwarf2_complex_location_expr_complaint ();
14442 }
14443 }
14444 }
14445
14446 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14447 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14448 }
14449 }
14450
14451 /* Create a type for a C++ namespace. */
14452
14453 static struct type *
14454 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14455 {
14456 struct objfile *objfile = cu->objfile;
14457 const char *previous_prefix, *name;
14458 int is_anonymous;
14459 struct type *type;
14460
14461 /* For extensions, reuse the type of the original namespace. */
14462 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14463 {
14464 struct die_info *ext_die;
14465 struct dwarf2_cu *ext_cu = cu;
14466
14467 ext_die = dwarf2_extension (die, &ext_cu);
14468 type = read_type_die (ext_die, ext_cu);
14469
14470 /* EXT_CU may not be the same as CU.
14471 Ensure TYPE is recorded with CU in die_type_hash. */
14472 return set_die_type (die, type, cu);
14473 }
14474
14475 name = namespace_name (die, &is_anonymous, cu);
14476
14477 /* Now build the name of the current namespace. */
14478
14479 previous_prefix = determine_prefix (die, cu);
14480 if (previous_prefix[0] != '\0')
14481 name = typename_concat (&objfile->objfile_obstack,
14482 previous_prefix, name, 0, cu);
14483
14484 /* Create the type. */
14485 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14486 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14487
14488 return set_die_type (die, type, cu);
14489 }
14490
14491 /* Read a namespace scope. */
14492
14493 static void
14494 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14495 {
14496 struct objfile *objfile = cu->objfile;
14497 int is_anonymous;
14498
14499 /* Add a symbol associated to this if we haven't seen the namespace
14500 before. Also, add a using directive if it's an anonymous
14501 namespace. */
14502
14503 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14504 {
14505 struct type *type;
14506
14507 type = read_type_die (die, cu);
14508 new_symbol (die, type, cu);
14509
14510 namespace_name (die, &is_anonymous, cu);
14511 if (is_anonymous)
14512 {
14513 const char *previous_prefix = determine_prefix (die, cu);
14514
14515 add_using_directive (using_directives (cu->language),
14516 previous_prefix, TYPE_NAME (type), NULL,
14517 NULL, NULL, 0, &objfile->objfile_obstack);
14518 }
14519 }
14520
14521 if (die->child != NULL)
14522 {
14523 struct die_info *child_die = die->child;
14524
14525 while (child_die && child_die->tag)
14526 {
14527 process_die (child_die, cu);
14528 child_die = sibling_die (child_die);
14529 }
14530 }
14531 }
14532
14533 /* Read a Fortran module as type. This DIE can be only a declaration used for
14534 imported module. Still we need that type as local Fortran "use ... only"
14535 declaration imports depend on the created type in determine_prefix. */
14536
14537 static struct type *
14538 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14539 {
14540 struct objfile *objfile = cu->objfile;
14541 const char *module_name;
14542 struct type *type;
14543
14544 module_name = dwarf2_name (die, cu);
14545 if (!module_name)
14546 complaint (&symfile_complaints,
14547 _("DW_TAG_module has no name, offset 0x%x"),
14548 to_underlying (die->sect_off));
14549 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14550
14551 /* determine_prefix uses TYPE_TAG_NAME. */
14552 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14553
14554 return set_die_type (die, type, cu);
14555 }
14556
14557 /* Read a Fortran module. */
14558
14559 static void
14560 read_module (struct die_info *die, struct dwarf2_cu *cu)
14561 {
14562 struct die_info *child_die = die->child;
14563 struct type *type;
14564
14565 type = read_type_die (die, cu);
14566 new_symbol (die, type, cu);
14567
14568 while (child_die && child_die->tag)
14569 {
14570 process_die (child_die, cu);
14571 child_die = sibling_die (child_die);
14572 }
14573 }
14574
14575 /* Return the name of the namespace represented by DIE. Set
14576 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14577 namespace. */
14578
14579 static const char *
14580 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14581 {
14582 struct die_info *current_die;
14583 const char *name = NULL;
14584
14585 /* Loop through the extensions until we find a name. */
14586
14587 for (current_die = die;
14588 current_die != NULL;
14589 current_die = dwarf2_extension (die, &cu))
14590 {
14591 /* We don't use dwarf2_name here so that we can detect the absence
14592 of a name -> anonymous namespace. */
14593 name = dwarf2_string_attr (die, DW_AT_name, cu);
14594
14595 if (name != NULL)
14596 break;
14597 }
14598
14599 /* Is it an anonymous namespace? */
14600
14601 *is_anonymous = (name == NULL);
14602 if (*is_anonymous)
14603 name = CP_ANONYMOUS_NAMESPACE_STR;
14604
14605 return name;
14606 }
14607
14608 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14609 the user defined type vector. */
14610
14611 static struct type *
14612 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14613 {
14614 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14615 struct comp_unit_head *cu_header = &cu->header;
14616 struct type *type;
14617 struct attribute *attr_byte_size;
14618 struct attribute *attr_address_class;
14619 int byte_size, addr_class;
14620 struct type *target_type;
14621
14622 target_type = die_type (die, cu);
14623
14624 /* The die_type call above may have already set the type for this DIE. */
14625 type = get_die_type (die, cu);
14626 if (type)
14627 return type;
14628
14629 type = lookup_pointer_type (target_type);
14630
14631 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14632 if (attr_byte_size)
14633 byte_size = DW_UNSND (attr_byte_size);
14634 else
14635 byte_size = cu_header->addr_size;
14636
14637 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14638 if (attr_address_class)
14639 addr_class = DW_UNSND (attr_address_class);
14640 else
14641 addr_class = DW_ADDR_none;
14642
14643 /* If the pointer size or address class is different than the
14644 default, create a type variant marked as such and set the
14645 length accordingly. */
14646 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14647 {
14648 if (gdbarch_address_class_type_flags_p (gdbarch))
14649 {
14650 int type_flags;
14651
14652 type_flags = gdbarch_address_class_type_flags
14653 (gdbarch, byte_size, addr_class);
14654 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14655 == 0);
14656 type = make_type_with_address_space (type, type_flags);
14657 }
14658 else if (TYPE_LENGTH (type) != byte_size)
14659 {
14660 complaint (&symfile_complaints,
14661 _("invalid pointer size %d"), byte_size);
14662 }
14663 else
14664 {
14665 /* Should we also complain about unhandled address classes? */
14666 }
14667 }
14668
14669 TYPE_LENGTH (type) = byte_size;
14670 return set_die_type (die, type, cu);
14671 }
14672
14673 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14674 the user defined type vector. */
14675
14676 static struct type *
14677 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14678 {
14679 struct type *type;
14680 struct type *to_type;
14681 struct type *domain;
14682
14683 to_type = die_type (die, cu);
14684 domain = die_containing_type (die, cu);
14685
14686 /* The calls above may have already set the type for this DIE. */
14687 type = get_die_type (die, cu);
14688 if (type)
14689 return type;
14690
14691 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14692 type = lookup_methodptr_type (to_type);
14693 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14694 {
14695 struct type *new_type = alloc_type (cu->objfile);
14696
14697 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14698 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14699 TYPE_VARARGS (to_type));
14700 type = lookup_methodptr_type (new_type);
14701 }
14702 else
14703 type = lookup_memberptr_type (to_type, domain);
14704
14705 return set_die_type (die, type, cu);
14706 }
14707
14708 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14709 the user defined type vector. */
14710
14711 static struct type *
14712 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14713 enum type_code refcode)
14714 {
14715 struct comp_unit_head *cu_header = &cu->header;
14716 struct type *type, *target_type;
14717 struct attribute *attr;
14718
14719 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14720
14721 target_type = die_type (die, cu);
14722
14723 /* The die_type call above may have already set the type for this DIE. */
14724 type = get_die_type (die, cu);
14725 if (type)
14726 return type;
14727
14728 type = lookup_reference_type (target_type, refcode);
14729 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14730 if (attr)
14731 {
14732 TYPE_LENGTH (type) = DW_UNSND (attr);
14733 }
14734 else
14735 {
14736 TYPE_LENGTH (type) = cu_header->addr_size;
14737 }
14738 return set_die_type (die, type, cu);
14739 }
14740
14741 /* Add the given cv-qualifiers to the element type of the array. GCC
14742 outputs DWARF type qualifiers that apply to an array, not the
14743 element type. But GDB relies on the array element type to carry
14744 the cv-qualifiers. This mimics section 6.7.3 of the C99
14745 specification. */
14746
14747 static struct type *
14748 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14749 struct type *base_type, int cnst, int voltl)
14750 {
14751 struct type *el_type, *inner_array;
14752
14753 base_type = copy_type (base_type);
14754 inner_array = base_type;
14755
14756 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14757 {
14758 TYPE_TARGET_TYPE (inner_array) =
14759 copy_type (TYPE_TARGET_TYPE (inner_array));
14760 inner_array = TYPE_TARGET_TYPE (inner_array);
14761 }
14762
14763 el_type = TYPE_TARGET_TYPE (inner_array);
14764 cnst |= TYPE_CONST (el_type);
14765 voltl |= TYPE_VOLATILE (el_type);
14766 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14767
14768 return set_die_type (die, base_type, cu);
14769 }
14770
14771 static struct type *
14772 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14773 {
14774 struct type *base_type, *cv_type;
14775
14776 base_type = die_type (die, cu);
14777
14778 /* The die_type call above may have already set the type for this DIE. */
14779 cv_type = get_die_type (die, cu);
14780 if (cv_type)
14781 return cv_type;
14782
14783 /* In case the const qualifier is applied to an array type, the element type
14784 is so qualified, not the array type (section 6.7.3 of C99). */
14785 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14786 return add_array_cv_type (die, cu, base_type, 1, 0);
14787
14788 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14789 return set_die_type (die, cv_type, cu);
14790 }
14791
14792 static struct type *
14793 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14794 {
14795 struct type *base_type, *cv_type;
14796
14797 base_type = die_type (die, cu);
14798
14799 /* The die_type call above may have already set the type for this DIE. */
14800 cv_type = get_die_type (die, cu);
14801 if (cv_type)
14802 return cv_type;
14803
14804 /* In case the volatile qualifier is applied to an array type, the
14805 element type is so qualified, not the array type (section 6.7.3
14806 of C99). */
14807 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14808 return add_array_cv_type (die, cu, base_type, 0, 1);
14809
14810 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14811 return set_die_type (die, cv_type, cu);
14812 }
14813
14814 /* Handle DW_TAG_restrict_type. */
14815
14816 static struct type *
14817 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14818 {
14819 struct type *base_type, *cv_type;
14820
14821 base_type = die_type (die, cu);
14822
14823 /* The die_type call above may have already set the type for this DIE. */
14824 cv_type = get_die_type (die, cu);
14825 if (cv_type)
14826 return cv_type;
14827
14828 cv_type = make_restrict_type (base_type);
14829 return set_die_type (die, cv_type, cu);
14830 }
14831
14832 /* Handle DW_TAG_atomic_type. */
14833
14834 static struct type *
14835 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14836 {
14837 struct type *base_type, *cv_type;
14838
14839 base_type = die_type (die, cu);
14840
14841 /* The die_type call above may have already set the type for this DIE. */
14842 cv_type = get_die_type (die, cu);
14843 if (cv_type)
14844 return cv_type;
14845
14846 cv_type = make_atomic_type (base_type);
14847 return set_die_type (die, cv_type, cu);
14848 }
14849
14850 /* Extract all information from a DW_TAG_string_type DIE and add to
14851 the user defined type vector. It isn't really a user defined type,
14852 but it behaves like one, with other DIE's using an AT_user_def_type
14853 attribute to reference it. */
14854
14855 static struct type *
14856 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14857 {
14858 struct objfile *objfile = cu->objfile;
14859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14860 struct type *type, *range_type, *index_type, *char_type;
14861 struct attribute *attr;
14862 unsigned int length;
14863
14864 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14865 if (attr)
14866 {
14867 length = DW_UNSND (attr);
14868 }
14869 else
14870 {
14871 /* Check for the DW_AT_byte_size attribute. */
14872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14873 if (attr)
14874 {
14875 length = DW_UNSND (attr);
14876 }
14877 else
14878 {
14879 length = 1;
14880 }
14881 }
14882
14883 index_type = objfile_type (objfile)->builtin_int;
14884 range_type = create_static_range_type (NULL, index_type, 1, length);
14885 char_type = language_string_char_type (cu->language_defn, gdbarch);
14886 type = create_string_type (NULL, char_type, range_type);
14887
14888 return set_die_type (die, type, cu);
14889 }
14890
14891 /* Assuming that DIE corresponds to a function, returns nonzero
14892 if the function is prototyped. */
14893
14894 static int
14895 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14896 {
14897 struct attribute *attr;
14898
14899 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14900 if (attr && (DW_UNSND (attr) != 0))
14901 return 1;
14902
14903 /* The DWARF standard implies that the DW_AT_prototyped attribute
14904 is only meaninful for C, but the concept also extends to other
14905 languages that allow unprototyped functions (Eg: Objective C).
14906 For all other languages, assume that functions are always
14907 prototyped. */
14908 if (cu->language != language_c
14909 && cu->language != language_objc
14910 && cu->language != language_opencl)
14911 return 1;
14912
14913 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14914 prototyped and unprototyped functions; default to prototyped,
14915 since that is more common in modern code (and RealView warns
14916 about unprototyped functions). */
14917 if (producer_is_realview (cu->producer))
14918 return 1;
14919
14920 return 0;
14921 }
14922
14923 /* Handle DIES due to C code like:
14924
14925 struct foo
14926 {
14927 int (*funcp)(int a, long l);
14928 int b;
14929 };
14930
14931 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14932
14933 static struct type *
14934 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14935 {
14936 struct objfile *objfile = cu->objfile;
14937 struct type *type; /* Type that this function returns. */
14938 struct type *ftype; /* Function that returns above type. */
14939 struct attribute *attr;
14940
14941 type = die_type (die, cu);
14942
14943 /* The die_type call above may have already set the type for this DIE. */
14944 ftype = get_die_type (die, cu);
14945 if (ftype)
14946 return ftype;
14947
14948 ftype = lookup_function_type (type);
14949
14950 if (prototyped_function_p (die, cu))
14951 TYPE_PROTOTYPED (ftype) = 1;
14952
14953 /* Store the calling convention in the type if it's available in
14954 the subroutine die. Otherwise set the calling convention to
14955 the default value DW_CC_normal. */
14956 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14957 if (attr)
14958 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14959 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14960 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14961 else
14962 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14963
14964 /* Record whether the function returns normally to its caller or not
14965 if the DWARF producer set that information. */
14966 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14967 if (attr && (DW_UNSND (attr) != 0))
14968 TYPE_NO_RETURN (ftype) = 1;
14969
14970 /* We need to add the subroutine type to the die immediately so
14971 we don't infinitely recurse when dealing with parameters
14972 declared as the same subroutine type. */
14973 set_die_type (die, ftype, cu);
14974
14975 if (die->child != NULL)
14976 {
14977 struct type *void_type = objfile_type (objfile)->builtin_void;
14978 struct die_info *child_die;
14979 int nparams, iparams;
14980
14981 /* Count the number of parameters.
14982 FIXME: GDB currently ignores vararg functions, but knows about
14983 vararg member functions. */
14984 nparams = 0;
14985 child_die = die->child;
14986 while (child_die && child_die->tag)
14987 {
14988 if (child_die->tag == DW_TAG_formal_parameter)
14989 nparams++;
14990 else if (child_die->tag == DW_TAG_unspecified_parameters)
14991 TYPE_VARARGS (ftype) = 1;
14992 child_die = sibling_die (child_die);
14993 }
14994
14995 /* Allocate storage for parameters and fill them in. */
14996 TYPE_NFIELDS (ftype) = nparams;
14997 TYPE_FIELDS (ftype) = (struct field *)
14998 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14999
15000 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15001 even if we error out during the parameters reading below. */
15002 for (iparams = 0; iparams < nparams; iparams++)
15003 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15004
15005 iparams = 0;
15006 child_die = die->child;
15007 while (child_die && child_die->tag)
15008 {
15009 if (child_die->tag == DW_TAG_formal_parameter)
15010 {
15011 struct type *arg_type;
15012
15013 /* DWARF version 2 has no clean way to discern C++
15014 static and non-static member functions. G++ helps
15015 GDB by marking the first parameter for non-static
15016 member functions (which is the this pointer) as
15017 artificial. We pass this information to
15018 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15019
15020 DWARF version 3 added DW_AT_object_pointer, which GCC
15021 4.5 does not yet generate. */
15022 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15023 if (attr)
15024 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15025 else
15026 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15027 arg_type = die_type (child_die, cu);
15028
15029 /* RealView does not mark THIS as const, which the testsuite
15030 expects. GCC marks THIS as const in method definitions,
15031 but not in the class specifications (GCC PR 43053). */
15032 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15033 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15034 {
15035 int is_this = 0;
15036 struct dwarf2_cu *arg_cu = cu;
15037 const char *name = dwarf2_name (child_die, cu);
15038
15039 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15040 if (attr)
15041 {
15042 /* If the compiler emits this, use it. */
15043 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15044 is_this = 1;
15045 }
15046 else if (name && strcmp (name, "this") == 0)
15047 /* Function definitions will have the argument names. */
15048 is_this = 1;
15049 else if (name == NULL && iparams == 0)
15050 /* Declarations may not have the names, so like
15051 elsewhere in GDB, assume an artificial first
15052 argument is "this". */
15053 is_this = 1;
15054
15055 if (is_this)
15056 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15057 arg_type, 0);
15058 }
15059
15060 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15061 iparams++;
15062 }
15063 child_die = sibling_die (child_die);
15064 }
15065 }
15066
15067 return ftype;
15068 }
15069
15070 static struct type *
15071 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15072 {
15073 struct objfile *objfile = cu->objfile;
15074 const char *name = NULL;
15075 struct type *this_type, *target_type;
15076
15077 name = dwarf2_full_name (NULL, die, cu);
15078 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15079 TYPE_TARGET_STUB (this_type) = 1;
15080 set_die_type (die, this_type, cu);
15081 target_type = die_type (die, cu);
15082 if (target_type != this_type)
15083 TYPE_TARGET_TYPE (this_type) = target_type;
15084 else
15085 {
15086 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15087 spec and cause infinite loops in GDB. */
15088 complaint (&symfile_complaints,
15089 _("Self-referential DW_TAG_typedef "
15090 "- DIE at 0x%x [in module %s]"),
15091 to_underlying (die->sect_off), objfile_name (objfile));
15092 TYPE_TARGET_TYPE (this_type) = NULL;
15093 }
15094 return this_type;
15095 }
15096
15097 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15098 (which may be different from NAME) to the architecture back-end to allow
15099 it to guess the correct format if necessary. */
15100
15101 static struct type *
15102 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15103 const char *name_hint)
15104 {
15105 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15106 const struct floatformat **format;
15107 struct type *type;
15108
15109 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15110 if (format)
15111 type = init_float_type (objfile, bits, name, format);
15112 else
15113 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15114
15115 return type;
15116 }
15117
15118 /* Find a representation of a given base type and install
15119 it in the TYPE field of the die. */
15120
15121 static struct type *
15122 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15123 {
15124 struct objfile *objfile = cu->objfile;
15125 struct type *type;
15126 struct attribute *attr;
15127 int encoding = 0, bits = 0;
15128 const char *name;
15129
15130 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15131 if (attr)
15132 {
15133 encoding = DW_UNSND (attr);
15134 }
15135 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15136 if (attr)
15137 {
15138 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15139 }
15140 name = dwarf2_name (die, cu);
15141 if (!name)
15142 {
15143 complaint (&symfile_complaints,
15144 _("DW_AT_name missing from DW_TAG_base_type"));
15145 }
15146
15147 switch (encoding)
15148 {
15149 case DW_ATE_address:
15150 /* Turn DW_ATE_address into a void * pointer. */
15151 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15152 type = init_pointer_type (objfile, bits, name, type);
15153 break;
15154 case DW_ATE_boolean:
15155 type = init_boolean_type (objfile, bits, 1, name);
15156 break;
15157 case DW_ATE_complex_float:
15158 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15159 type = init_complex_type (objfile, name, type);
15160 break;
15161 case DW_ATE_decimal_float:
15162 type = init_decfloat_type (objfile, bits, name);
15163 break;
15164 case DW_ATE_float:
15165 type = dwarf2_init_float_type (objfile, bits, name, name);
15166 break;
15167 case DW_ATE_signed:
15168 type = init_integer_type (objfile, bits, 0, name);
15169 break;
15170 case DW_ATE_unsigned:
15171 if (cu->language == language_fortran
15172 && name
15173 && startswith (name, "character("))
15174 type = init_character_type (objfile, bits, 1, name);
15175 else
15176 type = init_integer_type (objfile, bits, 1, name);
15177 break;
15178 case DW_ATE_signed_char:
15179 if (cu->language == language_ada || cu->language == language_m2
15180 || cu->language == language_pascal
15181 || cu->language == language_fortran)
15182 type = init_character_type (objfile, bits, 0, name);
15183 else
15184 type = init_integer_type (objfile, bits, 0, name);
15185 break;
15186 case DW_ATE_unsigned_char:
15187 if (cu->language == language_ada || cu->language == language_m2
15188 || cu->language == language_pascal
15189 || cu->language == language_fortran
15190 || cu->language == language_rust)
15191 type = init_character_type (objfile, bits, 1, name);
15192 else
15193 type = init_integer_type (objfile, bits, 1, name);
15194 break;
15195 case DW_ATE_UTF:
15196 {
15197 gdbarch *arch = get_objfile_arch (objfile);
15198
15199 if (bits == 16)
15200 type = builtin_type (arch)->builtin_char16;
15201 else if (bits == 32)
15202 type = builtin_type (arch)->builtin_char32;
15203 else
15204 {
15205 complaint (&symfile_complaints,
15206 _("unsupported DW_ATE_UTF bit size: '%d'"),
15207 bits);
15208 type = init_integer_type (objfile, bits, 1, name);
15209 }
15210 return set_die_type (die, type, cu);
15211 }
15212 break;
15213
15214 default:
15215 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15216 dwarf_type_encoding_name (encoding));
15217 type = init_type (objfile, TYPE_CODE_ERROR,
15218 bits / TARGET_CHAR_BIT, name);
15219 break;
15220 }
15221
15222 if (name && strcmp (name, "char") == 0)
15223 TYPE_NOSIGN (type) = 1;
15224
15225 return set_die_type (die, type, cu);
15226 }
15227
15228 /* Parse dwarf attribute if it's a block, reference or constant and put the
15229 resulting value of the attribute into struct bound_prop.
15230 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15231
15232 static int
15233 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15234 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15235 {
15236 struct dwarf2_property_baton *baton;
15237 struct obstack *obstack = &cu->objfile->objfile_obstack;
15238
15239 if (attr == NULL || prop == NULL)
15240 return 0;
15241
15242 if (attr_form_is_block (attr))
15243 {
15244 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15245 baton->referenced_type = NULL;
15246 baton->locexpr.per_cu = cu->per_cu;
15247 baton->locexpr.size = DW_BLOCK (attr)->size;
15248 baton->locexpr.data = DW_BLOCK (attr)->data;
15249 prop->data.baton = baton;
15250 prop->kind = PROP_LOCEXPR;
15251 gdb_assert (prop->data.baton != NULL);
15252 }
15253 else if (attr_form_is_ref (attr))
15254 {
15255 struct dwarf2_cu *target_cu = cu;
15256 struct die_info *target_die;
15257 struct attribute *target_attr;
15258
15259 target_die = follow_die_ref (die, attr, &target_cu);
15260 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15261 if (target_attr == NULL)
15262 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15263 target_cu);
15264 if (target_attr == NULL)
15265 return 0;
15266
15267 switch (target_attr->name)
15268 {
15269 case DW_AT_location:
15270 if (attr_form_is_section_offset (target_attr))
15271 {
15272 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15273 baton->referenced_type = die_type (target_die, target_cu);
15274 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15275 prop->data.baton = baton;
15276 prop->kind = PROP_LOCLIST;
15277 gdb_assert (prop->data.baton != NULL);
15278 }
15279 else if (attr_form_is_block (target_attr))
15280 {
15281 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15282 baton->referenced_type = die_type (target_die, target_cu);
15283 baton->locexpr.per_cu = cu->per_cu;
15284 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15285 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15286 prop->data.baton = baton;
15287 prop->kind = PROP_LOCEXPR;
15288 gdb_assert (prop->data.baton != NULL);
15289 }
15290 else
15291 {
15292 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15293 "dynamic property");
15294 return 0;
15295 }
15296 break;
15297 case DW_AT_data_member_location:
15298 {
15299 LONGEST offset;
15300
15301 if (!handle_data_member_location (target_die, target_cu,
15302 &offset))
15303 return 0;
15304
15305 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15306 baton->referenced_type = read_type_die (target_die->parent,
15307 target_cu);
15308 baton->offset_info.offset = offset;
15309 baton->offset_info.type = die_type (target_die, target_cu);
15310 prop->data.baton = baton;
15311 prop->kind = PROP_ADDR_OFFSET;
15312 break;
15313 }
15314 }
15315 }
15316 else if (attr_form_is_constant (attr))
15317 {
15318 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15319 prop->kind = PROP_CONST;
15320 }
15321 else
15322 {
15323 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15324 dwarf2_name (die, cu));
15325 return 0;
15326 }
15327
15328 return 1;
15329 }
15330
15331 /* Read the given DW_AT_subrange DIE. */
15332
15333 static struct type *
15334 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15335 {
15336 struct type *base_type, *orig_base_type;
15337 struct type *range_type;
15338 struct attribute *attr;
15339 struct dynamic_prop low, high;
15340 int low_default_is_valid;
15341 int high_bound_is_count = 0;
15342 const char *name;
15343 LONGEST negative_mask;
15344
15345 orig_base_type = die_type (die, cu);
15346 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15347 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15348 creating the range type, but we use the result of check_typedef
15349 when examining properties of the type. */
15350 base_type = check_typedef (orig_base_type);
15351
15352 /* The die_type call above may have already set the type for this DIE. */
15353 range_type = get_die_type (die, cu);
15354 if (range_type)
15355 return range_type;
15356
15357 low.kind = PROP_CONST;
15358 high.kind = PROP_CONST;
15359 high.data.const_val = 0;
15360
15361 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15362 omitting DW_AT_lower_bound. */
15363 switch (cu->language)
15364 {
15365 case language_c:
15366 case language_cplus:
15367 low.data.const_val = 0;
15368 low_default_is_valid = 1;
15369 break;
15370 case language_fortran:
15371 low.data.const_val = 1;
15372 low_default_is_valid = 1;
15373 break;
15374 case language_d:
15375 case language_objc:
15376 case language_rust:
15377 low.data.const_val = 0;
15378 low_default_is_valid = (cu->header.version >= 4);
15379 break;
15380 case language_ada:
15381 case language_m2:
15382 case language_pascal:
15383 low.data.const_val = 1;
15384 low_default_is_valid = (cu->header.version >= 4);
15385 break;
15386 default:
15387 low.data.const_val = 0;
15388 low_default_is_valid = 0;
15389 break;
15390 }
15391
15392 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15393 if (attr)
15394 attr_to_dynamic_prop (attr, die, cu, &low);
15395 else if (!low_default_is_valid)
15396 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15397 "- DIE at 0x%x [in module %s]"),
15398 to_underlying (die->sect_off), objfile_name (cu->objfile));
15399
15400 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15401 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15402 {
15403 attr = dwarf2_attr (die, DW_AT_count, cu);
15404 if (attr_to_dynamic_prop (attr, die, cu, &high))
15405 {
15406 /* If bounds are constant do the final calculation here. */
15407 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15408 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15409 else
15410 high_bound_is_count = 1;
15411 }
15412 }
15413
15414 /* Dwarf-2 specifications explicitly allows to create subrange types
15415 without specifying a base type.
15416 In that case, the base type must be set to the type of
15417 the lower bound, upper bound or count, in that order, if any of these
15418 three attributes references an object that has a type.
15419 If no base type is found, the Dwarf-2 specifications say that
15420 a signed integer type of size equal to the size of an address should
15421 be used.
15422 For the following C code: `extern char gdb_int [];'
15423 GCC produces an empty range DIE.
15424 FIXME: muller/2010-05-28: Possible references to object for low bound,
15425 high bound or count are not yet handled by this code. */
15426 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15427 {
15428 struct objfile *objfile = cu->objfile;
15429 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15430 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15431 struct type *int_type = objfile_type (objfile)->builtin_int;
15432
15433 /* Test "int", "long int", and "long long int" objfile types,
15434 and select the first one having a size above or equal to the
15435 architecture address size. */
15436 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15437 base_type = int_type;
15438 else
15439 {
15440 int_type = objfile_type (objfile)->builtin_long;
15441 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15442 base_type = int_type;
15443 else
15444 {
15445 int_type = objfile_type (objfile)->builtin_long_long;
15446 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15447 base_type = int_type;
15448 }
15449 }
15450 }
15451
15452 /* Normally, the DWARF producers are expected to use a signed
15453 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15454 But this is unfortunately not always the case, as witnessed
15455 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15456 is used instead. To work around that ambiguity, we treat
15457 the bounds as signed, and thus sign-extend their values, when
15458 the base type is signed. */
15459 negative_mask =
15460 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15461 if (low.kind == PROP_CONST
15462 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15463 low.data.const_val |= negative_mask;
15464 if (high.kind == PROP_CONST
15465 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15466 high.data.const_val |= negative_mask;
15467
15468 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15469
15470 if (high_bound_is_count)
15471 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15472
15473 /* Ada expects an empty array on no boundary attributes. */
15474 if (attr == NULL && cu->language != language_ada)
15475 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15476
15477 name = dwarf2_name (die, cu);
15478 if (name)
15479 TYPE_NAME (range_type) = name;
15480
15481 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15482 if (attr)
15483 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15484
15485 set_die_type (die, range_type, cu);
15486
15487 /* set_die_type should be already done. */
15488 set_descriptive_type (range_type, die, cu);
15489
15490 return range_type;
15491 }
15492
15493 static struct type *
15494 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15495 {
15496 struct type *type;
15497
15498 /* For now, we only support the C meaning of an unspecified type: void. */
15499
15500 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15501 TYPE_NAME (type) = dwarf2_name (die, cu);
15502
15503 return set_die_type (die, type, cu);
15504 }
15505
15506 /* Read a single die and all its descendents. Set the die's sibling
15507 field to NULL; set other fields in the die correctly, and set all
15508 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15509 location of the info_ptr after reading all of those dies. PARENT
15510 is the parent of the die in question. */
15511
15512 static struct die_info *
15513 read_die_and_children (const struct die_reader_specs *reader,
15514 const gdb_byte *info_ptr,
15515 const gdb_byte **new_info_ptr,
15516 struct die_info *parent)
15517 {
15518 struct die_info *die;
15519 const gdb_byte *cur_ptr;
15520 int has_children;
15521
15522 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15523 if (die == NULL)
15524 {
15525 *new_info_ptr = cur_ptr;
15526 return NULL;
15527 }
15528 store_in_ref_table (die, reader->cu);
15529
15530 if (has_children)
15531 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15532 else
15533 {
15534 die->child = NULL;
15535 *new_info_ptr = cur_ptr;
15536 }
15537
15538 die->sibling = NULL;
15539 die->parent = parent;
15540 return die;
15541 }
15542
15543 /* Read a die, all of its descendents, and all of its siblings; set
15544 all of the fields of all of the dies correctly. Arguments are as
15545 in read_die_and_children. */
15546
15547 static struct die_info *
15548 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15549 const gdb_byte *info_ptr,
15550 const gdb_byte **new_info_ptr,
15551 struct die_info *parent)
15552 {
15553 struct die_info *first_die, *last_sibling;
15554 const gdb_byte *cur_ptr;
15555
15556 cur_ptr = info_ptr;
15557 first_die = last_sibling = NULL;
15558
15559 while (1)
15560 {
15561 struct die_info *die
15562 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15563
15564 if (die == NULL)
15565 {
15566 *new_info_ptr = cur_ptr;
15567 return first_die;
15568 }
15569
15570 if (!first_die)
15571 first_die = die;
15572 else
15573 last_sibling->sibling = die;
15574
15575 last_sibling = die;
15576 }
15577 }
15578
15579 /* Read a die, all of its descendents, and all of its siblings; set
15580 all of the fields of all of the dies correctly. Arguments are as
15581 in read_die_and_children.
15582 This the main entry point for reading a DIE and all its children. */
15583
15584 static struct die_info *
15585 read_die_and_siblings (const struct die_reader_specs *reader,
15586 const gdb_byte *info_ptr,
15587 const gdb_byte **new_info_ptr,
15588 struct die_info *parent)
15589 {
15590 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15591 new_info_ptr, parent);
15592
15593 if (dwarf_die_debug)
15594 {
15595 fprintf_unfiltered (gdb_stdlog,
15596 "Read die from %s@0x%x of %s:\n",
15597 get_section_name (reader->die_section),
15598 (unsigned) (info_ptr - reader->die_section->buffer),
15599 bfd_get_filename (reader->abfd));
15600 dump_die (die, dwarf_die_debug);
15601 }
15602
15603 return die;
15604 }
15605
15606 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15607 attributes.
15608 The caller is responsible for filling in the extra attributes
15609 and updating (*DIEP)->num_attrs.
15610 Set DIEP to point to a newly allocated die with its information,
15611 except for its child, sibling, and parent fields.
15612 Set HAS_CHILDREN to tell whether the die has children or not. */
15613
15614 static const gdb_byte *
15615 read_full_die_1 (const struct die_reader_specs *reader,
15616 struct die_info **diep, const gdb_byte *info_ptr,
15617 int *has_children, int num_extra_attrs)
15618 {
15619 unsigned int abbrev_number, bytes_read, i;
15620 struct abbrev_info *abbrev;
15621 struct die_info *die;
15622 struct dwarf2_cu *cu = reader->cu;
15623 bfd *abfd = reader->abfd;
15624
15625 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15626 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15627 info_ptr += bytes_read;
15628 if (!abbrev_number)
15629 {
15630 *diep = NULL;
15631 *has_children = 0;
15632 return info_ptr;
15633 }
15634
15635 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15636 if (!abbrev)
15637 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15638 abbrev_number,
15639 bfd_get_filename (abfd));
15640
15641 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15642 die->sect_off = sect_off;
15643 die->tag = abbrev->tag;
15644 die->abbrev = abbrev_number;
15645
15646 /* Make the result usable.
15647 The caller needs to update num_attrs after adding the extra
15648 attributes. */
15649 die->num_attrs = abbrev->num_attrs;
15650
15651 for (i = 0; i < abbrev->num_attrs; ++i)
15652 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15653 info_ptr);
15654
15655 *diep = die;
15656 *has_children = abbrev->has_children;
15657 return info_ptr;
15658 }
15659
15660 /* Read a die and all its attributes.
15661 Set DIEP to point to a newly allocated die with its information,
15662 except for its child, sibling, and parent fields.
15663 Set HAS_CHILDREN to tell whether the die has children or not. */
15664
15665 static const gdb_byte *
15666 read_full_die (const struct die_reader_specs *reader,
15667 struct die_info **diep, const gdb_byte *info_ptr,
15668 int *has_children)
15669 {
15670 const gdb_byte *result;
15671
15672 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15673
15674 if (dwarf_die_debug)
15675 {
15676 fprintf_unfiltered (gdb_stdlog,
15677 "Read die from %s@0x%x of %s:\n",
15678 get_section_name (reader->die_section),
15679 (unsigned) (info_ptr - reader->die_section->buffer),
15680 bfd_get_filename (reader->abfd));
15681 dump_die (*diep, dwarf_die_debug);
15682 }
15683
15684 return result;
15685 }
15686 \f
15687 /* Abbreviation tables.
15688
15689 In DWARF version 2, the description of the debugging information is
15690 stored in a separate .debug_abbrev section. Before we read any
15691 dies from a section we read in all abbreviations and install them
15692 in a hash table. */
15693
15694 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15695
15696 static struct abbrev_info *
15697 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15698 {
15699 struct abbrev_info *abbrev;
15700
15701 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15702 memset (abbrev, 0, sizeof (struct abbrev_info));
15703
15704 return abbrev;
15705 }
15706
15707 /* Add an abbreviation to the table. */
15708
15709 static void
15710 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15711 unsigned int abbrev_number,
15712 struct abbrev_info *abbrev)
15713 {
15714 unsigned int hash_number;
15715
15716 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15717 abbrev->next = abbrev_table->abbrevs[hash_number];
15718 abbrev_table->abbrevs[hash_number] = abbrev;
15719 }
15720
15721 /* Look up an abbrev in the table.
