Add native target for FreeBSD/riscv.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
555 bool producer_is_codewarrior : 1;
556
557 /* When set, the file that we're processing is known to have
558 debugging info for C++ namespaces. GCC 3.3.x did not produce
559 this information, but later versions do. */
560
561 unsigned int processing_has_namespace_info : 1;
562
563 struct partial_die_info *find_partial_die (sect_offset sect_off);
564 };
565
566 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
567 This includes type_unit_group and quick_file_names. */
568
569 struct stmt_list_hash
570 {
571 /* The DWO unit this table is from or NULL if there is none. */
572 struct dwo_unit *dwo_unit;
573
574 /* Offset in .debug_line or .debug_line.dwo. */
575 sect_offset line_sect_off;
576 };
577
578 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
579 an object of this type. */
580
581 struct type_unit_group
582 {
583 /* dwarf2read.c's main "handle" on a TU symtab.
584 To simplify things we create an artificial CU that "includes" all the
585 type units using this stmt_list so that the rest of the code still has
586 a "per_cu" handle on the symtab.
587 This PER_CU is recognized by having no section. */
588 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
589 struct dwarf2_per_cu_data per_cu;
590
591 /* The TUs that share this DW_AT_stmt_list entry.
592 This is added to while parsing type units to build partial symtabs,
593 and is deleted afterwards and not used again. */
594 VEC (sig_type_ptr) *tus;
595
596 /* The compunit symtab.
597 Type units in a group needn't all be defined in the same source file,
598 so we create an essentially anonymous symtab as the compunit symtab. */
599 struct compunit_symtab *compunit_symtab;
600
601 /* The data used to construct the hash key. */
602 struct stmt_list_hash hash;
603
604 /* The number of symtabs from the line header.
605 The value here must match line_header.num_file_names. */
606 unsigned int num_symtabs;
607
608 /* The symbol tables for this TU (obtained from the files listed in
609 DW_AT_stmt_list).
610 WARNING: The order of entries here must match the order of entries
611 in the line header. After the first TU using this type_unit_group, the
612 line header for the subsequent TUs is recreated from this. This is done
613 because we need to use the same symtabs for each TU using the same
614 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
615 there's no guarantee the line header doesn't have duplicate entries. */
616 struct symtab **symtabs;
617 };
618
619 /* These sections are what may appear in a (real or virtual) DWO file. */
620
621 struct dwo_sections
622 {
623 struct dwarf2_section_info abbrev;
624 struct dwarf2_section_info line;
625 struct dwarf2_section_info loc;
626 struct dwarf2_section_info loclists;
627 struct dwarf2_section_info macinfo;
628 struct dwarf2_section_info macro;
629 struct dwarf2_section_info str;
630 struct dwarf2_section_info str_offsets;
631 /* In the case of a virtual DWO file, these two are unused. */
632 struct dwarf2_section_info info;
633 VEC (dwarf2_section_info_def) *types;
634 };
635
636 /* CUs/TUs in DWP/DWO files. */
637
638 struct dwo_unit
639 {
640 /* Backlink to the containing struct dwo_file. */
641 struct dwo_file *dwo_file;
642
643 /* The "id" that distinguishes this CU/TU.
644 .debug_info calls this "dwo_id", .debug_types calls this "signature".
645 Since signatures came first, we stick with it for consistency. */
646 ULONGEST signature;
647
648 /* The section this CU/TU lives in, in the DWO file. */
649 struct dwarf2_section_info *section;
650
651 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
652 sect_offset sect_off;
653 unsigned int length;
654
655 /* For types, offset in the type's DIE of the type defined by this TU. */
656 cu_offset type_offset_in_tu;
657 };
658
659 /* include/dwarf2.h defines the DWP section codes.
660 It defines a max value but it doesn't define a min value, which we
661 use for error checking, so provide one. */
662
663 enum dwp_v2_section_ids
664 {
665 DW_SECT_MIN = 1
666 };
667
668 /* Data for one DWO file.
669
670 This includes virtual DWO files (a virtual DWO file is a DWO file as it
671 appears in a DWP file). DWP files don't really have DWO files per se -
672 comdat folding of types "loses" the DWO file they came from, and from
673 a high level view DWP files appear to contain a mass of random types.
674 However, to maintain consistency with the non-DWP case we pretend DWP
675 files contain virtual DWO files, and we assign each TU with one virtual
676 DWO file (generally based on the line and abbrev section offsets -
677 a heuristic that seems to work in practice). */
678
679 struct dwo_file
680 {
681 /* The DW_AT_GNU_dwo_name attribute.
682 For virtual DWO files the name is constructed from the section offsets
683 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
684 from related CU+TUs. */
685 const char *dwo_name;
686
687 /* The DW_AT_comp_dir attribute. */
688 const char *comp_dir;
689
690 /* The bfd, when the file is open. Otherwise this is NULL.
691 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
692 bfd *dbfd;
693
694 /* The sections that make up this DWO file.
695 Remember that for virtual DWO files in DWP V2, these are virtual
696 sections (for lack of a better name). */
697 struct dwo_sections sections;
698
699 /* The CUs in the file.
700 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
701 an extension to handle LLVM's Link Time Optimization output (where
702 multiple source files may be compiled into a single object/dwo pair). */
703 htab_t cus;
704
705 /* Table of TUs in the file.
706 Each element is a struct dwo_unit. */
707 htab_t tus;
708 };
709
710 /* These sections are what may appear in a DWP file. */
711
712 struct dwp_sections
713 {
714 /* These are used by both DWP version 1 and 2. */
715 struct dwarf2_section_info str;
716 struct dwarf2_section_info cu_index;
717 struct dwarf2_section_info tu_index;
718
719 /* These are only used by DWP version 2 files.
720 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
721 sections are referenced by section number, and are not recorded here.
722 In DWP version 2 there is at most one copy of all these sections, each
723 section being (effectively) comprised of the concatenation of all of the
724 individual sections that exist in the version 1 format.
725 To keep the code simple we treat each of these concatenated pieces as a
726 section itself (a virtual section?). */
727 struct dwarf2_section_info abbrev;
728 struct dwarf2_section_info info;
729 struct dwarf2_section_info line;
730 struct dwarf2_section_info loc;
731 struct dwarf2_section_info macinfo;
732 struct dwarf2_section_info macro;
733 struct dwarf2_section_info str_offsets;
734 struct dwarf2_section_info types;
735 };
736
737 /* These sections are what may appear in a virtual DWO file in DWP version 1.
738 A virtual DWO file is a DWO file as it appears in a DWP file. */
739
740 struct virtual_v1_dwo_sections
741 {
742 struct dwarf2_section_info abbrev;
743 struct dwarf2_section_info line;
744 struct dwarf2_section_info loc;
745 struct dwarf2_section_info macinfo;
746 struct dwarf2_section_info macro;
747 struct dwarf2_section_info str_offsets;
748 /* Each DWP hash table entry records one CU or one TU.
749 That is recorded here, and copied to dwo_unit.section. */
750 struct dwarf2_section_info info_or_types;
751 };
752
753 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
754 In version 2, the sections of the DWO files are concatenated together
755 and stored in one section of that name. Thus each ELF section contains
756 several "virtual" sections. */
757
758 struct virtual_v2_dwo_sections
759 {
760 bfd_size_type abbrev_offset;
761 bfd_size_type abbrev_size;
762
763 bfd_size_type line_offset;
764 bfd_size_type line_size;
765
766 bfd_size_type loc_offset;
767 bfd_size_type loc_size;
768
769 bfd_size_type macinfo_offset;
770 bfd_size_type macinfo_size;
771
772 bfd_size_type macro_offset;
773 bfd_size_type macro_size;
774
775 bfd_size_type str_offsets_offset;
776 bfd_size_type str_offsets_size;
777
778 /* Each DWP hash table entry records one CU or one TU.
779 That is recorded here, and copied to dwo_unit.section. */
780 bfd_size_type info_or_types_offset;
781 bfd_size_type info_or_types_size;
782 };
783
784 /* Contents of DWP hash tables. */
785
786 struct dwp_hash_table
787 {
788 uint32_t version, nr_columns;
789 uint32_t nr_units, nr_slots;
790 const gdb_byte *hash_table, *unit_table;
791 union
792 {
793 struct
794 {
795 const gdb_byte *indices;
796 } v1;
797 struct
798 {
799 /* This is indexed by column number and gives the id of the section
800 in that column. */
801 #define MAX_NR_V2_DWO_SECTIONS \
802 (1 /* .debug_info or .debug_types */ \
803 + 1 /* .debug_abbrev */ \
804 + 1 /* .debug_line */ \
805 + 1 /* .debug_loc */ \
806 + 1 /* .debug_str_offsets */ \
807 + 1 /* .debug_macro or .debug_macinfo */)
808 int section_ids[MAX_NR_V2_DWO_SECTIONS];
809 const gdb_byte *offsets;
810 const gdb_byte *sizes;
811 } v2;
812 } section_pool;
813 };
814
815 /* Data for one DWP file. */
816
817 struct dwp_file
818 {
819 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
820 : name (name_),
821 dbfd (std::move (abfd))
822 {
823 }
824
825 /* Name of the file. */
826 const char *name;
827
828 /* File format version. */
829 int version = 0;
830
831 /* The bfd. */
832 gdb_bfd_ref_ptr dbfd;
833
834 /* Section info for this file. */
835 struct dwp_sections sections {};
836
837 /* Table of CUs in the file. */
838 const struct dwp_hash_table *cus = nullptr;
839
840 /* Table of TUs in the file. */
841 const struct dwp_hash_table *tus = nullptr;
842
843 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
844 htab_t loaded_cus {};
845 htab_t loaded_tus {};
846
847 /* Table to map ELF section numbers to their sections.
848 This is only needed for the DWP V1 file format. */
849 unsigned int num_sections = 0;
850 asection **elf_sections = nullptr;
851 };
852
853 /* This represents a '.dwz' file. */
854
855 struct dwz_file
856 {
857 dwz_file (gdb_bfd_ref_ptr &&bfd)
858 : dwz_bfd (std::move (bfd))
859 {
860 }
861
862 /* A dwz file can only contain a few sections. */
863 struct dwarf2_section_info abbrev {};
864 struct dwarf2_section_info info {};
865 struct dwarf2_section_info str {};
866 struct dwarf2_section_info line {};
867 struct dwarf2_section_info macro {};
868 struct dwarf2_section_info gdb_index {};
869 struct dwarf2_section_info debug_names {};
870
871 /* The dwz's BFD. */
872 gdb_bfd_ref_ptr dwz_bfd;
873
874 /* If we loaded the index from an external file, this contains the
875 resources associated to the open file, memory mapping, etc. */
876 std::unique_ptr<index_cache_resource> index_cache_res;
877 };
878
879 /* Struct used to pass misc. parameters to read_die_and_children, et
880 al. which are used for both .debug_info and .debug_types dies.
881 All parameters here are unchanging for the life of the call. This
882 struct exists to abstract away the constant parameters of die reading. */
883
884 struct die_reader_specs
885 {
886 /* The bfd of die_section. */
887 bfd* abfd;
888
889 /* The CU of the DIE we are parsing. */
890 struct dwarf2_cu *cu;
891
892 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
893 struct dwo_file *dwo_file;
894
895 /* The section the die comes from.
896 This is either .debug_info or .debug_types, or the .dwo variants. */
897 struct dwarf2_section_info *die_section;
898
899 /* die_section->buffer. */
900 const gdb_byte *buffer;
901
902 /* The end of the buffer. */
903 const gdb_byte *buffer_end;
904
905 /* The value of the DW_AT_comp_dir attribute. */
906 const char *comp_dir;
907
908 /* The abbreviation table to use when reading the DIEs. */
909 struct abbrev_table *abbrev_table;
910 };
911
912 /* Type of function passed to init_cutu_and_read_dies, et.al. */
913 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
914 const gdb_byte *info_ptr,
915 struct die_info *comp_unit_die,
916 int has_children,
917 void *data);
918
919 /* A 1-based directory index. This is a strong typedef to prevent
920 accidentally using a directory index as a 0-based index into an
921 array/vector. */
922 enum class dir_index : unsigned int {};
923
924 /* Likewise, a 1-based file name index. */
925 enum class file_name_index : unsigned int {};
926
927 struct file_entry
928 {
929 file_entry () = default;
930
931 file_entry (const char *name_, dir_index d_index_,
932 unsigned int mod_time_, unsigned int length_)
933 : name (name_),
934 d_index (d_index_),
935 mod_time (mod_time_),
936 length (length_)
937 {}
938
939 /* Return the include directory at D_INDEX stored in LH. Returns
940 NULL if D_INDEX is out of bounds. */
941 const char *include_dir (const line_header *lh) const;
942
943 /* The file name. Note this is an observing pointer. The memory is
944 owned by debug_line_buffer. */
945 const char *name {};
946
947 /* The directory index (1-based). */
948 dir_index d_index {};
949
950 unsigned int mod_time {};
951
952 unsigned int length {};
953
954 /* True if referenced by the Line Number Program. */
955 bool included_p {};
956
957 /* The associated symbol table, if any. */
958 struct symtab *symtab {};
959 };
960
961 /* The line number information for a compilation unit (found in the
962 .debug_line section) begins with a "statement program header",
963 which contains the following information. */
964 struct line_header
965 {
966 line_header ()
967 : offset_in_dwz {}
968 {}
969
970 /* Add an entry to the include directory table. */
971 void add_include_dir (const char *include_dir);
972
973 /* Add an entry to the file name table. */
974 void add_file_name (const char *name, dir_index d_index,
975 unsigned int mod_time, unsigned int length);
976
977 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
978 is out of bounds. */
979 const char *include_dir_at (dir_index index) const
980 {
981 /* Convert directory index number (1-based) to vector index
982 (0-based). */
983 size_t vec_index = to_underlying (index) - 1;
984
985 if (vec_index >= include_dirs.size ())
986 return NULL;
987 return include_dirs[vec_index];
988 }
989
990 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
991 is out of bounds. */
992 file_entry *file_name_at (file_name_index index)
993 {
994 /* Convert file name index number (1-based) to vector index
995 (0-based). */
996 size_t vec_index = to_underlying (index) - 1;
997
998 if (vec_index >= file_names.size ())
999 return NULL;
1000 return &file_names[vec_index];
1001 }
1002
1003 /* Const version of the above. */
1004 const file_entry *file_name_at (unsigned int index) const
1005 {
1006 if (index >= file_names.size ())
1007 return NULL;
1008 return &file_names[index];
1009 }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 /* The include_directories table. Note these are observing
1034 pointers. The memory is owned by debug_line_buffer. */
1035 std::vector<const char *> include_dirs;
1036
1037 /* The file_names table. */
1038 std::vector<file_entry> file_names;
1039
1040 /* The start and end of the statement program following this
1041 header. These point into dwarf2_per_objfile->line_buffer. */
1042 const gdb_byte *statement_program_start {}, *statement_program_end {};
1043 };
1044
1045 typedef std::unique_ptr<line_header> line_header_up;
1046
1047 const char *
1048 file_entry::include_dir (const line_header *lh) const
1049 {
1050 return lh->include_dir_at (d_index);
1051 }
1052
1053 /* When we construct a partial symbol table entry we only
1054 need this much information. */
1055 struct partial_die_info : public allocate_on_obstack
1056 {
1057 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1058
1059 /* Disable assign but still keep copy ctor, which is needed
1060 load_partial_dies. */
1061 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1062
1063 /* Adjust the partial die before generating a symbol for it. This
1064 function may set the is_external flag or change the DIE's
1065 name. */
1066 void fixup (struct dwarf2_cu *cu);
1067
1068 /* Read a minimal amount of information into the minimal die
1069 structure. */
1070 const gdb_byte *read (const struct die_reader_specs *reader,
1071 const struct abbrev_info &abbrev,
1072 const gdb_byte *info_ptr);
1073
1074 /* Offset of this DIE. */
1075 const sect_offset sect_off;
1076
1077 /* DWARF-2 tag for this DIE. */
1078 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
1080 /* Assorted flags describing the data found in this DIE. */
1081 const unsigned int has_children : 1;
1082
1083 unsigned int is_external : 1;
1084 unsigned int is_declaration : 1;
1085 unsigned int has_type : 1;
1086 unsigned int has_specification : 1;
1087 unsigned int has_pc_info : 1;
1088 unsigned int may_be_inlined : 1;
1089
1090 /* This DIE has been marked DW_AT_main_subprogram. */
1091 unsigned int main_subprogram : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1101 unsigned int has_const_value : 1;
1102
1103 /* Flag set if any of the DIE's children are template arguments. */
1104 unsigned int has_template_arguments : 1;
1105
1106 /* Flag set if fixup has been called on this die. */
1107 unsigned int fixup_called : 1;
1108
1109 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1110 unsigned int is_dwz : 1;
1111
1112 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1113 unsigned int spec_is_dwz : 1;
1114
1115 /* The name of this DIE. Normally the value of DW_AT_name, but
1116 sometimes a default name for unnamed DIEs. */
1117 const char *name = nullptr;
1118
1119 /* The linkage name, if present. */
1120 const char *linkage_name = nullptr;
1121
1122 /* The scope to prepend to our children. This is generally
1123 allocated on the comp_unit_obstack, so will disappear
1124 when this compilation unit leaves the cache. */
1125 const char *scope = nullptr;
1126
1127 /* Some data associated with the partial DIE. The tag determines
1128 which field is live. */
1129 union
1130 {
1131 /* The location description associated with this DIE, if any. */
1132 struct dwarf_block *locdesc;
1133 /* The offset of an import, for DW_TAG_imported_unit. */
1134 sect_offset sect_off;
1135 } d {};
1136
1137 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1138 CORE_ADDR lowpc = 0;
1139 CORE_ADDR highpc = 0;
1140
1141 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1142 DW_AT_sibling, if any. */
1143 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1144 could return DW_AT_sibling values to its caller load_partial_dies. */
1145 const gdb_byte *sibling = nullptr;
1146
1147 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1148 DW_AT_specification (or DW_AT_abstract_origin or
1149 DW_AT_extension). */
1150 sect_offset spec_offset {};
1151
1152 /* Pointers to this DIE's parent, first child, and next sibling,
1153 if any. */
1154 struct partial_die_info *die_parent = nullptr;
1155 struct partial_die_info *die_child = nullptr;
1156 struct partial_die_info *die_sibling = nullptr;
1157
1158 friend struct partial_die_info *
1159 dwarf2_cu::find_partial_die (sect_offset sect_off);
1160
1161 private:
1162 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1163 partial_die_info (sect_offset sect_off)
1164 : partial_die_info (sect_off, DW_TAG_padding, 0)
1165 {
1166 }
1167
1168 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1169 int has_children_)
1170 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1171 {
1172 is_external = 0;
1173 is_declaration = 0;
1174 has_type = 0;
1175 has_specification = 0;
1176 has_pc_info = 0;
1177 may_be_inlined = 0;
1178 main_subprogram = 0;
1179 scope_set = 0;
1180 has_byte_size = 0;
1181 has_const_value = 0;
1182 has_template_arguments = 0;
1183 fixup_called = 0;
1184 is_dwz = 0;
1185 spec_is_dwz = 0;
1186 }
1187 };
1188
1189 /* This data structure holds the information of an abbrev. */
1190 struct abbrev_info
1191 {
1192 unsigned int number; /* number identifying abbrev */
1193 enum dwarf_tag tag; /* dwarf tag */
1194 unsigned short has_children; /* boolean */
1195 unsigned short num_attrs; /* number of attributes */
1196 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1197 struct abbrev_info *next; /* next in chain */
1198 };
1199
1200 struct attr_abbrev
1201 {
1202 ENUM_BITFIELD(dwarf_attribute) name : 16;
1203 ENUM_BITFIELD(dwarf_form) form : 16;
1204
1205 /* It is valid only if FORM is DW_FORM_implicit_const. */
1206 LONGEST implicit_const;
1207 };
1208
1209 /* Size of abbrev_table.abbrev_hash_table. */
1210 #define ABBREV_HASH_SIZE 121
1211
1212 /* Top level data structure to contain an abbreviation table. */
1213
1214 struct abbrev_table
1215 {
1216 explicit abbrev_table (sect_offset off)
1217 : sect_off (off)
1218 {
1219 m_abbrevs =
1220 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1221 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1222 }
1223
1224 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1225
1226 /* Allocate space for a struct abbrev_info object in
1227 ABBREV_TABLE. */
1228 struct abbrev_info *alloc_abbrev ();
1229
1230 /* Add an abbreviation to the table. */
1231 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1232
1233 /* Look up an abbrev in the table.
1234 Returns NULL if the abbrev is not found. */
1235
1236 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1237
1238
1239 /* Where the abbrev table came from.
1240 This is used as a sanity check when the table is used. */
1241 const sect_offset sect_off;
1242
1243 /* Storage for the abbrev table. */
1244 auto_obstack abbrev_obstack;
1245
1246 private:
1247
1248 /* Hash table of abbrevs.
1249 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1250 It could be statically allocated, but the previous code didn't so we
1251 don't either. */
1252 struct abbrev_info **m_abbrevs;
1253 };
1254
1255 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1256
1257 /* Attributes have a name and a value. */
1258 struct attribute
1259 {
1260 ENUM_BITFIELD(dwarf_attribute) name : 16;
1261 ENUM_BITFIELD(dwarf_form) form : 15;
1262
1263 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1264 field should be in u.str (existing only for DW_STRING) but it is kept
1265 here for better struct attribute alignment. */
1266 unsigned int string_is_canonical : 1;
1267
1268 union
1269 {
1270 const char *str;
1271 struct dwarf_block *blk;
1272 ULONGEST unsnd;
1273 LONGEST snd;
1274 CORE_ADDR addr;
1275 ULONGEST signature;
1276 }
1277 u;
1278 };
1279
1280 /* This data structure holds a complete die structure. */
1281 struct die_info
1282 {
1283 /* DWARF-2 tag for this DIE. */
1284 ENUM_BITFIELD(dwarf_tag) tag : 16;
1285
1286 /* Number of attributes */
1287 unsigned char num_attrs;
1288
1289 /* True if we're presently building the full type name for the
1290 type derived from this DIE. */
1291 unsigned char building_fullname : 1;
1292
1293 /* True if this die is in process. PR 16581. */
1294 unsigned char in_process : 1;
1295
1296 /* Abbrev number */
1297 unsigned int abbrev;
1298
1299 /* Offset in .debug_info or .debug_types section. */
1300 sect_offset sect_off;
1301
1302 /* The dies in a compilation unit form an n-ary tree. PARENT
1303 points to this die's parent; CHILD points to the first child of
1304 this node; and all the children of a given node are chained
1305 together via their SIBLING fields. */
1306 struct die_info *child; /* Its first child, if any. */
1307 struct die_info *sibling; /* Its next sibling, if any. */
1308 struct die_info *parent; /* Its parent, if any. */
1309
1310 /* An array of attributes, with NUM_ATTRS elements. There may be
1311 zero, but it's not common and zero-sized arrays are not
1312 sufficiently portable C. */
1313 struct attribute attrs[1];
1314 };
1315
1316 /* Get at parts of an attribute structure. */
1317
1318 #define DW_STRING(attr) ((attr)->u.str)
1319 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1320 #define DW_UNSND(attr) ((attr)->u.unsnd)
1321 #define DW_BLOCK(attr) ((attr)->u.blk)
1322 #define DW_SND(attr) ((attr)->u.snd)
1323 #define DW_ADDR(attr) ((attr)->u.addr)
1324 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1325
1326 /* Blocks are a bunch of untyped bytes. */
1327 struct dwarf_block
1328 {
1329 size_t size;
1330
1331 /* Valid only if SIZE is not zero. */
1332 const gdb_byte *data;
1333 };
1334
1335 #ifndef ATTR_ALLOC_CHUNK
1336 #define ATTR_ALLOC_CHUNK 4
1337 #endif
1338
1339 /* Allocate fields for structs, unions and enums in this size. */
1340 #ifndef DW_FIELD_ALLOC_CHUNK
1341 #define DW_FIELD_ALLOC_CHUNK 4
1342 #endif
1343
1344 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1345 but this would require a corresponding change in unpack_field_as_long
1346 and friends. */
1347 static int bits_per_byte = 8;
1348
1349 /* When reading a variant or variant part, we track a bit more
1350 information about the field, and store it in an object of this
1351 type. */
1352
1353 struct variant_field
1354 {
1355 /* If we see a DW_TAG_variant, then this will be the discriminant
1356 value. */
1357 ULONGEST discriminant_value;
1358 /* If we see a DW_TAG_variant, then this will be set if this is the
1359 default branch. */
1360 bool default_branch;
1361 /* While reading a DW_TAG_variant_part, this will be set if this
1362 field is the discriminant. */
1363 bool is_discriminant;
1364 };
1365
1366 struct nextfield
1367 {
1368 int accessibility = 0;
1369 int virtuality = 0;
1370 /* Extra information to describe a variant or variant part. */
1371 struct variant_field variant {};
1372 struct field field {};
1373 };
1374
1375 struct fnfieldlist
1376 {
1377 const char *name = nullptr;
1378 std::vector<struct fn_field> fnfields;
1379 };
1380
1381 /* The routines that read and process dies for a C struct or C++ class
1382 pass lists of data member fields and lists of member function fields
1383 in an instance of a field_info structure, as defined below. */
1384 struct field_info
1385 {
1386 /* List of data member and baseclasses fields. */
1387 std::vector<struct nextfield> fields;
1388 std::vector<struct nextfield> baseclasses;
1389
1390 /* Number of fields (including baseclasses). */
1391 int nfields = 0;
1392
1393 /* Set if the accesibility of one of the fields is not public. */
1394 int non_public_fields = 0;
1395
1396 /* Member function fieldlist array, contains name of possibly overloaded
1397 member function, number of overloaded member functions and a pointer
1398 to the head of the member function field chain. */
1399 std::vector<struct fnfieldlist> fnfieldlists;
1400
1401 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1402 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1403 std::vector<struct decl_field> typedef_field_list;
1404
1405 /* Nested types defined by this class and the number of elements in this
1406 list. */
1407 std::vector<struct decl_field> nested_types_list;
1408 };
1409
1410 /* One item on the queue of compilation units to read in full symbols
1411 for. */
1412 struct dwarf2_queue_item
1413 {
1414 struct dwarf2_per_cu_data *per_cu;
1415 enum language pretend_language;
1416 struct dwarf2_queue_item *next;
1417 };
1418
1419 /* The current queue. */
1420 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1421
1422 /* Loaded secondary compilation units are kept in memory until they
1423 have not been referenced for the processing of this many
1424 compilation units. Set this to zero to disable caching. Cache
1425 sizes of up to at least twenty will improve startup time for
1426 typical inter-CU-reference binaries, at an obvious memory cost. */
1427 static int dwarf_max_cache_age = 5;
1428 static void
1429 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1430 struct cmd_list_element *c, const char *value)
1431 {
1432 fprintf_filtered (file, _("The upper bound on the age of cached "
1433 "DWARF compilation units is %s.\n"),
1434 value);
1435 }
1436 \f
1437 /* local function prototypes */
1438
1439 static const char *get_section_name (const struct dwarf2_section_info *);
1440
1441 static const char *get_section_file_name (const struct dwarf2_section_info *);
1442
1443 static void dwarf2_find_base_address (struct die_info *die,
1444 struct dwarf2_cu *cu);
1445
1446 static struct partial_symtab *create_partial_symtab
1447 (struct dwarf2_per_cu_data *per_cu, const char *name);
1448
1449 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1450 const gdb_byte *info_ptr,
1451 struct die_info *type_unit_die,
1452 int has_children, void *data);
1453
1454 static void dwarf2_build_psymtabs_hard
1455 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1456
1457 static void scan_partial_symbols (struct partial_die_info *,
1458 CORE_ADDR *, CORE_ADDR *,
1459 int, struct dwarf2_cu *);
1460
1461 static void add_partial_symbol (struct partial_die_info *,
1462 struct dwarf2_cu *);
1463
1464 static void add_partial_namespace (struct partial_die_info *pdi,
1465 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1466 int set_addrmap, struct dwarf2_cu *cu);
1467
1468 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1469 CORE_ADDR *highpc, int set_addrmap,
1470 struct dwarf2_cu *cu);
1471
1472 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1473 struct dwarf2_cu *cu);
1474
1475 static void add_partial_subprogram (struct partial_die_info *pdi,
1476 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1477 int need_pc, struct dwarf2_cu *cu);
1478
1479 static void dwarf2_read_symtab (struct partial_symtab *,
1480 struct objfile *);
1481
1482 static void psymtab_to_symtab_1 (struct partial_symtab *);
1483
1484 static abbrev_table_up abbrev_table_read_table
1485 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1486 sect_offset);
1487
1488 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1489
1490 static struct partial_die_info *load_partial_dies
1491 (const struct die_reader_specs *, const gdb_byte *, int);
1492
1493 static struct partial_die_info *find_partial_die (sect_offset, int,
1494 struct dwarf2_cu *);
1495
1496 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1497 struct attribute *, struct attr_abbrev *,
1498 const gdb_byte *);
1499
1500 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1501
1502 static int read_1_signed_byte (bfd *, const gdb_byte *);
1503
1504 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1505
1506 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1507
1508 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1509
1510 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1511 unsigned int *);
1512
1513 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1514
1515 static LONGEST read_checked_initial_length_and_offset
1516 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1517 unsigned int *, unsigned int *);
1518
1519 static LONGEST read_offset (bfd *, const gdb_byte *,
1520 const struct comp_unit_head *,
1521 unsigned int *);
1522
1523 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1524
1525 static sect_offset read_abbrev_offset
1526 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1527 struct dwarf2_section_info *, sect_offset);
1528
1529 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1530
1531 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1532
1533 static const char *read_indirect_string
1534 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1535 const struct comp_unit_head *, unsigned int *);
1536
1537 static const char *read_indirect_line_string
1538 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1539 const struct comp_unit_head *, unsigned int *);
1540
1541 static const char *read_indirect_string_at_offset
1542 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1543 LONGEST str_offset);
1544
1545 static const char *read_indirect_string_from_dwz
1546 (struct objfile *objfile, struct dwz_file *, LONGEST);
1547
1548 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1549
1550 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1551 const gdb_byte *,
1552 unsigned int *);
1553
1554 static const char *read_str_index (const struct die_reader_specs *reader,
1555 ULONGEST str_index);
1556
1557 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1558
1559 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1560 struct dwarf2_cu *);
1561
1562 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1563 unsigned int);
1564
1565 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1566 struct dwarf2_cu *cu);
1567
1568 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1569 struct dwarf2_cu *cu);
1570
1571 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1572
1573 static struct die_info *die_specification (struct die_info *die,
1574 struct dwarf2_cu **);
1575
1576 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1577 struct dwarf2_cu *cu);
1578
1579 static void dwarf_decode_lines (struct line_header *, const char *,
1580 struct dwarf2_cu *, struct partial_symtab *,
1581 CORE_ADDR, int decode_mapping);
1582
1583 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1584 const char *);
1585
1586 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1587 const char *, const char *,
1588 CORE_ADDR);
1589
1590 static struct symbol *new_symbol (struct die_info *, struct type *,
1591 struct dwarf2_cu *, struct symbol * = NULL);
1592
1593 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1594 struct dwarf2_cu *);
1595
1596 static void dwarf2_const_value_attr (const struct attribute *attr,
1597 struct type *type,
1598 const char *name,
1599 struct obstack *obstack,
1600 struct dwarf2_cu *cu, LONGEST *value,
1601 const gdb_byte **bytes,
1602 struct dwarf2_locexpr_baton **baton);
1603
1604 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1605
1606 static int need_gnat_info (struct dwarf2_cu *);
1607
1608 static struct type *die_descriptive_type (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static void set_descriptive_type (struct type *, struct die_info *,
1612 struct dwarf2_cu *);
1613
1614 static struct type *die_containing_type (struct die_info *,
1615 struct dwarf2_cu *);
1616
1617 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1618 struct dwarf2_cu *);
1619
1620 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1621
1622 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1623
1624 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1625
1626 static char *typename_concat (struct obstack *obs, const char *prefix,
1627 const char *suffix, int physname,
1628 struct dwarf2_cu *cu);
1629
1630 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1633
1634 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1639
1640 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *, struct partial_symtab *);
1644
1645 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1646 values. Keep the items ordered with increasing constraints compliance. */
1647 enum pc_bounds_kind
1648 {
1649 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1650 PC_BOUNDS_NOT_PRESENT,
1651
1652 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1653 were present but they do not form a valid range of PC addresses. */
1654 PC_BOUNDS_INVALID,
1655
1656 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1657 PC_BOUNDS_RANGES,
1658
1659 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1660 PC_BOUNDS_HIGH_LOW,
1661 };
1662
1663 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1664 CORE_ADDR *, CORE_ADDR *,
1665 struct dwarf2_cu *,
1666 struct partial_symtab *);
1667
1668 static void get_scope_pc_bounds (struct die_info *,
1669 CORE_ADDR *, CORE_ADDR *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1673 CORE_ADDR, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_field (struct field_info *, struct die_info *,
1676 struct dwarf2_cu *);
1677
1678 static void dwarf2_attach_fields_to_type (struct field_info *,
1679 struct type *, struct dwarf2_cu *);
1680
1681 static void dwarf2_add_member_fn (struct field_info *,
1682 struct die_info *, struct type *,
1683 struct dwarf2_cu *);
1684
1685 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1686 struct type *,
1687 struct dwarf2_cu *);
1688
1689 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1690
1691 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1692
1693 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1694
1695 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1698
1699 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1700
1701 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1702
1703 static struct type *read_module_type (struct die_info *die,
1704 struct dwarf2_cu *cu);
1705
1706 static const char *namespace_name (struct die_info *die,
1707 int *is_anonymous, struct dwarf2_cu *);
1708
1709 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1710
1711 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1712
1713 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1714 struct dwarf2_cu *);
1715
1716 static struct die_info *read_die_and_siblings_1
1717 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1718 struct die_info *);
1719
1720 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1721 const gdb_byte *info_ptr,
1722 const gdb_byte **new_info_ptr,
1723 struct die_info *parent);
1724
1725 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1726 struct die_info **, const gdb_byte *,
1727 int *, int);
1728
1729 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1730 struct die_info **, const gdb_byte *,
1731 int *);
1732
1733 static void process_die (struct die_info *, struct dwarf2_cu *);
1734
1735 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1736 struct obstack *);
1737
1738 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1739
1740 static const char *dwarf2_full_name (const char *name,
1741 struct die_info *die,
1742 struct dwarf2_cu *cu);
1743
1744 static const char *dwarf2_physname (const char *name, struct die_info *die,
1745 struct dwarf2_cu *cu);
1746
1747 static struct die_info *dwarf2_extension (struct die_info *die,
1748 struct dwarf2_cu **);
1749
1750 static const char *dwarf_tag_name (unsigned int);
1751
1752 static const char *dwarf_attr_name (unsigned int);
1753
1754 static const char *dwarf_form_name (unsigned int);
1755
1756 static const char *dwarf_bool_name (unsigned int);
1757
1758 static const char *dwarf_type_encoding_name (unsigned int);
1759
1760 static struct die_info *sibling_die (struct die_info *);
1761
1762 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1763
1764 static void dump_die_for_error (struct die_info *);
1765
1766 static void dump_die_1 (struct ui_file *, int level, int max_level,
1767 struct die_info *);
1768
1769 /*static*/ void dump_die (struct die_info *, int max_level);
1770
1771 static void store_in_ref_table (struct die_info *,
1772 struct dwarf2_cu *);
1773
1774 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1775
1776 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1777
1778 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1779 const struct attribute *,
1780 struct dwarf2_cu **);
1781
1782 static struct die_info *follow_die_ref (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu **);
1785
1786 static struct die_info *follow_die_sig (struct die_info *,
1787 const struct attribute *,
1788 struct dwarf2_cu **);
1789
1790 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1791 struct dwarf2_cu *);
1792
1793 static struct type *get_DW_AT_signature_type (struct die_info *,
1794 const struct attribute *,
1795 struct dwarf2_cu *);
1796
1797 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1798
1799 static void read_signatured_type (struct signatured_type *);
1800
1801 static int attr_to_dynamic_prop (const struct attribute *attr,
1802 struct die_info *die, struct dwarf2_cu *cu,
1803 struct dynamic_prop *prop);
1804
1805 /* memory allocation interface */
1806
1807 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1808
1809 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1810
1811 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1812
1813 static int attr_form_is_block (const struct attribute *);
1814
1815 static int attr_form_is_section_offset (const struct attribute *);
1816
1817 static int attr_form_is_constant (const struct attribute *);
1818
1819 static int attr_form_is_ref (const struct attribute *);
1820
1821 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1822 struct dwarf2_loclist_baton *baton,
1823 const struct attribute *attr);
1824
1825 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1826 struct symbol *sym,
1827 struct dwarf2_cu *cu,
1828 int is_block);
1829
1830 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1831 const gdb_byte *info_ptr,
1832 struct abbrev_info *abbrev);
1833
1834 static hashval_t partial_die_hash (const void *item);
1835
1836 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1837
1838 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1839 (sect_offset sect_off, unsigned int offset_in_dwz,
1840 struct dwarf2_per_objfile *dwarf2_per_objfile);
1841
1842 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1843 struct die_info *comp_unit_die,
1844 enum language pretend_language);
1845
1846 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1847
1848 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1849
1850 static struct type *set_die_type (struct die_info *, struct type *,
1851 struct dwarf2_cu *);
1852
1853 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1854
1855 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1856
1857 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1858 enum language);
1859
1860 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1861 enum language);
1862
1863 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1864 enum language);
1865
1866 static void dwarf2_add_dependence (struct dwarf2_cu *,
1867 struct dwarf2_per_cu_data *);
1868
1869 static void dwarf2_mark (struct dwarf2_cu *);
1870
1871 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1872
1873 static struct type *get_die_type_at_offset (sect_offset,
1874 struct dwarf2_per_cu_data *);
1875
1876 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1877
1878 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1879 enum language pretend_language);
1880
1881 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882
1883 /* Class, the destructor of which frees all allocated queue entries. This
1884 will only have work to do if an error was thrown while processing the
1885 dwarf. If no error was thrown then the queue entries should have all
1886 been processed, and freed, as we went along. */
1887
1888 class dwarf2_queue_guard
1889 {
1890 public:
1891 dwarf2_queue_guard () = default;
1892
1893 /* Free any entries remaining on the queue. There should only be
1894 entries left if we hit an error while processing the dwarf. */
1895 ~dwarf2_queue_guard ()
1896 {
1897 struct dwarf2_queue_item *item, *last;
1898
1899 item = dwarf2_queue;
1900 while (item)
1901 {
1902 /* Anything still marked queued is likely to be in an
1903 inconsistent state, so discard it. */
1904 if (item->per_cu->queued)
1905 {
1906 if (item->per_cu->cu != NULL)
1907 free_one_cached_comp_unit (item->per_cu);
1908 item->per_cu->queued = 0;
1909 }
1910
1911 last = item;
1912 item = item->next;
1913 xfree (last);
1914 }
1915
1916 dwarf2_queue = dwarf2_queue_tail = NULL;
1917 }
1918 };
1919
1920 /* The return type of find_file_and_directory. Note, the enclosed
1921 string pointers are only valid while this object is valid. */
1922
1923 struct file_and_directory
1924 {
1925 /* The filename. This is never NULL. */
1926 const char *name;
1927
1928 /* The compilation directory. NULL if not known. If we needed to
1929 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1930 points directly to the DW_AT_comp_dir string attribute owned by
1931 the obstack that owns the DIE. */
1932 const char *comp_dir;
1933
1934 /* If we needed to build a new string for comp_dir, this is what
1935 owns the storage. */
1936 std::string comp_dir_storage;
1937 };
1938
1939 static file_and_directory find_file_and_directory (struct die_info *die,
1940 struct dwarf2_cu *cu);
1941
1942 static char *file_full_name (int file, struct line_header *lh,
1943 const char *comp_dir);
1944
1945 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1946 enum class rcuh_kind { COMPILE, TYPE };
1947
1948 static const gdb_byte *read_and_check_comp_unit_head
1949 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1950 struct comp_unit_head *header,
1951 struct dwarf2_section_info *section,
1952 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1953 rcuh_kind section_kind);
1954
1955 static void init_cutu_and_read_dies
1956 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1957 int use_existing_cu, int keep, bool skip_partial,
1958 die_reader_func_ftype *die_reader_func, void *data);
1959
1960 static void init_cutu_and_read_dies_simple
1961 (struct dwarf2_per_cu_data *this_cu,
1962 die_reader_func_ftype *die_reader_func, void *data);
1963
1964 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1965
1966 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1967
1968 static struct dwo_unit *lookup_dwo_unit_in_dwp
1969 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1970 struct dwp_file *dwp_file, const char *comp_dir,
1971 ULONGEST signature, int is_debug_types);
1972
1973 static struct dwp_file *get_dwp_file
1974 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1975
1976 static struct dwo_unit *lookup_dwo_comp_unit
1977 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1978
1979 static struct dwo_unit *lookup_dwo_type_unit
1980 (struct signatured_type *, const char *, const char *);
1981
1982 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1983
1984 static void free_dwo_file (struct dwo_file *);
1985
1986 /* A unique_ptr helper to free a dwo_file. */
1987
1988 struct dwo_file_deleter
1989 {
1990 void operator() (struct dwo_file *df) const
1991 {
1992 free_dwo_file (df);
1993 }
1994 };
1995
1996 /* A unique pointer to a dwo_file. */
1997
1998 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1999
2000 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2001
2002 static void check_producer (struct dwarf2_cu *cu);
2003
2004 static void free_line_header_voidp (void *arg);
2005 \f
2006 /* Various complaints about symbol reading that don't abort the process. */
2007
2008 static void
2009 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2010 {
2011 complaint (_("statement list doesn't fit in .debug_line section"));
2012 }
2013
2014 static void
2015 dwarf2_debug_line_missing_file_complaint (void)
2016 {
2017 complaint (_(".debug_line section has line data without a file"));
2018 }
2019
2020 static void
2021 dwarf2_debug_line_missing_end_sequence_complaint (void)
2022 {
2023 complaint (_(".debug_line section has line "
2024 "program sequence without an end"));
2025 }
2026
2027 static void
2028 dwarf2_complex_location_expr_complaint (void)
2029 {
2030 complaint (_("location expression too complex"));
2031 }
2032
2033 static void
2034 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2035 int arg3)
2036 {
2037 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2038 arg1, arg2, arg3);
2039 }
2040
2041 static void
2042 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2043 {
2044 complaint (_("debug info runs off end of %s section"
2045 " [in module %s]"),
2046 get_section_name (section),
2047 get_section_file_name (section));
2048 }
2049
2050 static void
2051 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2052 {
2053 complaint (_("macro debug info contains a "
2054 "malformed macro definition:\n`%s'"),
2055 arg1);
2056 }
2057
2058 static void
2059 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2060 {
2061 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2062 arg1, arg2);
2063 }
2064
2065 /* Hash function for line_header_hash. */
2066
2067 static hashval_t
2068 line_header_hash (const struct line_header *ofs)
2069 {
2070 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2071 }
2072
2073 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2074
2075 static hashval_t
2076 line_header_hash_voidp (const void *item)
2077 {
2078 const struct line_header *ofs = (const struct line_header *) item;
2079
2080 return line_header_hash (ofs);
2081 }
2082
2083 /* Equality function for line_header_hash. */
2084
2085 static int
2086 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2087 {
2088 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2089 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2090
2091 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2092 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2093 }
2094
2095 \f
2096
2097 /* Read the given attribute value as an address, taking the attribute's
2098 form into account. */
2099
2100 static CORE_ADDR
2101 attr_value_as_address (struct attribute *attr)
2102 {
2103 CORE_ADDR addr;
2104
2105 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2106 {
2107 /* Aside from a few clearly defined exceptions, attributes that
2108 contain an address must always be in DW_FORM_addr form.
2109 Unfortunately, some compilers happen to be violating this
2110 requirement by encoding addresses using other forms, such
2111 as DW_FORM_data4 for example. For those broken compilers,
2112 we try to do our best, without any guarantee of success,
2113 to interpret the address correctly. It would also be nice
2114 to generate a complaint, but that would require us to maintain
2115 a list of legitimate cases where a non-address form is allowed,
2116 as well as update callers to pass in at least the CU's DWARF
2117 version. This is more overhead than what we're willing to
2118 expand for a pretty rare case. */
2119 addr = DW_UNSND (attr);
2120 }
2121 else
2122 addr = DW_ADDR (attr);
2123
2124 return addr;
2125 }
2126
2127 /* See declaration. */
2128
2129 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2130 const dwarf2_debug_sections *names)
2131 : objfile (objfile_)
2132 {
2133 if (names == NULL)
2134 names = &dwarf2_elf_names;
2135
2136 bfd *obfd = objfile->obfd;
2137
2138 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2139 locate_sections (obfd, sec, *names);
2140 }
2141
2142 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2143
2144 dwarf2_per_objfile::~dwarf2_per_objfile ()
2145 {
2146 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2147 free_cached_comp_units ();
2148
2149 if (quick_file_names_table)
2150 htab_delete (quick_file_names_table);
2151
2152 if (line_header_hash)
2153 htab_delete (line_header_hash);
2154
2155 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2156 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2157
2158 for (signatured_type *sig_type : all_type_units)
2159 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2160
2161 VEC_free (dwarf2_section_info_def, types);
2162
2163 if (dwo_files != NULL)
2164 free_dwo_files (dwo_files, objfile);
2165
2166 /* Everything else should be on the objfile obstack. */
2167 }
2168
2169 /* See declaration. */
2170
2171 void
2172 dwarf2_per_objfile::free_cached_comp_units ()
2173 {
2174 dwarf2_per_cu_data *per_cu = read_in_chain;
2175 dwarf2_per_cu_data **last_chain = &read_in_chain;
2176 while (per_cu != NULL)
2177 {
2178 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2179
2180 delete per_cu->cu;
2181 *last_chain = next_cu;
2182 per_cu = next_cu;
2183 }
2184 }
2185
2186 /* A helper class that calls free_cached_comp_units on
2187 destruction. */
2188
2189 class free_cached_comp_units
2190 {
2191 public:
2192
2193 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2194 : m_per_objfile (per_objfile)
2195 {
2196 }
2197
2198 ~free_cached_comp_units ()
2199 {
2200 m_per_objfile->free_cached_comp_units ();
2201 }
2202
2203 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2204
2205 private:
2206
2207 dwarf2_per_objfile *m_per_objfile;
2208 };
2209
2210 /* Try to locate the sections we need for DWARF 2 debugging
2211 information and return true if we have enough to do something.
2212 NAMES points to the dwarf2 section names, or is NULL if the standard
2213 ELF names are used. */
2214
2215 int
2216 dwarf2_has_info (struct objfile *objfile,
2217 const struct dwarf2_debug_sections *names)
2218 {
2219 if (objfile->flags & OBJF_READNEVER)
2220 return 0;
2221
2222 struct dwarf2_per_objfile *dwarf2_per_objfile
2223 = get_dwarf2_per_objfile (objfile);
2224
2225 if (dwarf2_per_objfile == NULL)
2226 {
2227 /* Initialize per-objfile state. */
2228 dwarf2_per_objfile
2229 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2230 names);
2231 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2232 }
2233 return (!dwarf2_per_objfile->info.is_virtual
2234 && dwarf2_per_objfile->info.s.section != NULL
2235 && !dwarf2_per_objfile->abbrev.is_virtual
2236 && dwarf2_per_objfile->abbrev.s.section != NULL);
2237 }
2238
2239 /* Return the containing section of virtual section SECTION. */
2240
2241 static struct dwarf2_section_info *
2242 get_containing_section (const struct dwarf2_section_info *section)
2243 {
2244 gdb_assert (section->is_virtual);
2245 return section->s.containing_section;
2246 }
2247
2248 /* Return the bfd owner of SECTION. */
2249
2250 static struct bfd *
2251 get_section_bfd_owner (const struct dwarf2_section_info *section)
2252 {
2253 if (section->is_virtual)
2254 {
2255 section = get_containing_section (section);
2256 gdb_assert (!section->is_virtual);
2257 }
2258 return section->s.section->owner;
2259 }
2260
2261 /* Return the bfd section of SECTION.
2262 Returns NULL if the section is not present. */
2263
2264 static asection *
2265 get_section_bfd_section (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 {
2269 section = get_containing_section (section);
2270 gdb_assert (!section->is_virtual);
2271 }
2272 return section->s.section;
2273 }
2274
2275 /* Return the name of SECTION. */
2276
2277 static const char *
2278 get_section_name (const struct dwarf2_section_info *section)
2279 {
2280 asection *sectp = get_section_bfd_section (section);
2281
2282 gdb_assert (sectp != NULL);
2283 return bfd_section_name (get_section_bfd_owner (section), sectp);
2284 }
2285
2286 /* Return the name of the file SECTION is in. */
2287
2288 static const char *
2289 get_section_file_name (const struct dwarf2_section_info *section)
2290 {
2291 bfd *abfd = get_section_bfd_owner (section);
2292
2293 return bfd_get_filename (abfd);
2294 }
2295
2296 /* Return the id of SECTION.
2297 Returns 0 if SECTION doesn't exist. */
2298
2299 static int
2300 get_section_id (const struct dwarf2_section_info *section)
2301 {
2302 asection *sectp = get_section_bfd_section (section);
2303
2304 if (sectp == NULL)
2305 return 0;
2306 return sectp->id;
2307 }
2308
2309 /* Return the flags of SECTION.
2310 SECTION (or containing section if this is a virtual section) must exist. */
2311
2312 static int
2313 get_section_flags (const struct dwarf2_section_info *section)
2314 {
2315 asection *sectp = get_section_bfd_section (section);
2316
2317 gdb_assert (sectp != NULL);
2318 return bfd_get_section_flags (sectp->owner, sectp);
2319 }
2320
2321 /* When loading sections, we look either for uncompressed section or for
2322 compressed section names. */
2323
2324 static int
2325 section_is_p (const char *section_name,
2326 const struct dwarf2_section_names *names)
2327 {
2328 if (names->normal != NULL
2329 && strcmp (section_name, names->normal) == 0)
2330 return 1;
2331 if (names->compressed != NULL
2332 && strcmp (section_name, names->compressed) == 0)
2333 return 1;
2334 return 0;
2335 }
2336
2337 /* See declaration. */
2338
2339 void
2340 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2341 const dwarf2_debug_sections &names)
2342 {
2343 flagword aflag = bfd_get_section_flags (abfd, sectp);
2344
2345 if ((aflag & SEC_HAS_CONTENTS) == 0)
2346 {
2347 }
2348 else if (section_is_p (sectp->name, &names.info))
2349 {
2350 this->info.s.section = sectp;
2351 this->info.size = bfd_get_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &names.abbrev))
2354 {
2355 this->abbrev.s.section = sectp;
2356 this->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &names.line))
2359 {
2360 this->line.s.section = sectp;
2361 this->line.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &names.loc))
2364 {
2365 this->loc.s.section = sectp;
2366 this->loc.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &names.loclists))
2369 {
2370 this->loclists.s.section = sectp;
2371 this->loclists.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &names.macinfo))
2374 {
2375 this->macinfo.s.section = sectp;
2376 this->macinfo.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.macro))
2379 {
2380 this->macro.s.section = sectp;
2381 this->macro.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.str))
2384 {
2385 this->str.s.section = sectp;
2386 this->str.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line_str))
2389 {
2390 this->line_str.s.section = sectp;
2391 this->line_str.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.addr))
2394 {
2395 this->addr.s.section = sectp;
2396 this->addr.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.frame))
2399 {
2400 this->frame.s.section = sectp;
2401 this->frame.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.eh_frame))
2404 {
2405 this->eh_frame.s.section = sectp;
2406 this->eh_frame.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.ranges))
2409 {
2410 this->ranges.s.section = sectp;
2411 this->ranges.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.rnglists))
2414 {
2415 this->rnglists.s.section = sectp;
2416 this->rnglists.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.types))
2419 {
2420 struct dwarf2_section_info type_section;
2421
2422 memset (&type_section, 0, sizeof (type_section));
2423 type_section.s.section = sectp;
2424 type_section.size = bfd_get_section_size (sectp);
2425
2426 VEC_safe_push (dwarf2_section_info_def, this->types,
2427 &type_section);
2428 }
2429 else if (section_is_p (sectp->name, &names.gdb_index))
2430 {
2431 this->gdb_index.s.section = sectp;
2432 this->gdb_index.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &names.debug_names))
2435 {
2436 this->debug_names.s.section = sectp;
2437 this->debug_names.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.debug_aranges))
2440 {
2441 this->debug_aranges.s.section = sectp;
2442 this->debug_aranges.size = bfd_get_section_size (sectp);
2443 }
2444
2445 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2446 && bfd_section_vma (abfd, sectp) == 0)
2447 this->has_section_at_zero = true;
2448 }
2449
2450 /* A helper function that decides whether a section is empty,
2451 or not present. */
2452
2453 static int
2454 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2455 {
2456 if (section->is_virtual)
2457 return section->size == 0;
2458 return section->s.section == NULL || section->size == 0;
2459 }
2460
2461 /* See dwarf2read.h. */
2462
2463 void
2464 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2465 {
2466 asection *sectp;
2467 bfd *abfd;
2468 gdb_byte *buf, *retbuf;
2469
2470 if (info->readin)
2471 return;
2472 info->buffer = NULL;
2473 info->readin = 1;
2474
2475 if (dwarf2_section_empty_p (info))
2476 return;
2477
2478 sectp = get_section_bfd_section (info);
2479
2480 /* If this is a virtual section we need to read in the real one first. */
2481 if (info->is_virtual)
2482 {
2483 struct dwarf2_section_info *containing_section =
2484 get_containing_section (info);
2485
2486 gdb_assert (sectp != NULL);
2487 if ((sectp->flags & SEC_RELOC) != 0)
2488 {
2489 error (_("Dwarf Error: DWP format V2 with relocations is not"
2490 " supported in section %s [in module %s]"),
2491 get_section_name (info), get_section_file_name (info));
2492 }
2493 dwarf2_read_section (objfile, containing_section);
2494 /* Other code should have already caught virtual sections that don't
2495 fit. */
2496 gdb_assert (info->virtual_offset + info->size
2497 <= containing_section->size);
2498 /* If the real section is empty or there was a problem reading the
2499 section we shouldn't get here. */
2500 gdb_assert (containing_section->buffer != NULL);
2501 info->buffer = containing_section->buffer + info->virtual_offset;
2502 return;
2503 }
2504
2505 /* If the section has relocations, we must read it ourselves.
2506 Otherwise we attach it to the BFD. */
2507 if ((sectp->flags & SEC_RELOC) == 0)
2508 {
2509 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2510 return;
2511 }
2512
2513 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2514 info->buffer = buf;
2515
2516 /* When debugging .o files, we may need to apply relocations; see
2517 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2518 We never compress sections in .o files, so we only need to
2519 try this when the section is not compressed. */
2520 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2521 if (retbuf != NULL)
2522 {
2523 info->buffer = retbuf;
2524 return;
2525 }
2526
2527 abfd = get_section_bfd_owner (info);
2528 gdb_assert (abfd != NULL);
2529
2530 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2531 || bfd_bread (buf, info->size, abfd) != info->size)
2532 {
2533 error (_("Dwarf Error: Can't read DWARF data"
2534 " in section %s [in module %s]"),
2535 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2536 }
2537 }
2538
2539 /* A helper function that returns the size of a section in a safe way.
2540 If you are positive that the section has been read before using the
2541 size, then it is safe to refer to the dwarf2_section_info object's
2542 "size" field directly. In other cases, you must call this
2543 function, because for compressed sections the size field is not set
2544 correctly until the section has been read. */
2545
2546 static bfd_size_type
2547 dwarf2_section_size (struct objfile *objfile,
2548 struct dwarf2_section_info *info)
2549 {
2550 if (!info->readin)
2551 dwarf2_read_section (objfile, info);
2552 return info->size;
2553 }
2554
2555 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2556 SECTION_NAME. */
2557
2558 void
2559 dwarf2_get_section_info (struct objfile *objfile,
2560 enum dwarf2_section_enum sect,
2561 asection **sectp, const gdb_byte **bufp,
2562 bfd_size_type *sizep)
2563 {
2564 struct dwarf2_per_objfile *data
2565 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2566 dwarf2_objfile_data_key);
2567 struct dwarf2_section_info *info;
2568
2569 /* We may see an objfile without any DWARF, in which case we just
2570 return nothing. */
2571 if (data == NULL)
2572 {
2573 *sectp = NULL;
2574 *bufp = NULL;
2575 *sizep = 0;
2576 return;
2577 }
2578 switch (sect)
2579 {
2580 case DWARF2_DEBUG_FRAME:
2581 info = &data->frame;
2582 break;
2583 case DWARF2_EH_FRAME:
2584 info = &data->eh_frame;
2585 break;
2586 default:
2587 gdb_assert_not_reached ("unexpected section");
2588 }
2589
2590 dwarf2_read_section (objfile, info);
2591
2592 *sectp = get_section_bfd_section (info);
2593 *bufp = info->buffer;
2594 *sizep = info->size;
2595 }
2596
2597 /* A helper function to find the sections for a .dwz file. */
2598
2599 static void
2600 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2601 {
2602 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2603
2604 /* Note that we only support the standard ELF names, because .dwz
2605 is ELF-only (at the time of writing). */
2606 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2607 {
2608 dwz_file->abbrev.s.section = sectp;
2609 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2612 {
2613 dwz_file->info.s.section = sectp;
2614 dwz_file->info.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2617 {
2618 dwz_file->str.s.section = sectp;
2619 dwz_file->str.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2622 {
2623 dwz_file->line.s.section = sectp;
2624 dwz_file->line.size = bfd_get_section_size (sectp);
2625 }
2626 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2627 {
2628 dwz_file->macro.s.section = sectp;
2629 dwz_file->macro.size = bfd_get_section_size (sectp);
2630 }
2631 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2632 {
2633 dwz_file->gdb_index.s.section = sectp;
2634 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2635 }
2636 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2637 {
2638 dwz_file->debug_names.s.section = sectp;
2639 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2640 }
2641 }
2642
2643 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2644 there is no .gnu_debugaltlink section in the file. Error if there
2645 is such a section but the file cannot be found. */
2646
2647 static struct dwz_file *
2648 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2649 {
2650 const char *filename;
2651 bfd_size_type buildid_len_arg;
2652 size_t buildid_len;
2653 bfd_byte *buildid;
2654
2655 if (dwarf2_per_objfile->dwz_file != NULL)
2656 return dwarf2_per_objfile->dwz_file.get ();
2657
2658 bfd_set_error (bfd_error_no_error);
2659 gdb::unique_xmalloc_ptr<char> data
2660 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2661 &buildid_len_arg, &buildid));
2662 if (data == NULL)
2663 {
2664 if (bfd_get_error () == bfd_error_no_error)
2665 return NULL;
2666 error (_("could not read '.gnu_debugaltlink' section: %s"),
2667 bfd_errmsg (bfd_get_error ()));
2668 }
2669
2670 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2671
2672 buildid_len = (size_t) buildid_len_arg;
2673
2674 filename = data.get ();
2675
2676 std::string abs_storage;
2677 if (!IS_ABSOLUTE_PATH (filename))
2678 {
2679 gdb::unique_xmalloc_ptr<char> abs
2680 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2681
2682 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2683 filename = abs_storage.c_str ();
2684 }
2685
2686 /* First try the file name given in the section. If that doesn't
2687 work, try to use the build-id instead. */
2688 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2689 if (dwz_bfd != NULL)
2690 {
2691 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2692 dwz_bfd.release ();
2693 }
2694
2695 if (dwz_bfd == NULL)
2696 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2697
2698 if (dwz_bfd == NULL)
2699 error (_("could not find '.gnu_debugaltlink' file for %s"),
2700 objfile_name (dwarf2_per_objfile->objfile));
2701
2702 std::unique_ptr<struct dwz_file> result
2703 (new struct dwz_file (std::move (dwz_bfd)));
2704
2705 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2706 result.get ());
2707
2708 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2709 result->dwz_bfd.get ());
2710 dwarf2_per_objfile->dwz_file = std::move (result);
2711 return dwarf2_per_objfile->dwz_file.get ();
2712 }
2713 \f
2714 /* DWARF quick_symbols_functions support. */
2715
2716 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2717 unique line tables, so we maintain a separate table of all .debug_line
2718 derived entries to support the sharing.
