c7a7b8ef1c0828e2eccefedaaab64bcd3a5e67b6
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The symtab builder for this CU. This is only non-NULL when full
439 symbols are being read. */
440 std::unique_ptr<buildsym_compunit> builder;
441
442 /* The generic symbol table building routines have separate lists for
443 file scope symbols and all all other scopes (local scopes). So
444 we need to select the right one to pass to add_symbol_to_list().
445 We do it by keeping a pointer to the correct list in list_in_scope.
446
447 FIXME: The original dwarf code just treated the file scope as the
448 first local scope, and all other local scopes as nested local
449 scopes, and worked fine. Check to see if we really need to
450 distinguish these in buildsym.c. */
451 struct pending **list_in_scope = nullptr;
452
453 /* Hash table holding all the loaded partial DIEs
454 with partial_die->offset.SECT_OFF as hash. */
455 htab_t partial_dies = nullptr;
456
457 /* Storage for things with the same lifetime as this read-in compilation
458 unit, including partial DIEs. */
459 auto_obstack comp_unit_obstack;
460
461 /* When multiple dwarf2_cu structures are living in memory, this field
462 chains them all together, so that they can be released efficiently.
463 We will probably also want a generation counter so that most-recently-used
464 compilation units are cached... */
465 struct dwarf2_per_cu_data *read_in_chain = nullptr;
466
467 /* Backlink to our per_cu entry. */
468 struct dwarf2_per_cu_data *per_cu;
469
470 /* How many compilation units ago was this CU last referenced? */
471 int last_used = 0;
472
473 /* A hash table of DIE cu_offset for following references with
474 die_info->offset.sect_off as hash. */
475 htab_t die_hash = nullptr;
476
477 /* Full DIEs if read in. */
478 struct die_info *dies = nullptr;
479
480 /* A set of pointers to dwarf2_per_cu_data objects for compilation
481 units referenced by this one. Only set during full symbol processing;
482 partial symbol tables do not have dependencies. */
483 htab_t dependencies = nullptr;
484
485 /* Header data from the line table, during full symbol processing. */
486 struct line_header *line_header = nullptr;
487 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
488 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
489 this is the DW_TAG_compile_unit die for this CU. We'll hold on
490 to the line header as long as this DIE is being processed. See
491 process_die_scope. */
492 die_info *line_header_die_owner = nullptr;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 std::vector<delayed_method_info> method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab = nullptr;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit = nullptr;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base = 0;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* Mark used when releasing cached dies. */
538 unsigned int mark : 1;
539
540 /* This CU references .debug_loc. See the symtab->locations_valid field.
541 This test is imperfect as there may exist optimized debug code not using
542 any location list and still facing inlining issues if handled as
543 unoptimized code. For a future better test see GCC PR other/32998. */
544 unsigned int has_loclist : 1;
545
546 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
547 if all the producer_is_* fields are valid. This information is cached
548 because profiling CU expansion showed excessive time spent in
549 producer_is_gxx_lt_4_6. */
550 unsigned int checked_producer : 1;
551 unsigned int producer_is_gxx_lt_4_6 : 1;
552 unsigned int producer_is_gcc_lt_4_3 : 1;
553 unsigned int producer_is_icc_lt_14 : 1;
554
555 /* When set, the file that we're processing is known to have
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
559 unsigned int processing_has_namespace_info : 1;
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
562 };
563
564 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
565 This includes type_unit_group and quick_file_names. */
566
567 struct stmt_list_hash
568 {
569 /* The DWO unit this table is from or NULL if there is none. */
570 struct dwo_unit *dwo_unit;
571
572 /* Offset in .debug_line or .debug_line.dwo. */
573 sect_offset line_sect_off;
574 };
575
576 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
577 an object of this type. */
578
579 struct type_unit_group
580 {
581 /* dwarf2read.c's main "handle" on a TU symtab.
582 To simplify things we create an artificial CU that "includes" all the
583 type units using this stmt_list so that the rest of the code still has
584 a "per_cu" handle on the symtab.
585 This PER_CU is recognized by having no section. */
586 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
587 struct dwarf2_per_cu_data per_cu;
588
589 /* The TUs that share this DW_AT_stmt_list entry.
590 This is added to while parsing type units to build partial symtabs,
591 and is deleted afterwards and not used again. */
592 VEC (sig_type_ptr) *tus;
593
594 /* The compunit symtab.
595 Type units in a group needn't all be defined in the same source file,
596 so we create an essentially anonymous symtab as the compunit symtab. */
597 struct compunit_symtab *compunit_symtab;
598
599 /* The data used to construct the hash key. */
600 struct stmt_list_hash hash;
601
602 /* The number of symtabs from the line header.
603 The value here must match line_header.num_file_names. */
604 unsigned int num_symtabs;
605
606 /* The symbol tables for this TU (obtained from the files listed in
607 DW_AT_stmt_list).
608 WARNING: The order of entries here must match the order of entries
609 in the line header. After the first TU using this type_unit_group, the
610 line header for the subsequent TUs is recreated from this. This is done
611 because we need to use the same symtabs for each TU using the same
612 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
613 there's no guarantee the line header doesn't have duplicate entries. */
614 struct symtab **symtabs;
615 };
616
617 /* These sections are what may appear in a (real or virtual) DWO file. */
618
619 struct dwo_sections
620 {
621 struct dwarf2_section_info abbrev;
622 struct dwarf2_section_info line;
623 struct dwarf2_section_info loc;
624 struct dwarf2_section_info loclists;
625 struct dwarf2_section_info macinfo;
626 struct dwarf2_section_info macro;
627 struct dwarf2_section_info str;
628 struct dwarf2_section_info str_offsets;
629 /* In the case of a virtual DWO file, these two are unused. */
630 struct dwarf2_section_info info;
631 VEC (dwarf2_section_info_def) *types;
632 };
633
634 /* CUs/TUs in DWP/DWO files. */
635
636 struct dwo_unit
637 {
638 /* Backlink to the containing struct dwo_file. */
639 struct dwo_file *dwo_file;
640
641 /* The "id" that distinguishes this CU/TU.
642 .debug_info calls this "dwo_id", .debug_types calls this "signature".
643 Since signatures came first, we stick with it for consistency. */
644 ULONGEST signature;
645
646 /* The section this CU/TU lives in, in the DWO file. */
647 struct dwarf2_section_info *section;
648
649 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
650 sect_offset sect_off;
651 unsigned int length;
652
653 /* For types, offset in the type's DIE of the type defined by this TU. */
654 cu_offset type_offset_in_tu;
655 };
656
657 /* include/dwarf2.h defines the DWP section codes.
658 It defines a max value but it doesn't define a min value, which we
659 use for error checking, so provide one. */
660
661 enum dwp_v2_section_ids
662 {
663 DW_SECT_MIN = 1
664 };
665
666 /* Data for one DWO file.
667
668 This includes virtual DWO files (a virtual DWO file is a DWO file as it
669 appears in a DWP file). DWP files don't really have DWO files per se -
670 comdat folding of types "loses" the DWO file they came from, and from
671 a high level view DWP files appear to contain a mass of random types.
672 However, to maintain consistency with the non-DWP case we pretend DWP
673 files contain virtual DWO files, and we assign each TU with one virtual
674 DWO file (generally based on the line and abbrev section offsets -
675 a heuristic that seems to work in practice). */
676
677 struct dwo_file
678 {
679 /* The DW_AT_GNU_dwo_name attribute.
680 For virtual DWO files the name is constructed from the section offsets
681 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
682 from related CU+TUs. */
683 const char *dwo_name;
684
685 /* The DW_AT_comp_dir attribute. */
686 const char *comp_dir;
687
688 /* The bfd, when the file is open. Otherwise this is NULL.
689 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
690 bfd *dbfd;
691
692 /* The sections that make up this DWO file.
693 Remember that for virtual DWO files in DWP V2, these are virtual
694 sections (for lack of a better name). */
695 struct dwo_sections sections;
696
697 /* The CUs in the file.
698 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
699 an extension to handle LLVM's Link Time Optimization output (where
700 multiple source files may be compiled into a single object/dwo pair). */
701 htab_t cus;
702
703 /* Table of TUs in the file.
704 Each element is a struct dwo_unit. */
705 htab_t tus;
706 };
707
708 /* These sections are what may appear in a DWP file. */
709
710 struct dwp_sections
711 {
712 /* These are used by both DWP version 1 and 2. */
713 struct dwarf2_section_info str;
714 struct dwarf2_section_info cu_index;
715 struct dwarf2_section_info tu_index;
716
717 /* These are only used by DWP version 2 files.
718 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
719 sections are referenced by section number, and are not recorded here.
720 In DWP version 2 there is at most one copy of all these sections, each
721 section being (effectively) comprised of the concatenation of all of the
722 individual sections that exist in the version 1 format.
723 To keep the code simple we treat each of these concatenated pieces as a
724 section itself (a virtual section?). */
725 struct dwarf2_section_info abbrev;
726 struct dwarf2_section_info info;
727 struct dwarf2_section_info line;
728 struct dwarf2_section_info loc;
729 struct dwarf2_section_info macinfo;
730 struct dwarf2_section_info macro;
731 struct dwarf2_section_info str_offsets;
732 struct dwarf2_section_info types;
733 };
734
735 /* These sections are what may appear in a virtual DWO file in DWP version 1.
736 A virtual DWO file is a DWO file as it appears in a DWP file. */
737
738 struct virtual_v1_dwo_sections
739 {
740 struct dwarf2_section_info abbrev;
741 struct dwarf2_section_info line;
742 struct dwarf2_section_info loc;
743 struct dwarf2_section_info macinfo;
744 struct dwarf2_section_info macro;
745 struct dwarf2_section_info str_offsets;
746 /* Each DWP hash table entry records one CU or one TU.
747 That is recorded here, and copied to dwo_unit.section. */
748 struct dwarf2_section_info info_or_types;
749 };
750
751 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
752 In version 2, the sections of the DWO files are concatenated together
753 and stored in one section of that name. Thus each ELF section contains
754 several "virtual" sections. */
755
756 struct virtual_v2_dwo_sections
757 {
758 bfd_size_type abbrev_offset;
759 bfd_size_type abbrev_size;
760
761 bfd_size_type line_offset;
762 bfd_size_type line_size;
763
764 bfd_size_type loc_offset;
765 bfd_size_type loc_size;
766
767 bfd_size_type macinfo_offset;
768 bfd_size_type macinfo_size;
769
770 bfd_size_type macro_offset;
771 bfd_size_type macro_size;
772
773 bfd_size_type str_offsets_offset;
774 bfd_size_type str_offsets_size;
775
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 bfd_size_type info_or_types_offset;
779 bfd_size_type info_or_types_size;
780 };
781
782 /* Contents of DWP hash tables. */
783
784 struct dwp_hash_table
785 {
786 uint32_t version, nr_columns;
787 uint32_t nr_units, nr_slots;
788 const gdb_byte *hash_table, *unit_table;
789 union
790 {
791 struct
792 {
793 const gdb_byte *indices;
794 } v1;
795 struct
796 {
797 /* This is indexed by column number and gives the id of the section
798 in that column. */
799 #define MAX_NR_V2_DWO_SECTIONS \
800 (1 /* .debug_info or .debug_types */ \
801 + 1 /* .debug_abbrev */ \
802 + 1 /* .debug_line */ \
803 + 1 /* .debug_loc */ \
804 + 1 /* .debug_str_offsets */ \
805 + 1 /* .debug_macro or .debug_macinfo */)
806 int section_ids[MAX_NR_V2_DWO_SECTIONS];
807 const gdb_byte *offsets;
808 const gdb_byte *sizes;
809 } v2;
810 } section_pool;
811 };
812
813 /* Data for one DWP file. */
814
815 struct dwp_file
816 {
817 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
818 : name (name_),
819 dbfd (std::move (abfd))
820 {
821 }
822
823 /* Name of the file. */
824 const char *name;
825
826 /* File format version. */
827 int version = 0;
828
829 /* The bfd. */
830 gdb_bfd_ref_ptr dbfd;
831
832 /* Section info for this file. */
833 struct dwp_sections sections {};
834
835 /* Table of CUs in the file. */
836 const struct dwp_hash_table *cus = nullptr;
837
838 /* Table of TUs in the file. */
839 const struct dwp_hash_table *tus = nullptr;
840
841 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
842 htab_t loaded_cus {};
843 htab_t loaded_tus {};
844
845 /* Table to map ELF section numbers to their sections.
846 This is only needed for the DWP V1 file format. */
847 unsigned int num_sections = 0;
848 asection **elf_sections = nullptr;
849 };
850
851 /* This represents a '.dwz' file. */
852
853 struct dwz_file
854 {
855 dwz_file (gdb_bfd_ref_ptr &&bfd)
856 : dwz_bfd (std::move (bfd))
857 {
858 }
859
860 /* A dwz file can only contain a few sections. */
861 struct dwarf2_section_info abbrev {};
862 struct dwarf2_section_info info {};
863 struct dwarf2_section_info str {};
864 struct dwarf2_section_info line {};
865 struct dwarf2_section_info macro {};
866 struct dwarf2_section_info gdb_index {};
867 struct dwarf2_section_info debug_names {};
868
869 /* The dwz's BFD. */
870 gdb_bfd_ref_ptr dwz_bfd;
871 };
872
873 /* Struct used to pass misc. parameters to read_die_and_children, et
874 al. which are used for both .debug_info and .debug_types dies.
875 All parameters here are unchanging for the life of the call. This
876 struct exists to abstract away the constant parameters of die reading. */
877
878 struct die_reader_specs
879 {
880 /* The bfd of die_section. */
881 bfd* abfd;
882
883 /* The CU of the DIE we are parsing. */
884 struct dwarf2_cu *cu;
885
886 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
887 struct dwo_file *dwo_file;
888
889 /* The section the die comes from.
890 This is either .debug_info or .debug_types, or the .dwo variants. */
891 struct dwarf2_section_info *die_section;
892
893 /* die_section->buffer. */
894 const gdb_byte *buffer;
895
896 /* The end of the buffer. */
897 const gdb_byte *buffer_end;
898
899 /* The value of the DW_AT_comp_dir attribute. */
900 const char *comp_dir;
901
902 /* The abbreviation table to use when reading the DIEs. */
903 struct abbrev_table *abbrev_table;
904 };
905
906 /* Type of function passed to init_cutu_and_read_dies, et.al. */
907 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
908 const gdb_byte *info_ptr,
909 struct die_info *comp_unit_die,
910 int has_children,
911 void *data);
912
913 /* A 1-based directory index. This is a strong typedef to prevent
914 accidentally using a directory index as a 0-based index into an
915 array/vector. */
916 enum class dir_index : unsigned int {};
917
918 /* Likewise, a 1-based file name index. */
919 enum class file_name_index : unsigned int {};
920
921 struct file_entry
922 {
923 file_entry () = default;
924
925 file_entry (const char *name_, dir_index d_index_,
926 unsigned int mod_time_, unsigned int length_)
927 : name (name_),
928 d_index (d_index_),
929 mod_time (mod_time_),
930 length (length_)
931 {}
932
933 /* Return the include directory at D_INDEX stored in LH. Returns
934 NULL if D_INDEX is out of bounds. */
935 const char *include_dir (const line_header *lh) const;
936
937 /* The file name. Note this is an observing pointer. The memory is
938 owned by debug_line_buffer. */
939 const char *name {};
940
941 /* The directory index (1-based). */
942 dir_index d_index {};
943
944 unsigned int mod_time {};
945
946 unsigned int length {};
947
948 /* True if referenced by the Line Number Program. */
949 bool included_p {};
950
951 /* The associated symbol table, if any. */
952 struct symtab *symtab {};
953 };
954
955 /* The line number information for a compilation unit (found in the
956 .debug_line section) begins with a "statement program header",
957 which contains the following information. */
958 struct line_header
959 {
960 line_header ()
961 : offset_in_dwz {}
962 {}
963
964 /* Add an entry to the include directory table. */
965 void add_include_dir (const char *include_dir);
966
967 /* Add an entry to the file name table. */
968 void add_file_name (const char *name, dir_index d_index,
969 unsigned int mod_time, unsigned int length);
970
971 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
972 is out of bounds. */
973 const char *include_dir_at (dir_index index) const
974 {
975 /* Convert directory index number (1-based) to vector index
976 (0-based). */
977 size_t vec_index = to_underlying (index) - 1;
978
979 if (vec_index >= include_dirs.size ())
980 return NULL;
981 return include_dirs[vec_index];
982 }
983
984 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
985 is out of bounds. */
986 file_entry *file_name_at (file_name_index index)
987 {
988 /* Convert file name index number (1-based) to vector index
989 (0-based). */
990 size_t vec_index = to_underlying (index) - 1;
991
992 if (vec_index >= file_names.size ())
993 return NULL;
994 return &file_names[vec_index];
995 }
996
997 /* Const version of the above. */
998 const file_entry *file_name_at (unsigned int index) const
999 {
1000 if (index >= file_names.size ())
1001 return NULL;
1002 return &file_names[index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 static struct partial_die_info *find_partial_die (sect_offset, int,
1488 struct dwarf2_cu *);
1489
1490 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1491 struct attribute *, struct attr_abbrev *,
1492 const gdb_byte *);
1493
1494 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1495
1496 static int read_1_signed_byte (bfd *, const gdb_byte *);
1497
1498 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1499
1500 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1501
1502 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1503
1504 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1505 unsigned int *);
1506
1507 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1508
1509 static LONGEST read_checked_initial_length_and_offset
1510 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1511 unsigned int *, unsigned int *);
1512
1513 static LONGEST read_offset (bfd *, const gdb_byte *,
1514 const struct comp_unit_head *,
1515 unsigned int *);
1516
1517 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1518
1519 static sect_offset read_abbrev_offset
1520 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1521 struct dwarf2_section_info *, sect_offset);
1522
1523 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1524
1525 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1526
1527 static const char *read_indirect_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_line_string
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1533 const struct comp_unit_head *, unsigned int *);
1534
1535 static const char *read_indirect_string_at_offset
1536 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1537 LONGEST str_offset);
1538
1539 static const char *read_indirect_string_from_dwz
1540 (struct objfile *objfile, struct dwz_file *, LONGEST);
1541
1542 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1543
1544 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1545 const gdb_byte *,
1546 unsigned int *);
1547
1548 static const char *read_str_index (const struct die_reader_specs *reader,
1549 ULONGEST str_index);
1550
1551 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1552
1553 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1554 struct dwarf2_cu *);
1555
1556 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1557 unsigned int);
1558
1559 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1560 struct dwarf2_cu *cu);
1561
1562 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1563 struct dwarf2_cu *cu);
1564
1565 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1566
1567 static struct die_info *die_specification (struct die_info *die,
1568 struct dwarf2_cu **);
1569
1570 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1571 struct dwarf2_cu *cu);
1572
1573 static void dwarf_decode_lines (struct line_header *, const char *,
1574 struct dwarf2_cu *, struct partial_symtab *,
1575 CORE_ADDR, int decode_mapping);
1576
1577 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1578 const char *);
1579
1580 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1581 const char *, const char *,
1582 CORE_ADDR);
1583
1584 static struct symbol *new_symbol (struct die_info *, struct type *,
1585 struct dwarf2_cu *, struct symbol * = NULL);
1586
1587 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1588 struct dwarf2_cu *);
1589
1590 static void dwarf2_const_value_attr (const struct attribute *attr,
1591 struct type *type,
1592 const char *name,
1593 struct obstack *obstack,
1594 struct dwarf2_cu *cu, LONGEST *value,
1595 const gdb_byte **bytes,
1596 struct dwarf2_locexpr_baton **baton);
1597
1598 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1599
1600 static int need_gnat_info (struct dwarf2_cu *);
1601
1602 static struct type *die_descriptive_type (struct die_info *,
1603 struct dwarf2_cu *);
1604
1605 static void set_descriptive_type (struct type *, struct die_info *,
1606 struct dwarf2_cu *);
1607
1608 static struct type *die_containing_type (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1612 struct dwarf2_cu *);
1613
1614 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1615
1616 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1617
1618 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1619
1620 static char *typename_concat (struct obstack *obs, const char *prefix,
1621 const char *suffix, int physname,
1622 struct dwarf2_cu *cu);
1623
1624 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1633
1634 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
1639 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1640 values. Keep the items ordered with increasing constraints compliance. */
1641 enum pc_bounds_kind
1642 {
1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1644 PC_BOUNDS_NOT_PRESENT,
1645
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655 };
1656
1657 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
1661
1662 static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
1666 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
1669 static void dwarf2_add_field (struct field_info *, struct die_info *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_attach_fields_to_type (struct field_info *,
1673 struct type *, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_member_fn (struct field_info *,
1676 struct die_info *, struct type *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1680 struct type *,
1681 struct dwarf2_cu *);
1682
1683 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1684
1685 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1686
1687 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1688
1689 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
1691 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1692
1693 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
1695 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
1700 static const char *namespace_name (struct die_info *die,
1701 int *is_anonymous, struct dwarf2_cu *);
1702
1703 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1704
1705 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1706
1707 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static struct die_info *read_die_and_siblings_1
1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1712 struct die_info *);
1713
1714 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
1717 struct die_info *parent);
1718
1719 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
1722
1723 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
1726
1727 static void process_die (struct die_info *, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
1731
1732 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_full_name (const char *name,
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
1741 static struct die_info *dwarf2_extension (struct die_info *die,
1742 struct dwarf2_cu **);
1743
1744 static const char *dwarf_tag_name (unsigned int);
1745
1746 static const char *dwarf_attr_name (unsigned int);
1747
1748 static const char *dwarf_form_name (unsigned int);
1749
1750 static const char *dwarf_bool_name (unsigned int);
1751
1752 static const char *dwarf_type_encoding_name (unsigned int);
1753
1754 static struct die_info *sibling_die (struct die_info *);
1755
1756 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758 static void dump_die_for_error (struct die_info *);
1759
1760 static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
1762
1763 /*static*/ void dump_die (struct die_info *, int max_level);
1764
1765 static void store_in_ref_table (struct die_info *,
1766 struct dwarf2_cu *);
1767
1768 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1769
1770 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1771
1772 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1773 const struct attribute *,
1774 struct dwarf2_cu **);
1775
1776 static struct die_info *follow_die_ref (struct die_info *,
1777 const struct attribute *,
1778 struct dwarf2_cu **);
1779
1780 static struct die_info *follow_die_sig (struct die_info *,
1781 const struct attribute *,
1782 struct dwarf2_cu **);
1783
1784 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787 static struct type *get_DW_AT_signature_type (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu *);
1790
1791 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1792
1793 static void read_signatured_type (struct signatured_type *);
1794
1795 static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
1799 /* memory allocation interface */
1800
1801 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1802
1803 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1804
1805 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1806
1807 static int attr_form_is_block (const struct attribute *);
1808
1809 static int attr_form_is_section_offset (const struct attribute *);
1810
1811 static int attr_form_is_constant (const struct attribute *);
1812
1813 static int attr_form_is_ref (const struct attribute *);
1814
1815 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
1817 const struct attribute *attr);
1818
1819 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1820 struct symbol *sym,
1821 struct dwarf2_cu *cu,
1822 int is_block);
1823
1824 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
1827
1828 static hashval_t partial_die_hash (const void *item);
1829
1830 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1831
1832 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1833 (sect_offset sect_off, unsigned int offset_in_dwz,
1834 struct dwarf2_per_objfile *dwarf2_per_objfile);
1835
1836 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1837 struct die_info *comp_unit_die,
1838 enum language pretend_language);
1839
1840 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1841
1842 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1843
1844 static struct type *set_die_type (struct die_info *, struct type *,
1845 struct dwarf2_cu *);
1846
1847 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1850
1851 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1852 enum language);
1853
1854 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1855 enum language);
1856
1857 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1858 enum language);
1859
1860 static void dwarf2_add_dependence (struct dwarf2_cu *,
1861 struct dwarf2_per_cu_data *);
1862
1863 static void dwarf2_mark (struct dwarf2_cu *);
1864
1865 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1866
1867 static struct type *get_die_type_at_offset (sect_offset,
1868 struct dwarf2_per_cu_data *);
1869
1870 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1871
1872 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1873 enum language pretend_language);
1874
1875 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1876
1877 /* Class, the destructor of which frees all allocated queue entries. This
1878 will only have work to do if an error was thrown while processing the
1879 dwarf. If no error was thrown then the queue entries should have all
1880 been processed, and freed, as we went along. */
1881
1882 class dwarf2_queue_guard
1883 {
1884 public:
1885 dwarf2_queue_guard () = default;
1886
1887 /* Free any entries remaining on the queue. There should only be
1888 entries left if we hit an error while processing the dwarf. */
1889 ~dwarf2_queue_guard ()
1890 {
1891 struct dwarf2_queue_item *item, *last;
1892
1893 item = dwarf2_queue;
1894 while (item)
1895 {
1896 /* Anything still marked queued is likely to be in an
1897 inconsistent state, so discard it. */
1898 if (item->per_cu->queued)
1899 {
1900 if (item->per_cu->cu != NULL)
1901 free_one_cached_comp_unit (item->per_cu);
1902 item->per_cu->queued = 0;
1903 }
1904
1905 last = item;
1906 item = item->next;
1907 xfree (last);
1908 }
1909
1910 dwarf2_queue = dwarf2_queue_tail = NULL;
1911 }
1912 };
1913
1914 /* The return type of find_file_and_directory. Note, the enclosed
1915 string pointers are only valid while this object is valid. */
1916
1917 struct file_and_directory
1918 {
1919 /* The filename. This is never NULL. */
1920 const char *name;
1921
1922 /* The compilation directory. NULL if not known. If we needed to
1923 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1924 points directly to the DW_AT_comp_dir string attribute owned by
1925 the obstack that owns the DIE. */
1926 const char *comp_dir;
1927
1928 /* If we needed to build a new string for comp_dir, this is what
1929 owns the storage. */
1930 std::string comp_dir_storage;
1931 };
1932
1933 static file_and_directory find_file_and_directory (struct die_info *die,
1934 struct dwarf2_cu *cu);
1935
1936 static char *file_full_name (int file, struct line_header *lh,
1937 const char *comp_dir);
1938
1939 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1940 enum class rcuh_kind { COMPILE, TYPE };
1941
1942 static const gdb_byte *read_and_check_comp_unit_head
1943 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1944 struct comp_unit_head *header,
1945 struct dwarf2_section_info *section,
1946 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1947 rcuh_kind section_kind);
1948
1949 static void init_cutu_and_read_dies
1950 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1951 int use_existing_cu, int keep, bool skip_partial,
1952 die_reader_func_ftype *die_reader_func, void *data);
1953
1954 static void init_cutu_and_read_dies_simple
1955 (struct dwarf2_per_cu_data *this_cu,
1956 die_reader_func_ftype *die_reader_func, void *data);
1957
1958 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1959
1960 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1961
1962 static struct dwo_unit *lookup_dwo_unit_in_dwp
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1964 struct dwp_file *dwp_file, const char *comp_dir,
1965 ULONGEST signature, int is_debug_types);
1966
1967 static struct dwp_file *get_dwp_file
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1969
1970 static struct dwo_unit *lookup_dwo_comp_unit
1971 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1972
1973 static struct dwo_unit *lookup_dwo_type_unit
1974 (struct signatured_type *, const char *, const char *);
1975
1976 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1977
1978 static void free_dwo_file (struct dwo_file *);
1979
1980 /* A unique_ptr helper to free a dwo_file. */
1981
1982 struct dwo_file_deleter
1983 {
1984 void operator() (struct dwo_file *df) const
1985 {
1986 free_dwo_file (df);
1987 }
1988 };
1989
1990 /* A unique pointer to a dwo_file. */
1991
1992 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1993
1994 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1995
1996 static void check_producer (struct dwarf2_cu *cu);
1997
1998 static void free_line_header_voidp (void *arg);
1999 \f
2000 /* Various complaints about symbol reading that don't abort the process. */
2001
2002 static void
2003 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2004 {
2005 complaint (_("statement list doesn't fit in .debug_line section"));
2006 }
2007
2008 static void
2009 dwarf2_debug_line_missing_file_complaint (void)
2010 {
2011 complaint (_(".debug_line section has line data without a file"));
2012 }
2013
2014 static void
2015 dwarf2_debug_line_missing_end_sequence_complaint (void)
2016 {
2017 complaint (_(".debug_line section has line "
2018 "program sequence without an end"));
2019 }
2020
2021 static void
2022 dwarf2_complex_location_expr_complaint (void)
2023 {
2024 complaint (_("location expression too complex"));
2025 }
2026
2027 static void
2028 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2029 int arg3)
2030 {
2031 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2032 arg1, arg2, arg3);
2033 }
2034
2035 static void
2036 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2037 {
2038 complaint (_("debug info runs off end of %s section"
2039 " [in module %s]"),
2040 get_section_name (section),
2041 get_section_file_name (section));
2042 }
2043
2044 static void
2045 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2046 {
2047 complaint (_("macro debug info contains a "
2048 "malformed macro definition:\n`%s'"),
2049 arg1);
2050 }
2051
2052 static void
2053 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2054 {
2055 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2056 arg1, arg2);
2057 }
2058
2059 /* Hash function for line_header_hash. */
2060
2061 static hashval_t
2062 line_header_hash (const struct line_header *ofs)
2063 {
2064 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2065 }
2066
2067 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash_voidp (const void *item)
2071 {
2072 const struct line_header *ofs = (const struct line_header *) item;
2073
2074 return line_header_hash (ofs);
2075 }
2076
2077 /* Equality function for line_header_hash. */
2078
2079 static int
2080 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2081 {
2082 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2083 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2084
2085 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2086 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2087 }
2088
2089 \f
2090
2091 /* Read the given attribute value as an address, taking the attribute's
2092 form into account. */
2093
2094 static CORE_ADDR
2095 attr_value_as_address (struct attribute *attr)
2096 {
2097 CORE_ADDR addr;
2098
2099 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2100 {
2101 /* Aside from a few clearly defined exceptions, attributes that
2102 contain an address must always be in DW_FORM_addr form.
2103 Unfortunately, some compilers happen to be violating this
2104 requirement by encoding addresses using other forms, such
2105 as DW_FORM_data4 for example. For those broken compilers,
2106 we try to do our best, without any guarantee of success,
2107 to interpret the address correctly. It would also be nice
2108 to generate a complaint, but that would require us to maintain
2109 a list of legitimate cases where a non-address form is allowed,
2110 as well as update callers to pass in at least the CU's DWARF
2111 version. This is more overhead than what we're willing to
2112 expand for a pretty rare case. */
2113 addr = DW_UNSND (attr);
2114 }
2115 else
2116 addr = DW_ADDR (attr);
2117
2118 return addr;
2119 }
2120
2121 /* See declaration. */
2122
2123 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2124 const dwarf2_debug_sections *names)
2125 : objfile (objfile_)
2126 {
2127 if (names == NULL)
2128 names = &dwarf2_elf_names;
2129
2130 bfd *obfd = objfile->obfd;
2131
2132 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2133 locate_sections (obfd, sec, *names);
2134 }
2135
2136 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2137
2138 dwarf2_per_objfile::~dwarf2_per_objfile ()
2139 {
2140 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2141 free_cached_comp_units ();
2142
2143 if (quick_file_names_table)
2144 htab_delete (quick_file_names_table);
2145
2146 if (line_header_hash)
2147 htab_delete (line_header_hash);
2148
2149 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2150 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2151
2152 for (signatured_type *sig_type : all_type_units)
2153 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2154
2155 VEC_free (dwarf2_section_info_def, types);
2156
2157 if (dwo_files != NULL)
2158 free_dwo_files (dwo_files, objfile);
2159
2160 /* Everything else should be on the objfile obstack. */
2161 }
2162
2163 /* See declaration. */
2164
2165 void
2166 dwarf2_per_objfile::free_cached_comp_units ()
2167 {
2168 dwarf2_per_cu_data *per_cu = read_in_chain;
2169 dwarf2_per_cu_data **last_chain = &read_in_chain;
2170 while (per_cu != NULL)
2171 {
2172 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2173
2174 delete per_cu->cu;
2175 *last_chain = next_cu;
2176 per_cu = next_cu;
2177 }
2178 }
2179
2180 /* A helper class that calls free_cached_comp_units on
2181 destruction. */
2182
2183 class free_cached_comp_units
2184 {
2185 public:
2186
2187 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2188 : m_per_objfile (per_objfile)
2189 {
2190 }
2191
2192 ~free_cached_comp_units ()
2193 {
2194 m_per_objfile->free_cached_comp_units ();
2195 }
2196
2197 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2198
2199 private:
2200
2201 dwarf2_per_objfile *m_per_objfile;
2202 };
2203
2204 /* Try to locate the sections we need for DWARF 2 debugging
2205 information and return true if we have enough to do something.
2206 NAMES points to the dwarf2 section names, or is NULL if the standard
2207 ELF names are used. */
2208
2209 int
2210 dwarf2_has_info (struct objfile *objfile,
2211 const struct dwarf2_debug_sections *names)
2212 {
2213 if (objfile->flags & OBJF_READNEVER)
2214 return 0;
2215
2216 struct dwarf2_per_objfile *dwarf2_per_objfile
2217 = get_dwarf2_per_objfile (objfile);
2218
2219 if (dwarf2_per_objfile == NULL)
2220 {
2221 /* Initialize per-objfile state. */
2222 dwarf2_per_objfile
2223 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2224 names);
2225 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2226 }
2227 return (!dwarf2_per_objfile->info.is_virtual
2228 && dwarf2_per_objfile->info.s.section != NULL
2229 && !dwarf2_per_objfile->abbrev.is_virtual
2230 && dwarf2_per_objfile->abbrev.s.section != NULL);
2231 }
2232
2233 /* Return the containing section of virtual section SECTION. */
2234
2235 static struct dwarf2_section_info *
2236 get_containing_section (const struct dwarf2_section_info *section)
2237 {
2238 gdb_assert (section->is_virtual);
2239 return section->s.containing_section;
2240 }
2241
2242 /* Return the bfd owner of SECTION. */
2243
2244 static struct bfd *
2245 get_section_bfd_owner (const struct dwarf2_section_info *section)
2246 {
2247 if (section->is_virtual)
2248 {
2249 section = get_containing_section (section);
2250 gdb_assert (!section->is_virtual);
2251 }
2252 return section->s.section->owner;
2253 }
2254
2255 /* Return the bfd section of SECTION.
2256 Returns NULL if the section is not present. */
2257
2258 static asection *
2259 get_section_bfd_section (const struct dwarf2_section_info *section)
2260 {
2261 if (section->is_virtual)
2262 {
2263 section = get_containing_section (section);
2264 gdb_assert (!section->is_virtual);
2265 }
2266 return section->s.section;
2267 }
2268
2269 /* Return the name of SECTION. */
2270
2271 static const char *
2272 get_section_name (const struct dwarf2_section_info *section)
2273 {
2274 asection *sectp = get_section_bfd_section (section);
2275
2276 gdb_assert (sectp != NULL);
2277 return bfd_section_name (get_section_bfd_owner (section), sectp);
2278 }
2279
2280 /* Return the name of the file SECTION is in. */
2281
2282 static const char *
2283 get_section_file_name (const struct dwarf2_section_info *section)
2284 {
2285 bfd *abfd = get_section_bfd_owner (section);
2286
2287 return bfd_get_filename (abfd);
2288 }
2289
2290 /* Return the id of SECTION.
2291 Returns 0 if SECTION doesn't exist. */
2292
2293 static int
2294 get_section_id (const struct dwarf2_section_info *section)
2295 {
2296 asection *sectp = get_section_bfd_section (section);
2297
2298 if (sectp == NULL)
2299 return 0;
2300 return sectp->id;
2301 }
2302
2303 /* Return the flags of SECTION.
2304 SECTION (or containing section if this is a virtual section) must exist. */
2305
2306 static int
2307 get_section_flags (const struct dwarf2_section_info *section)
2308 {
2309 asection *sectp = get_section_bfd_section (section);
2310
2311 gdb_assert (sectp != NULL);
2312 return bfd_get_section_flags (sectp->owner, sectp);
2313 }
2314
2315 /* When loading sections, we look either for uncompressed section or for
2316 compressed section names. */
2317
2318 static int
2319 section_is_p (const char *section_name,
2320 const struct dwarf2_section_names *names)
2321 {
2322 if (names->normal != NULL
2323 && strcmp (section_name, names->normal) == 0)
2324 return 1;
2325 if (names->compressed != NULL
2326 && strcmp (section_name, names->compressed) == 0)
2327 return 1;
2328 return 0;
2329 }
2330
2331 /* See declaration. */
2332
2333 void
2334 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2335 const dwarf2_debug_sections &names)
2336 {
2337 flagword aflag = bfd_get_section_flags (abfd, sectp);
2338
2339 if ((aflag & SEC_HAS_CONTENTS) == 0)
2340 {
2341 }
2342 else if (section_is_p (sectp->name, &names.info))
2343 {
2344 this->info.s.section = sectp;
2345 this->info.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.abbrev))
2348 {
2349 this->abbrev.s.section = sectp;
2350 this->abbrev.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.line))
2353 {
2354 this->line.s.section = sectp;
2355 this->line.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loc))
2358 {
2359 this->loc.s.section = sectp;
2360 this->loc.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loclists))
2363 {
2364 this->loclists.s.section = sectp;
2365 this->loclists.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macinfo))
2368 {
2369 this->macinfo.s.section = sectp;
2370 this->macinfo.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macro))
2373 {
2374 this->macro.s.section = sectp;
2375 this->macro.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.str))
2378 {
2379 this->str.s.section = sectp;
2380 this->str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.line_str))
2383 {
2384 this->line_str.s.section = sectp;
2385 this->line_str.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.addr))
2388 {
2389 this->addr.s.section = sectp;
2390 this->addr.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.frame))
2393 {
2394 this->frame.s.section = sectp;
2395 this->frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.eh_frame))
2398 {
2399 this->eh_frame.s.section = sectp;
2400 this->eh_frame.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.ranges))
2403 {
2404 this->ranges.s.section = sectp;
2405 this->ranges.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.rnglists))
2408 {
2409 this->rnglists.s.section = sectp;
2410 this->rnglists.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.types))
2413 {
2414 struct dwarf2_section_info type_section;
2415
2416 memset (&type_section, 0, sizeof (type_section));
2417 type_section.s.section = sectp;
2418 type_section.size = bfd_get_section_size (sectp);
2419
2420 VEC_safe_push (dwarf2_section_info_def, this->types,
2421 &type_section);
2422 }
2423 else if (section_is_p (sectp->name, &names.gdb_index))
2424 {
2425 this->gdb_index.s.section = sectp;
2426 this->gdb_index.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_names))
2429 {
2430 this->debug_names.s.section = sectp;
2431 this->debug_names.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.debug_aranges))
2434 {
2435 this->debug_aranges.s.section = sectp;
2436 this->debug_aranges.size = bfd_get_section_size (sectp);
2437 }
2438
2439 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2440 && bfd_section_vma (abfd, sectp) == 0)
2441 this->has_section_at_zero = true;
2442 }
2443
2444 /* A helper function that decides whether a section is empty,
2445 or not present. */
2446
2447 static int
2448 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2449 {
2450 if (section->is_virtual)
2451 return section->size == 0;
2452 return section->s.section == NULL || section->size == 0;
2453 }
2454
2455 /* See dwarf2read.h. */
2456
2457 void
2458 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2459 {
2460 asection *sectp;
2461 bfd *abfd;
2462 gdb_byte *buf, *retbuf;
2463
2464 if (info->readin)
2465 return;
2466 info->buffer = NULL;
2467 info->readin = 1;
2468
2469 if (dwarf2_section_empty_p (info))
2470 return;
2471
2472 sectp = get_section_bfd_section (info);
2473
2474 /* If this is a virtual section we need to read in the real one first. */
2475 if (info->is_virtual)
2476 {
2477 struct dwarf2_section_info *containing_section =
2478 get_containing_section (info);
2479
2480 gdb_assert (sectp != NULL);
2481 if ((sectp->flags & SEC_RELOC) != 0)
2482 {
2483 error (_("Dwarf Error: DWP format V2 with relocations is not"
2484 " supported in section %s [in module %s]"),
2485 get_section_name (info), get_section_file_name (info));
2486 }
2487 dwarf2_read_section (objfile, containing_section);
2488 /* Other code should have already caught virtual sections that don't
2489 fit. */
2490 gdb_assert (info->virtual_offset + info->size
2491 <= containing_section->size);
2492 /* If the real section is empty or there was a problem reading the
2493 section we shouldn't get here. */
2494 gdb_assert (containing_section->buffer != NULL);
2495 info->buffer = containing_section->buffer + info->virtual_offset;
2496 return;
2497 }
2498
2499 /* If the section has relocations, we must read it ourselves.
2500 Otherwise we attach it to the BFD. */
2501 if ((sectp->flags & SEC_RELOC) == 0)
2502 {
2503 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2504 return;
2505 }
2506
2507 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2508 info->buffer = buf;
2509
2510 /* When debugging .o files, we may need to apply relocations; see
2511 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2512 We never compress sections in .o files, so we only need to
2513 try this when the section is not compressed. */
2514 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2515 if (retbuf != NULL)
2516 {
2517 info->buffer = retbuf;
2518 return;
2519 }
2520
2521 abfd = get_section_bfd_owner (info);
2522 gdb_assert (abfd != NULL);
2523
2524 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2525 || bfd_bread (buf, info->size, abfd) != info->size)
2526 {
2527 error (_("Dwarf Error: Can't read DWARF data"
2528 " in section %s [in module %s]"),
2529 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2530 }
2531 }
2532
2533 /* A helper function that returns the size of a section in a safe way.
2534 If you are positive that the section has been read before using the
2535 size, then it is safe to refer to the dwarf2_section_info object's
2536 "size" field directly. In other cases, you must call this
2537 function, because for compressed sections the size field is not set
2538 correctly until the section has been read. */
2539
2540 static bfd_size_type
2541 dwarf2_section_size (struct objfile *objfile,
2542 struct dwarf2_section_info *info)
2543 {
2544 if (!info->readin)
2545 dwarf2_read_section (objfile, info);
2546 return info->size;
2547 }
2548
2549 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2550 SECTION_NAME. */
2551
2552 void
2553 dwarf2_get_section_info (struct objfile *objfile,
2554 enum dwarf2_section_enum sect,
2555 asection **sectp, const gdb_byte **bufp,
2556 bfd_size_type *sizep)
2557 {
2558 struct dwarf2_per_objfile *data
2559 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2560 dwarf2_objfile_data_key);
2561 struct dwarf2_section_info *info;
2562
2563 /* We may see an objfile without any DWARF, in which case we just
2564 return nothing. */
2565 if (data == NULL)
2566 {
2567 *sectp = NULL;
2568 *bufp = NULL;
2569 *sizep = 0;
2570 return;
2571 }
2572 switch (sect)
2573 {
2574 case DWARF2_DEBUG_FRAME:
2575 info = &data->frame;
2576 break;
2577 case DWARF2_EH_FRAME:
2578 info = &data->eh_frame;
2579 break;
2580 default:
2581 gdb_assert_not_reached ("unexpected section");
2582 }
2583
2584 dwarf2_read_section (objfile, info);
2585
2586 *sectp = get_section_bfd_section (info);
2587 *bufp = info->buffer;
2588 *sizep = info->size;
2589 }
2590
2591 /* A helper function to find the sections for a .dwz file. */
2592
2593 static void
2594 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2595 {
2596 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2597
2598 /* Note that we only support the standard ELF names, because .dwz
2599 is ELF-only (at the time of writing). */
2600 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2601 {
2602 dwz_file->abbrev.s.section = sectp;
2603 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2606 {
2607 dwz_file->info.s.section = sectp;
2608 dwz_file->info.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2611 {
2612 dwz_file->str.s.section = sectp;
2613 dwz_file->str.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2616 {
2617 dwz_file->line.s.section = sectp;
2618 dwz_file->line.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2621 {
2622 dwz_file->macro.s.section = sectp;
2623 dwz_file->macro.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2626 {
2627 dwz_file->gdb_index.s.section = sectp;
2628 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2629 }
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2631 {
2632 dwz_file->debug_names.s.section = sectp;
2633 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2634 }
2635 }
2636
2637 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2638 there is no .gnu_debugaltlink section in the file. Error if there
2639 is such a section but the file cannot be found. */
2640
2641 static struct dwz_file *
2642 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2643 {
2644 const char *filename;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file.get ();
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 std::unique_ptr<struct dwz_file> result
2697 (new struct dwz_file (std::move (dwz_bfd)));
2698
2699 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2700 result.get ());
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2703 result->dwz_bfd.get ());
2704 dwarf2_per_objfile->dwz_file = std::move (result);
2705 return dwarf2_per_objfile->dwz_file.get ();
2706 }
2707 \f
2708 /* DWARF quick_symbols_functions support. */
2709
2710 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2711 unique line tables, so we maintain a separate table of all .debug_line
2712 derived entries to support the sharing.
2713 All the quick functions need is the list of file names. We discard the
2714 line_header when we're done and don't need to record it here. */
2715 struct quick_file_names
2716 {
2717 /* The data used to construct the hash key. */
2718 struct stmt_list_hash hash;
2719
2720 /* The number of entries in file_names, real_names. */
2721 unsigned int num_file_names;
2722
2723 /* The file names from the line table, after being run through
2724 file_full_name. */
2725 const char **file_names;
2726
2727 /* The file names from the line table after being run through
2728 gdb_realpath. These are computed lazily. */
2729 const char **real_names;
2730 };
2731
2732 /* When using the index (and thus not using psymtabs), each CU has an
2733 object of this type. This is used to hold information needed by
2734 the various "quick" methods. */
2735 struct dwarf2_per_cu_quick_data
2736 {
2737 /* The file table. This can be NULL if there was no file table
2738 or it's currently not read in.
2739 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2740 struct quick_file_names *file_names;
2741
2742 /* The corresponding symbol table. This is NULL if symbols for this
2743 CU have not yet been read. */
2744 struct compunit_symtab *compunit_symtab;
2745
2746 /* A temporary mark bit used when iterating over all CUs in
2747 expand_symtabs_matching. */
2748 unsigned int mark : 1;
2749
2750 /* True if we've tried to read the file table and found there isn't one.
2751 There will be no point in trying to read it again next time. */
2752 unsigned int no_file_data : 1;
2753 };
2754
2755 /* Utility hash function for a stmt_list_hash. */
2756
2757 static hashval_t
2758 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2759 {
2760 hashval_t v = 0;
2761
2762 if (stmt_list_hash->dwo_unit != NULL)
2763 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2764 v += to_underlying (stmt_list_hash->line_sect_off);
2765 return v;
2766 }
2767
2768 /* Utility equality function for a stmt_list_hash. */
2769
2770 static int
2771 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2772 const struct stmt_list_hash *rhs)
2773 {
2774 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2775 return 0;
2776 if (lhs->dwo_unit != NULL
2777 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2778 return 0;
2779
2780 return lhs->line_sect_off == rhs->line_sect_off;
2781 }
2782
2783 /* Hash function for a quick_file_names. */
2784
2785 static hashval_t
2786 hash_file_name_entry (const void *e)
2787 {
2788 const struct quick_file_names *file_data
2789 = (const struct quick_file_names *) e;
2790
2791 return hash_stmt_list_entry (&file_data->hash);
2792 }
2793
2794 /* Equality function for a quick_file_names. */
2795
2796 static int
2797 eq_file_name_entry (const void *a, const void *b)
2798 {
2799 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2800 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2801
2802 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2803 }
2804
2805 /* Delete function for a quick_file_names. */
2806
2807 static void
2808 delete_file_name_entry (void *e)
2809 {
2810 struct quick_file_names *file_data = (struct quick_file_names *) e;
2811 int i;
2812
2813 for (i = 0; i < file_data->num_file_names; ++i)
2814 {
2815 xfree ((void*) file_data->file_names[i]);
2816 if (file_data->real_names)
2817 xfree ((void*) file_data->real_names[i]);
2818 }
2819
2820 /* The space for the struct itself lives on objfile_obstack,
2821 so we don't free it here. */
2822 }
2823
2824 /* Create a quick_file_names hash table. */
2825
2826 static htab_t
2827 create_quick_file_names_table (unsigned int nr_initial_entries)
2828 {
2829 return htab_create_alloc (nr_initial_entries,
2830 hash_file_name_entry, eq_file_name_entry,
2831 delete_file_name_entry, xcalloc, xfree);
2832 }
2833
2834 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2835 have to be created afterwards. You should call age_cached_comp_units after
2836 processing PER_CU->CU. dw2_setup must have been already called. */
2837
2838 static void
2839 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2840 {
2841 if (per_cu->is_debug_types)
2842 load_full_type_unit (per_cu);
2843 else
2844 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2845
2846 if (per_cu->cu == NULL)
2847 return; /* Dummy CU. */
2848
2849 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2850 }
2851
2852 /* Read in the symbols for PER_CU. */
2853
2854 static void
2855 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2856 {
2857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2858
2859 /* Skip type_unit_groups, reading the type units they contain
2860 is handled elsewhere. */
2861 if (IS_TYPE_UNIT_GROUP (per_cu))
2862 return;
2863
2864 /* The destructor of dwarf2_queue_guard frees any entries left on
2865 the queue. After this point we're guaranteed to leave this function
2866 with the dwarf queue empty. */
2867 dwarf2_queue_guard q_guard;
2868
2869 if (dwarf2_per_objfile->using_index
2870 ? per_cu->v.quick->compunit_symtab == NULL
2871 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2872 {
2873 queue_comp_unit (per_cu, language_minimal);
2874 load_cu (per_cu, skip_partial);
2875
2876 /* If we just loaded a CU from a DWO, and we're working with an index
2877 that may badly handle TUs, load all the TUs in that DWO as well.
2878 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2879 if (!per_cu->is_debug_types
2880 && per_cu->cu != NULL
2881 && per_cu->cu->dwo_unit != NULL
2882 && dwarf2_per_objfile->index_table != NULL
2883 && dwarf2_per_objfile->index_table->version <= 7
2884 /* DWP files aren't supported yet. */
2885 && get_dwp_file (dwarf2_per_objfile) == NULL)
2886 queue_and_load_all_dwo_tus (per_cu);
2887 }
2888
2889 process_queue (dwarf2_per_objfile);
2890
2891 /* Age the cache, releasing compilation units that have not
2892 been used recently. */
2893 age_cached_comp_units (dwarf2_per_objfile);
2894 }
2895
2896 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2897 the objfile from which this CU came. Returns the resulting symbol
2898 table. */
2899
2900 static struct compunit_symtab *
2901 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2902 {
2903 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2904
2905 gdb_assert (dwarf2_per_objfile->using_index);
2906 if (!per_cu->v.quick->compunit_symtab)
2907 {
2908 free_cached_comp_units freer (dwarf2_per_objfile);
2909 scoped_restore decrementer = increment_reading_symtab ();
2910 dw2_do_instantiate_symtab (per_cu, skip_partial);
2911 process_cu_includes (dwarf2_per_objfile);
2912 }
2913
2914 return per_cu->v.quick->compunit_symtab;
2915 }
2916
2917 /* See declaration. */
2918
2919 dwarf2_per_cu_data *
2920 dwarf2_per_objfile::get_cutu (int index)
2921 {
2922 if (index >= this->all_comp_units.size ())
2923 {
2924 index -= this->all_comp_units.size ();
2925 gdb_assert (index < this->all_type_units.size ());
2926 return &this->all_type_units[index]->per_cu;
2927 }
2928
2929 return this->all_comp_units[index];
2930 }
2931
2932 /* See declaration. */
2933
2934 dwarf2_per_cu_data *
2935 dwarf2_per_objfile::get_cu (int index)
2936 {
2937 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2938
2939 return this->all_comp_units[index];
2940 }
2941
2942 /* See declaration. */
2943
2944 signatured_type *
2945 dwarf2_per_objfile::get_tu (int index)
2946 {
2947 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2948
2949 return this->all_type_units[index];
2950 }
2951
2952 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2953 objfile_obstack, and constructed with the specified field
2954 values. */
2955
2956 static dwarf2_per_cu_data *
2957 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2958 struct dwarf2_section_info *section,
2959 int is_dwz,
2960 sect_offset sect_off, ULONGEST length)
2961 {
2962 struct objfile *objfile = dwarf2_per_objfile->objfile;
2963 dwarf2_per_cu_data *the_cu
2964 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2965 struct dwarf2_per_cu_data);
2966 the_cu->sect_off = sect_off;
2967 the_cu->length = length;
2968 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2969 the_cu->section = section;
2970 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_quick_data);
2972 the_cu->is_dwz = is_dwz;
2973 return the_cu;
2974 }
2975
2976 /* A helper for create_cus_from_index that handles a given list of
2977 CUs. */
2978
2979 static void
2980 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2981 const gdb_byte *cu_list, offset_type n_elements,
2982 struct dwarf2_section_info *section,
2983 int is_dwz)
2984 {
2985 for (offset_type i = 0; i < n_elements; i += 2)
2986 {
2987 gdb_static_assert (sizeof (ULONGEST) >= 8);
2988
2989 sect_offset sect_off
2990 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2991 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2992 cu_list += 2 * 8;
2993
2994 dwarf2_per_cu_data *per_cu
2995 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2996 sect_off, length);
2997 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2998 }
2999 }
3000
3001 /* Read the CU list from the mapped index, and use it to create all
3002 the CU objects for this objfile. */
3003
3004 static void
3005 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3006 const gdb_byte *cu_list, offset_type cu_list_elements,
3007 const gdb_byte *dwz_list, offset_type dwz_elements)
3008 {
3009 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3010 dwarf2_per_objfile->all_comp_units.reserve
3011 ((cu_list_elements + dwz_elements) / 2);
3012
3013 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3014 &dwarf2_per_objfile->info, 0);
3015
3016 if (dwz_elements == 0)
3017 return;
3018
3019 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3020 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3021 &dwz->info, 1);
3022 }
3023
3024 /* Create the signatured type hash table from the index. */
3025
3026 static void
3027 create_signatured_type_table_from_index
3028 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3029 struct dwarf2_section_info *section,
3030 const gdb_byte *bytes,
3031 offset_type elements)
3032 {
3033 struct objfile *objfile = dwarf2_per_objfile->objfile;
3034
3035 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3036 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3037
3038 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3039
3040 for (offset_type i = 0; i < elements; i += 3)
3041 {
3042 struct signatured_type *sig_type;
3043 ULONGEST signature;
3044 void **slot;
3045 cu_offset type_offset_in_tu;
3046
3047 gdb_static_assert (sizeof (ULONGEST) >= 8);
3048 sect_offset sect_off
3049 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3050 type_offset_in_tu
3051 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3052 BFD_ENDIAN_LITTLE);
3053 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3054 bytes += 3 * 8;
3055
3056 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct signatured_type);
3058 sig_type->signature = signature;
3059 sig_type->type_offset_in_tu = type_offset_in_tu;
3060 sig_type->per_cu.is_debug_types = 1;
3061 sig_type->per_cu.section = section;
3062 sig_type->per_cu.sect_off = sect_off;
3063 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3064 sig_type->per_cu.v.quick
3065 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3066 struct dwarf2_per_cu_quick_data);
3067
3068 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3069 *slot = sig_type;
3070
3071 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3072 }
3073
3074 dwarf2_per_objfile->signatured_types = sig_types_hash;
3075 }
3076
3077 /* Create the signatured type hash table from .debug_names. */
3078
3079 static void
3080 create_signatured_type_table_from_debug_names
3081 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3082 const mapped_debug_names &map,
3083 struct dwarf2_section_info *section,
3084 struct dwarf2_section_info *abbrev_section)
3085 {
3086 struct objfile *objfile = dwarf2_per_objfile->objfile;
3087
3088 dwarf2_read_section (objfile, section);
3089 dwarf2_read_section (objfile, abbrev_section);
3090
3091 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3092 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3093
3094 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3095
3096 for (uint32_t i = 0; i < map.tu_count; ++i)
3097 {
3098 struct signatured_type *sig_type;
3099 void **slot;
3100
3101 sect_offset sect_off
3102 = (sect_offset) (extract_unsigned_integer
3103 (map.tu_table_reordered + i * map.offset_size,
3104 map.offset_size,
3105 map.dwarf5_byte_order));
3106
3107 comp_unit_head cu_header;
3108 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3109 abbrev_section,
3110 section->buffer + to_underlying (sect_off),
3111 rcuh_kind::TYPE);
3112
3113 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3114 struct signatured_type);
3115 sig_type->signature = cu_header.signature;
3116 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3117 sig_type->per_cu.is_debug_types = 1;
3118 sig_type->per_cu.section = section;
3119 sig_type->per_cu.sect_off = sect_off;
3120 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3121 sig_type->per_cu.v.quick
3122 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3123 struct dwarf2_per_cu_quick_data);
3124
3125 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3126 *slot = sig_type;
3127
3128 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3129 }
3130
3131 dwarf2_per_objfile->signatured_types = sig_types_hash;
3132 }
3133
3134 /* Read the address map data from the mapped index, and use it to
3135 populate the objfile's psymtabs_addrmap. */
3136
3137 static void
3138 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3139 struct mapped_index *index)
3140 {
3141 struct objfile *objfile = dwarf2_per_objfile->objfile;
3142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3143 const gdb_byte *iter, *end;
3144 struct addrmap *mutable_map;
3145 CORE_ADDR baseaddr;
3146
3147 auto_obstack temp_obstack;
3148
3149 mutable_map = addrmap_create_mutable (&temp_obstack);
3150
3151 iter = index->address_table.data ();
3152 end = iter + index->address_table.size ();
3153
3154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3155
3156 while (iter < end)
3157 {
3158 ULONGEST hi, lo, cu_index;
3159 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3160 iter += 8;
3161 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3162 iter += 8;
3163 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3164 iter += 4;
3165
3166 if (lo > hi)
3167 {
3168 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (_(".gdb_index address table has invalid CU number %u"),
3176 (unsigned) cu_index);
3177 continue;
3178 }
3179
3180 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3181 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3182 addrmap_set_empty (mutable_map, lo, hi - 1,
3183 dwarf2_per_objfile->get_cu (cu_index));
3184 }
3185
3186 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3187 &objfile->objfile_obstack);
3188 }
3189
3190 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3191 populate the objfile's psymtabs_addrmap. */
3192
3193 static void
3194 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3195 struct dwarf2_section_info *section)
3196 {
3197 struct objfile *objfile = dwarf2_per_objfile->objfile;
3198 bfd *abfd = objfile->obfd;
3199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3200 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3201 SECT_OFF_TEXT (objfile));
3202
3203 auto_obstack temp_obstack;
3204 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3205
3206 std::unordered_map<sect_offset,
3207 dwarf2_per_cu_data *,
3208 gdb::hash_enum<sect_offset>>
3209 debug_info_offset_to_per_cu;
3210 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3211 {
3212 const auto insertpair
3213 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3214 if (!insertpair.second)
3215 {
3216 warning (_("Section .debug_aranges in %s has duplicate "
3217 "debug_info_offset %s, ignoring .debug_aranges."),
3218 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3219 return;
3220 }
3221 }
3222
3223 dwarf2_read_section (objfile, section);
3224
3225 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3226
3227 const gdb_byte *addr = section->buffer;
3228
3229 while (addr < section->buffer + section->size)
3230 {
3231 const gdb_byte *const entry_addr = addr;
3232 unsigned int bytes_read;
3233
3234 const LONGEST entry_length = read_initial_length (abfd, addr,
3235 &bytes_read);
3236 addr += bytes_read;
3237
3238 const gdb_byte *const entry_end = addr + entry_length;
3239 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3240 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3241 if (addr + entry_length > section->buffer + section->size)
3242 {
3243 warning (_("Section .debug_aranges in %s entry at offset %zu "
3244 "length %s exceeds section length %s, "
3245 "ignoring .debug_aranges."),
3246 objfile_name (objfile), entry_addr - section->buffer,
3247 plongest (bytes_read + entry_length),
3248 pulongest (section->size));
3249 return;
3250 }
3251
3252 /* The version number. */
3253 const uint16_t version = read_2_bytes (abfd, addr);
3254 addr += 2;
3255 if (version != 2)
3256 {
3257 warning (_("Section .debug_aranges in %s entry at offset %zu "
3258 "has unsupported version %d, ignoring .debug_aranges."),
3259 objfile_name (objfile), entry_addr - section->buffer,
3260 version);
3261 return;
3262 }
3263
3264 const uint64_t debug_info_offset
3265 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3266 addr += offset_size;
3267 const auto per_cu_it
3268 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3269 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3270 {
3271 warning (_("Section .debug_aranges in %s entry at offset %zu "
3272 "debug_info_offset %s does not exists, "
3273 "ignoring .debug_aranges."),
3274 objfile_name (objfile), entry_addr - section->buffer,
3275 pulongest (debug_info_offset));
3276 return;
3277 }
3278 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3279
3280 const uint8_t address_size = *addr++;
3281 if (address_size < 1 || address_size > 8)
3282 {
3283 warning (_("Section .debug_aranges in %s entry at offset %zu "
3284 "address_size %u is invalid, ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 address_size);
3287 return;
3288 }
3289
3290 const uint8_t segment_selector_size = *addr++;
3291 if (segment_selector_size != 0)
3292 {
3293 warning (_("Section .debug_aranges in %s entry at offset %zu "
3294 "segment_selector_size %u is not supported, "
3295 "ignoring .debug_aranges."),
3296 objfile_name (objfile), entry_addr - section->buffer,
3297 segment_selector_size);
3298 return;
3299 }
3300
3301 /* Must pad to an alignment boundary that is twice the address
3302 size. It is undocumented by the DWARF standard but GCC does
3303 use it. */
3304 for (size_t padding = ((-(addr - section->buffer))
3305 & (2 * address_size - 1));
3306 padding > 0; padding--)
3307 if (*addr++ != 0)
3308 {
3309 warning (_("Section .debug_aranges in %s entry at offset %zu "
3310 "padding is not zero, ignoring .debug_aranges."),
3311 objfile_name (objfile), entry_addr - section->buffer);
3312 return;
3313 }
3314
3315 for (;;)
3316 {
3317 if (addr + 2 * address_size > entry_end)
3318 {
3319 warning (_("Section .debug_aranges in %s entry at offset %zu "
3320 "address list is not properly terminated, "
3321 "ignoring .debug_aranges."),
3322 objfile_name (objfile), entry_addr - section->buffer);
3323 return;
3324 }
3325 ULONGEST start = extract_unsigned_integer (addr, address_size,
3326 dwarf5_byte_order);
3327 addr += address_size;
3328 ULONGEST length = extract_unsigned_integer (addr, address_size,
3329 dwarf5_byte_order);
3330 addr += address_size;
3331 if (start == 0 && length == 0)
3332 break;
3333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3334 {
3335 /* Symbol was eliminated due to a COMDAT group. */
3336 continue;
3337 }
3338 ULONGEST end = start + length;
3339 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3340 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3346 &objfile->objfile_obstack);
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from SECTION and fills
3412 in MAP. FILENAME is the name of the file containing the section;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns 1 if all went well, 0 otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_section (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 struct dwarf2_section_info *section,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr;
3434 offset_type version;
3435 offset_type *metadata;
3436 int i;
3437
3438 if (dwarf2_section_empty_p (section))
3439 return 0;
3440
3441 /* Older elfutils strip versions could keep the section in the main
3442 executable while splitting it for the separate debug info file. */
3443 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3444 return 0;
3445
3446 dwarf2_read_section (objfile, section);
3447
3448 addr = section->buffer;
3449 /* Version check. */
3450 version = MAYBE_SWAP (*(offset_type *) addr);
3451 /* Versions earlier than 3 emitted every copy of a psymbol. This
3452 causes the index to behave very poorly for certain requests. Version 3
3453 contained incomplete addrmap. So, it seems better to just ignore such
3454 indices. */
3455 if (version < 4)
3456 {
3457 static int warning_printed = 0;
3458 if (!warning_printed)
3459 {
3460 warning (_("Skipping obsolete .gdb_index section in %s."),
3461 filename);
3462 warning_printed = 1;
3463 }
3464 return 0;
3465 }
3466 /* Index version 4 uses a different hash function than index version
3467 5 and later.
3468
3469 Versions earlier than 6 did not emit psymbols for inlined
3470 functions. Using these files will cause GDB not to be able to
3471 set breakpoints on inlined functions by name, so we ignore these
3472 indices unless the user has done
3473 "set use-deprecated-index-sections on". */
3474 if (version < 6 && !deprecated_ok)
3475 {
3476 static int warning_printed = 0;
3477 if (!warning_printed)
3478 {
3479 warning (_("\
3480 Skipping deprecated .gdb_index section in %s.\n\
3481 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3482 to use the section anyway."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3489 of the TU (for symbols coming from TUs),
3490 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3491 Plus gold-generated indices can have duplicate entries for global symbols,
3492 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3493 These are just performance bugs, and we can't distinguish gdb-generated
3494 indices from gold-generated ones, so issue no warning here. */
3495
3496 /* Indexes with higher version than the one supported by GDB may be no
3497 longer backward compatible. */
3498 if (version > 8)
3499 return 0;
3500
3501 map->version = version;
3502
3503 metadata = (offset_type *) (addr + sizeof (offset_type));
3504
3505 i = 0;
3506 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3507 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 *types_list = addr + MAYBE_SWAP (metadata[i]);
3512 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3513 - MAYBE_SWAP (metadata[i]))
3514 / 8);
3515 ++i;
3516
3517 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->address_table
3520 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3521 ++i;
3522
3523 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3524 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3525 map->symbol_table
3526 = gdb::array_view<mapped_index::symbol_table_slot>
3527 ((mapped_index::symbol_table_slot *) symbol_table,
3528 (mapped_index::symbol_table_slot *) symbol_table_end);
3529
3530 ++i;
3531 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3532
3533 return 1;
3534 }
3535
3536 /* Read .gdb_index. If everything went ok, initialize the "quick"
3537 elements of all the CUs and return 1. Otherwise, return 0. */
3538
3539 static int
3540 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3541 {
3542 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3543 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3544 struct dwz_file *dwz;
3545 struct objfile *objfile = dwarf2_per_objfile->objfile;
3546
3547 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3548 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3549 use_deprecated_index_sections,
3550 &dwarf2_per_objfile->gdb_index, map.get (),
3551 &cu_list, &cu_list_elements,
3552 &types_list, &types_list_elements))
3553 return 0;
3554
3555 /* Don't use the index if it's empty. */
3556 if (map->symbol_table.empty ())
3557 return 0;
3558
3559 /* If there is a .dwz file, read it so we can get its CU list as
3560 well. */
3561 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3562 if (dwz != NULL)
3563 {
3564 struct mapped_index dwz_map;
3565 const gdb_byte *dwz_types_ignore;
3566 offset_type dwz_types_elements_ignore;
3567
3568 if (!read_gdb_index_from_section (objfile,
3569 bfd_get_filename (dwz->dwz_bfd), 1,
3570 &dwz->gdb_index, &dwz_map,
3571 &dwz_list, &dwz_list_elements,
3572 &dwz_types_ignore,
3573 &dwz_types_elements_ignore))
3574 {
3575 warning (_("could not read '.gdb_index' section from %s; skipping"),
3576 bfd_get_filename (dwz->dwz_bfd));
3577 return 0;
3578 }
3579 }
3580
3581 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3582 dwz_list, dwz_list_elements);
3583
3584 if (types_list_elements)
3585 {
3586 struct dwarf2_section_info *section;
3587
3588 /* We can only handle a single .debug_types when we have an
3589 index. */
3590 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3591 return 0;
3592
3593 section = VEC_index (dwarf2_section_info_def,
3594 dwarf2_per_objfile->types, 0);
3595
3596 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3597 types_list, types_list_elements);
3598 }
3599
3600 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3601
3602 dwarf2_per_objfile->index_table = std::move (map);
3603 dwarf2_per_objfile->using_index = 1;
3604 dwarf2_per_objfile->quick_file_names_table =
3605 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3606
3607 return 1;
3608 }
3609
3610 /* die_reader_func for dw2_get_file_names. */
3611
3612 static void
3613 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3614 const gdb_byte *info_ptr,
3615 struct die_info *comp_unit_die,
3616 int has_children,
3617 void *data)
3618 {
3619 struct dwarf2_cu *cu = reader->cu;
3620 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = cu->per_cu->dwarf2_per_objfile;
3623 struct objfile *objfile = dwarf2_per_objfile->objfile;
3624 struct dwarf2_per_cu_data *lh_cu;
3625 struct attribute *attr;
3626 int i;
3627 void **slot;
3628 struct quick_file_names *qfn;
3629
3630 gdb_assert (! this_cu->is_debug_types);
3631
3632 /* Our callers never want to match partial units -- instead they
3633 will match the enclosing full CU. */
3634 if (comp_unit_die->tag == DW_TAG_partial_unit)
3635 {
3636 this_cu->v.quick->no_file_data = 1;
3637 return;
3638 }
3639
3640 lh_cu = this_cu;
3641 slot = NULL;
3642
3643 line_header_up lh;
3644 sect_offset line_offset {};
3645
3646 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3647 if (attr)
3648 {
3649 struct quick_file_names find_entry;
3650
3651 line_offset = (sect_offset) DW_UNSND (attr);
3652
3653 /* We may have already read in this line header (TU line header sharing).
3654 If we have we're done. */
3655 find_entry.hash.dwo_unit = cu->dwo_unit;
3656 find_entry.hash.line_sect_off = line_offset;
3657 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3658 &find_entry, INSERT);
3659 if (*slot != NULL)
3660 {
3661 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3662 return;
3663 }
3664
3665 lh = dwarf_decode_line_header (line_offset, cu);
3666 }
3667 if (lh == NULL)
3668 {
3669 lh_cu->v.quick->no_file_data = 1;
3670 return;
3671 }
3672
3673 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3674 qfn->hash.dwo_unit = cu->dwo_unit;
3675 qfn->hash.line_sect_off = line_offset;
3676 gdb_assert (slot != NULL);
3677 *slot = qfn;
3678
3679 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3680
3681 qfn->num_file_names = lh->file_names.size ();
3682 qfn->file_names =
3683 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3684 for (i = 0; i < lh->file_names.size (); ++i)
3685 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3686 qfn->real_names = NULL;
3687
3688 lh_cu->v.quick->file_names = qfn;
3689 }
3690
3691 /* A helper for the "quick" functions which attempts to read the line
3692 table for THIS_CU. */
3693
3694 static struct quick_file_names *
3695 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3696 {
3697 /* This should never be called for TUs. */
3698 gdb_assert (! this_cu->is_debug_types);
3699 /* Nor type unit groups. */
3700 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3701
3702 if (this_cu->v.quick->file_names != NULL)
3703 return this_cu->v.quick->file_names;
3704 /* If we know there is no line data, no point in looking again. */
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707
3708 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3709
3710 if (this_cu->v.quick->no_file_data)
3711 return NULL;
3712 return this_cu->v.quick->file_names;
3713 }
3714
3715 /* A helper for the "quick" functions which computes and caches the
3716 real path for a given file name from the line table. */
3717
3718 static const char *
3719 dw2_get_real_path (struct objfile *objfile,
3720 struct quick_file_names *qfn, int index)
3721 {
3722 if (qfn->real_names == NULL)
3723 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3724 qfn->num_file_names, const char *);
3725
3726 if (qfn->real_names[index] == NULL)
3727 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3728
3729 return qfn->real_names[index];
3730 }
3731
3732 static struct symtab *
3733 dw2_find_last_source_symtab (struct objfile *objfile)
3734 {
3735 struct dwarf2_per_objfile *dwarf2_per_objfile
3736 = get_dwarf2_per_objfile (objfile);
3737 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3738 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3739
3740 if (cust == NULL)
3741 return NULL;
3742
3743 return compunit_primary_filetab (cust);
3744 }
3745
3746 /* Traversal function for dw2_forget_cached_source_info. */
3747
3748 static int
3749 dw2_free_cached_file_names (void **slot, void *info)
3750 {
3751 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3752
3753 if (file_data->real_names)
3754 {
3755 int i;
3756
3757 for (i = 0; i < file_data->num_file_names; ++i)
3758 {
3759 xfree ((void*) file_data->real_names[i]);
3760 file_data->real_names[i] = NULL;
3761 }
3762 }
3763
3764 return 1;
3765 }
3766
3767 static void
3768 dw2_forget_cached_source_info (struct objfile *objfile)
3769 {
3770 struct dwarf2_per_objfile *dwarf2_per_objfile
3771 = get_dwarf2_per_objfile (objfile);
3772
3773 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3774 dw2_free_cached_file_names, NULL);
3775 }
3776
3777 /* Helper function for dw2_map_symtabs_matching_filename that expands
3778 the symtabs and calls the iterator. */
3779
3780 static int
3781 dw2_map_expand_apply (struct objfile *objfile,
3782 struct dwarf2_per_cu_data *per_cu,
3783 const char *name, const char *real_path,
3784 gdb::function_view<bool (symtab *)> callback)
3785 {
3786 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3787
3788 /* Don't visit already-expanded CUs. */
3789 if (per_cu->v.quick->compunit_symtab)
3790 return 0;
3791
3792 /* This may expand more than one symtab, and we want to iterate over
3793 all of them. */
3794 dw2_instantiate_symtab (per_cu, false);
3795
3796 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3797 last_made, callback);
3798 }
3799
3800 /* Implementation of the map_symtabs_matching_filename method. */
3801
3802 static bool
3803 dw2_map_symtabs_matching_filename
3804 (struct objfile *objfile, const char *name, const char *real_path,
3805 gdb::function_view<bool (symtab *)> callback)
3806 {
3807 const char *name_basename = lbasename (name);
3808 struct dwarf2_per_objfile *dwarf2_per_objfile
3809 = get_dwarf2_per_objfile (objfile);
3810
3811 /* The rule is CUs specify all the files, including those used by
3812 any TU, so there's no need to scan TUs here. */
3813
3814 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3815 {
3816 /* We only need to look at symtabs not already expanded. */
3817 if (per_cu->v.quick->compunit_symtab)
3818 continue;
3819
3820 quick_file_names *file_data = dw2_get_file_names (per_cu);
3821 if (file_data == NULL)
3822 continue;
3823
3824 for (int j = 0; j < file_data->num_file_names; ++j)
3825 {
3826 const char *this_name = file_data->file_names[j];
3827 const char *this_real_name;
3828
3829 if (compare_filenames_for_search (this_name, name))
3830 {
3831 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3832 callback))
3833 return true;
3834 continue;
3835 }
3836
3837 /* Before we invoke realpath, which can get expensive when many
3838 files are involved, do a quick comparison of the basenames. */
3839 if (! basenames_may_differ
3840 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3841 continue;
3842
3843 this_real_name = dw2_get_real_path (objfile, file_data, j);
3844 if (compare_filenames_for_search (this_real_name, name))
3845 {
3846 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3847 callback))
3848 return true;
3849 continue;
3850 }
3851
3852 if (real_path != NULL)
3853 {
3854 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3855 gdb_assert (IS_ABSOLUTE_PATH (name));
3856 if (this_real_name != NULL
3857 && FILENAME_CMP (real_path, this_real_name) == 0)
3858 {
3859 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3860 callback))
3861 return true;
3862 continue;
3863 }
3864 }
3865 }
3866 }
3867
3868 return false;
3869 }
3870
3871 /* Struct used to manage iterating over all CUs looking for a symbol. */
3872
3873 struct dw2_symtab_iterator
3874 {
3875 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3876 struct dwarf2_per_objfile *dwarf2_per_objfile;
3877 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3878 int want_specific_block;
3879 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3880 Unused if !WANT_SPECIFIC_BLOCK. */
3881 int block_index;
3882 /* The kind of symbol we're looking for. */
3883 domain_enum domain;
3884 /* The list of CUs from the index entry of the symbol,
3885 or NULL if not found. */
3886 offset_type *vec;
3887 /* The next element in VEC to look at. */
3888 int next;
3889 /* The number of elements in VEC, or zero if there is no match. */
3890 int length;
3891 /* Have we seen a global version of the symbol?
3892 If so we can ignore all further global instances.
3893 This is to work around gold/15646, inefficient gold-generated
3894 indices. */
3895 int global_seen;
3896 };
3897
3898 /* Initialize the index symtab iterator ITER.
3899 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3900 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3901
3902 static void
3903 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3904 struct dwarf2_per_objfile *dwarf2_per_objfile,
3905 int want_specific_block,
3906 int block_index,
3907 domain_enum domain,
3908 const char *name)
3909 {
3910 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3911 iter->want_specific_block = want_specific_block;
3912 iter->block_index = block_index;
3913 iter->domain = domain;
3914 iter->next = 0;
3915 iter->global_seen = 0;
3916
3917 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3918
3919 /* index is NULL if OBJF_READNOW. */
3920 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3921 iter->length = MAYBE_SWAP (*iter->vec);
3922 else
3923 {
3924 iter->vec = NULL;
3925 iter->length = 0;
3926 }
3927 }
3928
3929 /* Return the next matching CU or NULL if there are no more. */
3930
3931 static struct dwarf2_per_cu_data *
3932 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3933 {
3934 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3935
3936 for ( ; iter->next < iter->length; ++iter->next)
3937 {
3938 offset_type cu_index_and_attrs =
3939 MAYBE_SWAP (iter->vec[iter->next + 1]);
3940 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3941 int want_static = iter->block_index != GLOBAL_BLOCK;
3942 /* This value is only valid for index versions >= 7. */
3943 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3944 gdb_index_symbol_kind symbol_kind =
3945 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3946 /* Only check the symbol attributes if they're present.
3947 Indices prior to version 7 don't record them,
3948 and indices >= 7 may elide them for certain symbols
3949 (gold does this). */
3950 int attrs_valid =
3951 (dwarf2_per_objfile->index_table->version >= 7
3952 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3953
3954 /* Don't crash on bad data. */
3955 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3956 + dwarf2_per_objfile->all_type_units.size ()))
3957 {
3958 complaint (_(".gdb_index entry has bad CU index"
3959 " [in module %s]"),
3960 objfile_name (dwarf2_per_objfile->objfile));
3961 continue;
3962 }
3963
3964 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3965
3966 /* Skip if already read in. */
3967 if (per_cu->v.quick->compunit_symtab)
3968 continue;
3969
3970 /* Check static vs global. */
3971 if (attrs_valid)
3972 {
3973 if (iter->want_specific_block
3974 && want_static != is_static)
3975 continue;
3976 /* Work around gold/15646. */
3977 if (!is_static && iter->global_seen)
3978 continue;
3979 if (!is_static)
3980 iter->global_seen = 1;
3981 }
3982
3983 /* Only check the symbol's kind if it has one. */
3984 if (attrs_valid)
3985 {
3986 switch (iter->domain)
3987 {
3988 case VAR_DOMAIN:
3989 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3990 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3991 /* Some types are also in VAR_DOMAIN. */
3992 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3993 continue;
3994 break;
3995 case STRUCT_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3997 continue;
3998 break;
3999 case LABEL_DOMAIN:
4000 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4001 continue;
4002 break;
4003 default:
4004 break;
4005 }
4006 }
4007
4008 ++iter->next;
4009 return per_cu;
4010 }
4011
4012 return NULL;
4013 }
4014
4015 static struct compunit_symtab *
4016 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4017 const char *name, domain_enum domain)
4018 {
4019 struct compunit_symtab *stab_best = NULL;
4020 struct dwarf2_per_objfile *dwarf2_per_objfile
4021 = get_dwarf2_per_objfile (objfile);
4022
4023 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4024
4025 struct dw2_symtab_iterator iter;
4026 struct dwarf2_per_cu_data *per_cu;
4027
4028 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4029
4030 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4031 {
4032 struct symbol *sym, *with_opaque = NULL;
4033 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4034 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4035 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4036
4037 sym = block_find_symbol (block, name, domain,
4038 block_find_non_opaque_type_preferred,
4039 &with_opaque);
4040
4041 /* Some caution must be observed with overloaded functions
4042 and methods, since the index will not contain any overload
4043 information (but NAME might contain it). */
4044
4045 if (sym != NULL
4046 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4047 return stab;
4048 if (with_opaque != NULL
4049 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4050 stab_best = stab;
4051
4052 /* Keep looking through other CUs. */
4053 }
4054
4055 return stab_best;
4056 }
4057
4058 static void
4059 dw2_print_stats (struct objfile *objfile)
4060 {
4061 struct dwarf2_per_objfile *dwarf2_per_objfile
4062 = get_dwarf2_per_objfile (objfile);
4063 int total = (dwarf2_per_objfile->all_comp_units.size ()
4064 + dwarf2_per_objfile->all_type_units.size ());
4065 int count = 0;
4066
4067 for (int i = 0; i < total; ++i)
4068 {
4069 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4070
4071 if (!per_cu->v.quick->compunit_symtab)
4072 ++count;
4073 }
4074 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4075 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4076 }
4077
4078 /* This dumps minimal information about the index.
4079 It is called via "mt print objfiles".
4080 One use is to verify .gdb_index has been loaded by the
4081 gdb.dwarf2/gdb-index.exp testcase. */
4082
4083 static void
4084 dw2_dump (struct objfile *objfile)
4085 {
4086 struct dwarf2_per_objfile *dwarf2_per_objfile
4087 = get_dwarf2_per_objfile (objfile);
4088
4089 gdb_assert (dwarf2_per_objfile->using_index);
4090 printf_filtered (".gdb_index:");
4091 if (dwarf2_per_objfile->index_table != NULL)
4092 {
4093 printf_filtered (" version %d\n",
4094 dwarf2_per_objfile->index_table->version);
4095 }
4096 else
4097 printf_filtered (" faked for \"readnow\"\n");
4098 printf_filtered ("\n");
4099 }
4100
4101 static void
4102 dw2_relocate (struct objfile *objfile,
4103 const struct section_offsets *new_offsets,
4104 const struct section_offsets *delta)
4105 {
4106 /* There's nothing to relocate here. */
4107 }
4108
4109 static void
4110 dw2_expand_symtabs_for_function (struct objfile *objfile,
4111 const char *func_name)
4112 {
4113 struct dwarf2_per_objfile *dwarf2_per_objfile
4114 = get_dwarf2_per_objfile (objfile);
4115
4116 struct dw2_symtab_iterator iter;
4117 struct dwarf2_per_cu_data *per_cu;
4118
4119 /* Note: It doesn't matter what we pass for block_index here. */
4120 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4121 func_name);
4122
4123 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4124 dw2_instantiate_symtab (per_cu, false);
4125
4126 }
4127
4128 static void
4129 dw2_expand_all_symtabs (struct objfile *objfile)
4130 {
4131 struct dwarf2_per_objfile *dwarf2_per_objfile
4132 = get_dwarf2_per_objfile (objfile);
4133 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4134 + dwarf2_per_objfile->all_type_units.size ());
4135
4136 for (int i = 0; i < total_units; ++i)
4137 {
4138 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4139
4140 /* We don't want to directly expand a partial CU, because if we
4141 read it with the wrong language, then assertion failures can
4142 be triggered later on. See PR symtab/23010. So, tell
4143 dw2_instantiate_symtab to skip partial CUs -- any important
4144 partial CU will be read via DW_TAG_imported_unit anyway. */
4145 dw2_instantiate_symtab (per_cu, true);
4146 }
4147 }
4148
4149 static void
4150 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4151 const char *fullname)
4152 {
4153 struct dwarf2_per_objfile *dwarf2_per_objfile
4154 = get_dwarf2_per_objfile (objfile);
4155
4156 /* We don't need to consider type units here.
4157 This is only called for examining code, e.g. expand_line_sal.
4158 There can be an order of magnitude (or more) more type units
4159 than comp units, and we avoid them if we can. */
4160
4161 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4162 {
4163 /* We only need to look at symtabs not already expanded. */
4164 if (per_cu->v.quick->compunit_symtab)
4165 continue;
4166
4167 quick_file_names *file_data = dw2_get_file_names (per_cu);
4168 if (file_data == NULL)
4169 continue;
4170
4171 for (int j = 0; j < file_data->num_file_names; ++j)
4172 {
4173 const char *this_fullname = file_data->file_names[j];
4174
4175 if (filename_cmp (this_fullname, fullname) == 0)
4176 {
4177 dw2_instantiate_symtab (per_cu, false);
4178 break;
4179 }
4180 }
4181 }
4182 }
4183
4184 static void
4185 dw2_map_matching_symbols (struct objfile *objfile,
4186 const char * name, domain_enum domain,
4187 int global,
4188 int (*callback) (struct block *,
4189 struct symbol *, void *),
4190 void *data, symbol_name_match_type match,
4191 symbol_compare_ftype *ordered_compare)
4192 {
4193 /* Currently unimplemented; used for Ada. The function can be called if the
4194 current language is Ada for a non-Ada objfile using GNU index. As Ada
4195 does not look for non-Ada symbols this function should just return. */
4196 }
4197
4198 /* Symbol name matcher for .gdb_index names.
4199
4200 Symbol names in .gdb_index have a few particularities:
4201
4202 - There's no indication of which is the language of each symbol.
4203
4204 Since each language has its own symbol name matching algorithm,
4205 and we don't know which language is the right one, we must match
4206 each symbol against all languages. This would be a potential
4207 performance problem if it were not mitigated by the
4208 mapped_index::name_components lookup table, which significantly
4209 reduces the number of times we need to call into this matcher,
4210 making it a non-issue.
4211
4212 - Symbol names in the index have no overload (parameter)
4213 information. I.e., in C++, "foo(int)" and "foo(long)" both
4214 appear as "foo" in the index, for example.
4215
4216 This means that the lookup names passed to the symbol name
4217 matcher functions must have no parameter information either
4218 because (e.g.) symbol search name "foo" does not match
4219 lookup-name "foo(int)" [while swapping search name for lookup
4220 name would match].
4221 */
4222 class gdb_index_symbol_name_matcher
4223 {
4224 public:
4225 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4226 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4227
4228 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4229 Returns true if any matcher matches. */
4230 bool matches (const char *symbol_name);
4231
4232 private:
4233 /* A reference to the lookup name we're matching against. */
4234 const lookup_name_info &m_lookup_name;
4235
4236 /* A vector holding all the different symbol name matchers, for all
4237 languages. */
4238 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4239 };
4240
4241 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4242 (const lookup_name_info &lookup_name)
4243 : m_lookup_name (lookup_name)
4244 {
4245 /* Prepare the vector of comparison functions upfront, to avoid
4246 doing the same work for each symbol. Care is taken to avoid
4247 matching with the same matcher more than once if/when multiple
4248 languages use the same matcher function. */
4249 auto &matchers = m_symbol_name_matcher_funcs;
4250 matchers.reserve (nr_languages);
4251
4252 matchers.push_back (default_symbol_name_matcher);
4253
4254 for (int i = 0; i < nr_languages; i++)
4255 {
4256 const language_defn *lang = language_def ((enum language) i);
4257 symbol_name_matcher_ftype *name_matcher
4258 = get_symbol_name_matcher (lang, m_lookup_name);
4259
4260 /* Don't insert the same comparison routine more than once.
4261 Note that we do this linear walk instead of a seemingly
4262 cheaper sorted insert, or use a std::set or something like
4263 that, because relative order of function addresses is not
4264 stable. This is not a problem in practice because the number
4265 of supported languages is low, and the cost here is tiny
4266 compared to the number of searches we'll do afterwards using
4267 this object. */
4268 if (name_matcher != default_symbol_name_matcher
4269 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4270 == matchers.end ()))
4271 matchers.push_back (name_matcher);
4272 }
4273 }
4274
4275 bool
4276 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4277 {
4278 for (auto matches_name : m_symbol_name_matcher_funcs)
4279 if (matches_name (symbol_name, m_lookup_name, NULL))
4280 return true;
4281
4282 return false;
4283 }
4284
4285 /* Starting from a search name, return the string that finds the upper
4286 bound of all strings that start with SEARCH_NAME in a sorted name
4287 list. Returns the empty string to indicate that the upper bound is
4288 the end of the list. */
4289
4290 static std::string
4291 make_sort_after_prefix_name (const char *search_name)
4292 {
4293 /* When looking to complete "func", we find the upper bound of all
4294 symbols that start with "func" by looking for where we'd insert
4295 the closest string that would follow "func" in lexicographical
4296 order. Usually, that's "func"-with-last-character-incremented,
4297 i.e. "fund". Mind non-ASCII characters, though. Usually those
4298 will be UTF-8 multi-byte sequences, but we can't be certain.
4299 Especially mind the 0xff character, which is a valid character in
4300 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4301 rule out compilers allowing it in identifiers. Note that
4302 conveniently, strcmp/strcasecmp are specified to compare
4303 characters interpreted as unsigned char. So what we do is treat
4304 the whole string as a base 256 number composed of a sequence of
4305 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4306 to 0, and carries 1 to the following more-significant position.
4307 If the very first character in SEARCH_NAME ends up incremented
4308 and carries/overflows, then the upper bound is the end of the
4309 list. The string after the empty string is also the empty
4310 string.
4311
4312 Some examples of this operation:
4313
4314 SEARCH_NAME => "+1" RESULT
4315
4316 "abc" => "abd"
4317 "ab\xff" => "ac"
4318 "\xff" "a" "\xff" => "\xff" "b"
4319 "\xff" => ""
4320 "\xff\xff" => ""
4321 "" => ""
4322
4323 Then, with these symbols for example:
4324
4325 func
4326 func1
4327 fund
4328
4329 completing "func" looks for symbols between "func" and
4330 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4331 which finds "func" and "func1", but not "fund".
4332
4333 And with:
4334
4335 funcÿ (Latin1 'ÿ' [0xff])
4336 funcÿ1
4337 fund
4338
4339 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4340 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4341
4342 And with:
4343
4344 ÿÿ (Latin1 'ÿ' [0xff])
4345 ÿÿ1
4346
4347 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4348 the end of the list.