15722 Returns NULL if the abbrev is not found. */
15723
15724 static struct abbrev_info *
15725 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15726 unsigned int abbrev_number)
15727 {
15728 unsigned int hash_number;
15729 struct abbrev_info *abbrev;
15730
15731 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15732 abbrev = abbrev_table->abbrevs[hash_number];
15733
15734 while (abbrev)
15735 {
15736 if (abbrev->number == abbrev_number)
15737 return abbrev;
15738 abbrev = abbrev->next;
15739 }
15740 return NULL;
15741 }
15742
15743 /* Read in an abbrev table. */
15744
15745 static struct abbrev_table *
15746 abbrev_table_read_table (struct dwarf2_section_info *section,
15747 sect_offset sect_off)
15748 {
15749 struct objfile *objfile = dwarf2_per_objfile->objfile;
15750 bfd *abfd = get_section_bfd_owner (section);
15751 struct abbrev_table *abbrev_table;
15752 const gdb_byte *abbrev_ptr;
15753 struct abbrev_info *cur_abbrev;
15754 unsigned int abbrev_number, bytes_read, abbrev_name;
15755 unsigned int abbrev_form;
15756 struct attr_abbrev *cur_attrs;
15757 unsigned int allocated_attrs;
15758
15759 abbrev_table = XNEW (struct abbrev_table);
15760 abbrev_table->sect_off = sect_off;
15761 obstack_init (&abbrev_table->abbrev_obstack);
15762 abbrev_table->abbrevs =
15763 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15764 ABBREV_HASH_SIZE);
15765 memset (abbrev_table->abbrevs, 0,
15766 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15767
15768 dwarf2_read_section (objfile, section);
15769 abbrev_ptr = section->buffer + to_underlying (sect_off);
15770 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15771 abbrev_ptr += bytes_read;
15772
15773 allocated_attrs = ATTR_ALLOC_CHUNK;
15774 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15775
15776 /* Loop until we reach an abbrev number of 0. */
15777 while (abbrev_number)
15778 {
15779 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15780
15781 /* read in abbrev header */
15782 cur_abbrev->number = abbrev_number;
15783 cur_abbrev->tag
15784 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15785 abbrev_ptr += bytes_read;
15786 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15787 abbrev_ptr += 1;
15788
15789 /* now read in declarations */
15790 for (;;)
15791 {
15792 LONGEST implicit_const;
15793
15794 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15795 abbrev_ptr += bytes_read;
15796 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15797 abbrev_ptr += bytes_read;
15798 if (abbrev_form == DW_FORM_implicit_const)
15799 {
15800 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15801 &bytes_read);
15802 abbrev_ptr += bytes_read;
15803 }
15804 else
15805 {
15806 /* Initialize it due to a false compiler warning. */
15807 implicit_const = -1;
15808 }
15809
15810 if (abbrev_name == 0)
15811 break;
15812
15813 if (cur_abbrev->num_attrs == allocated_attrs)
15814 {
15815 allocated_attrs += ATTR_ALLOC_CHUNK;
15816 cur_attrs
15817 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15818 }
15819
15820 cur_attrs[cur_abbrev->num_attrs].name
15821 = (enum dwarf_attribute) abbrev_name;
15822 cur_attrs[cur_abbrev->num_attrs].form
15823 = (enum dwarf_form) abbrev_form;
15824 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15825 ++cur_abbrev->num_attrs;
15826 }
15827
15828 cur_abbrev->attrs =
15829 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15830 cur_abbrev->num_attrs);
15831 memcpy (cur_abbrev->attrs, cur_attrs,
15832 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15833
15834 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15835
15836 /* Get next abbreviation.
15837 Under Irix6 the abbreviations for a compilation unit are not
15838 always properly terminated with an abbrev number of 0.
15839 Exit loop if we encounter an abbreviation which we have
15840 already read (which means we are about to read the abbreviations
15841 for the next compile unit) or if the end of the abbreviation
15842 table is reached. */
15843 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15844 break;
15845 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15846 abbrev_ptr += bytes_read;
15847 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15848 break;
15849 }
15850
15851 xfree (cur_attrs);
15852 return abbrev_table;
15853 }
15854
15855 /* Free the resources held by ABBREV_TABLE. */
15856
15857 static void
15858 abbrev_table_free (struct abbrev_table *abbrev_table)
15859 {
15860 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15861 xfree (abbrev_table);
15862 }
15863
15864 /* Same as abbrev_table_free but as a cleanup.
15865 We pass in a pointer to the pointer to the table so that we can
15866 set the pointer to NULL when we're done. It also simplifies
15867 build_type_psymtabs_1. */
15868
15869 static void
15870 abbrev_table_free_cleanup (void *table_ptr)
15871 {
15872 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15873
15874 if (*abbrev_table_ptr != NULL)
15875 abbrev_table_free (*abbrev_table_ptr);
15876 *abbrev_table_ptr = NULL;
15877 }
15878
15879 /* Read the abbrev table for CU from ABBREV_SECTION. */
15880
15881 static void
15882 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15883 struct dwarf2_section_info *abbrev_section)
15884 {
15885 cu->abbrev_table =
15886 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15887 }
15888
15889 /* Release the memory used by the abbrev table for a compilation unit. */
15890
15891 static void
15892 dwarf2_free_abbrev_table (void *ptr_to_cu)
15893 {
15894 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15895
15896 if (cu->abbrev_table != NULL)
15897 abbrev_table_free (cu->abbrev_table);
15898 /* Set this to NULL so that we SEGV if we try to read it later,
15899 and also because free_comp_unit verifies this is NULL. */
15900 cu->abbrev_table = NULL;
15901 }
15902 \f
15903 /* Returns nonzero if TAG represents a type that we might generate a partial
15904 symbol for. */
15905
15906 static int
15907 is_type_tag_for_partial (int tag)
15908 {
15909 switch (tag)
15910 {
15911 #if 0
15912 /* Some types that would be reasonable to generate partial symbols for,
15913 that we don't at present. */
15914 case DW_TAG_array_type:
15915 case DW_TAG_file_type:
15916 case DW_TAG_ptr_to_member_type:
15917 case DW_TAG_set_type:
15918 case DW_TAG_string_type:
15919 case DW_TAG_subroutine_type:
15920 #endif
15921 case DW_TAG_base_type:
15922 case DW_TAG_class_type:
15923 case DW_TAG_interface_type:
15924 case DW_TAG_enumeration_type:
15925 case DW_TAG_structure_type:
15926 case DW_TAG_subrange_type:
15927 case DW_TAG_typedef:
15928 case DW_TAG_union_type:
15929 return 1;
15930 default:
15931 return 0;
15932 }
15933 }
15934
15935 /* Load all DIEs that are interesting for partial symbols into memory. */
15936
15937 static struct partial_die_info *
15938 load_partial_dies (const struct die_reader_specs *reader,
15939 const gdb_byte *info_ptr, int building_psymtab)
15940 {
15941 struct dwarf2_cu *cu = reader->cu;
15942 struct objfile *objfile = cu->objfile;
15943 struct partial_die_info *part_die;
15944 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15945 struct abbrev_info *abbrev;
15946 unsigned int bytes_read;
15947 unsigned int load_all = 0;
15948 int nesting_level = 1;
15949
15950 parent_die = NULL;
15951 last_die = NULL;
15952
15953 gdb_assert (cu->per_cu != NULL);
15954 if (cu->per_cu->load_all_dies)
15955 load_all = 1;
15956
15957 cu->partial_dies
15958 = htab_create_alloc_ex (cu->header.length / 12,
15959 partial_die_hash,
15960 partial_die_eq,
15961 NULL,
15962 &cu->comp_unit_obstack,
15963 hashtab_obstack_allocate,
15964 dummy_obstack_deallocate);
15965
15966 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15967
15968 while (1)
15969 {
15970 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15971
15972 /* A NULL abbrev means the end of a series of children. */
15973 if (abbrev == NULL)
15974 {
15975 if (--nesting_level == 0)
15976 {
15977 /* PART_DIE was probably the last thing allocated on the
15978 comp_unit_obstack, so we could call obstack_free
15979 here. We don't do that because the waste is small,
15980 and will be cleaned up when we're done with this
15981 compilation unit. This way, we're also more robust
15982 against other users of the comp_unit_obstack. */
15983 return first_die;
15984 }
15985 info_ptr += bytes_read;
15986 last_die = parent_die;
15987 parent_die = parent_die->die_parent;
15988 continue;
15989 }
15990
15991 /* Check for template arguments. We never save these; if
15992 they're seen, we just mark the parent, and go on our way. */
15993 if (parent_die != NULL
15994 && cu->language == language_cplus
15995 && (abbrev->tag == DW_TAG_template_type_param
15996 || abbrev->tag == DW_TAG_template_value_param))
15997 {
15998 parent_die->has_template_arguments = 1;
15999
16000 if (!load_all)
16001 {
16002 /* We don't need a partial DIE for the template argument. */
16003 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16004 continue;
16005 }
16006 }
16007
16008 /* We only recurse into c++ subprograms looking for template arguments.
16009 Skip their other children. */
16010 if (!load_all
16011 && cu->language == language_cplus
16012 && parent_die != NULL
16013 && parent_die->tag == DW_TAG_subprogram)
16014 {
16015 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16016 continue;
16017 }
16018
16019 /* Check whether this DIE is interesting enough to save. Normally
16020 we would not be interested in members here, but there may be
16021 later variables referencing them via DW_AT_specification (for
16022 static members). */
16023 if (!load_all
16024 && !is_type_tag_for_partial (abbrev->tag)
16025 && abbrev->tag != DW_TAG_constant
16026 && abbrev->tag != DW_TAG_enumerator
16027 && abbrev->tag != DW_TAG_subprogram
16028 && abbrev->tag != DW_TAG_lexical_block
16029 && abbrev->tag != DW_TAG_variable
16030 && abbrev->tag != DW_TAG_namespace
16031 && abbrev->tag != DW_TAG_module
16032 && abbrev->tag != DW_TAG_member
16033 && abbrev->tag != DW_TAG_imported_unit
16034 && abbrev->tag != DW_TAG_imported_declaration)
16035 {
16036 /* Otherwise we skip to the next sibling, if any. */
16037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16038 continue;
16039 }
16040
16041 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16042 info_ptr);
16043
16044 /* This two-pass algorithm for processing partial symbols has a
16045 high cost in cache pressure. Thus, handle some simple cases
16046 here which cover the majority of C partial symbols. DIEs
16047 which neither have specification tags in them, nor could have
16048 specification tags elsewhere pointing at them, can simply be
16049 processed and discarded.
16050
16051 This segment is also optional; scan_partial_symbols and
16052 add_partial_symbol will handle these DIEs if we chain
16053 them in normally. When compilers which do not emit large
16054 quantities of duplicate debug information are more common,
16055 this code can probably be removed. */
16056
16057 /* Any complete simple types at the top level (pretty much all
16058 of them, for a language without namespaces), can be processed
16059 directly. */
16060 if (parent_die == NULL
16061 && part_die->has_specification == 0
16062 && part_die->is_declaration == 0
16063 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16064 || part_die->tag == DW_TAG_base_type
16065 || part_die->tag == DW_TAG_subrange_type))
16066 {
16067 if (building_psymtab && part_die->name != NULL)
16068 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16069 VAR_DOMAIN, LOC_TYPEDEF,
16070 &objfile->static_psymbols,
16071 0, cu->language, objfile);
16072 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16073 continue;
16074 }
16075
16076 /* The exception for DW_TAG_typedef with has_children above is
16077 a workaround of GCC PR debug/47510. In the case of this complaint
16078 type_name_no_tag_or_error will error on such types later.
16079
16080 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16081 it could not find the child DIEs referenced later, this is checked
16082 above. In correct DWARF DW_TAG_typedef should have no children. */
16083
16084 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16085 complaint (&symfile_complaints,
16086 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16087 "- DIE at 0x%x [in module %s]"),
16088 to_underlying (part_die->sect_off), objfile_name (objfile));
16089
16090 /* If we're at the second level, and we're an enumerator, and
16091 our parent has no specification (meaning possibly lives in a
16092 namespace elsewhere), then we can add the partial symbol now
16093 instead of queueing it. */
16094 if (part_die->tag == DW_TAG_enumerator
16095 && parent_die != NULL
16096 && parent_die->die_parent == NULL
16097 && parent_die->tag == DW_TAG_enumeration_type
16098 && parent_die->has_specification == 0)
16099 {
16100 if (part_die->name == NULL)
16101 complaint (&symfile_complaints,
16102 _("malformed enumerator DIE ignored"));
16103 else if (building_psymtab)
16104 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16105 VAR_DOMAIN, LOC_CONST,
16106 cu->language == language_cplus
16107 ? &objfile->global_psymbols
16108 : &objfile->static_psymbols,
16109 0, cu->language, objfile);
16110
16111 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16112 continue;
16113 }
16114
16115 /* We'll save this DIE so link it in. */
16116 part_die->die_parent = parent_die;
16117 part_die->die_sibling = NULL;
16118 part_die->die_child = NULL;
16119
16120 if (last_die && last_die == parent_die)
16121 last_die->die_child = part_die;
16122 else if (last_die)
16123 last_die->die_sibling = part_die;
16124
16125 last_die = part_die;
16126
16127 if (first_die == NULL)
16128 first_die = part_die;
16129
16130 /* Maybe add the DIE to the hash table. Not all DIEs that we
16131 find interesting need to be in the hash table, because we
16132 also have the parent/sibling/child chains; only those that we
16133 might refer to by offset later during partial symbol reading.
16134
16135 For now this means things that might have be the target of a
16136 DW_AT_specification, DW_AT_abstract_origin, or
16137 DW_AT_extension. DW_AT_extension will refer only to
16138 namespaces; DW_AT_abstract_origin refers to functions (and
16139 many things under the function DIE, but we do not recurse
16140 into function DIEs during partial symbol reading) and
16141 possibly variables as well; DW_AT_specification refers to
16142 declarations. Declarations ought to have the DW_AT_declaration
16143 flag. It happens that GCC forgets to put it in sometimes, but
16144 only for functions, not for types.
16145
16146 Adding more things than necessary to the hash table is harmless
16147 except for the performance cost. Adding too few will result in
16148 wasted time in find_partial_die, when we reread the compilation
16149 unit with load_all_dies set. */
16150
16151 if (load_all
16152 || abbrev->tag == DW_TAG_constant
16153 || abbrev->tag == DW_TAG_subprogram
16154 || abbrev->tag == DW_TAG_variable
16155 || abbrev->tag == DW_TAG_namespace
16156 || part_die->is_declaration)
16157 {
16158 void **slot;
16159
16160 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16161 to_underlying (part_die->sect_off),
16162 INSERT);
16163 *slot = part_die;
16164 }
16165
16166 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16167
16168 /* For some DIEs we want to follow their children (if any). For C
16169 we have no reason to follow the children of structures; for other
16170 languages we have to, so that we can get at method physnames
16171 to infer fully qualified class names, for DW_AT_specification,
16172 and for C++ template arguments. For C++, we also look one level
16173 inside functions to find template arguments (if the name of the
16174 function does not already contain the template arguments).
16175
16176 For Ada, we need to scan the children of subprograms and lexical
16177 blocks as well because Ada allows the definition of nested
16178 entities that could be interesting for the debugger, such as
16179 nested subprograms for instance. */
16180 if (last_die->has_children
16181 && (load_all
16182 || last_die->tag == DW_TAG_namespace
16183 || last_die->tag == DW_TAG_module
16184 || last_die->tag == DW_TAG_enumeration_type
16185 || (cu->language == language_cplus
16186 && last_die->tag == DW_TAG_subprogram
16187 && (last_die->name == NULL
16188 || strchr (last_die->name, '<') == NULL))
16189 || (cu->language != language_c
16190 && (last_die->tag == DW_TAG_class_type
16191 || last_die->tag == DW_TAG_interface_type
16192 || last_die->tag == DW_TAG_structure_type
16193 || last_die->tag == DW_TAG_union_type))
16194 || (cu->language == language_ada
16195 && (last_die->tag == DW_TAG_subprogram
16196 || last_die->tag == DW_TAG_lexical_block))))
16197 {
16198 nesting_level++;
16199 parent_die = last_die;
16200 continue;
16201 }
16202
16203 /* Otherwise we skip to the next sibling, if any. */
16204 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16205
16206 /* Back to the top, do it again. */
16207 }
16208 }
16209
16210 /* Read a minimal amount of information into the minimal die structure. */
16211
16212 static const gdb_byte *
16213 read_partial_die (const struct die_reader_specs *reader,
16214 struct partial_die_info *part_die,
16215 struct abbrev_info *abbrev, unsigned int abbrev_len,
16216 const gdb_byte *info_ptr)
16217 {
16218 struct dwarf2_cu *cu = reader->cu;
16219 struct objfile *objfile = cu->objfile;
16220 const gdb_byte *buffer = reader->buffer;
16221 unsigned int i;
16222 struct attribute attr;
16223 int has_low_pc_attr = 0;
16224 int has_high_pc_attr = 0;
16225 int high_pc_relative = 0;
16226
16227 memset (part_die, 0, sizeof (struct partial_die_info));
16228
16229 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16230
16231 info_ptr += abbrev_len;
16232
16233 if (abbrev == NULL)
16234 return info_ptr;
16235
16236 part_die->tag = abbrev->tag;
16237 part_die->has_children = abbrev->has_children;
16238
16239 for (i = 0; i < abbrev->num_attrs; ++i)
16240 {
16241 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16242
16243 /* Store the data if it is of an attribute we want to keep in a
16244 partial symbol table. */
16245 switch (attr.name)
16246 {
16247 case DW_AT_name:
16248 switch (part_die->tag)
16249 {
16250 case DW_TAG_compile_unit:
16251 case DW_TAG_partial_unit:
16252 case DW_TAG_type_unit:
16253 /* Compilation units have a DW_AT_name that is a filename, not
16254 a source language identifier. */
16255 case DW_TAG_enumeration_type:
16256 case DW_TAG_enumerator:
16257 /* These tags always have simple identifiers already; no need
16258 to canonicalize them. */
16259 part_die->name = DW_STRING (&attr);
16260 break;
16261 default:
16262 part_die->name
16263 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16264 &objfile->per_bfd->storage_obstack);
16265 break;
16266 }
16267 break;
16268 case DW_AT_linkage_name:
16269 case DW_AT_MIPS_linkage_name:
16270 /* Note that both forms of linkage name might appear. We
16271 assume they will be the same, and we only store the last
16272 one we see. */
16273 if (cu->language == language_ada)
16274 part_die->name = DW_STRING (&attr);
16275 part_die->linkage_name = DW_STRING (&attr);
16276 break;
16277 case DW_AT_low_pc:
16278 has_low_pc_attr = 1;
16279 part_die->lowpc = attr_value_as_address (&attr);
16280 break;
16281 case DW_AT_high_pc:
16282 has_high_pc_attr = 1;
16283 part_die->highpc = attr_value_as_address (&attr);
16284 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16285 high_pc_relative = 1;
16286 break;
16287 case DW_AT_location:
16288 /* Support the .debug_loc offsets. */
16289 if (attr_form_is_block (&attr))
16290 {
16291 part_die->d.locdesc = DW_BLOCK (&attr);
16292 }
16293 else if (attr_form_is_section_offset (&attr))
16294 {
16295 dwarf2_complex_location_expr_complaint ();
16296 }
16297 else
16298 {
16299 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16300 "partial symbol information");
16301 }
16302 break;
16303 case DW_AT_external:
16304 part_die->is_external = DW_UNSND (&attr);
16305 break;
16306 case DW_AT_declaration:
16307 part_die->is_declaration = DW_UNSND (&attr);
16308 break;
16309 case DW_AT_type:
16310 part_die->has_type = 1;
16311 break;
16312 case DW_AT_abstract_origin:
16313 case DW_AT_specification:
16314 case DW_AT_extension:
16315 part_die->has_specification = 1;
16316 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16317 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16318 || cu->per_cu->is_dwz);
16319 break;
16320 case DW_AT_sibling:
16321 /* Ignore absolute siblings, they might point outside of
16322 the current compile unit. */
16323 if (attr.form == DW_FORM_ref_addr)
16324 complaint (&symfile_complaints,
16325 _("ignoring absolute DW_AT_sibling"));
16326 else
16327 {
16328 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16329 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16330
16331 if (sibling_ptr < info_ptr)
16332 complaint (&symfile_complaints,
16333 _("DW_AT_sibling points backwards"));
16334 else if (sibling_ptr > reader->buffer_end)
16335 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16336 else
16337 part_die->sibling = sibling_ptr;
16338 }
16339 break;
16340 case DW_AT_byte_size:
16341 part_die->has_byte_size = 1;
16342 break;
16343 case DW_AT_const_value:
16344 part_die->has_const_value = 1;
16345 break;
16346 case DW_AT_calling_convention:
16347 /* DWARF doesn't provide a way to identify a program's source-level
16348 entry point. DW_AT_calling_convention attributes are only meant
16349 to describe functions' calling conventions.
16350
16351 However, because it's a necessary piece of information in
16352 Fortran, and before DWARF 4 DW_CC_program was the only
16353 piece of debugging information whose definition refers to
16354 a 'main program' at all, several compilers marked Fortran
16355 main programs with DW_CC_program --- even when those
16356 functions use the standard calling conventions.
16357
16358 Although DWARF now specifies a way to provide this
16359 information, we support this practice for backward
16360 compatibility. */
16361 if (DW_UNSND (&attr) == DW_CC_program
16362 && cu->language == language_fortran)
16363 part_die->main_subprogram = 1;
16364 break;
16365 case DW_AT_inline:
16366 if (DW_UNSND (&attr) == DW_INL_inlined
16367 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16368 part_die->may_be_inlined = 1;
16369 break;
16370
16371 case DW_AT_import:
16372 if (part_die->tag == DW_TAG_imported_unit)
16373 {
16374 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16375 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16376 || cu->per_cu->is_dwz);
16377 }
16378 break;
16379
16380 case DW_AT_main_subprogram:
16381 part_die->main_subprogram = DW_UNSND (&attr);
16382 break;
16383
16384 default:
16385 break;
16386 }
16387 }
16388
16389 if (high_pc_relative)
16390 part_die->highpc += part_die->lowpc;
16391
16392 if (has_low_pc_attr && has_high_pc_attr)
16393 {
16394 /* When using the GNU linker, .gnu.linkonce. sections are used to
16395 eliminate duplicate copies of functions and vtables and such.
16396 The linker will arbitrarily choose one and discard the others.
16397 The AT_*_pc values for such functions refer to local labels in
16398 these sections. If the section from that file was discarded, the
16399 labels are not in the output, so the relocs get a value of 0.
16400 If this is a discarded function, mark the pc bounds as invalid,
16401 so that GDB will ignore it. */
16402 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16403 {
16404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16405
16406 complaint (&symfile_complaints,
16407 _("DW_AT_low_pc %s is zero "
16408 "for DIE at 0x%x [in module %s]"),
16409 paddress (gdbarch, part_die->lowpc),
16410 to_underlying (part_die->sect_off), objfile_name (objfile));
16411 }
16412 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16413 else if (part_die->lowpc >= part_die->highpc)
16414 {
16415 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16416
16417 complaint (&symfile_complaints,
16418 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16419 "for DIE at 0x%x [in module %s]"),
16420 paddress (gdbarch, part_die->lowpc),
16421 paddress (gdbarch, part_die->highpc),
16422 to_underlying (part_die->sect_off),
16423 objfile_name (objfile));
16424 }
16425 else
16426 part_die->has_pc_info = 1;
16427 }
16428
16429 return info_ptr;
16430 }
16431
16432 /* Find a cached partial DIE at OFFSET in CU. */
16433
16434 static struct partial_die_info *
16435 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16436 {
16437 struct partial_die_info *lookup_die = NULL;
16438 struct partial_die_info part_die;
16439
16440 part_die.sect_off = sect_off;
16441 lookup_die = ((struct partial_die_info *)
16442 htab_find_with_hash (cu->partial_dies, &part_die,
16443 to_underlying (sect_off)));
16444
16445 return lookup_die;
16446 }
16447
16448 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16449 except in the case of .debug_types DIEs which do not reference
16450 outside their CU (they do however referencing other types via
16451 DW_FORM_ref_sig8). */
16452
16453 static struct partial_die_info *
16454 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16455 {
16456 struct objfile *objfile = cu->objfile;
16457 struct dwarf2_per_cu_data *per_cu = NULL;
16458 struct partial_die_info *pd = NULL;
16459
16460 if (offset_in_dwz == cu->per_cu->is_dwz
16461 && offset_in_cu_p (&cu->header, sect_off))
16462 {
16463 pd = find_partial_die_in_comp_unit (sect_off, cu);
16464 if (pd != NULL)
16465 return pd;
16466 /* We missed recording what we needed.
16467 Load all dies and try again. */
16468 per_cu = cu->per_cu;
16469 }
16470 else
16471 {
16472 /* TUs don't reference other CUs/TUs (except via type signatures). */
16473 if (cu->per_cu->is_debug_types)
16474 {
16475 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16476 " external reference to offset 0x%x [in module %s].\n"),
16477 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16478 bfd_get_filename (objfile->obfd));
16479 }
16480 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16481 objfile);
16482
16483 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16484 load_partial_comp_unit (per_cu);
16485
16486 per_cu->cu->last_used = 0;
16487 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16488 }
16489
16490 /* If we didn't find it, and not all dies have been loaded,
16491 load them all and try again. */
16492
16493 if (pd == NULL && per_cu->load_all_dies == 0)
16494 {
16495 per_cu->load_all_dies = 1;
16496
16497 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16498 THIS_CU->cu may already be in use. So we can't just free it and
16499 replace its DIEs with the ones we read in. Instead, we leave those
16500 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16501 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16502 set. */
16503 load_partial_comp_unit (per_cu);
16504
16505 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16506 }
16507
16508 if (pd == NULL)
16509 internal_error (__FILE__, __LINE__,
16510 _("could not find partial DIE 0x%x "
16511 "in cache [from module %s]\n"),
16512 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16513 return pd;
16514 }
16515
16516 /* See if we can figure out if the class lives in a namespace. We do
16517 this by looking for a member function; its demangled name will
16518 contain namespace info, if there is any. */
16519
16520 static void
16521 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16522 struct dwarf2_cu *cu)
16523 {
16524 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16525 what template types look like, because the demangler
16526 frequently doesn't give the same name as the debug info. We
16527 could fix this by only using the demangled name to get the
16528 prefix (but see comment in read_structure_type). */
16529
16530 struct partial_die_info *real_pdi;
16531 struct partial_die_info *child_pdi;
16532
16533 /* If this DIE (this DIE's specification, if any) has a parent, then
16534 we should not do this. We'll prepend the parent's fully qualified
16535 name when we create the partial symbol. */
16536
16537 real_pdi = struct_pdi;
16538 while (real_pdi->has_specification)
16539 real_pdi = find_partial_die (real_pdi->spec_offset,
16540 real_pdi->spec_is_dwz, cu);
16541
16542 if (real_pdi->die_parent != NULL)
16543 return;
16544
16545 for (child_pdi = struct_pdi->die_child;
16546 child_pdi != NULL;
16547 child_pdi = child_pdi->die_sibling)
16548 {
16549 if (child_pdi->tag == DW_TAG_subprogram
16550 && child_pdi->linkage_name != NULL)
16551 {
16552 char *actual_class_name
16553 = language_class_name_from_physname (cu->language_defn,
16554 child_pdi->linkage_name);
16555 if (actual_class_name != NULL)
16556 {
16557 struct_pdi->name
16558 = ((const char *)
16559 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16560 actual_class_name,
16561 strlen (actual_class_name)));
16562 xfree (actual_class_name);
16563 }
16564 break;
16565 }
16566 }
16567 }
16568
16569 /* Adjust PART_DIE before generating a symbol for it. This function
16570 may set the is_external flag or change the DIE's name. */
16571
16572 static void
16573 fixup_partial_die (struct partial_die_info *part_die,
16574 struct dwarf2_cu *cu)
16575 {
16576 /* Once we've fixed up a die, there's no point in doing so again.
16577 This also avoids a memory leak if we were to call
16578 guess_partial_die_structure_name multiple times. */
16579 if (part_die->fixup_called)
16580 return;
16581
16582 /* If we found a reference attribute and the DIE has no name, try
16583 to find a name in the referred to DIE. */
16584
16585 if (part_die->name == NULL && part_die->has_specification)
16586 {
16587 struct partial_die_info *spec_die;
16588
16589 spec_die = find_partial_die (part_die->spec_offset,
16590 part_die->spec_is_dwz, cu);
16591
16592 fixup_partial_die (spec_die, cu);
16593
16594 if (spec_die->name)
16595 {
16596 part_die->name = spec_die->name;
16597
16598 /* Copy DW_AT_external attribute if it is set. */
16599 if (spec_die->is_external)
16600 part_die->is_external = spec_die->is_external;
16601 }
16602 }
16603
16604 /* Set default names for some unnamed DIEs. */
16605
16606 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16607 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16608
16609 /* If there is no parent die to provide a namespace, and there are
16610 children, see if we can determine the namespace from their linkage
16611 name. */
16612 if (cu->language == language_cplus
16613 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16614 && part_die->die_parent == NULL
16615 && part_die->has_children
16616 && (part_die->tag == DW_TAG_class_type
16617 || part_die->tag == DW_TAG_structure_type
16618 || part_die->tag == DW_TAG_union_type))
16619 guess_partial_die_structure_name (part_die, cu);
16620
16621 /* GCC might emit a nameless struct or union that has a linkage
16622 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16623 if (part_die->name == NULL
16624 && (part_die->tag == DW_TAG_class_type
16625 || part_die->tag == DW_TAG_interface_type
16626 || part_die->tag == DW_TAG_structure_type
16627 || part_die->tag == DW_TAG_union_type)
16628 && part_die->linkage_name != NULL)
16629 {
16630 char *demangled;
16631
16632 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16633 if (demangled)
16634 {
16635 const char *base;
16636
16637 /* Strip any leading namespaces/classes, keep only the base name.
16638 DW_AT_name for named DIEs does not contain the prefixes. */
16639 base = strrchr (demangled, ':');
16640 if (base && base > demangled && base[-1] == ':')
16641 base++;
16642 else
16643 base = demangled;
16644
16645 part_die->name
16646 = ((const char *)
16647 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16648 base, strlen (base)));
16649 xfree (demangled);
16650 }
16651 }
16652
16653 part_die->fixup_called = 1;
16654 }
16655
16656 /* Read an attribute value described by an attribute form. */
16657
16658 static const gdb_byte *
16659 read_attribute_value (const struct die_reader_specs *reader,
16660 struct attribute *attr, unsigned form,
16661 LONGEST implicit_const, const gdb_byte *info_ptr)
16662 {
16663 struct dwarf2_cu *cu = reader->cu;
16664 struct objfile *objfile = cu->objfile;
16665 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16666 bfd *abfd = reader->abfd;
16667 struct comp_unit_head *cu_header = &cu->header;
16668 unsigned int bytes_read;
16669 struct dwarf_block *blk;
16670
16671 attr->form = (enum dwarf_form) form;
16672 switch (form)
16673 {
16674 case DW_FORM_ref_addr:
16675 if (cu->header.version == 2)
16676 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16677 else
16678 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16679 &cu->header, &bytes_read);
16680 info_ptr += bytes_read;
16681 break;
16682 case DW_FORM_GNU_ref_alt:
16683 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16684 info_ptr += bytes_read;
16685 break;
16686 case DW_FORM_addr:
16687 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16688 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16689 info_ptr += bytes_read;
16690 break;
16691 case DW_FORM_block2:
16692 blk = dwarf_alloc_block (cu);
16693 blk->size = read_2_bytes (abfd, info_ptr);
16694 info_ptr += 2;
16695 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16696 info_ptr += blk->size;
16697 DW_BLOCK (attr) = blk;
16698 break;
16699 case DW_FORM_block4:
16700 blk = dwarf_alloc_block (cu);
16701 blk->size = read_4_bytes (abfd, info_ptr);
16702 info_ptr += 4;
16703 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16704 info_ptr += blk->size;
16705 DW_BLOCK (attr) = blk;
16706 break;
16707 case DW_FORM_data2:
16708 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16709 info_ptr += 2;
16710 break;
16711 case DW_FORM_data4:
16712 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16713 info_ptr += 4;
16714 break;
16715 case DW_FORM_data8:
16716 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16717 info_ptr += 8;
16718 break;
16719 case DW_FORM_data16:
16720 blk = dwarf_alloc_block (cu);
16721 blk->size = 16;
16722 blk->data = read_n_bytes (abfd, info_ptr, 16);
16723 info_ptr += 16;
16724 DW_BLOCK (attr) = blk;
16725 break;
16726 case DW_FORM_sec_offset:
16727 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16728 info_ptr += bytes_read;
16729 break;
16730 case DW_FORM_string:
16731 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16732 DW_STRING_IS_CANONICAL (attr) = 0;
16733 info_ptr += bytes_read;
16734 break;
16735 case DW_FORM_strp:
16736 if (!cu->per_cu->is_dwz)
16737 {
16738 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16739 &bytes_read);
16740 DW_STRING_IS_CANONICAL (attr) = 0;
16741 info_ptr += bytes_read;
16742 break;
16743 }
16744 /* FALLTHROUGH */
16745 case DW_FORM_line_strp:
16746 if (!cu->per_cu->is_dwz)
16747 {
16748 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16749 cu_header, &bytes_read);
16750 DW_STRING_IS_CANONICAL (attr) = 0;
16751 info_ptr += bytes_read;
16752 break;
16753 }
16754 /* FALLTHROUGH */
16755 case DW_FORM_GNU_strp_alt:
16756 {
16757 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16758 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16759 &bytes_read);
16760
16761 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16762 DW_STRING_IS_CANONICAL (attr) = 0;
16763 info_ptr += bytes_read;
16764 }
16765 break;
16766 case DW_FORM_exprloc:
16767 case DW_FORM_block:
16768 blk = dwarf_alloc_block (cu);
16769 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16770 info_ptr += bytes_read;
16771 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16772 info_ptr += blk->size;
16773 DW_BLOCK (attr) = blk;
16774 break;
16775 case DW_FORM_block1:
16776 blk = dwarf_alloc_block (cu);
16777 blk->size = read_1_byte (abfd, info_ptr);
16778 info_ptr += 1;
16779 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16780 info_ptr += blk->size;
16781 DW_BLOCK (attr) = blk;
16782 break;
16783 case DW_FORM_data1:
16784 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16785 info_ptr += 1;
16786 break;
16787 case DW_FORM_flag:
16788 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16789 info_ptr += 1;
16790 break;
16791 case DW_FORM_flag_present:
16792 DW_UNSND (attr) = 1;
16793 break;
16794 case DW_FORM_sdata:
16795 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16796 info_ptr += bytes_read;
16797 break;
16798 case DW_FORM_udata:
16799 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16800 info_ptr += bytes_read;
16801 break;
16802 case DW_FORM_ref1:
16803 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16804 + read_1_byte (abfd, info_ptr));
16805 info_ptr += 1;
16806 break;
16807 case DW_FORM_ref2:
16808 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16809 + read_2_bytes (abfd, info_ptr));
16810 info_ptr += 2;
16811 break;
16812 case DW_FORM_ref4:
16813 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16814 + read_4_bytes (abfd, info_ptr));
16815 info_ptr += 4;
16816 break;
16817 case DW_FORM_ref8:
16818 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16819 + read_8_bytes (abfd, info_ptr));
16820 info_ptr += 8;
16821 break;
16822 case DW_FORM_ref_sig8:
16823 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16824 info_ptr += 8;
16825 break;
16826 case DW_FORM_ref_udata:
16827 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16828 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16829 info_ptr += bytes_read;
16830 break;
16831 case DW_FORM_indirect:
16832 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16833 info_ptr += bytes_read;
16834 if (form == DW_FORM_implicit_const)
16835 {
16836 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16837 info_ptr += bytes_read;
16838 }
16839 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16840 info_ptr);
16841 break;
16842 case DW_FORM_implicit_const:
16843 DW_SND (attr) = implicit_const;
16844 break;
16845 case DW_FORM_GNU_addr_index:
16846 if (reader->dwo_file == NULL)
16847 {
16848 /* For now flag a hard error.