2719 All the quick functions need is the list of file names. We discard the
2720 line_header when we're done and don't need to record it here. */
2721 struct quick_file_names
2722 {
2723 /* The data used to construct the hash key. */
2724 struct stmt_list_hash hash;
2725
2726 /* The number of entries in file_names, real_names. */
2727 unsigned int num_file_names;
2728
2729 /* The file names from the line table, after being run through
2730 file_full_name. */
2731 const char **file_names;
2732
2733 /* The file names from the line table after being run through
2734 gdb_realpath. These are computed lazily. */
2735 const char **real_names;
2736 };
2737
2738 /* When using the index (and thus not using psymtabs), each CU has an
2739 object of this type. This is used to hold information needed by
2740 the various "quick" methods. */
2741 struct dwarf2_per_cu_quick_data
2742 {
2743 /* The file table. This can be NULL if there was no file table
2744 or it's currently not read in.
2745 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2746 struct quick_file_names *file_names;
2747
2748 /* The corresponding symbol table. This is NULL if symbols for this
2749 CU have not yet been read. */
2750 struct compunit_symtab *compunit_symtab;
2751
2752 /* A temporary mark bit used when iterating over all CUs in
2753 expand_symtabs_matching. */
2754 unsigned int mark : 1;
2755
2756 /* True if we've tried to read the file table and found there isn't one.
2757 There will be no point in trying to read it again next time. */
2758 unsigned int no_file_data : 1;
2759 };
2760
2761 /* Utility hash function for a stmt_list_hash. */
2762
2763 static hashval_t
2764 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2765 {
2766 hashval_t v = 0;
2767
2768 if (stmt_list_hash->dwo_unit != NULL)
2769 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2770 v += to_underlying (stmt_list_hash->line_sect_off);
2771 return v;
2772 }
2773
2774 /* Utility equality function for a stmt_list_hash. */
2775
2776 static int
2777 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2778 const struct stmt_list_hash *rhs)
2779 {
2780 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2781 return 0;
2782 if (lhs->dwo_unit != NULL
2783 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2784 return 0;
2785
2786 return lhs->line_sect_off == rhs->line_sect_off;
2787 }
2788
2789 /* Hash function for a quick_file_names. */
2790
2791 static hashval_t
2792 hash_file_name_entry (const void *e)
2793 {
2794 const struct quick_file_names *file_data
2795 = (const struct quick_file_names *) e;
2796
2797 return hash_stmt_list_entry (&file_data->hash);
2798 }
2799
2800 /* Equality function for a quick_file_names. */
2801
2802 static int
2803 eq_file_name_entry (const void *a, const void *b)
2804 {
2805 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2806 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2807
2808 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2809 }
2810
2811 /* Delete function for a quick_file_names. */
2812
2813 static void
2814 delete_file_name_entry (void *e)
2815 {
2816 struct quick_file_names *file_data = (struct quick_file_names *) e;
2817 int i;
2818
2819 for (i = 0; i < file_data->num_file_names; ++i)
2820 {
2821 xfree ((void*) file_data->file_names[i]);
2822 if (file_data->real_names)
2823 xfree ((void*) file_data->real_names[i]);
2824 }
2825
2826 /* The space for the struct itself lives on objfile_obstack,
2827 so we don't free it here. */
2828 }
2829
2830 /* Create a quick_file_names hash table. */
2831
2832 static htab_t
2833 create_quick_file_names_table (unsigned int nr_initial_entries)
2834 {
2835 return htab_create_alloc (nr_initial_entries,
2836 hash_file_name_entry, eq_file_name_entry,
2837 delete_file_name_entry, xcalloc, xfree);
2838 }
2839
2840 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2841 have to be created afterwards. You should call age_cached_comp_units after
2842 processing PER_CU->CU. dw2_setup must have been already called. */
2843
2844 static void
2845 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2846 {
2847 if (per_cu->is_debug_types)
2848 load_full_type_unit (per_cu);
2849 else
2850 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2851
2852 if (per_cu->cu == NULL)
2853 return; /* Dummy CU. */
2854
2855 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2856 }
2857
2858 /* Read in the symbols for PER_CU. */
2859
2860 static void
2861 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2862 {
2863 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2864
2865 /* Skip type_unit_groups, reading the type units they contain
2866 is handled elsewhere. */
2867 if (IS_TYPE_UNIT_GROUP (per_cu))
2868 return;
2869
2870 /* The destructor of dwarf2_queue_guard frees any entries left on
2871 the queue. After this point we're guaranteed to leave this function
2872 with the dwarf queue empty. */
2873 dwarf2_queue_guard q_guard;
2874
2875 if (dwarf2_per_objfile->using_index
2876 ? per_cu->v.quick->compunit_symtab == NULL
2877 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2878 {
2879 queue_comp_unit (per_cu, language_minimal);
2880 load_cu (per_cu, skip_partial);
2881
2882 /* If we just loaded a CU from a DWO, and we're working with an index
2883 that may badly handle TUs, load all the TUs in that DWO as well.
2884 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2885 if (!per_cu->is_debug_types
2886 && per_cu->cu != NULL
2887 && per_cu->cu->dwo_unit != NULL
2888 && dwarf2_per_objfile->index_table != NULL
2889 && dwarf2_per_objfile->index_table->version <= 7
2890 /* DWP files aren't supported yet. */
2891 && get_dwp_file (dwarf2_per_objfile) == NULL)
2892 queue_and_load_all_dwo_tus (per_cu);
2893 }
2894
2895 process_queue (dwarf2_per_objfile);
2896
2897 /* Age the cache, releasing compilation units that have not
2898 been used recently. */
2899 age_cached_comp_units (dwarf2_per_objfile);
2900 }
2901
2902 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2903 the objfile from which this CU came. Returns the resulting symbol
2904 table. */
2905
2906 static struct compunit_symtab *
2907 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2908 {
2909 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2910
2911 gdb_assert (dwarf2_per_objfile->using_index);
2912 if (!per_cu->v.quick->compunit_symtab)
2913 {
2914 free_cached_comp_units freer (dwarf2_per_objfile);
2915 scoped_restore decrementer = increment_reading_symtab ();
2916 dw2_do_instantiate_symtab (per_cu, skip_partial);
2917 process_cu_includes (dwarf2_per_objfile);
2918 }
2919
2920 return per_cu->v.quick->compunit_symtab;
2921 }
2922
2923 /* See declaration. */
2924
2925 dwarf2_per_cu_data *
2926 dwarf2_per_objfile::get_cutu (int index)
2927 {
2928 if (index >= this->all_comp_units.size ())
2929 {
2930 index -= this->all_comp_units.size ();
2931 gdb_assert (index < this->all_type_units.size ());
2932 return &this->all_type_units[index]->per_cu;
2933 }
2934
2935 return this->all_comp_units[index];
2936 }
2937
2938 /* See declaration. */
2939
2940 dwarf2_per_cu_data *
2941 dwarf2_per_objfile::get_cu (int index)
2942 {
2943 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2944
2945 return this->all_comp_units[index];
2946 }
2947
2948 /* See declaration. */
2949
2950 signatured_type *
2951 dwarf2_per_objfile::get_tu (int index)
2952 {
2953 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2954
2955 return this->all_type_units[index];
2956 }
2957
2958 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2959 objfile_obstack, and constructed with the specified field
2960 values. */
2961
2962 static dwarf2_per_cu_data *
2963 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2964 struct dwarf2_section_info *section,
2965 int is_dwz,
2966 sect_offset sect_off, ULONGEST length)
2967 {
2968 struct objfile *objfile = dwarf2_per_objfile->objfile;
2969 dwarf2_per_cu_data *the_cu
2970 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_data);
2972 the_cu->sect_off = sect_off;
2973 the_cu->length = length;
2974 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2975 the_cu->section = section;
2976 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2977 struct dwarf2_per_cu_quick_data);
2978 the_cu->is_dwz = is_dwz;
2979 return the_cu;
2980 }
2981
2982 /* A helper for create_cus_from_index that handles a given list of
2983 CUs. */
2984
2985 static void
2986 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2987 const gdb_byte *cu_list, offset_type n_elements,
2988 struct dwarf2_section_info *section,
2989 int is_dwz)
2990 {
2991 for (offset_type i = 0; i < n_elements; i += 2)
2992 {
2993 gdb_static_assert (sizeof (ULONGEST) >= 8);
2994
2995 sect_offset sect_off
2996 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2997 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2998 cu_list += 2 * 8;
2999
3000 dwarf2_per_cu_data *per_cu
3001 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3002 sect_off, length);
3003 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3004 }
3005 }
3006
3007 /* Read the CU list from the mapped index, and use it to create all
3008 the CU objects for this objfile. */
3009
3010 static void
3011 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3012 const gdb_byte *cu_list, offset_type cu_list_elements,
3013 const gdb_byte *dwz_list, offset_type dwz_elements)
3014 {
3015 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3016 dwarf2_per_objfile->all_comp_units.reserve
3017 ((cu_list_elements + dwz_elements) / 2);
3018
3019 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3020 &dwarf2_per_objfile->info, 0);
3021
3022 if (dwz_elements == 0)
3023 return;
3024
3025 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3026 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3027 &dwz->info, 1);
3028 }
3029
3030 /* Create the signatured type hash table from the index. */
3031
3032 static void
3033 create_signatured_type_table_from_index
3034 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3035 struct dwarf2_section_info *section,
3036 const gdb_byte *bytes,
3037 offset_type elements)
3038 {
3039 struct objfile *objfile = dwarf2_per_objfile->objfile;
3040
3041 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3042 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3043
3044 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3045
3046 for (offset_type i = 0; i < elements; i += 3)
3047 {
3048 struct signatured_type *sig_type;
3049 ULONGEST signature;
3050 void **slot;
3051 cu_offset type_offset_in_tu;
3052
3053 gdb_static_assert (sizeof (ULONGEST) >= 8);
3054 sect_offset sect_off
3055 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3056 type_offset_in_tu
3057 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3058 BFD_ENDIAN_LITTLE);
3059 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3060 bytes += 3 * 8;
3061
3062 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct signatured_type);
3064 sig_type->signature = signature;
3065 sig_type->type_offset_in_tu = type_offset_in_tu;
3066 sig_type->per_cu.is_debug_types = 1;
3067 sig_type->per_cu.section = section;
3068 sig_type->per_cu.sect_off = sect_off;
3069 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3070 sig_type->per_cu.v.quick
3071 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3072 struct dwarf2_per_cu_quick_data);
3073
3074 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3075 *slot = sig_type;
3076
3077 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3078 }
3079
3080 dwarf2_per_objfile->signatured_types = sig_types_hash;
3081 }
3082
3083 /* Create the signatured type hash table from .debug_names. */
3084
3085 static void
3086 create_signatured_type_table_from_debug_names
3087 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3088 const mapped_debug_names &map,
3089 struct dwarf2_section_info *section,
3090 struct dwarf2_section_info *abbrev_section)
3091 {
3092 struct objfile *objfile = dwarf2_per_objfile->objfile;
3093
3094 dwarf2_read_section (objfile, section);
3095 dwarf2_read_section (objfile, abbrev_section);
3096
3097 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3098 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3099
3100 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3101
3102 for (uint32_t i = 0; i < map.tu_count; ++i)
3103 {
3104 struct signatured_type *sig_type;
3105 void **slot;
3106
3107 sect_offset sect_off
3108 = (sect_offset) (extract_unsigned_integer
3109 (map.tu_table_reordered + i * map.offset_size,
3110 map.offset_size,
3111 map.dwarf5_byte_order));
3112
3113 comp_unit_head cu_header;
3114 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3115 abbrev_section,
3116 section->buffer + to_underlying (sect_off),
3117 rcuh_kind::TYPE);
3118
3119 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3120 struct signatured_type);
3121 sig_type->signature = cu_header.signature;
3122 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3123 sig_type->per_cu.is_debug_types = 1;
3124 sig_type->per_cu.section = section;
3125 sig_type->per_cu.sect_off = sect_off;
3126 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3127 sig_type->per_cu.v.quick
3128 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3129 struct dwarf2_per_cu_quick_data);
3130
3131 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3132 *slot = sig_type;
3133
3134 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3135 }
3136
3137 dwarf2_per_objfile->signatured_types = sig_types_hash;
3138 }
3139
3140 /* Read the address map data from the mapped index, and use it to
3141 populate the objfile's psymtabs_addrmap. */
3142
3143 static void
3144 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3145 struct mapped_index *index)
3146 {
3147 struct objfile *objfile = dwarf2_per_objfile->objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149 const gdb_byte *iter, *end;
3150 struct addrmap *mutable_map;
3151 CORE_ADDR baseaddr;
3152
3153 auto_obstack temp_obstack;
3154
3155 mutable_map = addrmap_create_mutable (&temp_obstack);
3156
3157 iter = index->address_table.data ();
3158 end = iter + index->address_table.size ();
3159
3160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3161
3162 while (iter < end)
3163 {
3164 ULONGEST hi, lo, cu_index;
3165 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3166 iter += 8;
3167 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3168 iter += 8;
3169 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3170 iter += 4;
3171
3172 if (lo > hi)
3173 {
3174 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3175 hex_string (lo), hex_string (hi));
3176 continue;
3177 }
3178
3179 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3180 {
3181 complaint (_(".gdb_index address table has invalid CU number %u"),
3182 (unsigned) cu_index);
3183 continue;
3184 }
3185
3186 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3187 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3188 addrmap_set_empty (mutable_map, lo, hi - 1,
3189 dwarf2_per_objfile->get_cu (cu_index));
3190 }
3191
3192 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3193 &objfile->objfile_obstack);
3194 }
3195
3196 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3197 populate the objfile's psymtabs_addrmap. */
3198
3199 static void
3200 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3201 struct dwarf2_section_info *section)
3202 {
3203 struct objfile *objfile = dwarf2_per_objfile->objfile;
3204 bfd *abfd = objfile->obfd;
3205 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3206 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3207 SECT_OFF_TEXT (objfile));
3208
3209 auto_obstack temp_obstack;
3210 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3211
3212 std::unordered_map<sect_offset,
3213 dwarf2_per_cu_data *,
3214 gdb::hash_enum<sect_offset>>
3215 debug_info_offset_to_per_cu;
3216 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3217 {
3218 const auto insertpair
3219 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3220 if (!insertpair.second)
3221 {
3222 warning (_("Section .debug_aranges in %s has duplicate "
3223 "debug_info_offset %s, ignoring .debug_aranges."),
3224 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3225 return;
3226 }
3227 }
3228
3229 dwarf2_read_section (objfile, section);
3230
3231 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3232
3233 const gdb_byte *addr = section->buffer;
3234
3235 while (addr < section->buffer + section->size)
3236 {
3237 const gdb_byte *const entry_addr = addr;
3238 unsigned int bytes_read;
3239
3240 const LONGEST entry_length = read_initial_length (abfd, addr,
3241 &bytes_read);
3242 addr += bytes_read;
3243
3244 const gdb_byte *const entry_end = addr + entry_length;
3245 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3246 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3247 if (addr + entry_length > section->buffer + section->size)
3248 {
3249 warning (_("Section .debug_aranges in %s entry at offset %zu "
3250 "length %s exceeds section length %s, "
3251 "ignoring .debug_aranges."),
3252 objfile_name (objfile), entry_addr - section->buffer,
3253 plongest (bytes_read + entry_length),
3254 pulongest (section->size));
3255 return;
3256 }
3257
3258 /* The version number. */
3259 const uint16_t version = read_2_bytes (abfd, addr);
3260 addr += 2;
3261 if (version != 2)
3262 {
3263 warning (_("Section .debug_aranges in %s entry at offset %zu "
3264 "has unsupported version %d, ignoring .debug_aranges."),
3265 objfile_name (objfile), entry_addr - section->buffer,
3266 version);
3267 return;
3268 }
3269
3270 const uint64_t debug_info_offset
3271 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3272 addr += offset_size;
3273 const auto per_cu_it
3274 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3275 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "debug_info_offset %s does not exists, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 pulongest (debug_info_offset));
3282 return;
3283 }
3284 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3285
3286 const uint8_t address_size = *addr++;
3287 if (address_size < 1 || address_size > 8)
3288 {
3289 warning (_("Section .debug_aranges in %s entry at offset %zu "
3290 "address_size %u is invalid, ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 address_size);
3293 return;
3294 }
3295
3296 const uint8_t segment_selector_size = *addr++;
3297 if (segment_selector_size != 0)
3298 {
3299 warning (_("Section .debug_aranges in %s entry at offset %zu "
3300 "segment_selector_size %u is not supported, "
3301 "ignoring .debug_aranges."),
3302 objfile_name (objfile), entry_addr - section->buffer,
3303 segment_selector_size);
3304 return;
3305 }
3306
3307 /* Must pad to an alignment boundary that is twice the address
3308 size. It is undocumented by the DWARF standard but GCC does
3309 use it. */
3310 for (size_t padding = ((-(addr - section->buffer))
3311 & (2 * address_size - 1));
3312 padding > 0; padding--)
3313 if (*addr++ != 0)
3314 {
3315 warning (_("Section .debug_aranges in %s entry at offset %zu "
3316 "padding is not zero, ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320
3321 for (;;)
3322 {
3323 if (addr + 2 * address_size > entry_end)
3324 {
3325 warning (_("Section .debug_aranges in %s entry at offset %zu "
3326 "address list is not properly terminated, "
3327 "ignoring .debug_aranges."),
3328 objfile_name (objfile), entry_addr - section->buffer);
3329 return;
3330 }
3331 ULONGEST start = extract_unsigned_integer (addr, address_size,
3332 dwarf5_byte_order);
3333 addr += address_size;
3334 ULONGEST length = extract_unsigned_integer (addr, address_size,
3335 dwarf5_byte_order);
3336 addr += address_size;
3337 if (start == 0 && length == 0)
3338 break;
3339 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3340 {
3341 /* Symbol was eliminated due to a COMDAT group. */
3342 continue;
3343 }
3344 ULONGEST end = start + length;
3345 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3346 - baseaddr);
3347 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3348 - baseaddr);
3349 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3350 }
3351 }
3352
3353 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3354 &objfile->objfile_obstack);
3355 }
3356
3357 /* Find a slot in the mapped index INDEX for the object named NAME.
3358 If NAME is found, set *VEC_OUT to point to the CU vector in the
3359 constant pool and return true. If NAME cannot be found, return
3360 false. */
3361
3362 static bool
3363 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3364 offset_type **vec_out)
3365 {
3366 offset_type hash;
3367 offset_type slot, step;
3368 int (*cmp) (const char *, const char *);
3369
3370 gdb::unique_xmalloc_ptr<char> without_params;
3371 if (current_language->la_language == language_cplus
3372 || current_language->la_language == language_fortran
3373 || current_language->la_language == language_d)
3374 {
3375 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3376 not contain any. */
3377
3378 if (strchr (name, '(') != NULL)
3379 {
3380 without_params = cp_remove_params (name);
3381
3382 if (without_params != NULL)
3383 name = without_params.get ();
3384 }
3385 }
3386
3387 /* Index version 4 did not support case insensitive searches. But the
3388 indices for case insensitive languages are built in lowercase, therefore
3389 simulate our NAME being searched is also lowercased. */
3390 hash = mapped_index_string_hash ((index->version == 4
3391 && case_sensitivity == case_sensitive_off
3392 ? 5 : index->version),
3393 name);
3394
3395 slot = hash & (index->symbol_table.size () - 1);
3396 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3397 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3398
3399 for (;;)
3400 {
3401 const char *str;
3402
3403 const auto &bucket = index->symbol_table[slot];
3404 if (bucket.name == 0 && bucket.vec == 0)
3405 return false;
3406
3407 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3408 if (!cmp (name, str))
3409 {
3410 *vec_out = (offset_type *) (index->constant_pool
3411 + MAYBE_SWAP (bucket.vec));
3412 return true;
3413 }
3414
3415 slot = (slot + step) & (index->symbol_table.size () - 1);
3416 }
3417 }
3418
3419 /* A helper function that reads the .gdb_index from BUFFER and fills
3420 in MAP. FILENAME is the name of the file containing the data;
3421 it is used for error reporting. DEPRECATED_OK is true if it is
3422 ok to use deprecated sections.
3423
3424 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3425 out parameters that are filled in with information about the CU and
3426 TU lists in the section.
3427
3428 Returns true if all went well, false otherwise. */
3429
3430 static bool
3431 read_gdb_index_from_buffer (struct objfile *objfile,
3432 const char *filename,
3433 bool deprecated_ok,
3434 gdb::array_view<const gdb_byte> buffer,
3435 struct mapped_index *map,
3436 const gdb_byte **cu_list,
3437 offset_type *cu_list_elements,
3438 const gdb_byte **types_list,
3439 offset_type *types_list_elements)
3440 {
3441 const gdb_byte *addr = &buffer[0];
3442
3443 /* Version check. */
3444 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3445 /* Versions earlier than 3 emitted every copy of a psymbol. This
3446 causes the index to behave very poorly for certain requests. Version 3
3447 contained incomplete addrmap. So, it seems better to just ignore such
3448 indices. */
3449 if (version < 4)
3450 {
3451 static int warning_printed = 0;
3452 if (!warning_printed)
3453 {
3454 warning (_("Skipping obsolete .gdb_index section in %s."),
3455 filename);
3456 warning_printed = 1;
3457 }
3458 return 0;
3459 }
3460 /* Index version 4 uses a different hash function than index version
3461 5 and later.
3462
3463 Versions earlier than 6 did not emit psymbols for inlined
3464 functions. Using these files will cause GDB not to be able to
3465 set breakpoints on inlined functions by name, so we ignore these
3466 indices unless the user has done
3467 "set use-deprecated-index-sections on". */
3468 if (version < 6 && !deprecated_ok)
3469 {
3470 static int warning_printed = 0;
3471 if (!warning_printed)
3472 {
3473 warning (_("\
3474 Skipping deprecated .gdb_index section in %s.\n\
3475 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3476 to use the section anyway."),
3477 filename);
3478 warning_printed = 1;
3479 }
3480 return 0;
3481 }
3482 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3483 of the TU (for symbols coming from TUs),
3484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3485 Plus gold-generated indices can have duplicate entries for global symbols,
3486 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3487 These are just performance bugs, and we can't distinguish gdb-generated
3488 indices from gold-generated ones, so issue no warning here. */
3489
3490 /* Indexes with higher version than the one supported by GDB may be no
3491 longer backward compatible. */
3492 if (version > 8)
3493 return 0;
3494
3495 map->version = version;
3496
3497 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3498
3499 int i = 0;
3500 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3501 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3502 / 8);
3503 ++i;
3504
3505 *types_list = addr + MAYBE_SWAP (metadata[i]);
3506 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3507 - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 map->address_table
3514 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3515 ++i;
3516
3517 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->symbol_table
3520 = gdb::array_view<mapped_index::symbol_table_slot>
3521 ((mapped_index::symbol_table_slot *) symbol_table,
3522 (mapped_index::symbol_table_slot *) symbol_table_end);
3523
3524 ++i;
3525 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3526
3527 return 1;
3528 }
3529
3530 /* Callback types for dwarf2_read_gdb_index. */
3531
3532 typedef gdb::function_view
3533 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3534 get_gdb_index_contents_ftype;
3535 typedef gdb::function_view
3536 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3537 get_gdb_index_contents_dwz_ftype;
3538
3539 /* Read .gdb_index. If everything went ok, initialize the "quick"
3540 elements of all the CUs and return 1. Otherwise, return 0. */
3541
3542 static int
3543 dwarf2_read_gdb_index
3544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3545 get_gdb_index_contents_ftype get_gdb_index_contents,
3546 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3547 {
3548 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3549 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3550 struct dwz_file *dwz;
3551 struct objfile *objfile = dwarf2_per_objfile->objfile;
3552
3553 gdb::array_view<const gdb_byte> main_index_contents
3554 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3555
3556 if (main_index_contents.empty ())
3557 return 0;
3558
3559 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3560 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3561 use_deprecated_index_sections,
3562 main_index_contents, map.get (), &cu_list,
3563 &cu_list_elements, &types_list,
3564 &types_list_elements))
3565 return 0;
3566
3567 /* Don't use the index if it's empty. */
3568 if (map->symbol_table.empty ())
3569 return 0;
3570
3571 /* If there is a .dwz file, read it so we can get its CU list as
3572 well. */
3573 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3574 if (dwz != NULL)
3575 {
3576 struct mapped_index dwz_map;
3577 const gdb_byte *dwz_types_ignore;
3578 offset_type dwz_types_elements_ignore;
3579
3580 gdb::array_view<const gdb_byte> dwz_index_content
3581 = get_gdb_index_contents_dwz (objfile, dwz);
3582
3583 if (dwz_index_content.empty ())
3584 return 0;
3585
3586 if (!read_gdb_index_from_buffer (objfile,
3587 bfd_get_filename (dwz->dwz_bfd), 1,
3588 dwz_index_content, &dwz_map,
3589 &dwz_list, &dwz_list_elements,
3590 &dwz_types_ignore,
3591 &dwz_types_elements_ignore))
3592 {
3593 warning (_("could not read '.gdb_index' section from %s; skipping"),
3594 bfd_get_filename (dwz->dwz_bfd));
3595 return 0;
3596 }
3597 }
3598
3599 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3600 dwz_list, dwz_list_elements);
3601
3602 if (types_list_elements)
3603 {
3604 struct dwarf2_section_info *section;
3605
3606 /* We can only handle a single .debug_types when we have an
3607 index. */
3608 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3609 return 0;
3610
3611 section = VEC_index (dwarf2_section_info_def,
3612 dwarf2_per_objfile->types, 0);
3613
3614 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3615 types_list, types_list_elements);
3616 }
3617
3618 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3619
3620 dwarf2_per_objfile->index_table = std::move (map);
3621 dwarf2_per_objfile->using_index = 1;
3622 dwarf2_per_objfile->quick_file_names_table =
3623 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3624
3625 return 1;
3626 }
3627
3628 /* die_reader_func for dw2_get_file_names. */
3629
3630 static void
3631 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3632 const gdb_byte *info_ptr,
3633 struct die_info *comp_unit_die,
3634 int has_children,
3635 void *data)
3636 {
3637 struct dwarf2_cu *cu = reader->cu;
3638 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3639 struct dwarf2_per_objfile *dwarf2_per_objfile
3640 = cu->per_cu->dwarf2_per_objfile;
3641 struct objfile *objfile = dwarf2_per_objfile->objfile;
3642 struct dwarf2_per_cu_data *lh_cu;
3643 struct attribute *attr;
3644 int i;
3645 void **slot;
3646 struct quick_file_names *qfn;
3647
3648 gdb_assert (! this_cu->is_debug_types);
3649
3650 /* Our callers never want to match partial units -- instead they
3651 will match the enclosing full CU. */
3652 if (comp_unit_die->tag == DW_TAG_partial_unit)
3653 {
3654 this_cu->v.quick->no_file_data = 1;
3655 return;
3656 }
3657
3658 lh_cu = this_cu;
3659 slot = NULL;
3660
3661 line_header_up lh;
3662 sect_offset line_offset {};
3663
3664 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3665 if (attr)
3666 {
3667 struct quick_file_names find_entry;
3668
3669 line_offset = (sect_offset) DW_UNSND (attr);
3670
3671 /* We may have already read in this line header (TU line header sharing).
3672 If we have we're done. */
3673 find_entry.hash.dwo_unit = cu->dwo_unit;
3674 find_entry.hash.line_sect_off = line_offset;
3675 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3676 &find_entry, INSERT);
3677 if (*slot != NULL)
3678 {
3679 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3680 return;
3681 }
3682
3683 lh = dwarf_decode_line_header (line_offset, cu);
3684 }
3685 if (lh == NULL)
3686 {
3687 lh_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3692 qfn->hash.dwo_unit = cu->dwo_unit;
3693 qfn->hash.line_sect_off = line_offset;
3694 gdb_assert (slot != NULL);
3695 *slot = qfn;
3696
3697 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3698
3699 qfn->num_file_names = lh->file_names.size ();
3700 qfn->file_names =
3701 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3702 for (i = 0; i < lh->file_names.size (); ++i)
3703 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3704 qfn->real_names = NULL;
3705
3706 lh_cu->v.quick->file_names = qfn;
3707 }
3708
3709 /* A helper for the "quick" functions which attempts to read the line
3710 table for THIS_CU. */
3711
3712 static struct quick_file_names *
3713 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3714 {
3715 /* This should never be called for TUs. */
3716 gdb_assert (! this_cu->is_debug_types);
3717 /* Nor type unit groups. */
3718 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3719
3720 if (this_cu->v.quick->file_names != NULL)
3721 return this_cu->v.quick->file_names;
3722 /* If we know there is no line data, no point in looking again. */
3723 if (this_cu->v.quick->no_file_data)
3724 return NULL;
3725
3726 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3727
3728 if (this_cu->v.quick->no_file_data)
3729 return NULL;
3730 return this_cu->v.quick->file_names;
3731 }
3732
3733 /* A helper for the "quick" functions which computes and caches the
3734 real path for a given file name from the line table. */
3735
3736 static const char *
3737 dw2_get_real_path (struct objfile *objfile,
3738 struct quick_file_names *qfn, int index)
3739 {
3740 if (qfn->real_names == NULL)
3741 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3742 qfn->num_file_names, const char *);
3743
3744 if (qfn->real_names[index] == NULL)
3745 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3746
3747 return qfn->real_names[index];
3748 }
3749
3750 static struct symtab *
3751 dw2_find_last_source_symtab (struct objfile *objfile)
3752 {
3753 struct dwarf2_per_objfile *dwarf2_per_objfile
3754 = get_dwarf2_per_objfile (objfile);
3755 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3756 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3757
3758 if (cust == NULL)
3759 return NULL;
3760
3761 return compunit_primary_filetab (cust);
3762 }
3763
3764 /* Traversal function for dw2_forget_cached_source_info. */
3765
3766 static int
3767 dw2_free_cached_file_names (void **slot, void *info)
3768 {
3769 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3770
3771 if (file_data->real_names)
3772 {
3773 int i;
3774
3775 for (i = 0; i < file_data->num_file_names; ++i)
3776 {
3777 xfree ((void*) file_data->real_names[i]);
3778 file_data->real_names[i] = NULL;
3779 }
3780 }
3781
3782 return 1;
3783 }
3784
3785 static void
3786 dw2_forget_cached_source_info (struct objfile *objfile)
3787 {
3788 struct dwarf2_per_objfile *dwarf2_per_objfile
3789 = get_dwarf2_per_objfile (objfile);
3790
3791 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3792 dw2_free_cached_file_names, NULL);
3793 }
3794
3795 /* Helper function for dw2_map_symtabs_matching_filename that expands
3796 the symtabs and calls the iterator. */
3797
3798 static int
3799 dw2_map_expand_apply (struct objfile *objfile,
3800 struct dwarf2_per_cu_data *per_cu,
3801 const char *name, const char *real_path,
3802 gdb::function_view<bool (symtab *)> callback)
3803 {
3804 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3805
3806 /* Don't visit already-expanded CUs. */
3807 if (per_cu->v.quick->compunit_symtab)
3808 return 0;
3809
3810 /* This may expand more than one symtab, and we want to iterate over
3811 all of them. */
3812 dw2_instantiate_symtab (per_cu, false);
3813
3814 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3815 last_made, callback);
3816 }
3817
3818 /* Implementation of the map_symtabs_matching_filename method. */
3819
3820 static bool
3821 dw2_map_symtabs_matching_filename
3822 (struct objfile *objfile, const char *name, const char *real_path,
3823 gdb::function_view<bool (symtab *)> callback)
3824 {
3825 const char *name_basename = lbasename (name);
3826 struct dwarf2_per_objfile *dwarf2_per_objfile
3827 = get_dwarf2_per_objfile (objfile);
3828
3829 /* The rule is CUs specify all the files, including those used by
3830 any TU, so there's no need to scan TUs here. */
3831
3832 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3833 {
3834 /* We only need to look at symtabs not already expanded. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 continue;
3837
3838 quick_file_names *file_data = dw2_get_file_names (per_cu);
3839 if (file_data == NULL)
3840 continue;
3841
3842 for (int j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_name = file_data->file_names[j];
3845 const char *this_real_name;
3846
3847 if (compare_filenames_for_search (this_name, name))
3848 {
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3850 callback))
3851 return true;
3852 continue;
3853 }
3854
3855 /* Before we invoke realpath, which can get expensive when many
3856 files are involved, do a quick comparison of the basenames. */
3857 if (! basenames_may_differ
3858 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (compare_filenames_for_search (this_real_name, name))
3863 {
3864 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3865 callback))
3866 return true;
3867 continue;
3868 }
3869
3870 if (real_path != NULL)
3871 {
3872 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3873 gdb_assert (IS_ABSOLUTE_PATH (name));
3874 if (this_real_name != NULL
3875 && FILENAME_CMP (real_path, this_real_name) == 0)
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882 }
3883 }
3884 }
3885
3886 return false;
3887 }
3888
3889 /* Struct used to manage iterating over all CUs looking for a symbol. */
3890
3891 struct dw2_symtab_iterator
3892 {
3893 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3894 struct dwarf2_per_objfile *dwarf2_per_objfile;
3895 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3896 int want_specific_block;
3897 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3898 Unused if !WANT_SPECIFIC_BLOCK. */
3899 int block_index;
3900 /* The kind of symbol we're looking for. */
3901 domain_enum domain;
3902 /* The list of CUs from the index entry of the symbol,
3903 or NULL if not found. */
3904 offset_type *vec;
3905 /* The next element in VEC to look at. */
3906 int next;
3907 /* The number of elements in VEC, or zero if there is no match. */
3908 int length;
3909 /* Have we seen a global version of the symbol?
3910 If so we can ignore all further global instances.
3911 This is to work around gold/15646, inefficient gold-generated
3912 indices. */
3913 int global_seen;
3914 };
3915
3916 /* Initialize the index symtab iterator ITER.
3917 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3918 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3919
3920 static void
3921 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3922 struct dwarf2_per_objfile *dwarf2_per_objfile,
3923 int want_specific_block,
3924 int block_index,
3925 domain_enum domain,
3926 const char *name)
3927 {
3928 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3929 iter->want_specific_block = want_specific_block;
3930 iter->block_index = block_index;
3931 iter->domain = domain;
3932 iter->next = 0;
3933 iter->global_seen = 0;
3934
3935 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3936
3937 /* index is NULL if OBJF_READNOW. */
3938 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3939 iter->length = MAYBE_SWAP (*iter->vec);
3940 else
3941 {
3942 iter->vec = NULL;
3943 iter->length = 0;
3944 }
3945 }
3946
3947 /* Return the next matching CU or NULL if there are no more. */
3948
3949 static struct dwarf2_per_cu_data *
3950 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3951 {
3952 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3953
3954 for ( ; iter->next < iter->length; ++iter->next)
3955 {
3956 offset_type cu_index_and_attrs =
3957 MAYBE_SWAP (iter->vec[iter->next + 1]);
3958 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3959 int want_static = iter->block_index != GLOBAL_BLOCK;
3960 /* This value is only valid for index versions >= 7. */
3961 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3962 gdb_index_symbol_kind symbol_kind =
3963 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
3969 (dwarf2_per_objfile->index_table->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3972 /* Don't crash on bad data. */
3973 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3974 + dwarf2_per_objfile->all_type_units.size ()))
3975 {
3976 complaint (_(".gdb_index entry has bad CU index"
3977 " [in module %s]"),
3978 objfile_name (dwarf2_per_objfile->objfile));
3979 continue;
3980 }
3981
3982 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3983
3984 /* Skip if already read in. */
3985 if (per_cu->v.quick->compunit_symtab)
3986 continue;
3987
3988 /* Check static vs global. */
3989 if (attrs_valid)
3990 {
3991 if (iter->want_specific_block
3992 && want_static != is_static)
3993 continue;
3994 /* Work around gold/15646. */
3995 if (!is_static && iter->global_seen)
3996 continue;
3997 if (!is_static)
3998 iter->global_seen = 1;
3999 }
4000
4001 /* Only check the symbol's kind if it has one. */
4002 if (attrs_valid)
4003 {
4004 switch (iter->domain)
4005 {
4006 case VAR_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4008 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4009 /* Some types are also in VAR_DOMAIN. */
4010 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4011 continue;
4012 break;
4013 case STRUCT_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 case LABEL_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 ++iter->next;
4027 return per_cu;
4028 }
4029
4030 return NULL;
4031 }
4032
4033 static struct compunit_symtab *
4034 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4035 const char *name, domain_enum domain)
4036 {
4037 struct compunit_symtab *stab_best = NULL;
4038 struct dwarf2_per_objfile *dwarf2_per_objfile
4039 = get_dwarf2_per_objfile (objfile);
4040
4041 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4042
4043 struct dw2_symtab_iterator iter;
4044 struct dwarf2_per_cu_data *per_cu;
4045
4046 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4047
4048 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4049 {
4050 struct symbol *sym, *with_opaque = NULL;
4051 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4052 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4053 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4054
4055 sym = block_find_symbol (block, name, domain,
4056 block_find_non_opaque_type_preferred,
4057 &with_opaque);
4058
4059 /* Some caution must be observed with overloaded functions
4060 and methods, since the index will not contain any overload
4061 information (but NAME might contain it). */
4062
4063 if (sym != NULL
4064 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4065 return stab;
4066 if (with_opaque != NULL
4067 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4068 stab_best = stab;
4069
4070 /* Keep looking through other CUs. */
4071 }
4072
4073 return stab_best;
4074 }
4075
4076 static void
4077 dw2_print_stats (struct objfile *objfile)
4078 {
4079 struct dwarf2_per_objfile *dwarf2_per_objfile
4080 = get_dwarf2_per_objfile (objfile);
4081 int total = (dwarf2_per_objfile->all_comp_units.size ()
4082 + dwarf2_per_objfile->all_type_units.size ());
4083 int count = 0;
4084
4085 for (int i = 0; i < total; ++i)
4086 {
4087 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4088
4089 if (!per_cu->v.quick->compunit_symtab)
4090 ++count;
4091 }
4092 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4093 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4094 }
4095
4096 /* This dumps minimal information about the index.
4097 It is called via "mt print objfiles".
4098 One use is to verify .gdb_index has been loaded by the
4099 gdb.dwarf2/gdb-index.exp testcase. */
4100
4101 static void
4102 dw2_dump (struct objfile *objfile)
4103 {
4104 struct dwarf2_per_objfile *dwarf2_per_objfile
4105 = get_dwarf2_per_objfile (objfile);
4106
4107 gdb_assert (dwarf2_per_objfile->using_index);
4108 printf_filtered (".gdb_index:");
4109 if (dwarf2_per_objfile->index_table != NULL)
4110 {
4111 printf_filtered (" version %d\n",
4112 dwarf2_per_objfile->index_table->version);
4113 }
4114 else
4115 printf_filtered (" faked for \"readnow\"\n");
4116 printf_filtered ("\n");
4117 }
4118
4119 static void
4120 dw2_expand_symtabs_for_function (struct objfile *objfile,
4121 const char *func_name)
4122 {
4123 struct dwarf2_per_objfile *dwarf2_per_objfile
4124 = get_dwarf2_per_objfile (objfile);
4125
4126 struct dw2_symtab_iterator iter;
4127 struct dwarf2_per_cu_data *per_cu;
4128
4129 /* Note: It doesn't matter what we pass for block_index here. */
4130 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4131 func_name);
4132
4133 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4134 dw2_instantiate_symtab (per_cu, false);
4135
4136 }
4137
4138 static void
4139 dw2_expand_all_symtabs (struct objfile *objfile)
4140 {
4141 struct dwarf2_per_objfile *dwarf2_per_objfile
4142 = get_dwarf2_per_objfile (objfile);
4143 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4144 + dwarf2_per_objfile->all_type_units.size ());
4145
4146 for (int i = 0; i < total_units; ++i)
4147 {
4148 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4149
4150 /* We don't want to directly expand a partial CU, because if we
4151 read it with the wrong language, then assertion failures can
4152 be triggered later on. See PR symtab/23010. So, tell
4153 dw2_instantiate_symtab to skip partial CUs -- any important
4154 partial CU will be read via DW_TAG_imported_unit anyway. */
4155 dw2_instantiate_symtab (per_cu, true);
4156 }
4157 }
4158
4159 static void
4160 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4161 const char *fullname)
4162 {
4163 struct dwarf2_per_objfile *dwarf2_per_objfile
4164 = get_dwarf2_per_objfile (objfile);
4165
4166 /* We don't need to consider type units here.
4167 This is only called for examining code, e.g. expand_line_sal.
4168 There can be an order of magnitude (or more) more type units
4169 than comp units, and we avoid them if we can. */
4170
4171 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4172 {
4173 /* We only need to look at symtabs not already expanded. */
4174 if (per_cu->v.quick->compunit_symtab)
4175 continue;
4176
4177 quick_file_names *file_data = dw2_get_file_names (per_cu);
4178 if (file_data == NULL)
4179 continue;
4180
4181 for (int j = 0; j < file_data->num_file_names; ++j)
4182 {
4183 const char *this_fullname = file_data->file_names[j];
4184
4185 if (filename_cmp (this_fullname, fullname) == 0)
4186 {
4187 dw2_instantiate_symtab (per_cu, false);
4188 break;
4189 }
4190 }
4191 }
4192 }
4193
4194 static void
4195 dw2_map_matching_symbols (struct objfile *objfile,
4196 const char * name, domain_enum domain,
4197 int global,
4198 int (*callback) (struct block *,
4199 struct symbol *, void *),
4200 void *data, symbol_name_match_type match,
4201 symbol_compare_ftype *ordered_compare)
4202 {
4203 /* Currently unimplemented; used for Ada. The function can be called if the
4204 current language is Ada for a non-Ada objfile using GNU index. As Ada
4205 does not look for non-Ada symbols this function should just return. */
4206 }
4207
4208 /* Symbol name matcher for .gdb_index names.
4209
4210 Symbol names in .gdb_index have a few particularities:
4211
4212 - There's no indication of which is the language of each symbol.
4213
4214 Since each language has its own symbol name matching algorithm,
4215 and we don't know which language is the right one, we must match
4216 each symbol against all languages. This would be a potential
4217 performance problem if it were not mitigated by the
4218 mapped_index::name_components lookup table, which significantly
4219 reduces the number of times we need to call into this matcher,
4220 making it a non-issue.
4221
4222 - Symbol names in the index have no overload (parameter)
4223 information. I.e., in C++, "foo(int)" and "foo(long)" both
4224 appear as "foo" in the index, for example.
4225
4226 This means that the lookup names passed to the symbol name
4227 matcher functions must have no parameter information either
4228 because (e.g.) symbol search name "foo" does not match
4229 lookup-name "foo(int)" [while swapping search name for lookup
4230 name would match].
4231 */
4232 class gdb_index_symbol_name_matcher
4233 {
4234 public:
4235 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4236 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4237
4238 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4239 Returns true if any matcher matches. */
4240 bool matches (const char *symbol_name);
4241
4242 private:
4243 /* A reference to the lookup name we're matching against. */
4244 const lookup_name_info &m_lookup_name;
4245
4246 /* A vector holding all the different symbol name matchers, for all
4247 languages. */
4248 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4249 };
4250
4251 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4252 (const lookup_name_info &lookup_name)
4253 : m_lookup_name (lookup_name)
4254 {
4255 /* Prepare the vector of comparison functions upfront, to avoid
4256 doing the same work for each symbol. Care is taken to avoid
4257 matching with the same matcher more than once if/when multiple
4258 languages use the same matcher function. */
4259 auto &matchers = m_symbol_name_matcher_funcs;
4260 matchers.reserve (nr_languages);
4261
4262 matchers.push_back (default_symbol_name_matcher);
4263
4264 for (int i = 0; i < nr_languages; i++)
4265 {
4266 const language_defn *lang = language_def ((enum language) i);
4267 symbol_name_matcher_ftype *name_matcher
4268 = get_symbol_name_matcher (lang, m_lookup_name);
4269
4270 /* Don't insert the same comparison routine more than once.
4271 Note that we do this linear walk instead of a seemingly
4272 cheaper sorted insert, or use a std::set or something like
4273 that, because relative order of function addresses is not
4274 stable. This is not a problem in practice because the number
4275 of supported languages is low, and the cost here is tiny
4276 compared to the number of searches we'll do afterwards using
4277 this object. */
4278 if (name_matcher != default_symbol_name_matcher
4279 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4280 == matchers.end ()))
4281 matchers.push_back (name_matcher);
4282 }
4283 }
4284
4285 bool
4286 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4287 {
4288 for (auto matches_name : m_symbol_name_matcher_funcs)
4289 if (matches_name (symbol_name, m_lookup_name, NULL))
4290 return true;
4291
4292 return false;
4293 }
4294
4295 /* Starting from a search name, return the string that finds the upper
4296 bound of all strings that start with SEARCH_NAME in a sorted name
4297 list. Returns the empty string to indicate that the upper bound is
4298 the end of the list. */
4299
4300 static std::string
4301 make_sort_after_prefix_name (const char *search_name)
4302 {
4303 /* When looking to complete "func", we find the upper bound of all
4304 symbols that start with "func" by looking for where we'd insert
4305 the closest string that would follow "func" in lexicographical
4306 order. Usually, that's "func"-with-last-character-incremented,
4307 i.e. "fund". Mind non-ASCII characters, though. Usually those
4308 will be UTF-8 multi-byte sequences, but we can't be certain.
4309 Especially mind the 0xff character, which is a valid character in
4310 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4311 rule out compilers allowing it in identifiers. Note that
4312 conveniently, strcmp/strcasecmp are specified to compare
4313 characters interpreted as unsigned char. So what we do is treat
4314 the whole string as a base 256 number composed of a sequence of
4315 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4316 to 0, and carries 1 to the following more-significant position.
4317 If the very first character in SEARCH_NAME ends up incremented
4318 and carries/overflows, then the upper bound is the end of the
4319 list. The string after the empty string is also the empty
4320 string.
4321
4322 Some examples of this operation:
4323
4324 SEARCH_NAME => "+1" RESULT
4325
4326 "abc" => "abd"
4327 "ab\xff" => "ac"
4328 "\xff" "a" "\xff" => "\xff" "b"
4329 "\xff" => ""
4330 "\xff\xff" => ""
4331 "" => ""
4332
4333 Then, with these symbols for example:
4334
4335 func
4336 func1
4337 fund
4338
4339 completing "func" looks for symbols between "func" and
4340 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4341 which finds "func" and "func1", but not "fund".
4342
4343 And with:
4344
4345 funcÿ (Latin1 'ÿ' [0xff])
4346 funcÿ1
4347 fund
4348
4349 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4350 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4351
4352 And with:
4353
4354 ÿÿ (Latin1 'ÿ' [0xff])
4355 ÿÿ1
4356
4357 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4358 the end of the list.
4359 */
4360 std::string after = search_name;
4361 while (!after.empty () && (unsigned char) after.back () == 0xff)
4362 after.pop_back ();
4363 if (!after.empty ())
4364 after.back () = (unsigned char) after.back () + 1;
4365 return after;
4366 }
4367
4368 /* See declaration. */
4369
4370 std::pair<std::vector<name_component>::const_iterator,
4371 std::vector<name_component>::const_iterator>
4372 mapped_index_base::find_name_components_bounds
4373 (const lookup_name_info &lookup_name_without_params) const
4374 {
4375 auto *name_cmp
4376 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4377
4378 const char *cplus
4379 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4380
4381 /* Comparison function object for lower_bound that matches against a
4382 given symbol name. */
4383 auto lookup_compare_lower = [&] (const name_component &elem,
4384 const char *name)
4385 {
4386 const char *elem_qualified = this->symbol_name_at (elem.idx);
4387 const char *elem_name = elem_qualified + elem.name_offset;
4388 return name_cmp (elem_name, name) < 0;
4389 };
4390
4391 /* Comparison function object for upper_bound that matches against a
4392 given symbol name. */
4393 auto lookup_compare_upper = [&] (const char *name,
4394 const name_component &elem)
4395 {
4396 const char *elem_qualified = this->symbol_name_at (elem.idx);
4397 const char *elem_name = elem_qualified + elem.name_offset;
4398 return name_cmp (name, elem_name) < 0;
4399 };
4400
4401 auto begin = this->name_components.begin ();
4402 auto end = this->name_components.end ();
4403
4404 /* Find the lower bound. */
4405 auto lower = [&] ()
4406 {
4407 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4408 return begin;
4409 else
4410 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4411 } ();
4412
4413 /* Find the upper bound. */
4414 auto upper = [&] ()
4415 {
4416 if (lookup_name_without_params.completion_mode ())
4417 {
4418 /* In completion mode, we want UPPER to point past all
4419 symbols names that have the same prefix. I.e., with
4420 these symbols, and completing "func":
4421
4422 function << lower bound
4423 function1
4424 other_function << upper bound
4425
4426 We find the upper bound by looking for the insertion
4427 point of "func"-with-last-character-incremented,
4428 i.e. "fund". */
4429 std::string after = make_sort_after_prefix_name (cplus);
4430 if (after.empty ())
4431 return end;
4432 return std::lower_bound (lower, end, after.c_str (),
4433 lookup_compare_lower);
4434 }
4435 else
4436 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4437 } ();
4438
4439 return {lower, upper};
4440 }
4441
4442 /* See declaration. */
4443
4444 void
4445 mapped_index_base::build_name_components ()
4446 {
4447 if (!this->name_components.empty ())
4448 return;
4449
4450 this->name_components_casing = case_sensitivity;
4451 auto *name_cmp
4452 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4453
4454 /* The code below only knows how to break apart components of C++
4455 symbol names (and other languages that use '::' as
4456 namespace/module separator). If we add support for wild matching
4457 to some language that uses some other operator (E.g., Ada, Go and
4458 D use '.'), then we'll need to try splitting the symbol name
4459 according to that language too. Note that Ada does support wild
4460 matching, but doesn't currently support .gdb_index. */
4461 auto count = this->symbol_name_count ();
4462 for (offset_type idx = 0; idx < count; idx++)
4463 {
4464 if (this->symbol_name_slot_invalid (idx))
4465 continue;
4466
4467 const char *name = this->symbol_name_at (idx);
4468
4469 /* Add each name component to the name component table. */
4470 unsigned int previous_len = 0;
4471 for (unsigned int current_len = cp_find_first_component (name);
4472 name[current_len] != '\0';
4473 current_len += cp_find_first_component (name + current_len))
4474 {
4475 gdb_assert (name[current_len] == ':');
4476 this->name_components.push_back ({previous_len, idx});
4477 /* Skip the '::'. */
4478 current_len += 2;
4479 previous_len = current_len;
4480 }
4481 this->name_components.push_back ({previous_len, idx});
4482 }
4483
4484 /* Sort name_components elements by name. */
4485 auto name_comp_compare = [&] (const name_component &left,
4486 const name_component &right)
4487 {
4488 const char *left_qualified = this->symbol_name_at (left.idx);
4489 const char *right_qualified = this->symbol_name_at (right.idx);
4490
4491 const char *left_name = left_qualified + left.name_offset;
4492 const char *right_name = right_qualified + right.name_offset;
4493
4494 return name_cmp (left_name, right_name) < 0;
4495 };
4496
4497 std::sort (this->name_components.begin (),
4498 this->name_components.end (),
4499 name_comp_compare);
4500 }
4501
4502 /* Helper for dw2_expand_symtabs_matching that works with a
4503 mapped_index_base instead of the containing objfile. This is split
4504 to a separate function in order to be able to unit test the
4505 name_components matching using a mock mapped_index_base. For each
4506 symbol name that matches, calls MATCH_CALLBACK, passing it the
4507 symbol's index in the mapped_index_base symbol table. */
4508
4509 static void
4510 dw2_expand_symtabs_matching_symbol
4511 (mapped_index_base &index,
4512 const lookup_name_info &lookup_name_in,
4513 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4514 enum search_domain kind,
4515 gdb::function_view<void (offset_type)> match_callback)
4516 {
4517 lookup_name_info lookup_name_without_params
4518 = lookup_name_in.make_ignore_params ();
4519 gdb_index_symbol_name_matcher lookup_name_matcher
4520 (lookup_name_without_params);
4521
4522 /* Build the symbol name component sorted vector, if we haven't
4523 yet. */
4524 index.build_name_components ();
4525
4526 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4527
4528 /* Now for each symbol name in range, check to see if we have a name
4529 match, and if so, call the MATCH_CALLBACK callback. */
4530
4531 /* The same symbol may appear more than once in the range though.