4349 */
4350 std::string after = search_name;
4351 while (!after.empty () && (unsigned char) after.back () == 0xff)
4352 after.pop_back ();
4353 if (!after.empty ())
4354 after.back () = (unsigned char) after.back () + 1;
4355 return after;
4356 }
4357
4358 /* See declaration. */
4359
4360 std::pair<std::vector<name_component>::const_iterator,
4361 std::vector<name_component>::const_iterator>
4362 mapped_index_base::find_name_components_bounds
4363 (const lookup_name_info &lookup_name_without_params) const
4364 {
4365 auto *name_cmp
4366 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4367
4368 const char *cplus
4369 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4370
4371 /* Comparison function object for lower_bound that matches against a
4372 given symbol name. */
4373 auto lookup_compare_lower = [&] (const name_component &elem,
4374 const char *name)
4375 {
4376 const char *elem_qualified = this->symbol_name_at (elem.idx);
4377 const char *elem_name = elem_qualified + elem.name_offset;
4378 return name_cmp (elem_name, name) < 0;
4379 };
4380
4381 /* Comparison function object for upper_bound that matches against a
4382 given symbol name. */
4383 auto lookup_compare_upper = [&] (const char *name,
4384 const name_component &elem)
4385 {
4386 const char *elem_qualified = this->symbol_name_at (elem.idx);
4387 const char *elem_name = elem_qualified + elem.name_offset;
4388 return name_cmp (name, elem_name) < 0;
4389 };
4390
4391 auto begin = this->name_components.begin ();
4392 auto end = this->name_components.end ();
4393
4394 /* Find the lower bound. */
4395 auto lower = [&] ()
4396 {
4397 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4398 return begin;
4399 else
4400 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4401 } ();
4402
4403 /* Find the upper bound. */
4404 auto upper = [&] ()
4405 {
4406 if (lookup_name_without_params.completion_mode ())
4407 {
4408 /* In completion mode, we want UPPER to point past all
4409 symbols names that have the same prefix. I.e., with
4410 these symbols, and completing "func":
4411
4412 function << lower bound
4413 function1
4414 other_function << upper bound
4415
4416 We find the upper bound by looking for the insertion
4417 point of "func"-with-last-character-incremented,
4418 i.e. "fund". */
4419 std::string after = make_sort_after_prefix_name (cplus);
4420 if (after.empty ())
4421 return end;
4422 return std::lower_bound (lower, end, after.c_str (),
4423 lookup_compare_lower);
4424 }
4425 else
4426 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4427 } ();
4428
4429 return {lower, upper};
4430 }
4431
4432 /* See declaration. */
4433
4434 void
4435 mapped_index_base::build_name_components ()
4436 {
4437 if (!this->name_components.empty ())
4438 return;
4439
4440 this->name_components_casing = case_sensitivity;
4441 auto *name_cmp
4442 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4443
4444 /* The code below only knows how to break apart components of C++
4445 symbol names (and other languages that use '::' as
4446 namespace/module separator). If we add support for wild matching
4447 to some language that uses some other operator (E.g., Ada, Go and
4448 D use '.'), then we'll need to try splitting the symbol name
4449 according to that language too. Note that Ada does support wild
4450 matching, but doesn't currently support .gdb_index. */
4451 auto count = this->symbol_name_count ();
4452 for (offset_type idx = 0; idx < count; idx++)
4453 {
4454 if (this->symbol_name_slot_invalid (idx))
4455 continue;
4456
4457 const char *name = this->symbol_name_at (idx);
4458
4459 /* Add each name component to the name component table. */
4460 unsigned int previous_len = 0;
4461 for (unsigned int current_len = cp_find_first_component (name);
4462 name[current_len] != '\0';
4463 current_len += cp_find_first_component (name + current_len))
4464 {
4465 gdb_assert (name[current_len] == ':');
4466 this->name_components.push_back ({previous_len, idx});
4467 /* Skip the '::'. */
4468 current_len += 2;
4469 previous_len = current_len;
4470 }
4471 this->name_components.push_back ({previous_len, idx});
4472 }
4473
4474 /* Sort name_components elements by name. */
4475 auto name_comp_compare = [&] (const name_component &left,
4476 const name_component &right)
4477 {
4478 const char *left_qualified = this->symbol_name_at (left.idx);
4479 const char *right_qualified = this->symbol_name_at (right.idx);
4480
4481 const char *left_name = left_qualified + left.name_offset;
4482 const char *right_name = right_qualified + right.name_offset;
4483
4484 return name_cmp (left_name, right_name) < 0;
4485 };
4486
4487 std::sort (this->name_components.begin (),
4488 this->name_components.end (),
4489 name_comp_compare);
4490 }
4491
4492 /* Helper for dw2_expand_symtabs_matching that works with a
4493 mapped_index_base instead of the containing objfile. This is split
4494 to a separate function in order to be able to unit test the
4495 name_components matching using a mock mapped_index_base. For each
4496 symbol name that matches, calls MATCH_CALLBACK, passing it the
4497 symbol's index in the mapped_index_base symbol table. */
4498
4499 static void
4500 dw2_expand_symtabs_matching_symbol
4501 (mapped_index_base &index,
4502 const lookup_name_info &lookup_name_in,
4503 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4504 enum search_domain kind,
4505 gdb::function_view<void (offset_type)> match_callback)
4506 {
4507 lookup_name_info lookup_name_without_params
4508 = lookup_name_in.make_ignore_params ();
4509 gdb_index_symbol_name_matcher lookup_name_matcher
4510 (lookup_name_without_params);
4511
4512 /* Build the symbol name component sorted vector, if we haven't
4513 yet. */
4514 index.build_name_components ();
4515
4516 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4517
4518 /* Now for each symbol name in range, check to see if we have a name
4519 match, and if so, call the MATCH_CALLBACK callback. */
4520
4521 /* The same symbol may appear more than once in the range though.
4522 E.g., if we're looking for symbols that complete "w", and we have
4523 a symbol named "w1::w2", we'll find the two name components for
4524 that same symbol in the range. To be sure we only call the
4525 callback once per symbol, we first collect the symbol name
4526 indexes that matched in a temporary vector and ignore
4527 duplicates. */
4528 std::vector<offset_type> matches;
4529 matches.reserve (std::distance (bounds.first, bounds.second));
4530
4531 for (; bounds.first != bounds.second; ++bounds.first)
4532 {
4533 const char *qualified = index.symbol_name_at (bounds.first->idx);
4534
4535 if (!lookup_name_matcher.matches (qualified)
4536 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4537 continue;
4538
4539 matches.push_back (bounds.first->idx);
4540 }
4541
4542 std::sort (matches.begin (), matches.end ());
4543
4544 /* Finally call the callback, once per match. */
4545 ULONGEST prev = -1;
4546 for (offset_type idx : matches)
4547 {
4548 if (prev != idx)
4549 {
4550 match_callback (idx);
4551 prev = idx;
4552 }
4553 }
4554
4555 /* Above we use a type wider than idx's for 'prev', since 0 and
4556 (offset_type)-1 are both possible values. */
4557 static_assert (sizeof (prev) > sizeof (offset_type), "");
4558 }
4559
4560 #if GDB_SELF_TEST
4561
4562 namespace selftests { namespace dw2_expand_symtabs_matching {
4563
4564 /* A mock .gdb_index/.debug_names-like name index table, enough to
4565 exercise dw2_expand_symtabs_matching_symbol, which works with the
4566 mapped_index_base interface. Builds an index from the symbol list
4567 passed as parameter to the constructor. */
4568 class mock_mapped_index : public mapped_index_base
4569 {
4570 public:
4571 mock_mapped_index (gdb::array_view<const char *> symbols)
4572 : m_symbol_table (symbols)
4573 {}
4574
4575 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4576
4577 /* Return the number of names in the symbol table. */
4578 size_t symbol_name_count () const override
4579 {
4580 return m_symbol_table.size ();
4581 }
4582
4583 /* Get the name of the symbol at IDX in the symbol table. */
4584 const char *symbol_name_at (offset_type idx) const override
4585 {
4586 return m_symbol_table[idx];
4587 }
4588
4589 private:
4590 gdb::array_view<const char *> m_symbol_table;
4591 };
4592
4593 /* Convenience function that converts a NULL pointer to a "<null>"
4594 string, to pass to print routines. */
4595
4596 static const char *
4597 string_or_null (const char *str)
4598 {
4599 return str != NULL ? str : "<null>";
4600 }
4601
4602 /* Check if a lookup_name_info built from
4603 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4604 index. EXPECTED_LIST is the list of expected matches, in expected
4605 matching order. If no match expected, then an empty list is
4606 specified. Returns true on success. On failure prints a warning
4607 indicating the file:line that failed, and returns false. */
4608
4609 static bool
4610 check_match (const char *file, int line,
4611 mock_mapped_index &mock_index,
4612 const char *name, symbol_name_match_type match_type,
4613 bool completion_mode,
4614 std::initializer_list<const char *> expected_list)
4615 {
4616 lookup_name_info lookup_name (name, match_type, completion_mode);
4617
4618 bool matched = true;
4619
4620 auto mismatch = [&] (const char *expected_str,
4621 const char *got)
4622 {
4623 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4624 "expected=\"%s\", got=\"%s\"\n"),
4625 file, line,
4626 (match_type == symbol_name_match_type::FULL
4627 ? "FULL" : "WILD"),
4628 name, string_or_null (expected_str), string_or_null (got));
4629 matched = false;
4630 };
4631
4632 auto expected_it = expected_list.begin ();
4633 auto expected_end = expected_list.end ();
4634
4635 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4636 NULL, ALL_DOMAIN,
4637 [&] (offset_type idx)
4638 {
4639 const char *matched_name = mock_index.symbol_name_at (idx);
4640 const char *expected_str
4641 = expected_it == expected_end ? NULL : *expected_it++;
4642
4643 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4644 mismatch (expected_str, matched_name);
4645 });
4646
4647 const char *expected_str
4648 = expected_it == expected_end ? NULL : *expected_it++;
4649 if (expected_str != NULL)
4650 mismatch (expected_str, NULL);
4651
4652 return matched;
4653 }
4654
4655 /* The symbols added to the mock mapped_index for testing (in
4656 canonical form). */
4657 static const char *test_symbols[] = {
4658 "function",
4659 "std::bar",
4660 "std::zfunction",
4661 "std::zfunction2",
4662 "w1::w2",
4663 "ns::foo<char*>",
4664 "ns::foo<int>",
4665 "ns::foo<long>",
4666 "ns2::tmpl<int>::foo2",
4667 "(anonymous namespace)::A::B::C",
4668
4669 /* These are used to check that the increment-last-char in the
4670 matching algorithm for completion doesn't match "t1_fund" when
4671 completing "t1_func". */
4672 "t1_func",
4673 "t1_func1",
4674 "t1_fund",
4675 "t1_fund1",
4676
4677 /* A UTF-8 name with multi-byte sequences to make sure that
4678 cp-name-parser understands this as a single identifier ("função"
4679 is "function" in PT). */
4680 u8"u8função",
4681
4682 /* \377 (0xff) is Latin1 'ÿ'. */
4683 "yfunc\377",
4684
4685 /* \377 (0xff) is Latin1 'ÿ'. */
4686 "\377",
4687 "\377\377123",
4688
4689 /* A name with all sorts of complications. Starts with "z" to make
4690 it easier for the completion tests below. */
4691 #define Z_SYM_NAME \
4692 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4693 "::tuple<(anonymous namespace)::ui*, " \
4694 "std::default_delete<(anonymous namespace)::ui>, void>"
4695
4696 Z_SYM_NAME
4697 };
4698
4699 /* Returns true if the mapped_index_base::find_name_component_bounds
4700 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4701 in completion mode. */
4702
4703 static bool
4704 check_find_bounds_finds (mapped_index_base &index,
4705 const char *search_name,
4706 gdb::array_view<const char *> expected_syms)
4707 {
4708 lookup_name_info lookup_name (search_name,
4709 symbol_name_match_type::FULL, true);
4710
4711 auto bounds = index.find_name_components_bounds (lookup_name);
4712
4713 size_t distance = std::distance (bounds.first, bounds.second);
4714 if (distance != expected_syms.size ())
4715 return false;
4716
4717 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4718 {
4719 auto nc_elem = bounds.first + exp_elem;
4720 const char *qualified = index.symbol_name_at (nc_elem->idx);
4721 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4722 return false;
4723 }
4724
4725 return true;
4726 }
4727
4728 /* Test the lower-level mapped_index::find_name_component_bounds
4729 method. */
4730
4731 static void
4732 test_mapped_index_find_name_component_bounds ()
4733 {
4734 mock_mapped_index mock_index (test_symbols);
4735
4736 mock_index.build_name_components ();
4737
4738 /* Test the lower-level mapped_index::find_name_component_bounds
4739 method in completion mode. */
4740 {
4741 static const char *expected_syms[] = {
4742 "t1_func",
4743 "t1_func1",
4744 };
4745
4746 SELF_CHECK (check_find_bounds_finds (mock_index,
4747 "t1_func", expected_syms));
4748 }
4749
4750 /* Check that the increment-last-char in the name matching algorithm
4751 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4752 {
4753 static const char *expected_syms1[] = {
4754 "\377",
4755 "\377\377123",
4756 };
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "\377", expected_syms1));
4759
4760 static const char *expected_syms2[] = {
4761 "\377\377123",
4762 };
4763 SELF_CHECK (check_find_bounds_finds (mock_index,
4764 "\377\377", expected_syms2));
4765 }
4766 }
4767
4768 /* Test dw2_expand_symtabs_matching_symbol. */
4769
4770 static void
4771 test_dw2_expand_symtabs_matching_symbol ()
4772 {
4773 mock_mapped_index mock_index (test_symbols);
4774
4775 /* We let all tests run until the end even if some fails, for debug
4776 convenience. */
4777 bool any_mismatch = false;
4778
4779 /* Create the expected symbols list (an initializer_list). Needed
4780 because lists have commas, and we need to pass them to CHECK,
4781 which is a macro. */
4782 #define EXPECT(...) { __VA_ARGS__ }
4783
4784 /* Wrapper for check_match that passes down the current
4785 __FILE__/__LINE__. */
4786 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4787 any_mismatch |= !check_match (__FILE__, __LINE__, \
4788 mock_index, \
4789 NAME, MATCH_TYPE, COMPLETION_MODE, \
4790 EXPECTED_LIST)
4791
4792 /* Identity checks. */
4793 for (const char *sym : test_symbols)
4794 {
4795 /* Should be able to match all existing symbols. */
4796 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4797 EXPECT (sym));
4798
4799 /* Should be able to match all existing symbols with
4800 parameters. */
4801 std::string with_params = std::string (sym) + "(int)";
4802 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4803 EXPECT (sym));
4804
4805 /* Should be able to match all existing symbols with
4806 parameters and qualifiers. */
4807 with_params = std::string (sym) + " ( int ) const";
4808 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4809 EXPECT (sym));
4810
4811 /* This should really find sym, but cp-name-parser.y doesn't
4812 know about lvalue/rvalue qualifiers yet. */
4813 with_params = std::string (sym) + " ( int ) &&";
4814 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4815 {});
4816 }
4817
4818 /* Check that the name matching algorithm for completion doesn't get
4819 confused with Latin1 'ÿ' / 0xff. */
4820 {
4821 static const char str[] = "\377";
4822 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4823 EXPECT ("\377", "\377\377123"));
4824 }
4825
4826 /* Check that the increment-last-char in the matching algorithm for
4827 completion doesn't match "t1_fund" when completing "t1_func". */
4828 {
4829 static const char str[] = "t1_func";
4830 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4831 EXPECT ("t1_func", "t1_func1"));
4832 }
4833
4834 /* Check that completion mode works at each prefix of the expected
4835 symbol name. */
4836 {
4837 static const char str[] = "function(int)";
4838 size_t len = strlen (str);
4839 std::string lookup;
4840
4841 for (size_t i = 1; i < len; i++)
4842 {
4843 lookup.assign (str, i);
4844 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4845 EXPECT ("function"));
4846 }
4847 }
4848
4849 /* While "w" is a prefix of both components, the match function
4850 should still only be called once. */
4851 {
4852 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4853 EXPECT ("w1::w2"));
4854 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4855 EXPECT ("w1::w2"));
4856 }
4857
4858 /* Same, with a "complicated" symbol. */
4859 {
4860 static const char str[] = Z_SYM_NAME;
4861 size_t len = strlen (str);
4862 std::string lookup;
4863
4864 for (size_t i = 1; i < len; i++)
4865 {
4866 lookup.assign (str, i);
4867 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4868 EXPECT (Z_SYM_NAME));
4869 }
4870 }
4871
4872 /* In FULL mode, an incomplete symbol doesn't match. */
4873 {
4874 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4875 {});
4876 }
4877
4878 /* A complete symbol with parameters matches any overload, since the
4879 index has no overload info. */
4880 {
4881 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4882 EXPECT ("std::zfunction", "std::zfunction2"));
4883 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 }
4888
4889 /* Check that whitespace is ignored appropriately. A symbol with a
4890 template argument list. */
4891 {
4892 static const char expected[] = "ns::foo<int>";
4893 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4894 EXPECT (expected));
4895 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4896 EXPECT (expected));
4897 }
4898
4899 /* Check that whitespace is ignored appropriately. A symbol with a
4900 template argument list that includes a pointer. */
4901 {
4902 static const char expected[] = "ns::foo<char*>";
4903 /* Try both completion and non-completion modes. */
4904 static const bool completion_mode[2] = {false, true};
4905 for (size_t i = 0; i < 2; i++)
4906 {
4907 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911
4912 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4913 completion_mode[i], EXPECT (expected));
4914 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4915 completion_mode[i], EXPECT (expected));
4916 }
4917 }
4918
4919 {
4920 /* Check method qualifiers are ignored. */
4921 static const char expected[] = "ns::foo<char*>";
4922 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4923 symbol_name_match_type::FULL, true, EXPECT (expected));
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("foo < char * > ( int ) const",
4927 symbol_name_match_type::WILD, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) &&",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 }
4931
4932 /* Test lookup names that don't match anything. */
4933 {
4934 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4935 {});
4936
4937 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4938 {});
4939 }
4940
4941 /* Some wild matching tests, exercising "(anonymous namespace)",
4942 which should not be confused with a parameter list. */
4943 {
4944 static const char *syms[] = {
4945 "A::B::C",
4946 "B::C",
4947 "C",
4948 "A :: B :: C ( int )",
4949 "B :: C ( int )",
4950 "C ( int )",
4951 };
4952
4953 for (const char *s : syms)
4954 {
4955 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4956 EXPECT ("(anonymous namespace)::A::B::C"));
4957 }
4958 }
4959
4960 {
4961 static const char expected[] = "ns2::tmpl<int>::foo2";
4962 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4963 EXPECT (expected));
4964 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 }
4967
4968 SELF_CHECK (!any_mismatch);
4969
4970 #undef EXPECT
4971 #undef CHECK_MATCH
4972 }
4973
4974 static void
4975 run_test ()
4976 {
4977 test_mapped_index_find_name_component_bounds ();
4978 test_dw2_expand_symtabs_matching_symbol ();
4979 }
4980
4981 }} // namespace selftests::dw2_expand_symtabs_matching
4982
4983 #endif /* GDB_SELF_TEST */
4984
4985 /* If FILE_MATCHER is NULL or if PER_CU has
4986 dwarf2_per_cu_quick_data::MARK set (see
4987 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4988 EXPANSION_NOTIFY on it. */
4989
4990 static void
4991 dw2_expand_symtabs_matching_one
4992 (struct dwarf2_per_cu_data *per_cu,
4993 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4994 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4995 {
4996 if (file_matcher == NULL || per_cu->v.quick->mark)
4997 {
4998 bool symtab_was_null
4999 = (per_cu->v.quick->compunit_symtab == NULL);
5000
5001 dw2_instantiate_symtab (per_cu, false);
5002
5003 if (expansion_notify != NULL
5004 && symtab_was_null
5005 && per_cu->v.quick->compunit_symtab != NULL)
5006 expansion_notify (per_cu->v.quick->compunit_symtab);
5007 }
5008 }
5009
5010 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5011 matched, to expand corresponding CUs that were marked. IDX is the
5012 index of the symbol name that matched. */
5013
5014 static void
5015 dw2_expand_marked_cus
5016 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5017 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5018 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5019 search_domain kind)
5020 {
5021 offset_type *vec, vec_len, vec_idx;
5022 bool global_seen = false;
5023 mapped_index &index = *dwarf2_per_objfile->index_table;
5024
5025 vec = (offset_type *) (index.constant_pool
5026 + MAYBE_SWAP (index.symbol_table[idx].vec));
5027 vec_len = MAYBE_SWAP (vec[0]);
5028 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5029 {
5030 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5031 /* This value is only valid for index versions >= 7. */
5032 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5033 gdb_index_symbol_kind symbol_kind =
5034 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5035 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5036 /* Only check the symbol attributes if they're present.
5037 Indices prior to version 7 don't record them,
5038 and indices >= 7 may elide them for certain symbols
5039 (gold does this). */
5040 int attrs_valid =
5041 (index.version >= 7
5042 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5043
5044 /* Work around gold/15646. */
5045 if (attrs_valid)
5046 {
5047 if (!is_static && global_seen)
5048 continue;
5049 if (!is_static)
5050 global_seen = true;
5051 }
5052
5053 /* Only check the symbol's kind if it has one. */
5054 if (attrs_valid)
5055 {
5056 switch (kind)
5057 {
5058 case VARIABLES_DOMAIN:
5059 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5060 continue;
5061 break;
5062 case FUNCTIONS_DOMAIN:
5063 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5064 continue;
5065 break;
5066 case TYPES_DOMAIN:
5067 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5068 continue;
5069 break;
5070 default:
5071 break;
5072 }
5073 }
5074
5075 /* Don't crash on bad data. */
5076 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5077 + dwarf2_per_objfile->all_type_units.size ()))
5078 {
5079 complaint (_(".gdb_index entry has bad CU index"
5080 " [in module %s]"),
5081 objfile_name (dwarf2_per_objfile->objfile));
5082 continue;
5083 }
5084
5085 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5086 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5087 expansion_notify);
5088 }
5089 }
5090
5091 /* If FILE_MATCHER is non-NULL, set all the
5092 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5093 that match FILE_MATCHER. */
5094
5095 static void
5096 dw_expand_symtabs_matching_file_matcher
5097 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5098 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5099 {
5100 if (file_matcher == NULL)
5101 return;
5102
5103 objfile *const objfile = dwarf2_per_objfile->objfile;
5104
5105 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5106 htab_eq_pointer,
5107 NULL, xcalloc, xfree));
5108 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111
5112 /* The rule is CUs specify all the files, including those used by
5113 any TU, so there's no need to scan TUs here. */
5114
5115 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5116 {
5117 QUIT;
5118
5119 per_cu->v.quick->mark = 0;
5120
5121 /* We only need to look at symtabs not already expanded. */
5122 if (per_cu->v.quick->compunit_symtab)
5123 continue;
5124
5125 quick_file_names *file_data = dw2_get_file_names (per_cu);
5126 if (file_data == NULL)
5127 continue;
5128
5129 if (htab_find (visited_not_found.get (), file_data) != NULL)
5130 continue;
5131 else if (htab_find (visited_found.get (), file_data) != NULL)
5132 {
5133 per_cu->v.quick->mark = 1;
5134 continue;
5135 }
5136
5137 for (int j = 0; j < file_data->num_file_names; ++j)
5138 {
5139 const char *this_real_name;
5140
5141 if (file_matcher (file_data->file_names[j], false))
5142 {
5143 per_cu->v.quick->mark = 1;
5144 break;
5145 }
5146
5147 /* Before we invoke realpath, which can get expensive when many
5148 files are involved, do a quick comparison of the basenames. */
5149 if (!basenames_may_differ
5150 && !file_matcher (lbasename (file_data->file_names[j]),
5151 true))
5152 continue;
5153
5154 this_real_name = dw2_get_real_path (objfile, file_data, j);
5155 if (file_matcher (this_real_name, false))
5156 {
5157 per_cu->v.quick->mark = 1;
5158 break;
5159 }
5160 }
5161
5162 void **slot = htab_find_slot (per_cu->v.quick->mark
5163 ? visited_found.get ()
5164 : visited_not_found.get (),
5165 file_data, INSERT);
5166 *slot = file_data;
5167 }
5168 }
5169
5170 static void
5171 dw2_expand_symtabs_matching
5172 (struct objfile *objfile,
5173 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5174 const lookup_name_info &lookup_name,
5175 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5176 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5177 enum search_domain kind)
5178 {
5179 struct dwarf2_per_objfile *dwarf2_per_objfile
5180 = get_dwarf2_per_objfile (objfile);
5181
5182 /* index_table is NULL if OBJF_READNOW. */
5183 if (!dwarf2_per_objfile->index_table)
5184 return;
5185
5186 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5187
5188 mapped_index &index = *dwarf2_per_objfile->index_table;
5189
5190 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5191 symbol_matcher,
5192 kind, [&] (offset_type idx)
5193 {
5194 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5195 expansion_notify, kind);
5196 });
5197 }
5198
5199 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5200 symtab. */
5201
5202 static struct compunit_symtab *
5203 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5204 CORE_ADDR pc)
5205 {
5206 int i;
5207
5208 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5209 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5210 return cust;
5211
5212 if (cust->includes == NULL)
5213 return NULL;
5214
5215 for (i = 0; cust->includes[i]; ++i)
5216 {
5217 struct compunit_symtab *s = cust->includes[i];
5218
5219 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5220 if (s != NULL)
5221 return s;
5222 }
5223
5224 return NULL;
5225 }
5226
5227 static struct compunit_symtab *
5228 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5229 struct bound_minimal_symbol msymbol,
5230 CORE_ADDR pc,
5231 struct obj_section *section,
5232 int warn_if_readin)
5233 {
5234 struct dwarf2_per_cu_data *data;
5235 struct compunit_symtab *result;
5236
5237 if (!objfile->psymtabs_addrmap)
5238 return NULL;
5239
5240 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5241 pc);
5242 if (!data)
5243 return NULL;
5244
5245 if (warn_if_readin && data->v.quick->compunit_symtab)
5246 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5247 paddress (get_objfile_arch (objfile), pc));
5248
5249 result
5250 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5251 false),
5252 pc);
5253 gdb_assert (result != NULL);
5254 return result;
5255 }
5256
5257 static void
5258 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5259 void *data, int need_fullname)
5260 {
5261 struct dwarf2_per_objfile *dwarf2_per_objfile
5262 = get_dwarf2_per_objfile (objfile);
5263
5264 if (!dwarf2_per_objfile->filenames_cache)
5265 {
5266 dwarf2_per_objfile->filenames_cache.emplace ();
5267
5268 htab_up visited (htab_create_alloc (10,
5269 htab_hash_pointer, htab_eq_pointer,
5270 NULL, xcalloc, xfree));
5271
5272 /* The rule is CUs specify all the files, including those used
5273 by any TU, so there's no need to scan TUs here. We can
5274 ignore file names coming from already-expanded CUs. */
5275
5276 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5277 {
5278 if (per_cu->v.quick->compunit_symtab)
5279 {
5280 void **slot = htab_find_slot (visited.get (),
5281 per_cu->v.quick->file_names,
5282 INSERT);
5283
5284 *slot = per_cu->v.quick->file_names;
5285 }
5286 }
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 /* We only need to look at symtabs not already expanded. */
5291 if (per_cu->v.quick->compunit_symtab)
5292 continue;
5293
5294 quick_file_names *file_data = dw2_get_file_names (per_cu);
5295 if (file_data == NULL)
5296 continue;
5297
5298 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5299 if (*slot)
5300 {
5301 /* Already visited. */
5302 continue;
5303 }
5304 *slot = file_data;
5305
5306 for (int j = 0; j < file_data->num_file_names; ++j)
5307 {
5308 const char *filename = file_data->file_names[j];
5309 dwarf2_per_objfile->filenames_cache->seen (filename);
5310 }
5311 }
5312 }
5313
5314 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5315 {
5316 gdb::unique_xmalloc_ptr<char> this_real_name;
5317
5318 if (need_fullname)
5319 this_real_name = gdb_realpath (filename);
5320 (*fun) (filename, this_real_name.get (), data);
5321 });
5322 }
5323
5324 static int
5325 dw2_has_symbols (struct objfile *objfile)
5326 {
5327 return 1;
5328 }
5329
5330 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5331 {
5332 dw2_has_symbols,
5333 dw2_find_last_source_symtab,
5334 dw2_forget_cached_source_info,
5335 dw2_map_symtabs_matching_filename,
5336 dw2_lookup_symbol,
5337 dw2_print_stats,
5338 dw2_dump,
5339 dw2_relocate,
5340 dw2_expand_symtabs_for_function,
5341 dw2_expand_all_symtabs,
5342 dw2_expand_symtabs_with_fullname,
5343 dw2_map_matching_symbols,
5344 dw2_expand_symtabs_matching,
5345 dw2_find_pc_sect_compunit_symtab,
5346 NULL,
5347 dw2_map_symbol_filenames
5348 };
5349
5350 /* DWARF-5 debug_names reader. */
5351
5352 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5353 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5354
5355 /* A helper function that reads the .debug_names section in SECTION
5356 and fills in MAP. FILENAME is the name of the file containing the
5357 section; it is used for error reporting.
5358
5359 Returns true if all went well, false otherwise. */
5360
5361 static bool
5362 read_debug_names_from_section (struct objfile *objfile,
5363 const char *filename,
5364 struct dwarf2_section_info *section,
5365 mapped_debug_names &map)
5366 {
5367 if (dwarf2_section_empty_p (section))
5368 return false;
5369
5370 /* Older elfutils strip versions could keep the section in the main
5371 executable while splitting it for the separate debug info file. */
5372 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5373 return false;
5374
5375 dwarf2_read_section (objfile, section);
5376
5377 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5378
5379 const gdb_byte *addr = section->buffer;
5380
5381 bfd *const abfd = get_section_bfd_owner (section);
5382
5383 unsigned int bytes_read;
5384 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5385 addr += bytes_read;
5386
5387 map.dwarf5_is_dwarf64 = bytes_read != 4;
5388 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5389 if (bytes_read + length != section->size)
5390 {
5391 /* There may be multiple per-CU indices. */
5392 warning (_("Section .debug_names in %s length %s does not match "
5393 "section length %s, ignoring .debug_names."),
5394 filename, plongest (bytes_read + length),
5395 pulongest (section->size));
5396 return false;
5397 }
5398
5399 /* The version number. */
5400 uint16_t version = read_2_bytes (abfd, addr);
5401 addr += 2;
5402 if (version != 5)
5403 {
5404 warning (_("Section .debug_names in %s has unsupported version %d, "
5405 "ignoring .debug_names."),
5406 filename, version);
5407 return false;
5408 }
5409
5410 /* Padding. */
5411 uint16_t padding = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (padding != 0)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported padding %d, "
5416 "ignoring .debug_names."),
5417 filename, padding);
5418 return false;
5419 }
5420
5421 /* comp_unit_count - The number of CUs in the CU list. */
5422 map.cu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* local_type_unit_count - The number of TUs in the local TU
5426 list. */
5427 map.tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429
5430 /* foreign_type_unit_count - The number of TUs in the foreign TU
5431 list. */
5432 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434 if (foreign_tu_count != 0)
5435 {
5436 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5437 "ignoring .debug_names."),
5438 filename, static_cast<unsigned long> (foreign_tu_count));
5439 return false;
5440 }
5441
5442 /* bucket_count - The number of hash buckets in the hash lookup
5443 table. */
5444 map.bucket_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* name_count - The number of unique names in the index. */
5448 map.name_count = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* abbrev_table_size - The size in bytes of the abbreviations
5452 table. */
5453 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455
5456 /* augmentation_string_size - The size in bytes of the augmentation
5457 string. This value is rounded up to a multiple of 4. */
5458 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5459 addr += 4;
5460 map.augmentation_is_gdb = ((augmentation_string_size
5461 == sizeof (dwarf5_augmentation))
5462 && memcmp (addr, dwarf5_augmentation,
5463 sizeof (dwarf5_augmentation)) == 0);
5464 augmentation_string_size += (-augmentation_string_size) & 3;
5465 addr += augmentation_string_size;
5466
5467 /* List of CUs */
5468 map.cu_table_reordered = addr;
5469 addr += map.cu_count * map.offset_size;
5470
5471 /* List of Local TUs */
5472 map.tu_table_reordered = addr;
5473 addr += map.tu_count * map.offset_size;
5474
5475 /* Hash Lookup Table */
5476 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5477 addr += map.bucket_count * 4;
5478 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.name_count * 4;
5480
5481 /* Name Table */
5482 map.name_table_string_offs_reordered = addr;
5483 addr += map.name_count * map.offset_size;
5484 map.name_table_entry_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486
5487 const gdb_byte *abbrev_table_start = addr;
5488 for (;;)
5489 {
5490 unsigned int bytes_read;
5491 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5492 addr += bytes_read;
5493 if (index_num == 0)
5494 break;
5495
5496 const auto insertpair
5497 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5498 if (!insertpair.second)
5499 {
5500 warning (_("Section .debug_names in %s has duplicate index %s, "
5501 "ignoring .debug_names."),
5502 filename, pulongest (index_num));
5503 return false;
5504 }
5505 mapped_debug_names::index_val &indexval = insertpair.first->second;
5506 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5507 addr += bytes_read;
5508
5509 for (;;)
5510 {
5511 mapped_debug_names::index_val::attr attr;
5512 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5513 addr += bytes_read;
5514 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 if (attr.form == DW_FORM_implicit_const)
5517 {
5518 attr.implicit_const = read_signed_leb128 (abfd, addr,
5519 &bytes_read);
5520 addr += bytes_read;
5521 }
5522 if (attr.dw_idx == 0 && attr.form == 0)
5523 break;
5524 indexval.attr_vec.push_back (std::move (attr));
5525 }
5526 }
5527 if (addr != abbrev_table_start + abbrev_table_size)
5528 {
5529 warning (_("Section .debug_names in %s has abbreviation_table "
5530 "of size %zu vs. written as %u, ignoring .debug_names."),
5531 filename, addr - abbrev_table_start, abbrev_table_size);
5532 return false;
5533 }
5534 map.entry_pool = addr;
5535
5536 return true;
5537 }
5538
5539 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5540 list. */
5541
5542 static void
5543 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5544 const mapped_debug_names &map,
5545 dwarf2_section_info &section,
5546 bool is_dwz)
5547 {
5548 sect_offset sect_off_prev;
5549 for (uint32_t i = 0; i <= map.cu_count; ++i)
5550 {
5551 sect_offset sect_off_next;
5552 if (i < map.cu_count)
5553 {
5554 sect_off_next
5555 = (sect_offset) (extract_unsigned_integer
5556 (map.cu_table_reordered + i * map.offset_size,
5557 map.offset_size,
5558 map.dwarf5_byte_order));
5559 }
5560 else
5561 sect_off_next = (sect_offset) section.size;
5562 if (i >= 1)
5563 {
5564 const ULONGEST length = sect_off_next - sect_off_prev;
5565 dwarf2_per_cu_data *per_cu
5566 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5567 sect_off_prev, length);
5568 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5569 }
5570 sect_off_prev = sect_off_next;
5571 }
5572 }
5573
5574 /* Read the CU list from the mapped index, and use it to create all
5575 the CU objects for this dwarf2_per_objfile. */
5576
5577 static void
5578 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5579 const mapped_debug_names &map,
5580 const mapped_debug_names &dwz_map)
5581 {
5582 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5583 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5584
5585 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5586 dwarf2_per_objfile->info,
5587 false /* is_dwz */);
5588
5589 if (dwz_map.cu_count == 0)
5590 return;
5591
5592 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5593 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5594 true /* is_dwz */);
5595 }
5596
5597 /* Read .debug_names. If everything went ok, initialize the "quick"
5598 elements of all the CUs and return true. Otherwise, return false. */
5599
5600 static bool
5601 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5602 {
5603 std::unique_ptr<mapped_debug_names> map
5604 (new mapped_debug_names (dwarf2_per_objfile));
5605 mapped_debug_names dwz_map (dwarf2_per_objfile);
5606 struct objfile *objfile = dwarf2_per_objfile->objfile;
5607
5608 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5609 &dwarf2_per_objfile->debug_names,
5610 *map))
5611 return false;
5612
5613 /* Don't use the index if it's empty. */
5614 if (map->name_count == 0)
5615 return false;
5616
5617 /* If there is a .dwz file, read it so we can get its CU list as
5618 well. */
5619 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5620 if (dwz != NULL)
5621 {
5622 if (!read_debug_names_from_section (objfile,
5623 bfd_get_filename (dwz->dwz_bfd),
5624 &dwz->debug_names, dwz_map))
5625 {
5626 warning (_("could not read '.debug_names' section from %s; skipping"),
5627 bfd_get_filename (dwz->dwz_bfd));
5628 return false;
5629 }
5630 }
5631
5632 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5633
5634 if (map->tu_count != 0)
5635 {
5636 /* We can only handle a single .debug_types when we have an
5637 index. */
5638 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5639 return false;
5640
5641 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5642 dwarf2_per_objfile->types, 0);
5643
5644 create_signatured_type_table_from_debug_names
5645 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5646 }
5647
5648 create_addrmap_from_aranges (dwarf2_per_objfile,
5649 &dwarf2_per_objfile->debug_aranges);
5650
5651 dwarf2_per_objfile->debug_names_table = std::move (map);
5652 dwarf2_per_objfile->using_index = 1;
5653 dwarf2_per_objfile->quick_file_names_table =
5654 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5655
5656 return true;
5657 }
5658
5659 /* Type used to manage iterating over all CUs looking for a symbol for
5660 .debug_names. */
5661
5662 class dw2_debug_names_iterator
5663 {
5664 public:
5665 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5666 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5667 dw2_debug_names_iterator (const mapped_debug_names &map,
5668 bool want_specific_block,
5669 block_enum block_index, domain_enum domain,
5670 const char *name)
5671 : m_map (map), m_want_specific_block (want_specific_block),
5672 m_block_index (block_index), m_domain (domain),
5673 m_addr (find_vec_in_debug_names (map, name))
5674 {}
5675
5676 dw2_debug_names_iterator (const mapped_debug_names &map,
5677 search_domain search, uint32_t namei)
5678 : m_map (map),
5679 m_search (search),
5680 m_addr (find_vec_in_debug_names (map, namei))
5681 {}
5682
5683 /* Return the next matching CU or NULL if there are no more. */
5684 dwarf2_per_cu_data *next ();
5685
5686 private:
5687 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5688 const char *name);
5689 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5690 uint32_t namei);
5691
5692 /* The internalized form of .debug_names. */
5693 const mapped_debug_names &m_map;
5694
5695 /* If true, only look for symbols that match BLOCK_INDEX. */
5696 const bool m_want_specific_block = false;
5697
5698 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5699 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5700 value. */
5701 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5702
5703 /* The kind of symbol we're looking for. */
5704 const domain_enum m_domain = UNDEF_DOMAIN;
5705 const search_domain m_search = ALL_DOMAIN;
5706
5707 /* The list of CUs from the index entry of the symbol, or NULL if
5708 not found. */
5709 const gdb_byte *m_addr;
5710 };
5711
5712 const char *
5713 mapped_debug_names::namei_to_name (uint32_t namei) const
5714 {
5715 const ULONGEST namei_string_offs
5716 = extract_unsigned_integer ((name_table_string_offs_reordered
5717 + namei * offset_size),
5718 offset_size,
5719 dwarf5_byte_order);
5720 return read_indirect_string_at_offset
5721 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5722 }
5723
5724 /* Find a slot in .debug_names for the object named NAME. If NAME is
5725 found, return pointer to its pool data. If NAME cannot be found,
5726 return NULL. */
5727
5728 const gdb_byte *
5729 dw2_debug_names_iterator::find_vec_in_debug_names
5730 (const mapped_debug_names &map, const char *name)
5731 {
5732 int (*cmp) (const char *, const char *);
5733
5734 if (current_language->la_language == language_cplus
5735 || current_language->la_language == language_fortran
5736 || current_language->la_language == language_d)
5737 {
5738 /* NAME is already canonical. Drop any qualifiers as
5739 .debug_names does not contain any. */
5740
5741 if (strchr (name, '(') != NULL)
5742 {
5743 gdb::unique_xmalloc_ptr<char> without_params
5744 = cp_remove_params (name);
5745
5746 if (without_params != NULL)
5747 {
5748 name = without_params.get();
5749 }
5750 }
5751 }
5752
5753 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5754
5755 const uint32_t full_hash = dwarf5_djb_hash (name);
5756 uint32_t namei
5757 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5758 (map.bucket_table_reordered
5759 + (full_hash % map.bucket_count)), 4,
5760 map.dwarf5_byte_order);
5761 if (namei == 0)
5762 return NULL;
5763 --namei;
5764 if (namei >= map.name_count)
5765 {
5766 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5767 "[in module %s]"),
5768 namei, map.name_count,
5769 objfile_name (map.dwarf2_per_objfile->objfile));
5770 return NULL;
5771 }
5772
5773 for (;;)
5774 {
5775 const uint32_t namei_full_hash
5776 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5777 (map.hash_table_reordered + namei), 4,
5778 map.dwarf5_byte_order);
5779 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5780 return NULL;
5781
5782 if (full_hash == namei_full_hash)
5783 {
5784 const char *const namei_string = map.namei_to_name (namei);
5785
5786 #if 0 /* An expensive sanity check. */
5787 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5788 {
5789 complaint (_("Wrong .debug_names hash for string at index %u "
5790 "[in module %s]"),
5791 namei, objfile_name (dwarf2_per_objfile->objfile));
5792 return NULL;
5793 }
5794 #endif
5795
5796 if (cmp (namei_string, name) == 0)
5797 {
5798 const ULONGEST namei_entry_offs
5799 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5800 + namei * map.offset_size),
5801 map.offset_size, map.dwarf5_byte_order);
5802 return map.entry_pool + namei_entry_offs;
5803 }
5804 }
5805
5806 ++namei;
5807 if (namei >= map.name_count)
5808 return NULL;
5809 }
5810 }
5811
5812 const gdb_byte *
5813 dw2_debug_names_iterator::find_vec_in_debug_names
5814 (const mapped_debug_names &map, uint32_t namei)
5815 {
5816 if (namei >= map.name_count)
5817 {
5818 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5819 "[in module %s]"),
5820 namei, map.name_count,
5821 objfile_name (map.dwarf2_per_objfile->objfile));
5822 return NULL;
5823 }
5824
5825 const ULONGEST namei_entry_offs
5826 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5827 + namei * map.offset_size),
5828 map.offset_size, map.dwarf5_byte_order);
5829 return map.entry_pool + namei_entry_offs;
5830 }
5831
5832 /* See dw2_debug_names_iterator. */
5833
5834 dwarf2_per_cu_data *
5835 dw2_debug_names_iterator::next ()
5836 {
5837 if (m_addr == NULL)
5838 return NULL;
5839
5840 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5841 struct objfile *objfile = dwarf2_per_objfile->objfile;
5842 bfd *const abfd = objfile->obfd;
5843
5844 again:
5845
5846 unsigned int bytes_read;
5847 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5848 m_addr += bytes_read;
5849 if (abbrev == 0)
5850 return NULL;
5851
5852 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5853 if (indexval_it == m_map.abbrev_map.cend ())
5854 {
5855 complaint (_("Wrong .debug_names undefined abbrev code %s "
5856 "[in module %s]"),
5857 pulongest (abbrev), objfile_name (objfile));
5858 return NULL;
5859 }
5860 const mapped_debug_names::index_val &indexval = indexval_it->second;
5861 bool have_is_static = false;
5862 bool is_static;
5863 dwarf2_per_cu_data *per_cu = NULL;
5864 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5865 {
5866 ULONGEST ull;
5867 switch (attr.form)
5868 {
5869 case DW_FORM_implicit_const:
5870 ull = attr.implicit_const;
5871 break;
5872 case DW_FORM_flag_present:
5873 ull = 1;
5874 break;
5875 case DW_FORM_udata:
5876 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5877 m_addr += bytes_read;
5878 break;
5879 default:
5880 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5881 dwarf_form_name (attr.form),
5882 objfile_name (objfile));
5883 return NULL;
5884 }
5885 switch (attr.dw_idx)
5886 {
5887 case DW_IDX_compile_unit:
5888 /* Don't crash on bad data. */
5889 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5890 {
5891 complaint (_(".debug_names entry has bad CU index %s"
5892 " [in module %s]"),
5893 pulongest (ull),
5894 objfile_name (dwarf2_per_objfile->objfile));
5895 continue;
5896 }
5897 per_cu = dwarf2_per_objfile->get_cutu (ull);
5898 break;
5899 case DW_IDX_type_unit:
5900 /* Don't crash on bad data. */
5901 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5902 {
5903 complaint (_(".debug_names entry has bad TU index %s"
5904 " [in module %s]"),
5905 pulongest (ull),
5906 objfile_name (dwarf2_per_objfile->objfile));
5907 continue;
5908 }
5909 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5910 break;
5911 case DW_IDX_GNU_internal:
5912 if (!m_map.augmentation_is_gdb)
5913 break;
5914 have_is_static = true;
5915 is_static = true;
5916 break;
5917 case DW_IDX_GNU_external:
5918 if (!m_map.augmentation_is_gdb)
5919 break;
5920 have_is_static = true;
5921 is_static = false;
5922 break;
5923 }
5924 }
5925
5926 /* Skip if already read in. */
5927 if (per_cu->v.quick->compunit_symtab)
5928 goto again;
5929
5930 /* Check static vs global. */
5931 if (have_is_static)
5932 {
5933 const bool want_static = m_block_index != GLOBAL_BLOCK;
5934 if (m_want_specific_block && want_static != is_static)
5935 goto again;
5936 }
5937
5938 /* Match dw2_symtab_iter_next, symbol_kind
5939 and debug_names::psymbol_tag. */
5940 switch (m_domain)
5941 {
5942 case VAR_DOMAIN:
5943 switch (indexval.dwarf_tag)
5944 {
5945 case DW_TAG_variable:
5946 case DW_TAG_subprogram:
5947 /* Some types are also in VAR_DOMAIN. */
5948 case DW_TAG_typedef:
5949 case DW_TAG_structure_type:
5950 break;
5951 default:
5952 goto again;
5953 }
5954 break;
5955 case STRUCT_DOMAIN:
5956 switch (indexval.dwarf_tag)
5957 {
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case LABEL_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case 0:
5969 case DW_TAG_variable:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 default:
5976 break;
5977 }
5978
5979 /* Match dw2_expand_symtabs_matching, symbol_kind and
5980 debug_names::psymbol_tag. */
5981 switch (m_search)
5982 {
5983 case VARIABLES_DOMAIN:
5984 switch (indexval.dwarf_tag)
5985 {
5986 case DW_TAG_variable:
5987 break;
5988 default:
5989 goto again;
5990 }
5991 break;
5992 case FUNCTIONS_DOMAIN:
5993 switch (indexval.dwarf_tag)
5994 {
5995 case DW_TAG_subprogram:
5996 break;
5997 default:
5998 goto again;
5999 }
6000 break;
6001 case TYPES_DOMAIN:
6002 switch (indexval.dwarf_tag)
6003 {
6004 case DW_TAG_typedef:
6005 case DW_TAG_structure_type:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 default:
6012 break;
6013 }
6014
6015 return per_cu;
6016 }
6017
6018 static struct compunit_symtab *
6019 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6020 const char *name, domain_enum domain)
6021 {
6022 const block_enum block_index = static_cast<block_enum> (block_index_int);
6023 struct dwarf2_per_objfile *dwarf2_per_objfile
6024 = get_dwarf2_per_objfile (objfile);
6025
6026 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6027 if (!mapp)
6028 {
6029 /* index is NULL if OBJF_READNOW. */
6030 return NULL;
6031 }
6032 const auto &map = *mapp;
6033
6034 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6035 block_index, domain, name);
6036
6037 struct compunit_symtab *stab_best = NULL;
6038 struct dwarf2_per_cu_data *per_cu;
6039 while ((per_cu = iter.next ()) != NULL)
6040 {
6041 struct symbol *sym, *with_opaque = NULL;
6042 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6043 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6044 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6045
6046 sym = block_find_symbol (block, name, domain,
6047 block_find_non_opaque_type_preferred,
6048 &with_opaque);
6049
6050 /* Some caution must be observed with overloaded functions and
6051 methods, since the index will not contain any overload
6052 information (but NAME might contain it). */
6053
6054 if (sym != NULL
6055 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6056 return stab;
6057 if (with_opaque != NULL
6058 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6059 stab_best = stab;
6060
6061 /* Keep looking through other CUs. */
6062 }
6063
6064 return stab_best;
6065 }
6066
6067 /* This dumps minimal information about .debug_names. It is called
6068 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6069 uses this to verify that .debug_names has been loaded. */
6070
6071 static void
6072 dw2_debug_names_dump (struct objfile *objfile)
6073 {
6074 struct dwarf2_per_objfile *dwarf2_per_objfile
6075 = get_dwarf2_per_objfile (objfile);
6076
6077 gdb_assert (dwarf2_per_objfile->using_index);
6078 printf_filtered (".debug_names:");
6079 if (dwarf2_per_objfile->debug_names_table)
6080 printf_filtered (" exists\n");
6081 else
6082 printf_filtered (" faked for \"readnow\"\n");
6083 printf_filtered ("\n");
6084 }
6085
6086 static void
6087 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6088 const char *func_name)
6089 {
6090 struct dwarf2_per_objfile *dwarf2_per_objfile
6091 = get_dwarf2_per_objfile (objfile);
6092
6093 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6094 if (dwarf2_per_objfile->debug_names_table)
6095 {
6096 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6097
6098 /* Note: It doesn't matter what we pass for block_index here. */
6099 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6100 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6101
6102 struct dwarf2_per_cu_data *per_cu;
6103 while ((per_cu = iter.next ()) != NULL)
6104 dw2_instantiate_symtab (per_cu, false);
6105 }
6106 }
6107
6108 static void
6109 dw2_debug_names_expand_symtabs_matching
6110 (struct objfile *objfile,
6111 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6112 const lookup_name_info &lookup_name,
6113 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6114 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6115 enum search_domain kind)
6116 {
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6119
6120 /* debug_names_table is NULL if OBJF_READNOW. */
6121 if (!dwarf2_per_objfile->debug_names_table)
6122 return;
6123
6124 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6125
6126 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6127
6128 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6129 symbol_matcher,
6130 kind, [&] (offset_type namei)
6131 {
6132 /* The name was matched, now expand corresponding CUs that were
6133 marked. */
6134 dw2_debug_names_iterator iter (map, kind, namei);
6135
6136 struct dwarf2_per_cu_data *per_cu;
6137 while ((per_cu = iter.next ()) != NULL)
6138 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6139 expansion_notify);
6140 });
6141 }
6142
6143 const struct quick_symbol_functions dwarf2_debug_names_functions =
6144 {
6145 dw2_has_symbols,
6146 dw2_find_last_source_symtab,
6147 dw2_forget_cached_source_info,
6148 dw2_map_symtabs_matching_filename,
6149 dw2_debug_names_lookup_symbol,
6150 dw2_print_stats,
6151 dw2_debug_names_dump,
6152 dw2_relocate,
6153 dw2_debug_names_expand_symtabs_for_function,
6154 dw2_expand_all_symtabs,
6155 dw2_expand_symtabs_with_fullname,
6156 dw2_map_matching_symbols,
6157 dw2_debug_names_expand_symtabs_matching,
6158 dw2_find_pc_sect_compunit_symtab,
6159 NULL,
6160 dw2_map_symbol_filenames
6161 };
6162
6163 /* See symfile.h. */
6164
6165 bool
6166 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6167 {
6168 struct dwarf2_per_objfile *dwarf2_per_objfile
6169 = get_dwarf2_per_objfile (objfile);
6170
6171 /* If we're about to read full symbols, don't bother with the
6172 indices. In this case we also don't care if some other debug
6173 format is making psymtabs, because they are all about to be
6174 expanded anyway. */
6175 if ((objfile->flags & OBJF_READNOW))
6176 {
6177 dwarf2_per_objfile->using_index = 1;
6178 create_all_comp_units (dwarf2_per_objfile);
6179 create_all_type_units (dwarf2_per_objfile);
6180 dwarf2_per_objfile->quick_file_names_table
6181 = create_quick_file_names_table
6182 (dwarf2_per_objfile->all_comp_units.size ());
6183
6184 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6185 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6186 {
6187 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6188
6189 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6190 struct dwarf2_per_cu_quick_data);
6191 }
6192
6193 /* Return 1 so that gdb sees the "quick" functions. However,
6194 these functions will be no-ops because we will have expanded
6195 all symtabs. */
6196 *index_kind = dw_index_kind::GDB_INDEX;
6197 return true;
6198 }
6199
6200 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6201 {
6202 *index_kind = dw_index_kind::DEBUG_NAMES;
6203 return true;
6204 }
6205
6206 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6207 {
6208 *index_kind = dw_index_kind::GDB_INDEX;
6209 return true;
6210 }
6211
6212 return false;
6213 }
6214
6215 \f
6216
6217 /* Build a partial symbol table. */
6218
6219 void
6220 dwarf2_build_psymtabs (struct objfile *objfile)
6221 {
6222 struct dwarf2_per_objfile *dwarf2_per_objfile
6223 = get_dwarf2_per_objfile (objfile);
6224
6225 if (objfile->global_psymbols.capacity () == 0
6226 && objfile->static_psymbols.capacity () == 0)
6227 init_psymbol_list (objfile, 1024);
6228
6229 TRY
6230 {
6231 /* This isn't really ideal: all the data we allocate on the
6232 objfile's obstack is still uselessly kept around. However,
6233 freeing it seems unsafe. */
6234 psymtab_discarder psymtabs (objfile);
6235 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6236 psymtabs.keep ();
6237 }
6238 CATCH (except, RETURN_MASK_ERROR)
6239 {
6240 exception_print (gdb_stderr, except);
6241 }
6242 END_CATCH
6243 }
6244
6245 /* Return the total length of the CU described by HEADER. */
6246
6247 static unsigned int
6248 get_cu_length (const struct comp_unit_head *header)
6249 {
6250 return header->initial_length_size + header->length;
6251 }
6252
6253 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6254
6255 static inline bool
6256 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6257 {
6258 sect_offset bottom = cu_header->sect_off;
6259 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6260
6261 return sect_off >= bottom && sect_off < top;
6262 }
6263
6264 /* Find the base address of the compilation unit for range lists and
6265 location lists. It will normally be specified by DW_AT_low_pc.
6266 In DWARF-3 draft 4, the base address could be overridden by
6267 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6268 compilation units with discontinuous ranges. */
6269
6270 static void
6271 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6272 {
6273 struct attribute *attr;
6274
6275 cu->base_known = 0;
6276 cu->base_address = 0;
6277
6278 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6279 if (attr)
6280 {
6281 cu->base_address = attr_value_as_address (attr);
6282 cu->base_known = 1;
6283 }
6284 else
6285 {
6286 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6287 if (attr)
6288 {
6289 cu->base_address = attr_value_as_address (attr);
6290 cu->base_known = 1;
6291 }
6292 }
6293 }
6294
6295 /* Read in the comp unit header information from the debug_info at info_ptr.
6296 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6297 NOTE: This leaves members offset, first_die_offset to be filled in
6298 by the caller. */
6299
6300 static const gdb_byte *
6301 read_comp_unit_head (struct comp_unit_head *cu_header,
6302 const gdb_byte *info_ptr,
6303 struct dwarf2_section_info *section,
6304 rcuh_kind section_kind)
6305 {
6306 int signed_addr;
6307 unsigned int bytes_read;
6308 const char *filename = get_section_file_name (section);
6309 bfd *abfd = get_section_bfd_owner (section);
6310
6311 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6312 cu_header->initial_length_size = bytes_read;
6313 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6314 info_ptr += bytes_read;
6315 cu_header->version = read_2_bytes (abfd, info_ptr);
6316 if (cu_header->version < 2 || cu_header->version > 5)
6317 error (_("Dwarf Error: wrong version in compilation unit header "
6318 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6319 cu_header->version, filename);
6320 info_ptr += 2;
6321 if (cu_header->version < 5)
6322 switch (section_kind)
6323 {
6324 case rcuh_kind::COMPILE:
6325 cu_header->unit_type = DW_UT_compile;
6326 break;
6327 case rcuh_kind::TYPE:
6328 cu_header->unit_type = DW_UT_type;
6329 break;
6330 default:
6331 internal_error (__FILE__, __LINE__,
6332 _("read_comp_unit_head: invalid section_kind"));
6333 }
6334 else
6335 {
6336 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6337 (read_1_byte (abfd, info_ptr));
6338 info_ptr += 1;
6339 switch (cu_header->unit_type)
6340 {
6341 case DW_UT_compile:
6342 if (section_kind != rcuh_kind::COMPILE)
6343 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6344 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6345 filename);
6346 break;
6347 case DW_UT_type:
6348 section_kind = rcuh_kind::TYPE;
6349 break;
6350 default:
6351 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6352 "(is %d, should be %d or %d) [in module %s]"),
6353 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6354 }
6355
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6357 info_ptr += 1;
6358 }
6359 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6360 cu_header,
6361 &bytes_read);
6362 info_ptr += bytes_read;
6363 if (cu_header->version < 5)
6364 {
6365 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6366 info_ptr += 1;
6367 }
6368 signed_addr = bfd_get_sign_extend_vma (abfd);
6369 if (signed_addr < 0)
6370 internal_error (__FILE__, __LINE__,
6371 _("read_comp_unit_head: dwarf from non elf file"));
6372 cu_header->signed_addr_p = signed_addr;
6373
6374 if (section_kind == rcuh_kind::TYPE)
6375 {
6376 LONGEST type_offset;
6377
6378 cu_header->signature = read_8_bytes (abfd, info_ptr);
6379 info_ptr += 8;
6380
6381 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6382 info_ptr += bytes_read;
6383 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6384 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6385 error (_("Dwarf Error: Too big type_offset in compilation unit "
6386 "header (is %s) [in module %s]"), plongest (type_offset),
6387 filename);
6388 }
6389
6390 return info_ptr;
6391 }
6392
6393 /* Helper function that returns the proper abbrev section for
6394 THIS_CU. */
6395
6396 static struct dwarf2_section_info *
6397 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6398 {
6399 struct dwarf2_section_info *abbrev;
6400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6401
6402 if (this_cu->is_dwz)
6403 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6404 else
6405 abbrev = &dwarf2_per_objfile->abbrev;
6406
6407 return abbrev;
6408 }
6409
6410 /* Subroutine of read_and_check_comp_unit_head and
6411 read_and_check_type_unit_head to simplify them.
6412 Perform various error checking on the header. */
6413
6414 static void
6415 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6416 struct comp_unit_head *header,
6417 struct dwarf2_section_info *section,
6418 struct dwarf2_section_info *abbrev_section)
6419 {
6420 const char *filename = get_section_file_name (section);
6421
6422 if (to_underlying (header->abbrev_sect_off)
6423 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6424 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6425 "(offset %s + 6) [in module %s]"),
6426 sect_offset_str (header->abbrev_sect_off),
6427 sect_offset_str (header->sect_off),
6428 filename);
6429
6430 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6431 avoid potential 32-bit overflow. */
6432 if (((ULONGEST) header->sect_off + get_cu_length (header))
6433 > section->size)
6434 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6435 "(offset %s + 0) [in module %s]"),
6436 header->length, sect_offset_str (header->sect_off),
6437 filename);
6438 }
6439
6440 /* Read in a CU/TU header and perform some basic error checking.
6441 The contents of the header are stored in HEADER.
6442 The result is a pointer to the start of the first DIE. */
6443
6444 static const gdb_byte *
6445 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6446 struct comp_unit_head *header,
6447 struct dwarf2_section_info *section,
6448 struct dwarf2_section_info *abbrev_section,
6449 const gdb_byte *info_ptr,
6450 rcuh_kind section_kind)
6451 {
6452 const gdb_byte *beg_of_comp_unit = info_ptr;
6453
6454 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6455
6456 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6457
6458 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6459
6460 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6461 abbrev_section);
6462
6463 return info_ptr;
6464 }
6465
6466 /* Fetch the abbreviation table offset from a comp or type unit header. */
6467
6468 static sect_offset
6469 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6470 struct dwarf2_section_info *section,
6471 sect_offset sect_off)
6472 {
6473 bfd *abfd = get_section_bfd_owner (section);
6474 const gdb_byte *info_ptr;
6475 unsigned int initial_length_size, offset_size;
6476 uint16_t version;
6477
6478 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6479 info_ptr = section->buffer + to_underlying (sect_off);
6480 read_initial_length (abfd, info_ptr, &initial_length_size);
6481 offset_size = initial_length_size == 4 ? 4 : 8;
6482 info_ptr += initial_length_size;
6483
6484 version = read_2_bytes (abfd, info_ptr);
6485 info_ptr += 2;
6486 if (version >= 5)
6487 {
6488 /* Skip unit type and address size. */
6489 info_ptr += 2;
6490 }
6491
6492 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6493 }
6494
6495 /* Allocate a new partial symtab for file named NAME and mark this new
6496 partial symtab as being an include of PST. */
6497
6498 static void
6499 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6500 struct objfile *objfile)
6501 {
6502 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6503
6504 if (!IS_ABSOLUTE_PATH (subpst->filename))
6505 {
6506 /* It shares objfile->objfile_obstack. */
6507 subpst->dirname = pst->dirname;
6508 }
6509
6510 subpst->textlow = 0;
6511 subpst->texthigh = 0;
6512
6513 subpst->dependencies
6514 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6515 subpst->dependencies[0] = pst;
6516 subpst->number_of_dependencies = 1;
6517
6518 subpst->globals_offset = 0;
6519 subpst->n_global_syms = 0;
6520 subpst->statics_offset = 0;
6521 subpst->n_static_syms = 0;
6522 subpst->compunit_symtab = NULL;
6523 subpst->read_symtab = pst->read_symtab;
6524 subpst->readin = 0;
6525
6526 /* No private part is necessary for include psymtabs. This property
6527 can be used to differentiate between such include psymtabs and
6528 the regular ones. */
6529 subpst->read_symtab_private = NULL;
6530 }
6531
6532 /* Read the Line Number Program data and extract the list of files
6533 included by the source file represented by PST. Build an include
6534 partial symtab for each of these included files. */
6535
6536 static void
6537 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6538 struct die_info *die,
6539 struct partial_symtab *pst)
6540 {
6541 line_header_up lh;
6542 struct attribute *attr;
6543
6544 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6545 if (attr)
6546 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6547 if (lh == NULL)
6548 return; /* No linetable, so no includes. */
6549
6550 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6551 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6552 }
6553
6554 static hashval_t
6555 hash_signatured_type (const void *item)
6556 {
6557 const struct signatured_type *sig_type
6558 = (const struct signatured_type *) item;
6559
6560 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6561 return sig_type->signature;
6562 }
6563
6564 static int
6565 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6566 {
6567 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6568 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6569
6570 return lhs->signature == rhs->signature;
6571 }
6572
6573 /* Allocate a hash table for signatured types. */
6574
6575 static htab_t
6576 allocate_signatured_type_table (struct objfile *objfile)
6577 {
6578 return htab_create_alloc_ex (41,
6579 hash_signatured_type,
6580 eq_signatured_type,
6581 NULL,
6582 &objfile->objfile_obstack,
6583 hashtab_obstack_allocate,
6584 dummy_obstack_deallocate);
6585 }
6586
6587 /* A helper function to add a signatured type CU to a table. */
6588
6589 static int
6590 add_signatured_type_cu_to_table (void **slot, void *datum)
6591 {
6592 struct signatured_type *sigt = (struct signatured_type *) *slot;
6593 std::vector<signatured_type *> *all_type_units
6594 = (std::vector<signatured_type *> *) datum;
6595
6596 all_type_units->push_back (sigt);
6597
6598 return 1;
6599 }
6600
6601 /* A helper for create_debug_types_hash_table. Read types from SECTION
6602 and fill them into TYPES_HTAB. It will process only type units,
6603 therefore DW_UT_type. */
6604
6605 static void
6606 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6607 struct dwo_file *dwo_file,
6608 dwarf2_section_info *section, htab_t &types_htab,
6609 rcuh_kind section_kind)
6610 {
6611 struct objfile *objfile = dwarf2_per_objfile->objfile;
6612 struct dwarf2_section_info *abbrev_section;
6613 bfd *abfd;
6614 const gdb_byte *info_ptr, *end_ptr;
6615
6616 abbrev_section = (dwo_file != NULL
6617 ? &dwo_file->sections.abbrev
6618 : &dwarf2_per_objfile->abbrev);
6619
6620 if (dwarf_read_debug)
6621 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6622 get_section_name (section),
6623 get_section_file_name (abbrev_section));
6624
6625 dwarf2_read_section (objfile, section);
6626 info_ptr = section->buffer;
6627
6628 if (info_ptr == NULL)
6629 return;
6630
6631 /* We can't set abfd until now because the section may be empty or
6632 not present, in which case the bfd is unknown. */
6633 abfd = get_section_bfd_owner (section);
6634
6635 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6636 because we don't need to read any dies: the signature is in the
6637 header. */
6638
6639 end_ptr = info_ptr + section->size;
6640 while (info_ptr < end_ptr)
6641 {
6642 struct signatured_type *sig_type;
6643 struct dwo_unit *dwo_tu;
6644 void **slot;
6645 const gdb_byte *ptr = info_ptr;
6646 struct comp_unit_head header;
6647 unsigned int length;
6648
6649 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6650
6651 /* Initialize it due to a false compiler warning. */
6652 header.signature = -1;
6653 header.type_cu_offset_in_tu = (cu_offset) -1;
6654
6655 /* We need to read the type's signature in order to build the hash
6656 table, but we don't need anything else just yet. */
6657
6658 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6659 abbrev_section, ptr, section_kind);
6660
6661 length = get_cu_length (&header);
6662
6663 /* Skip dummy type units. */
6664 if (ptr >= info_ptr + length
6665 || peek_abbrev_code (abfd, ptr) == 0
6666 || header.unit_type != DW_UT_type)
6667 {
6668 info_ptr += length;
6669 continue;
6670 }
6671
6672 if (types_htab == NULL)
6673 {
6674 if (dwo_file)
6675 types_htab = allocate_dwo_unit_table (objfile);
6676 else
6677 types_htab = allocate_signatured_type_table (objfile);
6678 }
6679
6680 if (dwo_file)
6681 {
6682 sig_type = NULL;
6683 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6684 struct dwo_unit);
6685 dwo_tu->dwo_file = dwo_file;
6686 dwo_tu->signature = header.signature;
6687 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6688 dwo_tu->section = section;
6689 dwo_tu->sect_off = sect_off;
6690 dwo_tu->length = length;
6691 }
6692 else
6693 {
6694 /* N.B.: type_offset is not usable if this type uses a DWO file.
6695 The real type_offset is in the DWO file. */
6696 dwo_tu = NULL;
6697 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6698 struct signatured_type);
6699 sig_type->signature = header.signature;
6700 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6701 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6702 sig_type->per_cu.is_debug_types = 1;
6703 sig_type->per_cu.section = section;
6704 sig_type->per_cu.sect_off = sect_off;
6705 sig_type->per_cu.length = length;
6706 }
6707
6708 slot = htab_find_slot (types_htab,
6709 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6710 INSERT);
6711 gdb_assert (slot != NULL);
6712 if (*slot != NULL)
6713 {
6714 sect_offset dup_sect_off;
6715
6716 if (dwo_file)
6717 {
6718 const struct dwo_unit *dup_tu
6719 = (const struct dwo_unit *) *slot;
6720
6721 dup_sect_off = dup_tu->sect_off;
6722 }
6723 else
6724 {
6725 const struct signatured_type *dup_tu
6726 = (const struct signatured_type *) *slot;
6727
6728 dup_sect_off = dup_tu->per_cu.sect_off;
6729 }
6730
6731 complaint (_("debug type entry at offset %s is duplicate to"
6732 " the entry at offset %s, signature %s"),
6733 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6734 hex_string (header.signature));
6735 }
6736 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6737
6738 if (dwarf_read_debug > 1)
6739 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6740 sect_offset_str (sect_off),
6741 hex_string (header.signature));
6742
6743 info_ptr += length;
6744 }
6745 }
6746
6747 /* Create the hash table of all entries in the .debug_types
6748 (or .debug_types.dwo) section(s).
6749 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6750 otherwise it is NULL.
6751
6752 The result is a pointer to the hash table or NULL if there are no types.
6753
6754 Note: This function processes DWO files only, not DWP files. */
6755
6756 static void
6757 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6758 struct dwo_file *dwo_file,
6759 VEC (dwarf2_section_info_def) *types,
6760 htab_t &types_htab)
6761 {
6762 int ix;
6763 struct dwarf2_section_info *section;
6764
6765 if (VEC_empty (dwarf2_section_info_def, types))
6766 return;
6767
6768 for (ix = 0;
6769 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6770 ++ix)
6771 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6772 types_htab, rcuh_kind::TYPE);
6773 }
6774
6775 /* Create the hash table of all entries in the .debug_types section,
6776 and initialize all_type_units.
6777 The result is zero if there is an error (e.g. missing .debug_types section),
6778 otherwise non-zero. */
6779
6780 static int
6781 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6782 {
6783 htab_t types_htab = NULL;
6784
6785 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6786 &dwarf2_per_objfile->info, types_htab,
6787 rcuh_kind::COMPILE);
6788 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6789 dwarf2_per_objfile->types, types_htab);
6790 if (types_htab == NULL)
6791 {
6792 dwarf2_per_objfile->signatured_types = NULL;
6793 return 0;
6794 }
6795
6796 dwarf2_per_objfile->signatured_types = types_htab;
6797
6798 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6799 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6800
6801 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6802 &dwarf2_per_objfile->all_type_units);
6803
6804 return 1;
6805 }
6806
6807 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6808 If SLOT is non-NULL, it is the entry to use in the hash table.
6809 Otherwise we find one. */
6810
6811 static struct signatured_type *
6812 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6813 void **slot)
6814 {
6815 struct objfile *objfile = dwarf2_per_objfile->objfile;
6816
6817 if (dwarf2_per_objfile->all_type_units.size ()
6818 == dwarf2_per_objfile->all_type_units.capacity ())
6819 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6820
6821 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6822 struct signatured_type);
6823
6824 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6825 sig_type->signature = sig;
6826 sig_type->per_cu.is_debug_types = 1;
6827 if (dwarf2_per_objfile->using_index)
6828 {
6829 sig_type->per_cu.v.quick =
6830 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6831 struct dwarf2_per_cu_quick_data);
6832 }
6833
6834 if (slot == NULL)
6835 {
6836 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6837 sig_type, INSERT);
6838 }
6839 gdb_assert (*slot == NULL);
6840 *slot = sig_type;
6841 /* The rest of sig_type must be filled in by the caller. */
6842 return sig_type;
6843 }
6844
6845 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6846 Fill in SIG_ENTRY with DWO_ENTRY. */
6847
6848 static void
6849 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6850 struct signatured_type *sig_entry,
6851 struct dwo_unit *dwo_entry)
6852 {
6853 /* Make sure we're not clobbering something we don't expect to. */
6854 gdb_assert (! sig_entry->per_cu.queued);
6855 gdb_assert (sig_entry->per_cu.cu == NULL);
6856 if (dwarf2_per_objfile->using_index)
6857 {
6858 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6859 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6860 }
6861 else
6862 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6863 gdb_assert (sig_entry->signature == dwo_entry->signature);
6864 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6865 gdb_assert (sig_entry->type_unit_group == NULL);
6866 gdb_assert (sig_entry->dwo_unit == NULL);
6867
6868 sig_entry->per_cu.section = dwo_entry->section;
6869 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6870 sig_entry->per_cu.length = dwo_entry->length;
6871 sig_entry->per_cu.reading_dwo_directly = 1;
6872 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6873 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6874 sig_entry->dwo_unit = dwo_entry;
6875 }
6876
6877 /* Subroutine of lookup_signatured_type.
6878 If we haven't read the TU yet, create the signatured_type data structure
6879 for a TU to be read in directly from a DWO file, bypassing the stub.
6880 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6881 using .gdb_index, then when reading a CU we want to stay in the DWO file
6882 containing that CU. Otherwise we could end up reading several other DWO
6883 files (due to comdat folding) to process the transitive closure of all the
6884 mentioned TUs, and that can be slow. The current DWO file will have every
6885 type signature that it needs.
6886 We only do this for .gdb_index because in the psymtab case we already have
6887 to read all the DWOs to build the type unit groups. */
6888
6889 static struct signatured_type *
6890 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6891 {
6892 struct dwarf2_per_objfile *dwarf2_per_objfile
6893 = cu->per_cu->dwarf2_per_objfile;
6894 struct objfile *objfile = dwarf2_per_objfile->objfile;
6895 struct dwo_file *dwo_file;
6896 struct dwo_unit find_dwo_entry, *dwo_entry;
6897 struct signatured_type find_sig_entry, *sig_entry;
6898 void **slot;
6899
6900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6901
6902 /* If TU skeletons have been removed then we may not have read in any
6903 TUs yet. */
6904 if (dwarf2_per_objfile->signatured_types == NULL)
6905 {
6906 dwarf2_per_objfile->signatured_types
6907 = allocate_signatured_type_table (objfile);
6908 }
6909
6910 /* We only ever need to read in one copy of a signatured type.
6911 Use the global signatured_types array to do our own comdat-folding
6912 of types. If this is the first time we're reading this TU, and
6913 the TU has an entry in .gdb_index, replace the recorded data from
6914 .gdb_index with this TU. */
6915
6916 find_sig_entry.signature = sig;
6917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6918 &find_sig_entry, INSERT);
6919 sig_entry = (struct signatured_type *) *slot;
6920
6921 /* We can get here with the TU already read, *or* in the process of being
6922 read. Don't reassign the global entry to point to this DWO if that's
6923 the case. Also note that if the TU is already being read, it may not
6924 have come from a DWO, the program may be a mix of Fission-compiled
6925 code and non-Fission-compiled code. */
6926
6927 /* Have we already tried to read this TU?
6928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6929 needn't exist in the global table yet). */
6930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6931 return sig_entry;
6932
6933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6934 dwo_unit of the TU itself. */
6935 dwo_file = cu->dwo_unit->dwo_file;
6936
6937 /* Ok, this is the first time we're reading this TU. */
6938 if (dwo_file->tus == NULL)
6939 return NULL;
6940 find_dwo_entry.signature = sig;
6941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6942 if (dwo_entry == NULL)
6943 return NULL;
6944
6945 /* If the global table doesn't have an entry for this TU, add one. */
6946 if (sig_entry == NULL)
6947 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6948
6949 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6950 sig_entry->per_cu.tu_read = 1;
6951 return sig_entry;
6952 }
6953
6954 /* Subroutine of lookup_signatured_type.
6955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6956 then try the DWP file. If the TU stub (skeleton) has been removed then
6957 it won't be in .gdb_index. */
6958
6959 static struct signatured_type *
6960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6961 {
6962 struct dwarf2_per_objfile *dwarf2_per_objfile
6963 = cu->per_cu->dwarf2_per_objfile;
6964 struct objfile *objfile = dwarf2_per_objfile->objfile;
6965 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6966 struct dwo_unit *dwo_entry;
6967 struct signatured_type find_sig_entry, *sig_entry;
6968 void **slot;
6969
6970 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6971 gdb_assert (dwp_file != NULL);
6972
6973 /* If TU skeletons have been removed then we may not have read in any
6974 TUs yet. */
6975 if (dwarf2_per_objfile->signatured_types == NULL)
6976 {
6977 dwarf2_per_objfile->signatured_types
6978 = allocate_signatured_type_table (objfile);
6979 }
6980
6981 find_sig_entry.signature = sig;
6982 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6983 &find_sig_entry, INSERT);
6984 sig_entry = (struct signatured_type *) *slot;
6985
6986 /* Have we already tried to read this TU?
6987 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6988 needn't exist in the global table yet). */
6989 if (sig_entry != NULL)
6990 return sig_entry;
6991
6992 if (dwp_file->tus == NULL)
6993 return NULL;
6994 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6995 sig, 1 /* is_debug_types */);
6996 if (dwo_entry == NULL)
6997 return NULL;
6998
6999 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7000 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7001
7002 return sig_entry;
7003 }
7004
7005 /* Lookup a signature based type for DW_FORM_ref_sig8.
7006 Returns NULL if signature SIG is not present in the table.
7007 It is up to the caller to complain about this. */
7008
7009 static struct signatured_type *
7010 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7011 {
7012 struct dwarf2_per_objfile *dwarf2_per_objfile
7013 = cu->per_cu->dwarf2_per_objfile;
7014
7015 if (cu->dwo_unit
7016 && dwarf2_per_objfile->using_index)
7017 {
7018 /* We're in a DWO/DWP file, and we're using .gdb_index.
7019 These cases require special processing. */
7020 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7021 return lookup_dwo_signatured_type (cu, sig);
7022 else
7023 return lookup_dwp_signatured_type (cu, sig);
7024 }
7025 else
7026 {
7027 struct signatured_type find_entry, *entry;
7028
7029 if (dwarf2_per_objfile->signatured_types == NULL)
7030 return NULL;
7031 find_entry.signature = sig;
7032 entry = ((struct signatured_type *)
7033 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7034 return entry;
7035 }
7036 }
7037 \f
7038 /* Low level DIE reading support. */
7039
7040 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7041
7042 static void
7043 init_cu_die_reader (struct die_reader_specs *reader,
7044 struct dwarf2_cu *cu,
7045 struct dwarf2_section_info *section,
7046 struct dwo_file *dwo_file,
7047 struct abbrev_table *abbrev_table)
7048 {
7049 gdb_assert (section->readin && section->buffer != NULL);
7050 reader->abfd = get_section_bfd_owner (section);
7051 reader->cu = cu;
7052 reader->dwo_file = dwo_file;
7053 reader->die_section = section;
7054 reader->buffer = section->buffer;
7055 reader->buffer_end = section->buffer + section->size;
7056 reader->comp_dir = NULL;
7057 reader->abbrev_table = abbrev_table;
7058 }
7059
7060 /* Subroutine of init_cutu_and_read_dies to simplify it.
7061 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7062 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7063 already.
7064
7065 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7066 from it to the DIE in the DWO. If NULL we are skipping the stub.
7067 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7068 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7069 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7070 STUB_COMP_DIR may be non-NULL.
7071 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7072 are filled in with the info of the DIE from the DWO file.
7073 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7074 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7075 kept around for at least as long as *RESULT_READER.
7076
7077 The result is non-zero if a valid (non-dummy) DIE was found. */
7078
7079 static int
7080 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7081 struct dwo_unit *dwo_unit,
7082 struct die_info *stub_comp_unit_die,
7083 const char *stub_comp_dir,
7084 struct die_reader_specs *result_reader,
7085 const gdb_byte **result_info_ptr,
7086 struct die_info **result_comp_unit_die,
7087 int *result_has_children,
7088 abbrev_table_up *result_dwo_abbrev_table)
7089 {
7090 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7091 struct objfile *objfile = dwarf2_per_objfile->objfile;
7092 struct dwarf2_cu *cu = this_cu->cu;
7093 bfd *abfd;
7094 const gdb_byte *begin_info_ptr, *info_ptr;
7095 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7096 int i,num_extra_attrs;
7097 struct dwarf2_section_info *dwo_abbrev_section;
7098 struct attribute *attr;
7099 struct die_info *comp_unit_die;
7100
7101 /* At most one of these may be provided. */
7102 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7103
7104 /* These attributes aren't processed until later:
7105 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7106 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7107 referenced later. However, these attributes are found in the stub
7108 which we won't have later. In order to not impose this complication
7109 on the rest of the code, we read them here and copy them to the
7110 DWO CU/TU die. */
7111
7112 stmt_list = NULL;
7113 low_pc = NULL;
7114 high_pc = NULL;
7115 ranges = NULL;
7116 comp_dir = NULL;
7117
7118 if (stub_comp_unit_die != NULL)
7119 {
7120 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7121 DWO file. */
7122 if (! this_cu->is_debug_types)
7123 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7124 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7125 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7126 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7127 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7128
7129 /* There should be a DW_AT_addr_base attribute here (if needed).
7130 We need the value before we can process DW_FORM_GNU_addr_index. */
7131 cu->addr_base = 0;
7132 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7133 if (attr)
7134 cu->addr_base = DW_UNSND (attr);
7135
7136 /* There should be a DW_AT_ranges_base attribute here (if needed).
7137 We need the value before we can process DW_AT_ranges. */
7138 cu->ranges_base = 0;
7139 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7140 if (attr)
7141 cu->ranges_base = DW_UNSND (attr);
7142 }
7143 else if (stub_comp_dir != NULL)
7144 {
7145 /* Reconstruct the comp_dir attribute to simplify the code below. */
7146 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7147 comp_dir->name = DW_AT_comp_dir;
7148 comp_dir->form = DW_FORM_string;
7149 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7150 DW_STRING (comp_dir) = stub_comp_dir;
7151 }
7152
7153 /* Set up for reading the DWO CU/TU. */
7154 cu->dwo_unit = dwo_unit;
7155 dwarf2_section_info *section = dwo_unit->section;
7156 dwarf2_read_section (objfile, section);
7157 abfd = get_section_bfd_owner (section);
7158 begin_info_ptr = info_ptr = (section->buffer
7159 + to_underlying (dwo_unit->sect_off));
7160 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7161
7162 if (this_cu->is_debug_types)
7163 {
7164 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7165
7166 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7167 &cu->header, section,
7168 dwo_abbrev_section,
7169 info_ptr, rcuh_kind::TYPE);
7170 /* This is not an assert because it can be caused by bad debug info. */
7171 if (sig_type->signature != cu->header.signature)
7172 {
7173 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7174 " TU at offset %s [in module %s]"),
7175 hex_string (sig_type->signature),
7176 hex_string (cu->header.signature),
7177 sect_offset_str (dwo_unit->sect_off),
7178 bfd_get_filename (abfd));
7179 }
7180 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7181 /* For DWOs coming from DWP files, we don't know the CU length
7182 nor the type's offset in the TU until now. */
7183 dwo_unit->length = get_cu_length (&cu->header);
7184 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7185
7186 /* Establish the type offset that can be used to lookup the type.
7187 For DWO files, we don't know it until now. */
7188 sig_type->type_offset_in_section
7189 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7190 }
7191 else
7192 {
7193 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7194 &cu->header, section,
7195 dwo_abbrev_section,
7196 info_ptr, rcuh_kind::COMPILE);
7197 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7198 /* For DWOs coming from DWP files, we don't know the CU length
7199 until now. */
7200 dwo_unit->length = get_cu_length (&cu->header);
7201 }
7202
7203 *result_dwo_abbrev_table
7204 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7205 cu->header.abbrev_sect_off);
7206 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7207 result_dwo_abbrev_table->get ());
7208
7209 /* Read in the die, but leave space to copy over the attributes
7210 from the stub. This has the benefit of simplifying the rest of
7211 the code - all the work to maintain the illusion of a single
7212 DW_TAG_{compile,type}_unit DIE is done here. */
7213 num_extra_attrs = ((stmt_list != NULL)
7214 + (low_pc != NULL)
7215 + (high_pc != NULL)
7216 + (ranges != NULL)
7217 + (comp_dir != NULL));
7218 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7219 result_has_children, num_extra_attrs);
7220
7221 /* Copy over the attributes from the stub to the DIE we just read in. */
7222 comp_unit_die = *result_comp_unit_die;
7223 i = comp_unit_die->num_attrs;
7224 if (stmt_list != NULL)
7225 comp_unit_die->attrs[i++] = *stmt_list;
7226 if (low_pc != NULL)
7227 comp_unit_die->attrs[i++] = *low_pc;
7228 if (high_pc != NULL)
7229 comp_unit_die->attrs[i++] = *high_pc;
7230 if (ranges != NULL)
7231 comp_unit_die->attrs[i++] = *ranges;
7232 if (comp_dir != NULL)
7233 comp_unit_die->attrs[i++] = *comp_dir;
7234 comp_unit_die->num_attrs += num_extra_attrs;
7235
7236 if (dwarf_die_debug)
7237 {
7238 fprintf_unfiltered (gdb_stdlog,
7239 "Read die from %s@0x%x of %s:\n",
7240 get_section_name (section),
7241 (unsigned) (begin_info_ptr - section->buffer),
7242 bfd_get_filename (abfd));
7243 dump_die (comp_unit_die, dwarf_die_debug);
7244 }
7245
7246 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7247 TUs by skipping the stub and going directly to the entry in the DWO file.
7248 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7249 to get it via circuitous means. Blech. */
7250 if (comp_dir != NULL)
7251 result_reader->comp_dir = DW_STRING (comp_dir);
7252
7253 /* Skip dummy compilation units. */
7254 if (info_ptr >= begin_info_ptr + dwo_unit->length
7255 || peek_abbrev_code (abfd, info_ptr) == 0)
7256 return 0;
7257
7258 *result_info_ptr = info_ptr;
7259 return 1;
7260 }
7261
7262 /* Subroutine of init_cutu_and_read_dies to simplify it.
7263 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7264 Returns NULL if the specified DWO unit cannot be found. */
7265
7266 static struct dwo_unit *
7267 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7268 struct die_info *comp_unit_die)
7269 {
7270 struct dwarf2_cu *cu = this_cu->cu;
7271 ULONGEST signature;
7272 struct dwo_unit *dwo_unit;
7273 const char *comp_dir, *dwo_name;
7274
7275 gdb_assert (cu != NULL);
7276
7277 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7278 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7279 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7280
7281 if (this_cu->is_debug_types)
7282 {
7283 struct signatured_type *sig_type;
7284
7285 /* Since this_cu is the first member of struct signatured_type,
7286 we can go from a pointer to one to a pointer to the other. */
7287 sig_type = (struct signatured_type *) this_cu;
7288 signature = sig_type->signature;
7289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7290 }
7291 else
7292 {
7293 struct attribute *attr;
7294
7295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7296 if (! attr)
7297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7298 " [in module %s]"),
7299 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7300 signature = DW_UNSND (attr);
7301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7302 signature);
7303 }
7304
7305 return dwo_unit;
7306 }
7307
7308 /* Subroutine of init_cutu_and_read_dies to simplify it.
7309 See it for a description of the parameters.
7310 Read a TU directly from a DWO file, bypassing the stub. */
7311
7312 static void
7313 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7314 int use_existing_cu, int keep,
7315 die_reader_func_ftype *die_reader_func,
7316 void *data)
7317 {
7318 std::unique_ptr<dwarf2_cu> new_cu;
7319 struct signatured_type *sig_type;
7320 struct die_reader_specs reader;
7321 const gdb_byte *info_ptr;
7322 struct die_info *comp_unit_die;
7323 int has_children;
7324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7325
7326 /* Verify we can do the following downcast, and that we have the
7327 data we need. */
7328 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7329 sig_type = (struct signatured_type *) this_cu;
7330 gdb_assert (sig_type->dwo_unit != NULL);
7331
7332 if (use_existing_cu && this_cu->cu != NULL)
7333 {
7334 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7335 /* There's no need to do the rereading_dwo_cu handling that
7336 init_cutu_and_read_dies does since we don't read the stub. */
7337 }
7338 else
7339 {
7340 /* If !use_existing_cu, this_cu->cu must be NULL. */
7341 gdb_assert (this_cu->cu == NULL);
7342 new_cu.reset (new dwarf2_cu (this_cu));
7343 }
7344
7345 /* A future optimization, if needed, would be to use an existing
7346 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7347 could share abbrev tables. */
7348
7349 /* The abbreviation table used by READER, this must live at least as long as
7350 READER. */
7351 abbrev_table_up dwo_abbrev_table;
7352
7353 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7354 NULL /* stub_comp_unit_die */,
7355 sig_type->dwo_unit->dwo_file->comp_dir,
7356 &reader, &info_ptr,
7357 &comp_unit_die, &has_children,
7358 &dwo_abbrev_table) == 0)
7359 {
7360 /* Dummy die. */
7361 return;
7362 }
7363
7364 /* All the "real" work is done here. */
7365 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7366
7367 /* This duplicates the code in init_cutu_and_read_dies,
7368 but the alternative is making the latter more complex.
7369 This function is only for the special case of using DWO files directly:
7370 no point in overly complicating the general case just to handle this. */
7371 if (new_cu != NULL && keep)
7372 {
7373 /* Link this CU into read_in_chain. */
7374 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7375 dwarf2_per_objfile->read_in_chain = this_cu;
7376 /* The chain owns it now. */
7377 new_cu.release ();
7378 }
7379 }
7380
7381 /* Initialize a CU (or TU) and read its DIEs.
7382 If the CU defers to a DWO file, read the DWO file as well.
7383
7384 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7385 Otherwise the table specified in the comp unit header is read in and used.
7386 This is an optimization for when we already have the abbrev table.
7387
7388 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7389 Otherwise, a new CU is allocated with xmalloc.