16849 Later we can turn this into a complaint. */
16850 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16851 dwarf_form_name (form),
16852 bfd_get_filename (abfd));
16853 }
16854 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16855 info_ptr += bytes_read;
16856 break;
16857 case DW_FORM_GNU_str_index:
16858 if (reader->dwo_file == NULL)
16859 {
16860 /* For now flag a hard error.
16861 Later we can turn this into a complaint if warranted. */
16862 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16863 dwarf_form_name (form),
16864 bfd_get_filename (abfd));
16865 }
16866 {
16867 ULONGEST str_index =
16868 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16869
16870 DW_STRING (attr) = read_str_index (reader, str_index);
16871 DW_STRING_IS_CANONICAL (attr) = 0;
16872 info_ptr += bytes_read;
16873 }
16874 break;
16875 default:
16876 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16877 dwarf_form_name (form),
16878 bfd_get_filename (abfd));
16879 }
16880
16881 /* Super hack. */
16882 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16883 attr->form = DW_FORM_GNU_ref_alt;
16884
16885 /* We have seen instances where the compiler tried to emit a byte
16886 size attribute of -1 which ended up being encoded as an unsigned
16887 0xffffffff. Although 0xffffffff is technically a valid size value,
16888 an object of this size seems pretty unlikely so we can relatively
16889 safely treat these cases as if the size attribute was invalid and
16890 treat them as zero by default. */
16891 if (attr->name == DW_AT_byte_size
16892 && form == DW_FORM_data4
16893 && DW_UNSND (attr) >= 0xffffffff)
16894 {
16895 complaint
16896 (&symfile_complaints,
16897 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16898 hex_string (DW_UNSND (attr)));
16899 DW_UNSND (attr) = 0;
16900 }
16901
16902 return info_ptr;
16903 }
16904
16905 /* Read an attribute described by an abbreviated attribute. */
16906
16907 static const gdb_byte *
16908 read_attribute (const struct die_reader_specs *reader,
16909 struct attribute *attr, struct attr_abbrev *abbrev,
16910 const gdb_byte *info_ptr)
16911 {
16912 attr->name = abbrev->name;
16913 return read_attribute_value (reader, attr, abbrev->form,
16914 abbrev->implicit_const, info_ptr);
16915 }
16916
16917 /* Read dwarf information from a buffer. */
16918
16919 static unsigned int
16920 read_1_byte (bfd *abfd, const gdb_byte *buf)
16921 {
16922 return bfd_get_8 (abfd, buf);
16923 }
16924
16925 static int
16926 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16927 {
16928 return bfd_get_signed_8 (abfd, buf);
16929 }
16930
16931 static unsigned int
16932 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16933 {
16934 return bfd_get_16 (abfd, buf);
16935 }
16936
16937 static int
16938 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16939 {
16940 return bfd_get_signed_16 (abfd, buf);
16941 }
16942
16943 static unsigned int
16944 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16945 {
16946 return bfd_get_32 (abfd, buf);
16947 }
16948
16949 static int
16950 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16951 {
16952 return bfd_get_signed_32 (abfd, buf);
16953 }
16954
16955 static ULONGEST
16956 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16957 {
16958 return bfd_get_64 (abfd, buf);
16959 }
16960
16961 static CORE_ADDR
16962 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16963 unsigned int *bytes_read)
16964 {
16965 struct comp_unit_head *cu_header = &cu->header;
16966 CORE_ADDR retval = 0;
16967
16968 if (cu_header->signed_addr_p)
16969 {
16970 switch (cu_header->addr_size)
16971 {
16972 case 2:
16973 retval = bfd_get_signed_16 (abfd, buf);
16974 break;
16975 case 4:
16976 retval = bfd_get_signed_32 (abfd, buf);
16977 break;
16978 case 8:
16979 retval = bfd_get_signed_64 (abfd, buf);
16980 break;
16981 default:
16982 internal_error (__FILE__, __LINE__,
16983 _("read_address: bad switch, signed [in module %s]"),
16984 bfd_get_filename (abfd));
16985 }
16986 }
16987 else
16988 {
16989 switch (cu_header->addr_size)
16990 {
16991 case 2:
16992 retval = bfd_get_16 (abfd, buf);
16993 break;
16994 case 4:
16995 retval = bfd_get_32 (abfd, buf);
16996 break;
16997 case 8:
16998 retval = bfd_get_64 (abfd, buf);
16999 break;
17000 default:
17001 internal_error (__FILE__, __LINE__,
17002 _("read_address: bad switch, "
17003 "unsigned [in module %s]"),
17004 bfd_get_filename (abfd));
17005 }
17006 }
17007
17008 *bytes_read = cu_header->addr_size;
17009 return retval;
17010 }
17011
17012 /* Read the initial length from a section. The (draft) DWARF 3
17013 specification allows the initial length to take up either 4 bytes
17014 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17015 bytes describe the length and all offsets will be 8 bytes in length
17016 instead of 4.
17017
17018 An older, non-standard 64-bit format is also handled by this
17019 function. The older format in question stores the initial length
17020 as an 8-byte quantity without an escape value. Lengths greater
17021 than 2^32 aren't very common which means that the initial 4 bytes
17022 is almost always zero. Since a length value of zero doesn't make
17023 sense for the 32-bit format, this initial zero can be considered to
17024 be an escape value which indicates the presence of the older 64-bit
17025 format. As written, the code can't detect (old format) lengths
17026 greater than 4GB. If it becomes necessary to handle lengths
17027 somewhat larger than 4GB, we could allow other small values (such
17028 as the non-sensical values of 1, 2, and 3) to also be used as
17029 escape values indicating the presence of the old format.
17030
17031 The value returned via bytes_read should be used to increment the
17032 relevant pointer after calling read_initial_length().
17033
17034 [ Note: read_initial_length() and read_offset() are based on the
17035 document entitled "DWARF Debugging Information Format", revision
17036 3, draft 8, dated November 19, 2001. This document was obtained
17037 from:
17038
17039 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17040
17041 This document is only a draft and is subject to change. (So beware.)
17042
17043 Details regarding the older, non-standard 64-bit format were
17044 determined empirically by examining 64-bit ELF files produced by
17045 the SGI toolchain on an IRIX 6.5 machine.
17046
17047 - Kevin, July 16, 2002
17048 ] */
17049
17050 static LONGEST
17051 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17052 {
17053 LONGEST length = bfd_get_32 (abfd, buf);
17054
17055 if (length == 0xffffffff)
17056 {
17057 length = bfd_get_64 (abfd, buf + 4);
17058 *bytes_read = 12;
17059 }
17060 else if (length == 0)
17061 {
17062 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17063 length = bfd_get_64 (abfd, buf);
17064 *bytes_read = 8;
17065 }
17066 else
17067 {
17068 *bytes_read = 4;
17069 }
17070
17071 return length;
17072 }
17073
17074 /* Cover function for read_initial_length.
17075 Returns the length of the object at BUF, and stores the size of the
17076 initial length in *BYTES_READ and stores the size that offsets will be in
17077 *OFFSET_SIZE.
17078 If the initial length size is not equivalent to that specified in
17079 CU_HEADER then issue a complaint.
17080 This is useful when reading non-comp-unit headers. */
17081
17082 static LONGEST
17083 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17084 const struct comp_unit_head *cu_header,
17085 unsigned int *bytes_read,
17086 unsigned int *offset_size)
17087 {
17088 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17089
17090 gdb_assert (cu_header->initial_length_size == 4
17091 || cu_header->initial_length_size == 8
17092 || cu_header->initial_length_size == 12);
17093
17094 if (cu_header->initial_length_size != *bytes_read)
17095 complaint (&symfile_complaints,
17096 _("intermixed 32-bit and 64-bit DWARF sections"));
17097
17098 *offset_size = (*bytes_read == 4) ? 4 : 8;
17099 return length;
17100 }
17101
17102 /* Read an offset from the data stream. The size of the offset is
17103 given by cu_header->offset_size. */
17104
17105 static LONGEST
17106 read_offset (bfd *abfd, const gdb_byte *buf,
17107 const struct comp_unit_head *cu_header,
17108 unsigned int *bytes_read)
17109 {
17110 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17111
17112 *bytes_read = cu_header->offset_size;
17113 return offset;
17114 }
17115
17116 /* Read an offset from the data stream. */
17117
17118 static LONGEST
17119 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17120 {
17121 LONGEST retval = 0;
17122
17123 switch (offset_size)
17124 {
17125 case 4:
17126 retval = bfd_get_32 (abfd, buf);
17127 break;
17128 case 8:
17129 retval = bfd_get_64 (abfd, buf);
17130 break;
17131 default:
17132 internal_error (__FILE__, __LINE__,
17133 _("read_offset_1: bad switch [in module %s]"),
17134 bfd_get_filename (abfd));
17135 }
17136
17137 return retval;
17138 }
17139
17140 static const gdb_byte *
17141 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17142 {
17143 /* If the size of a host char is 8 bits, we can return a pointer
17144 to the buffer, otherwise we have to copy the data to a buffer
17145 allocated on the temporary obstack. */
17146 gdb_assert (HOST_CHAR_BIT == 8);
17147 return buf;
17148 }
17149
17150 static const char *
17151 read_direct_string (bfd *abfd, const gdb_byte *buf,
17152 unsigned int *bytes_read_ptr)
17153 {
17154 /* If the size of a host char is 8 bits, we can return a pointer
17155 to the string, otherwise we have to copy the string to a buffer
17156 allocated on the temporary obstack. */
17157 gdb_assert (HOST_CHAR_BIT == 8);
17158 if (*buf == '\0')
17159 {
17160 *bytes_read_ptr = 1;
17161 return NULL;
17162 }
17163 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17164 return (const char *) buf;
17165 }
17166
17167 /* Return pointer to string at section SECT offset STR_OFFSET with error
17168 reporting strings FORM_NAME and SECT_NAME. */
17169
17170 static const char *
17171 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17172 struct dwarf2_section_info *sect,
17173 const char *form_name,
17174 const char *sect_name)
17175 {
17176 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17177 if (sect->buffer == NULL)
17178 error (_("%s used without %s section [in module %s]"),
17179 form_name, sect_name, bfd_get_filename (abfd));
17180 if (str_offset >= sect->size)
17181 error (_("%s pointing outside of %s section [in module %s]"),
17182 form_name, sect_name, bfd_get_filename (abfd));
17183 gdb_assert (HOST_CHAR_BIT == 8);
17184 if (sect->buffer[str_offset] == '\0')
17185 return NULL;
17186 return (const char *) (sect->buffer + str_offset);
17187 }
17188
17189 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17190
17191 static const char *
17192 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17193 {
17194 return read_indirect_string_at_offset_from (abfd, str_offset,
17195 &dwarf2_per_objfile->str,
17196 "DW_FORM_strp", ".debug_str");
17197 }
17198
17199 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17200
17201 static const char *
17202 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17203 {
17204 return read_indirect_string_at_offset_from (abfd, str_offset,
17205 &dwarf2_per_objfile->line_str,
17206 "DW_FORM_line_strp",
17207 ".debug_line_str");
17208 }
17209
17210 /* Read a string at offset STR_OFFSET in the .debug_str section from
17211 the .dwz file DWZ. Throw an error if the offset is too large. If
17212 the string consists of a single NUL byte, return NULL; otherwise
17213 return a pointer to the string. */
17214
17215 static const char *
17216 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17217 {
17218 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17219
17220 if (dwz->str.buffer == NULL)
17221 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17222 "section [in module %s]"),
17223 bfd_get_filename (dwz->dwz_bfd));
17224 if (str_offset >= dwz->str.size)
17225 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17226 ".debug_str section [in module %s]"),
17227 bfd_get_filename (dwz->dwz_bfd));
17228 gdb_assert (HOST_CHAR_BIT == 8);
17229 if (dwz->str.buffer[str_offset] == '\0')
17230 return NULL;
17231 return (const char *) (dwz->str.buffer + str_offset);
17232 }
17233
17234 /* Return pointer to string at .debug_str offset as read from BUF.
17235 BUF is assumed to be in a compilation unit described by CU_HEADER.
17236 Return *BYTES_READ_PTR count of bytes read from BUF. */
17237
17238 static const char *
17239 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17240 const struct comp_unit_head *cu_header,
17241 unsigned int *bytes_read_ptr)
17242 {
17243 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17244
17245 return read_indirect_string_at_offset (abfd, str_offset);
17246 }
17247
17248 /* Return pointer to string at .debug_line_str offset as read from BUF.
17249 BUF is assumed to be in a compilation unit described by CU_HEADER.
17250 Return *BYTES_READ_PTR count of bytes read from BUF. */
17251
17252 static const char *
17253 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17254 const struct comp_unit_head *cu_header,
17255 unsigned int *bytes_read_ptr)
17256 {
17257 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17258
17259 return read_indirect_line_string_at_offset (abfd, str_offset);
17260 }
17261
17262 ULONGEST
17263 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17264 unsigned int *bytes_read_ptr)
17265 {
17266 ULONGEST result;
17267 unsigned int num_read;
17268 int shift;
17269 unsigned char byte;
17270
17271 result = 0;
17272 shift = 0;
17273 num_read = 0;
17274 while (1)
17275 {
17276 byte = bfd_get_8 (abfd, buf);
17277 buf++;
17278 num_read++;
17279 result |= ((ULONGEST) (byte & 127) << shift);
17280 if ((byte & 128) == 0)
17281 {
17282 break;
17283 }
17284 shift += 7;
17285 }
17286 *bytes_read_ptr = num_read;
17287 return result;
17288 }
17289
17290 static LONGEST
17291 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17292 unsigned int *bytes_read_ptr)
17293 {
17294 LONGEST result;
17295 int shift, num_read;
17296 unsigned char byte;
17297
17298 result = 0;
17299 shift = 0;
17300 num_read = 0;
17301 while (1)
17302 {
17303 byte = bfd_get_8 (abfd, buf);
17304 buf++;
17305 num_read++;
17306 result |= ((LONGEST) (byte & 127) << shift);
17307 shift += 7;
17308 if ((byte & 128) == 0)
17309 {
17310 break;
17311 }
17312 }
17313 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17314 result |= -(((LONGEST) 1) << shift);
17315 *bytes_read_ptr = num_read;
17316 return result;
17317 }
17318
17319 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17320 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17321 ADDR_SIZE is the size of addresses from the CU header. */
17322
17323 static CORE_ADDR
17324 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17325 {
17326 struct objfile *objfile = dwarf2_per_objfile->objfile;
17327 bfd *abfd = objfile->obfd;
17328 const gdb_byte *info_ptr;
17329
17330 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17331 if (dwarf2_per_objfile->addr.buffer == NULL)
17332 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17333 objfile_name (objfile));
17334 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17335 error (_("DW_FORM_addr_index pointing outside of "
17336 ".debug_addr section [in module %s]"),
17337 objfile_name (objfile));
17338 info_ptr = (dwarf2_per_objfile->addr.buffer
17339 + addr_base + addr_index * addr_size);
17340 if (addr_size == 4)
17341 return bfd_get_32 (abfd, info_ptr);
17342 else
17343 return bfd_get_64 (abfd, info_ptr);
17344 }
17345
17346 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17347
17348 static CORE_ADDR
17349 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17350 {
17351 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17352 }
17353
17354 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17355
17356 static CORE_ADDR
17357 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17358 unsigned int *bytes_read)
17359 {
17360 bfd *abfd = cu->objfile->obfd;
17361 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17362
17363 return read_addr_index (cu, addr_index);
17364 }
17365
17366 /* Data structure to pass results from dwarf2_read_addr_index_reader
17367 back to dwarf2_read_addr_index. */
17368
17369 struct dwarf2_read_addr_index_data
17370 {
17371 ULONGEST addr_base;
17372 int addr_size;
17373 };
17374
17375 /* die_reader_func for dwarf2_read_addr_index. */
17376
17377 static void
17378 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17379 const gdb_byte *info_ptr,
17380 struct die_info *comp_unit_die,
17381 int has_children,
17382 void *data)
17383 {
17384 struct dwarf2_cu *cu = reader->cu;
17385 struct dwarf2_read_addr_index_data *aidata =
17386 (struct dwarf2_read_addr_index_data *) data;
17387
17388 aidata->addr_base = cu->addr_base;
17389 aidata->addr_size = cu->header.addr_size;
17390 }
17391
17392 /* Given an index in .debug_addr, fetch the value.
17393 NOTE: This can be called during dwarf expression evaluation,
17394 long after the debug information has been read, and thus per_cu->cu
17395 may no longer exist. */
17396
17397 CORE_ADDR
17398 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17399 unsigned int addr_index)
17400 {
17401 struct objfile *objfile = per_cu->objfile;
17402 struct dwarf2_cu *cu = per_cu->cu;
17403 ULONGEST addr_base;
17404 int addr_size;
17405
17406 /* This is intended to be called from outside this file. */
17407 dw2_setup (objfile);
17408
17409 /* We need addr_base and addr_size.
17410 If we don't have PER_CU->cu, we have to get it.
17411 Nasty, but the alternative is storing the needed info in PER_CU,
17412 which at this point doesn't seem justified: it's not clear how frequently
17413 it would get used and it would increase the size of every PER_CU.
17414 Entry points like dwarf2_per_cu_addr_size do a similar thing
17415 so we're not in uncharted territory here.
17416 Alas we need to be a bit more complicated as addr_base is contained
17417 in the DIE.
17418
17419 We don't need to read the entire CU(/TU).
17420 We just need the header and top level die.
17421
17422 IWBN to use the aging mechanism to let us lazily later discard the CU.
17423 For now we skip this optimization. */
17424
17425 if (cu != NULL)
17426 {
17427 addr_base = cu->addr_base;
17428 addr_size = cu->header.addr_size;
17429 }
17430 else
17431 {
17432 struct dwarf2_read_addr_index_data aidata;
17433
17434 /* Note: We can't use init_cutu_and_read_dies_simple here,
17435 we need addr_base. */
17436 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17437 dwarf2_read_addr_index_reader, &aidata);
17438 addr_base = aidata.addr_base;
17439 addr_size = aidata.addr_size;
17440 }
17441
17442 return read_addr_index_1 (addr_index, addr_base, addr_size);
17443 }
17444
17445 /* Given a DW_FORM_GNU_str_index, fetch the string.
17446 This is only used by the Fission support. */
17447
17448 static const char *
17449 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17450 {
17451 struct objfile *objfile = dwarf2_per_objfile->objfile;
17452 const char *objf_name = objfile_name (objfile);
17453 bfd *abfd = objfile->obfd;
17454 struct dwarf2_cu *cu = reader->cu;
17455 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17456 struct dwarf2_section_info *str_offsets_section =
17457 &reader->dwo_file->sections.str_offsets;
17458 const gdb_byte *info_ptr;
17459 ULONGEST str_offset;
17460 static const char form_name[] = "DW_FORM_GNU_str_index";
17461
17462 dwarf2_read_section (objfile, str_section);
17463 dwarf2_read_section (objfile, str_offsets_section);
17464 if (str_section->buffer == NULL)
17465 error (_("%s used without .debug_str.dwo section"
17466 " in CU at offset 0x%x [in module %s]"),
17467 form_name, to_underlying (cu->header.sect_off), objf_name);
17468 if (str_offsets_section->buffer == NULL)
17469 error (_("%s used without .debug_str_offsets.dwo section"
17470 " in CU at offset 0x%x [in module %s]"),
17471 form_name, to_underlying (cu->header.sect_off), objf_name);
17472 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17473 error (_("%s pointing outside of .debug_str_offsets.dwo"
17474 " section in CU at offset 0x%x [in module %s]"),
17475 form_name, to_underlying (cu->header.sect_off), objf_name);
17476 info_ptr = (str_offsets_section->buffer
17477 + str_index * cu->header.offset_size);
17478 if (cu->header.offset_size == 4)
17479 str_offset = bfd_get_32 (abfd, info_ptr);
17480 else
17481 str_offset = bfd_get_64 (abfd, info_ptr);
17482 if (str_offset >= str_section->size)
17483 error (_("Offset from %s pointing outside of"
17484 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17485 form_name, to_underlying (cu->header.sect_off), objf_name);
17486 return (const char *) (str_section->buffer + str_offset);
17487 }
17488
17489 /* Return the length of an LEB128 number in BUF. */
17490
17491 static int
17492 leb128_size (const gdb_byte *buf)
17493 {
17494 const gdb_byte *begin = buf;
17495 gdb_byte byte;
17496
17497 while (1)
17498 {
17499 byte = *buf++;
17500 if ((byte & 128) == 0)
17501 return buf - begin;
17502 }
17503 }
17504
17505 static void
17506 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17507 {
17508 switch (lang)
17509 {
17510 case DW_LANG_C89:
17511 case DW_LANG_C99:
17512 case DW_LANG_C11:
17513 case DW_LANG_C:
17514 case DW_LANG_UPC:
17515 cu->language = language_c;
17516 break;
17517 case DW_LANG_Java:
17518 case DW_LANG_C_plus_plus:
17519 case DW_LANG_C_plus_plus_11:
17520 case DW_LANG_C_plus_plus_14:
17521 cu->language = language_cplus;
17522 break;
17523 case DW_LANG_D:
17524 cu->language = language_d;
17525 break;
17526 case DW_LANG_Fortran77:
17527 case DW_LANG_Fortran90:
17528 case DW_LANG_Fortran95:
17529 case DW_LANG_Fortran03:
17530 case DW_LANG_Fortran08:
17531 cu->language = language_fortran;
17532 break;
17533 case DW_LANG_Go:
17534 cu->language = language_go;
17535 break;
17536 case DW_LANG_Mips_Assembler:
17537 cu->language = language_asm;
17538 break;
17539 case DW_LANG_Ada83:
17540 case DW_LANG_Ada95:
17541 cu->language = language_ada;
17542 break;
17543 case DW_LANG_Modula2:
17544 cu->language = language_m2;
17545 break;
17546 case DW_LANG_Pascal83:
17547 cu->language = language_pascal;
17548 break;
17549 case DW_LANG_ObjC:
17550 cu->language = language_objc;
17551 break;
17552 case DW_LANG_Rust:
17553 case DW_LANG_Rust_old:
17554 cu->language = language_rust;
17555 break;
17556 case DW_LANG_Cobol74:
17557 case DW_LANG_Cobol85:
17558 default:
17559 cu->language = language_minimal;
17560 break;
17561 }
17562 cu->language_defn = language_def (cu->language);
17563 }
17564
17565 /* Return the named attribute or NULL if not there. */
17566
17567 static struct attribute *
17568 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17569 {
17570 for (;;)
17571 {
17572 unsigned int i;
17573 struct attribute *spec = NULL;
17574
17575 for (i = 0; i < die->num_attrs; ++i)
17576 {
17577 if (die->attrs[i].name == name)
17578 return &die->attrs[i];
17579 if (die->attrs[i].name == DW_AT_specification
17580 || die->attrs[i].name == DW_AT_abstract_origin)
17581 spec = &die->attrs[i];
17582 }
17583
17584 if (!spec)
17585 break;
17586
17587 die = follow_die_ref (die, spec, &cu);
17588 }
17589
17590 return NULL;
17591 }
17592
17593 /* Return the named attribute or NULL if not there,
17594 but do not follow DW_AT_specification, etc.
17595 This is for use in contexts where we're reading .debug_types dies.
17596 Following DW_AT_specification, DW_AT_abstract_origin will take us
17597 back up the chain, and we want to go down. */
17598
17599 static struct attribute *
17600 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17601 {
17602 unsigned int i;
17603
17604 for (i = 0; i < die->num_attrs; ++i)
17605 if (die->attrs[i].name == name)
17606 return &die->attrs[i];
17607
17608 return NULL;
17609 }
17610
17611 /* Return the string associated with a string-typed attribute, or NULL if it
17612 is either not found or is of an incorrect type. */
17613
17614 static const char *
17615 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17616 {
17617 struct attribute *attr;
17618 const char *str = NULL;
17619
17620 attr = dwarf2_attr (die, name, cu);
17621
17622 if (attr != NULL)
17623 {
17624 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17625 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17626 str = DW_STRING (attr);
17627 else
17628 complaint (&symfile_complaints,
17629 _("string type expected for attribute %s for "
17630 "DIE at 0x%x in module %s"),
17631 dwarf_attr_name (name), to_underlying (die->sect_off),
17632 objfile_name (cu->objfile));
17633 }
17634
17635 return str;
17636 }
17637
17638 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17639 and holds a non-zero value. This function should only be used for
17640 DW_FORM_flag or DW_FORM_flag_present attributes. */
17641
17642 static int
17643 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17644 {
17645 struct attribute *attr = dwarf2_attr (die, name, cu);
17646
17647 return (attr && DW_UNSND (attr));
17648 }
17649
17650 static int
17651 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17652 {
17653 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17654 which value is non-zero. However, we have to be careful with
17655 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17656 (via dwarf2_flag_true_p) follows this attribute. So we may
17657 end up accidently finding a declaration attribute that belongs
17658 to a different DIE referenced by the specification attribute,
17659 even though the given DIE does not have a declaration attribute. */
17660 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17661 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17662 }
17663
17664 /* Return the die giving the specification for DIE, if there is
17665 one. *SPEC_CU is the CU containing DIE on input, and the CU
17666 containing the return value on output. If there is no
17667 specification, but there is an abstract origin, that is
17668 returned. */
17669
17670 static struct die_info *
17671 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17672 {
17673 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17674 *spec_cu);
17675
17676 if (spec_attr == NULL)
17677 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17678
17679 if (spec_attr == NULL)
17680 return NULL;
17681 else
17682 return follow_die_ref (die, spec_attr, spec_cu);
17683 }
17684
17685 /* Stub for free_line_header to match void * callback types. */
17686
17687 static void
17688 free_line_header_voidp (void *arg)
17689 {
17690 struct line_header *lh = (struct line_header *) arg;
17691
17692 delete lh;
17693 }
17694
17695 void
17696 line_header::add_include_dir (const char *include_dir)
17697 {
17698 if (dwarf_line_debug >= 2)
17699 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17700 include_dirs.size () + 1, include_dir);
17701
17702 include_dirs.push_back (include_dir);
17703 }
17704
17705 void
17706 line_header::add_file_name (const char *name,
17707 dir_index d_index,
17708 unsigned int mod_time,
17709 unsigned int length)
17710 {
17711 if (dwarf_line_debug >= 2)
17712 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17713 (unsigned) file_names.size () + 1, name);
17714
17715 file_names.emplace_back (name, d_index, mod_time, length);
17716 }
17717
17718 /* A convenience function to find the proper .debug_line section for a CU. */
17719
17720 static struct dwarf2_section_info *
17721 get_debug_line_section (struct dwarf2_cu *cu)
17722 {
17723 struct dwarf2_section_info *section;
17724
17725 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17726 DWO file. */
17727 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17728 section = &cu->dwo_unit->dwo_file->sections.line;
17729 else if (cu->per_cu->is_dwz)
17730 {
17731 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17732
17733 section = &dwz->line;
17734 }
17735 else
17736 section = &dwarf2_per_objfile->line;
17737
17738 return section;
17739 }
17740
17741 /* Read directory or file name entry format, starting with byte of
17742 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17743 entries count and the entries themselves in the described entry
17744 format. */
17745
17746 static void
17747 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17748 struct line_header *lh,
17749 const struct comp_unit_head *cu_header,
17750 void (*callback) (struct line_header *lh,
17751 const char *name,
17752 dir_index d_index,
17753 unsigned int mod_time,
17754 unsigned int length))
17755 {
17756 gdb_byte format_count, formati;
17757 ULONGEST data_count, datai;
17758 const gdb_byte *buf = *bufp;
17759 const gdb_byte *format_header_data;
17760 int i;
17761 unsigned int bytes_read;
17762
17763 format_count = read_1_byte (abfd, buf);
17764 buf += 1;
17765 format_header_data = buf;
17766 for (formati = 0; formati < format_count; formati++)
17767 {
17768 read_unsigned_leb128 (abfd, buf, &bytes_read);
17769 buf += bytes_read;
17770 read_unsigned_leb128 (abfd, buf, &bytes_read);
17771 buf += bytes_read;
17772 }
17773
17774 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17775 buf += bytes_read;
17776 for (datai = 0; datai < data_count; datai++)
17777 {
17778 const gdb_byte *format = format_header_data;
17779 struct file_entry fe;
17780
17781 for (formati = 0; formati < format_count; formati++)
17782 {
17783 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17784 format += bytes_read;
17785
17786 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17787 format += bytes_read;
17788
17789 gdb::optional<const char *> string;
17790 gdb::optional<unsigned int> uint;
17791
17792 switch (form)
17793 {
17794 case DW_FORM_string:
17795 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17796 buf += bytes_read;
17797 break;
17798
17799 case DW_FORM_line_strp:
17800 string.emplace (read_indirect_line_string (abfd, buf,
17801 cu_header,
17802 &bytes_read));
17803 buf += bytes_read;
17804 break;
17805
17806 case DW_FORM_data1:
17807 uint.emplace (read_1_byte (abfd, buf));
17808 buf += 1;
17809 break;
17810
17811 case DW_FORM_data2:
17812 uint.emplace (read_2_bytes (abfd, buf));
17813 buf += 2;
17814 break;
17815
17816 case DW_FORM_data4:
17817 uint.emplace (read_4_bytes (abfd, buf));
17818 buf += 4;
17819 break;
17820
17821 case DW_FORM_data8:
17822 uint.emplace (read_8_bytes (abfd, buf));
17823 buf += 8;
17824 break;
17825
17826 case DW_FORM_udata:
17827 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17828 buf += bytes_read;
17829 break;
17830
17831 case DW_FORM_block:
17832 /* It is valid only for DW_LNCT_timestamp which is ignored by
17833 current GDB. */
17834 break;
17835 }
17836
17837 switch (content_type)
17838 {
17839 case DW_LNCT_path:
17840 if (string.has_value ())
17841 fe.name = *string;
17842 break;
17843 case DW_LNCT_directory_index:
17844 if (uint.has_value ())
17845 fe.d_index = (dir_index) *uint;
17846 break;
17847 case DW_LNCT_timestamp:
17848 if (uint.has_value ())
17849 fe.mod_time = *uint;
17850 break;
17851 case DW_LNCT_size:
17852 if (uint.has_value ())
17853 fe.length = *uint;
17854 break;
17855 case DW_LNCT_MD5:
17856 break;
17857 default:
17858 complaint (&symfile_complaints,
17859 _("Unknown format content type %s"),
17860 pulongest (content_type));
17861 }
17862 }
17863
17864 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17865 }
17866
17867 *bufp = buf;
17868 }
17869
17870 /* Read the statement program header starting at OFFSET in
17871 .debug_line, or .debug_line.dwo. Return a pointer
17872 to a struct line_header, allocated using xmalloc.
17873 Returns NULL if there is a problem reading the header, e.g., if it
17874 has a version we don't understand.
17875
17876 NOTE: the strings in the include directory and file name tables of
17877 the returned object point into the dwarf line section buffer,
17878 and must not be freed. */
17879
17880 static line_header_up
17881 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17882 {
17883 const gdb_byte *line_ptr;
17884 unsigned int bytes_read, offset_size;
17885 int i;
17886 const char *cur_dir, *cur_file;
17887 struct dwarf2_section_info *section;
17888 bfd *abfd;
17889
17890 section = get_debug_line_section (cu);
17891 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17892 if (section->buffer == NULL)
17893 {
17894 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17895 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17896 else
17897 complaint (&symfile_complaints, _("missing .debug_line section"));
17898 return 0;
17899 }
17900
17901 /* We can't do this until we know the section is non-empty.
17902 Only then do we know we have such a section. */
17903 abfd = get_section_bfd_owner (section);
17904
17905 /* Make sure that at least there's room for the total_length field.
17906 That could be 12 bytes long, but we're just going to fudge that. */
17907 if (to_underlying (sect_off) + 4 >= section->size)
17908 {
17909 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17910 return 0;
17911 }
17912
17913 line_header_up lh (new line_header ());
17914
17915 lh->sect_off = sect_off;
17916 lh->offset_in_dwz = cu->per_cu->is_dwz;
17917
17918 line_ptr = section->buffer + to_underlying (sect_off);
17919
17920 /* Read in the header. */
17921 lh->total_length =
17922 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17923 &bytes_read, &offset_size);
17924 line_ptr += bytes_read;
17925 if (line_ptr + lh->total_length > (section->buffer + section->size))
17926 {
17927 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17928 return 0;
17929 }
17930 lh->statement_program_end = line_ptr + lh->total_length;
17931 lh->version = read_2_bytes (abfd, line_ptr);
17932 line_ptr += 2;
17933 if (lh->version > 5)
17934 {
17935 /* This is a version we don't understand. The format could have
17936 changed in ways we don't handle properly so just punt. */
17937 complaint (&symfile_complaints,
17938 _("unsupported version in .debug_line section"));
17939 return NULL;
17940 }
17941 if (lh->version >= 5)
17942 {
17943 gdb_byte segment_selector_size;
17944
17945 /* Skip address size. */
17946 read_1_byte (abfd, line_ptr);
17947 line_ptr += 1;
17948
17949 segment_selector_size = read_1_byte (abfd, line_ptr);
17950 line_ptr += 1;
17951 if (segment_selector_size != 0)
17952 {
17953 complaint (&symfile_complaints,
17954 _("unsupported segment selector size %u "
17955 "in .debug_line section"),
17956 segment_selector_size);
17957 return NULL;
17958 }
17959 }
17960 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17961 line_ptr += offset_size;
17962 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17963 line_ptr += 1;
17964 if (lh->version >= 4)
17965 {
17966 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17967 line_ptr += 1;
17968 }
17969 else
17970 lh->maximum_ops_per_instruction = 1;
17971
17972 if (lh->maximum_ops_per_instruction == 0)
17973 {
17974 lh->maximum_ops_per_instruction = 1;
17975 complaint (&symfile_complaints,
17976 _("invalid maximum_ops_per_instruction "
17977 "in `.debug_line' section"));
17978 }
17979
17980 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17981 line_ptr += 1;
17982 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17983 line_ptr += 1;
17984 lh->line_range = read_1_byte (abfd, line_ptr);
17985 line_ptr += 1;
17986 lh->opcode_base = read_1_byte (abfd, line_ptr);
17987 line_ptr += 1;
17988 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
17989
17990 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17991 for (i = 1; i < lh->opcode_base; ++i)
17992 {
17993 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17994 line_ptr += 1;
17995 }
17996
17997 if (lh->version >= 5)
17998 {
17999 /* Read directory table. */
18000 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18001 [] (struct line_header *lh, const char *name,
18002 dir_index d_index, unsigned int mod_time,
18003 unsigned int length)
18004 {
18005 lh->add_include_dir (name);
18006 });
18007
18008 /* Read file name table. */
18009 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18010 [] (struct line_header *lh, const char *name,
18011 dir_index d_index, unsigned int mod_time,
18012 unsigned int length)
18013 {
18014 lh->add_file_name (name, d_index, mod_time, length);
18015 });
18016 }
18017 else
18018 {
18019 /* Read directory table. */
18020 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18021 {
18022 line_ptr += bytes_read;
18023 lh->add_include_dir (cur_dir);
18024 }
18025 line_ptr += bytes_read;
18026
18027 /* Read file name table. */
18028 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18029 {
18030 unsigned int mod_time, length;
18031 dir_index d_index;
18032
18033 line_ptr += bytes_read;
18034 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18035 line_ptr += bytes_read;
18036 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18037 line_ptr += bytes_read;
18038 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18039 line_ptr += bytes_read;
18040
18041 lh->add_file_name (cur_file, d_index, mod_time, length);
18042 }
18043 line_ptr += bytes_read;
18044 }
18045 lh->statement_program_start = line_ptr;
18046
18047 if (line_ptr > (section->buffer + section->size))
18048 complaint (&symfile_complaints,
18049 _("line number info header doesn't "
18050 "fit in `.debug_line' section"));
18051
18052 return lh;
18053 }
18054
18055 /* Subroutine of dwarf_decode_lines to simplify it.
18056 Return the file name of the psymtab for included file FILE_INDEX
18057 in line header LH of PST.
18058 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18059 If space for the result is malloc'd, it will be freed by a cleanup.