4532 E.g., if we're looking for symbols that complete "w", and we have
4533 a symbol named "w1::w2", we'll find the two name components for
4534 that same symbol in the range. To be sure we only call the
4535 callback once per symbol, we first collect the symbol name
4536 indexes that matched in a temporary vector and ignore
4537 duplicates. */
4538 std::vector<offset_type> matches;
4539 matches.reserve (std::distance (bounds.first, bounds.second));
4540
4541 for (; bounds.first != bounds.second; ++bounds.first)
4542 {
4543 const char *qualified = index.symbol_name_at (bounds.first->idx);
4544
4545 if (!lookup_name_matcher.matches (qualified)
4546 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4547 continue;
4548
4549 matches.push_back (bounds.first->idx);
4550 }
4551
4552 std::sort (matches.begin (), matches.end ());
4553
4554 /* Finally call the callback, once per match. */
4555 ULONGEST prev = -1;
4556 for (offset_type idx : matches)
4557 {
4558 if (prev != idx)
4559 {
4560 match_callback (idx);
4561 prev = idx;
4562 }
4563 }
4564
4565 /* Above we use a type wider than idx's for 'prev', since 0 and
4566 (offset_type)-1 are both possible values. */
4567 static_assert (sizeof (prev) > sizeof (offset_type), "");
4568 }
4569
4570 #if GDB_SELF_TEST
4571
4572 namespace selftests { namespace dw2_expand_symtabs_matching {
4573
4574 /* A mock .gdb_index/.debug_names-like name index table, enough to
4575 exercise dw2_expand_symtabs_matching_symbol, which works with the
4576 mapped_index_base interface. Builds an index from the symbol list
4577 passed as parameter to the constructor. */
4578 class mock_mapped_index : public mapped_index_base
4579 {
4580 public:
4581 mock_mapped_index (gdb::array_view<const char *> symbols)
4582 : m_symbol_table (symbols)
4583 {}
4584
4585 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4586
4587 /* Return the number of names in the symbol table. */
4588 size_t symbol_name_count () const override
4589 {
4590 return m_symbol_table.size ();
4591 }
4592
4593 /* Get the name of the symbol at IDX in the symbol table. */
4594 const char *symbol_name_at (offset_type idx) const override
4595 {
4596 return m_symbol_table[idx];
4597 }
4598
4599 private:
4600 gdb::array_view<const char *> m_symbol_table;
4601 };
4602
4603 /* Convenience function that converts a NULL pointer to a "<null>"
4604 string, to pass to print routines. */
4605
4606 static const char *
4607 string_or_null (const char *str)
4608 {
4609 return str != NULL ? str : "<null>";
4610 }
4611
4612 /* Check if a lookup_name_info built from
4613 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4614 index. EXPECTED_LIST is the list of expected matches, in expected
4615 matching order. If no match expected, then an empty list is
4616 specified. Returns true on success. On failure prints a warning
4617 indicating the file:line that failed, and returns false. */
4618
4619 static bool
4620 check_match (const char *file, int line,
4621 mock_mapped_index &mock_index,
4622 const char *name, symbol_name_match_type match_type,
4623 bool completion_mode,
4624 std::initializer_list<const char *> expected_list)
4625 {
4626 lookup_name_info lookup_name (name, match_type, completion_mode);
4627
4628 bool matched = true;
4629
4630 auto mismatch = [&] (const char *expected_str,
4631 const char *got)
4632 {
4633 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4634 "expected=\"%s\", got=\"%s\"\n"),
4635 file, line,
4636 (match_type == symbol_name_match_type::FULL
4637 ? "FULL" : "WILD"),
4638 name, string_or_null (expected_str), string_or_null (got));
4639 matched = false;
4640 };
4641
4642 auto expected_it = expected_list.begin ();
4643 auto expected_end = expected_list.end ();
4644
4645 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4646 NULL, ALL_DOMAIN,
4647 [&] (offset_type idx)
4648 {
4649 const char *matched_name = mock_index.symbol_name_at (idx);
4650 const char *expected_str
4651 = expected_it == expected_end ? NULL : *expected_it++;
4652
4653 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4654 mismatch (expected_str, matched_name);
4655 });
4656
4657 const char *expected_str
4658 = expected_it == expected_end ? NULL : *expected_it++;
4659 if (expected_str != NULL)
4660 mismatch (expected_str, NULL);
4661
4662 return matched;
4663 }
4664
4665 /* The symbols added to the mock mapped_index for testing (in
4666 canonical form). */
4667 static const char *test_symbols[] = {
4668 "function",
4669 "std::bar",
4670 "std::zfunction",
4671 "std::zfunction2",
4672 "w1::w2",
4673 "ns::foo<char*>",
4674 "ns::foo<int>",
4675 "ns::foo<long>",
4676 "ns2::tmpl<int>::foo2",
4677 "(anonymous namespace)::A::B::C",
4678
4679 /* These are used to check that the increment-last-char in the
4680 matching algorithm for completion doesn't match "t1_fund" when
4681 completing "t1_func". */
4682 "t1_func",
4683 "t1_func1",
4684 "t1_fund",
4685 "t1_fund1",
4686
4687 /* A UTF-8 name with multi-byte sequences to make sure that
4688 cp-name-parser understands this as a single identifier ("função"
4689 is "function" in PT). */
4690 u8"u8função",
4691
4692 /* \377 (0xff) is Latin1 'ÿ'. */
4693 "yfunc\377",
4694
4695 /* \377 (0xff) is Latin1 'ÿ'. */
4696 "\377",
4697 "\377\377123",
4698
4699 /* A name with all sorts of complications. Starts with "z" to make
4700 it easier for the completion tests below. */
4701 #define Z_SYM_NAME \
4702 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4703 "::tuple<(anonymous namespace)::ui*, " \
4704 "std::default_delete<(anonymous namespace)::ui>, void>"
4705
4706 Z_SYM_NAME
4707 };
4708
4709 /* Returns true if the mapped_index_base::find_name_component_bounds
4710 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4711 in completion mode. */
4712
4713 static bool
4714 check_find_bounds_finds (mapped_index_base &index,
4715 const char *search_name,
4716 gdb::array_view<const char *> expected_syms)
4717 {
4718 lookup_name_info lookup_name (search_name,
4719 symbol_name_match_type::FULL, true);
4720
4721 auto bounds = index.find_name_components_bounds (lookup_name);
4722
4723 size_t distance = std::distance (bounds.first, bounds.second);
4724 if (distance != expected_syms.size ())
4725 return false;
4726
4727 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4728 {
4729 auto nc_elem = bounds.first + exp_elem;
4730 const char *qualified = index.symbol_name_at (nc_elem->idx);
4731 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4732 return false;
4733 }
4734
4735 return true;
4736 }
4737
4738 /* Test the lower-level mapped_index::find_name_component_bounds
4739 method. */
4740
4741 static void
4742 test_mapped_index_find_name_component_bounds ()
4743 {
4744 mock_mapped_index mock_index (test_symbols);
4745
4746 mock_index.build_name_components ();
4747
4748 /* Test the lower-level mapped_index::find_name_component_bounds
4749 method in completion mode. */
4750 {
4751 static const char *expected_syms[] = {
4752 "t1_func",
4753 "t1_func1",
4754 };
4755
4756 SELF_CHECK (check_find_bounds_finds (mock_index,
4757 "t1_func", expected_syms));
4758 }
4759
4760 /* Check that the increment-last-char in the name matching algorithm
4761 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4762 {
4763 static const char *expected_syms1[] = {
4764 "\377",
4765 "\377\377123",
4766 };
4767 SELF_CHECK (check_find_bounds_finds (mock_index,
4768 "\377", expected_syms1));
4769
4770 static const char *expected_syms2[] = {
4771 "\377\377123",
4772 };
4773 SELF_CHECK (check_find_bounds_finds (mock_index,
4774 "\377\377", expected_syms2));
4775 }
4776 }
4777
4778 /* Test dw2_expand_symtabs_matching_symbol. */
4779
4780 static void
4781 test_dw2_expand_symtabs_matching_symbol ()
4782 {
4783 mock_mapped_index mock_index (test_symbols);
4784
4785 /* We let all tests run until the end even if some fails, for debug
4786 convenience. */
4787 bool any_mismatch = false;
4788
4789 /* Create the expected symbols list (an initializer_list). Needed
4790 because lists have commas, and we need to pass them to CHECK,
4791 which is a macro. */
4792 #define EXPECT(...) { __VA_ARGS__ }
4793
4794 /* Wrapper for check_match that passes down the current
4795 __FILE__/__LINE__. */
4796 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4797 any_mismatch |= !check_match (__FILE__, __LINE__, \
4798 mock_index, \
4799 NAME, MATCH_TYPE, COMPLETION_MODE, \
4800 EXPECTED_LIST)
4801
4802 /* Identity checks. */
4803 for (const char *sym : test_symbols)
4804 {
4805 /* Should be able to match all existing symbols. */
4806 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4807 EXPECT (sym));
4808
4809 /* Should be able to match all existing symbols with
4810 parameters. */
4811 std::string with_params = std::string (sym) + "(int)";
4812 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 EXPECT (sym));
4814
4815 /* Should be able to match all existing symbols with
4816 parameters and qualifiers. */
4817 with_params = std::string (sym) + " ( int ) const";
4818 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4819 EXPECT (sym));
4820
4821 /* This should really find sym, but cp-name-parser.y doesn't
4822 know about lvalue/rvalue qualifiers yet. */
4823 with_params = std::string (sym) + " ( int ) &&";
4824 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4825 {});
4826 }
4827
4828 /* Check that the name matching algorithm for completion doesn't get
4829 confused with Latin1 'ÿ' / 0xff. */
4830 {
4831 static const char str[] = "\377";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("\377", "\377\377123"));
4834 }
4835
4836 /* Check that the increment-last-char in the matching algorithm for
4837 completion doesn't match "t1_fund" when completing "t1_func". */
4838 {
4839 static const char str[] = "t1_func";
4840 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4841 EXPECT ("t1_func", "t1_func1"));
4842 }
4843
4844 /* Check that completion mode works at each prefix of the expected
4845 symbol name. */
4846 {
4847 static const char str[] = "function(int)";
4848 size_t len = strlen (str);
4849 std::string lookup;
4850
4851 for (size_t i = 1; i < len; i++)
4852 {
4853 lookup.assign (str, i);
4854 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4855 EXPECT ("function"));
4856 }
4857 }
4858
4859 /* While "w" is a prefix of both components, the match function
4860 should still only be called once. */
4861 {
4862 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4863 EXPECT ("w1::w2"));
4864 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4865 EXPECT ("w1::w2"));
4866 }
4867
4868 /* Same, with a "complicated" symbol. */
4869 {
4870 static const char str[] = Z_SYM_NAME;
4871 size_t len = strlen (str);
4872 std::string lookup;
4873
4874 for (size_t i = 1; i < len; i++)
4875 {
4876 lookup.assign (str, i);
4877 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4878 EXPECT (Z_SYM_NAME));
4879 }
4880 }
4881
4882 /* In FULL mode, an incomplete symbol doesn't match. */
4883 {
4884 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4885 {});
4886 }
4887
4888 /* A complete symbol with parameters matches any overload, since the
4889 index has no overload info. */
4890 {
4891 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4892 EXPECT ("std::zfunction", "std::zfunction2"));
4893 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4894 EXPECT ("std::zfunction", "std::zfunction2"));
4895 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4896 EXPECT ("std::zfunction", "std::zfunction2"));
4897 }
4898
4899 /* Check that whitespace is ignored appropriately. A symbol with a
4900 template argument list. */
4901 {
4902 static const char expected[] = "ns::foo<int>";
4903 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4904 EXPECT (expected));
4905 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4906 EXPECT (expected));
4907 }
4908
4909 /* Check that whitespace is ignored appropriately. A symbol with a
4910 template argument list that includes a pointer. */
4911 {
4912 static const char expected[] = "ns::foo<char*>";
4913 /* Try both completion and non-completion modes. */
4914 static const bool completion_mode[2] = {false, true};
4915 for (size_t i = 0; i < 2; i++)
4916 {
4917 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4918 completion_mode[i], EXPECT (expected));
4919 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4920 completion_mode[i], EXPECT (expected));
4921
4922 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4923 completion_mode[i], EXPECT (expected));
4924 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4925 completion_mode[i], EXPECT (expected));
4926 }
4927 }
4928
4929 {
4930 /* Check method qualifiers are ignored. */
4931 static const char expected[] = "ns::foo<char*>";
4932 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4933 symbol_name_match_type::FULL, true, EXPECT (expected));
4934 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4935 symbol_name_match_type::FULL, true, EXPECT (expected));
4936 CHECK_MATCH ("foo < char * > ( int ) const",
4937 symbol_name_match_type::WILD, true, EXPECT (expected));
4938 CHECK_MATCH ("foo < char * > ( int ) &&",
4939 symbol_name_match_type::WILD, true, EXPECT (expected));
4940 }
4941
4942 /* Test lookup names that don't match anything. */
4943 {
4944 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4945 {});
4946
4947 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4948 {});
4949 }
4950
4951 /* Some wild matching tests, exercising "(anonymous namespace)",
4952 which should not be confused with a parameter list. */
4953 {
4954 static const char *syms[] = {
4955 "A::B::C",
4956 "B::C",
4957 "C",
4958 "A :: B :: C ( int )",
4959 "B :: C ( int )",
4960 "C ( int )",
4961 };
4962
4963 for (const char *s : syms)
4964 {
4965 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4966 EXPECT ("(anonymous namespace)::A::B::C"));
4967 }
4968 }
4969
4970 {
4971 static const char expected[] = "ns2::tmpl<int>::foo2";
4972 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4973 EXPECT (expected));
4974 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4975 EXPECT (expected));
4976 }
4977
4978 SELF_CHECK (!any_mismatch);
4979
4980 #undef EXPECT
4981 #undef CHECK_MATCH
4982 }
4983
4984 static void
4985 run_test ()
4986 {
4987 test_mapped_index_find_name_component_bounds ();
4988 test_dw2_expand_symtabs_matching_symbol ();
4989 }
4990
4991 }} // namespace selftests::dw2_expand_symtabs_matching
4992
4993 #endif /* GDB_SELF_TEST */
4994
4995 /* If FILE_MATCHER is NULL or if PER_CU has
4996 dwarf2_per_cu_quick_data::MARK set (see
4997 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4998 EXPANSION_NOTIFY on it. */
4999
5000 static void
5001 dw2_expand_symtabs_matching_one
5002 (struct dwarf2_per_cu_data *per_cu,
5003 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5004 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5005 {
5006 if (file_matcher == NULL || per_cu->v.quick->mark)
5007 {
5008 bool symtab_was_null
5009 = (per_cu->v.quick->compunit_symtab == NULL);
5010
5011 dw2_instantiate_symtab (per_cu, false);
5012
5013 if (expansion_notify != NULL
5014 && symtab_was_null
5015 && per_cu->v.quick->compunit_symtab != NULL)
5016 expansion_notify (per_cu->v.quick->compunit_symtab);
5017 }
5018 }
5019
5020 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5021 matched, to expand corresponding CUs that were marked. IDX is the
5022 index of the symbol name that matched. */
5023
5024 static void
5025 dw2_expand_marked_cus
5026 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5027 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5028 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5029 search_domain kind)
5030 {
5031 offset_type *vec, vec_len, vec_idx;
5032 bool global_seen = false;
5033 mapped_index &index = *dwarf2_per_objfile->index_table;
5034
5035 vec = (offset_type *) (index.constant_pool
5036 + MAYBE_SWAP (index.symbol_table[idx].vec));
5037 vec_len = MAYBE_SWAP (vec[0]);
5038 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5039 {
5040 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5041 /* This value is only valid for index versions >= 7. */
5042 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5043 gdb_index_symbol_kind symbol_kind =
5044 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5045 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5046 /* Only check the symbol attributes if they're present.
5047 Indices prior to version 7 don't record them,
5048 and indices >= 7 may elide them for certain symbols
5049 (gold does this). */
5050 int attrs_valid =
5051 (index.version >= 7
5052 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5053
5054 /* Work around gold/15646. */
5055 if (attrs_valid)
5056 {
5057 if (!is_static && global_seen)
5058 continue;
5059 if (!is_static)
5060 global_seen = true;
5061 }
5062
5063 /* Only check the symbol's kind if it has one. */
5064 if (attrs_valid)
5065 {
5066 switch (kind)
5067 {
5068 case VARIABLES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5070 continue;
5071 break;
5072 case FUNCTIONS_DOMAIN:
5073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5074 continue;
5075 break;
5076 case TYPES_DOMAIN:
5077 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5078 continue;
5079 break;
5080 default:
5081 break;
5082 }
5083 }
5084
5085 /* Don't crash on bad data. */
5086 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5087 + dwarf2_per_objfile->all_type_units.size ()))
5088 {
5089 complaint (_(".gdb_index entry has bad CU index"
5090 " [in module %s]"),
5091 objfile_name (dwarf2_per_objfile->objfile));
5092 continue;
5093 }
5094
5095 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5096 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5097 expansion_notify);
5098 }
5099 }
5100
5101 /* If FILE_MATCHER is non-NULL, set all the
5102 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5103 that match FILE_MATCHER. */
5104
5105 static void
5106 dw_expand_symtabs_matching_file_matcher
5107 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5108 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5109 {
5110 if (file_matcher == NULL)
5111 return;
5112
5113 objfile *const objfile = dwarf2_per_objfile->objfile;
5114
5115 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5116 htab_eq_pointer,
5117 NULL, xcalloc, xfree));
5118 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5119 htab_eq_pointer,
5120 NULL, xcalloc, xfree));
5121
5122 /* The rule is CUs specify all the files, including those used by
5123 any TU, so there's no need to scan TUs here. */
5124
5125 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5126 {
5127 QUIT;
5128
5129 per_cu->v.quick->mark = 0;
5130
5131 /* We only need to look at symtabs not already expanded. */
5132 if (per_cu->v.quick->compunit_symtab)
5133 continue;
5134
5135 quick_file_names *file_data = dw2_get_file_names (per_cu);
5136 if (file_data == NULL)
5137 continue;
5138
5139 if (htab_find (visited_not_found.get (), file_data) != NULL)
5140 continue;
5141 else if (htab_find (visited_found.get (), file_data) != NULL)
5142 {
5143 per_cu->v.quick->mark = 1;
5144 continue;
5145 }
5146
5147 for (int j = 0; j < file_data->num_file_names; ++j)
5148 {
5149 const char *this_real_name;
5150
5151 if (file_matcher (file_data->file_names[j], false))
5152 {
5153 per_cu->v.quick->mark = 1;
5154 break;
5155 }
5156
5157 /* Before we invoke realpath, which can get expensive when many
5158 files are involved, do a quick comparison of the basenames. */
5159 if (!basenames_may_differ
5160 && !file_matcher (lbasename (file_data->file_names[j]),
5161 true))
5162 continue;
5163
5164 this_real_name = dw2_get_real_path (objfile, file_data, j);
5165 if (file_matcher (this_real_name, false))
5166 {
5167 per_cu->v.quick->mark = 1;
5168 break;
5169 }
5170 }
5171
5172 void **slot = htab_find_slot (per_cu->v.quick->mark
5173 ? visited_found.get ()
5174 : visited_not_found.get (),
5175 file_data, INSERT);
5176 *slot = file_data;
5177 }
5178 }
5179
5180 static void
5181 dw2_expand_symtabs_matching
5182 (struct objfile *objfile,
5183 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5184 const lookup_name_info &lookup_name,
5185 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5186 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5187 enum search_domain kind)
5188 {
5189 struct dwarf2_per_objfile *dwarf2_per_objfile
5190 = get_dwarf2_per_objfile (objfile);
5191
5192 /* index_table is NULL if OBJF_READNOW. */
5193 if (!dwarf2_per_objfile->index_table)
5194 return;
5195
5196 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5197
5198 mapped_index &index = *dwarf2_per_objfile->index_table;
5199
5200 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5201 symbol_matcher,
5202 kind, [&] (offset_type idx)
5203 {
5204 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5205 expansion_notify, kind);
5206 });
5207 }
5208
5209 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5210 symtab. */
5211
5212 static struct compunit_symtab *
5213 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5214 CORE_ADDR pc)
5215 {
5216 int i;
5217
5218 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5219 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5220 return cust;
5221
5222 if (cust->includes == NULL)
5223 return NULL;
5224
5225 for (i = 0; cust->includes[i]; ++i)
5226 {
5227 struct compunit_symtab *s = cust->includes[i];
5228
5229 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5230 if (s != NULL)
5231 return s;
5232 }
5233
5234 return NULL;
5235 }
5236
5237 static struct compunit_symtab *
5238 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5239 struct bound_minimal_symbol msymbol,
5240 CORE_ADDR pc,
5241 struct obj_section *section,
5242 int warn_if_readin)
5243 {
5244 struct dwarf2_per_cu_data *data;
5245 struct compunit_symtab *result;
5246
5247 if (!objfile->psymtabs_addrmap)
5248 return NULL;
5249
5250 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5251 SECT_OFF_TEXT (objfile));
5252 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5253 pc - baseaddr);
5254 if (!data)
5255 return NULL;
5256
5257 if (warn_if_readin && data->v.quick->compunit_symtab)
5258 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5259 paddress (get_objfile_arch (objfile), pc));
5260
5261 result
5262 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5263 false),
5264 pc);
5265 gdb_assert (result != NULL);
5266 return result;
5267 }
5268
5269 static void
5270 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5271 void *data, int need_fullname)
5272 {
5273 struct dwarf2_per_objfile *dwarf2_per_objfile
5274 = get_dwarf2_per_objfile (objfile);
5275
5276 if (!dwarf2_per_objfile->filenames_cache)
5277 {
5278 dwarf2_per_objfile->filenames_cache.emplace ();
5279
5280 htab_up visited (htab_create_alloc (10,
5281 htab_hash_pointer, htab_eq_pointer,
5282 NULL, xcalloc, xfree));
5283
5284 /* The rule is CUs specify all the files, including those used
5285 by any TU, so there's no need to scan TUs here. We can
5286 ignore file names coming from already-expanded CUs. */
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 if (per_cu->v.quick->compunit_symtab)
5291 {
5292 void **slot = htab_find_slot (visited.get (),
5293 per_cu->v.quick->file_names,
5294 INSERT);
5295
5296 *slot = per_cu->v.quick->file_names;
5297 }
5298 }
5299
5300 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5301 {
5302 /* We only need to look at symtabs not already expanded. */
5303 if (per_cu->v.quick->compunit_symtab)
5304 continue;
5305
5306 quick_file_names *file_data = dw2_get_file_names (per_cu);
5307 if (file_data == NULL)
5308 continue;
5309
5310 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5311 if (*slot)
5312 {
5313 /* Already visited. */
5314 continue;
5315 }
5316 *slot = file_data;
5317
5318 for (int j = 0; j < file_data->num_file_names; ++j)
5319 {
5320 const char *filename = file_data->file_names[j];
5321 dwarf2_per_objfile->filenames_cache->seen (filename);
5322 }
5323 }
5324 }
5325
5326 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5327 {
5328 gdb::unique_xmalloc_ptr<char> this_real_name;
5329
5330 if (need_fullname)
5331 this_real_name = gdb_realpath (filename);
5332 (*fun) (filename, this_real_name.get (), data);
5333 });
5334 }
5335
5336 static int
5337 dw2_has_symbols (struct objfile *objfile)
5338 {
5339 return 1;
5340 }
5341
5342 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5343 {
5344 dw2_has_symbols,
5345 dw2_find_last_source_symtab,
5346 dw2_forget_cached_source_info,
5347 dw2_map_symtabs_matching_filename,
5348 dw2_lookup_symbol,
5349 dw2_print_stats,
5350 dw2_dump,
5351 dw2_expand_symtabs_for_function,
5352 dw2_expand_all_symtabs,
5353 dw2_expand_symtabs_with_fullname,
5354 dw2_map_matching_symbols,
5355 dw2_expand_symtabs_matching,
5356 dw2_find_pc_sect_compunit_symtab,
5357 NULL,
5358 dw2_map_symbol_filenames
5359 };
5360
5361 /* DWARF-5 debug_names reader. */
5362
5363 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5364 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5365
5366 /* A helper function that reads the .debug_names section in SECTION
5367 and fills in MAP. FILENAME is the name of the file containing the
5368 section; it is used for error reporting.
5369
5370 Returns true if all went well, false otherwise. */
5371
5372 static bool
5373 read_debug_names_from_section (struct objfile *objfile,
5374 const char *filename,
5375 struct dwarf2_section_info *section,
5376 mapped_debug_names &map)
5377 {
5378 if (dwarf2_section_empty_p (section))
5379 return false;
5380
5381 /* Older elfutils strip versions could keep the section in the main
5382 executable while splitting it for the separate debug info file. */
5383 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5384 return false;
5385
5386 dwarf2_read_section (objfile, section);
5387
5388 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5389
5390 const gdb_byte *addr = section->buffer;
5391
5392 bfd *const abfd = get_section_bfd_owner (section);
5393
5394 unsigned int bytes_read;
5395 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5396 addr += bytes_read;
5397
5398 map.dwarf5_is_dwarf64 = bytes_read != 4;
5399 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5400 if (bytes_read + length != section->size)
5401 {
5402 /* There may be multiple per-CU indices. */
5403 warning (_("Section .debug_names in %s length %s does not match "
5404 "section length %s, ignoring .debug_names."),
5405 filename, plongest (bytes_read + length),
5406 pulongest (section->size));
5407 return false;
5408 }
5409
5410 /* The version number. */
5411 uint16_t version = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (version != 5)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported version %d, "
5416 "ignoring .debug_names."),
5417 filename, version);
5418 return false;
5419 }
5420
5421 /* Padding. */
5422 uint16_t padding = read_2_bytes (abfd, addr);
5423 addr += 2;
5424 if (padding != 0)
5425 {
5426 warning (_("Section .debug_names in %s has unsupported padding %d, "
5427 "ignoring .debug_names."),
5428 filename, padding);
5429 return false;
5430 }
5431
5432 /* comp_unit_count - The number of CUs in the CU list. */
5433 map.cu_count = read_4_bytes (abfd, addr);
5434 addr += 4;
5435
5436 /* local_type_unit_count - The number of TUs in the local TU
5437 list. */
5438 map.tu_count = read_4_bytes (abfd, addr);
5439 addr += 4;
5440
5441 /* foreign_type_unit_count - The number of TUs in the foreign TU
5442 list. */
5443 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445 if (foreign_tu_count != 0)
5446 {
5447 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5448 "ignoring .debug_names."),
5449 filename, static_cast<unsigned long> (foreign_tu_count));
5450 return false;
5451 }
5452
5453 /* bucket_count - The number of hash buckets in the hash lookup
5454 table. */
5455 map.bucket_count = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* name_count - The number of unique names in the index. */
5459 map.name_count = read_4_bytes (abfd, addr);
5460 addr += 4;
5461
5462 /* abbrev_table_size - The size in bytes of the abbreviations
5463 table. */
5464 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5465 addr += 4;
5466
5467 /* augmentation_string_size - The size in bytes of the augmentation
5468 string. This value is rounded up to a multiple of 4. */
5469 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5470 addr += 4;
5471 map.augmentation_is_gdb = ((augmentation_string_size
5472 == sizeof (dwarf5_augmentation))
5473 && memcmp (addr, dwarf5_augmentation,
5474 sizeof (dwarf5_augmentation)) == 0);
5475 augmentation_string_size += (-augmentation_string_size) & 3;
5476 addr += augmentation_string_size;
5477
5478 /* List of CUs */
5479 map.cu_table_reordered = addr;
5480 addr += map.cu_count * map.offset_size;
5481
5482 /* List of Local TUs */
5483 map.tu_table_reordered = addr;
5484 addr += map.tu_count * map.offset_size;
5485
5486 /* Hash Lookup Table */
5487 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5488 addr += map.bucket_count * 4;
5489 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5490 addr += map.name_count * 4;
5491
5492 /* Name Table */
5493 map.name_table_string_offs_reordered = addr;
5494 addr += map.name_count * map.offset_size;
5495 map.name_table_entry_offs_reordered = addr;
5496 addr += map.name_count * map.offset_size;
5497
5498 const gdb_byte *abbrev_table_start = addr;
5499 for (;;)
5500 {
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5656 }
5657
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5660
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5665
5666 return true;
5667 }
5668
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672 class dw2_debug_names_iterator
5673 {
5674 public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720 };
5721
5722 const char *
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5724 {
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5732 }
5733
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738 const gdb_byte *
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741 {
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804 #endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820 }
5821
5822 const gdb_byte *
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825 {
5826 if (namei >= map.name_count)
5827 {
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5829 "[in module %s]"),
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840 }
5841
5842 /* See dw2_debug_names_iterator. */
5843
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5846 {
5847 if (m_addr == NULL)
5848 return NULL;
5849
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5866 "[in module %s]"),
5867 pulongest (abbrev), objfile_name (objfile));
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad CU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5908 break;
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5912 {
5913 complaint (_(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6168 NULL,
6169 dw2_map_symbol_filenames
6170 };
6171
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178 {
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 return {section->buffer, section->size};
6192 }
6193
6194 /* Lookup the index cache for the contents of the index associated to
6195 DWARF2_OBJ. */
6196
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6199 {
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6206 }
6207
6208 /* Same as the above, but for DWZ. */
6209
6210 static gdb::array_view<const gdb_byte>
6211 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6212 {
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6215 return {};
6216
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6218 }
6219
6220 /* See symfile.h. */
6221
6222 bool
6223 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6224 {
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6227
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6231 expanded anyway. */
6232 if ((objfile->flags & OBJF_READNOW))
6233 {
6234 dwarf2_per_objfile->using_index = 1;
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
6240
6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6243 {
6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6245
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
6248 }
6249
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6252 all symtabs. */
6253 *index_kind = dw_index_kind::GDB_INDEX;
6254 return true;
6255 }
6256
6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6258 {
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6260 return true;
6261 }
6262
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
6270
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6275 {
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6278 return true;
6279 }
6280
6281 global_index_cache.miss ();
6282 return false;
6283 }
6284
6285 \f
6286
6287 /* Build a partial symbol table. */
6288
6289 void
6290 dwarf2_build_psymtabs (struct objfile *objfile)
6291 {
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
6294
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
6298
6299 TRY
6300 {
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
6304 psymtab_discarder psymtabs (objfile);
6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6306 psymtabs.keep ();
6307
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
6310 }
6311 CATCH (except, RETURN_MASK_ERROR)
6312 {
6313 exception_print (gdb_stderr, except);
6314 }
6315 END_CATCH
6316 }
6317
6318 /* Return the total length of the CU described by HEADER. */
6319
6320 static unsigned int
6321 get_cu_length (const struct comp_unit_head *header)
6322 {
6323 return header->initial_length_size + header->length;
6324 }
6325
6326 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6327
6328 static inline bool
6329 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6330 {
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6333
6334 return sect_off >= bottom && sect_off < top;
6335 }
6336
6337 /* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6342
6343 static void
6344 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6345 {
6346 struct attribute *attr;
6347
6348 cu->base_known = 0;
6349 cu->base_address = 0;
6350
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6352 if (attr)
6353 {
6354 cu->base_address = attr_value_as_address (attr);
6355 cu->base_known = 1;
6356 }
6357 else
6358 {
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6360 if (attr)
6361 {
6362 cu->base_address = attr_value_as_address (attr);
6363 cu->base_known = 1;
6364 }
6365 }
6366 }
6367
6368 /* Read in the comp unit header information from the debug_info at info_ptr.
6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6371 by the caller. */
6372
6373 static const gdb_byte *
6374 read_comp_unit_head (struct comp_unit_head *cu_header,
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
6378 {
6379 int signed_addr;
6380 unsigned int bytes_read;
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
6383
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6387 info_ptr += bytes_read;
6388 cu_header->version = read_2_bytes (abfd, info_ptr);
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
6393 info_ptr += 2;
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6396 {
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6399 break;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6402 break;
6403 default:
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6406 }
6407 else
6408 {
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6411 info_ptr += 1;
6412 switch (cu_header->unit_type)
6413 {
6414 case DW_UT_compile:
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6418 filename);
6419 break;
6420 case DW_UT_type:
6421 section_kind = rcuh_kind::TYPE;
6422 break;
6423 default:
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6427 }
6428
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6430 info_ptr += 1;
6431 }
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6433 cu_header,
6434 &bytes_read);
6435 info_ptr += bytes_read;
6436 if (cu_header->version < 5)
6437 {
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6439 info_ptr += 1;
6440 }
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
6443 internal_error (__FILE__, __LINE__,
6444 _("read_comp_unit_head: dwarf from non elf file"));
6445 cu_header->signed_addr_p = signed_addr;
6446
6447 if (section_kind == rcuh_kind::TYPE)
6448 {
6449 LONGEST type_offset;
6450
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6452 info_ptr += 8;
6453
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
6463 return info_ptr;
6464 }
6465
6466 /* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471 {
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6474
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481 }
6482
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487 static void
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6492 {
6493 const char *filename = get_section_file_name (section);
6494
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6501 filename);
6502
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6506 > section->size)
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6510 filename);
6511 }
6512
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6516
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6524 {
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6526
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6528
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6530
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6532
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
6535
6536 return info_ptr;
6537 }
6538
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541 static sect_offset
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6545 {
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6549 uint16_t version;
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6566 }
6567
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571 static void
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6574 {
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6587
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
6592 subpst->compunit_symtab = NULL;
6593 subpst->read_symtab = pst->read_symtab;
6594 subpst->readin = 0;
6595
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
6598 the regular ones. */
6599 subpst->read_symtab_private = NULL;
6600 }
6601
6602 /* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
6604 partial symtab for each of these included files. */
6605
6606 static void
6607 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6608 struct die_info *die,
6609 struct partial_symtab *pst)
6610 {
6611 line_header_up lh;
6612 struct attribute *attr;
6613
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6615 if (attr)
6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6617 if (lh == NULL)
6618 return; /* No linetable, so no includes. */
6619
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6625 pst->raw_text_low (), 1);
6626 }
6627
6628 static hashval_t
6629 hash_signatured_type (const void *item)
6630 {
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
6633
6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6635 return sig_type->signature;
6636 }
6637
6638 static int
6639 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6640 {
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6643
6644 return lhs->signature == rhs->signature;
6645 }
6646
6647 /* Allocate a hash table for signatured types. */
6648
6649 static htab_t
6650 allocate_signatured_type_table (struct objfile *objfile)
6651 {
6652 return htab_create_alloc_ex (41,
6653 hash_signatured_type,
6654 eq_signatured_type,
6655 NULL,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6659 }
6660
6661 /* A helper function to add a signatured type CU to a table. */
6662
6663 static int
6664 add_signatured_type_cu_to_table (void **slot, void *datum)
6665 {
6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
6669
6670 all_type_units->push_back (sigt);
6671
6672 return 1;
6673 }
6674
6675 /* A helper for create_debug_types_hash_table. Read types from SECTION
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
6678
6679 static void
6680 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
6684 {
6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
6686 struct dwarf2_section_info *abbrev_section;
6687 bfd *abfd;
6688 const gdb_byte *info_ptr, *end_ptr;
6689
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6693
6694 if (dwarf_read_debug)
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
6697 get_section_file_name (abbrev_section));
6698
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
6701
6702 if (info_ptr == NULL)
6703 return;
6704
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
6708
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6711 header. */
6712
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6715 {
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6718 void **slot;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
6722
6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6724
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
6727 header.type_cu_offset_in_tu = (cu_offset) -1;
6728
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
6731
6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6733 abbrev_section, ptr, section_kind);
6734
6735 length = get_cu_length (&header);
6736
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
6741 {
6742 info_ptr += length;
6743 continue;
6744 }
6745
6746 if (types_htab == NULL)
6747 {
6748 if (dwo_file)
6749 types_htab = allocate_dwo_unit_table (objfile);
6750 else
6751 types_htab = allocate_signatured_type_table (objfile);
6752 }
6753
6754 if (dwo_file)
6755 {
6756 sig_type = NULL;
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct dwo_unit);
6759 dwo_tu->dwo_file = dwo_file;
6760 dwo_tu->signature = header.signature;
6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6762 dwo_tu->section = section;
6763 dwo_tu->sect_off = sect_off;
6764 dwo_tu->length = length;
6765 }
6766 else
6767 {
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6770 dwo_tu = NULL;
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
6773 sig_type->signature = header.signature;
6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
6778 sig_type->per_cu.sect_off = sect_off;
6779 sig_type->per_cu.length = length;
6780 }
6781
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6784 INSERT);
6785 gdb_assert (slot != NULL);
6786 if (*slot != NULL)
6787 {
6788 sect_offset dup_sect_off;
6789
6790 if (dwo_file)
6791 {
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6794
6795 dup_sect_off = dup_tu->sect_off;
6796 }
6797 else
6798 {
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6801
6802 dup_sect_off = dup_tu->per_cu.sect_off;
6803 }
6804
6805 complaint (_("debug type entry at offset %s is duplicate to"
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6808 hex_string (header.signature));
6809 }
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6811
6812 if (dwarf_read_debug > 1)
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
6815 hex_string (header.signature));
6816
6817 info_ptr += length;
6818 }
6819 }
6820
6821 /* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
6825
6826 The result is a pointer to the hash table or NULL if there are no types.
6827
6828 Note: This function processes DWO files only, not DWP files. */
6829
6830 static void
6831 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
6833 VEC (dwarf2_section_info_def) *types,
6834 htab_t &types_htab)
6835 {
6836 int ix;
6837 struct dwarf2_section_info *section;
6838
6839 if (VEC_empty (dwarf2_section_info_def, types))
6840 return;
6841
6842 for (ix = 0;
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6844 ++ix)
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
6847 }
6848
6849 /* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6853
6854 static int
6855 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6856 {
6857 htab_t types_htab = NULL;
6858
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
6861 rcuh_kind::COMPILE);
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
6864 if (types_htab == NULL)
6865 {
6866 dwarf2_per_objfile->signatured_types = NULL;
6867 return 0;
6868 }
6869
6870 dwarf2_per_objfile->signatured_types = types_htab;
6871
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6874
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
6877
6878 return 1;
6879 }
6880
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6888 {
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6894
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6897
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6902 {
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6906 }
6907
6908 if (slot == NULL)
6909 {
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6911 sig_type, INSERT);
6912 }
6913 gdb_assert (*slot == NULL);
6914 *slot = sig_type;
6915 /* The rest of sig_type must be filled in by the caller. */
6916 return sig_type;
6917 }
6918
6919 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6921
6922 static void
6923 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6926 {
6927 /* Make sure we're not clobbering something we don't expect to. */
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6934 }
6935 else
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6939 gdb_assert (sig_entry->type_unit_group == NULL);
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6941
6942 sig_entry->per_cu.section = dwo_entry->section;
6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6949 }
6950
6951 /* Subroutine of lookup_signatured_type.
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6962
6963 static struct signatured_type *
6964 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6965 {
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6972 void **slot;
6973
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6975
6976 /* If TU skeletons have been removed then we may not have read in any
6977 TUs yet. */
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6979 {
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6982 }
6983
6984 /* We only ever need to read in one copy of a signatured type.
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
6989
6990 find_sig_entry.signature = sig;
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
6993 sig_entry = (struct signatured_type *) *slot;
6994
6995 /* We can get here with the TU already read, *or* in the process of being
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7000
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7005 return sig_entry;
7006
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7010
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7013 return NULL;
7014 find_dwo_entry.signature = sig;
7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7016 if (dwo_entry == NULL)
7017 return NULL;
7018
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7022
7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7024 sig_entry->per_cu.tu_read = 1;
7025 return sig_entry;
7026 }
7027
7028 /* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
7032
7033 static struct signatured_type *
7034 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7035 {
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
7042 void **slot;
7043
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
7058 sig_entry = (struct signatured_type *) *slot;
7059
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7064 return sig_entry;
7065
7066 if (dwp_file->tus == NULL)
7067 return NULL;
7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7069 sig, 1 /* is_debug_types */);
7070 if (dwo_entry == NULL)
7071 return NULL;
7072
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7075
7076 return sig_entry;
7077 }
7078
7079 /* Lookup a signature based type for DW_FORM_ref_sig8.
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
7082
7083 static struct signatured_type *
7084 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
7088
7089 if (cu->dwo_unit
7090 && dwarf2_per_objfile->using_index)
7091 {
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7095 return lookup_dwo_signatured_type (cu, sig);
7096 else
7097 return lookup_dwp_signatured_type (cu, sig);
7098 }
7099 else
7100 {
7101 struct signatured_type find_entry, *entry;
7102
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7104 return NULL;
7105 find_entry.signature = sig;
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7108 return entry;
7109 }
7110 }
7111 \f
7112 /* Low level DIE reading support. */
7113
7114 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7115
7116 static void
7117 init_cu_die_reader (struct die_reader_specs *reader,
7118 struct dwarf2_cu *cu,
7119 struct dwarf2_section_info *section,
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
7122 {
7123 gdb_assert (section->readin && section->buffer != NULL);
7124 reader->abfd = get_section_bfd_owner (section);
7125 reader->cu = cu;
7126 reader->dwo_file = dwo_file;
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
7129 reader->buffer_end = section->buffer + section->size;
7130 reader->comp_dir = NULL;
7131 reader->abbrev_table = abbrev_table;
7132 }
7133
7134 /* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7137 already.
7138
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7150
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7152
7153 static int
7154 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
7156 struct die_info *stub_comp_unit_die,
7157 const char *stub_comp_dir,
7158 struct die_reader_specs *result_reader,
7159 const gdb_byte **result_info_ptr,
7160 struct die_info **result_comp_unit_die,
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
7163 {
7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
7167 bfd *abfd;
7168 const gdb_byte *begin_info_ptr, *info_ptr;
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7174
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7177
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7184 DWO CU/TU die. */
7185
7186 stmt_list = NULL;
7187 low_pc = NULL;
7188 high_pc = NULL;
7189 ranges = NULL;
7190 comp_dir = NULL;
7191
7192 if (stub_comp_unit_die != NULL)
7193 {
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7195 DWO file. */
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7202
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7205 cu->addr_base = 0;
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7207 if (attr)
7208 cu->addr_base = DW_UNSND (attr);
7209
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7214 if (attr)
7215 cu->ranges_base = DW_UNSND (attr);
7216 }
7217 else if (stub_comp_dir != NULL)
7218 {
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7225 }
7226
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
7229 dwarf2_section_info *section = dwo_unit->section;
7230 dwarf2_read_section (objfile, section);
7231 abfd = get_section_bfd_owner (section);
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7235
7236 if (this_cu->is_debug_types)
7237 {
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7239
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
7242 dwo_abbrev_section,
7243 info_ptr, rcuh_kind::TYPE);
7244 /* This is not an assert because it can be caused by bad debug info. */
7245 if (sig_type->signature != cu->header.signature)
7246 {
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7248 " TU at offset %s [in module %s]"),
7249 hex_string (sig_type->signature),
7250 hex_string (cu->header.signature),
7251 sect_offset_str (dwo_unit->sect_off),
7252 bfd_get_filename (abfd));
7253 }
7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7259
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7264 }
7265 else
7266 {
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
7269 dwo_abbrev_section,
7270 info_ptr, rcuh_kind::COMPILE);
7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7272 /* For DWOs coming from DWP files, we don't know the CU length
7273 until now. */
7274 dwo_unit->length = get_cu_length (&cu->header);
7275 }
7276
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
7282
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7288 + (low_pc != NULL)
7289 + (high_pc != NULL)
7290 + (ranges != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7294
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7300 if (low_pc != NULL)
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7304 if (ranges != NULL)
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7309
7310 if (dwarf_die_debug)
7311 {
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
7314 get_section_name (section),
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
7317 dump_die (comp_unit_die, dwarf_die_debug);
7318 }
7319
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7326
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7330 return 0;
7331
7332 *result_info_ptr = info_ptr;
7333 return 1;
7334 }
7335
7336 /* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7338 Returns NULL if the specified DWO unit cannot be found. */
7339
7340 static struct dwo_unit *
7341 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7343 {
7344 struct dwarf2_cu *cu = this_cu->cu;
7345 ULONGEST signature;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
7349 gdb_assert (cu != NULL);
7350
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7364 }
7365 else
7366 {
7367 struct attribute *attr;
7368
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (! attr)
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7372 " [in module %s]"),
7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7376 signature);
7377 }
7378
7379 return dwo_unit;
7380 }
7381
7382 /* Subroutine of init_cutu_and_read_dies to simplify it.
7383 See it for a description of the parameters.
7384 Read a TU directly from a DWO file, bypassing the stub. */
7385
7386 static void
7387 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
7389 die_reader_func_ftype *die_reader_func,
7390 void *data)
7391 {
7392 std::unique_ptr<dwarf2_cu> new_cu;
7393 struct signatured_type *sig_type;
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7397 int has_children;
7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7399
7400 /* Verify we can do the following downcast, and that we have the
7401 data we need. */
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7405
7406 if (use_existing_cu && this_cu->cu != NULL)
7407 {
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7411 }
7412 else
7413 {
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
7416 new_cu.reset (new dwarf2_cu (this_cu));
7417 }
7418
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
7422
7423 /* The abbreviation table used by READER, this must live at least as long as
7424 READER. */
7425 abbrev_table_up dwo_abbrev_table;
7426
7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7430 &reader, &info_ptr,
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
7433 {
7434 /* Dummy die. */
7435 return;
7436 }
7437
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7440
7441 /* This duplicates the code in init_cutu_and_read_dies,
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
7445 if (new_cu != NULL && keep)
7446 {
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7451 new_cu.release ();
7452 }
7453 }
7454
7455 /* Initialize a CU (or TU) and read its DIEs.
7456 If the CU defers to a DWO file, read the DWO file as well.
7457
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7461
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7464
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7467
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7469 linker) then DIE_READER_FUNC will not get called. */
7470
7471 static void
7472 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7473 struct abbrev_table *abbrev_table,
7474 int use_existing_cu, int keep,
7475 bool skip_partial,
7476 die_reader_func_ftype *die_reader_func,
7477 void *data)
7478 {
7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
7481 struct dwarf2_section_info *section = this_cu->section;
7482 bfd *abfd = get_section_bfd_owner (section);
7483 struct dwarf2_cu *cu;
7484 const gdb_byte *begin_info_ptr, *info_ptr;
7485 struct die_reader_specs reader;
7486 struct die_info *comp_unit_die;
7487 int has_children;
7488 struct attribute *attr;
7489 struct signatured_type *sig_type = NULL;
7490 struct dwarf2_section_info *abbrev_section;
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
7494 int rereading_dwo_cu = 0;
7495
7496 if (dwarf_die_debug)
7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7498 this_cu->is_debug_types ? "type" : "comp",
7499 sect_offset_str (this_cu->sect_off));
7500
7501 if (use_existing_cu)
7502 gdb_assert (keep);
7503
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7507 {
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
7513 return;
7514 }
7515
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7518
7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7520
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
7522
7523 std::unique_ptr<dwarf2_cu> new_cu;
7524 if (use_existing_cu && this_cu->cu != NULL)
7525 {
7526 cu = this_cu->cu;
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7532 optimization. */
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
7535 }
7536 else
7537 {
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
7540 new_cu.reset (new dwarf2_cu (this_cu));
7541 cu = new_cu.get ();
7542 }
7543
7544 /* Get the header. */
7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7546 {
7547 /* We already have the header, there's no need to read it in again. */
7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7549 }
7550 else
7551 {
7552 if (this_cu->is_debug_types)
7553 {
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section, info_ptr,
7557 rcuh_kind::TYPE);
7558
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
7562 gdb_assert (sig_type->signature == cu->header.signature);
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7566
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
7569 this_cu->length = get_cu_length (&cu->header);
7570
7571 /* Establish the type offset that can be used to lookup the type. */
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7574
7575 this_cu->dwarf_version = cu->header.version;
7576 }
7577 else
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section,
7582 info_ptr,
7583 rcuh_kind::COMPILE);
7584
7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7587 this_cu->dwarf_version = cu->header.version;
7588 }
7589 }
7590
7591 /* Skip dummy compilation units. */
7592 if (info_ptr >= begin_info_ptr + this_cu->length
7593 || peek_abbrev_code (abfd, info_ptr) == 0)
7594 return;
7595
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
7600 if (abbrev_table != NULL)
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7602 else
7603 {
7604 abbrev_table_holder
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
7608 }
7609
7610 /* Read the top level CU/TU die. */
7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7613
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7615 return;
7616
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7627 if (attr)
7628 {
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7631
7632 if (has_children)
7633 {
7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
7638 }
7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7640 if (dwo_unit != NULL)
7641 {
7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7643 comp_unit_die, NULL,
7644 &reader, &info_ptr,
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
7647 {
7648 /* Dummy die. */
7649 return;
7650 }
7651 comp_unit_die = dwo_comp_unit_die;
7652 }
7653 else
7654 {
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7659 debug info. */
7660 }
7661 }
7662
7663 /* All of the above is setup for this call. Yikes. */
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7665
7666 /* Done, clean up. */
7667 if (new_cu != NULL && keep)
7668 {
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7673 new_cu.release ();
7674 }
7675 }
7676
7677 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
7680
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7682 THIS_CU->is_debug_types, but nothing else.
7683
7684 We fill in THIS_CU->length.
7685
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
7692
7693 static void
7694 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7695 struct dwo_file *dwo_file,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
7701 struct dwarf2_section_info *section = this_cu->section;
7702 bfd *abfd = get_section_bfd_owner (section);
7703 struct dwarf2_section_info *abbrev_section;
7704 const gdb_byte *begin_info_ptr, *info_ptr;
7705 struct die_reader_specs reader;
7706 struct die_info *comp_unit_die;
7707 int has_children;
7708
7709 if (dwarf_die_debug)
7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7711 this_cu->is_debug_types ? "type" : "comp",
7712 sect_offset_str (this_cu->sect_off));
7713
7714 gdb_assert (this_cu->cu == NULL);
7715
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7719
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7722
7723 struct dwarf2_cu cu (this_cu);
7724
7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
7728 abbrev_section, info_ptr,
7729 (this_cu->is_debug_types
7730 ? rcuh_kind::TYPE
7731 : rcuh_kind::COMPILE));
7732
7733 this_cu->length = get_cu_length (&cu.header);
7734
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
7738 return;
7739
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
7743
7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7746
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7748 }
7749
7750 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
7753
7754 THIS_CU->cu is always freed when done.
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
7758
7759 static void
7760 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7762 void *data)
7763 {
7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7765 }
7766 \f
7767 /* Type Unit Groups.
7768
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
7774
7775 static hashval_t
7776 hash_type_unit_group (const void *item)
7777 {
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
7780
7781 return hash_stmt_list_entry (&tu_group->hash);
7782 }
7783
7784 static int
7785 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7786 {
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7789
7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7791 }
7792
7793 /* Allocate a hash table for type unit groups. */
7794
7795 static htab_t
7796 allocate_type_unit_groups_table (struct objfile *objfile)
7797 {
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7800 eq_type_unit_group,
7801 NULL,
7802 &objfile->objfile_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7805 }
7806
7807 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7812
7813 /* Helper routine for get_type_unit_group.
7814 Create the type_unit_group object used to hold one or more TUs. */
7815
7816 static struct type_unit_group *
7817 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7818 {
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 struct dwarf2_per_cu_data *per_cu;
7823 struct type_unit_group *tu_group;
7824
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
7827 per_cu = &tu_group->per_cu;
7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7829
7830 if (dwarf2_per_objfile->using_index)
7831 {
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
7834 }
7835 else
7836 {
7837 unsigned int line_offset = to_underlying (line_offset_struct);
7838 struct partial_symtab *pst;
7839 std::string name;
7840
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7845 else
7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
7847
7848 pst = create_partial_symtab (per_cu, name.c_str ());
7849 pst->anonymous = 1;
7850 }
7851
7852 tu_group->hash.dwo_unit = cu->dwo_unit;
7853 tu_group->hash.line_sect_off = line_offset_struct;
7854
7855 return tu_group;
7856 }
7857
7858 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
7860
7861 static struct type_unit_group *
7862 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7863 {
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7868 void **slot;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7871
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7873 {
7874 dwarf2_per_objfile->type_unit_groups =
7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7876 }
7877
7878 /* Do we need to create a new group, or can we use an existing one? */
7879
7880 if (stmt_list)
7881 {
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7884 }
7885 else
7886 {
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7896 }
7897
7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7902 if (*slot != NULL)
7903 {
7904 tu_group = (struct type_unit_group *) *slot;
7905 gdb_assert (tu_group != NULL);
7906 }
7907 else
7908 {
7909 sect_offset line_offset_struct = (sect_offset) line_offset;
7910 tu_group = create_type_unit_group (cu, line_offset_struct);
7911 *slot = tu_group;
7912 ++tu_stats->nr_symtabs;
7913 }
7914
7915 return tu_group;
7916 }
7917 \f
7918 /* Partial symbol tables. */
7919
7920 /* Create a psymtab named NAME and assign it to PER_CU.
7921
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7924
7925 static struct partial_symtab *
7926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7927 {
7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7929 struct partial_symtab *pst;
7930
7931 pst = start_psymtab_common (objfile, name, 0,
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
7934
7935 pst->psymtabs_addrmap_supported = 1;
7936
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7941
7942 return pst;
7943 }
7944
7945 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7946 type. */
7947
7948 struct process_psymtab_comp_unit_data
7949 {
7950 /* True if we are reading a DW_TAG_partial_unit. */
7951
7952 int want_partial_unit;
7953
7954 /* The "pretend" language that is used if the CU doesn't declare a
7955 language. */
7956
7957 enum language pretend_language;
7958 };
7959
7960 /* die_reader_func for process_psymtab_comp_unit. */
7961
7962 static void
7963 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7964 const gdb_byte *info_ptr,
7965 struct die_info *comp_unit_die,
7966 int has_children,
7967 void *data)
7968 {
7969 struct dwarf2_cu *cu = reader->cu;
7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7973 CORE_ADDR baseaddr;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
7976 enum pc_bounds_kind cu_bounds_kind;
7977 const char *filename;
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
7980
7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7982 return;
7983
7984 gdb_assert (! per_cu->is_debug_types);
7985
7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7987
7988 /* Allocate a new partial symbol table structure. */
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
7991 filename = "";
7992
7993 pst = create_partial_symtab (per_cu, filename);
7994
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7997
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7999
8000 dwarf2_find_base_address (comp_unit_die, cu);
8001
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8003 `DW_AT_ranges'. */
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8007 {
8008 CORE_ADDR low
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8010 - baseaddr);
8011 CORE_ADDR high
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8013 - baseaddr - 1);
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8017 }
8018
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8022 if (has_children)
8023 {
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8026
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8029
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8031
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8034
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8038 lowpc = highpc;
8039
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8043 {
8044 best_lowpc = lowpc;
8045 best_highpc = highpc;
8046 }
8047 }
8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_lowpc + baseaddr)
8050 - baseaddr);
8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8052 best_highpc + baseaddr)
8053 - baseaddr);
8054
8055 end_psymtab_common (objfile, pst);
8056
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8058 {
8059 int i;
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8062
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8064 post-pass. */
8065 pst->number_of_dependencies = len;
8066 pst->dependencies =
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8068 for (i = 0;
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8070 i, iter);
8071 ++i)
8072 pst->dependencies[i] = iter->v.psymtab;
8073
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8075 }
8076
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8080
8081 if (dwarf_read_debug)
8082 fprintf_unfiltered (gdb_stdlog,
8083 "Psymtab for %s unit @%s: %s - %s"
8084 ", %d global, %d static syms\n",
8085 per_cu->is_debug_types ? "type" : "comp",
8086 sect_offset_str (per_cu->sect_off),
8087 paddress (gdbarch, pst->text_low (objfile)),
8088 paddress (gdbarch, pst->text_high (objfile)),
8089 pst->n_global_syms, pst->n_static_syms);
8090 }
8091
8092 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8093 Process compilation unit THIS_CU for a psymtab. */
8094
8095 static void
8096 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8097 int want_partial_unit,
8098 enum language pretend_language)
8099 {
8100 /* If this compilation unit was already read in, free the
8101 cached copy in order to read it in again. This is
8102 necessary because we skipped some symbols when we first
8103 read in the compilation unit (see load_partial_dies).
8104 This problem could be avoided, but the benefit is unclear. */
8105 if (this_cu->cu != NULL)
8106 free_one_cached_comp_unit (this_cu);
8107
8108 if (this_cu->is_debug_types)
8109 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8110 build_type_psymtabs_reader, NULL);
8111 else
8112 {
8113 process_psymtab_comp_unit_data info;
8114 info.want_partial_unit = want_partial_unit;
8115 info.pretend_language = pretend_language;
8116 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8117 process_psymtab_comp_unit_reader, &info);
8118 }
8119
8120 /* Age out any secondary CUs. */
8121 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8122 }
8123
8124 /* Reader function for build_type_psymtabs. */
8125
8126 static void
8127 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8128 const gdb_byte *info_ptr,
8129 struct die_info *type_unit_die,
8130 int has_children,
8131 void *data)
8132 {
8133 struct dwarf2_per_objfile *dwarf2_per_objfile
8134 = reader->cu->per_cu->dwarf2_per_objfile;
8135 struct objfile *objfile = dwarf2_per_objfile->objfile;
8136 struct dwarf2_cu *cu = reader->cu;
8137 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8138 struct signatured_type *sig_type;
8139 struct type_unit_group *tu_group;
8140 struct attribute *attr;
8141 struct partial_die_info *first_die;
8142 CORE_ADDR lowpc, highpc;
8143 struct partial_symtab *pst;
8144
8145 gdb_assert (data == NULL);
8146 gdb_assert (per_cu->is_debug_types);
8147 sig_type = (struct signatured_type *) per_cu;
8148
8149 if (! has_children)
8150 return;
8151
8152 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8153 tu_group = get_type_unit_group (cu, attr);
8154
8155 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8156
8157 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8158 pst = create_partial_symtab (per_cu, "");
8159 pst->anonymous = 1;
8160
8161 first_die = load_partial_dies (reader, info_ptr, 1);
8162
8163 lowpc = (CORE_ADDR) -1;
8164 highpc = (CORE_ADDR) 0;
8165 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8166
8167 end_psymtab_common (objfile, pst);
8168 }
8169
8170 /* Struct used to sort TUs by their abbreviation table offset. */
8171
8172 struct tu_abbrev_offset
8173 {
8174 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8175 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8176 {}
8177
8178 signatured_type *sig_type;
8179 sect_offset abbrev_offset;
8180 };
8181
8182 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8183
8184 static bool
8185 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8186 const struct tu_abbrev_offset &b)
8187 {
8188 return a.abbrev_offset < b.abbrev_offset;
8189 }
8190
8191 /* Efficiently read all the type units.
8192 This does the bulk of the work for build_type_psymtabs.
8193
8194 The efficiency is because we sort TUs by the abbrev table they use and
8195 only read each abbrev table once. In one program there are 200K TUs
8196 sharing 8K abbrev tables.
8197
8198 The main purpose of this function is to support building the
8199 dwarf2_per_objfile->type_unit_groups table.
8200 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8201 can collapse the search space by grouping them by stmt_list.
8202 The savings can be significant, in the same program from above the 200K TUs
8203 share 8K stmt_list tables.
8204
8205 FUNC is expected to call get_type_unit_group, which will create the
8206 struct type_unit_group if necessary and add it to
8207 dwarf2_per_objfile->type_unit_groups. */
8208
8209 static void
8210 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8211 {
8212 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8213 abbrev_table_up abbrev_table;
8214 sect_offset abbrev_offset;
8215
8216 /* It's up to the caller to not call us multiple times. */
8217 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8218
8219 if (dwarf2_per_objfile->all_type_units.empty ())
8220 return;
8221
8222 /* TUs typically share abbrev tables, and there can be way more TUs than
8223 abbrev tables. Sort by abbrev table to reduce the number of times we
8224 read each abbrev table in.
8225 Alternatives are to punt or to maintain a cache of abbrev tables.
8226 This is simpler and efficient enough for now.
8227
8228 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8229 symtab to use). Typically TUs with the same abbrev offset have the same
8230 stmt_list value too so in practice this should work well.
8231
8232 The basic algorithm here is:
8233
8234 sort TUs by abbrev table
8235 for each TU with same abbrev table:
8236 read abbrev table if first user
8237 read TU top level DIE
8238 [IWBN if DWO skeletons had DW_AT_stmt_list]
8239 call FUNC */
8240
8241 if (dwarf_read_debug)
8242 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8243
8244 /* Sort in a separate table to maintain the order of all_type_units
8245 for .gdb_index: TU indices directly index all_type_units. */
8246 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8247 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8248
8249 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8250 sorted_by_abbrev.emplace_back
8251 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8252 sig_type->per_cu.section,
8253 sig_type->per_cu.sect_off));
8254
8255 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8256 sort_tu_by_abbrev_offset);
8257
8258 abbrev_offset = (sect_offset) ~(unsigned) 0;
8259
8260 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8261 {
8262 /* Switch to the next abbrev table if necessary. */
8263 if (abbrev_table == NULL
8264 || tu.abbrev_offset != abbrev_offset)
8265 {
8266 abbrev_offset = tu.abbrev_offset;
8267 abbrev_table =
8268 abbrev_table_read_table (dwarf2_per_objfile,
8269 &dwarf2_per_objfile->abbrev,
8270 abbrev_offset);
8271 ++tu_stats->nr_uniq_abbrev_tables;
8272 }
8273
8274 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8275 0, 0, false, build_type_psymtabs_reader, NULL);
8276 }
8277 }
8278
8279 /* Print collected type unit statistics. */
8280
8281 static void
8282 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8283 {
8284 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8285
8286 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8287 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8288 dwarf2_per_objfile->all_type_units.size ());
8289 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8290 tu_stats->nr_uniq_abbrev_tables);
8291 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8292 tu_stats->nr_symtabs);
8293 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8294 tu_stats->nr_symtab_sharers);
8295 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8296 tu_stats->nr_stmt_less_type_units);
8297 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8298 tu_stats->nr_all_type_units_reallocs);
8299 }
8300
8301 /* Traversal function for build_type_psymtabs. */
8302
8303 static int
8304 build_type_psymtab_dependencies (void **slot, void *info)
8305 {
8306 struct dwarf2_per_objfile *dwarf2_per_objfile
8307 = (struct dwarf2_per_objfile *) info;
8308 struct objfile *objfile = dwarf2_per_objfile->objfile;
8309 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8310 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8311 struct partial_symtab *pst = per_cu->v.psymtab;
8312 int len = VEC_length (sig_type_ptr, tu_group->tus);
8313 struct signatured_type *iter;
8314 int i;
8315
8316 gdb_assert (len > 0);
8317 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8318
8319 pst->number_of_dependencies = len;
8320 pst->dependencies =
8321 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8322 for (i = 0;
8323 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8324 ++i)
8325 {
8326 gdb_assert (iter->per_cu.is_debug_types);
8327 pst->dependencies[i] = iter->per_cu.v.psymtab;
8328 iter->type_unit_group = tu_group;
8329 }
8330
8331 VEC_free (sig_type_ptr, tu_group->tus);
8332
8333 return 1;
8334 }
8335
8336 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8337 Build partial symbol tables for the .debug_types comp-units. */
8338
8339 static void
8340 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8341 {
8342 if (! create_all_type_units (dwarf2_per_objfile))
8343 return;
8344
8345 build_type_psymtabs_1 (dwarf2_per_objfile);
8346 }
8347
8348 /* Traversal function for process_skeletonless_type_unit.
8349 Read a TU in a DWO file and build partial symbols for it. */
8350
8351 static int
8352 process_skeletonless_type_unit (void **slot, void *info)
8353 {
8354 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8355 struct dwarf2_per_objfile *dwarf2_per_objfile
8356 = (struct dwarf2_per_objfile *) info;
8357 struct signatured_type find_entry, *entry;
8358
8359 /* If this TU doesn't exist in the global table, add it and read it in. */
8360
8361 if (dwarf2_per_objfile->signatured_types == NULL)
8362 {
8363 dwarf2_per_objfile->signatured_types
8364 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8365 }
8366
8367 find_entry.signature = dwo_unit->signature;
8368 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8369 INSERT);
8370 /* If we've already seen this type there's nothing to do. What's happening
8371 is we're doing our own version of comdat-folding here. */
8372 if (*slot != NULL)
8373 return 1;
8374
8375 /* This does the job that create_all_type_units would have done for
8376 this TU. */
8377 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8378 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8379 *slot = entry;
8380
8381 /* This does the job that build_type_psymtabs_1 would have done. */
8382 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8383 build_type_psymtabs_reader, NULL);
8384
8385 return 1;
8386 }
8387
8388 /* Traversal function for process_skeletonless_type_units. */
8389
8390 static int
8391 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8392 {
8393 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8394
8395 if (dwo_file->tus != NULL)
8396 {
8397 htab_traverse_noresize (dwo_file->tus,
8398 process_skeletonless_type_unit, info);
8399 }
8400
8401 return 1;
8402 }
8403
8404 /* Scan all TUs of DWO files, verifying we've processed them.