7390
7391 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7392 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7393
7394 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7395 linker) then DIE_READER_FUNC will not get called. */
7396
7397 static void
7398 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7399 struct abbrev_table *abbrev_table,
7400 int use_existing_cu, int keep,
7401 bool skip_partial,
7402 die_reader_func_ftype *die_reader_func,
7403 void *data)
7404 {
7405 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7406 struct objfile *objfile = dwarf2_per_objfile->objfile;
7407 struct dwarf2_section_info *section = this_cu->section;
7408 bfd *abfd = get_section_bfd_owner (section);
7409 struct dwarf2_cu *cu;
7410 const gdb_byte *begin_info_ptr, *info_ptr;
7411 struct die_reader_specs reader;
7412 struct die_info *comp_unit_die;
7413 int has_children;
7414 struct attribute *attr;
7415 struct signatured_type *sig_type = NULL;
7416 struct dwarf2_section_info *abbrev_section;
7417 /* Non-zero if CU currently points to a DWO file and we need to
7418 reread it. When this happens we need to reread the skeleton die
7419 before we can reread the DWO file (this only applies to CUs, not TUs). */
7420 int rereading_dwo_cu = 0;
7421
7422 if (dwarf_die_debug)
7423 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7424 this_cu->is_debug_types ? "type" : "comp",
7425 sect_offset_str (this_cu->sect_off));
7426
7427 if (use_existing_cu)
7428 gdb_assert (keep);
7429
7430 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7431 file (instead of going through the stub), short-circuit all of this. */
7432 if (this_cu->reading_dwo_directly)
7433 {
7434 /* Narrow down the scope of possibilities to have to understand. */
7435 gdb_assert (this_cu->is_debug_types);
7436 gdb_assert (abbrev_table == NULL);
7437 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7438 die_reader_func, data);
7439 return;
7440 }
7441
7442 /* This is cheap if the section is already read in. */
7443 dwarf2_read_section (objfile, section);
7444
7445 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7446
7447 abbrev_section = get_abbrev_section_for_cu (this_cu);
7448
7449 std::unique_ptr<dwarf2_cu> new_cu;
7450 if (use_existing_cu && this_cu->cu != NULL)
7451 {
7452 cu = this_cu->cu;
7453 /* If this CU is from a DWO file we need to start over, we need to
7454 refetch the attributes from the skeleton CU.
7455 This could be optimized by retrieving those attributes from when we
7456 were here the first time: the previous comp_unit_die was stored in
7457 comp_unit_obstack. But there's no data yet that we need this
7458 optimization. */
7459 if (cu->dwo_unit != NULL)
7460 rereading_dwo_cu = 1;
7461 }
7462 else
7463 {
7464 /* If !use_existing_cu, this_cu->cu must be NULL. */
7465 gdb_assert (this_cu->cu == NULL);
7466 new_cu.reset (new dwarf2_cu (this_cu));
7467 cu = new_cu.get ();
7468 }
7469
7470 /* Get the header. */
7471 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7472 {
7473 /* We already have the header, there's no need to read it in again. */
7474 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7475 }
7476 else
7477 {
7478 if (this_cu->is_debug_types)
7479 {
7480 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7481 &cu->header, section,
7482 abbrev_section, info_ptr,
7483 rcuh_kind::TYPE);
7484
7485 /* Since per_cu is the first member of struct signatured_type,
7486 we can go from a pointer to one to a pointer to the other. */
7487 sig_type = (struct signatured_type *) this_cu;
7488 gdb_assert (sig_type->signature == cu->header.signature);
7489 gdb_assert (sig_type->type_offset_in_tu
7490 == cu->header.type_cu_offset_in_tu);
7491 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7492
7493 /* LENGTH has not been set yet for type units if we're
7494 using .gdb_index. */
7495 this_cu->length = get_cu_length (&cu->header);
7496
7497 /* Establish the type offset that can be used to lookup the type. */
7498 sig_type->type_offset_in_section =
7499 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7500
7501 this_cu->dwarf_version = cu->header.version;
7502 }
7503 else
7504 {
7505 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7506 &cu->header, section,
7507 abbrev_section,
7508 info_ptr,
7509 rcuh_kind::COMPILE);
7510
7511 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7512 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7513 this_cu->dwarf_version = cu->header.version;
7514 }
7515 }
7516
7517 /* Skip dummy compilation units. */
7518 if (info_ptr >= begin_info_ptr + this_cu->length
7519 || peek_abbrev_code (abfd, info_ptr) == 0)
7520 return;
7521
7522 /* If we don't have them yet, read the abbrevs for this compilation unit.
7523 And if we need to read them now, make sure they're freed when we're
7524 done (own the table through ABBREV_TABLE_HOLDER). */
7525 abbrev_table_up abbrev_table_holder;
7526 if (abbrev_table != NULL)
7527 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7528 else
7529 {
7530 abbrev_table_holder
7531 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7532 cu->header.abbrev_sect_off);
7533 abbrev_table = abbrev_table_holder.get ();
7534 }
7535
7536 /* Read the top level CU/TU die. */
7537 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7538 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7539
7540 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7541 return;
7542
7543 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7544 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7545 table from the DWO file and pass the ownership over to us. It will be
7546 referenced from READER, so we must make sure to free it after we're done
7547 with READER.
7548
7549 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7550 DWO CU, that this test will fail (the attribute will not be present). */
7551 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7552 abbrev_table_up dwo_abbrev_table;
7553 if (attr)
7554 {
7555 struct dwo_unit *dwo_unit;
7556 struct die_info *dwo_comp_unit_die;
7557
7558 if (has_children)
7559 {
7560 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7561 " has children (offset %s) [in module %s]"),
7562 sect_offset_str (this_cu->sect_off),
7563 bfd_get_filename (abfd));
7564 }
7565 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7566 if (dwo_unit != NULL)
7567 {
7568 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7569 comp_unit_die, NULL,
7570 &reader, &info_ptr,
7571 &dwo_comp_unit_die, &has_children,
7572 &dwo_abbrev_table) == 0)
7573 {
7574 /* Dummy die. */
7575 return;
7576 }
7577 comp_unit_die = dwo_comp_unit_die;
7578 }
7579 else
7580 {
7581 /* Yikes, we couldn't find the rest of the DIE, we only have
7582 the stub. A complaint has already been logged. There's
7583 not much more we can do except pass on the stub DIE to
7584 die_reader_func. We don't want to throw an error on bad
7585 debug info. */
7586 }
7587 }
7588
7589 /* All of the above is setup for this call. Yikes. */
7590 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7591
7592 /* Done, clean up. */
7593 if (new_cu != NULL && keep)
7594 {
7595 /* Link this CU into read_in_chain. */
7596 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7597 dwarf2_per_objfile->read_in_chain = this_cu;
7598 /* The chain owns it now. */
7599 new_cu.release ();
7600 }
7601 }
7602
7603 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7604 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7605 to have already done the lookup to find the DWO file).
7606
7607 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7608 THIS_CU->is_debug_types, but nothing else.
7609
7610 We fill in THIS_CU->length.
7611
7612 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7613 linker) then DIE_READER_FUNC will not get called.
7614
7615 THIS_CU->cu is always freed when done.
7616 This is done in order to not leave THIS_CU->cu in a state where we have
7617 to care whether it refers to the "main" CU or the DWO CU. */
7618
7619 static void
7620 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7621 struct dwo_file *dwo_file,
7622 die_reader_func_ftype *die_reader_func,
7623 void *data)
7624 {
7625 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7626 struct objfile *objfile = dwarf2_per_objfile->objfile;
7627 struct dwarf2_section_info *section = this_cu->section;
7628 bfd *abfd = get_section_bfd_owner (section);
7629 struct dwarf2_section_info *abbrev_section;
7630 const gdb_byte *begin_info_ptr, *info_ptr;
7631 struct die_reader_specs reader;
7632 struct die_info *comp_unit_die;
7633 int has_children;
7634
7635 if (dwarf_die_debug)
7636 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7637 this_cu->is_debug_types ? "type" : "comp",
7638 sect_offset_str (this_cu->sect_off));
7639
7640 gdb_assert (this_cu->cu == NULL);
7641
7642 abbrev_section = (dwo_file != NULL
7643 ? &dwo_file->sections.abbrev
7644 : get_abbrev_section_for_cu (this_cu));
7645
7646 /* This is cheap if the section is already read in. */
7647 dwarf2_read_section (objfile, section);
7648
7649 struct dwarf2_cu cu (this_cu);
7650
7651 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7653 &cu.header, section,
7654 abbrev_section, info_ptr,
7655 (this_cu->is_debug_types
7656 ? rcuh_kind::TYPE
7657 : rcuh_kind::COMPILE));
7658
7659 this_cu->length = get_cu_length (&cu.header);
7660
7661 /* Skip dummy compilation units. */
7662 if (info_ptr >= begin_info_ptr + this_cu->length
7663 || peek_abbrev_code (abfd, info_ptr) == 0)
7664 return;
7665
7666 abbrev_table_up abbrev_table
7667 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7668 cu.header.abbrev_sect_off);
7669
7670 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7671 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7672
7673 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7674 }
7675
7676 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7677 does not lookup the specified DWO file.
7678 This cannot be used to read DWO files.
7679
7680 THIS_CU->cu is always freed when done.
7681 This is done in order to not leave THIS_CU->cu in a state where we have
7682 to care whether it refers to the "main" CU or the DWO CU.
7683 We can revisit this if the data shows there's a performance issue. */
7684
7685 static void
7686 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7687 die_reader_func_ftype *die_reader_func,
7688 void *data)
7689 {
7690 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7691 }
7692 \f
7693 /* Type Unit Groups.
7694
7695 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7696 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7697 so that all types coming from the same compilation (.o file) are grouped
7698 together. A future step could be to put the types in the same symtab as
7699 the CU the types ultimately came from. */
7700
7701 static hashval_t
7702 hash_type_unit_group (const void *item)
7703 {
7704 const struct type_unit_group *tu_group
7705 = (const struct type_unit_group *) item;
7706
7707 return hash_stmt_list_entry (&tu_group->hash);
7708 }
7709
7710 static int
7711 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7712 {
7713 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7714 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7715
7716 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7717 }
7718
7719 /* Allocate a hash table for type unit groups. */
7720
7721 static htab_t
7722 allocate_type_unit_groups_table (struct objfile *objfile)
7723 {
7724 return htab_create_alloc_ex (3,
7725 hash_type_unit_group,
7726 eq_type_unit_group,
7727 NULL,
7728 &objfile->objfile_obstack,
7729 hashtab_obstack_allocate,
7730 dummy_obstack_deallocate);
7731 }
7732
7733 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7734 partial symtabs. We combine several TUs per psymtab to not let the size
7735 of any one psymtab grow too big. */
7736 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7737 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7738
7739 /* Helper routine for get_type_unit_group.
7740 Create the type_unit_group object used to hold one or more TUs. */
7741
7742 static struct type_unit_group *
7743 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7744 {
7745 struct dwarf2_per_objfile *dwarf2_per_objfile
7746 = cu->per_cu->dwarf2_per_objfile;
7747 struct objfile *objfile = dwarf2_per_objfile->objfile;
7748 struct dwarf2_per_cu_data *per_cu;
7749 struct type_unit_group *tu_group;
7750
7751 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7752 struct type_unit_group);
7753 per_cu = &tu_group->per_cu;
7754 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7755
7756 if (dwarf2_per_objfile->using_index)
7757 {
7758 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7759 struct dwarf2_per_cu_quick_data);
7760 }
7761 else
7762 {
7763 unsigned int line_offset = to_underlying (line_offset_struct);
7764 struct partial_symtab *pst;
7765 char *name;
7766
7767 /* Give the symtab a useful name for debug purposes. */
7768 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7769 name = xstrprintf ("<type_units_%d>",
7770 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7771 else
7772 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7773
7774 pst = create_partial_symtab (per_cu, name);
7775 pst->anonymous = 1;
7776
7777 xfree (name);
7778 }
7779
7780 tu_group->hash.dwo_unit = cu->dwo_unit;
7781 tu_group->hash.line_sect_off = line_offset_struct;
7782
7783 return tu_group;
7784 }
7785
7786 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7787 STMT_LIST is a DW_AT_stmt_list attribute. */
7788
7789 static struct type_unit_group *
7790 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7791 {
7792 struct dwarf2_per_objfile *dwarf2_per_objfile
7793 = cu->per_cu->dwarf2_per_objfile;
7794 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7795 struct type_unit_group *tu_group;
7796 void **slot;
7797 unsigned int line_offset;
7798 struct type_unit_group type_unit_group_for_lookup;
7799
7800 if (dwarf2_per_objfile->type_unit_groups == NULL)
7801 {
7802 dwarf2_per_objfile->type_unit_groups =
7803 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7804 }
7805
7806 /* Do we need to create a new group, or can we use an existing one? */
7807
7808 if (stmt_list)
7809 {
7810 line_offset = DW_UNSND (stmt_list);
7811 ++tu_stats->nr_symtab_sharers;
7812 }
7813 else
7814 {
7815 /* Ugh, no stmt_list. Rare, but we have to handle it.
7816 We can do various things here like create one group per TU or
7817 spread them over multiple groups to split up the expansion work.
7818 To avoid worst case scenarios (too many groups or too large groups)
7819 we, umm, group them in bunches. */
7820 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7821 | (tu_stats->nr_stmt_less_type_units
7822 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7823 ++tu_stats->nr_stmt_less_type_units;
7824 }
7825
7826 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7827 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7828 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7829 &type_unit_group_for_lookup, INSERT);
7830 if (*slot != NULL)
7831 {
7832 tu_group = (struct type_unit_group *) *slot;
7833 gdb_assert (tu_group != NULL);
7834 }
7835 else
7836 {
7837 sect_offset line_offset_struct = (sect_offset) line_offset;
7838 tu_group = create_type_unit_group (cu, line_offset_struct);
7839 *slot = tu_group;
7840 ++tu_stats->nr_symtabs;
7841 }
7842
7843 return tu_group;
7844 }
7845 \f
7846 /* Partial symbol tables. */
7847
7848 /* Create a psymtab named NAME and assign it to PER_CU.
7849
7850 The caller must fill in the following details:
7851 dirname, textlow, texthigh. */
7852
7853 static struct partial_symtab *
7854 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7855 {
7856 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7857 struct partial_symtab *pst;
7858
7859 pst = start_psymtab_common (objfile, name, 0,
7860 objfile->global_psymbols,
7861 objfile->static_psymbols);
7862
7863 pst->psymtabs_addrmap_supported = 1;
7864
7865 /* This is the glue that links PST into GDB's symbol API. */
7866 pst->read_symtab_private = per_cu;
7867 pst->read_symtab = dwarf2_read_symtab;
7868 per_cu->v.psymtab = pst;
7869
7870 return pst;
7871 }
7872
7873 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7874 type. */
7875
7876 struct process_psymtab_comp_unit_data
7877 {
7878 /* True if we are reading a DW_TAG_partial_unit. */
7879
7880 int want_partial_unit;
7881
7882 /* The "pretend" language that is used if the CU doesn't declare a
7883 language. */
7884
7885 enum language pretend_language;
7886 };
7887
7888 /* die_reader_func for process_psymtab_comp_unit. */
7889
7890 static void
7891 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7892 const gdb_byte *info_ptr,
7893 struct die_info *comp_unit_die,
7894 int has_children,
7895 void *data)
7896 {
7897 struct dwarf2_cu *cu = reader->cu;
7898 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7900 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7901 CORE_ADDR baseaddr;
7902 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7903 struct partial_symtab *pst;
7904 enum pc_bounds_kind cu_bounds_kind;
7905 const char *filename;
7906 struct process_psymtab_comp_unit_data *info
7907 = (struct process_psymtab_comp_unit_data *) data;
7908
7909 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7910 return;
7911
7912 gdb_assert (! per_cu->is_debug_types);
7913
7914 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7915
7916 /* Allocate a new partial symbol table structure. */
7917 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7918 if (filename == NULL)
7919 filename = "";
7920
7921 pst = create_partial_symtab (per_cu, filename);
7922
7923 /* This must be done before calling dwarf2_build_include_psymtabs. */
7924 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7925
7926 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7927
7928 dwarf2_find_base_address (comp_unit_die, cu);
7929
7930 /* Possibly set the default values of LOWPC and HIGHPC from
7931 `DW_AT_ranges'. */
7932 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7933 &best_highpc, cu, pst);
7934 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7935 /* Store the contiguous range if it is not empty; it can be empty for
7936 CUs with no code. */
7937 addrmap_set_empty (objfile->psymtabs_addrmap,
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_lowpc + baseaddr),
7940 gdbarch_adjust_dwarf2_addr (gdbarch,
7941 best_highpc + baseaddr) - 1,
7942 pst);
7943
7944 /* Check if comp unit has_children.
7945 If so, read the rest of the partial symbols from this comp unit.
7946 If not, there's no more debug_info for this comp unit. */
7947 if (has_children)
7948 {
7949 struct partial_die_info *first_die;
7950 CORE_ADDR lowpc, highpc;
7951
7952 lowpc = ((CORE_ADDR) -1);
7953 highpc = ((CORE_ADDR) 0);
7954
7955 first_die = load_partial_dies (reader, info_ptr, 1);
7956
7957 scan_partial_symbols (first_die, &lowpc, &highpc,
7958 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7959
7960 /* If we didn't find a lowpc, set it to highpc to avoid
7961 complaints from `maint check'. */
7962 if (lowpc == ((CORE_ADDR) -1))
7963 lowpc = highpc;
7964
7965 /* If the compilation unit didn't have an explicit address range,
7966 then use the information extracted from its child dies. */
7967 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7968 {
7969 best_lowpc = lowpc;
7970 best_highpc = highpc;
7971 }
7972 }
7973 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7974 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7975
7976 end_psymtab_common (objfile, pst);
7977
7978 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7979 {
7980 int i;
7981 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7982 struct dwarf2_per_cu_data *iter;
7983
7984 /* Fill in 'dependencies' here; we fill in 'users' in a
7985 post-pass. */
7986 pst->number_of_dependencies = len;
7987 pst->dependencies =
7988 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7989 for (i = 0;
7990 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7991 i, iter);
7992 ++i)
7993 pst->dependencies[i] = iter->v.psymtab;
7994
7995 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7996 }
7997
7998 /* Get the list of files included in the current compilation unit,
7999 and build a psymtab for each of them. */
8000 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8001
8002 if (dwarf_read_debug)
8003 {
8004 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8005
8006 fprintf_unfiltered (gdb_stdlog,
8007 "Psymtab for %s unit @%s: %s - %s"
8008 ", %d global, %d static syms\n",
8009 per_cu->is_debug_types ? "type" : "comp",
8010 sect_offset_str (per_cu->sect_off),
8011 paddress (gdbarch, pst->textlow),
8012 paddress (gdbarch, pst->texthigh),
8013 pst->n_global_syms, pst->n_static_syms);
8014 }
8015 }
8016
8017 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8018 Process compilation unit THIS_CU for a psymtab. */
8019
8020 static void
8021 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8022 int want_partial_unit,
8023 enum language pretend_language)
8024 {
8025 /* If this compilation unit was already read in, free the
8026 cached copy in order to read it in again. This is
8027 necessary because we skipped some symbols when we first
8028 read in the compilation unit (see load_partial_dies).
8029 This problem could be avoided, but the benefit is unclear. */
8030 if (this_cu->cu != NULL)
8031 free_one_cached_comp_unit (this_cu);
8032
8033 if (this_cu->is_debug_types)
8034 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8035 build_type_psymtabs_reader, NULL);
8036 else
8037 {
8038 process_psymtab_comp_unit_data info;
8039 info.want_partial_unit = want_partial_unit;
8040 info.pretend_language = pretend_language;
8041 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8042 process_psymtab_comp_unit_reader, &info);
8043 }
8044
8045 /* Age out any secondary CUs. */
8046 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8047 }
8048
8049 /* Reader function for build_type_psymtabs. */
8050
8051 static void
8052 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8053 const gdb_byte *info_ptr,
8054 struct die_info *type_unit_die,
8055 int has_children,
8056 void *data)
8057 {
8058 struct dwarf2_per_objfile *dwarf2_per_objfile
8059 = reader->cu->per_cu->dwarf2_per_objfile;
8060 struct objfile *objfile = dwarf2_per_objfile->objfile;
8061 struct dwarf2_cu *cu = reader->cu;
8062 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8063 struct signatured_type *sig_type;
8064 struct type_unit_group *tu_group;
8065 struct attribute *attr;
8066 struct partial_die_info *first_die;
8067 CORE_ADDR lowpc, highpc;
8068 struct partial_symtab *pst;
8069
8070 gdb_assert (data == NULL);
8071 gdb_assert (per_cu->is_debug_types);
8072 sig_type = (struct signatured_type *) per_cu;
8073
8074 if (! has_children)
8075 return;
8076
8077 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8078 tu_group = get_type_unit_group (cu, attr);
8079
8080 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8081
8082 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8083 pst = create_partial_symtab (per_cu, "");
8084 pst->anonymous = 1;
8085
8086 first_die = load_partial_dies (reader, info_ptr, 1);
8087
8088 lowpc = (CORE_ADDR) -1;
8089 highpc = (CORE_ADDR) 0;
8090 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8091
8092 end_psymtab_common (objfile, pst);
8093 }
8094
8095 /* Struct used to sort TUs by their abbreviation table offset. */
8096
8097 struct tu_abbrev_offset
8098 {
8099 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8100 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8101 {}
8102
8103 signatured_type *sig_type;
8104 sect_offset abbrev_offset;
8105 };
8106
8107 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8108
8109 static bool
8110 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8111 const struct tu_abbrev_offset &b)
8112 {
8113 return a.abbrev_offset < b.abbrev_offset;
8114 }
8115
8116 /* Efficiently read all the type units.
8117 This does the bulk of the work for build_type_psymtabs.
8118
8119 The efficiency is because we sort TUs by the abbrev table they use and
8120 only read each abbrev table once. In one program there are 200K TUs
8121 sharing 8K abbrev tables.
8122
8123 The main purpose of this function is to support building the
8124 dwarf2_per_objfile->type_unit_groups table.
8125 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8126 can collapse the search space by grouping them by stmt_list.
8127 The savings can be significant, in the same program from above the 200K TUs
8128 share 8K stmt_list tables.
8129
8130 FUNC is expected to call get_type_unit_group, which will create the
8131 struct type_unit_group if necessary and add it to
8132 dwarf2_per_objfile->type_unit_groups. */
8133
8134 static void
8135 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8136 {
8137 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8138 abbrev_table_up abbrev_table;
8139 sect_offset abbrev_offset;
8140
8141 /* It's up to the caller to not call us multiple times. */
8142 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8143
8144 if (dwarf2_per_objfile->all_type_units.empty ())
8145 return;
8146
8147 /* TUs typically share abbrev tables, and there can be way more TUs than
8148 abbrev tables. Sort by abbrev table to reduce the number of times we
8149 read each abbrev table in.
8150 Alternatives are to punt or to maintain a cache of abbrev tables.
8151 This is simpler and efficient enough for now.
8152
8153 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8154 symtab to use). Typically TUs with the same abbrev offset have the same
8155 stmt_list value too so in practice this should work well.
8156
8157 The basic algorithm here is:
8158
8159 sort TUs by abbrev table
8160 for each TU with same abbrev table:
8161 read abbrev table if first user
8162 read TU top level DIE
8163 [IWBN if DWO skeletons had DW_AT_stmt_list]
8164 call FUNC */
8165
8166 if (dwarf_read_debug)
8167 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8168
8169 /* Sort in a separate table to maintain the order of all_type_units
8170 for .gdb_index: TU indices directly index all_type_units. */
8171 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8172 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8173
8174 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8175 sorted_by_abbrev.emplace_back
8176 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8177 sig_type->per_cu.section,
8178 sig_type->per_cu.sect_off));
8179
8180 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8181 sort_tu_by_abbrev_offset);
8182
8183 abbrev_offset = (sect_offset) ~(unsigned) 0;
8184
8185 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8186 {
8187 /* Switch to the next abbrev table if necessary. */
8188 if (abbrev_table == NULL
8189 || tu.abbrev_offset != abbrev_offset)
8190 {
8191 abbrev_offset = tu.abbrev_offset;
8192 abbrev_table =
8193 abbrev_table_read_table (dwarf2_per_objfile,
8194 &dwarf2_per_objfile->abbrev,
8195 abbrev_offset);
8196 ++tu_stats->nr_uniq_abbrev_tables;
8197 }
8198
8199 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8200 0, 0, false, build_type_psymtabs_reader, NULL);
8201 }
8202 }
8203
8204 /* Print collected type unit statistics. */
8205
8206 static void
8207 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8208 {
8209 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8210
8211 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8212 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8213 dwarf2_per_objfile->all_type_units.size ());
8214 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8215 tu_stats->nr_uniq_abbrev_tables);
8216 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8217 tu_stats->nr_symtabs);
8218 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8219 tu_stats->nr_symtab_sharers);
8220 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8221 tu_stats->nr_stmt_less_type_units);
8222 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8223 tu_stats->nr_all_type_units_reallocs);
8224 }
8225
8226 /* Traversal function for build_type_psymtabs. */
8227
8228 static int
8229 build_type_psymtab_dependencies (void **slot, void *info)
8230 {
8231 struct dwarf2_per_objfile *dwarf2_per_objfile
8232 = (struct dwarf2_per_objfile *) info;
8233 struct objfile *objfile = dwarf2_per_objfile->objfile;
8234 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8235 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8236 struct partial_symtab *pst = per_cu->v.psymtab;
8237 int len = VEC_length (sig_type_ptr, tu_group->tus);
8238 struct signatured_type *iter;
8239 int i;
8240
8241 gdb_assert (len > 0);
8242 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8243
8244 pst->number_of_dependencies = len;
8245 pst->dependencies =
8246 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8247 for (i = 0;
8248 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8249 ++i)
8250 {
8251 gdb_assert (iter->per_cu.is_debug_types);
8252 pst->dependencies[i] = iter->per_cu.v.psymtab;
8253 iter->type_unit_group = tu_group;
8254 }
8255
8256 VEC_free (sig_type_ptr, tu_group->tus);
8257
8258 return 1;
8259 }
8260
8261 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8262 Build partial symbol tables for the .debug_types comp-units. */
8263
8264 static void
8265 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8266 {
8267 if (! create_all_type_units (dwarf2_per_objfile))
8268 return;
8269
8270 build_type_psymtabs_1 (dwarf2_per_objfile);
8271 }
8272
8273 /* Traversal function for process_skeletonless_type_unit.
8274 Read a TU in a DWO file and build partial symbols for it. */
8275
8276 static int
8277 process_skeletonless_type_unit (void **slot, void *info)
8278 {
8279 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8280 struct dwarf2_per_objfile *dwarf2_per_objfile
8281 = (struct dwarf2_per_objfile *) info;
8282 struct signatured_type find_entry, *entry;
8283
8284 /* If this TU doesn't exist in the global table, add it and read it in. */
8285
8286 if (dwarf2_per_objfile->signatured_types == NULL)
8287 {
8288 dwarf2_per_objfile->signatured_types
8289 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8290 }
8291
8292 find_entry.signature = dwo_unit->signature;
8293 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8294 INSERT);
8295 /* If we've already seen this type there's nothing to do. What's happening
8296 is we're doing our own version of comdat-folding here. */
8297 if (*slot != NULL)
8298 return 1;
8299
8300 /* This does the job that create_all_type_units would have done for
8301 this TU. */
8302 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8303 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8304 *slot = entry;
8305
8306 /* This does the job that build_type_psymtabs_1 would have done. */
8307 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8308 build_type_psymtabs_reader, NULL);
8309
8310 return 1;
8311 }
8312
8313 /* Traversal function for process_skeletonless_type_units. */
8314
8315 static int
8316 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8317 {
8318 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8319
8320 if (dwo_file->tus != NULL)
8321 {
8322 htab_traverse_noresize (dwo_file->tus,
8323 process_skeletonless_type_unit, info);
8324 }
8325
8326 return 1;
8327 }
8328
8329 /* Scan all TUs of DWO files, verifying we've processed them.
8330 This is needed in case a TU was emitted without its skeleton.
8331 Note: This can't be done until we know what all the DWO files are. */
8332
8333 static void
8334 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8335 {
8336 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8337 if (get_dwp_file (dwarf2_per_objfile) == NULL
8338 && dwarf2_per_objfile->dwo_files != NULL)
8339 {
8340 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8341 process_dwo_file_for_skeletonless_type_units,
8342 dwarf2_per_objfile);
8343 }
8344 }
8345
8346 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8347
8348 static void
8349 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8350 {
8351 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8352 {
8353 struct partial_symtab *pst = per_cu->v.psymtab;
8354
8355 if (pst == NULL)
8356 continue;
8357
8358 for (int j = 0; j < pst->number_of_dependencies; ++j)
8359 {
8360 /* Set the 'user' field only if it is not already set. */
8361 if (pst->dependencies[j]->user == NULL)
8362 pst->dependencies[j]->user = pst;
8363 }
8364 }
8365 }
8366
8367 /* Build the partial symbol table by doing a quick pass through the
8368 .debug_info and .debug_abbrev sections. */
8369
8370 static void
8371 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8372 {
8373 struct objfile *objfile = dwarf2_per_objfile->objfile;
8374
8375 if (dwarf_read_debug)
8376 {
8377 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8378 objfile_name (objfile));
8379 }
8380
8381 dwarf2_per_objfile->reading_partial_symbols = 1;
8382
8383 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8384
8385 /* Any cached compilation units will be linked by the per-objfile
8386 read_in_chain. Make sure to free them when we're done. */
8387 free_cached_comp_units freer (dwarf2_per_objfile);
8388
8389 build_type_psymtabs (dwarf2_per_objfile);
8390
8391 create_all_comp_units (dwarf2_per_objfile);
8392
8393 /* Create a temporary address map on a temporary obstack. We later
8394 copy this to the final obstack. */
8395 auto_obstack temp_obstack;
8396
8397 scoped_restore save_psymtabs_addrmap
8398 = make_scoped_restore (&objfile->psymtabs_addrmap,
8399 addrmap_create_mutable (&temp_obstack));
8400
8401 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8403
8404 /* This has to wait until we read the CUs, we need the list of DWOs. */
8405 process_skeletonless_type_units (dwarf2_per_objfile);
8406
8407 /* Now that all TUs have been processed we can fill in the dependencies. */
8408 if (dwarf2_per_objfile->type_unit_groups != NULL)
8409 {
8410 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8411 build_type_psymtab_dependencies, dwarf2_per_objfile);
8412 }
8413
8414 if (dwarf_read_debug)
8415 print_tu_stats (dwarf2_per_objfile);
8416
8417 set_partial_user (dwarf2_per_objfile);
8418
8419 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8420 &objfile->objfile_obstack);
8421 /* At this point we want to keep the address map. */
8422 save_psymtabs_addrmap.release ();
8423
8424 if (dwarf_read_debug)
8425 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8426 objfile_name (objfile));
8427 }
8428
8429 /* die_reader_func for load_partial_comp_unit. */
8430
8431 static void
8432 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8433 const gdb_byte *info_ptr,
8434 struct die_info *comp_unit_die,
8435 int has_children,
8436 void *data)
8437 {
8438 struct dwarf2_cu *cu = reader->cu;
8439
8440 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8441
8442 /* Check if comp unit has_children.
8443 If so, read the rest of the partial symbols from this comp unit.
8444 If not, there's no more debug_info for this comp unit. */
8445 if (has_children)
8446 load_partial_dies (reader, info_ptr, 0);
8447 }
8448
8449 /* Load the partial DIEs for a secondary CU into memory.
8450 This is also used when rereading a primary CU with load_all_dies. */
8451
8452 static void
8453 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8454 {
8455 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8456 load_partial_comp_unit_reader, NULL);
8457 }
8458
8459 static void
8460 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8461 struct dwarf2_section_info *section,
8462 struct dwarf2_section_info *abbrev_section,
8463 unsigned int is_dwz)
8464 {
8465 const gdb_byte *info_ptr;
8466 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467
8468 if (dwarf_read_debug)
8469 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8470 get_section_name (section),
8471 get_section_file_name (section));
8472
8473 dwarf2_read_section (objfile, section);
8474
8475 info_ptr = section->buffer;
8476
8477 while (info_ptr < section->buffer + section->size)
8478 {
8479 struct dwarf2_per_cu_data *this_cu;
8480
8481 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8482
8483 comp_unit_head cu_header;
8484 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8485 abbrev_section, info_ptr,
8486 rcuh_kind::COMPILE);
8487
8488 /* Save the compilation unit for later lookup. */
8489 if (cu_header.unit_type != DW_UT_type)
8490 {
8491 this_cu = XOBNEW (&objfile->objfile_obstack,
8492 struct dwarf2_per_cu_data);
8493 memset (this_cu, 0, sizeof (*this_cu));
8494 }
8495 else
8496 {
8497 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8498 struct signatured_type);
8499 memset (sig_type, 0, sizeof (*sig_type));
8500 sig_type->signature = cu_header.signature;
8501 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8502 this_cu = &sig_type->per_cu;
8503 }
8504 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8505 this_cu->sect_off = sect_off;
8506 this_cu->length = cu_header.length + cu_header.initial_length_size;
8507 this_cu->is_dwz = is_dwz;
8508 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8509 this_cu->section = section;
8510
8511 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8512
8513 info_ptr = info_ptr + this_cu->length;
8514 }
8515 }
8516
8517 /* Create a list of all compilation units in OBJFILE.
8518 This is only done for -readnow and building partial symtabs. */
8519
8520 static void
8521 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8522 {
8523 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8524 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8525 &dwarf2_per_objfile->abbrev, 0);
8526
8527 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8528 if (dwz != NULL)
8529 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8530 1);
8531 }
8532
8533 /* Process all loaded DIEs for compilation unit CU, starting at
8534 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8535 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8536 DW_AT_ranges). See the comments of add_partial_subprogram on how
8537 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8538
8539 static void
8540 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8541 CORE_ADDR *highpc, int set_addrmap,
8542 struct dwarf2_cu *cu)
8543 {
8544 struct partial_die_info *pdi;
8545
8546 /* Now, march along the PDI's, descending into ones which have
8547 interesting children but skipping the children of the other ones,
8548 until we reach the end of the compilation unit. */
8549
8550 pdi = first_die;
8551
8552 while (pdi != NULL)
8553 {
8554 pdi->fixup (cu);
8555
8556 /* Anonymous namespaces or modules have no name but have interesting
8557 children, so we need to look at them. Ditto for anonymous
8558 enums. */
8559
8560 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8561 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8562 || pdi->tag == DW_TAG_imported_unit
8563 || pdi->tag == DW_TAG_inlined_subroutine)
8564 {
8565 switch (pdi->tag)
8566 {
8567 case DW_TAG_subprogram:
8568 case DW_TAG_inlined_subroutine:
8569 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8570 break;
8571 case DW_TAG_constant:
8572 case DW_TAG_variable:
8573 case DW_TAG_typedef:
8574 case DW_TAG_union_type:
8575 if (!pdi->is_declaration)
8576 {
8577 add_partial_symbol (pdi, cu);
8578 }
8579 break;
8580 case DW_TAG_class_type:
8581 case DW_TAG_interface_type:
8582 case DW_TAG_structure_type:
8583 if (!pdi->is_declaration)
8584 {
8585 add_partial_symbol (pdi, cu);
8586 }
8587 if ((cu->language == language_rust
8588 || cu->language == language_cplus) && pdi->has_children)
8589 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8590 set_addrmap, cu);
8591 break;
8592 case DW_TAG_enumeration_type:
8593 if (!pdi->is_declaration)
8594 add_partial_enumeration (pdi, cu);
8595 break;
8596 case DW_TAG_base_type:
8597 case DW_TAG_subrange_type:
8598 /* File scope base type definitions are added to the partial
8599 symbol table. */
8600 add_partial_symbol (pdi, cu);
8601 break;
8602 case DW_TAG_namespace:
8603 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8604 break;
8605 case DW_TAG_module:
8606 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8607 break;
8608 case DW_TAG_imported_unit:
8609 {
8610 struct dwarf2_per_cu_data *per_cu;
8611
8612 /* For now we don't handle imported units in type units. */
8613 if (cu->per_cu->is_debug_types)
8614 {
8615 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8616 " supported in type units [in module %s]"),
8617 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8618 }
8619
8620 per_cu = dwarf2_find_containing_comp_unit
8621 (pdi->d.sect_off, pdi->is_dwz,
8622 cu->per_cu->dwarf2_per_objfile);
8623
8624 /* Go read the partial unit, if needed. */
8625 if (per_cu->v.psymtab == NULL)
8626 process_psymtab_comp_unit (per_cu, 1, cu->language);
8627
8628 VEC_safe_push (dwarf2_per_cu_ptr,
8629 cu->per_cu->imported_symtabs, per_cu);
8630 }
8631 break;
8632 case DW_TAG_imported_declaration:
8633 add_partial_symbol (pdi, cu);
8634 break;
8635 default:
8636 break;
8637 }
8638 }
8639
8640 /* If the die has a sibling, skip to the sibling. */
8641
8642 pdi = pdi->die_sibling;
8643 }
8644 }
8645
8646 /* Functions used to compute the fully scoped name of a partial DIE.
8647
8648 Normally, this is simple. For C++, the parent DIE's fully scoped
8649 name is concatenated with "::" and the partial DIE's name.
8650 Enumerators are an exception; they use the scope of their parent
8651 enumeration type, i.e. the name of the enumeration type is not
8652 prepended to the enumerator.
8653
8654 There are two complexities. One is DW_AT_specification; in this
8655 case "parent" means the parent of the target of the specification,
8656 instead of the direct parent of the DIE. The other is compilers
8657 which do not emit DW_TAG_namespace; in this case we try to guess
8658 the fully qualified name of structure types from their members'
8659 linkage names. This must be done using the DIE's children rather
8660 than the children of any DW_AT_specification target. We only need
8661 to do this for structures at the top level, i.e. if the target of
8662 any DW_AT_specification (if any; otherwise the DIE itself) does not
8663 have a parent. */
8664
8665 /* Compute the scope prefix associated with PDI's parent, in
8666 compilation unit CU. The result will be allocated on CU's
8667 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8668 field. NULL is returned if no prefix is necessary. */
8669 static const char *
8670 partial_die_parent_scope (struct partial_die_info *pdi,
8671 struct dwarf2_cu *cu)
8672 {
8673 const char *grandparent_scope;
8674 struct partial_die_info *parent, *real_pdi;
8675
8676 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8677 then this means the parent of the specification DIE. */
8678
8679 real_pdi = pdi;
8680 while (real_pdi->has_specification)
8681 real_pdi = find_partial_die (real_pdi->spec_offset,
8682 real_pdi->spec_is_dwz, cu);
8683
8684 parent = real_pdi->die_parent;
8685 if (parent == NULL)
8686 return NULL;
8687
8688 if (parent->scope_set)
8689 return parent->scope;
8690
8691 parent->fixup (cu);
8692
8693 grandparent_scope = partial_die_parent_scope (parent, cu);
8694
8695 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8696 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8697 Work around this problem here. */
8698 if (cu->language == language_cplus
8699 && parent->tag == DW_TAG_namespace
8700 && strcmp (parent->name, "::") == 0
8701 && grandparent_scope == NULL)
8702 {
8703 parent->scope = NULL;
8704 parent->scope_set = 1;
8705 return NULL;
8706 }
8707
8708 if (pdi->tag == DW_TAG_enumerator)
8709 /* Enumerators should not get the name of the enumeration as a prefix. */
8710 parent->scope = grandparent_scope;
8711 else if (parent->tag == DW_TAG_namespace
8712 || parent->tag == DW_TAG_module
8713 || parent->tag == DW_TAG_structure_type
8714 || parent->tag == DW_TAG_class_type
8715 || parent->tag == DW_TAG_interface_type
8716 || parent->tag == DW_TAG_union_type
8717 || parent->tag == DW_TAG_enumeration_type)
8718 {
8719 if (grandparent_scope == NULL)
8720 parent->scope = parent->name;
8721 else
8722 parent->scope = typename_concat (&cu->comp_unit_obstack,
8723 grandparent_scope,
8724 parent->name, 0, cu);
8725 }
8726 else
8727 {
8728 /* FIXME drow/2004-04-01: What should we be doing with
8729 function-local names? For partial symbols, we should probably be
8730 ignoring them. */
8731 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8732 parent->tag, sect_offset_str (pdi->sect_off));
8733 parent->scope = grandparent_scope;
8734 }
8735
8736 parent->scope_set = 1;
8737 return parent->scope;
8738 }
8739
8740 /* Return the fully scoped name associated with PDI, from compilation unit
8741 CU. The result will be allocated with malloc. */
8742
8743 static char *
8744 partial_die_full_name (struct partial_die_info *pdi,
8745 struct dwarf2_cu *cu)
8746 {
8747 const char *parent_scope;
8748
8749 /* If this is a template instantiation, we can not work out the
8750 template arguments from partial DIEs. So, unfortunately, we have
8751 to go through the full DIEs. At least any work we do building
8752 types here will be reused if full symbols are loaded later. */
8753 if (pdi->has_template_arguments)
8754 {
8755 pdi->fixup (cu);
8756
8757 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8758 {
8759 struct die_info *die;
8760 struct attribute attr;
8761 struct dwarf2_cu *ref_cu = cu;
8762
8763 /* DW_FORM_ref_addr is using section offset. */
8764 attr.name = (enum dwarf_attribute) 0;
8765 attr.form = DW_FORM_ref_addr;
8766 attr.u.unsnd = to_underlying (pdi->sect_off);
8767 die = follow_die_ref (NULL, &attr, &ref_cu);
8768
8769 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8770 }
8771 }
8772
8773 parent_scope = partial_die_parent_scope (pdi, cu);
8774 if (parent_scope == NULL)
8775 return NULL;
8776 else
8777 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8778 }
8779
8780 static void
8781 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8782 {
8783 struct dwarf2_per_objfile *dwarf2_per_objfile
8784 = cu->per_cu->dwarf2_per_objfile;
8785 struct objfile *objfile = dwarf2_per_objfile->objfile;
8786 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8787 CORE_ADDR addr = 0;
8788 const char *actual_name = NULL;
8789 CORE_ADDR baseaddr;
8790 char *built_actual_name;
8791
8792 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8793
8794 built_actual_name = partial_die_full_name (pdi, cu);
8795 if (built_actual_name != NULL)
8796 actual_name = built_actual_name;
8797
8798 if (actual_name == NULL)
8799 actual_name = pdi->name;
8800
8801 switch (pdi->tag)
8802 {
8803 case DW_TAG_inlined_subroutine:
8804 case DW_TAG_subprogram:
8805 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8806 if (pdi->is_external || cu->language == language_ada)
8807 {
8808 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8809 of the global scope. But in Ada, we want to be able to access
8810 nested procedures globally. So all Ada subprograms are stored
8811 in the global scope. */
8812 add_psymbol_to_list (actual_name, strlen (actual_name),
8813 built_actual_name != NULL,
8814 VAR_DOMAIN, LOC_BLOCK,
8815 &objfile->global_psymbols,
8816 addr, cu->language, objfile);
8817 }
8818 else
8819 {
8820 add_psymbol_to_list (actual_name, strlen (actual_name),
8821 built_actual_name != NULL,
8822 VAR_DOMAIN, LOC_BLOCK,
8823 &objfile->static_psymbols,
8824 addr, cu->language, objfile);
8825 }
8826
8827 if (pdi->main_subprogram && actual_name != NULL)
8828 set_objfile_main_name (objfile, actual_name, cu->language);
8829 break;
8830 case DW_TAG_constant:
8831 {
8832 std::vector<partial_symbol *> *list;
8833
8834 if (pdi->is_external)
8835 list = &objfile->global_psymbols;
8836 else
8837 list = &objfile->static_psymbols;
8838 add_psymbol_to_list (actual_name, strlen (actual_name),
8839 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8840 list, 0, cu->language, objfile);
8841 }
8842 break;
8843 case DW_TAG_variable:
8844 if (pdi->d.locdesc)
8845 addr = decode_locdesc (pdi->d.locdesc, cu);
8846
8847 if (pdi->d.locdesc
8848 && addr == 0
8849 && !dwarf2_per_objfile->has_section_at_zero)
8850 {
8851 /* A global or static variable may also have been stripped
8852 out by the linker if unused, in which case its address
8853 will be nullified; do not add such variables into partial
8854 symbol table then. */
8855 }
8856 else if (pdi->is_external)
8857 {
8858 /* Global Variable.
8859 Don't enter into the minimal symbol tables as there is
8860 a minimal symbol table entry from the ELF symbols already.
8861 Enter into partial symbol table if it has a location
8862 descriptor or a type.
8863 If the location descriptor is missing, new_symbol will create
8864 a LOC_UNRESOLVED symbol, the address of the variable will then
8865 be determined from the minimal symbol table whenever the variable
8866 is referenced.
8867 The address for the partial symbol table entry is not
8868 used by GDB, but it comes in handy for debugging partial symbol
8869 table building. */
8870
8871 if (pdi->d.locdesc || pdi->has_type)
8872 add_psymbol_to_list (actual_name, strlen (actual_name),
8873 built_actual_name != NULL,
8874 VAR_DOMAIN, LOC_STATIC,
8875 &objfile->global_psymbols,
8876 addr + baseaddr,
8877 cu->language, objfile);
8878 }
8879 else
8880 {
8881 int has_loc = pdi->d.locdesc != NULL;
8882
8883 /* Static Variable. Skip symbols whose value we cannot know (those
8884 without location descriptors or constant values). */
8885 if (!has_loc && !pdi->has_const_value)
8886 {
8887 xfree (built_actual_name);
8888 return;
8889 }
8890
8891 add_psymbol_to_list (actual_name, strlen (actual_name),
8892 built_actual_name != NULL,
8893 VAR_DOMAIN, LOC_STATIC,
8894 &objfile->static_psymbols,
8895 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8896 cu->language, objfile);
8897 }
8898 break;
8899 case DW_TAG_typedef:
8900 case DW_TAG_base_type:
8901 case DW_TAG_subrange_type:
8902 add_psymbol_to_list (actual_name, strlen (actual_name),
8903 built_actual_name != NULL,
8904 VAR_DOMAIN, LOC_TYPEDEF,
8905 &objfile->static_psymbols,
8906 0, cu->language, objfile);
8907 break;
8908 case DW_TAG_imported_declaration:
8909 case DW_TAG_namespace:
8910 add_psymbol_to_list (actual_name, strlen (actual_name),
8911 built_actual_name != NULL,
8912 VAR_DOMAIN, LOC_TYPEDEF,
8913 &objfile->global_psymbols,
8914 0, cu->language, objfile);
8915 break;
8916 case DW_TAG_module:
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 MODULE_DOMAIN, LOC_TYPEDEF,
8920 &objfile->global_psymbols,
8921 0, cu->language, objfile);
8922 break;
8923 case DW_TAG_class_type:
8924 case DW_TAG_interface_type:
8925 case DW_TAG_structure_type:
8926 case DW_TAG_union_type:
8927 case DW_TAG_enumeration_type:
8928 /* Skip external references. The DWARF standard says in the section
8929 about "Structure, Union, and Class Type Entries": "An incomplete
8930 structure, union or class type is represented by a structure,
8931 union or class entry that does not have a byte size attribute
8932 and that has a DW_AT_declaration attribute." */
8933 if (!pdi->has_byte_size && pdi->is_declaration)
8934 {
8935 xfree (built_actual_name);
8936 return;
8937 }
8938
8939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8940 static vs. global. */
8941 add_psymbol_to_list (actual_name, strlen (actual_name),
8942 built_actual_name != NULL,
8943 STRUCT_DOMAIN, LOC_TYPEDEF,
8944 cu->language == language_cplus
8945 ? &objfile->global_psymbols
8946 : &objfile->static_psymbols,
8947 0, cu->language, objfile);
8948
8949 break;
8950 case DW_TAG_enumerator:
8951 add_psymbol_to_list (actual_name, strlen (actual_name),
8952 built_actual_name != NULL,
8953 VAR_DOMAIN, LOC_CONST,
8954 cu->language == language_cplus
8955 ? &objfile->global_psymbols
8956 : &objfile->static_psymbols,
8957 0, cu->language, objfile);
8958 break;
8959 default:
8960 break;
8961 }
8962
8963 xfree (built_actual_name);
8964 }
8965
8966 /* Read a partial die corresponding to a namespace; also, add a symbol
8967 corresponding to that namespace to the symbol table. NAMESPACE is
8968 the name of the enclosing namespace. */
8969
8970 static void
8971 add_partial_namespace (struct partial_die_info *pdi,
8972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8973 int set_addrmap, struct dwarf2_cu *cu)
8974 {
8975 /* Add a symbol for the namespace. */
8976
8977 add_partial_symbol (pdi, cu);
8978
8979 /* Now scan partial symbols in that namespace. */
8980
8981 if (pdi->has_children)
8982 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8983 }
8984
8985 /* Read a partial die corresponding to a Fortran module. */
8986
8987 static void
8988 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8989 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8990 {
8991 /* Add a symbol for the namespace. */
8992
8993 add_partial_symbol (pdi, cu);
8994
8995 /* Now scan partial symbols in that module. */
8996
8997 if (pdi->has_children)
8998 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8999 }
9000
9001 /* Read a partial die corresponding to a subprogram or an inlined
9002 subprogram and create a partial symbol for that subprogram.
9003 When the CU language allows it, this routine also defines a partial
9004 symbol for each nested subprogram that this subprogram contains.
9005 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9006 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9007
9008 PDI may also be a lexical block, in which case we simply search
9009 recursively for subprograms defined inside that lexical block.
9010 Again, this is only performed when the CU language allows this
9011 type of definitions. */
9012
9013 static void
9014 add_partial_subprogram (struct partial_die_info *pdi,
9015 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9016 int set_addrmap, struct dwarf2_cu *cu)
9017 {
9018 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9019 {
9020 if (pdi->has_pc_info)
9021 {
9022 if (pdi->lowpc < *lowpc)
9023 *lowpc = pdi->lowpc;
9024 if (pdi->highpc > *highpc)
9025 *highpc = pdi->highpc;
9026 if (set_addrmap)
9027 {
9028 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9030 CORE_ADDR baseaddr;
9031 CORE_ADDR highpc;
9032 CORE_ADDR lowpc;
9033
9034 baseaddr = ANOFFSET (objfile->section_offsets,
9035 SECT_OFF_TEXT (objfile));
9036 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9037 pdi->lowpc + baseaddr);
9038 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9039 pdi->highpc + baseaddr);
9040 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9041 cu->per_cu->v.psymtab);
9042 }
9043 }
9044
9045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9046 {
9047 if (!pdi->is_declaration)
9048 /* Ignore subprogram DIEs that do not have a name, they are
9049 illegal. Do not emit a complaint at this point, we will
9050 do so when we convert this psymtab into a symtab. */
9051 if (pdi->name)
9052 add_partial_symbol (pdi, cu);
9053 }
9054 }
9055
9056 if (! pdi->has_children)
9057 return;
9058
9059 if (cu->language == language_ada)
9060 {
9061 pdi = pdi->die_child;
9062 while (pdi != NULL)
9063 {
9064 pdi->fixup (cu);
9065 if (pdi->tag == DW_TAG_subprogram
9066 || pdi->tag == DW_TAG_inlined_subroutine
9067 || pdi->tag == DW_TAG_lexical_block)
9068 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9069 pdi = pdi->die_sibling;
9070 }
9071 }
9072 }
9073
9074 /* Read a partial die corresponding to an enumeration type. */
9075
9076 static void
9077 add_partial_enumeration (struct partial_die_info *enum_pdi,
9078 struct dwarf2_cu *cu)
9079 {
9080 struct partial_die_info *pdi;
9081
9082 if (enum_pdi->name != NULL)
9083 add_partial_symbol (enum_pdi, cu);
9084
9085 pdi = enum_pdi->die_child;
9086 while (pdi)
9087 {
9088 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9089 complaint (_("malformed enumerator DIE ignored"));
9090 else
9091 add_partial_symbol (pdi, cu);
9092 pdi = pdi->die_sibling;
9093 }
9094 }
9095
9096 /* Return the initial uleb128 in the die at INFO_PTR. */
9097
9098 static unsigned int
9099 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9100 {
9101 unsigned int bytes_read;
9102
9103 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9104 }
9105
9106 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9107 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9108
9109 Return the corresponding abbrev, or NULL if the number is zero (indicating
9110 an empty DIE). In either case *BYTES_READ will be set to the length of
9111 the initial number. */
9112
9113 static struct abbrev_info *
9114 peek_die_abbrev (const die_reader_specs &reader,
9115 const gdb_byte *info_ptr, unsigned int *bytes_read)
9116 {
9117 dwarf2_cu *cu = reader.cu;
9118 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9119 unsigned int abbrev_number
9120 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9121
9122 if (abbrev_number == 0)
9123 return NULL;
9124
9125 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9126 if (!abbrev)
9127 {
9128 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9129 " at offset %s [in module %s]"),
9130 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9131 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9132 }
9133
9134 return abbrev;
9135 }
9136
9137 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9138 Returns a pointer to the end of a series of DIEs, terminated by an empty
9139 DIE. Any children of the skipped DIEs will also be skipped. */
9140
9141 static const gdb_byte *
9142 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9143 {
9144 while (1)
9145 {
9146 unsigned int bytes_read;
9147 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9148
9149 if (abbrev == NULL)
9150 return info_ptr + bytes_read;
9151 else
9152 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9153 }
9154 }
9155
9156 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9157 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9158 abbrev corresponding to that skipped uleb128 should be passed in
9159 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9160 children. */
9161
9162 static const gdb_byte *
9163 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9164 struct abbrev_info *abbrev)
9165 {
9166 unsigned int bytes_read;
9167 struct attribute attr;
9168 bfd *abfd = reader->abfd;
9169 struct dwarf2_cu *cu = reader->cu;
9170 const gdb_byte *buffer = reader->buffer;
9171 const gdb_byte *buffer_end = reader->buffer_end;
9172 unsigned int form, i;
9173
9174 for (i = 0; i < abbrev->num_attrs; i++)
9175 {
9176 /* The only abbrev we care about is DW_AT_sibling. */
9177 if (abbrev->attrs[i].name == DW_AT_sibling)
9178 {
9179 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9180 if (attr.form == DW_FORM_ref_addr)
9181 complaint (_("ignoring absolute DW_AT_sibling"));
9182 else
9183 {
9184 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9185 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9186
9187 if (sibling_ptr < info_ptr)
9188 complaint (_("DW_AT_sibling points backwards"));
9189 else if (sibling_ptr > reader->buffer_end)
9190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9191 else
9192 return sibling_ptr;
9193 }
9194 }
9195
9196 /* If it isn't DW_AT_sibling, skip this attribute. */
9197 form = abbrev->attrs[i].form;
9198 skip_attribute:
9199 switch (form)
9200 {
9201 case DW_FORM_ref_addr:
9202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9203 and later it is offset sized. */
9204 if (cu->header.version == 2)
9205 info_ptr += cu->header.addr_size;
9206 else
9207 info_ptr += cu->header.offset_size;
9208 break;
9209 case DW_FORM_GNU_ref_alt:
9210 info_ptr += cu->header.offset_size;
9211 break;
9212 case DW_FORM_addr:
9213 info_ptr += cu->header.addr_size;
9214 break;
9215 case DW_FORM_data1:
9216 case DW_FORM_ref1:
9217 case DW_FORM_flag:
9218 info_ptr += 1;
9219 break;
9220 case DW_FORM_flag_present:
9221 case DW_FORM_implicit_const:
9222 break;
9223 case DW_FORM_data2:
9224 case DW_FORM_ref2:
9225 info_ptr += 2;
9226 break;
9227 case DW_FORM_data4:
9228 case DW_FORM_ref4:
9229 info_ptr += 4;
9230 break;
9231 case DW_FORM_data8:
9232 case DW_FORM_ref8:
9233 case DW_FORM_ref_sig8:
9234 info_ptr += 8;
9235 break;
9236 case DW_FORM_data16:
9237 info_ptr += 16;
9238 break;
9239 case DW_FORM_string:
9240 read_direct_string (abfd, info_ptr, &bytes_read);
9241 info_ptr += bytes_read;
9242 break;
9243 case DW_FORM_sec_offset:
9244 case DW_FORM_strp:
9245 case DW_FORM_GNU_strp_alt:
9246 info_ptr += cu->header.offset_size;
9247 break;
9248 case DW_FORM_exprloc:
9249 case DW_FORM_block:
9250 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9251 info_ptr += bytes_read;
9252 break;
9253 case DW_FORM_block1:
9254 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9255 break;
9256 case DW_FORM_block2:
9257 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9258 break;
9259 case DW_FORM_block4:
9260 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9261 break;
9262 case DW_FORM_sdata:
9263 case DW_FORM_udata:
9264 case DW_FORM_ref_udata:
9265 case DW_FORM_GNU_addr_index:
9266 case DW_FORM_GNU_str_index:
9267 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9268 break;
9269 case DW_FORM_indirect:
9270 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9271 info_ptr += bytes_read;
9272 /* We need to continue parsing from here, so just go back to
9273 the top. */
9274 goto skip_attribute;
9275
9276 default:
9277 error (_("Dwarf Error: Cannot handle %s "
9278 "in DWARF reader [in module %s]"),
9279 dwarf_form_name (form),
9280 bfd_get_filename (abfd));
9281 }
9282 }
9283
9284 if (abbrev->has_children)
9285 return skip_children (reader, info_ptr);
9286 else
9287 return info_ptr;
9288 }
9289
9290 /* Locate ORIG_PDI's sibling.
9291 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9292
9293 static const gdb_byte *
9294 locate_pdi_sibling (const struct die_reader_specs *reader,
9295 struct partial_die_info *orig_pdi,
9296 const gdb_byte *info_ptr)
9297 {
9298 /* Do we know the sibling already? */
9299
9300 if (orig_pdi->sibling)
9301 return orig_pdi->sibling;
9302
9303 /* Are there any children to deal with? */
9304
9305 if (!orig_pdi->has_children)
9306 return info_ptr;
9307
9308 /* Skip the children the long way. */
9309
9310 return skip_children (reader, info_ptr);
9311 }
9312
9313 /* Expand this partial symbol table into a full symbol table. SELF is
9314 not NULL. */
9315
9316 static void
9317 dwarf2_read_symtab (struct partial_symtab *self,
9318 struct objfile *objfile)
9319 {
9320 struct dwarf2_per_objfile *dwarf2_per_objfile
9321 = get_dwarf2_per_objfile (objfile);
9322
9323 if (self->readin)
9324 {
9325 warning (_("bug: psymtab for %s is already read in."),
9326 self->filename);
9327 }
9328 else
9329 {
9330 if (info_verbose)
9331 {
9332 printf_filtered (_("Reading in symbols for %s..."),
9333 self->filename);
9334 gdb_flush (gdb_stdout);
9335 }
9336
9337 /* If this psymtab is constructed from a debug-only objfile, the
9338 has_section_at_zero flag will not necessarily be correct. We
9339 can get the correct value for this flag by looking at the data
9340 associated with the (presumably stripped) associated objfile. */
9341 if (objfile->separate_debug_objfile_backlink)
9342 {
9343 struct dwarf2_per_objfile *dpo_backlink
9344 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9345
9346 dwarf2_per_objfile->has_section_at_zero
9347 = dpo_backlink->has_section_at_zero;
9348 }
9349
9350 dwarf2_per_objfile->reading_partial_symbols = 0;
9351
9352 psymtab_to_symtab_1 (self);
9353
9354 /* Finish up the debug error message. */
9355 if (info_verbose)
9356 printf_filtered (_("done.\n"));
9357 }
9358
9359 process_cu_includes (dwarf2_per_objfile);
9360 }
9361 \f
9362 /* Reading in full CUs. */
9363
9364 /* Add PER_CU to the queue. */
9365
9366 static void
9367 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9368 enum language pretend_language)
9369 {
9370 struct dwarf2_queue_item *item;
9371
9372 per_cu->queued = 1;
9373 item = XNEW (struct dwarf2_queue_item);
9374 item->per_cu = per_cu;
9375 item->pretend_language = pretend_language;
9376 item->next = NULL;
9377
9378 if (dwarf2_queue == NULL)
9379 dwarf2_queue = item;
9380 else
9381 dwarf2_queue_tail->next = item;
9382
9383 dwarf2_queue_tail = item;
9384 }
9385
9386 /* If PER_CU is not yet queued, add it to the queue.
9387 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9388 dependency.
9389 The result is non-zero if PER_CU was queued, otherwise the result is zero
9390 meaning either PER_CU is already queued or it is already loaded.
9391
9392 N.B. There is an invariant here that if a CU is queued then it is loaded.
9393 The caller is required to load PER_CU if we return non-zero. */
9394
9395 static int
9396 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9397 struct dwarf2_per_cu_data *per_cu,
9398 enum language pretend_language)
9399 {
9400 /* We may arrive here during partial symbol reading, if we need full
9401 DIEs to process an unusual case (e.g. template arguments). Do
9402 not queue PER_CU, just tell our caller to load its DIEs. */
9403 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9404 {
9405 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9406 return 1;
9407 return 0;
9408 }
9409
9410 /* Mark the dependence relation so that we don't flush PER_CU
9411 too early. */
9412 if (dependent_cu != NULL)
9413 dwarf2_add_dependence (dependent_cu, per_cu);
9414
9415 /* If it's already on the queue, we have nothing to do. */
9416 if (per_cu->queued)
9417 return 0;
9418
9419 /* If the compilation unit is already loaded, just mark it as
9420 used. */
9421 if (per_cu->cu != NULL)
9422 {
9423 per_cu->cu->last_used = 0;
9424 return 0;
9425 }
9426
9427 /* Add it to the queue. */
9428 queue_comp_unit (per_cu, pretend_language);
9429
9430 return 1;
9431 }
9432
9433 /* Process the queue. */
9434
9435 static void
9436 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9437 {
9438 struct dwarf2_queue_item *item, *next_item;
9439
9440 if (dwarf_read_debug)
9441 {
9442 fprintf_unfiltered (gdb_stdlog,
9443 "Expanding one or more symtabs of objfile %s ...\n",
9444 objfile_name (dwarf2_per_objfile->objfile));
9445 }
9446
9447 /* The queue starts out with one item, but following a DIE reference
9448 may load a new CU, adding it to the end of the queue. */
9449 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9450 {
9451 if ((dwarf2_per_objfile->using_index
9452 ? !item->per_cu->v.quick->compunit_symtab
9453 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9454 /* Skip dummy CUs. */
9455 && item->per_cu->cu != NULL)
9456 {
9457 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9458 unsigned int debug_print_threshold;
9459 char buf[100];
9460
9461 if (per_cu->is_debug_types)
9462 {
9463 struct signatured_type *sig_type =
9464 (struct signatured_type *) per_cu;
9465
9466 sprintf (buf, "TU %s at offset %s",
9467 hex_string (sig_type->signature),
9468 sect_offset_str (per_cu->sect_off));
9469 /* There can be 100s of TUs.
9470 Only print them in verbose mode. */
9471 debug_print_threshold = 2;
9472 }
9473 else
9474 {
9475 sprintf (buf, "CU at offset %s",
9476 sect_offset_str (per_cu->sect_off));
9477 debug_print_threshold = 1;
9478 }
9479
9480 if (dwarf_read_debug >= debug_print_threshold)
9481 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9482
9483 if (per_cu->is_debug_types)
9484 process_full_type_unit (per_cu, item->pretend_language);
9485 else
9486 process_full_comp_unit (per_cu, item->pretend_language);
9487
9488 if (dwarf_read_debug >= debug_print_threshold)
9489 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9490 }
9491
9492 item->per_cu->queued = 0;
9493 next_item = item->next;
9494 xfree (item);
9495 }
9496
9497 dwarf2_queue_tail = NULL;
9498
9499 if (dwarf_read_debug)
9500 {
9501 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9502 objfile_name (dwarf2_per_objfile->objfile));
9503 }
9504 }
9505
9506 /* Read in full symbols for PST, and anything it depends on. */
9507
9508 static void
9509 psymtab_to_symtab_1 (struct partial_symtab *pst)
9510 {
9511 struct dwarf2_per_cu_data *per_cu;
9512 int i;
9513
9514 if (pst->readin)
9515 return;
9516
9517 for (i = 0; i < pst->number_of_dependencies; i++)
9518 if (!pst->dependencies[i]->readin
9519 && pst->dependencies[i]->user == NULL)
9520 {
9521 /* Inform about additional files that need to be read in. */
9522 if (info_verbose)
9523 {
9524 /* FIXME: i18n: Need to make this a single string. */
9525 fputs_filtered (" ", gdb_stdout);
9526 wrap_here ("");
9527 fputs_filtered ("and ", gdb_stdout);
9528 wrap_here ("");
9529 printf_filtered ("%s...", pst->dependencies[i]->filename);
9530 wrap_here (""); /* Flush output. */
9531 gdb_flush (gdb_stdout);
9532 }
9533 psymtab_to_symtab_1 (pst->dependencies[i]);
9534 }
9535
9536 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9537
9538 if (per_cu == NULL)
9539 {
9540 /* It's an include file, no symbols to read for it.
9541 Everything is in the parent symtab. */
9542 pst->readin = 1;
9543 return;
9544 }
9545
9546 dw2_do_instantiate_symtab (per_cu, false);
9547 }
9548
9549 /* Trivial hash function for die_info: the hash value of a DIE
9550 is its offset in .debug_info for this objfile. */
9551
9552 static hashval_t
9553 die_hash (const void *item)
9554 {
9555 const struct die_info *die = (const struct die_info *) item;
9556
9557 return to_underlying (die->sect_off);
9558 }
9559
9560 /* Trivial comparison function for die_info structures: two DIEs
9561 are equal if they have the same offset. */
9562
9563 static int
9564 die_eq (const void *item_lhs, const void *item_rhs)
9565 {
9566 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9567 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9568
9569 return die_lhs->sect_off == die_rhs->sect_off;
9570 }
9571
9572 /* die_reader_func for load_full_comp_unit.
9573 This is identical to read_signatured_type_reader,
9574 but is kept separate for now. */
9575
9576 static void
9577 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9578 const gdb_byte *info_ptr,
9579 struct die_info *comp_unit_die,
9580 int has_children,
9581 void *data)
9582 {
9583 struct dwarf2_cu *cu = reader->cu;
9584 enum language *language_ptr = (enum language *) data;
9585
9586 gdb_assert (cu->die_hash == NULL);
9587 cu->die_hash =
9588 htab_create_alloc_ex (cu->header.length / 12,
9589 die_hash,
9590 die_eq,
9591 NULL,
9592 &cu->comp_unit_obstack,
9593 hashtab_obstack_allocate,
9594 dummy_obstack_deallocate);
9595
9596 if (has_children)
9597 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9598 &info_ptr, comp_unit_die);
9599 cu->dies = comp_unit_die;
9600 /* comp_unit_die is not stored in die_hash, no need. */
9601
9602 /* We try not to read any attributes in this function, because not
9603 all CUs needed for references have been loaded yet, and symbol
9604 table processing isn't initialized. But we have to set the CU language,
9605 or we won't be able to build types correctly.
9606 Similarly, if we do not read the producer, we can not apply
9607 producer-specific interpretation. */
9608 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9609 }
9610
9611 /* Load the DIEs associated with PER_CU into memory. */
9612
9613 static void
9614 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9615 bool skip_partial,
9616 enum language pretend_language)
9617 {
9618 gdb_assert (! this_cu->is_debug_types);
9619
9620 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9621 load_full_comp_unit_reader, &pretend_language);
9622 }
9623
9624 /* Add a DIE to the delayed physname list. */
9625
9626 static void
9627 add_to_method_list (struct type *type, int fnfield_index, int index,
9628 const char *name, struct die_info *die,
9629 struct dwarf2_cu *cu)
9630 {
9631 struct delayed_method_info mi;
9632 mi.type = type;
9633 mi.fnfield_index = fnfield_index;
9634 mi.index = index;
9635 mi.name = name;
9636 mi.die = die;
9637 cu->method_list.push_back (mi);
9638 }
9639
9640 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9641 "const" / "volatile". If so, decrements LEN by the length of the
9642 modifier and return true. Otherwise return false. */
9643
9644 template<size_t N>
9645 static bool
9646 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9647 {
9648 size_t mod_len = sizeof (mod) - 1;
9649 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9650 {
9651 len -= mod_len;
9652 return true;
9653 }
9654 return false;
9655 }
9656
9657 /* Compute the physnames of any methods on the CU's method list.
9658
9659 The computation of method physnames is delayed in order to avoid the
9660 (bad) condition that one of the method's formal parameters is of an as yet
9661 incomplete type. */
9662
9663 static void
9664 compute_delayed_physnames (struct dwarf2_cu *cu)
9665 {
9666 /* Only C++ delays computing physnames. */
9667 if (cu->method_list.empty ())
9668 return;
9669 gdb_assert (cu->language == language_cplus);
9670
9671 for (const delayed_method_info &mi : cu->method_list)
9672 {
9673 const char *physname;
9674 struct fn_fieldlist *fn_flp
9675 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9676 physname = dwarf2_physname (mi.name, mi.die, cu);
9677 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9678 = physname ? physname : "";
9679
9680 /* Since there's no tag to indicate whether a method is a
9681 const/volatile overload, extract that information out of the
9682 demangled name. */
9683 if (physname != NULL)
9684 {
9685 size_t len = strlen (physname);
9686
9687 while (1)
9688 {
9689 if (physname[len] == ')') /* shortcut */
9690 break;
9691 else if (check_modifier (physname, len, " const"))
9692 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9693 else if (check_modifier (physname, len, " volatile"))
9694 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9695 else
9696 break;
9697 }
9698 }
9699 }
9700
9701 /* The list is no longer needed. */
9702 cu->method_list.clear ();
9703 }
9704
9705 /* Go objects should be embedded in a DW_TAG_module DIE,
9706 and it's not clear if/how imported objects will appear.
9707 To keep Go support simple until that's worked out,
9708 go back through what we've read and create something usable.
9709 We could do this while processing each DIE, and feels kinda cleaner,
9710 but that way is more invasive.
9711 This is to, for example, allow the user to type "p var" or "b main"
9712 without having to specify the package name, and allow lookups
9713 of module.object to work in contexts that use the expression
9714 parser. */
9715
9716 static void
9717 fixup_go_packaging (struct dwarf2_cu *cu)
9718 {
9719 char *package_name = NULL;
9720 struct pending *list;
9721 int i;
9722
9723 for (list = *cu->builder->get_global_symbols ();
9724 list != NULL;
9725 list = list->next)
9726 {
9727 for (i = 0; i < list->nsyms; ++i)
9728 {
9729 struct symbol *sym = list->symbol[i];
9730
9731 if (SYMBOL_LANGUAGE (sym) == language_go
9732 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9733 {
9734 char *this_package_name = go_symbol_package_name (sym);
9735
9736 if (this_package_name == NULL)
9737 continue;
9738 if (package_name == NULL)
9739 package_name = this_package_name;
9740 else
9741 {
9742 struct objfile *objfile
9743 = cu->per_cu->dwarf2_per_objfile->objfile;
9744 if (strcmp (package_name, this_package_name) != 0)
9745 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9746 (symbol_symtab (sym) != NULL
9747 ? symtab_to_filename_for_display
9748 (symbol_symtab (sym))
9749 : objfile_name (objfile)),
9750 this_package_name, package_name);
9751 xfree (this_package_name);
9752 }
9753 }
9754 }
9755 }
9756
9757 if (package_name != NULL)
9758 {
9759 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9760 const char *saved_package_name
9761 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9762 package_name,
9763 strlen (package_name));
9764 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9765 saved_package_name);
9766 struct symbol *sym;
9767
9768 sym = allocate_symbol (objfile);
9769 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9770 SYMBOL_SET_NAMES (sym, saved_package_name,
9771 strlen (saved_package_name), 0, objfile);
9772 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9773 e.g., "main" finds the "main" module and not C's main(). */
9774 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9775 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9776 SYMBOL_TYPE (sym) = type;
9777
9778 add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9779
9780 xfree (package_name);
9781 }
9782 }
9783
9784 /* Allocate a fully-qualified name consisting of the two parts on the
9785 obstack. */
9786
9787 static const char *
9788 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9789 {
9790 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9791 }
9792
9793 /* A helper that allocates a struct discriminant_info to attach to a
9794 union type. */
9795
9796 static struct discriminant_info *
9797 alloc_discriminant_info (struct type *type, int discriminant_index,
9798 int default_index)
9799 {
9800 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9801 gdb_assert (discriminant_index == -1
9802 || (discriminant_index >= 0
9803 && discriminant_index < TYPE_NFIELDS (type)));
9804 gdb_assert (default_index == -1
9805 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9806
9807 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9808
9809 struct discriminant_info *disc
9810 = ((struct discriminant_info *)
9811 TYPE_ZALLOC (type,
9812 offsetof (struct discriminant_info, discriminants)
9813 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9814 disc->default_index = default_index;
9815 disc->discriminant_index = discriminant_index;
9816
9817 struct dynamic_prop prop;
9818 prop.kind = PROP_UNDEFINED;
9819 prop.data.baton = disc;
9820
9821 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9822
9823 return disc;
9824 }
9825
9826 /* Some versions of rustc emitted enums in an unusual way.
9827
9828 Ordinary enums were emitted as unions. The first element of each
9829 structure in the union was named "RUST$ENUM$DISR". This element
9830 held the discriminant.
9831
9832 These versions of Rust also implemented the "non-zero"
9833 optimization. When the enum had two values, and one is empty and
9834 the other holds a pointer that cannot be zero, the pointer is used
9835 as the discriminant, with a zero value meaning the empty variant.
9836 Here, the union's first member is of the form
9837 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9838 where the fieldnos are the indices of the fields that should be
9839 traversed in order to find the field (which may be several fields deep)
9840 and the variantname is the name of the variant of the case when the
9841 field is zero.
9842
9843 This function recognizes whether TYPE is of one of these forms,
9844 and, if so, smashes it to be a variant type. */
9845
9846 static void
9847 quirk_rust_enum (struct type *type, struct objfile *objfile)
9848 {
9849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9850
9851 /* We don't need to deal with empty enums. */
9852 if (TYPE_NFIELDS (type) == 0)
9853 return;
9854
9855 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9856 if (TYPE_NFIELDS (type) == 1
9857 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9858 {
9859 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9860
9861 /* Decode the field name to find the offset of the
9862 discriminant. */
9863 ULONGEST bit_offset = 0;
9864 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9865 while (name[0] >= '0' && name[0] <= '9')
9866 {
9867 char *tail;
9868 unsigned long index = strtoul (name, &tail, 10);
9869 name = tail;
9870 if (*name != '$'
9871 || index >= TYPE_NFIELDS (field_type)
9872 || (TYPE_FIELD_LOC_KIND (field_type, index)
9873 != FIELD_LOC_KIND_BITPOS))
9874 {
9875 complaint (_("Could not parse Rust enum encoding string \"%s\""
9876 "[in module %s]"),
9877 TYPE_FIELD_NAME (type, 0),
9878 objfile_name (objfile));
9879 return;
9880 }
9881 ++name;
9882
9883 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9884 field_type = TYPE_FIELD_TYPE (field_type, index);
9885 }
9886
9887 /* Make a union to hold the variants. */
9888 struct type *union_type = alloc_type (objfile);
9889 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9890 TYPE_NFIELDS (union_type) = 3;
9891 TYPE_FIELDS (union_type)
9892 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9893 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9894 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9895
9896 /* Put the discriminant must at index 0. */
9897 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9898 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9899 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9900 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9901
9902 /* The order of fields doesn't really matter, so put the real
9903 field at index 1 and the data-less field at index 2. */
9904 struct discriminant_info *disc
9905 = alloc_discriminant_info (union_type, 0, 1);
9906 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9907 TYPE_FIELD_NAME (union_type, 1)
9908 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9909 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9910 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9911 TYPE_FIELD_NAME (union_type, 1));
9912
9913 const char *dataless_name
9914 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9915 name);
9916 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9917 dataless_name);
9918 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9919 /* NAME points into the original discriminant name, which
9920 already has the correct lifetime. */
9921 TYPE_FIELD_NAME (union_type, 2) = name;
9922 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9923 disc->discriminants[2] = 0;
9924
9925 /* Smash this type to be a structure type. We have to do this
9926 because the type has already been recorded. */
9927 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9928 TYPE_NFIELDS (type) = 1;
9929 TYPE_FIELDS (type)
9930 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9931
9932 /* Install the variant part. */
9933 TYPE_FIELD_TYPE (type, 0) = union_type;
9934 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9935 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9936 }
9937 else if (TYPE_NFIELDS (type) == 1)
9938 {
9939 /* We assume that a union with a single field is a univariant
9940 enum. */
9941 /* Smash this type to be a structure type. We have to do this
9942 because the type has already been recorded. */
9943 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9944
9945 /* Make a union to hold the variants. */
9946 struct type *union_type = alloc_type (objfile);
9947 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9948 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9949 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9950 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9951 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9952
9953 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9954 const char *variant_name
9955 = rust_last_path_segment (TYPE_NAME (field_type));
9956 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9957 TYPE_NAME (field_type)
9958 = rust_fully_qualify (&objfile->objfile_obstack,
9959 TYPE_NAME (type), variant_name);
9960
9961 /* Install the union in the outer struct type. */
9962 TYPE_NFIELDS (type) = 1;
9963 TYPE_FIELDS (type)
9964 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9965 TYPE_FIELD_TYPE (type, 0) = union_type;
9966 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9967 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9968
9969 alloc_discriminant_info (union_type, -1, 0);
9970 }
9971 else
9972 {
9973 struct type *disr_type = nullptr;
9974 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9975 {
9976 disr_type = TYPE_FIELD_TYPE (type, i);
9977
9978 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9979 {
9980 /* All fields of a true enum will be structs. */
9981 return;
9982 }
9983 else if (TYPE_NFIELDS (disr_type) == 0)
9984 {
9985 /* Could be data-less variant, so keep going. */
9986 disr_type = nullptr;
9987 }
9988 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9989 "RUST$ENUM$DISR") != 0)
9990 {
9991 /* Not a Rust enum. */
9992 return;
9993 }
9994 else
9995 {
9996 /* Found one. */
9997 break;
9998 }
9999 }
10000
10001 /* If we got here without a discriminant, then it's probably
10002 just a union. */
10003 if (disr_type == nullptr)
10004 return;
10005
10006 /* Smash this type to be a structure type. We have to do this
10007 because the type has already been recorded. */
10008 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10009
10010 /* Make a union to hold the variants. */
10011 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10012 struct type *union_type = alloc_type (objfile);
10013 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10014 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10015 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10016 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10017 TYPE_FIELDS (union_type)
10018 = (struct field *) TYPE_ZALLOC (union_type,
10019 (TYPE_NFIELDS (union_type)
10020 * sizeof (struct field)));
10021
10022 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10023 TYPE_NFIELDS (type) * sizeof (struct field));
10024
10025 /* Install the discriminant at index 0 in the union. */
10026 TYPE_FIELD (union_type, 0) = *disr_field;
10027 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10028 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10029
10030 /* Install the union in the outer struct type. */
10031 TYPE_FIELD_TYPE (type, 0) = union_type;
10032 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10033 TYPE_NFIELDS (type) = 1;
10034
10035 /* Set the size and offset of the union type. */
10036 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10037
10038 /* We need a way to find the correct discriminant given a
10039 variant name. For convenience we build a map here. */
10040 struct type *enum_type = FIELD_TYPE (*disr_field);
10041 std::unordered_map<std::string, ULONGEST> discriminant_map;
10042 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10043 {
10044 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10045 {
10046 const char *name
10047 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10048 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10049 }
10050 }
10051
10052 int n_fields = TYPE_NFIELDS (union_type);
10053 struct discriminant_info *disc
10054 = alloc_discriminant_info (union_type, 0, -1);
10055 /* Skip the discriminant here. */
10056 for (int i = 1; i < n_fields; ++i)
10057 {
10058 /* Find the final word in the name of this variant's type.
10059 That name can be used to look up the correct
10060 discriminant. */
10061 const char *variant_name
10062 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10063 i)));
10064
10065 auto iter = discriminant_map.find (variant_name);
10066 if (iter != discriminant_map.end ())
10067 disc->discriminants[i] = iter->second;
10068
10069 /* Remove the discriminant field, if it exists. */
10070 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10071 if (TYPE_NFIELDS (sub_type) > 0)
10072 {
10073 --TYPE_NFIELDS (sub_type);
10074 ++TYPE_FIELDS (sub_type);
10075 }
10076 TYPE_FIELD_NAME (union_type, i) = variant_name;
10077 TYPE_NAME (sub_type)
10078 = rust_fully_qualify (&objfile->objfile_obstack,
10079 TYPE_NAME (type), variant_name);
10080 }
10081 }
10082 }
10083
10084 /* Rewrite some Rust unions to be structures with variants parts. */
10085
10086 static void
10087 rust_union_quirks (struct dwarf2_cu *cu)
10088 {
10089 gdb_assert (cu->language == language_rust);
10090 for (type *type_ : cu->rust_unions)
10091 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10092 /* We don't need this any more. */
10093 cu->rust_unions.clear ();
10094 }
10095
10096 /* Return the symtab for PER_CU. This works properly regardless of
10097 whether we're using the index or psymtabs. */
10098
10099 static struct compunit_symtab *
10100 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10101 {
10102 return (per_cu->dwarf2_per_objfile->using_index
10103 ? per_cu->v.quick->compunit_symtab
10104 : per_cu->v.psymtab->compunit_symtab);
10105 }
10106
10107 /* A helper function for computing the list of all symbol tables
10108 included by PER_CU. */
10109
10110 static void
10111 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10112 htab_t all_children, htab_t all_type_symtabs,
10113 struct dwarf2_per_cu_data *per_cu,
10114 struct compunit_symtab *immediate_parent)
10115 {
10116 void **slot;
10117 int ix;
10118 struct compunit_symtab *cust;
10119 struct dwarf2_per_cu_data *iter;
10120
10121 slot = htab_find_slot (all_children, per_cu, INSERT);
10122 if (*slot != NULL)
10123 {
10124 /* This inclusion and its children have been processed. */
10125 return;
10126 }
10127
10128 *slot = per_cu;
10129 /* Only add a CU if it has a symbol table. */
10130 cust = get_compunit_symtab (per_cu);
10131 if (cust != NULL)
10132 {
10133 /* If this is a type unit only add its symbol table if we haven't
10134 seen it yet (type unit per_cu's can share symtabs). */
10135 if (per_cu->is_debug_types)
10136 {
10137 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10138 if (*slot == NULL)
10139 {
10140 *slot = cust;
10141 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10142 if (cust->user == NULL)
10143 cust->user = immediate_parent;
10144 }
10145 }
10146 else
10147 {
10148 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10149 if (cust->user == NULL)
10150 cust->user = immediate_parent;
10151 }
10152 }
10153
10154 for (ix = 0;
10155 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10156 ++ix)
10157 {
10158 recursively_compute_inclusions (result, all_children,
10159 all_type_symtabs, iter, cust);
10160 }
10161 }
10162
10163 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10164 PER_CU. */
10165
10166 static void
10167 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10168 {
10169 gdb_assert (! per_cu->is_debug_types);
10170
10171 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10172 {
10173 int ix, len;
10174 struct dwarf2_per_cu_data *per_cu_iter;
10175 struct compunit_symtab *compunit_symtab_iter;
10176 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10177 htab_t all_children, all_type_symtabs;
10178 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10179
10180 /* If we don't have a symtab, we can just skip this case. */
10181 if (cust == NULL)
10182 return;
10183
10184 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10185 NULL, xcalloc, xfree);
10186 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10187 NULL, xcalloc, xfree);
10188
10189 for (ix = 0;
10190 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10191 ix, per_cu_iter);
10192 ++ix)
10193 {
10194 recursively_compute_inclusions (&result_symtabs, all_children,
10195 all_type_symtabs, per_cu_iter,
10196 cust);
10197 }
10198
10199 /* Now we have a transitive closure of all the included symtabs. */
10200 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10201 cust->includes
10202 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10203 struct compunit_symtab *, len + 1);
10204 for (ix = 0;
10205 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10206 compunit_symtab_iter);
10207 ++ix)
10208 cust->includes[ix] = compunit_symtab_iter;
10209 cust->includes[len] = NULL;
10210
10211 VEC_free (compunit_symtab_ptr, result_symtabs);
10212 htab_delete (all_children);
10213 htab_delete (all_type_symtabs);
10214 }
10215 }
10216
10217 /* Compute the 'includes' field for the symtabs of all the CUs we just
10218 read. */
10219
10220 static void
10221 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10222 {
10223 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10224 {
10225 if (! iter->is_debug_types)
10226 compute_compunit_symtab_includes (iter);
10227 }
10228
10229 dwarf2_per_objfile->just_read_cus.clear ();
10230 }
10231
10232 /* Generate full symbol information for PER_CU, whose DIEs have
10233 already been loaded into memory. */
10234
10235 static void
10236 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10237 enum language pretend_language)
10238 {
10239 struct dwarf2_cu *cu = per_cu->cu;
10240 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10241 struct objfile *objfile = dwarf2_per_objfile->objfile;
10242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10243 CORE_ADDR lowpc, highpc;
10244 struct compunit_symtab *cust;
10245 CORE_ADDR baseaddr;
10246 struct block *static_block;
10247 CORE_ADDR addr;
10248
10249 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10250
10251 /* Clear the list here in case something was left over. */
10252 cu->method_list.clear ();
10253
10254 cu->language = pretend_language;
10255 cu->language_defn = language_def (cu->language);
10256
10257 /* Do line number decoding in read_file_scope () */
10258 process_die (cu->dies, cu);
10259
10260 /* For now fudge the Go package. */
10261 if (cu->language == language_go)
10262 fixup_go_packaging (cu);
10263
10264 /* Now that we have processed all the DIEs in the CU, all the types
10265 should be complete, and it should now be safe to compute all of the
10266 physnames. */
10267 compute_delayed_physnames (cu);
10268
10269 if (cu->language == language_rust)
10270 rust_union_quirks (cu);
10271
10272 /* Some compilers don't define a DW_AT_high_pc attribute for the
10273 compilation unit. If the DW_AT_high_pc is missing, synthesize
10274 it, by scanning the DIE's below the compilation unit. */
10275 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10276
10277 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10278 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10279
10280 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10281 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10282 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10283 addrmap to help ensure it has an accurate map of pc values belonging to
10284 this comp unit. */
10285 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10286
10287 cust = cu->builder->end_symtab_from_static_block (static_block,
10288 SECT_OFF_TEXT (objfile),
10289 0);
10290
10291 if (cust != NULL)
10292 {
10293 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10294
10295 /* Set symtab language to language from DW_AT_language. If the
10296 compilation is from a C file generated by language preprocessors, do
10297 not set the language if it was already deduced by start_subfile. */
10298 if (!(cu->language == language_c
10299 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10300 COMPUNIT_FILETABS (cust)->language = cu->language;
10301
10302 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10303 produce DW_AT_location with location lists but it can be possibly
10304 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10305 there were bugs in prologue debug info, fixed later in GCC-4.5
10306 by "unwind info for epilogues" patch (which is not directly related).
10307
10308 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10309 needed, it would be wrong due to missing DW_AT_producer there.
10310
10311 Still one can confuse GDB by using non-standard GCC compilation
10312 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10313 */
10314 if (cu->has_loclist && gcc_4_minor >= 5)
10315 cust->locations_valid = 1;
10316
10317 if (gcc_4_minor >= 5)
10318 cust->epilogue_unwind_valid = 1;
10319
10320 cust->call_site_htab = cu->call_site_htab;
10321 }
10322
10323 if (dwarf2_per_objfile->using_index)
10324 per_cu->v.quick->compunit_symtab = cust;
10325 else
10326 {
10327 struct partial_symtab *pst = per_cu->v.psymtab;
10328 pst->compunit_symtab = cust;
10329 pst->readin = 1;
10330 }
10331
10332 /* Push it for inclusion processing later. */
10333 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10334
10335 /* Not needed any more. */
10336 cu->builder.reset ();
10337 }
10338
10339 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10340 already been loaded into memory. */
10341
10342 static void
10343 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10344 enum language pretend_language)
10345 {
10346 struct dwarf2_cu *cu = per_cu->cu;
10347 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10348 struct objfile *objfile = dwarf2_per_objfile->objfile;
10349 struct compunit_symtab *cust;
10350 struct signatured_type *sig_type;
10351
10352 gdb_assert (per_cu->is_debug_types);
10353 sig_type = (struct signatured_type *) per_cu;
10354
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10357
10358 cu->language = pretend_language;
10359 cu->language_defn = language_def (cu->language);
10360
10361 /* The symbol tables are set up in read_type_unit_scope. */
10362 process_die (cu->dies, cu);
10363
10364 /* For now fudge the Go package. */
10365 if (cu->language == language_go)
10366 fixup_go_packaging (cu);
10367
10368 /* Now that we have processed all the DIEs in the CU, all the types
10369 should be complete, and it should now be safe to compute all of the
10370 physnames. */
10371 compute_delayed_physnames (cu);
10372
10373 if (cu->language == language_rust)
10374 rust_union_quirks (cu);
10375
10376 /* TUs share symbol tables.