18060 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18061
18062 The function creates dangling cleanup registration. */
18063
18064 static const char *
18065 psymtab_include_file_name (const struct line_header *lh, int file_index,
18066 const struct partial_symtab *pst,
18067 const char *comp_dir)
18068 {
18069 const file_entry &fe = lh->file_names[file_index];
18070 const char *include_name = fe.name;
18071 const char *include_name_to_compare = include_name;
18072 const char *pst_filename;
18073 char *copied_name = NULL;
18074 int file_is_pst;
18075
18076 const char *dir_name = fe.include_dir (lh);
18077
18078 if (!IS_ABSOLUTE_PATH (include_name)
18079 && (dir_name != NULL || comp_dir != NULL))
18080 {
18081 /* Avoid creating a duplicate psymtab for PST.
18082 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18083 Before we do the comparison, however, we need to account
18084 for DIR_NAME and COMP_DIR.
18085 First prepend dir_name (if non-NULL). If we still don't
18086 have an absolute path prepend comp_dir (if non-NULL).
18087 However, the directory we record in the include-file's
18088 psymtab does not contain COMP_DIR (to match the
18089 corresponding symtab(s)).
18090
18091 Example:
18092
18093 bash$ cd /tmp
18094 bash$ gcc -g ./hello.c
18095 include_name = "hello.c"
18096 dir_name = "."
18097 DW_AT_comp_dir = comp_dir = "/tmp"
18098 DW_AT_name = "./hello.c"
18099
18100 */
18101
18102 if (dir_name != NULL)
18103 {
18104 char *tem = concat (dir_name, SLASH_STRING,
18105 include_name, (char *)NULL);
18106
18107 make_cleanup (xfree, tem);
18108 include_name = tem;
18109 include_name_to_compare = include_name;
18110 }
18111 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18112 {
18113 char *tem = concat (comp_dir, SLASH_STRING,
18114 include_name, (char *)NULL);
18115
18116 make_cleanup (xfree, tem);
18117 include_name_to_compare = tem;
18118 }
18119 }
18120
18121 pst_filename = pst->filename;
18122 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18123 {
18124 copied_name = concat (pst->dirname, SLASH_STRING,
18125 pst_filename, (char *)NULL);
18126 pst_filename = copied_name;
18127 }
18128
18129 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18130
18131 if (copied_name != NULL)
18132 xfree (copied_name);
18133
18134 if (file_is_pst)
18135 return NULL;
18136 return include_name;
18137 }
18138
18139 /* State machine to track the state of the line number program. */
18140
18141 class lnp_state_machine
18142 {
18143 public:
18144 /* Initialize a machine state for the start of a line number
18145 program. */
18146 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18147
18148 file_entry *current_file ()
18149 {
18150 /* lh->file_names is 0-based, but the file name numbers in the
18151 statement program are 1-based. */
18152 return m_line_header->file_name_at (m_file);
18153 }
18154
18155 /* Record the line in the state machine. END_SEQUENCE is true if
18156 we're processing the end of a sequence. */
18157 void record_line (bool end_sequence);
18158
18159 /* Check address and if invalid nop-out the rest of the lines in this
18160 sequence. */
18161 void check_line_address (struct dwarf2_cu *cu,
18162 const gdb_byte *line_ptr,
18163 CORE_ADDR lowpc, CORE_ADDR address);
18164
18165 void handle_set_discriminator (unsigned int discriminator)
18166 {
18167 m_discriminator = discriminator;
18168 m_line_has_non_zero_discriminator |= discriminator != 0;
18169 }
18170
18171 /* Handle DW_LNE_set_address. */
18172 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18173 {
18174 m_op_index = 0;
18175 address += baseaddr;
18176 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18177 }
18178
18179 /* Handle DW_LNS_advance_pc. */
18180 void handle_advance_pc (CORE_ADDR adjust);
18181
18182 /* Handle a special opcode. */
18183 void handle_special_opcode (unsigned char op_code);
18184
18185 /* Handle DW_LNS_advance_line. */
18186 void handle_advance_line (int line_delta)
18187 {
18188 advance_line (line_delta);
18189 }
18190
18191 /* Handle DW_LNS_set_file. */
18192 void handle_set_file (file_name_index file);
18193
18194 /* Handle DW_LNS_negate_stmt. */
18195 void handle_negate_stmt ()
18196 {
18197 m_is_stmt = !m_is_stmt;
18198 }
18199
18200 /* Handle DW_LNS_const_add_pc. */
18201 void handle_const_add_pc ();
18202
18203 /* Handle DW_LNS_fixed_advance_pc. */
18204 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18205 {
18206 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18207 m_op_index = 0;
18208 }
18209
18210 /* Handle DW_LNS_copy. */
18211 void handle_copy ()
18212 {
18213 record_line (false);
18214 m_discriminator = 0;
18215 }
18216
18217 /* Handle DW_LNE_end_sequence. */
18218 void handle_end_sequence ()
18219 {
18220 m_record_line_callback = ::record_line;
18221 }
18222
18223 private:
18224 /* Advance the line by LINE_DELTA. */
18225 void advance_line (int line_delta)
18226 {
18227 m_line += line_delta;
18228
18229 if (line_delta != 0)
18230 m_line_has_non_zero_discriminator = m_discriminator != 0;
18231 }
18232
18233 gdbarch *m_gdbarch;
18234
18235 /* True if we're recording lines.
18236 Otherwise we're building partial symtabs and are just interested in
18237 finding include files mentioned by the line number program. */
18238 bool m_record_lines_p;
18239
18240 /* The line number header. */
18241 line_header *m_line_header;
18242
18243 /* These are part of the standard DWARF line number state machine,
18244 and initialized according to the DWARF spec. */
18245
18246 unsigned char m_op_index = 0;
18247 /* The line table index (1-based) of the current file. */
18248 file_name_index m_file = (file_name_index) 1;
18249 unsigned int m_line = 1;
18250
18251 /* These are initialized in the constructor. */
18252
18253 CORE_ADDR m_address;
18254 bool m_is_stmt;
18255 unsigned int m_discriminator;
18256
18257 /* Additional bits of state we need to track. */
18258
18259 /* The last file that we called dwarf2_start_subfile for.
18260 This is only used for TLLs. */
18261 unsigned int m_last_file = 0;
18262 /* The last file a line number was recorded for. */
18263 struct subfile *m_last_subfile = NULL;
18264
18265 /* The function to call to record a line. */
18266 record_line_ftype *m_record_line_callback = NULL;
18267
18268 /* The last line number that was recorded, used to coalesce
18269 consecutive entries for the same line. This can happen, for
18270 example, when discriminators are present. PR 17276. */
18271 unsigned int m_last_line = 0;
18272 bool m_line_has_non_zero_discriminator = false;
18273 };
18274
18275 void
18276 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18277 {
18278 CORE_ADDR addr_adj = (((m_op_index + adjust)
18279 / m_line_header->maximum_ops_per_instruction)
18280 * m_line_header->minimum_instruction_length);
18281 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18282 m_op_index = ((m_op_index + adjust)
18283 % m_line_header->maximum_ops_per_instruction);
18284 }
18285
18286 void
18287 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18288 {
18289 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18290 CORE_ADDR addr_adj = (((m_op_index
18291 + (adj_opcode / m_line_header->line_range))
18292 / m_line_header->maximum_ops_per_instruction)
18293 * m_line_header->minimum_instruction_length);
18294 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18295 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18296 % m_line_header->maximum_ops_per_instruction);
18297
18298 int line_delta = (m_line_header->line_base
18299 + (adj_opcode % m_line_header->line_range));
18300 advance_line (line_delta);
18301 record_line (false);
18302 m_discriminator = 0;
18303 }
18304
18305 void
18306 lnp_state_machine::handle_set_file (file_name_index file)
18307 {
18308 m_file = file;
18309
18310 const file_entry *fe = current_file ();
18311 if (fe == NULL)
18312 dwarf2_debug_line_missing_file_complaint ();
18313 else if (m_record_lines_p)
18314 {
18315 const char *dir = fe->include_dir (m_line_header);
18316
18317 m_last_subfile = current_subfile;
18318 m_line_has_non_zero_discriminator = m_discriminator != 0;
18319 dwarf2_start_subfile (fe->name, dir);
18320 }
18321 }
18322
18323 void
18324 lnp_state_machine::handle_const_add_pc ()
18325 {
18326 CORE_ADDR adjust
18327 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18328
18329 CORE_ADDR addr_adj
18330 = (((m_op_index + adjust)
18331 / m_line_header->maximum_ops_per_instruction)
18332 * m_line_header->minimum_instruction_length);
18333
18334 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18335 m_op_index = ((m_op_index + adjust)
18336 % m_line_header->maximum_ops_per_instruction);
18337 }
18338
18339 /* Ignore this record_line request. */
18340
18341 static void
18342 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18343 {
18344 return;
18345 }
18346
18347 /* Return non-zero if we should add LINE to the line number table.
18348 LINE is the line to add, LAST_LINE is the last line that was added,
18349 LAST_SUBFILE is the subfile for LAST_LINE.
18350 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18351 had a non-zero discriminator.
18352
18353 We have to be careful in the presence of discriminators.
18354 E.g., for this line:
18355
18356 for (i = 0; i < 100000; i++);
18357
18358 clang can emit four line number entries for that one line,
18359 each with a different discriminator.
18360 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18361
18362 However, we want gdb to coalesce all four entries into one.
18363 Otherwise the user could stepi into the middle of the line and
18364 gdb would get confused about whether the pc really was in the
18365 middle of the line.
18366
18367 Things are further complicated by the fact that two consecutive
18368 line number entries for the same line is a heuristic used by gcc
18369 to denote the end of the prologue. So we can't just discard duplicate
18370 entries, we have to be selective about it. The heuristic we use is
18371 that we only collapse consecutive entries for the same line if at least
18372 one of those entries has a non-zero discriminator. PR 17276.
18373
18374 Note: Addresses in the line number state machine can never go backwards
18375 within one sequence, thus this coalescing is ok. */
18376
18377 static int
18378 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18379 int line_has_non_zero_discriminator,
18380 struct subfile *last_subfile)
18381 {
18382 if (current_subfile != last_subfile)
18383 return 1;
18384 if (line != last_line)
18385 return 1;
18386 /* Same line for the same file that we've seen already.
18387 As a last check, for pr 17276, only record the line if the line
18388 has never had a non-zero discriminator. */
18389 if (!line_has_non_zero_discriminator)
18390 return 1;
18391 return 0;
18392 }
18393
18394 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18395 in the line table of subfile SUBFILE. */
18396
18397 static void
18398 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18399 unsigned int line, CORE_ADDR address,
18400 record_line_ftype p_record_line)
18401 {
18402 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18403
18404 if (dwarf_line_debug)
18405 {
18406 fprintf_unfiltered (gdb_stdlog,
18407 "Recording line %u, file %s, address %s\n",
18408 line, lbasename (subfile->name),
18409 paddress (gdbarch, address));
18410 }
18411
18412 (*p_record_line) (subfile, line, addr);
18413 }
18414
18415 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18416 Mark the end of a set of line number records.
18417 The arguments are the same as for dwarf_record_line_1.
18418 If SUBFILE is NULL the request is ignored. */
18419
18420 static void
18421 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18422 CORE_ADDR address, record_line_ftype p_record_line)
18423 {
18424 if (subfile == NULL)
18425 return;
18426
18427 if (dwarf_line_debug)
18428 {
18429 fprintf_unfiltered (gdb_stdlog,
18430 "Finishing current line, file %s, address %s\n",
18431 lbasename (subfile->name),
18432 paddress (gdbarch, address));
18433 }
18434
18435 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18436 }
18437
18438 void
18439 lnp_state_machine::record_line (bool end_sequence)
18440 {
18441 if (dwarf_line_debug)
18442 {
18443 fprintf_unfiltered (gdb_stdlog,
18444 "Processing actual line %u: file %u,"
18445 " address %s, is_stmt %u, discrim %u\n",
18446 m_line, to_underlying (m_file),
18447 paddress (m_gdbarch, m_address),
18448 m_is_stmt, m_discriminator);
18449 }
18450
18451 file_entry *fe = current_file ();
18452
18453 if (fe == NULL)
18454 dwarf2_debug_line_missing_file_complaint ();
18455 /* For now we ignore lines not starting on an instruction boundary.
18456 But not when processing end_sequence for compatibility with the
18457 previous version of the code. */
18458 else if (m_op_index == 0 || end_sequence)
18459 {
18460 fe->included_p = 1;
18461 if (m_record_lines_p && m_is_stmt)
18462 {
18463 if (m_last_subfile != current_subfile || end_sequence)
18464 {
18465 dwarf_finish_line (m_gdbarch, m_last_subfile,
18466 m_address, m_record_line_callback);
18467 }
18468
18469 if (!end_sequence)
18470 {
18471 if (dwarf_record_line_p (m_line, m_last_line,
18472 m_line_has_non_zero_discriminator,
18473 m_last_subfile))
18474 {
18475 dwarf_record_line_1 (m_gdbarch, current_subfile,
18476 m_line, m_address,
18477 m_record_line_callback);
18478 }
18479 m_last_subfile = current_subfile;
18480 m_last_line = m_line;
18481 }
18482 }
18483 }
18484 }
18485
18486 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18487 bool record_lines_p)
18488 {
18489 m_gdbarch = arch;
18490 m_record_lines_p = record_lines_p;
18491 m_line_header = lh;
18492
18493 m_record_line_callback = ::record_line;
18494
18495 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18496 was a line entry for it so that the backend has a chance to adjust it
18497 and also record it in case it needs it. This is currently used by MIPS
18498 code, cf. `mips_adjust_dwarf2_line'. */
18499 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18500 m_is_stmt = lh->default_is_stmt;
18501 m_discriminator = 0;
18502 }
18503
18504 void
18505 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18506 const gdb_byte *line_ptr,
18507 CORE_ADDR lowpc, CORE_ADDR address)
18508 {
18509 /* If address < lowpc then it's not a usable value, it's outside the
18510 pc range of the CU. However, we restrict the test to only address
18511 values of zero to preserve GDB's previous behaviour which is to
18512 handle the specific case of a function being GC'd by the linker. */
18513
18514 if (address == 0 && address < lowpc)
18515 {
18516 /* This line table is for a function which has been
18517 GCd by the linker. Ignore it. PR gdb/12528 */
18518
18519 struct objfile *objfile = cu->objfile;
18520 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18521
18522 complaint (&symfile_complaints,
18523 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18524 line_offset, objfile_name (objfile));
18525 m_record_line_callback = noop_record_line;
18526 /* Note: record_line_callback is left as noop_record_line until
18527 we see DW_LNE_end_sequence. */
18528 }
18529 }
18530
18531 /* Subroutine of dwarf_decode_lines to simplify it.
18532 Process the line number information in LH.
18533 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18534 program in order to set included_p for every referenced header. */
18535
18536 static void
18537 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18538 const int decode_for_pst_p, CORE_ADDR lowpc)
18539 {
18540 const gdb_byte *line_ptr, *extended_end;
18541 const gdb_byte *line_end;
18542 unsigned int bytes_read, extended_len;
18543 unsigned char op_code, extended_op;
18544 CORE_ADDR baseaddr;
18545 struct objfile *objfile = cu->objfile;
18546 bfd *abfd = objfile->obfd;
18547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18548 /* True if we're recording line info (as opposed to building partial
18549 symtabs and just interested in finding include files mentioned by
18550 the line number program). */
18551 bool record_lines_p = !decode_for_pst_p;
18552
18553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18554
18555 line_ptr = lh->statement_program_start;
18556 line_end = lh->statement_program_end;
18557
18558 /* Read the statement sequences until there's nothing left. */
18559 while (line_ptr < line_end)
18560 {
18561 /* The DWARF line number program state machine. Reset the state
18562 machine at the start of each sequence. */
18563 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18564 bool end_sequence = false;
18565
18566 if (record_lines_p)
18567 {
18568 /* Start a subfile for the current file of the state
18569 machine. */
18570 const file_entry *fe = state_machine.current_file ();
18571
18572 if (fe != NULL)
18573 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18574 }
18575
18576 /* Decode the table. */
18577 while (line_ptr < line_end && !end_sequence)
18578 {
18579 op_code = read_1_byte (abfd, line_ptr);
18580 line_ptr += 1;
18581
18582 if (op_code >= lh->opcode_base)
18583 {
18584 /* Special opcode. */
18585 state_machine.handle_special_opcode (op_code);
18586 }
18587 else switch (op_code)
18588 {
18589 case DW_LNS_extended_op:
18590 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18591 &bytes_read);
18592 line_ptr += bytes_read;
18593 extended_end = line_ptr + extended_len;
18594 extended_op = read_1_byte (abfd, line_ptr);
18595 line_ptr += 1;
18596 switch (extended_op)
18597 {
18598 case DW_LNE_end_sequence:
18599 state_machine.handle_end_sequence ();
18600 end_sequence = true;
18601 break;
18602 case DW_LNE_set_address:
18603 {
18604 CORE_ADDR address
18605 = read_address (abfd, line_ptr, cu, &bytes_read);
18606 line_ptr += bytes_read;
18607
18608 state_machine.check_line_address (cu, line_ptr,
18609 lowpc, address);
18610 state_machine.handle_set_address (baseaddr, address);
18611 }
18612 break;
18613 case DW_LNE_define_file:
18614 {
18615 const char *cur_file;
18616 unsigned int mod_time, length;
18617 dir_index dindex;
18618
18619 cur_file = read_direct_string (abfd, line_ptr,
18620 &bytes_read);
18621 line_ptr += bytes_read;
18622 dindex = (dir_index)
18623 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18624 line_ptr += bytes_read;
18625 mod_time =
18626 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18627 line_ptr += bytes_read;
18628 length =
18629 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18630 line_ptr += bytes_read;
18631 lh->add_file_name (cur_file, dindex, mod_time, length);
18632 }
18633 break;
18634 case DW_LNE_set_discriminator:
18635 {
18636 /* The discriminator is not interesting to the
18637 debugger; just ignore it. We still need to
18638 check its value though:
18639 if there are consecutive entries for the same
18640 (non-prologue) line we want to coalesce them.
18641 PR 17276. */
18642 unsigned int discr
18643 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18644 line_ptr += bytes_read;
18645
18646 state_machine.handle_set_discriminator (discr);
18647 }
18648 break;
18649 default:
18650 complaint (&symfile_complaints,
18651 _("mangled .debug_line section"));
18652 return;
18653 }
18654 /* Make sure that we parsed the extended op correctly. If e.g.
18655 we expected a different address size than the producer used,
18656 we may have read the wrong number of bytes. */
18657 if (line_ptr != extended_end)
18658 {
18659 complaint (&symfile_complaints,
18660 _("mangled .debug_line section"));
18661 return;
18662 }
18663 break;
18664 case DW_LNS_copy:
18665 state_machine.handle_copy ();
18666 break;
18667 case DW_LNS_advance_pc:
18668 {
18669 CORE_ADDR adjust
18670 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18671 line_ptr += bytes_read;
18672
18673 state_machine.handle_advance_pc (adjust);
18674 }
18675 break;
18676 case DW_LNS_advance_line:
18677 {
18678 int line_delta
18679 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18680 line_ptr += bytes_read;
18681
18682 state_machine.handle_advance_line (line_delta);
18683 }
18684 break;
18685 case DW_LNS_set_file:
18686 {
18687 file_name_index file
18688 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18689 &bytes_read);
18690 line_ptr += bytes_read;
18691
18692 state_machine.handle_set_file (file);
18693 }
18694 break;
18695 case DW_LNS_set_column:
18696 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18697 line_ptr += bytes_read;
18698 break;
18699 case DW_LNS_negate_stmt:
18700 state_machine.handle_negate_stmt ();
18701 break;
18702 case DW_LNS_set_basic_block:
18703 break;
18704 /* Add to the address register of the state machine the
18705 address increment value corresponding to special opcode
18706 255. I.e., this value is scaled by the minimum
18707 instruction length since special opcode 255 would have
18708 scaled the increment. */
18709 case DW_LNS_const_add_pc:
18710 state_machine.handle_const_add_pc ();
18711 break;
18712 case DW_LNS_fixed_advance_pc:
18713 {
18714 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18715 line_ptr += 2;
18716
18717 state_machine.handle_fixed_advance_pc (addr_adj);
18718 }
18719 break;
18720 default:
18721 {
18722 /* Unknown standard opcode, ignore it. */
18723 int i;
18724
18725 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18726 {
18727 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18728 line_ptr += bytes_read;
18729 }
18730 }
18731 }
18732 }
18733
18734 if (!end_sequence)
18735 dwarf2_debug_line_missing_end_sequence_complaint ();
18736
18737 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18738 in which case we still finish recording the last line). */
18739 state_machine.record_line (true);
18740 }
18741 }
18742
18743 /* Decode the Line Number Program (LNP) for the given line_header
18744 structure and CU. The actual information extracted and the type
18745 of structures created from the LNP depends on the value of PST.
18746
18747 1. If PST is NULL, then this procedure uses the data from the program
18748 to create all necessary symbol tables, and their linetables.
18749
18750 2. If PST is not NULL, this procedure reads the program to determine
18751 the list of files included by the unit represented by PST, and
18752 builds all the associated partial symbol tables.
18753
18754 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18755 It is used for relative paths in the line table.
18756 NOTE: When processing partial symtabs (pst != NULL),
18757 comp_dir == pst->dirname.
18758
18759 NOTE: It is important that psymtabs have the same file name (via strcmp)
18760 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18761 symtab we don't use it in the name of the psymtabs we create.
18762 E.g. expand_line_sal requires this when finding psymtabs to expand.
18763 A good testcase for this is mb-inline.exp.
18764
18765 LOWPC is the lowest address in CU (or 0 if not known).
18766
18767 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18768 for its PC<->lines mapping information. Otherwise only the filename
18769 table is read in. */
18770
18771 static void
18772 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18773 struct dwarf2_cu *cu, struct partial_symtab *pst,
18774 CORE_ADDR lowpc, int decode_mapping)
18775 {
18776 struct objfile *objfile = cu->objfile;
18777 const int decode_for_pst_p = (pst != NULL);
18778
18779 if (decode_mapping)
18780 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18781
18782 if (decode_for_pst_p)
18783 {
18784 int file_index;
18785
18786 /* Now that we're done scanning the Line Header Program, we can
18787 create the psymtab of each included file. */
18788 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18789 if (lh->file_names[file_index].included_p == 1)
18790 {
18791 const char *include_name =
18792 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18793 if (include_name != NULL)
18794 dwarf2_create_include_psymtab (include_name, pst, objfile);
18795 }
18796 }
18797 else
18798 {
18799 /* Make sure a symtab is created for every file, even files
18800 which contain only variables (i.e. no code with associated
18801 line numbers). */
18802 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18803 int i;
18804
18805 for (i = 0; i < lh->file_names.size (); i++)
18806 {
18807 file_entry &fe = lh->file_names[i];
18808
18809 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18810
18811 if (current_subfile->symtab == NULL)
18812 {
18813 current_subfile->symtab
18814 = allocate_symtab (cust, current_subfile->name);
18815 }
18816 fe.symtab = current_subfile->symtab;
18817 }
18818 }
18819 }
18820
18821 /* Start a subfile for DWARF. FILENAME is the name of the file and
18822 DIRNAME the name of the source directory which contains FILENAME
18823 or NULL if not known.
18824 This routine tries to keep line numbers from identical absolute and
18825 relative file names in a common subfile.
18826
18827 Using the `list' example from the GDB testsuite, which resides in
18828 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18829 of /srcdir/list0.c yields the following debugging information for list0.c:
18830
18831 DW_AT_name: /srcdir/list0.c
18832 DW_AT_comp_dir: /compdir
18833 files.files[0].name: list0.h
18834 files.files[0].dir: /srcdir
18835 files.files[1].name: list0.c
18836 files.files[1].dir: /srcdir
18837
18838 The line number information for list0.c has to end up in a single
18839 subfile, so that `break /srcdir/list0.c:1' works as expected.
18840 start_subfile will ensure that this happens provided that we pass the
18841 concatenation of files.files[1].dir and files.files[1].name as the
18842 subfile's name. */
18843
18844 static void
18845 dwarf2_start_subfile (const char *filename, const char *dirname)
18846 {
18847 char *copy = NULL;
18848
18849 /* In order not to lose the line information directory,
18850 we concatenate it to the filename when it makes sense.
18851 Note that the Dwarf3 standard says (speaking of filenames in line
18852 information): ``The directory index is ignored for file names
18853 that represent full path names''. Thus ignoring dirname in the
18854 `else' branch below isn't an issue. */
18855
18856 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18857 {
18858 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18859 filename = copy;
18860 }
18861
18862 start_subfile (filename);
18863
18864 if (copy != NULL)
18865 xfree (copy);
18866 }
18867
18868 /* Start a symtab for DWARF.
18869 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18870
18871 static struct compunit_symtab *
18872 dwarf2_start_symtab (struct dwarf2_cu *cu,
18873 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18874 {
18875 struct compunit_symtab *cust
18876 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18877
18878 record_debugformat ("DWARF 2");
18879 record_producer (cu->producer);
18880
18881 /* We assume that we're processing GCC output. */
18882 processing_gcc_compilation = 2;
18883
18884 cu->processing_has_namespace_info = 0;
18885
18886 return cust;
18887 }
18888
18889 static void
18890 var_decode_location (struct attribute *attr, struct symbol *sym,
18891 struct dwarf2_cu *cu)
18892 {
18893 struct objfile *objfile = cu->objfile;
18894 struct comp_unit_head *cu_header = &cu->header;
18895
18896 /* NOTE drow/2003-01-30: There used to be a comment and some special
18897 code here to turn a symbol with DW_AT_external and a
18898 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18899 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18900 with some versions of binutils) where shared libraries could have
18901 relocations against symbols in their debug information - the
18902 minimal symbol would have the right address, but the debug info
18903 would not. It's no longer necessary, because we will explicitly
18904 apply relocations when we read in the debug information now. */
18905
18906 /* A DW_AT_location attribute with no contents indicates that a
18907 variable has been optimized away. */
18908 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18909 {
18910 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18911 return;
18912 }
18913
18914 /* Handle one degenerate form of location expression specially, to
18915 preserve GDB's previous behavior when section offsets are
18916 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18917 then mark this symbol as LOC_STATIC. */
18918
18919 if (attr_form_is_block (attr)
18920 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18921 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18922 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18923 && (DW_BLOCK (attr)->size
18924 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18925 {
18926 unsigned int dummy;
18927
18928 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18929 SYMBOL_VALUE_ADDRESS (sym) =
18930 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18931 else
18932 SYMBOL_VALUE_ADDRESS (sym) =
18933 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18934 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18935 fixup_symbol_section (sym, objfile);
18936 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18937 SYMBOL_SECTION (sym));
18938 return;
18939 }
18940
18941 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18942 expression evaluator, and use LOC_COMPUTED only when necessary
18943 (i.e. when the value of a register or memory location is
18944 referenced, or a thread-local block, etc.). Then again, it might
18945 not be worthwhile. I'm assuming that it isn't unless performance
18946 or memory numbers show me otherwise. */
18947
18948 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18949
18950 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18951 cu->has_loclist = 1;
18952 }
18953
18954 /* Given a pointer to a DWARF information entry, figure out if we need
18955 to make a symbol table entry for it, and if so, create a new entry
18956 and return a pointer to it.
18957 If TYPE is NULL, determine symbol type from the die, otherwise
18958 used the passed type.
18959 If SPACE is not NULL, use it to hold the new symbol. If it is
18960 NULL, allocate a new symbol on the objfile's obstack. */
18961
18962 static struct symbol *
18963 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18964 struct symbol *space)
18965 {
18966 struct objfile *objfile = cu->objfile;
18967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18968 struct symbol *sym = NULL;
18969 const char *name;
18970 struct attribute *attr = NULL;
18971 struct attribute *attr2 = NULL;
18972 CORE_ADDR baseaddr;
18973 struct pending **list_to_add = NULL;
18974
18975 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18976
18977 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18978
18979 name = dwarf2_name (die, cu);
18980 if (name)
18981 {
18982 const char *linkagename;
18983 int suppress_add = 0;
18984
18985 if (space)
18986 sym = space;
18987 else
18988 sym = allocate_symbol (objfile);
18989 OBJSTAT (objfile, n_syms++);
18990
18991 /* Cache this symbol's name and the name's demangled form (if any). */
18992 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18993 linkagename = dwarf2_physname (name, die, cu);
18994 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18995
18996 /* Fortran does not have mangling standard and the mangling does differ
18997 between gfortran, iFort etc. */
18998 if (cu->language == language_fortran
18999 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19000 symbol_set_demangled_name (&(sym->ginfo),
19001 dwarf2_full_name (name, die, cu),
19002 NULL);
19003
19004 /* Default assumptions.
19005 Use the passed type or decode it from the die. */
19006 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19007 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19008 if (type != NULL)
19009 SYMBOL_TYPE (sym) = type;
19010 else
19011 SYMBOL_TYPE (sym) = die_type (die, cu);
19012 attr = dwarf2_attr (die,
19013 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19014 cu);
19015 if (attr)
19016 {
19017 SYMBOL_LINE (sym) = DW_UNSND (attr);
19018 }
19019
19020 attr = dwarf2_attr (die,
19021 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19022 cu);
19023 if (attr)
19024 {
19025 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19026 struct file_entry *fe;
19027
19028 if (cu->line_header != NULL)
19029 fe = cu->line_header->file_name_at (file_index);
19030 else
19031 fe = NULL;
19032
19033 if (fe == NULL)
19034 complaint (&symfile_complaints,
19035 _("file index out of range"));
19036 else
19037 symbol_set_symtab (sym, fe->symtab);
19038 }
19039
19040 switch (die->tag)
19041 {
19042 case DW_TAG_label:
19043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19044 if (attr)
19045 {
19046 CORE_ADDR addr;
19047
19048 addr = attr_value_as_address (attr);
19049 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19050 SYMBOL_VALUE_ADDRESS (sym) = addr;
19051 }
19052 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19053 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19054 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19055 add_symbol_to_list (sym, cu->list_in_scope);
19056 break;
19057 case DW_TAG_subprogram:
19058 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19059 finish_block. */
19060 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19061 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19062 if ((attr2 && (DW_UNSND (attr2) != 0))
19063 || cu->language == language_ada)
19064 {
19065 /* Subprograms marked external are stored as a global symbol.
19066 Ada subprograms, whether marked external or not, are always
19067 stored as a global symbol, because we want to be able to
19068 access them globally. For instance, we want to be able
19069 to break on a nested subprogram without having to
19070 specify the context. */
19071 list_to_add = &global_symbols;
19072 }
19073 else
19074 {
19075 list_to_add = cu->list_in_scope;
19076 }
19077 break;
19078 case DW_TAG_inlined_subroutine:
19079 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19080 finish_block. */
19081 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19082 SYMBOL_INLINED (sym) = 1;
19083 list_to_add = cu->list_in_scope;
19084 break;
19085 case DW_TAG_template_value_param:
19086 suppress_add = 1;
19087 /* Fall through. */
19088 case DW_TAG_constant:
19089 case DW_TAG_variable:
19090 case DW_TAG_member:
19091 /* Compilation with minimal debug info may result in
19092 variables with missing type entries. Change the
19093 misleading `void' type to something sensible. */
19094 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19095 SYMBOL_TYPE (sym)
19096 = objfile_type (objfile)->nodebug_data_symbol;
19097
19098 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19099 /* In the case of DW_TAG_member, we should only be called for
19100 static const members. */
19101 if (die->tag == DW_TAG_member)
19102 {
19103 /* dwarf2_add_field uses die_is_declaration,
19104 so we do the same. */
19105 gdb_assert (die_is_declaration (die, cu));
19106 gdb_assert (attr);
19107 }
19108 if (attr)
19109 {
19110 dwarf2_const_value (attr, sym, cu);
19111 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19112 if (!suppress_add)
19113 {
19114 if (attr2 && (DW_UNSND (attr2) != 0))
19115 list_to_add = &global_symbols;
19116 else
19117 list_to_add = cu->list_in_scope;
19118 }
19119 break;
19120 }
19121 attr = dwarf2_attr (die, DW_AT_location, cu);
19122 if (attr)
19123 {
19124 var_decode_location (attr, sym, cu);
19125 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19126
19127 /* Fortran explicitly imports any global symbols to the local
19128 scope by DW_TAG_common_block. */
19129 if (cu->language == language_fortran && die->parent
19130 && die->parent->tag == DW_TAG_common_block)
19131 attr2 = NULL;
19132
19133 if (SYMBOL_CLASS (sym) == LOC_STATIC
19134 && SYMBOL_VALUE_ADDRESS (sym) == 0
19135 && !dwarf2_per_objfile->has_section_at_zero)
19136 {
19137 /* When a static variable is eliminated by the linker,
19138 the corresponding debug information is not stripped
19139 out, but the variable address is set to null;
19140 do not add such variables into symbol table. */
19141 }
19142 else if (attr2 && (DW_UNSND (attr2) != 0))
19143 {
19144 /* Workaround gfortran PR debug/40040 - it uses
19145 DW_AT_location for variables in -fPIC libraries which may
19146 get overriden by other libraries/executable and get
19147 a different address. Resolve it by the minimal symbol
19148 which may come from inferior's executable using copy
19149 relocation. Make this workaround only for gfortran as for
19150 other compilers GDB cannot guess the minimal symbol
19151 Fortran mangling kind. */
19152 if (cu->language == language_fortran && die->parent
19153 && die->parent->tag == DW_TAG_module
19154 && cu->producer
19155 && startswith (cu->producer, "GNU Fortran"))
19156 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19157
19158 /* A variable with DW_AT_external is never static,
19159 but it may be block-scoped. */
19160 list_to_add = (cu->list_in_scope == &file_symbols
19161 ? &global_symbols : cu->list_in_scope);
19162 }
19163 else
19164 list_to_add = cu->list_in_scope;
19165 }
19166 else
19167 {
19168 /* We do not know the address of this symbol.
19169 If it is an external symbol and we have type information
19170 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19171 The address of the variable will then be determined from
19172 the minimal symbol table whenever the variable is
19173 referenced. */
19174 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19175
19176 /* Fortran explicitly imports any global symbols to the local
19177 scope by DW_TAG_common_block. */
19178 if (cu->language == language_fortran && die->parent
19179 && die->parent->tag == DW_TAG_common_block)
19180 {
19181 /* SYMBOL_CLASS doesn't matter here because
19182 read_common_block is going to reset it. */
19183 if (!suppress_add)
19184 list_to_add = cu->list_in_scope;
19185 }
19186 else if (attr2 && (DW_UNSND (attr2) != 0)
19187 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19188 {
19189 /* A variable with DW_AT_external is never static, but it
19190 may be block-scoped. */
19191 list_to_add = (cu->list_in_scope == &file_symbols
19192 ? &global_symbols : cu->list_in_scope);
19193
19194 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19195 }
19196 else if (!die_is_declaration (die, cu))
19197 {
19198 /* Use the default LOC_OPTIMIZED_OUT class. */
19199 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19200 if (!suppress_add)
19201 list_to_add = cu->list_in_scope;
19202 }
19203 }
19204 break;
19205 case DW_TAG_formal_parameter:
19206 /* If we are inside a function, mark this as an argument. If
19207 not, we might be looking at an argument to an inlined function
19208 when we do not have enough information to show inlined frames;
19209 pretend it's a local variable in that case so that the user can
19210 still see it. */
19211 if (context_stack_depth > 0
19212 && context_stack[context_stack_depth - 1].name != NULL)
19213 SYMBOL_IS_ARGUMENT (sym) = 1;
19214 attr = dwarf2_attr (die, DW_AT_location, cu);
19215 if (attr)
19216 {
19217 var_decode_location (attr, sym, cu);
19218 }
19219 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19220 if (attr)
19221 {
19222 dwarf2_const_value (attr, sym, cu);
19223 }
19224
19225 list_to_add = cu->list_in_scope;
19226 break;
19227 case DW_TAG_unspecified_parameters:
19228 /* From varargs functions; gdb doesn't seem to have any
19229 interest in this information, so just ignore it for now.