8405 This is needed in case a TU was emitted without its skeleton.
8406 Note: This can't be done until we know what all the DWO files are. */
8407
8408 static void
8409 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8410 {
8411 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8412 if (get_dwp_file (dwarf2_per_objfile) == NULL
8413 && dwarf2_per_objfile->dwo_files != NULL)
8414 {
8415 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8416 process_dwo_file_for_skeletonless_type_units,
8417 dwarf2_per_objfile);
8418 }
8419 }
8420
8421 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8422
8423 static void
8424 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8425 {
8426 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8427 {
8428 struct partial_symtab *pst = per_cu->v.psymtab;
8429
8430 if (pst == NULL)
8431 continue;
8432
8433 for (int j = 0; j < pst->number_of_dependencies; ++j)
8434 {
8435 /* Set the 'user' field only if it is not already set. */
8436 if (pst->dependencies[j]->user == NULL)
8437 pst->dependencies[j]->user = pst;
8438 }
8439 }
8440 }
8441
8442 /* Build the partial symbol table by doing a quick pass through the
8443 .debug_info and .debug_abbrev sections. */
8444
8445 static void
8446 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8447 {
8448 struct objfile *objfile = dwarf2_per_objfile->objfile;
8449
8450 if (dwarf_read_debug)
8451 {
8452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8453 objfile_name (objfile));
8454 }
8455
8456 dwarf2_per_objfile->reading_partial_symbols = 1;
8457
8458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8459
8460 /* Any cached compilation units will be linked by the per-objfile
8461 read_in_chain. Make sure to free them when we're done. */
8462 free_cached_comp_units freer (dwarf2_per_objfile);
8463
8464 build_type_psymtabs (dwarf2_per_objfile);
8465
8466 create_all_comp_units (dwarf2_per_objfile);
8467
8468 /* Create a temporary address map on a temporary obstack. We later
8469 copy this to the final obstack. */
8470 auto_obstack temp_obstack;
8471
8472 scoped_restore save_psymtabs_addrmap
8473 = make_scoped_restore (&objfile->psymtabs_addrmap,
8474 addrmap_create_mutable (&temp_obstack));
8475
8476 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8477 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8478
8479 /* This has to wait until we read the CUs, we need the list of DWOs. */
8480 process_skeletonless_type_units (dwarf2_per_objfile);
8481
8482 /* Now that all TUs have been processed we can fill in the dependencies. */
8483 if (dwarf2_per_objfile->type_unit_groups != NULL)
8484 {
8485 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8486 build_type_psymtab_dependencies, dwarf2_per_objfile);
8487 }
8488
8489 if (dwarf_read_debug)
8490 print_tu_stats (dwarf2_per_objfile);
8491
8492 set_partial_user (dwarf2_per_objfile);
8493
8494 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8495 &objfile->objfile_obstack);
8496 /* At this point we want to keep the address map. */
8497 save_psymtabs_addrmap.release ();
8498
8499 if (dwarf_read_debug)
8500 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8501 objfile_name (objfile));
8502 }
8503
8504 /* die_reader_func for load_partial_comp_unit. */
8505
8506 static void
8507 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8508 const gdb_byte *info_ptr,
8509 struct die_info *comp_unit_die,
8510 int has_children,
8511 void *data)
8512 {
8513 struct dwarf2_cu *cu = reader->cu;
8514
8515 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8516
8517 /* Check if comp unit has_children.
8518 If so, read the rest of the partial symbols from this comp unit.
8519 If not, there's no more debug_info for this comp unit. */
8520 if (has_children)
8521 load_partial_dies (reader, info_ptr, 0);
8522 }
8523
8524 /* Load the partial DIEs for a secondary CU into memory.
8525 This is also used when rereading a primary CU with load_all_dies. */
8526
8527 static void
8528 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8529 {
8530 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8531 load_partial_comp_unit_reader, NULL);
8532 }
8533
8534 static void
8535 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8536 struct dwarf2_section_info *section,
8537 struct dwarf2_section_info *abbrev_section,
8538 unsigned int is_dwz)
8539 {
8540 const gdb_byte *info_ptr;
8541 struct objfile *objfile = dwarf2_per_objfile->objfile;
8542
8543 if (dwarf_read_debug)
8544 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8545 get_section_name (section),
8546 get_section_file_name (section));
8547
8548 dwarf2_read_section (objfile, section);
8549
8550 info_ptr = section->buffer;
8551
8552 while (info_ptr < section->buffer + section->size)
8553 {
8554 struct dwarf2_per_cu_data *this_cu;
8555
8556 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8557
8558 comp_unit_head cu_header;
8559 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8560 abbrev_section, info_ptr,
8561 rcuh_kind::COMPILE);
8562
8563 /* Save the compilation unit for later lookup. */
8564 if (cu_header.unit_type != DW_UT_type)
8565 {
8566 this_cu = XOBNEW (&objfile->objfile_obstack,
8567 struct dwarf2_per_cu_data);
8568 memset (this_cu, 0, sizeof (*this_cu));
8569 }
8570 else
8571 {
8572 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8573 struct signatured_type);
8574 memset (sig_type, 0, sizeof (*sig_type));
8575 sig_type->signature = cu_header.signature;
8576 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8577 this_cu = &sig_type->per_cu;
8578 }
8579 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8580 this_cu->sect_off = sect_off;
8581 this_cu->length = cu_header.length + cu_header.initial_length_size;
8582 this_cu->is_dwz = is_dwz;
8583 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8584 this_cu->section = section;
8585
8586 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8587
8588 info_ptr = info_ptr + this_cu->length;
8589 }
8590 }
8591
8592 /* Create a list of all compilation units in OBJFILE.
8593 This is only done for -readnow and building partial symtabs. */
8594
8595 static void
8596 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8597 {
8598 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8599 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8600 &dwarf2_per_objfile->abbrev, 0);
8601
8602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8603 if (dwz != NULL)
8604 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8605 1);
8606 }
8607
8608 /* Process all loaded DIEs for compilation unit CU, starting at
8609 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8610 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8611 DW_AT_ranges). See the comments of add_partial_subprogram on how
8612 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8613
8614 static void
8615 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8616 CORE_ADDR *highpc, int set_addrmap,
8617 struct dwarf2_cu *cu)
8618 {
8619 struct partial_die_info *pdi;
8620
8621 /* Now, march along the PDI's, descending into ones which have
8622 interesting children but skipping the children of the other ones,
8623 until we reach the end of the compilation unit. */
8624
8625 pdi = first_die;
8626
8627 while (pdi != NULL)
8628 {
8629 pdi->fixup (cu);
8630
8631 /* Anonymous namespaces or modules have no name but have interesting
8632 children, so we need to look at them. Ditto for anonymous
8633 enums. */
8634
8635 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8636 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8637 || pdi->tag == DW_TAG_imported_unit
8638 || pdi->tag == DW_TAG_inlined_subroutine)
8639 {
8640 switch (pdi->tag)
8641 {
8642 case DW_TAG_subprogram:
8643 case DW_TAG_inlined_subroutine:
8644 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8645 break;
8646 case DW_TAG_constant:
8647 case DW_TAG_variable:
8648 case DW_TAG_typedef:
8649 case DW_TAG_union_type:
8650 if (!pdi->is_declaration)
8651 {
8652 add_partial_symbol (pdi, cu);
8653 }
8654 break;
8655 case DW_TAG_class_type:
8656 case DW_TAG_interface_type:
8657 case DW_TAG_structure_type:
8658 if (!pdi->is_declaration)
8659 {
8660 add_partial_symbol (pdi, cu);
8661 }
8662 if ((cu->language == language_rust
8663 || cu->language == language_cplus) && pdi->has_children)
8664 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8665 set_addrmap, cu);
8666 break;
8667 case DW_TAG_enumeration_type:
8668 if (!pdi->is_declaration)
8669 add_partial_enumeration (pdi, cu);
8670 break;
8671 case DW_TAG_base_type:
8672 case DW_TAG_subrange_type:
8673 /* File scope base type definitions are added to the partial
8674 symbol table. */
8675 add_partial_symbol (pdi, cu);
8676 break;
8677 case DW_TAG_namespace:
8678 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8679 break;
8680 case DW_TAG_module:
8681 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8682 break;
8683 case DW_TAG_imported_unit:
8684 {
8685 struct dwarf2_per_cu_data *per_cu;
8686
8687 /* For now we don't handle imported units in type units. */
8688 if (cu->per_cu->is_debug_types)
8689 {
8690 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8691 " supported in type units [in module %s]"),
8692 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8693 }
8694
8695 per_cu = dwarf2_find_containing_comp_unit
8696 (pdi->d.sect_off, pdi->is_dwz,
8697 cu->per_cu->dwarf2_per_objfile);
8698
8699 /* Go read the partial unit, if needed. */
8700 if (per_cu->v.psymtab == NULL)
8701 process_psymtab_comp_unit (per_cu, 1, cu->language);
8702
8703 VEC_safe_push (dwarf2_per_cu_ptr,
8704 cu->per_cu->imported_symtabs, per_cu);
8705 }
8706 break;
8707 case DW_TAG_imported_declaration:
8708 add_partial_symbol (pdi, cu);
8709 break;
8710 default:
8711 break;
8712 }
8713 }
8714
8715 /* If the die has a sibling, skip to the sibling. */
8716
8717 pdi = pdi->die_sibling;
8718 }
8719 }
8720
8721 /* Functions used to compute the fully scoped name of a partial DIE.
8722
8723 Normally, this is simple. For C++, the parent DIE's fully scoped
8724 name is concatenated with "::" and the partial DIE's name.
8725 Enumerators are an exception; they use the scope of their parent
8726 enumeration type, i.e. the name of the enumeration type is not
8727 prepended to the enumerator.
8728
8729 There are two complexities. One is DW_AT_specification; in this
8730 case "parent" means the parent of the target of the specification,
8731 instead of the direct parent of the DIE. The other is compilers
8732 which do not emit DW_TAG_namespace; in this case we try to guess
8733 the fully qualified name of structure types from their members'
8734 linkage names. This must be done using the DIE's children rather
8735 than the children of any DW_AT_specification target. We only need
8736 to do this for structures at the top level, i.e. if the target of
8737 any DW_AT_specification (if any; otherwise the DIE itself) does not
8738 have a parent. */
8739
8740 /* Compute the scope prefix associated with PDI's parent, in
8741 compilation unit CU. The result will be allocated on CU's
8742 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8743 field. NULL is returned if no prefix is necessary. */
8744 static const char *
8745 partial_die_parent_scope (struct partial_die_info *pdi,
8746 struct dwarf2_cu *cu)
8747 {
8748 const char *grandparent_scope;
8749 struct partial_die_info *parent, *real_pdi;
8750
8751 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8752 then this means the parent of the specification DIE. */
8753
8754 real_pdi = pdi;
8755 while (real_pdi->has_specification)
8756 real_pdi = find_partial_die (real_pdi->spec_offset,
8757 real_pdi->spec_is_dwz, cu);
8758
8759 parent = real_pdi->die_parent;
8760 if (parent == NULL)
8761 return NULL;
8762
8763 if (parent->scope_set)
8764 return parent->scope;
8765
8766 parent->fixup (cu);
8767
8768 grandparent_scope = partial_die_parent_scope (parent, cu);
8769
8770 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8771 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8772 Work around this problem here. */
8773 if (cu->language == language_cplus
8774 && parent->tag == DW_TAG_namespace
8775 && strcmp (parent->name, "::") == 0
8776 && grandparent_scope == NULL)
8777 {
8778 parent->scope = NULL;
8779 parent->scope_set = 1;
8780 return NULL;
8781 }
8782
8783 if (pdi->tag == DW_TAG_enumerator)
8784 /* Enumerators should not get the name of the enumeration as a prefix. */
8785 parent->scope = grandparent_scope;
8786 else if (parent->tag == DW_TAG_namespace
8787 || parent->tag == DW_TAG_module
8788 || parent->tag == DW_TAG_structure_type
8789 || parent->tag == DW_TAG_class_type
8790 || parent->tag == DW_TAG_interface_type
8791 || parent->tag == DW_TAG_union_type
8792 || parent->tag == DW_TAG_enumeration_type)
8793 {
8794 if (grandparent_scope == NULL)
8795 parent->scope = parent->name;
8796 else
8797 parent->scope = typename_concat (&cu->comp_unit_obstack,
8798 grandparent_scope,
8799 parent->name, 0, cu);
8800 }
8801 else
8802 {
8803 /* FIXME drow/2004-04-01: What should we be doing with
8804 function-local names? For partial symbols, we should probably be
8805 ignoring them. */
8806 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8807 parent->tag, sect_offset_str (pdi->sect_off));
8808 parent->scope = grandparent_scope;
8809 }
8810
8811 parent->scope_set = 1;
8812 return parent->scope;
8813 }
8814
8815 /* Return the fully scoped name associated with PDI, from compilation unit
8816 CU. The result will be allocated with malloc. */
8817
8818 static char *
8819 partial_die_full_name (struct partial_die_info *pdi,
8820 struct dwarf2_cu *cu)
8821 {
8822 const char *parent_scope;
8823
8824 /* If this is a template instantiation, we can not work out the
8825 template arguments from partial DIEs. So, unfortunately, we have
8826 to go through the full DIEs. At least any work we do building
8827 types here will be reused if full symbols are loaded later. */
8828 if (pdi->has_template_arguments)
8829 {
8830 pdi->fixup (cu);
8831
8832 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8833 {
8834 struct die_info *die;
8835 struct attribute attr;
8836 struct dwarf2_cu *ref_cu = cu;
8837
8838 /* DW_FORM_ref_addr is using section offset. */
8839 attr.name = (enum dwarf_attribute) 0;
8840 attr.form = DW_FORM_ref_addr;
8841 attr.u.unsnd = to_underlying (pdi->sect_off);
8842 die = follow_die_ref (NULL, &attr, &ref_cu);
8843
8844 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8845 }
8846 }
8847
8848 parent_scope = partial_die_parent_scope (pdi, cu);
8849 if (parent_scope == NULL)
8850 return NULL;
8851 else
8852 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8853 }
8854
8855 static void
8856 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8857 {
8858 struct dwarf2_per_objfile *dwarf2_per_objfile
8859 = cu->per_cu->dwarf2_per_objfile;
8860 struct objfile *objfile = dwarf2_per_objfile->objfile;
8861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8862 CORE_ADDR addr = 0;
8863 const char *actual_name = NULL;
8864 CORE_ADDR baseaddr;
8865 char *built_actual_name;
8866
8867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8868
8869 built_actual_name = partial_die_full_name (pdi, cu);
8870 if (built_actual_name != NULL)
8871 actual_name = built_actual_name;
8872
8873 if (actual_name == NULL)
8874 actual_name = pdi->name;
8875
8876 switch (pdi->tag)
8877 {
8878 case DW_TAG_inlined_subroutine:
8879 case DW_TAG_subprogram:
8880 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8881 - baseaddr);
8882 if (pdi->is_external || cu->language == language_ada)
8883 {
8884 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8885 of the global scope. But in Ada, we want to be able to access
8886 nested procedures globally. So all Ada subprograms are stored
8887 in the global scope. */
8888 add_psymbol_to_list (actual_name, strlen (actual_name),
8889 built_actual_name != NULL,
8890 VAR_DOMAIN, LOC_BLOCK,
8891 SECT_OFF_TEXT (objfile),
8892 &objfile->global_psymbols,
8893 addr,
8894 cu->language, objfile);
8895 }
8896 else
8897 {
8898 add_psymbol_to_list (actual_name, strlen (actual_name),
8899 built_actual_name != NULL,
8900 VAR_DOMAIN, LOC_BLOCK,
8901 SECT_OFF_TEXT (objfile),
8902 &objfile->static_psymbols,
8903 addr, cu->language, objfile);
8904 }
8905
8906 if (pdi->main_subprogram && actual_name != NULL)
8907 set_objfile_main_name (objfile, actual_name, cu->language);
8908 break;
8909 case DW_TAG_constant:
8910 {
8911 std::vector<partial_symbol *> *list;
8912
8913 if (pdi->is_external)
8914 list = &objfile->global_psymbols;
8915 else
8916 list = &objfile->static_psymbols;
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8919 -1, list, 0, cu->language, objfile);
8920 }
8921 break;
8922 case DW_TAG_variable:
8923 if (pdi->d.locdesc)
8924 addr = decode_locdesc (pdi->d.locdesc, cu);
8925
8926 if (pdi->d.locdesc
8927 && addr == 0
8928 && !dwarf2_per_objfile->has_section_at_zero)
8929 {
8930 /* A global or static variable may also have been stripped
8931 out by the linker if unused, in which case its address
8932 will be nullified; do not add such variables into partial
8933 symbol table then. */
8934 }
8935 else if (pdi->is_external)
8936 {
8937 /* Global Variable.
8938 Don't enter into the minimal symbol tables as there is
8939 a minimal symbol table entry from the ELF symbols already.
8940 Enter into partial symbol table if it has a location
8941 descriptor or a type.
8942 If the location descriptor is missing, new_symbol will create
8943 a LOC_UNRESOLVED symbol, the address of the variable will then
8944 be determined from the minimal symbol table whenever the variable
8945 is referenced.
8946 The address for the partial symbol table entry is not
8947 used by GDB, but it comes in handy for debugging partial symbol
8948 table building. */
8949
8950 if (pdi->d.locdesc || pdi->has_type)
8951 add_psymbol_to_list (actual_name, strlen (actual_name),
8952 built_actual_name != NULL,
8953 VAR_DOMAIN, LOC_STATIC,
8954 SECT_OFF_TEXT (objfile),
8955 &objfile->global_psymbols,
8956 addr, cu->language, objfile);
8957 }
8958 else
8959 {
8960 int has_loc = pdi->d.locdesc != NULL;
8961
8962 /* Static Variable. Skip symbols whose value we cannot know (those
8963 without location descriptors or constant values). */
8964 if (!has_loc && !pdi->has_const_value)
8965 {
8966 xfree (built_actual_name);
8967 return;
8968 }
8969
8970 add_psymbol_to_list (actual_name, strlen (actual_name),
8971 built_actual_name != NULL,
8972 VAR_DOMAIN, LOC_STATIC,
8973 SECT_OFF_TEXT (objfile),
8974 &objfile->static_psymbols,
8975 has_loc ? addr : 0,
8976 cu->language, objfile);
8977 }
8978 break;
8979 case DW_TAG_typedef:
8980 case DW_TAG_base_type:
8981 case DW_TAG_subrange_type:
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 VAR_DOMAIN, LOC_TYPEDEF, -1,
8985 &objfile->static_psymbols,
8986 0, cu->language, objfile);
8987 break;
8988 case DW_TAG_imported_declaration:
8989 case DW_TAG_namespace:
8990 add_psymbol_to_list (actual_name, strlen (actual_name),
8991 built_actual_name != NULL,
8992 VAR_DOMAIN, LOC_TYPEDEF, -1,
8993 &objfile->global_psymbols,
8994 0, cu->language, objfile);
8995 break;
8996 case DW_TAG_module:
8997 add_psymbol_to_list (actual_name, strlen (actual_name),
8998 built_actual_name != NULL,
8999 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9000 &objfile->global_psymbols,
9001 0, cu->language, objfile);
9002 break;
9003 case DW_TAG_class_type:
9004 case DW_TAG_interface_type:
9005 case DW_TAG_structure_type:
9006 case DW_TAG_union_type:
9007 case DW_TAG_enumeration_type:
9008 /* Skip external references. The DWARF standard says in the section
9009 about "Structure, Union, and Class Type Entries": "An incomplete
9010 structure, union or class type is represented by a structure,
9011 union or class entry that does not have a byte size attribute
9012 and that has a DW_AT_declaration attribute." */
9013 if (!pdi->has_byte_size && pdi->is_declaration)
9014 {
9015 xfree (built_actual_name);
9016 return;
9017 }
9018
9019 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9020 static vs. global. */
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9024 cu->language == language_cplus
9025 ? &objfile->global_psymbols
9026 : &objfile->static_psymbols,
9027 0, cu->language, objfile);
9028
9029 break;
9030 case DW_TAG_enumerator:
9031 add_psymbol_to_list (actual_name, strlen (actual_name),
9032 built_actual_name != NULL,
9033 VAR_DOMAIN, LOC_CONST, -1,
9034 cu->language == language_cplus
9035 ? &objfile->global_psymbols
9036 : &objfile->static_psymbols,
9037 0, cu->language, objfile);
9038 break;
9039 default:
9040 break;
9041 }
9042
9043 xfree (built_actual_name);
9044 }
9045
9046 /* Read a partial die corresponding to a namespace; also, add a symbol
9047 corresponding to that namespace to the symbol table. NAMESPACE is
9048 the name of the enclosing namespace. */
9049
9050 static void
9051 add_partial_namespace (struct partial_die_info *pdi,
9052 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9053 int set_addrmap, struct dwarf2_cu *cu)
9054 {
9055 /* Add a symbol for the namespace. */
9056
9057 add_partial_symbol (pdi, cu);
9058
9059 /* Now scan partial symbols in that namespace. */
9060
9061 if (pdi->has_children)
9062 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9063 }
9064
9065 /* Read a partial die corresponding to a Fortran module. */
9066
9067 static void
9068 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9069 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9070 {
9071 /* Add a symbol for the namespace. */
9072
9073 add_partial_symbol (pdi, cu);
9074
9075 /* Now scan partial symbols in that module. */
9076
9077 if (pdi->has_children)
9078 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9079 }
9080
9081 /* Read a partial die corresponding to a subprogram or an inlined
9082 subprogram and create a partial symbol for that subprogram.
9083 When the CU language allows it, this routine also defines a partial
9084 symbol for each nested subprogram that this subprogram contains.
9085 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9086 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9087
9088 PDI may also be a lexical block, in which case we simply search
9089 recursively for subprograms defined inside that lexical block.
9090 Again, this is only performed when the CU language allows this
9091 type of definitions. */
9092
9093 static void
9094 add_partial_subprogram (struct partial_die_info *pdi,
9095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9096 int set_addrmap, struct dwarf2_cu *cu)
9097 {
9098 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9099 {
9100 if (pdi->has_pc_info)
9101 {
9102 if (pdi->lowpc < *lowpc)
9103 *lowpc = pdi->lowpc;
9104 if (pdi->highpc > *highpc)
9105 *highpc = pdi->highpc;
9106 if (set_addrmap)
9107 {
9108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9110 CORE_ADDR baseaddr;
9111 CORE_ADDR this_highpc;
9112 CORE_ADDR this_lowpc;
9113
9114 baseaddr = ANOFFSET (objfile->section_offsets,
9115 SECT_OFF_TEXT (objfile));
9116 this_lowpc
9117 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9118 pdi->lowpc + baseaddr)
9119 - baseaddr);
9120 this_highpc
9121 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9122 pdi->highpc + baseaddr)
9123 - baseaddr);
9124 addrmap_set_empty (objfile->psymtabs_addrmap,
9125 this_lowpc, this_highpc - 1,
9126 cu->per_cu->v.psymtab);
9127 }
9128 }
9129
9130 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9131 {
9132 if (!pdi->is_declaration)
9133 /* Ignore subprogram DIEs that do not have a name, they are
9134 illegal. Do not emit a complaint at this point, we will
9135 do so when we convert this psymtab into a symtab. */
9136 if (pdi->name)
9137 add_partial_symbol (pdi, cu);
9138 }
9139 }
9140
9141 if (! pdi->has_children)
9142 return;
9143
9144 if (cu->language == language_ada)
9145 {
9146 pdi = pdi->die_child;
9147 while (pdi != NULL)
9148 {
9149 pdi->fixup (cu);
9150 if (pdi->tag == DW_TAG_subprogram
9151 || pdi->tag == DW_TAG_inlined_subroutine
9152 || pdi->tag == DW_TAG_lexical_block)
9153 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9154 pdi = pdi->die_sibling;
9155 }
9156 }
9157 }
9158
9159 /* Read a partial die corresponding to an enumeration type. */
9160
9161 static void
9162 add_partial_enumeration (struct partial_die_info *enum_pdi,
9163 struct dwarf2_cu *cu)
9164 {
9165 struct partial_die_info *pdi;
9166
9167 if (enum_pdi->name != NULL)
9168 add_partial_symbol (enum_pdi, cu);
9169
9170 pdi = enum_pdi->die_child;
9171 while (pdi)
9172 {
9173 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9174 complaint (_("malformed enumerator DIE ignored"));
9175 else
9176 add_partial_symbol (pdi, cu);
9177 pdi = pdi->die_sibling;
9178 }
9179 }
9180
9181 /* Return the initial uleb128 in the die at INFO_PTR. */
9182
9183 static unsigned int
9184 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9185 {
9186 unsigned int bytes_read;
9187
9188 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9189 }
9190
9191 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9192 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9193
9194 Return the corresponding abbrev, or NULL if the number is zero (indicating
9195 an empty DIE). In either case *BYTES_READ will be set to the length of
9196 the initial number. */
9197
9198 static struct abbrev_info *
9199 peek_die_abbrev (const die_reader_specs &reader,
9200 const gdb_byte *info_ptr, unsigned int *bytes_read)
9201 {
9202 dwarf2_cu *cu = reader.cu;
9203 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9204 unsigned int abbrev_number
9205 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9206
9207 if (abbrev_number == 0)
9208 return NULL;
9209
9210 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9211 if (!abbrev)
9212 {
9213 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9214 " at offset %s [in module %s]"),
9215 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9216 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9217 }
9218
9219 return abbrev;
9220 }
9221
9222 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9223 Returns a pointer to the end of a series of DIEs, terminated by an empty
9224 DIE. Any children of the skipped DIEs will also be skipped. */
9225
9226 static const gdb_byte *
9227 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9228 {
9229 while (1)
9230 {
9231 unsigned int bytes_read;
9232 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9233
9234 if (abbrev == NULL)
9235 return info_ptr + bytes_read;
9236 else
9237 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9238 }
9239 }
9240
9241 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9242 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9243 abbrev corresponding to that skipped uleb128 should be passed in
9244 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9245 children. */
9246
9247 static const gdb_byte *
9248 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9249 struct abbrev_info *abbrev)
9250 {
9251 unsigned int bytes_read;
9252 struct attribute attr;
9253 bfd *abfd = reader->abfd;
9254 struct dwarf2_cu *cu = reader->cu;
9255 const gdb_byte *buffer = reader->buffer;
9256 const gdb_byte *buffer_end = reader->buffer_end;
9257 unsigned int form, i;
9258
9259 for (i = 0; i < abbrev->num_attrs; i++)
9260 {
9261 /* The only abbrev we care about is DW_AT_sibling. */
9262 if (abbrev->attrs[i].name == DW_AT_sibling)
9263 {
9264 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9265 if (attr.form == DW_FORM_ref_addr)
9266 complaint (_("ignoring absolute DW_AT_sibling"));
9267 else
9268 {
9269 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9270 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9271
9272 if (sibling_ptr < info_ptr)
9273 complaint (_("DW_AT_sibling points backwards"));
9274 else if (sibling_ptr > reader->buffer_end)
9275 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9276 else
9277 return sibling_ptr;
9278 }
9279 }
9280
9281 /* If it isn't DW_AT_sibling, skip this attribute. */
9282 form = abbrev->attrs[i].form;
9283 skip_attribute:
9284 switch (form)
9285 {
9286 case DW_FORM_ref_addr:
9287 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9288 and later it is offset sized. */
9289 if (cu->header.version == 2)
9290 info_ptr += cu->header.addr_size;
9291 else
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_GNU_ref_alt:
9295 info_ptr += cu->header.offset_size;
9296 break;
9297 case DW_FORM_addr:
9298 info_ptr += cu->header.addr_size;
9299 break;
9300 case DW_FORM_data1:
9301 case DW_FORM_ref1:
9302 case DW_FORM_flag:
9303 info_ptr += 1;
9304 break;
9305 case DW_FORM_flag_present:
9306 case DW_FORM_implicit_const:
9307 break;
9308 case DW_FORM_data2:
9309 case DW_FORM_ref2:
9310 info_ptr += 2;
9311 break;
9312 case DW_FORM_data4:
9313 case DW_FORM_ref4:
9314 info_ptr += 4;
9315 break;
9316 case DW_FORM_data8:
9317 case DW_FORM_ref8:
9318 case DW_FORM_ref_sig8:
9319 info_ptr += 8;
9320 break;
9321 case DW_FORM_data16:
9322 info_ptr += 16;
9323 break;
9324 case DW_FORM_string:
9325 read_direct_string (abfd, info_ptr, &bytes_read);
9326 info_ptr += bytes_read;
9327 break;
9328 case DW_FORM_sec_offset:
9329 case DW_FORM_strp:
9330 case DW_FORM_GNU_strp_alt:
9331 info_ptr += cu->header.offset_size;
9332 break;
9333 case DW_FORM_exprloc:
9334 case DW_FORM_block:
9335 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9336 info_ptr += bytes_read;
9337 break;
9338 case DW_FORM_block1:
9339 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9340 break;
9341 case DW_FORM_block2:
9342 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9343 break;
9344 case DW_FORM_block4:
9345 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9346 break;
9347 case DW_FORM_sdata:
9348 case DW_FORM_udata:
9349 case DW_FORM_ref_udata:
9350 case DW_FORM_GNU_addr_index:
9351 case DW_FORM_GNU_str_index:
9352 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9353 break;
9354 case DW_FORM_indirect:
9355 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9356 info_ptr += bytes_read;
9357 /* We need to continue parsing from here, so just go back to
9358 the top. */
9359 goto skip_attribute;
9360
9361 default:
9362 error (_("Dwarf Error: Cannot handle %s "
9363 "in DWARF reader [in module %s]"),
9364 dwarf_form_name (form),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368
9369 if (abbrev->has_children)
9370 return skip_children (reader, info_ptr);
9371 else
9372 return info_ptr;
9373 }
9374
9375 /* Locate ORIG_PDI's sibling.
9376 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9377
9378 static const gdb_byte *
9379 locate_pdi_sibling (const struct die_reader_specs *reader,
9380 struct partial_die_info *orig_pdi,
9381 const gdb_byte *info_ptr)
9382 {
9383 /* Do we know the sibling already? */
9384
9385 if (orig_pdi->sibling)
9386 return orig_pdi->sibling;
9387
9388 /* Are there any children to deal with? */
9389
9390 if (!orig_pdi->has_children)
9391 return info_ptr;
9392
9393 /* Skip the children the long way. */
9394
9395 return skip_children (reader, info_ptr);
9396 }
9397
9398 /* Expand this partial symbol table into a full symbol table. SELF is
9399 not NULL. */
9400
9401 static void
9402 dwarf2_read_symtab (struct partial_symtab *self,
9403 struct objfile *objfile)
9404 {
9405 struct dwarf2_per_objfile *dwarf2_per_objfile
9406 = get_dwarf2_per_objfile (objfile);
9407
9408 if (self->readin)
9409 {
9410 warning (_("bug: psymtab for %s is already read in."),
9411 self->filename);
9412 }
9413 else
9414 {
9415 if (info_verbose)
9416 {
9417 printf_filtered (_("Reading in symbols for %s..."),
9418 self->filename);
9419 gdb_flush (gdb_stdout);
9420 }
9421
9422 /* If this psymtab is constructed from a debug-only objfile, the
9423 has_section_at_zero flag will not necessarily be correct. We
9424 can get the correct value for this flag by looking at the data
9425 associated with the (presumably stripped) associated objfile. */
9426 if (objfile->separate_debug_objfile_backlink)
9427 {
9428 struct dwarf2_per_objfile *dpo_backlink
9429 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9430
9431 dwarf2_per_objfile->has_section_at_zero
9432 = dpo_backlink->has_section_at_zero;
9433 }
9434
9435 dwarf2_per_objfile->reading_partial_symbols = 0;
9436
9437 psymtab_to_symtab_1 (self);
9438
9439 /* Finish up the debug error message. */
9440 if (info_verbose)
9441 printf_filtered (_("done.\n"));
9442 }
9443
9444 process_cu_includes (dwarf2_per_objfile);
9445 }
9446 \f
9447 /* Reading in full CUs. */
9448
9449 /* Add PER_CU to the queue. */
9450
9451 static void
9452 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9453 enum language pretend_language)
9454 {
9455 struct dwarf2_queue_item *item;
9456
9457 per_cu->queued = 1;
9458 item = XNEW (struct dwarf2_queue_item);
9459 item->per_cu = per_cu;
9460 item->pretend_language = pretend_language;
9461 item->next = NULL;
9462
9463 if (dwarf2_queue == NULL)
9464 dwarf2_queue = item;
9465 else
9466 dwarf2_queue_tail->next = item;
9467
9468 dwarf2_queue_tail = item;
9469 }
9470
9471 /* If PER_CU is not yet queued, add it to the queue.
9472 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9473 dependency.
9474 The result is non-zero if PER_CU was queued, otherwise the result is zero
9475 meaning either PER_CU is already queued or it is already loaded.
9476
9477 N.B. There is an invariant here that if a CU is queued then it is loaded.
9478 The caller is required to load PER_CU if we return non-zero. */
9479
9480 static int
9481 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9482 struct dwarf2_per_cu_data *per_cu,
9483 enum language pretend_language)
9484 {
9485 /* We may arrive here during partial symbol reading, if we need full
9486 DIEs to process an unusual case (e.g. template arguments). Do
9487 not queue PER_CU, just tell our caller to load its DIEs. */
9488 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9489 {
9490 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9491 return 1;
9492 return 0;
9493 }
9494
9495 /* Mark the dependence relation so that we don't flush PER_CU
9496 too early. */
9497 if (dependent_cu != NULL)
9498 dwarf2_add_dependence (dependent_cu, per_cu);
9499
9500 /* If it's already on the queue, we have nothing to do. */
9501 if (per_cu->queued)
9502 return 0;
9503
9504 /* If the compilation unit is already loaded, just mark it as
9505 used. */
9506 if (per_cu->cu != NULL)
9507 {
9508 per_cu->cu->last_used = 0;
9509 return 0;
9510 }
9511
9512 /* Add it to the queue. */
9513 queue_comp_unit (per_cu, pretend_language);
9514
9515 return 1;
9516 }
9517
9518 /* Process the queue. */
9519
9520 static void
9521 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9522 {
9523 struct dwarf2_queue_item *item, *next_item;
9524
9525 if (dwarf_read_debug)
9526 {
9527 fprintf_unfiltered (gdb_stdlog,
9528 "Expanding one or more symtabs of objfile %s ...\n",
9529 objfile_name (dwarf2_per_objfile->objfile));
9530 }
9531
9532 /* The queue starts out with one item, but following a DIE reference
9533 may load a new CU, adding it to the end of the queue. */
9534 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9535 {
9536 if ((dwarf2_per_objfile->using_index
9537 ? !item->per_cu->v.quick->compunit_symtab
9538 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9539 /* Skip dummy CUs. */
9540 && item->per_cu->cu != NULL)
9541 {
9542 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9543 unsigned int debug_print_threshold;
9544 char buf[100];
9545
9546 if (per_cu->is_debug_types)
9547 {
9548 struct signatured_type *sig_type =
9549 (struct signatured_type *) per_cu;
9550
9551 sprintf (buf, "TU %s at offset %s",
9552 hex_string (sig_type->signature),
9553 sect_offset_str (per_cu->sect_off));
9554 /* There can be 100s of TUs.
9555 Only print them in verbose mode. */
9556 debug_print_threshold = 2;
9557 }
9558 else
9559 {
9560 sprintf (buf, "CU at offset %s",
9561 sect_offset_str (per_cu->sect_off));
9562 debug_print_threshold = 1;
9563 }
9564
9565 if (dwarf_read_debug >= debug_print_threshold)
9566 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9567
9568 if (per_cu->is_debug_types)
9569 process_full_type_unit (per_cu, item->pretend_language);
9570 else
9571 process_full_comp_unit (per_cu, item->pretend_language);
9572
9573 if (dwarf_read_debug >= debug_print_threshold)
9574 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9575 }
9576
9577 item->per_cu->queued = 0;
9578 next_item = item->next;
9579 xfree (item);
9580 }
9581
9582 dwarf2_queue_tail = NULL;
9583
9584 if (dwarf_read_debug)
9585 {
9586 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9587 objfile_name (dwarf2_per_objfile->objfile));
9588 }
9589 }
9590
9591 /* Read in full symbols for PST, and anything it depends on. */
9592
9593 static void
9594 psymtab_to_symtab_1 (struct partial_symtab *pst)
9595 {
9596 struct dwarf2_per_cu_data *per_cu;
9597 int i;
9598
9599 if (pst->readin)
9600 return;
9601
9602 for (i = 0; i < pst->number_of_dependencies; i++)
9603 if (!pst->dependencies[i]->readin
9604 && pst->dependencies[i]->user == NULL)
9605 {
9606 /* Inform about additional files that need to be read in. */
9607 if (info_verbose)
9608 {
9609 /* FIXME: i18n: Need to make this a single string. */
9610 fputs_filtered (" ", gdb_stdout);
9611 wrap_here ("");
9612 fputs_filtered ("and ", gdb_stdout);
9613 wrap_here ("");
9614 printf_filtered ("%s...", pst->dependencies[i]->filename);
9615 wrap_here (""); /* Flush output. */
9616 gdb_flush (gdb_stdout);
9617 }
9618 psymtab_to_symtab_1 (pst->dependencies[i]);
9619 }
9620
9621 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9622
9623 if (per_cu == NULL)
9624 {
9625 /* It's an include file, no symbols to read for it.
9626 Everything is in the parent symtab. */
9627 pst->readin = 1;
9628 return;
9629 }
9630
9631 dw2_do_instantiate_symtab (per_cu, false);
9632 }
9633
9634 /* Trivial hash function for die_info: the hash value of a DIE
9635 is its offset in .debug_info for this objfile. */
9636
9637 static hashval_t
9638 die_hash (const void *item)
9639 {
9640 const struct die_info *die = (const struct die_info *) item;
9641
9642 return to_underlying (die->sect_off);
9643 }
9644
9645 /* Trivial comparison function for die_info structures: two DIEs
9646 are equal if they have the same offset. */
9647
9648 static int
9649 die_eq (const void *item_lhs, const void *item_rhs)
9650 {
9651 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9652 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9653
9654 return die_lhs->sect_off == die_rhs->sect_off;
9655 }
9656
9657 /* die_reader_func for load_full_comp_unit.
9658 This is identical to read_signatured_type_reader,
9659 but is kept separate for now. */
9660
9661 static void
9662 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9663 const gdb_byte *info_ptr,
9664 struct die_info *comp_unit_die,
9665 int has_children,
9666 void *data)
9667 {
9668 struct dwarf2_cu *cu = reader->cu;
9669 enum language *language_ptr = (enum language *) data;
9670
9671 gdb_assert (cu->die_hash == NULL);
9672 cu->die_hash =
9673 htab_create_alloc_ex (cu->header.length / 12,
9674 die_hash,
9675 die_eq,
9676 NULL,
9677 &cu->comp_unit_obstack,
9678 hashtab_obstack_allocate,
9679 dummy_obstack_deallocate);
9680
9681 if (has_children)
9682 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9683 &info_ptr, comp_unit_die);
9684 cu->dies = comp_unit_die;
9685 /* comp_unit_die is not stored in die_hash, no need. */
9686
9687 /* We try not to read any attributes in this function, because not
9688 all CUs needed for references have been loaded yet, and symbol
9689 table processing isn't initialized. But we have to set the CU language,
9690 or we won't be able to build types correctly.
9691 Similarly, if we do not read the producer, we can not apply
9692 producer-specific interpretation. */
9693 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9694 }
9695
9696 /* Load the DIEs associated with PER_CU into memory. */
9697
9698 static void
9699 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9700 bool skip_partial,
9701 enum language pretend_language)
9702 {
9703 gdb_assert (! this_cu->is_debug_types);
9704
9705 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9706 load_full_comp_unit_reader, &pretend_language);
9707 }
9708
9709 /* Add a DIE to the delayed physname list. */
9710
9711 static void
9712 add_to_method_list (struct type *type, int fnfield_index, int index,
9713 const char *name, struct die_info *die,
9714 struct dwarf2_cu *cu)
9715 {
9716 struct delayed_method_info mi;
9717 mi.type = type;
9718 mi.fnfield_index = fnfield_index;
9719 mi.index = index;
9720 mi.name = name;
9721 mi.die = die;
9722 cu->method_list.push_back (mi);
9723 }
9724
9725 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9726 "const" / "volatile". If so, decrements LEN by the length of the
9727 modifier and return true. Otherwise return false. */
9728
9729 template<size_t N>
9730 static bool
9731 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9732 {
9733 size_t mod_len = sizeof (mod) - 1;
9734 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9735 {
9736 len -= mod_len;
9737 return true;
9738 }
9739 return false;
9740 }
9741
9742 /* Compute the physnames of any methods on the CU's method list.
9743
9744 The computation of method physnames is delayed in order to avoid the
9745 (bad) condition that one of the method's formal parameters is of an as yet
9746 incomplete type. */
9747
9748 static void
9749 compute_delayed_physnames (struct dwarf2_cu *cu)
9750 {
9751 /* Only C++ delays computing physnames. */
9752 if (cu->method_list.empty ())
9753 return;
9754 gdb_assert (cu->language == language_cplus);
9755
9756 for (const delayed_method_info &mi : cu->method_list)
9757 {
9758 const char *physname;
9759 struct fn_fieldlist *fn_flp
9760 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9761 physname = dwarf2_physname (mi.name, mi.die, cu);
9762 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9763 = physname ? physname : "";
9764
9765 /* Since there's no tag to indicate whether a method is a
9766 const/volatile overload, extract that information out of the
9767 demangled name. */
9768 if (physname != NULL)
9769 {
9770 size_t len = strlen (physname);
9771
9772 while (1)
9773 {
9774 if (physname[len] == ')') /* shortcut */
9775 break;
9776 else if (check_modifier (physname, len, " const"))
9777 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9778 else if (check_modifier (physname, len, " volatile"))
9779 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9780 else
9781 break;
9782 }
9783 }
9784 }
9785
9786 /* The list is no longer needed. */
9787 cu->method_list.clear ();
9788 }
9789
9790 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9791 the same as all other symbols in LISTHEAD. If a new symbol is added
9792 with a different language, this function asserts. */
9793
9794 static inline void
9795 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9796 {
9797 /* Only assert if LISTHEAD already contains symbols of a different
9798 language (dict_create_hashed/insert_symbol_hashed requires that all
9799 symbols in this list are of the same language). */
9800 gdb_assert ((*listhead) == NULL
9801 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9802 == SYMBOL_LANGUAGE (symbol)));
9803
9804 add_symbol_to_list (symbol, listhead);
9805 }
9806
9807 /* Go objects should be embedded in a DW_TAG_module DIE,
9808 and it's not clear if/how imported objects will appear.
9809 To keep Go support simple until that's worked out,
9810 go back through what we've read and create something usable.
9811 We could do this while processing each DIE, and feels kinda cleaner,
9812 but that way is more invasive.
9813 This is to, for example, allow the user to type "p var" or "b main"
9814 without having to specify the package name, and allow lookups
9815 of module.object to work in contexts that use the expression
9816 parser. */
9817
9818 static void
9819 fixup_go_packaging (struct dwarf2_cu *cu)
9820 {
9821 char *package_name = NULL;
9822 struct pending *list;
9823 int i;
9824
9825 for (list = *cu->builder->get_global_symbols ();
9826 list != NULL;
9827 list = list->next)
9828 {
9829 for (i = 0; i < list->nsyms; ++i)
9830 {
9831 struct symbol *sym = list->symbol[i];
9832
9833 if (SYMBOL_LANGUAGE (sym) == language_go
9834 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9835 {
9836 char *this_package_name = go_symbol_package_name (sym);
9837
9838 if (this_package_name == NULL)
9839 continue;
9840 if (package_name == NULL)
9841 package_name = this_package_name;
9842 else
9843 {
9844 struct objfile *objfile
9845 = cu->per_cu->dwarf2_per_objfile->objfile;
9846 if (strcmp (package_name, this_package_name) != 0)
9847 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9848 (symbol_symtab (sym) != NULL
9849 ? symtab_to_filename_for_display
9850 (symbol_symtab (sym))
9851 : objfile_name (objfile)),
9852 this_package_name, package_name);
9853 xfree (this_package_name);
9854 }
9855 }
9856 }
9857 }
9858
9859 if (package_name != NULL)
9860 {
9861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9862 const char *saved_package_name
9863 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9864 package_name,
9865 strlen (package_name));
9866 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9867 saved_package_name);
9868 struct symbol *sym;
9869
9870 sym = allocate_symbol (objfile);
9871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9872 SYMBOL_SET_NAMES (sym, saved_package_name,
9873 strlen (saved_package_name), 0, objfile);
9874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9875 e.g., "main" finds the "main" module and not C's main(). */
9876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9878 SYMBOL_TYPE (sym) = type;
9879
9880 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9881
9882 xfree (package_name);
9883 }
9884 }
9885
9886 /* Allocate a fully-qualified name consisting of the two parts on the
9887 obstack. */
9888
9889 static const char *
9890 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9891 {
9892 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9893 }
9894
9895 /* A helper that allocates a struct discriminant_info to attach to a
9896 union type. */
9897
9898 static struct discriminant_info *
9899 alloc_discriminant_info (struct type *type, int discriminant_index,
9900 int default_index)
9901 {
9902 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9903 gdb_assert (discriminant_index == -1
9904 || (discriminant_index >= 0
9905 && discriminant_index < TYPE_NFIELDS (type)));
9906 gdb_assert (default_index == -1
9907 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9908
9909 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9910
9911 struct discriminant_info *disc
9912 = ((struct discriminant_info *)
9913 TYPE_ZALLOC (type,
9914 offsetof (struct discriminant_info, discriminants)
9915 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9916 disc->default_index = default_index;
9917 disc->discriminant_index = discriminant_index;
9918
9919 struct dynamic_prop prop;
9920 prop.kind = PROP_UNDEFINED;
9921 prop.data.baton = disc;
9922
9923 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9924
9925 return disc;
9926 }
9927
9928 /* Some versions of rustc emitted enums in an unusual way.
9929
9930 Ordinary enums were emitted as unions. The first element of each
9931 structure in the union was named "RUST$ENUM$DISR". This element
9932 held the discriminant.
9933
9934 These versions of Rust also implemented the "non-zero"
9935 optimization. When the enum had two values, and one is empty and
9936 the other holds a pointer that cannot be zero, the pointer is used
9937 as the discriminant, with a zero value meaning the empty variant.
9938 Here, the union's first member is of the form
9939 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9940 where the fieldnos are the indices of the fields that should be
9941 traversed in order to find the field (which may be several fields deep)
9942 and the variantname is the name of the variant of the case when the
9943 field is zero.
9944
9945 This function recognizes whether TYPE is of one of these forms,
9946 and, if so, smashes it to be a variant type. */
9947
9948 static void
9949 quirk_rust_enum (struct type *type, struct objfile *objfile)
9950 {
9951 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9952
9953 /* We don't need to deal with empty enums. */
9954 if (TYPE_NFIELDS (type) == 0)
9955 return;
9956
9957 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9958 if (TYPE_NFIELDS (type) == 1
9959 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9960 {
9961 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9962
9963 /* Decode the field name to find the offset of the
9964 discriminant. */
9965 ULONGEST bit_offset = 0;
9966 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9967 while (name[0] >= '0' && name[0] <= '9')
9968 {
9969 char *tail;
9970 unsigned long index = strtoul (name, &tail, 10);
9971 name = tail;
9972 if (*name != '$'
9973 || index >= TYPE_NFIELDS (field_type)
9974 || (TYPE_FIELD_LOC_KIND (field_type, index)
9975 != FIELD_LOC_KIND_BITPOS))
9976 {
9977 complaint (_("Could not parse Rust enum encoding string \"%s\""
9978 "[in module %s]"),
9979 TYPE_FIELD_NAME (type, 0),
9980 objfile_name (objfile));
9981 return;
9982 }
9983 ++name;
9984
9985 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9986 field_type = TYPE_FIELD_TYPE (field_type, index);
9987 }
9988
9989 /* Make a union to hold the variants. */
9990 struct type *union_type = alloc_type (objfile);
9991 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9992 TYPE_NFIELDS (union_type) = 3;
9993 TYPE_FIELDS (union_type)
9994 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9995 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9996 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9997
9998 /* Put the discriminant must at index 0. */
9999 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10000 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10001 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10002 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10003
10004 /* The order of fields doesn't really matter, so put the real
10005 field at index 1 and the data-less field at index 2. */
10006 struct discriminant_info *disc
10007 = alloc_discriminant_info (union_type, 0, 1);
10008 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10009 TYPE_FIELD_NAME (union_type, 1)
10010 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10011 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10012 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10013 TYPE_FIELD_NAME (union_type, 1));
10014
10015 const char *dataless_name
10016 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10017 name);
10018 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10019 dataless_name);
10020 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10021 /* NAME points into the original discriminant name, which
10022 already has the correct lifetime. */
10023 TYPE_FIELD_NAME (union_type, 2) = name;
10024 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10025 disc->discriminants[2] = 0;
10026
10027 /* Smash this type to be a structure type. We have to do this
10028 because the type has already been recorded. */
10029 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10030 TYPE_NFIELDS (type) = 1;
10031 TYPE_FIELDS (type)
10032 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10033
10034 /* Install the variant part. */
10035 TYPE_FIELD_TYPE (type, 0) = union_type;
10036 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10037 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10038 }
10039 else if (TYPE_NFIELDS (type) == 1)
10040 {
10041 /* We assume that a union with a single field is a univariant
10042 enum. */
10043 /* Smash this type to be a structure type. We have to do this
10044 because the type has already been recorded. */
10045 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10046
10047 /* Make a union to hold the variants. */
10048 struct type *union_type = alloc_type (objfile);
10049 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10050 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10051 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10052 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10053 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10054
10055 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10056 const char *variant_name
10057 = rust_last_path_segment (TYPE_NAME (field_type));
10058 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10059 TYPE_NAME (field_type)
10060 = rust_fully_qualify (&objfile->objfile_obstack,
10061 TYPE_NAME (type), variant_name);
10062
10063 /* Install the union in the outer struct type. */
10064 TYPE_NFIELDS (type) = 1;
10065 TYPE_FIELDS (type)
10066 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10067 TYPE_FIELD_TYPE (type, 0) = union_type;
10068 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10069 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10070
10071 alloc_discriminant_info (union_type, -1, 0);
10072 }
10073 else
10074 {
10075 struct type *disr_type = nullptr;
10076 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10077 {
10078 disr_type = TYPE_FIELD_TYPE (type, i);
10079
10080 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10081 {
10082 /* All fields of a true enum will be structs. */
10083 return;
10084 }
10085 else if (TYPE_NFIELDS (disr_type) == 0)
10086 {
10087 /* Could be data-less variant, so keep going. */
10088 disr_type = nullptr;
10089 }
10090 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10091 "RUST$ENUM$DISR") != 0)
10092 {
10093 /* Not a Rust enum. */
10094 return;
10095 }
10096 else
10097 {
10098 /* Found one. */
10099 break;
10100 }
10101 }
10102
10103 /* If we got here without a discriminant, then it's probably
10104 just a union. */
10105 if (disr_type == nullptr)
10106 return;
10107
10108 /* Smash this type to be a structure type. We have to do this
10109 because the type has already been recorded. */
10110 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10111
10112 /* Make a union to hold the variants. */
10113 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10114 struct type *union_type = alloc_type (objfile);
10115 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10116 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10117 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10118 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10119 TYPE_FIELDS (union_type)
10120 = (struct field *) TYPE_ZALLOC (union_type,
10121 (TYPE_NFIELDS (union_type)
10122 * sizeof (struct field)));
10123
10124 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10125 TYPE_NFIELDS (type) * sizeof (struct field));
10126
10127 /* Install the discriminant at index 0 in the union. */
10128 TYPE_FIELD (union_type, 0) = *disr_field;
10129 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10130 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10131
10132 /* Install the union in the outer struct type. */
10133 TYPE_FIELD_TYPE (type, 0) = union_type;
10134 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10135 TYPE_NFIELDS (type) = 1;
10136
10137 /* Set the size and offset of the union type. */
10138 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10139
10140 /* We need a way to find the correct discriminant given a
10141 variant name. For convenience we build a map here. */
10142 struct type *enum_type = FIELD_TYPE (*disr_field);
10143 std::unordered_map<std::string, ULONGEST> discriminant_map;
10144 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10145 {
10146 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10147 {
10148 const char *name
10149 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10150 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10151 }
10152 }
10153
10154 int n_fields = TYPE_NFIELDS (union_type);
10155 struct discriminant_info *disc
10156 = alloc_discriminant_info (union_type, 0, -1);
10157 /* Skip the discriminant here. */
10158 for (int i = 1; i < n_fields; ++i)
10159 {
10160 /* Find the final word in the name of this variant's type.
10161 That name can be used to look up the correct
10162 discriminant. */
10163 const char *variant_name
10164 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10165 i)));
10166
10167 auto iter = discriminant_map.find (variant_name);
10168 if (iter != discriminant_map.end ())
10169 disc->discriminants[i] = iter->second;
10170
10171 /* Remove the discriminant field, if it exists. */
10172 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10173 if (TYPE_NFIELDS (sub_type) > 0)
10174 {
10175 --TYPE_NFIELDS (sub_type);
10176 ++TYPE_FIELDS (sub_type);
10177 }
10178 TYPE_FIELD_NAME (union_type, i) = variant_name;
10179 TYPE_NAME (sub_type)
10180 = rust_fully_qualify (&objfile->objfile_obstack,
10181 TYPE_NAME (type), variant_name);
10182 }
10183 }
10184 }
10185
10186 /* Rewrite some Rust unions to be structures with variants parts. */
10187
10188 static void
10189 rust_union_quirks (struct dwarf2_cu *cu)
10190 {
10191 gdb_assert (cu->language == language_rust);
10192 for (type *type_ : cu->rust_unions)
10193 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10194 /* We don't need this any more. */
10195 cu->rust_unions.clear ();
10196 }
10197
10198 /* Return the symtab for PER_CU. This works properly regardless of
10199 whether we're using the index or psymtabs. */
10200
10201 static struct compunit_symtab *
10202 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10203 {
10204 return (per_cu->dwarf2_per_objfile->using_index
10205 ? per_cu->v.quick->compunit_symtab
10206 : per_cu->v.psymtab->compunit_symtab);
10207 }
10208
10209 /* A helper function for computing the list of all symbol tables
10210 included by PER_CU. */
10211
10212 static void
10213 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10214 htab_t all_children, htab_t all_type_symtabs,
10215 struct dwarf2_per_cu_data *per_cu,
10216 struct compunit_symtab *immediate_parent)
10217 {
10218 void **slot;
10219 int ix;
10220 struct compunit_symtab *cust;
10221 struct dwarf2_per_cu_data *iter;
10222
10223 slot = htab_find_slot (all_children, per_cu, INSERT);
10224 if (*slot != NULL)
10225 {
10226 /* This inclusion and its children have been processed. */
10227 return;
10228 }
10229
10230 *slot = per_cu;
10231 /* Only add a CU if it has a symbol table. */
10232 cust = get_compunit_symtab (per_cu);
10233 if (cust != NULL)
10234 {
10235 /* If this is a type unit only add its symbol table if we haven't
10236 seen it yet (type unit per_cu's can share symtabs). */
10237 if (per_cu->is_debug_types)
10238 {
10239 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10240 if (*slot == NULL)
10241 {
10242 *slot = cust;
10243 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10244 if (cust->user == NULL)
10245 cust->user = immediate_parent;
10246 }
10247 }
10248 else
10249 {
10250 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10253 }
10254 }
10255
10256 for (ix = 0;
10257 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10258 ++ix)
10259 {
10260 recursively_compute_inclusions (result, all_children,
10261 all_type_symtabs, iter, cust);
10262 }
10263 }
10264
10265 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10266 PER_CU. */
10267
10268 static void
10269 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10270 {
10271 gdb_assert (! per_cu->is_debug_types);
10272
10273 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10274 {
10275 int ix, len;
10276 struct dwarf2_per_cu_data *per_cu_iter;
10277 struct compunit_symtab *compunit_symtab_iter;
10278 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10279 htab_t all_children, all_type_symtabs;
10280 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10281
10282 /* If we don't have a symtab, we can just skip this case. */
10283 if (cust == NULL)
10284 return;
10285
10286 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10287 NULL, xcalloc, xfree);
10288 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10289 NULL, xcalloc, xfree);
10290
10291 for (ix = 0;
10292 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10293 ix, per_cu_iter);
10294 ++ix)
10295 {
10296 recursively_compute_inclusions (&result_symtabs, all_children,
10297 all_type_symtabs, per_cu_iter,
10298 cust);
10299 }
10300
10301 /* Now we have a transitive closure of all the included symtabs. */
10302 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10303 cust->includes
10304 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10305 struct compunit_symtab *, len + 1);
10306 for (ix = 0;
10307 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10308 compunit_symtab_iter);
10309 ++ix)
10310 cust->includes[ix] = compunit_symtab_iter;
10311 cust->includes[len] = NULL;
10312
10313 VEC_free (compunit_symtab_ptr, result_symtabs);
10314 htab_delete (all_children);
10315 htab_delete (all_type_symtabs);
10316 }
10317 }
10318
10319 /* Compute the 'includes' field for the symtabs of all the CUs we just
10320 read. */
10321
10322 static void
10323 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10324 {
10325 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10326 {
10327 if (! iter->is_debug_types)
10328 compute_compunit_symtab_includes (iter);
10329 }
10330
10331 dwarf2_per_objfile->just_read_cus.clear ();
10332 }
10333
10334 /* Generate full symbol information for PER_CU, whose DIEs have
10335 already been loaded into memory. */
10336
10337 static void
10338 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10339 enum language pretend_language)
10340 {
10341 struct dwarf2_cu *cu = per_cu->cu;
10342 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10343 struct objfile *objfile = dwarf2_per_objfile->objfile;
10344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10345 CORE_ADDR lowpc, highpc;
10346 struct compunit_symtab *cust;
10347 CORE_ADDR baseaddr;
10348 struct block *static_block;
10349 CORE_ADDR addr;
10350
10351 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10352
10353 /* Clear the list here in case something was left over. */
10354 cu->method_list.clear ();
10355
10356 cu->language = pretend_language;
10357 cu->language_defn = language_def (cu->language);
10358
10359 /* Do line number decoding in read_file_scope () */
10360 process_die (cu->dies, cu);
10361
10362 /* For now fudge the Go package. */
10363 if (cu->language == language_go)
10364 fixup_go_packaging (cu);
10365
10366 /* Now that we have processed all the DIEs in the CU, all the types
10367 should be complete, and it should now be safe to compute all of the
10368 physnames. */
10369 compute_delayed_physnames (cu);
10370
10371 if (cu->language == language_rust)
10372 rust_union_quirks (cu);
10373
10374 /* Some compilers don't define a DW_AT_high_pc attribute for the
10375 compilation unit. If the DW_AT_high_pc is missing, synthesize
10376 it, by scanning the DIE's below the compilation unit. */
10377 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10378
10379 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10380 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10381
10382 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10383 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10384 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10385 addrmap to help ensure it has an accurate map of pc values belonging to
10386 this comp unit. */
10387 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10388
10389 cust = cu->builder->end_symtab_from_static_block (static_block,
10390 SECT_OFF_TEXT (objfile),
10391 0);
10392
10393 if (cust != NULL)
10394 {
10395 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10396
10397 /* Set symtab language to language from DW_AT_language. If the
10398 compilation is from a C file generated by language preprocessors, do
10399 not set the language if it was already deduced by start_subfile. */
10400 if (!(cu->language == language_c
10401 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10402 COMPUNIT_FILETABS (cust)->language = cu->language;
10403
10404 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10405 produce DW_AT_location with location lists but it can be possibly
10406 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10407 there were bugs in prologue debug info, fixed later in GCC-4.5
10408 by "unwind info for epilogues" patch (which is not directly related).
10409
10410 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10411 needed, it would be wrong due to missing DW_AT_producer there.