10377 If this is the first TU to use this symtab, complete the construction
10378 of it with end_expandable_symtab. Otherwise, complete the addition of
10379 this TU's symbols to the existing symtab. */
10380 if (sig_type->type_unit_group->compunit_symtab == NULL)
10381 {
10382 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10383 sig_type->type_unit_group->compunit_symtab = cust;
10384
10385 if (cust != NULL)
10386 {
10387 /* Set symtab language to language from DW_AT_language. If the
10388 compilation is from a C file generated by language preprocessors,
10389 do not set the language if it was already deduced by
10390 start_subfile. */
10391 if (!(cu->language == language_c
10392 && COMPUNIT_FILETABS (cust)->language != language_c))
10393 COMPUNIT_FILETABS (cust)->language = cu->language;
10394 }
10395 }
10396 else
10397 {
10398 cu->builder->augment_type_symtab ();
10399 cust = sig_type->type_unit_group->compunit_symtab;
10400 }
10401
10402 if (dwarf2_per_objfile->using_index)
10403 per_cu->v.quick->compunit_symtab = cust;
10404 else
10405 {
10406 struct partial_symtab *pst = per_cu->v.psymtab;
10407 pst->compunit_symtab = cust;
10408 pst->readin = 1;
10409 }
10410
10411 /* Not needed any more. */
10412 cu->builder.reset ();
10413 }
10414
10415 /* Process an imported unit DIE. */
10416
10417 static void
10418 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10419 {
10420 struct attribute *attr;
10421
10422 /* For now we don't handle imported units in type units. */
10423 if (cu->per_cu->is_debug_types)
10424 {
10425 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10426 " supported in type units [in module %s]"),
10427 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10428 }
10429
10430 attr = dwarf2_attr (die, DW_AT_import, cu);
10431 if (attr != NULL)
10432 {
10433 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10434 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10435 dwarf2_per_cu_data *per_cu
10436 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10437 cu->per_cu->dwarf2_per_objfile);
10438
10439 /* If necessary, add it to the queue and load its DIEs. */
10440 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10441 load_full_comp_unit (per_cu, false, cu->language);
10442
10443 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10444 per_cu);
10445 }
10446 }
10447
10448 /* RAII object that represents a process_die scope: i.e.,
10449 starts/finishes processing a DIE. */
10450 class process_die_scope
10451 {
10452 public:
10453 process_die_scope (die_info *die, dwarf2_cu *cu)
10454 : m_die (die), m_cu (cu)
10455 {
10456 /* We should only be processing DIEs not already in process. */
10457 gdb_assert (!m_die->in_process);
10458 m_die->in_process = true;
10459 }
10460
10461 ~process_die_scope ()
10462 {
10463 m_die->in_process = false;
10464
10465 /* If we're done processing the DIE for the CU that owns the line
10466 header, we don't need the line header anymore. */
10467 if (m_cu->line_header_die_owner == m_die)
10468 {
10469 delete m_cu->line_header;
10470 m_cu->line_header = NULL;
10471 m_cu->line_header_die_owner = NULL;
10472 }
10473 }
10474
10475 private:
10476 die_info *m_die;
10477 dwarf2_cu *m_cu;
10478 };
10479
10480 /* Process a die and its children. */
10481
10482 static void
10483 process_die (struct die_info *die, struct dwarf2_cu *cu)
10484 {
10485 process_die_scope scope (die, cu);
10486
10487 switch (die->tag)
10488 {
10489 case DW_TAG_padding:
10490 break;
10491 case DW_TAG_compile_unit:
10492 case DW_TAG_partial_unit:
10493 read_file_scope (die, cu);
10494 break;
10495 case DW_TAG_type_unit:
10496 read_type_unit_scope (die, cu);
10497 break;
10498 case DW_TAG_subprogram:
10499 case DW_TAG_inlined_subroutine:
10500 read_func_scope (die, cu);
10501 break;
10502 case DW_TAG_lexical_block:
10503 case DW_TAG_try_block:
10504 case DW_TAG_catch_block:
10505 read_lexical_block_scope (die, cu);
10506 break;
10507 case DW_TAG_call_site:
10508 case DW_TAG_GNU_call_site:
10509 read_call_site_scope (die, cu);
10510 break;
10511 case DW_TAG_class_type:
10512 case DW_TAG_interface_type:
10513 case DW_TAG_structure_type:
10514 case DW_TAG_union_type:
10515 process_structure_scope (die, cu);
10516 break;
10517 case DW_TAG_enumeration_type:
10518 process_enumeration_scope (die, cu);
10519 break;
10520
10521 /* These dies have a type, but processing them does not create
10522 a symbol or recurse to process the children. Therefore we can
10523 read them on-demand through read_type_die. */
10524 case DW_TAG_subroutine_type:
10525 case DW_TAG_set_type:
10526 case DW_TAG_array_type:
10527 case DW_TAG_pointer_type:
10528 case DW_TAG_ptr_to_member_type:
10529 case DW_TAG_reference_type:
10530 case DW_TAG_rvalue_reference_type:
10531 case DW_TAG_string_type:
10532 break;
10533
10534 case DW_TAG_base_type:
10535 case DW_TAG_subrange_type:
10536 case DW_TAG_typedef:
10537 /* Add a typedef symbol for the type definition, if it has a
10538 DW_AT_name. */
10539 new_symbol (die, read_type_die (die, cu), cu);
10540 break;
10541 case DW_TAG_common_block:
10542 read_common_block (die, cu);
10543 break;
10544 case DW_TAG_common_inclusion:
10545 break;
10546 case DW_TAG_namespace:
10547 cu->processing_has_namespace_info = 1;
10548 read_namespace (die, cu);
10549 break;
10550 case DW_TAG_module:
10551 cu->processing_has_namespace_info = 1;
10552 read_module (die, cu);
10553 break;
10554 case DW_TAG_imported_declaration:
10555 cu->processing_has_namespace_info = 1;
10556 if (read_namespace_alias (die, cu))
10557 break;
10558 /* The declaration is not a global namespace alias. */
10559 /* Fall through. */
10560 case DW_TAG_imported_module:
10561 cu->processing_has_namespace_info = 1;
10562 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10563 || cu->language != language_fortran))
10564 complaint (_("Tag '%s' has unexpected children"),
10565 dwarf_tag_name (die->tag));
10566 read_import_statement (die, cu);
10567 break;
10568
10569 case DW_TAG_imported_unit:
10570 process_imported_unit_die (die, cu);
10571 break;
10572
10573 case DW_TAG_variable:
10574 read_variable (die, cu);
10575 break;
10576
10577 default:
10578 new_symbol (die, NULL, cu);
10579 break;
10580 }
10581 }
10582 \f
10583 /* DWARF name computation. */
10584
10585 /* A helper function for dwarf2_compute_name which determines whether DIE
10586 needs to have the name of the scope prepended to the name listed in the
10587 die. */
10588
10589 static int
10590 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10591 {
10592 struct attribute *attr;
10593
10594 switch (die->tag)
10595 {
10596 case DW_TAG_namespace:
10597 case DW_TAG_typedef:
10598 case DW_TAG_class_type:
10599 case DW_TAG_interface_type:
10600 case DW_TAG_structure_type:
10601 case DW_TAG_union_type:
10602 case DW_TAG_enumeration_type:
10603 case DW_TAG_enumerator:
10604 case DW_TAG_subprogram:
10605 case DW_TAG_inlined_subroutine:
10606 case DW_TAG_member:
10607 case DW_TAG_imported_declaration:
10608 return 1;
10609
10610 case DW_TAG_variable:
10611 case DW_TAG_constant:
10612 /* We only need to prefix "globally" visible variables. These include
10613 any variable marked with DW_AT_external or any variable that
10614 lives in a namespace. [Variables in anonymous namespaces
10615 require prefixing, but they are not DW_AT_external.] */
10616
10617 if (dwarf2_attr (die, DW_AT_specification, cu))
10618 {
10619 struct dwarf2_cu *spec_cu = cu;
10620
10621 return die_needs_namespace (die_specification (die, &spec_cu),
10622 spec_cu);
10623 }
10624
10625 attr = dwarf2_attr (die, DW_AT_external, cu);
10626 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10627 && die->parent->tag != DW_TAG_module)
10628 return 0;
10629 /* A variable in a lexical block of some kind does not need a
10630 namespace, even though in C++ such variables may be external
10631 and have a mangled name. */
10632 if (die->parent->tag == DW_TAG_lexical_block
10633 || die->parent->tag == DW_TAG_try_block
10634 || die->parent->tag == DW_TAG_catch_block
10635 || die->parent->tag == DW_TAG_subprogram)
10636 return 0;
10637 return 1;
10638
10639 default:
10640 return 0;
10641 }
10642 }
10643
10644 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10645 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10646 defined for the given DIE. */
10647
10648 static struct attribute *
10649 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10650 {
10651 struct attribute *attr;
10652
10653 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10654 if (attr == NULL)
10655 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10656
10657 return attr;
10658 }
10659
10660 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10661 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10662 defined for the given DIE. */
10663
10664 static const char *
10665 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10666 {
10667 const char *linkage_name;
10668
10669 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10670 if (linkage_name == NULL)
10671 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10672
10673 return linkage_name;
10674 }
10675
10676 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10677 compute the physname for the object, which include a method's:
10678 - formal parameters (C++),
10679 - receiver type (Go),
10680
10681 The term "physname" is a bit confusing.
10682 For C++, for example, it is the demangled name.
10683 For Go, for example, it's the mangled name.
10684
10685 For Ada, return the DIE's linkage name rather than the fully qualified
10686 name. PHYSNAME is ignored..
10687
10688 The result is allocated on the objfile_obstack and canonicalized. */
10689
10690 static const char *
10691 dwarf2_compute_name (const char *name,
10692 struct die_info *die, struct dwarf2_cu *cu,
10693 int physname)
10694 {
10695 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10696
10697 if (name == NULL)
10698 name = dwarf2_name (die, cu);
10699
10700 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10701 but otherwise compute it by typename_concat inside GDB.
10702 FIXME: Actually this is not really true, or at least not always true.
10703 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10704 Fortran names because there is no mangling standard. So new_symbol
10705 will set the demangled name to the result of dwarf2_full_name, and it is
10706 the demangled name that GDB uses if it exists. */
10707 if (cu->language == language_ada
10708 || (cu->language == language_fortran && physname))
10709 {
10710 /* For Ada unit, we prefer the linkage name over the name, as
10711 the former contains the exported name, which the user expects
10712 to be able to reference. Ideally, we want the user to be able
10713 to reference this entity using either natural or linkage name,
10714 but we haven't started looking at this enhancement yet. */
10715 const char *linkage_name = dw2_linkage_name (die, cu);
10716
10717 if (linkage_name != NULL)
10718 return linkage_name;
10719 }
10720
10721 /* These are the only languages we know how to qualify names in. */
10722 if (name != NULL
10723 && (cu->language == language_cplus
10724 || cu->language == language_fortran || cu->language == language_d
10725 || cu->language == language_rust))
10726 {
10727 if (die_needs_namespace (die, cu))
10728 {
10729 const char *prefix;
10730 const char *canonical_name = NULL;
10731
10732 string_file buf;
10733
10734 prefix = determine_prefix (die, cu);
10735 if (*prefix != '\0')
10736 {
10737 char *prefixed_name = typename_concat (NULL, prefix, name,
10738 physname, cu);
10739
10740 buf.puts (prefixed_name);
10741 xfree (prefixed_name);
10742 }
10743 else
10744 buf.puts (name);
10745
10746 /* Template parameters may be specified in the DIE's DW_AT_name, or
10747 as children with DW_TAG_template_type_param or
10748 DW_TAG_value_type_param. If the latter, add them to the name
10749 here. If the name already has template parameters, then
10750 skip this step; some versions of GCC emit both, and
10751 it is more efficient to use the pre-computed name.
10752
10753 Something to keep in mind about this process: it is very
10754 unlikely, or in some cases downright impossible, to produce
10755 something that will match the mangled name of a function.
10756 If the definition of the function has the same debug info,
10757 we should be able to match up with it anyway. But fallbacks
10758 using the minimal symbol, for instance to find a method
10759 implemented in a stripped copy of libstdc++, will not work.
10760 If we do not have debug info for the definition, we will have to
10761 match them up some other way.
10762
10763 When we do name matching there is a related problem with function
10764 templates; two instantiated function templates are allowed to
10765 differ only by their return types, which we do not add here. */
10766
10767 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10768 {
10769 struct attribute *attr;
10770 struct die_info *child;
10771 int first = 1;
10772
10773 die->building_fullname = 1;
10774
10775 for (child = die->child; child != NULL; child = child->sibling)
10776 {
10777 struct type *type;
10778 LONGEST value;
10779 const gdb_byte *bytes;
10780 struct dwarf2_locexpr_baton *baton;
10781 struct value *v;
10782
10783 if (child->tag != DW_TAG_template_type_param
10784 && child->tag != DW_TAG_template_value_param)
10785 continue;
10786
10787 if (first)
10788 {
10789 buf.puts ("<");
10790 first = 0;
10791 }
10792 else
10793 buf.puts (", ");
10794
10795 attr = dwarf2_attr (child, DW_AT_type, cu);
10796 if (attr == NULL)
10797 {
10798 complaint (_("template parameter missing DW_AT_type"));
10799 buf.puts ("UNKNOWN_TYPE");
10800 continue;
10801 }
10802 type = die_type (child, cu);
10803
10804 if (child->tag == DW_TAG_template_type_param)
10805 {
10806 c_print_type (type, "", &buf, -1, 0, cu->language,
10807 &type_print_raw_options);
10808 continue;
10809 }
10810
10811 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10812 if (attr == NULL)
10813 {
10814 complaint (_("template parameter missing "
10815 "DW_AT_const_value"));
10816 buf.puts ("UNKNOWN_VALUE");
10817 continue;
10818 }
10819
10820 dwarf2_const_value_attr (attr, type, name,
10821 &cu->comp_unit_obstack, cu,
10822 &value, &bytes, &baton);
10823
10824 if (TYPE_NOSIGN (type))
10825 /* GDB prints characters as NUMBER 'CHAR'. If that's
10826 changed, this can use value_print instead. */
10827 c_printchar (value, type, &buf);
10828 else
10829 {
10830 struct value_print_options opts;
10831
10832 if (baton != NULL)
10833 v = dwarf2_evaluate_loc_desc (type, NULL,
10834 baton->data,
10835 baton->size,
10836 baton->per_cu);
10837 else if (bytes != NULL)
10838 {
10839 v = allocate_value (type);
10840 memcpy (value_contents_writeable (v), bytes,
10841 TYPE_LENGTH (type));
10842 }
10843 else
10844 v = value_from_longest (type, value);
10845
10846 /* Specify decimal so that we do not depend on
10847 the radix. */
10848 get_formatted_print_options (&opts, 'd');
10849 opts.raw = 1;
10850 value_print (v, &buf, &opts);
10851 release_value (v);
10852 }
10853 }
10854
10855 die->building_fullname = 0;
10856
10857 if (!first)
10858 {
10859 /* Close the argument list, with a space if necessary
10860 (nested templates). */
10861 if (!buf.empty () && buf.string ().back () == '>')
10862 buf.puts (" >");
10863 else
10864 buf.puts (">");
10865 }
10866 }
10867
10868 /* For C++ methods, append formal parameter type
10869 information, if PHYSNAME. */
10870
10871 if (physname && die->tag == DW_TAG_subprogram
10872 && cu->language == language_cplus)
10873 {
10874 struct type *type = read_type_die (die, cu);
10875
10876 c_type_print_args (type, &buf, 1, cu->language,
10877 &type_print_raw_options);
10878
10879 if (cu->language == language_cplus)
10880 {
10881 /* Assume that an artificial first parameter is
10882 "this", but do not crash if it is not. RealView
10883 marks unnamed (and thus unused) parameters as
10884 artificial; there is no way to differentiate
10885 the two cases. */
10886 if (TYPE_NFIELDS (type) > 0
10887 && TYPE_FIELD_ARTIFICIAL (type, 0)
10888 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10889 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10890 0))))
10891 buf.puts (" const");
10892 }
10893 }
10894
10895 const std::string &intermediate_name = buf.string ();
10896
10897 if (cu->language == language_cplus)
10898 canonical_name
10899 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10900 &objfile->per_bfd->storage_obstack);
10901
10902 /* If we only computed INTERMEDIATE_NAME, or if
10903 INTERMEDIATE_NAME is already canonical, then we need to
10904 copy it to the appropriate obstack. */
10905 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10906 name = ((const char *)
10907 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10908 intermediate_name.c_str (),
10909 intermediate_name.length ()));
10910 else
10911 name = canonical_name;
10912 }
10913 }
10914
10915 return name;
10916 }
10917
10918 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10919 If scope qualifiers are appropriate they will be added. The result
10920 will be allocated on the storage_obstack, or NULL if the DIE does
10921 not have a name. NAME may either be from a previous call to
10922 dwarf2_name or NULL.
10923
10924 The output string will be canonicalized (if C++). */
10925
10926 static const char *
10927 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10928 {
10929 return dwarf2_compute_name (name, die, cu, 0);
10930 }
10931
10932 /* Construct a physname for the given DIE in CU. NAME may either be
10933 from a previous call to dwarf2_name or NULL. The result will be
10934 allocated on the objfile_objstack or NULL if the DIE does not have a
10935 name.
10936
10937 The output string will be canonicalized (if C++). */
10938
10939 static const char *
10940 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10941 {
10942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10943 const char *retval, *mangled = NULL, *canon = NULL;
10944 int need_copy = 1;
10945
10946 /* In this case dwarf2_compute_name is just a shortcut not building anything
10947 on its own. */
10948 if (!die_needs_namespace (die, cu))
10949 return dwarf2_compute_name (name, die, cu, 1);
10950
10951 mangled = dw2_linkage_name (die, cu);
10952
10953 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10954 See https://github.com/rust-lang/rust/issues/32925. */
10955 if (cu->language == language_rust && mangled != NULL
10956 && strchr (mangled, '{') != NULL)
10957 mangled = NULL;
10958
10959 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10960 has computed. */
10961 gdb::unique_xmalloc_ptr<char> demangled;
10962 if (mangled != NULL)
10963 {
10964
10965 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10966 {
10967 /* Do nothing (do not demangle the symbol name). */
10968 }
10969 else if (cu->language == language_go)
10970 {
10971 /* This is a lie, but we already lie to the caller new_symbol.
10972 new_symbol assumes we return the mangled name.
10973 This just undoes that lie until things are cleaned up. */
10974 }
10975 else
10976 {
10977 /* Use DMGL_RET_DROP for C++ template functions to suppress
10978 their return type. It is easier for GDB users to search
10979 for such functions as `name(params)' than `long name(params)'.
10980 In such case the minimal symbol names do not match the full
10981 symbol names but for template functions there is never a need
10982 to look up their definition from their declaration so
10983 the only disadvantage remains the minimal symbol variant
10984 `long name(params)' does not have the proper inferior type. */
10985 demangled.reset (gdb_demangle (mangled,
10986 (DMGL_PARAMS | DMGL_ANSI
10987 | DMGL_RET_DROP)));
10988 }
10989 if (demangled)
10990 canon = demangled.get ();
10991 else
10992 {
10993 canon = mangled;
10994 need_copy = 0;
10995 }
10996 }
10997
10998 if (canon == NULL || check_physname)
10999 {
11000 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11001
11002 if (canon != NULL && strcmp (physname, canon) != 0)
11003 {
11004 /* It may not mean a bug in GDB. The compiler could also
11005 compute DW_AT_linkage_name incorrectly. But in such case
11006 GDB would need to be bug-to-bug compatible. */
11007
11008 complaint (_("Computed physname <%s> does not match demangled <%s> "
11009 "(from linkage <%s>) - DIE at %s [in module %s]"),
11010 physname, canon, mangled, sect_offset_str (die->sect_off),
11011 objfile_name (objfile));
11012
11013 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11014 is available here - over computed PHYSNAME. It is safer
11015 against both buggy GDB and buggy compilers. */
11016
11017 retval = canon;
11018 }
11019 else
11020 {
11021 retval = physname;
11022 need_copy = 0;
11023 }
11024 }
11025 else
11026 retval = canon;
11027
11028 if (need_copy)
11029 retval = ((const char *)
11030 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11031 retval, strlen (retval)));
11032
11033 return retval;
11034 }
11035
11036 /* Inspect DIE in CU for a namespace alias. If one exists, record
11037 a new symbol for it.
11038
11039 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11040
11041 static int
11042 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 struct attribute *attr;
11045
11046 /* If the die does not have a name, this is not a namespace
11047 alias. */
11048 attr = dwarf2_attr (die, DW_AT_name, cu);
11049 if (attr != NULL)
11050 {
11051 int num;
11052 struct die_info *d = die;
11053 struct dwarf2_cu *imported_cu = cu;
11054
11055 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11056 keep inspecting DIEs until we hit the underlying import. */
11057 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11058 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11059 {
11060 attr = dwarf2_attr (d, DW_AT_import, cu);
11061 if (attr == NULL)
11062 break;
11063
11064 d = follow_die_ref (d, attr, &imported_cu);
11065 if (d->tag != DW_TAG_imported_declaration)
11066 break;
11067 }
11068
11069 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11070 {
11071 complaint (_("DIE at %s has too many recursively imported "
11072 "declarations"), sect_offset_str (d->sect_off));
11073 return 0;
11074 }
11075
11076 if (attr != NULL)
11077 {
11078 struct type *type;
11079 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11080
11081 type = get_die_type_at_offset (sect_off, cu->per_cu);
11082 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11083 {
11084 /* This declaration is a global namespace alias. Add
11085 a symbol for it whose type is the aliased namespace. */
11086 new_symbol (die, type, cu);
11087 return 1;
11088 }
11089 }
11090 }
11091
11092 return 0;
11093 }
11094
11095 /* Return the using directives repository (global or local?) to use in the
11096 current context for CU.
11097
11098 For Ada, imported declarations can materialize renamings, which *may* be
11099 global. However it is impossible (for now?) in DWARF to distinguish
11100 "external" imported declarations and "static" ones. As all imported
11101 declarations seem to be static in all other languages, make them all CU-wide
11102 global only in Ada. */
11103
11104 static struct using_direct **
11105 using_directives (struct dwarf2_cu *cu)
11106 {
11107 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11108 return cu->builder->get_global_using_directives ();
11109 else
11110 return cu->builder->get_local_using_directives ();
11111 }
11112
11113 /* Read the import statement specified by the given die and record it. */
11114
11115 static void
11116 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11117 {
11118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11119 struct attribute *import_attr;
11120 struct die_info *imported_die, *child_die;
11121 struct dwarf2_cu *imported_cu;
11122 const char *imported_name;
11123 const char *imported_name_prefix;
11124 const char *canonical_name;
11125 const char *import_alias;
11126 const char *imported_declaration = NULL;
11127 const char *import_prefix;
11128 std::vector<const char *> excludes;
11129
11130 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11131 if (import_attr == NULL)
11132 {
11133 complaint (_("Tag '%s' has no DW_AT_import"),
11134 dwarf_tag_name (die->tag));
11135 return;
11136 }
11137
11138 imported_cu = cu;
11139 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11140 imported_name = dwarf2_name (imported_die, imported_cu);
11141 if (imported_name == NULL)
11142 {
11143 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11144
11145 The import in the following code:
11146 namespace A
11147 {
11148 typedef int B;
11149 }
11150
11151 int main ()
11152 {
11153 using A::B;
11154 B b;
11155 return b;
11156 }
11157
11158 ...
11159 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11160 <52> DW_AT_decl_file : 1
11161 <53> DW_AT_decl_line : 6
11162 <54> DW_AT_import : <0x75>
11163 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11164 <59> DW_AT_name : B
11165 <5b> DW_AT_decl_file : 1
11166 <5c> DW_AT_decl_line : 2
11167 <5d> DW_AT_type : <0x6e>
11168 ...
11169 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11170 <76> DW_AT_byte_size : 4
11171 <77> DW_AT_encoding : 5 (signed)
11172
11173 imports the wrong die ( 0x75 instead of 0x58 ).
11174 This case will be ignored until the gcc bug is fixed. */
11175 return;
11176 }
11177
11178 /* Figure out the local name after import. */
11179 import_alias = dwarf2_name (die, cu);
11180
11181 /* Figure out where the statement is being imported to. */
11182 import_prefix = determine_prefix (die, cu);
11183
11184 /* Figure out what the scope of the imported die is and prepend it
11185 to the name of the imported die. */
11186 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11187
11188 if (imported_die->tag != DW_TAG_namespace
11189 && imported_die->tag != DW_TAG_module)
11190 {
11191 imported_declaration = imported_name;
11192 canonical_name = imported_name_prefix;
11193 }
11194 else if (strlen (imported_name_prefix) > 0)
11195 canonical_name = obconcat (&objfile->objfile_obstack,
11196 imported_name_prefix,
11197 (cu->language == language_d ? "." : "::"),
11198 imported_name, (char *) NULL);
11199 else
11200 canonical_name = imported_name;
11201
11202 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11203 for (child_die = die->child; child_die && child_die->tag;
11204 child_die = sibling_die (child_die))
11205 {
11206 /* DWARF-4: A Fortran use statement with a “rename list” may be
11207 represented by an imported module entry with an import attribute
11208 referring to the module and owned entries corresponding to those
11209 entities that are renamed as part of being imported. */
11210
11211 if (child_die->tag != DW_TAG_imported_declaration)
11212 {
11213 complaint (_("child DW_TAG_imported_declaration expected "
11214 "- DIE at %s [in module %s]"),
11215 sect_offset_str (child_die->sect_off),
11216 objfile_name (objfile));
11217 continue;
11218 }
11219
11220 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11221 if (import_attr == NULL)
11222 {
11223 complaint (_("Tag '%s' has no DW_AT_import"),
11224 dwarf_tag_name (child_die->tag));
11225 continue;
11226 }
11227
11228 imported_cu = cu;
11229 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11230 &imported_cu);
11231 imported_name = dwarf2_name (imported_die, imported_cu);
11232 if (imported_name == NULL)
11233 {
11234 complaint (_("child DW_TAG_imported_declaration has unknown "
11235 "imported name - DIE at %s [in module %s]"),
11236 sect_offset_str (child_die->sect_off),
11237 objfile_name (objfile));
11238 continue;
11239 }
11240
11241 excludes.push_back (imported_name);
11242
11243 process_die (child_die, cu);
11244 }
11245
11246 add_using_directive (using_directives (cu),
11247 import_prefix,
11248 canonical_name,
11249 import_alias,
11250 imported_declaration,
11251 excludes,
11252 0,
11253 &objfile->objfile_obstack);
11254 }
11255
11256 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11257 types, but gives them a size of zero. Starting with version 14,
11258 ICC is compatible with GCC. */
11259
11260 static int
11261 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11262 {
11263 if (!cu->checked_producer)
11264 check_producer (cu);
11265
11266 return cu->producer_is_icc_lt_14;
11267 }
11268
11269 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11270 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11271 this, it was first present in GCC release 4.3.0. */
11272
11273 static int
11274 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11275 {
11276 if (!cu->checked_producer)
11277 check_producer (cu);
11278
11279 return cu->producer_is_gcc_lt_4_3;
11280 }
11281
11282 static file_and_directory
11283 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11284 {
11285 file_and_directory res;
11286
11287 /* Find the filename. Do not use dwarf2_name here, since the filename
11288 is not a source language identifier. */
11289 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11290 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11291
11292 if (res.comp_dir == NULL
11293 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11294 && IS_ABSOLUTE_PATH (res.name))
11295 {
11296 res.comp_dir_storage = ldirname (res.name);
11297 if (!res.comp_dir_storage.empty ())
11298 res.comp_dir = res.comp_dir_storage.c_str ();
11299 }
11300 if (res.comp_dir != NULL)
11301 {
11302 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11303 directory, get rid of it. */
11304 const char *cp = strchr (res.comp_dir, ':');
11305
11306 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11307 res.comp_dir = cp + 1;
11308 }
11309
11310 if (res.name == NULL)
11311 res.name = "<unknown>";
11312
11313 return res;
11314 }
11315
11316 /* Handle DW_AT_stmt_list for a compilation unit.
11317 DIE is the DW_TAG_compile_unit die for CU.
11318 COMP_DIR is the compilation directory. LOWPC is passed to
11319 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11320
11321 static void
11322 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11323 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11324 {
11325 struct dwarf2_per_objfile *dwarf2_per_objfile
11326 = cu->per_cu->dwarf2_per_objfile;
11327 struct objfile *objfile = dwarf2_per_objfile->objfile;
11328 struct attribute *attr;
11329 struct line_header line_header_local;
11330 hashval_t line_header_local_hash;
11331 void **slot;
11332 int decode_mapping;
11333
11334 gdb_assert (! cu->per_cu->is_debug_types);
11335
11336 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11337 if (attr == NULL)
11338 return;
11339
11340 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11341
11342 /* The line header hash table is only created if needed (it exists to
11343 prevent redundant reading of the line table for partial_units).
11344 If we're given a partial_unit, we'll need it. If we're given a
11345 compile_unit, then use the line header hash table if it's already
11346 created, but don't create one just yet. */
11347
11348 if (dwarf2_per_objfile->line_header_hash == NULL
11349 && die->tag == DW_TAG_partial_unit)
11350 {
11351 dwarf2_per_objfile->line_header_hash
11352 = htab_create_alloc_ex (127, line_header_hash_voidp,
11353 line_header_eq_voidp,
11354 free_line_header_voidp,
11355 &objfile->objfile_obstack,
11356 hashtab_obstack_allocate,
11357 dummy_obstack_deallocate);
11358 }
11359
11360 line_header_local.sect_off = line_offset;
11361 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11362 line_header_local_hash = line_header_hash (&line_header_local);
11363 if (dwarf2_per_objfile->line_header_hash != NULL)
11364 {
11365 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11366 &line_header_local,
11367 line_header_local_hash, NO_INSERT);
11368
11369 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11370 is not present in *SLOT (since if there is something in *SLOT then
11371 it will be for a partial_unit). */
11372 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11373 {
11374 gdb_assert (*slot != NULL);
11375 cu->line_header = (struct line_header *) *slot;
11376 return;
11377 }
11378 }
11379
11380 /* dwarf_decode_line_header does not yet provide sufficient information.
11381 We always have to call also dwarf_decode_lines for it. */
11382 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11383 if (lh == NULL)
11384 return;
11385
11386 cu->line_header = lh.release ();
11387 cu->line_header_die_owner = die;
11388
11389 if (dwarf2_per_objfile->line_header_hash == NULL)
11390 slot = NULL;
11391 else
11392 {
11393 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11394 &line_header_local,
11395 line_header_local_hash, INSERT);
11396 gdb_assert (slot != NULL);
11397 }
11398 if (slot != NULL && *slot == NULL)
11399 {
11400 /* This newly decoded line number information unit will be owned
11401 by line_header_hash hash table. */
11402 *slot = cu->line_header;
11403 cu->line_header_die_owner = NULL;
11404 }
11405 else
11406 {
11407 /* We cannot free any current entry in (*slot) as that struct line_header
11408 may be already used by multiple CUs. Create only temporary decoded
11409 line_header for this CU - it may happen at most once for each line
11410 number information unit. And if we're not using line_header_hash
11411 then this is what we want as well. */
11412 gdb_assert (die->tag != DW_TAG_partial_unit);
11413 }
11414 decode_mapping = (die->tag != DW_TAG_partial_unit);
11415 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11416 decode_mapping);
11417
11418 }
11419
11420 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11421
11422 static void
11423 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11424 {
11425 struct dwarf2_per_objfile *dwarf2_per_objfile
11426 = cu->per_cu->dwarf2_per_objfile;
11427 struct objfile *objfile = dwarf2_per_objfile->objfile;
11428 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11429 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11430 CORE_ADDR highpc = ((CORE_ADDR) 0);
11431 struct attribute *attr;
11432 struct die_info *child_die;
11433 CORE_ADDR baseaddr;
11434
11435 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11436
11437 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11438
11439 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11440 from finish_block. */
11441 if (lowpc == ((CORE_ADDR) -1))
11442 lowpc = highpc;
11443 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11444
11445 file_and_directory fnd = find_file_and_directory (die, cu);
11446
11447 prepare_one_comp_unit (cu, die, cu->language);
11448
11449 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11450 standardised yet. As a workaround for the language detection we fall
11451 back to the DW_AT_producer string. */
11452 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11453 cu->language = language_opencl;
11454
11455 /* Similar hack for Go. */
11456 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11457 set_cu_language (DW_LANG_Go, cu);
11458
11459 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11460
11461 /* Decode line number information if present. We do this before
11462 processing child DIEs, so that the line header table is available
11463 for DW_AT_decl_file. */
11464 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11465
11466 /* Process all dies in compilation unit. */
11467 if (die->child != NULL)
11468 {
11469 child_die = die->child;
11470 while (child_die && child_die->tag)
11471 {
11472 process_die (child_die, cu);
11473 child_die = sibling_die (child_die);
11474 }
11475 }
11476
11477 /* Decode macro information, if present. Dwarf 2 macro information
11478 refers to information in the line number info statement program
11479 header, so we can only read it if we've read the header
11480 successfully. */
11481 attr = dwarf2_attr (die, DW_AT_macros, cu);
11482 if (attr == NULL)
11483 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11484 if (attr && cu->line_header)
11485 {
11486 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11487 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11488
11489 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11490 }
11491 else
11492 {
11493 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11494 if (attr && cu->line_header)
11495 {
11496 unsigned int macro_offset = DW_UNSND (attr);
11497
11498 dwarf_decode_macros (cu, macro_offset, 0);
11499 }
11500 }
11501 }
11502
11503 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11504 Create the set of symtabs used by this TU, or if this TU is sharing
11505 symtabs with another TU and the symtabs have already been created
11506 then restore those symtabs in the line header.
11507 We don't need the pc/line-number mapping for type units. */
11508
11509 static void
11510 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11511 {
11512 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11513 struct type_unit_group *tu_group;
11514 int first_time;
11515 struct attribute *attr;
11516 unsigned int i;
11517 struct signatured_type *sig_type;
11518
11519 gdb_assert (per_cu->is_debug_types);
11520 sig_type = (struct signatured_type *) per_cu;
11521
11522 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11523
11524 /* If we're using .gdb_index (includes -readnow) then
11525 per_cu->type_unit_group may not have been set up yet. */
11526 if (sig_type->type_unit_group == NULL)
11527 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11528 tu_group = sig_type->type_unit_group;
11529
11530 /* If we've already processed this stmt_list there's no real need to
11531 do it again, we could fake it and just recreate the part we need
11532 (file name,index -> symtab mapping). If data shows this optimization
11533 is useful we can do it then. */
11534 first_time = tu_group->compunit_symtab == NULL;
11535
11536 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11537 debug info. */
11538 line_header_up lh;
11539 if (attr != NULL)
11540 {
11541 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11542 lh = dwarf_decode_line_header (line_offset, cu);
11543 }
11544 if (lh == NULL)
11545 {
11546 if (first_time)
11547 dwarf2_start_symtab (cu, "", NULL, 0);
11548 else
11549 {
11550 gdb_assert (tu_group->symtabs == NULL);
11551 gdb_assert (cu->builder == nullptr);
11552 struct compunit_symtab *cust = tu_group->compunit_symtab;
11553 cu->builder.reset (new struct buildsym_compunit
11554 (COMPUNIT_OBJFILE (cust), "",
11555 COMPUNIT_DIRNAME (cust),
11556 compunit_language (cust),
11557 0, cust));
11558 }
11559 return;
11560 }
11561
11562 cu->line_header = lh.release ();
11563 cu->line_header_die_owner = die;
11564
11565 if (first_time)
11566 {
11567 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11568
11569 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11570 still initializing it, and our caller (a few levels up)
11571 process_full_type_unit still needs to know if this is the first
11572 time. */
11573
11574 tu_group->num_symtabs = cu->line_header->file_names.size ();
11575 tu_group->symtabs = XNEWVEC (struct symtab *,
11576 cu->line_header->file_names.size ());
11577
11578 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11579 {
11580 file_entry &fe = cu->line_header->file_names[i];
11581
11582 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11583
11584 if (cu->builder->get_current_subfile ()->symtab == NULL)
11585 {
11586 /* NOTE: start_subfile will recognize when it's been
11587 passed a file it has already seen. So we can't
11588 assume there's a simple mapping from
11589 cu->line_header->file_names to subfiles, plus
11590 cu->line_header->file_names may contain dups. */
11591 cu->builder->get_current_subfile ()->symtab
11592 = allocate_symtab (cust,
11593 cu->builder->get_current_subfile ()->name);
11594 }
11595
11596 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11597 tu_group->symtabs[i] = fe.symtab;
11598 }
11599 }
11600 else
11601 {
11602 gdb_assert (cu->builder == nullptr);
11603 struct compunit_symtab *cust = tu_group->compunit_symtab;
11604 cu->builder.reset (new struct buildsym_compunit
11605 (COMPUNIT_OBJFILE (cust), "",
11606 COMPUNIT_DIRNAME (cust),
11607 compunit_language (cust),
11608 0, cust));
11609
11610 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11611 {
11612 file_entry &fe = cu->line_header->file_names[i];
11613
11614 fe.symtab = tu_group->symtabs[i];
11615 }
11616 }
11617
11618 /* The main symtab is allocated last. Type units don't have DW_AT_name
11619 so they don't have a "real" (so to speak) symtab anyway.
11620 There is later code that will assign the main symtab to all symbols
11621 that don't have one. We need to handle the case of a symbol with a
11622 missing symtab (DW_AT_decl_file) anyway. */
11623 }
11624
11625 /* Process DW_TAG_type_unit.
11626 For TUs we want to skip the first top level sibling if it's not the
11627 actual type being defined by this TU. In this case the first top
11628 level sibling is there to provide context only. */
11629
11630 static void
11631 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11632 {
11633 struct die_info *child_die;
11634
11635 prepare_one_comp_unit (cu, die, language_minimal);
11636
11637 /* Initialize (or reinitialize) the machinery for building symtabs.
11638 We do this before processing child DIEs, so that the line header table
11639 is available for DW_AT_decl_file. */
11640 setup_type_unit_groups (die, cu);
11641
11642 if (die->child != NULL)
11643 {
11644 child_die = die->child;
11645 while (child_die && child_die->tag)
11646 {
11647 process_die (child_die, cu);
11648 child_die = sibling_die (child_die);
11649 }
11650 }
11651 }
11652 \f
11653 /* DWO/DWP files.
11654
11655 http://gcc.gnu.org/wiki/DebugFission
11656 http://gcc.gnu.org/wiki/DebugFissionDWP
11657
11658 To simplify handling of both DWO files ("object" files with the DWARF info)
11659 and DWP files (a file with the DWOs packaged up into one file), we treat
11660 DWP files as having a collection of virtual DWO files. */
11661
11662 static hashval_t
11663 hash_dwo_file (const void *item)
11664 {
11665 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11666 hashval_t hash;
11667
11668 hash = htab_hash_string (dwo_file->dwo_name);
11669 if (dwo_file->comp_dir != NULL)
11670 hash += htab_hash_string (dwo_file->comp_dir);
11671 return hash;
11672 }
11673
11674 static int
11675 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11676 {
11677 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11678 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11679
11680 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11681 return 0;
11682 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11683 return lhs->comp_dir == rhs->comp_dir;
11684 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11685 }
11686
11687 /* Allocate a hash table for DWO files. */
11688
11689 static htab_t
11690 allocate_dwo_file_hash_table (struct objfile *objfile)
11691 {
11692 return htab_create_alloc_ex (41,
11693 hash_dwo_file,
11694 eq_dwo_file,
11695 NULL,
11696 &objfile->objfile_obstack,
11697 hashtab_obstack_allocate,
11698 dummy_obstack_deallocate);
11699 }
11700
11701 /* Lookup DWO file DWO_NAME. */
11702
11703 static void **
11704 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11705 const char *dwo_name,
11706 const char *comp_dir)
11707 {
11708 struct dwo_file find_entry;
11709 void **slot;
11710
11711 if (dwarf2_per_objfile->dwo_files == NULL)
11712 dwarf2_per_objfile->dwo_files
11713 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11714
11715 memset (&find_entry, 0, sizeof (find_entry));
11716 find_entry.dwo_name = dwo_name;
11717 find_entry.comp_dir = comp_dir;
11718 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11719
11720 return slot;
11721 }
11722
11723 static hashval_t
11724 hash_dwo_unit (const void *item)
11725 {
11726 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11727
11728 /* This drops the top 32 bits of the id, but is ok for a hash. */
11729 return dwo_unit->signature;
11730 }
11731
11732 static int
11733 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11734 {
11735 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11736 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11737
11738 /* The signature is assumed to be unique within the DWO file.
11739 So while object file CU dwo_id's always have the value zero,
11740 that's OK, assuming each object file DWO file has only one CU,
11741 and that's the rule for now. */
11742 return lhs->signature == rhs->signature;
11743 }
11744
11745 /* Allocate a hash table for DWO CUs,TUs.
11746 There is one of these tables for each of CUs,TUs for each DWO file. */
11747
11748 static htab_t
11749 allocate_dwo_unit_table (struct objfile *objfile)
11750 {
11751 /* Start out with a pretty small number.
11752 Generally DWO files contain only one CU and maybe some TUs. */
11753 return htab_create_alloc_ex (3,
11754 hash_dwo_unit,
11755 eq_dwo_unit,
11756 NULL,
11757 &objfile->objfile_obstack,
11758 hashtab_obstack_allocate,
11759 dummy_obstack_deallocate);
11760 }
11761
11762 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11763
11764 struct create_dwo_cu_data
11765 {
11766 struct dwo_file *dwo_file;
11767 struct dwo_unit dwo_unit;
11768 };
11769
11770 /* die_reader_func for create_dwo_cu. */
11771
11772 static void
11773 create_dwo_cu_reader (const struct die_reader_specs *reader,
11774 const gdb_byte *info_ptr,
11775 struct die_info *comp_unit_die,
11776 int has_children,
11777 void *datap)
11778 {
11779 struct dwarf2_cu *cu = reader->cu;
11780 sect_offset sect_off = cu->per_cu->sect_off;
11781 struct dwarf2_section_info *section = cu->per_cu->section;
11782 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11783 struct dwo_file *dwo_file = data->dwo_file;
11784 struct dwo_unit *dwo_unit = &data->dwo_unit;
11785 struct attribute *attr;
11786
11787 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11788 if (attr == NULL)
11789 {
11790 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11791 " its dwo_id [in module %s]"),
11792 sect_offset_str (sect_off), dwo_file->dwo_name);
11793 return;
11794 }
11795
11796 dwo_unit->dwo_file = dwo_file;
11797 dwo_unit->signature = DW_UNSND (attr);
11798 dwo_unit->section = section;
11799 dwo_unit->sect_off = sect_off;
11800 dwo_unit->length = cu->per_cu->length;
11801
11802 if (dwarf_read_debug)
11803 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11804 sect_offset_str (sect_off),
11805 hex_string (dwo_unit->signature));
11806 }
11807
11808 /* Create the dwo_units for the CUs in a DWO_FILE.
11809 Note: This function processes DWO files only, not DWP files. */
11810
11811 static void
11812 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11813 struct dwo_file &dwo_file, dwarf2_section_info &section,
11814 htab_t &cus_htab)
11815 {
11816 struct objfile *objfile = dwarf2_per_objfile->objfile;
11817 const gdb_byte *info_ptr, *end_ptr;
11818
11819 dwarf2_read_section (objfile, &section);
11820 info_ptr = section.buffer;
11821
11822 if (info_ptr == NULL)
11823 return;
11824
11825 if (dwarf_read_debug)
11826 {
11827 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11828 get_section_name (&section),
11829 get_section_file_name (&section));
11830 }
11831
11832 end_ptr = info_ptr + section.size;
11833 while (info_ptr < end_ptr)
11834 {
11835 struct dwarf2_per_cu_data per_cu;
11836 struct create_dwo_cu_data create_dwo_cu_data;
11837 struct dwo_unit *dwo_unit;
11838 void **slot;
11839 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11840
11841 memset (&create_dwo_cu_data.dwo_unit, 0,
11842 sizeof (create_dwo_cu_data.dwo_unit));
11843 memset (&per_cu, 0, sizeof (per_cu));
11844 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11845 per_cu.is_debug_types = 0;
11846 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11847 per_cu.section = &section;
11848 create_dwo_cu_data.dwo_file = &dwo_file;
11849
11850 init_cutu_and_read_dies_no_follow (
11851 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11852 info_ptr += per_cu.length;
11853
11854 // If the unit could not be parsed, skip it.
11855 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11856 continue;
11857
11858 if (cus_htab == NULL)
11859 cus_htab = allocate_dwo_unit_table (objfile);
11860
11861 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11862 *dwo_unit = create_dwo_cu_data.dwo_unit;
11863 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11864 gdb_assert (slot != NULL);
11865 if (*slot != NULL)
11866 {
11867 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11868 sect_offset dup_sect_off = dup_cu->sect_off;
11869
11870 complaint (_("debug cu entry at offset %s is duplicate to"
11871 " the entry at offset %s, signature %s"),
11872 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11873 hex_string (dwo_unit->signature));
11874 }
11875 *slot = (void *)dwo_unit;
11876 }
11877 }
11878
11879 /* DWP file .debug_{cu,tu}_index section format:
11880 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11881
11882 DWP Version 1:
11883
11884 Both index sections have the same format, and serve to map a 64-bit
11885 signature to a set of section numbers. Each section begins with a header,
11886 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11887 indexes, and a pool of 32-bit section numbers. The index sections will be
11888 aligned at 8-byte boundaries in the file.
11889
11890 The index section header consists of:
11891
11892 V, 32 bit version number
11893 -, 32 bits unused
11894 N, 32 bit number of compilation units or type units in the index
11895 M, 32 bit number of slots in the hash table
11896
11897 Numbers are recorded using the byte order of the application binary.
11898
11899 The hash table begins at offset 16 in the section, and consists of an array
11900 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11901 order of the application binary). Unused slots in the hash table are 0.
11902 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11903
11904 The parallel table begins immediately after the hash table
11905 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11906 array of 32-bit indexes (using the byte order of the application binary),
11907 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11908 table contains a 32-bit index into the pool of section numbers. For unused
11909 hash table slots, the corresponding entry in the parallel table will be 0.
11910
11911 The pool of section numbers begins immediately following the hash table
11912 (at offset 16 + 12 * M from the beginning of the section). The pool of
11913 section numbers consists of an array of 32-bit words (using the byte order
11914 of the application binary). Each item in the array is indexed starting
11915 from 0. The hash table entry provides the index of the first section
11916 number in the set. Additional section numbers in the set follow, and the
11917 set is terminated by a 0 entry (section number 0 is not used in ELF).
11918
11919 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11920 section must be the first entry in the set, and the .debug_abbrev.dwo must
11921 be the second entry. Other members of the set may follow in any order.
11922
11923 ---
11924
11925 DWP Version 2:
11926
11927 DWP Version 2 combines all the .debug_info, etc. sections into one,
11928 and the entries in the index tables are now offsets into these sections.
11929 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11930 section.
11931
11932 Index Section Contents:
11933 Header
11934 Hash Table of Signatures dwp_hash_table.hash_table
11935 Parallel Table of Indices dwp_hash_table.unit_table
11936 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11937 Table of Section Sizes dwp_hash_table.v2.sizes
11938
11939 The index section header consists of:
11940
11941 V, 32 bit version number
11942 L, 32 bit number of columns in the table of section offsets
11943 N, 32 bit number of compilation units or type units in the index
11944 M, 32 bit number of slots in the hash table
11945
11946 Numbers are recorded using the byte order of the application binary.
11947
11948 The hash table has the same format as version 1.
11949 The parallel table of indices has the same format as version 1,
11950 except that the entries are origin-1 indices into the table of sections
11951 offsets and the table of section sizes.
11952
11953 The table of offsets begins immediately following the parallel table
11954 (at offset 16 + 12 * M from the beginning of the section). The table is
11955 a two-dimensional array of 32-bit words (using the byte order of the
11956 application binary), with L columns and N+1 rows, in row-major order.
11957 Each row in the array is indexed starting from 0. The first row provides
11958 a key to the remaining rows: each column in this row provides an identifier
11959 for a debug section, and the offsets in the same column of subsequent rows
11960 refer to that section. The section identifiers are:
11961
11962 DW_SECT_INFO 1 .debug_info.dwo
11963 DW_SECT_TYPES 2 .debug_types.dwo
11964 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11965 DW_SECT_LINE 4 .debug_line.dwo
11966 DW_SECT_LOC 5 .debug_loc.dwo
11967 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11968 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11969 DW_SECT_MACRO 8 .debug_macro.dwo
11970
11971 The offsets provided by the CU and TU index sections are the base offsets
11972 for the contributions made by each CU or TU to the corresponding section
11973 in the package file. Each CU and TU header contains an abbrev_offset
11974 field, used to find the abbreviations table for that CU or TU within the
11975 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11976 be interpreted as relative to the base offset given in the index section.
11977 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11978 should be interpreted as relative to the base offset for .debug_line.dwo,
11979 and offsets into other debug sections obtained from DWARF attributes should
11980 also be interpreted as relative to the corresponding base offset.
11981
11982 The table of sizes begins immediately following the table of offsets.
11983 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11984 with L columns and N rows, in row-major order. Each row in the array is
11985 indexed starting from 1 (row 0 is shared by the two tables).
11986
11987 ---
11988
11989 Hash table lookup is handled the same in version 1 and 2:
11990
11991 We assume that N and M will not exceed 2^32 - 1.
11992 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11993
11994 Given a 64-bit compilation unit signature or a type signature S, an entry
11995 in the hash table is located as follows:
11996
11997 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11998 the low-order k bits all set to 1.
11999
12000 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12001
12002 3) If the hash table entry at index H matches the signature, use that
12003 entry. If the hash table entry at index H is unused (all zeroes),
12004 terminate the search: the signature is not present in the table.
12005
12006 4) Let H = (H + H') modulo M. Repeat at Step 3.
12007
12008 Because M > N and H' and M are relatively prime, the search is guaranteed
12009 to stop at an unused slot or find the match. */
12010
12011 /* Create a hash table to map DWO IDs to their CU/TU entry in
12012 .debug_{info,types}.dwo in DWP_FILE.
12013 Returns NULL if there isn't one.
12014 Note: This function processes DWP files only, not DWO files. */
12015
12016 static struct dwp_hash_table *
12017 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12018 struct dwp_file *dwp_file, int is_debug_types)
12019 {
12020 struct objfile *objfile = dwarf2_per_objfile->objfile;
12021 bfd *dbfd = dwp_file->dbfd.get ();
12022 const gdb_byte *index_ptr, *index_end;
12023 struct dwarf2_section_info *index;
12024 uint32_t version, nr_columns, nr_units, nr_slots;
12025 struct dwp_hash_table *htab;
12026
12027 if (is_debug_types)
12028 index = &dwp_file->sections.tu_index;
12029 else
12030 index = &dwp_file->sections.cu_index;
12031
12032 if (dwarf2_section_empty_p (index))
12033 return NULL;
12034 dwarf2_read_section (objfile, index);
12035
12036 index_ptr = index->buffer;
12037 index_end = index_ptr + index->size;
12038
12039 version = read_4_bytes (dbfd, index_ptr);
12040 index_ptr += 4;
12041 if (version == 2)
12042 nr_columns = read_4_bytes (dbfd, index_ptr);
12043 else
12044 nr_columns = 0;
12045 index_ptr += 4;
12046 nr_units = read_4_bytes (dbfd, index_ptr);
12047 index_ptr += 4;
12048 nr_slots = read_4_bytes (dbfd, index_ptr);
12049 index_ptr += 4;
12050
12051 if (version != 1 && version != 2)
12052 {
12053 error (_("Dwarf Error: unsupported DWP file version (%s)"
12054 " [in module %s]"),
12055 pulongest (version), dwp_file->name);
12056 }
12057 if (nr_slots != (nr_slots & -nr_slots))
12058 {
12059 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12060 " is not power of 2 [in module %s]"),
12061 pulongest (nr_slots), dwp_file->name);
12062 }
12063
12064 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12065 htab->version = version;
12066 htab->nr_columns = nr_columns;
12067 htab->nr_units = nr_units;
12068 htab->nr_slots = nr_slots;
12069 htab->hash_table = index_ptr;
12070 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12071
12072 /* Exit early if the table is empty. */
12073 if (nr_slots == 0 || nr_units == 0
12074 || (version == 2 && nr_columns == 0))
12075 {
12076 /* All must be zero. */
12077 if (nr_slots != 0 || nr_units != 0
12078 || (version == 2 && nr_columns != 0))
12079 {
12080 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12081 " all zero [in modules %s]"),
12082 dwp_file->name);
12083 }
12084 return htab;
12085 }
12086
12087 if (version == 1)
12088 {
12089 htab->section_pool.v1.indices =
12090 htab->unit_table + sizeof (uint32_t) * nr_slots;
12091 /* It's harder to decide whether the section is too small in v1.
12092 V1 is deprecated anyway so we punt. */
12093 }
12094 else
12095 {
12096 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12097 int *ids = htab->section_pool.v2.section_ids;
12098 /* Reverse map for error checking. */
12099 int ids_seen[DW_SECT_MAX + 1];
12100 int i;
12101
12102 if (nr_columns < 2)
12103 {
12104 error (_("Dwarf Error: bad DWP hash table, too few columns"
12105 " in section table [in module %s]"),
12106 dwp_file->name);
12107 }
12108 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12109 {
12110 error (_("Dwarf Error: bad DWP hash table, too many columns"
12111 " in section table [in module %s]"),
12112 dwp_file->name);
12113 }
12114 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12115 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12116 for (i = 0; i < nr_columns; ++i)
12117 {
12118 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12119
12120 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12121 {
12122 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12123 " in section table [in module %s]"),
12124 id, dwp_file->name);
12125 }
12126 if (ids_seen[id] != -1)
12127 {
12128 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12129 " id %d in section table [in module %s]"),
12130 id, dwp_file->name);
12131 }
12132 ids_seen[id] = i;
12133 ids[i] = id;
12134 }
12135 /* Must have exactly one info or types section. */
12136 if (((ids_seen[DW_SECT_INFO] != -1)
12137 + (ids_seen[DW_SECT_TYPES] != -1))
12138 != 1)
12139 {
12140 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12141 " DWO info/types section [in module %s]"),
12142 dwp_file->name);
12143 }
12144 /* Must have an abbrev section. */
12145 if (ids_seen[DW_SECT_ABBREV] == -1)
12146 {
12147 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12148 " section [in module %s]"),
12149 dwp_file->name);
12150 }
12151 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12152 htab->section_pool.v2.sizes =
12153 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12154 * nr_units * nr_columns);
12155 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12156 * nr_units * nr_columns))
12157 > index_end)
12158 {
12159 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12160 " [in module %s]"),
12161 dwp_file->name);
12162 }
12163 }
12164
12165 return htab;
12166 }
12167
12168 /* Update SECTIONS with the data from SECTP.
12169
12170 This function is like the other "locate" section routines that are
12171 passed to bfd_map_over_sections, but in this context the sections to
12172 read comes from the DWP V1 hash table, not the full ELF section table.
12173
12174 The result is non-zero for success, or zero if an error was found. */
12175
12176 static int
12177 locate_v1_virtual_dwo_sections (asection *sectp,
12178 struct virtual_v1_dwo_sections *sections)
12179 {
12180 const struct dwop_section_names *names = &dwop_section_names;
12181
12182 if (section_is_p (sectp->name, &names->abbrev_dwo))
12183 {
12184 /* There can be only one. */
12185 if (sections->abbrev.s.section != NULL)
12186 return 0;
12187 sections->abbrev.s.section = sectp;
12188 sections->abbrev.size = bfd_get_section_size (sectp);
12189 }
12190 else if (section_is_p (sectp->name, &names->info_dwo)
12191 || section_is_p (sectp->name, &names->types_dwo))
12192 {
12193 /* There can be only one. */
12194 if (sections->info_or_types.s.section != NULL)
12195 return 0;
12196 sections->info_or_types.s.section = sectp;
12197 sections->info_or_types.size = bfd_get_section_size (sectp);
12198 }
12199 else if (section_is_p (sectp->name, &names->line_dwo))
12200 {
12201 /* There can be only one. */
12202 if (sections->line.s.section != NULL)
12203 return 0;
12204 sections->line.s.section = sectp;
12205 sections->line.size = bfd_get_section_size (sectp);
12206 }
12207 else if (section_is_p (sectp->name, &names->loc_dwo))
12208 {
12209 /* There can be only one. */
12210 if (sections->loc.s.section != NULL)
12211 return 0;
12212 sections->loc.s.section = sectp;
12213 sections->loc.size = bfd_get_section_size (sectp);
12214 }
12215 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12216 {
12217 /* There can be only one. */
12218 if (sections->macinfo.s.section != NULL)
12219 return 0;
12220 sections->macinfo.s.section = sectp;
12221 sections->macinfo.size = bfd_get_section_size (sectp);
12222 }
12223 else if (section_is_p (sectp->name, &names->macro_dwo))
12224 {
12225 /* There can be only one. */
12226 if (sections->macro.s.section != NULL)
12227 return 0;
12228 sections->macro.s.section = sectp;
12229 sections->macro.size = bfd_get_section_size (sectp);
12230 }
12231 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12232 {
12233 /* There can be only one. */
12234 if (sections->str_offsets.s.section != NULL)
12235 return 0;
12236 sections->str_offsets.s.section = sectp;
12237 sections->str_offsets.size = bfd_get_section_size (sectp);
12238 }
12239 else
12240 {
12241 /* No other kind of section is valid. */
12242 return 0;
12243 }
12244
12245 return 1;
12246 }
12247
12248 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12249 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12250 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12251 This is for DWP version 1 files. */
12252
12253 static struct dwo_unit *
12254 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12255 struct dwp_file *dwp_file,
12256 uint32_t unit_index,
12257 const char *comp_dir,
12258 ULONGEST signature, int is_debug_types)
12259 {
12260 struct objfile *objfile = dwarf2_per_objfile->objfile;
12261 const struct dwp_hash_table *dwp_htab =
12262 is_debug_types ? dwp_file->tus : dwp_file->cus;
12263 bfd *dbfd = dwp_file->dbfd.get ();
12264 const char *kind = is_debug_types ? "TU" : "CU";
12265 struct dwo_file *dwo_file;
12266 struct dwo_unit *dwo_unit;
12267 struct virtual_v1_dwo_sections sections;
12268 void **dwo_file_slot;
12269 int i;
12270
12271 gdb_assert (dwp_file->version == 1);
12272
12273 if (dwarf_read_debug)
12274 {
12275 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12276 kind,
12277 pulongest (unit_index), hex_string (signature),
12278 dwp_file->name);
12279 }
12280
12281 /* Fetch the sections of this DWO unit.
12282 Put a limit on the number of sections we look for so that bad data
12283 doesn't cause us to loop forever. */
12284
12285 #define MAX_NR_V1_DWO_SECTIONS \
12286 (1 /* .debug_info or .debug_types */ \
12287 + 1 /* .debug_abbrev */ \
12288 + 1 /* .debug_line */ \
12289 + 1 /* .debug_loc */ \
12290 + 1 /* .debug_str_offsets */ \
12291 + 1 /* .debug_macro or .debug_macinfo */ \
12292 + 1 /* trailing zero */)
12293
12294 memset (&sections, 0, sizeof (sections));
12295
12296 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12297 {
12298 asection *sectp;
12299 uint32_t section_nr =
12300 read_4_bytes (dbfd,
12301 dwp_htab->section_pool.v1.indices
12302 + (unit_index + i) * sizeof (uint32_t));
12303
12304 if (section_nr == 0)
12305 break;
12306 if (section_nr >= dwp_file->num_sections)
12307 {
12308 error (_("Dwarf Error: bad DWP hash table, section number too large"
12309 " [in module %s]"),
12310 dwp_file->name);
12311 }
12312
12313 sectp = dwp_file->elf_sections[section_nr];
12314 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12315 {
12316 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12317 " [in module %s]"),
12318 dwp_file->name);
12319 }
12320 }
12321
12322 if (i < 2
12323 || dwarf2_section_empty_p (&sections.info_or_types)
12324 || dwarf2_section_empty_p (&sections.abbrev))
12325 {
12326 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12327 " [in module %s]"),
12328 dwp_file->name);
12329 }
12330 if (i == MAX_NR_V1_DWO_SECTIONS)
12331 {
12332 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12333 " [in module %s]"),
12334 dwp_file->name);
12335 }
12336
12337 /* It's easier for the rest of the code if we fake a struct dwo_file and
12338 have dwo_unit "live" in that. At least for now.
12339
12340 The DWP file can be made up of a random collection of CUs and TUs.
12341 However, for each CU + set of TUs that came from the same original DWO
12342 file, we can combine them back into a virtual DWO file to save space
12343 (fewer struct dwo_file objects to allocate). Remember that for really
12344 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12345
12346 std::string virtual_dwo_name =
12347 string_printf ("virtual-dwo/%d-%d-%d-%d",
12348 get_section_id (&sections.abbrev),
12349 get_section_id (&sections.line),
12350 get_section_id (&sections.loc),
12351 get_section_id (&sections.str_offsets));
12352 /* Can we use an existing virtual DWO file? */
12353 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12354 virtual_dwo_name.c_str (),
12355 comp_dir);
12356 /* Create one if necessary. */
12357 if (*dwo_file_slot == NULL)
12358 {
12359 if (dwarf_read_debug)
12360 {
12361 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12362 virtual_dwo_name.c_str ());
12363 }
12364 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12365 dwo_file->dwo_name
12366 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12367 virtual_dwo_name.c_str (),
12368 virtual_dwo_name.size ());
12369 dwo_file->comp_dir = comp_dir;
12370 dwo_file->sections.abbrev = sections.abbrev;
12371 dwo_file->sections.line = sections.line;
12372 dwo_file->sections.loc = sections.loc;
12373 dwo_file->sections.macinfo = sections.macinfo;
12374 dwo_file->sections.macro = sections.macro;
12375 dwo_file->sections.str_offsets = sections.str_offsets;
12376 /* The "str" section is global to the entire DWP file. */
12377 dwo_file->sections.str = dwp_file->sections.str;
12378 /* The info or types section is assigned below to dwo_unit,
12379 there's no need to record it in dwo_file.
12380 Also, we can't simply record type sections in dwo_file because
12381 we record a pointer into the vector in dwo_unit. As we collect more
12382 types we'll grow the vector and eventually have to reallocate space
12383 for it, invalidating all copies of pointers into the previous
12384 contents. */
12385 *dwo_file_slot = dwo_file;
12386 }
12387 else
12388 {
12389 if (dwarf_read_debug)
12390 {
12391 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12392 virtual_dwo_name.c_str ());
12393 }
12394 dwo_file = (struct dwo_file *) *dwo_file_slot;
12395 }
12396
12397 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12398 dwo_unit->dwo_file = dwo_file;
12399 dwo_unit->signature = signature;
12400 dwo_unit->section =
12401 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12402 *dwo_unit->section = sections.info_or_types;
12403 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12404
12405 return dwo_unit;
12406 }
12407
12408 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12409 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12410 piece within that section used by a TU/CU, return a virtual section
12411 of just that piece. */
12412
12413 static struct dwarf2_section_info
12414 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12415 struct dwarf2_section_info *section,
12416 bfd_size_type offset, bfd_size_type size)
12417 {
12418 struct dwarf2_section_info result;
12419 asection *sectp;
12420
12421 gdb_assert (section != NULL);
12422 gdb_assert (!section->is_virtual);
12423
12424 memset (&result, 0, sizeof (result));
12425 result.s.containing_section = section;
12426 result.is_virtual = 1;
12427
12428 if (size == 0)
12429 return result;
12430
12431 sectp = get_section_bfd_section (section);
12432
12433 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12434 bounds of the real section. This is a pretty-rare event, so just
12435 flag an error (easier) instead of a warning and trying to cope. */
12436 if (sectp == NULL
12437 || offset + size > bfd_get_section_size (sectp))
12438 {
12439 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12440 " in section %s [in module %s]"),
12441 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12442 objfile_name (dwarf2_per_objfile->objfile));
12443 }
12444
12445 result.virtual_offset = offset;
12446 result.size = size;
12447 return result;
12448 }
12449
12450 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12451 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12452 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12453 This is for DWP version 2 files. */
12454
12455 static struct dwo_unit *
12456 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12457 struct dwp_file *dwp_file,
12458 uint32_t unit_index,
12459 const char *comp_dir,
12460 ULONGEST signature, int is_debug_types)
12461 {
12462 struct objfile *objfile = dwarf2_per_objfile->objfile;
12463 const struct dwp_hash_table *dwp_htab =
12464 is_debug_types ? dwp_file->tus : dwp_file->cus;
12465 bfd *dbfd = dwp_file->dbfd.get ();
12466 const char *kind = is_debug_types ? "TU" : "CU";
12467 struct dwo_file *dwo_file;
12468 struct dwo_unit *dwo_unit;
12469 struct virtual_v2_dwo_sections sections;
12470 void **dwo_file_slot;
12471 int i;
12472
12473 gdb_assert (dwp_file->version == 2);
12474
12475 if (dwarf_read_debug)
12476 {
12477 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12478 kind,
12479 pulongest (unit_index), hex_string (signature),
12480 dwp_file->name);
12481 }
12482
12483 /* Fetch the section offsets of this DWO unit. */
12484
12485 memset (&sections, 0, sizeof (sections));
12486
12487 for (i = 0; i < dwp_htab->nr_columns; ++i)
12488 {
12489 uint32_t offset = read_4_bytes (dbfd,
12490 dwp_htab->section_pool.v2.offsets
12491 + (((unit_index - 1) * dwp_htab->nr_columns
12492 + i)
12493 * sizeof (uint32_t)));
12494 uint32_t size = read_4_bytes (dbfd,
12495 dwp_htab->section_pool.v2.sizes
12496 + (((unit_index - 1) * dwp_htab->nr_columns
12497 + i)
12498 * sizeof (uint32_t)));
12499
12500 switch (dwp_htab->section_pool.v2.section_ids[i])
12501 {
12502 case DW_SECT_INFO:
12503 case DW_SECT_TYPES:
12504 sections.info_or_types_offset = offset;
12505 sections.info_or_types_size = size;
12506 break;
12507 case DW_SECT_ABBREV:
12508 sections.abbrev_offset = offset;
12509 sections.abbrev_size = size;
12510 break;
12511 case DW_SECT_LINE:
12512 sections.line_offset = offset;
12513 sections.line_size = size;
12514 break;
12515 case DW_SECT_LOC:
12516 sections.loc_offset = offset;
12517 sections.loc_size = size;
12518 break;
12519 case DW_SECT_STR_OFFSETS:
12520 sections.str_offsets_offset = offset;
12521 sections.str_offsets_size = size;
12522 break;
12523 case DW_SECT_MACINFO:
12524 sections.macinfo_offset = offset;
12525 sections.macinfo_size = size;
12526 break;
12527 case DW_SECT_MACRO:
12528 sections.macro_offset = offset;
12529 sections.macro_size = size;
12530 break;
12531 }
12532 }
12533
12534 /* It's easier for the rest of the code if we fake a struct dwo_file and
12535 have dwo_unit "live" in that. At least for now.
12536
12537 The DWP file can be made up of a random collection of CUs and TUs.
12538 However, for each CU + set of TUs that came from the same original DWO
12539 file, we can combine them back into a virtual DWO file to save space
12540 (fewer struct dwo_file objects to allocate). Remember that for really
12541 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12542
12543 std::string virtual_dwo_name =
12544 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12545 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12546 (long) (sections.line_size ? sections.line_offset : 0),
12547 (long) (sections.loc_size ? sections.loc_offset : 0),
12548 (long) (sections.str_offsets_size
12549 ? sections.str_offsets_offset : 0));
12550 /* Can we use an existing virtual DWO file? */
12551 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12552 virtual_dwo_name.c_str (),
12553 comp_dir);
12554 /* Create one if necessary. */
12555 if (*dwo_file_slot == NULL)
12556 {
12557 if (dwarf_read_debug)
12558 {
12559 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12560 virtual_dwo_name.c_str ());
12561 }
12562 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12563 dwo_file->dwo_name
12564 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12565 virtual_dwo_name.c_str (),
12566 virtual_dwo_name.size ());
12567 dwo_file->comp_dir = comp_dir;
12568 dwo_file->sections.abbrev =
12569 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12570 sections.abbrev_offset, sections.abbrev_size);
12571 dwo_file->sections.line =
12572 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12573 sections.line_offset, sections.line_size);
12574 dwo_file->sections.loc =
12575 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12576 sections.loc_offset, sections.loc_size);
12577 dwo_file->sections.macinfo =
12578 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12579 sections.macinfo_offset, sections.macinfo_size);
12580 dwo_file->sections.macro =
12581 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12582 sections.macro_offset, sections.macro_size);
12583 dwo_file->sections.str_offsets =
12584 create_dwp_v2_section (dwarf2_per_objfile,
12585 &dwp_file->sections.str_offsets,
12586 sections.str_offsets_offset,
12587 sections.str_offsets_size);
12588 /* The "str" section is global to the entire DWP file. */
12589 dwo_file->sections.str = dwp_file->sections.str;
12590 /* The info or types section is assigned below to dwo_unit,
12591 there's no need to record it in dwo_file.
12592 Also, we can't simply record type sections in dwo_file because
12593 we record a pointer into the vector in dwo_unit. As we collect more
12594 types we'll grow the vector and eventually have to reallocate space
12595 for it, invalidating all copies of pointers into the previous
12596 contents. */
12597 *dwo_file_slot = dwo_file;
12598 }
12599 else
12600 {
12601 if (dwarf_read_debug)
12602 {
12603 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12604 virtual_dwo_name.c_str ());
12605 }
12606 dwo_file = (struct dwo_file *) *dwo_file_slot;
12607 }
12608
12609 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12610 dwo_unit->dwo_file = dwo_file;
12611 dwo_unit->signature = signature;
12612 dwo_unit->section =
12613 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12614 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12615 is_debug_types
12616 ? &dwp_file->sections.types
12617 : &dwp_file->sections.info,
12618 sections.info_or_types_offset,
12619 sections.info_or_types_size);
12620 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12621
12622 return dwo_unit;
12623 }
12624
12625 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12626 Returns NULL if the signature isn't found. */
12627
12628 static struct dwo_unit *
12629 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12630 struct dwp_file *dwp_file, const char *comp_dir,
12631 ULONGEST signature, int is_debug_types)
12632 {
12633 const struct dwp_hash_table *dwp_htab =
12634 is_debug_types ? dwp_file->tus : dwp_file->cus;
12635 bfd *dbfd = dwp_file->dbfd.get ();
12636 uint32_t mask = dwp_htab->nr_slots - 1;
12637 uint32_t hash = signature & mask;
12638 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12639 unsigned int i;
12640 void **slot;
12641 struct dwo_unit find_dwo_cu;
12642
12643 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12644 find_dwo_cu.signature = signature;
12645 slot = htab_find_slot (is_debug_types
12646 ? dwp_file->loaded_tus
12647 : dwp_file->loaded_cus,
12648 &find_dwo_cu, INSERT);
12649
12650 if (*slot != NULL)
12651 return (struct dwo_unit *) *slot;
12652
12653 /* Use a for loop so that we don't loop forever on bad debug info. */
12654 for (i = 0; i < dwp_htab->nr_slots; ++i)
12655 {
12656 ULONGEST signature_in_table;
12657
12658 signature_in_table =
12659 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12660 if (signature_in_table == signature)
12661 {
12662 uint32_t unit_index =
12663 read_4_bytes (dbfd,
12664 dwp_htab->unit_table + hash * sizeof (uint32_t));
12665
12666 if (dwp_file->version == 1)
12667 {
12668 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12669 dwp_file, unit_index,
12670 comp_dir, signature,
12671 is_debug_types);
12672 }
12673 else
12674 {
12675 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12676 dwp_file, unit_index,
12677 comp_dir, signature,
12678 is_debug_types);
12679 }
12680 return (struct dwo_unit *) *slot;
12681 }
12682 if (signature_in_table == 0)
12683 return NULL;
12684 hash = (hash + hash2) & mask;
12685 }
12686
12687 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12688 " [in module %s]"),
12689 dwp_file->name);
12690 }
12691
12692 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12693 Open the file specified by FILE_NAME and hand it off to BFD for
12694 preliminary analysis. Return a newly initialized bfd *, which
12695 includes a canonicalized copy of FILE_NAME.
12696 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12697 SEARCH_CWD is true if the current directory is to be searched.
12698 It will be searched before debug-file-directory.
12699 If successful, the file is added to the bfd include table of the
12700 objfile's bfd (see gdb_bfd_record_inclusion).
12701 If unable to find/open the file, return NULL.
12702 NOTE: This function is derived from symfile_bfd_open. */
12703
12704 static gdb_bfd_ref_ptr
12705 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12706 const char *file_name, int is_dwp, int search_cwd)
12707 {
12708 int desc;
12709 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12710 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12711 to debug_file_directory. */
12712 const char *search_path;
12713 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12714
12715 gdb::unique_xmalloc_ptr<char> search_path_holder;
12716 if (search_cwd)
12717 {
12718 if (*debug_file_directory != '\0')
12719 {
12720 search_path_holder.reset (concat (".", dirname_separator_string,
12721 debug_file_directory,
12722 (char *) NULL));
12723 search_path = search_path_holder.get ();
12724 }
12725 else
12726 search_path = ".";
12727 }
12728 else
12729 search_path = debug_file_directory;
12730
12731 openp_flags flags = OPF_RETURN_REALPATH;
12732 if (is_dwp)
12733 flags |= OPF_SEARCH_IN_PATH;
12734
12735 gdb::unique_xmalloc_ptr<char> absolute_name;
12736 desc = openp (search_path, flags, file_name,
12737 O_RDONLY | O_BINARY, &absolute_name);
12738 if (desc < 0)
12739 return NULL;
12740
12741 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12742 gnutarget, desc));
12743 if (sym_bfd == NULL)
12744 return NULL;
12745 bfd_set_cacheable (sym_bfd.get (), 1);
12746
12747 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12748 return NULL;
12749
12750 /* Success. Record the bfd as having been included by the objfile's bfd.
12751 This is important because things like demangled_names_hash lives in the
12752 objfile's per_bfd space and may have references to things like symbol
12753 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12754 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12755
12756 return sym_bfd;
12757 }
12758
12759 /* Try to open DWO file FILE_NAME.
12760 COMP_DIR is the DW_AT_comp_dir attribute.
12761 The result is the bfd handle of the file.
12762 If there is a problem finding or opening the file, return NULL.
12763 Upon success, the canonicalized path of the file is stored in the bfd,
12764 same as symfile_bfd_open. */
12765
12766 static gdb_bfd_ref_ptr
12767 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12768 const char *file_name, const char *comp_dir)
12769 {
12770 if (IS_ABSOLUTE_PATH (file_name))
12771 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12772 0 /*is_dwp*/, 0 /*search_cwd*/);
12773
12774 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12775
12776 if (comp_dir != NULL)
12777 {
12778 char *path_to_try = concat (comp_dir, SLASH_STRING,
12779 file_name, (char *) NULL);
12780
12781 /* NOTE: If comp_dir is a relative path, this will also try the
12782 search path, which seems useful. */
12783 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12784 path_to_try,
12785 0 /*is_dwp*/,
12786 1 /*search_cwd*/));
12787 xfree (path_to_try);
12788 if (abfd != NULL)
12789 return abfd;
12790 }
12791
12792 /* That didn't work, try debug-file-directory, which, despite its name,
12793 is a list of paths. */
12794
12795 if (*debug_file_directory == '\0')
12796 return NULL;
12797
12798 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12799 0 /*is_dwp*/, 1 /*search_cwd*/);
12800 }
12801
12802 /* This function is mapped across the sections and remembers the offset and
12803 size of each of the DWO debugging sections we are interested in. */
12804
12805 static void
12806 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12807 {
12808 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12809 const struct dwop_section_names *names = &dwop_section_names;
12810
12811 if (section_is_p (sectp->name, &names->abbrev_dwo))
12812 {
12813 dwo_sections->abbrev.s.section = sectp;
12814 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12815 }
12816 else if (section_is_p (sectp->name, &names->info_dwo))
12817 {
12818 dwo_sections->info.s.section = sectp;
12819 dwo_sections->info.size = bfd_get_section_size (sectp);
12820 }
12821 else if (section_is_p (sectp->name, &names->line_dwo))
12822 {
12823 dwo_sections->line.s.section = sectp;
12824 dwo_sections->line.size = bfd_get_section_size (sectp);
12825 }
12826 else if (section_is_p (sectp->name, &names->loc_dwo))
12827 {
12828 dwo_sections->loc.s.section = sectp;
12829 dwo_sections->loc.size = bfd_get_section_size (sectp);
12830 }
12831 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12832 {
12833 dwo_sections->macinfo.s.section = sectp;
12834 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12835 }
12836 else if (section_is_p (sectp->name, &names->macro_dwo))
12837 {
12838 dwo_sections->macro.s.section = sectp;
12839 dwo_sections->macro.size = bfd_get_section_size (sectp);
12840 }
12841 else if (section_is_p (sectp->name, &names->str_dwo))
12842 {
12843 dwo_sections->str.s.section = sectp;
12844 dwo_sections->str.size = bfd_get_section_size (sectp);
12845 }
12846 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12847 {
12848 dwo_sections->str_offsets.s.section = sectp;
12849 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12850 }
12851 else if (section_is_p (sectp->name, &names->types_dwo))
12852 {
12853 struct dwarf2_section_info type_section;
12854
12855 memset (&type_section, 0, sizeof (type_section));
12856 type_section.s.section = sectp;
12857 type_section.size = bfd_get_section_size (sectp);
12858 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12859 &type_section);
12860 }
12861 }
12862
12863 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12864 by PER_CU. This is for the non-DWP case.
12865 The result is NULL if DWO_NAME can't be found. */
12866
12867 static struct dwo_file *
12868 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12869 const char *dwo_name, const char *comp_dir)
12870 {
12871 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12872 struct objfile *objfile = dwarf2_per_objfile->objfile;
12873
12874 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12875 if (dbfd == NULL)
12876 {
12877 if (dwarf_read_debug)
12878 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12879 return NULL;
12880 }
12881
12882 /* We use a unique pointer here, despite the obstack allocation,
12883 because a dwo_file needs some cleanup if it is abandoned. */
12884 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12885 struct dwo_file));
12886 dwo_file->dwo_name = dwo_name;
12887 dwo_file->comp_dir = comp_dir;
12888 dwo_file->dbfd = dbfd.release ();
12889
12890 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12891 &dwo_file->sections);
12892
12893 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12894 dwo_file->cus);
12895
12896 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12897 dwo_file->sections.types, dwo_file->tus);
12898
12899 if (dwarf_read_debug)
12900 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12901
12902 return dwo_file.release ();
12903 }
12904
12905 /* This function is mapped across the sections and remembers the offset and
12906 size of each of the DWP debugging sections common to version 1 and 2 that
12907 we are interested in. */
12908
12909 static void
12910 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12911 void *dwp_file_ptr)
12912 {
12913 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12914 const struct dwop_section_names *names = &dwop_section_names;
12915 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12916
12917 /* Record the ELF section number for later lookup: this is what the
12918 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12919 gdb_assert (elf_section_nr < dwp_file->num_sections);
12920 dwp_file->elf_sections[elf_section_nr] = sectp;
12921
12922 /* Look for specific sections that we need. */
12923 if (section_is_p (sectp->name, &names->str_dwo))
12924 {
12925 dwp_file->sections.str.s.section = sectp;
12926 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->cu_index))
12929 {
12930 dwp_file->sections.cu_index.s.section = sectp;
12931 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->tu_index))
12934 {
12935 dwp_file->sections.tu_index.s.section = sectp;
12936 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12937 }
12938 }
12939
12940 /* This function is mapped across the sections and remembers the offset and
12941 size of each of the DWP version 2 debugging sections that we are interested
12942 in. This is split into a separate function because we don't know if we
12943 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12944
12945 static void
12946 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12947 {
12948 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12949 const struct dwop_section_names *names = &dwop_section_names;
12950 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12951
12952 /* Record the ELF section number for later lookup: this is what the
12953 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12954 gdb_assert (elf_section_nr < dwp_file->num_sections);
12955 dwp_file->elf_sections[elf_section_nr] = sectp;
12956
12957 /* Look for specific sections that we need. */
12958 if (section_is_p (sectp->name, &names->abbrev_dwo))
12959 {
12960 dwp_file->sections.abbrev.s.section = sectp;
12961 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12962 }
12963 else if (section_is_p (sectp->name, &names->info_dwo))
12964 {
12965 dwp_file->sections.info.s.section = sectp;
12966 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12967 }
12968 else if (section_is_p (sectp->name, &names->line_dwo))
12969 {
12970 dwp_file->sections.line.s.section = sectp;
12971 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12972 }
12973 else if (section_is_p (sectp->name, &names->loc_dwo))
12974 {
12975 dwp_file->sections.loc.s.section = sectp;
12976 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12977 }
12978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12979 {
12980 dwp_file->sections.macinfo.s.section = sectp;
12981 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12982 }
12983 else if (section_is_p (sectp->name, &names->macro_dwo))
12984 {
12985 dwp_file->sections.macro.s.section = sectp;
12986 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12987 }
12988 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12989 {
12990 dwp_file->sections.str_offsets.s.section = sectp;
12991 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12992 }
12993 else if (section_is_p (sectp->name, &names->types_dwo))
12994 {
12995 dwp_file->sections.types.s.section = sectp;
12996 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12997 }
12998 }
12999
13000 /* Hash function for dwp_file loaded CUs/TUs. */
13001
13002 static hashval_t
13003 hash_dwp_loaded_cutus (const void *item)
13004 {
13005 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13006
13007 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13008 return dwo_unit->signature;
13009 }
13010
13011 /* Equality function for dwp_file loaded CUs/TUs. */
13012
13013 static int
13014 eq_dwp_loaded_cutus (const void *a, const void *b)
13015 {
13016 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13017 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13018
13019 return dua->signature == dub->signature;
13020 }
13021
13022 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13023
13024 static htab_t
13025 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13026 {
13027 return htab_create_alloc_ex (3,
13028 hash_dwp_loaded_cutus,
13029 eq_dwp_loaded_cutus,
13030 NULL,
13031 &objfile->objfile_obstack,
13032 hashtab_obstack_allocate,
13033 dummy_obstack_deallocate);
13034 }
13035
13036 /* Try to open DWP file FILE_NAME.
13037 The result is the bfd handle of the file.
13038 If there is a problem finding or opening the file, return NULL.
13039 Upon success, the canonicalized path of the file is stored in the bfd,
13040 same as symfile_bfd_open. */
13041
13042 static gdb_bfd_ref_ptr
13043 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13044 const char *file_name)
13045 {
13046 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13047 1 /*is_dwp*/,
13048 1 /*search_cwd*/));
13049 if (abfd != NULL)
13050 return abfd;
13051
13052 /* Work around upstream bug 15652.
13053 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13054 [Whether that's a "bug" is debatable, but it is getting in our way.]
13055 We have no real idea where the dwp file is, because gdb's realpath-ing
13056 of the executable's path may have discarded the needed info.
13057 [IWBN if the dwp file name was recorded in the executable, akin to
13058 .gnu_debuglink, but that doesn't exist yet.]
13059 Strip the directory from FILE_NAME and search again. */
13060 if (*debug_file_directory != '\0')
13061 {
13062 /* Don't implicitly search the current directory here.
13063 If the user wants to search "." to handle this case,
13064 it must be added to debug-file-directory. */
13065 return try_open_dwop_file (dwarf2_per_objfile,
13066 lbasename (file_name), 1 /*is_dwp*/,
13067 0 /*search_cwd*/);
13068 }
13069
13070 return NULL;
13071 }
13072
13073 /* Initialize the use of the DWP file for the current objfile.
13074 By convention the name of the DWP file is ${objfile}.dwp.
13075 The result is NULL if it can't be found. */
13076
13077 static std::unique_ptr<struct dwp_file>
13078 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13079 {
13080 struct objfile *objfile = dwarf2_per_objfile->objfile;
13081
13082 /* Try to find first .dwp for the binary file before any symbolic links
13083 resolving. */
13084
13085 /* If the objfile is a debug file, find the name of the real binary
13086 file and get the name of dwp file from there. */
13087 std::string dwp_name;
13088 if (objfile->separate_debug_objfile_backlink != NULL)
13089 {
13090 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13091 const char *backlink_basename = lbasename (backlink->original_name);
13092
13093 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13094 }
13095 else
13096 dwp_name = objfile->original_name;
13097
13098 dwp_name += ".dwp";
13099
13100 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13101 if (dbfd == NULL
13102 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13103 {
13104 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13105 dwp_name = objfile_name (objfile);
13106 dwp_name += ".dwp";
13107 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13108 }
13109
13110 if (dbfd == NULL)
13111 {
13112 if (dwarf_read_debug)
13113 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13114 return std::unique_ptr<dwp_file> ();
13115 }
13116
13117 const char *name = bfd_get_filename (dbfd.get ());
13118 std::unique_ptr<struct dwp_file> dwp_file
13119 (new struct dwp_file (name, std::move (dbfd)));
13120
13121 /* +1: section 0 is unused */
13122 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13123 dwp_file->elf_sections =
13124 OBSTACK_CALLOC (&objfile->objfile_obstack,
13125 dwp_file->num_sections, asection *);
13126
13127 bfd_map_over_sections (dwp_file->dbfd.get (),
13128 dwarf2_locate_common_dwp_sections,
13129 dwp_file.get ());
13130
13131 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13132 0);
13133
13134 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13135 1);
13136
13137 /* The DWP file version is stored in the hash table. Oh well. */
13138 if (dwp_file->cus && dwp_file->tus
13139 && dwp_file->cus->version != dwp_file->tus->version)
13140 {
13141 /* Technically speaking, we should try to limp along, but this is
13142 pretty bizarre. We use pulongest here because that's the established
13143 portability solution (e.g, we cannot use %u for uint32_t). */
13144 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13145 " TU version %s [in DWP file %s]"),
13146 pulongest (dwp_file->cus->version),
13147 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13148 }
13149
13150 if (dwp_file->cus)
13151 dwp_file->version = dwp_file->cus->version;
13152 else if (dwp_file->tus)
13153 dwp_file->version = dwp_file->tus->version;
13154 else
13155 dwp_file->version = 2;
13156
13157 if (dwp_file->version == 2)
13158 bfd_map_over_sections (dwp_file->dbfd.get (),
13159 dwarf2_locate_v2_dwp_sections,
13160 dwp_file.get ());
13161
13162 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13163 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13164
13165 if (dwarf_read_debug)
13166 {
13167 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13168 fprintf_unfiltered (gdb_stdlog,
13169 " %s CUs, %s TUs\n",
13170 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13171 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13172 }
13173
13174 return dwp_file;
13175 }
13176
13177 /* Wrapper around open_and_init_dwp_file, only open it once. */
13178
13179 static struct dwp_file *
13180 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13181 {
13182 if (! dwarf2_per_objfile->dwp_checked)
13183 {
13184 dwarf2_per_objfile->dwp_file
13185 = open_and_init_dwp_file (dwarf2_per_objfile);
13186 dwarf2_per_objfile->dwp_checked = 1;
13187 }
13188 return dwarf2_per_objfile->dwp_file.get ();
13189 }
13190
13191 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13192 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13193 or in the DWP file for the objfile, referenced by THIS_UNIT.
13194 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13195 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13196
13197 This is called, for example, when wanting to read a variable with a
13198 complex location. Therefore we don't want to do file i/o for every call.
13199 Therefore we don't want to look for a DWO file on every call.
13200 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13201 then we check if we've already seen DWO_NAME, and only THEN do we check
13202 for a DWO file.
13203
13204 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13205 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13206
13207 static struct dwo_unit *
13208 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13209 const char *dwo_name, const char *comp_dir,
13210 ULONGEST signature, int is_debug_types)
13211 {
13212 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13213 struct objfile *objfile = dwarf2_per_objfile->objfile;
13214 const char *kind = is_debug_types ? "TU" : "CU";
13215 void **dwo_file_slot;
13216 struct dwo_file *dwo_file;
13217 struct dwp_file *dwp_file;
13218
13219 /* First see if there's a DWP file.
13220 If we have a DWP file but didn't find the DWO inside it, don't
13221 look for the original DWO file. It makes gdb behave differently
13222 depending on whether one is debugging in the build tree. */
13223
13224 dwp_file = get_dwp_file (dwarf2_per_objfile);
13225 if (dwp_file != NULL)
13226 {
13227 const struct dwp_hash_table *dwp_htab =
13228 is_debug_types ? dwp_file->tus : dwp_file->cus;
13229
13230 if (dwp_htab != NULL)
13231 {
13232 struct dwo_unit *dwo_cutu =
13233 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13234 signature, is_debug_types);
13235
13236 if (dwo_cutu != NULL)
13237 {
13238 if (dwarf_read_debug)
13239 {
13240 fprintf_unfiltered (gdb_stdlog,
13241 "Virtual DWO %s %s found: @%s\n",
13242 kind, hex_string (signature),
13243 host_address_to_string (dwo_cutu));
13244 }
13245 return dwo_cutu;
13246 }
13247 }
13248 }
13249 else
13250 {
13251 /* No DWP file, look for the DWO file. */
13252
13253 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13254 dwo_name, comp_dir);
13255 if (*dwo_file_slot == NULL)
13256 {
13257 /* Read in the file and build a table of the CUs/TUs it contains. */
13258 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13259 }
13260 /* NOTE: This will be NULL if unable to open the file. */
13261 dwo_file = (struct dwo_file *) *dwo_file_slot;
13262
13263 if (dwo_file != NULL)
13264 {
13265 struct dwo_unit *dwo_cutu = NULL;
13266
13267 if (is_debug_types && dwo_file->tus)
13268 {
13269 struct dwo_unit find_dwo_cutu;
13270
13271 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13272 find_dwo_cutu.signature = signature;
13273 dwo_cutu
13274 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13275 }
13276 else if (!is_debug_types && dwo_file->cus)
13277 {
13278 struct dwo_unit find_dwo_cutu;
13279
13280 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13281 find_dwo_cutu.signature = signature;
13282 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13283 &find_dwo_cutu);
13284 }
13285
13286 if (dwo_cutu != NULL)
13287 {
13288 if (dwarf_read_debug)
13289 {
13290 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13291 kind, dwo_name, hex_string (signature),
13292 host_address_to_string (dwo_cutu));
13293 }
13294 return dwo_cutu;
13295 }
13296 }
13297 }
13298
13299 /* We didn't find it. This could mean a dwo_id mismatch, or
13300 someone deleted the DWO/DWP file, or the search path isn't set up
13301 correctly to find the file. */
13302
13303 if (dwarf_read_debug)
13304 {
13305 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13306 kind, dwo_name, hex_string (signature));
13307 }
13308
13309 /* This is a warning and not a complaint because it can be caused by
13310 pilot error (e.g., user accidentally deleting the DWO). */
13311 {
13312 /* Print the name of the DWP file if we looked there, helps the user
13313 better diagnose the problem. */
13314 std::string dwp_text;
13315
13316 if (dwp_file != NULL)
13317 dwp_text = string_printf (" [in DWP file %s]",
13318 lbasename (dwp_file->name));
13319
13320 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13321 " [in module %s]"),
13322 kind, dwo_name, hex_string (signature),
13323 dwp_text.c_str (),
13324 this_unit->is_debug_types ? "TU" : "CU",
13325 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13326 }
13327 return NULL;
13328 }
13329
13330 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13331 See lookup_dwo_cutu_unit for details. */
13332
13333 static struct dwo_unit *
13334 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13335 const char *dwo_name, const char *comp_dir,
13336 ULONGEST signature)
13337 {
13338 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13339 }
13340
13341 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13342 See lookup_dwo_cutu_unit for details. */
13343
13344 static struct dwo_unit *
13345 lookup_dwo_type_unit (struct signatured_type *this_tu,
13346 const char *dwo_name, const char *comp_dir)
13347 {
13348 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13349 }
13350
13351 /* Traversal function for queue_and_load_all_dwo_tus. */
13352
13353 static int
13354 queue_and_load_dwo_tu (void **slot, void *info)
13355 {
13356 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13357 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13358 ULONGEST signature = dwo_unit->signature;
13359 struct signatured_type *sig_type =
13360 lookup_dwo_signatured_type (per_cu->cu, signature);
13361
13362 if (sig_type != NULL)
13363 {
13364 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13365
13366 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13367 a real dependency of PER_CU on SIG_TYPE. That is detected later
13368 while processing PER_CU. */
13369 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13370 load_full_type_unit (sig_cu);
13371 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13372 }
13373
13374 return 1;
13375 }
13376
13377 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13378 The DWO may have the only definition of the type, though it may not be
13379 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13380 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13381
13382 static void
13383 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13384 {
13385 struct dwo_unit *dwo_unit;
13386 struct dwo_file *dwo_file;
13387
13388 gdb_assert (!per_cu->is_debug_types);
13389 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13390 gdb_assert (per_cu->cu != NULL);
13391
13392 dwo_unit = per_cu->cu->dwo_unit;
13393 gdb_assert (dwo_unit != NULL);
13394
13395 dwo_file = dwo_unit->dwo_file;
13396 if (dwo_file->tus != NULL)
13397 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13398 }
13399
13400 /* Free all resources associated with DWO_FILE.