19230 (FIXME?) */
19231 break;
19232 case DW_TAG_template_type_param:
19233 suppress_add = 1;
19234 /* Fall through. */
19235 case DW_TAG_class_type:
19236 case DW_TAG_interface_type:
19237 case DW_TAG_structure_type:
19238 case DW_TAG_union_type:
19239 case DW_TAG_set_type:
19240 case DW_TAG_enumeration_type:
19241 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19242 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19243
19244 {
19245 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19246 really ever be static objects: otherwise, if you try
19247 to, say, break of a class's method and you're in a file
19248 which doesn't mention that class, it won't work unless
19249 the check for all static symbols in lookup_symbol_aux
19250 saves you. See the OtherFileClass tests in
19251 gdb.c++/namespace.exp. */
19252
19253 if (!suppress_add)
19254 {
19255 list_to_add = (cu->list_in_scope == &file_symbols
19256 && cu->language == language_cplus
19257 ? &global_symbols : cu->list_in_scope);
19258
19259 /* The semantics of C++ state that "struct foo {
19260 ... }" also defines a typedef for "foo". */
19261 if (cu->language == language_cplus
19262 || cu->language == language_ada
19263 || cu->language == language_d
19264 || cu->language == language_rust)
19265 {
19266 /* The symbol's name is already allocated along
19267 with this objfile, so we don't need to
19268 duplicate it for the type. */
19269 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19270 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19271 }
19272 }
19273 }
19274 break;
19275 case DW_TAG_typedef:
19276 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19277 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19278 list_to_add = cu->list_in_scope;
19279 break;
19280 case DW_TAG_base_type:
19281 case DW_TAG_subrange_type:
19282 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19283 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19284 list_to_add = cu->list_in_scope;
19285 break;
19286 case DW_TAG_enumerator:
19287 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19288 if (attr)
19289 {
19290 dwarf2_const_value (attr, sym, cu);
19291 }
19292 {
19293 /* NOTE: carlton/2003-11-10: See comment above in the
19294 DW_TAG_class_type, etc. block. */
19295
19296 list_to_add = (cu->list_in_scope == &file_symbols
19297 && cu->language == language_cplus
19298 ? &global_symbols : cu->list_in_scope);
19299 }
19300 break;
19301 case DW_TAG_imported_declaration:
19302 case DW_TAG_namespace:
19303 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19304 list_to_add = &global_symbols;
19305 break;
19306 case DW_TAG_module:
19307 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19308 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19309 list_to_add = &global_symbols;
19310 break;
19311 case DW_TAG_common_block:
19312 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19313 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19314 add_symbol_to_list (sym, cu->list_in_scope);
19315 break;
19316 default:
19317 /* Not a tag we recognize. Hopefully we aren't processing
19318 trash data, but since we must specifically ignore things
19319 we don't recognize, there is nothing else we should do at
19320 this point. */
19321 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19322 dwarf_tag_name (die->tag));
19323 break;
19324 }
19325
19326 if (suppress_add)
19327 {
19328 sym->hash_next = objfile->template_symbols;
19329 objfile->template_symbols = sym;
19330 list_to_add = NULL;
19331 }
19332
19333 if (list_to_add != NULL)
19334 add_symbol_to_list (sym, list_to_add);
19335
19336 /* For the benefit of old versions of GCC, check for anonymous
19337 namespaces based on the demangled name. */
19338 if (!cu->processing_has_namespace_info
19339 && cu->language == language_cplus)
19340 cp_scan_for_anonymous_namespaces (sym, objfile);
19341 }
19342 return (sym);
19343 }
19344
19345 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19346
19347 static struct symbol *
19348 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19349 {
19350 return new_symbol_full (die, type, cu, NULL);
19351 }
19352
19353 /* Given an attr with a DW_FORM_dataN value in host byte order,
19354 zero-extend it as appropriate for the symbol's type. The DWARF
19355 standard (v4) is not entirely clear about the meaning of using
19356 DW_FORM_dataN for a constant with a signed type, where the type is
19357 wider than the data. The conclusion of a discussion on the DWARF
19358 list was that this is unspecified. We choose to always zero-extend
19359 because that is the interpretation long in use by GCC. */
19360
19361 static gdb_byte *
19362 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19363 struct dwarf2_cu *cu, LONGEST *value, int bits)
19364 {
19365 struct objfile *objfile = cu->objfile;
19366 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19367 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19368 LONGEST l = DW_UNSND (attr);
19369
19370 if (bits < sizeof (*value) * 8)
19371 {
19372 l &= ((LONGEST) 1 << bits) - 1;
19373 *value = l;
19374 }
19375 else if (bits == sizeof (*value) * 8)
19376 *value = l;
19377 else
19378 {
19379 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19380 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19381 return bytes;
19382 }
19383
19384 return NULL;
19385 }
19386
19387 /* Read a constant value from an attribute. Either set *VALUE, or if
19388 the value does not fit in *VALUE, set *BYTES - either already
19389 allocated on the objfile obstack, or newly allocated on OBSTACK,
19390 or, set *BATON, if we translated the constant to a location
19391 expression. */
19392
19393 static void
19394 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19395 const char *name, struct obstack *obstack,
19396 struct dwarf2_cu *cu,
19397 LONGEST *value, const gdb_byte **bytes,
19398 struct dwarf2_locexpr_baton **baton)
19399 {
19400 struct objfile *objfile = cu->objfile;
19401 struct comp_unit_head *cu_header = &cu->header;
19402 struct dwarf_block *blk;
19403 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19404 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19405
19406 *value = 0;
19407 *bytes = NULL;
19408 *baton = NULL;
19409
19410 switch (attr->form)
19411 {
19412 case DW_FORM_addr:
19413 case DW_FORM_GNU_addr_index:
19414 {
19415 gdb_byte *data;
19416
19417 if (TYPE_LENGTH (type) != cu_header->addr_size)
19418 dwarf2_const_value_length_mismatch_complaint (name,
19419 cu_header->addr_size,
19420 TYPE_LENGTH (type));
19421 /* Symbols of this form are reasonably rare, so we just
19422 piggyback on the existing location code rather than writing
19423 a new implementation of symbol_computed_ops. */
19424 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19425 (*baton)->per_cu = cu->per_cu;
19426 gdb_assert ((*baton)->per_cu);
19427
19428 (*baton)->size = 2 + cu_header->addr_size;
19429 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19430 (*baton)->data = data;
19431
19432 data[0] = DW_OP_addr;
19433 store_unsigned_integer (&data[1], cu_header->addr_size,
19434 byte_order, DW_ADDR (attr));
19435 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19436 }
19437 break;
19438 case DW_FORM_string:
19439 case DW_FORM_strp:
19440 case DW_FORM_GNU_str_index:
19441 case DW_FORM_GNU_strp_alt:
19442 /* DW_STRING is already allocated on the objfile obstack, point
19443 directly to it. */
19444 *bytes = (const gdb_byte *) DW_STRING (attr);
19445 break;
19446 case DW_FORM_block1:
19447 case DW_FORM_block2:
19448 case DW_FORM_block4:
19449 case DW_FORM_block:
19450 case DW_FORM_exprloc:
19451 case DW_FORM_data16:
19452 blk = DW_BLOCK (attr);
19453 if (TYPE_LENGTH (type) != blk->size)
19454 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19455 TYPE_LENGTH (type));
19456 *bytes = blk->data;
19457 break;
19458
19459 /* The DW_AT_const_value attributes are supposed to carry the
19460 symbol's value "represented as it would be on the target
19461 architecture." By the time we get here, it's already been
19462 converted to host endianness, so we just need to sign- or
19463 zero-extend it as appropriate. */
19464 case DW_FORM_data1:
19465 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19466 break;
19467 case DW_FORM_data2:
19468 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19469 break;
19470 case DW_FORM_data4:
19471 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19472 break;
19473 case DW_FORM_data8:
19474 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19475 break;
19476
19477 case DW_FORM_sdata:
19478 *value = DW_SND (attr);
19479 break;
19480
19481 case DW_FORM_udata:
19482 *value = DW_UNSND (attr);
19483 break;
19484
19485 default:
19486 complaint (&symfile_complaints,
19487 _("unsupported const value attribute form: '%s'"),
19488 dwarf_form_name (attr->form));
19489 *value = 0;
19490 break;
19491 }
19492 }
19493
19494
19495 /* Copy constant value from an attribute to a symbol. */
19496
19497 static void
19498 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19499 struct dwarf2_cu *cu)
19500 {
19501 struct objfile *objfile = cu->objfile;
19502 LONGEST value;
19503 const gdb_byte *bytes;
19504 struct dwarf2_locexpr_baton *baton;
19505
19506 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19507 SYMBOL_PRINT_NAME (sym),
19508 &objfile->objfile_obstack, cu,
19509 &value, &bytes, &baton);
19510
19511 if (baton != NULL)
19512 {
19513 SYMBOL_LOCATION_BATON (sym) = baton;
19514 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19515 }
19516 else if (bytes != NULL)
19517 {
19518 SYMBOL_VALUE_BYTES (sym) = bytes;
19519 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19520 }
19521 else
19522 {
19523 SYMBOL_VALUE (sym) = value;
19524 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19525 }
19526 }
19527
19528 /* Return the type of the die in question using its DW_AT_type attribute. */
19529
19530 static struct type *
19531 die_type (struct die_info *die, struct dwarf2_cu *cu)
19532 {
19533 struct attribute *type_attr;
19534
19535 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19536 if (!type_attr)
19537 {
19538 /* A missing DW_AT_type represents a void type. */
19539 return objfile_type (cu->objfile)->builtin_void;
19540 }
19541
19542 return lookup_die_type (die, type_attr, cu);
19543 }
19544
19545 /* True iff CU's producer generates GNAT Ada auxiliary information
19546 that allows to find parallel types through that information instead
19547 of having to do expensive parallel lookups by type name. */
19548
19549 static int
19550 need_gnat_info (struct dwarf2_cu *cu)
19551 {
19552 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19553 of GNAT produces this auxiliary information, without any indication
19554 that it is produced. Part of enhancing the FSF version of GNAT
19555 to produce that information will be to put in place an indicator
19556 that we can use in order to determine whether the descriptive type
19557 info is available or not. One suggestion that has been made is
19558 to use a new attribute, attached to the CU die. For now, assume
19559 that the descriptive type info is not available. */
19560 return 0;
19561 }
19562
19563 /* Return the auxiliary type of the die in question using its
19564 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19565 attribute is not present. */
19566
19567 static struct type *
19568 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19569 {
19570 struct attribute *type_attr;
19571
19572 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19573 if (!type_attr)
19574 return NULL;
19575
19576 return lookup_die_type (die, type_attr, cu);
19577 }
19578
19579 /* If DIE has a descriptive_type attribute, then set the TYPE's
19580 descriptive type accordingly. */
19581
19582 static void
19583 set_descriptive_type (struct type *type, struct die_info *die,
19584 struct dwarf2_cu *cu)
19585 {
19586 struct type *descriptive_type = die_descriptive_type (die, cu);
19587
19588 if (descriptive_type)
19589 {
19590 ALLOCATE_GNAT_AUX_TYPE (type);
19591 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19592 }
19593 }
19594
19595 /* Return the containing type of the die in question using its
19596 DW_AT_containing_type attribute. */
19597
19598 static struct type *
19599 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19600 {
19601 struct attribute *type_attr;
19602
19603 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19604 if (!type_attr)
19605 error (_("Dwarf Error: Problem turning containing type into gdb type "
19606 "[in module %s]"), objfile_name (cu->objfile));
19607
19608 return lookup_die_type (die, type_attr, cu);
19609 }
19610
19611 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19612
19613 static struct type *
19614 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19615 {
19616 struct objfile *objfile = dwarf2_per_objfile->objfile;
19617 char *message, *saved;
19618
19619 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19620 objfile_name (objfile),
19621 to_underlying (cu->header.sect_off),
19622 to_underlying (die->sect_off));
19623 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19624 message, strlen (message));
19625 xfree (message);
19626
19627 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19628 }
19629
19630 /* Look up the type of DIE in CU using its type attribute ATTR.
19631 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19632 DW_AT_containing_type.
19633 If there is no type substitute an error marker. */
19634
19635 static struct type *
19636 lookup_die_type (struct die_info *die, const struct attribute *attr,
19637 struct dwarf2_cu *cu)
19638 {
19639 struct objfile *objfile = cu->objfile;
19640 struct type *this_type;
19641
19642 gdb_assert (attr->name == DW_AT_type
19643 || attr->name == DW_AT_GNAT_descriptive_type
19644 || attr->name == DW_AT_containing_type);
19645
19646 /* First see if we have it cached. */
19647
19648 if (attr->form == DW_FORM_GNU_ref_alt)
19649 {
19650 struct dwarf2_per_cu_data *per_cu;
19651 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19652
19653 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19654 this_type = get_die_type_at_offset (sect_off, per_cu);
19655 }
19656 else if (attr_form_is_ref (attr))
19657 {
19658 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19659
19660 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19661 }
19662 else if (attr->form == DW_FORM_ref_sig8)
19663 {
19664 ULONGEST signature = DW_SIGNATURE (attr);
19665
19666 return get_signatured_type (die, signature, cu);
19667 }
19668 else
19669 {
19670 complaint (&symfile_complaints,
19671 _("Dwarf Error: Bad type attribute %s in DIE"
19672 " at 0x%x [in module %s]"),
19673 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19674 objfile_name (objfile));
19675 return build_error_marker_type (cu, die);
19676 }
19677
19678 /* If not cached we need to read it in. */
19679
19680 if (this_type == NULL)
19681 {
19682 struct die_info *type_die = NULL;
19683 struct dwarf2_cu *type_cu = cu;
19684
19685 if (attr_form_is_ref (attr))
19686 type_die = follow_die_ref (die, attr, &type_cu);
19687 if (type_die == NULL)
19688 return build_error_marker_type (cu, die);
19689 /* If we find the type now, it's probably because the type came
19690 from an inter-CU reference and the type's CU got expanded before
19691 ours. */
19692 this_type = read_type_die (type_die, type_cu);
19693 }
19694
19695 /* If we still don't have a type use an error marker. */
19696
19697 if (this_type == NULL)
19698 return build_error_marker_type (cu, die);
19699
19700 return this_type;
19701 }
19702
19703 /* Return the type in DIE, CU.
19704 Returns NULL for invalid types.
19705
19706 This first does a lookup in die_type_hash,
19707 and only reads the die in if necessary.
19708
19709 NOTE: This can be called when reading in partial or full symbols. */
19710
19711 static struct type *
19712 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19713 {
19714 struct type *this_type;
19715
19716 this_type = get_die_type (die, cu);
19717 if (this_type)
19718 return this_type;
19719
19720 return read_type_die_1 (die, cu);
19721 }
19722
19723 /* Read the type in DIE, CU.
19724 Returns NULL for invalid types. */
19725
19726 static struct type *
19727 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19728 {
19729 struct type *this_type = NULL;
19730
19731 switch (die->tag)
19732 {
19733 case DW_TAG_class_type:
19734 case DW_TAG_interface_type:
19735 case DW_TAG_structure_type:
19736 case DW_TAG_union_type:
19737 this_type = read_structure_type (die, cu);
19738 break;
19739 case DW_TAG_enumeration_type:
19740 this_type = read_enumeration_type (die, cu);
19741 break;
19742 case DW_TAG_subprogram:
19743 case DW_TAG_subroutine_type:
19744 case DW_TAG_inlined_subroutine:
19745 this_type = read_subroutine_type (die, cu);
19746 break;
19747 case DW_TAG_array_type:
19748 this_type = read_array_type (die, cu);
19749 break;
19750 case DW_TAG_set_type:
19751 this_type = read_set_type (die, cu);
19752 break;
19753 case DW_TAG_pointer_type:
19754 this_type = read_tag_pointer_type (die, cu);
19755 break;
19756 case DW_TAG_ptr_to_member_type:
19757 this_type = read_tag_ptr_to_member_type (die, cu);
19758 break;
19759 case DW_TAG_reference_type:
19760 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19761 break;
19762 case DW_TAG_rvalue_reference_type:
19763 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19764 break;
19765 case DW_TAG_const_type:
19766 this_type = read_tag_const_type (die, cu);
19767 break;
19768 case DW_TAG_volatile_type:
19769 this_type = read_tag_volatile_type (die, cu);
19770 break;
19771 case DW_TAG_restrict_type:
19772 this_type = read_tag_restrict_type (die, cu);
19773 break;
19774 case DW_TAG_string_type:
19775 this_type = read_tag_string_type (die, cu);
19776 break;
19777 case DW_TAG_typedef:
19778 this_type = read_typedef (die, cu);
19779 break;
19780 case DW_TAG_subrange_type:
19781 this_type = read_subrange_type (die, cu);
19782 break;
19783 case DW_TAG_base_type:
19784 this_type = read_base_type (die, cu);
19785 break;
19786 case DW_TAG_unspecified_type:
19787 this_type = read_unspecified_type (die, cu);
19788 break;
19789 case DW_TAG_namespace:
19790 this_type = read_namespace_type (die, cu);
19791 break;
19792 case DW_TAG_module:
19793 this_type = read_module_type (die, cu);
19794 break;
19795 case DW_TAG_atomic_type:
19796 this_type = read_tag_atomic_type (die, cu);
19797 break;
19798 default:
19799 complaint (&symfile_complaints,
19800 _("unexpected tag in read_type_die: '%s'"),
19801 dwarf_tag_name (die->tag));
19802 break;
19803 }
19804
19805 return this_type;
19806 }
19807
19808 /* See if we can figure out if the class lives in a namespace. We do
19809 this by looking for a member function; its demangled name will
19810 contain namespace info, if there is any.
19811 Return the computed name or NULL.
19812 Space for the result is allocated on the objfile's obstack.
19813 This is the full-die version of guess_partial_die_structure_name.
19814 In this case we know DIE has no useful parent. */
19815
19816 static char *
19817 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19818 {
19819 struct die_info *spec_die;
19820 struct dwarf2_cu *spec_cu;
19821 struct die_info *child;
19822
19823 spec_cu = cu;
19824 spec_die = die_specification (die, &spec_cu);
19825 if (spec_die != NULL)
19826 {
19827 die = spec_die;
19828 cu = spec_cu;
19829 }
19830
19831 for (child = die->child;
19832 child != NULL;
19833 child = child->sibling)
19834 {
19835 if (child->tag == DW_TAG_subprogram)
19836 {
19837 const char *linkage_name;
19838
19839 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19840 if (linkage_name == NULL)
19841 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19842 cu);
19843 if (linkage_name != NULL)
19844 {
19845 char *actual_name
19846 = language_class_name_from_physname (cu->language_defn,
19847 linkage_name);
19848 char *name = NULL;
19849
19850 if (actual_name != NULL)
19851 {
19852 const char *die_name = dwarf2_name (die, cu);
19853
19854 if (die_name != NULL
19855 && strcmp (die_name, actual_name) != 0)
19856 {
19857 /* Strip off the class name from the full name.
19858 We want the prefix. */
19859 int die_name_len = strlen (die_name);
19860 int actual_name_len = strlen (actual_name);
19861
19862 /* Test for '::' as a sanity check. */
19863 if (actual_name_len > die_name_len + 2
19864 && actual_name[actual_name_len
19865 - die_name_len - 1] == ':')
19866 name = (char *) obstack_copy0 (
19867 &cu->objfile->per_bfd->storage_obstack,
19868 actual_name, actual_name_len - die_name_len - 2);
19869 }
19870 }
19871 xfree (actual_name);
19872 return name;
19873 }
19874 }
19875 }
19876
19877 return NULL;
19878 }
19879
19880 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19881 prefix part in such case. See
19882 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19883
19884 static const char *
19885 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19886 {
19887 struct attribute *attr;
19888 const char *base;
19889
19890 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19891 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19892 return NULL;
19893
19894 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19895 return NULL;
19896
19897 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19898 if (attr == NULL)
19899 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19900 if (attr == NULL || DW_STRING (attr) == NULL)
19901 return NULL;
19902
19903 /* dwarf2_name had to be already called. */
19904 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19905
19906 /* Strip the base name, keep any leading namespaces/classes. */
19907 base = strrchr (DW_STRING (attr), ':');
19908 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19909 return "";
19910
19911 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19912 DW_STRING (attr),
19913 &base[-1] - DW_STRING (attr));
19914 }
19915
19916 /* Return the name of the namespace/class that DIE is defined within,
19917 or "" if we can't tell. The caller should not xfree the result.
19918
19919 For example, if we're within the method foo() in the following
19920 code:
19921
19922 namespace N {
19923 class C {
19924 void foo () {
19925 }
19926 };
19927 }
19928
19929 then determine_prefix on foo's die will return "N::C". */
19930
19931 static const char *
19932 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19933 {
19934 struct die_info *parent, *spec_die;
19935 struct dwarf2_cu *spec_cu;
19936 struct type *parent_type;
19937 const char *retval;
19938
19939 if (cu->language != language_cplus
19940 && cu->language != language_fortran && cu->language != language_d
19941 && cu->language != language_rust)
19942 return "";
19943
19944 retval = anonymous_struct_prefix (die, cu);
19945 if (retval)
19946 return retval;
19947
19948 /* We have to be careful in the presence of DW_AT_specification.
19949 For example, with GCC 3.4, given the code
19950
19951 namespace N {
19952 void foo() {
19953 // Definition of N::foo.
19954 }
19955 }
19956
19957 then we'll have a tree of DIEs like this:
19958
19959 1: DW_TAG_compile_unit
19960 2: DW_TAG_namespace // N
19961 3: DW_TAG_subprogram // declaration of N::foo
19962 4: DW_TAG_subprogram // definition of N::foo
19963 DW_AT_specification // refers to die #3
19964
19965 Thus, when processing die #4, we have to pretend that we're in
19966 the context of its DW_AT_specification, namely the contex of die
19967 #3. */
19968 spec_cu = cu;
19969 spec_die = die_specification (die, &spec_cu);
19970 if (spec_die == NULL)
19971 parent = die->parent;
19972 else
19973 {
19974 parent = spec_die->parent;
19975 cu = spec_cu;
19976 }
19977
19978 if (parent == NULL)
19979 return "";
19980 else if (parent->building_fullname)
19981 {
19982 const char *name;
19983 const char *parent_name;
19984
19985 /* It has been seen on RealView 2.2 built binaries,
19986 DW_TAG_template_type_param types actually _defined_ as
19987 children of the parent class:
19988
19989 enum E {};
19990 template class <class Enum> Class{};
19991 Class<enum E> class_e;
19992
19993 1: DW_TAG_class_type (Class)
19994 2: DW_TAG_enumeration_type (E)
19995 3: DW_TAG_enumerator (enum1:0)
19996 3: DW_TAG_enumerator (enum2:1)
19997 ...
19998 2: DW_TAG_template_type_param
19999 DW_AT_type DW_FORM_ref_udata (E)
20000
20001 Besides being broken debug info, it can put GDB into an
20002 infinite loop. Consider:
20003
20004 When we're building the full name for Class<E>, we'll start
20005 at Class, and go look over its template type parameters,
20006 finding E. We'll then try to build the full name of E, and
20007 reach here. We're now trying to build the full name of E,
20008 and look over the parent DIE for containing scope. In the
20009 broken case, if we followed the parent DIE of E, we'd again
20010 find Class, and once again go look at its template type
20011 arguments, etc., etc. Simply don't consider such parent die
20012 as source-level parent of this die (it can't be, the language
20013 doesn't allow it), and break the loop here. */
20014 name = dwarf2_name (die, cu);
20015 parent_name = dwarf2_name (parent, cu);
20016 complaint (&symfile_complaints,
20017 _("template param type '%s' defined within parent '%s'"),
20018 name ? name : "<unknown>",
20019 parent_name ? parent_name : "<unknown>");
20020 return "";
20021 }
20022 else
20023 switch (parent->tag)
20024 {
20025 case DW_TAG_namespace:
20026 parent_type = read_type_die (parent, cu);
20027 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20028 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20029 Work around this problem here. */
20030 if (cu->language == language_cplus
20031 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20032 return "";
20033 /* We give a name to even anonymous namespaces. */
20034 return TYPE_TAG_NAME (parent_type);
20035 case DW_TAG_class_type:
20036 case DW_TAG_interface_type:
20037 case DW_TAG_structure_type:
20038 case DW_TAG_union_type:
20039 case DW_TAG_module:
20040 parent_type = read_type_die (parent, cu);
20041 if (TYPE_TAG_NAME (parent_type) != NULL)
20042 return TYPE_TAG_NAME (parent_type);
20043 else
20044 /* An anonymous structure is only allowed non-static data
20045 members; no typedefs, no member functions, et cetera.
20046 So it does not need a prefix. */
20047 return "";
20048 case DW_TAG_compile_unit:
20049 case DW_TAG_partial_unit:
20050 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20051 if (cu->language == language_cplus
20052 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20053 && die->child != NULL
20054 && (die->tag == DW_TAG_class_type
20055 || die->tag == DW_TAG_structure_type
20056 || die->tag == DW_TAG_union_type))
20057 {
20058 char *name = guess_full_die_structure_name (die, cu);
20059 if (name != NULL)
20060 return name;
20061 }
20062 return "";
20063 case DW_TAG_enumeration_type:
20064 parent_type = read_type_die (parent, cu);
20065 if (TYPE_DECLARED_CLASS (parent_type))
20066 {
20067 if (TYPE_TAG_NAME (parent_type) != NULL)
20068 return TYPE_TAG_NAME (parent_type);
20069 return "";
20070 }
20071 /* Fall through. */
20072 default:
20073 return determine_prefix (parent, cu);
20074 }
20075 }
20076
20077 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20078 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20079 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20080 an obconcat, otherwise allocate storage for the result. The CU argument is
20081 used to determine the language and hence, the appropriate separator. */
20082
20083 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20084
20085 static char *
20086 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20087 int physname, struct dwarf2_cu *cu)
20088 {
20089 const char *lead = "";
20090 const char *sep;
20091
20092 if (suffix == NULL || suffix[0] == '\0'
20093 || prefix == NULL || prefix[0] == '\0')
20094 sep = "";
20095 else if (cu->language == language_d)
20096 {
20097 /* For D, the 'main' function could be defined in any module, but it
20098 should never be prefixed. */
20099 if (strcmp (suffix, "D main") == 0)
20100 {
20101 prefix = "";
20102 sep = "";
20103 }
20104 else
20105 sep = ".";
20106 }
20107 else if (cu->language == language_fortran && physname)
20108 {
20109 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20110 DW_AT_MIPS_linkage_name is preferred and used instead. */
20111
20112 lead = "__";
20113 sep = "_MOD_";
20114 }
20115 else
20116 sep = "::";
20117
20118 if (prefix == NULL)
20119 prefix = "";
20120 if (suffix == NULL)
20121 suffix = "";
20122
20123 if (obs == NULL)
20124 {
20125 char *retval
20126 = ((char *)
20127 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20128
20129 strcpy (retval, lead);
20130 strcat (retval, prefix);
20131 strcat (retval, sep);
20132 strcat (retval, suffix);
20133 return retval;
20134 }
20135 else
20136 {
20137 /* We have an obstack. */
20138 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20139 }
20140 }
20141
20142 /* Return sibling of die, NULL if no sibling. */
20143
20144 static struct die_info *
20145 sibling_die (struct die_info *die)
20146 {
20147 return die->sibling;
20148 }
20149
20150 /* Get name of a die, return NULL if not found. */
20151
20152 static const char *
20153 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20154 struct obstack *obstack)
20155 {
20156 if (name && cu->language == language_cplus)
20157 {
20158 std::string canon_name = cp_canonicalize_string (name);
20159
20160 if (!canon_name.empty ())
20161 {
20162 if (canon_name != name)
20163 name = (const char *) obstack_copy0 (obstack,
20164 canon_name.c_str (),
20165 canon_name.length ());
20166 }
20167 }
20168
20169 return name;
20170 }
20171
20172 /* Get name of a die, return NULL if not found.
20173 Anonymous namespaces are converted to their magic string. */
20174
20175 static const char *
20176 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20177 {
20178 struct attribute *attr;
20179
20180 attr = dwarf2_attr (die, DW_AT_name, cu);
20181 if ((!attr || !DW_STRING (attr))
20182 && die->tag != DW_TAG_namespace
20183 && die->tag != DW_TAG_class_type
20184 && die->tag != DW_TAG_interface_type
20185 && die->tag != DW_TAG_structure_type
20186 && die->tag != DW_TAG_union_type)
20187 return NULL;
20188
20189 switch (die->tag)
20190 {
20191 case DW_TAG_compile_unit:
20192 case DW_TAG_partial_unit:
20193 /* Compilation units have a DW_AT_name that is a filename, not
20194 a source language identifier. */
20195 case DW_TAG_enumeration_type:
20196 case DW_TAG_enumerator:
20197 /* These tags always have simple identifiers already; no need
20198 to canonicalize them. */
20199 return DW_STRING (attr);
20200
20201 case DW_TAG_namespace:
20202 if (attr != NULL && DW_STRING (attr) != NULL)
20203 return DW_STRING (attr);
20204 return CP_ANONYMOUS_NAMESPACE_STR;
20205
20206 case DW_TAG_class_type:
20207 case DW_TAG_interface_type:
20208 case DW_TAG_structure_type:
20209 case DW_TAG_union_type:
20210 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20211 structures or unions. These were of the form "._%d" in GCC 4.1,
20212 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20213 and GCC 4.4. We work around this problem by ignoring these. */
20214 if (attr && DW_STRING (attr)
20215 && (startswith (DW_STRING (attr), "._")
20216 || startswith (DW_STRING (attr), "<anonymous")))
20217 return NULL;
20218
20219 /* GCC might emit a nameless typedef that has a linkage name. See
20220 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20221 if (!attr || DW_STRING (attr) == NULL)
20222 {
20223 char *demangled = NULL;
20224
20225 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20226 if (attr == NULL)
20227 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20228
20229 if (attr == NULL || DW_STRING (attr) == NULL)
20230 return NULL;
20231
20232 /* Avoid demangling DW_STRING (attr) the second time on a second
20233 call for the same DIE. */
20234 if (!DW_STRING_IS_CANONICAL (attr))
20235 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20236
20237 if (demangled)
20238 {
20239 const char *base;
20240
20241 /* FIXME: we already did this for the partial symbol... */
20242 DW_STRING (attr)
20243 = ((const char *)
20244 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20245 demangled, strlen (demangled)));
20246 DW_STRING_IS_CANONICAL (attr) = 1;
20247 xfree (demangled);
20248
20249 /* Strip any leading namespaces/classes, keep only the base name.
20250 DW_AT_name for named DIEs does not contain the prefixes. */
20251 base = strrchr (DW_STRING (attr), ':');
20252 if (base && base > DW_STRING (attr) && base[-1] == ':')
20253 return &base[1];
20254 else
20255 return DW_STRING (attr);
20256 }
20257 }
20258 break;
20259
20260 default:
20261 break;
20262 }
20263
20264 if (!DW_STRING_IS_CANONICAL (attr))
20265 {
20266 DW_STRING (attr)
20267 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20268 &cu->objfile->per_bfd->storage_obstack);
20269 DW_STRING_IS_CANONICAL (attr) = 1;
20270 }
20271 return DW_STRING (attr);
20272 }
20273
20274 /* Return the die that this die in an extension of, or NULL if there
20275 is none. *EXT_CU is the CU containing DIE on input, and the CU
20276 containing the return value on output. */
20277
20278 static struct die_info *
20279 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20280 {
20281 struct attribute *attr;
20282
20283 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20284 if (attr == NULL)
20285 return NULL;
20286
20287 return follow_die_ref (die, attr, ext_cu);
20288 }
20289
20290 /* Convert a DIE tag into its string name. */
20291
20292 static const char *
20293 dwarf_tag_name (unsigned tag)
20294 {
20295 const char *name = get_DW_TAG_name (tag);
20296
20297 if (name == NULL)
20298 return "DW_TAG_<unknown>";
20299
20300 return name;
20301 }
20302
20303 /* Convert a DWARF attribute code into its string name. */
20304
20305 static const char *
20306 dwarf_attr_name (unsigned attr)
20307 {
20308 const char *name;
20309
20310 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20311 if (attr == DW_AT_MIPS_fde)
20312 return "DW_AT_MIPS_fde";
20313 #else
20314 if (attr == DW_AT_HP_block_index)
20315 return "DW_AT_HP_block_index";
20316 #endif
20317
20318 name = get_DW_AT_name (attr);
20319
20320 if (name == NULL)
20321 return "DW_AT_<unknown>";
20322
20323 return name;
20324 }
20325
20326 /* Convert a DWARF value form code into its string name. */
20327
20328 static const char *
20329 dwarf_form_name (unsigned form)
20330 {
20331 const char *name = get_DW_FORM_name (form);
20332
20333 if (name == NULL)
20334 return "DW_FORM_<unknown>";
20335
20336 return name;
20337 }
20338
20339 static const char *
20340 dwarf_bool_name (unsigned mybool)
20341 {
20342 if (mybool)
20343 return "TRUE";
20344 else
20345 return "FALSE";
20346 }
20347
20348 /* Convert a DWARF type code into its string name. */
20349
20350 static const char *
20351 dwarf_type_encoding_name (unsigned enc)
20352 {
20353 const char *name = get_DW_ATE_name (enc);
20354
20355 if (name == NULL)
20356 return "DW_ATE_<unknown>";
20357
20358 return name;
20359 }
20360
20361 static void
20362 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20363 {
20364 unsigned int i;
20365
20366 print_spaces (indent, f);
20367 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20368 dwarf_tag_name (die->tag), die->abbrev,
20369 to_underlying (die->sect_off));
20370
20371 if (die->parent != NULL)
20372 {
20373 print_spaces (indent, f);
20374 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20375 to_underlying (die->parent->sect_off));
20376 }
20377
20378 print_spaces (indent, f);
20379 fprintf_unfiltered (f, " has children: %s\n",
20380 dwarf_bool_name (die->child != NULL));
20381
20382 print_spaces (indent, f);
20383 fprintf_unfiltered (f, " attributes:\n");
20384
20385 for (i = 0; i < die->num_attrs; ++i)
20386 {
20387 print_spaces (indent, f);
20388 fprintf_unfiltered (f, " %s (%s) ",
20389 dwarf_attr_name (die->attrs[i].name),
20390 dwarf_form_name (die->attrs[i].form));
20391
20392 switch (die->attrs[i].form)
20393 {
20394 case DW_FORM_addr:
20395 case DW_FORM_GNU_addr_index:
20396 fprintf_unfiltered (f, "address: ");
20397 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20398 break;
20399 case DW_FORM_block2:
20400 case DW_FORM_block4:
20401 case DW_FORM_block:
20402 case DW_FORM_block1:
20403 fprintf_unfiltered (f, "block: size %s",
20404 pulongest (DW_BLOCK (&die->attrs[i])->size));
20405 break;
20406 case DW_FORM_exprloc:
20407 fprintf_unfiltered (f, "expression: size %s",
20408 pulongest (DW_BLOCK (&die->attrs[i])->size));
20409 break;
20410 case DW_FORM_data16:
20411 fprintf_unfiltered (f, "constant of 16 bytes");
20412 break;
20413 case DW_FORM_ref_addr:
20414 fprintf_unfiltered (f, "ref address: ");
20415 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20416 break;
20417 case DW_FORM_GNU_ref_alt:
20418 fprintf_unfiltered (f, "alt ref address: ");
20419 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20420 break;
20421 case DW_FORM_ref1:
20422 case DW_FORM_ref2:
20423 case DW_FORM_ref4:
20424 case DW_FORM_ref8:
20425 case DW_FORM_ref_udata:
20426 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20427 (long) (DW_UNSND (&die->attrs[i])));
20428 break;
20429 case DW_FORM_data1:
20430 case DW_FORM_data2:
20431 case DW_FORM_data4:
20432 case DW_FORM_data8:
20433 case DW_FORM_udata:
20434 case DW_FORM_sdata:
20435 fprintf_unfiltered (f, "constant: %s",
20436 pulongest (DW_UNSND (&die->attrs[i])));
20437 break;
20438 case DW_FORM_sec_offset:
20439 fprintf_unfiltered (f, "section offset: %s",
20440 pulongest (DW_UNSND (&die->attrs[i])));
20441 break;
20442 case DW_FORM_ref_sig8:
20443 fprintf_unfiltered (f, "signature: %s",
20444 hex_string (DW_SIGNATURE (&die->attrs[i])));
20445 break;
20446 case DW_FORM_string:
20447 case DW_FORM_strp:
20448 case DW_FORM_line_strp:
20449 case DW_FORM_GNU_str_index:
20450 case DW_FORM_GNU_strp_alt:
20451 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20452 DW_STRING (&die->attrs[i])
20453 ? DW_STRING (&die->attrs[i]) : "",
20454 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20455 break;
20456 case DW_FORM_flag:
20457 if (DW_UNSND (&die->attrs[i]))
20458 fprintf_unfiltered (f, "flag: TRUE");
20459 else
20460 fprintf_unfiltered (f, "flag: FALSE");
20461 break;
20462 case DW_FORM_flag_present:
20463 fprintf_unfiltered (f, "flag: TRUE");
20464 break;
20465 case DW_FORM_indirect:
20466 /* The reader will have reduced the indirect form to
20467 the "base form" so this form should not occur. */
20468 fprintf_unfiltered (f,
20469 "unexpected attribute form: DW_FORM_indirect");
20470 break;
20471 default:
20472 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20473 die->attrs[i].form);
20474 break;
20475 }
20476 fprintf_unfiltered (f, "\n");
20477 }
20478 }
20479
20480 static void
20481 dump_die_for_error (struct die_info *die)
20482 {
20483 dump_die_shallow (gdb_stderr, 0, die);
20484 }
20485
20486 static void
20487 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20488 {
20489 int indent = level * 4;
20490
20491 gdb_assert (die != NULL);
20492
20493 if (level >= max_level)
20494 return;
20495
20496 dump_die_shallow (f, indent, die);
20497
20498 if (die->child != NULL)
20499 {
20500 print_spaces (indent, f);
20501 fprintf_unfiltered (f, " Children:");
20502 if (level + 1 < max_level)
20503 {
20504 fprintf_unfiltered (f, "\n");
20505 dump_die_1 (f, level + 1, max_level, die->child);
20506 }
20507 else
20508 {
20509 fprintf_unfiltered (f,
20510 " [not printed, max nesting level reached]\n");
20511 }
20512 }
20513
20514 if (die->sibling != NULL && level > 0)
20515 {
20516 dump_die_1 (f, level, max_level, die->sibling);
20517 }
20518 }
20519
20520 /* This is called from the pdie macro in gdbinit.in.