10412
10413 Still one can confuse GDB by using non-standard GCC compilation
10414 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10415 */
10416 if (cu->has_loclist && gcc_4_minor >= 5)
10417 cust->locations_valid = 1;
10418
10419 if (gcc_4_minor >= 5)
10420 cust->epilogue_unwind_valid = 1;
10421
10422 cust->call_site_htab = cu->call_site_htab;
10423 }
10424
10425 if (dwarf2_per_objfile->using_index)
10426 per_cu->v.quick->compunit_symtab = cust;
10427 else
10428 {
10429 struct partial_symtab *pst = per_cu->v.psymtab;
10430 pst->compunit_symtab = cust;
10431 pst->readin = 1;
10432 }
10433
10434 /* Push it for inclusion processing later. */
10435 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10436
10437 /* Not needed any more. */
10438 cu->builder.reset ();
10439 }
10440
10441 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10442 already been loaded into memory. */
10443
10444 static void
10445 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10446 enum language pretend_language)
10447 {
10448 struct dwarf2_cu *cu = per_cu->cu;
10449 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10450 struct objfile *objfile = dwarf2_per_objfile->objfile;
10451 struct compunit_symtab *cust;
10452 struct signatured_type *sig_type;
10453
10454 gdb_assert (per_cu->is_debug_types);
10455 sig_type = (struct signatured_type *) per_cu;
10456
10457 /* Clear the list here in case something was left over. */
10458 cu->method_list.clear ();
10459
10460 cu->language = pretend_language;
10461 cu->language_defn = language_def (cu->language);
10462
10463 /* The symbol tables are set up in read_type_unit_scope. */
10464 process_die (cu->dies, cu);
10465
10466 /* For now fudge the Go package. */
10467 if (cu->language == language_go)
10468 fixup_go_packaging (cu);
10469
10470 /* Now that we have processed all the DIEs in the CU, all the types
10471 should be complete, and it should now be safe to compute all of the
10472 physnames. */
10473 compute_delayed_physnames (cu);
10474
10475 if (cu->language == language_rust)
10476 rust_union_quirks (cu);
10477
10478 /* TUs share symbol tables.
10479 If this is the first TU to use this symtab, complete the construction
10480 of it with end_expandable_symtab. Otherwise, complete the addition of
10481 this TU's symbols to the existing symtab. */
10482 if (sig_type->type_unit_group->compunit_symtab == NULL)
10483 {
10484 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10485 sig_type->type_unit_group->compunit_symtab = cust;
10486
10487 if (cust != NULL)
10488 {
10489 /* Set symtab language to language from DW_AT_language. If the
10490 compilation is from a C file generated by language preprocessors,
10491 do not set the language if it was already deduced by
10492 start_subfile. */
10493 if (!(cu->language == language_c
10494 && COMPUNIT_FILETABS (cust)->language != language_c))
10495 COMPUNIT_FILETABS (cust)->language = cu->language;
10496 }
10497 }
10498 else
10499 {
10500 cu->builder->augment_type_symtab ();
10501 cust = sig_type->type_unit_group->compunit_symtab;
10502 }
10503
10504 if (dwarf2_per_objfile->using_index)
10505 per_cu->v.quick->compunit_symtab = cust;
10506 else
10507 {
10508 struct partial_symtab *pst = per_cu->v.psymtab;
10509 pst->compunit_symtab = cust;
10510 pst->readin = 1;
10511 }
10512
10513 /* Not needed any more. */
10514 cu->builder.reset ();
10515 }
10516
10517 /* Process an imported unit DIE. */
10518
10519 static void
10520 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10521 {
10522 struct attribute *attr;
10523
10524 /* For now we don't handle imported units in type units. */
10525 if (cu->per_cu->is_debug_types)
10526 {
10527 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10528 " supported in type units [in module %s]"),
10529 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10530 }
10531
10532 attr = dwarf2_attr (die, DW_AT_import, cu);
10533 if (attr != NULL)
10534 {
10535 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10536 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10537 dwarf2_per_cu_data *per_cu
10538 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10539 cu->per_cu->dwarf2_per_objfile);
10540
10541 /* If necessary, add it to the queue and load its DIEs. */
10542 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10543 load_full_comp_unit (per_cu, false, cu->language);
10544
10545 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10546 per_cu);
10547 }
10548 }
10549
10550 /* RAII object that represents a process_die scope: i.e.,
10551 starts/finishes processing a DIE. */
10552 class process_die_scope
10553 {
10554 public:
10555 process_die_scope (die_info *die, dwarf2_cu *cu)
10556 : m_die (die), m_cu (cu)
10557 {
10558 /* We should only be processing DIEs not already in process. */
10559 gdb_assert (!m_die->in_process);
10560 m_die->in_process = true;
10561 }
10562
10563 ~process_die_scope ()
10564 {
10565 m_die->in_process = false;
10566
10567 /* If we're done processing the DIE for the CU that owns the line
10568 header, we don't need the line header anymore. */
10569 if (m_cu->line_header_die_owner == m_die)
10570 {
10571 delete m_cu->line_header;
10572 m_cu->line_header = NULL;
10573 m_cu->line_header_die_owner = NULL;
10574 }
10575 }
10576
10577 private:
10578 die_info *m_die;
10579 dwarf2_cu *m_cu;
10580 };
10581
10582 /* Process a die and its children. */
10583
10584 static void
10585 process_die (struct die_info *die, struct dwarf2_cu *cu)
10586 {
10587 process_die_scope scope (die, cu);
10588
10589 switch (die->tag)
10590 {
10591 case DW_TAG_padding:
10592 break;
10593 case DW_TAG_compile_unit:
10594 case DW_TAG_partial_unit:
10595 read_file_scope (die, cu);
10596 break;
10597 case DW_TAG_type_unit:
10598 read_type_unit_scope (die, cu);
10599 break;
10600 case DW_TAG_subprogram:
10601 case DW_TAG_inlined_subroutine:
10602 read_func_scope (die, cu);
10603 break;
10604 case DW_TAG_lexical_block:
10605 case DW_TAG_try_block:
10606 case DW_TAG_catch_block:
10607 read_lexical_block_scope (die, cu);
10608 break;
10609 case DW_TAG_call_site:
10610 case DW_TAG_GNU_call_site:
10611 read_call_site_scope (die, cu);
10612 break;
10613 case DW_TAG_class_type:
10614 case DW_TAG_interface_type:
10615 case DW_TAG_structure_type:
10616 case DW_TAG_union_type:
10617 process_structure_scope (die, cu);
10618 break;
10619 case DW_TAG_enumeration_type:
10620 process_enumeration_scope (die, cu);
10621 break;
10622
10623 /* These dies have a type, but processing them does not create
10624 a symbol or recurse to process the children. Therefore we can
10625 read them on-demand through read_type_die. */
10626 case DW_TAG_subroutine_type:
10627 case DW_TAG_set_type:
10628 case DW_TAG_array_type:
10629 case DW_TAG_pointer_type:
10630 case DW_TAG_ptr_to_member_type:
10631 case DW_TAG_reference_type:
10632 case DW_TAG_rvalue_reference_type:
10633 case DW_TAG_string_type:
10634 break;
10635
10636 case DW_TAG_base_type:
10637 case DW_TAG_subrange_type:
10638 case DW_TAG_typedef:
10639 /* Add a typedef symbol for the type definition, if it has a
10640 DW_AT_name. */
10641 new_symbol (die, read_type_die (die, cu), cu);
10642 break;
10643 case DW_TAG_common_block:
10644 read_common_block (die, cu);
10645 break;
10646 case DW_TAG_common_inclusion:
10647 break;
10648 case DW_TAG_namespace:
10649 cu->processing_has_namespace_info = 1;
10650 read_namespace (die, cu);
10651 break;
10652 case DW_TAG_module:
10653 cu->processing_has_namespace_info = 1;
10654 read_module (die, cu);
10655 break;
10656 case DW_TAG_imported_declaration:
10657 cu->processing_has_namespace_info = 1;
10658 if (read_namespace_alias (die, cu))
10659 break;
10660 /* The declaration is not a global namespace alias. */
10661 /* Fall through. */
10662 case DW_TAG_imported_module:
10663 cu->processing_has_namespace_info = 1;
10664 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10665 || cu->language != language_fortran))
10666 complaint (_("Tag '%s' has unexpected children"),
10667 dwarf_tag_name (die->tag));
10668 read_import_statement (die, cu);
10669 break;
10670
10671 case DW_TAG_imported_unit:
10672 process_imported_unit_die (die, cu);
10673 break;
10674
10675 case DW_TAG_variable:
10676 read_variable (die, cu);
10677 break;
10678
10679 default:
10680 new_symbol (die, NULL, cu);
10681 break;
10682 }
10683 }
10684 \f
10685 /* DWARF name computation. */
10686
10687 /* A helper function for dwarf2_compute_name which determines whether DIE
10688 needs to have the name of the scope prepended to the name listed in the
10689 die. */
10690
10691 static int
10692 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10693 {
10694 struct attribute *attr;
10695
10696 switch (die->tag)
10697 {
10698 case DW_TAG_namespace:
10699 case DW_TAG_typedef:
10700 case DW_TAG_class_type:
10701 case DW_TAG_interface_type:
10702 case DW_TAG_structure_type:
10703 case DW_TAG_union_type:
10704 case DW_TAG_enumeration_type:
10705 case DW_TAG_enumerator:
10706 case DW_TAG_subprogram:
10707 case DW_TAG_inlined_subroutine:
10708 case DW_TAG_member:
10709 case DW_TAG_imported_declaration:
10710 return 1;
10711
10712 case DW_TAG_variable:
10713 case DW_TAG_constant:
10714 /* We only need to prefix "globally" visible variables. These include
10715 any variable marked with DW_AT_external or any variable that
10716 lives in a namespace. [Variables in anonymous namespaces
10717 require prefixing, but they are not DW_AT_external.] */
10718
10719 if (dwarf2_attr (die, DW_AT_specification, cu))
10720 {
10721 struct dwarf2_cu *spec_cu = cu;
10722
10723 return die_needs_namespace (die_specification (die, &spec_cu),
10724 spec_cu);
10725 }
10726
10727 attr = dwarf2_attr (die, DW_AT_external, cu);
10728 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10729 && die->parent->tag != DW_TAG_module)
10730 return 0;
10731 /* A variable in a lexical block of some kind does not need a
10732 namespace, even though in C++ such variables may be external
10733 and have a mangled name. */
10734 if (die->parent->tag == DW_TAG_lexical_block
10735 || die->parent->tag == DW_TAG_try_block
10736 || die->parent->tag == DW_TAG_catch_block
10737 || die->parent->tag == DW_TAG_subprogram)
10738 return 0;
10739 return 1;
10740
10741 default:
10742 return 0;
10743 }
10744 }
10745
10746 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10748 defined for the given DIE. */
10749
10750 static struct attribute *
10751 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10752 {
10753 struct attribute *attr;
10754
10755 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10756 if (attr == NULL)
10757 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10758
10759 return attr;
10760 }
10761
10762 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10763 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10764 defined for the given DIE. */
10765
10766 static const char *
10767 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10768 {
10769 const char *linkage_name;
10770
10771 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10772 if (linkage_name == NULL)
10773 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10774
10775 return linkage_name;
10776 }
10777
10778 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10779 compute the physname for the object, which include a method's:
10780 - formal parameters (C++),
10781 - receiver type (Go),
10782
10783 The term "physname" is a bit confusing.
10784 For C++, for example, it is the demangled name.
10785 For Go, for example, it's the mangled name.
10786
10787 For Ada, return the DIE's linkage name rather than the fully qualified
10788 name. PHYSNAME is ignored..
10789
10790 The result is allocated on the objfile_obstack and canonicalized. */
10791
10792 static const char *
10793 dwarf2_compute_name (const char *name,
10794 struct die_info *die, struct dwarf2_cu *cu,
10795 int physname)
10796 {
10797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10798
10799 if (name == NULL)
10800 name = dwarf2_name (die, cu);
10801
10802 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10803 but otherwise compute it by typename_concat inside GDB.
10804 FIXME: Actually this is not really true, or at least not always true.
10805 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10806 Fortran names because there is no mangling standard. So new_symbol
10807 will set the demangled name to the result of dwarf2_full_name, and it is
10808 the demangled name that GDB uses if it exists. */
10809 if (cu->language == language_ada
10810 || (cu->language == language_fortran && physname))
10811 {
10812 /* For Ada unit, we prefer the linkage name over the name, as
10813 the former contains the exported name, which the user expects
10814 to be able to reference. Ideally, we want the user to be able
10815 to reference this entity using either natural or linkage name,
10816 but we haven't started looking at this enhancement yet. */
10817 const char *linkage_name = dw2_linkage_name (die, cu);
10818
10819 if (linkage_name != NULL)
10820 return linkage_name;
10821 }
10822
10823 /* These are the only languages we know how to qualify names in. */
10824 if (name != NULL
10825 && (cu->language == language_cplus
10826 || cu->language == language_fortran || cu->language == language_d
10827 || cu->language == language_rust))
10828 {
10829 if (die_needs_namespace (die, cu))
10830 {
10831 const char *prefix;
10832 const char *canonical_name = NULL;
10833
10834 string_file buf;
10835
10836 prefix = determine_prefix (die, cu);
10837 if (*prefix != '\0')
10838 {
10839 char *prefixed_name = typename_concat (NULL, prefix, name,
10840 physname, cu);
10841
10842 buf.puts (prefixed_name);
10843 xfree (prefixed_name);
10844 }
10845 else
10846 buf.puts (name);
10847
10848 /* Template parameters may be specified in the DIE's DW_AT_name, or
10849 as children with DW_TAG_template_type_param or
10850 DW_TAG_value_type_param. If the latter, add them to the name
10851 here. If the name already has template parameters, then
10852 skip this step; some versions of GCC emit both, and
10853 it is more efficient to use the pre-computed name.
10854
10855 Something to keep in mind about this process: it is very
10856 unlikely, or in some cases downright impossible, to produce
10857 something that will match the mangled name of a function.
10858 If the definition of the function has the same debug info,
10859 we should be able to match up with it anyway. But fallbacks
10860 using the minimal symbol, for instance to find a method
10861 implemented in a stripped copy of libstdc++, will not work.
10862 If we do not have debug info for the definition, we will have to
10863 match them up some other way.
10864
10865 When we do name matching there is a related problem with function
10866 templates; two instantiated function templates are allowed to
10867 differ only by their return types, which we do not add here. */
10868
10869 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10870 {
10871 struct attribute *attr;
10872 struct die_info *child;
10873 int first = 1;
10874
10875 die->building_fullname = 1;
10876
10877 for (child = die->child; child != NULL; child = child->sibling)
10878 {
10879 struct type *type;
10880 LONGEST value;
10881 const gdb_byte *bytes;
10882 struct dwarf2_locexpr_baton *baton;
10883 struct value *v;
10884
10885 if (child->tag != DW_TAG_template_type_param
10886 && child->tag != DW_TAG_template_value_param)
10887 continue;
10888
10889 if (first)
10890 {
10891 buf.puts ("<");
10892 first = 0;
10893 }
10894 else
10895 buf.puts (", ");
10896
10897 attr = dwarf2_attr (child, DW_AT_type, cu);
10898 if (attr == NULL)
10899 {
10900 complaint (_("template parameter missing DW_AT_type"));
10901 buf.puts ("UNKNOWN_TYPE");
10902 continue;
10903 }
10904 type = die_type (child, cu);
10905
10906 if (child->tag == DW_TAG_template_type_param)
10907 {
10908 c_print_type (type, "", &buf, -1, 0, cu->language,
10909 &type_print_raw_options);
10910 continue;
10911 }
10912
10913 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10914 if (attr == NULL)
10915 {
10916 complaint (_("template parameter missing "
10917 "DW_AT_const_value"));
10918 buf.puts ("UNKNOWN_VALUE");
10919 continue;
10920 }
10921
10922 dwarf2_const_value_attr (attr, type, name,
10923 &cu->comp_unit_obstack, cu,
10924 &value, &bytes, &baton);
10925
10926 if (TYPE_NOSIGN (type))
10927 /* GDB prints characters as NUMBER 'CHAR'. If that's
10928 changed, this can use value_print instead. */
10929 c_printchar (value, type, &buf);
10930 else
10931 {
10932 struct value_print_options opts;
10933
10934 if (baton != NULL)
10935 v = dwarf2_evaluate_loc_desc (type, NULL,
10936 baton->data,
10937 baton->size,
10938 baton->per_cu);
10939 else if (bytes != NULL)
10940 {
10941 v = allocate_value (type);
10942 memcpy (value_contents_writeable (v), bytes,
10943 TYPE_LENGTH (type));
10944 }
10945 else
10946 v = value_from_longest (type, value);
10947
10948 /* Specify decimal so that we do not depend on
10949 the radix. */
10950 get_formatted_print_options (&opts, 'd');
10951 opts.raw = 1;
10952 value_print (v, &buf, &opts);
10953 release_value (v);
10954 }
10955 }
10956
10957 die->building_fullname = 0;
10958
10959 if (!first)
10960 {
10961 /* Close the argument list, with a space if necessary
10962 (nested templates). */
10963 if (!buf.empty () && buf.string ().back () == '>')
10964 buf.puts (" >");
10965 else
10966 buf.puts (">");
10967 }
10968 }
10969
10970 /* For C++ methods, append formal parameter type
10971 information, if PHYSNAME. */
10972
10973 if (physname && die->tag == DW_TAG_subprogram
10974 && cu->language == language_cplus)
10975 {
10976 struct type *type = read_type_die (die, cu);
10977
10978 c_type_print_args (type, &buf, 1, cu->language,
10979 &type_print_raw_options);
10980
10981 if (cu->language == language_cplus)
10982 {
10983 /* Assume that an artificial first parameter is
10984 "this", but do not crash if it is not. RealView
10985 marks unnamed (and thus unused) parameters as
10986 artificial; there is no way to differentiate
10987 the two cases. */
10988 if (TYPE_NFIELDS (type) > 0
10989 && TYPE_FIELD_ARTIFICIAL (type, 0)
10990 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10991 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10992 0))))
10993 buf.puts (" const");
10994 }
10995 }
10996
10997 const std::string &intermediate_name = buf.string ();
10998
10999 if (cu->language == language_cplus)
11000 canonical_name
11001 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11002 &objfile->per_bfd->storage_obstack);
11003
11004 /* If we only computed INTERMEDIATE_NAME, or if
11005 INTERMEDIATE_NAME is already canonical, then we need to
11006 copy it to the appropriate obstack. */
11007 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11008 name = ((const char *)
11009 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11010 intermediate_name.c_str (),
11011 intermediate_name.length ()));
11012 else
11013 name = canonical_name;
11014 }
11015 }
11016
11017 return name;
11018 }
11019
11020 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11021 If scope qualifiers are appropriate they will be added. The result
11022 will be allocated on the storage_obstack, or NULL if the DIE does
11023 not have a name. NAME may either be from a previous call to
11024 dwarf2_name or NULL.
11025
11026 The output string will be canonicalized (if C++). */
11027
11028 static const char *
11029 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11030 {
11031 return dwarf2_compute_name (name, die, cu, 0);
11032 }
11033
11034 /* Construct a physname for the given DIE in CU. NAME may either be
11035 from a previous call to dwarf2_name or NULL. The result will be
11036 allocated on the objfile_objstack or NULL if the DIE does not have a
11037 name.
11038
11039 The output string will be canonicalized (if C++). */
11040
11041 static const char *
11042 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11045 const char *retval, *mangled = NULL, *canon = NULL;
11046 int need_copy = 1;
11047
11048 /* In this case dwarf2_compute_name is just a shortcut not building anything
11049 on its own. */
11050 if (!die_needs_namespace (die, cu))
11051 return dwarf2_compute_name (name, die, cu, 1);
11052
11053 mangled = dw2_linkage_name (die, cu);
11054
11055 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11056 See https://github.com/rust-lang/rust/issues/32925. */
11057 if (cu->language == language_rust && mangled != NULL
11058 && strchr (mangled, '{') != NULL)
11059 mangled = NULL;
11060
11061 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11062 has computed. */
11063 gdb::unique_xmalloc_ptr<char> demangled;
11064 if (mangled != NULL)
11065 {
11066
11067 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11068 {
11069 /* Do nothing (do not demangle the symbol name). */
11070 }
11071 else if (cu->language == language_go)
11072 {
11073 /* This is a lie, but we already lie to the caller new_symbol.
11074 new_symbol assumes we return the mangled name.
11075 This just undoes that lie until things are cleaned up. */
11076 }
11077 else
11078 {
11079 /* Use DMGL_RET_DROP for C++ template functions to suppress
11080 their return type. It is easier for GDB users to search
11081 for such functions as `name(params)' than `long name(params)'.
11082 In such case the minimal symbol names do not match the full
11083 symbol names but for template functions there is never a need
11084 to look up their definition from their declaration so
11085 the only disadvantage remains the minimal symbol variant
11086 `long name(params)' does not have the proper inferior type. */
11087 demangled.reset (gdb_demangle (mangled,
11088 (DMGL_PARAMS | DMGL_ANSI
11089 | DMGL_RET_DROP)));
11090 }
11091 if (demangled)
11092 canon = demangled.get ();
11093 else
11094 {
11095 canon = mangled;
11096 need_copy = 0;
11097 }
11098 }
11099
11100 if (canon == NULL || check_physname)
11101 {
11102 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11103
11104 if (canon != NULL && strcmp (physname, canon) != 0)
11105 {
11106 /* It may not mean a bug in GDB. The compiler could also
11107 compute DW_AT_linkage_name incorrectly. But in such case
11108 GDB would need to be bug-to-bug compatible. */
11109
11110 complaint (_("Computed physname <%s> does not match demangled <%s> "
11111 "(from linkage <%s>) - DIE at %s [in module %s]"),
11112 physname, canon, mangled, sect_offset_str (die->sect_off),
11113 objfile_name (objfile));
11114
11115 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11116 is available here - over computed PHYSNAME. It is safer
11117 against both buggy GDB and buggy compilers. */
11118
11119 retval = canon;
11120 }
11121 else
11122 {
11123 retval = physname;
11124 need_copy = 0;
11125 }
11126 }
11127 else
11128 retval = canon;
11129
11130 if (need_copy)
11131 retval = ((const char *)
11132 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11133 retval, strlen (retval)));
11134
11135 return retval;
11136 }
11137
11138 /* Inspect DIE in CU for a namespace alias. If one exists, record
11139 a new symbol for it.
11140
11141 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11142
11143 static int
11144 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11145 {
11146 struct attribute *attr;
11147
11148 /* If the die does not have a name, this is not a namespace
11149 alias. */
11150 attr = dwarf2_attr (die, DW_AT_name, cu);
11151 if (attr != NULL)
11152 {
11153 int num;
11154 struct die_info *d = die;
11155 struct dwarf2_cu *imported_cu = cu;
11156
11157 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11158 keep inspecting DIEs until we hit the underlying import. */
11159 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11160 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11161 {
11162 attr = dwarf2_attr (d, DW_AT_import, cu);
11163 if (attr == NULL)
11164 break;
11165
11166 d = follow_die_ref (d, attr, &imported_cu);
11167 if (d->tag != DW_TAG_imported_declaration)
11168 break;
11169 }
11170
11171 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11172 {
11173 complaint (_("DIE at %s has too many recursively imported "
11174 "declarations"), sect_offset_str (d->sect_off));
11175 return 0;
11176 }
11177
11178 if (attr != NULL)
11179 {
11180 struct type *type;
11181 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11182
11183 type = get_die_type_at_offset (sect_off, cu->per_cu);
11184 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11185 {
11186 /* This declaration is a global namespace alias. Add
11187 a symbol for it whose type is the aliased namespace. */
11188 new_symbol (die, type, cu);
11189 return 1;
11190 }
11191 }
11192 }
11193
11194 return 0;
11195 }
11196
11197 /* Return the using directives repository (global or local?) to use in the
11198 current context for CU.
11199
11200 For Ada, imported declarations can materialize renamings, which *may* be
11201 global. However it is impossible (for now?) in DWARF to distinguish
11202 "external" imported declarations and "static" ones. As all imported
11203 declarations seem to be static in all other languages, make them all CU-wide
11204 global only in Ada. */
11205
11206 static struct using_direct **
11207 using_directives (struct dwarf2_cu *cu)
11208 {
11209 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11210 return cu->builder->get_global_using_directives ();
11211 else
11212 return cu->builder->get_local_using_directives ();
11213 }
11214
11215 /* Read the import statement specified by the given die and record it. */
11216
11217 static void
11218 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11219 {
11220 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11221 struct attribute *import_attr;
11222 struct die_info *imported_die, *child_die;
11223 struct dwarf2_cu *imported_cu;
11224 const char *imported_name;
11225 const char *imported_name_prefix;
11226 const char *canonical_name;
11227 const char *import_alias;
11228 const char *imported_declaration = NULL;
11229 const char *import_prefix;
11230 std::vector<const char *> excludes;
11231
11232 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11233 if (import_attr == NULL)
11234 {
11235 complaint (_("Tag '%s' has no DW_AT_import"),
11236 dwarf_tag_name (die->tag));
11237 return;
11238 }
11239
11240 imported_cu = cu;
11241 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11242 imported_name = dwarf2_name (imported_die, imported_cu);
11243 if (imported_name == NULL)
11244 {
11245 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11246
11247 The import in the following code:
11248 namespace A
11249 {
11250 typedef int B;
11251 }
11252
11253 int main ()
11254 {
11255 using A::B;
11256 B b;
11257 return b;
11258 }
11259
11260 ...
11261 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11262 <52> DW_AT_decl_file : 1
11263 <53> DW_AT_decl_line : 6
11264 <54> DW_AT_import : <0x75>
11265 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11266 <59> DW_AT_name : B
11267 <5b> DW_AT_decl_file : 1
11268 <5c> DW_AT_decl_line : 2
11269 <5d> DW_AT_type : <0x6e>
11270 ...
11271 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11272 <76> DW_AT_byte_size : 4
11273 <77> DW_AT_encoding : 5 (signed)
11274
11275 imports the wrong die ( 0x75 instead of 0x58 ).
11276 This case will be ignored until the gcc bug is fixed. */
11277 return;
11278 }
11279
11280 /* Figure out the local name after import. */
11281 import_alias = dwarf2_name (die, cu);
11282
11283 /* Figure out where the statement is being imported to. */
11284 import_prefix = determine_prefix (die, cu);
11285
11286 /* Figure out what the scope of the imported die is and prepend it
11287 to the name of the imported die. */
11288 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11289
11290 if (imported_die->tag != DW_TAG_namespace
11291 && imported_die->tag != DW_TAG_module)
11292 {
11293 imported_declaration = imported_name;
11294 canonical_name = imported_name_prefix;
11295 }
11296 else if (strlen (imported_name_prefix) > 0)
11297 canonical_name = obconcat (&objfile->objfile_obstack,
11298 imported_name_prefix,
11299 (cu->language == language_d ? "." : "::"),
11300 imported_name, (char *) NULL);
11301 else
11302 canonical_name = imported_name;
11303
11304 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11305 for (child_die = die->child; child_die && child_die->tag;
11306 child_die = sibling_die (child_die))
11307 {
11308 /* DWARF-4: A Fortran use statement with a “rename list” may be
11309 represented by an imported module entry with an import attribute
11310 referring to the module and owned entries corresponding to those
11311 entities that are renamed as part of being imported. */
11312
11313 if (child_die->tag != DW_TAG_imported_declaration)
11314 {
11315 complaint (_("child DW_TAG_imported_declaration expected "
11316 "- DIE at %s [in module %s]"),
11317 sect_offset_str (child_die->sect_off),
11318 objfile_name (objfile));
11319 continue;
11320 }
11321
11322 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11323 if (import_attr == NULL)
11324 {
11325 complaint (_("Tag '%s' has no DW_AT_import"),
11326 dwarf_tag_name (child_die->tag));
11327 continue;
11328 }
11329
11330 imported_cu = cu;
11331 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11332 &imported_cu);
11333 imported_name = dwarf2_name (imported_die, imported_cu);
11334 if (imported_name == NULL)
11335 {
11336 complaint (_("child DW_TAG_imported_declaration has unknown "
11337 "imported name - DIE at %s [in module %s]"),
11338 sect_offset_str (child_die->sect_off),
11339 objfile_name (objfile));
11340 continue;
11341 }
11342
11343 excludes.push_back (imported_name);
11344
11345 process_die (child_die, cu);
11346 }
11347
11348 add_using_directive (using_directives (cu),
11349 import_prefix,
11350 canonical_name,
11351 import_alias,
11352 imported_declaration,
11353 excludes,
11354 0,
11355 &objfile->objfile_obstack);
11356 }
11357
11358 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11359 types, but gives them a size of zero. Starting with version 14,
11360 ICC is compatible with GCC. */
11361
11362 static int
11363 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11364 {
11365 if (!cu->checked_producer)
11366 check_producer (cu);
11367
11368 return cu->producer_is_icc_lt_14;
11369 }
11370
11371 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11372 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11373 this, it was first present in GCC release 4.3.0. */
11374
11375 static int
11376 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11377 {
11378 if (!cu->checked_producer)
11379 check_producer (cu);
11380
11381 return cu->producer_is_gcc_lt_4_3;
11382 }
11383
11384 static file_and_directory
11385 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11386 {
11387 file_and_directory res;
11388
11389 /* Find the filename. Do not use dwarf2_name here, since the filename
11390 is not a source language identifier. */
11391 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11392 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11393
11394 if (res.comp_dir == NULL
11395 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11396 && IS_ABSOLUTE_PATH (res.name))
11397 {
11398 res.comp_dir_storage = ldirname (res.name);
11399 if (!res.comp_dir_storage.empty ())
11400 res.comp_dir = res.comp_dir_storage.c_str ();
11401 }
11402 if (res.comp_dir != NULL)
11403 {
11404 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11405 directory, get rid of it. */
11406 const char *cp = strchr (res.comp_dir, ':');
11407
11408 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11409 res.comp_dir = cp + 1;
11410 }
11411
11412 if (res.name == NULL)
11413 res.name = "<unknown>";
11414
11415 return res;
11416 }
11417
11418 /* Handle DW_AT_stmt_list for a compilation unit.
11419 DIE is the DW_TAG_compile_unit die for CU.
11420 COMP_DIR is the compilation directory. LOWPC is passed to
11421 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11422
11423 static void
11424 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11425 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11426 {
11427 struct dwarf2_per_objfile *dwarf2_per_objfile
11428 = cu->per_cu->dwarf2_per_objfile;
11429 struct objfile *objfile = dwarf2_per_objfile->objfile;
11430 struct attribute *attr;
11431 struct line_header line_header_local;
11432 hashval_t line_header_local_hash;
11433 void **slot;
11434 int decode_mapping;
11435
11436 gdb_assert (! cu->per_cu->is_debug_types);
11437
11438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11439 if (attr == NULL)
11440 return;
11441
11442 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11443
11444 /* The line header hash table is only created if needed (it exists to
11445 prevent redundant reading of the line table for partial_units).
11446 If we're given a partial_unit, we'll need it. If we're given a
11447 compile_unit, then use the line header hash table if it's already
11448 created, but don't create one just yet. */
11449
11450 if (dwarf2_per_objfile->line_header_hash == NULL
11451 && die->tag == DW_TAG_partial_unit)
11452 {
11453 dwarf2_per_objfile->line_header_hash
11454 = htab_create_alloc_ex (127, line_header_hash_voidp,
11455 line_header_eq_voidp,
11456 free_line_header_voidp,
11457 &objfile->objfile_obstack,
11458 hashtab_obstack_allocate,
11459 dummy_obstack_deallocate);
11460 }
11461
11462 line_header_local.sect_off = line_offset;
11463 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11464 line_header_local_hash = line_header_hash (&line_header_local);
11465 if (dwarf2_per_objfile->line_header_hash != NULL)
11466 {
11467 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11468 &line_header_local,
11469 line_header_local_hash, NO_INSERT);
11470
11471 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11472 is not present in *SLOT (since if there is something in *SLOT then
11473 it will be for a partial_unit). */
11474 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11475 {
11476 gdb_assert (*slot != NULL);
11477 cu->line_header = (struct line_header *) *slot;
11478 return;
11479 }
11480 }
11481
11482 /* dwarf_decode_line_header does not yet provide sufficient information.
11483 We always have to call also dwarf_decode_lines for it. */
11484 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11485 if (lh == NULL)
11486 return;
11487
11488 cu->line_header = lh.release ();
11489 cu->line_header_die_owner = die;
11490
11491 if (dwarf2_per_objfile->line_header_hash == NULL)
11492 slot = NULL;
11493 else
11494 {
11495 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11496 &line_header_local,
11497 line_header_local_hash, INSERT);
11498 gdb_assert (slot != NULL);
11499 }
11500 if (slot != NULL && *slot == NULL)
11501 {
11502 /* This newly decoded line number information unit will be owned
11503 by line_header_hash hash table. */
11504 *slot = cu->line_header;
11505 cu->line_header_die_owner = NULL;
11506 }
11507 else
11508 {
11509 /* We cannot free any current entry in (*slot) as that struct line_header
11510 may be already used by multiple CUs. Create only temporary decoded
11511 line_header for this CU - it may happen at most once for each line
11512 number information unit. And if we're not using line_header_hash
11513 then this is what we want as well. */
11514 gdb_assert (die->tag != DW_TAG_partial_unit);
11515 }
11516 decode_mapping = (die->tag != DW_TAG_partial_unit);
11517 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11518 decode_mapping);
11519
11520 }
11521
11522 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11523
11524 static void
11525 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11526 {
11527 struct dwarf2_per_objfile *dwarf2_per_objfile
11528 = cu->per_cu->dwarf2_per_objfile;
11529 struct objfile *objfile = dwarf2_per_objfile->objfile;
11530 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11531 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11532 CORE_ADDR highpc = ((CORE_ADDR) 0);
11533 struct attribute *attr;
11534 struct die_info *child_die;
11535 CORE_ADDR baseaddr;
11536
11537 prepare_one_comp_unit (cu, die, cu->language);
11538 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11539
11540 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11541
11542 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11543 from finish_block. */
11544 if (lowpc == ((CORE_ADDR) -1))
11545 lowpc = highpc;
11546 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11547
11548 file_and_directory fnd = find_file_and_directory (die, cu);
11549
11550 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11551 standardised yet. As a workaround for the language detection we fall
11552 back to the DW_AT_producer string. */
11553 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11554 cu->language = language_opencl;
11555
11556 /* Similar hack for Go. */
11557 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11558 set_cu_language (DW_LANG_Go, cu);
11559
11560 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11561
11562 /* Decode line number information if present. We do this before
11563 processing child DIEs, so that the line header table is available
11564 for DW_AT_decl_file. */
11565 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11566
11567 /* Process all dies in compilation unit. */
11568 if (die->child != NULL)
11569 {
11570 child_die = die->child;
11571 while (child_die && child_die->tag)
11572 {
11573 process_die (child_die, cu);
11574 child_die = sibling_die (child_die);
11575 }
11576 }
11577
11578 /* Decode macro information, if present. Dwarf 2 macro information
11579 refers to information in the line number info statement program
11580 header, so we can only read it if we've read the header
11581 successfully. */
11582 attr = dwarf2_attr (die, DW_AT_macros, cu);
11583 if (attr == NULL)
11584 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11585 if (attr && cu->line_header)
11586 {
11587 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11588 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11589
11590 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11591 }
11592 else
11593 {
11594 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11595 if (attr && cu->line_header)
11596 {
11597 unsigned int macro_offset = DW_UNSND (attr);
11598
11599 dwarf_decode_macros (cu, macro_offset, 0);
11600 }
11601 }
11602 }
11603
11604 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11605 Create the set of symtabs used by this TU, or if this TU is sharing
11606 symtabs with another TU and the symtabs have already been created
11607 then restore those symtabs in the line header.
11608 We don't need the pc/line-number mapping for type units. */
11609
11610 static void
11611 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11612 {
11613 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11614 struct type_unit_group *tu_group;
11615 int first_time;
11616 struct attribute *attr;
11617 unsigned int i;
11618 struct signatured_type *sig_type;
11619
11620 gdb_assert (per_cu->is_debug_types);
11621 sig_type = (struct signatured_type *) per_cu;
11622
11623 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11624
11625 /* If we're using .gdb_index (includes -readnow) then
11626 per_cu->type_unit_group may not have been set up yet. */
11627 if (sig_type->type_unit_group == NULL)
11628 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11629 tu_group = sig_type->type_unit_group;
11630
11631 /* If we've already processed this stmt_list there's no real need to
11632 do it again, we could fake it and just recreate the part we need
11633 (file name,index -> symtab mapping). If data shows this optimization
11634 is useful we can do it then. */
11635 first_time = tu_group->compunit_symtab == NULL;
11636
11637 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11638 debug info. */
11639 line_header_up lh;
11640 if (attr != NULL)
11641 {
11642 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11643 lh = dwarf_decode_line_header (line_offset, cu);
11644 }
11645 if (lh == NULL)
11646 {
11647 if (first_time)
11648 dwarf2_start_symtab (cu, "", NULL, 0);
11649 else
11650 {
11651 gdb_assert (tu_group->symtabs == NULL);
11652 gdb_assert (cu->builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 cu->builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
11659 }
11660 return;
11661 }
11662
11663 cu->line_header = lh.release ();
11664 cu->line_header_die_owner = die;
11665
11666 if (first_time)
11667 {
11668 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11669
11670 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11671 still initializing it, and our caller (a few levels up)
11672 process_full_type_unit still needs to know if this is the first
11673 time. */
11674
11675 tu_group->num_symtabs = cu->line_header->file_names.size ();
11676 tu_group->symtabs = XNEWVEC (struct symtab *,
11677 cu->line_header->file_names.size ());
11678
11679 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11680 {
11681 file_entry &fe = cu->line_header->file_names[i];
11682
11683 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11684
11685 if (cu->builder->get_current_subfile ()->symtab == NULL)
11686 {
11687 /* NOTE: start_subfile will recognize when it's been
11688 passed a file it has already seen. So we can't
11689 assume there's a simple mapping from
11690 cu->line_header->file_names to subfiles, plus
11691 cu->line_header->file_names may contain dups. */
11692 cu->builder->get_current_subfile ()->symtab
11693 = allocate_symtab (cust,
11694 cu->builder->get_current_subfile ()->name);
11695 }
11696
11697 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11698 tu_group->symtabs[i] = fe.symtab;
11699 }
11700 }
11701 else
11702 {
11703 gdb_assert (cu->builder == nullptr);
11704 struct compunit_symtab *cust = tu_group->compunit_symtab;
11705 cu->builder.reset (new struct buildsym_compunit
11706 (COMPUNIT_OBJFILE (cust), "",
11707 COMPUNIT_DIRNAME (cust),
11708 compunit_language (cust),
11709 0, cust));
11710
11711 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11712 {
11713 file_entry &fe = cu->line_header->file_names[i];
11714
11715 fe.symtab = tu_group->symtabs[i];
11716 }
11717 }
11718
11719 /* The main symtab is allocated last. Type units don't have DW_AT_name
11720 so they don't have a "real" (so to speak) symtab anyway.
11721 There is later code that will assign the main symtab to all symbols
11722 that don't have one. We need to handle the case of a symbol with a
11723 missing symtab (DW_AT_decl_file) anyway. */
11724 }
11725
11726 /* Process DW_TAG_type_unit.
11727 For TUs we want to skip the first top level sibling if it's not the
11728 actual type being defined by this TU. In this case the first top
11729 level sibling is there to provide context only. */
11730
11731 static void
11732 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11733 {
11734 struct die_info *child_die;
11735
11736 prepare_one_comp_unit (cu, die, language_minimal);
11737
11738 /* Initialize (or reinitialize) the machinery for building symtabs.
11739 We do this before processing child DIEs, so that the line header table
11740 is available for DW_AT_decl_file. */
11741 setup_type_unit_groups (die, cu);
11742
11743 if (die->child != NULL)
11744 {
11745 child_die = die->child;
11746 while (child_die && child_die->tag)
11747 {
11748 process_die (child_die, cu);
11749 child_die = sibling_die (child_die);
11750 }
11751 }
11752 }
11753 \f
11754 /* DWO/DWP files.
11755
11756 http://gcc.gnu.org/wiki/DebugFission
11757 http://gcc.gnu.org/wiki/DebugFissionDWP
11758
11759 To simplify handling of both DWO files ("object" files with the DWARF info)
11760 and DWP files (a file with the DWOs packaged up into one file), we treat
11761 DWP files as having a collection of virtual DWO files. */
11762
11763 static hashval_t
11764 hash_dwo_file (const void *item)
11765 {
11766 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11767 hashval_t hash;
11768
11769 hash = htab_hash_string (dwo_file->dwo_name);
11770 if (dwo_file->comp_dir != NULL)
11771 hash += htab_hash_string (dwo_file->comp_dir);
11772 return hash;
11773 }
11774
11775 static int
11776 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11777 {
11778 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11779 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11780
11781 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11782 return 0;
11783 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11784 return lhs->comp_dir == rhs->comp_dir;
11785 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11786 }
11787
11788 /* Allocate a hash table for DWO files. */
11789
11790 static htab_t
11791 allocate_dwo_file_hash_table (struct objfile *objfile)
11792 {
11793 return htab_create_alloc_ex (41,
11794 hash_dwo_file,
11795 eq_dwo_file,
11796 NULL,
11797 &objfile->objfile_obstack,
11798 hashtab_obstack_allocate,
11799 dummy_obstack_deallocate);
11800 }
11801
11802 /* Lookup DWO file DWO_NAME. */
11803
11804 static void **
11805 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11806 const char *dwo_name,
11807 const char *comp_dir)
11808 {
11809 struct dwo_file find_entry;
11810 void **slot;
11811
11812 if (dwarf2_per_objfile->dwo_files == NULL)
11813 dwarf2_per_objfile->dwo_files
11814 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11815
11816 memset (&find_entry, 0, sizeof (find_entry));
11817 find_entry.dwo_name = dwo_name;
11818 find_entry.comp_dir = comp_dir;
11819 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11820
11821 return slot;
11822 }
11823
11824 static hashval_t
11825 hash_dwo_unit (const void *item)
11826 {
11827 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11828
11829 /* This drops the top 32 bits of the id, but is ok for a hash. */
11830 return dwo_unit->signature;
11831 }
11832
11833 static int
11834 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11835 {
11836 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11837 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11838
11839 /* The signature is assumed to be unique within the DWO file.
11840 So while object file CU dwo_id's always have the value zero,
11841 that's OK, assuming each object file DWO file has only one CU,
11842 and that's the rule for now. */
11843 return lhs->signature == rhs->signature;
11844 }
11845
11846 /* Allocate a hash table for DWO CUs,TUs.
11847 There is one of these tables for each of CUs,TUs for each DWO file. */
11848
11849 static htab_t
11850 allocate_dwo_unit_table (struct objfile *objfile)
11851 {
11852 /* Start out with a pretty small number.
11853 Generally DWO files contain only one CU and maybe some TUs. */
11854 return htab_create_alloc_ex (3,
11855 hash_dwo_unit,
11856 eq_dwo_unit,
11857 NULL,
11858 &objfile->objfile_obstack,
11859 hashtab_obstack_allocate,
11860 dummy_obstack_deallocate);
11861 }
11862
11863 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11864
11865 struct create_dwo_cu_data
11866 {
11867 struct dwo_file *dwo_file;
11868 struct dwo_unit dwo_unit;
11869 };
11870
11871 /* die_reader_func for create_dwo_cu. */
11872
11873 static void
11874 create_dwo_cu_reader (const struct die_reader_specs *reader,
11875 const gdb_byte *info_ptr,
11876 struct die_info *comp_unit_die,
11877 int has_children,
11878 void *datap)
11879 {
11880 struct dwarf2_cu *cu = reader->cu;
11881 sect_offset sect_off = cu->per_cu->sect_off;
11882 struct dwarf2_section_info *section = cu->per_cu->section;
11883 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11884 struct dwo_file *dwo_file = data->dwo_file;
11885 struct dwo_unit *dwo_unit = &data->dwo_unit;
11886 struct attribute *attr;
11887
11888 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11889 if (attr == NULL)
11890 {
11891 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11892 " its dwo_id [in module %s]"),
11893 sect_offset_str (sect_off), dwo_file->dwo_name);
11894 return;
11895 }
11896
11897 dwo_unit->dwo_file = dwo_file;
11898 dwo_unit->signature = DW_UNSND (attr);
11899 dwo_unit->section = section;
11900 dwo_unit->sect_off = sect_off;
11901 dwo_unit->length = cu->per_cu->length;
11902
11903 if (dwarf_read_debug)
11904 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11905 sect_offset_str (sect_off),
11906 hex_string (dwo_unit->signature));
11907 }
11908
11909 /* Create the dwo_units for the CUs in a DWO_FILE.
11910 Note: This function processes DWO files only, not DWP files. */
11911
11912 static void
11913 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11914 struct dwo_file &dwo_file, dwarf2_section_info &section,
11915 htab_t &cus_htab)
11916 {
11917 struct objfile *objfile = dwarf2_per_objfile->objfile;
11918 const gdb_byte *info_ptr, *end_ptr;
11919
11920 dwarf2_read_section (objfile, &section);
11921 info_ptr = section.buffer;
11922
11923 if (info_ptr == NULL)
11924 return;
11925
11926 if (dwarf_read_debug)
11927 {
11928 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11929 get_section_name (&section),
11930 get_section_file_name (&section));
11931 }
11932
11933 end_ptr = info_ptr + section.size;
11934 while (info_ptr < end_ptr)
11935 {
11936 struct dwarf2_per_cu_data per_cu;
11937 struct create_dwo_cu_data create_dwo_cu_data;
11938 struct dwo_unit *dwo_unit;
11939 void **slot;
11940 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11941
11942 memset (&create_dwo_cu_data.dwo_unit, 0,
11943 sizeof (create_dwo_cu_data.dwo_unit));
11944 memset (&per_cu, 0, sizeof (per_cu));
11945 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11946 per_cu.is_debug_types = 0;
11947 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11948 per_cu.section = &section;
11949 create_dwo_cu_data.dwo_file = &dwo_file;
11950
11951 init_cutu_and_read_dies_no_follow (
11952 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11953 info_ptr += per_cu.length;
11954
11955 // If the unit could not be parsed, skip it.
11956 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11957 continue;
11958
11959 if (cus_htab == NULL)
11960 cus_htab = allocate_dwo_unit_table (objfile);
11961
11962 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11963 *dwo_unit = create_dwo_cu_data.dwo_unit;
11964 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11965 gdb_assert (slot != NULL);
11966 if (*slot != NULL)
11967 {
11968 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11969 sect_offset dup_sect_off = dup_cu->sect_off;
11970
11971 complaint (_("debug cu entry at offset %s is duplicate to"
11972 " the entry at offset %s, signature %s"),
11973 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11974 hex_string (dwo_unit->signature));
11975 }
11976 *slot = (void *)dwo_unit;
11977 }
11978 }
11979
11980 /* DWP file .debug_{cu,tu}_index section format:
11981 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11982
11983 DWP Version 1:
11984
11985 Both index sections have the same format, and serve to map a 64-bit
11986 signature to a set of section numbers. Each section begins with a header,
11987 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11988 indexes, and a pool of 32-bit section numbers. The index sections will be
11989 aligned at 8-byte boundaries in the file.
11990
11991 The index section header consists of:
11992
11993 V, 32 bit version number
11994 -, 32 bits unused
11995 N, 32 bit number of compilation units or type units in the index
11996 M, 32 bit number of slots in the hash table
11997
11998 Numbers are recorded using the byte order of the application binary.
11999
12000 The hash table begins at offset 16 in the section, and consists of an array
12001 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12002 order of the application binary). Unused slots in the hash table are 0.
12003 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12004
12005 The parallel table begins immediately after the hash table
12006 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12007 array of 32-bit indexes (using the byte order of the application binary),
12008 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12009 table contains a 32-bit index into the pool of section numbers. For unused
12010 hash table slots, the corresponding entry in the parallel table will be 0.
12011
12012 The pool of section numbers begins immediately following the hash table
12013 (at offset 16 + 12 * M from the beginning of the section). The pool of
12014 section numbers consists of an array of 32-bit words (using the byte order
12015 of the application binary). Each item in the array is indexed starting
12016 from 0. The hash table entry provides the index of the first section
12017 number in the set. Additional section numbers in the set follow, and the
12018 set is terminated by a 0 entry (section number 0 is not used in ELF).
12019
12020 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12021 section must be the first entry in the set, and the .debug_abbrev.dwo must
12022 be the second entry. Other members of the set may follow in any order.
12023
12024 ---
12025
12026 DWP Version 2:
12027
12028 DWP Version 2 combines all the .debug_info, etc. sections into one,
12029 and the entries in the index tables are now offsets into these sections.
12030 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12031 section.
12032
12033 Index Section Contents:
12034 Header
12035 Hash Table of Signatures dwp_hash_table.hash_table
12036 Parallel Table of Indices dwp_hash_table.unit_table
12037 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12038 Table of Section Sizes dwp_hash_table.v2.sizes
12039
12040 The index section header consists of:
12041
12042 V, 32 bit version number
12043 L, 32 bit number of columns in the table of section offsets
12044 N, 32 bit number of compilation units or type units in the index
12045 M, 32 bit number of slots in the hash table
12046
12047 Numbers are recorded using the byte order of the application binary.
12048
12049 The hash table has the same format as version 1.
12050 The parallel table of indices has the same format as version 1,
12051 except that the entries are origin-1 indices into the table of sections
12052 offsets and the table of section sizes.
12053
12054 The table of offsets begins immediately following the parallel table
12055 (at offset 16 + 12 * M from the beginning of the section). The table is
12056 a two-dimensional array of 32-bit words (using the byte order of the
12057 application binary), with L columns and N+1 rows, in row-major order.
12058 Each row in the array is indexed starting from 0. The first row provides
12059 a key to the remaining rows: each column in this row provides an identifier
12060 for a debug section, and the offsets in the same column of subsequent rows
12061 refer to that section. The section identifiers are:
12062
12063 DW_SECT_INFO 1 .debug_info.dwo
12064 DW_SECT_TYPES 2 .debug_types.dwo
12065 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12066 DW_SECT_LINE 4 .debug_line.dwo
12067 DW_SECT_LOC 5 .debug_loc.dwo
12068 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12069 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12070 DW_SECT_MACRO 8 .debug_macro.dwo
12071
12072 The offsets provided by the CU and TU index sections are the base offsets
12073 for the contributions made by each CU or TU to the corresponding section
12074 in the package file. Each CU and TU header contains an abbrev_offset
12075 field, used to find the abbreviations table for that CU or TU within the
12076 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12077 be interpreted as relative to the base offset given in the index section.
12078 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12079 should be interpreted as relative to the base offset for .debug_line.dwo,
12080 and offsets into other debug sections obtained from DWARF attributes should
12081 also be interpreted as relative to the corresponding base offset.
12082
12083 The table of sizes begins immediately following the table of offsets.
12084 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12085 with L columns and N rows, in row-major order. Each row in the array is
12086 indexed starting from 1 (row 0 is shared by the two tables).
12087
12088 ---
12089
12090 Hash table lookup is handled the same in version 1 and 2:
12091
12092 We assume that N and M will not exceed 2^32 - 1.
12093 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12094
12095 Given a 64-bit compilation unit signature or a type signature S, an entry
12096 in the hash table is located as follows:
12097
12098 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12099 the low-order k bits all set to 1.
12100
12101 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12102
12103 3) If the hash table entry at index H matches the signature, use that
12104 entry. If the hash table entry at index H is unused (all zeroes),
12105 terminate the search: the signature is not present in the table.
12106
12107 4) Let H = (H + H') modulo M. Repeat at Step 3.
12108
12109 Because M > N and H' and M are relatively prime, the search is guaranteed
12110 to stop at an unused slot or find the match. */
12111
12112 /* Create a hash table to map DWO IDs to their CU/TU entry in
12113 .debug_{info,types}.dwo in DWP_FILE.
12114 Returns NULL if there isn't one.
12115 Note: This function processes DWP files only, not DWO files. */
12116
12117 static struct dwp_hash_table *
12118 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12119 struct dwp_file *dwp_file, int is_debug_types)
12120 {
12121 struct objfile *objfile = dwarf2_per_objfile->objfile;
12122 bfd *dbfd = dwp_file->dbfd.get ();
12123 const gdb_byte *index_ptr, *index_end;
12124 struct dwarf2_section_info *index;
12125 uint32_t version, nr_columns, nr_units, nr_slots;
12126 struct dwp_hash_table *htab;
12127
12128 if (is_debug_types)
12129 index = &dwp_file->sections.tu_index;
12130 else
12131 index = &dwp_file->sections.cu_index;
12132
12133 if (dwarf2_section_empty_p (index))
12134 return NULL;
12135 dwarf2_read_section (objfile, index);
12136
12137 index_ptr = index->buffer;
12138 index_end = index_ptr + index->size;
12139
12140 version = read_4_bytes (dbfd, index_ptr);
12141 index_ptr += 4;
12142 if (version == 2)
12143 nr_columns = read_4_bytes (dbfd, index_ptr);
12144 else
12145 nr_columns = 0;
12146 index_ptr += 4;
12147 nr_units = read_4_bytes (dbfd, index_ptr);
12148 index_ptr += 4;
12149 nr_slots = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151
12152 if (version != 1 && version != 2)
12153 {
12154 error (_("Dwarf Error: unsupported DWP file version (%s)"
12155 " [in module %s]"),
12156 pulongest (version), dwp_file->name);
12157 }
12158 if (nr_slots != (nr_slots & -nr_slots))
12159 {
12160 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12161 " is not power of 2 [in module %s]"),
12162 pulongest (nr_slots), dwp_file->name);
12163 }
12164
12165 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12166 htab->version = version;
12167 htab->nr_columns = nr_columns;
12168 htab->nr_units = nr_units;
12169 htab->nr_slots = nr_slots;
12170 htab->hash_table = index_ptr;
12171 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12172
12173 /* Exit early if the table is empty. */
12174 if (nr_slots == 0 || nr_units == 0
12175 || (version == 2 && nr_columns == 0))
12176 {
12177 /* All must be zero. */
12178 if (nr_slots != 0 || nr_units != 0
12179 || (version == 2 && nr_columns != 0))
12180 {
12181 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12182 " all zero [in modules %s]"),
12183 dwp_file->name);
12184 }
12185 return htab;
12186 }
12187
12188 if (version == 1)
12189 {
12190 htab->section_pool.v1.indices =
12191 htab->unit_table + sizeof (uint32_t) * nr_slots;
12192 /* It's harder to decide whether the section is too small in v1.
12193 V1 is deprecated anyway so we punt. */
12194 }
12195 else
12196 {
12197 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12198 int *ids = htab->section_pool.v2.section_ids;
12199 /* Reverse map for error checking. */
12200 int ids_seen[DW_SECT_MAX + 1];
12201 int i;
12202
12203 if (nr_columns < 2)
12204 {
12205 error (_("Dwarf Error: bad DWP hash table, too few columns"
12206 " in section table [in module %s]"),
12207 dwp_file->name);
12208 }
12209 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12210 {
12211 error (_("Dwarf Error: bad DWP hash table, too many columns"
12212 " in section table [in module %s]"),
12213 dwp_file->name);
12214 }
12215 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12216 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12217 for (i = 0; i < nr_columns; ++i)
12218 {
12219 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12220
12221 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12222 {
12223 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12224 " in section table [in module %s]"),
12225 id, dwp_file->name);
12226 }
12227 if (ids_seen[id] != -1)
12228 {
12229 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12230 " id %d in section table [in module %s]"),
12231 id, dwp_file->name);
12232 }
12233 ids_seen[id] = i;
12234 ids[i] = id;
12235 }
12236 /* Must have exactly one info or types section. */
12237 if (((ids_seen[DW_SECT_INFO] != -1)
12238 + (ids_seen[DW_SECT_TYPES] != -1))
12239 != 1)
12240 {
12241 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12242 " DWO info/types section [in module %s]"),
12243 dwp_file->name);
12244 }
12245 /* Must have an abbrev section. */
12246 if (ids_seen[DW_SECT_ABBREV] == -1)
12247 {
12248 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12249 " section [in module %s]"),
12250 dwp_file->name);
12251 }
12252 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12253 htab->section_pool.v2.sizes =
12254 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12255 * nr_units * nr_columns);
12256 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12257 * nr_units * nr_columns))
12258 > index_end)
12259 {
12260 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12261 " [in module %s]"),
12262 dwp_file->name);
12263 }
12264 }
12265
12266 return htab;
12267 }
12268
12269 /* Update SECTIONS with the data from SECTP.
12270
12271 This function is like the other "locate" section routines that are
12272 passed to bfd_map_over_sections, but in this context the sections to
12273 read comes from the DWP V1 hash table, not the full ELF section table.
12274
12275 The result is non-zero for success, or zero if an error was found. */
12276
12277 static int
12278 locate_v1_virtual_dwo_sections (asection *sectp,
12279 struct virtual_v1_dwo_sections *sections)
12280 {
12281 const struct dwop_section_names *names = &dwop_section_names;
12282
12283 if (section_is_p (sectp->name, &names->abbrev_dwo))
12284 {
12285 /* There can be only one. */
12286 if (sections->abbrev.s.section != NULL)
12287 return 0;
12288 sections->abbrev.s.section = sectp;
12289 sections->abbrev.size = bfd_get_section_size (sectp);
12290 }
12291 else if (section_is_p (sectp->name, &names->info_dwo)
12292 || section_is_p (sectp->name, &names->types_dwo))
12293 {
12294 /* There can be only one. */
12295 if (sections->info_or_types.s.section != NULL)
12296 return 0;
12297 sections->info_or_types.s.section = sectp;
12298 sections->info_or_types.size = bfd_get_section_size (sectp);
12299 }
12300 else if (section_is_p (sectp->name, &names->line_dwo))
12301 {
12302 /* There can be only one. */
12303 if (sections->line.s.section != NULL)
12304 return 0;
12305 sections->line.s.section = sectp;
12306 sections->line.size = bfd_get_section_size (sectp);
12307 }
12308 else if (section_is_p (sectp->name, &names->loc_dwo))
12309 {
12310 /* There can be only one. */
12311 if (sections->loc.s.section != NULL)
12312 return 0;
12313 sections->loc.s.section = sectp;
12314 sections->loc.size = bfd_get_section_size (sectp);
12315 }
12316 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12317 {
12318 /* There can be only one. */
12319 if (sections->macinfo.s.section != NULL)
12320 return 0;
12321 sections->macinfo.s.section = sectp;
12322 sections->macinfo.size = bfd_get_section_size (sectp);
12323 }
12324 else if (section_is_p (sectp->name, &names->macro_dwo))
12325 {
12326 /* There can be only one. */
12327 if (sections->macro.s.section != NULL)
12328 return 0;
12329 sections->macro.s.section = sectp;
12330 sections->macro.size = bfd_get_section_size (sectp);
12331 }
12332 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12333 {
12334 /* There can be only one. */
12335 if (sections->str_offsets.s.section != NULL)
12336 return 0;
12337 sections->str_offsets.s.section = sectp;
12338 sections->str_offsets.size = bfd_get_section_size (sectp);
12339 }
12340 else
12341 {
12342 /* No other kind of section is valid. */
12343 return 0;
12344 }
12345
12346 return 1;
12347 }
12348
12349 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12350 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12351 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12352 This is for DWP version 1 files. */
12353
12354 static struct dwo_unit *
12355 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12356 struct dwp_file *dwp_file,
12357 uint32_t unit_index,
12358 const char *comp_dir,
12359 ULONGEST signature, int is_debug_types)
12360 {
12361 struct objfile *objfile = dwarf2_per_objfile->objfile;
12362 const struct dwp_hash_table *dwp_htab =
12363 is_debug_types ? dwp_file->tus : dwp_file->cus;
12364 bfd *dbfd = dwp_file->dbfd.get ();
12365 const char *kind = is_debug_types ? "TU" : "CU";
12366 struct dwo_file *dwo_file;
12367 struct dwo_unit *dwo_unit;
12368 struct virtual_v1_dwo_sections sections;
12369 void **dwo_file_slot;
12370 int i;
12371
12372 gdb_assert (dwp_file->version == 1);
12373
12374 if (dwarf_read_debug)
12375 {
12376 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12377 kind,
12378 pulongest (unit_index), hex_string (signature),
12379 dwp_file->name);
12380 }
12381
12382 /* Fetch the sections of this DWO unit.