13401 Close the DWO file and munmap the sections. */
13402
13403 static void
13404 free_dwo_file (struct dwo_file *dwo_file)
13405 {
13406 /* Note: dbfd is NULL for virtual DWO files. */
13407 gdb_bfd_unref (dwo_file->dbfd);
13408
13409 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13410 }
13411
13412 /* Traversal function for free_dwo_files. */
13413
13414 static int
13415 free_dwo_file_from_slot (void **slot, void *info)
13416 {
13417 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13418
13419 free_dwo_file (dwo_file);
13420
13421 return 1;
13422 }
13423
13424 /* Free all resources associated with DWO_FILES. */
13425
13426 static void
13427 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13428 {
13429 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13430 }
13431 \f
13432 /* Read in various DIEs. */
13433
13434 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13435 Inherit only the children of the DW_AT_abstract_origin DIE not being
13436 already referenced by DW_AT_abstract_origin from the children of the
13437 current DIE. */
13438
13439 static void
13440 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13441 {
13442 struct die_info *child_die;
13443 sect_offset *offsetp;
13444 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13445 struct die_info *origin_die;
13446 /* Iterator of the ORIGIN_DIE children. */
13447 struct die_info *origin_child_die;
13448 struct attribute *attr;
13449 struct dwarf2_cu *origin_cu;
13450 struct pending **origin_previous_list_in_scope;
13451
13452 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13453 if (!attr)
13454 return;
13455
13456 /* Note that following die references may follow to a die in a
13457 different cu. */
13458
13459 origin_cu = cu;
13460 origin_die = follow_die_ref (die, attr, &origin_cu);
13461
13462 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13463 symbols in. */
13464 origin_previous_list_in_scope = origin_cu->list_in_scope;
13465 origin_cu->list_in_scope = cu->list_in_scope;
13466
13467 if (die->tag != origin_die->tag
13468 && !(die->tag == DW_TAG_inlined_subroutine
13469 && origin_die->tag == DW_TAG_subprogram))
13470 complaint (_("DIE %s and its abstract origin %s have different tags"),
13471 sect_offset_str (die->sect_off),
13472 sect_offset_str (origin_die->sect_off));
13473
13474 std::vector<sect_offset> offsets;
13475
13476 for (child_die = die->child;
13477 child_die && child_die->tag;
13478 child_die = sibling_die (child_die))
13479 {
13480 struct die_info *child_origin_die;
13481 struct dwarf2_cu *child_origin_cu;
13482
13483 /* We are trying to process concrete instance entries:
13484 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13485 it's not relevant to our analysis here. i.e. detecting DIEs that are
13486 present in the abstract instance but not referenced in the concrete
13487 one. */
13488 if (child_die->tag == DW_TAG_call_site
13489 || child_die->tag == DW_TAG_GNU_call_site)
13490 continue;
13491
13492 /* For each CHILD_DIE, find the corresponding child of
13493 ORIGIN_DIE. If there is more than one layer of
13494 DW_AT_abstract_origin, follow them all; there shouldn't be,
13495 but GCC versions at least through 4.4 generate this (GCC PR
13496 40573). */
13497 child_origin_die = child_die;
13498 child_origin_cu = cu;
13499 while (1)
13500 {
13501 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13502 child_origin_cu);
13503 if (attr == NULL)
13504 break;
13505 child_origin_die = follow_die_ref (child_origin_die, attr,
13506 &child_origin_cu);
13507 }
13508
13509 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13510 counterpart may exist. */
13511 if (child_origin_die != child_die)
13512 {
13513 if (child_die->tag != child_origin_die->tag
13514 && !(child_die->tag == DW_TAG_inlined_subroutine
13515 && child_origin_die->tag == DW_TAG_subprogram))
13516 complaint (_("Child DIE %s and its abstract origin %s have "
13517 "different tags"),
13518 sect_offset_str (child_die->sect_off),
13519 sect_offset_str (child_origin_die->sect_off));
13520 if (child_origin_die->parent != origin_die)
13521 complaint (_("Child DIE %s and its abstract origin %s have "
13522 "different parents"),
13523 sect_offset_str (child_die->sect_off),
13524 sect_offset_str (child_origin_die->sect_off));
13525 else
13526 offsets.push_back (child_origin_die->sect_off);
13527 }
13528 }
13529 std::sort (offsets.begin (), offsets.end ());
13530 sect_offset *offsets_end = offsets.data () + offsets.size ();
13531 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13532 if (offsetp[-1] == *offsetp)
13533 complaint (_("Multiple children of DIE %s refer "
13534 "to DIE %s as their abstract origin"),
13535 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13536
13537 offsetp = offsets.data ();
13538 origin_child_die = origin_die->child;
13539 while (origin_child_die && origin_child_die->tag)
13540 {
13541 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13542 while (offsetp < offsets_end
13543 && *offsetp < origin_child_die->sect_off)
13544 offsetp++;
13545 if (offsetp >= offsets_end
13546 || *offsetp > origin_child_die->sect_off)
13547 {
13548 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13549 Check whether we're already processing ORIGIN_CHILD_DIE.
13550 This can happen with mutually referenced abstract_origins.
13551 PR 16581. */
13552 if (!origin_child_die->in_process)
13553 process_die (origin_child_die, origin_cu);
13554 }
13555 origin_child_die = sibling_die (origin_child_die);
13556 }
13557 origin_cu->list_in_scope = origin_previous_list_in_scope;
13558 }
13559
13560 static void
13561 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13562 {
13563 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13565 struct context_stack *newobj;
13566 CORE_ADDR lowpc;
13567 CORE_ADDR highpc;
13568 struct die_info *child_die;
13569 struct attribute *attr, *call_line, *call_file;
13570 const char *name;
13571 CORE_ADDR baseaddr;
13572 struct block *block;
13573 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13574 std::vector<struct symbol *> template_args;
13575 struct template_symbol *templ_func = NULL;
13576
13577 if (inlined_func)
13578 {
13579 /* If we do not have call site information, we can't show the
13580 caller of this inlined function. That's too confusing, so
13581 only use the scope for local variables. */
13582 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13583 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13584 if (call_line == NULL || call_file == NULL)
13585 {
13586 read_lexical_block_scope (die, cu);
13587 return;
13588 }
13589 }
13590
13591 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13592
13593 name = dwarf2_name (die, cu);
13594
13595 /* Ignore functions with missing or empty names. These are actually
13596 illegal according to the DWARF standard. */
13597 if (name == NULL)
13598 {
13599 complaint (_("missing name for subprogram DIE at %s"),
13600 sect_offset_str (die->sect_off));
13601 return;
13602 }
13603
13604 /* Ignore functions with missing or invalid low and high pc attributes. */
13605 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13606 <= PC_BOUNDS_INVALID)
13607 {
13608 attr = dwarf2_attr (die, DW_AT_external, cu);
13609 if (!attr || !DW_UNSND (attr))
13610 complaint (_("cannot get low and high bounds "
13611 "for subprogram DIE at %s"),
13612 sect_offset_str (die->sect_off));
13613 return;
13614 }
13615
13616 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13617 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13618
13619 /* If we have any template arguments, then we must allocate a
13620 different sort of symbol. */
13621 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13622 {
13623 if (child_die->tag == DW_TAG_template_type_param
13624 || child_die->tag == DW_TAG_template_value_param)
13625 {
13626 templ_func = allocate_template_symbol (objfile);
13627 templ_func->subclass = SYMBOL_TEMPLATE;
13628 break;
13629 }
13630 }
13631
13632 newobj = cu->builder->push_context (0, lowpc);
13633 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13634 (struct symbol *) templ_func);
13635
13636 /* If there is a location expression for DW_AT_frame_base, record
13637 it. */
13638 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13639 if (attr)
13640 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13641
13642 /* If there is a location for the static link, record it. */
13643 newobj->static_link = NULL;
13644 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13645 if (attr)
13646 {
13647 newobj->static_link
13648 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13649 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13650 }
13651
13652 cu->list_in_scope = cu->builder->get_local_symbols ();
13653
13654 if (die->child != NULL)
13655 {
13656 child_die = die->child;
13657 while (child_die && child_die->tag)
13658 {
13659 if (child_die->tag == DW_TAG_template_type_param
13660 || child_die->tag == DW_TAG_template_value_param)
13661 {
13662 struct symbol *arg = new_symbol (child_die, NULL, cu);
13663
13664 if (arg != NULL)
13665 template_args.push_back (arg);
13666 }
13667 else
13668 process_die (child_die, cu);
13669 child_die = sibling_die (child_die);
13670 }
13671 }
13672
13673 inherit_abstract_dies (die, cu);
13674
13675 /* If we have a DW_AT_specification, we might need to import using
13676 directives from the context of the specification DIE. See the
13677 comment in determine_prefix. */
13678 if (cu->language == language_cplus
13679 && dwarf2_attr (die, DW_AT_specification, cu))
13680 {
13681 struct dwarf2_cu *spec_cu = cu;
13682 struct die_info *spec_die = die_specification (die, &spec_cu);
13683
13684 while (spec_die)
13685 {
13686 child_die = spec_die->child;
13687 while (child_die && child_die->tag)
13688 {
13689 if (child_die->tag == DW_TAG_imported_module)
13690 process_die (child_die, spec_cu);
13691 child_die = sibling_die (child_die);
13692 }
13693
13694 /* In some cases, GCC generates specification DIEs that
13695 themselves contain DW_AT_specification attributes. */
13696 spec_die = die_specification (spec_die, &spec_cu);
13697 }
13698 }
13699
13700 struct context_stack cstk = cu->builder->pop_context ();
13701 /* Make a block for the local symbols within. */
13702 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13703 cstk.static_link, lowpc, highpc);
13704
13705 /* For C++, set the block's scope. */
13706 if ((cu->language == language_cplus
13707 || cu->language == language_fortran
13708 || cu->language == language_d
13709 || cu->language == language_rust)
13710 && cu->processing_has_namespace_info)
13711 block_set_scope (block, determine_prefix (die, cu),
13712 &objfile->objfile_obstack);
13713
13714 /* If we have address ranges, record them. */
13715 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13716
13717 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13718
13719 /* Attach template arguments to function. */
13720 if (!template_args.empty ())
13721 {
13722 gdb_assert (templ_func != NULL);
13723
13724 templ_func->n_template_arguments = template_args.size ();
13725 templ_func->template_arguments
13726 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13727 templ_func->n_template_arguments);
13728 memcpy (templ_func->template_arguments,
13729 template_args.data (),
13730 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13731 }
13732
13733 /* In C++, we can have functions nested inside functions (e.g., when
13734 a function declares a class that has methods). This means that
13735 when we finish processing a function scope, we may need to go
13736 back to building a containing block's symbol lists. */
13737 *cu->builder->get_local_symbols () = cstk.locals;
13738 cu->builder->set_local_using_directives (cstk.local_using_directives);
13739
13740 /* If we've finished processing a top-level function, subsequent
13741 symbols go in the file symbol list. */
13742 if (cu->builder->outermost_context_p ())
13743 cu->list_in_scope = cu->builder->get_file_symbols ();
13744 }
13745
13746 /* Process all the DIES contained within a lexical block scope. Start
13747 a new scope, process the dies, and then close the scope. */
13748
13749 static void
13750 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13751 {
13752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13753 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13754 CORE_ADDR lowpc, highpc;
13755 struct die_info *child_die;
13756 CORE_ADDR baseaddr;
13757
13758 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13759
13760 /* Ignore blocks with missing or invalid low and high pc attributes. */
13761 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13762 as multiple lexical blocks? Handling children in a sane way would
13763 be nasty. Might be easier to properly extend generic blocks to
13764 describe ranges. */
13765 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13766 {
13767 case PC_BOUNDS_NOT_PRESENT:
13768 /* DW_TAG_lexical_block has no attributes, process its children as if
13769 there was no wrapping by that DW_TAG_lexical_block.
13770 GCC does no longer produces such DWARF since GCC r224161. */
13771 for (child_die = die->child;
13772 child_die != NULL && child_die->tag;
13773 child_die = sibling_die (child_die))
13774 process_die (child_die, cu);
13775 return;
13776 case PC_BOUNDS_INVALID:
13777 return;
13778 }
13779 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13780 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13781
13782 cu->builder->push_context (0, lowpc);
13783 if (die->child != NULL)
13784 {
13785 child_die = die->child;
13786 while (child_die && child_die->tag)
13787 {
13788 process_die (child_die, cu);
13789 child_die = sibling_die (child_die);
13790 }
13791 }
13792 inherit_abstract_dies (die, cu);
13793 struct context_stack cstk = cu->builder->pop_context ();
13794
13795 if (*cu->builder->get_local_symbols () != NULL
13796 || (*cu->builder->get_local_using_directives ()) != NULL)
13797 {
13798 struct block *block
13799 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13800 cstk.start_addr, highpc);
13801
13802 /* Note that recording ranges after traversing children, as we
13803 do here, means that recording a parent's ranges entails
13804 walking across all its children's ranges as they appear in
13805 the address map, which is quadratic behavior.
13806
13807 It would be nicer to record the parent's ranges before
13808 traversing its children, simply overriding whatever you find
13809 there. But since we don't even decide whether to create a
13810 block until after we've traversed its children, that's hard
13811 to do. */
13812 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13813 }
13814 *cu->builder->get_local_symbols () = cstk.locals;
13815 cu->builder->set_local_using_directives (cstk.local_using_directives);
13816 }
13817
13818 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13819
13820 static void
13821 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13822 {
13823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13824 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13825 CORE_ADDR pc, baseaddr;
13826 struct attribute *attr;
13827 struct call_site *call_site, call_site_local;
13828 void **slot;
13829 int nparams;
13830 struct die_info *child_die;
13831
13832 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13833
13834 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13835 if (attr == NULL)
13836 {
13837 /* This was a pre-DWARF-5 GNU extension alias
13838 for DW_AT_call_return_pc. */
13839 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13840 }
13841 if (!attr)
13842 {
13843 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13844 "DIE %s [in module %s]"),
13845 sect_offset_str (die->sect_off), objfile_name (objfile));
13846 return;
13847 }
13848 pc = attr_value_as_address (attr) + baseaddr;
13849 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13850
13851 if (cu->call_site_htab == NULL)
13852 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13853 NULL, &objfile->objfile_obstack,
13854 hashtab_obstack_allocate, NULL);
13855 call_site_local.pc = pc;
13856 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13857 if (*slot != NULL)
13858 {
13859 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13860 "DIE %s [in module %s]"),
13861 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13862 objfile_name (objfile));
13863 return;
13864 }
13865
13866 /* Count parameters at the caller. */
13867
13868 nparams = 0;
13869 for (child_die = die->child; child_die && child_die->tag;
13870 child_die = sibling_die (child_die))
13871 {
13872 if (child_die->tag != DW_TAG_call_site_parameter
13873 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13874 {
13875 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13876 "DW_TAG_call_site child DIE %s [in module %s]"),
13877 child_die->tag, sect_offset_str (child_die->sect_off),
13878 objfile_name (objfile));
13879 continue;
13880 }
13881
13882 nparams++;
13883 }
13884
13885 call_site
13886 = ((struct call_site *)
13887 obstack_alloc (&objfile->objfile_obstack,
13888 sizeof (*call_site)
13889 + (sizeof (*call_site->parameter) * (nparams - 1))));
13890 *slot = call_site;
13891 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13892 call_site->pc = pc;
13893
13894 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13895 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13896 {
13897 struct die_info *func_die;
13898
13899 /* Skip also over DW_TAG_inlined_subroutine. */
13900 for (func_die = die->parent;
13901 func_die && func_die->tag != DW_TAG_subprogram
13902 && func_die->tag != DW_TAG_subroutine_type;
13903 func_die = func_die->parent);
13904
13905 /* DW_AT_call_all_calls is a superset
13906 of DW_AT_call_all_tail_calls. */
13907 if (func_die
13908 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13909 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13910 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13911 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13912 {
13913 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13914 not complete. But keep CALL_SITE for look ups via call_site_htab,
13915 both the initial caller containing the real return address PC and
13916 the final callee containing the current PC of a chain of tail
13917 calls do not need to have the tail call list complete. But any
13918 function candidate for a virtual tail call frame searched via
13919 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13920 determined unambiguously. */
13921 }
13922 else
13923 {
13924 struct type *func_type = NULL;
13925
13926 if (func_die)
13927 func_type = get_die_type (func_die, cu);
13928 if (func_type != NULL)
13929 {
13930 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13931
13932 /* Enlist this call site to the function. */
13933 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13934 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13935 }
13936 else
13937 complaint (_("Cannot find function owning DW_TAG_call_site "
13938 "DIE %s [in module %s]"),
13939 sect_offset_str (die->sect_off), objfile_name (objfile));
13940 }
13941 }
13942
13943 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13944 if (attr == NULL)
13945 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13946 if (attr == NULL)
13947 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13948 if (attr == NULL)
13949 {
13950 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13951 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13952 }
13953 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13954 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13955 /* Keep NULL DWARF_BLOCK. */;
13956 else if (attr_form_is_block (attr))
13957 {
13958 struct dwarf2_locexpr_baton *dlbaton;
13959
13960 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13961 dlbaton->data = DW_BLOCK (attr)->data;
13962 dlbaton->size = DW_BLOCK (attr)->size;
13963 dlbaton->per_cu = cu->per_cu;
13964
13965 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13966 }
13967 else if (attr_form_is_ref (attr))
13968 {
13969 struct dwarf2_cu *target_cu = cu;
13970 struct die_info *target_die;
13971
13972 target_die = follow_die_ref (die, attr, &target_cu);
13973 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13974 if (die_is_declaration (target_die, target_cu))
13975 {
13976 const char *target_physname;
13977
13978 /* Prefer the mangled name; otherwise compute the demangled one. */
13979 target_physname = dw2_linkage_name (target_die, target_cu);
13980 if (target_physname == NULL)
13981 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13982 if (target_physname == NULL)
13983 complaint (_("DW_AT_call_target target DIE has invalid "
13984 "physname, for referencing DIE %s [in module %s]"),
13985 sect_offset_str (die->sect_off), objfile_name (objfile));
13986 else
13987 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13988 }
13989 else
13990 {
13991 CORE_ADDR lowpc;
13992
13993 /* DW_AT_entry_pc should be preferred. */
13994 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13995 <= PC_BOUNDS_INVALID)
13996 complaint (_("DW_AT_call_target target DIE has invalid "
13997 "low pc, for referencing DIE %s [in module %s]"),
13998 sect_offset_str (die->sect_off), objfile_name (objfile));
13999 else
14000 {
14001 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14002 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14003 }
14004 }
14005 }
14006 else
14007 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14008 "block nor reference, for DIE %s [in module %s]"),
14009 sect_offset_str (die->sect_off), objfile_name (objfile));
14010
14011 call_site->per_cu = cu->per_cu;
14012
14013 for (child_die = die->child;
14014 child_die && child_die->tag;
14015 child_die = sibling_die (child_die))
14016 {
14017 struct call_site_parameter *parameter;
14018 struct attribute *loc, *origin;
14019
14020 if (child_die->tag != DW_TAG_call_site_parameter
14021 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14022 {
14023 /* Already printed the complaint above. */
14024 continue;
14025 }
14026
14027 gdb_assert (call_site->parameter_count < nparams);
14028 parameter = &call_site->parameter[call_site->parameter_count];
14029
14030 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14031 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14032 register is contained in DW_AT_call_value. */
14033
14034 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14035 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14036 if (origin == NULL)
14037 {
14038 /* This was a pre-DWARF-5 GNU extension alias
14039 for DW_AT_call_parameter. */
14040 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14041 }
14042 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14043 {
14044 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14045
14046 sect_offset sect_off
14047 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14048 if (!offset_in_cu_p (&cu->header, sect_off))
14049 {
14050 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14051 binding can be done only inside one CU. Such referenced DIE
14052 therefore cannot be even moved to DW_TAG_partial_unit. */
14053 complaint (_("DW_AT_call_parameter offset is not in CU for "
14054 "DW_TAG_call_site child DIE %s [in module %s]"),
14055 sect_offset_str (child_die->sect_off),
14056 objfile_name (objfile));
14057 continue;
14058 }
14059 parameter->u.param_cu_off
14060 = (cu_offset) (sect_off - cu->header.sect_off);
14061 }
14062 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14063 {
14064 complaint (_("No DW_FORM_block* DW_AT_location for "
14065 "DW_TAG_call_site child DIE %s [in module %s]"),
14066 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14067 continue;
14068 }
14069 else
14070 {
14071 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14072 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14073 if (parameter->u.dwarf_reg != -1)
14074 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14075 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14076 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14077 &parameter->u.fb_offset))
14078 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14079 else
14080 {
14081 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14082 "for DW_FORM_block* DW_AT_location is supported for "
14083 "DW_TAG_call_site child DIE %s "
14084 "[in module %s]"),
14085 sect_offset_str (child_die->sect_off),
14086 objfile_name (objfile));
14087 continue;
14088 }
14089 }
14090
14091 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14092 if (attr == NULL)
14093 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14094 if (!attr_form_is_block (attr))
14095 {
14096 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14097 "DW_TAG_call_site child DIE %s [in module %s]"),
14098 sect_offset_str (child_die->sect_off),
14099 objfile_name (objfile));
14100 continue;
14101 }
14102 parameter->value = DW_BLOCK (attr)->data;
14103 parameter->value_size = DW_BLOCK (attr)->size;
14104
14105 /* Parameters are not pre-cleared by memset above. */
14106 parameter->data_value = NULL;
14107 parameter->data_value_size = 0;
14108 call_site->parameter_count++;
14109
14110 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14111 if (attr == NULL)
14112 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14113 if (attr)
14114 {
14115 if (!attr_form_is_block (attr))
14116 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14117 "DW_TAG_call_site child DIE %s [in module %s]"),
14118 sect_offset_str (child_die->sect_off),
14119 objfile_name (objfile));
14120 else
14121 {
14122 parameter->data_value = DW_BLOCK (attr)->data;
14123 parameter->data_value_size = DW_BLOCK (attr)->size;
14124 }
14125 }
14126 }
14127 }
14128
14129 /* Helper function for read_variable. If DIE represents a virtual
14130 table, then return the type of the concrete object that is
14131 associated with the virtual table. Otherwise, return NULL. */
14132
14133 static struct type *
14134 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14135 {
14136 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14137 if (attr == NULL)
14138 return NULL;
14139
14140 /* Find the type DIE. */
14141 struct die_info *type_die = NULL;
14142 struct dwarf2_cu *type_cu = cu;
14143
14144 if (attr_form_is_ref (attr))
14145 type_die = follow_die_ref (die, attr, &type_cu);
14146 if (type_die == NULL)
14147 return NULL;
14148
14149 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14150 return NULL;
14151 return die_containing_type (type_die, type_cu);
14152 }
14153
14154 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14155
14156 static void
14157 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14158 {
14159 struct rust_vtable_symbol *storage = NULL;
14160
14161 if (cu->language == language_rust)
14162 {
14163 struct type *containing_type = rust_containing_type (die, cu);
14164
14165 if (containing_type != NULL)
14166 {
14167 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14168
14169 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14170 struct rust_vtable_symbol);
14171 initialize_objfile_symbol (storage);
14172 storage->concrete_type = containing_type;
14173 storage->subclass = SYMBOL_RUST_VTABLE;
14174 }
14175 }
14176
14177 new_symbol (die, NULL, cu, storage);
14178 }
14179
14180 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14181 reading .debug_rnglists.
14182 Callback's type should be:
14183 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14184 Return true if the attributes are present and valid, otherwise,
14185 return false. */
14186
14187 template <typename Callback>
14188 static bool
14189 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14190 Callback &&callback)
14191 {
14192 struct dwarf2_per_objfile *dwarf2_per_objfile
14193 = cu->per_cu->dwarf2_per_objfile;
14194 struct objfile *objfile = dwarf2_per_objfile->objfile;
14195 bfd *obfd = objfile->obfd;
14196 /* Base address selection entry. */
14197 CORE_ADDR base;
14198 int found_base;
14199 const gdb_byte *buffer;
14200 CORE_ADDR baseaddr;
14201 bool overflow = false;
14202
14203 found_base = cu->base_known;
14204 base = cu->base_address;
14205
14206 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14207 if (offset >= dwarf2_per_objfile->rnglists.size)
14208 {
14209 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14210 offset);
14211 return false;
14212 }
14213 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14214
14215 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14216
14217 while (1)
14218 {
14219 /* Initialize it due to a false compiler warning. */
14220 CORE_ADDR range_beginning = 0, range_end = 0;
14221 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14222 + dwarf2_per_objfile->rnglists.size);
14223 unsigned int bytes_read;
14224
14225 if (buffer == buf_end)
14226 {
14227 overflow = true;
14228 break;
14229 }
14230 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14231 switch (rlet)
14232 {
14233 case DW_RLE_end_of_list:
14234 break;
14235 case DW_RLE_base_address:
14236 if (buffer + cu->header.addr_size > buf_end)
14237 {
14238 overflow = true;
14239 break;
14240 }
14241 base = read_address (obfd, buffer, cu, &bytes_read);
14242 found_base = 1;
14243 buffer += bytes_read;
14244 break;
14245 case DW_RLE_start_length:
14246 if (buffer + cu->header.addr_size > buf_end)
14247 {
14248 overflow = true;
14249 break;
14250 }
14251 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14252 buffer += bytes_read;
14253 range_end = (range_beginning
14254 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14255 buffer += bytes_read;
14256 if (buffer > buf_end)
14257 {
14258 overflow = true;
14259 break;
14260 }
14261 break;
14262 case DW_RLE_offset_pair:
14263 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14264 buffer += bytes_read;
14265 if (buffer > buf_end)
14266 {
14267 overflow = true;
14268 break;
14269 }
14270 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14271 buffer += bytes_read;
14272 if (buffer > buf_end)
14273 {
14274 overflow = true;
14275 break;
14276 }
14277 break;
14278 case DW_RLE_start_end:
14279 if (buffer + 2 * cu->header.addr_size > buf_end)
14280 {
14281 overflow = true;
14282 break;
14283 }
14284 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14285 buffer += bytes_read;
14286 range_end = read_address (obfd, buffer, cu, &bytes_read);
14287 buffer += bytes_read;
14288 break;
14289 default:
14290 complaint (_("Invalid .debug_rnglists data (no base address)"));
14291 return false;
14292 }
14293 if (rlet == DW_RLE_end_of_list || overflow)
14294 break;
14295 if (rlet == DW_RLE_base_address)
14296 continue;
14297
14298 if (!found_base)
14299 {
14300 /* We have no valid base address for the ranges
14301 data. */
14302 complaint (_("Invalid .debug_rnglists data (no base address)"));
14303 return false;
14304 }
14305
14306 if (range_beginning > range_end)
14307 {
14308 /* Inverted range entries are invalid. */
14309 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14310 return false;
14311 }
14312
14313 /* Empty range entries have no effect. */
14314 if (range_beginning == range_end)
14315 continue;
14316
14317 range_beginning += base;
14318 range_end += base;
14319
14320 /* A not-uncommon case of bad debug info.
14321 Don't pollute the addrmap with bad data. */
14322 if (range_beginning + baseaddr == 0
14323 && !dwarf2_per_objfile->has_section_at_zero)
14324 {
14325 complaint (_(".debug_rnglists entry has start address of zero"
14326 " [in module %s]"), objfile_name (objfile));
14327 continue;
14328 }
14329
14330 callback (range_beginning, range_end);
14331 }
14332
14333 if (overflow)
14334 {
14335 complaint (_("Offset %d is not terminated "
14336 "for DW_AT_ranges attribute"),
14337 offset);
14338 return false;
14339 }
14340
14341 return true;
14342 }
14343
14344 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14345 Callback's type should be:
14346 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14347 Return 1 if the attributes are present and valid, otherwise, return 0. */
14348
14349 template <typename Callback>
14350 static int
14351 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14352 Callback &&callback)
14353 {
14354 struct dwarf2_per_objfile *dwarf2_per_objfile
14355 = cu->per_cu->dwarf2_per_objfile;
14356 struct objfile *objfile = dwarf2_per_objfile->objfile;
14357 struct comp_unit_head *cu_header = &cu->header;
14358 bfd *obfd = objfile->obfd;
14359 unsigned int addr_size = cu_header->addr_size;
14360 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14361 /* Base address selection entry. */
14362 CORE_ADDR base;
14363 int found_base;
14364 unsigned int dummy;
14365 const gdb_byte *buffer;
14366 CORE_ADDR baseaddr;
14367
14368 if (cu_header->version >= 5)
14369 return dwarf2_rnglists_process (offset, cu, callback);
14370
14371 found_base = cu->base_known;
14372 base = cu->base_address;
14373
14374 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14375 if (offset >= dwarf2_per_objfile->ranges.size)
14376 {
14377 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14378 offset);
14379 return 0;
14380 }
14381 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14382
14383 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14384
14385 while (1)
14386 {
14387 CORE_ADDR range_beginning, range_end;
14388
14389 range_beginning = read_address (obfd, buffer, cu, &dummy);
14390 buffer += addr_size;
14391 range_end = read_address (obfd, buffer, cu, &dummy);
14392 buffer += addr_size;
14393 offset += 2 * addr_size;
14394
14395 /* An end of list marker is a pair of zero addresses. */
14396 if (range_beginning == 0 && range_end == 0)
14397 /* Found the end of list entry. */
14398 break;
14399
14400 /* Each base address selection entry is a pair of 2 values.
14401 The first is the largest possible address, the second is
14402 the base address. Check for a base address here. */
14403 if ((range_beginning & mask) == mask)
14404 {
14405 /* If we found the largest possible address, then we already
14406 have the base address in range_end. */
14407 base = range_end;
14408 found_base = 1;
14409 continue;
14410 }
14411
14412 if (!found_base)
14413 {
14414 /* We have no valid base address for the ranges
14415 data. */
14416 complaint (_("Invalid .debug_ranges data (no base address)"));
14417 return 0;
14418 }
14419
14420 if (range_beginning > range_end)
14421 {
14422 /* Inverted range entries are invalid. */
14423 complaint (_("Invalid .debug_ranges data (inverted range)"));
14424 return 0;
14425 }
14426
14427 /* Empty range entries have no effect. */
14428 if (range_beginning == range_end)
14429 continue;
14430
14431 range_beginning += base;
14432 range_end += base;
14433
14434 /* A not-uncommon case of bad debug info.
14435 Don't pollute the addrmap with bad data. */
14436 if (range_beginning + baseaddr == 0
14437 && !dwarf2_per_objfile->has_section_at_zero)
14438 {
14439 complaint (_(".debug_ranges entry has start address of zero"
14440 " [in module %s]"), objfile_name (objfile));
14441 continue;
14442 }
14443
14444 callback (range_beginning, range_end);
14445 }
14446
14447 return 1;
14448 }
14449
14450 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14451 Return 1 if the attributes are present and valid, otherwise, return 0.
14452 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14453
14454 static int
14455 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14456 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14457 struct partial_symtab *ranges_pst)
14458 {
14459 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14460 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14461 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14462 SECT_OFF_TEXT (objfile));
14463 int low_set = 0;
14464 CORE_ADDR low = 0;
14465 CORE_ADDR high = 0;
14466 int retval;
14467
14468 retval = dwarf2_ranges_process (offset, cu,
14469 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14470 {
14471 if (ranges_pst != NULL)
14472 {
14473 CORE_ADDR lowpc;
14474 CORE_ADDR highpc;
14475
14476 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14477 range_beginning + baseaddr);
14478 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14479 range_end + baseaddr);
14480 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14481 ranges_pst);
14482 }
14483
14484 /* FIXME: This is recording everything as a low-high
14485 segment of consecutive addresses. We should have a
14486 data structure for discontiguous block ranges
14487 instead. */
14488 if (! low_set)
14489 {
14490 low = range_beginning;
14491 high = range_end;
14492 low_set = 1;
14493 }
14494 else
14495 {
14496 if (range_beginning < low)
14497 low = range_beginning;
14498 if (range_end > high)
14499 high = range_end;
14500 }
14501 });
14502 if (!retval)
14503 return 0;
14504
14505 if (! low_set)
14506 /* If the first entry is an end-of-list marker, the range
14507 describes an empty scope, i.e. no instructions. */
14508 return 0;
14509
14510 if (low_return)
14511 *low_return = low;
14512 if (high_return)
14513 *high_return = high;
14514 return 1;
14515 }
14516
14517 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14518 definition for the return value. *LOWPC and *HIGHPC are set iff
14519 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14520
14521 static enum pc_bounds_kind
14522 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14523 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14524 struct partial_symtab *pst)
14525 {
14526 struct dwarf2_per_objfile *dwarf2_per_objfile
14527 = cu->per_cu->dwarf2_per_objfile;
14528 struct attribute *attr;
14529 struct attribute *attr_high;
14530 CORE_ADDR low = 0;
14531 CORE_ADDR high = 0;
14532 enum pc_bounds_kind ret;
14533
14534 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14535 if (attr_high)
14536 {
14537 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14538 if (attr)
14539 {
14540 low = attr_value_as_address (attr);
14541 high = attr_value_as_address (attr_high);
14542 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14543 high += low;
14544 }
14545 else
14546 /* Found high w/o low attribute. */
14547 return PC_BOUNDS_INVALID;
14548
14549 /* Found consecutive range of addresses. */
14550 ret = PC_BOUNDS_HIGH_LOW;
14551 }
14552 else
14553 {
14554 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14555 if (attr != NULL)
14556 {
14557 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14558 We take advantage of the fact that DW_AT_ranges does not appear
14559 in DW_TAG_compile_unit of DWO files. */
14560 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14561 unsigned int ranges_offset = (DW_UNSND (attr)
14562 + (need_ranges_base
14563 ? cu->ranges_base
14564 : 0));
14565
14566 /* Value of the DW_AT_ranges attribute is the offset in the
14567 .debug_ranges section. */
14568 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14569 return PC_BOUNDS_INVALID;
14570 /* Found discontinuous range of addresses. */
14571 ret = PC_BOUNDS_RANGES;
14572 }
14573 else
14574 return PC_BOUNDS_NOT_PRESENT;
14575 }
14576
14577 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14578 if (high <= low)
14579 return PC_BOUNDS_INVALID;
14580
14581 /* When using the GNU linker, .gnu.linkonce. sections are used to
14582 eliminate duplicate copies of functions and vtables and such.
14583 The linker will arbitrarily choose one and discard the others.
14584 The AT_*_pc values for such functions refer to local labels in
14585 these sections. If the section from that file was discarded, the
14586 labels are not in the output, so the relocs get a value of 0.
14587 If this is a discarded function, mark the pc bounds as invalid,
14588 so that GDB will ignore it. */
14589 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14590 return PC_BOUNDS_INVALID;
14591
14592 *lowpc = low;
14593 if (highpc)
14594 *highpc = high;
14595 return ret;
14596 }
14597
14598 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14599 its low and high PC addresses. Do nothing if these addresses could not
14600 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14601 and HIGHPC to the high address if greater than HIGHPC. */
14602
14603 static void
14604 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14605 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14606 struct dwarf2_cu *cu)
14607 {
14608 CORE_ADDR low, high;
14609 struct die_info *child = die->child;
14610
14611 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14612 {
14613 *lowpc = std::min (*lowpc, low);
14614 *highpc = std::max (*highpc, high);
14615 }
14616
14617 /* If the language does not allow nested subprograms (either inside
14618 subprograms or lexical blocks), we're done. */
14619 if (cu->language != language_ada)
14620 return;
14621
14622 /* Check all the children of the given DIE. If it contains nested
14623 subprograms, then check their pc bounds. Likewise, we need to
14624 check lexical blocks as well, as they may also contain subprogram
14625 definitions. */
14626 while (child && child->tag)
14627 {
14628 if (child->tag == DW_TAG_subprogram
14629 || child->tag == DW_TAG_lexical_block)
14630 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14631 child = sibling_die (child);
14632 }
14633 }
14634
14635 /* Get the low and high pc's represented by the scope DIE, and store
14636 them in *LOWPC and *HIGHPC. If the correct values can't be
14637 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14638
14639 static void
14640 get_scope_pc_bounds (struct die_info *die,
14641 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14642 struct dwarf2_cu *cu)
14643 {
14644 CORE_ADDR best_low = (CORE_ADDR) -1;
14645 CORE_ADDR best_high = (CORE_ADDR) 0;
14646 CORE_ADDR current_low, current_high;
14647
14648 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14649 >= PC_BOUNDS_RANGES)
14650 {
14651 best_low = current_low;
14652 best_high = current_high;
14653 }
14654 else
14655 {
14656 struct die_info *child = die->child;
14657
14658 while (child && child->tag)
14659 {
14660 switch (child->tag) {
14661 case DW_TAG_subprogram:
14662 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14663 break;
14664 case DW_TAG_namespace:
14665 case DW_TAG_module:
14666 /* FIXME: carlton/2004-01-16: Should we do this for
14667 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14668 that current GCC's always emit the DIEs corresponding
14669 to definitions of methods of classes as children of a
14670 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14671 the DIEs giving the declarations, which could be
14672 anywhere). But I don't see any reason why the
14673 standards says that they have to be there. */
14674 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14675
14676 if (current_low != ((CORE_ADDR) -1))
14677 {
14678 best_low = std::min (best_low, current_low);
14679 best_high = std::max (best_high, current_high);
14680 }
14681 break;
14682 default:
14683 /* Ignore. */
14684 break;
14685 }
14686
14687 child = sibling_die (child);
14688 }
14689 }
14690
14691 *lowpc = best_low;
14692 *highpc = best_high;
14693 }
14694
14695 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14696 in DIE. */
14697
14698 static void
14699 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14700 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14701 {
14702 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14703 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14704 struct attribute *attr;
14705 struct attribute *attr_high;
14706
14707 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14708 if (attr_high)
14709 {
14710 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14711 if (attr)
14712 {
14713 CORE_ADDR low = attr_value_as_address (attr);
14714 CORE_ADDR high = attr_value_as_address (attr_high);
14715
14716 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14717 high += low;
14718
14719 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14720 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14721 cu->builder->record_block_range (block, low, high - 1);
14722 }
14723 }
14724
14725 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14726 if (attr)
14727 {
14728 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14729 We take advantage of the fact that DW_AT_ranges does not appear
14730 in DW_TAG_compile_unit of DWO files. */
14731 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14732
14733 /* The value of the DW_AT_ranges attribute is the offset of the
14734 address range list in the .debug_ranges section. */
14735 unsigned long offset = (DW_UNSND (attr)
14736 + (need_ranges_base ? cu->ranges_base : 0));
14737
14738 dwarf2_ranges_process (offset, cu,
14739 [&] (CORE_ADDR start, CORE_ADDR end)
14740 {
14741 start += baseaddr;
14742 end += baseaddr;
14743 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14744 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14745 cu->builder->record_block_range (block, start, end - 1);
14746 });
14747 }
14748 }
14749
14750 /* Check whether the producer field indicates either of GCC < 4.6, or the
14751 Intel C/C++ compiler, and cache the result in CU. */
14752
14753 static void
14754 check_producer (struct dwarf2_cu *cu)
14755 {
14756 int major, minor;
14757
14758 if (cu->producer == NULL)
14759 {
14760 /* For unknown compilers expect their behavior is DWARF version
14761 compliant.
14762
14763 GCC started to support .debug_types sections by -gdwarf-4 since
14764 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14765 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14766 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14767 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14768 }
14769 else if (producer_is_gcc (cu->producer, &major, &minor))
14770 {
14771 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14772 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14773 }
14774 else if (producer_is_icc (cu->producer, &major, &minor))
14775 cu->producer_is_icc_lt_14 = major < 14;
14776 else
14777 {
14778 /* For other non-GCC compilers, expect their behavior is DWARF version
14779 compliant. */
14780 }
14781
14782 cu->checked_producer = 1;
14783 }
14784
14785 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14786 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14787 during 4.6.0 experimental. */
14788
14789 static int
14790 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14791 {
14792 if (!cu->checked_producer)
14793 check_producer (cu);
14794
14795 return cu->producer_is_gxx_lt_4_6;
14796 }
14797
14798 /* Return the default accessibility type if it is not overriden by
14799 DW_AT_accessibility. */
14800
14801 static enum dwarf_access_attribute
14802 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14803 {
14804 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14805 {
14806 /* The default DWARF 2 accessibility for members is public, the default
14807 accessibility for inheritance is private. */
14808
14809 if (die->tag != DW_TAG_inheritance)
14810 return DW_ACCESS_public;
14811 else
14812 return DW_ACCESS_private;
14813 }
14814 else
14815 {
14816 /* DWARF 3+ defines the default accessibility a different way. The same
14817 rules apply now for DW_TAG_inheritance as for the members and it only
14818 depends on the container kind. */
14819
14820 if (die->parent->tag == DW_TAG_class_type)
14821 return DW_ACCESS_private;
14822 else
14823 return DW_ACCESS_public;
14824 }
14825 }
14826
14827 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14828 offset. If the attribute was not found return 0, otherwise return
14829 1. If it was found but could not properly be handled, set *OFFSET
14830 to 0. */
14831
14832 static int
14833 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14834 LONGEST *offset)
14835 {
14836 struct attribute *attr;
14837
14838 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14839 if (attr != NULL)
14840 {
14841 *offset = 0;
14842
14843 /* Note that we do not check for a section offset first here.
14844 This is because DW_AT_data_member_location is new in DWARF 4,
14845 so if we see it, we can assume that a constant form is really
14846 a constant and not a section offset. */
14847 if (attr_form_is_constant (attr))
14848 *offset = dwarf2_get_attr_constant_value (attr, 0);
14849 else if (attr_form_is_section_offset (attr))
14850 dwarf2_complex_location_expr_complaint ();
14851 else if (attr_form_is_block (attr))
14852 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14853 else
14854 dwarf2_complex_location_expr_complaint ();
14855
14856 return 1;
14857 }
14858
14859 return 0;
14860 }
14861
14862 /* Add an aggregate field to the field list. */
14863
14864 static void
14865 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14866 struct dwarf2_cu *cu)
14867 {
14868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14870 struct nextfield *new_field;
14871 struct attribute *attr;
14872 struct field *fp;
14873 const char *fieldname = "";
14874
14875 if (die->tag == DW_TAG_inheritance)
14876 {
14877 fip->baseclasses.emplace_back ();
14878 new_field = &fip->baseclasses.back ();
14879 }
14880 else
14881 {
14882 fip->fields.emplace_back ();
14883 new_field = &fip->fields.back ();
14884 }
14885
14886 fip->nfields++;
14887
14888 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14889 if (attr)
14890 new_field->accessibility = DW_UNSND (attr);
14891 else
14892 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14893 if (new_field->accessibility != DW_ACCESS_public)
14894 fip->non_public_fields = 1;
14895
14896 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14897 if (attr)
14898 new_field->virtuality = DW_UNSND (attr);
14899 else
14900 new_field->virtuality = DW_VIRTUALITY_none;
14901
14902 fp = &new_field->field;
14903
14904 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14905 {
14906 LONGEST offset;
14907
14908 /* Data member other than a C++ static data member. */
14909
14910 /* Get type of field. */
14911 fp->type = die_type (die, cu);
14912
14913 SET_FIELD_BITPOS (*fp, 0);
14914
14915 /* Get bit size of field (zero if none). */
14916 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14917 if (attr)
14918 {
14919 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14920 }
14921 else
14922 {
14923 FIELD_BITSIZE (*fp) = 0;
14924 }
14925
14926 /* Get bit offset of field. */
14927 if (handle_data_member_location (die, cu, &offset))
14928 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14929 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14930 if (attr)
14931 {
14932 if (gdbarch_bits_big_endian (gdbarch))
14933 {
14934 /* For big endian bits, the DW_AT_bit_offset gives the
14935 additional bit offset from the MSB of the containing
14936 anonymous object to the MSB of the field. We don't
14937 have to do anything special since we don't need to
14938 know the size of the anonymous object. */
14939 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14940 }
14941 else
14942 {
14943 /* For little endian bits, compute the bit offset to the
14944 MSB of the anonymous object, subtract off the number of
14945 bits from the MSB of the field to the MSB of the
14946 object, and then subtract off the number of bits of
14947 the field itself. The result is the bit offset of
14948 the LSB of the field. */
14949 int anonymous_size;
14950 int bit_offset = DW_UNSND (attr);
14951
14952 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14953 if (attr)
14954 {
14955 /* The size of the anonymous object containing
14956 the bit field is explicit, so use the
14957 indicated size (in bytes). */
14958 anonymous_size = DW_UNSND (attr);
14959 }
14960 else
14961 {
14962 /* The size of the anonymous object containing
14963 the bit field must be inferred from the type
14964 attribute of the data member containing the
14965 bit field. */
14966 anonymous_size = TYPE_LENGTH (fp->type);
14967 }
14968 SET_FIELD_BITPOS (*fp,
14969 (FIELD_BITPOS (*fp)
14970 + anonymous_size * bits_per_byte
14971 - bit_offset - FIELD_BITSIZE (*fp)));
14972 }
14973 }
14974 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14975 if (attr != NULL)
14976 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14977 + dwarf2_get_attr_constant_value (attr, 0)));
14978
14979 /* Get name of field. */
14980 fieldname = dwarf2_name (die, cu);
14981 if (fieldname == NULL)
14982 fieldname = "";
14983
14984 /* The name is already allocated along with this objfile, so we don't
14985 need to duplicate it for the type. */
14986 fp->name = fieldname;
14987
14988 /* Change accessibility for artificial fields (e.g. virtual table
14989 pointer or virtual base class pointer) to private. */
14990 if (dwarf2_attr (die, DW_AT_artificial, cu))
14991 {
14992 FIELD_ARTIFICIAL (*fp) = 1;
14993 new_field->accessibility = DW_ACCESS_private;
14994 fip->non_public_fields = 1;
14995 }
14996 }
14997 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14998 {
14999 /* C++ static member. */
15000
15001 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15002 is a declaration, but all versions of G++ as of this writing
15003 (so through at least 3.2.1) incorrectly generate
15004 DW_TAG_variable tags. */
15005
15006 const char *physname;
15007
15008 /* Get name of field. */
15009 fieldname = dwarf2_name (die, cu);
15010 if (fieldname == NULL)
15011 return;
15012
15013 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15014 if (attr
15015 /* Only create a symbol if this is an external value.
15016 new_symbol checks this and puts the value in the global symbol
15017 table, which we want. If it is not external, new_symbol
15018 will try to put the value in cu->list_in_scope which is wrong. */
15019 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15020 {
15021 /* A static const member, not much different than an enum as far as
15022 we're concerned, except that we can support more types. */
15023 new_symbol (die, NULL, cu);
15024 }
15025
15026 /* Get physical name. */
15027 physname = dwarf2_physname (fieldname, die, cu);
15028
15029 /* The name is already allocated along with this objfile, so we don't
15030 need to duplicate it for the type. */
15031 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15032 FIELD_TYPE (*fp) = die_type (die, cu);
15033 FIELD_NAME (*fp) = fieldname;
15034 }
15035 else if (die->tag == DW_TAG_inheritance)
15036 {
15037 LONGEST offset;
15038
15039 /* C++ base class field. */
15040 if (handle_data_member_location (die, cu, &offset))
15041 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15042 FIELD_BITSIZE (*fp) = 0;
15043 FIELD_TYPE (*fp) = die_type (die, cu);
15044 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15045 }
15046 else if (die->tag == DW_TAG_variant_part)
15047 {
15048 /* process_structure_scope will treat this DIE as a union. */
15049 process_structure_scope (die, cu);
15050
15051 /* The variant part is relative to the start of the enclosing
15052 structure. */
15053 SET_FIELD_BITPOS (*fp, 0);
15054 fp->type = get_die_type (die, cu);
15055 fp->artificial = 1;
15056 fp->name = "<<variant>>";
15057 }
15058 else
15059 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15060 }
15061
15062 /* Can the type given by DIE define another type? */
15063
15064 static bool
15065 type_can_define_types (const struct die_info *die)
15066 {
15067 switch (die->tag)
15068 {
15069 case DW_TAG_typedef:
15070 case DW_TAG_class_type:
15071 case DW_TAG_structure_type:
15072 case DW_TAG_union_type:
15073 case DW_TAG_enumeration_type:
15074 return true;
15075
15076 default:
15077 return false;
15078 }
15079 }
15080
15081 /* Add a type definition defined in the scope of the FIP's class. */
15082
15083 static void
15084 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15085 struct dwarf2_cu *cu)
15086 {
15087 struct decl_field fp;
15088 memset (&fp, 0, sizeof (fp));
15089
15090 gdb_assert (type_can_define_types (die));
15091
15092 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15093 fp.name = dwarf2_name (die, cu);
15094 fp.type = read_type_die (die, cu);
15095
15096 /* Save accessibility. */
15097 enum dwarf_access_attribute accessibility;
15098 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15099 if (attr != NULL)
15100 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15101 else
15102 accessibility = dwarf2_default_access_attribute (die, cu);
15103 switch (accessibility)
15104 {
15105 case DW_ACCESS_public:
15106 /* The assumed value if neither private nor protected. */
15107 break;
15108 case DW_ACCESS_private:
15109 fp.is_private = 1;
15110 break;
15111 case DW_ACCESS_protected:
15112 fp.is_protected = 1;
15113 break;
15114 default:
15115 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15116 }
15117
15118 if (die->tag == DW_TAG_typedef)
15119 fip->typedef_field_list.push_back (fp);
15120 else
15121 fip->nested_types_list.push_back (fp);
15122 }
15123
15124 /* Create the vector of fields, and attach it to the type. */
15125
15126 static void
15127 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15128 struct dwarf2_cu *cu)
15129 {
15130 int nfields = fip->nfields;
15131
15132 /* Record the field count, allocate space for the array of fields,
15133 and create blank accessibility bitfields if necessary. */
15134 TYPE_NFIELDS (type) = nfields;
15135 TYPE_FIELDS (type) = (struct field *)
15136 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15137
15138 if (fip->non_public_fields && cu->language != language_ada)
15139 {
15140 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15141
15142 TYPE_FIELD_PRIVATE_BITS (type) =
15143 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15144 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15145
15146 TYPE_FIELD_PROTECTED_BITS (type) =
15147 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15148 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15149
15150 TYPE_FIELD_IGNORE_BITS (type) =
15151 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15152 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15153 }
15154
15155 /* If the type has baseclasses, allocate and clear a bit vector for
15156 TYPE_FIELD_VIRTUAL_BITS. */
15157 if (!fip->baseclasses.empty () && cu->language != language_ada)
15158 {
15159 int num_bytes = B_BYTES (fip->baseclasses.size ());
15160 unsigned char *pointer;
15161
15162 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15163 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15164 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15165 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15166 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15167 }
15168
15169 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15170 {
15171 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15172
15173 for (int index = 0; index < nfields; ++index)
15174 {
15175 struct nextfield &field = fip->fields[index];
15176
15177 if (field.variant.is_discriminant)
15178 di->discriminant_index = index;
15179 else if (field.variant.default_branch)
15180 di->default_index = index;
15181 else
15182 di->discriminants[index] = field.variant.discriminant_value;
15183 }
15184 }
15185
15186 /* Copy the saved-up fields into the field vector. */
15187 for (int i = 0; i < nfields; ++i)
15188 {
15189 struct nextfield &field
15190 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15191 : fip->fields[i - fip->baseclasses.size ()]);
15192
15193 TYPE_FIELD (type, i) = field.field;
15194 switch (field.accessibility)
15195 {
15196 case DW_ACCESS_private:
15197 if (cu->language != language_ada)
15198 SET_TYPE_FIELD_PRIVATE (type, i);
15199 break;
15200
15201 case DW_ACCESS_protected:
15202 if (cu->language != language_ada)
15203 SET_TYPE_FIELD_PROTECTED (type, i);
15204 break;
15205
15206 case DW_ACCESS_public:
15207 break;
15208
15209 default:
15210 /* Unknown accessibility. Complain and treat it as public. */
15211 {
15212 complaint (_("unsupported accessibility %d"),
15213 field.accessibility);
15214 }
15215 break;
15216 }
15217 if (i < fip->baseclasses.size ())
15218 {
15219 switch (field.virtuality)
15220 {
15221 case DW_VIRTUALITY_virtual:
15222 case DW_VIRTUALITY_pure_virtual:
15223 if (cu->language == language_ada)
15224 error (_("unexpected virtuality in component of Ada type"));
15225 SET_TYPE_FIELD_VIRTUAL (type, i);
15226 break;
15227 }
15228 }
15229 }
15230 }
15231
15232 /* Return true if this member function is a constructor, false
15233 otherwise. */
15234
15235 static int
15236 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15237 {
15238 const char *fieldname;
15239 const char *type_name;
15240 int len;
15241
15242 if (die->parent == NULL)
15243 return 0;
15244
15245 if (die->parent->tag != DW_TAG_structure_type
15246 && die->parent->tag != DW_TAG_union_type
15247 && die->parent->tag != DW_TAG_class_type)
15248 return 0;
15249
15250 fieldname = dwarf2_name (die, cu);
15251 type_name = dwarf2_name (die->parent, cu);
15252 if (fieldname == NULL || type_name == NULL)
15253 return 0;
15254
15255 len = strlen (fieldname);
15256 return (strncmp (fieldname, type_name, len) == 0
15257 && (type_name[len] == '\0' || type_name[len] == '<'));
15258 }
15259
15260 /* Add a member function to the proper fieldlist. */
15261
15262 static void
15263 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15264 struct type *type, struct dwarf2_cu *cu)
15265 {
15266 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15267 struct attribute *attr;
15268 int i;
15269 struct fnfieldlist *flp = nullptr;
15270 struct fn_field *fnp;
15271 const char *fieldname;
15272 struct type *this_type;
15273 enum dwarf_access_attribute accessibility;
15274
15275 if (cu->language == language_ada)
15276 error (_("unexpected member function in Ada type"));
15277
15278 /* Get name of member function. */
15279 fieldname = dwarf2_name (die, cu);
15280 if (fieldname == NULL)
15281 return;
15282
15283 /* Look up member function name in fieldlist. */
15284 for (i = 0; i < fip->fnfieldlists.size (); i++)
15285 {
15286 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15287 {
15288 flp = &fip->fnfieldlists[i];
15289 break;
15290 }
15291 }
15292
15293 /* Create a new fnfieldlist if necessary. */
15294 if (flp == nullptr)
15295 {
15296 fip->fnfieldlists.emplace_back ();
15297 flp = &fip->fnfieldlists.back ();
15298 flp->name = fieldname;
15299 i = fip->fnfieldlists.size () - 1;
15300 }
15301
15302 /* Create a new member function field and add it to the vector of
15303 fnfieldlists. */
15304 flp->fnfields.emplace_back ();
15305 fnp = &flp->fnfields.back ();
15306
15307 /* Delay processing of the physname until later. */
15308 if (cu->language == language_cplus)
15309 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15310 die, cu);
15311 else
15312 {
15313 const char *physname = dwarf2_physname (fieldname, die, cu);
15314 fnp->physname = physname ? physname : "";
15315 }
15316
15317 fnp->type = alloc_type (objfile);
15318 this_type = read_type_die (die, cu);
15319 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15320 {
15321 int nparams = TYPE_NFIELDS (this_type);
15322
15323 /* TYPE is the domain of this method, and THIS_TYPE is the type
15324 of the method itself (TYPE_CODE_METHOD). */
15325 smash_to_method_type (fnp->type, type,
15326 TYPE_TARGET_TYPE (this_type),
15327 TYPE_FIELDS (this_type),
15328 TYPE_NFIELDS (this_type),
15329 TYPE_VARARGS (this_type));
15330
15331 /* Handle static member functions.
15332 Dwarf2 has no clean way to discern C++ static and non-static
15333 member functions. G++ helps GDB by marking the first
15334 parameter for non-static member functions (which is the this
15335 pointer) as artificial. We obtain this information from
15336 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15337 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15338 fnp->voffset = VOFFSET_STATIC;
15339 }
15340 else
15341 complaint (_("member function type missing for '%s'"),
15342 dwarf2_full_name (fieldname, die, cu));
15343
15344 /* Get fcontext from DW_AT_containing_type if present. */
15345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15346 fnp->fcontext = die_containing_type (die, cu);
15347
15348 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15349 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15350
15351 /* Get accessibility. */
15352 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15353 if (attr)
15354 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15355 else
15356 accessibility = dwarf2_default_access_attribute (die, cu);
15357 switch (accessibility)
15358 {
15359 case DW_ACCESS_private:
15360 fnp->is_private = 1;
15361 break;
15362 case DW_ACCESS_protected:
15363 fnp->is_protected = 1;
15364 break;
15365 }
15366
15367 /* Check for artificial methods. */
15368 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15369 if (attr && DW_UNSND (attr) != 0)
15370 fnp->is_artificial = 1;
15371
15372 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15373
15374 /* Get index in virtual function table if it is a virtual member
15375 function. For older versions of GCC, this is an offset in the
15376 appropriate virtual table, as specified by DW_AT_containing_type.
15377 For everyone else, it is an expression to be evaluated relative
15378 to the object address. */
15379
15380 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15381 if (attr)
15382 {
15383 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15384 {
15385 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15386 {
15387 /* Old-style GCC. */
15388 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15389 }
15390 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15391 || (DW_BLOCK (attr)->size > 1
15392 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15393 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15394 {
15395 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15396 if ((fnp->voffset % cu->header.addr_size) != 0)
15397 dwarf2_complex_location_expr_complaint ();
15398 else
15399 fnp->voffset /= cu->header.addr_size;
15400 fnp->voffset += 2;
15401 }
15402 else
15403 dwarf2_complex_location_expr_complaint ();
15404
15405 if (!fnp->fcontext)
15406 {
15407 /* If there is no `this' field and no DW_AT_containing_type,
15408 we cannot actually find a base class context for the
15409 vtable! */
15410 if (TYPE_NFIELDS (this_type) == 0
15411 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15412 {
15413 complaint (_("cannot determine context for virtual member "
15414 "function \"%s\" (offset %s)"),
15415 fieldname, sect_offset_str (die->sect_off));
15416 }
15417 else
15418 {
15419 fnp->fcontext
15420 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15421 }
15422 }
15423 }
15424 else if (attr_form_is_section_offset (attr))
15425 {
15426 dwarf2_complex_location_expr_complaint ();
15427 }
15428 else
15429 {
15430 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15431 fieldname);
15432 }
15433 }
15434 else
15435 {
15436 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15437 if (attr && DW_UNSND (attr))
15438 {
15439 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15440 complaint (_("Member function \"%s\" (offset %s) is virtual "
15441 "but the vtable offset is not specified"),
15442 fieldname, sect_offset_str (die->sect_off));
15443 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15444 TYPE_CPLUS_DYNAMIC (type) = 1;
15445 }
15446 }
15447 }
15448
15449 /* Create the vector of member function fields, and attach it to the type. */
15450
15451 static void
15452 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15453 struct dwarf2_cu *cu)
15454 {
15455 if (cu->language == language_ada)
15456 error (_("unexpected member functions in Ada type"));
15457
15458 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15459 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15460 TYPE_ALLOC (type,
15461 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15462
15463 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15464 {
15465 struct fnfieldlist &nf = fip->fnfieldlists[i];
15466 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15467
15468 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15469 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15470 fn_flp->fn_fields = (struct fn_field *)
15471 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15472
15473 for (int k = 0; k < nf.fnfields.size (); ++k)
15474 fn_flp->fn_fields[k] = nf.fnfields[k];
15475 }
15476
15477 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15478 }
15479
15480 /* Returns non-zero if NAME is the name of a vtable member in CU's
15481 language, zero otherwise. */
15482 static int
15483 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15484 {
15485 static const char vptr[] = "_vptr";
15486
15487 /* Look for the C++ form of the vtable. */
15488 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15489 return 1;
15490
15491 return 0;
15492 }
15493
15494 /* GCC outputs unnamed structures that are really pointers to member
15495 functions, with the ABI-specified layout. If TYPE describes
15496 such a structure, smash it into a member function type.
15497
15498 GCC shouldn't do this; it should just output pointer to member DIEs.
15499 This is GCC PR debug/28767. */
15500
15501 static void
15502 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15503 {
15504 struct type *pfn_type, *self_type, *new_type;
15505
15506 /* Check for a structure with no name and two children. */
15507 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15508 return;
15509
15510 /* Check for __pfn and __delta members. */
15511 if (TYPE_FIELD_NAME (type, 0) == NULL
15512 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15513 || TYPE_FIELD_NAME (type, 1) == NULL
15514 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15515 return;
15516
15517 /* Find the type of the method. */
15518 pfn_type = TYPE_FIELD_TYPE (type, 0);
15519 if (pfn_type == NULL
15520 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15521 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15522 return;
15523
15524 /* Look for the "this" argument. */
15525 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15526 if (TYPE_NFIELDS (pfn_type) == 0
15527 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15528 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15529 return;
15530
15531 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15532 new_type = alloc_type (objfile);
15533 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15534 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15535 TYPE_VARARGS (pfn_type));
15536 smash_to_methodptr_type (type, new_type);
15537 }
15538
15539 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15540 appropriate error checking and issuing complaints if there is a
15541 problem. */
15542
15543 static ULONGEST
15544 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15545 {
15546 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15547
15548 if (attr == nullptr)
15549 return 0;
15550
15551 if (!attr_form_is_constant (attr))
15552 {
15553 complaint (_("DW_AT_alignment must have constant form"
15554 " - DIE at %s [in module %s]"),
15555 sect_offset_str (die->sect_off),
15556 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15557 return 0;
15558 }
15559
15560 ULONGEST align;
15561 if (attr->form == DW_FORM_sdata)
15562 {
15563 LONGEST val = DW_SND (attr);
15564 if (val < 0)
15565 {
15566 complaint (_("DW_AT_alignment value must not be negative"
15567 " - DIE at %s [in module %s]"),
15568 sect_offset_str (die->sect_off),
15569 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15570 return 0;
15571 }
15572 align = val;
15573 }
15574 else
15575 align = DW_UNSND (attr);
15576
15577 if (align == 0)
15578 {
15579 complaint (_("DW_AT_alignment value must not be zero"
15580 " - DIE at %s [in module %s]"),
15581 sect_offset_str (die->sect_off),
15582 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15583 return 0;
15584 }
15585 if ((align & (align - 1)) != 0)
15586 {
15587 complaint (_("DW_AT_alignment value must be a power of 2"
15588 " - DIE at %s [in module %s]"),
15589 sect_offset_str (die->sect_off),
15590 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15591 return 0;
15592 }
15593
15594 return align;
15595 }
15596
15597 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15598 the alignment for TYPE. */
15599
15600 static void
15601 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15602 struct type *type)
15603 {
15604 if (!set_type_align (type, get_alignment (cu, die)))
15605 complaint (_("DW_AT_alignment value too large"
15606 " - DIE at %s [in module %s]"),
15607 sect_offset_str (die->sect_off),
15608 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15609 }
15610
15611 /* Called when we find the DIE that starts a structure or union scope
15612 (definition) to create a type for the structure or union. Fill in
15613 the type's name and general properties; the members will not be
15614 processed until process_structure_scope. A symbol table entry for
15615 the type will also not be done until process_structure_scope (assuming
15616 the type has a name).
15617
15618 NOTE: we need to call these functions regardless of whether or not the
15619 DIE has a DW_AT_name attribute, since it might be an anonymous
15620 structure or union. This gets the type entered into our set of
15621 user defined types. */
15622
15623 static struct type *
15624 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15625 {
15626 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15627 struct type *type;
15628 struct attribute *attr;
15629 const char *name;
15630
15631 /* If the definition of this type lives in .debug_types, read that type.
15632 Don't follow DW_AT_specification though, that will take us back up
15633 the chain and we want to go down. */
15634 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15635 if (attr)
15636 {
15637 type = get_DW_AT_signature_type (die, attr, cu);
15638
15639 /* The type's CU may not be the same as CU.
15640 Ensure TYPE is recorded with CU in die_type_hash. */
15641 return set_die_type (die, type, cu);
15642 }
15643
15644 type = alloc_type (objfile);
15645 INIT_CPLUS_SPECIFIC (type);
15646
15647 name = dwarf2_name (die, cu);
15648 if (name != NULL)
15649 {
15650 if (cu->language == language_cplus
15651 || cu->language == language_d
15652 || cu->language == language_rust)
15653 {
15654 const char *full_name = dwarf2_full_name (name, die, cu);
15655
15656 /* dwarf2_full_name might have already finished building the DIE's
15657 type. If so, there is no need to continue. */
15658 if (get_die_type (die, cu) != NULL)
15659 return get_die_type (die, cu);
15660
15661 TYPE_NAME (type) = full_name;
15662 }
15663 else
15664 {
15665 /* The name is already allocated along with this objfile, so
15666 we don't need to duplicate it for the type. */
15667 TYPE_NAME (type) = name;
15668 }
15669 }
15670
15671 if (die->tag == DW_TAG_structure_type)
15672 {
15673 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15674 }
15675 else if (die->tag == DW_TAG_union_type)
15676 {
15677 TYPE_CODE (type) = TYPE_CODE_UNION;
15678 }
15679 else if (die->tag == DW_TAG_variant_part)
15680 {
15681 TYPE_CODE (type) = TYPE_CODE_UNION;
15682 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15683 }
15684 else
15685 {
15686 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15687 }
15688
15689 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15690 TYPE_DECLARED_CLASS (type) = 1;
15691
15692 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15693 if (attr)
15694 {
15695 if (attr_form_is_constant (attr))
15696 TYPE_LENGTH (type) = DW_UNSND (attr);
15697 else
15698 {
15699 /* For the moment, dynamic type sizes are not supported
15700 by GDB's struct type. The actual size is determined
15701 on-demand when resolving the type of a given object,
15702 so set the type's length to zero for now. Otherwise,
15703 we record an expression as the length, and that expression
15704 could lead to a very large value, which could eventually
15705 lead to us trying to allocate that much memory when creating
15706 a value of that type. */
15707 TYPE_LENGTH (type) = 0;
15708 }
15709 }
15710 else
15711 {
15712 TYPE_LENGTH (type) = 0;
15713 }
15714
15715 maybe_set_alignment (cu, die, type);
15716
15717 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15718 {
15719 /* ICC<14 does not output the required DW_AT_declaration on
15720 incomplete types, but gives them a size of zero. */
15721 TYPE_STUB (type) = 1;
15722 }
15723 else
15724 TYPE_STUB_SUPPORTED (type) = 1;
15725
15726 if (die_is_declaration (die, cu))
15727 TYPE_STUB (type) = 1;
15728 else if (attr == NULL && die->child == NULL
15729 && producer_is_realview (cu->producer))
15730 /* RealView does not output the required DW_AT_declaration
15731 on incomplete types. */
15732 TYPE_STUB (type) = 1;
15733
15734 /* We need to add the type field to the die immediately so we don't
15735 infinitely recurse when dealing with pointers to the structure
15736 type within the structure itself. */
15737 set_die_type (die, type, cu);
15738
15739 /* set_die_type should be already done. */
15740 set_descriptive_type (type, die, cu);
15741
15742 return type;
15743 }
15744
15745 /* A helper for process_structure_scope that handles a single member
15746 DIE. */
15747
15748 static void
15749 handle_struct_member_die (struct die_info *child_die, struct type *type,
15750 struct field_info *fi,
15751 std::vector<struct symbol *> *template_args,
15752 struct dwarf2_cu *cu)
15753 {
15754 if (child_die->tag == DW_TAG_member
15755 || child_die->tag == DW_TAG_variable
15756 || child_die->tag == DW_TAG_variant_part)
15757 {
15758 /* NOTE: carlton/2002-11-05: A C++ static data member
15759 should be a DW_TAG_member that is a declaration, but
15760 all versions of G++ as of this writing (so through at
15761 least 3.2.1) incorrectly generate DW_TAG_variable
15762 tags for them instead. */
15763 dwarf2_add_field (fi, child_die, cu);
15764 }
15765 else if (child_die->tag == DW_TAG_subprogram)
15766 {
15767 /* Rust doesn't have member functions in the C++ sense.
15768 However, it does emit ordinary functions as children
15769 of a struct DIE. */
15770 if (cu->language == language_rust)
15771 read_func_scope (child_die, cu);
15772 else
15773 {
15774 /* C++ member function. */
15775 dwarf2_add_member_fn (fi, child_die, type, cu);
15776 }
15777 }
15778 else if (child_die->tag == DW_TAG_inheritance)
15779 {
15780 /* C++ base class field. */
15781 dwarf2_add_field (fi, child_die, cu);
15782 }
15783 else if (type_can_define_types (child_die))
15784 dwarf2_add_type_defn (fi, child_die, cu);
15785 else if (child_die->tag == DW_TAG_template_type_param
15786 || child_die->tag == DW_TAG_template_value_param)
15787 {
15788 struct symbol *arg = new_symbol (child_die, NULL, cu);
15789
15790 if (arg != NULL)
15791 template_args->push_back (arg);
15792 }
15793 else if (child_die->tag == DW_TAG_variant)
15794 {
15795 /* In a variant we want to get the discriminant and also add a
15796 field for our sole member child. */
15797 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15798
15799 for (struct die_info *variant_child = child_die->child;
15800 variant_child != NULL;
15801 variant_child = sibling_die (variant_child))
15802 {
15803 if (variant_child->tag == DW_TAG_member)
15804 {
15805 handle_struct_member_die (variant_child, type, fi,
15806 template_args, cu);
15807 /* Only handle the one. */
15808 break;
15809 }
15810 }
15811
15812 /* We don't handle this but we might as well report it if we see
15813 it. */
15814 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15815 complaint (_("DW_AT_discr_list is not supported yet"
15816 " - DIE at %s [in module %s]"),
15817 sect_offset_str (child_die->sect_off),
15818 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15819
15820 /* The first field was just added, so we can stash the
15821 discriminant there. */
15822 gdb_assert (!fi->fields.empty ());
15823 if (discr == NULL)
15824 fi->fields.back ().variant.default_branch = true;
15825 else
15826 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15827 }
15828 }
15829
15830 /* Finish creating a structure or union type, including filling in
15831 its members and creating a symbol for it. */
15832
15833 static void
15834 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15835 {
15836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15837 struct die_info *child_die;
15838 struct type *type;
15839
15840 type = get_die_type (die, cu);
15841 if (type == NULL)
15842 type = read_structure_type (die, cu);
15843
15844 /* When reading a DW_TAG_variant_part, we need to notice when we
15845 read the discriminant member, so we can record it later in the
15846 discriminant_info. */
15847 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15848 sect_offset discr_offset;
15849
15850 if (is_variant_part)
15851 {
15852 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15853 if (discr == NULL)
15854 {
15855 /* Maybe it's a univariant form, an extension we support.
15856 In this case arrange not to check the offset. */
15857 is_variant_part = false;
15858 }
15859 else if (attr_form_is_ref (discr))
15860 {
15861 struct dwarf2_cu *target_cu = cu;
15862 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15863
15864 discr_offset = target_die->sect_off;
15865 }
15866 else
15867 {
15868 complaint (_("DW_AT_discr does not have DIE reference form"
15869 " - DIE at %s [in module %s]"),
15870 sect_offset_str (die->sect_off),
15871 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15872 is_variant_part = false;
15873 }
15874 }
15875
15876 if (die->child != NULL && ! die_is_declaration (die, cu))
15877 {
15878 struct field_info fi;
15879 std::vector<struct symbol *> template_args;
15880
15881 child_die = die->child;
15882
15883 while (child_die && child_die->tag)
15884 {
15885 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15886
15887 if (is_variant_part && discr_offset == child_die->sect_off)
15888 fi.fields.back ().variant.is_discriminant = true;
15889
15890 child_die = sibling_die (child_die);
15891 }
15892
15893 /* Attach template arguments to type. */
15894 if (!template_args.empty ())
15895 {
15896 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15897 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15898 TYPE_TEMPLATE_ARGUMENTS (type)
15899 = XOBNEWVEC (&objfile->objfile_obstack,
15900 struct symbol *,
15901 TYPE_N_TEMPLATE_ARGUMENTS (type));
15902 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15903 template_args.data (),
15904 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15905 * sizeof (struct symbol *)));
15906 }
15907
15908 /* Attach fields and member functions to the type. */
15909 if (fi.nfields)
15910 dwarf2_attach_fields_to_type (&fi, type, cu);
15911 if (!fi.fnfieldlists.empty ())
15912 {
15913 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15914
15915 /* Get the type which refers to the base class (possibly this
15916 class itself) which contains the vtable pointer for the current
15917 class from the DW_AT_containing_type attribute. This use of
15918 DW_AT_containing_type is a GNU extension. */
15919
15920 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15921 {
15922 struct type *t = die_containing_type (die, cu);
15923
15924 set_type_vptr_basetype (type, t);
15925 if (type == t)
15926 {
15927 int i;
15928
15929 /* Our own class provides vtbl ptr. */
15930 for (i = TYPE_NFIELDS (t) - 1;
15931 i >= TYPE_N_BASECLASSES (t);
15932 --i)
15933 {
15934 const char *fieldname = TYPE_FIELD_NAME (t, i);
15935
15936 if (is_vtable_name (fieldname, cu))
15937 {
15938 set_type_vptr_fieldno (type, i);
15939 break;
15940 }
15941 }
15942
15943 /* Complain if virtual function table field not found. */
15944 if (i < TYPE_N_BASECLASSES (t))
15945 complaint (_("virtual function table pointer "
15946 "not found when defining class '%s'"),
15947 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15948 }
15949 else
15950 {
15951 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15952 }
15953 }
15954 else if (cu->producer
15955 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15956 {
15957 /* The IBM XLC compiler does not provide direct indication
15958 of the containing type, but the vtable pointer is
15959 always named __vfp. */
15960
15961 int i;
15962
15963 for (i = TYPE_NFIELDS (type) - 1;
15964 i >= TYPE_N_BASECLASSES (type);
15965 --i)
15966 {
15967 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15968 {
15969 set_type_vptr_fieldno (type, i);
15970 set_type_vptr_basetype (type, type);
15971 break;
15972 }
15973 }
15974 }
15975 }
15976
15977 /* Copy fi.typedef_field_list linked list elements content into the
15978 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15979 if (!fi.typedef_field_list.empty ())
15980 {
15981 int count = fi.typedef_field_list.size ();
15982
15983 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15984 TYPE_TYPEDEF_FIELD_ARRAY (type)
15985 = ((struct decl_field *)
15986 TYPE_ALLOC (type,
15987 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15988 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15989
15990 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15991 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15992 }
15993
15994 /* Copy fi.nested_types_list linked list elements content into the
15995 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15996 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15997 {
15998 int count = fi.nested_types_list.size ();
15999
16000 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16001 TYPE_NESTED_TYPES_ARRAY (type)
16002 = ((struct decl_field *)
16003 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16004 TYPE_NESTED_TYPES_COUNT (type) = count;
16005
16006 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16007 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16008 }
16009 }
16010
16011 quirk_gcc_member_function_pointer (type, objfile);
16012 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16013 cu->rust_unions.push_back (type);
16014
16015 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16016 snapshots) has been known to create a die giving a declaration
16017 for a class that has, as a child, a die giving a definition for a
16018 nested class. So we have to process our children even if the
16019 current die is a declaration. Normally, of course, a declaration
16020 won't have any children at all. */
16021
16022 child_die = die->child;
16023
16024 while (child_die != NULL && child_die->tag)
16025 {
16026 if (child_die->tag == DW_TAG_member
16027 || child_die->tag == DW_TAG_variable
16028 || child_die->tag == DW_TAG_inheritance
16029 || child_die->tag == DW_TAG_template_value_param
16030 || child_die->tag == DW_TAG_template_type_param)
16031 {
16032 /* Do nothing. */
16033 }
16034 else
16035 process_die (child_die, cu);
16036
16037 child_die = sibling_die (child_die);
16038 }
16039
16040 /* Do not consider external references. According to the DWARF standard,
16041 these DIEs are identified by the fact that they have no byte_size
16042 attribute, and a declaration attribute. */
16043 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16044 || !die_is_declaration (die, cu))
16045 new_symbol (die, type, cu);
16046 }
16047
16048 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16049 update TYPE using some information only available in DIE's children. */
16050
16051 static void
16052 update_enumeration_type_from_children (struct die_info *die,
16053 struct type *type,
16054 struct dwarf2_cu *cu)
16055 {
16056 struct die_info *child_die;
16057 int unsigned_enum = 1;
16058 int flag_enum = 1;
16059 ULONGEST mask = 0;
16060
16061 auto_obstack obstack;
16062
16063 for (child_die = die->child;
16064 child_die != NULL && child_die->tag;
16065 child_die = sibling_die (child_die))
16066 {
16067 struct attribute *attr;
16068 LONGEST value;
16069 const gdb_byte *bytes;
16070 struct dwarf2_locexpr_baton *baton;
16071 const char *name;
16072
16073 if (child_die->tag != DW_TAG_enumerator)
16074 continue;
16075
16076 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16077 if (attr == NULL)
16078 continue;
16079
16080 name = dwarf2_name (child_die, cu);
16081 if (name == NULL)
16082 name = "<anonymous enumerator>";
16083
16084 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16085 &value, &bytes, &baton);
16086 if (value < 0)
16087 {
16088 unsigned_enum = 0;
16089 flag_enum = 0;
16090 }
16091 else if ((mask & value) != 0)
16092 flag_enum = 0;
16093 else
16094 mask |= value;
16095
16096 /* If we already know that the enum type is neither unsigned, nor
16097 a flag type, no need to look at the rest of the enumerates. */
16098 if (!unsigned_enum && !flag_enum)
16099 break;
16100 }
16101
16102 if (unsigned_enum)
16103 TYPE_UNSIGNED (type) = 1;
16104 if (flag_enum)
16105 TYPE_FLAG_ENUM (type) = 1;
16106 }
16107
16108 /* Given a DW_AT_enumeration_type die, set its type. We do not
16109 complete the type's fields yet, or create any symbols. */
16110
16111 static struct type *
16112 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16113 {
16114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16115 struct type *type;
16116 struct attribute *attr;
16117 const char *name;
16118
16119 /* If the definition of this type lives in .debug_types, read that type.
16120 Don't follow DW_AT_specification though, that will take us back up
16121 the chain and we want to go down. */
16122 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16123 if (attr)
16124 {
16125 type = get_DW_AT_signature_type (die, attr, cu);
16126
16127 /* The type's CU may not be the same as CU.
16128 Ensure TYPE is recorded with CU in die_type_hash. */
16129 return set_die_type (die, type, cu);
16130 }
16131
16132 type = alloc_type (objfile);
16133
16134 TYPE_CODE (type) = TYPE_CODE_ENUM;
16135 name = dwarf2_full_name (NULL, die, cu);
16136 if (name != NULL)
16137 TYPE_NAME (type) = name;
16138
16139 attr = dwarf2_attr (die, DW_AT_type, cu);
16140 if (attr != NULL)
16141 {
16142 struct type *underlying_type = die_type (die, cu);
16143
16144 TYPE_TARGET_TYPE (type) = underlying_type;
16145 }
16146
16147 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16148 if (attr)
16149 {
16150 TYPE_LENGTH (type) = DW_UNSND (attr);
16151 }
16152 else
16153 {
16154 TYPE_LENGTH (type) = 0;
16155 }
16156
16157 maybe_set_alignment (cu, die, type);
16158
16159 /* The enumeration DIE can be incomplete. In Ada, any type can be
16160 declared as private in the package spec, and then defined only
16161 inside the package body. Such types are known as Taft Amendment
16162 Types. When another package uses such a type, an incomplete DIE
16163 may be generated by the compiler. */
16164 if (die_is_declaration (die, cu))
16165 TYPE_STUB (type) = 1;
16166
16167 /* Finish the creation of this type by using the enum's children.
16168 We must call this even when the underlying type has been provided
16169 so that we can determine if we're looking at a "flag" enum. */
16170 update_enumeration_type_from_children (die, type, cu);
16171
16172 /* If this type has an underlying type that is not a stub, then we
16173 may use its attributes. We always use the "unsigned" attribute
16174 in this situation, because ordinarily we guess whether the type
16175 is unsigned -- but the guess can be wrong and the underlying type
16176 can tell us the reality. However, we defer to a local size
16177 attribute if one exists, because this lets the compiler override
16178 the underlying type if needed. */
16179 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16180 {
16181 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16182 if (TYPE_LENGTH (type) == 0)
16183 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16184 if (TYPE_RAW_ALIGN (type) == 0
16185 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16186 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16187 }
16188
16189 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16190
16191 return set_die_type (die, type, cu);
16192 }
16193
16194 /* Given a pointer to a die which begins an enumeration, process all
16195 the dies that define the members of the enumeration, and create the
16196 symbol for the enumeration type.
16197
16198 NOTE: We reverse the order of the element list. */
16199
16200 static void
16201 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16202 {
16203 struct type *this_type;
16204
16205 this_type = get_die_type (die, cu);
16206 if (this_type == NULL)
16207 this_type = read_enumeration_type (die, cu);
16208
16209 if (die->child != NULL)
16210 {
16211 struct die_info *child_die;
16212 struct symbol *sym;
16213 struct field *fields = NULL;
16214 int num_fields = 0;
16215 const char *name;
16216
16217 child_die = die->child;
16218 while (child_die && child_die->tag)
16219 {
16220 if (child_die->tag != DW_TAG_enumerator)
16221 {
16222 process_die (child_die, cu);
16223 }
16224 else
16225 {
16226 name = dwarf2_name (child_die, cu);
16227 if (name)
16228 {
16229 sym = new_symbol (child_die, this_type, cu);
16230
16231 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16232 {
16233 fields = (struct field *)
16234 xrealloc (fields,
16235 (num_fields + DW_FIELD_ALLOC_CHUNK)
16236 * sizeof (struct field));
16237 }
16238
16239 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16240 FIELD_TYPE (fields[num_fields]) = NULL;
16241 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16242 FIELD_BITSIZE (fields[num_fields]) = 0;
16243
16244 num_fields++;
16245 }
16246 }
16247
16248 child_die = sibling_die (child_die);
16249 }
16250
16251 if (num_fields)
16252 {
16253 TYPE_NFIELDS (this_type) = num_fields;
16254 TYPE_FIELDS (this_type) = (struct field *)
16255 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16256 memcpy (TYPE_FIELDS (this_type), fields,
16257 sizeof (struct field) * num_fields);
16258 xfree (fields);
16259 }
16260 }
16261
16262 /* If we are reading an enum from a .debug_types unit, and the enum
16263 is a declaration, and the enum is not the signatured type in the
16264 unit, then we do not want to add a symbol for it. Adding a
16265 symbol would in some cases obscure the true definition of the
16266 enum, giving users an incomplete type when the definition is
16267 actually available. Note that we do not want to do this for all
16268 enums which are just declarations, because C++0x allows forward
16269 enum declarations. */
16270 if (cu->per_cu->is_debug_types
16271 && die_is_declaration (die, cu))
16272 {
16273 struct signatured_type *sig_type;
16274
16275 sig_type = (struct signatured_type *) cu->per_cu;
16276 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16277 if (sig_type->type_offset_in_section != die->sect_off)
16278 return;
16279 }
16280
16281 new_symbol (die, this_type, cu);
16282 }
16283
16284 /* Extract all information from a DW_TAG_array_type DIE and put it in
16285 the DIE's type field. For now, this only handles one dimensional
16286 arrays. */
16287
16288 static struct type *
16289 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16290 {
16291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16292 struct die_info *child_die;
16293 struct type *type;
16294 struct type *element_type, *range_type, *index_type;
16295 struct attribute *attr;
16296 const char *name;
16297 struct dynamic_prop *byte_stride_prop = NULL;
16298 unsigned int bit_stride = 0;
16299
16300 element_type = die_type (die, cu);
16301
16302 /* The die_type call above may have already set the type for this DIE. */
16303 type = get_die_type (die, cu);
16304 if (type)
16305 return type;
16306
16307 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16308 if (attr != NULL)
16309 {
16310 int stride_ok;
16311
16312 byte_stride_prop
16313 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16314 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16315 if (!stride_ok)
16316 {
16317 complaint (_("unable to read array DW_AT_byte_stride "
16318 " - DIE at %s [in module %s]"),
16319 sect_offset_str (die->sect_off),
16320 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16321 /* Ignore this attribute. We will likely not be able to print
16322 arrays of this type correctly, but there is little we can do
16323 to help if we cannot read the attribute's value. */
16324 byte_stride_prop = NULL;
16325 }
16326 }
16327
16328 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16329 if (attr != NULL)
16330 bit_stride = DW_UNSND (attr);
16331
16332 /* Irix 6.2 native cc creates array types without children for
16333 arrays with unspecified length. */
16334 if (die->child == NULL)
16335 {
16336 index_type = objfile_type (objfile)->builtin_int;
16337 range_type = create_static_range_type (NULL, index_type, 0, -1);
16338 type = create_array_type_with_stride (NULL, element_type, range_type,
16339 byte_stride_prop, bit_stride);
16340 return set_die_type (die, type, cu);
16341 }
16342
16343 std::vector<struct type *> range_types;
16344 child_die = die->child;
16345 while (child_die && child_die->tag)
16346 {
16347 if (child_die->tag == DW_TAG_subrange_type)
16348 {
16349 struct type *child_type = read_type_die (child_die, cu);
16350
16351 if (child_type != NULL)
16352 {
16353 /* The range type was succesfully read. Save it for the
16354 array type creation. */
16355 range_types.push_back (child_type);
16356 }
16357 }
16358 child_die = sibling_die (child_die);
16359 }
16360
16361 /* Dwarf2 dimensions are output from left to right, create the
16362 necessary array types in backwards order. */
16363
16364 type = element_type;
16365
16366 if (read_array_order (die, cu) == DW_ORD_col_major)
16367 {
16368 int i = 0;
16369
16370 while (i < range_types.size ())
16371 type = create_array_type_with_stride (NULL, type, range_types[i++],
16372 byte_stride_prop, bit_stride);
16373 }
16374 else
16375 {
16376 size_t ndim = range_types.size ();
16377 while (ndim-- > 0)
16378 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16379 byte_stride_prop, bit_stride);
16380 }
16381
16382 /* Understand Dwarf2 support for vector types (like they occur on
16383 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16384 array type. This is not part of the Dwarf2/3 standard yet, but a
16385 custom vendor extension. The main difference between a regular
16386 array and the vector variant is that vectors are passed by value
16387 to functions. */
16388 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16389 if (attr)
16390 make_vector_type (type);
16391
16392 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16393 implementation may choose to implement triple vectors using this
16394 attribute. */
16395 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16396 if (attr)
16397 {
16398 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16399 TYPE_LENGTH (type) = DW_UNSND (attr);
16400 else
16401 complaint (_("DW_AT_byte_size for array type smaller "
16402 "than the total size of elements"));
16403 }
16404
16405 name = dwarf2_name (die, cu);
16406 if (name)
16407 TYPE_NAME (type) = name;
16408
16409 maybe_set_alignment (cu, die, type);
16410
16411 /* Install the type in the die. */
16412 set_die_type (die, type, cu);
16413
16414 /* set_die_type should be already done. */
16415 set_descriptive_type (type, die, cu);
16416
16417 return type;
16418 }
16419
16420 static enum dwarf_array_dim_ordering
16421 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16422 {
16423 struct attribute *attr;
16424
16425 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16426
16427 if (attr)
16428 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16429
16430 /* GNU F77 is a special case, as at 08/2004 array type info is the
16431 opposite order to the dwarf2 specification, but data is still
16432 laid out as per normal fortran.