20521 It's not static so gcc will keep a copy callable from gdb. */
20522
20523 void
20524 dump_die (struct die_info *die, int max_level)
20525 {
20526 dump_die_1 (gdb_stdlog, 0, max_level, die);
20527 }
20528
20529 static void
20530 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20531 {
20532 void **slot;
20533
20534 slot = htab_find_slot_with_hash (cu->die_hash, die,
20535 to_underlying (die->sect_off),
20536 INSERT);
20537
20538 *slot = die;
20539 }
20540
20541 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20542 required kind. */
20543
20544 static sect_offset
20545 dwarf2_get_ref_die_offset (const struct attribute *attr)
20546 {
20547 if (attr_form_is_ref (attr))
20548 return (sect_offset) DW_UNSND (attr);
20549
20550 complaint (&symfile_complaints,
20551 _("unsupported die ref attribute form: '%s'"),
20552 dwarf_form_name (attr->form));
20553 return {};
20554 }
20555
20556 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20557 * the value held by the attribute is not constant. */
20558
20559 static LONGEST
20560 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20561 {
20562 if (attr->form == DW_FORM_sdata)
20563 return DW_SND (attr);
20564 else if (attr->form == DW_FORM_udata
20565 || attr->form == DW_FORM_data1
20566 || attr->form == DW_FORM_data2
20567 || attr->form == DW_FORM_data4
20568 || attr->form == DW_FORM_data8)
20569 return DW_UNSND (attr);
20570 else
20571 {
20572 /* For DW_FORM_data16 see attr_form_is_constant. */
20573 complaint (&symfile_complaints,
20574 _("Attribute value is not a constant (%s)"),
20575 dwarf_form_name (attr->form));
20576 return default_value;
20577 }
20578 }
20579
20580 /* Follow reference or signature attribute ATTR of SRC_DIE.
20581 On entry *REF_CU is the CU of SRC_DIE.
20582 On exit *REF_CU is the CU of the result. */
20583
20584 static struct die_info *
20585 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20586 struct dwarf2_cu **ref_cu)
20587 {
20588 struct die_info *die;
20589
20590 if (attr_form_is_ref (attr))
20591 die = follow_die_ref (src_die, attr, ref_cu);
20592 else if (attr->form == DW_FORM_ref_sig8)
20593 die = follow_die_sig (src_die, attr, ref_cu);
20594 else
20595 {
20596 dump_die_for_error (src_die);
20597 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20598 objfile_name ((*ref_cu)->objfile));
20599 }
20600
20601 return die;
20602 }
20603
20604 /* Follow reference OFFSET.
20605 On entry *REF_CU is the CU of the source die referencing OFFSET.
20606 On exit *REF_CU is the CU of the result.
20607 Returns NULL if OFFSET is invalid. */
20608
20609 static struct die_info *
20610 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20611 struct dwarf2_cu **ref_cu)
20612 {
20613 struct die_info temp_die;
20614 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20615
20616 gdb_assert (cu->per_cu != NULL);
20617
20618 target_cu = cu;
20619
20620 if (cu->per_cu->is_debug_types)
20621 {
20622 /* .debug_types CUs cannot reference anything outside their CU.
20623 If they need to, they have to reference a signatured type via
20624 DW_FORM_ref_sig8. */
20625 if (!offset_in_cu_p (&cu->header, sect_off))
20626 return NULL;
20627 }
20628 else if (offset_in_dwz != cu->per_cu->is_dwz
20629 || !offset_in_cu_p (&cu->header, sect_off))
20630 {
20631 struct dwarf2_per_cu_data *per_cu;
20632
20633 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20634 cu->objfile);
20635
20636 /* If necessary, add it to the queue and load its DIEs. */
20637 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20638 load_full_comp_unit (per_cu, cu->language);
20639
20640 target_cu = per_cu->cu;
20641 }
20642 else if (cu->dies == NULL)
20643 {
20644 /* We're loading full DIEs during partial symbol reading. */
20645 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20646 load_full_comp_unit (cu->per_cu, language_minimal);
20647 }
20648
20649 *ref_cu = target_cu;
20650 temp_die.sect_off = sect_off;
20651 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20652 &temp_die,
20653 to_underlying (sect_off));
20654 }
20655
20656 /* Follow reference attribute ATTR of SRC_DIE.
20657 On entry *REF_CU is the CU of SRC_DIE.
20658 On exit *REF_CU is the CU of the result. */
20659
20660 static struct die_info *
20661 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20662 struct dwarf2_cu **ref_cu)
20663 {
20664 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20665 struct dwarf2_cu *cu = *ref_cu;
20666 struct die_info *die;
20667
20668 die = follow_die_offset (sect_off,
20669 (attr->form == DW_FORM_GNU_ref_alt
20670 || cu->per_cu->is_dwz),
20671 ref_cu);
20672 if (!die)
20673 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20674 "at 0x%x [in module %s]"),
20675 to_underlying (sect_off), to_underlying (src_die->sect_off),
20676 objfile_name (cu->objfile));
20677
20678 return die;
20679 }
20680
20681 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20682 Returned value is intended for DW_OP_call*. Returned
20683 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20684
20685 struct dwarf2_locexpr_baton
20686 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20687 struct dwarf2_per_cu_data *per_cu,
20688 CORE_ADDR (*get_frame_pc) (void *baton),
20689 void *baton)
20690 {
20691 struct dwarf2_cu *cu;
20692 struct die_info *die;
20693 struct attribute *attr;
20694 struct dwarf2_locexpr_baton retval;
20695
20696 dw2_setup (per_cu->objfile);
20697
20698 if (per_cu->cu == NULL)
20699 load_cu (per_cu);
20700 cu = per_cu->cu;
20701 if (cu == NULL)
20702 {
20703 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20704 Instead just throw an error, not much else we can do. */
20705 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20706 to_underlying (sect_off), objfile_name (per_cu->objfile));
20707 }
20708
20709 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20710 if (!die)
20711 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20712 to_underlying (sect_off), objfile_name (per_cu->objfile));
20713
20714 attr = dwarf2_attr (die, DW_AT_location, cu);
20715 if (!attr)
20716 {
20717 /* DWARF: "If there is no such attribute, then there is no effect.".
20718 DATA is ignored if SIZE is 0. */
20719
20720 retval.data = NULL;
20721 retval.size = 0;
20722 }
20723 else if (attr_form_is_section_offset (attr))
20724 {
20725 struct dwarf2_loclist_baton loclist_baton;
20726 CORE_ADDR pc = (*get_frame_pc) (baton);
20727 size_t size;
20728
20729 fill_in_loclist_baton (cu, &loclist_baton, attr);
20730
20731 retval.data = dwarf2_find_location_expression (&loclist_baton,
20732 &size, pc);
20733 retval.size = size;
20734 }
20735 else
20736 {
20737 if (!attr_form_is_block (attr))
20738 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20739 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20740 to_underlying (sect_off), objfile_name (per_cu->objfile));
20741
20742 retval.data = DW_BLOCK (attr)->data;
20743 retval.size = DW_BLOCK (attr)->size;
20744 }
20745 retval.per_cu = cu->per_cu;
20746
20747 age_cached_comp_units ();
20748
20749 return retval;
20750 }
20751
20752 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20753 offset. */
20754
20755 struct dwarf2_locexpr_baton
20756 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20757 struct dwarf2_per_cu_data *per_cu,
20758 CORE_ADDR (*get_frame_pc) (void *baton),
20759 void *baton)
20760 {
20761 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20762
20763 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20764 }
20765
20766 /* Write a constant of a given type as target-ordered bytes into
20767 OBSTACK. */
20768
20769 static const gdb_byte *
20770 write_constant_as_bytes (struct obstack *obstack,
20771 enum bfd_endian byte_order,
20772 struct type *type,
20773 ULONGEST value,
20774 LONGEST *len)
20775 {
20776 gdb_byte *result;
20777
20778 *len = TYPE_LENGTH (type);
20779 result = (gdb_byte *) obstack_alloc (obstack, *len);
20780 store_unsigned_integer (result, *len, byte_order, value);
20781
20782 return result;
20783 }
20784
20785 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20786 pointer to the constant bytes and set LEN to the length of the
20787 data. If memory is needed, allocate it on OBSTACK. If the DIE
20788 does not have a DW_AT_const_value, return NULL. */
20789
20790 const gdb_byte *
20791 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20792 struct dwarf2_per_cu_data *per_cu,
20793 struct obstack *obstack,
20794 LONGEST *len)
20795 {
20796 struct dwarf2_cu *cu;
20797 struct die_info *die;
20798 struct attribute *attr;
20799 const gdb_byte *result = NULL;
20800 struct type *type;
20801 LONGEST value;
20802 enum bfd_endian byte_order;
20803
20804 dw2_setup (per_cu->objfile);
20805
20806 if (per_cu->cu == NULL)
20807 load_cu (per_cu);
20808 cu = per_cu->cu;
20809 if (cu == NULL)
20810 {
20811 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20812 Instead just throw an error, not much else we can do. */
20813 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20814 to_underlying (sect_off), objfile_name (per_cu->objfile));
20815 }
20816
20817 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20818 if (!die)
20819 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20820 to_underlying (sect_off), objfile_name (per_cu->objfile));
20821
20822
20823 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20824 if (attr == NULL)
20825 return NULL;
20826
20827 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20828 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20829
20830 switch (attr->form)
20831 {
20832 case DW_FORM_addr:
20833 case DW_FORM_GNU_addr_index:
20834 {
20835 gdb_byte *tem;
20836
20837 *len = cu->header.addr_size;
20838 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20839 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20840 result = tem;
20841 }
20842 break;
20843 case DW_FORM_string:
20844 case DW_FORM_strp:
20845 case DW_FORM_GNU_str_index:
20846 case DW_FORM_GNU_strp_alt:
20847 /* DW_STRING is already allocated on the objfile obstack, point
20848 directly to it. */
20849 result = (const gdb_byte *) DW_STRING (attr);
20850 *len = strlen (DW_STRING (attr));
20851 break;
20852 case DW_FORM_block1:
20853 case DW_FORM_block2:
20854 case DW_FORM_block4:
20855 case DW_FORM_block:
20856 case DW_FORM_exprloc:
20857 case DW_FORM_data16:
20858 result = DW_BLOCK (attr)->data;
20859 *len = DW_BLOCK (attr)->size;
20860 break;
20861
20862 /* The DW_AT_const_value attributes are supposed to carry the
20863 symbol's value "represented as it would be on the target
20864 architecture." By the time we get here, it's already been
20865 converted to host endianness, so we just need to sign- or
20866 zero-extend it as appropriate. */
20867 case DW_FORM_data1:
20868 type = die_type (die, cu);
20869 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20870 if (result == NULL)
20871 result = write_constant_as_bytes (obstack, byte_order,
20872 type, value, len);
20873 break;
20874 case DW_FORM_data2:
20875 type = die_type (die, cu);
20876 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20877 if (result == NULL)
20878 result = write_constant_as_bytes (obstack, byte_order,
20879 type, value, len);
20880 break;
20881 case DW_FORM_data4:
20882 type = die_type (die, cu);
20883 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20884 if (result == NULL)
20885 result = write_constant_as_bytes (obstack, byte_order,
20886 type, value, len);
20887 break;
20888 case DW_FORM_data8:
20889 type = die_type (die, cu);
20890 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20891 if (result == NULL)
20892 result = write_constant_as_bytes (obstack, byte_order,
20893 type, value, len);
20894 break;
20895
20896 case DW_FORM_sdata:
20897 type = die_type (die, cu);
20898 result = write_constant_as_bytes (obstack, byte_order,
20899 type, DW_SND (attr), len);
20900 break;
20901
20902 case DW_FORM_udata:
20903 type = die_type (die, cu);
20904 result = write_constant_as_bytes (obstack, byte_order,
20905 type, DW_UNSND (attr), len);
20906 break;
20907
20908 default:
20909 complaint (&symfile_complaints,
20910 _("unsupported const value attribute form: '%s'"),
20911 dwarf_form_name (attr->form));
20912 break;
20913 }
20914
20915 return result;
20916 }
20917
20918 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20919 valid type for this die is found. */
20920
20921 struct type *
20922 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20923 struct dwarf2_per_cu_data *per_cu)
20924 {
20925 struct dwarf2_cu *cu;
20926 struct die_info *die;
20927
20928 dw2_setup (per_cu->objfile);
20929
20930 if (per_cu->cu == NULL)
20931 load_cu (per_cu);
20932 cu = per_cu->cu;
20933 if (!cu)
20934 return NULL;
20935
20936 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20937 if (!die)
20938 return NULL;
20939
20940 return die_type (die, cu);
20941 }
20942
20943 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20944 PER_CU. */
20945
20946 struct type *
20947 dwarf2_get_die_type (cu_offset die_offset,
20948 struct dwarf2_per_cu_data *per_cu)
20949 {
20950 dw2_setup (per_cu->objfile);
20951
20952 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20953 return get_die_type_at_offset (die_offset_sect, per_cu);
20954 }
20955
20956 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20957 On entry *REF_CU is the CU of SRC_DIE.
20958 On exit *REF_CU is the CU of the result.
20959 Returns NULL if the referenced DIE isn't found. */
20960
20961 static struct die_info *
20962 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20963 struct dwarf2_cu **ref_cu)
20964 {
20965 struct die_info temp_die;
20966 struct dwarf2_cu *sig_cu;
20967 struct die_info *die;
20968
20969 /* While it might be nice to assert sig_type->type == NULL here,
20970 we can get here for DW_AT_imported_declaration where we need
20971 the DIE not the type. */
20972
20973 /* If necessary, add it to the queue and load its DIEs. */
20974
20975 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20976 read_signatured_type (sig_type);
20977
20978 sig_cu = sig_type->per_cu.cu;
20979 gdb_assert (sig_cu != NULL);
20980 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
20981 temp_die.sect_off = sig_type->type_offset_in_section;
20982 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20983 to_underlying (temp_die.sect_off));
20984 if (die)
20985 {
20986 /* For .gdb_index version 7 keep track of included TUs.
20987 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20988 if (dwarf2_per_objfile->index_table != NULL
20989 && dwarf2_per_objfile->index_table->version <= 7)
20990 {
20991 VEC_safe_push (dwarf2_per_cu_ptr,
20992 (*ref_cu)->per_cu->imported_symtabs,
20993 sig_cu->per_cu);
20994 }
20995
20996 *ref_cu = sig_cu;
20997 return die;
20998 }
20999
21000 return NULL;
21001 }
21002
21003 /* Follow signatured type referenced by ATTR in SRC_DIE.
21004 On entry *REF_CU is the CU of SRC_DIE.
21005 On exit *REF_CU is the CU of the result.
21006 The result is the DIE of the type.
21007 If the referenced type cannot be found an error is thrown. */
21008
21009 static struct die_info *
21010 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21011 struct dwarf2_cu **ref_cu)
21012 {
21013 ULONGEST signature = DW_SIGNATURE (attr);
21014 struct signatured_type *sig_type;
21015 struct die_info *die;
21016
21017 gdb_assert (attr->form == DW_FORM_ref_sig8);
21018
21019 sig_type = lookup_signatured_type (*ref_cu, signature);
21020 /* sig_type will be NULL if the signatured type is missing from
21021 the debug info. */
21022 if (sig_type == NULL)
21023 {
21024 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21025 " from DIE at 0x%x [in module %s]"),
21026 hex_string (signature), to_underlying (src_die->sect_off),
21027 objfile_name ((*ref_cu)->objfile));
21028 }
21029
21030 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21031 if (die == NULL)
21032 {
21033 dump_die_for_error (src_die);
21034 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21035 " from DIE at 0x%x [in module %s]"),
21036 hex_string (signature), to_underlying (src_die->sect_off),
21037 objfile_name ((*ref_cu)->objfile));
21038 }
21039
21040 return die;
21041 }
21042
21043 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21044 reading in and processing the type unit if necessary. */
21045
21046 static struct type *
21047 get_signatured_type (struct die_info *die, ULONGEST signature,
21048 struct dwarf2_cu *cu)
21049 {
21050 struct signatured_type *sig_type;
21051 struct dwarf2_cu *type_cu;
21052 struct die_info *type_die;
21053 struct type *type;
21054
21055 sig_type = lookup_signatured_type (cu, signature);
21056 /* sig_type will be NULL if the signatured type is missing from
21057 the debug info. */
21058 if (sig_type == NULL)
21059 {
21060 complaint (&symfile_complaints,
21061 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21062 " from DIE at 0x%x [in module %s]"),
21063 hex_string (signature), to_underlying (die->sect_off),
21064 objfile_name (dwarf2_per_objfile->objfile));
21065 return build_error_marker_type (cu, die);
21066 }
21067
21068 /* If we already know the type we're done. */
21069 if (sig_type->type != NULL)
21070 return sig_type->type;
21071
21072 type_cu = cu;
21073 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21074 if (type_die != NULL)
21075 {
21076 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21077 is created. This is important, for example, because for c++ classes
21078 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21079 type = read_type_die (type_die, type_cu);
21080 if (type == NULL)
21081 {
21082 complaint (&symfile_complaints,
21083 _("Dwarf Error: Cannot build signatured type %s"
21084 " referenced from DIE at 0x%x [in module %s]"),
21085 hex_string (signature), to_underlying (die->sect_off),
21086 objfile_name (dwarf2_per_objfile->objfile));
21087 type = build_error_marker_type (cu, die);
21088 }
21089 }
21090 else
21091 {
21092 complaint (&symfile_complaints,
21093 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21094 " from DIE at 0x%x [in module %s]"),
21095 hex_string (signature), to_underlying (die->sect_off),
21096 objfile_name (dwarf2_per_objfile->objfile));
21097 type = build_error_marker_type (cu, die);
21098 }
21099 sig_type->type = type;
21100
21101 return type;
21102 }
21103
21104 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21105 reading in and processing the type unit if necessary. */
21106
21107 static struct type *
21108 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21109 struct dwarf2_cu *cu) /* ARI: editCase function */
21110 {
21111 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21112 if (attr_form_is_ref (attr))
21113 {
21114 struct dwarf2_cu *type_cu = cu;
21115 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21116
21117 return read_type_die (type_die, type_cu);
21118 }
21119 else if (attr->form == DW_FORM_ref_sig8)
21120 {
21121 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21122 }
21123 else
21124 {
21125 complaint (&symfile_complaints,
21126 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21127 " at 0x%x [in module %s]"),
21128 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21129 objfile_name (dwarf2_per_objfile->objfile));
21130 return build_error_marker_type (cu, die);
21131 }
21132 }
21133
21134 /* Load the DIEs associated with type unit PER_CU into memory. */
21135
21136 static void
21137 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21138 {
21139 struct signatured_type *sig_type;
21140
21141 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21142 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21143
21144 /* We have the per_cu, but we need the signatured_type.
21145 Fortunately this is an easy translation. */
21146 gdb_assert (per_cu->is_debug_types);
21147 sig_type = (struct signatured_type *) per_cu;
21148
21149 gdb_assert (per_cu->cu == NULL);
21150
21151 read_signatured_type (sig_type);
21152
21153 gdb_assert (per_cu->cu != NULL);
21154 }
21155
21156 /* die_reader_func for read_signatured_type.
21157 This is identical to load_full_comp_unit_reader,
21158 but is kept separate for now. */
21159
21160 static void
21161 read_signatured_type_reader (const struct die_reader_specs *reader,
21162 const gdb_byte *info_ptr,
21163 struct die_info *comp_unit_die,
21164 int has_children,
21165 void *data)
21166 {
21167 struct dwarf2_cu *cu = reader->cu;
21168
21169 gdb_assert (cu->die_hash == NULL);
21170 cu->die_hash =
21171 htab_create_alloc_ex (cu->header.length / 12,
21172 die_hash,
21173 die_eq,
21174 NULL,
21175 &cu->comp_unit_obstack,
21176 hashtab_obstack_allocate,
21177 dummy_obstack_deallocate);
21178
21179 if (has_children)
21180 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21181 &info_ptr, comp_unit_die);
21182 cu->dies = comp_unit_die;
21183 /* comp_unit_die is not stored in die_hash, no need. */
21184
21185 /* We try not to read any attributes in this function, because not
21186 all CUs needed for references have been loaded yet, and symbol
21187 table processing isn't initialized. But we have to set the CU language,
21188 or we won't be able to build types correctly.
21189 Similarly, if we do not read the producer, we can not apply
21190 producer-specific interpretation. */
21191 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21192 }
21193
21194 /* Read in a signatured type and build its CU and DIEs.
21195 If the type is a stub for the real type in a DWO file,
21196 read in the real type from the DWO file as well. */
21197
21198 static void
21199 read_signatured_type (struct signatured_type *sig_type)
21200 {
21201 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21202
21203 gdb_assert (per_cu->is_debug_types);
21204 gdb_assert (per_cu->cu == NULL);
21205
21206 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21207 read_signatured_type_reader, NULL);
21208 sig_type->per_cu.tu_read = 1;
21209 }
21210
21211 /* Decode simple location descriptions.
21212 Given a pointer to a dwarf block that defines a location, compute
21213 the location and return the value.
21214
21215 NOTE drow/2003-11-18: This function is called in two situations
21216 now: for the address of static or global variables (partial symbols
21217 only) and for offsets into structures which are expected to be
21218 (more or less) constant. The partial symbol case should go away,
21219 and only the constant case should remain. That will let this
21220 function complain more accurately. A few special modes are allowed
21221 without complaint for global variables (for instance, global
21222 register values and thread-local values).
21223
21224 A location description containing no operations indicates that the
21225 object is optimized out. The return value is 0 for that case.
21226 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21227 callers will only want a very basic result and this can become a
21228 complaint.
21229
21230 Note that stack[0] is unused except as a default error return. */
21231
21232 static CORE_ADDR
21233 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21234 {
21235 struct objfile *objfile = cu->objfile;
21236 size_t i;
21237 size_t size = blk->size;
21238 const gdb_byte *data = blk->data;
21239 CORE_ADDR stack[64];
21240 int stacki;
21241 unsigned int bytes_read, unsnd;
21242 gdb_byte op;
21243
21244 i = 0;
21245 stacki = 0;
21246 stack[stacki] = 0;
21247 stack[++stacki] = 0;
21248
21249 while (i < size)
21250 {
21251 op = data[i++];
21252 switch (op)
21253 {
21254 case DW_OP_lit0:
21255 case DW_OP_lit1:
21256 case DW_OP_lit2:
21257 case DW_OP_lit3:
21258 case DW_OP_lit4:
21259 case DW_OP_lit5:
21260 case DW_OP_lit6:
21261 case DW_OP_lit7:
21262 case DW_OP_lit8:
21263 case DW_OP_lit9:
21264 case DW_OP_lit10:
21265 case DW_OP_lit11:
21266 case DW_OP_lit12:
21267 case DW_OP_lit13:
21268 case DW_OP_lit14:
21269 case DW_OP_lit15:
21270 case DW_OP_lit16:
21271 case DW_OP_lit17:
21272 case DW_OP_lit18:
21273 case DW_OP_lit19:
21274 case DW_OP_lit20:
21275 case DW_OP_lit21:
21276 case DW_OP_lit22:
21277 case DW_OP_lit23:
21278 case DW_OP_lit24:
21279 case DW_OP_lit25:
21280 case DW_OP_lit26:
21281 case DW_OP_lit27:
21282 case DW_OP_lit28:
21283 case DW_OP_lit29:
21284 case DW_OP_lit30:
21285 case DW_OP_lit31:
21286 stack[++stacki] = op - DW_OP_lit0;
21287 break;
21288
21289 case DW_OP_reg0:
21290 case DW_OP_reg1:
21291 case DW_OP_reg2:
21292 case DW_OP_reg3:
21293 case DW_OP_reg4:
21294 case DW_OP_reg5:
21295 case DW_OP_reg6:
21296 case DW_OP_reg7:
21297 case DW_OP_reg8:
21298 case DW_OP_reg9:
21299 case DW_OP_reg10:
21300 case DW_OP_reg11:
21301 case DW_OP_reg12:
21302 case DW_OP_reg13:
21303 case DW_OP_reg14:
21304 case DW_OP_reg15:
21305 case DW_OP_reg16:
21306 case DW_OP_reg17:
21307 case DW_OP_reg18:
21308 case DW_OP_reg19:
21309 case DW_OP_reg20:
21310 case DW_OP_reg21:
21311 case DW_OP_reg22:
21312 case DW_OP_reg23:
21313 case DW_OP_reg24:
21314 case DW_OP_reg25:
21315 case DW_OP_reg26:
21316 case DW_OP_reg27:
21317 case DW_OP_reg28:
21318 case DW_OP_reg29:
21319 case DW_OP_reg30:
21320 case DW_OP_reg31:
21321 stack[++stacki] = op - DW_OP_reg0;
21322 if (i < size)
21323 dwarf2_complex_location_expr_complaint ();
21324 break;
21325
21326 case DW_OP_regx:
21327 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21328 i += bytes_read;
21329 stack[++stacki] = unsnd;
21330 if (i < size)
21331 dwarf2_complex_location_expr_complaint ();
21332 break;
21333
21334 case DW_OP_addr:
21335 stack[++stacki] = read_address (objfile->obfd, &data[i],
21336 cu, &bytes_read);
21337 i += bytes_read;
21338 break;
21339
21340 case DW_OP_const1u:
21341 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21342 i += 1;
21343 break;
21344
21345 case DW_OP_const1s:
21346 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21347 i += 1;
21348 break;
21349
21350 case DW_OP_const2u:
21351 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21352 i += 2;
21353 break;
21354
21355 case DW_OP_const2s:
21356 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21357 i += 2;
21358 break;
21359
21360 case DW_OP_const4u:
21361 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21362 i += 4;
21363 break;
21364
21365 case DW_OP_const4s:
21366 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21367 i += 4;
21368 break;
21369
21370 case DW_OP_const8u:
21371 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21372 i += 8;
21373 break;
21374
21375 case DW_OP_constu:
21376 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21377 &bytes_read);
21378 i += bytes_read;
21379 break;
21380
21381 case DW_OP_consts:
21382 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21383 i += bytes_read;
21384 break;
21385
21386 case DW_OP_dup:
21387 stack[stacki + 1] = stack[stacki];
21388 stacki++;
21389 break;
21390
21391 case DW_OP_plus:
21392 stack[stacki - 1] += stack[stacki];
21393 stacki--;
21394 break;
21395
21396 case DW_OP_plus_uconst:
21397 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21398 &bytes_read);
21399 i += bytes_read;
21400 break;
21401
21402 case DW_OP_minus:
21403 stack[stacki - 1] -= stack[stacki];
21404 stacki--;
21405 break;
21406
21407 case DW_OP_deref:
21408 /* If we're not the last op, then we definitely can't encode
21409 this using GDB's address_class enum. This is valid for partial
21410 global symbols, although the variable's address will be bogus
21411 in the psymtab. */
21412 if (i < size)
21413 dwarf2_complex_location_expr_complaint ();
21414 break;
21415
21416 case DW_OP_GNU_push_tls_address:
21417 case DW_OP_form_tls_address:
21418 /* The top of the stack has the offset from the beginning
21419 of the thread control block at which the variable is located. */
21420 /* Nothing should follow this operator, so the top of stack would
21421 be returned. */
21422 /* This is valid for partial global symbols, but the variable's
21423 address will be bogus in the psymtab. Make it always at least
21424 non-zero to not look as a variable garbage collected by linker
21425 which have DW_OP_addr 0. */
21426 if (i < size)
21427 dwarf2_complex_location_expr_complaint ();
21428 stack[stacki]++;
21429 break;
21430
21431 case DW_OP_GNU_uninit:
21432 break;
21433
21434 case DW_OP_GNU_addr_index:
21435 case DW_OP_GNU_const_index:
21436 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21437 &bytes_read);
21438 i += bytes_read;
21439 break;
21440
21441 default:
21442 {
21443 const char *name = get_DW_OP_name (op);
21444
21445 if (name)
21446 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21447 name);
21448 else
21449 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21450 op);
21451 }
21452
21453 return (stack[stacki]);
21454 }
21455
21456 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21457 outside of the allocated space. Also enforce minimum>0. */
21458 if (stacki >= ARRAY_SIZE (stack) - 1)
21459 {
21460 complaint (&symfile_complaints,
21461 _("location description stack overflow"));
21462 return 0;
21463 }
21464
21465 if (stacki <= 0)
21466 {
21467 complaint (&symfile_complaints,
21468 _("location description stack underflow"));
21469 return 0;
21470 }
21471 }
21472 return (stack[stacki]);
21473 }
21474
21475 /* memory allocation interface */
21476
21477 static struct dwarf_block *
21478 dwarf_alloc_block (struct dwarf2_cu *cu)
21479 {
21480 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21481 }
21482
21483 static struct die_info *
21484 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21485 {
21486 struct die_info *die;
21487 size_t size = sizeof (struct die_info);
21488
21489 if (num_attrs > 1)
21490 size += (num_attrs - 1) * sizeof (struct attribute);
21491
21492 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21493 memset (die, 0, sizeof (struct die_info));
21494 return (die);
21495 }
21496
21497 \f
21498 /* Macro support. */
21499
21500 /* Return file name relative to the compilation directory of file number I in
21501 *LH's file name table. The result is allocated using xmalloc; the caller is
21502 responsible for freeing it. */
21503
21504 static char *
21505 file_file_name (int file, struct line_header *lh)
21506 {
21507 /* Is the file number a valid index into the line header's file name
21508 table? Remember that file numbers start with one, not zero. */
21509 if (1 <= file && file <= lh->file_names.size ())
21510 {
21511 const file_entry &fe = lh->file_names[file - 1];
21512
21513 if (!IS_ABSOLUTE_PATH (fe.name))
21514 {
21515 const char *dir = fe.include_dir (lh);
21516 if (dir != NULL)
21517 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21518 }
21519 return xstrdup (fe.name);
21520 }
21521 else
21522 {
21523 /* The compiler produced a bogus file number. We can at least
21524 record the macro definitions made in the file, even if we
21525 won't be able to find the file by name. */
21526 char fake_name[80];
21527
21528 xsnprintf (fake_name, sizeof (fake_name),
21529 "<bad macro file number %d>", file);
21530
21531 complaint (&symfile_complaints,
21532 _("bad file number in macro information (%d)"),
21533 file);
21534
21535 return xstrdup (fake_name);
21536 }
21537 }
21538
21539 /* Return the full name of file number I in *LH's file name table.
21540 Use COMP_DIR as the name of the current directory of the
21541 compilation. The result is allocated using xmalloc; the caller is
21542 responsible for freeing it. */
21543 static char *
21544 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21545 {
21546 /* Is the file number a valid index into the line header's file name
21547 table? Remember that file numbers start with one, not zero. */
21548 if (1 <= file && file <= lh->file_names.size ())
21549 {
21550 char *relative = file_file_name (file, lh);
21551
21552 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21553 return relative;
21554 return reconcat (relative, comp_dir, SLASH_STRING,
21555 relative, (char *) NULL);
21556 }
21557 else
21558 return file_file_name (file, lh);
21559 }
21560
21561
21562 static struct macro_source_file *
21563 macro_start_file (int file, int line,
21564 struct macro_source_file *current_file,
21565 struct line_header *lh)
21566 {
21567 /* File name relative to the compilation directory of this source file. */
21568 char *file_name = file_file_name (file, lh);
21569
21570 if (! current_file)
21571 {
21572 /* Note: We don't create a macro table for this compilation unit
21573 at all until we actually get a filename. */
21574 struct macro_table *macro_table = get_macro_table ();
21575
21576 /* If we have no current file, then this must be the start_file
21577 directive for the compilation unit's main source file. */
21578 current_file = macro_set_main (macro_table, file_name);
21579 macro_define_special (macro_table);
21580 }
21581 else
21582 current_file = macro_include (current_file, line, file_name);
21583
21584 xfree (file_name);
21585
21586 return current_file;
21587 }
21588
21589
21590 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21591 followed by a null byte. */
21592 static char *
21593 copy_string (const char *buf, int len)
21594 {
21595 char *s = (char *) xmalloc (len + 1);
21596
21597 memcpy (s, buf, len);
21598 s[len] = '\0';
21599 return s;
21600 }
21601
21602
21603 static const char *
21604 consume_improper_spaces (const char *p, const char *body)
21605 {
21606 if (*p == ' ')
21607 {
21608 complaint (&symfile_complaints,
21609 _("macro definition contains spaces "
21610 "in formal argument list:\n`%s'"),
21611 body);
21612
21613 while (*p == ' ')
21614 p++;
21615 }
21616
21617 return p;
21618 }
21619
21620
21621 static void
21622 parse_macro_definition (struct macro_source_file *file, int line,
21623 const char *body)
21624 {
21625 const char *p;
21626
21627 /* The body string takes one of two forms. For object-like macro
21628 definitions, it should be:
21629
21630 <macro name> " " <definition>
21631
21632 For function-like macro definitions, it should be:
21633
21634 <macro name> "() " <definition>
21635 or
21636 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21637
21638 Spaces may appear only where explicitly indicated, and in the
21639 <definition>.
21640
21641 The Dwarf 2 spec says that an object-like macro's name is always
21642 followed by a space, but versions of GCC around March 2002 omit
21643 the space when the macro's definition is the empty string.