12383 Put a limit on the number of sections we look for so that bad data
12384 doesn't cause us to loop forever. */
12385
12386 #define MAX_NR_V1_DWO_SECTIONS \
12387 (1 /* .debug_info or .debug_types */ \
12388 + 1 /* .debug_abbrev */ \
12389 + 1 /* .debug_line */ \
12390 + 1 /* .debug_loc */ \
12391 + 1 /* .debug_str_offsets */ \
12392 + 1 /* .debug_macro or .debug_macinfo */ \
12393 + 1 /* trailing zero */)
12394
12395 memset (&sections, 0, sizeof (sections));
12396
12397 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12398 {
12399 asection *sectp;
12400 uint32_t section_nr =
12401 read_4_bytes (dbfd,
12402 dwp_htab->section_pool.v1.indices
12403 + (unit_index + i) * sizeof (uint32_t));
12404
12405 if (section_nr == 0)
12406 break;
12407 if (section_nr >= dwp_file->num_sections)
12408 {
12409 error (_("Dwarf Error: bad DWP hash table, section number too large"
12410 " [in module %s]"),
12411 dwp_file->name);
12412 }
12413
12414 sectp = dwp_file->elf_sections[section_nr];
12415 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12416 {
12417 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12418 " [in module %s]"),
12419 dwp_file->name);
12420 }
12421 }
12422
12423 if (i < 2
12424 || dwarf2_section_empty_p (&sections.info_or_types)
12425 || dwarf2_section_empty_p (&sections.abbrev))
12426 {
12427 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12428 " [in module %s]"),
12429 dwp_file->name);
12430 }
12431 if (i == MAX_NR_V1_DWO_SECTIONS)
12432 {
12433 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12434 " [in module %s]"),
12435 dwp_file->name);
12436 }
12437
12438 /* It's easier for the rest of the code if we fake a struct dwo_file and
12439 have dwo_unit "live" in that. At least for now.
12440
12441 The DWP file can be made up of a random collection of CUs and TUs.
12442 However, for each CU + set of TUs that came from the same original DWO
12443 file, we can combine them back into a virtual DWO file to save space
12444 (fewer struct dwo_file objects to allocate). Remember that for really
12445 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12446
12447 std::string virtual_dwo_name =
12448 string_printf ("virtual-dwo/%d-%d-%d-%d",
12449 get_section_id (&sections.abbrev),
12450 get_section_id (&sections.line),
12451 get_section_id (&sections.loc),
12452 get_section_id (&sections.str_offsets));
12453 /* Can we use an existing virtual DWO file? */
12454 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12455 virtual_dwo_name.c_str (),
12456 comp_dir);
12457 /* Create one if necessary. */
12458 if (*dwo_file_slot == NULL)
12459 {
12460 if (dwarf_read_debug)
12461 {
12462 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12463 virtual_dwo_name.c_str ());
12464 }
12465 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12466 dwo_file->dwo_name
12467 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12468 virtual_dwo_name.c_str (),
12469 virtual_dwo_name.size ());
12470 dwo_file->comp_dir = comp_dir;
12471 dwo_file->sections.abbrev = sections.abbrev;
12472 dwo_file->sections.line = sections.line;
12473 dwo_file->sections.loc = sections.loc;
12474 dwo_file->sections.macinfo = sections.macinfo;
12475 dwo_file->sections.macro = sections.macro;
12476 dwo_file->sections.str_offsets = sections.str_offsets;
12477 /* The "str" section is global to the entire DWP file. */
12478 dwo_file->sections.str = dwp_file->sections.str;
12479 /* The info or types section is assigned below to dwo_unit,
12480 there's no need to record it in dwo_file.
12481 Also, we can't simply record type sections in dwo_file because
12482 we record a pointer into the vector in dwo_unit. As we collect more
12483 types we'll grow the vector and eventually have to reallocate space
12484 for it, invalidating all copies of pointers into the previous
12485 contents. */
12486 *dwo_file_slot = dwo_file;
12487 }
12488 else
12489 {
12490 if (dwarf_read_debug)
12491 {
12492 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12493 virtual_dwo_name.c_str ());
12494 }
12495 dwo_file = (struct dwo_file *) *dwo_file_slot;
12496 }
12497
12498 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12499 dwo_unit->dwo_file = dwo_file;
12500 dwo_unit->signature = signature;
12501 dwo_unit->section =
12502 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12503 *dwo_unit->section = sections.info_or_types;
12504 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12505
12506 return dwo_unit;
12507 }
12508
12509 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12510 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12511 piece within that section used by a TU/CU, return a virtual section
12512 of just that piece. */
12513
12514 static struct dwarf2_section_info
12515 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12516 struct dwarf2_section_info *section,
12517 bfd_size_type offset, bfd_size_type size)
12518 {
12519 struct dwarf2_section_info result;
12520 asection *sectp;
12521
12522 gdb_assert (section != NULL);
12523 gdb_assert (!section->is_virtual);
12524
12525 memset (&result, 0, sizeof (result));
12526 result.s.containing_section = section;
12527 result.is_virtual = 1;
12528
12529 if (size == 0)
12530 return result;
12531
12532 sectp = get_section_bfd_section (section);
12533
12534 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12535 bounds of the real section. This is a pretty-rare event, so just
12536 flag an error (easier) instead of a warning and trying to cope. */
12537 if (sectp == NULL
12538 || offset + size > bfd_get_section_size (sectp))
12539 {
12540 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12541 " in section %s [in module %s]"),
12542 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12543 objfile_name (dwarf2_per_objfile->objfile));
12544 }
12545
12546 result.virtual_offset = offset;
12547 result.size = size;
12548 return result;
12549 }
12550
12551 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12552 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12553 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12554 This is for DWP version 2 files. */
12555
12556 static struct dwo_unit *
12557 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12558 struct dwp_file *dwp_file,
12559 uint32_t unit_index,
12560 const char *comp_dir,
12561 ULONGEST signature, int is_debug_types)
12562 {
12563 struct objfile *objfile = dwarf2_per_objfile->objfile;
12564 const struct dwp_hash_table *dwp_htab =
12565 is_debug_types ? dwp_file->tus : dwp_file->cus;
12566 bfd *dbfd = dwp_file->dbfd.get ();
12567 const char *kind = is_debug_types ? "TU" : "CU";
12568 struct dwo_file *dwo_file;
12569 struct dwo_unit *dwo_unit;
12570 struct virtual_v2_dwo_sections sections;
12571 void **dwo_file_slot;
12572 int i;
12573
12574 gdb_assert (dwp_file->version == 2);
12575
12576 if (dwarf_read_debug)
12577 {
12578 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12579 kind,
12580 pulongest (unit_index), hex_string (signature),
12581 dwp_file->name);
12582 }
12583
12584 /* Fetch the section offsets of this DWO unit. */
12585
12586 memset (&sections, 0, sizeof (sections));
12587
12588 for (i = 0; i < dwp_htab->nr_columns; ++i)
12589 {
12590 uint32_t offset = read_4_bytes (dbfd,
12591 dwp_htab->section_pool.v2.offsets
12592 + (((unit_index - 1) * dwp_htab->nr_columns
12593 + i)
12594 * sizeof (uint32_t)));
12595 uint32_t size = read_4_bytes (dbfd,
12596 dwp_htab->section_pool.v2.sizes
12597 + (((unit_index - 1) * dwp_htab->nr_columns
12598 + i)
12599 * sizeof (uint32_t)));
12600
12601 switch (dwp_htab->section_pool.v2.section_ids[i])
12602 {
12603 case DW_SECT_INFO:
12604 case DW_SECT_TYPES:
12605 sections.info_or_types_offset = offset;
12606 sections.info_or_types_size = size;
12607 break;
12608 case DW_SECT_ABBREV:
12609 sections.abbrev_offset = offset;
12610 sections.abbrev_size = size;
12611 break;
12612 case DW_SECT_LINE:
12613 sections.line_offset = offset;
12614 sections.line_size = size;
12615 break;
12616 case DW_SECT_LOC:
12617 sections.loc_offset = offset;
12618 sections.loc_size = size;
12619 break;
12620 case DW_SECT_STR_OFFSETS:
12621 sections.str_offsets_offset = offset;
12622 sections.str_offsets_size = size;
12623 break;
12624 case DW_SECT_MACINFO:
12625 sections.macinfo_offset = offset;
12626 sections.macinfo_size = size;
12627 break;
12628 case DW_SECT_MACRO:
12629 sections.macro_offset = offset;
12630 sections.macro_size = size;
12631 break;
12632 }
12633 }
12634
12635 /* It's easier for the rest of the code if we fake a struct dwo_file and
12636 have dwo_unit "live" in that. At least for now.
12637
12638 The DWP file can be made up of a random collection of CUs and TUs.
12639 However, for each CU + set of TUs that came from the same original DWO
12640 file, we can combine them back into a virtual DWO file to save space
12641 (fewer struct dwo_file objects to allocate). Remember that for really
12642 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12643
12644 std::string virtual_dwo_name =
12645 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12646 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12647 (long) (sections.line_size ? sections.line_offset : 0),
12648 (long) (sections.loc_size ? sections.loc_offset : 0),
12649 (long) (sections.str_offsets_size
12650 ? sections.str_offsets_offset : 0));
12651 /* Can we use an existing virtual DWO file? */
12652 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12653 virtual_dwo_name.c_str (),
12654 comp_dir);
12655 /* Create one if necessary. */
12656 if (*dwo_file_slot == NULL)
12657 {
12658 if (dwarf_read_debug)
12659 {
12660 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12661 virtual_dwo_name.c_str ());
12662 }
12663 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12664 dwo_file->dwo_name
12665 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12666 virtual_dwo_name.c_str (),
12667 virtual_dwo_name.size ());
12668 dwo_file->comp_dir = comp_dir;
12669 dwo_file->sections.abbrev =
12670 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12671 sections.abbrev_offset, sections.abbrev_size);
12672 dwo_file->sections.line =
12673 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12674 sections.line_offset, sections.line_size);
12675 dwo_file->sections.loc =
12676 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12677 sections.loc_offset, sections.loc_size);
12678 dwo_file->sections.macinfo =
12679 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12680 sections.macinfo_offset, sections.macinfo_size);
12681 dwo_file->sections.macro =
12682 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12683 sections.macro_offset, sections.macro_size);
12684 dwo_file->sections.str_offsets =
12685 create_dwp_v2_section (dwarf2_per_objfile,
12686 &dwp_file->sections.str_offsets,
12687 sections.str_offsets_offset,
12688 sections.str_offsets_size);
12689 /* The "str" section is global to the entire DWP file. */
12690 dwo_file->sections.str = dwp_file->sections.str;
12691 /* The info or types section is assigned below to dwo_unit,
12692 there's no need to record it in dwo_file.
12693 Also, we can't simply record type sections in dwo_file because
12694 we record a pointer into the vector in dwo_unit. As we collect more
12695 types we'll grow the vector and eventually have to reallocate space
12696 for it, invalidating all copies of pointers into the previous
12697 contents. */
12698 *dwo_file_slot = dwo_file;
12699 }
12700 else
12701 {
12702 if (dwarf_read_debug)
12703 {
12704 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12705 virtual_dwo_name.c_str ());
12706 }
12707 dwo_file = (struct dwo_file *) *dwo_file_slot;
12708 }
12709
12710 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12711 dwo_unit->dwo_file = dwo_file;
12712 dwo_unit->signature = signature;
12713 dwo_unit->section =
12714 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12715 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12716 is_debug_types
12717 ? &dwp_file->sections.types
12718 : &dwp_file->sections.info,
12719 sections.info_or_types_offset,
12720 sections.info_or_types_size);
12721 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12722
12723 return dwo_unit;
12724 }
12725
12726 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12727 Returns NULL if the signature isn't found. */
12728
12729 static struct dwo_unit *
12730 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12731 struct dwp_file *dwp_file, const char *comp_dir,
12732 ULONGEST signature, int is_debug_types)
12733 {
12734 const struct dwp_hash_table *dwp_htab =
12735 is_debug_types ? dwp_file->tus : dwp_file->cus;
12736 bfd *dbfd = dwp_file->dbfd.get ();
12737 uint32_t mask = dwp_htab->nr_slots - 1;
12738 uint32_t hash = signature & mask;
12739 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12740 unsigned int i;
12741 void **slot;
12742 struct dwo_unit find_dwo_cu;
12743
12744 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12745 find_dwo_cu.signature = signature;
12746 slot = htab_find_slot (is_debug_types
12747 ? dwp_file->loaded_tus
12748 : dwp_file->loaded_cus,
12749 &find_dwo_cu, INSERT);
12750
12751 if (*slot != NULL)
12752 return (struct dwo_unit *) *slot;
12753
12754 /* Use a for loop so that we don't loop forever on bad debug info. */
12755 for (i = 0; i < dwp_htab->nr_slots; ++i)
12756 {
12757 ULONGEST signature_in_table;
12758
12759 signature_in_table =
12760 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12761 if (signature_in_table == signature)
12762 {
12763 uint32_t unit_index =
12764 read_4_bytes (dbfd,
12765 dwp_htab->unit_table + hash * sizeof (uint32_t));
12766
12767 if (dwp_file->version == 1)
12768 {
12769 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12770 dwp_file, unit_index,
12771 comp_dir, signature,
12772 is_debug_types);
12773 }
12774 else
12775 {
12776 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12777 dwp_file, unit_index,
12778 comp_dir, signature,
12779 is_debug_types);
12780 }
12781 return (struct dwo_unit *) *slot;
12782 }
12783 if (signature_in_table == 0)
12784 return NULL;
12785 hash = (hash + hash2) & mask;
12786 }
12787
12788 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12789 " [in module %s]"),
12790 dwp_file->name);
12791 }
12792
12793 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12794 Open the file specified by FILE_NAME and hand it off to BFD for
12795 preliminary analysis. Return a newly initialized bfd *, which
12796 includes a canonicalized copy of FILE_NAME.
12797 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12798 SEARCH_CWD is true if the current directory is to be searched.
12799 It will be searched before debug-file-directory.
12800 If successful, the file is added to the bfd include table of the
12801 objfile's bfd (see gdb_bfd_record_inclusion).
12802 If unable to find/open the file, return NULL.
12803 NOTE: This function is derived from symfile_bfd_open. */
12804
12805 static gdb_bfd_ref_ptr
12806 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12807 const char *file_name, int is_dwp, int search_cwd)
12808 {
12809 int desc;
12810 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12811 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12812 to debug_file_directory. */
12813 const char *search_path;
12814 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12815
12816 gdb::unique_xmalloc_ptr<char> search_path_holder;
12817 if (search_cwd)
12818 {
12819 if (*debug_file_directory != '\0')
12820 {
12821 search_path_holder.reset (concat (".", dirname_separator_string,
12822 debug_file_directory,
12823 (char *) NULL));
12824 search_path = search_path_holder.get ();
12825 }
12826 else
12827 search_path = ".";
12828 }
12829 else
12830 search_path = debug_file_directory;
12831
12832 openp_flags flags = OPF_RETURN_REALPATH;
12833 if (is_dwp)
12834 flags |= OPF_SEARCH_IN_PATH;
12835
12836 gdb::unique_xmalloc_ptr<char> absolute_name;
12837 desc = openp (search_path, flags, file_name,
12838 O_RDONLY | O_BINARY, &absolute_name);
12839 if (desc < 0)
12840 return NULL;
12841
12842 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12843 gnutarget, desc));
12844 if (sym_bfd == NULL)
12845 return NULL;
12846 bfd_set_cacheable (sym_bfd.get (), 1);
12847
12848 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12849 return NULL;
12850
12851 /* Success. Record the bfd as having been included by the objfile's bfd.
12852 This is important because things like demangled_names_hash lives in the
12853 objfile's per_bfd space and may have references to things like symbol
12854 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12855 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12856
12857 return sym_bfd;
12858 }
12859
12860 /* Try to open DWO file FILE_NAME.
12861 COMP_DIR is the DW_AT_comp_dir attribute.
12862 The result is the bfd handle of the file.
12863 If there is a problem finding or opening the file, return NULL.
12864 Upon success, the canonicalized path of the file is stored in the bfd,
12865 same as symfile_bfd_open. */
12866
12867 static gdb_bfd_ref_ptr
12868 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12869 const char *file_name, const char *comp_dir)
12870 {
12871 if (IS_ABSOLUTE_PATH (file_name))
12872 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12873 0 /*is_dwp*/, 0 /*search_cwd*/);
12874
12875 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12876
12877 if (comp_dir != NULL)
12878 {
12879 char *path_to_try = concat (comp_dir, SLASH_STRING,
12880 file_name, (char *) NULL);
12881
12882 /* NOTE: If comp_dir is a relative path, this will also try the
12883 search path, which seems useful. */
12884 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12885 path_to_try,
12886 0 /*is_dwp*/,
12887 1 /*search_cwd*/));
12888 xfree (path_to_try);
12889 if (abfd != NULL)
12890 return abfd;
12891 }
12892
12893 /* That didn't work, try debug-file-directory, which, despite its name,
12894 is a list of paths. */
12895
12896 if (*debug_file_directory == '\0')
12897 return NULL;
12898
12899 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12900 0 /*is_dwp*/, 1 /*search_cwd*/);
12901 }
12902
12903 /* This function is mapped across the sections and remembers the offset and
12904 size of each of the DWO debugging sections we are interested in. */
12905
12906 static void
12907 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12908 {
12909 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12910 const struct dwop_section_names *names = &dwop_section_names;
12911
12912 if (section_is_p (sectp->name, &names->abbrev_dwo))
12913 {
12914 dwo_sections->abbrev.s.section = sectp;
12915 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12916 }
12917 else if (section_is_p (sectp->name, &names->info_dwo))
12918 {
12919 dwo_sections->info.s.section = sectp;
12920 dwo_sections->info.size = bfd_get_section_size (sectp);
12921 }
12922 else if (section_is_p (sectp->name, &names->line_dwo))
12923 {
12924 dwo_sections->line.s.section = sectp;
12925 dwo_sections->line.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->loc_dwo))
12928 {
12929 dwo_sections->loc.s.section = sectp;
12930 dwo_sections->loc.size = bfd_get_section_size (sectp);
12931 }
12932 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12933 {
12934 dwo_sections->macinfo.s.section = sectp;
12935 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12936 }
12937 else if (section_is_p (sectp->name, &names->macro_dwo))
12938 {
12939 dwo_sections->macro.s.section = sectp;
12940 dwo_sections->macro.size = bfd_get_section_size (sectp);
12941 }
12942 else if (section_is_p (sectp->name, &names->str_dwo))
12943 {
12944 dwo_sections->str.s.section = sectp;
12945 dwo_sections->str.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12948 {
12949 dwo_sections->str_offsets.s.section = sectp;
12950 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12951 }
12952 else if (section_is_p (sectp->name, &names->types_dwo))
12953 {
12954 struct dwarf2_section_info type_section;
12955
12956 memset (&type_section, 0, sizeof (type_section));
12957 type_section.s.section = sectp;
12958 type_section.size = bfd_get_section_size (sectp);
12959 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12960 &type_section);
12961 }
12962 }
12963
12964 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12965 by PER_CU. This is for the non-DWP case.
12966 The result is NULL if DWO_NAME can't be found. */
12967
12968 static struct dwo_file *
12969 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12970 const char *dwo_name, const char *comp_dir)
12971 {
12972 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12973 struct objfile *objfile = dwarf2_per_objfile->objfile;
12974
12975 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12976 if (dbfd == NULL)
12977 {
12978 if (dwarf_read_debug)
12979 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12980 return NULL;
12981 }
12982
12983 /* We use a unique pointer here, despite the obstack allocation,
12984 because a dwo_file needs some cleanup if it is abandoned. */
12985 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12986 struct dwo_file));
12987 dwo_file->dwo_name = dwo_name;
12988 dwo_file->comp_dir = comp_dir;
12989 dwo_file->dbfd = dbfd.release ();
12990
12991 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12992 &dwo_file->sections);
12993
12994 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12995 dwo_file->cus);
12996
12997 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12998 dwo_file->sections.types, dwo_file->tus);
12999
13000 if (dwarf_read_debug)
13001 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13002
13003 return dwo_file.release ();
13004 }
13005
13006 /* This function is mapped across the sections and remembers the offset and
13007 size of each of the DWP debugging sections common to version 1 and 2 that
13008 we are interested in. */
13009
13010 static void
13011 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13012 void *dwp_file_ptr)
13013 {
13014 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13015 const struct dwop_section_names *names = &dwop_section_names;
13016 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13017
13018 /* Record the ELF section number for later lookup: this is what the
13019 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13020 gdb_assert (elf_section_nr < dwp_file->num_sections);
13021 dwp_file->elf_sections[elf_section_nr] = sectp;
13022
13023 /* Look for specific sections that we need. */
13024 if (section_is_p (sectp->name, &names->str_dwo))
13025 {
13026 dwp_file->sections.str.s.section = sectp;
13027 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13028 }
13029 else if (section_is_p (sectp->name, &names->cu_index))
13030 {
13031 dwp_file->sections.cu_index.s.section = sectp;
13032 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13033 }
13034 else if (section_is_p (sectp->name, &names->tu_index))
13035 {
13036 dwp_file->sections.tu_index.s.section = sectp;
13037 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13038 }
13039 }
13040
13041 /* This function is mapped across the sections and remembers the offset and
13042 size of each of the DWP version 2 debugging sections that we are interested
13043 in. This is split into a separate function because we don't know if we
13044 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13045
13046 static void
13047 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13048 {
13049 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13050 const struct dwop_section_names *names = &dwop_section_names;
13051 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13052
13053 /* Record the ELF section number for later lookup: this is what the
13054 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13055 gdb_assert (elf_section_nr < dwp_file->num_sections);
13056 dwp_file->elf_sections[elf_section_nr] = sectp;
13057
13058 /* Look for specific sections that we need. */
13059 if (section_is_p (sectp->name, &names->abbrev_dwo))
13060 {
13061 dwp_file->sections.abbrev.s.section = sectp;
13062 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13063 }
13064 else if (section_is_p (sectp->name, &names->info_dwo))
13065 {
13066 dwp_file->sections.info.s.section = sectp;
13067 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13068 }
13069 else if (section_is_p (sectp->name, &names->line_dwo))
13070 {
13071 dwp_file->sections.line.s.section = sectp;
13072 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13073 }
13074 else if (section_is_p (sectp->name, &names->loc_dwo))
13075 {
13076 dwp_file->sections.loc.s.section = sectp;
13077 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13078 }
13079 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13080 {
13081 dwp_file->sections.macinfo.s.section = sectp;
13082 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13083 }
13084 else if (section_is_p (sectp->name, &names->macro_dwo))
13085 {
13086 dwp_file->sections.macro.s.section = sectp;
13087 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13088 }
13089 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13090 {
13091 dwp_file->sections.str_offsets.s.section = sectp;
13092 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13093 }
13094 else if (section_is_p (sectp->name, &names->types_dwo))
13095 {
13096 dwp_file->sections.types.s.section = sectp;
13097 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13098 }
13099 }
13100
13101 /* Hash function for dwp_file loaded CUs/TUs. */
13102
13103 static hashval_t
13104 hash_dwp_loaded_cutus (const void *item)
13105 {
13106 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13107
13108 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13109 return dwo_unit->signature;
13110 }
13111
13112 /* Equality function for dwp_file loaded CUs/TUs. */
13113
13114 static int
13115 eq_dwp_loaded_cutus (const void *a, const void *b)
13116 {
13117 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13118 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13119
13120 return dua->signature == dub->signature;
13121 }
13122
13123 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13124
13125 static htab_t
13126 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13127 {
13128 return htab_create_alloc_ex (3,
13129 hash_dwp_loaded_cutus,
13130 eq_dwp_loaded_cutus,
13131 NULL,
13132 &objfile->objfile_obstack,
13133 hashtab_obstack_allocate,
13134 dummy_obstack_deallocate);
13135 }
13136
13137 /* Try to open DWP file FILE_NAME.
13138 The result is the bfd handle of the file.
13139 If there is a problem finding or opening the file, return NULL.
13140 Upon success, the canonicalized path of the file is stored in the bfd,
13141 same as symfile_bfd_open. */
13142
13143 static gdb_bfd_ref_ptr
13144 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13145 const char *file_name)
13146 {
13147 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13148 1 /*is_dwp*/,
13149 1 /*search_cwd*/));
13150 if (abfd != NULL)
13151 return abfd;
13152
13153 /* Work around upstream bug 15652.
13154 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13155 [Whether that's a "bug" is debatable, but it is getting in our way.]
13156 We have no real idea where the dwp file is, because gdb's realpath-ing
13157 of the executable's path may have discarded the needed info.
13158 [IWBN if the dwp file name was recorded in the executable, akin to
13159 .gnu_debuglink, but that doesn't exist yet.]
13160 Strip the directory from FILE_NAME and search again. */
13161 if (*debug_file_directory != '\0')
13162 {
13163 /* Don't implicitly search the current directory here.
13164 If the user wants to search "." to handle this case,
13165 it must be added to debug-file-directory. */
13166 return try_open_dwop_file (dwarf2_per_objfile,
13167 lbasename (file_name), 1 /*is_dwp*/,
13168 0 /*search_cwd*/);
13169 }
13170
13171 return NULL;
13172 }
13173
13174 /* Initialize the use of the DWP file for the current objfile.
13175 By convention the name of the DWP file is ${objfile}.dwp.
13176 The result is NULL if it can't be found. */
13177
13178 static std::unique_ptr<struct dwp_file>
13179 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13180 {
13181 struct objfile *objfile = dwarf2_per_objfile->objfile;
13182
13183 /* Try to find first .dwp for the binary file before any symbolic links
13184 resolving. */
13185
13186 /* If the objfile is a debug file, find the name of the real binary
13187 file and get the name of dwp file from there. */
13188 std::string dwp_name;
13189 if (objfile->separate_debug_objfile_backlink != NULL)
13190 {
13191 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13192 const char *backlink_basename = lbasename (backlink->original_name);
13193
13194 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13195 }
13196 else
13197 dwp_name = objfile->original_name;
13198
13199 dwp_name += ".dwp";
13200
13201 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13202 if (dbfd == NULL
13203 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13204 {
13205 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13206 dwp_name = objfile_name (objfile);
13207 dwp_name += ".dwp";
13208 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13209 }
13210
13211 if (dbfd == NULL)
13212 {
13213 if (dwarf_read_debug)
13214 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13215 return std::unique_ptr<dwp_file> ();
13216 }
13217
13218 const char *name = bfd_get_filename (dbfd.get ());
13219 std::unique_ptr<struct dwp_file> dwp_file
13220 (new struct dwp_file (name, std::move (dbfd)));
13221
13222 /* +1: section 0 is unused */
13223 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13224 dwp_file->elf_sections =
13225 OBSTACK_CALLOC (&objfile->objfile_obstack,
13226 dwp_file->num_sections, asection *);
13227
13228 bfd_map_over_sections (dwp_file->dbfd.get (),
13229 dwarf2_locate_common_dwp_sections,
13230 dwp_file.get ());
13231
13232 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13233 0);
13234
13235 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13236 1);
13237
13238 /* The DWP file version is stored in the hash table. Oh well. */
13239 if (dwp_file->cus && dwp_file->tus
13240 && dwp_file->cus->version != dwp_file->tus->version)
13241 {
13242 /* Technically speaking, we should try to limp along, but this is
13243 pretty bizarre. We use pulongest here because that's the established
13244 portability solution (e.g, we cannot use %u for uint32_t). */
13245 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13246 " TU version %s [in DWP file %s]"),
13247 pulongest (dwp_file->cus->version),
13248 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13249 }
13250
13251 if (dwp_file->cus)
13252 dwp_file->version = dwp_file->cus->version;
13253 else if (dwp_file->tus)
13254 dwp_file->version = dwp_file->tus->version;
13255 else
13256 dwp_file->version = 2;
13257
13258 if (dwp_file->version == 2)
13259 bfd_map_over_sections (dwp_file->dbfd.get (),
13260 dwarf2_locate_v2_dwp_sections,
13261 dwp_file.get ());
13262
13263 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13264 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13265
13266 if (dwarf_read_debug)
13267 {
13268 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13269 fprintf_unfiltered (gdb_stdlog,
13270 " %s CUs, %s TUs\n",
13271 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13272 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13273 }
13274
13275 return dwp_file;
13276 }
13277
13278 /* Wrapper around open_and_init_dwp_file, only open it once. */
13279
13280 static struct dwp_file *
13281 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13282 {
13283 if (! dwarf2_per_objfile->dwp_checked)
13284 {
13285 dwarf2_per_objfile->dwp_file
13286 = open_and_init_dwp_file (dwarf2_per_objfile);
13287 dwarf2_per_objfile->dwp_checked = 1;
13288 }
13289 return dwarf2_per_objfile->dwp_file.get ();
13290 }
13291
13292 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13293 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13294 or in the DWP file for the objfile, referenced by THIS_UNIT.
13295 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13296 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13297
13298 This is called, for example, when wanting to read a variable with a
13299 complex location. Therefore we don't want to do file i/o for every call.
13300 Therefore we don't want to look for a DWO file on every call.
13301 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13302 then we check if we've already seen DWO_NAME, and only THEN do we check
13303 for a DWO file.
13304
13305 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13306 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13307
13308 static struct dwo_unit *
13309 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13310 const char *dwo_name, const char *comp_dir,
13311 ULONGEST signature, int is_debug_types)
13312 {
13313 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13314 struct objfile *objfile = dwarf2_per_objfile->objfile;
13315 const char *kind = is_debug_types ? "TU" : "CU";
13316 void **dwo_file_slot;
13317 struct dwo_file *dwo_file;
13318 struct dwp_file *dwp_file;
13319
13320 /* First see if there's a DWP file.
13321 If we have a DWP file but didn't find the DWO inside it, don't
13322 look for the original DWO file. It makes gdb behave differently
13323 depending on whether one is debugging in the build tree. */
13324
13325 dwp_file = get_dwp_file (dwarf2_per_objfile);
13326 if (dwp_file != NULL)
13327 {
13328 const struct dwp_hash_table *dwp_htab =
13329 is_debug_types ? dwp_file->tus : dwp_file->cus;
13330
13331 if (dwp_htab != NULL)
13332 {
13333 struct dwo_unit *dwo_cutu =
13334 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13335 signature, is_debug_types);
13336
13337 if (dwo_cutu != NULL)
13338 {
13339 if (dwarf_read_debug)
13340 {
13341 fprintf_unfiltered (gdb_stdlog,
13342 "Virtual DWO %s %s found: @%s\n",
13343 kind, hex_string (signature),
13344 host_address_to_string (dwo_cutu));
13345 }
13346 return dwo_cutu;
13347 }
13348 }
13349 }
13350 else
13351 {
13352 /* No DWP file, look for the DWO file. */
13353
13354 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13355 dwo_name, comp_dir);
13356 if (*dwo_file_slot == NULL)
13357 {
13358 /* Read in the file and build a table of the CUs/TUs it contains. */
13359 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13360 }
13361 /* NOTE: This will be NULL if unable to open the file. */
13362 dwo_file = (struct dwo_file *) *dwo_file_slot;
13363
13364 if (dwo_file != NULL)
13365 {
13366 struct dwo_unit *dwo_cutu = NULL;
13367
13368 if (is_debug_types && dwo_file->tus)
13369 {
13370 struct dwo_unit find_dwo_cutu;
13371
13372 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13373 find_dwo_cutu.signature = signature;
13374 dwo_cutu
13375 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13376 }
13377 else if (!is_debug_types && dwo_file->cus)
13378 {
13379 struct dwo_unit find_dwo_cutu;
13380
13381 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13382 find_dwo_cutu.signature = signature;
13383 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13384 &find_dwo_cutu);
13385 }
13386
13387 if (dwo_cutu != NULL)
13388 {
13389 if (dwarf_read_debug)
13390 {
13391 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13392 kind, dwo_name, hex_string (signature),
13393 host_address_to_string (dwo_cutu));
13394 }
13395 return dwo_cutu;
13396 }
13397 }
13398 }
13399
13400 /* We didn't find it. This could mean a dwo_id mismatch, or
13401 someone deleted the DWO/DWP file, or the search path isn't set up
13402 correctly to find the file. */
13403
13404 if (dwarf_read_debug)
13405 {
13406 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13407 kind, dwo_name, hex_string (signature));
13408 }
13409
13410 /* This is a warning and not a complaint because it can be caused by
13411 pilot error (e.g., user accidentally deleting the DWO). */
13412 {
13413 /* Print the name of the DWP file if we looked there, helps the user
13414 better diagnose the problem. */
13415 std::string dwp_text;
13416
13417 if (dwp_file != NULL)
13418 dwp_text = string_printf (" [in DWP file %s]",
13419 lbasename (dwp_file->name));
13420
13421 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13422 " [in module %s]"),
13423 kind, dwo_name, hex_string (signature),
13424 dwp_text.c_str (),
13425 this_unit->is_debug_types ? "TU" : "CU",
13426 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13427 }
13428 return NULL;
13429 }
13430
13431 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13432 See lookup_dwo_cutu_unit for details. */
13433
13434 static struct dwo_unit *
13435 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13436 const char *dwo_name, const char *comp_dir,
13437 ULONGEST signature)
13438 {
13439 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13440 }
13441
13442 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13443 See lookup_dwo_cutu_unit for details. */
13444
13445 static struct dwo_unit *
13446 lookup_dwo_type_unit (struct signatured_type *this_tu,
13447 const char *dwo_name, const char *comp_dir)
13448 {
13449 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13450 }
13451
13452 /* Traversal function for queue_and_load_all_dwo_tus. */
13453
13454 static int
13455 queue_and_load_dwo_tu (void **slot, void *info)
13456 {
13457 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13458 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13459 ULONGEST signature = dwo_unit->signature;
13460 struct signatured_type *sig_type =
13461 lookup_dwo_signatured_type (per_cu->cu, signature);
13462
13463 if (sig_type != NULL)
13464 {
13465 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13466
13467 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13468 a real dependency of PER_CU on SIG_TYPE. That is detected later
13469 while processing PER_CU. */
13470 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13471 load_full_type_unit (sig_cu);
13472 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13473 }
13474
13475 return 1;
13476 }
13477
13478 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13479 The DWO may have the only definition of the type, though it may not be
13480 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13481 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13482
13483 static void
13484 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13485 {
13486 struct dwo_unit *dwo_unit;
13487 struct dwo_file *dwo_file;
13488
13489 gdb_assert (!per_cu->is_debug_types);
13490 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13491 gdb_assert (per_cu->cu != NULL);
13492
13493 dwo_unit = per_cu->cu->dwo_unit;
13494 gdb_assert (dwo_unit != NULL);
13495
13496 dwo_file = dwo_unit->dwo_file;
13497 if (dwo_file->tus != NULL)
13498 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13499 }
13500
13501 /* Free all resources associated with DWO_FILE.
13502 Close the DWO file and munmap the sections. */
13503
13504 static void
13505 free_dwo_file (struct dwo_file *dwo_file)
13506 {
13507 /* Note: dbfd is NULL for virtual DWO files. */
13508 gdb_bfd_unref (dwo_file->dbfd);
13509
13510 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13511 }
13512
13513 /* Traversal function for free_dwo_files. */
13514
13515 static int
13516 free_dwo_file_from_slot (void **slot, void *info)
13517 {
13518 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13519
13520 free_dwo_file (dwo_file);
13521
13522 return 1;
13523 }
13524
13525 /* Free all resources associated with DWO_FILES. */
13526
13527 static void
13528 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13529 {
13530 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13531 }
13532 \f
13533 /* Read in various DIEs. */
13534
13535 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13536 Inherit only the children of the DW_AT_abstract_origin DIE not being
13537 already referenced by DW_AT_abstract_origin from the children of the
13538 current DIE. */
13539
13540 static void
13541 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13542 {
13543 struct die_info *child_die;
13544 sect_offset *offsetp;
13545 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13546 struct die_info *origin_die;
13547 /* Iterator of the ORIGIN_DIE children. */
13548 struct die_info *origin_child_die;
13549 struct attribute *attr;
13550 struct dwarf2_cu *origin_cu;
13551 struct pending **origin_previous_list_in_scope;
13552
13553 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13554 if (!attr)
13555 return;
13556
13557 /* Note that following die references may follow to a die in a
13558 different cu. */
13559
13560 origin_cu = cu;
13561 origin_die = follow_die_ref (die, attr, &origin_cu);
13562
13563 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13564 symbols in. */
13565 origin_previous_list_in_scope = origin_cu->list_in_scope;
13566 origin_cu->list_in_scope = cu->list_in_scope;
13567
13568 if (die->tag != origin_die->tag
13569 && !(die->tag == DW_TAG_inlined_subroutine
13570 && origin_die->tag == DW_TAG_subprogram))
13571 complaint (_("DIE %s and its abstract origin %s have different tags"),
13572 sect_offset_str (die->sect_off),
13573 sect_offset_str (origin_die->sect_off));
13574
13575 std::vector<sect_offset> offsets;
13576
13577 for (child_die = die->child;
13578 child_die && child_die->tag;
13579 child_die = sibling_die (child_die))
13580 {
13581 struct die_info *child_origin_die;
13582 struct dwarf2_cu *child_origin_cu;
13583
13584 /* We are trying to process concrete instance entries:
13585 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13586 it's not relevant to our analysis here. i.e. detecting DIEs that are
13587 present in the abstract instance but not referenced in the concrete
13588 one. */
13589 if (child_die->tag == DW_TAG_call_site
13590 || child_die->tag == DW_TAG_GNU_call_site)
13591 continue;
13592
13593 /* For each CHILD_DIE, find the corresponding child of
13594 ORIGIN_DIE. If there is more than one layer of
13595 DW_AT_abstract_origin, follow them all; there shouldn't be,
13596 but GCC versions at least through 4.4 generate this (GCC PR
13597 40573). */
13598 child_origin_die = child_die;
13599 child_origin_cu = cu;
13600 while (1)
13601 {
13602 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13603 child_origin_cu);
13604 if (attr == NULL)
13605 break;
13606 child_origin_die = follow_die_ref (child_origin_die, attr,
13607 &child_origin_cu);
13608 }
13609
13610 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13611 counterpart may exist. */
13612 if (child_origin_die != child_die)
13613 {
13614 if (child_die->tag != child_origin_die->tag
13615 && !(child_die->tag == DW_TAG_inlined_subroutine
13616 && child_origin_die->tag == DW_TAG_subprogram))
13617 complaint (_("Child DIE %s and its abstract origin %s have "
13618 "different tags"),
13619 sect_offset_str (child_die->sect_off),
13620 sect_offset_str (child_origin_die->sect_off));
13621 if (child_origin_die->parent != origin_die)
13622 complaint (_("Child DIE %s and its abstract origin %s have "
13623 "different parents"),
13624 sect_offset_str (child_die->sect_off),
13625 sect_offset_str (child_origin_die->sect_off));
13626 else
13627 offsets.push_back (child_origin_die->sect_off);
13628 }
13629 }
13630 std::sort (offsets.begin (), offsets.end ());
13631 sect_offset *offsets_end = offsets.data () + offsets.size ();
13632 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13633 if (offsetp[-1] == *offsetp)
13634 complaint (_("Multiple children of DIE %s refer "
13635 "to DIE %s as their abstract origin"),
13636 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13637
13638 offsetp = offsets.data ();
13639 origin_child_die = origin_die->child;
13640 while (origin_child_die && origin_child_die->tag)
13641 {
13642 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13643 while (offsetp < offsets_end
13644 && *offsetp < origin_child_die->sect_off)
13645 offsetp++;
13646 if (offsetp >= offsets_end
13647 || *offsetp > origin_child_die->sect_off)
13648 {
13649 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13650 Check whether we're already processing ORIGIN_CHILD_DIE.
13651 This can happen with mutually referenced abstract_origins.
13652 PR 16581. */
13653 if (!origin_child_die->in_process)
13654 process_die (origin_child_die, origin_cu);
13655 }
13656 origin_child_die = sibling_die (origin_child_die);
13657 }
13658 origin_cu->list_in_scope = origin_previous_list_in_scope;
13659 }
13660
13661 static void
13662 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13663 {
13664 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13665 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13666 struct context_stack *newobj;
13667 CORE_ADDR lowpc;
13668 CORE_ADDR highpc;
13669 struct die_info *child_die;
13670 struct attribute *attr, *call_line, *call_file;
13671 const char *name;
13672 CORE_ADDR baseaddr;
13673 struct block *block;
13674 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13675 std::vector<struct symbol *> template_args;
13676 struct template_symbol *templ_func = NULL;
13677
13678 if (inlined_func)
13679 {
13680 /* If we do not have call site information, we can't show the
13681 caller of this inlined function. That's too confusing, so
13682 only use the scope for local variables. */
13683 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13684 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13685 if (call_line == NULL || call_file == NULL)
13686 {
13687 read_lexical_block_scope (die, cu);
13688 return;
13689 }
13690 }
13691
13692 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13693
13694 name = dwarf2_name (die, cu);
13695
13696 /* Ignore functions with missing or empty names. These are actually
13697 illegal according to the DWARF standard. */
13698 if (name == NULL)
13699 {
13700 complaint (_("missing name for subprogram DIE at %s"),
13701 sect_offset_str (die->sect_off));
13702 return;
13703 }
13704
13705 /* Ignore functions with missing or invalid low and high pc attributes. */
13706 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13707 <= PC_BOUNDS_INVALID)
13708 {
13709 attr = dwarf2_attr (die, DW_AT_external, cu);
13710 if (!attr || !DW_UNSND (attr))
13711 complaint (_("cannot get low and high bounds "
13712 "for subprogram DIE at %s"),
13713 sect_offset_str (die->sect_off));
13714 return;
13715 }
13716
13717 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13718 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13719
13720 /* If we have any template arguments, then we must allocate a
13721 different sort of symbol. */
13722 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13723 {
13724 if (child_die->tag == DW_TAG_template_type_param
13725 || child_die->tag == DW_TAG_template_value_param)
13726 {
13727 templ_func = allocate_template_symbol (objfile);
13728 templ_func->subclass = SYMBOL_TEMPLATE;
13729 break;
13730 }
13731 }
13732
13733 newobj = cu->builder->push_context (0, lowpc);
13734 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13735 (struct symbol *) templ_func);
13736
13737 /* If there is a location expression for DW_AT_frame_base, record
13738 it. */
13739 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13740 if (attr)
13741 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13742
13743 /* If there is a location for the static link, record it. */
13744 newobj->static_link = NULL;
13745 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13746 if (attr)
13747 {
13748 newobj->static_link
13749 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13750 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13751 }
13752
13753 cu->list_in_scope = cu->builder->get_local_symbols ();
13754
13755 if (die->child != NULL)
13756 {
13757 child_die = die->child;
13758 while (child_die && child_die->tag)
13759 {
13760 if (child_die->tag == DW_TAG_template_type_param
13761 || child_die->tag == DW_TAG_template_value_param)
13762 {
13763 struct symbol *arg = new_symbol (child_die, NULL, cu);
13764
13765 if (arg != NULL)
13766 template_args.push_back (arg);
13767 }
13768 else
13769 process_die (child_die, cu);
13770 child_die = sibling_die (child_die);
13771 }
13772 }
13773
13774 inherit_abstract_dies (die, cu);
13775
13776 /* If we have a DW_AT_specification, we might need to import using
13777 directives from the context of the specification DIE. See the
13778 comment in determine_prefix. */
13779 if (cu->language == language_cplus
13780 && dwarf2_attr (die, DW_AT_specification, cu))
13781 {
13782 struct dwarf2_cu *spec_cu = cu;
13783 struct die_info *spec_die = die_specification (die, &spec_cu);
13784
13785 while (spec_die)
13786 {
13787 child_die = spec_die->child;
13788 while (child_die && child_die->tag)
13789 {
13790 if (child_die->tag == DW_TAG_imported_module)
13791 process_die (child_die, spec_cu);
13792 child_die = sibling_die (child_die);
13793 }
13794
13795 /* In some cases, GCC generates specification DIEs that
13796 themselves contain DW_AT_specification attributes. */
13797 spec_die = die_specification (spec_die, &spec_cu);
13798 }
13799 }
13800
13801 struct context_stack cstk = cu->builder->pop_context ();
13802 /* Make a block for the local symbols within. */
13803 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13804 cstk.static_link, lowpc, highpc);
13805
13806 /* For C++, set the block's scope. */
13807 if ((cu->language == language_cplus
13808 || cu->language == language_fortran
13809 || cu->language == language_d
13810 || cu->language == language_rust)
13811 && cu->processing_has_namespace_info)
13812 block_set_scope (block, determine_prefix (die, cu),
13813 &objfile->objfile_obstack);
13814
13815 /* If we have address ranges, record them. */
13816 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13817
13818 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13819
13820 /* Attach template arguments to function. */
13821 if (!template_args.empty ())
13822 {
13823 gdb_assert (templ_func != NULL);
13824
13825 templ_func->n_template_arguments = template_args.size ();
13826 templ_func->template_arguments
13827 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13828 templ_func->n_template_arguments);
13829 memcpy (templ_func->template_arguments,
13830 template_args.data (),
13831 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13832
13833 /* Make sure that the symtab is set on the new symbols. Even
13834 though they don't appear in this symtab directly, other parts
13835 of gdb assume that symbols do, and this is reasonably
13836 true. */
13837 for (symbol *sym : template_args)
13838 symbol_set_symtab (sym, symbol_symtab (templ_func));
13839 }
13840
13841 /* In C++, we can have functions nested inside functions (e.g., when
13842 a function declares a class that has methods). This means that
13843 when we finish processing a function scope, we may need to go
13844 back to building a containing block's symbol lists. */
13845 *cu->builder->get_local_symbols () = cstk.locals;
13846 cu->builder->set_local_using_directives (cstk.local_using_directives);
13847
13848 /* If we've finished processing a top-level function, subsequent
13849 symbols go in the file symbol list. */
13850 if (cu->builder->outermost_context_p ())
13851 cu->list_in_scope = cu->builder->get_file_symbols ();
13852 }
13853
13854 /* Process all the DIES contained within a lexical block scope. Start
13855 a new scope, process the dies, and then close the scope. */
13856
13857 static void
13858 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13859 {
13860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13862 CORE_ADDR lowpc, highpc;
13863 struct die_info *child_die;
13864 CORE_ADDR baseaddr;
13865
13866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13867
13868 /* Ignore blocks with missing or invalid low and high pc attributes. */
13869 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13870 as multiple lexical blocks? Handling children in a sane way would
13871 be nasty. Might be easier to properly extend generic blocks to
13872 describe ranges. */
13873 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13874 {
13875 case PC_BOUNDS_NOT_PRESENT:
13876 /* DW_TAG_lexical_block has no attributes, process its children as if
13877 there was no wrapping by that DW_TAG_lexical_block.
13878 GCC does no longer produces such DWARF since GCC r224161. */
13879 for (child_die = die->child;
13880 child_die != NULL && child_die->tag;
13881 child_die = sibling_die (child_die))
13882 process_die (child_die, cu);
13883 return;
13884 case PC_BOUNDS_INVALID:
13885 return;
13886 }
13887 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13888 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13889
13890 cu->builder->push_context (0, lowpc);
13891 if (die->child != NULL)
13892 {
13893 child_die = die->child;
13894 while (child_die && child_die->tag)
13895 {
13896 process_die (child_die, cu);
13897 child_die = sibling_die (child_die);
13898 }
13899 }
13900 inherit_abstract_dies (die, cu);
13901 struct context_stack cstk = cu->builder->pop_context ();
13902
13903 if (*cu->builder->get_local_symbols () != NULL
13904 || (*cu->builder->get_local_using_directives ()) != NULL)
13905 {
13906 struct block *block
13907 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13908 cstk.start_addr, highpc);
13909
13910 /* Note that recording ranges after traversing children, as we
13911 do here, means that recording a parent's ranges entails
13912 walking across all its children's ranges as they appear in
13913 the address map, which is quadratic behavior.
13914
13915 It would be nicer to record the parent's ranges before
13916 traversing its children, simply overriding whatever you find
13917 there. But since we don't even decide whether to create a
13918 block until after we've traversed its children, that's hard
13919 to do. */
13920 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13921 }
13922 *cu->builder->get_local_symbols () = cstk.locals;
13923 cu->builder->set_local_using_directives (cstk.local_using_directives);
13924 }
13925
13926 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13927
13928 static void
13929 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13930 {
13931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13932 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13933 CORE_ADDR pc, baseaddr;
13934 struct attribute *attr;
13935 struct call_site *call_site, call_site_local;
13936 void **slot;
13937 int nparams;
13938 struct die_info *child_die;
13939
13940 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13941
13942 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13943 if (attr == NULL)
13944 {
13945 /* This was a pre-DWARF-5 GNU extension alias
13946 for DW_AT_call_return_pc. */
13947 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13948 }
13949 if (!attr)
13950 {
13951 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13952 "DIE %s [in module %s]"),
13953 sect_offset_str (die->sect_off), objfile_name (objfile));
13954 return;
13955 }
13956 pc = attr_value_as_address (attr) + baseaddr;
13957 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13958
13959 if (cu->call_site_htab == NULL)
13960 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13961 NULL, &objfile->objfile_obstack,
13962 hashtab_obstack_allocate, NULL);
13963 call_site_local.pc = pc;
13964 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13965 if (*slot != NULL)
13966 {
13967 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13968 "DIE %s [in module %s]"),
13969 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13970 objfile_name (objfile));
13971 return;
13972 }
13973
13974 /* Count parameters at the caller. */
13975
13976 nparams = 0;
13977 for (child_die = die->child; child_die && child_die->tag;
13978 child_die = sibling_die (child_die))
13979 {
13980 if (child_die->tag != DW_TAG_call_site_parameter
13981 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13982 {
13983 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13984 "DW_TAG_call_site child DIE %s [in module %s]"),
13985 child_die->tag, sect_offset_str (child_die->sect_off),
13986 objfile_name (objfile));
13987 continue;
13988 }
13989
13990 nparams++;
13991 }
13992
13993 call_site
13994 = ((struct call_site *)
13995 obstack_alloc (&objfile->objfile_obstack,
13996 sizeof (*call_site)
13997 + (sizeof (*call_site->parameter) * (nparams - 1))));
13998 *slot = call_site;
13999 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14000 call_site->pc = pc;
14001
14002 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14003 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14004 {
14005 struct die_info *func_die;
14006
14007 /* Skip also over DW_TAG_inlined_subroutine. */
14008 for (func_die = die->parent;
14009 func_die && func_die->tag != DW_TAG_subprogram
14010 && func_die->tag != DW_TAG_subroutine_type;
14011 func_die = func_die->parent);
14012
14013 /* DW_AT_call_all_calls is a superset
14014 of DW_AT_call_all_tail_calls. */
14015 if (func_die
14016 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14017 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14019 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14020 {
14021 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14022 not complete. But keep CALL_SITE for look ups via call_site_htab,
14023 both the initial caller containing the real return address PC and
14024 the final callee containing the current PC of a chain of tail
14025 calls do not need to have the tail call list complete. But any
14026 function candidate for a virtual tail call frame searched via
14027 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14028 determined unambiguously. */
14029 }
14030 else
14031 {
14032 struct type *func_type = NULL;
14033
14034 if (func_die)
14035 func_type = get_die_type (func_die, cu);
14036 if (func_type != NULL)
14037 {
14038 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14039
14040 /* Enlist this call site to the function. */
14041 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14042 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14043 }
14044 else
14045 complaint (_("Cannot find function owning DW_TAG_call_site "
14046 "DIE %s [in module %s]"),
14047 sect_offset_str (die->sect_off), objfile_name (objfile));
14048 }
14049 }
14050
14051 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14052 if (attr == NULL)
14053 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14054 if (attr == NULL)
14055 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14056 if (attr == NULL)
14057 {
14058 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14059 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14060 }
14061 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14062 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14063 /* Keep NULL DWARF_BLOCK. */;
14064 else if (attr_form_is_block (attr))
14065 {
14066 struct dwarf2_locexpr_baton *dlbaton;
14067
14068 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14069 dlbaton->data = DW_BLOCK (attr)->data;
14070 dlbaton->size = DW_BLOCK (attr)->size;
14071 dlbaton->per_cu = cu->per_cu;
14072
14073 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14074 }
14075 else if (attr_form_is_ref (attr))
14076 {
14077 struct dwarf2_cu *target_cu = cu;
14078 struct die_info *target_die;
14079
14080 target_die = follow_die_ref (die, attr, &target_cu);
14081 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14082 if (die_is_declaration (target_die, target_cu))
14083 {
14084 const char *target_physname;
14085
14086 /* Prefer the mangled name; otherwise compute the demangled one. */
14087 target_physname = dw2_linkage_name (target_die, target_cu);
14088 if (target_physname == NULL)
14089 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14090 if (target_physname == NULL)
14091 complaint (_("DW_AT_call_target target DIE has invalid "
14092 "physname, for referencing DIE %s [in module %s]"),
14093 sect_offset_str (die->sect_off), objfile_name (objfile));
14094 else
14095 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14096 }
14097 else
14098 {
14099 CORE_ADDR lowpc;
14100
14101 /* DW_AT_entry_pc should be preferred. */
14102 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14103 <= PC_BOUNDS_INVALID)
14104 complaint (_("DW_AT_call_target target DIE has invalid "
14105 "low pc, for referencing DIE %s [in module %s]"),
14106 sect_offset_str (die->sect_off), objfile_name (objfile));
14107 else
14108 {
14109 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14110 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14111 }
14112 }
14113 }
14114 else
14115 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14116 "block nor reference, for DIE %s [in module %s]"),
14117 sect_offset_str (die->sect_off), objfile_name (objfile));
14118
14119 call_site->per_cu = cu->per_cu;
14120
14121 for (child_die = die->child;
14122 child_die && child_die->tag;
14123 child_die = sibling_die (child_die))
14124 {
14125 struct call_site_parameter *parameter;
14126 struct attribute *loc, *origin;
14127
14128 if (child_die->tag != DW_TAG_call_site_parameter
14129 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14130 {
14131 /* Already printed the complaint above. */
14132 continue;
14133 }
14134
14135 gdb_assert (call_site->parameter_count < nparams);
14136 parameter = &call_site->parameter[call_site->parameter_count];
14137
14138 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14139 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14140 register is contained in DW_AT_call_value. */
14141
14142 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14143 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14144 if (origin == NULL)
14145 {
14146 /* This was a pre-DWARF-5 GNU extension alias
14147 for DW_AT_call_parameter. */
14148 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14149 }
14150 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14151 {
14152 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14153
14154 sect_offset sect_off
14155 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14156 if (!offset_in_cu_p (&cu->header, sect_off))
14157 {
14158 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14159 binding can be done only inside one CU. Such referenced DIE
14160 therefore cannot be even moved to DW_TAG_partial_unit. */
14161 complaint (_("DW_AT_call_parameter offset is not in CU for "
14162 "DW_TAG_call_site child DIE %s [in module %s]"),
14163 sect_offset_str (child_die->sect_off),
14164 objfile_name (objfile));
14165 continue;
14166 }
14167 parameter->u.param_cu_off
14168 = (cu_offset) (sect_off - cu->header.sect_off);
14169 }
14170 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14171 {
14172 complaint (_("No DW_FORM_block* DW_AT_location for "
14173 "DW_TAG_call_site child DIE %s [in module %s]"),
14174 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14175 continue;
14176 }
14177 else
14178 {
14179 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14180 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14181 if (parameter->u.dwarf_reg != -1)
14182 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14183 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14184 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14185 &parameter->u.fb_offset))
14186 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14187 else
14188 {
14189 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14190 "for DW_FORM_block* DW_AT_location is supported for "
14191 "DW_TAG_call_site child DIE %s "
14192 "[in module %s]"),
14193 sect_offset_str (child_die->sect_off),
14194 objfile_name (objfile));
14195 continue;
14196 }
14197 }
14198
14199 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14200 if (attr == NULL)
14201 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14202 if (!attr_form_is_block (attr))
14203 {
14204 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14205 "DW_TAG_call_site child DIE %s [in module %s]"),
14206 sect_offset_str (child_die->sect_off),
14207 objfile_name (objfile));
14208 continue;
14209 }
14210 parameter->value = DW_BLOCK (attr)->data;
14211 parameter->value_size = DW_BLOCK (attr)->size;
14212
14213 /* Parameters are not pre-cleared by memset above. */
14214 parameter->data_value = NULL;
14215 parameter->data_value_size = 0;
14216 call_site->parameter_count++;
14217
14218 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14219 if (attr == NULL)
14220 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14221 if (attr)
14222 {
14223 if (!attr_form_is_block (attr))
14224 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14225 "DW_TAG_call_site child DIE %s [in module %s]"),
14226 sect_offset_str (child_die->sect_off),
14227 objfile_name (objfile));
14228 else
14229 {
14230 parameter->data_value = DW_BLOCK (attr)->data;
14231 parameter->data_value_size = DW_BLOCK (attr)->size;
14232 }
14233 }
14234 }
14235 }
14236
14237 /* Helper function for read_variable. If DIE represents a virtual
14238 table, then return the type of the concrete object that is
14239 associated with the virtual table. Otherwise, return NULL. */
14240
14241 static struct type *
14242 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14243 {
14244 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14245 if (attr == NULL)
14246 return NULL;
14247
14248 /* Find the type DIE. */
14249 struct die_info *type_die = NULL;
14250 struct dwarf2_cu *type_cu = cu;
14251
14252 if (attr_form_is_ref (attr))
14253 type_die = follow_die_ref (die, attr, &type_cu);
14254 if (type_die == NULL)
14255 return NULL;
14256
14257 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14258 return NULL;
14259 return die_containing_type (type_die, type_cu);
14260 }
14261
14262 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14263
14264 static void
14265 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14266 {
14267 struct rust_vtable_symbol *storage = NULL;
14268
14269 if (cu->language == language_rust)
14270 {
14271 struct type *containing_type = rust_containing_type (die, cu);
14272
14273 if (containing_type != NULL)
14274 {
14275 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14276
14277 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14278 struct rust_vtable_symbol);
14279 initialize_objfile_symbol (storage);
14280 storage->concrete_type = containing_type;
14281 storage->subclass = SYMBOL_RUST_VTABLE;
14282 }
14283 }
14284
14285 struct symbol *res = new_symbol (die, NULL, cu, storage);
14286 struct attribute *abstract_origin
14287 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14288 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14289 if (res == NULL && loc && abstract_origin)
14290 {
14291 /* We have a variable without a name, but with a location and an abstract
14292 origin. This may be a concrete instance of an abstract variable
14293 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14294 later. */
14295 struct dwarf2_cu *origin_cu = cu;
14296 struct die_info *origin_die
14297 = follow_die_ref (die, abstract_origin, &origin_cu);
14298 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14299 dpo->abstract_to_concrete[origin_die].push_back (die);
14300 }
14301 }
14302
14303 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14304 reading .debug_rnglists.