16433
16434 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16435 version checking. */
16436
16437 if (cu->language == language_fortran
16438 && cu->producer && strstr (cu->producer, "GNU F77"))
16439 {
16440 return DW_ORD_row_major;
16441 }
16442
16443 switch (cu->language_defn->la_array_ordering)
16444 {
16445 case array_column_major:
16446 return DW_ORD_col_major;
16447 case array_row_major:
16448 default:
16449 return DW_ORD_row_major;
16450 };
16451 }
16452
16453 /* Extract all information from a DW_TAG_set_type DIE and put it in
16454 the DIE's type field. */
16455
16456 static struct type *
16457 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16458 {
16459 struct type *domain_type, *set_type;
16460 struct attribute *attr;
16461
16462 domain_type = die_type (die, cu);
16463
16464 /* The die_type call above may have already set the type for this DIE. */
16465 set_type = get_die_type (die, cu);
16466 if (set_type)
16467 return set_type;
16468
16469 set_type = create_set_type (NULL, domain_type);
16470
16471 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16472 if (attr)
16473 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16474
16475 maybe_set_alignment (cu, die, set_type);
16476
16477 return set_die_type (die, set_type, cu);
16478 }
16479
16480 /* A helper for read_common_block that creates a locexpr baton.
16481 SYM is the symbol which we are marking as computed.
16482 COMMON_DIE is the DIE for the common block.
16483 COMMON_LOC is the location expression attribute for the common
16484 block itself.
16485 MEMBER_LOC is the location expression attribute for the particular
16486 member of the common block that we are processing.
16487 CU is the CU from which the above come. */
16488
16489 static void
16490 mark_common_block_symbol_computed (struct symbol *sym,
16491 struct die_info *common_die,
16492 struct attribute *common_loc,
16493 struct attribute *member_loc,
16494 struct dwarf2_cu *cu)
16495 {
16496 struct dwarf2_per_objfile *dwarf2_per_objfile
16497 = cu->per_cu->dwarf2_per_objfile;
16498 struct objfile *objfile = dwarf2_per_objfile->objfile;
16499 struct dwarf2_locexpr_baton *baton;
16500 gdb_byte *ptr;
16501 unsigned int cu_off;
16502 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16503 LONGEST offset = 0;
16504
16505 gdb_assert (common_loc && member_loc);
16506 gdb_assert (attr_form_is_block (common_loc));
16507 gdb_assert (attr_form_is_block (member_loc)
16508 || attr_form_is_constant (member_loc));
16509
16510 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16511 baton->per_cu = cu->per_cu;
16512 gdb_assert (baton->per_cu);
16513
16514 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16515
16516 if (attr_form_is_constant (member_loc))
16517 {
16518 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16519 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16520 }
16521 else
16522 baton->size += DW_BLOCK (member_loc)->size;
16523
16524 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16525 baton->data = ptr;
16526
16527 *ptr++ = DW_OP_call4;
16528 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16529 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16530 ptr += 4;
16531
16532 if (attr_form_is_constant (member_loc))
16533 {
16534 *ptr++ = DW_OP_addr;
16535 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16536 ptr += cu->header.addr_size;
16537 }
16538 else
16539 {
16540 /* We have to copy the data here, because DW_OP_call4 will only
16541 use a DW_AT_location attribute. */
16542 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16543 ptr += DW_BLOCK (member_loc)->size;
16544 }
16545
16546 *ptr++ = DW_OP_plus;
16547 gdb_assert (ptr - baton->data == baton->size);
16548
16549 SYMBOL_LOCATION_BATON (sym) = baton;
16550 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16551 }
16552
16553 /* Create appropriate locally-scoped variables for all the
16554 DW_TAG_common_block entries. Also create a struct common_block
16555 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16556 is used to sepate the common blocks name namespace from regular
16557 variable names. */
16558
16559 static void
16560 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16561 {
16562 struct attribute *attr;
16563
16564 attr = dwarf2_attr (die, DW_AT_location, cu);
16565 if (attr)
16566 {
16567 /* Support the .debug_loc offsets. */
16568 if (attr_form_is_block (attr))
16569 {
16570 /* Ok. */
16571 }
16572 else if (attr_form_is_section_offset (attr))
16573 {
16574 dwarf2_complex_location_expr_complaint ();
16575 attr = NULL;
16576 }
16577 else
16578 {
16579 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16580 "common block member");
16581 attr = NULL;
16582 }
16583 }
16584
16585 if (die->child != NULL)
16586 {
16587 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16588 struct die_info *child_die;
16589 size_t n_entries = 0, size;
16590 struct common_block *common_block;
16591 struct symbol *sym;
16592
16593 for (child_die = die->child;
16594 child_die && child_die->tag;
16595 child_die = sibling_die (child_die))
16596 ++n_entries;
16597
16598 size = (sizeof (struct common_block)
16599 + (n_entries - 1) * sizeof (struct symbol *));
16600 common_block
16601 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16602 size);
16603 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16604 common_block->n_entries = 0;
16605
16606 for (child_die = die->child;
16607 child_die && child_die->tag;
16608 child_die = sibling_die (child_die))
16609 {
16610 /* Create the symbol in the DW_TAG_common_block block in the current
16611 symbol scope. */
16612 sym = new_symbol (child_die, NULL, cu);
16613 if (sym != NULL)
16614 {
16615 struct attribute *member_loc;
16616
16617 common_block->contents[common_block->n_entries++] = sym;
16618
16619 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16620 cu);
16621 if (member_loc)
16622 {
16623 /* GDB has handled this for a long time, but it is
16624 not specified by DWARF. It seems to have been
16625 emitted by gfortran at least as recently as:
16626 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16627 complaint (_("Variable in common block has "
16628 "DW_AT_data_member_location "
16629 "- DIE at %s [in module %s]"),
16630 sect_offset_str (child_die->sect_off),
16631 objfile_name (objfile));
16632
16633 if (attr_form_is_section_offset (member_loc))
16634 dwarf2_complex_location_expr_complaint ();
16635 else if (attr_form_is_constant (member_loc)
16636 || attr_form_is_block (member_loc))
16637 {
16638 if (attr)
16639 mark_common_block_symbol_computed (sym, die, attr,
16640 member_loc, cu);
16641 }
16642 else
16643 dwarf2_complex_location_expr_complaint ();
16644 }
16645 }
16646 }
16647
16648 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16649 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16650 }
16651 }
16652
16653 /* Create a type for a C++ namespace. */
16654
16655 static struct type *
16656 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16657 {
16658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16659 const char *previous_prefix, *name;
16660 int is_anonymous;
16661 struct type *type;
16662
16663 /* For extensions, reuse the type of the original namespace. */
16664 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16665 {
16666 struct die_info *ext_die;
16667 struct dwarf2_cu *ext_cu = cu;
16668
16669 ext_die = dwarf2_extension (die, &ext_cu);
16670 type = read_type_die (ext_die, ext_cu);
16671
16672 /* EXT_CU may not be the same as CU.
16673 Ensure TYPE is recorded with CU in die_type_hash. */
16674 return set_die_type (die, type, cu);
16675 }
16676
16677 name = namespace_name (die, &is_anonymous, cu);
16678
16679 /* Now build the name of the current namespace. */
16680
16681 previous_prefix = determine_prefix (die, cu);
16682 if (previous_prefix[0] != '\0')
16683 name = typename_concat (&objfile->objfile_obstack,
16684 previous_prefix, name, 0, cu);
16685
16686 /* Create the type. */
16687 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16688
16689 return set_die_type (die, type, cu);
16690 }
16691
16692 /* Read a namespace scope. */
16693
16694 static void
16695 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16696 {
16697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16698 int is_anonymous;
16699
16700 /* Add a symbol associated to this if we haven't seen the namespace
16701 before. Also, add a using directive if it's an anonymous
16702 namespace. */
16703
16704 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16705 {
16706 struct type *type;
16707
16708 type = read_type_die (die, cu);
16709 new_symbol (die, type, cu);
16710
16711 namespace_name (die, &is_anonymous, cu);
16712 if (is_anonymous)
16713 {
16714 const char *previous_prefix = determine_prefix (die, cu);
16715
16716 std::vector<const char *> excludes;
16717 add_using_directive (using_directives (cu),
16718 previous_prefix, TYPE_NAME (type), NULL,
16719 NULL, excludes, 0, &objfile->objfile_obstack);
16720 }
16721 }
16722
16723 if (die->child != NULL)
16724 {
16725 struct die_info *child_die = die->child;
16726
16727 while (child_die && child_die->tag)
16728 {
16729 process_die (child_die, cu);
16730 child_die = sibling_die (child_die);
16731 }
16732 }
16733 }
16734
16735 /* Read a Fortran module as type. This DIE can be only a declaration used for
16736 imported module. Still we need that type as local Fortran "use ... only"
16737 declaration imports depend on the created type in determine_prefix. */
16738
16739 static struct type *
16740 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16741 {
16742 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16743 const char *module_name;
16744 struct type *type;
16745
16746 module_name = dwarf2_name (die, cu);
16747 if (!module_name)
16748 complaint (_("DW_TAG_module has no name, offset %s"),
16749 sect_offset_str (die->sect_off));
16750 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16751
16752 return set_die_type (die, type, cu);
16753 }
16754
16755 /* Read a Fortran module. */
16756
16757 static void
16758 read_module (struct die_info *die, struct dwarf2_cu *cu)
16759 {
16760 struct die_info *child_die = die->child;
16761 struct type *type;
16762
16763 type = read_type_die (die, cu);
16764 new_symbol (die, type, cu);
16765
16766 while (child_die && child_die->tag)
16767 {
16768 process_die (child_die, cu);
16769 child_die = sibling_die (child_die);
16770 }
16771 }
16772
16773 /* Return the name of the namespace represented by DIE. Set
16774 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16775 namespace. */
16776
16777 static const char *
16778 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16779 {
16780 struct die_info *current_die;
16781 const char *name = NULL;
16782
16783 /* Loop through the extensions until we find a name. */
16784
16785 for (current_die = die;
16786 current_die != NULL;
16787 current_die = dwarf2_extension (die, &cu))
16788 {
16789 /* We don't use dwarf2_name here so that we can detect the absence
16790 of a name -> anonymous namespace. */
16791 name = dwarf2_string_attr (die, DW_AT_name, cu);
16792
16793 if (name != NULL)
16794 break;
16795 }
16796
16797 /* Is it an anonymous namespace? */
16798
16799 *is_anonymous = (name == NULL);
16800 if (*is_anonymous)
16801 name = CP_ANONYMOUS_NAMESPACE_STR;
16802
16803 return name;
16804 }
16805
16806 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16807 the user defined type vector. */
16808
16809 static struct type *
16810 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16811 {
16812 struct gdbarch *gdbarch
16813 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16814 struct comp_unit_head *cu_header = &cu->header;
16815 struct type *type;
16816 struct attribute *attr_byte_size;
16817 struct attribute *attr_address_class;
16818 int byte_size, addr_class;
16819 struct type *target_type;
16820
16821 target_type = die_type (die, cu);
16822
16823 /* The die_type call above may have already set the type for this DIE. */
16824 type = get_die_type (die, cu);
16825 if (type)
16826 return type;
16827
16828 type = lookup_pointer_type (target_type);
16829
16830 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16831 if (attr_byte_size)
16832 byte_size = DW_UNSND (attr_byte_size);
16833 else
16834 byte_size = cu_header->addr_size;
16835
16836 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16837 if (attr_address_class)
16838 addr_class = DW_UNSND (attr_address_class);
16839 else
16840 addr_class = DW_ADDR_none;
16841
16842 ULONGEST alignment = get_alignment (cu, die);
16843
16844 /* If the pointer size, alignment, or address class is different
16845 than the default, create a type variant marked as such and set
16846 the length accordingly. */
16847 if (TYPE_LENGTH (type) != byte_size
16848 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16849 && alignment != TYPE_RAW_ALIGN (type))
16850 || addr_class != DW_ADDR_none)
16851 {
16852 if (gdbarch_address_class_type_flags_p (gdbarch))
16853 {
16854 int type_flags;
16855
16856 type_flags = gdbarch_address_class_type_flags
16857 (gdbarch, byte_size, addr_class);
16858 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16859 == 0);
16860 type = make_type_with_address_space (type, type_flags);
16861 }
16862 else if (TYPE_LENGTH (type) != byte_size)
16863 {
16864 complaint (_("invalid pointer size %d"), byte_size);
16865 }
16866 else if (TYPE_RAW_ALIGN (type) != alignment)
16867 {
16868 complaint (_("Invalid DW_AT_alignment"
16869 " - DIE at %s [in module %s]"),
16870 sect_offset_str (die->sect_off),
16871 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16872 }
16873 else
16874 {
16875 /* Should we also complain about unhandled address classes? */
16876 }
16877 }
16878
16879 TYPE_LENGTH (type) = byte_size;
16880 set_type_align (type, alignment);
16881 return set_die_type (die, type, cu);
16882 }
16883
16884 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16885 the user defined type vector. */
16886
16887 static struct type *
16888 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16889 {
16890 struct type *type;
16891 struct type *to_type;
16892 struct type *domain;
16893
16894 to_type = die_type (die, cu);
16895 domain = die_containing_type (die, cu);
16896
16897 /* The calls above may have already set the type for this DIE. */
16898 type = get_die_type (die, cu);
16899 if (type)
16900 return type;
16901
16902 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16903 type = lookup_methodptr_type (to_type);
16904 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16905 {
16906 struct type *new_type
16907 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16908
16909 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16910 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16911 TYPE_VARARGS (to_type));
16912 type = lookup_methodptr_type (new_type);
16913 }
16914 else
16915 type = lookup_memberptr_type (to_type, domain);
16916
16917 return set_die_type (die, type, cu);
16918 }
16919
16920 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16921 the user defined type vector. */
16922
16923 static struct type *
16924 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16925 enum type_code refcode)
16926 {
16927 struct comp_unit_head *cu_header = &cu->header;
16928 struct type *type, *target_type;
16929 struct attribute *attr;
16930
16931 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16932
16933 target_type = die_type (die, cu);
16934
16935 /* The die_type call above may have already set the type for this DIE. */
16936 type = get_die_type (die, cu);
16937 if (type)
16938 return type;
16939
16940 type = lookup_reference_type (target_type, refcode);
16941 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16942 if (attr)
16943 {
16944 TYPE_LENGTH (type) = DW_UNSND (attr);
16945 }
16946 else
16947 {
16948 TYPE_LENGTH (type) = cu_header->addr_size;
16949 }
16950 maybe_set_alignment (cu, die, type);
16951 return set_die_type (die, type, cu);
16952 }
16953
16954 /* Add the given cv-qualifiers to the element type of the array. GCC
16955 outputs DWARF type qualifiers that apply to an array, not the
16956 element type. But GDB relies on the array element type to carry
16957 the cv-qualifiers. This mimics section 6.7.3 of the C99
16958 specification. */
16959
16960 static struct type *
16961 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16962 struct type *base_type, int cnst, int voltl)
16963 {
16964 struct type *el_type, *inner_array;
16965
16966 base_type = copy_type (base_type);
16967 inner_array = base_type;
16968
16969 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16970 {
16971 TYPE_TARGET_TYPE (inner_array) =
16972 copy_type (TYPE_TARGET_TYPE (inner_array));
16973 inner_array = TYPE_TARGET_TYPE (inner_array);
16974 }
16975
16976 el_type = TYPE_TARGET_TYPE (inner_array);
16977 cnst |= TYPE_CONST (el_type);
16978 voltl |= TYPE_VOLATILE (el_type);
16979 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16980
16981 return set_die_type (die, base_type, cu);
16982 }
16983
16984 static struct type *
16985 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16986 {
16987 struct type *base_type, *cv_type;
16988
16989 base_type = die_type (die, cu);
16990
16991 /* The die_type call above may have already set the type for this DIE. */
16992 cv_type = get_die_type (die, cu);
16993 if (cv_type)
16994 return cv_type;
16995
16996 /* In case the const qualifier is applied to an array type, the element type
16997 is so qualified, not the array type (section 6.7.3 of C99). */
16998 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16999 return add_array_cv_type (die, cu, base_type, 1, 0);
17000
17001 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17002 return set_die_type (die, cv_type, cu);
17003 }
17004
17005 static struct type *
17006 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17007 {
17008 struct type *base_type, *cv_type;
17009
17010 base_type = die_type (die, cu);
17011
17012 /* The die_type call above may have already set the type for this DIE. */
17013 cv_type = get_die_type (die, cu);
17014 if (cv_type)
17015 return cv_type;
17016
17017 /* In case the volatile qualifier is applied to an array type, the
17018 element type is so qualified, not the array type (section 6.7.3
17019 of C99). */
17020 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17021 return add_array_cv_type (die, cu, base_type, 0, 1);
17022
17023 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17024 return set_die_type (die, cv_type, cu);
17025 }
17026
17027 /* Handle DW_TAG_restrict_type. */
17028
17029 static struct type *
17030 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17031 {
17032 struct type *base_type, *cv_type;
17033
17034 base_type = die_type (die, cu);
17035
17036 /* The die_type call above may have already set the type for this DIE. */
17037 cv_type = get_die_type (die, cu);
17038 if (cv_type)
17039 return cv_type;
17040
17041 cv_type = make_restrict_type (base_type);
17042 return set_die_type (die, cv_type, cu);
17043 }
17044
17045 /* Handle DW_TAG_atomic_type. */
17046
17047 static struct type *
17048 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17049 {
17050 struct type *base_type, *cv_type;
17051
17052 base_type = die_type (die, cu);
17053
17054 /* The die_type call above may have already set the type for this DIE. */
17055 cv_type = get_die_type (die, cu);
17056 if (cv_type)
17057 return cv_type;
17058
17059 cv_type = make_atomic_type (base_type);
17060 return set_die_type (die, cv_type, cu);
17061 }
17062
17063 /* Extract all information from a DW_TAG_string_type DIE and add to
17064 the user defined type vector. It isn't really a user defined type,
17065 but it behaves like one, with other DIE's using an AT_user_def_type
17066 attribute to reference it. */
17067
17068 static struct type *
17069 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17070 {
17071 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17072 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17073 struct type *type, *range_type, *index_type, *char_type;
17074 struct attribute *attr;
17075 unsigned int length;
17076
17077 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17078 if (attr)
17079 {
17080 length = DW_UNSND (attr);
17081 }
17082 else
17083 {
17084 /* Check for the DW_AT_byte_size attribute. */
17085 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17086 if (attr)
17087 {
17088 length = DW_UNSND (attr);
17089 }
17090 else
17091 {
17092 length = 1;
17093 }
17094 }
17095
17096 index_type = objfile_type (objfile)->builtin_int;
17097 range_type = create_static_range_type (NULL, index_type, 1, length);
17098 char_type = language_string_char_type (cu->language_defn, gdbarch);
17099 type = create_string_type (NULL, char_type, range_type);
17100
17101 return set_die_type (die, type, cu);
17102 }
17103
17104 /* Assuming that DIE corresponds to a function, returns nonzero
17105 if the function is prototyped. */
17106
17107 static int
17108 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17109 {
17110 struct attribute *attr;
17111
17112 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17113 if (attr && (DW_UNSND (attr) != 0))
17114 return 1;
17115
17116 /* The DWARF standard implies that the DW_AT_prototyped attribute
17117 is only meaninful for C, but the concept also extends to other
17118 languages that allow unprototyped functions (Eg: Objective C).
17119 For all other languages, assume that functions are always
17120 prototyped. */
17121 if (cu->language != language_c
17122 && cu->language != language_objc
17123 && cu->language != language_opencl)
17124 return 1;
17125
17126 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17127 prototyped and unprototyped functions; default to prototyped,
17128 since that is more common in modern code (and RealView warns
17129 about unprototyped functions). */
17130 if (producer_is_realview (cu->producer))
17131 return 1;
17132
17133 return 0;
17134 }
17135
17136 /* Handle DIES due to C code like:
17137
17138 struct foo
17139 {
17140 int (*funcp)(int a, long l);
17141 int b;
17142 };
17143
17144 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17145
17146 static struct type *
17147 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17148 {
17149 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17150 struct type *type; /* Type that this function returns. */
17151 struct type *ftype; /* Function that returns above type. */
17152 struct attribute *attr;
17153
17154 type = die_type (die, cu);
17155
17156 /* The die_type call above may have already set the type for this DIE. */
17157 ftype = get_die_type (die, cu);
17158 if (ftype)
17159 return ftype;
17160
17161 ftype = lookup_function_type (type);
17162
17163 if (prototyped_function_p (die, cu))
17164 TYPE_PROTOTYPED (ftype) = 1;
17165
17166 /* Store the calling convention in the type if it's available in
17167 the subroutine die. Otherwise set the calling convention to
17168 the default value DW_CC_normal. */
17169 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17170 if (attr)
17171 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17172 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17173 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17174 else
17175 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17176
17177 /* Record whether the function returns normally to its caller or not
17178 if the DWARF producer set that information. */
17179 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17180 if (attr && (DW_UNSND (attr) != 0))
17181 TYPE_NO_RETURN (ftype) = 1;
17182
17183 /* We need to add the subroutine type to the die immediately so
17184 we don't infinitely recurse when dealing with parameters
17185 declared as the same subroutine type. */
17186 set_die_type (die, ftype, cu);
17187
17188 if (die->child != NULL)
17189 {
17190 struct type *void_type = objfile_type (objfile)->builtin_void;
17191 struct die_info *child_die;
17192 int nparams, iparams;
17193
17194 /* Count the number of parameters.
17195 FIXME: GDB currently ignores vararg functions, but knows about
17196 vararg member functions. */
17197 nparams = 0;
17198 child_die = die->child;
17199 while (child_die && child_die->tag)
17200 {
17201 if (child_die->tag == DW_TAG_formal_parameter)
17202 nparams++;
17203 else if (child_die->tag == DW_TAG_unspecified_parameters)
17204 TYPE_VARARGS (ftype) = 1;
17205 child_die = sibling_die (child_die);
17206 }
17207
17208 /* Allocate storage for parameters and fill them in. */
17209 TYPE_NFIELDS (ftype) = nparams;
17210 TYPE_FIELDS (ftype) = (struct field *)
17211 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17212
17213 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17214 even if we error out during the parameters reading below. */
17215 for (iparams = 0; iparams < nparams; iparams++)
17216 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17217
17218 iparams = 0;
17219 child_die = die->child;
17220 while (child_die && child_die->tag)
17221 {
17222 if (child_die->tag == DW_TAG_formal_parameter)
17223 {
17224 struct type *arg_type;
17225
17226 /* DWARF version 2 has no clean way to discern C++
17227 static and non-static member functions. G++ helps
17228 GDB by marking the first parameter for non-static
17229 member functions (which is the this pointer) as
17230 artificial. We pass this information to
17231 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17232
17233 DWARF version 3 added DW_AT_object_pointer, which GCC
17234 4.5 does not yet generate. */
17235 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17236 if (attr)
17237 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17238 else
17239 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17240 arg_type = die_type (child_die, cu);
17241
17242 /* RealView does not mark THIS as const, which the testsuite
17243 expects. GCC marks THIS as const in method definitions,
17244 but not in the class specifications (GCC PR 43053). */
17245 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17246 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17247 {
17248 int is_this = 0;
17249 struct dwarf2_cu *arg_cu = cu;
17250 const char *name = dwarf2_name (child_die, cu);
17251
17252 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17253 if (attr)
17254 {
17255 /* If the compiler emits this, use it. */
17256 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17257 is_this = 1;
17258 }
17259 else if (name && strcmp (name, "this") == 0)
17260 /* Function definitions will have the argument names. */
17261 is_this = 1;
17262 else if (name == NULL && iparams == 0)
17263 /* Declarations may not have the names, so like
17264 elsewhere in GDB, assume an artificial first
17265 argument is "this". */
17266 is_this = 1;
17267
17268 if (is_this)
17269 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17270 arg_type, 0);
17271 }
17272
17273 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17274 iparams++;
17275 }
17276 child_die = sibling_die (child_die);
17277 }
17278 }
17279
17280 return ftype;
17281 }
17282
17283 static struct type *
17284 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17285 {
17286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17287 const char *name = NULL;
17288 struct type *this_type, *target_type;
17289
17290 name = dwarf2_full_name (NULL, die, cu);
17291 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17292 TYPE_TARGET_STUB (this_type) = 1;
17293 set_die_type (die, this_type, cu);
17294 target_type = die_type (die, cu);
17295 if (target_type != this_type)
17296 TYPE_TARGET_TYPE (this_type) = target_type;
17297 else
17298 {
17299 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17300 spec and cause infinite loops in GDB. */
17301 complaint (_("Self-referential DW_TAG_typedef "
17302 "- DIE at %s [in module %s]"),
17303 sect_offset_str (die->sect_off), objfile_name (objfile));
17304 TYPE_TARGET_TYPE (this_type) = NULL;
17305 }
17306 return this_type;
17307 }
17308
17309 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17310 (which may be different from NAME) to the architecture back-end to allow
17311 it to guess the correct format if necessary. */
17312
17313 static struct type *
17314 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17315 const char *name_hint)
17316 {
17317 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17318 const struct floatformat **format;
17319 struct type *type;
17320
17321 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17322 if (format)
17323 type = init_float_type (objfile, bits, name, format);
17324 else
17325 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17326
17327 return type;
17328 }
17329
17330 /* Find a representation of a given base type and install
17331 it in the TYPE field of the die. */
17332
17333 static struct type *
17334 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17335 {
17336 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17337 struct type *type;
17338 struct attribute *attr;
17339 int encoding = 0, bits = 0;
17340 const char *name;
17341
17342 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17343 if (attr)
17344 {
17345 encoding = DW_UNSND (attr);
17346 }
17347 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17348 if (attr)
17349 {
17350 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17351 }
17352 name = dwarf2_name (die, cu);
17353 if (!name)
17354 {
17355 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17356 }
17357
17358 switch (encoding)
17359 {
17360 case DW_ATE_address:
17361 /* Turn DW_ATE_address into a void * pointer. */
17362 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17363 type = init_pointer_type (objfile, bits, name, type);
17364 break;
17365 case DW_ATE_boolean:
17366 type = init_boolean_type (objfile, bits, 1, name);
17367 break;
17368 case DW_ATE_complex_float:
17369 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17370 type = init_complex_type (objfile, name, type);
17371 break;
17372 case DW_ATE_decimal_float:
17373 type = init_decfloat_type (objfile, bits, name);
17374 break;
17375 case DW_ATE_float:
17376 type = dwarf2_init_float_type (objfile, bits, name, name);
17377 break;
17378 case DW_ATE_signed:
17379 type = init_integer_type (objfile, bits, 0, name);
17380 break;
17381 case DW_ATE_unsigned:
17382 if (cu->language == language_fortran
17383 && name
17384 && startswith (name, "character("))
17385 type = init_character_type (objfile, bits, 1, name);
17386 else
17387 type = init_integer_type (objfile, bits, 1, name);
17388 break;
17389 case DW_ATE_signed_char:
17390 if (cu->language == language_ada || cu->language == language_m2
17391 || cu->language == language_pascal
17392 || cu->language == language_fortran)
17393 type = init_character_type (objfile, bits, 0, name);
17394 else
17395 type = init_integer_type (objfile, bits, 0, name);
17396 break;
17397 case DW_ATE_unsigned_char:
17398 if (cu->language == language_ada || cu->language == language_m2
17399 || cu->language == language_pascal
17400 || cu->language == language_fortran
17401 || cu->language == language_rust)
17402 type = init_character_type (objfile, bits, 1, name);
17403 else
17404 type = init_integer_type (objfile, bits, 1, name);
17405 break;
17406 case DW_ATE_UTF:
17407 {
17408 gdbarch *arch = get_objfile_arch (objfile);
17409
17410 if (bits == 16)
17411 type = builtin_type (arch)->builtin_char16;
17412 else if (bits == 32)
17413 type = builtin_type (arch)->builtin_char32;
17414 else
17415 {
17416 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17417 bits);
17418 type = init_integer_type (objfile, bits, 1, name);
17419 }
17420 return set_die_type (die, type, cu);
17421 }
17422 break;
17423
17424 default:
17425 complaint (_("unsupported DW_AT_encoding: '%s'"),
17426 dwarf_type_encoding_name (encoding));
17427 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17428 break;
17429 }
17430
17431 if (name && strcmp (name, "char") == 0)
17432 TYPE_NOSIGN (type) = 1;
17433
17434 maybe_set_alignment (cu, die, type);
17435
17436 return set_die_type (die, type, cu);
17437 }
17438
17439 /* Parse dwarf attribute if it's a block, reference or constant and put the
17440 resulting value of the attribute into struct bound_prop.
17441 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17442
17443 static int
17444 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17445 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17446 {
17447 struct dwarf2_property_baton *baton;
17448 struct obstack *obstack
17449 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17450
17451 if (attr == NULL || prop == NULL)
17452 return 0;
17453
17454 if (attr_form_is_block (attr))
17455 {
17456 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17457 baton->referenced_type = NULL;
17458 baton->locexpr.per_cu = cu->per_cu;
17459 baton->locexpr.size = DW_BLOCK (attr)->size;
17460 baton->locexpr.data = DW_BLOCK (attr)->data;
17461 prop->data.baton = baton;
17462 prop->kind = PROP_LOCEXPR;
17463 gdb_assert (prop->data.baton != NULL);
17464 }
17465 else if (attr_form_is_ref (attr))
17466 {
17467 struct dwarf2_cu *target_cu = cu;
17468 struct die_info *target_die;
17469 struct attribute *target_attr;
17470
17471 target_die = follow_die_ref (die, attr, &target_cu);
17472 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17473 if (target_attr == NULL)
17474 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17475 target_cu);
17476 if (target_attr == NULL)
17477 return 0;
17478
17479 switch (target_attr->name)
17480 {
17481 case DW_AT_location:
17482 if (attr_form_is_section_offset (target_attr))
17483 {
17484 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17485 baton->referenced_type = die_type (target_die, target_cu);
17486 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17487 prop->data.baton = baton;
17488 prop->kind = PROP_LOCLIST;
17489 gdb_assert (prop->data.baton != NULL);
17490 }
17491 else if (attr_form_is_block (target_attr))
17492 {
17493 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17494 baton->referenced_type = die_type (target_die, target_cu);
17495 baton->locexpr.per_cu = cu->per_cu;
17496 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17497 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17498 prop->data.baton = baton;
17499 prop->kind = PROP_LOCEXPR;
17500 gdb_assert (prop->data.baton != NULL);
17501 }
17502 else
17503 {
17504 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17505 "dynamic property");
17506 return 0;
17507 }
17508 break;
17509 case DW_AT_data_member_location:
17510 {
17511 LONGEST offset;
17512
17513 if (!handle_data_member_location (target_die, target_cu,
17514 &offset))
17515 return 0;
17516
17517 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17518 baton->referenced_type = read_type_die (target_die->parent,
17519 target_cu);
17520 baton->offset_info.offset = offset;
17521 baton->offset_info.type = die_type (target_die, target_cu);
17522 prop->data.baton = baton;
17523 prop->kind = PROP_ADDR_OFFSET;
17524 break;
17525 }
17526 }
17527 }
17528 else if (attr_form_is_constant (attr))
17529 {
17530 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17531 prop->kind = PROP_CONST;
17532 }
17533 else
17534 {
17535 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17536 dwarf2_name (die, cu));
17537 return 0;
17538 }
17539
17540 return 1;
17541 }
17542
17543 /* Read the given DW_AT_subrange DIE. */
17544
17545 static struct type *
17546 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17547 {
17548 struct type *base_type, *orig_base_type;
17549 struct type *range_type;
17550 struct attribute *attr;
17551 struct dynamic_prop low, high;
17552 int low_default_is_valid;
17553 int high_bound_is_count = 0;
17554 const char *name;
17555 LONGEST negative_mask;
17556
17557 orig_base_type = die_type (die, cu);
17558 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17559 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17560 creating the range type, but we use the result of check_typedef
17561 when examining properties of the type. */
17562 base_type = check_typedef (orig_base_type);
17563
17564 /* The die_type call above may have already set the type for this DIE. */
17565 range_type = get_die_type (die, cu);
17566 if (range_type)
17567 return range_type;
17568
17569 low.kind = PROP_CONST;
17570 high.kind = PROP_CONST;
17571 high.data.const_val = 0;
17572
17573 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17574 omitting DW_AT_lower_bound. */
17575 switch (cu->language)
17576 {
17577 case language_c:
17578 case language_cplus:
17579 low.data.const_val = 0;
17580 low_default_is_valid = 1;
17581 break;
17582 case language_fortran:
17583 low.data.const_val = 1;
17584 low_default_is_valid = 1;
17585 break;
17586 case language_d:
17587 case language_objc:
17588 case language_rust:
17589 low.data.const_val = 0;
17590 low_default_is_valid = (cu->header.version >= 4);
17591 break;
17592 case language_ada:
17593 case language_m2:
17594 case language_pascal:
17595 low.data.const_val = 1;
17596 low_default_is_valid = (cu->header.version >= 4);
17597 break;
17598 default:
17599 low.data.const_val = 0;
17600 low_default_is_valid = 0;
17601 break;
17602 }
17603
17604 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17605 if (attr)
17606 attr_to_dynamic_prop (attr, die, cu, &low);
17607 else if (!low_default_is_valid)
17608 complaint (_("Missing DW_AT_lower_bound "
17609 "- DIE at %s [in module %s]"),
17610 sect_offset_str (die->sect_off),
17611 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17612
17613 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17614 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17615 {
17616 attr = dwarf2_attr (die, DW_AT_count, cu);
17617 if (attr_to_dynamic_prop (attr, die, cu, &high))
17618 {
17619 /* If bounds are constant do the final calculation here. */
17620 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17621 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17622 else
17623 high_bound_is_count = 1;
17624 }
17625 }
17626
17627 /* Dwarf-2 specifications explicitly allows to create subrange types
17628 without specifying a base type.
17629 In that case, the base type must be set to the type of
17630 the lower bound, upper bound or count, in that order, if any of these
17631 three attributes references an object that has a type.
17632 If no base type is found, the Dwarf-2 specifications say that
17633 a signed integer type of size equal to the size of an address should
17634 be used.
17635 For the following C code: `extern char gdb_int [];'
17636 GCC produces an empty range DIE.
17637 FIXME: muller/2010-05-28: Possible references to object for low bound,
17638 high bound or count are not yet handled by this code. */
17639 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17640 {
17641 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17642 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17643 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17644 struct type *int_type = objfile_type (objfile)->builtin_int;
17645
17646 /* Test "int", "long int", and "long long int" objfile types,
17647 and select the first one having a size above or equal to the
17648 architecture address size. */
17649 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17650 base_type = int_type;
17651 else
17652 {
17653 int_type = objfile_type (objfile)->builtin_long;
17654 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17655 base_type = int_type;
17656 else
17657 {
17658 int_type = objfile_type (objfile)->builtin_long_long;
17659 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17660 base_type = int_type;
17661 }
17662 }
17663 }
17664
17665 /* Normally, the DWARF producers are expected to use a signed
17666 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17667 But this is unfortunately not always the case, as witnessed
17668 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17669 is used instead. To work around that ambiguity, we treat
17670 the bounds as signed, and thus sign-extend their values, when
17671 the base type is signed. */
17672 negative_mask =
17673 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17674 if (low.kind == PROP_CONST
17675 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17676 low.data.const_val |= negative_mask;
17677 if (high.kind == PROP_CONST
17678 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17679 high.data.const_val |= negative_mask;
17680
17681 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17682
17683 if (high_bound_is_count)
17684 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17685
17686 /* Ada expects an empty array on no boundary attributes. */
17687 if (attr == NULL && cu->language != language_ada)
17688 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17689
17690 name = dwarf2_name (die, cu);
17691 if (name)
17692 TYPE_NAME (range_type) = name;
17693
17694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17695 if (attr)
17696 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17697
17698 maybe_set_alignment (cu, die, range_type);
17699
17700 set_die_type (die, range_type, cu);
17701
17702 /* set_die_type should be already done. */
17703 set_descriptive_type (range_type, die, cu);
17704
17705 return range_type;
17706 }
17707
17708 static struct type *
17709 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17710 {
17711 struct type *type;
17712
17713 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17714 NULL);
17715 TYPE_NAME (type) = dwarf2_name (die, cu);
17716
17717 /* In Ada, an unspecified type is typically used when the description
17718 of the type is defered to a different unit. When encountering
17719 such a type, we treat it as a stub, and try to resolve it later on,
17720 when needed. */
17721 if (cu->language == language_ada)
17722 TYPE_STUB (type) = 1;
17723
17724 return set_die_type (die, type, cu);
17725 }
17726
17727 /* Read a single die and all its descendents. Set the die's sibling
17728 field to NULL; set other fields in the die correctly, and set all
17729 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17730 location of the info_ptr after reading all of those dies. PARENT
17731 is the parent of the die in question. */
17732
17733 static struct die_info *
17734 read_die_and_children (const struct die_reader_specs *reader,
17735 const gdb_byte *info_ptr,
17736 const gdb_byte **new_info_ptr,
17737 struct die_info *parent)
17738 {
17739 struct die_info *die;
17740 const gdb_byte *cur_ptr;
17741 int has_children;
17742
17743 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17744 if (die == NULL)
17745 {
17746 *new_info_ptr = cur_ptr;
17747 return NULL;
17748 }
17749 store_in_ref_table (die, reader->cu);
17750
17751 if (has_children)
17752 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17753 else
17754 {
17755 die->child = NULL;
17756 *new_info_ptr = cur_ptr;
17757 }
17758
17759 die->sibling = NULL;
17760 die->parent = parent;
17761 return die;
17762 }
17763
17764 /* Read a die, all of its descendents, and all of its siblings; set
17765 all of the fields of all of the dies correctly. Arguments are as
17766 in read_die_and_children. */
17767
17768 static struct die_info *
17769 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17770 const gdb_byte *info_ptr,
17771 const gdb_byte **new_info_ptr,
17772 struct die_info *parent)
17773 {
17774 struct die_info *first_die, *last_sibling;
17775 const gdb_byte *cur_ptr;
17776
17777 cur_ptr = info_ptr;
17778 first_die = last_sibling = NULL;
17779
17780 while (1)
17781 {
17782 struct die_info *die
17783 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17784
17785 if (die == NULL)
17786 {
17787 *new_info_ptr = cur_ptr;
17788 return first_die;
17789 }
17790
17791 if (!first_die)
17792 first_die = die;
17793 else
17794 last_sibling->sibling = die;
17795
17796 last_sibling = die;
17797 }
17798 }
17799
17800 /* Read a die, all of its descendents, and all of its siblings; set
17801 all of the fields of all of the dies correctly. Arguments are as
17802 in read_die_and_children.
17803 This the main entry point for reading a DIE and all its children. */
17804
17805 static struct die_info *
17806 read_die_and_siblings (const struct die_reader_specs *reader,
17807 const gdb_byte *info_ptr,
17808 const gdb_byte **new_info_ptr,
17809 struct die_info *parent)
17810 {
17811 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17812 new_info_ptr, parent);
17813
17814 if (dwarf_die_debug)
17815 {
17816 fprintf_unfiltered (gdb_stdlog,
17817 "Read die from %s@0x%x of %s:\n",
17818 get_section_name (reader->die_section),
17819 (unsigned) (info_ptr - reader->die_section->buffer),
17820 bfd_get_filename (reader->abfd));
17821 dump_die (die, dwarf_die_debug);
17822 }
17823
17824 return die;
17825 }
17826
17827 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17828 attributes.
17829 The caller is responsible for filling in the extra attributes
17830 and updating (*DIEP)->num_attrs.
17831 Set DIEP to point to a newly allocated die with its information,
17832 except for its child, sibling, and parent fields.
17833 Set HAS_CHILDREN to tell whether the die has children or not. */
17834
17835 static const gdb_byte *
17836 read_full_die_1 (const struct die_reader_specs *reader,
17837 struct die_info **diep, const gdb_byte *info_ptr,
17838 int *has_children, int num_extra_attrs)
17839 {
17840 unsigned int abbrev_number, bytes_read, i;
17841 struct abbrev_info *abbrev;
17842 struct die_info *die;
17843 struct dwarf2_cu *cu = reader->cu;
17844 bfd *abfd = reader->abfd;
17845
17846 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17847 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17848 info_ptr += bytes_read;
17849 if (!abbrev_number)
17850 {
17851 *diep = NULL;
17852 *has_children = 0;
17853 return info_ptr;
17854 }
17855
17856 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17857 if (!abbrev)
17858 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17859 abbrev_number,
17860 bfd_get_filename (abfd));
17861
17862 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17863 die->sect_off = sect_off;
17864 die->tag = abbrev->tag;
17865 die->abbrev = abbrev_number;
17866
17867 /* Make the result usable.
17868 The caller needs to update num_attrs after adding the extra
17869 attributes. */
17870 die->num_attrs = abbrev->num_attrs;
17871
17872 for (i = 0; i < abbrev->num_attrs; ++i)
17873 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17874 info_ptr);
17875
17876 *diep = die;
17877 *has_children = abbrev->has_children;
17878 return info_ptr;
17879 }
17880
17881 /* Read a die and all its attributes.
17882 Set DIEP to point to a newly allocated die with its information,
17883 except for its child, sibling, and parent fields.
17884 Set HAS_CHILDREN to tell whether the die has children or not. */
17885
17886 static const gdb_byte *
17887 read_full_die (const struct die_reader_specs *reader,
17888 struct die_info **diep, const gdb_byte *info_ptr,
17889 int *has_children)
17890 {
17891 const gdb_byte *result;
17892
17893 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17894
17895 if (dwarf_die_debug)
17896 {
17897 fprintf_unfiltered (gdb_stdlog,
17898 "Read die from %s@0x%x of %s:\n",
17899 get_section_name (reader->die_section),
17900 (unsigned) (info_ptr - reader->die_section->buffer),
17901 bfd_get_filename (reader->abfd));
17902 dump_die (*diep, dwarf_die_debug);
17903 }
17904
17905 return result;
17906 }
17907 \f
17908 /* Abbreviation tables.
17909
17910 In DWARF version 2, the description of the debugging information is
17911 stored in a separate .debug_abbrev section. Before we read any
17912 dies from a section we read in all abbreviations and install them
17913 in a hash table. */
17914
17915 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17916
17917 struct abbrev_info *
17918 abbrev_table::alloc_abbrev ()
17919 {
17920 struct abbrev_info *abbrev;
17921
17922 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17923 memset (abbrev, 0, sizeof (struct abbrev_info));
17924
17925 return abbrev;
17926 }
17927
17928 /* Add an abbreviation to the table. */
17929
17930 void
17931 abbrev_table::add_abbrev (unsigned int abbrev_number,
17932 struct abbrev_info *abbrev)
17933 {
17934 unsigned int hash_number;
17935
17936 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17937 abbrev->next = m_abbrevs[hash_number];
17938 m_abbrevs[hash_number] = abbrev;
17939 }
17940
17941 /* Look up an abbrev in the table.
17942 Returns NULL if the abbrev is not found. */
17943
17944 struct abbrev_info *
17945 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17946 {
17947 unsigned int hash_number;
17948 struct abbrev_info *abbrev;
17949
17950 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17951 abbrev = m_abbrevs[hash_number];
17952
17953 while (abbrev)
17954 {
17955 if (abbrev->number == abbrev_number)
17956 return abbrev;
17957 abbrev = abbrev->next;
17958 }
17959 return NULL;
17960 }
17961
17962 /* Read in an abbrev table. */
17963
17964 static abbrev_table_up
17965 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17966 struct dwarf2_section_info *section,
17967 sect_offset sect_off)
17968 {
17969 struct objfile *objfile = dwarf2_per_objfile->objfile;
17970 bfd *abfd = get_section_bfd_owner (section);
17971 const gdb_byte *abbrev_ptr;
17972 struct abbrev_info *cur_abbrev;
17973 unsigned int abbrev_number, bytes_read, abbrev_name;
17974 unsigned int abbrev_form;
17975 struct attr_abbrev *cur_attrs;
17976 unsigned int allocated_attrs;
17977
17978 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17979
17980 dwarf2_read_section (objfile, section);
17981 abbrev_ptr = section->buffer + to_underlying (sect_off);
17982 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17983 abbrev_ptr += bytes_read;
17984
17985 allocated_attrs = ATTR_ALLOC_CHUNK;
17986 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17987
17988 /* Loop until we reach an abbrev number of 0. */
17989 while (abbrev_number)
17990 {
17991 cur_abbrev = abbrev_table->alloc_abbrev ();
17992
17993 /* read in abbrev header */
17994 cur_abbrev->number = abbrev_number;
17995 cur_abbrev->tag
17996 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17997 abbrev_ptr += bytes_read;
17998 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17999 abbrev_ptr += 1;
18000
18001 /* now read in declarations */
18002 for (;;)
18003 {
18004 LONGEST implicit_const;
18005
18006 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18007 abbrev_ptr += bytes_read;
18008 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18009 abbrev_ptr += bytes_read;
18010 if (abbrev_form == DW_FORM_implicit_const)
18011 {
18012 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18013 &bytes_read);
18014 abbrev_ptr += bytes_read;
18015 }
18016 else
18017 {
18018 /* Initialize it due to a false compiler warning. */
18019 implicit_const = -1;
18020 }
18021
18022 if (abbrev_name == 0)
18023 break;
18024
18025 if (cur_abbrev->num_attrs == allocated_attrs)
18026 {
18027 allocated_attrs += ATTR_ALLOC_CHUNK;
18028 cur_attrs
18029 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18030 }
18031
18032 cur_attrs[cur_abbrev->num_attrs].name
18033 = (enum dwarf_attribute) abbrev_name;
18034 cur_attrs[cur_abbrev->num_attrs].form
18035 = (enum dwarf_form) abbrev_form;
18036 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18037 ++cur_abbrev->num_attrs;
18038 }
18039
18040 cur_abbrev->attrs =
18041 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18042 cur_abbrev->num_attrs);
18043 memcpy (cur_abbrev->attrs, cur_attrs,
18044 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18045
18046 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18047
18048 /* Get next abbreviation.
18049 Under Irix6 the abbreviations for a compilation unit are not
18050 always properly terminated with an abbrev number of 0.
18051 Exit loop if we encounter an abbreviation which we have
18052 already read (which means we are about to read the abbreviations
18053 for the next compile unit) or if the end of the abbreviation
18054 table is reached. */
18055 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18056 break;
18057 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18058 abbrev_ptr += bytes_read;
18059 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18060 break;
18061 }
18062
18063 xfree (cur_attrs);
18064 return abbrev_table;
18065 }
18066
18067 /* Returns nonzero if TAG represents a type that we might generate a partial
18068 symbol for. */
18069
18070 static int
18071 is_type_tag_for_partial (int tag)
18072 {
18073 switch (tag)
18074 {
18075 #if 0
18076 /* Some types that would be reasonable to generate partial symbols for,
18077 that we don't at present. */
18078 case DW_TAG_array_type:
18079 case DW_TAG_file_type:
18080 case DW_TAG_ptr_to_member_type:
18081 case DW_TAG_set_type:
18082 case DW_TAG_string_type:
18083 case DW_TAG_subroutine_type:
18084 #endif
18085 case DW_TAG_base_type:
18086 case DW_TAG_class_type:
18087 case DW_TAG_interface_type:
18088 case DW_TAG_enumeration_type:
18089 case DW_TAG_structure_type:
18090 case DW_TAG_subrange_type:
18091 case DW_TAG_typedef:
18092 case DW_TAG_union_type:
18093 return 1;
18094 default:
18095 return 0;
18096 }
18097 }
18098
18099 /* Load all DIEs that are interesting for partial symbols into memory. */
18100
18101 static struct partial_die_info *
18102 load_partial_dies (const struct die_reader_specs *reader,
18103 const gdb_byte *info_ptr, int building_psymtab)
18104 {
18105 struct dwarf2_cu *cu = reader->cu;
18106 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18107 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18108 unsigned int bytes_read;
18109 unsigned int load_all = 0;
18110 int nesting_level = 1;
18111
18112 parent_die = NULL;
18113 last_die = NULL;
18114
18115 gdb_assert (cu->per_cu != NULL);
18116 if (cu->per_cu->load_all_dies)
18117 load_all = 1;
18118
18119 cu->partial_dies
18120 = htab_create_alloc_ex (cu->header.length / 12,
18121 partial_die_hash,
18122 partial_die_eq,
18123 NULL,
18124 &cu->comp_unit_obstack,
18125 hashtab_obstack_allocate,
18126 dummy_obstack_deallocate);
18127
18128 while (1)
18129 {
18130 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18131
18132 /* A NULL abbrev means the end of a series of children. */
18133 if (abbrev == NULL)
18134 {
18135 if (--nesting_level == 0)
18136 return first_die;
18137
18138 info_ptr += bytes_read;
18139 last_die = parent_die;
18140 parent_die = parent_die->die_parent;
18141 continue;
18142 }
18143
18144 /* Check for template arguments. We never save these; if
18145 they're seen, we just mark the parent, and go on our way. */
18146 if (parent_die != NULL
18147 && cu->language == language_cplus
18148 && (abbrev->tag == DW_TAG_template_type_param
18149 || abbrev->tag == DW_TAG_template_value_param))
18150 {
18151 parent_die->has_template_arguments = 1;
18152
18153 if (!load_all)
18154 {
18155 /* We don't need a partial DIE for the template argument. */
18156 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18157 continue;
18158 }
18159 }
18160
18161 /* We only recurse into c++ subprograms looking for template arguments.
18162 Skip their other children. */
18163 if (!load_all
18164 && cu->language == language_cplus
18165 && parent_die != NULL
18166 && parent_die->tag == DW_TAG_subprogram)
18167 {
18168 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18169 continue;
18170 }
18171
18172 /* Check whether this DIE is interesting enough to save. Normally
18173 we would not be interested in members here, but there may be
18174 later variables referencing them via DW_AT_specification (for
18175 static members). */
18176 if (!load_all
18177 && !is_type_tag_for_partial (abbrev->tag)
18178 && abbrev->tag != DW_TAG_constant
18179 && abbrev->tag != DW_TAG_enumerator
18180 && abbrev->tag != DW_TAG_subprogram
18181 && abbrev->tag != DW_TAG_inlined_subroutine
18182 && abbrev->tag != DW_TAG_lexical_block
18183 && abbrev->tag != DW_TAG_variable
18184 && abbrev->tag != DW_TAG_namespace
18185 && abbrev->tag != DW_TAG_module
18186 && abbrev->tag != DW_TAG_member
18187 && abbrev->tag != DW_TAG_imported_unit
18188 && abbrev->tag != DW_TAG_imported_declaration)
18189 {
18190 /* Otherwise we skip to the next sibling, if any. */
18191 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18192 continue;
18193 }
18194
18195 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18196 abbrev);
18197
18198 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18199
18200 /* This two-pass algorithm for processing partial symbols has a
18201 high cost in cache pressure. Thus, handle some simple cases
18202 here which cover the majority of C partial symbols. DIEs
18203 which neither have specification tags in them, nor could have
18204 specification tags elsewhere pointing at them, can simply be
18205 processed and discarded.
18206
18207 This segment is also optional; scan_partial_symbols and
18208 add_partial_symbol will handle these DIEs if we chain
18209 them in normally. When compilers which do not emit large
18210 quantities of duplicate debug information are more common,
18211 this code can probably be removed. */
18212
18213 /* Any complete simple types at the top level (pretty much all
18214 of them, for a language without namespaces), can be processed
18215 directly. */
18216 if (parent_die == NULL
18217 && pdi.has_specification == 0
18218 && pdi.is_declaration == 0
18219 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18220 || pdi.tag == DW_TAG_base_type
18221 || pdi.tag == DW_TAG_subrange_type))
18222 {
18223 if (building_psymtab && pdi.name != NULL)
18224 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18225 VAR_DOMAIN, LOC_TYPEDEF,
18226 &objfile->static_psymbols,
18227 0, cu->language, objfile);
18228 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18229 continue;
18230 }
18231
18232 /* The exception for DW_TAG_typedef with has_children above is
18233 a workaround of GCC PR debug/47510. In the case of this complaint
18234 type_name_or_error will error on such types later.
18235
18236 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18237 it could not find the child DIEs referenced later, this is checked
18238 above. In correct DWARF DW_TAG_typedef should have no children. */
18239
18240 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18241 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18242 "- DIE at %s [in module %s]"),
18243 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18244
18245 /* If we're at the second level, and we're an enumerator, and
18246 our parent has no specification (meaning possibly lives in a
18247 namespace elsewhere), then we can add the partial symbol now
18248 instead of queueing it. */
18249 if (pdi.tag == DW_TAG_enumerator
18250 && parent_die != NULL
18251 && parent_die->die_parent == NULL
18252 && parent_die->tag == DW_TAG_enumeration_type
18253 && parent_die->has_specification == 0)
18254 {
18255 if (pdi.name == NULL)
18256 complaint (_("malformed enumerator DIE ignored"));
18257 else if (building_psymtab)
18258 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18259 VAR_DOMAIN, LOC_CONST,
18260 cu->language == language_cplus
18261 ? &objfile->global_psymbols
18262 : &objfile->static_psymbols,
18263 0, cu->language, objfile);
18264
18265 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18266 continue;
18267 }
18268
18269 struct partial_die_info *part_die
18270 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18271
18272 /* We'll save this DIE so link it in. */
18273 part_die->die_parent = parent_die;
18274 part_die->die_sibling = NULL;
18275 part_die->die_child = NULL;
18276
18277 if (last_die && last_die == parent_die)
18278 last_die->die_child = part_die;
18279 else if (last_die)
18280 last_die->die_sibling = part_die;
18281
18282 last_die = part_die;
18283
18284 if (first_die == NULL)
18285 first_die = part_die;
18286
18287 /* Maybe add the DIE to the hash table. Not all DIEs that we
18288 find interesting need to be in the hash table, because we
18289 also have the parent/sibling/child chains; only those that we
18290 might refer to by offset later during partial symbol reading.
18291
18292 For now this means things that might have be the target of a
18293 DW_AT_specification, DW_AT_abstract_origin, or
18294 DW_AT_extension. DW_AT_extension will refer only to
18295 namespaces; DW_AT_abstract_origin refers to functions (and
18296 many things under the function DIE, but we do not recurse
18297 into function DIEs during partial symbol reading) and
18298 possibly variables as well; DW_AT_specification refers to
18299 declarations. Declarations ought to have the DW_AT_declaration
18300 flag. It happens that GCC forgets to put it in sometimes, but
18301 only for functions, not for types.
18302
18303 Adding more things than necessary to the hash table is harmless
18304 except for the performance cost. Adding too few will result in
18305 wasted time in find_partial_die, when we reread the compilation
18306 unit with load_all_dies set. */
18307
18308 if (load_all
18309 || abbrev->tag == DW_TAG_constant
18310 || abbrev->tag == DW_TAG_subprogram
18311 || abbrev->tag == DW_TAG_variable
18312 || abbrev->tag == DW_TAG_namespace
18313 || part_die->is_declaration)
18314 {
18315 void **slot;
18316
18317 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18318 to_underlying (part_die->sect_off),
18319 INSERT);
18320 *slot = part_die;
18321 }
18322
18323 /* For some DIEs we want to follow their children (if any). For C
18324 we have no reason to follow the children of structures; for other
18325 languages we have to, so that we can get at method physnames
18326 to infer fully qualified class names, for DW_AT_specification,
18327 and for C++ template arguments. For C++, we also look one level
18328 inside functions to find template arguments (if the name of the
18329 function does not already contain the template arguments).
18330
18331 For Ada, we need to scan the children of subprograms and lexical
18332 blocks as well because Ada allows the definition of nested
18333 entities that could be interesting for the debugger, such as
18334 nested subprograms for instance. */
18335 if (last_die->has_children
18336 && (load_all
18337 || last_die->tag == DW_TAG_namespace
18338 || last_die->tag == DW_TAG_module
18339 || last_die->tag == DW_TAG_enumeration_type
18340 || (cu->language == language_cplus
18341 && last_die->tag == DW_TAG_subprogram
18342 && (last_die->name == NULL
18343 || strchr (last_die->name, '<') == NULL))
18344 || (cu->language != language_c
18345 && (last_die->tag == DW_TAG_class_type
18346 || last_die->tag == DW_TAG_interface_type
18347 || last_die->tag == DW_TAG_structure_type
18348 || last_die->tag == DW_TAG_union_type))
18349 || (cu->language == language_ada
18350 && (last_die->tag == DW_TAG_subprogram
18351 || last_die->tag == DW_TAG_lexical_block))))
18352 {
18353 nesting_level++;
18354 parent_die = last_die;
18355 continue;
18356 }
18357
18358 /* Otherwise we skip to the next sibling, if any. */
18359 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18360
18361 /* Back to the top, do it again. */
18362 }
18363 }
18364
18365 partial_die_info::partial_die_info (sect_offset sect_off_,
18366 struct abbrev_info *abbrev)
18367 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18368 {
18369 }
18370
18371 /* Read a minimal amount of information into the minimal die structure.
18372 INFO_PTR should point just after the initial uleb128 of a DIE. */
18373
18374 const gdb_byte *
18375 partial_die_info::read (const struct die_reader_specs *reader,
18376 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18377 {
18378 struct dwarf2_cu *cu = reader->cu;
18379 struct dwarf2_per_objfile *dwarf2_per_objfile
18380 = cu->per_cu->dwarf2_per_objfile;
18381 unsigned int i;
18382 int has_low_pc_attr = 0;
18383 int has_high_pc_attr = 0;
18384 int high_pc_relative = 0;
18385
18386 for (i = 0; i < abbrev.num_attrs; ++i)
18387 {
18388 struct attribute attr;
18389
18390 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18391
18392 /* Store the data if it is of an attribute we want to keep in a
18393 partial symbol table. */
18394 switch (attr.name)
18395 {
18396 case DW_AT_name:
18397 switch (tag)
18398 {
18399 case DW_TAG_compile_unit:
18400 case DW_TAG_partial_unit:
18401 case DW_TAG_type_unit:
18402 /* Compilation units have a DW_AT_name that is a filename, not
18403 a source language identifier. */
18404 case DW_TAG_enumeration_type:
18405 case DW_TAG_enumerator:
18406 /* These tags always have simple identifiers already; no need
18407 to canonicalize them. */
18408 name = DW_STRING (&attr);
18409 break;
18410 default:
18411 {
18412 struct objfile *objfile = dwarf2_per_objfile->objfile;
18413
18414 name
18415 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18416 &objfile->per_bfd->storage_obstack);
18417 }
18418 break;
18419 }
18420 break;
18421 case DW_AT_linkage_name:
18422 case DW_AT_MIPS_linkage_name:
18423 /* Note that both forms of linkage name might appear. We
18424 assume they will be the same, and we only store the last
18425 one we see. */
18426 if (cu->language == language_ada)
18427 name = DW_STRING (&attr);
18428 linkage_name = DW_STRING (&attr);
18429 break;
18430 case DW_AT_low_pc:
18431 has_low_pc_attr = 1;
18432 lowpc = attr_value_as_address (&attr);
18433 break;
18434 case DW_AT_high_pc:
18435 has_high_pc_attr = 1;
18436 highpc = attr_value_as_address (&attr);
18437 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18438 high_pc_relative = 1;
18439 break;
18440 case DW_AT_location:
18441 /* Support the .debug_loc offsets. */
18442 if (attr_form_is_block (&attr))
18443 {
18444 d.locdesc = DW_BLOCK (&attr);
18445 }
18446 else if (attr_form_is_section_offset (&attr))
18447 {
18448 dwarf2_complex_location_expr_complaint ();
18449 }
18450 else
18451 {
18452 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18453 "partial symbol information");
18454 }
18455 break;
18456 case DW_AT_external:
18457 is_external = DW_UNSND (&attr);
18458 break;
18459 case DW_AT_declaration:
18460 is_declaration = DW_UNSND (&attr);
18461 break;
18462 case DW_AT_type:
18463 has_type = 1;
18464 break;
18465 case DW_AT_abstract_origin:
18466 case DW_AT_specification:
18467 case DW_AT_extension:
18468 has_specification = 1;
18469 spec_offset = dwarf2_get_ref_die_offset (&attr);
18470 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18471 || cu->per_cu->is_dwz);
18472 break;
18473 case DW_AT_sibling:
18474 /* Ignore absolute siblings, they might point outside of
18475 the current compile unit. */
18476 if (attr.form == DW_FORM_ref_addr)
18477 complaint (_("ignoring absolute DW_AT_sibling"));
18478 else
18479 {
18480 const gdb_byte *buffer = reader->buffer;
18481 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18482 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18483
18484 if (sibling_ptr < info_ptr)
18485 complaint (_("DW_AT_sibling points backwards"));
18486 else if (sibling_ptr > reader->buffer_end)
18487 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18488 else
18489 sibling = sibling_ptr;
18490 }
18491 break;
18492 case DW_AT_byte_size:
18493 has_byte_size = 1;
18494 break;
18495 case DW_AT_const_value:
18496 has_const_value = 1;
18497 break;
18498 case DW_AT_calling_convention:
18499 /* DWARF doesn't provide a way to identify a program's source-level
18500 entry point. DW_AT_calling_convention attributes are only meant
18501 to describe functions' calling conventions.
18502
18503 However, because it's a necessary piece of information in
18504 Fortran, and before DWARF 4 DW_CC_program was the only
18505 piece of debugging information whose definition refers to
18506 a 'main program' at all, several compilers marked Fortran
18507 main programs with DW_CC_program --- even when those
18508 functions use the standard calling conventions.
18509
18510 Although DWARF now specifies a way to provide this
18511 information, we support this practice for backward
18512 compatibility. */
18513 if (DW_UNSND (&attr) == DW_CC_program
18514 && cu->language == language_fortran)
18515 main_subprogram = 1;
18516 break;
18517 case DW_AT_inline:
18518 if (DW_UNSND (&attr) == DW_INL_inlined
18519 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18520 may_be_inlined = 1;
18521 break;
18522
18523 case DW_AT_import:
18524 if (tag == DW_TAG_imported_unit)
18525 {
18526 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18527 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18528 || cu->per_cu->is_dwz);
18529 }
18530 break;
18531
18532 case DW_AT_main_subprogram:
18533 main_subprogram = DW_UNSND (&attr);
18534 break;
18535
18536 default:
18537 break;
18538 }
18539 }
18540
18541 if (high_pc_relative)
18542 highpc += lowpc;
18543
18544 if (has_low_pc_attr && has_high_pc_attr)
18545 {
18546 /* When using the GNU linker, .gnu.linkonce. sections are used to
18547 eliminate duplicate copies of functions and vtables and such.
18548 The linker will arbitrarily choose one and discard the others.
18549 The AT_*_pc values for such functions refer to local labels in
18550 these sections. If the section from that file was discarded, the
18551 labels are not in the output, so the relocs get a value of 0.
18552 If this is a discarded function, mark the pc bounds as invalid,
18553 so that GDB will ignore it. */
18554 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18555 {
18556 struct objfile *objfile = dwarf2_per_objfile->objfile;
18557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18558
18559 complaint (_("DW_AT_low_pc %s is zero "
18560 "for DIE at %s [in module %s]"),
18561 paddress (gdbarch, lowpc),
18562 sect_offset_str (sect_off),
18563 objfile_name (objfile));
18564 }
18565 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18566 else if (lowpc >= highpc)
18567 {
18568 struct objfile *objfile = dwarf2_per_objfile->objfile;
18569 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18570
18571 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18572 "for DIE at %s [in module %s]"),
18573 paddress (gdbarch, lowpc),
18574 paddress (gdbarch, highpc),
18575 sect_offset_str (sect_off),
18576 objfile_name (objfile));
18577 }
18578 else
18579 has_pc_info = 1;
18580 }
18581
18582 return info_ptr;
18583 }
18584
18585 /* Find a cached partial DIE at OFFSET in CU. */
18586
18587 struct partial_die_info *
18588 dwarf2_cu::find_partial_die (sect_offset sect_off)
18589 {
18590 struct partial_die_info *lookup_die = NULL;
18591 struct partial_die_info part_die (sect_off);
18592
18593 lookup_die = ((struct partial_die_info *)
18594 htab_find_with_hash (partial_dies, &part_die,
18595 to_underlying (sect_off)));
18596
18597 return lookup_die;
18598 }
18599
18600 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18601 except in the case of .debug_types DIEs which do not reference
18602 outside their CU (they do however referencing other types via
18603 DW_FORM_ref_sig8). */
18604
18605 static struct partial_die_info *
18606 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18607 {
18608 struct dwarf2_per_objfile *dwarf2_per_objfile
18609 = cu->per_cu->dwarf2_per_objfile;
18610 struct objfile *objfile = dwarf2_per_objfile->objfile;
18611 struct dwarf2_per_cu_data *per_cu = NULL;
18612 struct partial_die_info *pd = NULL;
18613
18614 if (offset_in_dwz == cu->per_cu->is_dwz
18615 && offset_in_cu_p (&cu->header, sect_off))
18616 {
18617 pd = cu->find_partial_die (sect_off);
18618 if (pd != NULL)
18619 return pd;
18620 /* We missed recording what we needed.
18621 Load all dies and try again. */
18622 per_cu = cu->per_cu;
18623 }
18624 else
18625 {
18626 /* TUs don't reference other CUs/TUs (except via type signatures). */
18627 if (cu->per_cu->is_debug_types)
18628 {
18629 error (_("Dwarf Error: Type Unit at offset %s contains"
18630 " external reference to offset %s [in module %s].\n"),
18631 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18632 bfd_get_filename (objfile->obfd));
18633 }
18634 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18635 dwarf2_per_objfile);
18636
18637 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18638 load_partial_comp_unit (per_cu);
18639
18640 per_cu->cu->last_used = 0;
18641 pd = per_cu->cu->find_partial_die (sect_off);
18642 }
18643
18644 /* If we didn't find it, and not all dies have been loaded,
18645 load them all and try again. */
18646
18647 if (pd == NULL && per_cu->load_all_dies == 0)
18648 {
18649 per_cu->load_all_dies = 1;
18650
18651 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18652 THIS_CU->cu may already be in use. So we can't just free it and
18653 replace its DIEs with the ones we read in. Instead, we leave those
18654 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18655 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18656 set. */
18657 load_partial_comp_unit (per_cu);
18658
18659 pd = per_cu->cu->find_partial_die (sect_off);
18660 }
18661
18662 if (pd == NULL)
18663 internal_error (__FILE__, __LINE__,
18664 _("could not find partial DIE %s "
18665 "in cache [from module %s]\n"),
18666 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18667 return pd;
18668 }
18669
18670 /* See if we can figure out if the class lives in a namespace. We do
18671 this by looking for a member function; its demangled name will
18672 contain namespace info, if there is any. */
18673
18674 static void
18675 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18676 struct dwarf2_cu *cu)
18677 {
18678 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18679 what template types look like, because the demangler
18680 frequently doesn't give the same name as the debug info. We
18681 could fix this by only using the demangled name to get the
18682 prefix (but see comment in read_structure_type). */
18683
18684 struct partial_die_info *real_pdi;
18685 struct partial_die_info *child_pdi;
18686
18687 /* If this DIE (this DIE's specification, if any) has a parent, then
18688 we should not do this. We'll prepend the parent's fully qualified
18689 name when we create the partial symbol. */
18690
18691 real_pdi = struct_pdi;
18692 while (real_pdi->has_specification)
18693 real_pdi = find_partial_die (real_pdi->spec_offset,
18694 real_pdi->spec_is_dwz, cu);
18695
18696 if (real_pdi->die_parent != NULL)
18697 return;
18698
18699 for (child_pdi = struct_pdi->die_child;
18700 child_pdi != NULL;
18701 child_pdi = child_pdi->die_sibling)
18702 {
18703 if (child_pdi->tag == DW_TAG_subprogram
18704 && child_pdi->linkage_name != NULL)
18705 {
18706 char *actual_class_name
18707 = language_class_name_from_physname (cu->language_defn,
18708 child_pdi->linkage_name);
18709 if (actual_class_name != NULL)
18710 {
18711 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18712 struct_pdi->name
18713 = ((const char *)
18714 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18715 actual_class_name,
18716 strlen (actual_class_name)));
18717 xfree (actual_class_name);
18718 }
18719 break;
18720 }
18721 }
18722 }
18723
18724 void
18725 partial_die_info::fixup (struct dwarf2_cu *cu)
18726 {
18727 /* Once we've fixed up a die, there's no point in doing so again.
18728 This also avoids a memory leak if we were to call
18729 guess_partial_die_structure_name multiple times. */
18730 if (fixup_called)
18731 return;
18732
18733 /* If we found a reference attribute and the DIE has no name, try
18734 to find a name in the referred to DIE. */
18735
18736 if (name == NULL && has_specification)
18737 {
18738 struct partial_die_info *spec_die;
18739
18740 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18741
18742 spec_die->fixup (cu);
18743
18744 if (spec_die->name)
18745 {
18746 name = spec_die->name;
18747
18748 /* Copy DW_AT_external attribute if it is set. */
18749 if (spec_die->is_external)
18750 is_external = spec_die->is_external;
18751 }
18752 }
18753
18754 /* Set default names for some unnamed DIEs. */
18755
18756 if (name == NULL && tag == DW_TAG_namespace)
18757 name = CP_ANONYMOUS_NAMESPACE_STR;
18758
18759 /* If there is no parent die to provide a namespace, and there are
18760 children, see if we can determine the namespace from their linkage
18761 name. */
18762 if (cu->language == language_cplus
18763 && !VEC_empty (dwarf2_section_info_def,
18764 cu->per_cu->dwarf2_per_objfile->types)
18765 && die_parent == NULL
18766 && has_children
18767 && (tag == DW_TAG_class_type
18768 || tag == DW_TAG_structure_type
18769 || tag == DW_TAG_union_type))
18770 guess_partial_die_structure_name (this, cu);
18771
18772 /* GCC might emit a nameless struct or union that has a linkage
18773 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18774 if (name == NULL
18775 && (tag == DW_TAG_class_type
18776 || tag == DW_TAG_interface_type
18777 || tag == DW_TAG_structure_type
18778 || tag == DW_TAG_union_type)
18779 && linkage_name != NULL)
18780 {
18781 char *demangled;
18782
18783 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18784 if (demangled)
18785 {
18786 const char *base;
18787
18788 /* Strip any leading namespaces/classes, keep only the base name.
18789 DW_AT_name for named DIEs does not contain the prefixes. */
18790 base = strrchr (demangled, ':');
18791 if (base && base > demangled && base[-1] == ':')
18792 base++;
18793 else
18794 base = demangled;
18795
18796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18797 name
18798 = ((const char *)
18799 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18800 base, strlen (base)));
18801 xfree (demangled);
18802 }
18803 }
18804
18805 fixup_called = 1;
18806 }
18807
18808 /* Read an attribute value described by an attribute form. */
18809
18810 static const gdb_byte *
18811 read_attribute_value (const struct die_reader_specs *reader,
18812 struct attribute *attr, unsigned form,
18813 LONGEST implicit_const, const gdb_byte *info_ptr)
18814 {
18815 struct dwarf2_cu *cu = reader->cu;
18816 struct dwarf2_per_objfile *dwarf2_per_objfile
18817 = cu->per_cu->dwarf2_per_objfile;
18818 struct objfile *objfile = dwarf2_per_objfile->objfile;
18819 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18820 bfd *abfd = reader->abfd;
18821 struct comp_unit_head *cu_header = &cu->header;
18822 unsigned int bytes_read;
18823 struct dwarf_block *blk;
18824
18825 attr->form = (enum dwarf_form) form;
18826 switch (form)
18827 {
18828 case DW_FORM_ref_addr:
18829 if (cu->header.version == 2)
18830 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18831 else
18832 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18833 &cu->header, &bytes_read);
18834 info_ptr += bytes_read;
18835 break;
18836 case DW_FORM_GNU_ref_alt:
18837 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18838 info_ptr += bytes_read;
18839 break;
18840 case DW_FORM_addr:
18841 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18842 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18843 info_ptr += bytes_read;
18844 break;
18845 case DW_FORM_block2:
18846 blk = dwarf_alloc_block (cu);
18847 blk->size = read_2_bytes (abfd, info_ptr);
18848 info_ptr += 2;
18849 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18850 info_ptr += blk->size;
18851 DW_BLOCK (attr) = blk;
18852 break;
18853 case DW_FORM_block4:
18854 blk = dwarf_alloc_block (cu);
18855 blk->size = read_4_bytes (abfd, info_ptr);
18856 info_ptr += 4;
18857 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18858 info_ptr += blk->size;
18859 DW_BLOCK (attr) = blk;
18860 break;
18861 case DW_FORM_data2:
18862 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18863 info_ptr += 2;
18864 break;
18865 case DW_FORM_data4:
18866 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18867 info_ptr += 4;
18868 break;
18869 case DW_FORM_data8:
18870 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18871 info_ptr += 8;
18872 break;
18873 case DW_FORM_data16:
18874 blk = dwarf_alloc_block (cu);
18875 blk->size = 16;
18876 blk->data = read_n_bytes (abfd, info_ptr, 16);
18877 info_ptr += 16;
18878 DW_BLOCK (attr) = blk;
18879 break;
18880 case DW_FORM_sec_offset:
18881 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18882 info_ptr += bytes_read;
18883 break;
18884 case DW_FORM_string:
18885 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18886 DW_STRING_IS_CANONICAL (attr) = 0;
18887 info_ptr += bytes_read;
18888 break;
18889 case DW_FORM_strp:
18890 if (!cu->per_cu->is_dwz)
18891 {
18892 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18893 abfd, info_ptr, cu_header,
18894 &bytes_read);
18895 DW_STRING_IS_CANONICAL (attr) = 0;
18896 info_ptr += bytes_read;
18897 break;
18898 }
18899 /* FALLTHROUGH */
18900 case DW_FORM_line_strp:
18901 if (!cu->per_cu->is_dwz)
18902 {
18903 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18904 abfd, info_ptr,
18905 cu_header, &bytes_read);
18906 DW_STRING_IS_CANONICAL (attr) = 0;
18907 info_ptr += bytes_read;
18908 break;
18909 }
18910 /* FALLTHROUGH */
18911 case DW_FORM_GNU_strp_alt:
18912 {
18913 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18914 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18915 &bytes_read);
18916
18917 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18918 dwz, str_offset);
18919 DW_STRING_IS_CANONICAL (attr) = 0;
18920 info_ptr += bytes_read;
18921 }
18922 break;
18923 case DW_FORM_exprloc:
18924 case DW_FORM_block:
18925 blk = dwarf_alloc_block (cu);
18926 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18927 info_ptr += bytes_read;
18928 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18929 info_ptr += blk->size;
18930 DW_BLOCK (attr) = blk;
18931 break;
18932 case DW_FORM_block1:
18933 blk = dwarf_alloc_block (cu);
18934 blk->size = read_1_byte (abfd, info_ptr);
18935 info_ptr += 1;
18936 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18937 info_ptr += blk->size;
18938 DW_BLOCK (attr) = blk;
18939 break;
18940 case DW_FORM_data1:
18941 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18942 info_ptr += 1;
18943 break;
18944 case DW_FORM_flag:
18945 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18946 info_ptr += 1;
18947 break;
18948 case DW_FORM_flag_present:
18949 DW_UNSND (attr) = 1;
18950 break;
18951 case DW_FORM_sdata:
18952 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18953 info_ptr += bytes_read;
18954 break;
18955 case DW_FORM_udata:
18956 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18957 info_ptr += bytes_read;
18958 break;
18959 case DW_FORM_ref1:
18960 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18961 + read_1_byte (abfd, info_ptr));
18962 info_ptr += 1;
18963 break;
18964 case DW_FORM_ref2:
18965 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18966 + read_2_bytes (abfd, info_ptr));
18967 info_ptr += 2;
18968 break;
18969 case DW_FORM_ref4:
18970 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18971 + read_4_bytes (abfd, info_ptr));
18972 info_ptr += 4;
18973 break;
18974 case DW_FORM_ref8:
18975 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18976 + read_8_bytes (abfd, info_ptr));
18977 info_ptr += 8;
18978 break;
18979 case DW_FORM_ref_sig8:
18980 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18981 info_ptr += 8;
18982 break;
18983 case DW_FORM_ref_udata:
18984 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18985 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18986 info_ptr += bytes_read;
18987 break;
18988 case DW_FORM_indirect:
18989 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18990 info_ptr += bytes_read;
18991 if (form == DW_FORM_implicit_const)
18992 {
18993 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18994 info_ptr += bytes_read;
18995 }
18996 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18997 info_ptr);
18998 break;
18999 case DW_FORM_implicit_const:
19000 DW_SND (attr) = implicit_const;
19001 break;
19002 case DW_FORM_GNU_addr_index:
19003 if (reader->dwo_file == NULL)
19004 {
19005 /* For now flag a hard error.
19006 Later we can turn this into a complaint. */
19007 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19008 dwarf_form_name (form),
19009 bfd_get_filename (abfd));
19010 }
19011 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19012 info_ptr += bytes_read;
19013 break;
19014 case DW_FORM_GNU_str_index:
19015 if (reader->dwo_file == NULL)
19016 {
19017 /* For now flag a hard error.
19018 Later we can turn this into a complaint if warranted. */
19019 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19020 dwarf_form_name (form),
19021 bfd_get_filename (abfd));
19022 }
19023 {
19024 ULONGEST str_index =
19025 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19026
19027 DW_STRING (attr) = read_str_index (reader, str_index);
19028 DW_STRING_IS_CANONICAL (attr) = 0;
19029 info_ptr += bytes_read;
19030 }
19031 break;
19032 default:
19033 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19034 dwarf_form_name (form),
19035 bfd_get_filename (abfd));
19036 }
19037
19038 /* Super hack. */
19039 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19040 attr->form = DW_FORM_GNU_ref_alt;
19041
19042 /* We have seen instances where the compiler tried to emit a byte
19043 size attribute of -1 which ended up being encoded as an unsigned
19044 0xffffffff. Although 0xffffffff is technically a valid size value,
19045 an object of this size seems pretty unlikely so we can relatively
19046 safely treat these cases as if the size attribute was invalid and
19047 treat them as zero by default. */
19048 if (attr->name == DW_AT_byte_size
19049 && form == DW_FORM_data4
19050 && DW_UNSND (attr) >= 0xffffffff)
19051 {
19052 complaint
19053 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19054 hex_string (DW_UNSND (attr)));
19055 DW_UNSND (attr) = 0;
19056 }
19057
19058 return info_ptr;
19059 }
19060
19061 /* Read an attribute described by an abbreviated attribute. */
19062
19063 static const gdb_byte *
19064 read_attribute (const struct die_reader_specs *reader,
19065 struct attribute *attr, struct attr_abbrev *abbrev,
19066 const gdb_byte *info_ptr)
19067 {
19068 attr->name = abbrev->name;
19069 return read_attribute_value (reader, attr, abbrev->form,
19070 abbrev->implicit_const, info_ptr);
19071 }
19072
19073 /* Read dwarf information from a buffer. */
19074
19075 static unsigned int
19076 read_1_byte (bfd *abfd, const gdb_byte *buf)
19077 {
19078 return bfd_get_8 (abfd, buf);
19079 }
19080
19081 static int
19082 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19083 {
19084 return bfd_get_signed_8 (abfd, buf);
19085 }
19086
19087 static unsigned int
19088 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19089 {
19090 return bfd_get_16 (abfd, buf);
19091 }
19092
19093 static int
19094 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19095 {
19096 return bfd_get_signed_16 (abfd, buf);
19097 }
19098
19099 static unsigned int
19100 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19101 {
19102 return bfd_get_32 (abfd, buf);
19103 }
19104
19105 static int
19106 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19107 {
19108 return bfd_get_signed_32 (abfd, buf);
19109 }
19110
19111 static ULONGEST
19112 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19113 {
19114 return bfd_get_64 (abfd, buf);
19115 }
19116
19117 static CORE_ADDR
19118 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19119 unsigned int *bytes_read)
19120 {
19121 struct comp_unit_head *cu_header = &cu->header;
19122 CORE_ADDR retval = 0;
19123
19124 if (cu_header->signed_addr_p)
19125 {
19126 switch (cu_header->addr_size)
19127 {
19128 case 2:
19129 retval = bfd_get_signed_16 (abfd, buf);
19130 break;
19131 case 4:
19132 retval = bfd_get_signed_32 (abfd, buf);
19133 break;
19134 case 8:
19135 retval = bfd_get_signed_64 (abfd, buf);
19136 break;
19137 default:
19138 internal_error (__FILE__, __LINE__,
19139 _("read_address: bad switch, signed [in module %s]"),
19140 bfd_get_filename (abfd));
19141 }
19142 }
19143 else
19144 {
19145 switch (cu_header->addr_size)
19146 {
19147 case 2:
19148 retval = bfd_get_16 (abfd, buf);
19149 break;
19150 case 4:
19151 retval = bfd_get_32 (abfd, buf);
19152 break;
19153 case 8:
19154 retval = bfd_get_64 (abfd, buf);
19155 break;
19156 default:
19157 internal_error (__FILE__, __LINE__,
19158 _("read_address: bad switch, "
19159 "unsigned [in module %s]"),
19160 bfd_get_filename (abfd));
19161 }
19162 }
19163
19164 *bytes_read = cu_header->addr_size;
19165 return retval;
19166 }
19167
19168 /* Read the initial length from a section. The (draft) DWARF 3
19169 specification allows the initial length to take up either 4 bytes
19170 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19171 bytes describe the length and all offsets will be 8 bytes in length
19172 instead of 4.
19173
19174 An older, non-standard 64-bit format is also handled by this
19175 function. The older format in question stores the initial length
19176 as an 8-byte quantity without an escape value. Lengths greater
19177 than 2^32 aren't very common which means that the initial 4 bytes
19178 is almost always zero. Since a length value of zero doesn't make
19179 sense for the 32-bit format, this initial zero can be considered to
19180 be an escape value which indicates the presence of the older 64-bit
19181 format. As written, the code can't detect (old format) lengths
19182 greater than 4GB. If it becomes necessary to handle lengths
19183 somewhat larger than 4GB, we could allow other small values (such
19184 as the non-sensical values of 1, 2, and 3) to also be used as
19185 escape values indicating the presence of the old format.
19186
19187 The value returned via bytes_read should be used to increment the
19188 relevant pointer after calling read_initial_length().
19189
19190 [ Note: read_initial_length() and read_offset() are based on the
19191 document entitled "DWARF Debugging Information Format", revision
19192 3, draft 8, dated November 19, 2001. This document was obtained
19193 from:
19194
19195 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19196
19197 This document is only a draft and is subject to change. (So beware.)
19198
19199 Details regarding the older, non-standard 64-bit format were
19200 determined empirically by examining 64-bit ELF files produced by
19201 the SGI toolchain on an IRIX 6.5 machine.
19202
19203 - Kevin, July 16, 2002
19204 ] */
19205
19206 static LONGEST
19207 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19208 {
19209 LONGEST length = bfd_get_32 (abfd, buf);
19210
19211 if (length == 0xffffffff)
19212 {
19213 length = bfd_get_64 (abfd, buf + 4);
19214 *bytes_read = 12;
19215 }
19216 else if (length == 0)
19217 {
19218 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19219 length = bfd_get_64 (abfd, buf);
19220 *bytes_read = 8;
19221 }
19222 else
19223 {
19224 *bytes_read = 4;
19225 }
19226
19227 return length;
19228 }
19229
19230 /* Cover function for read_initial_length.
19231 Returns the length of the object at BUF, and stores the size of the
19232 initial length in *BYTES_READ and stores the size that offsets will be in
19233 *OFFSET_SIZE.
19234 If the initial length size is not equivalent to that specified in
19235 CU_HEADER then issue a complaint.
19236 This is useful when reading non-comp-unit headers. */
19237
19238 static LONGEST
19239 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19240 const struct comp_unit_head *cu_header,
19241 unsigned int *bytes_read,
19242 unsigned int *offset_size)
19243 {
19244 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19245
19246 gdb_assert (cu_header->initial_length_size == 4
19247 || cu_header->initial_length_size == 8
19248 || cu_header->initial_length_size == 12);
19249
19250 if (cu_header->initial_length_size != *bytes_read)
19251 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19252
19253 *offset_size = (*bytes_read == 4) ? 4 : 8;
19254 return length;
19255 }
19256
19257 /* Read an offset from the data stream. The size of the offset is
19258 given by cu_header->offset_size. */
19259
19260 static LONGEST
19261 read_offset (bfd *abfd, const gdb_byte *buf,
19262 const struct comp_unit_head *cu_header,
19263 unsigned int *bytes_read)
19264 {
19265 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19266
19267 *bytes_read = cu_header->offset_size;
19268 return offset;
19269 }
19270
19271 /* Read an offset from the data stream. */
19272
19273 static LONGEST
19274 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19275 {
19276 LONGEST retval = 0;
19277
19278 switch (offset_size)
19279 {
19280 case 4:
19281 retval = bfd_get_32 (abfd, buf);
19282 break;
19283 case 8:
19284 retval = bfd_get_64 (abfd, buf);
19285 break;
19286 default:
19287 internal_error (__FILE__, __LINE__,
19288 _("read_offset_1: bad switch [in module %s]"),
19289 bfd_get_filename (abfd));
19290 }
19291
19292 return retval;
19293 }
19294
19295 static const gdb_byte *
19296 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19297 {
19298 /* If the size of a host char is 8 bits, we can return a pointer
19299 to the buffer, otherwise we have to copy the data to a buffer
19300 allocated on the temporary obstack. */
19301 gdb_assert (HOST_CHAR_BIT == 8);
19302 return buf;
19303 }
19304
19305 static const char *
19306 read_direct_string (bfd *abfd, const gdb_byte *buf,
19307 unsigned int *bytes_read_ptr)
19308 {
19309 /* If the size of a host char is 8 bits, we can return a pointer
19310 to the string, otherwise we have to copy the string to a buffer
19311 allocated on the temporary obstack. */
19312 gdb_assert (HOST_CHAR_BIT == 8);
19313 if (*buf == '\0')
19314 {
19315 *bytes_read_ptr = 1;
19316 return NULL;
19317 }
19318 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19319 return (const char *) buf;
19320 }
19321
19322 /* Return pointer to string at section SECT offset STR_OFFSET with error
19323 reporting strings FORM_NAME and SECT_NAME. */
19324
19325 static const char *
19326 read_indirect_string_at_offset_from (struct objfile *objfile,
19327 bfd *abfd, LONGEST str_offset,
19328 struct dwarf2_section_info *sect,
19329 const char *form_name,
19330 const char *sect_name)
19331 {
19332 dwarf2_read_section (objfile, sect);
19333 if (sect->buffer == NULL)
19334 error (_("%s used without %s section [in module %s]"),
19335 form_name, sect_name, bfd_get_filename (abfd));
19336 if (str_offset >= sect->size)
19337 error (_("%s pointing outside of %s section [in module %s]"),
19338 form_name, sect_name, bfd_get_filename (abfd));
19339 gdb_assert (HOST_CHAR_BIT == 8);
19340 if (sect->buffer[str_offset] == '\0')
19341 return NULL;
19342 return (const char *) (sect->buffer + str_offset);
19343 }
19344
19345 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19346
19347 static const char *
19348 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19349 bfd *abfd, LONGEST str_offset)
19350 {
19351 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19352 abfd, str_offset,
19353 &dwarf2_per_objfile->str,
19354 "DW_FORM_strp", ".debug_str");
19355 }
19356
19357 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19358
19359 static const char *
19360 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19361 bfd *abfd, LONGEST str_offset)
19362 {
19363 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19364 abfd, str_offset,
19365 &dwarf2_per_objfile->line_str,
19366 "DW_FORM_line_strp",
19367 ".debug_line_str");
19368 }
19369
19370 /* Read a string at offset STR_OFFSET in the .debug_str section from
19371 the .dwz file DWZ. Throw an error if the offset is too large. If
19372 the string consists of a single NUL byte, return NULL; otherwise
19373 return a pointer to the string. */
19374
19375 static const char *
19376 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19377 LONGEST str_offset)
19378 {
19379 dwarf2_read_section (objfile, &dwz->str);
19380
19381 if (dwz->str.buffer == NULL)
19382 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19383 "section [in module %s]"),
19384 bfd_get_filename (dwz->dwz_bfd));
19385 if (str_offset >= dwz->str.size)
19386 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19387 ".debug_str section [in module %s]"),
19388 bfd_get_filename (dwz->dwz_bfd));
19389 gdb_assert (HOST_CHAR_BIT == 8);
19390 if (dwz->str.buffer[str_offset] == '\0')
19391 return NULL;
19392 return (const char *) (dwz->str.buffer + str_offset);
19393 }
19394
19395 /* Return pointer to string at .debug_str offset as read from BUF.
19396 BUF is assumed to be in a compilation unit described by CU_HEADER.
19397 Return *BYTES_READ_PTR count of bytes read from BUF. */
19398
19399 static const char *
19400 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19401 const gdb_byte *buf,
19402 const struct comp_unit_head *cu_header,
19403 unsigned int *bytes_read_ptr)
19404 {
19405 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19406
19407 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19408 }
19409
19410 /* Return pointer to string at .debug_line_str offset as read from BUF.