21644
21645 The Dwarf 2 spec says that there should be no spaces between the
21646 formal arguments in a function-like macro's formal argument list,
21647 but versions of GCC around March 2002 include spaces after the
21648 commas. */
21649
21650
21651 /* Find the extent of the macro name. The macro name is terminated
21652 by either a space or null character (for an object-like macro) or
21653 an opening paren (for a function-like macro). */
21654 for (p = body; *p; p++)
21655 if (*p == ' ' || *p == '(')
21656 break;
21657
21658 if (*p == ' ' || *p == '\0')
21659 {
21660 /* It's an object-like macro. */
21661 int name_len = p - body;
21662 char *name = copy_string (body, name_len);
21663 const char *replacement;
21664
21665 if (*p == ' ')
21666 replacement = body + name_len + 1;
21667 else
21668 {
21669 dwarf2_macro_malformed_definition_complaint (body);
21670 replacement = body + name_len;
21671 }
21672
21673 macro_define_object (file, line, name, replacement);
21674
21675 xfree (name);
21676 }
21677 else if (*p == '(')
21678 {
21679 /* It's a function-like macro. */
21680 char *name = copy_string (body, p - body);
21681 int argc = 0;
21682 int argv_size = 1;
21683 char **argv = XNEWVEC (char *, argv_size);
21684
21685 p++;
21686
21687 p = consume_improper_spaces (p, body);
21688
21689 /* Parse the formal argument list. */
21690 while (*p && *p != ')')
21691 {
21692 /* Find the extent of the current argument name. */
21693 const char *arg_start = p;
21694
21695 while (*p && *p != ',' && *p != ')' && *p != ' ')
21696 p++;
21697
21698 if (! *p || p == arg_start)
21699 dwarf2_macro_malformed_definition_complaint (body);
21700 else
21701 {
21702 /* Make sure argv has room for the new argument. */
21703 if (argc >= argv_size)
21704 {
21705 argv_size *= 2;
21706 argv = XRESIZEVEC (char *, argv, argv_size);
21707 }
21708
21709 argv[argc++] = copy_string (arg_start, p - arg_start);
21710 }
21711
21712 p = consume_improper_spaces (p, body);
21713
21714 /* Consume the comma, if present. */
21715 if (*p == ',')
21716 {
21717 p++;
21718
21719 p = consume_improper_spaces (p, body);
21720 }
21721 }
21722
21723 if (*p == ')')
21724 {
21725 p++;
21726
21727 if (*p == ' ')
21728 /* Perfectly formed definition, no complaints. */
21729 macro_define_function (file, line, name,
21730 argc, (const char **) argv,
21731 p + 1);
21732 else if (*p == '\0')
21733 {
21734 /* Complain, but do define it. */
21735 dwarf2_macro_malformed_definition_complaint (body);
21736 macro_define_function (file, line, name,
21737 argc, (const char **) argv,
21738 p);
21739 }
21740 else
21741 /* Just complain. */
21742 dwarf2_macro_malformed_definition_complaint (body);
21743 }
21744 else
21745 /* Just complain. */
21746 dwarf2_macro_malformed_definition_complaint (body);
21747
21748 xfree (name);
21749 {
21750 int i;
21751
21752 for (i = 0; i < argc; i++)
21753 xfree (argv[i]);
21754 }
21755 xfree (argv);
21756 }
21757 else
21758 dwarf2_macro_malformed_definition_complaint (body);
21759 }
21760
21761 /* Skip some bytes from BYTES according to the form given in FORM.
21762 Returns the new pointer. */
21763
21764 static const gdb_byte *
21765 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21766 enum dwarf_form form,
21767 unsigned int offset_size,
21768 struct dwarf2_section_info *section)
21769 {
21770 unsigned int bytes_read;
21771
21772 switch (form)
21773 {
21774 case DW_FORM_data1:
21775 case DW_FORM_flag:
21776 ++bytes;
21777 break;
21778
21779 case DW_FORM_data2:
21780 bytes += 2;
21781 break;
21782
21783 case DW_FORM_data4:
21784 bytes += 4;
21785 break;
21786
21787 case DW_FORM_data8:
21788 bytes += 8;
21789 break;
21790
21791 case DW_FORM_data16:
21792 bytes += 16;
21793 break;
21794
21795 case DW_FORM_string:
21796 read_direct_string (abfd, bytes, &bytes_read);
21797 bytes += bytes_read;
21798 break;
21799
21800 case DW_FORM_sec_offset:
21801 case DW_FORM_strp:
21802 case DW_FORM_GNU_strp_alt:
21803 bytes += offset_size;
21804 break;
21805
21806 case DW_FORM_block:
21807 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21808 bytes += bytes_read;
21809 break;
21810
21811 case DW_FORM_block1:
21812 bytes += 1 + read_1_byte (abfd, bytes);
21813 break;
21814 case DW_FORM_block2:
21815 bytes += 2 + read_2_bytes (abfd, bytes);
21816 break;
21817 case DW_FORM_block4:
21818 bytes += 4 + read_4_bytes (abfd, bytes);
21819 break;
21820
21821 case DW_FORM_sdata:
21822 case DW_FORM_udata:
21823 case DW_FORM_GNU_addr_index:
21824 case DW_FORM_GNU_str_index:
21825 bytes = gdb_skip_leb128 (bytes, buffer_end);
21826 if (bytes == NULL)
21827 {
21828 dwarf2_section_buffer_overflow_complaint (section);
21829 return NULL;
21830 }
21831 break;
21832
21833 default:
21834 {
21835 complain:
21836 complaint (&symfile_complaints,
21837 _("invalid form 0x%x in `%s'"),
21838 form, get_section_name (section));
21839 return NULL;
21840 }
21841 }
21842
21843 return bytes;
21844 }
21845
21846 /* A helper for dwarf_decode_macros that handles skipping an unknown
21847 opcode. Returns an updated pointer to the macro data buffer; or,
21848 on error, issues a complaint and returns NULL. */
21849
21850 static const gdb_byte *
21851 skip_unknown_opcode (unsigned int opcode,
21852 const gdb_byte **opcode_definitions,
21853 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21854 bfd *abfd,
21855 unsigned int offset_size,
21856 struct dwarf2_section_info *section)
21857 {
21858 unsigned int bytes_read, i;
21859 unsigned long arg;
21860 const gdb_byte *defn;
21861
21862 if (opcode_definitions[opcode] == NULL)
21863 {
21864 complaint (&symfile_complaints,
21865 _("unrecognized DW_MACFINO opcode 0x%x"),
21866 opcode);
21867 return NULL;
21868 }
21869
21870 defn = opcode_definitions[opcode];
21871 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21872 defn += bytes_read;
21873
21874 for (i = 0; i < arg; ++i)
21875 {
21876 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21877 (enum dwarf_form) defn[i], offset_size,
21878 section);
21879 if (mac_ptr == NULL)
21880 {
21881 /* skip_form_bytes already issued the complaint. */
21882 return NULL;
21883 }
21884 }
21885
21886 return mac_ptr;
21887 }
21888
21889 /* A helper function which parses the header of a macro section.
21890 If the macro section is the extended (for now called "GNU") type,
21891 then this updates *OFFSET_SIZE. Returns a pointer to just after
21892 the header, or issues a complaint and returns NULL on error. */
21893
21894 static const gdb_byte *
21895 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21896 bfd *abfd,
21897 const gdb_byte *mac_ptr,
21898 unsigned int *offset_size,
21899 int section_is_gnu)
21900 {
21901 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21902
21903 if (section_is_gnu)
21904 {
21905 unsigned int version, flags;
21906
21907 version = read_2_bytes (abfd, mac_ptr);
21908 if (version != 4 && version != 5)
21909 {
21910 complaint (&symfile_complaints,
21911 _("unrecognized version `%d' in .debug_macro section"),
21912 version);
21913 return NULL;
21914 }
21915 mac_ptr += 2;
21916
21917 flags = read_1_byte (abfd, mac_ptr);
21918 ++mac_ptr;
21919 *offset_size = (flags & 1) ? 8 : 4;
21920
21921 if ((flags & 2) != 0)
21922 /* We don't need the line table offset. */
21923 mac_ptr += *offset_size;
21924
21925 /* Vendor opcode descriptions. */
21926 if ((flags & 4) != 0)
21927 {
21928 unsigned int i, count;
21929
21930 count = read_1_byte (abfd, mac_ptr);
21931 ++mac_ptr;
21932 for (i = 0; i < count; ++i)
21933 {
21934 unsigned int opcode, bytes_read;
21935 unsigned long arg;
21936
21937 opcode = read_1_byte (abfd, mac_ptr);
21938 ++mac_ptr;
21939 opcode_definitions[opcode] = mac_ptr;
21940 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21941 mac_ptr += bytes_read;
21942 mac_ptr += arg;
21943 }
21944 }
21945 }
21946
21947 return mac_ptr;
21948 }
21949
21950 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21951 including DW_MACRO_import. */
21952
21953 static void
21954 dwarf_decode_macro_bytes (bfd *abfd,
21955 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21956 struct macro_source_file *current_file,
21957 struct line_header *lh,
21958 struct dwarf2_section_info *section,
21959 int section_is_gnu, int section_is_dwz,
21960 unsigned int offset_size,
21961 htab_t include_hash)
21962 {
21963 struct objfile *objfile = dwarf2_per_objfile->objfile;
21964 enum dwarf_macro_record_type macinfo_type;
21965 int at_commandline;
21966 const gdb_byte *opcode_definitions[256];
21967
21968 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21969 &offset_size, section_is_gnu);
21970 if (mac_ptr == NULL)
21971 {
21972 /* We already issued a complaint. */
21973 return;
21974 }
21975
21976 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21977 GDB is still reading the definitions from command line. First
21978 DW_MACINFO_start_file will need to be ignored as it was already executed
21979 to create CURRENT_FILE for the main source holding also the command line
21980 definitions. On first met DW_MACINFO_start_file this flag is reset to
21981 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21982
21983 at_commandline = 1;
21984
21985 do
21986 {
21987 /* Do we at least have room for a macinfo type byte? */
21988 if (mac_ptr >= mac_end)
21989 {
21990 dwarf2_section_buffer_overflow_complaint (section);
21991 break;
21992 }
21993
21994 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21995 mac_ptr++;
21996
21997 /* Note that we rely on the fact that the corresponding GNU and
21998 DWARF constants are the same. */
21999 switch (macinfo_type)
22000 {
22001 /* A zero macinfo type indicates the end of the macro
22002 information. */
22003 case 0:
22004 break;
22005
22006 case DW_MACRO_define:
22007 case DW_MACRO_undef:
22008 case DW_MACRO_define_strp:
22009 case DW_MACRO_undef_strp:
22010 case DW_MACRO_define_sup:
22011 case DW_MACRO_undef_sup:
22012 {
22013 unsigned int bytes_read;
22014 int line;
22015 const char *body;
22016 int is_define;
22017
22018 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22019 mac_ptr += bytes_read;
22020
22021 if (macinfo_type == DW_MACRO_define
22022 || macinfo_type == DW_MACRO_undef)
22023 {
22024 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22025 mac_ptr += bytes_read;
22026 }
22027 else
22028 {
22029 LONGEST str_offset;
22030
22031 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22032 mac_ptr += offset_size;
22033
22034 if (macinfo_type == DW_MACRO_define_sup
22035 || macinfo_type == DW_MACRO_undef_sup
22036 || section_is_dwz)
22037 {
22038 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22039
22040 body = read_indirect_string_from_dwz (dwz, str_offset);
22041 }
22042 else
22043 body = read_indirect_string_at_offset (abfd, str_offset);
22044 }
22045
22046 is_define = (macinfo_type == DW_MACRO_define
22047 || macinfo_type == DW_MACRO_define_strp
22048 || macinfo_type == DW_MACRO_define_sup);
22049 if (! current_file)
22050 {
22051 /* DWARF violation as no main source is present. */
22052 complaint (&symfile_complaints,
22053 _("debug info with no main source gives macro %s "
22054 "on line %d: %s"),
22055 is_define ? _("definition") : _("undefinition"),
22056 line, body);
22057 break;
22058 }
22059 if ((line == 0 && !at_commandline)
22060 || (line != 0 && at_commandline))
22061 complaint (&symfile_complaints,
22062 _("debug info gives %s macro %s with %s line %d: %s"),
22063 at_commandline ? _("command-line") : _("in-file"),
22064 is_define ? _("definition") : _("undefinition"),
22065 line == 0 ? _("zero") : _("non-zero"), line, body);
22066
22067 if (is_define)
22068 parse_macro_definition (current_file, line, body);
22069 else
22070 {
22071 gdb_assert (macinfo_type == DW_MACRO_undef
22072 || macinfo_type == DW_MACRO_undef_strp
22073 || macinfo_type == DW_MACRO_undef_sup);
22074 macro_undef (current_file, line, body);
22075 }
22076 }
22077 break;
22078
22079 case DW_MACRO_start_file:
22080 {
22081 unsigned int bytes_read;
22082 int line, file;
22083
22084 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22085 mac_ptr += bytes_read;
22086 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22087 mac_ptr += bytes_read;
22088
22089 if ((line == 0 && !at_commandline)
22090 || (line != 0 && at_commandline))
22091 complaint (&symfile_complaints,
22092 _("debug info gives source %d included "
22093 "from %s at %s line %d"),
22094 file, at_commandline ? _("command-line") : _("file"),
22095 line == 0 ? _("zero") : _("non-zero"), line);
22096
22097 if (at_commandline)
22098 {
22099 /* This DW_MACRO_start_file was executed in the
22100 pass one. */
22101 at_commandline = 0;
22102 }
22103 else
22104 current_file = macro_start_file (file, line, current_file, lh);
22105 }
22106 break;
22107
22108 case DW_MACRO_end_file:
22109 if (! current_file)
22110 complaint (&symfile_complaints,
22111 _("macro debug info has an unmatched "
22112 "`close_file' directive"));
22113 else
22114 {
22115 current_file = current_file->included_by;
22116 if (! current_file)
22117 {
22118 enum dwarf_macro_record_type next_type;
22119
22120 /* GCC circa March 2002 doesn't produce the zero
22121 type byte marking the end of the compilation
22122 unit. Complain if it's not there, but exit no
22123 matter what. */
22124
22125 /* Do we at least have room for a macinfo type byte? */
22126 if (mac_ptr >= mac_end)
22127 {
22128 dwarf2_section_buffer_overflow_complaint (section);
22129 return;
22130 }
22131
22132 /* We don't increment mac_ptr here, so this is just
22133 a look-ahead. */
22134 next_type
22135 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22136 mac_ptr);
22137 if (next_type != 0)
22138 complaint (&symfile_complaints,
22139 _("no terminating 0-type entry for "
22140 "macros in `.debug_macinfo' section"));
22141
22142 return;
22143 }
22144 }
22145 break;
22146
22147 case DW_MACRO_import:
22148 case DW_MACRO_import_sup:
22149 {
22150 LONGEST offset;
22151 void **slot;
22152 bfd *include_bfd = abfd;
22153 struct dwarf2_section_info *include_section = section;
22154 const gdb_byte *include_mac_end = mac_end;
22155 int is_dwz = section_is_dwz;
22156 const gdb_byte *new_mac_ptr;
22157
22158 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22159 mac_ptr += offset_size;
22160
22161 if (macinfo_type == DW_MACRO_import_sup)
22162 {
22163 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22164
22165 dwarf2_read_section (objfile, &dwz->macro);
22166
22167 include_section = &dwz->macro;
22168 include_bfd = get_section_bfd_owner (include_section);
22169 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22170 is_dwz = 1;
22171 }
22172
22173 new_mac_ptr = include_section->buffer + offset;
22174 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22175
22176 if (*slot != NULL)
22177 {
22178 /* This has actually happened; see
22179 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22180 complaint (&symfile_complaints,
22181 _("recursive DW_MACRO_import in "
22182 ".debug_macro section"));
22183 }
22184 else
22185 {
22186 *slot = (void *) new_mac_ptr;
22187
22188 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22189 include_mac_end, current_file, lh,
22190 section, section_is_gnu, is_dwz,
22191 offset_size, include_hash);
22192
22193 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22194 }
22195 }
22196 break;
22197
22198 case DW_MACINFO_vendor_ext:
22199 if (!section_is_gnu)
22200 {
22201 unsigned int bytes_read;
22202
22203 /* This reads the constant, but since we don't recognize
22204 any vendor extensions, we ignore it. */
22205 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22206 mac_ptr += bytes_read;
22207 read_direct_string (abfd, mac_ptr, &bytes_read);
22208 mac_ptr += bytes_read;
22209
22210 /* We don't recognize any vendor extensions. */
22211 break;
22212 }
22213 /* FALLTHROUGH */
22214
22215 default:
22216 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22217 mac_ptr, mac_end, abfd, offset_size,
22218 section);
22219 if (mac_ptr == NULL)
22220 return;
22221 break;
22222 }
22223 } while (macinfo_type != 0);
22224 }
22225
22226 static void
22227 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22228 int section_is_gnu)
22229 {
22230 struct objfile *objfile = dwarf2_per_objfile->objfile;
22231 struct line_header *lh = cu->line_header;
22232 bfd *abfd;
22233 const gdb_byte *mac_ptr, *mac_end;
22234 struct macro_source_file *current_file = 0;
22235 enum dwarf_macro_record_type macinfo_type;
22236 unsigned int offset_size = cu->header.offset_size;
22237 const gdb_byte *opcode_definitions[256];
22238 struct cleanup *cleanup;
22239 void **slot;
22240 struct dwarf2_section_info *section;
22241 const char *section_name;
22242
22243 if (cu->dwo_unit != NULL)
22244 {
22245 if (section_is_gnu)
22246 {
22247 section = &cu->dwo_unit->dwo_file->sections.macro;
22248 section_name = ".debug_macro.dwo";
22249 }
22250 else
22251 {
22252 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22253 section_name = ".debug_macinfo.dwo";
22254 }
22255 }
22256 else
22257 {
22258 if (section_is_gnu)
22259 {
22260 section = &dwarf2_per_objfile->macro;
22261 section_name = ".debug_macro";
22262 }
22263 else
22264 {
22265 section = &dwarf2_per_objfile->macinfo;
22266 section_name = ".debug_macinfo";
22267 }
22268 }
22269
22270 dwarf2_read_section (objfile, section);
22271 if (section->buffer == NULL)
22272 {
22273 complaint (&symfile_complaints, _("missing %s section"), section_name);
22274 return;
22275 }
22276 abfd = get_section_bfd_owner (section);
22277
22278 /* First pass: Find the name of the base filename.
22279 This filename is needed in order to process all macros whose definition
22280 (or undefinition) comes from the command line. These macros are defined
22281 before the first DW_MACINFO_start_file entry, and yet still need to be
22282 associated to the base file.
22283
22284 To determine the base file name, we scan the macro definitions until we
22285 reach the first DW_MACINFO_start_file entry. We then initialize
22286 CURRENT_FILE accordingly so that any macro definition found before the
22287 first DW_MACINFO_start_file can still be associated to the base file. */
22288
22289 mac_ptr = section->buffer + offset;
22290 mac_end = section->buffer + section->size;
22291
22292 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22293 &offset_size, section_is_gnu);
22294 if (mac_ptr == NULL)
22295 {
22296 /* We already issued a complaint. */
22297 return;
22298 }
22299
22300 do
22301 {
22302 /* Do we at least have room for a macinfo type byte? */
22303 if (mac_ptr >= mac_end)
22304 {
22305 /* Complaint is printed during the second pass as GDB will probably
22306 stop the first pass earlier upon finding
22307 DW_MACINFO_start_file. */
22308 break;
22309 }
22310
22311 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22312 mac_ptr++;
22313
22314 /* Note that we rely on the fact that the corresponding GNU and
22315 DWARF constants are the same. */
22316 switch (macinfo_type)
22317 {
22318 /* A zero macinfo type indicates the end of the macro
22319 information. */
22320 case 0:
22321 break;
22322
22323 case DW_MACRO_define:
22324 case DW_MACRO_undef:
22325 /* Only skip the data by MAC_PTR. */
22326 {
22327 unsigned int bytes_read;
22328
22329 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22330 mac_ptr += bytes_read;
22331 read_direct_string (abfd, mac_ptr, &bytes_read);
22332 mac_ptr += bytes_read;
22333 }
22334 break;
22335
22336 case DW_MACRO_start_file:
22337 {
22338 unsigned int bytes_read;
22339 int line, file;
22340
22341 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22342 mac_ptr += bytes_read;
22343 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22344 mac_ptr += bytes_read;
22345
22346 current_file = macro_start_file (file, line, current_file, lh);
22347 }
22348 break;
22349
22350 case DW_MACRO_end_file:
22351 /* No data to skip by MAC_PTR. */
22352 break;
22353
22354 case DW_MACRO_define_strp:
22355 case DW_MACRO_undef_strp:
22356 case DW_MACRO_define_sup:
22357 case DW_MACRO_undef_sup:
22358 {
22359 unsigned int bytes_read;
22360
22361 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22362 mac_ptr += bytes_read;
22363 mac_ptr += offset_size;
22364 }
22365 break;
22366
22367 case DW_MACRO_import:
22368 case DW_MACRO_import_sup:
22369 /* Note that, according to the spec, a transparent include
22370 chain cannot call DW_MACRO_start_file. So, we can just
22371 skip this opcode. */
22372 mac_ptr += offset_size;
22373 break;
22374
22375 case DW_MACINFO_vendor_ext:
22376 /* Only skip the data by MAC_PTR. */
22377 if (!section_is_gnu)
22378 {
22379 unsigned int bytes_read;
22380
22381 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22382 mac_ptr += bytes_read;
22383 read_direct_string (abfd, mac_ptr, &bytes_read);
22384 mac_ptr += bytes_read;
22385 }
22386 /* FALLTHROUGH */
22387
22388 default:
22389 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22390 mac_ptr, mac_end, abfd, offset_size,
22391 section);
22392 if (mac_ptr == NULL)
22393 return;
22394 break;
22395 }
22396 } while (macinfo_type != 0 && current_file == NULL);
22397
22398 /* Second pass: Process all entries.
22399
22400 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22401 command-line macro definitions/undefinitions. This flag is unset when we
22402 reach the first DW_MACINFO_start_file entry. */
22403
22404 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22405 htab_eq_pointer,
22406 NULL, xcalloc, xfree));
22407 mac_ptr = section->buffer + offset;
22408 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22409 *slot = (void *) mac_ptr;
22410 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22411 current_file, lh, section,
22412 section_is_gnu, 0, offset_size,
22413 include_hash.get ());
22414 }
22415
22416 /* Check if the attribute's form is a DW_FORM_block*
22417 if so return true else false. */
22418
22419 static int
22420 attr_form_is_block (const struct attribute *attr)
22421 {
22422 return (attr == NULL ? 0 :
22423 attr->form == DW_FORM_block1
22424 || attr->form == DW_FORM_block2
22425 || attr->form == DW_FORM_block4
22426 || attr->form == DW_FORM_block
22427 || attr->form == DW_FORM_exprloc);
22428 }
22429
22430 /* Return non-zero if ATTR's value is a section offset --- classes
22431 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22432 You may use DW_UNSND (attr) to retrieve such offsets.
22433
22434 Section 7.5.4, "Attribute Encodings", explains that no attribute
22435 may have a value that belongs to more than one of these classes; it
22436 would be ambiguous if we did, because we use the same forms for all
22437 of them. */
22438
22439 static int
22440 attr_form_is_section_offset (const struct attribute *attr)
22441 {
22442 return (attr->form == DW_FORM_data4
22443 || attr->form == DW_FORM_data8
22444 || attr->form == DW_FORM_sec_offset);
22445 }
22446
22447 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22448 zero otherwise. When this function returns true, you can apply
22449 dwarf2_get_attr_constant_value to it.
22450
22451 However, note that for some attributes you must check
22452 attr_form_is_section_offset before using this test. DW_FORM_data4
22453 and DW_FORM_data8 are members of both the constant class, and of
22454 the classes that contain offsets into other debug sections
22455 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22456 that, if an attribute's can be either a constant or one of the
22457 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22458 taken as section offsets, not constants.
22459
22460 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22461 cannot handle that. */
22462
22463 static int
22464 attr_form_is_constant (const struct attribute *attr)
22465 {
22466 switch (attr->form)
22467 {
22468 case DW_FORM_sdata:
22469 case DW_FORM_udata:
22470 case DW_FORM_data1:
22471 case DW_FORM_data2:
22472 case DW_FORM_data4:
22473 case DW_FORM_data8:
22474 return 1;
22475 default:
22476 return 0;
22477 }
22478 }
22479
22480
22481 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22482 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22483
22484 static int
22485 attr_form_is_ref (const struct attribute *attr)
22486 {
22487 switch (attr->form)
22488 {
22489 case DW_FORM_ref_addr:
22490 case DW_FORM_ref1:
22491 case DW_FORM_ref2:
22492 case DW_FORM_ref4:
22493 case DW_FORM_ref8:
22494 case DW_FORM_ref_udata:
22495 case DW_FORM_GNU_ref_alt:
22496 return 1;
22497 default:
22498 return 0;
22499 }
22500 }
22501
22502 /* Return the .debug_loc section to use for CU.
22503 For DWO files use .debug_loc.dwo. */
22504
22505 static struct dwarf2_section_info *
22506 cu_debug_loc_section (struct dwarf2_cu *cu)
22507 {
22508 if (cu->dwo_unit)
22509 {
22510 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22511
22512 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22513 }
22514 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22515 : &dwarf2_per_objfile->loc);
22516 }
22517
22518 /* A helper function that fills in a dwarf2_loclist_baton. */
22519
22520 static void
22521 fill_in_loclist_baton (struct dwarf2_cu *cu,
22522 struct dwarf2_loclist_baton *baton,
22523 const struct attribute *attr)
22524 {
22525 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22526
22527 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22528
22529 baton->per_cu = cu->per_cu;
22530 gdb_assert (baton->per_cu);
22531 /* We don't know how long the location list is, but make sure we
22532 don't run off the edge of the section. */
22533 baton->size = section->size - DW_UNSND (attr);
22534 baton->data = section->buffer + DW_UNSND (attr);
22535 baton->base_address = cu->base_address;
22536 baton->from_dwo = cu->dwo_unit != NULL;
22537 }
22538
22539 static void
22540 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22541 struct dwarf2_cu *cu, int is_block)
22542 {
22543 struct objfile *objfile = dwarf2_per_objfile->objfile;
22544 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22545
22546 if (attr_form_is_section_offset (attr)
22547 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22548 the section. If so, fall through to the complaint in the
22549 other branch. */
22550 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22551 {
22552 struct dwarf2_loclist_baton *baton;
22553
22554 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22555
22556 fill_in_loclist_baton (cu, baton, attr);
22557
22558 if (cu->base_known == 0)
22559 complaint (&symfile_complaints,
22560 _("Location list used without "
22561 "specifying the CU base address."));
22562
22563 SYMBOL_ACLASS_INDEX (sym) = (is_block
22564 ? dwarf2_loclist_block_index
22565 : dwarf2_loclist_index);
22566 SYMBOL_LOCATION_BATON (sym) = baton;
22567 }
22568 else
22569 {
22570 struct dwarf2_locexpr_baton *baton;
22571
22572 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22573 baton->per_cu = cu->per_cu;
22574 gdb_assert (baton->per_cu);
22575
22576 if (attr_form_is_block (attr))
22577 {
22578 /* Note that we're just copying the block's data pointer
22579 here, not the actual data. We're still pointing into the
22580 info_buffer for SYM's objfile; right now we never release
22581 that buffer, but when we do clean up properly this may
22582 need to change. */
22583 baton->size = DW_BLOCK (attr)->size;
22584 baton->data = DW_BLOCK (attr)->data;
22585 }
22586 else
22587 {
22588 dwarf2_invalid_attrib_class_complaint ("location description",
22589 SYMBOL_NATURAL_NAME (sym));
22590 baton->size = 0;
22591 }
22592
22593 SYMBOL_ACLASS_INDEX (sym) = (is_block
22594 ? dwarf2_locexpr_block_index
22595 : dwarf2_locexpr_index);
22596 SYMBOL_LOCATION_BATON (sym) = baton;
22597 }
22598 }
22599
22600 /* Return the OBJFILE associated with the compilation unit CU. If CU
22601 came from a separate debuginfo file, then the master objfile is
22602 returned. */
22603
22604 struct objfile *
22605 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22606 {
22607 struct objfile *objfile = per_cu->objfile;
22608
22609 /* Return the master objfile, so that we can report and look up the
22610 correct file containing this variable. */
22611 if (objfile->separate_debug_objfile_backlink)
22612 objfile = objfile->separate_debug_objfile_backlink;
22613
22614 return objfile;
22615 }
22616
22617 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22618 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22619 CU_HEADERP first. */
22620
22621 static const struct comp_unit_head *
22622 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22623 struct dwarf2_per_cu_data *per_cu)
22624 {
22625 const gdb_byte *info_ptr;
22626
22627 if (per_cu->cu)
22628 return &per_cu->cu->header;
22629
22630 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22631
22632 memset (cu_headerp, 0, sizeof (*cu_headerp));
22633 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22634 rcuh_kind::COMPILE);
22635
22636 return cu_headerp;
22637 }
22638
22639 /* Return the address size given in the compilation unit header for CU. */
22640
22641 int
22642 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22643 {
22644 struct comp_unit_head cu_header_local;
22645 const struct comp_unit_head *cu_headerp;
22646
22647 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22648
22649 return cu_headerp->addr_size;
22650 }
22651
22652 /* Return the offset size given in the compilation unit header for CU. */
22653
22654 int
22655 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22656 {
22657 struct comp_unit_head cu_header_local;
22658 const struct comp_unit_head *cu_headerp;
22659
22660 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22661
22662 return cu_headerp->offset_size;
22663 }
22664
22665 /* See its dwarf2loc.h declaration. */
22666
22667 int
22668 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22669 {
22670 struct comp_unit_head cu_header_local;
22671 const struct comp_unit_head *cu_headerp;
22672
22673 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22674
22675 if (cu_headerp->version == 2)
22676 return cu_headerp->addr_size;
22677 else
22678 return cu_headerp->offset_size;
22679 }
22680
22681 /* Return the text offset of the CU. The returned offset comes from
22682 this CU's objfile. If this objfile came from a separate debuginfo
22683 file, then the offset may be different from the corresponding
22684 offset in the parent objfile. */
22685
22686 CORE_ADDR
22687 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22688 {
22689 struct objfile *objfile = per_cu->objfile;
22690
22691 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22692 }
22693
22694 /* Return DWARF version number of PER_CU. */
22695
22696 short
22697 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22698 {
22699 return per_cu->dwarf_version;
22700 }
22701
22702 /* Locate the .debug_info compilation unit from CU's objfile which contains
22703 the DIE at OFFSET. Raises an error on failure. */
22704
22705 static struct dwarf2_per_cu_data *
22706 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22707 unsigned int offset_in_dwz,
22708 struct objfile *objfile)
22709 {
22710 struct dwarf2_per_cu_data *this_cu;
22711 int low, high;
22712 const sect_offset *cu_off;
22713
22714 low = 0;
22715 high = dwarf2_per_objfile->n_comp_units - 1;
22716 while (high > low)
22717 {
22718 struct dwarf2_per_cu_data *mid_cu;
22719 int mid = low + (high - low) / 2;
22720
22721 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22722 cu_off = &mid_cu->sect_off;
22723 if (mid_cu->is_dwz > offset_in_dwz
22724 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22725 high = mid;
22726 else
22727 low = mid + 1;
22728 }
22729 gdb_assert (low == high);
22730 this_cu = dwarf2_per_objfile->all_comp_units[low];
22731 cu_off = &this_cu->sect_off;
22732 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22733 {
22734 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22735 error (_("Dwarf Error: could not find partial DIE containing "
22736 "offset 0x%x [in module %s]"),
22737 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22738
22739 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22740 <= sect_off);
22741 return dwarf2_per_objfile->all_comp_units[low-1];
22742 }
22743 else
22744 {
22745 this_cu = dwarf2_per_objfile->all_comp_units[low];
22746 if (low == dwarf2_per_objfile->n_comp_units - 1
22747 && sect_off >= this_cu->sect_off + this_cu->length)
22748 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22749 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22750 return this_cu;
22751 }
22752 }
22753
22754 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22755
22756 static void
22757 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22758 {
22759 memset (cu, 0, sizeof (*cu));
22760 per_cu->cu = cu;
22761 cu->per_cu = per_cu;
22762 cu->objfile = per_cu->objfile;
22763 obstack_init (&cu->comp_unit_obstack);
22764 }
22765
22766 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22767
22768 static void
22769 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22770 enum language pretend_language)
22771 {
22772 struct attribute *attr;
22773
22774 /* Set the language we're debugging. */
22775 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22776 if (attr)
22777 set_cu_language (DW_UNSND (attr), cu);
22778 else
22779 {
22780 cu->language = pretend_language;
22781 cu->language_defn = language_def (cu->language);
22782 }
22783
22784 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22785 }
22786
22787 /* Release one cached compilation unit, CU. We unlink it from the tree
22788 of compilation units, but we don't remove it from the read_in_chain;
22789 the caller is responsible for that.
22790 NOTE: DATA is a void * because this function is also used as a
22791 cleanup routine. */
22792
22793 static void
22794 free_heap_comp_unit (void *data)
22795 {
22796 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22797
22798 gdb_assert (cu->per_cu != NULL);
22799 cu->per_cu->cu = NULL;
22800 cu->per_cu = NULL;
22801
22802 obstack_free (&cu->comp_unit_obstack, NULL);
22803
22804 xfree (cu);
22805 }
22806
22807 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22808 when we're finished with it. We can't free the pointer itself, but be
22809 sure to unlink it from the cache. Also release any associated storage. */
22810
22811 static void
22812 free_stack_comp_unit (void *data)
22813 {
22814 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22815
22816 gdb_assert (cu->per_cu != NULL);
22817 cu->per_cu->cu = NULL;
22818 cu->per_cu = NULL;
22819
22820 obstack_free (&cu->comp_unit_obstack, NULL);
22821 cu->partial_dies = NULL;
22822 }
22823
22824 /* Free all cached compilation units. */
22825
22826 static void
22827 free_cached_comp_units (void *data)
22828 {
22829 dwarf2_per_objfile->free_cached_comp_units ();
22830 }
22831
22832 /* Increase the age counter on each cached compilation unit, and free
22833 any that are too old. */
22834
22835 static void
22836 age_cached_comp_units (void)
22837 {
22838 struct dwarf2_per_cu_data *per_cu, **last_chain;
22839
22840 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22841 per_cu = dwarf2_per_objfile->read_in_chain;
22842 while (per_cu != NULL)
22843 {
22844 per_cu->cu->last_used ++;
22845 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22846 dwarf2_mark (per_cu->cu);
22847 per_cu = per_cu->cu->read_in_chain;
22848 }
22849
22850 per_cu = dwarf2_per_objfile->read_in_chain;
22851 last_chain = &dwarf2_per_objfile->read_in_chain;
22852 while (per_cu != NULL)
22853 {
22854 struct dwarf2_per_cu_data *next_cu;
22855
22856 next_cu = per_cu->cu->read_in_chain;
22857
22858 if (!per_cu->cu->mark)
22859 {
22860 free_heap_comp_unit (per_cu->cu);
22861 *last_chain = next_cu;
22862 }
22863 else
22864 last_chain = &per_cu->cu->read_in_chain;
22865
22866 per_cu = next_cu;
22867 }
22868 }
22869
22870 /* Remove a single compilation unit from the cache. */
22871
22872 static void
22873 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22874 {
22875 struct dwarf2_per_cu_data *per_cu, **last_chain;
22876
22877 per_cu = dwarf2_per_objfile->read_in_chain;
22878 last_chain = &dwarf2_per_objfile->read_in_chain;
22879 while (per_cu != NULL)
22880 {
22881 struct dwarf2_per_cu_data *next_cu;
22882
22883 next_cu = per_cu->cu->read_in_chain;
22884
22885 if (per_cu == target_per_cu)
22886 {
22887 free_heap_comp_unit (per_cu->cu);
22888 per_cu->cu = NULL;
22889 *last_chain = next_cu;
22890 break;
22891 }
22892 else
22893 last_chain = &per_cu->cu->read_in_chain;
22894
22895 per_cu = next_cu;
22896 }
22897 }
22898
22899 /* Release all extra memory associated with OBJFILE. */
22900
22901 void
22902 dwarf2_free_objfile (struct objfile *objfile)
22903 {
22904 dwarf2_per_objfile
22905 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22906 dwarf2_objfile_data_key);
22907
22908 if (dwarf2_per_objfile == NULL)
22909 return;
22910
22911 dwarf2_per_objfile->~dwarf2_per_objfile ();
22912 }
22913
22914 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22915 We store these in a hash table separate from the DIEs, and preserve them
22916 when the DIEs are flushed out of cache.
22917
22918 The CU "per_cu" pointer is needed because offset alone is not enough to
22919 uniquely identify the type. A file may have multiple .debug_types sections,
22920 or the type may come from a DWO file. Furthermore, while it's more logical
22921 to use per_cu->section+offset, with Fission the section with the data is in
22922 the DWO file but we don't know that section at the point we need it.
22923 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22924 because we can enter the lookup routine, get_die_type_at_offset, from
22925 outside this file, and thus won't necessarily have PER_CU->cu.