14305 Callback's type should be:
14306 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14307 Return true if the attributes are present and valid, otherwise,
14308 return false. */
14309
14310 template <typename Callback>
14311 static bool
14312 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14313 Callback &&callback)
14314 {
14315 struct dwarf2_per_objfile *dwarf2_per_objfile
14316 = cu->per_cu->dwarf2_per_objfile;
14317 struct objfile *objfile = dwarf2_per_objfile->objfile;
14318 bfd *obfd = objfile->obfd;
14319 /* Base address selection entry. */
14320 CORE_ADDR base;
14321 int found_base;
14322 const gdb_byte *buffer;
14323 CORE_ADDR baseaddr;
14324 bool overflow = false;
14325
14326 found_base = cu->base_known;
14327 base = cu->base_address;
14328
14329 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14330 if (offset >= dwarf2_per_objfile->rnglists.size)
14331 {
14332 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14333 offset);
14334 return false;
14335 }
14336 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14337
14338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14339
14340 while (1)
14341 {
14342 /* Initialize it due to a false compiler warning. */
14343 CORE_ADDR range_beginning = 0, range_end = 0;
14344 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14345 + dwarf2_per_objfile->rnglists.size);
14346 unsigned int bytes_read;
14347
14348 if (buffer == buf_end)
14349 {
14350 overflow = true;
14351 break;
14352 }
14353 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14354 switch (rlet)
14355 {
14356 case DW_RLE_end_of_list:
14357 break;
14358 case DW_RLE_base_address:
14359 if (buffer + cu->header.addr_size > buf_end)
14360 {
14361 overflow = true;
14362 break;
14363 }
14364 base = read_address (obfd, buffer, cu, &bytes_read);
14365 found_base = 1;
14366 buffer += bytes_read;
14367 break;
14368 case DW_RLE_start_length:
14369 if (buffer + cu->header.addr_size > buf_end)
14370 {
14371 overflow = true;
14372 break;
14373 }
14374 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14375 buffer += bytes_read;
14376 range_end = (range_beginning
14377 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14378 buffer += bytes_read;
14379 if (buffer > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 break;
14385 case DW_RLE_offset_pair:
14386 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14387 buffer += bytes_read;
14388 if (buffer > buf_end)
14389 {
14390 overflow = true;
14391 break;
14392 }
14393 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14394 buffer += bytes_read;
14395 if (buffer > buf_end)
14396 {
14397 overflow = true;
14398 break;
14399 }
14400 break;
14401 case DW_RLE_start_end:
14402 if (buffer + 2 * cu->header.addr_size > buf_end)
14403 {
14404 overflow = true;
14405 break;
14406 }
14407 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14408 buffer += bytes_read;
14409 range_end = read_address (obfd, buffer, cu, &bytes_read);
14410 buffer += bytes_read;
14411 break;
14412 default:
14413 complaint (_("Invalid .debug_rnglists data (no base address)"));
14414 return false;
14415 }
14416 if (rlet == DW_RLE_end_of_list || overflow)
14417 break;
14418 if (rlet == DW_RLE_base_address)
14419 continue;
14420
14421 if (!found_base)
14422 {
14423 /* We have no valid base address for the ranges
14424 data. */
14425 complaint (_("Invalid .debug_rnglists data (no base address)"));
14426 return false;
14427 }
14428
14429 if (range_beginning > range_end)
14430 {
14431 /* Inverted range entries are invalid. */
14432 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14433 return false;
14434 }
14435
14436 /* Empty range entries have no effect. */
14437 if (range_beginning == range_end)
14438 continue;
14439
14440 range_beginning += base;
14441 range_end += base;
14442
14443 /* A not-uncommon case of bad debug info.
14444 Don't pollute the addrmap with bad data. */
14445 if (range_beginning + baseaddr == 0
14446 && !dwarf2_per_objfile->has_section_at_zero)
14447 {
14448 complaint (_(".debug_rnglists entry has start address of zero"
14449 " [in module %s]"), objfile_name (objfile));
14450 continue;
14451 }
14452
14453 callback (range_beginning, range_end);
14454 }
14455
14456 if (overflow)
14457 {
14458 complaint (_("Offset %d is not terminated "
14459 "for DW_AT_ranges attribute"),
14460 offset);
14461 return false;
14462 }
14463
14464 return true;
14465 }
14466
14467 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14468 Callback's type should be:
14469 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14470 Return 1 if the attributes are present and valid, otherwise, return 0. */
14471
14472 template <typename Callback>
14473 static int
14474 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14475 Callback &&callback)
14476 {
14477 struct dwarf2_per_objfile *dwarf2_per_objfile
14478 = cu->per_cu->dwarf2_per_objfile;
14479 struct objfile *objfile = dwarf2_per_objfile->objfile;
14480 struct comp_unit_head *cu_header = &cu->header;
14481 bfd *obfd = objfile->obfd;
14482 unsigned int addr_size = cu_header->addr_size;
14483 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14484 /* Base address selection entry. */
14485 CORE_ADDR base;
14486 int found_base;
14487 unsigned int dummy;
14488 const gdb_byte *buffer;
14489 CORE_ADDR baseaddr;
14490
14491 if (cu_header->version >= 5)
14492 return dwarf2_rnglists_process (offset, cu, callback);
14493
14494 found_base = cu->base_known;
14495 base = cu->base_address;
14496
14497 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14498 if (offset >= dwarf2_per_objfile->ranges.size)
14499 {
14500 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14501 offset);
14502 return 0;
14503 }
14504 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14505
14506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14507
14508 while (1)
14509 {
14510 CORE_ADDR range_beginning, range_end;
14511
14512 range_beginning = read_address (obfd, buffer, cu, &dummy);
14513 buffer += addr_size;
14514 range_end = read_address (obfd, buffer, cu, &dummy);
14515 buffer += addr_size;
14516 offset += 2 * addr_size;
14517
14518 /* An end of list marker is a pair of zero addresses. */
14519 if (range_beginning == 0 && range_end == 0)
14520 /* Found the end of list entry. */
14521 break;
14522
14523 /* Each base address selection entry is a pair of 2 values.
14524 The first is the largest possible address, the second is
14525 the base address. Check for a base address here. */
14526 if ((range_beginning & mask) == mask)
14527 {
14528 /* If we found the largest possible address, then we already
14529 have the base address in range_end. */
14530 base = range_end;
14531 found_base = 1;
14532 continue;
14533 }
14534
14535 if (!found_base)
14536 {
14537 /* We have no valid base address for the ranges
14538 data. */
14539 complaint (_("Invalid .debug_ranges data (no base address)"));
14540 return 0;
14541 }
14542
14543 if (range_beginning > range_end)
14544 {
14545 /* Inverted range entries are invalid. */
14546 complaint (_("Invalid .debug_ranges data (inverted range)"));
14547 return 0;
14548 }
14549
14550 /* Empty range entries have no effect. */
14551 if (range_beginning == range_end)
14552 continue;
14553
14554 range_beginning += base;
14555 range_end += base;
14556
14557 /* A not-uncommon case of bad debug info.
14558 Don't pollute the addrmap with bad data. */
14559 if (range_beginning + baseaddr == 0
14560 && !dwarf2_per_objfile->has_section_at_zero)
14561 {
14562 complaint (_(".debug_ranges entry has start address of zero"
14563 " [in module %s]"), objfile_name (objfile));
14564 continue;
14565 }
14566
14567 callback (range_beginning, range_end);
14568 }
14569
14570 return 1;
14571 }
14572
14573 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14574 Return 1 if the attributes are present and valid, otherwise, return 0.
14575 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14576
14577 static int
14578 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14579 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14580 struct partial_symtab *ranges_pst)
14581 {
14582 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14583 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14584 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14585 SECT_OFF_TEXT (objfile));
14586 int low_set = 0;
14587 CORE_ADDR low = 0;
14588 CORE_ADDR high = 0;
14589 int retval;
14590
14591 retval = dwarf2_ranges_process (offset, cu,
14592 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14593 {
14594 if (ranges_pst != NULL)
14595 {
14596 CORE_ADDR lowpc;
14597 CORE_ADDR highpc;
14598
14599 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14600 range_beginning + baseaddr)
14601 - baseaddr);
14602 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14603 range_end + baseaddr)
14604 - baseaddr);
14605 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14606 ranges_pst);
14607 }
14608
14609 /* FIXME: This is recording everything as a low-high
14610 segment of consecutive addresses. We should have a
14611 data structure for discontiguous block ranges
14612 instead. */
14613 if (! low_set)
14614 {
14615 low = range_beginning;
14616 high = range_end;
14617 low_set = 1;
14618 }
14619 else
14620 {
14621 if (range_beginning < low)
14622 low = range_beginning;
14623 if (range_end > high)
14624 high = range_end;
14625 }
14626 });
14627 if (!retval)
14628 return 0;
14629
14630 if (! low_set)
14631 /* If the first entry is an end-of-list marker, the range
14632 describes an empty scope, i.e. no instructions. */
14633 return 0;
14634
14635 if (low_return)
14636 *low_return = low;
14637 if (high_return)
14638 *high_return = high;
14639 return 1;
14640 }
14641
14642 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14643 definition for the return value. *LOWPC and *HIGHPC are set iff
14644 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14645
14646 static enum pc_bounds_kind
14647 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14648 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14649 struct partial_symtab *pst)
14650 {
14651 struct dwarf2_per_objfile *dwarf2_per_objfile
14652 = cu->per_cu->dwarf2_per_objfile;
14653 struct attribute *attr;
14654 struct attribute *attr_high;
14655 CORE_ADDR low = 0;
14656 CORE_ADDR high = 0;
14657 enum pc_bounds_kind ret;
14658
14659 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14660 if (attr_high)
14661 {
14662 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14663 if (attr)
14664 {
14665 low = attr_value_as_address (attr);
14666 high = attr_value_as_address (attr_high);
14667 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14668 high += low;
14669 }
14670 else
14671 /* Found high w/o low attribute. */
14672 return PC_BOUNDS_INVALID;
14673
14674 /* Found consecutive range of addresses. */
14675 ret = PC_BOUNDS_HIGH_LOW;
14676 }
14677 else
14678 {
14679 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14680 if (attr != NULL)
14681 {
14682 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14683 We take advantage of the fact that DW_AT_ranges does not appear
14684 in DW_TAG_compile_unit of DWO files. */
14685 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14686 unsigned int ranges_offset = (DW_UNSND (attr)
14687 + (need_ranges_base
14688 ? cu->ranges_base
14689 : 0));
14690
14691 /* Value of the DW_AT_ranges attribute is the offset in the
14692 .debug_ranges section. */
14693 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14694 return PC_BOUNDS_INVALID;
14695 /* Found discontinuous range of addresses. */
14696 ret = PC_BOUNDS_RANGES;
14697 }
14698 else
14699 return PC_BOUNDS_NOT_PRESENT;
14700 }
14701
14702 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14703 if (high <= low)
14704 return PC_BOUNDS_INVALID;
14705
14706 /* When using the GNU linker, .gnu.linkonce. sections are used to
14707 eliminate duplicate copies of functions and vtables and such.
14708 The linker will arbitrarily choose one and discard the others.
14709 The AT_*_pc values for such functions refer to local labels in
14710 these sections. If the section from that file was discarded, the
14711 labels are not in the output, so the relocs get a value of 0.
14712 If this is a discarded function, mark the pc bounds as invalid,
14713 so that GDB will ignore it. */
14714 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14715 return PC_BOUNDS_INVALID;
14716
14717 *lowpc = low;
14718 if (highpc)
14719 *highpc = high;
14720 return ret;
14721 }
14722
14723 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14724 its low and high PC addresses. Do nothing if these addresses could not
14725 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14726 and HIGHPC to the high address if greater than HIGHPC. */
14727
14728 static void
14729 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14730 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14731 struct dwarf2_cu *cu)
14732 {
14733 CORE_ADDR low, high;
14734 struct die_info *child = die->child;
14735
14736 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14737 {
14738 *lowpc = std::min (*lowpc, low);
14739 *highpc = std::max (*highpc, high);
14740 }
14741
14742 /* If the language does not allow nested subprograms (either inside
14743 subprograms or lexical blocks), we're done. */
14744 if (cu->language != language_ada)
14745 return;
14746
14747 /* Check all the children of the given DIE. If it contains nested
14748 subprograms, then check their pc bounds. Likewise, we need to
14749 check lexical blocks as well, as they may also contain subprogram
14750 definitions. */
14751 while (child && child->tag)
14752 {
14753 if (child->tag == DW_TAG_subprogram
14754 || child->tag == DW_TAG_lexical_block)
14755 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14756 child = sibling_die (child);
14757 }
14758 }
14759
14760 /* Get the low and high pc's represented by the scope DIE, and store
14761 them in *LOWPC and *HIGHPC. If the correct values can't be
14762 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14763
14764 static void
14765 get_scope_pc_bounds (struct die_info *die,
14766 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14767 struct dwarf2_cu *cu)
14768 {
14769 CORE_ADDR best_low = (CORE_ADDR) -1;
14770 CORE_ADDR best_high = (CORE_ADDR) 0;
14771 CORE_ADDR current_low, current_high;
14772
14773 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14774 >= PC_BOUNDS_RANGES)
14775 {
14776 best_low = current_low;
14777 best_high = current_high;
14778 }
14779 else
14780 {
14781 struct die_info *child = die->child;
14782
14783 while (child && child->tag)
14784 {
14785 switch (child->tag) {
14786 case DW_TAG_subprogram:
14787 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14788 break;
14789 case DW_TAG_namespace:
14790 case DW_TAG_module:
14791 /* FIXME: carlton/2004-01-16: Should we do this for
14792 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14793 that current GCC's always emit the DIEs corresponding
14794 to definitions of methods of classes as children of a
14795 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14796 the DIEs giving the declarations, which could be
14797 anywhere). But I don't see any reason why the
14798 standards says that they have to be there. */
14799 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14800
14801 if (current_low != ((CORE_ADDR) -1))
14802 {
14803 best_low = std::min (best_low, current_low);
14804 best_high = std::max (best_high, current_high);
14805 }
14806 break;
14807 default:
14808 /* Ignore. */
14809 break;
14810 }
14811
14812 child = sibling_die (child);
14813 }
14814 }
14815
14816 *lowpc = best_low;
14817 *highpc = best_high;
14818 }
14819
14820 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14821 in DIE. */
14822
14823 static void
14824 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14825 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14826 {
14827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14829 struct attribute *attr;
14830 struct attribute *attr_high;
14831
14832 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14833 if (attr_high)
14834 {
14835 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14836 if (attr)
14837 {
14838 CORE_ADDR low = attr_value_as_address (attr);
14839 CORE_ADDR high = attr_value_as_address (attr_high);
14840
14841 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14842 high += low;
14843
14844 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14845 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14846 cu->builder->record_block_range (block, low, high - 1);
14847 }
14848 }
14849
14850 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14851 if (attr)
14852 {
14853 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14854 We take advantage of the fact that DW_AT_ranges does not appear
14855 in DW_TAG_compile_unit of DWO files. */
14856 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14857
14858 /* The value of the DW_AT_ranges attribute is the offset of the
14859 address range list in the .debug_ranges section. */
14860 unsigned long offset = (DW_UNSND (attr)
14861 + (need_ranges_base ? cu->ranges_base : 0));
14862
14863 std::vector<blockrange> blockvec;
14864 dwarf2_ranges_process (offset, cu,
14865 [&] (CORE_ADDR start, CORE_ADDR end)
14866 {
14867 start += baseaddr;
14868 end += baseaddr;
14869 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14870 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14871 cu->builder->record_block_range (block, start, end - 1);
14872 blockvec.emplace_back (start, end);
14873 });
14874
14875 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14876 }
14877 }
14878
14879 /* Check whether the producer field indicates either of GCC < 4.6, or the
14880 Intel C/C++ compiler, and cache the result in CU. */
14881
14882 static void
14883 check_producer (struct dwarf2_cu *cu)
14884 {
14885 int major, minor;
14886
14887 if (cu->producer == NULL)
14888 {
14889 /* For unknown compilers expect their behavior is DWARF version
14890 compliant.
14891
14892 GCC started to support .debug_types sections by -gdwarf-4 since
14893 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14894 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14895 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14896 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14897 }
14898 else if (producer_is_gcc (cu->producer, &major, &minor))
14899 {
14900 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14901 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14902 }
14903 else if (producer_is_icc (cu->producer, &major, &minor))
14904 cu->producer_is_icc_lt_14 = major < 14;
14905 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14906 cu->producer_is_codewarrior = true;
14907 else
14908 {
14909 /* For other non-GCC compilers, expect their behavior is DWARF version
14910 compliant. */
14911 }
14912
14913 cu->checked_producer = 1;
14914 }
14915
14916 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14917 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14918 during 4.6.0 experimental. */
14919
14920 static int
14921 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14922 {
14923 if (!cu->checked_producer)
14924 check_producer (cu);
14925
14926 return cu->producer_is_gxx_lt_4_6;
14927 }
14928
14929
14930 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14931 with incorrect is_stmt attributes. */
14932
14933 static bool
14934 producer_is_codewarrior (struct dwarf2_cu *cu)
14935 {
14936 if (!cu->checked_producer)
14937 check_producer (cu);
14938
14939 return cu->producer_is_codewarrior;
14940 }
14941
14942 /* Return the default accessibility type if it is not overriden by
14943 DW_AT_accessibility. */
14944
14945 static enum dwarf_access_attribute
14946 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14947 {
14948 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14949 {
14950 /* The default DWARF 2 accessibility for members is public, the default
14951 accessibility for inheritance is private. */
14952
14953 if (die->tag != DW_TAG_inheritance)
14954 return DW_ACCESS_public;
14955 else
14956 return DW_ACCESS_private;
14957 }
14958 else
14959 {
14960 /* DWARF 3+ defines the default accessibility a different way. The same
14961 rules apply now for DW_TAG_inheritance as for the members and it only
14962 depends on the container kind. */
14963
14964 if (die->parent->tag == DW_TAG_class_type)
14965 return DW_ACCESS_private;
14966 else
14967 return DW_ACCESS_public;
14968 }
14969 }
14970
14971 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14972 offset. If the attribute was not found return 0, otherwise return
14973 1. If it was found but could not properly be handled, set *OFFSET
14974 to 0. */
14975
14976 static int
14977 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14978 LONGEST *offset)
14979 {
14980 struct attribute *attr;
14981
14982 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14983 if (attr != NULL)
14984 {
14985 *offset = 0;
14986
14987 /* Note that we do not check for a section offset first here.
14988 This is because DW_AT_data_member_location is new in DWARF 4,
14989 so if we see it, we can assume that a constant form is really
14990 a constant and not a section offset. */
14991 if (attr_form_is_constant (attr))
14992 *offset = dwarf2_get_attr_constant_value (attr, 0);
14993 else if (attr_form_is_section_offset (attr))
14994 dwarf2_complex_location_expr_complaint ();
14995 else if (attr_form_is_block (attr))
14996 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14997 else
14998 dwarf2_complex_location_expr_complaint ();
14999
15000 return 1;
15001 }
15002
15003 return 0;
15004 }
15005
15006 /* Add an aggregate field to the field list. */
15007
15008 static void
15009 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15010 struct dwarf2_cu *cu)
15011 {
15012 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15013 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15014 struct nextfield *new_field;
15015 struct attribute *attr;
15016 struct field *fp;
15017 const char *fieldname = "";
15018
15019 if (die->tag == DW_TAG_inheritance)
15020 {
15021 fip->baseclasses.emplace_back ();
15022 new_field = &fip->baseclasses.back ();
15023 }
15024 else
15025 {
15026 fip->fields.emplace_back ();
15027 new_field = &fip->fields.back ();
15028 }
15029
15030 fip->nfields++;
15031
15032 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15033 if (attr)
15034 new_field->accessibility = DW_UNSND (attr);
15035 else
15036 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15037 if (new_field->accessibility != DW_ACCESS_public)
15038 fip->non_public_fields = 1;
15039
15040 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15041 if (attr)
15042 new_field->virtuality = DW_UNSND (attr);
15043 else
15044 new_field->virtuality = DW_VIRTUALITY_none;
15045
15046 fp = &new_field->field;
15047
15048 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15049 {
15050 LONGEST offset;
15051
15052 /* Data member other than a C++ static data member. */
15053
15054 /* Get type of field. */
15055 fp->type = die_type (die, cu);
15056
15057 SET_FIELD_BITPOS (*fp, 0);
15058
15059 /* Get bit size of field (zero if none). */
15060 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15061 if (attr)
15062 {
15063 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15064 }
15065 else
15066 {
15067 FIELD_BITSIZE (*fp) = 0;
15068 }
15069
15070 /* Get bit offset of field. */
15071 if (handle_data_member_location (die, cu, &offset))
15072 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15073 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15074 if (attr)
15075 {
15076 if (gdbarch_bits_big_endian (gdbarch))
15077 {
15078 /* For big endian bits, the DW_AT_bit_offset gives the
15079 additional bit offset from the MSB of the containing
15080 anonymous object to the MSB of the field. We don't
15081 have to do anything special since we don't need to
15082 know the size of the anonymous object. */
15083 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15084 }
15085 else
15086 {
15087 /* For little endian bits, compute the bit offset to the
15088 MSB of the anonymous object, subtract off the number of
15089 bits from the MSB of the field to the MSB of the
15090 object, and then subtract off the number of bits of
15091 the field itself. The result is the bit offset of
15092 the LSB of the field. */
15093 int anonymous_size;
15094 int bit_offset = DW_UNSND (attr);
15095
15096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15097 if (attr)
15098 {
15099 /* The size of the anonymous object containing
15100 the bit field is explicit, so use the
15101 indicated size (in bytes). */
15102 anonymous_size = DW_UNSND (attr);
15103 }
15104 else
15105 {
15106 /* The size of the anonymous object containing
15107 the bit field must be inferred from the type
15108 attribute of the data member containing the
15109 bit field. */
15110 anonymous_size = TYPE_LENGTH (fp->type);
15111 }
15112 SET_FIELD_BITPOS (*fp,
15113 (FIELD_BITPOS (*fp)
15114 + anonymous_size * bits_per_byte
15115 - bit_offset - FIELD_BITSIZE (*fp)));
15116 }
15117 }
15118 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15119 if (attr != NULL)
15120 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15121 + dwarf2_get_attr_constant_value (attr, 0)));
15122
15123 /* Get name of field. */
15124 fieldname = dwarf2_name (die, cu);
15125 if (fieldname == NULL)
15126 fieldname = "";
15127
15128 /* The name is already allocated along with this objfile, so we don't
15129 need to duplicate it for the type. */
15130 fp->name = fieldname;
15131
15132 /* Change accessibility for artificial fields (e.g. virtual table
15133 pointer or virtual base class pointer) to private. */
15134 if (dwarf2_attr (die, DW_AT_artificial, cu))
15135 {
15136 FIELD_ARTIFICIAL (*fp) = 1;
15137 new_field->accessibility = DW_ACCESS_private;
15138 fip->non_public_fields = 1;
15139 }
15140 }
15141 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15142 {
15143 /* C++ static member. */
15144
15145 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15146 is a declaration, but all versions of G++ as of this writing
15147 (so through at least 3.2.1) incorrectly generate
15148 DW_TAG_variable tags. */
15149
15150 const char *physname;
15151
15152 /* Get name of field. */
15153 fieldname = dwarf2_name (die, cu);
15154 if (fieldname == NULL)
15155 return;
15156
15157 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15158 if (attr
15159 /* Only create a symbol if this is an external value.
15160 new_symbol checks this and puts the value in the global symbol
15161 table, which we want. If it is not external, new_symbol
15162 will try to put the value in cu->list_in_scope which is wrong. */
15163 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15164 {
15165 /* A static const member, not much different than an enum as far as
15166 we're concerned, except that we can support more types. */
15167 new_symbol (die, NULL, cu);
15168 }
15169
15170 /* Get physical name. */
15171 physname = dwarf2_physname (fieldname, die, cu);
15172
15173 /* The name is already allocated along with this objfile, so we don't
15174 need to duplicate it for the type. */
15175 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15176 FIELD_TYPE (*fp) = die_type (die, cu);
15177 FIELD_NAME (*fp) = fieldname;
15178 }
15179 else if (die->tag == DW_TAG_inheritance)
15180 {
15181 LONGEST offset;
15182
15183 /* C++ base class field. */
15184 if (handle_data_member_location (die, cu, &offset))
15185 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15186 FIELD_BITSIZE (*fp) = 0;
15187 FIELD_TYPE (*fp) = die_type (die, cu);
15188 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15189 }
15190 else if (die->tag == DW_TAG_variant_part)
15191 {
15192 /* process_structure_scope will treat this DIE as a union. */
15193 process_structure_scope (die, cu);
15194
15195 /* The variant part is relative to the start of the enclosing
15196 structure. */
15197 SET_FIELD_BITPOS (*fp, 0);
15198 fp->type = get_die_type (die, cu);
15199 fp->artificial = 1;
15200 fp->name = "<<variant>>";
15201
15202 /* Normally a DW_TAG_variant_part won't have a size, but our
15203 representation requires one, so set it to the maximum of the
15204 child sizes. */
15205 if (TYPE_LENGTH (fp->type) == 0)
15206 {
15207 unsigned max = 0;
15208 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15209 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15210 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15211 TYPE_LENGTH (fp->type) = max;
15212 }
15213 }
15214 else
15215 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15216 }
15217
15218 /* Can the type given by DIE define another type? */
15219
15220 static bool
15221 type_can_define_types (const struct die_info *die)
15222 {
15223 switch (die->tag)
15224 {
15225 case DW_TAG_typedef:
15226 case DW_TAG_class_type:
15227 case DW_TAG_structure_type:
15228 case DW_TAG_union_type:
15229 case DW_TAG_enumeration_type:
15230 return true;
15231
15232 default:
15233 return false;
15234 }
15235 }
15236
15237 /* Add a type definition defined in the scope of the FIP's class. */
15238
15239 static void
15240 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15241 struct dwarf2_cu *cu)
15242 {
15243 struct decl_field fp;
15244 memset (&fp, 0, sizeof (fp));
15245
15246 gdb_assert (type_can_define_types (die));
15247
15248 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15249 fp.name = dwarf2_name (die, cu);
15250 fp.type = read_type_die (die, cu);
15251
15252 /* Save accessibility. */
15253 enum dwarf_access_attribute accessibility;
15254 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15255 if (attr != NULL)
15256 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15257 else
15258 accessibility = dwarf2_default_access_attribute (die, cu);
15259 switch (accessibility)
15260 {
15261 case DW_ACCESS_public:
15262 /* The assumed value if neither private nor protected. */
15263 break;
15264 case DW_ACCESS_private:
15265 fp.is_private = 1;
15266 break;
15267 case DW_ACCESS_protected:
15268 fp.is_protected = 1;
15269 break;
15270 default:
15271 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15272 }
15273
15274 if (die->tag == DW_TAG_typedef)
15275 fip->typedef_field_list.push_back (fp);
15276 else
15277 fip->nested_types_list.push_back (fp);
15278 }
15279
15280 /* Create the vector of fields, and attach it to the type. */
15281
15282 static void
15283 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15284 struct dwarf2_cu *cu)
15285 {
15286 int nfields = fip->nfields;
15287
15288 /* Record the field count, allocate space for the array of fields,
15289 and create blank accessibility bitfields if necessary. */
15290 TYPE_NFIELDS (type) = nfields;
15291 TYPE_FIELDS (type) = (struct field *)
15292 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15293
15294 if (fip->non_public_fields && cu->language != language_ada)
15295 {
15296 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15297
15298 TYPE_FIELD_PRIVATE_BITS (type) =
15299 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15300 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15301
15302 TYPE_FIELD_PROTECTED_BITS (type) =
15303 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15304 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15305
15306 TYPE_FIELD_IGNORE_BITS (type) =
15307 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15308 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15309 }
15310
15311 /* If the type has baseclasses, allocate and clear a bit vector for
15312 TYPE_FIELD_VIRTUAL_BITS. */
15313 if (!fip->baseclasses.empty () && cu->language != language_ada)
15314 {
15315 int num_bytes = B_BYTES (fip->baseclasses.size ());
15316 unsigned char *pointer;
15317
15318 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15319 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15320 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15321 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15322 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15323 }
15324
15325 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15326 {
15327 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15328
15329 for (int index = 0; index < nfields; ++index)
15330 {
15331 struct nextfield &field = fip->fields[index];
15332
15333 if (field.variant.is_discriminant)
15334 di->discriminant_index = index;
15335 else if (field.variant.default_branch)
15336 di->default_index = index;
15337 else
15338 di->discriminants[index] = field.variant.discriminant_value;
15339 }
15340 }
15341
15342 /* Copy the saved-up fields into the field vector. */
15343 for (int i = 0; i < nfields; ++i)
15344 {
15345 struct nextfield &field
15346 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15347 : fip->fields[i - fip->baseclasses.size ()]);
15348
15349 TYPE_FIELD (type, i) = field.field;
15350 switch (field.accessibility)
15351 {
15352 case DW_ACCESS_private:
15353 if (cu->language != language_ada)
15354 SET_TYPE_FIELD_PRIVATE (type, i);
15355 break;
15356
15357 case DW_ACCESS_protected:
15358 if (cu->language != language_ada)
15359 SET_TYPE_FIELD_PROTECTED (type, i);
15360 break;
15361
15362 case DW_ACCESS_public:
15363 break;
15364
15365 default:
15366 /* Unknown accessibility. Complain and treat it as public. */
15367 {
15368 complaint (_("unsupported accessibility %d"),
15369 field.accessibility);
15370 }
15371 break;
15372 }
15373 if (i < fip->baseclasses.size ())
15374 {
15375 switch (field.virtuality)
15376 {
15377 case DW_VIRTUALITY_virtual:
15378 case DW_VIRTUALITY_pure_virtual:
15379 if (cu->language == language_ada)
15380 error (_("unexpected virtuality in component of Ada type"));
15381 SET_TYPE_FIELD_VIRTUAL (type, i);
15382 break;
15383 }
15384 }
15385 }
15386 }
15387
15388 /* Return true if this member function is a constructor, false
15389 otherwise. */
15390
15391 static int
15392 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15393 {
15394 const char *fieldname;
15395 const char *type_name;
15396 int len;
15397
15398 if (die->parent == NULL)
15399 return 0;
15400
15401 if (die->parent->tag != DW_TAG_structure_type
15402 && die->parent->tag != DW_TAG_union_type
15403 && die->parent->tag != DW_TAG_class_type)
15404 return 0;
15405
15406 fieldname = dwarf2_name (die, cu);
15407 type_name = dwarf2_name (die->parent, cu);
15408 if (fieldname == NULL || type_name == NULL)
15409 return 0;
15410
15411 len = strlen (fieldname);
15412 return (strncmp (fieldname, type_name, len) == 0
15413 && (type_name[len] == '\0' || type_name[len] == '<'));
15414 }
15415
15416 /* Add a member function to the proper fieldlist. */
15417
15418 static void
15419 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15420 struct type *type, struct dwarf2_cu *cu)
15421 {
15422 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15423 struct attribute *attr;
15424 int i;
15425 struct fnfieldlist *flp = nullptr;
15426 struct fn_field *fnp;
15427 const char *fieldname;
15428 struct type *this_type;
15429 enum dwarf_access_attribute accessibility;
15430
15431 if (cu->language == language_ada)
15432 error (_("unexpected member function in Ada type"));
15433
15434 /* Get name of member function. */
15435 fieldname = dwarf2_name (die, cu);
15436 if (fieldname == NULL)
15437 return;
15438
15439 /* Look up member function name in fieldlist. */
15440 for (i = 0; i < fip->fnfieldlists.size (); i++)
15441 {
15442 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15443 {
15444 flp = &fip->fnfieldlists[i];
15445 break;
15446 }
15447 }
15448
15449 /* Create a new fnfieldlist if necessary. */
15450 if (flp == nullptr)
15451 {
15452 fip->fnfieldlists.emplace_back ();
15453 flp = &fip->fnfieldlists.back ();
15454 flp->name = fieldname;
15455 i = fip->fnfieldlists.size () - 1;
15456 }
15457
15458 /* Create a new member function field and add it to the vector of
15459 fnfieldlists. */
15460 flp->fnfields.emplace_back ();
15461 fnp = &flp->fnfields.back ();
15462
15463 /* Delay processing of the physname until later. */
15464 if (cu->language == language_cplus)
15465 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15466 die, cu);
15467 else
15468 {
15469 const char *physname = dwarf2_physname (fieldname, die, cu);
15470 fnp->physname = physname ? physname : "";
15471 }
15472
15473 fnp->type = alloc_type (objfile);
15474 this_type = read_type_die (die, cu);
15475 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15476 {
15477 int nparams = TYPE_NFIELDS (this_type);
15478
15479 /* TYPE is the domain of this method, and THIS_TYPE is the type
15480 of the method itself (TYPE_CODE_METHOD). */
15481 smash_to_method_type (fnp->type, type,
15482 TYPE_TARGET_TYPE (this_type),
15483 TYPE_FIELDS (this_type),
15484 TYPE_NFIELDS (this_type),
15485 TYPE_VARARGS (this_type));
15486
15487 /* Handle static member functions.
15488 Dwarf2 has no clean way to discern C++ static and non-static
15489 member functions. G++ helps GDB by marking the first
15490 parameter for non-static member functions (which is the this
15491 pointer) as artificial. We obtain this information from
15492 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15493 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15494 fnp->voffset = VOFFSET_STATIC;
15495 }
15496 else
15497 complaint (_("member function type missing for '%s'"),
15498 dwarf2_full_name (fieldname, die, cu));
15499
15500 /* Get fcontext from DW_AT_containing_type if present. */
15501 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15502 fnp->fcontext = die_containing_type (die, cu);
15503
15504 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15505 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15506
15507 /* Get accessibility. */
15508 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15509 if (attr)
15510 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15511 else
15512 accessibility = dwarf2_default_access_attribute (die, cu);
15513 switch (accessibility)
15514 {
15515 case DW_ACCESS_private:
15516 fnp->is_private = 1;
15517 break;
15518 case DW_ACCESS_protected:
15519 fnp->is_protected = 1;
15520 break;
15521 }
15522
15523 /* Check for artificial methods. */
15524 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15525 if (attr && DW_UNSND (attr) != 0)
15526 fnp->is_artificial = 1;
15527
15528 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15529
15530 /* Get index in virtual function table if it is a virtual member
15531 function. For older versions of GCC, this is an offset in the
15532 appropriate virtual table, as specified by DW_AT_containing_type.
15533 For everyone else, it is an expression to be evaluated relative
15534 to the object address. */
15535
15536 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15537 if (attr)
15538 {
15539 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15540 {
15541 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15542 {
15543 /* Old-style GCC. */
15544 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15545 }
15546 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15547 || (DW_BLOCK (attr)->size > 1
15548 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15549 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15550 {
15551 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15552 if ((fnp->voffset % cu->header.addr_size) != 0)
15553 dwarf2_complex_location_expr_complaint ();
15554 else
15555 fnp->voffset /= cu->header.addr_size;
15556 fnp->voffset += 2;
15557 }
15558 else
15559 dwarf2_complex_location_expr_complaint ();
15560
15561 if (!fnp->fcontext)
15562 {
15563 /* If there is no `this' field and no DW_AT_containing_type,
15564 we cannot actually find a base class context for the
15565 vtable! */
15566 if (TYPE_NFIELDS (this_type) == 0
15567 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15568 {
15569 complaint (_("cannot determine context for virtual member "
15570 "function \"%s\" (offset %s)"),
15571 fieldname, sect_offset_str (die->sect_off));
15572 }
15573 else
15574 {
15575 fnp->fcontext
15576 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15577 }
15578 }
15579 }
15580 else if (attr_form_is_section_offset (attr))
15581 {
15582 dwarf2_complex_location_expr_complaint ();
15583 }
15584 else
15585 {
15586 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15587 fieldname);
15588 }
15589 }
15590 else
15591 {
15592 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15593 if (attr && DW_UNSND (attr))
15594 {
15595 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15596 complaint (_("Member function \"%s\" (offset %s) is virtual "
15597 "but the vtable offset is not specified"),
15598 fieldname, sect_offset_str (die->sect_off));
15599 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15600 TYPE_CPLUS_DYNAMIC (type) = 1;
15601 }
15602 }
15603 }
15604
15605 /* Create the vector of member function fields, and attach it to the type. */
15606
15607 static void
15608 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15609 struct dwarf2_cu *cu)
15610 {
15611 if (cu->language == language_ada)
15612 error (_("unexpected member functions in Ada type"));
15613
15614 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15615 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15616 TYPE_ALLOC (type,
15617 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15618
15619 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15620 {
15621 struct fnfieldlist &nf = fip->fnfieldlists[i];
15622 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15623
15624 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15625 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15626 fn_flp->fn_fields = (struct fn_field *)
15627 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15628
15629 for (int k = 0; k < nf.fnfields.size (); ++k)
15630 fn_flp->fn_fields[k] = nf.fnfields[k];
15631 }
15632
15633 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15634 }
15635
15636 /* Returns non-zero if NAME is the name of a vtable member in CU's
15637 language, zero otherwise. */
15638 static int
15639 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15640 {
15641 static const char vptr[] = "_vptr";
15642
15643 /* Look for the C++ form of the vtable. */
15644 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15645 return 1;
15646
15647 return 0;
15648 }
15649
15650 /* GCC outputs unnamed structures that are really pointers to member
15651 functions, with the ABI-specified layout. If TYPE describes
15652 such a structure, smash it into a member function type.
15653
15654 GCC shouldn't do this; it should just output pointer to member DIEs.
15655 This is GCC PR debug/28767. */
15656
15657 static void
15658 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15659 {
15660 struct type *pfn_type, *self_type, *new_type;
15661
15662 /* Check for a structure with no name and two children. */
15663 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15664 return;
15665
15666 /* Check for __pfn and __delta members. */
15667 if (TYPE_FIELD_NAME (type, 0) == NULL
15668 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15669 || TYPE_FIELD_NAME (type, 1) == NULL
15670 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15671 return;
15672
15673 /* Find the type of the method. */
15674 pfn_type = TYPE_FIELD_TYPE (type, 0);
15675 if (pfn_type == NULL
15676 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15677 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15678 return;
15679
15680 /* Look for the "this" argument. */
15681 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15682 if (TYPE_NFIELDS (pfn_type) == 0
15683 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15684 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15685 return;
15686
15687 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15688 new_type = alloc_type (objfile);
15689 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15690 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15691 TYPE_VARARGS (pfn_type));
15692 smash_to_methodptr_type (type, new_type);
15693 }
15694
15695 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15696 appropriate error checking and issuing complaints if there is a
15697 problem. */
15698
15699 static ULONGEST
15700 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15701 {
15702 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15703
15704 if (attr == nullptr)
15705 return 0;
15706
15707 if (!attr_form_is_constant (attr))
15708 {
15709 complaint (_("DW_AT_alignment must have constant form"
15710 " - DIE at %s [in module %s]"),
15711 sect_offset_str (die->sect_off),
15712 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15713 return 0;
15714 }
15715
15716 ULONGEST align;
15717 if (attr->form == DW_FORM_sdata)
15718 {
15719 LONGEST val = DW_SND (attr);
15720 if (val < 0)
15721 {
15722 complaint (_("DW_AT_alignment value must not be negative"
15723 " - DIE at %s [in module %s]"),
15724 sect_offset_str (die->sect_off),
15725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15726 return 0;
15727 }
15728 align = val;
15729 }
15730 else
15731 align = DW_UNSND (attr);
15732
15733 if (align == 0)
15734 {
15735 complaint (_("DW_AT_alignment value must not be zero"
15736 " - DIE at %s [in module %s]"),
15737 sect_offset_str (die->sect_off),
15738 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15739 return 0;
15740 }
15741 if ((align & (align - 1)) != 0)
15742 {
15743 complaint (_("DW_AT_alignment value must be a power of 2"
15744 " - DIE at %s [in module %s]"),
15745 sect_offset_str (die->sect_off),
15746 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15747 return 0;
15748 }
15749
15750 return align;
15751 }
15752
15753 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15754 the alignment for TYPE. */
15755
15756 static void
15757 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15758 struct type *type)
15759 {
15760 if (!set_type_align (type, get_alignment (cu, die)))
15761 complaint (_("DW_AT_alignment value too large"
15762 " - DIE at %s [in module %s]"),
15763 sect_offset_str (die->sect_off),
15764 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15765 }
15766
15767 /* Called when we find the DIE that starts a structure or union scope
15768 (definition) to create a type for the structure or union. Fill in
15769 the type's name and general properties; the members will not be
15770 processed until process_structure_scope. A symbol table entry for
15771 the type will also not be done until process_structure_scope (assuming
15772 the type has a name).
15773
15774 NOTE: we need to call these functions regardless of whether or not the
15775 DIE has a DW_AT_name attribute, since it might be an anonymous
15776 structure or union. This gets the type entered into our set of
15777 user defined types. */
15778
15779 static struct type *
15780 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15781 {
15782 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15783 struct type *type;
15784 struct attribute *attr;
15785 const char *name;
15786
15787 /* If the definition of this type lives in .debug_types, read that type.
15788 Don't follow DW_AT_specification though, that will take us back up
15789 the chain and we want to go down. */
15790 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15791 if (attr)
15792 {
15793 type = get_DW_AT_signature_type (die, attr, cu);
15794
15795 /* The type's CU may not be the same as CU.
15796 Ensure TYPE is recorded with CU in die_type_hash. */
15797 return set_die_type (die, type, cu);
15798 }
15799
15800 type = alloc_type (objfile);
15801 INIT_CPLUS_SPECIFIC (type);
15802
15803 name = dwarf2_name (die, cu);
15804 if (name != NULL)
15805 {
15806 if (cu->language == language_cplus
15807 || cu->language == language_d
15808 || cu->language == language_rust)
15809 {
15810 const char *full_name = dwarf2_full_name (name, die, cu);
15811
15812 /* dwarf2_full_name might have already finished building the DIE's
15813 type. If so, there is no need to continue. */
15814 if (get_die_type (die, cu) != NULL)
15815 return get_die_type (die, cu);
15816
15817 TYPE_NAME (type) = full_name;
15818 }
15819 else
15820 {
15821 /* The name is already allocated along with this objfile, so
15822 we don't need to duplicate it for the type. */
15823 TYPE_NAME (type) = name;
15824 }
15825 }
15826
15827 if (die->tag == DW_TAG_structure_type)
15828 {
15829 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15830 }
15831 else if (die->tag == DW_TAG_union_type)
15832 {
15833 TYPE_CODE (type) = TYPE_CODE_UNION;
15834 }
15835 else if (die->tag == DW_TAG_variant_part)
15836 {
15837 TYPE_CODE (type) = TYPE_CODE_UNION;
15838 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15839 }
15840 else
15841 {
15842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15843 }
15844
15845 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15846 TYPE_DECLARED_CLASS (type) = 1;
15847
15848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15849 if (attr)
15850 {
15851 if (attr_form_is_constant (attr))
15852 TYPE_LENGTH (type) = DW_UNSND (attr);
15853 else
15854 {
15855 /* For the moment, dynamic type sizes are not supported
15856 by GDB's struct type. The actual size is determined
15857 on-demand when resolving the type of a given object,
15858 so set the type's length to zero for now. Otherwise,
15859 we record an expression as the length, and that expression
15860 could lead to a very large value, which could eventually
15861 lead to us trying to allocate that much memory when creating
15862 a value of that type. */
15863 TYPE_LENGTH (type) = 0;
15864 }
15865 }
15866 else
15867 {
15868 TYPE_LENGTH (type) = 0;
15869 }
15870
15871 maybe_set_alignment (cu, die, type);
15872
15873 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15874 {
15875 /* ICC<14 does not output the required DW_AT_declaration on
15876 incomplete types, but gives them a size of zero. */
15877 TYPE_STUB (type) = 1;
15878 }
15879 else
15880 TYPE_STUB_SUPPORTED (type) = 1;
15881
15882 if (die_is_declaration (die, cu))
15883 TYPE_STUB (type) = 1;
15884 else if (attr == NULL && die->child == NULL
15885 && producer_is_realview (cu->producer))
15886 /* RealView does not output the required DW_AT_declaration
15887 on incomplete types. */
15888 TYPE_STUB (type) = 1;
15889
15890 /* We need to add the type field to the die immediately so we don't
15891 infinitely recurse when dealing with pointers to the structure
15892 type within the structure itself. */
15893 set_die_type (die, type, cu);
15894
15895 /* set_die_type should be already done. */
15896 set_descriptive_type (type, die, cu);
15897
15898 return type;
15899 }
15900
15901 /* A helper for process_structure_scope that handles a single member
15902 DIE. */
15903
15904 static void
15905 handle_struct_member_die (struct die_info *child_die, struct type *type,
15906 struct field_info *fi,
15907 std::vector<struct symbol *> *template_args,
15908 struct dwarf2_cu *cu)
15909 {
15910 if (child_die->tag == DW_TAG_member
15911 || child_die->tag == DW_TAG_variable
15912 || child_die->tag == DW_TAG_variant_part)
15913 {
15914 /* NOTE: carlton/2002-11-05: A C++ static data member
15915 should be a DW_TAG_member that is a declaration, but
15916 all versions of G++ as of this writing (so through at
15917 least 3.2.1) incorrectly generate DW_TAG_variable
15918 tags for them instead. */
15919 dwarf2_add_field (fi, child_die, cu);
15920 }
15921 else if (child_die->tag == DW_TAG_subprogram)
15922 {
15923 /* Rust doesn't have member functions in the C++ sense.
15924 However, it does emit ordinary functions as children
15925 of a struct DIE. */
15926 if (cu->language == language_rust)
15927 read_func_scope (child_die, cu);
15928 else
15929 {
15930 /* C++ member function. */
15931 dwarf2_add_member_fn (fi, child_die, type, cu);
15932 }
15933 }
15934 else if (child_die->tag == DW_TAG_inheritance)
15935 {
15936 /* C++ base class field. */
15937 dwarf2_add_field (fi, child_die, cu);
15938 }
15939 else if (type_can_define_types (child_die))
15940 dwarf2_add_type_defn (fi, child_die, cu);
15941 else if (child_die->tag == DW_TAG_template_type_param
15942 || child_die->tag == DW_TAG_template_value_param)
15943 {
15944 struct symbol *arg = new_symbol (child_die, NULL, cu);
15945
15946 if (arg != NULL)
15947 template_args->push_back (arg);
15948 }
15949 else if (child_die->tag == DW_TAG_variant)
15950 {
15951 /* In a variant we want to get the discriminant and also add a
15952 field for our sole member child. */
15953 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15954
15955 for (struct die_info *variant_child = child_die->child;
15956 variant_child != NULL;
15957 variant_child = sibling_die (variant_child))
15958 {
15959 if (variant_child->tag == DW_TAG_member)
15960 {
15961 handle_struct_member_die (variant_child, type, fi,
15962 template_args, cu);
15963 /* Only handle the one. */
15964 break;
15965 }
15966 }
15967
15968 /* We don't handle this but we might as well report it if we see
15969 it. */
15970 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15971 complaint (_("DW_AT_discr_list is not supported yet"
15972 " - DIE at %s [in module %s]"),
15973 sect_offset_str (child_die->sect_off),
15974 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15975
15976 /* The first field was just added, so we can stash the
15977 discriminant there. */
15978 gdb_assert (!fi->fields.empty ());
15979 if (discr == NULL)
15980 fi->fields.back ().variant.default_branch = true;
15981 else
15982 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15983 }
15984 }
15985
15986 /* Finish creating a structure or union type, including filling in
15987 its members and creating a symbol for it. */
15988
15989 static void
15990 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15991 {
15992 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15993 struct die_info *child_die;
15994 struct type *type;
15995
15996 type = get_die_type (die, cu);
15997 if (type == NULL)
15998 type = read_structure_type (die, cu);
15999
16000 /* When reading a DW_TAG_variant_part, we need to notice when we
16001 read the discriminant member, so we can record it later in the
16002 discriminant_info. */
16003 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16004 sect_offset discr_offset;
16005 bool has_template_parameters = false;
16006
16007 if (is_variant_part)
16008 {
16009 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16010 if (discr == NULL)
16011 {
16012 /* Maybe it's a univariant form, an extension we support.
16013 In this case arrange not to check the offset. */
16014 is_variant_part = false;
16015 }
16016 else if (attr_form_is_ref (discr))
16017 {
16018 struct dwarf2_cu *target_cu = cu;
16019 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16020
16021 discr_offset = target_die->sect_off;
16022 }
16023 else
16024 {
16025 complaint (_("DW_AT_discr does not have DIE reference form"
16026 " - DIE at %s [in module %s]"),
16027 sect_offset_str (die->sect_off),
16028 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16029 is_variant_part = false;
16030 }
16031 }
16032
16033 if (die->child != NULL && ! die_is_declaration (die, cu))
16034 {
16035 struct field_info fi;
16036 std::vector<struct symbol *> template_args;
16037
16038 child_die = die->child;
16039
16040 while (child_die && child_die->tag)
16041 {
16042 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16043
16044 if (is_variant_part && discr_offset == child_die->sect_off)
16045 fi.fields.back ().variant.is_discriminant = true;
16046
16047 child_die = sibling_die (child_die);
16048 }
16049
16050 /* Attach template arguments to type. */
16051 if (!template_args.empty ())
16052 {
16053 has_template_parameters = true;
16054 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16055 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16056 TYPE_TEMPLATE_ARGUMENTS (type)
16057 = XOBNEWVEC (&objfile->objfile_obstack,
16058 struct symbol *,
16059 TYPE_N_TEMPLATE_ARGUMENTS (type));
16060 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16061 template_args.data (),
16062 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16063 * sizeof (struct symbol *)));
16064 }
16065
16066 /* Attach fields and member functions to the type. */
16067 if (fi.nfields)
16068 dwarf2_attach_fields_to_type (&fi, type, cu);
16069 if (!fi.fnfieldlists.empty ())
16070 {
16071 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16072
16073 /* Get the type which refers to the base class (possibly this
16074 class itself) which contains the vtable pointer for the current
16075 class from the DW_AT_containing_type attribute. This use of
16076 DW_AT_containing_type is a GNU extension. */
16077
16078 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16079 {
16080 struct type *t = die_containing_type (die, cu);
16081
16082 set_type_vptr_basetype (type, t);
16083 if (type == t)
16084 {
16085 int i;
16086
16087 /* Our own class provides vtbl ptr. */
16088 for (i = TYPE_NFIELDS (t) - 1;
16089 i >= TYPE_N_BASECLASSES (t);
16090 --i)
16091 {
16092 const char *fieldname = TYPE_FIELD_NAME (t, i);
16093
16094 if (is_vtable_name (fieldname, cu))
16095 {
16096 set_type_vptr_fieldno (type, i);
16097 break;
16098 }
16099 }
16100
16101 /* Complain if virtual function table field not found. */
16102 if (i < TYPE_N_BASECLASSES (t))
16103 complaint (_("virtual function table pointer "
16104 "not found when defining class '%s'"),
16105 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16106 }
16107 else
16108 {
16109 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16110 }
16111 }
16112 else if (cu->producer
16113 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16114 {
16115 /* The IBM XLC compiler does not provide direct indication
16116 of the containing type, but the vtable pointer is
16117 always named __vfp. */
16118
16119 int i;
16120
16121 for (i = TYPE_NFIELDS (type) - 1;
16122 i >= TYPE_N_BASECLASSES (type);
16123 --i)
16124 {
16125 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16126 {
16127 set_type_vptr_fieldno (type, i);
16128 set_type_vptr_basetype (type, type);
16129 break;
16130 }
16131 }
16132 }
16133 }
16134
16135 /* Copy fi.typedef_field_list linked list elements content into the
16136 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16137 if (!fi.typedef_field_list.empty ())
16138 {
16139 int count = fi.typedef_field_list.size ();
16140
16141 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16142 TYPE_TYPEDEF_FIELD_ARRAY (type)
16143 = ((struct decl_field *)
16144 TYPE_ALLOC (type,
16145 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16146 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16147
16148 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16149 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16150 }
16151
16152 /* Copy fi.nested_types_list linked list elements content into the
16153 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16154 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16155 {
16156 int count = fi.nested_types_list.size ();
16157
16158 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16159 TYPE_NESTED_TYPES_ARRAY (type)
16160 = ((struct decl_field *)
16161 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16162 TYPE_NESTED_TYPES_COUNT (type) = count;
16163
16164 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16165 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16166 }
16167 }
16168
16169 quirk_gcc_member_function_pointer (type, objfile);
16170 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16171 cu->rust_unions.push_back (type);
16172
16173 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16174 snapshots) has been known to create a die giving a declaration
16175 for a class that has, as a child, a die giving a definition for a
16176 nested class. So we have to process our children even if the
16177 current die is a declaration. Normally, of course, a declaration
16178 won't have any children at all. */
16179
16180 child_die = die->child;
16181
16182 while (child_die != NULL && child_die->tag)
16183 {
16184 if (child_die->tag == DW_TAG_member
16185 || child_die->tag == DW_TAG_variable
16186 || child_die->tag == DW_TAG_inheritance
16187 || child_die->tag == DW_TAG_template_value_param
16188 || child_die->tag == DW_TAG_template_type_param)
16189 {
16190 /* Do nothing. */
16191 }
16192 else
16193 process_die (child_die, cu);
16194
16195 child_die = sibling_die (child_die);
16196 }
16197
16198 /* Do not consider external references. According to the DWARF standard,
16199 these DIEs are identified by the fact that they have no byte_size
16200 attribute, and a declaration attribute. */
16201 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16202 || !die_is_declaration (die, cu))
16203 {
16204 struct symbol *sym = new_symbol (die, type, cu);
16205
16206 if (has_template_parameters)
16207 {
16208 /* Make sure that the symtab is set on the new symbols.
16209 Even though they don't appear in this symtab directly,
16210 other parts of gdb assume that symbols do, and this is
16211 reasonably true. */
16212 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16213 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16214 symbol_symtab (sym));
16215 }
16216 }
16217 }
16218
16219 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16220 update TYPE using some information only available in DIE's children. */
16221
16222 static void
16223 update_enumeration_type_from_children (struct die_info *die,
16224 struct type *type,
16225 struct dwarf2_cu *cu)
16226 {
16227 struct die_info *child_die;
16228 int unsigned_enum = 1;
16229 int flag_enum = 1;
16230 ULONGEST mask = 0;
16231
16232 auto_obstack obstack;
16233
16234 for (child_die = die->child;
16235 child_die != NULL && child_die->tag;
16236 child_die = sibling_die (child_die))
16237 {
16238 struct attribute *attr;
16239 LONGEST value;
16240 const gdb_byte *bytes;
16241 struct dwarf2_locexpr_baton *baton;
16242 const char *name;
16243
16244 if (child_die->tag != DW_TAG_enumerator)
16245 continue;
16246
16247 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16248 if (attr == NULL)
16249 continue;
16250
16251 name = dwarf2_name (child_die, cu);
16252 if (name == NULL)
16253 name = "<anonymous enumerator>";
16254
16255 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16256 &value, &bytes, &baton);
16257 if (value < 0)
16258 {
16259 unsigned_enum = 0;
16260 flag_enum = 0;
16261 }
16262 else if ((mask & value) != 0)
16263 flag_enum = 0;
16264 else
16265 mask |= value;
16266
16267 /* If we already know that the enum type is neither unsigned, nor
16268 a flag type, no need to look at the rest of the enumerates. */
16269 if (!unsigned_enum && !flag_enum)
16270 break;
16271 }
16272
16273 if (unsigned_enum)
16274 TYPE_UNSIGNED (type) = 1;
16275 if (flag_enum)
16276 TYPE_FLAG_ENUM (type) = 1;
16277 }
16278
16279 /* Given a DW_AT_enumeration_type die, set its type. We do not
16280 complete the type's fields yet, or create any symbols. */
16281
16282 static struct type *
16283 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16284 {
16285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16286 struct type *type;
16287 struct attribute *attr;
16288 const char *name;
16289
16290 /* If the definition of this type lives in .debug_types, read that type.
16291 Don't follow DW_AT_specification though, that will take us back up
16292 the chain and we want to go down. */
16293 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16294 if (attr)
16295 {
16296 type = get_DW_AT_signature_type (die, attr, cu);
16297
16298 /* The type's CU may not be the same as CU.
16299 Ensure TYPE is recorded with CU in die_type_hash. */
16300 return set_die_type (die, type, cu);
16301 }
16302
16303 type = alloc_type (objfile);
16304
16305 TYPE_CODE (type) = TYPE_CODE_ENUM;
16306 name = dwarf2_full_name (NULL, die, cu);
16307 if (name != NULL)
16308 TYPE_NAME (type) = name;
16309
16310 attr = dwarf2_attr (die, DW_AT_type, cu);
16311 if (attr != NULL)
16312 {
16313 struct type *underlying_type = die_type (die, cu);
16314
16315 TYPE_TARGET_TYPE (type) = underlying_type;
16316 }
16317
16318 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16319 if (attr)
16320 {
16321 TYPE_LENGTH (type) = DW_UNSND (attr);
16322 }
16323 else
16324 {
16325 TYPE_LENGTH (type) = 0;
16326 }
16327
16328 maybe_set_alignment (cu, die, type);
16329
16330 /* The enumeration DIE can be incomplete. In Ada, any type can be
16331 declared as private in the package spec, and then defined only
16332 inside the package body. Such types are known as Taft Amendment
16333 Types. When another package uses such a type, an incomplete DIE
16334 may be generated by the compiler. */
16335 if (die_is_declaration (die, cu))
16336 TYPE_STUB (type) = 1;
16337
16338 /* Finish the creation of this type by using the enum's children.
16339 We must call this even when the underlying type has been provided
16340 so that we can determine if we're looking at a "flag" enum. */
16341 update_enumeration_type_from_children (die, type, cu);
16342
16343 /* If this type has an underlying type that is not a stub, then we
16344 may use its attributes. We always use the "unsigned" attribute
16345 in this situation, because ordinarily we guess whether the type
16346 is unsigned -- but the guess can be wrong and the underlying type
16347 can tell us the reality. However, we defer to a local size
16348 attribute if one exists, because this lets the compiler override
16349 the underlying type if needed. */
16350 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16351 {
16352 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16353 if (TYPE_LENGTH (type) == 0)
16354 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16355 if (TYPE_RAW_ALIGN (type) == 0
16356 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16357 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16358 }
16359
16360 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16361
16362 return set_die_type (die, type, cu);
16363 }
16364
16365 /* Given a pointer to a die which begins an enumeration, process all
16366 the dies that define the members of the enumeration, and create the
16367 symbol for the enumeration type.