19411 BUF is assumed to be in a compilation unit described by CU_HEADER.
19412 Return *BYTES_READ_PTR count of bytes read from BUF. */
19413
19414 static const char *
19415 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19416 bfd *abfd, const gdb_byte *buf,
19417 const struct comp_unit_head *cu_header,
19418 unsigned int *bytes_read_ptr)
19419 {
19420 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19421
19422 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19423 str_offset);
19424 }
19425
19426 ULONGEST
19427 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19428 unsigned int *bytes_read_ptr)
19429 {
19430 ULONGEST result;
19431 unsigned int num_read;
19432 int shift;
19433 unsigned char byte;
19434
19435 result = 0;
19436 shift = 0;
19437 num_read = 0;
19438 while (1)
19439 {
19440 byte = bfd_get_8 (abfd, buf);
19441 buf++;
19442 num_read++;
19443 result |= ((ULONGEST) (byte & 127) << shift);
19444 if ((byte & 128) == 0)
19445 {
19446 break;
19447 }
19448 shift += 7;
19449 }
19450 *bytes_read_ptr = num_read;
19451 return result;
19452 }
19453
19454 static LONGEST
19455 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19456 unsigned int *bytes_read_ptr)
19457 {
19458 LONGEST result;
19459 int shift, num_read;
19460 unsigned char byte;
19461
19462 result = 0;
19463 shift = 0;
19464 num_read = 0;
19465 while (1)
19466 {
19467 byte = bfd_get_8 (abfd, buf);
19468 buf++;
19469 num_read++;
19470 result |= ((LONGEST) (byte & 127) << shift);
19471 shift += 7;
19472 if ((byte & 128) == 0)
19473 {
19474 break;
19475 }
19476 }
19477 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19478 result |= -(((LONGEST) 1) << shift);
19479 *bytes_read_ptr = num_read;
19480 return result;
19481 }
19482
19483 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19484 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19485 ADDR_SIZE is the size of addresses from the CU header. */
19486
19487 static CORE_ADDR
19488 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19489 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19490 {
19491 struct objfile *objfile = dwarf2_per_objfile->objfile;
19492 bfd *abfd = objfile->obfd;
19493 const gdb_byte *info_ptr;
19494
19495 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19496 if (dwarf2_per_objfile->addr.buffer == NULL)
19497 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19498 objfile_name (objfile));
19499 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19500 error (_("DW_FORM_addr_index pointing outside of "
19501 ".debug_addr section [in module %s]"),
19502 objfile_name (objfile));
19503 info_ptr = (dwarf2_per_objfile->addr.buffer
19504 + addr_base + addr_index * addr_size);
19505 if (addr_size == 4)
19506 return bfd_get_32 (abfd, info_ptr);
19507 else
19508 return bfd_get_64 (abfd, info_ptr);
19509 }
19510
19511 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19512
19513 static CORE_ADDR
19514 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19515 {
19516 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19517 cu->addr_base, cu->header.addr_size);
19518 }
19519
19520 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19521
19522 static CORE_ADDR
19523 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19524 unsigned int *bytes_read)
19525 {
19526 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19527 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19528
19529 return read_addr_index (cu, addr_index);
19530 }
19531
19532 /* Data structure to pass results from dwarf2_read_addr_index_reader
19533 back to dwarf2_read_addr_index. */
19534
19535 struct dwarf2_read_addr_index_data
19536 {
19537 ULONGEST addr_base;
19538 int addr_size;
19539 };
19540
19541 /* die_reader_func for dwarf2_read_addr_index. */
19542
19543 static void
19544 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19545 const gdb_byte *info_ptr,
19546 struct die_info *comp_unit_die,
19547 int has_children,
19548 void *data)
19549 {
19550 struct dwarf2_cu *cu = reader->cu;
19551 struct dwarf2_read_addr_index_data *aidata =
19552 (struct dwarf2_read_addr_index_data *) data;
19553
19554 aidata->addr_base = cu->addr_base;
19555 aidata->addr_size = cu->header.addr_size;
19556 }
19557
19558 /* Given an index in .debug_addr, fetch the value.
19559 NOTE: This can be called during dwarf expression evaluation,
19560 long after the debug information has been read, and thus per_cu->cu
19561 may no longer exist. */
19562
19563 CORE_ADDR
19564 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19565 unsigned int addr_index)
19566 {
19567 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19568 struct dwarf2_cu *cu = per_cu->cu;
19569 ULONGEST addr_base;
19570 int addr_size;
19571
19572 /* We need addr_base and addr_size.
19573 If we don't have PER_CU->cu, we have to get it.
19574 Nasty, but the alternative is storing the needed info in PER_CU,
19575 which at this point doesn't seem justified: it's not clear how frequently
19576 it would get used and it would increase the size of every PER_CU.
19577 Entry points like dwarf2_per_cu_addr_size do a similar thing
19578 so we're not in uncharted territory here.
19579 Alas we need to be a bit more complicated as addr_base is contained
19580 in the DIE.
19581
19582 We don't need to read the entire CU(/TU).
19583 We just need the header and top level die.
19584
19585 IWBN to use the aging mechanism to let us lazily later discard the CU.
19586 For now we skip this optimization. */
19587
19588 if (cu != NULL)
19589 {
19590 addr_base = cu->addr_base;
19591 addr_size = cu->header.addr_size;
19592 }
19593 else
19594 {
19595 struct dwarf2_read_addr_index_data aidata;
19596
19597 /* Note: We can't use init_cutu_and_read_dies_simple here,
19598 we need addr_base. */
19599 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19600 dwarf2_read_addr_index_reader, &aidata);
19601 addr_base = aidata.addr_base;
19602 addr_size = aidata.addr_size;
19603 }
19604
19605 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19606 addr_size);
19607 }
19608
19609 /* Given a DW_FORM_GNU_str_index, fetch the string.
19610 This is only used by the Fission support. */
19611
19612 static const char *
19613 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19614 {
19615 struct dwarf2_cu *cu = reader->cu;
19616 struct dwarf2_per_objfile *dwarf2_per_objfile
19617 = cu->per_cu->dwarf2_per_objfile;
19618 struct objfile *objfile = dwarf2_per_objfile->objfile;
19619 const char *objf_name = objfile_name (objfile);
19620 bfd *abfd = objfile->obfd;
19621 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19622 struct dwarf2_section_info *str_offsets_section =
19623 &reader->dwo_file->sections.str_offsets;
19624 const gdb_byte *info_ptr;
19625 ULONGEST str_offset;
19626 static const char form_name[] = "DW_FORM_GNU_str_index";
19627
19628 dwarf2_read_section (objfile, str_section);
19629 dwarf2_read_section (objfile, str_offsets_section);
19630 if (str_section->buffer == NULL)
19631 error (_("%s used without .debug_str.dwo section"
19632 " in CU at offset %s [in module %s]"),
19633 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19634 if (str_offsets_section->buffer == NULL)
19635 error (_("%s used without .debug_str_offsets.dwo section"
19636 " in CU at offset %s [in module %s]"),
19637 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19638 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19639 error (_("%s pointing outside of .debug_str_offsets.dwo"
19640 " section in CU at offset %s [in module %s]"),
19641 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19642 info_ptr = (str_offsets_section->buffer
19643 + str_index * cu->header.offset_size);
19644 if (cu->header.offset_size == 4)
19645 str_offset = bfd_get_32 (abfd, info_ptr);
19646 else
19647 str_offset = bfd_get_64 (abfd, info_ptr);
19648 if (str_offset >= str_section->size)
19649 error (_("Offset from %s pointing outside of"
19650 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19651 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19652 return (const char *) (str_section->buffer + str_offset);
19653 }
19654
19655 /* Return the length of an LEB128 number in BUF. */
19656
19657 static int
19658 leb128_size (const gdb_byte *buf)
19659 {
19660 const gdb_byte *begin = buf;
19661 gdb_byte byte;
19662
19663 while (1)
19664 {
19665 byte = *buf++;
19666 if ((byte & 128) == 0)
19667 return buf - begin;
19668 }
19669 }
19670
19671 static void
19672 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19673 {
19674 switch (lang)
19675 {
19676 case DW_LANG_C89:
19677 case DW_LANG_C99:
19678 case DW_LANG_C11:
19679 case DW_LANG_C:
19680 case DW_LANG_UPC:
19681 cu->language = language_c;
19682 break;
19683 case DW_LANG_Java:
19684 case DW_LANG_C_plus_plus:
19685 case DW_LANG_C_plus_plus_11:
19686 case DW_LANG_C_plus_plus_14:
19687 cu->language = language_cplus;
19688 break;
19689 case DW_LANG_D:
19690 cu->language = language_d;
19691 break;
19692 case DW_LANG_Fortran77:
19693 case DW_LANG_Fortran90:
19694 case DW_LANG_Fortran95:
19695 case DW_LANG_Fortran03:
19696 case DW_LANG_Fortran08:
19697 cu->language = language_fortran;
19698 break;
19699 case DW_LANG_Go:
19700 cu->language = language_go;
19701 break;
19702 case DW_LANG_Mips_Assembler:
19703 cu->language = language_asm;
19704 break;
19705 case DW_LANG_Ada83:
19706 case DW_LANG_Ada95:
19707 cu->language = language_ada;
19708 break;
19709 case DW_LANG_Modula2:
19710 cu->language = language_m2;
19711 break;
19712 case DW_LANG_Pascal83:
19713 cu->language = language_pascal;
19714 break;
19715 case DW_LANG_ObjC:
19716 cu->language = language_objc;
19717 break;
19718 case DW_LANG_Rust:
19719 case DW_LANG_Rust_old:
19720 cu->language = language_rust;
19721 break;
19722 case DW_LANG_Cobol74:
19723 case DW_LANG_Cobol85:
19724 default:
19725 cu->language = language_minimal;
19726 break;
19727 }
19728 cu->language_defn = language_def (cu->language);
19729 }
19730
19731 /* Return the named attribute or NULL if not there. */
19732
19733 static struct attribute *
19734 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19735 {
19736 for (;;)
19737 {
19738 unsigned int i;
19739 struct attribute *spec = NULL;
19740
19741 for (i = 0; i < die->num_attrs; ++i)
19742 {
19743 if (die->attrs[i].name == name)
19744 return &die->attrs[i];
19745 if (die->attrs[i].name == DW_AT_specification
19746 || die->attrs[i].name == DW_AT_abstract_origin)
19747 spec = &die->attrs[i];
19748 }
19749
19750 if (!spec)
19751 break;
19752
19753 die = follow_die_ref (die, spec, &cu);
19754 }
19755
19756 return NULL;
19757 }
19758
19759 /* Return the named attribute or NULL if not there,
19760 but do not follow DW_AT_specification, etc.
19761 This is for use in contexts where we're reading .debug_types dies.
19762 Following DW_AT_specification, DW_AT_abstract_origin will take us
19763 back up the chain, and we want to go down. */
19764
19765 static struct attribute *
19766 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19767 {
19768 unsigned int i;
19769
19770 for (i = 0; i < die->num_attrs; ++i)
19771 if (die->attrs[i].name == name)
19772 return &die->attrs[i];
19773
19774 return NULL;
19775 }
19776
19777 /* Return the string associated with a string-typed attribute, or NULL if it
19778 is either not found or is of an incorrect type. */
19779
19780 static const char *
19781 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19782 {
19783 struct attribute *attr;
19784 const char *str = NULL;
19785
19786 attr = dwarf2_attr (die, name, cu);
19787
19788 if (attr != NULL)
19789 {
19790 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19791 || attr->form == DW_FORM_string
19792 || attr->form == DW_FORM_GNU_str_index
19793 || attr->form == DW_FORM_GNU_strp_alt)
19794 str = DW_STRING (attr);
19795 else
19796 complaint (_("string type expected for attribute %s for "
19797 "DIE at %s in module %s"),
19798 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19799 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19800 }
19801
19802 return str;
19803 }
19804
19805 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19806 and holds a non-zero value. This function should only be used for
19807 DW_FORM_flag or DW_FORM_flag_present attributes. */
19808
19809 static int
19810 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19811 {
19812 struct attribute *attr = dwarf2_attr (die, name, cu);
19813
19814 return (attr && DW_UNSND (attr));
19815 }
19816
19817 static int
19818 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19819 {
19820 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19821 which value is non-zero. However, we have to be careful with
19822 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19823 (via dwarf2_flag_true_p) follows this attribute. So we may
19824 end up accidently finding a declaration attribute that belongs
19825 to a different DIE referenced by the specification attribute,
19826 even though the given DIE does not have a declaration attribute. */
19827 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19828 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19829 }
19830
19831 /* Return the die giving the specification for DIE, if there is
19832 one. *SPEC_CU is the CU containing DIE on input, and the CU
19833 containing the return value on output. If there is no
19834 specification, but there is an abstract origin, that is
19835 returned. */
19836
19837 static struct die_info *
19838 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19839 {
19840 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19841 *spec_cu);
19842
19843 if (spec_attr == NULL)
19844 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19845
19846 if (spec_attr == NULL)
19847 return NULL;
19848 else
19849 return follow_die_ref (die, spec_attr, spec_cu);
19850 }
19851
19852 /* Stub for free_line_header to match void * callback types. */
19853
19854 static void
19855 free_line_header_voidp (void *arg)
19856 {
19857 struct line_header *lh = (struct line_header *) arg;
19858
19859 delete lh;
19860 }
19861
19862 void
19863 line_header::add_include_dir (const char *include_dir)
19864 {
19865 if (dwarf_line_debug >= 2)
19866 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19867 include_dirs.size () + 1, include_dir);
19868
19869 include_dirs.push_back (include_dir);
19870 }
19871
19872 void
19873 line_header::add_file_name (const char *name,
19874 dir_index d_index,
19875 unsigned int mod_time,
19876 unsigned int length)
19877 {
19878 if (dwarf_line_debug >= 2)
19879 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19880 (unsigned) file_names.size () + 1, name);
19881
19882 file_names.emplace_back (name, d_index, mod_time, length);
19883 }
19884
19885 /* A convenience function to find the proper .debug_line section for a CU. */
19886
19887 static struct dwarf2_section_info *
19888 get_debug_line_section (struct dwarf2_cu *cu)
19889 {
19890 struct dwarf2_section_info *section;
19891 struct dwarf2_per_objfile *dwarf2_per_objfile
19892 = cu->per_cu->dwarf2_per_objfile;
19893
19894 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19895 DWO file. */
19896 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19897 section = &cu->dwo_unit->dwo_file->sections.line;
19898 else if (cu->per_cu->is_dwz)
19899 {
19900 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19901
19902 section = &dwz->line;
19903 }
19904 else
19905 section = &dwarf2_per_objfile->line;
19906
19907 return section;
19908 }
19909
19910 /* Read directory or file name entry format, starting with byte of
19911 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19912 entries count and the entries themselves in the described entry
19913 format. */
19914
19915 static void
19916 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19917 bfd *abfd, const gdb_byte **bufp,
19918 struct line_header *lh,
19919 const struct comp_unit_head *cu_header,
19920 void (*callback) (struct line_header *lh,
19921 const char *name,
19922 dir_index d_index,
19923 unsigned int mod_time,
19924 unsigned int length))
19925 {
19926 gdb_byte format_count, formati;
19927 ULONGEST data_count, datai;
19928 const gdb_byte *buf = *bufp;
19929 const gdb_byte *format_header_data;
19930 unsigned int bytes_read;
19931
19932 format_count = read_1_byte (abfd, buf);
19933 buf += 1;
19934 format_header_data = buf;
19935 for (formati = 0; formati < format_count; formati++)
19936 {
19937 read_unsigned_leb128 (abfd, buf, &bytes_read);
19938 buf += bytes_read;
19939 read_unsigned_leb128 (abfd, buf, &bytes_read);
19940 buf += bytes_read;
19941 }
19942
19943 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19944 buf += bytes_read;
19945 for (datai = 0; datai < data_count; datai++)
19946 {
19947 const gdb_byte *format = format_header_data;
19948 struct file_entry fe;
19949
19950 for (formati = 0; formati < format_count; formati++)
19951 {
19952 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19953 format += bytes_read;
19954
19955 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19956 format += bytes_read;
19957
19958 gdb::optional<const char *> string;
19959 gdb::optional<unsigned int> uint;
19960
19961 switch (form)
19962 {
19963 case DW_FORM_string:
19964 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19965 buf += bytes_read;
19966 break;
19967
19968 case DW_FORM_line_strp:
19969 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19970 abfd, buf,
19971 cu_header,
19972 &bytes_read));
19973 buf += bytes_read;
19974 break;
19975
19976 case DW_FORM_data1:
19977 uint.emplace (read_1_byte (abfd, buf));
19978 buf += 1;
19979 break;
19980
19981 case DW_FORM_data2:
19982 uint.emplace (read_2_bytes (abfd, buf));
19983 buf += 2;
19984 break;
19985
19986 case DW_FORM_data4:
19987 uint.emplace (read_4_bytes (abfd, buf));
19988 buf += 4;
19989 break;
19990
19991 case DW_FORM_data8:
19992 uint.emplace (read_8_bytes (abfd, buf));
19993 buf += 8;
19994 break;
19995
19996 case DW_FORM_udata:
19997 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19998 buf += bytes_read;
19999 break;
20000
20001 case DW_FORM_block:
20002 /* It is valid only for DW_LNCT_timestamp which is ignored by
20003 current GDB. */
20004 break;
20005 }
20006
20007 switch (content_type)
20008 {
20009 case DW_LNCT_path:
20010 if (string.has_value ())
20011 fe.name = *string;
20012 break;
20013 case DW_LNCT_directory_index:
20014 if (uint.has_value ())
20015 fe.d_index = (dir_index) *uint;
20016 break;
20017 case DW_LNCT_timestamp:
20018 if (uint.has_value ())
20019 fe.mod_time = *uint;
20020 break;
20021 case DW_LNCT_size:
20022 if (uint.has_value ())
20023 fe.length = *uint;
20024 break;
20025 case DW_LNCT_MD5:
20026 break;
20027 default:
20028 complaint (_("Unknown format content type %s"),
20029 pulongest (content_type));
20030 }
20031 }
20032
20033 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20034 }
20035
20036 *bufp = buf;
20037 }
20038
20039 /* Read the statement program header starting at OFFSET in
20040 .debug_line, or .debug_line.dwo. Return a pointer
20041 to a struct line_header, allocated using xmalloc.
20042 Returns NULL if there is a problem reading the header, e.g., if it
20043 has a version we don't understand.
20044
20045 NOTE: the strings in the include directory and file name tables of
20046 the returned object point into the dwarf line section buffer,
20047 and must not be freed. */
20048
20049 static line_header_up
20050 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20051 {
20052 const gdb_byte *line_ptr;
20053 unsigned int bytes_read, offset_size;
20054 int i;
20055 const char *cur_dir, *cur_file;
20056 struct dwarf2_section_info *section;
20057 bfd *abfd;
20058 struct dwarf2_per_objfile *dwarf2_per_objfile
20059 = cu->per_cu->dwarf2_per_objfile;
20060
20061 section = get_debug_line_section (cu);
20062 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20063 if (section->buffer == NULL)
20064 {
20065 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20066 complaint (_("missing .debug_line.dwo section"));
20067 else
20068 complaint (_("missing .debug_line section"));
20069 return 0;
20070 }
20071
20072 /* We can't do this until we know the section is non-empty.
20073 Only then do we know we have such a section. */
20074 abfd = get_section_bfd_owner (section);
20075
20076 /* Make sure that at least there's room for the total_length field.
20077 That could be 12 bytes long, but we're just going to fudge that. */
20078 if (to_underlying (sect_off) + 4 >= section->size)
20079 {
20080 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20081 return 0;
20082 }
20083
20084 line_header_up lh (new line_header ());
20085
20086 lh->sect_off = sect_off;
20087 lh->offset_in_dwz = cu->per_cu->is_dwz;
20088
20089 line_ptr = section->buffer + to_underlying (sect_off);
20090
20091 /* Read in the header. */
20092 lh->total_length =
20093 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20094 &bytes_read, &offset_size);
20095 line_ptr += bytes_read;
20096 if (line_ptr + lh->total_length > (section->buffer + section->size))
20097 {
20098 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20099 return 0;
20100 }
20101 lh->statement_program_end = line_ptr + lh->total_length;
20102 lh->version = read_2_bytes (abfd, line_ptr);
20103 line_ptr += 2;
20104 if (lh->version > 5)
20105 {
20106 /* This is a version we don't understand. The format could have
20107 changed in ways we don't handle properly so just punt. */
20108 complaint (_("unsupported version in .debug_line section"));
20109 return NULL;
20110 }
20111 if (lh->version >= 5)
20112 {
20113 gdb_byte segment_selector_size;
20114
20115 /* Skip address size. */
20116 read_1_byte (abfd, line_ptr);
20117 line_ptr += 1;
20118
20119 segment_selector_size = read_1_byte (abfd, line_ptr);
20120 line_ptr += 1;
20121 if (segment_selector_size != 0)
20122 {
20123 complaint (_("unsupported segment selector size %u "
20124 "in .debug_line section"),
20125 segment_selector_size);
20126 return NULL;
20127 }
20128 }
20129 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20130 line_ptr += offset_size;
20131 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20132 line_ptr += 1;
20133 if (lh->version >= 4)
20134 {
20135 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20136 line_ptr += 1;
20137 }
20138 else
20139 lh->maximum_ops_per_instruction = 1;
20140
20141 if (lh->maximum_ops_per_instruction == 0)
20142 {
20143 lh->maximum_ops_per_instruction = 1;
20144 complaint (_("invalid maximum_ops_per_instruction "
20145 "in `.debug_line' section"));
20146 }
20147
20148 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20149 line_ptr += 1;
20150 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20151 line_ptr += 1;
20152 lh->line_range = read_1_byte (abfd, line_ptr);
20153 line_ptr += 1;
20154 lh->opcode_base = read_1_byte (abfd, line_ptr);
20155 line_ptr += 1;
20156 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20157
20158 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20159 for (i = 1; i < lh->opcode_base; ++i)
20160 {
20161 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20162 line_ptr += 1;
20163 }
20164
20165 if (lh->version >= 5)
20166 {
20167 /* Read directory table. */
20168 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20169 &cu->header,
20170 [] (struct line_header *lh, const char *name,
20171 dir_index d_index, unsigned int mod_time,
20172 unsigned int length)
20173 {
20174 lh->add_include_dir (name);
20175 });
20176
20177 /* Read file name table. */
20178 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20179 &cu->header,
20180 [] (struct line_header *lh, const char *name,
20181 dir_index d_index, unsigned int mod_time,
20182 unsigned int length)
20183 {
20184 lh->add_file_name (name, d_index, mod_time, length);
20185 });
20186 }
20187 else
20188 {
20189 /* Read directory table. */
20190 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20191 {
20192 line_ptr += bytes_read;
20193 lh->add_include_dir (cur_dir);
20194 }
20195 line_ptr += bytes_read;
20196
20197 /* Read file name table. */
20198 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20199 {
20200 unsigned int mod_time, length;
20201 dir_index d_index;
20202
20203 line_ptr += bytes_read;
20204 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20205 line_ptr += bytes_read;
20206 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20207 line_ptr += bytes_read;
20208 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20209 line_ptr += bytes_read;
20210
20211 lh->add_file_name (cur_file, d_index, mod_time, length);
20212 }
20213 line_ptr += bytes_read;
20214 }
20215 lh->statement_program_start = line_ptr;
20216
20217 if (line_ptr > (section->buffer + section->size))
20218 complaint (_("line number info header doesn't "
20219 "fit in `.debug_line' section"));
20220
20221 return lh;
20222 }
20223
20224 /* Subroutine of dwarf_decode_lines to simplify it.
20225 Return the file name of the psymtab for included file FILE_INDEX
20226 in line header LH of PST.
20227 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20228 If space for the result is malloc'd, *NAME_HOLDER will be set.
20229 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20230
20231 static const char *
20232 psymtab_include_file_name (const struct line_header *lh, int file_index,
20233 const struct partial_symtab *pst,
20234 const char *comp_dir,
20235 gdb::unique_xmalloc_ptr<char> *name_holder)
20236 {
20237 const file_entry &fe = lh->file_names[file_index];
20238 const char *include_name = fe.name;
20239 const char *include_name_to_compare = include_name;
20240 const char *pst_filename;
20241 int file_is_pst;
20242
20243 const char *dir_name = fe.include_dir (lh);
20244
20245 gdb::unique_xmalloc_ptr<char> hold_compare;
20246 if (!IS_ABSOLUTE_PATH (include_name)
20247 && (dir_name != NULL || comp_dir != NULL))
20248 {
20249 /* Avoid creating a duplicate psymtab for PST.
20250 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20251 Before we do the comparison, however, we need to account
20252 for DIR_NAME and COMP_DIR.
20253 First prepend dir_name (if non-NULL). If we still don't
20254 have an absolute path prepend comp_dir (if non-NULL).
20255 However, the directory we record in the include-file's
20256 psymtab does not contain COMP_DIR (to match the
20257 corresponding symtab(s)).
20258
20259 Example:
20260
20261 bash$ cd /tmp
20262 bash$ gcc -g ./hello.c
20263 include_name = "hello.c"
20264 dir_name = "."
20265 DW_AT_comp_dir = comp_dir = "/tmp"
20266 DW_AT_name = "./hello.c"
20267
20268 */
20269
20270 if (dir_name != NULL)
20271 {
20272 name_holder->reset (concat (dir_name, SLASH_STRING,
20273 include_name, (char *) NULL));
20274 include_name = name_holder->get ();
20275 include_name_to_compare = include_name;
20276 }
20277 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20278 {
20279 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20280 include_name, (char *) NULL));
20281 include_name_to_compare = hold_compare.get ();
20282 }
20283 }
20284
20285 pst_filename = pst->filename;
20286 gdb::unique_xmalloc_ptr<char> copied_name;
20287 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20288 {
20289 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20290 pst_filename, (char *) NULL));
20291 pst_filename = copied_name.get ();
20292 }
20293
20294 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20295
20296 if (file_is_pst)
20297 return NULL;
20298 return include_name;
20299 }
20300
20301 /* State machine to track the state of the line number program. */
20302
20303 class lnp_state_machine
20304 {
20305 public:
20306 /* Initialize a machine state for the start of a line number
20307 program. */
20308 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20309 bool record_lines_p);
20310
20311 file_entry *current_file ()
20312 {
20313 /* lh->file_names is 0-based, but the file name numbers in the
20314 statement program are 1-based. */
20315 return m_line_header->file_name_at (m_file);
20316 }
20317
20318 /* Record the line in the state machine. END_SEQUENCE is true if
20319 we're processing the end of a sequence. */
20320 void record_line (bool end_sequence);
20321
20322 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20323 nop-out rest of the lines in this sequence. */
20324 void check_line_address (struct dwarf2_cu *cu,
20325 const gdb_byte *line_ptr,
20326 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20327
20328 void handle_set_discriminator (unsigned int discriminator)
20329 {
20330 m_discriminator = discriminator;
20331 m_line_has_non_zero_discriminator |= discriminator != 0;
20332 }
20333
20334 /* Handle DW_LNE_set_address. */
20335 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20336 {
20337 m_op_index = 0;
20338 address += baseaddr;
20339 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20340 }
20341
20342 /* Handle DW_LNS_advance_pc. */
20343 void handle_advance_pc (CORE_ADDR adjust);
20344
20345 /* Handle a special opcode. */
20346 void handle_special_opcode (unsigned char op_code);
20347
20348 /* Handle DW_LNS_advance_line. */
20349 void handle_advance_line (int line_delta)
20350 {
20351 advance_line (line_delta);
20352 }
20353
20354 /* Handle DW_LNS_set_file. */
20355 void handle_set_file (file_name_index file);
20356
20357 /* Handle DW_LNS_negate_stmt. */
20358 void handle_negate_stmt ()
20359 {
20360 m_is_stmt = !m_is_stmt;
20361 }
20362
20363 /* Handle DW_LNS_const_add_pc. */
20364 void handle_const_add_pc ();
20365
20366 /* Handle DW_LNS_fixed_advance_pc. */
20367 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20368 {
20369 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20370 m_op_index = 0;
20371 }
20372
20373 /* Handle DW_LNS_copy. */
20374 void handle_copy ()
20375 {
20376 record_line (false);
20377 m_discriminator = 0;
20378 }
20379
20380 /* Handle DW_LNE_end_sequence. */
20381 void handle_end_sequence ()
20382 {
20383 m_currently_recording_lines = true;
20384 }
20385
20386 private:
20387 /* Advance the line by LINE_DELTA. */
20388 void advance_line (int line_delta)
20389 {
20390 m_line += line_delta;
20391
20392 if (line_delta != 0)
20393 m_line_has_non_zero_discriminator = m_discriminator != 0;
20394 }
20395
20396 struct dwarf2_cu *m_cu;
20397
20398 gdbarch *m_gdbarch;
20399
20400 /* True if we're recording lines.
20401 Otherwise we're building partial symtabs and are just interested in
20402 finding include files mentioned by the line number program. */
20403 bool m_record_lines_p;
20404
20405 /* The line number header. */
20406 line_header *m_line_header;
20407
20408 /* These are part of the standard DWARF line number state machine,
20409 and initialized according to the DWARF spec. */
20410
20411 unsigned char m_op_index = 0;
20412 /* The line table index (1-based) of the current file. */
20413 file_name_index m_file = (file_name_index) 1;
20414 unsigned int m_line = 1;
20415
20416 /* These are initialized in the constructor. */
20417
20418 CORE_ADDR m_address;
20419 bool m_is_stmt;
20420 unsigned int m_discriminator;
20421
20422 /* Additional bits of state we need to track. */
20423
20424 /* The last file that we called dwarf2_start_subfile for.
20425 This is only used for TLLs. */
20426 unsigned int m_last_file = 0;
20427 /* The last file a line number was recorded for. */
20428 struct subfile *m_last_subfile = NULL;
20429
20430 /* When true, record the lines we decode. */
20431 bool m_currently_recording_lines = false;
20432
20433 /* The last line number that was recorded, used to coalesce
20434 consecutive entries for the same line. This can happen, for
20435 example, when discriminators are present. PR 17276. */
20436 unsigned int m_last_line = 0;
20437 bool m_line_has_non_zero_discriminator = false;
20438 };
20439
20440 void
20441 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20442 {
20443 CORE_ADDR addr_adj = (((m_op_index + adjust)
20444 / m_line_header->maximum_ops_per_instruction)
20445 * m_line_header->minimum_instruction_length);
20446 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20447 m_op_index = ((m_op_index + adjust)
20448 % m_line_header->maximum_ops_per_instruction);
20449 }
20450
20451 void
20452 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20453 {
20454 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20455 CORE_ADDR addr_adj = (((m_op_index
20456 + (adj_opcode / m_line_header->line_range))
20457 / m_line_header->maximum_ops_per_instruction)
20458 * m_line_header->minimum_instruction_length);
20459 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20460 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20461 % m_line_header->maximum_ops_per_instruction);
20462
20463 int line_delta = (m_line_header->line_base
20464 + (adj_opcode % m_line_header->line_range));
20465 advance_line (line_delta);
20466 record_line (false);
20467 m_discriminator = 0;
20468 }
20469
20470 void
20471 lnp_state_machine::handle_set_file (file_name_index file)
20472 {
20473 m_file = file;
20474
20475 const file_entry *fe = current_file ();
20476 if (fe == NULL)
20477 dwarf2_debug_line_missing_file_complaint ();
20478 else if (m_record_lines_p)
20479 {
20480 const char *dir = fe->include_dir (m_line_header);
20481
20482 m_last_subfile = m_cu->builder->get_current_subfile ();
20483 m_line_has_non_zero_discriminator = m_discriminator != 0;
20484 dwarf2_start_subfile (m_cu, fe->name, dir);
20485 }
20486 }
20487
20488 void
20489 lnp_state_machine::handle_const_add_pc ()
20490 {
20491 CORE_ADDR adjust
20492 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20493
20494 CORE_ADDR addr_adj
20495 = (((m_op_index + adjust)
20496 / m_line_header->maximum_ops_per_instruction)
20497 * m_line_header->minimum_instruction_length);
20498
20499 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20500 m_op_index = ((m_op_index + adjust)
20501 % m_line_header->maximum_ops_per_instruction);
20502 }
20503
20504 /* Return non-zero if we should add LINE to the line number table.
20505 LINE is the line to add, LAST_LINE is the last line that was added,
20506 LAST_SUBFILE is the subfile for LAST_LINE.
20507 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20508 had a non-zero discriminator.
20509
20510 We have to be careful in the presence of discriminators.
20511 E.g., for this line:
20512
20513 for (i = 0; i < 100000; i++);
20514
20515 clang can emit four line number entries for that one line,
20516 each with a different discriminator.
20517 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20518
20519 However, we want gdb to coalesce all four entries into one.
20520 Otherwise the user could stepi into the middle of the line and
20521 gdb would get confused about whether the pc really was in the
20522 middle of the line.
20523
20524 Things are further complicated by the fact that two consecutive
20525 line number entries for the same line is a heuristic used by gcc
20526 to denote the end of the prologue. So we can't just discard duplicate
20527 entries, we have to be selective about it. The heuristic we use is
20528 that we only collapse consecutive entries for the same line if at least
20529 one of those entries has a non-zero discriminator. PR 17276.
20530
20531 Note: Addresses in the line number state machine can never go backwards
20532 within one sequence, thus this coalescing is ok. */
20533
20534 static int
20535 dwarf_record_line_p (struct dwarf2_cu *cu,
20536 unsigned int line, unsigned int last_line,
20537 int line_has_non_zero_discriminator,
20538 struct subfile *last_subfile)
20539 {
20540 if (cu->builder->get_current_subfile () != last_subfile)
20541 return 1;
20542 if (line != last_line)
20543 return 1;
20544 /* Same line for the same file that we've seen already.
20545 As a last check, for pr 17276, only record the line if the line
20546 has never had a non-zero discriminator. */
20547 if (!line_has_non_zero_discriminator)
20548 return 1;
20549 return 0;
20550 }
20551
20552 /* Use the CU's builder to record line number LINE beginning at
20553 address ADDRESS in the line table of subfile SUBFILE. */
20554
20555 static void
20556 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20557 unsigned int line, CORE_ADDR address,
20558 struct dwarf2_cu *cu)
20559 {
20560 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20561
20562 if (dwarf_line_debug)
20563 {
20564 fprintf_unfiltered (gdb_stdlog,
20565 "Recording line %u, file %s, address %s\n",
20566 line, lbasename (subfile->name),
20567 paddress (gdbarch, address));
20568 }
20569
20570 if (cu != nullptr)
20571 cu->builder->record_line (subfile, line, addr);
20572 }
20573
20574 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20575 Mark the end of a set of line number records.
20576 The arguments are the same as for dwarf_record_line_1.
20577 If SUBFILE is NULL the request is ignored. */
20578
20579 static void
20580 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20581 CORE_ADDR address, struct dwarf2_cu *cu)
20582 {
20583 if (subfile == NULL)
20584 return;
20585
20586 if (dwarf_line_debug)
20587 {
20588 fprintf_unfiltered (gdb_stdlog,
20589 "Finishing current line, file %s, address %s\n",
20590 lbasename (subfile->name),
20591 paddress (gdbarch, address));
20592 }
20593
20594 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20595 }
20596
20597 void
20598 lnp_state_machine::record_line (bool end_sequence)
20599 {
20600 if (dwarf_line_debug)
20601 {
20602 fprintf_unfiltered (gdb_stdlog,
20603 "Processing actual line %u: file %u,"
20604 " address %s, is_stmt %u, discrim %u\n",
20605 m_line, to_underlying (m_file),
20606 paddress (m_gdbarch, m_address),
20607 m_is_stmt, m_discriminator);
20608 }
20609
20610 file_entry *fe = current_file ();
20611
20612 if (fe == NULL)
20613 dwarf2_debug_line_missing_file_complaint ();
20614 /* For now we ignore lines not starting on an instruction boundary.
20615 But not when processing end_sequence for compatibility with the
20616 previous version of the code. */
20617 else if (m_op_index == 0 || end_sequence)
20618 {
20619 fe->included_p = 1;
20620 if (m_record_lines_p && m_is_stmt)
20621 {
20622 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20623 || end_sequence)
20624 {
20625 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20626 m_currently_recording_lines ? m_cu : nullptr);
20627 }
20628
20629 if (!end_sequence)
20630 {
20631 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20632 m_line_has_non_zero_discriminator,
20633 m_last_subfile))
20634 {
20635 dwarf_record_line_1 (m_gdbarch,
20636 m_cu->builder->get_current_subfile (),
20637 m_line, m_address,
20638 m_currently_recording_lines ? m_cu : nullptr);
20639 }
20640 m_last_subfile = m_cu->builder->get_current_subfile ();
20641 m_last_line = m_line;
20642 }
20643 }
20644 }
20645 }
20646
20647 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20648 line_header *lh, bool record_lines_p)
20649 {
20650 m_cu = cu;
20651 m_gdbarch = arch;
20652 m_record_lines_p = record_lines_p;
20653 m_line_header = lh;
20654
20655 m_currently_recording_lines = true;
20656
20657 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20658 was a line entry for it so that the backend has a chance to adjust it
20659 and also record it in case it needs it. This is currently used by MIPS
20660 code, cf. `mips_adjust_dwarf2_line'. */
20661 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20662 m_is_stmt = lh->default_is_stmt;
20663 m_discriminator = 0;
20664 }
20665
20666 void
20667 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20668 const gdb_byte *line_ptr,
20669 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20670 {
20671 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20672 the pc range of the CU. However, we restrict the test to only ADDRESS
20673 values of zero to preserve GDB's previous behaviour which is to handle
20674 the specific case of a function being GC'd by the linker. */
20675
20676 if (address == 0 && address < unrelocated_lowpc)
20677 {
20678 /* This line table is for a function which has been
20679 GCd by the linker. Ignore it. PR gdb/12528 */
20680
20681 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20682 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20683
20684 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20685 line_offset, objfile_name (objfile));
20686 m_currently_recording_lines = false;
20687 /* Note: m_currently_recording_lines is left as false until we see
20688 DW_LNE_end_sequence. */
20689 }
20690 }
20691
20692 /* Subroutine of dwarf_decode_lines to simplify it.
20693 Process the line number information in LH.
20694 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20695 program in order to set included_p for every referenced header. */
20696
20697 static void
20698 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20699 const int decode_for_pst_p, CORE_ADDR lowpc)
20700 {
20701 const gdb_byte *line_ptr, *extended_end;
20702 const gdb_byte *line_end;
20703 unsigned int bytes_read, extended_len;
20704 unsigned char op_code, extended_op;
20705 CORE_ADDR baseaddr;
20706 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20707 bfd *abfd = objfile->obfd;
20708 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20709 /* True if we're recording line info (as opposed to building partial
20710 symtabs and just interested in finding include files mentioned by
20711 the line number program). */
20712 bool record_lines_p = !decode_for_pst_p;
20713
20714 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20715
20716 line_ptr = lh->statement_program_start;
20717 line_end = lh->statement_program_end;
20718
20719 /* Read the statement sequences until there's nothing left. */
20720 while (line_ptr < line_end)
20721 {
20722 /* The DWARF line number program state machine. Reset the state
20723 machine at the start of each sequence. */
20724 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20725 bool end_sequence = false;
20726
20727 if (record_lines_p)
20728 {
20729 /* Start a subfile for the current file of the state
20730 machine. */
20731 const file_entry *fe = state_machine.current_file ();
20732
20733 if (fe != NULL)
20734 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20735 }
20736
20737 /* Decode the table. */
20738 while (line_ptr < line_end && !end_sequence)
20739 {
20740 op_code = read_1_byte (abfd, line_ptr);
20741 line_ptr += 1;
20742
20743 if (op_code >= lh->opcode_base)
20744 {
20745 /* Special opcode. */
20746 state_machine.handle_special_opcode (op_code);
20747 }
20748 else switch (op_code)
20749 {
20750 case DW_LNS_extended_op:
20751 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20752 &bytes_read);
20753 line_ptr += bytes_read;
20754 extended_end = line_ptr + extended_len;
20755 extended_op = read_1_byte (abfd, line_ptr);
20756 line_ptr += 1;
20757 switch (extended_op)
20758 {
20759 case DW_LNE_end_sequence:
20760 state_machine.handle_end_sequence ();
20761 end_sequence = true;
20762 break;
20763 case DW_LNE_set_address:
20764 {
20765 CORE_ADDR address
20766 = read_address (abfd, line_ptr, cu, &bytes_read);
20767 line_ptr += bytes_read;
20768
20769 state_machine.check_line_address (cu, line_ptr,
20770 lowpc - baseaddr, address);
20771 state_machine.handle_set_address (baseaddr, address);
20772 }
20773 break;
20774 case DW_LNE_define_file:
20775 {
20776 const char *cur_file;
20777 unsigned int mod_time, length;
20778 dir_index dindex;
20779
20780 cur_file = read_direct_string (abfd, line_ptr,
20781 &bytes_read);
20782 line_ptr += bytes_read;
20783 dindex = (dir_index)
20784 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20785 line_ptr += bytes_read;
20786 mod_time =
20787 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20788 line_ptr += bytes_read;
20789 length =
20790 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20791 line_ptr += bytes_read;
20792 lh->add_file_name (cur_file, dindex, mod_time, length);
20793 }
20794 break;
20795 case DW_LNE_set_discriminator:
20796 {
20797 /* The discriminator is not interesting to the
20798 debugger; just ignore it. We still need to
20799 check its value though:
20800 if there are consecutive entries for the same
20801 (non-prologue) line we want to coalesce them.
20802 PR 17276. */
20803 unsigned int discr
20804 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20805 line_ptr += bytes_read;
20806
20807 state_machine.handle_set_discriminator (discr);
20808 }
20809 break;
20810 default:
20811 complaint (_("mangled .debug_line section"));
20812 return;
20813 }
20814 /* Make sure that we parsed the extended op correctly. If e.g.
20815 we expected a different address size than the producer used,
20816 we may have read the wrong number of bytes. */
20817 if (line_ptr != extended_end)
20818 {
20819 complaint (_("mangled .debug_line section"));
20820 return;
20821 }
20822 break;
20823 case DW_LNS_copy:
20824 state_machine.handle_copy ();
20825 break;
20826 case DW_LNS_advance_pc:
20827 {
20828 CORE_ADDR adjust
20829 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20830 line_ptr += bytes_read;
20831
20832 state_machine.handle_advance_pc (adjust);
20833 }
20834 break;
20835 case DW_LNS_advance_line:
20836 {
20837 int line_delta
20838 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20839 line_ptr += bytes_read;
20840
20841 state_machine.handle_advance_line (line_delta);
20842 }
20843 break;
20844 case DW_LNS_set_file:
20845 {
20846 file_name_index file
20847 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20848 &bytes_read);
20849 line_ptr += bytes_read;
20850
20851 state_machine.handle_set_file (file);
20852 }
20853 break;
20854 case DW_LNS_set_column:
20855 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20856 line_ptr += bytes_read;
20857 break;
20858 case DW_LNS_negate_stmt:
20859 state_machine.handle_negate_stmt ();
20860 break;
20861 case DW_LNS_set_basic_block:
20862 break;
20863 /* Add to the address register of the state machine the
20864 address increment value corresponding to special opcode
20865 255. I.e., this value is scaled by the minimum
20866 instruction length since special opcode 255 would have
20867 scaled the increment. */
20868 case DW_LNS_const_add_pc:
20869 state_machine.handle_const_add_pc ();
20870 break;
20871 case DW_LNS_fixed_advance_pc:
20872 {
20873 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20874 line_ptr += 2;
20875
20876 state_machine.handle_fixed_advance_pc (addr_adj);
20877 }
20878 break;
20879 default:
20880 {
20881 /* Unknown standard opcode, ignore it. */
20882 int i;
20883
20884 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20885 {
20886 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20887 line_ptr += bytes_read;
20888 }
20889 }
20890 }
20891 }
20892
20893 if (!end_sequence)
20894 dwarf2_debug_line_missing_end_sequence_complaint ();
20895
20896 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20897 in which case we still finish recording the last line). */
20898 state_machine.record_line (true);
20899 }
20900 }
20901
20902 /* Decode the Line Number Program (LNP) for the given line_header
20903 structure and CU. The actual information extracted and the type
20904 of structures created from the LNP depends on the value of PST.
20905
20906 1. If PST is NULL, then this procedure uses the data from the program
20907 to create all necessary symbol tables, and their linetables.
20908
20909 2. If PST is not NULL, this procedure reads the program to determine
20910 the list of files included by the unit represented by PST, and
20911 builds all the associated partial symbol tables.
20912
20913 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20914 It is used for relative paths in the line table.
20915 NOTE: When processing partial symtabs (pst != NULL),
20916 comp_dir == pst->dirname.
20917
20918 NOTE: It is important that psymtabs have the same file name (via strcmp)
20919 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20920 symtab we don't use it in the name of the psymtabs we create.
20921 E.g. expand_line_sal requires this when finding psymtabs to expand.
20922 A good testcase for this is mb-inline.exp.
20923
20924 LOWPC is the lowest address in CU (or 0 if not known).
20925
20926 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20927 for its PC<->lines mapping information. Otherwise only the filename
20928 table is read in. */
20929
20930 static void
20931 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20932 struct dwarf2_cu *cu, struct partial_symtab *pst,
20933 CORE_ADDR lowpc, int decode_mapping)
20934 {
20935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20936 const int decode_for_pst_p = (pst != NULL);
20937
20938 if (decode_mapping)
20939 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20940
20941 if (decode_for_pst_p)
20942 {
20943 int file_index;
20944
20945 /* Now that we're done scanning the Line Header Program, we can
20946 create the psymtab of each included file. */
20947 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20948 if (lh->file_names[file_index].included_p == 1)
20949 {
20950 gdb::unique_xmalloc_ptr<char> name_holder;
20951 const char *include_name =
20952 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20953 &name_holder);
20954 if (include_name != NULL)
20955 dwarf2_create_include_psymtab (include_name, pst, objfile);
20956 }
20957 }
20958 else
20959 {
20960 /* Make sure a symtab is created for every file, even files
20961 which contain only variables (i.e. no code with associated
20962 line numbers). */
20963 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
20964 int i;
20965
20966 for (i = 0; i < lh->file_names.size (); i++)
20967 {
20968 file_entry &fe = lh->file_names[i];
20969
20970 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20971
20972 if (cu->builder->get_current_subfile ()->symtab == NULL)
20973 {
20974 cu->builder->get_current_subfile ()->symtab
20975 = allocate_symtab (cust,
20976 cu->builder->get_current_subfile ()->name);
20977 }
20978 fe.symtab = cu->builder->get_current_subfile ()->symtab;
20979 }
20980 }
20981 }
20982
20983 /* Start a subfile for DWARF. FILENAME is the name of the file and
20984 DIRNAME the name of the source directory which contains FILENAME
20985 or NULL if not known.
20986 This routine tries to keep line numbers from identical absolute and
20987 relative file names in a common subfile.
20988
20989 Using the `list' example from the GDB testsuite, which resides in
20990 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20991 of /srcdir/list0.c yields the following debugging information for list0.c:
20992
20993 DW_AT_name: /srcdir/list0.c
20994 DW_AT_comp_dir: /compdir
20995 files.files[0].name: list0.h
20996 files.files[0].dir: /srcdir
20997 files.files[1].name: list0.c
20998 files.files[1].dir: /srcdir
20999
21000 The line number information for list0.c has to end up in a single
21001 subfile, so that `break /srcdir/list0.c:1' works as expected.
21002 start_subfile will ensure that this happens provided that we pass the
21003 concatenation of files.files[1].dir and files.files[1].name as the
21004 subfile's name. */
21005
21006 static void
21007 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21008 const char *dirname)
21009 {
21010 char *copy = NULL;
21011
21012 /* In order not to lose the line information directory,
21013 we concatenate it to the filename when it makes sense.
21014 Note that the Dwarf3 standard says (speaking of filenames in line
21015 information): ``The directory index is ignored for file names
21016 that represent full path names''. Thus ignoring dirname in the
21017 `else' branch below isn't an issue. */
21018
21019 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21020 {
21021 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21022 filename = copy;
21023 }
21024
21025 cu->builder->start_subfile (filename);
21026
21027 if (copy != NULL)
21028 xfree (copy);
21029 }
21030
21031 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21032 buildsym_compunit constructor. */
21033
21034 static struct compunit_symtab *
21035 dwarf2_start_symtab (struct dwarf2_cu *cu,
21036 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21037 {
21038 gdb_assert (cu->builder == nullptr);
21039
21040 cu->builder.reset (new struct buildsym_compunit
21041 (cu->per_cu->dwarf2_per_objfile->objfile,
21042 name, comp_dir, cu->language, low_pc));
21043
21044 cu->list_in_scope = cu->builder->get_file_symbols ();
21045
21046 cu->builder->record_debugformat ("DWARF 2");
21047 cu->builder->record_producer (cu->producer);
21048
21049 cu->processing_has_namespace_info = 0;
21050
21051 return cu->builder->get_compunit_symtab ();
21052 }
21053
21054 static void
21055 var_decode_location (struct attribute *attr, struct symbol *sym,
21056 struct dwarf2_cu *cu)
21057 {
21058 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21059 struct comp_unit_head *cu_header = &cu->header;
21060
21061 /* NOTE drow/2003-01-30: There used to be a comment and some special
21062 code here to turn a symbol with DW_AT_external and a
21063 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21064 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21065 with some versions of binutils) where shared libraries could have
21066 relocations against symbols in their debug information - the
21067 minimal symbol would have the right address, but the debug info
21068 would not. It's no longer necessary, because we will explicitly
21069 apply relocations when we read in the debug information now. */
21070
21071 /* A DW_AT_location attribute with no contents indicates that a
21072 variable has been optimized away. */
21073 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21074 {
21075 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21076 return;
21077 }
21078
21079 /* Handle one degenerate form of location expression specially, to
21080 preserve GDB's previous behavior when section offsets are
21081 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21082 then mark this symbol as LOC_STATIC. */
21083
21084 if (attr_form_is_block (attr)
21085 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21086 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21087 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21088 && (DW_BLOCK (attr)->size
21089 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21090 {
21091 unsigned int dummy;
21092
21093 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21094 SYMBOL_VALUE_ADDRESS (sym) =
21095 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21096 else
21097 SYMBOL_VALUE_ADDRESS (sym) =
21098 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21099 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21100 fixup_symbol_section (sym, objfile);
21101 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21102 SYMBOL_SECTION (sym));
21103 return;
21104 }
21105
21106 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21107 expression evaluator, and use LOC_COMPUTED only when necessary
21108 (i.e. when the value of a register or memory location is
21109 referenced, or a thread-local block, etc.). Then again, it might
21110 not be worthwhile. I'm assuming that it isn't unless performance
21111 or memory numbers show me otherwise. */
21112
21113 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21114
21115 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21116 cu->has_loclist = 1;
21117 }
21118
21119 /* Given a pointer to a DWARF information entry, figure out if we need
21120 to make a symbol table entry for it, and if so, create a new entry
21121 and return a pointer to it.
21122 If TYPE is NULL, determine symbol type from the die, otherwise
21123 used the passed type.
21124 If SPACE is not NULL, use it to hold the new symbol. If it is
21125 NULL, allocate a new symbol on the objfile's obstack. */
21126
21127 static struct symbol *
21128 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21129 struct symbol *space)
21130 {
21131 struct dwarf2_per_objfile *dwarf2_per_objfile
21132 = cu->per_cu->dwarf2_per_objfile;
21133 struct objfile *objfile = dwarf2_per_objfile->objfile;
21134 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21135 struct symbol *sym = NULL;
21136 const char *name;
21137 struct attribute *attr = NULL;
21138 struct attribute *attr2 = NULL;
21139 CORE_ADDR baseaddr;
21140 struct pending **list_to_add = NULL;
21141
21142 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21143
21144 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21145
21146 name = dwarf2_name (die, cu);
21147 if (name)
21148 {
21149 const char *linkagename;
21150 int suppress_add = 0;
21151
21152 if (space)
21153 sym = space;
21154 else
21155 sym = allocate_symbol (objfile);
21156 OBJSTAT (objfile, n_syms++);
21157
21158 /* Cache this symbol's name and the name's demangled form (if any). */
21159 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21160 linkagename = dwarf2_physname (name, die, cu);
21161 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21162
21163 /* Fortran does not have mangling standard and the mangling does differ
21164 between gfortran, iFort etc. */
21165 if (cu->language == language_fortran
21166 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21167 symbol_set_demangled_name (&(sym->ginfo),
21168 dwarf2_full_name (name, die, cu),
21169 NULL);
21170
21171 /* Default assumptions.
21172 Use the passed type or decode it from the die. */
21173 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21174 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21175 if (type != NULL)
21176 SYMBOL_TYPE (sym) = type;
21177 else
21178 SYMBOL_TYPE (sym) = die_type (die, cu);
21179 attr = dwarf2_attr (die,
21180 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21181 cu);
21182 if (attr)
21183 {
21184 SYMBOL_LINE (sym) = DW_UNSND (attr);
21185 }
21186
21187 attr = dwarf2_attr (die,
21188 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21189 cu);
21190 if (attr)
21191 {
21192 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21193 struct file_entry *fe;
21194
21195 if (cu->line_header != NULL)
21196 fe = cu->line_header->file_name_at (file_index);
21197 else
21198 fe = NULL;
21199
21200 if (fe == NULL)
21201 complaint (_("file index out of range"));
21202 else
21203 symbol_set_symtab (sym, fe->symtab);
21204 }
21205
21206 switch (die->tag)
21207 {
21208 case DW_TAG_label:
21209 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21210 if (attr)
21211 {
21212 CORE_ADDR addr;
21213
21214 addr = attr_value_as_address (attr);
21215 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21216 SYMBOL_VALUE_ADDRESS (sym) = addr;
21217 }
21218 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21219 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21220 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21221 add_symbol_to_list (sym, cu->list_in_scope);
21222 break;
21223 case DW_TAG_subprogram:
21224 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21225 finish_block. */
21226 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21227 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21228 if ((attr2 && (DW_UNSND (attr2) != 0))
21229 || cu->language == language_ada)
21230 {
21231 /* Subprograms marked external are stored as a global symbol.
21232 Ada subprograms, whether marked external or not, are always
21233 stored as a global symbol, because we want to be able to
21234 access them globally. For instance, we want to be able
21235 to break on a nested subprogram without having to
21236 specify the context. */
21237 list_to_add = cu->builder->get_global_symbols ();
21238 }
21239 else
21240 {
21241 list_to_add = cu->list_in_scope;
21242 }
21243 break;
21244 case DW_TAG_inlined_subroutine:
21245 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21246 finish_block. */
21247 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21248 SYMBOL_INLINED (sym) = 1;
21249 list_to_add = cu->list_in_scope;
21250 break;
21251 case DW_TAG_template_value_param:
21252 suppress_add = 1;
21253 /* Fall through. */
21254 case DW_TAG_constant:
21255 case DW_TAG_variable:
21256 case DW_TAG_member:
21257 /* Compilation with minimal debug info may result in
21258 variables with missing type entries. Change the
21259 misleading `void' type to something sensible. */
21260 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21261 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21262
21263 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21264 /* In the case of DW_TAG_member, we should only be called for
21265 static const members. */
21266 if (die->tag == DW_TAG_member)
21267 {
21268 /* dwarf2_add_field uses die_is_declaration,
21269 so we do the same. */
21270 gdb_assert (die_is_declaration (die, cu));
21271 gdb_assert (attr);
21272 }
21273 if (attr)
21274 {
21275 dwarf2_const_value (attr, sym, cu);
21276 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21277 if (!suppress_add)
21278 {
21279 if (attr2 && (DW_UNSND (attr2) != 0))
21280 list_to_add = cu->builder->get_global_symbols ();
21281 else
21282 list_to_add = cu->list_in_scope;
21283 }
21284 break;
21285 }
21286 attr = dwarf2_attr (die, DW_AT_location, cu);
21287 if (attr)
21288 {
21289 var_decode_location (attr, sym, cu);
21290 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21291
21292 /* Fortran explicitly imports any global symbols to the local
21293 scope by DW_TAG_common_block. */
21294 if (cu->language == language_fortran && die->parent
21295 && die->parent->tag == DW_TAG_common_block)
21296 attr2 = NULL;
21297
21298 if (SYMBOL_CLASS (sym) == LOC_STATIC
21299 && SYMBOL_VALUE_ADDRESS (sym) == 0
21300 && !dwarf2_per_objfile->has_section_at_zero)
21301 {
21302 /* When a static variable is eliminated by the linker,
21303 the corresponding debug information is not stripped
21304 out, but the variable address is set to null;
21305 do not add such variables into symbol table. */
21306 }
21307 else if (attr2 && (DW_UNSND (attr2) != 0))
21308 {
21309 /* Workaround gfortran PR debug/40040 - it uses
21310 DW_AT_location for variables in -fPIC libraries which may
21311 get overriden by other libraries/executable and get
21312 a different address. Resolve it by the minimal symbol
21313 which may come from inferior's executable using copy
21314 relocation. Make this workaround only for gfortran as for
21315 other compilers GDB cannot guess the minimal symbol
21316 Fortran mangling kind. */
21317 if (cu->language == language_fortran && die->parent
21318 && die->parent->tag == DW_TAG_module
21319 && cu->producer
21320 && startswith (cu->producer, "GNU Fortran"))
21321 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21322
21323 /* A variable with DW_AT_external is never static,
21324 but it may be block-scoped. */
21325 list_to_add
21326 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21327 ? cu->builder->get_global_symbols ()
21328 : cu->list_in_scope);
21329 }
21330 else
21331 list_to_add = cu->list_in_scope;
21332 }
21333 else
21334 {
21335 /* We do not know the address of this symbol.
21336 If it is an external symbol and we have type information
21337 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21338 The address of the variable will then be determined from
21339 the minimal symbol table whenever the variable is
21340 referenced. */
21341 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21342
21343 /* Fortran explicitly imports any global symbols to the local
21344 scope by DW_TAG_common_block. */
21345 if (cu->language == language_fortran && die->parent
21346 && die->parent->tag == DW_TAG_common_block)
21347 {
21348 /* SYMBOL_CLASS doesn't matter here because
21349 read_common_block is going to reset it. */
21350 if (!suppress_add)
21351 list_to_add = cu->list_in_scope;
21352 }
21353 else if (attr2 && (DW_UNSND (attr2) != 0)
21354 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21355 {
21356 /* A variable with DW_AT_external is never static, but it
21357 may be block-scoped. */
21358 list_to_add
21359 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21360 ? cu->builder->get_global_symbols ()
21361 : cu->list_in_scope);
21362
21363 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21364 }
21365 else if (!die_is_declaration (die, cu))
21366 {
21367 /* Use the default LOC_OPTIMIZED_OUT class. */
21368 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21369 if (!suppress_add)
21370 list_to_add = cu->list_in_scope;
21371 }
21372 }
21373 break;
21374 case DW_TAG_formal_parameter:
21375 {
21376 /* If we are inside a function, mark this as an argument. If
21377 not, we might be looking at an argument to an inlined function
21378 when we do not have enough information to show inlined frames;
21379 pretend it's a local variable in that case so that the user can
21380 still see it. */
21381 struct context_stack *curr
21382 = cu->builder->get_current_context_stack ();
21383 if (curr != nullptr && curr->name != nullptr)
21384 SYMBOL_IS_ARGUMENT (sym) = 1;
21385 attr = dwarf2_attr (die, DW_AT_location, cu);
21386 if (attr)
21387 {
21388 var_decode_location (attr, sym, cu);
21389 }
21390 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21391 if (attr)
21392 {
21393 dwarf2_const_value (attr, sym, cu);
21394 }
21395
21396 list_to_add = cu->list_in_scope;
21397 }
21398 break;
21399 case DW_TAG_unspecified_parameters:
21400 /* From varargs functions; gdb doesn't seem to have any
21401 interest in this information, so just ignore it for now.
21402 (FIXME?) */
21403 break;
21404 case DW_TAG_template_type_param:
21405 suppress_add = 1;
21406 /* Fall through. */
21407 case DW_TAG_class_type:
21408 case DW_TAG_interface_type:
21409 case DW_TAG_structure_type:
21410 case DW_TAG_union_type:
21411 case DW_TAG_set_type:
21412 case DW_TAG_enumeration_type:
21413 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21414 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21415
21416 {
21417 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21418 really ever be static objects: otherwise, if you try
21419 to, say, break of a class's method and you're in a file
21420 which doesn't mention that class, it won't work unless
21421 the check for all static symbols in lookup_symbol_aux
21422 saves you. See the OtherFileClass tests in
21423 gdb.c++/namespace.exp. */
21424
21425 if (!suppress_add)
21426 {
21427 list_to_add
21428 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21429 && cu->language == language_cplus
21430 ? cu->builder->get_global_symbols ()
21431 : cu->list_in_scope);
21432
21433 /* The semantics of C++ state that "struct foo {
21434 ... }" also defines a typedef for "foo". */
21435 if (cu->language == language_cplus
21436 || cu->language == language_ada
21437 || cu->language == language_d
21438 || cu->language == language_rust)
21439 {
21440 /* The symbol's name is already allocated along
21441 with this objfile, so we don't need to
21442 duplicate it for the type. */
21443 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21444 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21445 }
21446 }
21447 }
21448 break;
21449 case DW_TAG_typedef:
21450 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21451 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21452 list_to_add = cu->list_in_scope;
21453 break;
21454 case DW_TAG_base_type:
21455 case DW_TAG_subrange_type:
21456 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21457 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21458 list_to_add = cu->list_in_scope;
21459 break;
21460 case DW_TAG_enumerator:
21461 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21462 if (attr)
21463 {
21464 dwarf2_const_value (attr, sym, cu);
21465 }
21466 {
21467 /* NOTE: carlton/2003-11-10: See comment above in the
21468 DW_TAG_class_type, etc. block. */
21469
21470 list_to_add
21471 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21472 && cu->language == language_cplus
21473 ? cu->builder->get_global_symbols ()
21474 : cu->list_in_scope);
21475 }
21476 break;
21477 case DW_TAG_imported_declaration:
21478 case DW_TAG_namespace:
21479 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21480 list_to_add = cu->builder->get_global_symbols ();
21481 break;
21482 case DW_TAG_module:
21483 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21484 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21485 list_to_add = cu->builder->get_global_symbols ();
21486 break;
21487 case DW_TAG_common_block:
21488 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21489 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21490 add_symbol_to_list (sym, cu->list_in_scope);
21491 break;
21492 default:
21493 /* Not a tag we recognize. Hopefully we aren't processing
21494 trash data, but since we must specifically ignore things
21495 we don't recognize, there is nothing else we should do at
21496 this point. */
21497 complaint (_("unsupported tag: '%s'"),
21498 dwarf_tag_name (die->tag));
21499 break;
21500 }
21501
21502 if (suppress_add)
21503 {
21504 sym->hash_next = objfile->template_symbols;
21505 objfile->template_symbols = sym;
21506 list_to_add = NULL;
21507 }
21508
21509 if (list_to_add != NULL)
21510 add_symbol_to_list (sym, list_to_add);
21511
21512 /* For the benefit of old versions of GCC, check for anonymous
21513 namespaces based on the demangled name. */
21514 if (!cu->processing_has_namespace_info
21515 && cu->language == language_cplus)
21516 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21517 }
21518 return (sym);
21519 }
21520
21521 /* Given an attr with a DW_FORM_dataN value in host byte order,
21522 zero-extend it as appropriate for the symbol's type. The DWARF
21523 standard (v4) is not entirely clear about the meaning of using
21524 DW_FORM_dataN for a constant with a signed type, where the type is
21525 wider than the data. The conclusion of a discussion on the DWARF
21526 list was that this is unspecified. We choose to always zero-extend
21527 because that is the interpretation long in use by GCC. */
21528
21529 static gdb_byte *
21530 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21531 struct dwarf2_cu *cu, LONGEST *value, int bits)
21532 {
21533 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21534 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21535 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21536 LONGEST l = DW_UNSND (attr);
21537
21538 if (bits < sizeof (*value) * 8)
21539 {
21540 l &= ((LONGEST) 1 << bits) - 1;
21541 *value = l;
21542 }
21543 else if (bits == sizeof (*value) * 8)
21544 *value = l;
21545 else
21546 {
21547 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21548 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21549 return bytes;
21550 }
21551
21552 return NULL;
21553 }
21554
21555 /* Read a constant value from an attribute. Either set *VALUE, or if
21556 the value does not fit in *VALUE, set *BYTES - either already
21557 allocated on the objfile obstack, or newly allocated on OBSTACK,
21558 or, set *BATON, if we translated the constant to a location
21559 expression. */
21560
21561 static void
21562 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21563 const char *name, struct obstack *obstack,
21564 struct dwarf2_cu *cu,
21565 LONGEST *value, const gdb_byte **bytes,
21566 struct dwarf2_locexpr_baton **baton)
21567 {
21568 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21569 struct comp_unit_head *cu_header = &cu->header;
21570 struct dwarf_block *blk;
21571 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21572 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21573
21574 *value = 0;
21575 *bytes = NULL;
21576 *baton = NULL;
21577
21578 switch (attr->form)
21579 {
21580 case DW_FORM_addr:
21581 case DW_FORM_GNU_addr_index:
21582 {
21583 gdb_byte *data;
21584
21585 if (TYPE_LENGTH (type) != cu_header->addr_size)
21586 dwarf2_const_value_length_mismatch_complaint (name,
21587 cu_header->addr_size,
21588 TYPE_LENGTH (type));
21589 /* Symbols of this form are reasonably rare, so we just
21590 piggyback on the existing location code rather than writing
21591 a new implementation of symbol_computed_ops. */
21592 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21593 (*baton)->per_cu = cu->per_cu;
21594 gdb_assert ((*baton)->per_cu);
21595
21596 (*baton)->size = 2 + cu_header->addr_size;
21597 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21598 (*baton)->data = data;
21599
21600 data[0] = DW_OP_addr;
21601 store_unsigned_integer (&data[1], cu_header->addr_size,
21602 byte_order, DW_ADDR (attr));
21603 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21604 }
21605 break;
21606 case DW_FORM_string:
21607 case DW_FORM_strp:
21608 case DW_FORM_GNU_str_index:
21609 case DW_FORM_GNU_strp_alt:
21610 /* DW_STRING is already allocated on the objfile obstack, point
21611 directly to it. */
21612 *bytes = (const gdb_byte *) DW_STRING (attr);
21613 break;
21614 case DW_FORM_block1:
21615 case DW_FORM_block2:
21616 case DW_FORM_block4:
21617 case DW_FORM_block:
21618 case DW_FORM_exprloc:
21619 case DW_FORM_data16:
21620 blk = DW_BLOCK (attr);
21621 if (TYPE_LENGTH (type) != blk->size)
21622 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21623 TYPE_LENGTH (type));
21624 *bytes = blk->data;
21625 break;
21626
21627 /* The DW_AT_const_value attributes are supposed to carry the
21628 symbol's value "represented as it would be on the target
21629 architecture." By the time we get here, it's already been
21630 converted to host endianness, so we just need to sign- or
21631 zero-extend it as appropriate. */
21632 case DW_FORM_data1:
21633 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21634 break;
21635 case DW_FORM_data2:
21636 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21637 break;
21638 case DW_FORM_data4:
21639 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21640 break;
21641 case DW_FORM_data8:
21642 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21643 break;
21644
21645 case DW_FORM_sdata:
21646 case DW_FORM_implicit_const:
21647 *value = DW_SND (attr);
21648 break;
21649
21650 case DW_FORM_udata:
21651 *value = DW_UNSND (attr);
21652 break;
21653
21654 default:
21655 complaint (_("unsupported const value attribute form: '%s'"),
21656 dwarf_form_name (attr->form));
21657 *value = 0;
21658 break;
21659 }
21660 }
21661
21662
21663 /* Copy constant value from an attribute to a symbol. */
21664
21665 static void
21666 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21667 struct dwarf2_cu *cu)
21668 {
21669 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21670 LONGEST value;
21671 const gdb_byte *bytes;
21672 struct dwarf2_locexpr_baton *baton;
21673
21674 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21675 SYMBOL_PRINT_NAME (sym),
21676 &objfile->objfile_obstack, cu,
21677 &value, &bytes, &baton);
21678
21679 if (baton != NULL)
21680 {
21681 SYMBOL_LOCATION_BATON (sym) = baton;
21682 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21683 }
21684 else if (bytes != NULL)
21685 {
21686 SYMBOL_VALUE_BYTES (sym) = bytes;
21687 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21688 }
21689 else
21690 {
21691 SYMBOL_VALUE (sym) = value;
21692 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21693 }
21694 }
21695
21696 /* Return the type of the die in question using its DW_AT_type attribute. */
21697
21698 static struct type *
21699 die_type (struct die_info *die, struct dwarf2_cu *cu)
21700 {
21701 struct attribute *type_attr;
21702
21703 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21704 if (!type_attr)
21705 {
21706 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21707 /* A missing DW_AT_type represents a void type. */
21708 return objfile_type (objfile)->builtin_void;
21709 }
21710
21711 return lookup_die_type (die, type_attr, cu);
21712 }
21713
21714 /* True iff CU's producer generates GNAT Ada auxiliary information
21715 that allows to find parallel types through that information instead
21716 of having to do expensive parallel lookups by type name. */
21717
21718 static int
21719 need_gnat_info (struct dwarf2_cu *cu)
21720 {
21721 /* Assume that the Ada compiler was GNAT, which always produces
21722 the auxiliary information. */
21723 return (cu->language == language_ada);
21724 }
21725
21726 /* Return the auxiliary type of the die in question using its
21727 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21728 attribute is not present. */
21729
21730 static struct type *
21731 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21732 {
21733 struct attribute *type_attr;
21734
21735 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21736 if (!type_attr)
21737 return NULL;
21738
21739 return lookup_die_type (die, type_attr, cu);
21740 }
21741
21742 /* If DIE has a descriptive_type attribute, then set the TYPE's
21743 descriptive type accordingly. */
21744
21745 static void
21746 set_descriptive_type (struct type *type, struct die_info *die,
21747 struct dwarf2_cu *cu)
21748 {
21749 struct type *descriptive_type = die_descriptive_type (die, cu);
21750
21751 if (descriptive_type)
21752 {
21753 ALLOCATE_GNAT_AUX_TYPE (type);
21754 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21755 }
21756 }
21757
21758 /* Return the containing type of the die in question using its
21759 DW_AT_containing_type attribute. */
21760
21761 static struct type *
21762 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21763 {
21764 struct attribute *type_attr;
21765 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21766
21767 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21768 if (!type_attr)
21769 error (_("Dwarf Error: Problem turning containing type into gdb type "
21770 "[in module %s]"), objfile_name (objfile));
21771
21772 return lookup_die_type (die, type_attr, cu);
21773 }
21774
21775 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21776
21777 static struct type *
21778 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21779 {
21780 struct dwarf2_per_objfile *dwarf2_per_objfile
21781 = cu->per_cu->dwarf2_per_objfile;
21782 struct objfile *objfile = dwarf2_per_objfile->objfile;
21783 char *message, *saved;
21784
21785 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21786 objfile_name (objfile),
21787 sect_offset_str (cu->header.sect_off),
21788 sect_offset_str (die->sect_off));
21789 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21790 message, strlen (message));
21791 xfree (message);
21792
21793 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21794 }
21795
21796 /* Look up the type of DIE in CU using its type attribute ATTR.
21797 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21798 DW_AT_containing_type.
21799 If there is no type substitute an error marker. */
21800
21801 static struct type *
21802 lookup_die_type (struct die_info *die, const struct attribute *attr,
21803 struct dwarf2_cu *cu)
21804 {
21805 struct dwarf2_per_objfile *dwarf2_per_objfile
21806 = cu->per_cu->dwarf2_per_objfile;
21807 struct objfile *objfile = dwarf2_per_objfile->objfile;
21808 struct type *this_type;
21809
21810 gdb_assert (attr->name == DW_AT_type
21811 || attr->name == DW_AT_GNAT_descriptive_type
21812 || attr->name == DW_AT_containing_type);
21813
21814 /* First see if we have it cached. */
21815
21816 if (attr->form == DW_FORM_GNU_ref_alt)
21817 {
21818 struct dwarf2_per_cu_data *per_cu;
21819 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21820
21821 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21822 dwarf2_per_objfile);
21823 this_type = get_die_type_at_offset (sect_off, per_cu);
21824 }
21825 else if (attr_form_is_ref (attr))
21826 {
21827 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21828
21829 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21830 }
21831 else if (attr->form == DW_FORM_ref_sig8)
21832 {
21833 ULONGEST signature = DW_SIGNATURE (attr);
21834
21835 return get_signatured_type (die, signature, cu);
21836 }
21837 else
21838 {
21839 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21840 " at %s [in module %s]"),
21841 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21842 objfile_name (objfile));
21843 return build_error_marker_type (cu, die);
21844 }
21845
21846 /* If not cached we need to read it in. */
21847
21848 if (this_type == NULL)
21849 {
21850 struct die_info *type_die = NULL;
21851 struct dwarf2_cu *type_cu = cu;
21852
21853 if (attr_form_is_ref (attr))
21854 type_die = follow_die_ref (die, attr, &type_cu);
21855 if (type_die == NULL)
21856 return build_error_marker_type (cu, die);
21857 /* If we find the type now, it's probably because the type came
21858 from an inter-CU reference and the type's CU got expanded before
21859 ours. */
21860 this_type = read_type_die (type_die, type_cu);
21861 }
21862
21863 /* If we still don't have a type use an error marker. */
21864
21865 if (this_type == NULL)
21866 return build_error_marker_type (cu, die);
21867
21868 return this_type;
21869 }
21870
21871 /* Return the type in DIE, CU.
21872 Returns NULL for invalid types.
21873
21874 This first does a lookup in die_type_hash,
21875 and only reads the die in if necessary.
21876
21877 NOTE: This can be called when reading in partial or full symbols. */
21878
21879 static struct type *
21880 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21881 {
21882 struct type *this_type;
21883
21884 this_type = get_die_type (die, cu);
21885 if (this_type)
21886 return this_type;
21887
21888 return read_type_die_1 (die, cu);
21889 }
21890
21891 /* Read the type in DIE, CU.
21892 Returns NULL for invalid types. */
21893
21894 static struct type *
21895 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21896 {
21897 struct type *this_type = NULL;
21898
21899 switch (die->tag)
21900 {
21901 case DW_TAG_class_type:
21902 case DW_TAG_interface_type:
21903 case DW_TAG_structure_type:
21904 case DW_TAG_union_type:
21905 this_type = read_structure_type (die, cu);
21906 break;
21907 case DW_TAG_enumeration_type:
21908 this_type = read_enumeration_type (die, cu);
21909 break;
21910 case DW_TAG_subprogram:
21911 case DW_TAG_subroutine_type:
21912 case DW_TAG_inlined_subroutine:
21913 this_type = read_subroutine_type (die, cu);
21914 break;
21915 case DW_TAG_array_type:
21916 this_type = read_array_type (die, cu);
21917 break;
21918 case DW_TAG_set_type:
21919 this_type = read_set_type (die, cu);
21920 break;
21921 case DW_TAG_pointer_type:
21922 this_type = read_tag_pointer_type (die, cu);
21923 break;
21924 case DW_TAG_ptr_to_member_type:
21925 this_type = read_tag_ptr_to_member_type (die, cu);
21926 break;
21927 case DW_TAG_reference_type:
21928 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21929 break;
21930 case DW_TAG_rvalue_reference_type:
21931 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21932 break;
21933 case DW_TAG_const_type:
21934 this_type = read_tag_const_type (die, cu);
21935 break;
21936 case DW_TAG_volatile_type:
21937 this_type = read_tag_volatile_type (die, cu);
21938 break;
21939 case DW_TAG_restrict_type:
21940 this_type = read_tag_restrict_type (die, cu);
21941 break;
21942 case DW_TAG_string_type:
21943 this_type = read_tag_string_type (die, cu);
21944 break;
21945 case DW_TAG_typedef:
21946 this_type = read_typedef (die, cu);
21947 break;
21948 case DW_TAG_subrange_type:
21949 this_type = read_subrange_type (die, cu);
21950 break;
21951 case DW_TAG_base_type:
21952 this_type = read_base_type (die, cu);
21953 break;
21954 case DW_TAG_unspecified_type:
21955 this_type = read_unspecified_type (die, cu);
21956 break;
21957 case DW_TAG_namespace:
21958 this_type = read_namespace_type (die, cu);
21959 break;
21960 case DW_TAG_module:
21961 this_type = read_module_type (die, cu);
21962 break;
21963 case DW_TAG_atomic_type:
21964 this_type = read_tag_atomic_type (die, cu);
21965 break;
21966 default:
21967 complaint (_("unexpected tag in read_type_die: '%s'"),
21968 dwarf_tag_name (die->tag));
21969 break;
21970 }
21971
21972 return this_type;
21973 }
21974
21975 /* See if we can figure out if the class lives in a namespace. We do
21976 this by looking for a member function; its demangled name will
21977 contain namespace info, if there is any.
21978 Return the computed name or NULL.
21979 Space for the result is allocated on the objfile's obstack.
21980 This is the full-die version of guess_partial_die_structure_name.
21981 In this case we know DIE has no useful parent. */
21982
21983 static char *
21984 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21985 {
21986 struct die_info *spec_die;
21987 struct dwarf2_cu *spec_cu;
21988 struct die_info *child;
21989 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21990
21991 spec_cu = cu;
21992 spec_die = die_specification (die, &spec_cu);
21993 if (spec_die != NULL)
21994 {
21995 die = spec_die;
21996 cu = spec_cu;
21997 }
21998
21999 for (child = die->child;
22000 child != NULL;
22001 child = child->sibling)
22002 {
22003 if (child->tag == DW_TAG_subprogram)
22004 {
22005 const char *linkage_name = dw2_linkage_name (child, cu);
22006
22007 if (linkage_name != NULL)
22008 {
22009 char *actual_name
22010 = language_class_name_from_physname (cu->language_defn,
22011 linkage_name);
22012 char *name = NULL;
22013
22014 if (actual_name != NULL)
22015 {
22016 const char *die_name = dwarf2_name (die, cu);
22017
22018 if (die_name != NULL
22019 && strcmp (die_name, actual_name) != 0)
22020 {
22021 /* Strip off the class name from the full name.
22022 We want the prefix. */
22023 int die_name_len = strlen (die_name);
22024 int actual_name_len = strlen (actual_name);
22025
22026 /* Test for '::' as a sanity check. */
22027 if (actual_name_len > die_name_len + 2
22028 && actual_name[actual_name_len
22029 - die_name_len - 1] == ':')
22030 name = (char *) obstack_copy0 (
22031 &objfile->per_bfd->storage_obstack,
22032 actual_name, actual_name_len - die_name_len - 2);
22033 }
22034 }
22035 xfree (actual_name);
22036 return name;
22037 }
22038 }
22039 }
22040
22041 return NULL;
22042 }
22043
22044 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22045 prefix part in such case. See
22046 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22047
22048 static const char *
22049 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22050 {
22051 struct attribute *attr;
22052 const char *base;
22053
22054 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22055 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22056 return NULL;
22057
22058 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22059 return NULL;
22060
22061 attr = dw2_linkage_name_attr (die, cu);
22062 if (attr == NULL || DW_STRING (attr) == NULL)
22063 return NULL;
22064
22065 /* dwarf2_name had to be already called. */
22066 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22067
22068 /* Strip the base name, keep any leading namespaces/classes. */
22069 base = strrchr (DW_STRING (attr), ':');
22070 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22071 return "";
22072
22073 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22074 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22075 DW_STRING (attr),
22076 &base[-1] - DW_STRING (attr));
22077 }
22078
22079 /* Return the name of the namespace/class that DIE is defined within,
22080 or "" if we can't tell. The caller should not xfree the result.
22081
22082 For example, if we're within the method foo() in the following
22083 code:
22084
22085 namespace N {
22086 class C {
22087 void foo () {
22088 }
22089 };
22090 }
22091
22092 then determine_prefix on foo's die will return "N::C". */
22093
22094 static const char *
22095 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22096 {
22097 struct dwarf2_per_objfile *dwarf2_per_objfile
22098 = cu->per_cu->dwarf2_per_objfile;
22099 struct die_info *parent, *spec_die;
22100 struct dwarf2_cu *spec_cu;
22101 struct type *parent_type;
22102 const char *retval;
22103
22104 if (cu->language != language_cplus
22105 && cu->language != language_fortran && cu->language != language_d
22106 && cu->language != language_rust)
22107 return "";
22108
22109 retval = anonymous_struct_prefix (die, cu);
22110 if (retval)
22111 return retval;
22112
22113 /* We have to be careful in the presence of DW_AT_specification.
22114 For example, with GCC 3.4, given the code
22115
22116 namespace N {
22117 void foo() {
22118 // Definition of N::foo.
22119 }
22120 }
22121
22122 then we'll have a tree of DIEs like this:
22123
22124 1: DW_TAG_compile_unit
22125 2: DW_TAG_namespace // N
22126 3: DW_TAG_subprogram // declaration of N::foo
22127 4: DW_TAG_subprogram // definition of N::foo
22128 DW_AT_specification // refers to die #3
22129
22130 Thus, when processing die #4, we have to pretend that we're in
22131 the context of its DW_AT_specification, namely the contex of die
22132 #3. */
22133 spec_cu = cu;
22134 spec_die = die_specification (die, &spec_cu);
22135 if (spec_die == NULL)
22136 parent = die->parent;
22137 else
22138 {
22139 parent = spec_die->parent;
22140 cu = spec_cu;
22141 }
22142
22143 if (parent == NULL)
22144 return "";
22145 else if (parent->building_fullname)
22146 {
22147 const char *name;
22148 const char *parent_name;
22149
22150 /* It has been seen on RealView 2.2 built binaries,
22151 DW_TAG_template_type_param types actually _defined_ as
22152 children of the parent class:
22153
22154 enum E {};
22155 template class <class Enum> Class{};
22156 Class<enum E> class_e;
22157
22158 1: DW_TAG_class_type (Class)
22159 2: DW_TAG_enumeration_type (E)
22160 3: DW_TAG_enumerator (enum1:0)
22161 3: DW_TAG_enumerator (enum2:1)
22162 ...
22163 2: DW_TAG_template_type_param
22164 DW_AT_type DW_FORM_ref_udata (E)
22165
22166 Besides being broken debug info, it can put GDB into an
22167 infinite loop. Consider:
22168
22169 When we're building the full name for Class<E>, we'll start
22170 at Class, and go look over its template type parameters,
22171 finding E. We'll then try to build the full name of E, and
22172 reach here. We're now trying to build the full name of E,
22173 and look over the parent DIE for containing scope. In the
22174 broken case, if we followed the parent DIE of E, we'd again
22175 find Class, and once again go look at its template type
22176 arguments, etc., etc. Simply don't consider such parent die
22177 as source-level parent of this die (it can't be, the language
22178 doesn't allow it), and break the loop here. */
22179 name = dwarf2_name (die, cu);
22180 parent_name = dwarf2_name (parent, cu);
22181 complaint (_("template param type '%s' defined within parent '%s'"),
22182 name ? name : "<unknown>",
22183 parent_name ? parent_name : "<unknown>");
22184 return "";
22185 }
22186 else
22187 switch (parent->tag)
22188 {
22189 case DW_TAG_namespace:
22190 parent_type = read_type_die (parent, cu);
22191 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22192 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22193 Work around this problem here. */
22194 if (cu->language == language_cplus
22195 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22196 return "";
22197 /* We give a name to even anonymous namespaces. */
22198 return TYPE_NAME (parent_type);
22199 case DW_TAG_class_type:
22200 case DW_TAG_interface_type:
22201 case DW_TAG_structure_type:
22202 case DW_TAG_union_type:
22203 case DW_TAG_module:
22204 parent_type = read_type_die (parent, cu);
22205 if (TYPE_NAME (parent_type) != NULL)
22206 return TYPE_NAME (parent_type);
22207 else
22208 /* An anonymous structure is only allowed non-static data
22209 members; no typedefs, no member functions, et cetera.
22210 So it does not need a prefix. */
22211 return "";
22212 case DW_TAG_compile_unit:
22213 case DW_TAG_partial_unit:
22214 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22215 if (cu->language == language_cplus
22216 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22217 && die->child != NULL
22218 && (die->tag == DW_TAG_class_type
22219 || die->tag == DW_TAG_structure_type
22220 || die->tag == DW_TAG_union_type))
22221 {
22222 char *name = guess_full_die_structure_name (die, cu);
22223 if (name != NULL)
22224 return name;
22225 }
22226 return "";
22227 case DW_TAG_enumeration_type:
22228 parent_type = read_type_die (parent, cu);
22229 if (TYPE_DECLARED_CLASS (parent_type))
22230 {
22231 if (TYPE_NAME (parent_type) != NULL)
22232 return TYPE_NAME (parent_type);
22233 return "";
22234 }
22235 /* Fall through. */
22236 default:
22237 return determine_prefix (parent, cu);
22238 }
22239 }
22240
22241 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22242 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22243 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22244 an obconcat, otherwise allocate storage for the result. The CU argument is
22245 used to determine the language and hence, the appropriate separator. */
22246
22247 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22248
22249 static char *
22250 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22251 int physname, struct dwarf2_cu *cu)
22252 {
22253 const char *lead = "";
22254 const char *sep;
22255
22256 if (suffix == NULL || suffix[0] == '\0'
22257 || prefix == NULL || prefix[0] == '\0')
22258 sep = "";
22259 else if (cu->language == language_d)
22260 {
22261 /* For D, the 'main' function could be defined in any module, but it
22262 should never be prefixed. */
22263 if (strcmp (suffix, "D main") == 0)
22264 {
22265 prefix = "";
22266 sep = "";
22267 }
22268 else
22269 sep = ".";
22270 }
22271 else if (cu->language == language_fortran && physname)
22272 {
22273 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22274 DW_AT_MIPS_linkage_name is preferred and used instead. */
22275
22276 lead = "__";
22277 sep = "_MOD_";
22278 }
22279 else
22280 sep = "::";
22281
22282 if (prefix == NULL)
22283 prefix = "";
22284 if (suffix == NULL)
22285 suffix = "";
22286
22287 if (obs == NULL)
22288 {
22289 char *retval
22290 = ((char *)
22291 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22292
22293 strcpy (retval, lead);
22294 strcat (retval, prefix);
22295 strcat (retval, sep);
22296 strcat (retval, suffix);
22297 return retval;
22298 }
22299 else
22300 {
22301 /* We have an obstack. */
22302 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22303 }
22304 }
22305
22306 /* Return sibling of die, NULL if no sibling. */
22307
22308 static struct die_info *
22309 sibling_die (struct die_info *die)
22310 {
22311 return die->sibling;
22312 }
22313
22314 /* Get name of a die, return NULL if not found. */
22315
22316 static const char *
22317 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22318 struct obstack *obstack)
22319 {
22320 if (name && cu->language == language_cplus)
22321 {
22322 std::string canon_name = cp_canonicalize_string (name);
22323
22324 if (!canon_name.empty ())
22325 {
22326 if (canon_name != name)
22327 name = (const char *) obstack_copy0 (obstack,
22328 canon_name.c_str (),
22329 canon_name.length ());
22330 }
22331 }
22332
22333 return name;
22334 }
22335
22336 /* Get name of a die, return NULL if not found.
22337 Anonymous namespaces are converted to their magic string. */
22338
22339 static const char *
22340 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22341 {
22342 struct attribute *attr;
22343 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22344
22345 attr = dwarf2_attr (die, DW_AT_name, cu);
22346 if ((!attr || !DW_STRING (attr))
22347 && die->tag != DW_TAG_namespace
22348 && die->tag != DW_TAG_class_type
22349 && die->tag != DW_TAG_interface_type
22350 && die->tag != DW_TAG_structure_type
22351 && die->tag != DW_TAG_union_type)
22352 return NULL;
22353
22354 switch (die->tag)
22355 {
22356 case DW_TAG_compile_unit:
22357 case DW_TAG_partial_unit:
22358 /* Compilation units have a DW_AT_name that is a filename, not
22359 a source language identifier. */
22360 case DW_TAG_enumeration_type:
22361 case DW_TAG_enumerator:
22362 /* These tags always have simple identifiers already; no need
22363 to canonicalize them. */
22364 return DW_STRING (attr);
22365
22366 case DW_TAG_namespace:
22367 if (attr != NULL && DW_STRING (attr) != NULL)
22368 return DW_STRING (attr);
22369 return CP_ANONYMOUS_NAMESPACE_STR;
22370
22371 case DW_TAG_class_type:
22372 case DW_TAG_interface_type:
22373 case DW_TAG_structure_type:
22374 case DW_TAG_union_type:
22375 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22376 structures or unions. These were of the form "._%d" in GCC 4.1,
22377 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22378 and GCC 4.4. We work around this problem by ignoring these. */
22379 if (attr && DW_STRING (attr)
22380 && (startswith (DW_STRING (attr), "._")
22381 || startswith (DW_STRING (attr), "<anonymous")))
22382 return NULL;
22383
22384 /* GCC might emit a nameless typedef that has a linkage name. See
22385 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22386 if (!attr || DW_STRING (attr) == NULL)
22387 {
22388 char *demangled = NULL;
22389
22390 attr = dw2_linkage_name_attr (die, cu);
22391 if (attr == NULL || DW_STRING (attr) == NULL)
22392 return NULL;
22393
22394 /* Avoid demangling DW_STRING (attr) the second time on a second
22395 call for the same DIE. */
22396 if (!DW_STRING_IS_CANONICAL (attr))
22397 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22398
22399 if (demangled)
22400 {
22401 const char *base;
22402
22403 /* FIXME: we already did this for the partial symbol... */
22404 DW_STRING (attr)
22405 = ((const char *)
22406 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22407 demangled, strlen (demangled)));
22408 DW_STRING_IS_CANONICAL (attr) = 1;
22409 xfree (demangled);
22410
22411 /* Strip any leading namespaces/classes, keep only the base name.