22926 Fortunately, PER_CU is stable for the life of the objfile. */
22927
22928 struct dwarf2_per_cu_offset_and_type
22929 {
22930 const struct dwarf2_per_cu_data *per_cu;
22931 sect_offset sect_off;
22932 struct type *type;
22933 };
22934
22935 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22936
22937 static hashval_t
22938 per_cu_offset_and_type_hash (const void *item)
22939 {
22940 const struct dwarf2_per_cu_offset_and_type *ofs
22941 = (const struct dwarf2_per_cu_offset_and_type *) item;
22942
22943 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22944 }
22945
22946 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22947
22948 static int
22949 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22950 {
22951 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22952 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22953 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22954 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22955
22956 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22957 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22958 }
22959
22960 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22961 table if necessary. For convenience, return TYPE.
22962
22963 The DIEs reading must have careful ordering to:
22964 * Not cause infite loops trying to read in DIEs as a prerequisite for
22965 reading current DIE.
22966 * Not trying to dereference contents of still incompletely read in types
22967 while reading in other DIEs.
22968 * Enable referencing still incompletely read in types just by a pointer to
22969 the type without accessing its fields.
22970
22971 Therefore caller should follow these rules:
22972 * Try to fetch any prerequisite types we may need to build this DIE type
22973 before building the type and calling set_die_type.
22974 * After building type call set_die_type for current DIE as soon as
22975 possible before fetching more types to complete the current type.
22976 * Make the type as complete as possible before fetching more types. */
22977
22978 static struct type *
22979 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22980 {
22981 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22982 struct objfile *objfile = cu->objfile;
22983 struct attribute *attr;
22984 struct dynamic_prop prop;
22985
22986 /* For Ada types, make sure that the gnat-specific data is always
22987 initialized (if not already set). There are a few types where
22988 we should not be doing so, because the type-specific area is
22989 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22990 where the type-specific area is used to store the floatformat).
22991 But this is not a problem, because the gnat-specific information
22992 is actually not needed for these types. */
22993 if (need_gnat_info (cu)
22994 && TYPE_CODE (type) != TYPE_CODE_FUNC
22995 && TYPE_CODE (type) != TYPE_CODE_FLT
22996 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22997 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22998 && TYPE_CODE (type) != TYPE_CODE_METHOD
22999 && !HAVE_GNAT_AUX_INFO (type))
23000 INIT_GNAT_SPECIFIC (type);
23001
23002 /* Read DW_AT_allocated and set in type. */
23003 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23004 if (attr_form_is_block (attr))
23005 {
23006 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23007 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23008 }
23009 else if (attr != NULL)
23010 {
23011 complaint (&symfile_complaints,
23012 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23013 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23014 to_underlying (die->sect_off));
23015 }
23016
23017 /* Read DW_AT_associated and set in type. */
23018 attr = dwarf2_attr (die, DW_AT_associated, cu);
23019 if (attr_form_is_block (attr))
23020 {
23021 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23022 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23023 }
23024 else if (attr != NULL)
23025 {
23026 complaint (&symfile_complaints,
23027 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23028 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23029 to_underlying (die->sect_off));
23030 }
23031
23032 /* Read DW_AT_data_location and set in type. */
23033 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23034 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23035 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23036
23037 if (dwarf2_per_objfile->die_type_hash == NULL)
23038 {
23039 dwarf2_per_objfile->die_type_hash =
23040 htab_create_alloc_ex (127,
23041 per_cu_offset_and_type_hash,
23042 per_cu_offset_and_type_eq,
23043 NULL,
23044 &objfile->objfile_obstack,
23045 hashtab_obstack_allocate,
23046 dummy_obstack_deallocate);
23047 }
23048
23049 ofs.per_cu = cu->per_cu;
23050 ofs.sect_off = die->sect_off;
23051 ofs.type = type;
23052 slot = (struct dwarf2_per_cu_offset_and_type **)
23053 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23054 if (*slot)
23055 complaint (&symfile_complaints,
23056 _("A problem internal to GDB: DIE 0x%x has type already set"),
23057 to_underlying (die->sect_off));
23058 *slot = XOBNEW (&objfile->objfile_obstack,
23059 struct dwarf2_per_cu_offset_and_type);
23060 **slot = ofs;
23061 return type;
23062 }
23063
23064 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23065 or return NULL if the die does not have a saved type. */
23066
23067 static struct type *
23068 get_die_type_at_offset (sect_offset sect_off,
23069 struct dwarf2_per_cu_data *per_cu)
23070 {
23071 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23072
23073 if (dwarf2_per_objfile->die_type_hash == NULL)
23074 return NULL;
23075
23076 ofs.per_cu = per_cu;
23077 ofs.sect_off = sect_off;
23078 slot = ((struct dwarf2_per_cu_offset_and_type *)
23079 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23080 if (slot)
23081 return slot->type;
23082 else
23083 return NULL;
23084 }
23085
23086 /* Look up the type for DIE in CU in die_type_hash,
23087 or return NULL if DIE does not have a saved type. */
23088
23089 static struct type *
23090 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23091 {
23092 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23093 }
23094
23095 /* Add a dependence relationship from CU to REF_PER_CU. */
23096
23097 static void
23098 dwarf2_add_dependence (struct dwarf2_cu *cu,
23099 struct dwarf2_per_cu_data *ref_per_cu)
23100 {
23101 void **slot;
23102
23103 if (cu->dependencies == NULL)
23104 cu->dependencies
23105 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23106 NULL, &cu->comp_unit_obstack,
23107 hashtab_obstack_allocate,
23108 dummy_obstack_deallocate);
23109
23110 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23111 if (*slot == NULL)
23112 *slot = ref_per_cu;
23113 }
23114
23115 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23116 Set the mark field in every compilation unit in the
23117 cache that we must keep because we are keeping CU. */
23118
23119 static int
23120 dwarf2_mark_helper (void **slot, void *data)
23121 {
23122 struct dwarf2_per_cu_data *per_cu;
23123
23124 per_cu = (struct dwarf2_per_cu_data *) *slot;
23125
23126 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23127 reading of the chain. As such dependencies remain valid it is not much
23128 useful to track and undo them during QUIT cleanups. */
23129 if (per_cu->cu == NULL)
23130 return 1;
23131
23132 if (per_cu->cu->mark)
23133 return 1;
23134 per_cu->cu->mark = 1;
23135
23136 if (per_cu->cu->dependencies != NULL)
23137 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23138
23139 return 1;
23140 }
23141
23142 /* Set the mark field in CU and in every other compilation unit in the
23143 cache that we must keep because we are keeping CU. */
23144
23145 static void
23146 dwarf2_mark (struct dwarf2_cu *cu)
23147 {
23148 if (cu->mark)
23149 return;
23150 cu->mark = 1;
23151 if (cu->dependencies != NULL)
23152 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23153 }
23154
23155 static void
23156 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23157 {
23158 while (per_cu)
23159 {
23160 per_cu->cu->mark = 0;
23161 per_cu = per_cu->cu->read_in_chain;
23162 }
23163 }
23164
23165 /* Trivial hash function for partial_die_info: the hash value of a DIE
23166 is its offset in .debug_info for this objfile. */
23167
23168 static hashval_t
23169 partial_die_hash (const void *item)
23170 {
23171 const struct partial_die_info *part_die
23172 = (const struct partial_die_info *) item;
23173
23174 return to_underlying (part_die->sect_off);
23175 }
23176
23177 /* Trivial comparison function for partial_die_info structures: two DIEs
23178 are equal if they have the same offset. */
23179
23180 static int
23181 partial_die_eq (const void *item_lhs, const void *item_rhs)
23182 {
23183 const struct partial_die_info *part_die_lhs
23184 = (const struct partial_die_info *) item_lhs;
23185 const struct partial_die_info *part_die_rhs
23186 = (const struct partial_die_info *) item_rhs;
23187
23188 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23189 }
23190
23191 static struct cmd_list_element *set_dwarf_cmdlist;
23192 static struct cmd_list_element *show_dwarf_cmdlist;
23193
23194 static void
23195 set_dwarf_cmd (char *args, int from_tty)
23196 {
23197 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23198 gdb_stdout);
23199 }
23200
23201 static void
23202 show_dwarf_cmd (char *args, int from_tty)
23203 {
23204 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23205 }
23206
23207 /* Free data associated with OBJFILE, if necessary. */
23208
23209 static void
23210 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23211 {
23212 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23213 int ix;
23214
23215 /* Make sure we don't accidentally use dwarf2_per_objfile while
23216 cleaning up. */
23217 dwarf2_per_objfile = NULL;
23218
23219 for (ix = 0; ix < data->n_comp_units; ++ix)
23220 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23221
23222 for (ix = 0; ix < data->n_type_units; ++ix)
23223 VEC_free (dwarf2_per_cu_ptr,
23224 data->all_type_units[ix]->per_cu.imported_symtabs);
23225 xfree (data->all_type_units);
23226
23227 VEC_free (dwarf2_section_info_def, data->types);
23228
23229 if (data->dwo_files)
23230 free_dwo_files (data->dwo_files, objfile);
23231 if (data->dwp_file)
23232 gdb_bfd_unref (data->dwp_file->dbfd);
23233
23234 if (data->dwz_file && data->dwz_file->dwz_bfd)
23235 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23236 }
23237
23238 \f
23239 /* The "save gdb-index" command. */
23240
23241 /* In-memory buffer to prepare data to be written later to a file. */
23242 class data_buf
23243 {
23244 public:
23245 /* Copy DATA to the end of the buffer. */
23246 template<typename T>
23247 void append_data (const T &data)
23248 {
23249 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23250 reinterpret_cast<const gdb_byte *> (&data + 1),
23251 grow (sizeof (data)));
23252 }
23253
23254 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23255 terminating zero is appended too. */
23256 void append_cstr0 (const char *cstr)
23257 {
23258 const size_t size = strlen (cstr) + 1;
23259 std::copy (cstr, cstr + size, grow (size));
23260 }
23261
23262 /* Accept a host-format integer in VAL and append it to the buffer
23263 as a target-format integer which is LEN bytes long. */
23264 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23265 {
23266 ::store_unsigned_integer (grow (len), len, byte_order, val);
23267 }
23268
23269 /* Return the size of the buffer. */
23270 size_t size () const
23271 {
23272 return m_vec.size ();
23273 }
23274
23275 /* Write the buffer to FILE. */
23276 void file_write (FILE *file) const
23277 {
23278 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23279 error (_("couldn't write data to file"));
23280 }
23281
23282 private:
23283 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23284 the start of the new block. */
23285 gdb_byte *grow (size_t size)
23286 {
23287 m_vec.resize (m_vec.size () + size);
23288 return &*m_vec.end () - size;
23289 }
23290
23291 gdb::byte_vector m_vec;
23292 };
23293
23294 /* An entry in the symbol table. */
23295 struct symtab_index_entry
23296 {
23297 /* The name of the symbol. */
23298 const char *name;
23299 /* The offset of the name in the constant pool. */
23300 offset_type index_offset;
23301 /* A sorted vector of the indices of all the CUs that hold an object
23302 of this name. */
23303 std::vector<offset_type> cu_indices;
23304 };
23305
23306 /* The symbol table. This is a power-of-2-sized hash table. */
23307 struct mapped_symtab
23308 {
23309 mapped_symtab ()
23310 {
23311 data.resize (1024);
23312 }
23313
23314 offset_type n_elements = 0;
23315 std::vector<symtab_index_entry> data;
23316 };
23317
23318 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23319 the slot.
23320
23321 Function is used only during write_hash_table so no index format backward
23322 compatibility is needed. */
23323
23324 static symtab_index_entry &
23325 find_slot (struct mapped_symtab *symtab, const char *name)
23326 {
23327 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23328
23329 index = hash & (symtab->data.size () - 1);
23330 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23331
23332 for (;;)
23333 {
23334 if (symtab->data[index].name == NULL
23335 || strcmp (name, symtab->data[index].name) == 0)
23336 return symtab->data[index];
23337 index = (index + step) & (symtab->data.size () - 1);
23338 }
23339 }
23340
23341 /* Expand SYMTAB's hash table. */
23342
23343 static void
23344 hash_expand (struct mapped_symtab *symtab)
23345 {
23346 auto old_entries = std::move (symtab->data);
23347
23348 symtab->data.clear ();
23349 symtab->data.resize (old_entries.size () * 2);
23350
23351 for (auto &it : old_entries)
23352 if (it.name != NULL)
23353 {
23354 auto &ref = find_slot (symtab, it.name);
23355 ref = std::move (it);
23356 }
23357 }
23358
23359 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23360 CU_INDEX is the index of the CU in which the symbol appears.
23361 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23362
23363 static void
23364 add_index_entry (struct mapped_symtab *symtab, const char *name,
23365 int is_static, gdb_index_symbol_kind kind,
23366 offset_type cu_index)
23367 {
23368 offset_type cu_index_and_attrs;
23369
23370 ++symtab->n_elements;
23371 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23372 hash_expand (symtab);
23373
23374 symtab_index_entry &slot = find_slot (symtab, name);
23375 if (slot.name == NULL)
23376 {
23377 slot.name = name;
23378 /* index_offset is set later. */
23379 }
23380
23381 cu_index_and_attrs = 0;
23382 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23383 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23384 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23385
23386 /* We don't want to record an index value twice as we want to avoid the
23387 duplication.
23388 We process all global symbols and then all static symbols
23389 (which would allow us to avoid the duplication by only having to check
23390 the last entry pushed), but a symbol could have multiple kinds in one CU.
23391 To keep things simple we don't worry about the duplication here and
23392 sort and uniqufy the list after we've processed all symbols. */
23393 slot.cu_indices.push_back (cu_index_and_attrs);
23394 }
23395
23396 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23397
23398 static void
23399 uniquify_cu_indices (struct mapped_symtab *symtab)
23400 {
23401 for (auto &entry : symtab->data)
23402 {
23403 if (entry.name != NULL && !entry.cu_indices.empty ())
23404 {
23405 auto &cu_indices = entry.cu_indices;
23406 std::sort (cu_indices.begin (), cu_indices.end ());
23407 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23408 cu_indices.erase (from, cu_indices.end ());
23409 }
23410 }
23411 }
23412
23413 /* A form of 'const char *' suitable for container keys. Only the
23414 pointer is stored. The strings themselves are compared, not the
23415 pointers. */
23416 class c_str_view
23417 {
23418 public:
23419 c_str_view (const char *cstr)
23420 : m_cstr (cstr)
23421 {}
23422
23423 bool operator== (const c_str_view &other) const
23424 {
23425 return strcmp (m_cstr, other.m_cstr) == 0;
23426 }
23427
23428 private:
23429 friend class c_str_view_hasher;
23430 const char *const m_cstr;
23431 };
23432
23433 /* A std::unordered_map::hasher for c_str_view that uses the right
23434 hash function for strings in a mapped index. */
23435 class c_str_view_hasher
23436 {
23437 public:
23438 size_t operator () (const c_str_view &x) const
23439 {
23440 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23441 }
23442 };
23443
23444 /* A std::unordered_map::hasher for std::vector<>. */
23445 template<typename T>
23446 class vector_hasher
23447 {
23448 public:
23449 size_t operator () (const std::vector<T> &key) const
23450 {
23451 return iterative_hash (key.data (),
23452 sizeof (key.front ()) * key.size (), 0);
23453 }
23454 };
23455
23456 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23457 constant pool entries going into the data buffer CPOOL. */
23458
23459 static void
23460 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23461 {
23462 {
23463 /* Elements are sorted vectors of the indices of all the CUs that
23464 hold an object of this name. */
23465 std::unordered_map<std::vector<offset_type>, offset_type,
23466 vector_hasher<offset_type>>
23467 symbol_hash_table;
23468
23469 /* We add all the index vectors to the constant pool first, to
23470 ensure alignment is ok. */
23471 for (symtab_index_entry &entry : symtab->data)
23472 {
23473 if (entry.name == NULL)
23474 continue;
23475 gdb_assert (entry.index_offset == 0);
23476
23477 /* Finding before inserting is faster than always trying to
23478 insert, because inserting always allocates a node, does the
23479 lookup, and then destroys the new node if another node
23480 already had the same key. C++17 try_emplace will avoid
23481 this. */
23482 const auto found
23483 = symbol_hash_table.find (entry.cu_indices);
23484 if (found != symbol_hash_table.end ())
23485 {
23486 entry.index_offset = found->second;
23487 continue;
23488 }
23489
23490 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23491 entry.index_offset = cpool.size ();
23492 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23493 for (const auto index : entry.cu_indices)
23494 cpool.append_data (MAYBE_SWAP (index));
23495 }
23496 }
23497
23498 /* Now write out the hash table. */
23499 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23500 for (const auto &entry : symtab->data)
23501 {
23502 offset_type str_off, vec_off;
23503
23504 if (entry.name != NULL)
23505 {
23506 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23507 if (insertpair.second)
23508 cpool.append_cstr0 (entry.name);
23509 str_off = insertpair.first->second;
23510 vec_off = entry.index_offset;
23511 }
23512 else
23513 {
23514 /* While 0 is a valid constant pool index, it is not valid
23515 to have 0 for both offsets. */
23516 str_off = 0;
23517 vec_off = 0;
23518 }
23519
23520 output.append_data (MAYBE_SWAP (str_off));
23521 output.append_data (MAYBE_SWAP (vec_off));
23522 }
23523 }
23524
23525 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23526
23527 /* Helper struct for building the address table. */
23528 struct addrmap_index_data
23529 {
23530 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23531 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23532 {}
23533
23534 struct objfile *objfile;
23535 data_buf &addr_vec;
23536 psym_index_map &cu_index_htab;
23537
23538 /* Non-zero if the previous_* fields are valid.
23539 We can't write an entry until we see the next entry (since it is only then
23540 that we know the end of the entry). */
23541 int previous_valid;
23542 /* Index of the CU in the table of all CUs in the index file. */
23543 unsigned int previous_cu_index;
23544 /* Start address of the CU. */
23545 CORE_ADDR previous_cu_start;
23546 };
23547
23548 /* Write an address entry to ADDR_VEC. */
23549
23550 static void
23551 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23552 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23553 {
23554 CORE_ADDR baseaddr;
23555
23556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23557
23558 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23559 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23560 addr_vec.append_data (MAYBE_SWAP (cu_index));
23561 }
23562
23563 /* Worker function for traversing an addrmap to build the address table. */
23564
23565 static int
23566 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23567 {
23568 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23569 struct partial_symtab *pst = (struct partial_symtab *) obj;
23570
23571 if (data->previous_valid)
23572 add_address_entry (data->objfile, data->addr_vec,
23573 data->previous_cu_start, start_addr,
23574 data->previous_cu_index);
23575
23576 data->previous_cu_start = start_addr;
23577 if (pst != NULL)
23578 {
23579 const auto it = data->cu_index_htab.find (pst);
23580 gdb_assert (it != data->cu_index_htab.cend ());
23581 data->previous_cu_index = it->second;
23582 data->previous_valid = 1;
23583 }
23584 else
23585 data->previous_valid = 0;
23586
23587 return 0;
23588 }
23589
23590 /* Write OBJFILE's address map to ADDR_VEC.
23591 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23592 in the index file. */
23593
23594 static void
23595 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23596 psym_index_map &cu_index_htab)
23597 {
23598 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23599
23600 /* When writing the address table, we have to cope with the fact that
23601 the addrmap iterator only provides the start of a region; we have to
23602 wait until the next invocation to get the start of the next region. */
23603
23604 addrmap_index_data.objfile = objfile;
23605 addrmap_index_data.previous_valid = 0;
23606
23607 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23608 &addrmap_index_data);
23609
23610 /* It's highly unlikely the last entry (end address = 0xff...ff)
23611 is valid, but we should still handle it.
23612 The end address is recorded as the start of the next region, but that
23613 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23614 anyway. */
23615 if (addrmap_index_data.previous_valid)
23616 add_address_entry (objfile, addr_vec,
23617 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23618 addrmap_index_data.previous_cu_index);
23619 }
23620
23621 /* Return the symbol kind of PSYM. */
23622
23623 static gdb_index_symbol_kind
23624 symbol_kind (struct partial_symbol *psym)
23625 {
23626 domain_enum domain = PSYMBOL_DOMAIN (psym);
23627 enum address_class aclass = PSYMBOL_CLASS (psym);
23628
23629 switch (domain)
23630 {
23631 case VAR_DOMAIN:
23632 switch (aclass)
23633 {
23634 case LOC_BLOCK:
23635 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23636 case LOC_TYPEDEF:
23637 return GDB_INDEX_SYMBOL_KIND_TYPE;
23638 case LOC_COMPUTED:
23639 case LOC_CONST_BYTES:
23640 case LOC_OPTIMIZED_OUT:
23641 case LOC_STATIC:
23642 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23643 case LOC_CONST:
23644 /* Note: It's currently impossible to recognize psyms as enum values
23645 short of reading the type info. For now punt. */
23646 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23647 default:
23648 /* There are other LOC_FOO values that one might want to classify
23649 as variables, but dwarf2read.c doesn't currently use them. */
23650 return GDB_INDEX_SYMBOL_KIND_OTHER;
23651 }
23652 case STRUCT_DOMAIN:
23653 return GDB_INDEX_SYMBOL_KIND_TYPE;
23654 default:
23655 return GDB_INDEX_SYMBOL_KIND_OTHER;
23656 }
23657 }
23658
23659 /* Add a list of partial symbols to SYMTAB. */
23660
23661 static void
23662 write_psymbols (struct mapped_symtab *symtab,
23663 std::unordered_set<partial_symbol *> &psyms_seen,
23664 struct partial_symbol **psymp,
23665 int count,
23666 offset_type cu_index,
23667 int is_static)
23668 {
23669 for (; count-- > 0; ++psymp)
23670 {
23671 struct partial_symbol *psym = *psymp;
23672
23673 if (SYMBOL_LANGUAGE (psym) == language_ada)
23674 error (_("Ada is not currently supported by the index"));
23675
23676 /* Only add a given psymbol once. */
23677 if (psyms_seen.insert (psym).second)
23678 {
23679 gdb_index_symbol_kind kind = symbol_kind (psym);
23680
23681 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23682 is_static, kind, cu_index);
23683 }
23684 }
23685 }
23686
23687 /* A helper struct used when iterating over debug_types. */
23688 struct signatured_type_index_data
23689 {
23690 signatured_type_index_data (data_buf &types_list_,
23691 std::unordered_set<partial_symbol *> &psyms_seen_)
23692 : types_list (types_list_), psyms_seen (psyms_seen_)
23693 {}
23694
23695 struct objfile *objfile;
23696 struct mapped_symtab *symtab;
23697 data_buf &types_list;
23698 std::unordered_set<partial_symbol *> &psyms_seen;
23699 int cu_index;
23700 };
23701
23702 /* A helper function that writes a single signatured_type to an
23703 obstack. */
23704
23705 static int
23706 write_one_signatured_type (void **slot, void *d)
23707 {
23708 struct signatured_type_index_data *info
23709 = (struct signatured_type_index_data *) d;
23710 struct signatured_type *entry = (struct signatured_type *) *slot;
23711 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23712
23713 write_psymbols (info->symtab,
23714 info->psyms_seen,
23715 info->objfile->global_psymbols.list
23716 + psymtab->globals_offset,
23717 psymtab->n_global_syms, info->cu_index,
23718 0);
23719 write_psymbols (info->symtab,
23720 info->psyms_seen,
23721 info->objfile->static_psymbols.list
23722 + psymtab->statics_offset,
23723 psymtab->n_static_syms, info->cu_index,
23724 1);
23725
23726 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23727 to_underlying (entry->per_cu.sect_off));
23728 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23729 to_underlying (entry->type_offset_in_tu));
23730 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23731
23732 ++info->cu_index;
23733
23734 return 1;
23735 }
23736
23737 /* Recurse into all "included" dependencies and count their symbols as
23738 if they appeared in this psymtab. */
23739
23740 static void
23741 recursively_count_psymbols (struct partial_symtab *psymtab,
23742 size_t &psyms_seen)
23743 {
23744 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23745 if (psymtab->dependencies[i]->user != NULL)
23746 recursively_count_psymbols (psymtab->dependencies[i],
23747 psyms_seen);
23748
23749 psyms_seen += psymtab->n_global_syms;
23750 psyms_seen += psymtab->n_static_syms;
23751 }
23752
23753 /* Recurse into all "included" dependencies and write their symbols as
23754 if they appeared in this psymtab. */
23755
23756 static void
23757 recursively_write_psymbols (struct objfile *objfile,
23758 struct partial_symtab *psymtab,
23759 struct mapped_symtab *symtab,
23760 std::unordered_set<partial_symbol *> &psyms_seen,
23761 offset_type cu_index)
23762 {
23763 int i;
23764
23765 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23766 if (psymtab->dependencies[i]->user != NULL)
23767 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23768 symtab, psyms_seen, cu_index);
23769
23770 write_psymbols (symtab,
23771 psyms_seen,
23772 objfile->global_psymbols.list + psymtab->globals_offset,
23773 psymtab->n_global_syms, cu_index,
23774 0);
23775 write_psymbols (symtab,
23776 psyms_seen,
23777 objfile->static_psymbols.list + psymtab->statics_offset,
23778 psymtab->n_static_syms, cu_index,
23779 1);
23780 }
23781
23782 /* Closes FILE on scope exit. */
23783 struct file_closer
23784 {
23785 explicit file_closer (FILE *file)
23786 : m_file (file)
23787 {}
23788
23789 ~file_closer ()
23790 { fclose (m_file); }
23791
23792 private:
23793 FILE *m_file;
23794 };
23795
23796 /* Create an index file for OBJFILE in the directory DIR. */
23797
23798 static void
23799 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23800 {
23801 if (dwarf2_per_objfile->using_index)
23802 error (_("Cannot use an index to create the index"));
23803
23804 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23805 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23806
23807 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23808 return;
23809
23810 struct stat st;
23811 if (stat (objfile_name (objfile), &st) < 0)
23812 perror_with_name (objfile_name (objfile));
23813
23814 std::string filename (std::string (dir) + SLASH_STRING
23815 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23816
23817 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb");
23818 if (!out_file)
23819 error (_("Can't open `%s' for writing"), filename.c_str ());
23820
23821 /* Order matters here; we want FILE to be closed before FILENAME is
23822 unlinked, because on MS-Windows one cannot delete a file that is
23823 still open. (Don't call anything here that might throw until
23824 file_closer is created.) */
23825 gdb::unlinker unlink_file (filename.c_str ());
23826 file_closer close_out_file (out_file);
23827
23828 mapped_symtab symtab;
23829 data_buf cu_list;
23830
23831 /* While we're scanning CU's create a table that maps a psymtab pointer
23832 (which is what addrmap records) to its index (which is what is recorded
23833 in the index file). This will later be needed to write the address
23834 table. */
23835 psym_index_map cu_index_htab;
23836 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23837
23838 /* The CU list is already sorted, so we don't need to do additional
23839 work here. Also, the debug_types entries do not appear in
23840 all_comp_units, but only in their own hash table. */
23841
23842 /* The psyms_seen set is potentially going to be largish (~40k
23843 elements when indexing a -g3 build of GDB itself). Estimate the
23844 number of elements in order to avoid too many rehashes, which
23845 require rebuilding buckets and thus many trips to
23846 malloc/free. */
23847 size_t psyms_count = 0;
23848 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23849 {
23850 struct dwarf2_per_cu_data *per_cu
23851 = dwarf2_per_objfile->all_comp_units[i];
23852 struct partial_symtab *psymtab = per_cu->v.psymtab;
23853
23854 if (psymtab != NULL && psymtab->user == NULL)
23855 recursively_count_psymbols (psymtab, psyms_count);
23856 }
23857 /* Generating an index for gdb itself shows a ratio of
23858 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23859 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23860 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23861 {
23862 struct dwarf2_per_cu_data *per_cu
23863 = dwarf2_per_objfile->all_comp_units[i];
23864 struct partial_symtab *psymtab = per_cu->v.psymtab;
23865
23866 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23867 It may be referenced from a local scope but in such case it does not
23868 need to be present in .gdb_index. */
23869 if (psymtab == NULL)
23870 continue;
23871
23872 if (psymtab->user == NULL)
23873 recursively_write_psymbols (objfile, psymtab, &symtab,
23874 psyms_seen, i);
23875
23876 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23877 gdb_assert (insertpair.second);
23878
23879 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23880 to_underlying (per_cu->sect_off));
23881 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23882 }
23883
23884 /* Dump the address map. */
23885 data_buf addr_vec;
23886 write_address_map (objfile, addr_vec, cu_index_htab);
23887
23888 /* Write out the .debug_type entries, if any. */
23889 data_buf types_cu_list;
23890 if (dwarf2_per_objfile->signatured_types)
23891 {
23892 signatured_type_index_data sig_data (types_cu_list,
23893 psyms_seen);
23894
23895 sig_data.objfile = objfile;
23896 sig_data.symtab = &symtab;
23897 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23898 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23899 write_one_signatured_type, &sig_data);
23900 }
23901
23902 /* Now that we've processed all symbols we can shrink their cu_indices
23903 lists. */
23904 uniquify_cu_indices (&symtab);
23905
23906 data_buf symtab_vec, constant_pool;
23907 write_hash_table (&symtab, symtab_vec, constant_pool);
23908
23909 data_buf contents;
23910 const offset_type size_of_contents = 6 * sizeof (offset_type);
23911 offset_type total_len = size_of_contents;
23912
23913 /* The version number. */
23914 contents.append_data (MAYBE_SWAP (8));
23915
23916 /* The offset of the CU list from the start of the file. */
23917 contents.append_data (MAYBE_SWAP (total_len));
23918 total_len += cu_list.size ();
23919
23920 /* The offset of the types CU list from the start of the file. */
23921 contents.append_data (MAYBE_SWAP (total_len));
23922 total_len += types_cu_list.size ();
23923
23924 /* The offset of the address table from the start of the file. */
23925 contents.append_data (MAYBE_SWAP (total_len));
23926 total_len += addr_vec.size ();
23927
23928 /* The offset of the symbol table from the start of the file. */
23929 contents.append_data (MAYBE_SWAP (total_len));
23930 total_len += symtab_vec.size ();
23931
23932 /* The offset of the constant pool from the start of the file. */
23933 contents.append_data (MAYBE_SWAP (total_len));
23934 total_len += constant_pool.size ();
23935
23936 gdb_assert (contents.size () == size_of_contents);
23937
23938 contents.file_write (out_file);
23939 cu_list.file_write (out_file);
23940 types_cu_list.file_write (out_file);
23941 addr_vec.file_write (out_file);
23942 symtab_vec.file_write (out_file);
23943 constant_pool.file_write (out_file);
23944
23945 /* We want to keep the file. */
23946 unlink_file.keep ();
23947 }
23948
23949 /* Implementation of the `save gdb-index' command.
23950
23951 Note that the file format used by this command is documented in the
23952 GDB manual. Any changes here must be documented there. */
23953
23954 static void
23955 save_gdb_index_command (char *arg, int from_tty)
23956 {
23957 struct objfile *objfile;
23958
23959 if (!arg || !*arg)
23960 error (_("usage: save gdb-index DIRECTORY"));
23961
23962 ALL_OBJFILES (objfile)
23963 {
23964 struct stat st;
23965
23966 /* If the objfile does not correspond to an actual file, skip it. */
23967 if (stat (objfile_name (objfile), &st) < 0)
23968 continue;
23969
23970 dwarf2_per_objfile
23971 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23972 dwarf2_objfile_data_key);
23973 if (dwarf2_per_objfile)
23974 {
23975
23976 TRY
23977 {
23978 write_psymtabs_to_index (objfile, arg);
23979 }
23980 CATCH (except, RETURN_MASK_ERROR)
23981 {
23982 exception_fprintf (gdb_stderr, except,
23983 _("Error while writing index for `%s': "),
23984 objfile_name (objfile));
23985 }
23986 END_CATCH
23987 }
23988 }
23989 }
23990
23991 \f
23992
23993 int dwarf_always_disassemble;
23994
23995 static void
23996 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23997 struct cmd_list_element *c, const char *value)
23998 {
23999 fprintf_filtered (file,
24000 _("Whether to always disassemble "
24001 "DWARF expressions is %s.\n"),
24002 value);
24003 }
24004
24005 static void
24006 show_check_physname (struct ui_file *file, int from_tty,
24007 struct cmd_list_element *c, const char *value)
24008 {
24009 fprintf_filtered (file,
24010 _("Whether to check \"physname\" is %s.\n"),
24011 value);
24012 }
24013
24014 void _initialize_dwarf2_read (void);
24015
24016 void
24017 _initialize_dwarf2_read (void)
24018 {
24019 struct cmd_list_element *c;
24020
24021 dwarf2_objfile_data_key
24022 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24023
24024 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24025 Set DWARF specific variables.\n\
24026 Configure DWARF variables such as the cache size"),
24027 &set_dwarf_cmdlist, "maintenance set dwarf ",
24028 0/*allow-unknown*/, &maintenance_set_cmdlist);
24029
24030 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24031 Show DWARF specific variables\n\
24032 Show DWARF variables such as the cache size"),
24033 &show_dwarf_cmdlist, "maintenance show dwarf ",
24034 0/*allow-unknown*/, &maintenance_show_cmdlist);
24035
24036 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24037 &dwarf_max_cache_age, _("\
24038 Set the upper bound on the age of cached DWARF compilation units."), _("\
24039 Show the upper bound on the age of cached DWARF compilation units."), _("\
24040 A higher limit means that cached compilation units will be stored\n\
24041 in memory longer, and more total memory will be used. Zero disables\n\
24042 caching, which can slow down startup."),
24043 NULL,
24044 show_dwarf_max_cache_age,
24045 &set_dwarf_cmdlist,
24046 &show_dwarf_cmdlist);
24047
24048 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24049 &dwarf_always_disassemble, _("\
24050 Set whether `info address' always disassembles DWARF expressions."), _("\
24051 Show whether `info address' always disassembles DWARF expressions."), _("\
24052 When enabled, DWARF expressions are always printed in an assembly-like\n\
24053 syntax. When disabled, expressions will be printed in a more\n\
24054 conversational style, when possible."),
24055 NULL,
24056 show_dwarf_always_disassemble,
24057 &set_dwarf_cmdlist,
24058 &show_dwarf_cmdlist);
24059
24060 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24061 Set debugging of the DWARF reader."), _("\
24062 Show debugging of the DWARF reader."), _("\
24063 When enabled (non-zero), debugging messages are printed during DWARF\n\
24064 reading and symtab expansion. A value of 1 (one) provides basic\n\
24065 information. A value greater than 1 provides more verbose information."),
24066 NULL,
24067 NULL,
24068 &setdebuglist, &showdebuglist);
24069
24070 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24071 Set debugging of the DWARF DIE reader."), _("\
24072 Show debugging of the DWARF DIE reader."), _("\
24073 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24074 The value is the maximum depth to print."),
24075 NULL,
24076 NULL,
24077 &setdebuglist, &showdebuglist);
24078
24079 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24080 Set debugging of the dwarf line reader."), _("\
24081 Show debugging of the dwarf line reader."), _("\
24082 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24083 A value of 1 (one) provides basic information.\n\
24084 A value greater than 1 provides more verbose information."),
24085 NULL,
24086 NULL,
24087 &setdebuglist, &showdebuglist);
24088
24089 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24090 Set cross-checking of \"physname\" code against demangler."), _("\
24091 Show cross-checking of \"physname\" code against demangler."), _("\
24092 When enabled, GDB's internal \"physname\" code is checked against\n\
24093 the demangler."),
24094 NULL, show_check_physname,
24095 &setdebuglist, &showdebuglist);
24096
24097 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24098 no_class, &use_deprecated_index_sections, _("\
24099 Set whether to use deprecated gdb_index sections."), _("\
24100 Show whether to use deprecated gdb_index sections."), _("\
24101 When enabled, deprecated .gdb_index sections are used anyway.\n\
24102 Normally they are ignored either because of a missing feature or\n\
24103 performance issue.\n\
24104 Warning: This option must be enabled before gdb reads the file."),
24105 NULL,
24106 NULL,
24107 &setlist, &showlist);
24108
24109 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24110 _("\
24111 Save a gdb-index file.\n\
24112 Usage: save gdb-index DIRECTORY"),
24113 &save_cmdlist);
24114 set_cmd_completer (c, filename_completer);
24115
24116 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24117 &dwarf2_locexpr_funcs);
24118 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24119 &dwarf2_loclist_funcs);
24120
24121 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24122 &dwarf2_block_frame_base_locexpr_funcs);
24123 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24124 &dwarf2_block_frame_base_loclist_funcs);
24125 }
This page took 0.595553 seconds and 4 git commands to generate.