22412 DW_AT_name for named DIEs does not contain the prefixes. */
22413 base = strrchr (DW_STRING (attr), ':');
22414 if (base && base > DW_STRING (attr) && base[-1] == ':')
22415 return &base[1];
22416 else
22417 return DW_STRING (attr);
22418 }
22419 }
22420 break;
22421
22422 default:
22423 break;
22424 }
22425
22426 if (!DW_STRING_IS_CANONICAL (attr))
22427 {
22428 DW_STRING (attr)
22429 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22430 &objfile->per_bfd->storage_obstack);
22431 DW_STRING_IS_CANONICAL (attr) = 1;
22432 }
22433 return DW_STRING (attr);
22434 }
22435
22436 /* Return the die that this die in an extension of, or NULL if there
22437 is none. *EXT_CU is the CU containing DIE on input, and the CU
22438 containing the return value on output. */
22439
22440 static struct die_info *
22441 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22442 {
22443 struct attribute *attr;
22444
22445 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22446 if (attr == NULL)
22447 return NULL;
22448
22449 return follow_die_ref (die, attr, ext_cu);
22450 }
22451
22452 /* Convert a DIE tag into its string name. */
22453
22454 static const char *
22455 dwarf_tag_name (unsigned tag)
22456 {
22457 const char *name = get_DW_TAG_name (tag);
22458
22459 if (name == NULL)
22460 return "DW_TAG_<unknown>";
22461
22462 return name;
22463 }
22464
22465 /* Convert a DWARF attribute code into its string name. */
22466
22467 static const char *
22468 dwarf_attr_name (unsigned attr)
22469 {
22470 const char *name;
22471
22472 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22473 if (attr == DW_AT_MIPS_fde)
22474 return "DW_AT_MIPS_fde";
22475 #else
22476 if (attr == DW_AT_HP_block_index)
22477 return "DW_AT_HP_block_index";
22478 #endif
22479
22480 name = get_DW_AT_name (attr);
22481
22482 if (name == NULL)
22483 return "DW_AT_<unknown>";
22484
22485 return name;
22486 }
22487
22488 /* Convert a DWARF value form code into its string name. */
22489
22490 static const char *
22491 dwarf_form_name (unsigned form)
22492 {
22493 const char *name = get_DW_FORM_name (form);
22494
22495 if (name == NULL)
22496 return "DW_FORM_<unknown>";
22497
22498 return name;
22499 }
22500
22501 static const char *
22502 dwarf_bool_name (unsigned mybool)
22503 {
22504 if (mybool)
22505 return "TRUE";
22506 else
22507 return "FALSE";
22508 }
22509
22510 /* Convert a DWARF type code into its string name. */
22511
22512 static const char *
22513 dwarf_type_encoding_name (unsigned enc)
22514 {
22515 const char *name = get_DW_ATE_name (enc);
22516
22517 if (name == NULL)
22518 return "DW_ATE_<unknown>";
22519
22520 return name;
22521 }
22522
22523 static void
22524 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22525 {
22526 unsigned int i;
22527
22528 print_spaces (indent, f);
22529 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22530 dwarf_tag_name (die->tag), die->abbrev,
22531 sect_offset_str (die->sect_off));
22532
22533 if (die->parent != NULL)
22534 {
22535 print_spaces (indent, f);
22536 fprintf_unfiltered (f, " parent at offset: %s\n",
22537 sect_offset_str (die->parent->sect_off));
22538 }
22539
22540 print_spaces (indent, f);
22541 fprintf_unfiltered (f, " has children: %s\n",
22542 dwarf_bool_name (die->child != NULL));
22543
22544 print_spaces (indent, f);
22545 fprintf_unfiltered (f, " attributes:\n");
22546
22547 for (i = 0; i < die->num_attrs; ++i)
22548 {
22549 print_spaces (indent, f);
22550 fprintf_unfiltered (f, " %s (%s) ",
22551 dwarf_attr_name (die->attrs[i].name),
22552 dwarf_form_name (die->attrs[i].form));
22553
22554 switch (die->attrs[i].form)
22555 {
22556 case DW_FORM_addr:
22557 case DW_FORM_GNU_addr_index:
22558 fprintf_unfiltered (f, "address: ");
22559 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22560 break;
22561 case DW_FORM_block2:
22562 case DW_FORM_block4:
22563 case DW_FORM_block:
22564 case DW_FORM_block1:
22565 fprintf_unfiltered (f, "block: size %s",
22566 pulongest (DW_BLOCK (&die->attrs[i])->size));
22567 break;
22568 case DW_FORM_exprloc:
22569 fprintf_unfiltered (f, "expression: size %s",
22570 pulongest (DW_BLOCK (&die->attrs[i])->size));
22571 break;
22572 case DW_FORM_data16:
22573 fprintf_unfiltered (f, "constant of 16 bytes");
22574 break;
22575 case DW_FORM_ref_addr:
22576 fprintf_unfiltered (f, "ref address: ");
22577 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22578 break;
22579 case DW_FORM_GNU_ref_alt:
22580 fprintf_unfiltered (f, "alt ref address: ");
22581 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22582 break;
22583 case DW_FORM_ref1:
22584 case DW_FORM_ref2:
22585 case DW_FORM_ref4:
22586 case DW_FORM_ref8:
22587 case DW_FORM_ref_udata:
22588 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22589 (long) (DW_UNSND (&die->attrs[i])));
22590 break;
22591 case DW_FORM_data1:
22592 case DW_FORM_data2:
22593 case DW_FORM_data4:
22594 case DW_FORM_data8:
22595 case DW_FORM_udata:
22596 case DW_FORM_sdata:
22597 fprintf_unfiltered (f, "constant: %s",
22598 pulongest (DW_UNSND (&die->attrs[i])));
22599 break;
22600 case DW_FORM_sec_offset:
22601 fprintf_unfiltered (f, "section offset: %s",
22602 pulongest (DW_UNSND (&die->attrs[i])));
22603 break;
22604 case DW_FORM_ref_sig8:
22605 fprintf_unfiltered (f, "signature: %s",
22606 hex_string (DW_SIGNATURE (&die->attrs[i])));
22607 break;
22608 case DW_FORM_string:
22609 case DW_FORM_strp:
22610 case DW_FORM_line_strp:
22611 case DW_FORM_GNU_str_index:
22612 case DW_FORM_GNU_strp_alt:
22613 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22614 DW_STRING (&die->attrs[i])
22615 ? DW_STRING (&die->attrs[i]) : "",
22616 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22617 break;
22618 case DW_FORM_flag:
22619 if (DW_UNSND (&die->attrs[i]))
22620 fprintf_unfiltered (f, "flag: TRUE");
22621 else
22622 fprintf_unfiltered (f, "flag: FALSE");
22623 break;
22624 case DW_FORM_flag_present:
22625 fprintf_unfiltered (f, "flag: TRUE");
22626 break;
22627 case DW_FORM_indirect:
22628 /* The reader will have reduced the indirect form to
22629 the "base form" so this form should not occur. */
22630 fprintf_unfiltered (f,
22631 "unexpected attribute form: DW_FORM_indirect");
22632 break;
22633 case DW_FORM_implicit_const:
22634 fprintf_unfiltered (f, "constant: %s",
22635 plongest (DW_SND (&die->attrs[i])));
22636 break;
22637 default:
22638 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22639 die->attrs[i].form);
22640 break;
22641 }
22642 fprintf_unfiltered (f, "\n");
22643 }
22644 }
22645
22646 static void
22647 dump_die_for_error (struct die_info *die)
22648 {
22649 dump_die_shallow (gdb_stderr, 0, die);
22650 }
22651
22652 static void
22653 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22654 {
22655 int indent = level * 4;
22656
22657 gdb_assert (die != NULL);
22658
22659 if (level >= max_level)
22660 return;
22661
22662 dump_die_shallow (f, indent, die);
22663
22664 if (die->child != NULL)
22665 {
22666 print_spaces (indent, f);
22667 fprintf_unfiltered (f, " Children:");
22668 if (level + 1 < max_level)
22669 {
22670 fprintf_unfiltered (f, "\n");
22671 dump_die_1 (f, level + 1, max_level, die->child);
22672 }
22673 else
22674 {
22675 fprintf_unfiltered (f,
22676 " [not printed, max nesting level reached]\n");
22677 }
22678 }
22679
22680 if (die->sibling != NULL && level > 0)
22681 {
22682 dump_die_1 (f, level, max_level, die->sibling);
22683 }
22684 }
22685
22686 /* This is called from the pdie macro in gdbinit.in.
22687 It's not static so gcc will keep a copy callable from gdb. */
22688
22689 void
22690 dump_die (struct die_info *die, int max_level)
22691 {
22692 dump_die_1 (gdb_stdlog, 0, max_level, die);
22693 }
22694
22695 static void
22696 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22697 {
22698 void **slot;
22699
22700 slot = htab_find_slot_with_hash (cu->die_hash, die,
22701 to_underlying (die->sect_off),
22702 INSERT);
22703
22704 *slot = die;
22705 }
22706
22707 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22708 required kind. */
22709
22710 static sect_offset
22711 dwarf2_get_ref_die_offset (const struct attribute *attr)
22712 {
22713 if (attr_form_is_ref (attr))
22714 return (sect_offset) DW_UNSND (attr);
22715
22716 complaint (_("unsupported die ref attribute form: '%s'"),
22717 dwarf_form_name (attr->form));
22718 return {};
22719 }
22720
22721 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22722 * the value held by the attribute is not constant. */
22723
22724 static LONGEST
22725 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22726 {
22727 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22728 return DW_SND (attr);
22729 else if (attr->form == DW_FORM_udata
22730 || attr->form == DW_FORM_data1
22731 || attr->form == DW_FORM_data2
22732 || attr->form == DW_FORM_data4
22733 || attr->form == DW_FORM_data8)
22734 return DW_UNSND (attr);
22735 else
22736 {
22737 /* For DW_FORM_data16 see attr_form_is_constant. */
22738 complaint (_("Attribute value is not a constant (%s)"),
22739 dwarf_form_name (attr->form));
22740 return default_value;
22741 }
22742 }
22743
22744 /* Follow reference or signature attribute ATTR of SRC_DIE.
22745 On entry *REF_CU is the CU of SRC_DIE.
22746 On exit *REF_CU is the CU of the result. */
22747
22748 static struct die_info *
22749 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22750 struct dwarf2_cu **ref_cu)
22751 {
22752 struct die_info *die;
22753
22754 if (attr_form_is_ref (attr))
22755 die = follow_die_ref (src_die, attr, ref_cu);
22756 else if (attr->form == DW_FORM_ref_sig8)
22757 die = follow_die_sig (src_die, attr, ref_cu);
22758 else
22759 {
22760 dump_die_for_error (src_die);
22761 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22762 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22763 }
22764
22765 return die;
22766 }
22767
22768 /* Follow reference OFFSET.
22769 On entry *REF_CU is the CU of the source die referencing OFFSET.
22770 On exit *REF_CU is the CU of the result.
22771 Returns NULL if OFFSET is invalid. */
22772
22773 static struct die_info *
22774 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22775 struct dwarf2_cu **ref_cu)
22776 {
22777 struct die_info temp_die;
22778 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22779 struct dwarf2_per_objfile *dwarf2_per_objfile
22780 = cu->per_cu->dwarf2_per_objfile;
22781
22782 gdb_assert (cu->per_cu != NULL);
22783
22784 target_cu = cu;
22785
22786 if (cu->per_cu->is_debug_types)
22787 {
22788 /* .debug_types CUs cannot reference anything outside their CU.
22789 If they need to, they have to reference a signatured type via
22790 DW_FORM_ref_sig8. */
22791 if (!offset_in_cu_p (&cu->header, sect_off))
22792 return NULL;
22793 }
22794 else if (offset_in_dwz != cu->per_cu->is_dwz
22795 || !offset_in_cu_p (&cu->header, sect_off))
22796 {
22797 struct dwarf2_per_cu_data *per_cu;
22798
22799 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22800 dwarf2_per_objfile);
22801
22802 /* If necessary, add it to the queue and load its DIEs. */
22803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22804 load_full_comp_unit (per_cu, false, cu->language);
22805
22806 target_cu = per_cu->cu;
22807 }
22808 else if (cu->dies == NULL)
22809 {
22810 /* We're loading full DIEs during partial symbol reading. */
22811 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22812 load_full_comp_unit (cu->per_cu, false, language_minimal);
22813 }
22814
22815 *ref_cu = target_cu;
22816 temp_die.sect_off = sect_off;
22817 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22818 &temp_die,
22819 to_underlying (sect_off));
22820 }
22821
22822 /* Follow reference attribute ATTR of SRC_DIE.
22823 On entry *REF_CU is the CU of SRC_DIE.
22824 On exit *REF_CU is the CU of the result. */
22825
22826 static struct die_info *
22827 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22828 struct dwarf2_cu **ref_cu)
22829 {
22830 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22831 struct dwarf2_cu *cu = *ref_cu;
22832 struct die_info *die;
22833
22834 die = follow_die_offset (sect_off,
22835 (attr->form == DW_FORM_GNU_ref_alt
22836 || cu->per_cu->is_dwz),
22837 ref_cu);
22838 if (!die)
22839 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22840 "at %s [in module %s]"),
22841 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22842 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22843
22844 return die;
22845 }
22846
22847 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22848 Returned value is intended for DW_OP_call*. Returned
22849 dwarf2_locexpr_baton->data has lifetime of
22850 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22851
22852 struct dwarf2_locexpr_baton
22853 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22854 struct dwarf2_per_cu_data *per_cu,
22855 CORE_ADDR (*get_frame_pc) (void *baton),
22856 void *baton)
22857 {
22858 struct dwarf2_cu *cu;
22859 struct die_info *die;
22860 struct attribute *attr;
22861 struct dwarf2_locexpr_baton retval;
22862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22863 struct objfile *objfile = dwarf2_per_objfile->objfile;
22864
22865 if (per_cu->cu == NULL)
22866 load_cu (per_cu, false);
22867 cu = per_cu->cu;
22868 if (cu == NULL)
22869 {
22870 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22871 Instead just throw an error, not much else we can do. */
22872 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22873 sect_offset_str (sect_off), objfile_name (objfile));
22874 }
22875
22876 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22877 if (!die)
22878 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22879 sect_offset_str (sect_off), objfile_name (objfile));
22880
22881 attr = dwarf2_attr (die, DW_AT_location, cu);
22882 if (!attr)
22883 {
22884 /* DWARF: "If there is no such attribute, then there is no effect.".
22885 DATA is ignored if SIZE is 0. */
22886
22887 retval.data = NULL;
22888 retval.size = 0;
22889 }
22890 else if (attr_form_is_section_offset (attr))
22891 {
22892 struct dwarf2_loclist_baton loclist_baton;
22893 CORE_ADDR pc = (*get_frame_pc) (baton);
22894 size_t size;
22895
22896 fill_in_loclist_baton (cu, &loclist_baton, attr);
22897
22898 retval.data = dwarf2_find_location_expression (&loclist_baton,
22899 &size, pc);
22900 retval.size = size;
22901 }
22902 else
22903 {
22904 if (!attr_form_is_block (attr))
22905 error (_("Dwarf Error: DIE at %s referenced in module %s "
22906 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22907 sect_offset_str (sect_off), objfile_name (objfile));
22908
22909 retval.data = DW_BLOCK (attr)->data;
22910 retval.size = DW_BLOCK (attr)->size;
22911 }
22912 retval.per_cu = cu->per_cu;
22913
22914 age_cached_comp_units (dwarf2_per_objfile);
22915
22916 return retval;
22917 }
22918
22919 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22920 offset. */
22921
22922 struct dwarf2_locexpr_baton
22923 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22924 struct dwarf2_per_cu_data *per_cu,
22925 CORE_ADDR (*get_frame_pc) (void *baton),
22926 void *baton)
22927 {
22928 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22929
22930 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22931 }
22932
22933 /* Write a constant of a given type as target-ordered bytes into
22934 OBSTACK. */
22935
22936 static const gdb_byte *
22937 write_constant_as_bytes (struct obstack *obstack,
22938 enum bfd_endian byte_order,
22939 struct type *type,
22940 ULONGEST value,
22941 LONGEST *len)
22942 {
22943 gdb_byte *result;
22944
22945 *len = TYPE_LENGTH (type);
22946 result = (gdb_byte *) obstack_alloc (obstack, *len);
22947 store_unsigned_integer (result, *len, byte_order, value);
22948
22949 return result;
22950 }
22951
22952 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22953 pointer to the constant bytes and set LEN to the length of the
22954 data. If memory is needed, allocate it on OBSTACK. If the DIE
22955 does not have a DW_AT_const_value, return NULL. */
22956
22957 const gdb_byte *
22958 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22959 struct dwarf2_per_cu_data *per_cu,
22960 struct obstack *obstack,
22961 LONGEST *len)
22962 {
22963 struct dwarf2_cu *cu;
22964 struct die_info *die;
22965 struct attribute *attr;
22966 const gdb_byte *result = NULL;
22967 struct type *type;
22968 LONGEST value;
22969 enum bfd_endian byte_order;
22970 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22971
22972 if (per_cu->cu == NULL)
22973 load_cu (per_cu, false);
22974 cu = per_cu->cu;
22975 if (cu == NULL)
22976 {
22977 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22978 Instead just throw an error, not much else we can do. */
22979 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22980 sect_offset_str (sect_off), objfile_name (objfile));
22981 }
22982
22983 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22984 if (!die)
22985 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22986 sect_offset_str (sect_off), objfile_name (objfile));
22987
22988 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22989 if (attr == NULL)
22990 return NULL;
22991
22992 byte_order = (bfd_big_endian (objfile->obfd)
22993 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22994
22995 switch (attr->form)
22996 {
22997 case DW_FORM_addr:
22998 case DW_FORM_GNU_addr_index:
22999 {
23000 gdb_byte *tem;
23001
23002 *len = cu->header.addr_size;
23003 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23004 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23005 result = tem;
23006 }
23007 break;
23008 case DW_FORM_string:
23009 case DW_FORM_strp:
23010 case DW_FORM_GNU_str_index:
23011 case DW_FORM_GNU_strp_alt:
23012 /* DW_STRING is already allocated on the objfile obstack, point
23013 directly to it. */
23014 result = (const gdb_byte *) DW_STRING (attr);
23015 *len = strlen (DW_STRING (attr));
23016 break;
23017 case DW_FORM_block1:
23018 case DW_FORM_block2:
23019 case DW_FORM_block4:
23020 case DW_FORM_block:
23021 case DW_FORM_exprloc:
23022 case DW_FORM_data16:
23023 result = DW_BLOCK (attr)->data;
23024 *len = DW_BLOCK (attr)->size;
23025 break;
23026
23027 /* The DW_AT_const_value attributes are supposed to carry the
23028 symbol's value "represented as it would be on the target
23029 architecture." By the time we get here, it's already been
23030 converted to host endianness, so we just need to sign- or
23031 zero-extend it as appropriate. */
23032 case DW_FORM_data1:
23033 type = die_type (die, cu);
23034 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23035 if (result == NULL)
23036 result = write_constant_as_bytes (obstack, byte_order,
23037 type, value, len);
23038 break;
23039 case DW_FORM_data2:
23040 type = die_type (die, cu);
23041 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23042 if (result == NULL)
23043 result = write_constant_as_bytes (obstack, byte_order,
23044 type, value, len);
23045 break;
23046 case DW_FORM_data4:
23047 type = die_type (die, cu);
23048 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23049 if (result == NULL)
23050 result = write_constant_as_bytes (obstack, byte_order,
23051 type, value, len);
23052 break;
23053 case DW_FORM_data8:
23054 type = die_type (die, cu);
23055 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23056 if (result == NULL)
23057 result = write_constant_as_bytes (obstack, byte_order,
23058 type, value, len);
23059 break;
23060
23061 case DW_FORM_sdata:
23062 case DW_FORM_implicit_const:
23063 type = die_type (die, cu);
23064 result = write_constant_as_bytes (obstack, byte_order,
23065 type, DW_SND (attr), len);
23066 break;
23067
23068 case DW_FORM_udata:
23069 type = die_type (die, cu);
23070 result = write_constant_as_bytes (obstack, byte_order,
23071 type, DW_UNSND (attr), len);
23072 break;
23073
23074 default:
23075 complaint (_("unsupported const value attribute form: '%s'"),
23076 dwarf_form_name (attr->form));
23077 break;
23078 }
23079
23080 return result;
23081 }
23082
23083 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23084 valid type for this die is found. */
23085
23086 struct type *
23087 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23088 struct dwarf2_per_cu_data *per_cu)
23089 {
23090 struct dwarf2_cu *cu;
23091 struct die_info *die;
23092
23093 if (per_cu->cu == NULL)
23094 load_cu (per_cu, false);
23095 cu = per_cu->cu;
23096 if (!cu)
23097 return NULL;
23098
23099 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23100 if (!die)
23101 return NULL;
23102
23103 return die_type (die, cu);
23104 }
23105
23106 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23107 PER_CU. */
23108
23109 struct type *
23110 dwarf2_get_die_type (cu_offset die_offset,
23111 struct dwarf2_per_cu_data *per_cu)
23112 {
23113 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23114 return get_die_type_at_offset (die_offset_sect, per_cu);
23115 }
23116
23117 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23118 On entry *REF_CU is the CU of SRC_DIE.
23119 On exit *REF_CU is the CU of the result.
23120 Returns NULL if the referenced DIE isn't found. */
23121
23122 static struct die_info *
23123 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23124 struct dwarf2_cu **ref_cu)
23125 {
23126 struct die_info temp_die;
23127 struct dwarf2_cu *sig_cu;
23128 struct die_info *die;
23129
23130 /* While it might be nice to assert sig_type->type == NULL here,
23131 we can get here for DW_AT_imported_declaration where we need
23132 the DIE not the type. */
23133
23134 /* If necessary, add it to the queue and load its DIEs. */
23135
23136 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23137 read_signatured_type (sig_type);
23138
23139 sig_cu = sig_type->per_cu.cu;
23140 gdb_assert (sig_cu != NULL);
23141 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23142 temp_die.sect_off = sig_type->type_offset_in_section;
23143 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23144 to_underlying (temp_die.sect_off));
23145 if (die)
23146 {
23147 struct dwarf2_per_objfile *dwarf2_per_objfile
23148 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23149
23150 /* For .gdb_index version 7 keep track of included TUs.
23151 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23152 if (dwarf2_per_objfile->index_table != NULL
23153 && dwarf2_per_objfile->index_table->version <= 7)
23154 {
23155 VEC_safe_push (dwarf2_per_cu_ptr,
23156 (*ref_cu)->per_cu->imported_symtabs,
23157 sig_cu->per_cu);
23158 }
23159
23160 *ref_cu = sig_cu;
23161 return die;
23162 }
23163
23164 return NULL;
23165 }
23166
23167 /* Follow signatured type referenced by ATTR in SRC_DIE.
23168 On entry *REF_CU is the CU of SRC_DIE.
23169 On exit *REF_CU is the CU of the result.
23170 The result is the DIE of the type.
23171 If the referenced type cannot be found an error is thrown. */
23172
23173 static struct die_info *
23174 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23175 struct dwarf2_cu **ref_cu)
23176 {
23177 ULONGEST signature = DW_SIGNATURE (attr);
23178 struct signatured_type *sig_type;
23179 struct die_info *die;
23180
23181 gdb_assert (attr->form == DW_FORM_ref_sig8);
23182
23183 sig_type = lookup_signatured_type (*ref_cu, signature);
23184 /* sig_type will be NULL if the signatured type is missing from
23185 the debug info. */
23186 if (sig_type == NULL)
23187 {
23188 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23189 " from DIE at %s [in module %s]"),
23190 hex_string (signature), sect_offset_str (src_die->sect_off),
23191 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23192 }
23193
23194 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23195 if (die == NULL)
23196 {
23197 dump_die_for_error (src_die);
23198 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23199 " from DIE at %s [in module %s]"),
23200 hex_string (signature), sect_offset_str (src_die->sect_off),
23201 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23202 }
23203
23204 return die;
23205 }
23206
23207 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23208 reading in and processing the type unit if necessary. */
23209
23210 static struct type *
23211 get_signatured_type (struct die_info *die, ULONGEST signature,
23212 struct dwarf2_cu *cu)
23213 {
23214 struct dwarf2_per_objfile *dwarf2_per_objfile
23215 = cu->per_cu->dwarf2_per_objfile;
23216 struct signatured_type *sig_type;
23217 struct dwarf2_cu *type_cu;
23218 struct die_info *type_die;
23219 struct type *type;
23220
23221 sig_type = lookup_signatured_type (cu, signature);
23222 /* sig_type will be NULL if the signatured type is missing from
23223 the debug info. */
23224 if (sig_type == NULL)
23225 {
23226 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23227 " from DIE at %s [in module %s]"),
23228 hex_string (signature), sect_offset_str (die->sect_off),
23229 objfile_name (dwarf2_per_objfile->objfile));
23230 return build_error_marker_type (cu, die);
23231 }
23232
23233 /* If we already know the type we're done. */
23234 if (sig_type->type != NULL)
23235 return sig_type->type;
23236
23237 type_cu = cu;
23238 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23239 if (type_die != NULL)
23240 {
23241 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23242 is created. This is important, for example, because for c++ classes
23243 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23244 type = read_type_die (type_die, type_cu);
23245 if (type == NULL)
23246 {
23247 complaint (_("Dwarf Error: Cannot build signatured type %s"
23248 " referenced from DIE at %s [in module %s]"),
23249 hex_string (signature), sect_offset_str (die->sect_off),
23250 objfile_name (dwarf2_per_objfile->objfile));
23251 type = build_error_marker_type (cu, die);
23252 }
23253 }
23254 else
23255 {
23256 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23257 " from DIE at %s [in module %s]"),
23258 hex_string (signature), sect_offset_str (die->sect_off),
23259 objfile_name (dwarf2_per_objfile->objfile));
23260 type = build_error_marker_type (cu, die);
23261 }
23262 sig_type->type = type;
23263
23264 return type;
23265 }
23266
23267 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23268 reading in and processing the type unit if necessary. */
23269
23270 static struct type *
23271 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23272 struct dwarf2_cu *cu) /* ARI: editCase function */
23273 {
23274 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23275 if (attr_form_is_ref (attr))
23276 {
23277 struct dwarf2_cu *type_cu = cu;
23278 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23279
23280 return read_type_die (type_die, type_cu);
23281 }
23282 else if (attr->form == DW_FORM_ref_sig8)
23283 {
23284 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23285 }
23286 else
23287 {
23288 struct dwarf2_per_objfile *dwarf2_per_objfile
23289 = cu->per_cu->dwarf2_per_objfile;
23290
23291 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23292 " at %s [in module %s]"),
23293 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23294 objfile_name (dwarf2_per_objfile->objfile));
23295 return build_error_marker_type (cu, die);
23296 }
23297 }
23298
23299 /* Load the DIEs associated with type unit PER_CU into memory. */
23300
23301 static void
23302 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23303 {
23304 struct signatured_type *sig_type;
23305
23306 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23307 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23308
23309 /* We have the per_cu, but we need the signatured_type.
23310 Fortunately this is an easy translation. */
23311 gdb_assert (per_cu->is_debug_types);
23312 sig_type = (struct signatured_type *) per_cu;
23313
23314 gdb_assert (per_cu->cu == NULL);
23315
23316 read_signatured_type (sig_type);
23317
23318 gdb_assert (per_cu->cu != NULL);
23319 }
23320
23321 /* die_reader_func for read_signatured_type.
23322 This is identical to load_full_comp_unit_reader,
23323 but is kept separate for now. */
23324
23325 static void
23326 read_signatured_type_reader (const struct die_reader_specs *reader,
23327 const gdb_byte *info_ptr,
23328 struct die_info *comp_unit_die,
23329 int has_children,
23330 void *data)
23331 {
23332 struct dwarf2_cu *cu = reader->cu;
23333
23334 gdb_assert (cu->die_hash == NULL);
23335 cu->die_hash =
23336 htab_create_alloc_ex (cu->header.length / 12,
23337 die_hash,
23338 die_eq,
23339 NULL,
23340 &cu->comp_unit_obstack,
23341 hashtab_obstack_allocate,
23342 dummy_obstack_deallocate);
23343
23344 if (has_children)
23345 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23346 &info_ptr, comp_unit_die);
23347 cu->dies = comp_unit_die;
23348 /* comp_unit_die is not stored in die_hash, no need. */
23349
23350 /* We try not to read any attributes in this function, because not
23351 all CUs needed for references have been loaded yet, and symbol
23352 table processing isn't initialized. But we have to set the CU language,
23353 or we won't be able to build types correctly.
23354 Similarly, if we do not read the producer, we can not apply
23355 producer-specific interpretation. */
23356 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23357 }
23358
23359 /* Read in a signatured type and build its CU and DIEs.
23360 If the type is a stub for the real type in a DWO file,
23361 read in the real type from the DWO file as well. */
23362
23363 static void
23364 read_signatured_type (struct signatured_type *sig_type)
23365 {
23366 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23367
23368 gdb_assert (per_cu->is_debug_types);
23369 gdb_assert (per_cu->cu == NULL);
23370
23371 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23372 read_signatured_type_reader, NULL);
23373 sig_type->per_cu.tu_read = 1;
23374 }
23375
23376 /* Decode simple location descriptions.
23377 Given a pointer to a dwarf block that defines a location, compute
23378 the location and return the value.
23379
23380 NOTE drow/2003-11-18: This function is called in two situations
23381 now: for the address of static or global variables (partial symbols
23382 only) and for offsets into structures which are expected to be
23383 (more or less) constant. The partial symbol case should go away,
23384 and only the constant case should remain. That will let this
23385 function complain more accurately. A few special modes are allowed
23386 without complaint for global variables (for instance, global
23387 register values and thread-local values).
23388
23389 A location description containing no operations indicates that the
23390 object is optimized out. The return value is 0 for that case.
23391 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23392 callers will only want a very basic result and this can become a
23393 complaint.
23394
23395 Note that stack[0] is unused except as a default error return. */
23396
23397 static CORE_ADDR
23398 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23399 {
23400 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23401 size_t i;
23402 size_t size = blk->size;
23403 const gdb_byte *data = blk->data;
23404 CORE_ADDR stack[64];
23405 int stacki;
23406 unsigned int bytes_read, unsnd;
23407 gdb_byte op;
23408
23409 i = 0;
23410 stacki = 0;
23411 stack[stacki] = 0;
23412 stack[++stacki] = 0;
23413
23414 while (i < size)
23415 {
23416 op = data[i++];
23417 switch (op)
23418 {
23419 case DW_OP_lit0:
23420 case DW_OP_lit1:
23421 case DW_OP_lit2:
23422 case DW_OP_lit3:
23423 case DW_OP_lit4:
23424 case DW_OP_lit5:
23425 case DW_OP_lit6:
23426 case DW_OP_lit7:
23427 case DW_OP_lit8:
23428 case DW_OP_lit9:
23429 case DW_OP_lit10:
23430 case DW_OP_lit11:
23431 case DW_OP_lit12:
23432 case DW_OP_lit13:
23433 case DW_OP_lit14:
23434 case DW_OP_lit15:
23435 case DW_OP_lit16:
23436 case DW_OP_lit17:
23437 case DW_OP_lit18:
23438 case DW_OP_lit19:
23439 case DW_OP_lit20:
23440 case DW_OP_lit21:
23441 case DW_OP_lit22:
23442 case DW_OP_lit23:
23443 case DW_OP_lit24:
23444 case DW_OP_lit25:
23445 case DW_OP_lit26:
23446 case DW_OP_lit27:
23447 case DW_OP_lit28:
23448 case DW_OP_lit29:
23449 case DW_OP_lit30:
23450 case DW_OP_lit31:
23451 stack[++stacki] = op - DW_OP_lit0;
23452 break;
23453
23454 case DW_OP_reg0:
23455 case DW_OP_reg1:
23456 case DW_OP_reg2:
23457 case DW_OP_reg3:
23458 case DW_OP_reg4:
23459 case DW_OP_reg5:
23460 case DW_OP_reg6:
23461 case DW_OP_reg7:
23462 case DW_OP_reg8:
23463 case DW_OP_reg9:
23464 case DW_OP_reg10:
23465 case DW_OP_reg11:
23466 case DW_OP_reg12:
23467 case DW_OP_reg13:
23468 case DW_OP_reg14:
23469 case DW_OP_reg15:
23470 case DW_OP_reg16:
23471 case DW_OP_reg17:
23472 case DW_OP_reg18:
23473 case DW_OP_reg19:
23474 case DW_OP_reg20:
23475 case DW_OP_reg21:
23476 case DW_OP_reg22:
23477 case DW_OP_reg23:
23478 case DW_OP_reg24:
23479 case DW_OP_reg25:
23480 case DW_OP_reg26:
23481 case DW_OP_reg27:
23482 case DW_OP_reg28:
23483 case DW_OP_reg29:
23484 case DW_OP_reg30:
23485 case DW_OP_reg31:
23486 stack[++stacki] = op - DW_OP_reg0;
23487 if (i < size)
23488 dwarf2_complex_location_expr_complaint ();
23489 break;
23490
23491 case DW_OP_regx:
23492 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23493 i += bytes_read;
23494 stack[++stacki] = unsnd;
23495 if (i < size)
23496 dwarf2_complex_location_expr_complaint ();
23497 break;
23498
23499 case DW_OP_addr:
23500 stack[++stacki] = read_address (objfile->obfd, &data[i],
23501 cu, &bytes_read);
23502 i += bytes_read;
23503 break;
23504
23505 case DW_OP_const1u:
23506 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23507 i += 1;
23508 break;
23509
23510 case DW_OP_const1s:
23511 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23512 i += 1;
23513 break;
23514
23515 case DW_OP_const2u:
23516 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23517 i += 2;
23518 break;
23519
23520 case DW_OP_const2s:
23521 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23522 i += 2;
23523 break;
23524
23525 case DW_OP_const4u:
23526 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23527 i += 4;
23528 break;
23529
23530 case DW_OP_const4s:
23531 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23532 i += 4;
23533 break;
23534
23535 case DW_OP_const8u:
23536 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23537 i += 8;
23538 break;
23539
23540 case DW_OP_constu:
23541 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23542 &bytes_read);
23543 i += bytes_read;
23544 break;
23545
23546 case DW_OP_consts:
23547 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23548 i += bytes_read;
23549 break;
23550
23551 case DW_OP_dup:
23552 stack[stacki + 1] = stack[stacki];
23553 stacki++;
23554 break;
23555
23556 case DW_OP_plus:
23557 stack[stacki - 1] += stack[stacki];
23558 stacki--;
23559 break;
23560
23561 case DW_OP_plus_uconst:
23562 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23563 &bytes_read);
23564 i += bytes_read;
23565 break;
23566
23567 case DW_OP_minus:
23568 stack[stacki - 1] -= stack[stacki];
23569 stacki--;
23570 break;
23571
23572 case DW_OP_deref:
23573 /* If we're not the last op, then we definitely can't encode
23574 this using GDB's address_class enum. This is valid for partial
23575 global symbols, although the variable's address will be bogus
23576 in the psymtab. */
23577 if (i < size)
23578 dwarf2_complex_location_expr_complaint ();
23579 break;
23580
23581 case DW_OP_GNU_push_tls_address:
23582 case DW_OP_form_tls_address:
23583 /* The top of the stack has the offset from the beginning
23584 of the thread control block at which the variable is located. */
23585 /* Nothing should follow this operator, so the top of stack would
23586 be returned. */
23587 /* This is valid for partial global symbols, but the variable's
23588 address will be bogus in the psymtab. Make it always at least
23589 non-zero to not look as a variable garbage collected by linker
23590 which have DW_OP_addr 0. */
23591 if (i < size)
23592 dwarf2_complex_location_expr_complaint ();
23593 stack[stacki]++;
23594 break;
23595
23596 case DW_OP_GNU_uninit:
23597 break;
23598
23599 case DW_OP_GNU_addr_index:
23600 case DW_OP_GNU_const_index:
23601 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23602 &bytes_read);
23603 i += bytes_read;
23604 break;
23605
23606 default:
23607 {
23608 const char *name = get_DW_OP_name (op);
23609
23610 if (name)
23611 complaint (_("unsupported stack op: '%s'"),
23612 name);
23613 else
23614 complaint (_("unsupported stack op: '%02x'"),
23615 op);
23616 }
23617
23618 return (stack[stacki]);
23619 }
23620
23621 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23622 outside of the allocated space. Also enforce minimum>0. */
23623 if (stacki >= ARRAY_SIZE (stack) - 1)
23624 {
23625 complaint (_("location description stack overflow"));
23626 return 0;
23627 }
23628
23629 if (stacki <= 0)
23630 {
23631 complaint (_("location description stack underflow"));
23632 return 0;
23633 }
23634 }
23635 return (stack[stacki]);
23636 }
23637
23638 /* memory allocation interface */
23639
23640 static struct dwarf_block *
23641 dwarf_alloc_block (struct dwarf2_cu *cu)
23642 {
23643 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23644 }
23645
23646 static struct die_info *
23647 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23648 {
23649 struct die_info *die;
23650 size_t size = sizeof (struct die_info);
23651
23652 if (num_attrs > 1)
23653 size += (num_attrs - 1) * sizeof (struct attribute);
23654
23655 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23656 memset (die, 0, sizeof (struct die_info));
23657 return (die);
23658 }
23659
23660 \f
23661 /* Macro support. */
23662
23663 /* Return file name relative to the compilation directory of file number I in
23664 *LH's file name table. The result is allocated using xmalloc; the caller is
23665 responsible for freeing it. */
23666
23667 static char *
23668 file_file_name (int file, struct line_header *lh)
23669 {
23670 /* Is the file number a valid index into the line header's file name
23671 table? Remember that file numbers start with one, not zero. */
23672 if (1 <= file && file <= lh->file_names.size ())
23673 {
23674 const file_entry &fe = lh->file_names[file - 1];
23675
23676 if (!IS_ABSOLUTE_PATH (fe.name))
23677 {
23678 const char *dir = fe.include_dir (lh);
23679 if (dir != NULL)
23680 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23681 }
23682 return xstrdup (fe.name);
23683 }
23684 else
23685 {
23686 /* The compiler produced a bogus file number. We can at least
23687 record the macro definitions made in the file, even if we
23688 won't be able to find the file by name. */
23689 char fake_name[80];
23690
23691 xsnprintf (fake_name, sizeof (fake_name),
23692 "<bad macro file number %d>", file);
23693
23694 complaint (_("bad file number in macro information (%d)"),
23695 file);
23696
23697 return xstrdup (fake_name);
23698 }
23699 }
23700
23701 /* Return the full name of file number I in *LH's file name table.
23702 Use COMP_DIR as the name of the current directory of the
23703 compilation. The result is allocated using xmalloc; the caller is
23704 responsible for freeing it. */
23705 static char *
23706 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23707 {
23708 /* Is the file number a valid index into the line header's file name
23709 table? Remember that file numbers start with one, not zero. */
23710 if (1 <= file && file <= lh->file_names.size ())
23711 {
23712 char *relative = file_file_name (file, lh);
23713
23714 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23715 return relative;
23716 return reconcat (relative, comp_dir, SLASH_STRING,
23717 relative, (char *) NULL);
23718 }
23719 else
23720 return file_file_name (file, lh);
23721 }
23722
23723
23724 static struct macro_source_file *
23725 macro_start_file (struct dwarf2_cu *cu,
23726 int file, int line,
23727 struct macro_source_file *current_file,
23728 struct line_header *lh)
23729 {
23730 /* File name relative to the compilation directory of this source file. */
23731 char *file_name = file_file_name (file, lh);
23732
23733 if (! current_file)
23734 {
23735 /* Note: We don't create a macro table for this compilation unit
23736 at all until we actually get a filename. */
23737 struct macro_table *macro_table = cu->builder->get_macro_table ();
23738
23739 /* If we have no current file, then this must be the start_file
23740 directive for the compilation unit's main source file. */
23741 current_file = macro_set_main (macro_table, file_name);
23742 macro_define_special (macro_table);
23743 }
23744 else
23745 current_file = macro_include (current_file, line, file_name);
23746
23747 xfree (file_name);
23748
23749 return current_file;
23750 }
23751
23752 static const char *
23753 consume_improper_spaces (const char *p, const char *body)
23754 {
23755 if (*p == ' ')
23756 {
23757 complaint (_("macro definition contains spaces "
23758 "in formal argument list:\n`%s'"),
23759 body);
23760
23761 while (*p == ' ')
23762 p++;
23763 }
23764
23765 return p;
23766 }
23767
23768
23769 static void
23770 parse_macro_definition (struct macro_source_file *file, int line,
23771 const char *body)
23772 {
23773 const char *p;
23774
23775 /* The body string takes one of two forms. For object-like macro
23776 definitions, it should be:
23777
23778 <macro name> " " <definition>
23779
23780 For function-like macro definitions, it should be:
23781
23782 <macro name> "() " <definition>
23783 or
23784 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23785
23786 Spaces may appear only where explicitly indicated, and in the
23787 <definition>.
23788
23789 The Dwarf 2 spec says that an object-like macro's name is always
23790 followed by a space, but versions of GCC around March 2002 omit
23791 the space when the macro's definition is the empty string.
23792
23793 The Dwarf 2 spec says that there should be no spaces between the
23794 formal arguments in a function-like macro's formal argument list,
23795 but versions of GCC around March 2002 include spaces after the
23796 commas. */
23797
23798
23799 /* Find the extent of the macro name. The macro name is terminated
23800 by either a space or null character (for an object-like macro) or
23801 an opening paren (for a function-like macro). */
23802 for (p = body; *p; p++)
23803 if (*p == ' ' || *p == '(')
23804 break;
23805
23806 if (*p == ' ' || *p == '\0')
23807 {
23808 /* It's an object-like macro. */
23809 int name_len = p - body;
23810 char *name = savestring (body, name_len);
23811 const char *replacement;
23812
23813 if (*p == ' ')
23814 replacement = body + name_len + 1;
23815 else
23816 {
23817 dwarf2_macro_malformed_definition_complaint (body);
23818 replacement = body + name_len;
23819 }
23820
23821 macro_define_object (file, line, name, replacement);
23822
23823 xfree (name);
23824 }
23825 else if (*p == '(')
23826 {
23827 /* It's a function-like macro. */
23828 char *name = savestring (body, p - body);
23829 int argc = 0;
23830 int argv_size = 1;
23831 char **argv = XNEWVEC (char *, argv_size);
23832
23833 p++;
23834
23835 p = consume_improper_spaces (p, body);
23836
23837 /* Parse the formal argument list. */
23838 while (*p && *p != ')')
23839 {
23840 /* Find the extent of the current argument name. */
23841 const char *arg_start = p;
23842
23843 while (*p && *p != ',' && *p != ')' && *p != ' ')
23844 p++;
23845
23846 if (! *p || p == arg_start)
23847 dwarf2_macro_malformed_definition_complaint (body);
23848 else
23849 {
23850 /* Make sure argv has room for the new argument. */
23851 if (argc >= argv_size)
23852 {
23853 argv_size *= 2;
23854 argv = XRESIZEVEC (char *, argv, argv_size);
23855 }
23856
23857 argv[argc++] = savestring (arg_start, p - arg_start);
23858 }
23859
23860 p = consume_improper_spaces (p, body);
23861
23862 /* Consume the comma, if present. */
23863 if (*p == ',')
23864 {
23865 p++;
23866
23867 p = consume_improper_spaces (p, body);
23868 }
23869 }
23870
23871 if (*p == ')')
23872 {
23873 p++;
23874
23875 if (*p == ' ')
23876 /* Perfectly formed definition, no complaints. */
23877 macro_define_function (file, line, name,
23878 argc, (const char **) argv,
23879 p + 1);
23880 else if (*p == '\0')
23881 {
23882 /* Complain, but do define it. */
23883 dwarf2_macro_malformed_definition_complaint (body);
23884 macro_define_function (file, line, name,
23885 argc, (const char **) argv,
23886 p);
23887 }
23888 else
23889 /* Just complain. */
23890 dwarf2_macro_malformed_definition_complaint (body);
23891 }
23892 else
23893 /* Just complain. */
23894 dwarf2_macro_malformed_definition_complaint (body);
23895
23896 xfree (name);
23897 {
23898 int i;
23899
23900 for (i = 0; i < argc; i++)
23901 xfree (argv[i]);
23902 }
23903 xfree (argv);
23904 }
23905 else
23906 dwarf2_macro_malformed_definition_complaint (body);
23907 }
23908
23909 /* Skip some bytes from BYTES according to the form given in FORM.
23910 Returns the new pointer. */
23911
23912 static const gdb_byte *
23913 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23914 enum dwarf_form form,
23915 unsigned int offset_size,
23916 struct dwarf2_section_info *section)
23917 {
23918 unsigned int bytes_read;
23919
23920 switch (form)
23921 {
23922 case DW_FORM_data1:
23923 case DW_FORM_flag:
23924 ++bytes;
23925 break;
23926
23927 case DW_FORM_data2:
23928 bytes += 2;
23929 break;
23930
23931 case DW_FORM_data4:
23932 bytes += 4;
23933 break;
23934
23935 case DW_FORM_data8:
23936 bytes += 8;
23937 break;
23938
23939 case DW_FORM_data16:
23940 bytes += 16;
23941 break;
23942
23943 case DW_FORM_string:
23944 read_direct_string (abfd, bytes, &bytes_read);
23945 bytes += bytes_read;
23946 break;
23947
23948 case DW_FORM_sec_offset:
23949 case DW_FORM_strp:
23950 case DW_FORM_GNU_strp_alt:
23951 bytes += offset_size;
23952 break;
23953
23954 case DW_FORM_block:
23955 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23956 bytes += bytes_read;
23957 break;
23958
23959 case DW_FORM_block1:
23960 bytes += 1 + read_1_byte (abfd, bytes);
23961 break;
23962 case DW_FORM_block2:
23963 bytes += 2 + read_2_bytes (abfd, bytes);
23964 break;
23965 case DW_FORM_block4:
23966 bytes += 4 + read_4_bytes (abfd, bytes);
23967 break;
23968
23969 case DW_FORM_sdata:
23970 case DW_FORM_udata:
23971 case DW_FORM_GNU_addr_index:
23972 case DW_FORM_GNU_str_index:
23973 bytes = gdb_skip_leb128 (bytes, buffer_end);
23974 if (bytes == NULL)
23975 {
23976 dwarf2_section_buffer_overflow_complaint (section);
23977 return NULL;
23978 }
23979 break;
23980
23981 case DW_FORM_implicit_const:
23982 break;
23983
23984 default:
23985 {
23986 complaint (_("invalid form 0x%x in `%s'"),
23987 form, get_section_name (section));
23988 return NULL;
23989 }
23990 }
23991
23992 return bytes;
23993 }
23994
23995 /* A helper for dwarf_decode_macros that handles skipping an unknown
23996 opcode. Returns an updated pointer to the macro data buffer; or,
23997 on error, issues a complaint and returns NULL. */
23998
23999 static const gdb_byte *
24000 skip_unknown_opcode (unsigned int opcode,
24001 const gdb_byte **opcode_definitions,
24002 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24003 bfd *abfd,
24004 unsigned int offset_size,
24005 struct dwarf2_section_info *section)
24006 {
24007 unsigned int bytes_read, i;
24008 unsigned long arg;
24009 const gdb_byte *defn;
24010
24011 if (opcode_definitions[opcode] == NULL)
24012 {
24013 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24014 opcode);
24015 return NULL;
24016 }
24017
24018 defn = opcode_definitions[opcode];
24019 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24020 defn += bytes_read;
24021
24022 for (i = 0; i < arg; ++i)
24023 {
24024 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24025 (enum dwarf_form) defn[i], offset_size,
24026 section);
24027 if (mac_ptr == NULL)
24028 {
24029 /* skip_form_bytes already issued the complaint. */
24030 return NULL;
24031 }
24032 }
24033
24034 return mac_ptr;
24035 }
24036
24037 /* A helper function which parses the header of a macro section.
24038 If the macro section is the extended (for now called "GNU") type,
24039 then this updates *OFFSET_SIZE. Returns a pointer to just after
24040 the header, or issues a complaint and returns NULL on error. */
24041
24042 static const gdb_byte *
24043 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24044 bfd *abfd,
24045 const gdb_byte *mac_ptr,
24046 unsigned int *offset_size,
24047 int section_is_gnu)
24048 {
24049 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24050
24051 if (section_is_gnu)
24052 {
24053 unsigned int version, flags;
24054
24055 version = read_2_bytes (abfd, mac_ptr);
24056 if (version != 4 && version != 5)
24057 {
24058 complaint (_("unrecognized version `%d' in .debug_macro section"),
24059 version);
24060 return NULL;
24061 }
24062 mac_ptr += 2;
24063
24064 flags = read_1_byte (abfd, mac_ptr);
24065 ++mac_ptr;
24066 *offset_size = (flags & 1) ? 8 : 4;
24067
24068 if ((flags & 2) != 0)
24069 /* We don't need the line table offset. */
24070 mac_ptr += *offset_size;
24071
24072 /* Vendor opcode descriptions. */
24073 if ((flags & 4) != 0)
24074 {
24075 unsigned int i, count;
24076
24077 count = read_1_byte (abfd, mac_ptr);
24078 ++mac_ptr;
24079 for (i = 0; i < count; ++i)
24080 {
24081 unsigned int opcode, bytes_read;
24082 unsigned long arg;
24083
24084 opcode = read_1_byte (abfd, mac_ptr);
24085 ++mac_ptr;
24086 opcode_definitions[opcode] = mac_ptr;
24087 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24088 mac_ptr += bytes_read;
24089 mac_ptr += arg;
24090 }
24091 }
24092 }
24093
24094 return mac_ptr;
24095 }
24096
24097 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24098 including DW_MACRO_import. */
24099
24100 static void
24101 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24102 bfd *abfd,
24103 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24104 struct macro_source_file *current_file,
24105 struct line_header *lh,
24106 struct dwarf2_section_info *section,
24107 int section_is_gnu, int section_is_dwz,
24108 unsigned int offset_size,
24109 htab_t include_hash)
24110 {
24111 struct dwarf2_per_objfile *dwarf2_per_objfile
24112 = cu->per_cu->dwarf2_per_objfile;
24113 struct objfile *objfile = dwarf2_per_objfile->objfile;
24114 enum dwarf_macro_record_type macinfo_type;
24115 int at_commandline;
24116 const gdb_byte *opcode_definitions[256];
24117
24118 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24119 &offset_size, section_is_gnu);
24120 if (mac_ptr == NULL)
24121 {
24122 /* We already issued a complaint. */
24123 return;
24124 }
24125
24126 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24127 GDB is still reading the definitions from command line. First
24128 DW_MACINFO_start_file will need to be ignored as it was already executed
24129 to create CURRENT_FILE for the main source holding also the command line
24130 definitions. On first met DW_MACINFO_start_file this flag is reset to
24131 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24132
24133 at_commandline = 1;
24134
24135 do
24136 {
24137 /* Do we at least have room for a macinfo type byte? */
24138 if (mac_ptr >= mac_end)
24139 {
24140 dwarf2_section_buffer_overflow_complaint (section);
24141 break;
24142 }
24143
24144 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24145 mac_ptr++;
24146
24147 /* Note that we rely on the fact that the corresponding GNU and
24148 DWARF constants are the same. */
24149 DIAGNOSTIC_PUSH
24150 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24151 switch (macinfo_type)
24152 {
24153 /* A zero macinfo type indicates the end of the macro
24154 information. */
24155 case 0:
24156 break;
24157
24158 case DW_MACRO_define:
24159 case DW_MACRO_undef:
24160 case DW_MACRO_define_strp:
24161 case DW_MACRO_undef_strp:
24162 case DW_MACRO_define_sup:
24163 case DW_MACRO_undef_sup:
24164 {
24165 unsigned int bytes_read;
24166 int line;
24167 const char *body;
24168 int is_define;
24169
24170 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24171 mac_ptr += bytes_read;
24172
24173 if (macinfo_type == DW_MACRO_define
24174 || macinfo_type == DW_MACRO_undef)
24175 {
24176 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24177 mac_ptr += bytes_read;
24178 }
24179 else
24180 {
24181 LONGEST str_offset;
24182
24183 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24184 mac_ptr += offset_size;
24185
24186 if (macinfo_type == DW_MACRO_define_sup
24187 || macinfo_type == DW_MACRO_undef_sup
24188 || section_is_dwz)
24189 {
24190 struct dwz_file *dwz
24191 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24192
24193 body = read_indirect_string_from_dwz (objfile,
24194 dwz, str_offset);
24195 }
24196 else
24197 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24198 abfd, str_offset);
24199 }
24200
24201 is_define = (macinfo_type == DW_MACRO_define
24202 || macinfo_type == DW_MACRO_define_strp
24203 || macinfo_type == DW_MACRO_define_sup);
24204 if (! current_file)
24205 {
24206 /* DWARF violation as no main source is present. */
24207 complaint (_("debug info with no main source gives macro %s "
24208 "on line %d: %s"),
24209 is_define ? _("definition") : _("undefinition"),
24210 line, body);
24211 break;
24212 }
24213 if ((line == 0 && !at_commandline)
24214 || (line != 0 && at_commandline))
24215 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24216 at_commandline ? _("command-line") : _("in-file"),
24217 is_define ? _("definition") : _("undefinition"),
24218 line == 0 ? _("zero") : _("non-zero"), line, body);
24219
24220 if (is_define)
24221 parse_macro_definition (current_file, line, body);
24222 else
24223 {
24224 gdb_assert (macinfo_type == DW_MACRO_undef
24225 || macinfo_type == DW_MACRO_undef_strp
24226 || macinfo_type == DW_MACRO_undef_sup);
24227 macro_undef (current_file, line, body);
24228 }
24229 }
24230 break;
24231
24232 case DW_MACRO_start_file:
24233 {
24234 unsigned int bytes_read;
24235 int line, file;
24236
24237 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24238 mac_ptr += bytes_read;
24239 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24240 mac_ptr += bytes_read;
24241
24242 if ((line == 0 && !at_commandline)
24243 || (line != 0 && at_commandline))
24244 complaint (_("debug info gives source %d included "
24245 "from %s at %s line %d"),
24246 file, at_commandline ? _("command-line") : _("file"),
24247 line == 0 ? _("zero") : _("non-zero"), line);
24248
24249 if (at_commandline)
24250 {
24251 /* This DW_MACRO_start_file was executed in the
24252 pass one. */
24253 at_commandline = 0;
24254 }
24255 else
24256 current_file = macro_start_file (cu, file, line, current_file,
24257 lh);
24258 }
24259 break;
24260
24261 case DW_MACRO_end_file:
24262 if (! current_file)
24263 complaint (_("macro debug info has an unmatched "
24264 "`close_file' directive"));
24265 else
24266 {
24267 current_file = current_file->included_by;
24268 if (! current_file)
24269 {
24270 enum dwarf_macro_record_type next_type;
24271
24272 /* GCC circa March 2002 doesn't produce the zero
24273 type byte marking the end of the compilation
24274 unit. Complain if it's not there, but exit no
24275 matter what. */
24276
24277 /* Do we at least have room for a macinfo type byte? */
24278 if (mac_ptr >= mac_end)
24279 {
24280 dwarf2_section_buffer_overflow_complaint (section);
24281 return;
24282 }
24283
24284 /* We don't increment mac_ptr here, so this is just
24285 a look-ahead. */
24286 next_type
24287 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24288 mac_ptr);
24289 if (next_type != 0)
24290 complaint (_("no terminating 0-type entry for "
24291 "macros in `.debug_macinfo' section"));
24292
24293 return;
24294 }
24295 }
24296 break;
24297
24298 case DW_MACRO_import:
24299 case DW_MACRO_import_sup:
24300 {
24301 LONGEST offset;
24302 void **slot;
24303 bfd *include_bfd = abfd;
24304 struct dwarf2_section_info *include_section = section;
24305 const gdb_byte *include_mac_end = mac_end;
24306 int is_dwz = section_is_dwz;
24307 const gdb_byte *new_mac_ptr;
24308
24309 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24310 mac_ptr += offset_size;
24311
24312 if (macinfo_type == DW_MACRO_import_sup)
24313 {
24314 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24315
24316 dwarf2_read_section (objfile, &dwz->macro);
24317
24318 include_section = &dwz->macro;
24319 include_bfd = get_section_bfd_owner (include_section);
24320 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24321 is_dwz = 1;
24322 }
24323
24324 new_mac_ptr = include_section->buffer + offset;
24325 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24326
24327 if (*slot != NULL)
24328 {
24329 /* This has actually happened; see
24330 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24331 complaint (_("recursive DW_MACRO_import in "
24332 ".debug_macro section"));
24333 }
24334 else
24335 {
24336 *slot = (void *) new_mac_ptr;
24337
24338 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24339 include_mac_end, current_file, lh,
24340 section, section_is_gnu, is_dwz,
24341 offset_size, include_hash);
24342
24343 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24344 }
24345 }
24346 break;
24347
24348 case DW_MACINFO_vendor_ext:
24349 if (!section_is_gnu)
24350 {
24351 unsigned int bytes_read;
24352
24353 /* This reads the constant, but since we don't recognize
24354 any vendor extensions, we ignore it. */
24355 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24356 mac_ptr += bytes_read;
24357 read_direct_string (abfd, mac_ptr, &bytes_read);
24358 mac_ptr += bytes_read;
24359
24360 /* We don't recognize any vendor extensions. */
24361 break;
24362 }
24363 /* FALLTHROUGH */
24364
24365 default:
24366 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24367 mac_ptr, mac_end, abfd, offset_size,
24368 section);
24369 if (mac_ptr == NULL)
24370 return;
24371 break;
24372 }
24373 DIAGNOSTIC_POP
24374 } while (macinfo_type != 0);
24375 }
24376
24377 static void
24378 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24379 int section_is_gnu)
24380 {
24381 struct dwarf2_per_objfile *dwarf2_per_objfile
24382 = cu->per_cu->dwarf2_per_objfile;
24383 struct objfile *objfile = dwarf2_per_objfile->objfile;
24384 struct line_header *lh = cu->line_header;
24385 bfd *abfd;
24386 const gdb_byte *mac_ptr, *mac_end;
24387 struct macro_source_file *current_file = 0;
24388 enum dwarf_macro_record_type macinfo_type;
24389 unsigned int offset_size = cu->header.offset_size;
24390 const gdb_byte *opcode_definitions[256];
24391 void **slot;
24392 struct dwarf2_section_info *section;
24393 const char *section_name;
24394
24395 if (cu->dwo_unit != NULL)
24396 {
24397 if (section_is_gnu)
24398 {
24399 section = &cu->dwo_unit->dwo_file->sections.macro;
24400 section_name = ".debug_macro.dwo";
24401 }
24402 else
24403 {
24404 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24405 section_name = ".debug_macinfo.dwo";
24406 }
24407 }
24408 else
24409 {
24410 if (section_is_gnu)
24411 {
24412 section = &dwarf2_per_objfile->macro;
24413 section_name = ".debug_macro";
24414 }
24415 else
24416 {
24417 section = &dwarf2_per_objfile->macinfo;
24418 section_name = ".debug_macinfo";
24419 }
24420 }
24421
24422 dwarf2_read_section (objfile, section);
24423 if (section->buffer == NULL)
24424 {
24425 complaint (_("missing %s section"), section_name);
24426 return;
24427 }
24428 abfd = get_section_bfd_owner (section);
24429
24430 /* First pass: Find the name of the base filename.
24431 This filename is needed in order to process all macros whose definition
24432 (or undefinition) comes from the command line. These macros are defined
24433 before the first DW_MACINFO_start_file entry, and yet still need to be
24434 associated to the base file.
24435
24436 To determine the base file name, we scan the macro definitions until we
24437 reach the first DW_MACINFO_start_file entry. We then initialize
24438 CURRENT_FILE accordingly so that any macro definition found before the
24439 first DW_MACINFO_start_file can still be associated to the base file. */
24440
24441 mac_ptr = section->buffer + offset;
24442 mac_end = section->buffer + section->size;
24443
24444 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24445 &offset_size, section_is_gnu);
24446 if (mac_ptr == NULL)
24447 {
24448 /* We already issued a complaint. */
24449 return;
24450 }
24451
24452 do
24453 {
24454 /* Do we at least have room for a macinfo type byte? */
24455 if (mac_ptr >= mac_end)
24456 {
24457 /* Complaint is printed during the second pass as GDB will probably
24458 stop the first pass earlier upon finding
24459 DW_MACINFO_start_file. */
24460 break;
24461 }
24462
24463 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24464 mac_ptr++;
24465
24466 /* Note that we rely on the fact that the corresponding GNU and
24467 DWARF constants are the same. */
24468 DIAGNOSTIC_PUSH
24469 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24470 switch (macinfo_type)
24471 {
24472 /* A zero macinfo type indicates the end of the macro
24473 information. */
24474 case 0:
24475 break;
24476
24477 case DW_MACRO_define:
24478 case DW_MACRO_undef:
24479 /* Only skip the data by MAC_PTR. */
24480 {
24481 unsigned int bytes_read;
24482
24483 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24484 mac_ptr += bytes_read;
24485 read_direct_string (abfd, mac_ptr, &bytes_read);
24486 mac_ptr += bytes_read;
24487 }
24488 break;
24489
24490 case DW_MACRO_start_file:
24491 {
24492 unsigned int bytes_read;
24493 int line, file;
24494
24495 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24496 mac_ptr += bytes_read;
24497 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24498 mac_ptr += bytes_read;
24499
24500 current_file = macro_start_file (cu, file, line, current_file, lh);
24501 }
24502 break;
24503
24504 case DW_MACRO_end_file:
24505 /* No data to skip by MAC_PTR. */
24506 break;
24507
24508 case DW_MACRO_define_strp:
24509 case DW_MACRO_undef_strp:
24510 case DW_MACRO_define_sup:
24511 case DW_MACRO_undef_sup:
24512 {
24513 unsigned int bytes_read;
24514
24515 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24516 mac_ptr += bytes_read;
24517 mac_ptr += offset_size;
24518 }
24519 break;
24520
24521 case DW_MACRO_import:
24522 case DW_MACRO_import_sup:
24523 /* Note that, according to the spec, a transparent include
24524 chain cannot call DW_MACRO_start_file. So, we can just
24525 skip this opcode. */
24526 mac_ptr += offset_size;
24527 break;
24528
24529 case DW_MACINFO_vendor_ext:
24530 /* Only skip the data by MAC_PTR. */
24531 if (!section_is_gnu)
24532 {
24533 unsigned int bytes_read;
24534
24535 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24536 mac_ptr += bytes_read;
24537 read_direct_string (abfd, mac_ptr, &bytes_read);
24538 mac_ptr += bytes_read;
24539 }
24540 /* FALLTHROUGH */
24541
24542 default:
24543 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24544 mac_ptr, mac_end, abfd, offset_size,
24545 section);
24546 if (mac_ptr == NULL)
24547 return;
24548 break;
24549 }
24550 DIAGNOSTIC_POP
24551 } while (macinfo_type != 0 && current_file == NULL);
24552
24553 /* Second pass: Process all entries.
24554
24555 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24556 command-line macro definitions/undefinitions. This flag is unset when we
24557 reach the first DW_MACINFO_start_file entry. */
24558
24559 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24560 htab_eq_pointer,
24561 NULL, xcalloc, xfree));
24562 mac_ptr = section->buffer + offset;
24563 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24564 *slot = (void *) mac_ptr;
24565 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24566 current_file, lh, section,
24567 section_is_gnu, 0, offset_size,
24568 include_hash.get ());
24569 }
24570
24571 /* Check if the attribute's form is a DW_FORM_block*
24572 if so return true else false. */
24573
24574 static int
24575 attr_form_is_block (const struct attribute *attr)
24576 {
24577 return (attr == NULL ? 0 :
24578 attr->form == DW_FORM_block1
24579 || attr->form == DW_FORM_block2
24580 || attr->form == DW_FORM_block4
24581 || attr->form == DW_FORM_block
24582 || attr->form == DW_FORM_exprloc);
24583 }
24584
24585 /* Return non-zero if ATTR's value is a section offset --- classes
24586 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24587 You may use DW_UNSND (attr) to retrieve such offsets.
24588
24589 Section 7.5.4, "Attribute Encodings", explains that no attribute
24590 may have a value that belongs to more than one of these classes; it
24591 would be ambiguous if we did, because we use the same forms for all
24592 of them. */
24593
24594 static int
24595 attr_form_is_section_offset (const struct attribute *attr)
24596 {
24597 return (attr->form == DW_FORM_data4
24598 || attr->form == DW_FORM_data8
24599 || attr->form == DW_FORM_sec_offset);
24600 }
24601
24602 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24603 zero otherwise. When this function returns true, you can apply
24604 dwarf2_get_attr_constant_value to it.
24605
24606 However, note that for some attributes you must check
24607 attr_form_is_section_offset before using this test. DW_FORM_data4
24608 and DW_FORM_data8 are members of both the constant class, and of
24609 the classes that contain offsets into other debug sections
24610 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24611 that, if an attribute's can be either a constant or one of the
24612 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24613 taken as section offsets, not constants.
24614
24615 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24616 cannot handle that. */
24617
24618 static int
24619 attr_form_is_constant (const struct attribute *attr)
24620 {
24621 switch (attr->form)
24622 {
24623 case DW_FORM_sdata:
24624 case DW_FORM_udata:
24625 case DW_FORM_data1:
24626 case DW_FORM_data2:
24627 case DW_FORM_data4:
24628 case DW_FORM_data8:
24629 case DW_FORM_implicit_const:
24630 return 1;
24631 default:
24632 return 0;
24633 }
24634 }
24635
24636
24637 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24638 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24639
24640 static int
24641 attr_form_is_ref (const struct attribute *attr)
24642 {
24643 switch (attr->form)
24644 {
24645 case DW_FORM_ref_addr:
24646 case DW_FORM_ref1:
24647 case DW_FORM_ref2:
24648 case DW_FORM_ref4:
24649 case DW_FORM_ref8:
24650 case DW_FORM_ref_udata:
24651 case DW_FORM_GNU_ref_alt:
24652 return 1;
24653 default:
24654 return 0;
24655 }
24656 }
24657
24658 /* Return the .debug_loc section to use for CU.
24659 For DWO files use .debug_loc.dwo. */
24660
24661 static struct dwarf2_section_info *
24662 cu_debug_loc_section (struct dwarf2_cu *cu)
24663 {
24664 struct dwarf2_per_objfile *dwarf2_per_objfile
24665 = cu->per_cu->dwarf2_per_objfile;
24666
24667 if (cu->dwo_unit)
24668 {
24669 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24670
24671 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24672 }
24673 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24674 : &dwarf2_per_objfile->loc);
24675 }
24676
24677 /* A helper function that fills in a dwarf2_loclist_baton. */
24678
24679 static void
24680 fill_in_loclist_baton (struct dwarf2_cu *cu,
24681 struct dwarf2_loclist_baton *baton,
24682 const struct attribute *attr)
24683 {
24684 struct dwarf2_per_objfile *dwarf2_per_objfile
24685 = cu->per_cu->dwarf2_per_objfile;
24686 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24687
24688 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24689
24690 baton->per_cu = cu->per_cu;
24691 gdb_assert (baton->per_cu);
24692 /* We don't know how long the location list is, but make sure we
24693 don't run off the edge of the section. */
24694 baton->size = section->size - DW_UNSND (attr);
24695 baton->data = section->buffer + DW_UNSND (attr);
24696 baton->base_address = cu->base_address;
24697 baton->from_dwo = cu->dwo_unit != NULL;
24698 }
24699
24700 static void
24701 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24702 struct dwarf2_cu *cu, int is_block)
24703 {
24704 struct dwarf2_per_objfile *dwarf2_per_objfile
24705 = cu->per_cu->dwarf2_per_objfile;
24706 struct objfile *objfile = dwarf2_per_objfile->objfile;
24707 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24708
24709 if (attr_form_is_section_offset (attr)
24710 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24711 the section. If so, fall through to the complaint in the
24712 other branch. */
24713 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24714 {
24715 struct dwarf2_loclist_baton *baton;
24716
24717 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24718
24719 fill_in_loclist_baton (cu, baton, attr);
24720
24721 if (cu->base_known == 0)
24722 complaint (_("Location list used without "
24723 "specifying the CU base address."));
24724
24725 SYMBOL_ACLASS_INDEX (sym) = (is_block
24726 ? dwarf2_loclist_block_index
24727 : dwarf2_loclist_index);
24728 SYMBOL_LOCATION_BATON (sym) = baton;
24729 }
24730 else
24731 {
24732 struct dwarf2_locexpr_baton *baton;
24733
24734 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24735 baton->per_cu = cu->per_cu;
24736 gdb_assert (baton->per_cu);
24737
24738 if (attr_form_is_block (attr))
24739 {
24740 /* Note that we're just copying the block's data pointer
24741 here, not the actual data. We're still pointing into the
24742 info_buffer for SYM's objfile; right now we never release
24743 that buffer, but when we do clean up properly this may
24744 need to change. */
24745 baton->size = DW_BLOCK (attr)->size;
24746 baton->data = DW_BLOCK (attr)->data;
24747 }
24748 else
24749 {
24750 dwarf2_invalid_attrib_class_complaint ("location description",
24751 SYMBOL_NATURAL_NAME (sym));
24752 baton->size = 0;
24753 }
24754
24755 SYMBOL_ACLASS_INDEX (sym) = (is_block
24756 ? dwarf2_locexpr_block_index
24757 : dwarf2_locexpr_index);
24758 SYMBOL_LOCATION_BATON (sym) = baton;
24759 }
24760 }
24761
24762 /* Return the OBJFILE associated with the compilation unit CU. If CU
24763 came from a separate debuginfo file, then the master objfile is
24764 returned. */
24765
24766 struct objfile *
24767 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24768 {
24769 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24770
24771 /* Return the master objfile, so that we can report and look up the
24772 correct file containing this variable. */
24773 if (objfile->separate_debug_objfile_backlink)
24774 objfile = objfile->separate_debug_objfile_backlink;
24775
24776 return objfile;
24777 }
24778
24779 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24780 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24781 CU_HEADERP first. */
24782
24783 static const struct comp_unit_head *
24784 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24785 struct dwarf2_per_cu_data *per_cu)
24786 {
24787 const gdb_byte *info_ptr;
24788
24789 if (per_cu->cu)
24790 return &per_cu->cu->header;
24791
24792 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24793
24794 memset (cu_headerp, 0, sizeof (*cu_headerp));
24795 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24796 rcuh_kind::COMPILE);
24797
24798 return cu_headerp;
24799 }
24800
24801 /* Return the address size given in the compilation unit header for CU. */
24802
24803 int
24804 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24805 {
24806 struct comp_unit_head cu_header_local;
24807 const struct comp_unit_head *cu_headerp;
24808
24809 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24810
24811 return cu_headerp->addr_size;
24812 }
24813
24814 /* Return the offset size given in the compilation unit header for CU. */
24815
24816 int
24817 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24818 {
24819 struct comp_unit_head cu_header_local;
24820 const struct comp_unit_head *cu_headerp;
24821
24822 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24823
24824 return cu_headerp->offset_size;
24825 }
24826
24827 /* See its dwarf2loc.h declaration. */
24828
24829 int
24830 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24831 {
24832 struct comp_unit_head cu_header_local;
24833 const struct comp_unit_head *cu_headerp;
24834
24835 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24836
24837 if (cu_headerp->version == 2)
24838 return cu_headerp->addr_size;
24839 else
24840 return cu_headerp->offset_size;
24841 }
24842
24843 /* Return the text offset of the CU. The returned offset comes from
24844 this CU's objfile. If this objfile came from a separate debuginfo
24845 file, then the offset may be different from the corresponding
24846 offset in the parent objfile. */
24847
24848 CORE_ADDR
24849 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24850 {
24851 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24852
24853 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24854 }
24855
24856 /* Return DWARF version number of PER_CU. */
24857
24858 short
24859 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24860 {
24861 return per_cu->dwarf_version;
24862 }
24863
24864 /* Locate the .debug_info compilation unit from CU's objfile which contains
24865 the DIE at OFFSET. Raises an error on failure. */
24866
24867 static struct dwarf2_per_cu_data *
24868 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24869 unsigned int offset_in_dwz,
24870 struct dwarf2_per_objfile *dwarf2_per_objfile)
24871 {
24872 struct dwarf2_per_cu_data *this_cu;
24873 int low, high;
24874 const sect_offset *cu_off;
24875
24876 low = 0;
24877 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24878 while (high > low)
24879 {
24880 struct dwarf2_per_cu_data *mid_cu;
24881 int mid = low + (high - low) / 2;
24882
24883 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24884 cu_off = &mid_cu->sect_off;
24885 if (mid_cu->is_dwz > offset_in_dwz
24886 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24887 high = mid;
24888 else
24889 low = mid + 1;
24890 }
24891 gdb_assert (low == high);
24892 this_cu = dwarf2_per_objfile->all_comp_units[low];
24893 cu_off = &this_cu->sect_off;
24894 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24895 {
24896 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24897 error (_("Dwarf Error: could not find partial DIE containing "
24898 "offset %s [in module %s]"),
24899 sect_offset_str (sect_off),
24900 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24901
24902 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24903 <= sect_off);
24904 return dwarf2_per_objfile->all_comp_units[low-1];
24905 }
24906 else
24907 {
24908 this_cu = dwarf2_per_objfile->all_comp_units[low];
24909 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24910 && sect_off >= this_cu->sect_off + this_cu->length)
24911 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24912 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24913 return this_cu;
24914 }
24915 }
24916
24917 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24918
24919 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24920 : per_cu (per_cu_),
24921 mark (0),
24922 has_loclist (0),
24923 checked_producer (0),
24924 producer_is_gxx_lt_4_6 (0),
24925 producer_is_gcc_lt_4_3 (0),
24926 producer_is_icc_lt_14 (0),
24927 processing_has_namespace_info (0)
24928 {
24929 per_cu->cu = this;
24930 }
24931
24932 /* Destroy a dwarf2_cu. */
24933
24934 dwarf2_cu::~dwarf2_cu ()
24935 {
24936 per_cu->cu = NULL;
24937 }
24938
24939 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24940
24941 static void
24942 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24943 enum language pretend_language)
24944 {
24945 struct attribute *attr;
24946
24947 /* Set the language we're debugging. */
24948 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24949 if (attr)
24950 set_cu_language (DW_UNSND (attr), cu);
24951 else
24952 {
24953 cu->language = pretend_language;
24954 cu->language_defn = language_def (cu->language);
24955 }
24956
24957 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24958 }
24959
24960 /* Increase the age counter on each cached compilation unit, and free
24961 any that are too old. */
24962
24963 static void
24964 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24965 {
24966 struct dwarf2_per_cu_data *per_cu, **last_chain;
24967
24968 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24969 per_cu = dwarf2_per_objfile->read_in_chain;
24970 while (per_cu != NULL)
24971 {
24972 per_cu->cu->last_used ++;
24973 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24974 dwarf2_mark (per_cu->cu);
24975 per_cu = per_cu->cu->read_in_chain;
24976 }
24977
24978 per_cu = dwarf2_per_objfile->read_in_chain;
24979 last_chain = &dwarf2_per_objfile->read_in_chain;
24980 while (per_cu != NULL)
24981 {
24982 struct dwarf2_per_cu_data *next_cu;
24983
24984 next_cu = per_cu->cu->read_in_chain;
24985
24986 if (!per_cu->cu->mark)
24987 {
24988 delete per_cu->cu;
24989 *last_chain = next_cu;
24990 }
24991 else
24992 last_chain = &per_cu->cu->read_in_chain;
24993
24994 per_cu = next_cu;
24995 }
24996 }
24997
24998 /* Remove a single compilation unit from the cache. */
24999
25000 static void
25001 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25002 {
25003 struct dwarf2_per_cu_data *per_cu, **last_chain;
25004 struct dwarf2_per_objfile *dwarf2_per_objfile
25005 = target_per_cu->dwarf2_per_objfile;
25006
25007 per_cu = dwarf2_per_objfile->read_in_chain;
25008 last_chain = &dwarf2_per_objfile->read_in_chain;
25009 while (per_cu != NULL)
25010 {
25011 struct dwarf2_per_cu_data *next_cu;
25012
25013 next_cu = per_cu->cu->read_in_chain;
25014
25015 if (per_cu == target_per_cu)
25016 {
25017 delete per_cu->cu;
25018 per_cu->cu = NULL;
25019 *last_chain = next_cu;
25020 break;
25021 }
25022 else
25023 last_chain = &per_cu->cu->read_in_chain;
25024
25025 per_cu = next_cu;
25026 }
25027 }
25028
25029 /* Cleanup function for the dwarf2_per_objfile data. */
25030
25031 static void
25032 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25033 {
25034 struct dwarf2_per_objfile *dwarf2_per_objfile
25035 = static_cast<struct dwarf2_per_objfile *> (datum);
25036
25037 delete dwarf2_per_objfile;
25038 }
25039
25040 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25041 We store these in a hash table separate from the DIEs, and preserve them
25042 when the DIEs are flushed out of cache.
25043
25044 The CU "per_cu" pointer is needed because offset alone is not enough to
25045 uniquely identify the type. A file may have multiple .debug_types sections,
25046 or the type may come from a DWO file. Furthermore, while it's more logical
25047 to use per_cu->section+offset, with Fission the section with the data is in
25048 the DWO file but we don't know that section at the point we need it.
25049 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25050 because we can enter the lookup routine, get_die_type_at_offset, from
25051 outside this file, and thus won't necessarily have PER_CU->cu.
25052 Fortunately, PER_CU is stable for the life of the objfile. */
25053
25054 struct dwarf2_per_cu_offset_and_type
25055 {
25056 const struct dwarf2_per_cu_data *per_cu;
25057 sect_offset sect_off;
25058 struct type *type;
25059 };
25060
25061 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25062
25063 static hashval_t
25064 per_cu_offset_and_type_hash (const void *item)
25065 {
25066 const struct dwarf2_per_cu_offset_and_type *ofs
25067 = (const struct dwarf2_per_cu_offset_and_type *) item;
25068
25069 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25070 }
25071
25072 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25073
25074 static int
25075 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25076 {
25077 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25078 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25079 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25080 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25081
25082 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25083 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25084 }
25085
25086 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25087 table if necessary. For convenience, return TYPE.
25088
25089 The DIEs reading must have careful ordering to:
25090 * Not cause infite loops trying to read in DIEs as a prerequisite for
25091 reading current DIE.
25092 * Not trying to dereference contents of still incompletely read in types
25093 while reading in other DIEs.
25094 * Enable referencing still incompletely read in types just by a pointer to
25095 the type without accessing its fields.
25096
25097 Therefore caller should follow these rules:
25098 * Try to fetch any prerequisite types we may need to build this DIE type
25099 before building the type and calling set_die_type.
25100 * After building type call set_die_type for current DIE as soon as
25101 possible before fetching more types to complete the current type.
25102 * Make the type as complete as possible before fetching more types. */
25103
25104 static struct type *
25105 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25106 {
25107 struct dwarf2_per_objfile *dwarf2_per_objfile
25108 = cu->per_cu->dwarf2_per_objfile;
25109 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25110 struct objfile *objfile = dwarf2_per_objfile->objfile;
25111 struct attribute *attr;
25112 struct dynamic_prop prop;
25113
25114 /* For Ada types, make sure that the gnat-specific data is always
25115 initialized (if not already set). There are a few types where
25116 we should not be doing so, because the type-specific area is
25117 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25118 where the type-specific area is used to store the floatformat).
25119 But this is not a problem, because the gnat-specific information
25120 is actually not needed for these types. */
25121 if (need_gnat_info (cu)
25122 && TYPE_CODE (type) != TYPE_CODE_FUNC
25123 && TYPE_CODE (type) != TYPE_CODE_FLT
25124 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25125 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25126 && TYPE_CODE (type) != TYPE_CODE_METHOD
25127 && !HAVE_GNAT_AUX_INFO (type))
25128 INIT_GNAT_SPECIFIC (type);
25129
25130 /* Read DW_AT_allocated and set in type. */
25131 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25132 if (attr_form_is_block (attr))
25133 {
25134 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25135 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25136 }
25137 else if (attr != NULL)
25138 {
25139 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25140 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25141 sect_offset_str (die->sect_off));
25142 }
25143
25144 /* Read DW_AT_associated and set in type. */
25145 attr = dwarf2_attr (die, DW_AT_associated, cu);
25146 if (attr_form_is_block (attr))
25147 {
25148 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25149 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25150 }
25151 else if (attr != NULL)
25152 {
25153 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25154 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25155 sect_offset_str (die->sect_off));
25156 }
25157
25158 /* Read DW_AT_data_location and set in type. */
25159 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25160 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25161 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25162
25163 if (dwarf2_per_objfile->die_type_hash == NULL)
25164 {
25165 dwarf2_per_objfile->die_type_hash =
25166 htab_create_alloc_ex (127,
25167 per_cu_offset_and_type_hash,
25168 per_cu_offset_and_type_eq,
25169 NULL,
25170 &objfile->objfile_obstack,
25171 hashtab_obstack_allocate,
25172 dummy_obstack_deallocate);
25173 }
25174
25175 ofs.per_cu = cu->per_cu;
25176 ofs.sect_off = die->sect_off;
25177 ofs.type = type;
25178 slot = (struct dwarf2_per_cu_offset_and_type **)
25179 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25180 if (*slot)
25181 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25182 sect_offset_str (die->sect_off));
25183 *slot = XOBNEW (&objfile->objfile_obstack,
25184 struct dwarf2_per_cu_offset_and_type);
25185 **slot = ofs;
25186 return type;
25187 }
25188
25189 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25190 or return NULL if the die does not have a saved type. */
25191
25192 static struct type *
25193 get_die_type_at_offset (sect_offset sect_off,
25194 struct dwarf2_per_cu_data *per_cu)
25195 {
25196 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25197 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25198
25199 if (dwarf2_per_objfile->die_type_hash == NULL)
25200 return NULL;
25201
25202 ofs.per_cu = per_cu;
25203 ofs.sect_off = sect_off;
25204 slot = ((struct dwarf2_per_cu_offset_and_type *)
25205 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25206 if (slot)
25207 return slot->type;
25208 else
25209 return NULL;
25210 }
25211
25212 /* Look up the type for DIE in CU in die_type_hash,
25213 or return NULL if DIE does not have a saved type. */
25214
25215 static struct type *
25216 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25217 {
25218 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25219 }
25220
25221 /* Add a dependence relationship from CU to REF_PER_CU. */
25222
25223 static void
25224 dwarf2_add_dependence (struct dwarf2_cu *cu,
25225 struct dwarf2_per_cu_data *ref_per_cu)
25226 {
25227 void **slot;
25228
25229 if (cu->dependencies == NULL)
25230 cu->dependencies
25231 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25232 NULL, &cu->comp_unit_obstack,
25233 hashtab_obstack_allocate,
25234 dummy_obstack_deallocate);
25235
25236 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25237 if (*slot == NULL)
25238 *slot = ref_per_cu;
25239 }
25240
25241 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25242 Set the mark field in every compilation unit in the
25243 cache that we must keep because we are keeping CU. */
25244
25245 static int
25246 dwarf2_mark_helper (void **slot, void *data)
25247 {
25248 struct dwarf2_per_cu_data *per_cu;
25249
25250 per_cu = (struct dwarf2_per_cu_data *) *slot;
25251
25252 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25253 reading of the chain. As such dependencies remain valid it is not much
25254 useful to track and undo them during QUIT cleanups. */
25255 if (per_cu->cu == NULL)
25256 return 1;
25257
25258 if (per_cu->cu->mark)
25259 return 1;
25260 per_cu->cu->mark = 1;
25261
25262 if (per_cu->cu->dependencies != NULL)
25263 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25264
25265 return 1;
25266 }
25267
25268 /* Set the mark field in CU and in every other compilation unit in the
25269 cache that we must keep because we are keeping CU. */
25270
25271 static void
25272 dwarf2_mark (struct dwarf2_cu *cu)
25273 {
25274 if (cu->mark)
25275 return;
25276 cu->mark = 1;
25277 if (cu->dependencies != NULL)
25278 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25279 }
25280
25281 static void
25282 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25283 {
25284 while (per_cu)
25285 {
25286 per_cu->cu->mark = 0;
25287 per_cu = per_cu->cu->read_in_chain;
25288 }
25289 }
25290
25291 /* Trivial hash function for partial_die_info: the hash value of a DIE
25292 is its offset in .debug_info for this objfile. */
25293
25294 static hashval_t
25295 partial_die_hash (const void *item)
25296 {
25297 const struct partial_die_info *part_die
25298 = (const struct partial_die_info *) item;
25299
25300 return to_underlying (part_die->sect_off);
25301 }
25302
25303 /* Trivial comparison function for partial_die_info structures: two DIEs
25304 are equal if they have the same offset. */
25305
25306 static int
25307 partial_die_eq (const void *item_lhs, const void *item_rhs)
25308 {
25309 const struct partial_die_info *part_die_lhs
25310 = (const struct partial_die_info *) item_lhs;
25311 const struct partial_die_info *part_die_rhs
25312 = (const struct partial_die_info *) item_rhs;
25313
25314 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25315 }
25316
25317 static struct cmd_list_element *set_dwarf_cmdlist;
25318 static struct cmd_list_element *show_dwarf_cmdlist;
25319
25320 static void
25321 set_dwarf_cmd (const char *args, int from_tty)
25322 {
25323 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25324 gdb_stdout);
25325 }
25326
25327 static void
25328 show_dwarf_cmd (const char *args, int from_tty)
25329 {
25330 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25331 }
25332
25333 int dwarf_always_disassemble;
25334
25335 static void
25336 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25337 struct cmd_list_element *c, const char *value)
25338 {
25339 fprintf_filtered (file,
25340 _("Whether to always disassemble "
25341 "DWARF expressions is %s.\n"),
25342 value);
25343 }
25344
25345 static void
25346 show_check_physname (struct ui_file *file, int from_tty,
25347 struct cmd_list_element *c, const char *value)
25348 {
25349 fprintf_filtered (file,
25350 _("Whether to check \"physname\" is %s.\n"),
25351 value);
25352 }
25353
25354 void
25355 _initialize_dwarf2_read (void)
25356 {
25357 dwarf2_objfile_data_key
25358 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25359
25360 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25361 Set DWARF specific variables.\n\
25362 Configure DWARF variables such as the cache size"),
25363 &set_dwarf_cmdlist, "maintenance set dwarf ",
25364 0/*allow-unknown*/, &maintenance_set_cmdlist);
25365
25366 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25367 Show DWARF specific variables\n\
25368 Show DWARF variables such as the cache size"),
25369 &show_dwarf_cmdlist, "maintenance show dwarf ",
25370 0/*allow-unknown*/, &maintenance_show_cmdlist);
25371
25372 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25373 &dwarf_max_cache_age, _("\
25374 Set the upper bound on the age of cached DWARF compilation units."), _("\
25375 Show the upper bound on the age of cached DWARF compilation units."), _("\
25376 A higher limit means that cached compilation units will be stored\n\
25377 in memory longer, and more total memory will be used. Zero disables\n\
25378 caching, which can slow down startup."),
25379 NULL,
25380 show_dwarf_max_cache_age,
25381 &set_dwarf_cmdlist,
25382 &show_dwarf_cmdlist);
25383
25384 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25385 &dwarf_always_disassemble, _("\
25386 Set whether `info address' always disassembles DWARF expressions."), _("\
25387 Show whether `info address' always disassembles DWARF expressions."), _("\
25388 When enabled, DWARF expressions are always printed in an assembly-like\n\
25389 syntax. When disabled, expressions will be printed in a more\n\
25390 conversational style, when possible."),
25391 NULL,
25392 show_dwarf_always_disassemble,
25393 &set_dwarf_cmdlist,
25394 &show_dwarf_cmdlist);
25395
25396 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25397 Set debugging of the DWARF reader."), _("\
25398 Show debugging of the DWARF reader."), _("\
25399 When enabled (non-zero), debugging messages are printed during DWARF\n\
25400 reading and symtab expansion. A value of 1 (one) provides basic\n\
25401 information. A value greater than 1 provides more verbose information."),
25402 NULL,
25403 NULL,
25404 &setdebuglist, &showdebuglist);
25405
25406 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25407 Set debugging of the DWARF DIE reader."), _("\
25408 Show debugging of the DWARF DIE reader."), _("\
25409 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25410 The value is the maximum depth to print."),
25411 NULL,
25412 NULL,
25413 &setdebuglist, &showdebuglist);
25414
25415 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25416 Set debugging of the dwarf line reader."), _("\
25417 Show debugging of the dwarf line reader."), _("\
25418 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25419 A value of 1 (one) provides basic information.\n\
25420 A value greater than 1 provides more verbose information."),
25421 NULL,
25422 NULL,
25423 &setdebuglist, &showdebuglist);
25424
25425 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25426 Set cross-checking of \"physname\" code against demangler."), _("\
25427 Show cross-checking of \"physname\" code against demangler."), _("\
25428 When enabled, GDB's internal \"physname\" code is checked against\n\
25429 the demangler."),
25430 NULL, show_check_physname,
25431 &setdebuglist, &showdebuglist);
25432
25433 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25434 no_class, &use_deprecated_index_sections, _("\
25435 Set whether to use deprecated gdb_index sections."), _("\
25436 Show whether to use deprecated gdb_index sections."), _("\
25437 When enabled, deprecated .gdb_index sections are used anyway.\n\
25438 Normally they are ignored either because of a missing feature or\n\
25439 performance issue.\n\
25440 Warning: This option must be enabled before gdb reads the file."),
25441 NULL,
25442 NULL,
25443 &setlist, &showlist);
25444
25445 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25446 &dwarf2_locexpr_funcs);
25447 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25448 &dwarf2_loclist_funcs);
25449
25450 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25451 &dwarf2_block_frame_base_locexpr_funcs);
25452 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25453 &dwarf2_block_frame_base_loclist_funcs);
25454
25455 #if GDB_SELF_TEST
25456 selftests::register_test ("dw2_expand_symtabs_matching",
25457 selftests::dw2_expand_symtabs_matching::run_test);
25458 #endif
25459 }
This page took 0.865483 seconds and 3 git commands to generate.