16368
16369 NOTE: We reverse the order of the element list. */
16370
16371 static void
16372 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16373 {
16374 struct type *this_type;
16375
16376 this_type = get_die_type (die, cu);
16377 if (this_type == NULL)
16378 this_type = read_enumeration_type (die, cu);
16379
16380 if (die->child != NULL)
16381 {
16382 struct die_info *child_die;
16383 struct symbol *sym;
16384 struct field *fields = NULL;
16385 int num_fields = 0;
16386 const char *name;
16387
16388 child_die = die->child;
16389 while (child_die && child_die->tag)
16390 {
16391 if (child_die->tag != DW_TAG_enumerator)
16392 {
16393 process_die (child_die, cu);
16394 }
16395 else
16396 {
16397 name = dwarf2_name (child_die, cu);
16398 if (name)
16399 {
16400 sym = new_symbol (child_die, this_type, cu);
16401
16402 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16403 {
16404 fields = (struct field *)
16405 xrealloc (fields,
16406 (num_fields + DW_FIELD_ALLOC_CHUNK)
16407 * sizeof (struct field));
16408 }
16409
16410 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16411 FIELD_TYPE (fields[num_fields]) = NULL;
16412 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16413 FIELD_BITSIZE (fields[num_fields]) = 0;
16414
16415 num_fields++;
16416 }
16417 }
16418
16419 child_die = sibling_die (child_die);
16420 }
16421
16422 if (num_fields)
16423 {
16424 TYPE_NFIELDS (this_type) = num_fields;
16425 TYPE_FIELDS (this_type) = (struct field *)
16426 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16427 memcpy (TYPE_FIELDS (this_type), fields,
16428 sizeof (struct field) * num_fields);
16429 xfree (fields);
16430 }
16431 }
16432
16433 /* If we are reading an enum from a .debug_types unit, and the enum
16434 is a declaration, and the enum is not the signatured type in the
16435 unit, then we do not want to add a symbol for it. Adding a
16436 symbol would in some cases obscure the true definition of the
16437 enum, giving users an incomplete type when the definition is
16438 actually available. Note that we do not want to do this for all
16439 enums which are just declarations, because C++0x allows forward
16440 enum declarations. */
16441 if (cu->per_cu->is_debug_types
16442 && die_is_declaration (die, cu))
16443 {
16444 struct signatured_type *sig_type;
16445
16446 sig_type = (struct signatured_type *) cu->per_cu;
16447 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16448 if (sig_type->type_offset_in_section != die->sect_off)
16449 return;
16450 }
16451
16452 new_symbol (die, this_type, cu);
16453 }
16454
16455 /* Extract all information from a DW_TAG_array_type DIE and put it in
16456 the DIE's type field. For now, this only handles one dimensional
16457 arrays. */
16458
16459 static struct type *
16460 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16461 {
16462 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16463 struct die_info *child_die;
16464 struct type *type;
16465 struct type *element_type, *range_type, *index_type;
16466 struct attribute *attr;
16467 const char *name;
16468 struct dynamic_prop *byte_stride_prop = NULL;
16469 unsigned int bit_stride = 0;
16470
16471 element_type = die_type (die, cu);
16472
16473 /* The die_type call above may have already set the type for this DIE. */
16474 type = get_die_type (die, cu);
16475 if (type)
16476 return type;
16477
16478 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16479 if (attr != NULL)
16480 {
16481 int stride_ok;
16482
16483 byte_stride_prop
16484 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16485 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16486 if (!stride_ok)
16487 {
16488 complaint (_("unable to read array DW_AT_byte_stride "
16489 " - DIE at %s [in module %s]"),
16490 sect_offset_str (die->sect_off),
16491 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16492 /* Ignore this attribute. We will likely not be able to print
16493 arrays of this type correctly, but there is little we can do
16494 to help if we cannot read the attribute's value. */
16495 byte_stride_prop = NULL;
16496 }
16497 }
16498
16499 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16500 if (attr != NULL)
16501 bit_stride = DW_UNSND (attr);
16502
16503 /* Irix 6.2 native cc creates array types without children for
16504 arrays with unspecified length. */
16505 if (die->child == NULL)
16506 {
16507 index_type = objfile_type (objfile)->builtin_int;
16508 range_type = create_static_range_type (NULL, index_type, 0, -1);
16509 type = create_array_type_with_stride (NULL, element_type, range_type,
16510 byte_stride_prop, bit_stride);
16511 return set_die_type (die, type, cu);
16512 }
16513
16514 std::vector<struct type *> range_types;
16515 child_die = die->child;
16516 while (child_die && child_die->tag)
16517 {
16518 if (child_die->tag == DW_TAG_subrange_type)
16519 {
16520 struct type *child_type = read_type_die (child_die, cu);
16521
16522 if (child_type != NULL)
16523 {
16524 /* The range type was succesfully read. Save it for the
16525 array type creation. */
16526 range_types.push_back (child_type);
16527 }
16528 }
16529 child_die = sibling_die (child_die);
16530 }
16531
16532 /* Dwarf2 dimensions are output from left to right, create the
16533 necessary array types in backwards order. */
16534
16535 type = element_type;
16536
16537 if (read_array_order (die, cu) == DW_ORD_col_major)
16538 {
16539 int i = 0;
16540
16541 while (i < range_types.size ())
16542 type = create_array_type_with_stride (NULL, type, range_types[i++],
16543 byte_stride_prop, bit_stride);
16544 }
16545 else
16546 {
16547 size_t ndim = range_types.size ();
16548 while (ndim-- > 0)
16549 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16550 byte_stride_prop, bit_stride);
16551 }
16552
16553 /* Understand Dwarf2 support for vector types (like they occur on
16554 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16555 array type. This is not part of the Dwarf2/3 standard yet, but a
16556 custom vendor extension. The main difference between a regular
16557 array and the vector variant is that vectors are passed by value
16558 to functions. */
16559 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16560 if (attr)
16561 make_vector_type (type);
16562
16563 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16564 implementation may choose to implement triple vectors using this
16565 attribute. */
16566 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16567 if (attr)
16568 {
16569 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16570 TYPE_LENGTH (type) = DW_UNSND (attr);
16571 else
16572 complaint (_("DW_AT_byte_size for array type smaller "
16573 "than the total size of elements"));
16574 }
16575
16576 name = dwarf2_name (die, cu);
16577 if (name)
16578 TYPE_NAME (type) = name;
16579
16580 maybe_set_alignment (cu, die, type);
16581
16582 /* Install the type in the die. */
16583 set_die_type (die, type, cu);
16584
16585 /* set_die_type should be already done. */
16586 set_descriptive_type (type, die, cu);
16587
16588 return type;
16589 }
16590
16591 static enum dwarf_array_dim_ordering
16592 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16593 {
16594 struct attribute *attr;
16595
16596 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16597
16598 if (attr)
16599 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16600
16601 /* GNU F77 is a special case, as at 08/2004 array type info is the
16602 opposite order to the dwarf2 specification, but data is still
16603 laid out as per normal fortran.
16604
16605 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16606 version checking. */
16607
16608 if (cu->language == language_fortran
16609 && cu->producer && strstr (cu->producer, "GNU F77"))
16610 {
16611 return DW_ORD_row_major;
16612 }
16613
16614 switch (cu->language_defn->la_array_ordering)
16615 {
16616 case array_column_major:
16617 return DW_ORD_col_major;
16618 case array_row_major:
16619 default:
16620 return DW_ORD_row_major;
16621 };
16622 }
16623
16624 /* Extract all information from a DW_TAG_set_type DIE and put it in
16625 the DIE's type field. */
16626
16627 static struct type *
16628 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16629 {
16630 struct type *domain_type, *set_type;
16631 struct attribute *attr;
16632
16633 domain_type = die_type (die, cu);
16634
16635 /* The die_type call above may have already set the type for this DIE. */
16636 set_type = get_die_type (die, cu);
16637 if (set_type)
16638 return set_type;
16639
16640 set_type = create_set_type (NULL, domain_type);
16641
16642 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16643 if (attr)
16644 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16645
16646 maybe_set_alignment (cu, die, set_type);
16647
16648 return set_die_type (die, set_type, cu);
16649 }
16650
16651 /* A helper for read_common_block that creates a locexpr baton.
16652 SYM is the symbol which we are marking as computed.
16653 COMMON_DIE is the DIE for the common block.
16654 COMMON_LOC is the location expression attribute for the common
16655 block itself.
16656 MEMBER_LOC is the location expression attribute for the particular
16657 member of the common block that we are processing.
16658 CU is the CU from which the above come. */
16659
16660 static void
16661 mark_common_block_symbol_computed (struct symbol *sym,
16662 struct die_info *common_die,
16663 struct attribute *common_loc,
16664 struct attribute *member_loc,
16665 struct dwarf2_cu *cu)
16666 {
16667 struct dwarf2_per_objfile *dwarf2_per_objfile
16668 = cu->per_cu->dwarf2_per_objfile;
16669 struct objfile *objfile = dwarf2_per_objfile->objfile;
16670 struct dwarf2_locexpr_baton *baton;
16671 gdb_byte *ptr;
16672 unsigned int cu_off;
16673 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16674 LONGEST offset = 0;
16675
16676 gdb_assert (common_loc && member_loc);
16677 gdb_assert (attr_form_is_block (common_loc));
16678 gdb_assert (attr_form_is_block (member_loc)
16679 || attr_form_is_constant (member_loc));
16680
16681 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16682 baton->per_cu = cu->per_cu;
16683 gdb_assert (baton->per_cu);
16684
16685 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16686
16687 if (attr_form_is_constant (member_loc))
16688 {
16689 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16690 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16691 }
16692 else
16693 baton->size += DW_BLOCK (member_loc)->size;
16694
16695 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16696 baton->data = ptr;
16697
16698 *ptr++ = DW_OP_call4;
16699 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16700 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16701 ptr += 4;
16702
16703 if (attr_form_is_constant (member_loc))
16704 {
16705 *ptr++ = DW_OP_addr;
16706 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16707 ptr += cu->header.addr_size;
16708 }
16709 else
16710 {
16711 /* We have to copy the data here, because DW_OP_call4 will only
16712 use a DW_AT_location attribute. */
16713 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16714 ptr += DW_BLOCK (member_loc)->size;
16715 }
16716
16717 *ptr++ = DW_OP_plus;
16718 gdb_assert (ptr - baton->data == baton->size);
16719
16720 SYMBOL_LOCATION_BATON (sym) = baton;
16721 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16722 }
16723
16724 /* Create appropriate locally-scoped variables for all the
16725 DW_TAG_common_block entries. Also create a struct common_block
16726 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16727 is used to sepate the common blocks name namespace from regular
16728 variable names. */
16729
16730 static void
16731 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16732 {
16733 struct attribute *attr;
16734
16735 attr = dwarf2_attr (die, DW_AT_location, cu);
16736 if (attr)
16737 {
16738 /* Support the .debug_loc offsets. */
16739 if (attr_form_is_block (attr))
16740 {
16741 /* Ok. */
16742 }
16743 else if (attr_form_is_section_offset (attr))
16744 {
16745 dwarf2_complex_location_expr_complaint ();
16746 attr = NULL;
16747 }
16748 else
16749 {
16750 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16751 "common block member");
16752 attr = NULL;
16753 }
16754 }
16755
16756 if (die->child != NULL)
16757 {
16758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16759 struct die_info *child_die;
16760 size_t n_entries = 0, size;
16761 struct common_block *common_block;
16762 struct symbol *sym;
16763
16764 for (child_die = die->child;
16765 child_die && child_die->tag;
16766 child_die = sibling_die (child_die))
16767 ++n_entries;
16768
16769 size = (sizeof (struct common_block)
16770 + (n_entries - 1) * sizeof (struct symbol *));
16771 common_block
16772 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16773 size);
16774 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16775 common_block->n_entries = 0;
16776
16777 for (child_die = die->child;
16778 child_die && child_die->tag;
16779 child_die = sibling_die (child_die))
16780 {
16781 /* Create the symbol in the DW_TAG_common_block block in the current
16782 symbol scope. */
16783 sym = new_symbol (child_die, NULL, cu);
16784 if (sym != NULL)
16785 {
16786 struct attribute *member_loc;
16787
16788 common_block->contents[common_block->n_entries++] = sym;
16789
16790 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16791 cu);
16792 if (member_loc)
16793 {
16794 /* GDB has handled this for a long time, but it is
16795 not specified by DWARF. It seems to have been
16796 emitted by gfortran at least as recently as:
16797 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16798 complaint (_("Variable in common block has "
16799 "DW_AT_data_member_location "
16800 "- DIE at %s [in module %s]"),
16801 sect_offset_str (child_die->sect_off),
16802 objfile_name (objfile));
16803
16804 if (attr_form_is_section_offset (member_loc))
16805 dwarf2_complex_location_expr_complaint ();
16806 else if (attr_form_is_constant (member_loc)
16807 || attr_form_is_block (member_loc))
16808 {
16809 if (attr)
16810 mark_common_block_symbol_computed (sym, die, attr,
16811 member_loc, cu);
16812 }
16813 else
16814 dwarf2_complex_location_expr_complaint ();
16815 }
16816 }
16817 }
16818
16819 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16820 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16821 }
16822 }
16823
16824 /* Create a type for a C++ namespace. */
16825
16826 static struct type *
16827 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16828 {
16829 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16830 const char *previous_prefix, *name;
16831 int is_anonymous;
16832 struct type *type;
16833
16834 /* For extensions, reuse the type of the original namespace. */
16835 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16836 {
16837 struct die_info *ext_die;
16838 struct dwarf2_cu *ext_cu = cu;
16839
16840 ext_die = dwarf2_extension (die, &ext_cu);
16841 type = read_type_die (ext_die, ext_cu);
16842
16843 /* EXT_CU may not be the same as CU.
16844 Ensure TYPE is recorded with CU in die_type_hash. */
16845 return set_die_type (die, type, cu);
16846 }
16847
16848 name = namespace_name (die, &is_anonymous, cu);
16849
16850 /* Now build the name of the current namespace. */
16851
16852 previous_prefix = determine_prefix (die, cu);
16853 if (previous_prefix[0] != '\0')
16854 name = typename_concat (&objfile->objfile_obstack,
16855 previous_prefix, name, 0, cu);
16856
16857 /* Create the type. */
16858 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16859
16860 return set_die_type (die, type, cu);
16861 }
16862
16863 /* Read a namespace scope. */
16864
16865 static void
16866 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16867 {
16868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16869 int is_anonymous;
16870
16871 /* Add a symbol associated to this if we haven't seen the namespace
16872 before. Also, add a using directive if it's an anonymous
16873 namespace. */
16874
16875 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16876 {
16877 struct type *type;
16878
16879 type = read_type_die (die, cu);
16880 new_symbol (die, type, cu);
16881
16882 namespace_name (die, &is_anonymous, cu);
16883 if (is_anonymous)
16884 {
16885 const char *previous_prefix = determine_prefix (die, cu);
16886
16887 std::vector<const char *> excludes;
16888 add_using_directive (using_directives (cu),
16889 previous_prefix, TYPE_NAME (type), NULL,
16890 NULL, excludes, 0, &objfile->objfile_obstack);
16891 }
16892 }
16893
16894 if (die->child != NULL)
16895 {
16896 struct die_info *child_die = die->child;
16897
16898 while (child_die && child_die->tag)
16899 {
16900 process_die (child_die, cu);
16901 child_die = sibling_die (child_die);
16902 }
16903 }
16904 }
16905
16906 /* Read a Fortran module as type. This DIE can be only a declaration used for
16907 imported module. Still we need that type as local Fortran "use ... only"
16908 declaration imports depend on the created type in determine_prefix. */
16909
16910 static struct type *
16911 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16912 {
16913 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16914 const char *module_name;
16915 struct type *type;
16916
16917 module_name = dwarf2_name (die, cu);
16918 if (!module_name)
16919 complaint (_("DW_TAG_module has no name, offset %s"),
16920 sect_offset_str (die->sect_off));
16921 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16922
16923 return set_die_type (die, type, cu);
16924 }
16925
16926 /* Read a Fortran module. */
16927
16928 static void
16929 read_module (struct die_info *die, struct dwarf2_cu *cu)
16930 {
16931 struct die_info *child_die = die->child;
16932 struct type *type;
16933
16934 type = read_type_die (die, cu);
16935 new_symbol (die, type, cu);
16936
16937 while (child_die && child_die->tag)
16938 {
16939 process_die (child_die, cu);
16940 child_die = sibling_die (child_die);
16941 }
16942 }
16943
16944 /* Return the name of the namespace represented by DIE. Set
16945 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16946 namespace. */
16947
16948 static const char *
16949 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16950 {
16951 struct die_info *current_die;
16952 const char *name = NULL;
16953
16954 /* Loop through the extensions until we find a name. */
16955
16956 for (current_die = die;
16957 current_die != NULL;
16958 current_die = dwarf2_extension (die, &cu))
16959 {
16960 /* We don't use dwarf2_name here so that we can detect the absence
16961 of a name -> anonymous namespace. */
16962 name = dwarf2_string_attr (die, DW_AT_name, cu);
16963
16964 if (name != NULL)
16965 break;
16966 }
16967
16968 /* Is it an anonymous namespace? */
16969
16970 *is_anonymous = (name == NULL);
16971 if (*is_anonymous)
16972 name = CP_ANONYMOUS_NAMESPACE_STR;
16973
16974 return name;
16975 }
16976
16977 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16978 the user defined type vector. */
16979
16980 static struct type *
16981 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16982 {
16983 struct gdbarch *gdbarch
16984 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16985 struct comp_unit_head *cu_header = &cu->header;
16986 struct type *type;
16987 struct attribute *attr_byte_size;
16988 struct attribute *attr_address_class;
16989 int byte_size, addr_class;
16990 struct type *target_type;
16991
16992 target_type = die_type (die, cu);
16993
16994 /* The die_type call above may have already set the type for this DIE. */
16995 type = get_die_type (die, cu);
16996 if (type)
16997 return type;
16998
16999 type = lookup_pointer_type (target_type);
17000
17001 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17002 if (attr_byte_size)
17003 byte_size = DW_UNSND (attr_byte_size);
17004 else
17005 byte_size = cu_header->addr_size;
17006
17007 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17008 if (attr_address_class)
17009 addr_class = DW_UNSND (attr_address_class);
17010 else
17011 addr_class = DW_ADDR_none;
17012
17013 ULONGEST alignment = get_alignment (cu, die);
17014
17015 /* If the pointer size, alignment, or address class is different
17016 than the default, create a type variant marked as such and set
17017 the length accordingly. */
17018 if (TYPE_LENGTH (type) != byte_size
17019 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17020 && alignment != TYPE_RAW_ALIGN (type))
17021 || addr_class != DW_ADDR_none)
17022 {
17023 if (gdbarch_address_class_type_flags_p (gdbarch))
17024 {
17025 int type_flags;
17026
17027 type_flags = gdbarch_address_class_type_flags
17028 (gdbarch, byte_size, addr_class);
17029 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17030 == 0);
17031 type = make_type_with_address_space (type, type_flags);
17032 }
17033 else if (TYPE_LENGTH (type) != byte_size)
17034 {
17035 complaint (_("invalid pointer size %d"), byte_size);
17036 }
17037 else if (TYPE_RAW_ALIGN (type) != alignment)
17038 {
17039 complaint (_("Invalid DW_AT_alignment"
17040 " - DIE at %s [in module %s]"),
17041 sect_offset_str (die->sect_off),
17042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17043 }
17044 else
17045 {
17046 /* Should we also complain about unhandled address classes? */
17047 }
17048 }
17049
17050 TYPE_LENGTH (type) = byte_size;
17051 set_type_align (type, alignment);
17052 return set_die_type (die, type, cu);
17053 }
17054
17055 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17056 the user defined type vector. */
17057
17058 static struct type *
17059 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17060 {
17061 struct type *type;
17062 struct type *to_type;
17063 struct type *domain;
17064
17065 to_type = die_type (die, cu);
17066 domain = die_containing_type (die, cu);
17067
17068 /* The calls above may have already set the type for this DIE. */
17069 type = get_die_type (die, cu);
17070 if (type)
17071 return type;
17072
17073 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17074 type = lookup_methodptr_type (to_type);
17075 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17076 {
17077 struct type *new_type
17078 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17079
17080 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17081 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17082 TYPE_VARARGS (to_type));
17083 type = lookup_methodptr_type (new_type);
17084 }
17085 else
17086 type = lookup_memberptr_type (to_type, domain);
17087
17088 return set_die_type (die, type, cu);
17089 }
17090
17091 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17092 the user defined type vector. */
17093
17094 static struct type *
17095 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17096 enum type_code refcode)
17097 {
17098 struct comp_unit_head *cu_header = &cu->header;
17099 struct type *type, *target_type;
17100 struct attribute *attr;
17101
17102 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17103
17104 target_type = die_type (die, cu);
17105
17106 /* The die_type call above may have already set the type for this DIE. */
17107 type = get_die_type (die, cu);
17108 if (type)
17109 return type;
17110
17111 type = lookup_reference_type (target_type, refcode);
17112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17113 if (attr)
17114 {
17115 TYPE_LENGTH (type) = DW_UNSND (attr);
17116 }
17117 else
17118 {
17119 TYPE_LENGTH (type) = cu_header->addr_size;
17120 }
17121 maybe_set_alignment (cu, die, type);
17122 return set_die_type (die, type, cu);
17123 }
17124
17125 /* Add the given cv-qualifiers to the element type of the array. GCC
17126 outputs DWARF type qualifiers that apply to an array, not the
17127 element type. But GDB relies on the array element type to carry
17128 the cv-qualifiers. This mimics section 6.7.3 of the C99
17129 specification. */
17130
17131 static struct type *
17132 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17133 struct type *base_type, int cnst, int voltl)
17134 {
17135 struct type *el_type, *inner_array;
17136
17137 base_type = copy_type (base_type);
17138 inner_array = base_type;
17139
17140 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17141 {
17142 TYPE_TARGET_TYPE (inner_array) =
17143 copy_type (TYPE_TARGET_TYPE (inner_array));
17144 inner_array = TYPE_TARGET_TYPE (inner_array);
17145 }
17146
17147 el_type = TYPE_TARGET_TYPE (inner_array);
17148 cnst |= TYPE_CONST (el_type);
17149 voltl |= TYPE_VOLATILE (el_type);
17150 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17151
17152 return set_die_type (die, base_type, cu);
17153 }
17154
17155 static struct type *
17156 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17157 {
17158 struct type *base_type, *cv_type;
17159
17160 base_type = die_type (die, cu);
17161
17162 /* The die_type call above may have already set the type for this DIE. */
17163 cv_type = get_die_type (die, cu);
17164 if (cv_type)
17165 return cv_type;
17166
17167 /* In case the const qualifier is applied to an array type, the element type
17168 is so qualified, not the array type (section 6.7.3 of C99). */
17169 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17170 return add_array_cv_type (die, cu, base_type, 1, 0);
17171
17172 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17173 return set_die_type (die, cv_type, cu);
17174 }
17175
17176 static struct type *
17177 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17178 {
17179 struct type *base_type, *cv_type;
17180
17181 base_type = die_type (die, cu);
17182
17183 /* The die_type call above may have already set the type for this DIE. */
17184 cv_type = get_die_type (die, cu);
17185 if (cv_type)
17186 return cv_type;
17187
17188 /* In case the volatile qualifier is applied to an array type, the
17189 element type is so qualified, not the array type (section 6.7.3
17190 of C99). */
17191 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17192 return add_array_cv_type (die, cu, base_type, 0, 1);
17193
17194 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17195 return set_die_type (die, cv_type, cu);
17196 }
17197
17198 /* Handle DW_TAG_restrict_type. */
17199
17200 static struct type *
17201 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17202 {
17203 struct type *base_type, *cv_type;
17204
17205 base_type = die_type (die, cu);
17206
17207 /* The die_type call above may have already set the type for this DIE. */
17208 cv_type = get_die_type (die, cu);
17209 if (cv_type)
17210 return cv_type;
17211
17212 cv_type = make_restrict_type (base_type);
17213 return set_die_type (die, cv_type, cu);
17214 }
17215
17216 /* Handle DW_TAG_atomic_type. */
17217
17218 static struct type *
17219 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17220 {
17221 struct type *base_type, *cv_type;
17222
17223 base_type = die_type (die, cu);
17224
17225 /* The die_type call above may have already set the type for this DIE. */
17226 cv_type = get_die_type (die, cu);
17227 if (cv_type)
17228 return cv_type;
17229
17230 cv_type = make_atomic_type (base_type);
17231 return set_die_type (die, cv_type, cu);
17232 }
17233
17234 /* Extract all information from a DW_TAG_string_type DIE and add to
17235 the user defined type vector. It isn't really a user defined type,
17236 but it behaves like one, with other DIE's using an AT_user_def_type
17237 attribute to reference it. */
17238
17239 static struct type *
17240 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17241 {
17242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17244 struct type *type, *range_type, *index_type, *char_type;
17245 struct attribute *attr;
17246 unsigned int length;
17247
17248 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17249 if (attr)
17250 {
17251 length = DW_UNSND (attr);
17252 }
17253 else
17254 {
17255 /* Check for the DW_AT_byte_size attribute. */
17256 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17257 if (attr)
17258 {
17259 length = DW_UNSND (attr);
17260 }
17261 else
17262 {
17263 length = 1;
17264 }
17265 }
17266
17267 index_type = objfile_type (objfile)->builtin_int;
17268 range_type = create_static_range_type (NULL, index_type, 1, length);
17269 char_type = language_string_char_type (cu->language_defn, gdbarch);
17270 type = create_string_type (NULL, char_type, range_type);
17271
17272 return set_die_type (die, type, cu);
17273 }
17274
17275 /* Assuming that DIE corresponds to a function, returns nonzero
17276 if the function is prototyped. */
17277
17278 static int
17279 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17280 {
17281 struct attribute *attr;
17282
17283 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17284 if (attr && (DW_UNSND (attr) != 0))
17285 return 1;
17286
17287 /* The DWARF standard implies that the DW_AT_prototyped attribute
17288 is only meaninful for C, but the concept also extends to other
17289 languages that allow unprototyped functions (Eg: Objective C).
17290 For all other languages, assume that functions are always
17291 prototyped. */
17292 if (cu->language != language_c
17293 && cu->language != language_objc
17294 && cu->language != language_opencl)
17295 return 1;
17296
17297 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17298 prototyped and unprototyped functions; default to prototyped,
17299 since that is more common in modern code (and RealView warns
17300 about unprototyped functions). */
17301 if (producer_is_realview (cu->producer))
17302 return 1;
17303
17304 return 0;
17305 }
17306
17307 /* Handle DIES due to C code like:
17308
17309 struct foo
17310 {
17311 int (*funcp)(int a, long l);
17312 int b;
17313 };
17314
17315 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17316
17317 static struct type *
17318 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17319 {
17320 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17321 struct type *type; /* Type that this function returns. */
17322 struct type *ftype; /* Function that returns above type. */
17323 struct attribute *attr;
17324
17325 type = die_type (die, cu);
17326
17327 /* The die_type call above may have already set the type for this DIE. */
17328 ftype = get_die_type (die, cu);
17329 if (ftype)
17330 return ftype;
17331
17332 ftype = lookup_function_type (type);
17333
17334 if (prototyped_function_p (die, cu))
17335 TYPE_PROTOTYPED (ftype) = 1;
17336
17337 /* Store the calling convention in the type if it's available in
17338 the subroutine die. Otherwise set the calling convention to
17339 the default value DW_CC_normal. */
17340 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17341 if (attr)
17342 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17343 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17344 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17345 else
17346 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17347
17348 /* Record whether the function returns normally to its caller or not
17349 if the DWARF producer set that information. */
17350 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17351 if (attr && (DW_UNSND (attr) != 0))
17352 TYPE_NO_RETURN (ftype) = 1;
17353
17354 /* We need to add the subroutine type to the die immediately so
17355 we don't infinitely recurse when dealing with parameters
17356 declared as the same subroutine type. */
17357 set_die_type (die, ftype, cu);
17358
17359 if (die->child != NULL)
17360 {
17361 struct type *void_type = objfile_type (objfile)->builtin_void;
17362 struct die_info *child_die;
17363 int nparams, iparams;
17364
17365 /* Count the number of parameters.
17366 FIXME: GDB currently ignores vararg functions, but knows about
17367 vararg member functions. */
17368 nparams = 0;
17369 child_die = die->child;
17370 while (child_die && child_die->tag)
17371 {
17372 if (child_die->tag == DW_TAG_formal_parameter)
17373 nparams++;
17374 else if (child_die->tag == DW_TAG_unspecified_parameters)
17375 TYPE_VARARGS (ftype) = 1;
17376 child_die = sibling_die (child_die);
17377 }
17378
17379 /* Allocate storage for parameters and fill them in. */
17380 TYPE_NFIELDS (ftype) = nparams;
17381 TYPE_FIELDS (ftype) = (struct field *)
17382 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17383
17384 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17385 even if we error out during the parameters reading below. */
17386 for (iparams = 0; iparams < nparams; iparams++)
17387 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17388
17389 iparams = 0;
17390 child_die = die->child;
17391 while (child_die && child_die->tag)
17392 {
17393 if (child_die->tag == DW_TAG_formal_parameter)
17394 {
17395 struct type *arg_type;
17396
17397 /* DWARF version 2 has no clean way to discern C++
17398 static and non-static member functions. G++ helps
17399 GDB by marking the first parameter for non-static
17400 member functions (which is the this pointer) as
17401 artificial. We pass this information to
17402 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17403
17404 DWARF version 3 added DW_AT_object_pointer, which GCC
17405 4.5 does not yet generate. */
17406 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17407 if (attr)
17408 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17409 else
17410 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17411 arg_type = die_type (child_die, cu);
17412
17413 /* RealView does not mark THIS as const, which the testsuite
17414 expects. GCC marks THIS as const in method definitions,
17415 but not in the class specifications (GCC PR 43053). */
17416 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17417 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17418 {
17419 int is_this = 0;
17420 struct dwarf2_cu *arg_cu = cu;
17421 const char *name = dwarf2_name (child_die, cu);
17422
17423 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17424 if (attr)
17425 {
17426 /* If the compiler emits this, use it. */
17427 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17428 is_this = 1;
17429 }
17430 else if (name && strcmp (name, "this") == 0)
17431 /* Function definitions will have the argument names. */
17432 is_this = 1;
17433 else if (name == NULL && iparams == 0)
17434 /* Declarations may not have the names, so like
17435 elsewhere in GDB, assume an artificial first
17436 argument is "this". */
17437 is_this = 1;
17438
17439 if (is_this)
17440 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17441 arg_type, 0);
17442 }
17443
17444 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17445 iparams++;
17446 }
17447 child_die = sibling_die (child_die);
17448 }
17449 }
17450
17451 return ftype;
17452 }
17453
17454 static struct type *
17455 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17456 {
17457 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17458 const char *name = NULL;
17459 struct type *this_type, *target_type;
17460
17461 name = dwarf2_full_name (NULL, die, cu);
17462 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17463 TYPE_TARGET_STUB (this_type) = 1;
17464 set_die_type (die, this_type, cu);
17465 target_type = die_type (die, cu);
17466 if (target_type != this_type)
17467 TYPE_TARGET_TYPE (this_type) = target_type;
17468 else
17469 {
17470 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17471 spec and cause infinite loops in GDB. */
17472 complaint (_("Self-referential DW_TAG_typedef "
17473 "- DIE at %s [in module %s]"),
17474 sect_offset_str (die->sect_off), objfile_name (objfile));
17475 TYPE_TARGET_TYPE (this_type) = NULL;
17476 }
17477 return this_type;
17478 }
17479
17480 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17481 (which may be different from NAME) to the architecture back-end to allow
17482 it to guess the correct format if necessary. */
17483
17484 static struct type *
17485 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17486 const char *name_hint)
17487 {
17488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17489 const struct floatformat **format;
17490 struct type *type;
17491
17492 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17493 if (format)
17494 type = init_float_type (objfile, bits, name, format);
17495 else
17496 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17497
17498 return type;
17499 }
17500
17501 /* Find a representation of a given base type and install
17502 it in the TYPE field of the die. */
17503
17504 static struct type *
17505 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17506 {
17507 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17508 struct type *type;
17509 struct attribute *attr;
17510 int encoding = 0, bits = 0;
17511 const char *name;
17512
17513 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17514 if (attr)
17515 {
17516 encoding = DW_UNSND (attr);
17517 }
17518 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17519 if (attr)
17520 {
17521 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17522 }
17523 name = dwarf2_name (die, cu);
17524 if (!name)
17525 {
17526 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17527 }
17528
17529 switch (encoding)
17530 {
17531 case DW_ATE_address:
17532 /* Turn DW_ATE_address into a void * pointer. */
17533 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17534 type = init_pointer_type (objfile, bits, name, type);
17535 break;
17536 case DW_ATE_boolean:
17537 type = init_boolean_type (objfile, bits, 1, name);
17538 break;
17539 case DW_ATE_complex_float:
17540 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17541 type = init_complex_type (objfile, name, type);
17542 break;
17543 case DW_ATE_decimal_float:
17544 type = init_decfloat_type (objfile, bits, name);
17545 break;
17546 case DW_ATE_float:
17547 type = dwarf2_init_float_type (objfile, bits, name, name);
17548 break;
17549 case DW_ATE_signed:
17550 type = init_integer_type (objfile, bits, 0, name);
17551 break;
17552 case DW_ATE_unsigned:
17553 if (cu->language == language_fortran
17554 && name
17555 && startswith (name, "character("))
17556 type = init_character_type (objfile, bits, 1, name);
17557 else
17558 type = init_integer_type (objfile, bits, 1, name);
17559 break;
17560 case DW_ATE_signed_char:
17561 if (cu->language == language_ada || cu->language == language_m2
17562 || cu->language == language_pascal
17563 || cu->language == language_fortran)
17564 type = init_character_type (objfile, bits, 0, name);
17565 else
17566 type = init_integer_type (objfile, bits, 0, name);
17567 break;
17568 case DW_ATE_unsigned_char:
17569 if (cu->language == language_ada || cu->language == language_m2
17570 || cu->language == language_pascal
17571 || cu->language == language_fortran
17572 || cu->language == language_rust)
17573 type = init_character_type (objfile, bits, 1, name);
17574 else
17575 type = init_integer_type (objfile, bits, 1, name);
17576 break;
17577 case DW_ATE_UTF:
17578 {
17579 gdbarch *arch = get_objfile_arch (objfile);
17580
17581 if (bits == 16)
17582 type = builtin_type (arch)->builtin_char16;
17583 else if (bits == 32)
17584 type = builtin_type (arch)->builtin_char32;
17585 else
17586 {
17587 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17588 bits);
17589 type = init_integer_type (objfile, bits, 1, name);
17590 }
17591 return set_die_type (die, type, cu);
17592 }
17593 break;
17594
17595 default:
17596 complaint (_("unsupported DW_AT_encoding: '%s'"),
17597 dwarf_type_encoding_name (encoding));
17598 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17599 break;
17600 }
17601
17602 if (name && strcmp (name, "char") == 0)
17603 TYPE_NOSIGN (type) = 1;
17604
17605 maybe_set_alignment (cu, die, type);
17606
17607 return set_die_type (die, type, cu);
17608 }
17609
17610 /* Parse dwarf attribute if it's a block, reference or constant and put the
17611 resulting value of the attribute into struct bound_prop.
17612 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17613
17614 static int
17615 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17616 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17617 {
17618 struct dwarf2_property_baton *baton;
17619 struct obstack *obstack
17620 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17621
17622 if (attr == NULL || prop == NULL)
17623 return 0;
17624
17625 if (attr_form_is_block (attr))
17626 {
17627 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17628 baton->referenced_type = NULL;
17629 baton->locexpr.per_cu = cu->per_cu;
17630 baton->locexpr.size = DW_BLOCK (attr)->size;
17631 baton->locexpr.data = DW_BLOCK (attr)->data;
17632 prop->data.baton = baton;
17633 prop->kind = PROP_LOCEXPR;
17634 gdb_assert (prop->data.baton != NULL);
17635 }
17636 else if (attr_form_is_ref (attr))
17637 {
17638 struct dwarf2_cu *target_cu = cu;
17639 struct die_info *target_die;
17640 struct attribute *target_attr;
17641
17642 target_die = follow_die_ref (die, attr, &target_cu);
17643 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17644 if (target_attr == NULL)
17645 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17646 target_cu);
17647 if (target_attr == NULL)
17648 return 0;
17649
17650 switch (target_attr->name)
17651 {
17652 case DW_AT_location:
17653 if (attr_form_is_section_offset (target_attr))
17654 {
17655 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17656 baton->referenced_type = die_type (target_die, target_cu);
17657 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17658 prop->data.baton = baton;
17659 prop->kind = PROP_LOCLIST;
17660 gdb_assert (prop->data.baton != NULL);
17661 }
17662 else if (attr_form_is_block (target_attr))
17663 {
17664 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17665 baton->referenced_type = die_type (target_die, target_cu);
17666 baton->locexpr.per_cu = cu->per_cu;
17667 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17668 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17669 prop->data.baton = baton;
17670 prop->kind = PROP_LOCEXPR;
17671 gdb_assert (prop->data.baton != NULL);
17672 }
17673 else
17674 {
17675 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17676 "dynamic property");
17677 return 0;
17678 }
17679 break;
17680 case DW_AT_data_member_location:
17681 {
17682 LONGEST offset;
17683
17684 if (!handle_data_member_location (target_die, target_cu,
17685 &offset))
17686 return 0;
17687
17688 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17689 baton->referenced_type = read_type_die (target_die->parent,
17690 target_cu);
17691 baton->offset_info.offset = offset;
17692 baton->offset_info.type = die_type (target_die, target_cu);
17693 prop->data.baton = baton;
17694 prop->kind = PROP_ADDR_OFFSET;
17695 break;
17696 }
17697 }
17698 }
17699 else if (attr_form_is_constant (attr))
17700 {
17701 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17702 prop->kind = PROP_CONST;
17703 }
17704 else
17705 {
17706 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17707 dwarf2_name (die, cu));
17708 return 0;
17709 }
17710
17711 return 1;
17712 }
17713
17714 /* Read the given DW_AT_subrange DIE. */
17715
17716 static struct type *
17717 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17718 {
17719 struct type *base_type, *orig_base_type;
17720 struct type *range_type;
17721 struct attribute *attr;
17722 struct dynamic_prop low, high;
17723 int low_default_is_valid;
17724 int high_bound_is_count = 0;
17725 const char *name;
17726 ULONGEST negative_mask;
17727
17728 orig_base_type = die_type (die, cu);
17729 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17730 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17731 creating the range type, but we use the result of check_typedef
17732 when examining properties of the type. */
17733 base_type = check_typedef (orig_base_type);
17734
17735 /* The die_type call above may have already set the type for this DIE. */
17736 range_type = get_die_type (die, cu);
17737 if (range_type)
17738 return range_type;
17739
17740 low.kind = PROP_CONST;
17741 high.kind = PROP_CONST;
17742 high.data.const_val = 0;
17743
17744 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17745 omitting DW_AT_lower_bound. */
17746 switch (cu->language)
17747 {
17748 case language_c:
17749 case language_cplus:
17750 low.data.const_val = 0;
17751 low_default_is_valid = 1;
17752 break;
17753 case language_fortran:
17754 low.data.const_val = 1;
17755 low_default_is_valid = 1;
17756 break;
17757 case language_d:
17758 case language_objc:
17759 case language_rust:
17760 low.data.const_val = 0;
17761 low_default_is_valid = (cu->header.version >= 4);
17762 break;
17763 case language_ada:
17764 case language_m2:
17765 case language_pascal:
17766 low.data.const_val = 1;
17767 low_default_is_valid = (cu->header.version >= 4);
17768 break;
17769 default:
17770 low.data.const_val = 0;
17771 low_default_is_valid = 0;
17772 break;
17773 }
17774
17775 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17776 if (attr)
17777 attr_to_dynamic_prop (attr, die, cu, &low);
17778 else if (!low_default_is_valid)
17779 complaint (_("Missing DW_AT_lower_bound "
17780 "- DIE at %s [in module %s]"),
17781 sect_offset_str (die->sect_off),
17782 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17783
17784 struct attribute *attr_ub, *attr_count;
17785 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17786 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17787 {
17788 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17789 if (attr_to_dynamic_prop (attr, die, cu, &high))
17790 {
17791 /* If bounds are constant do the final calculation here. */
17792 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17793 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17794 else
17795 high_bound_is_count = 1;
17796 }
17797 else
17798 {
17799 if (attr_ub != NULL)
17800 complaint (_("Unresolved DW_AT_upper_bound "
17801 "- DIE at %s [in module %s]"),
17802 sect_offset_str (die->sect_off),
17803 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17804 if (attr_count != NULL)
17805 complaint (_("Unresolved DW_AT_count "
17806 "- DIE at %s [in module %s]"),
17807 sect_offset_str (die->sect_off),
17808 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17809 }
17810
17811 }
17812
17813 /* Dwarf-2 specifications explicitly allows to create subrange types
17814 without specifying a base type.
17815 In that case, the base type must be set to the type of
17816 the lower bound, upper bound or count, in that order, if any of these
17817 three attributes references an object that has a type.
17818 If no base type is found, the Dwarf-2 specifications say that
17819 a signed integer type of size equal to the size of an address should
17820 be used.
17821 For the following C code: `extern char gdb_int [];'
17822 GCC produces an empty range DIE.
17823 FIXME: muller/2010-05-28: Possible references to object for low bound,
17824 high bound or count are not yet handled by this code. */
17825 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17826 {
17827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17829 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17830 struct type *int_type = objfile_type (objfile)->builtin_int;
17831
17832 /* Test "int", "long int", and "long long int" objfile types,
17833 and select the first one having a size above or equal to the
17834 architecture address size. */
17835 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17836 base_type = int_type;
17837 else
17838 {
17839 int_type = objfile_type (objfile)->builtin_long;
17840 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17841 base_type = int_type;
17842 else
17843 {
17844 int_type = objfile_type (objfile)->builtin_long_long;
17845 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17846 base_type = int_type;
17847 }
17848 }
17849 }
17850
17851 /* Normally, the DWARF producers are expected to use a signed
17852 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17853 But this is unfortunately not always the case, as witnessed
17854 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17855 is used instead. To work around that ambiguity, we treat
17856 the bounds as signed, and thus sign-extend their values, when
17857 the base type is signed. */
17858 negative_mask =
17859 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17860 if (low.kind == PROP_CONST
17861 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17862 low.data.const_val |= negative_mask;
17863 if (high.kind == PROP_CONST
17864 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17865 high.data.const_val |= negative_mask;
17866
17867 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17868
17869 if (high_bound_is_count)
17870 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17871
17872 /* Ada expects an empty array on no boundary attributes. */
17873 if (attr == NULL && cu->language != language_ada)
17874 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17875
17876 name = dwarf2_name (die, cu);
17877 if (name)
17878 TYPE_NAME (range_type) = name;
17879
17880 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17881 if (attr)
17882 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17883
17884 maybe_set_alignment (cu, die, range_type);
17885
17886 set_die_type (die, range_type, cu);
17887
17888 /* set_die_type should be already done. */
17889 set_descriptive_type (range_type, die, cu);
17890
17891 return range_type;
17892 }
17893
17894 static struct type *
17895 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17896 {
17897 struct type *type;
17898
17899 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17900 NULL);
17901 TYPE_NAME (type) = dwarf2_name (die, cu);
17902
17903 /* In Ada, an unspecified type is typically used when the description
17904 of the type is defered to a different unit. When encountering
17905 such a type, we treat it as a stub, and try to resolve it later on,
17906 when needed. */
17907 if (cu->language == language_ada)
17908 TYPE_STUB (type) = 1;
17909
17910 return set_die_type (die, type, cu);
17911 }
17912
17913 /* Read a single die and all its descendents. Set the die's sibling
17914 field to NULL; set other fields in the die correctly, and set all
17915 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17916 location of the info_ptr after reading all of those dies. PARENT
17917 is the parent of the die in question. */
17918
17919 static struct die_info *
17920 read_die_and_children (const struct die_reader_specs *reader,
17921 const gdb_byte *info_ptr,
17922 const gdb_byte **new_info_ptr,
17923 struct die_info *parent)
17924 {
17925 struct die_info *die;
17926 const gdb_byte *cur_ptr;
17927 int has_children;
17928
17929 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17930 if (die == NULL)
17931 {
17932 *new_info_ptr = cur_ptr;
17933 return NULL;
17934 }
17935 store_in_ref_table (die, reader->cu);
17936
17937 if (has_children)
17938 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17939 else
17940 {
17941 die->child = NULL;
17942 *new_info_ptr = cur_ptr;
17943 }
17944
17945 die->sibling = NULL;
17946 die->parent = parent;
17947 return die;
17948 }
17949
17950 /* Read a die, all of its descendents, and all of its siblings; set
17951 all of the fields of all of the dies correctly. Arguments are as
17952 in read_die_and_children. */
17953
17954 static struct die_info *
17955 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17956 const gdb_byte *info_ptr,
17957 const gdb_byte **new_info_ptr,
17958 struct die_info *parent)
17959 {
17960 struct die_info *first_die, *last_sibling;
17961 const gdb_byte *cur_ptr;
17962
17963 cur_ptr = info_ptr;
17964 first_die = last_sibling = NULL;
17965
17966 while (1)
17967 {
17968 struct die_info *die
17969 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17970
17971 if (die == NULL)
17972 {
17973 *new_info_ptr = cur_ptr;
17974 return first_die;
17975 }
17976
17977 if (!first_die)
17978 first_die = die;
17979 else
17980 last_sibling->sibling = die;
17981
17982 last_sibling = die;
17983 }
17984 }
17985
17986 /* Read a die, all of its descendents, and all of its siblings; set
17987 all of the fields of all of the dies correctly. Arguments are as
17988 in read_die_and_children.
17989 This the main entry point for reading a DIE and all its children. */
17990
17991 static struct die_info *
17992 read_die_and_siblings (const struct die_reader_specs *reader,
17993 const gdb_byte *info_ptr,
17994 const gdb_byte **new_info_ptr,
17995 struct die_info *parent)
17996 {
17997 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17998 new_info_ptr, parent);
17999
18000 if (dwarf_die_debug)
18001 {
18002 fprintf_unfiltered (gdb_stdlog,
18003 "Read die from %s@0x%x of %s:\n",
18004 get_section_name (reader->die_section),
18005 (unsigned) (info_ptr - reader->die_section->buffer),
18006 bfd_get_filename (reader->abfd));
18007 dump_die (die, dwarf_die_debug);
18008 }
18009
18010 return die;
18011 }
18012
18013 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18014 attributes.
18015 The caller is responsible for filling in the extra attributes
18016 and updating (*DIEP)->num_attrs.
18017 Set DIEP to point to a newly allocated die with its information,
18018 except for its child, sibling, and parent fields.
18019 Set HAS_CHILDREN to tell whether the die has children or not. */
18020
18021 static const gdb_byte *
18022 read_full_die_1 (const struct die_reader_specs *reader,
18023 struct die_info **diep, const gdb_byte *info_ptr,
18024 int *has_children, int num_extra_attrs)
18025 {
18026 unsigned int abbrev_number, bytes_read, i;
18027 struct abbrev_info *abbrev;
18028 struct die_info *die;
18029 struct dwarf2_cu *cu = reader->cu;
18030 bfd *abfd = reader->abfd;
18031
18032 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18033 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18034 info_ptr += bytes_read;
18035 if (!abbrev_number)
18036 {
18037 *diep = NULL;
18038 *has_children = 0;
18039 return info_ptr;
18040 }
18041
18042 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18043 if (!abbrev)
18044 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18045 abbrev_number,
18046 bfd_get_filename (abfd));
18047
18048 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18049 die->sect_off = sect_off;
18050 die->tag = abbrev->tag;
18051 die->abbrev = abbrev_number;
18052
18053 /* Make the result usable.
18054 The caller needs to update num_attrs after adding the extra
18055 attributes. */
18056 die->num_attrs = abbrev->num_attrs;
18057
18058 for (i = 0; i < abbrev->num_attrs; ++i)
18059 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18060 info_ptr);
18061
18062 *diep = die;
18063 *has_children = abbrev->has_children;
18064 return info_ptr;
18065 }
18066
18067 /* Read a die and all its attributes.
18068 Set DIEP to point to a newly allocated die with its information,
18069 except for its child, sibling, and parent fields.
18070 Set HAS_CHILDREN to tell whether the die has children or not. */
18071
18072 static const gdb_byte *
18073 read_full_die (const struct die_reader_specs *reader,
18074 struct die_info **diep, const gdb_byte *info_ptr,
18075 int *has_children)
18076 {
18077 const gdb_byte *result;
18078
18079 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18080
18081 if (dwarf_die_debug)
18082 {
18083 fprintf_unfiltered (gdb_stdlog,
18084 "Read die from %s@0x%x of %s:\n",
18085 get_section_name (reader->die_section),
18086 (unsigned) (info_ptr - reader->die_section->buffer),
18087 bfd_get_filename (reader->abfd));
18088 dump_die (*diep, dwarf_die_debug);
18089 }
18090
18091 return result;
18092 }
18093 \f
18094 /* Abbreviation tables.
18095
18096 In DWARF version 2, the description of the debugging information is
18097 stored in a separate .debug_abbrev section. Before we read any
18098 dies from a section we read in all abbreviations and install them
18099 in a hash table. */
18100
18101 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18102
18103 struct abbrev_info *
18104 abbrev_table::alloc_abbrev ()
18105 {
18106 struct abbrev_info *abbrev;
18107
18108 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18109 memset (abbrev, 0, sizeof (struct abbrev_info));
18110
18111 return abbrev;
18112 }
18113
18114 /* Add an abbreviation to the table. */
18115
18116 void
18117 abbrev_table::add_abbrev (unsigned int abbrev_number,
18118 struct abbrev_info *abbrev)
18119 {
18120 unsigned int hash_number;
18121
18122 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18123 abbrev->next = m_abbrevs[hash_number];
18124 m_abbrevs[hash_number] = abbrev;
18125 }
18126
18127 /* Look up an abbrev in the table.
18128 Returns NULL if the abbrev is not found. */
18129
18130 struct abbrev_info *
18131 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18132 {
18133 unsigned int hash_number;
18134 struct abbrev_info *abbrev;
18135
18136 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18137 abbrev = m_abbrevs[hash_number];
18138
18139 while (abbrev)
18140 {
18141 if (abbrev->number == abbrev_number)
18142 return abbrev;
18143 abbrev = abbrev->next;
18144 }
18145 return NULL;
18146 }
18147
18148 /* Read in an abbrev table. */
18149
18150 static abbrev_table_up
18151 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18152 struct dwarf2_section_info *section,
18153 sect_offset sect_off)
18154 {
18155 struct objfile *objfile = dwarf2_per_objfile->objfile;
18156 bfd *abfd = get_section_bfd_owner (section);
18157 const gdb_byte *abbrev_ptr;
18158 struct abbrev_info *cur_abbrev;
18159 unsigned int abbrev_number, bytes_read, abbrev_name;
18160 unsigned int abbrev_form;
18161 struct attr_abbrev *cur_attrs;
18162 unsigned int allocated_attrs;
18163
18164 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18165
18166 dwarf2_read_section (objfile, section);
18167 abbrev_ptr = section->buffer + to_underlying (sect_off);
18168 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18169 abbrev_ptr += bytes_read;
18170
18171 allocated_attrs = ATTR_ALLOC_CHUNK;
18172 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18173
18174 /* Loop until we reach an abbrev number of 0. */
18175 while (abbrev_number)
18176 {
18177 cur_abbrev = abbrev_table->alloc_abbrev ();
18178
18179 /* read in abbrev header */
18180 cur_abbrev->number = abbrev_number;
18181 cur_abbrev->tag
18182 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18183 abbrev_ptr += bytes_read;
18184 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18185 abbrev_ptr += 1;
18186
18187 /* now read in declarations */
18188 for (;;)
18189 {
18190 LONGEST implicit_const;
18191
18192 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18193 abbrev_ptr += bytes_read;
18194 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18195 abbrev_ptr += bytes_read;
18196 if (abbrev_form == DW_FORM_implicit_const)
18197 {
18198 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18199 &bytes_read);
18200 abbrev_ptr += bytes_read;
18201 }
18202 else
18203 {
18204 /* Initialize it due to a false compiler warning. */
18205 implicit_const = -1;
18206 }
18207
18208 if (abbrev_name == 0)
18209 break;
18210
18211 if (cur_abbrev->num_attrs == allocated_attrs)
18212 {
18213 allocated_attrs += ATTR_ALLOC_CHUNK;
18214 cur_attrs
18215 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18216 }
18217
18218 cur_attrs[cur_abbrev->num_attrs].name
18219 = (enum dwarf_attribute) abbrev_name;
18220 cur_attrs[cur_abbrev->num_attrs].form
18221 = (enum dwarf_form) abbrev_form;
18222 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18223 ++cur_abbrev->num_attrs;
18224 }
18225
18226 cur_abbrev->attrs =
18227 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18228 cur_abbrev->num_attrs);
18229 memcpy (cur_abbrev->attrs, cur_attrs,
18230 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18231
18232 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18233
18234 /* Get next abbreviation.
18235 Under Irix6 the abbreviations for a compilation unit are not
18236 always properly terminated with an abbrev number of 0.
18237 Exit loop if we encounter an abbreviation which we have
18238 already read (which means we are about to read the abbreviations
18239 for the next compile unit) or if the end of the abbreviation
18240 table is reached. */
18241 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18242 break;
18243 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18244 abbrev_ptr += bytes_read;
18245 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18246 break;
18247 }
18248
18249 xfree (cur_attrs);
18250 return abbrev_table;
18251 }
18252
18253 /* Returns nonzero if TAG represents a type that we might generate a partial
18254 symbol for. */
18255
18256 static int
18257 is_type_tag_for_partial (int tag)
18258 {
18259 switch (tag)
18260 {
18261 #if 0
18262 /* Some types that would be reasonable to generate partial symbols for,
18263 that we don't at present. */
18264 case DW_TAG_array_type:
18265 case DW_TAG_file_type:
18266 case DW_TAG_ptr_to_member_type:
18267 case DW_TAG_set_type:
18268 case DW_TAG_string_type:
18269 case DW_TAG_subroutine_type:
18270 #endif
18271 case DW_TAG_base_type:
18272 case DW_TAG_class_type:
18273 case DW_TAG_interface_type:
18274 case DW_TAG_enumeration_type:
18275 case DW_TAG_structure_type:
18276 case DW_TAG_subrange_type:
18277 case DW_TAG_typedef:
18278 case DW_TAG_union_type:
18279 return 1;
18280 default:
18281 return 0;
18282 }
18283 }
18284
18285 /* Load all DIEs that are interesting for partial symbols into memory. */
18286
18287 static struct partial_die_info *
18288 load_partial_dies (const struct die_reader_specs *reader,
18289 const gdb_byte *info_ptr, int building_psymtab)
18290 {
18291 struct dwarf2_cu *cu = reader->cu;
18292 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18293 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18294 unsigned int bytes_read;
18295 unsigned int load_all = 0;
18296 int nesting_level = 1;
18297
18298 parent_die = NULL;
18299 last_die = NULL;
18300
18301 gdb_assert (cu->per_cu != NULL);
18302 if (cu->per_cu->load_all_dies)
18303 load_all = 1;
18304
18305 cu->partial_dies
18306 = htab_create_alloc_ex (cu->header.length / 12,
18307 partial_die_hash,
18308 partial_die_eq,
18309 NULL,
18310 &cu->comp_unit_obstack,
18311 hashtab_obstack_allocate,
18312 dummy_obstack_deallocate);
18313
18314 while (1)
18315 {
18316 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18317
18318 /* A NULL abbrev means the end of a series of children. */
18319 if (abbrev == NULL)
18320 {
18321 if (--nesting_level == 0)
18322 return first_die;
18323
18324 info_ptr += bytes_read;
18325 last_die = parent_die;
18326 parent_die = parent_die->die_parent;
18327 continue;
18328 }
18329
18330 /* Check for template arguments. We never save these; if
18331 they're seen, we just mark the parent, and go on our way. */
18332 if (parent_die != NULL
18333 && cu->language == language_cplus
18334 && (abbrev->tag == DW_TAG_template_type_param
18335 || abbrev->tag == DW_TAG_template_value_param))
18336 {
18337 parent_die->has_template_arguments = 1;
18338
18339 if (!load_all)
18340 {
18341 /* We don't need a partial DIE for the template argument. */
18342 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18343 continue;
18344 }
18345 }
18346
18347 /* We only recurse into c++ subprograms looking for template arguments.
18348 Skip their other children. */
18349 if (!load_all
18350 && cu->language == language_cplus
18351 && parent_die != NULL
18352 && parent_die->tag == DW_TAG_subprogram)
18353 {
18354 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18355 continue;
18356 }
18357
18358 /* Check whether this DIE is interesting enough to save. Normally
18359 we would not be interested in members here, but there may be
18360 later variables referencing them via DW_AT_specification (for
18361 static members). */
18362 if (!load_all
18363 && !is_type_tag_for_partial (abbrev->tag)
18364 && abbrev->tag != DW_TAG_constant
18365 && abbrev->tag != DW_TAG_enumerator
18366 && abbrev->tag != DW_TAG_subprogram
18367 && abbrev->tag != DW_TAG_inlined_subroutine
18368 && abbrev->tag != DW_TAG_lexical_block
18369 && abbrev->tag != DW_TAG_variable
18370 && abbrev->tag != DW_TAG_namespace
18371 && abbrev->tag != DW_TAG_module
18372 && abbrev->tag != DW_TAG_member
18373 && abbrev->tag != DW_TAG_imported_unit
18374 && abbrev->tag != DW_TAG_imported_declaration)
18375 {
18376 /* Otherwise we skip to the next sibling, if any. */
18377 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18378 continue;
18379 }
18380
18381 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18382 abbrev);
18383
18384 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18385
18386 /* This two-pass algorithm for processing partial symbols has a
18387 high cost in cache pressure. Thus, handle some simple cases
18388 here which cover the majority of C partial symbols. DIEs
18389 which neither have specification tags in them, nor could have
18390 specification tags elsewhere pointing at them, can simply be
18391 processed and discarded.
18392
18393 This segment is also optional; scan_partial_symbols and
18394 add_partial_symbol will handle these DIEs if we chain
18395 them in normally. When compilers which do not emit large
18396 quantities of duplicate debug information are more common,
18397 this code can probably be removed. */
18398
18399 /* Any complete simple types at the top level (pretty much all
18400 of them, for a language without namespaces), can be processed
18401 directly. */
18402 if (parent_die == NULL
18403 && pdi.has_specification == 0
18404 && pdi.is_declaration == 0
18405 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18406 || pdi.tag == DW_TAG_base_type
18407 || pdi.tag == DW_TAG_subrange_type))
18408 {
18409 if (building_psymtab && pdi.name != NULL)
18410 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18411 VAR_DOMAIN, LOC_TYPEDEF, -1,
18412 &objfile->static_psymbols,
18413 0, cu->language, objfile);
18414 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18415 continue;
18416 }
18417
18418 /* The exception for DW_TAG_typedef with has_children above is
18419 a workaround of GCC PR debug/47510. In the case of this complaint
18420 type_name_or_error will error on such types later.
18421
18422 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18423 it could not find the child DIEs referenced later, this is checked
18424 above. In correct DWARF DW_TAG_typedef should have no children. */
18425
18426 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18427 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18428 "- DIE at %s [in module %s]"),
18429 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18430
18431 /* If we're at the second level, and we're an enumerator, and
18432 our parent has no specification (meaning possibly lives in a
18433 namespace elsewhere), then we can add the partial symbol now
18434 instead of queueing it. */
18435 if (pdi.tag == DW_TAG_enumerator
18436 && parent_die != NULL
18437 && parent_die->die_parent == NULL
18438 && parent_die->tag == DW_TAG_enumeration_type
18439 && parent_die->has_specification == 0)
18440 {
18441 if (pdi.name == NULL)
18442 complaint (_("malformed enumerator DIE ignored"));
18443 else if (building_psymtab)
18444 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18445 VAR_DOMAIN, LOC_CONST, -1,
18446 cu->language == language_cplus
18447 ? &objfile->global_psymbols
18448 : &objfile->static_psymbols,
18449 0, cu->language, objfile);
18450
18451 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18452 continue;
18453 }
18454
18455 struct partial_die_info *part_die
18456 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18457
18458 /* We'll save this DIE so link it in. */
18459 part_die->die_parent = parent_die;
18460 part_die->die_sibling = NULL;
18461 part_die->die_child = NULL;
18462
18463 if (last_die && last_die == parent_die)
18464 last_die->die_child = part_die;
18465 else if (last_die)
18466 last_die->die_sibling = part_die;
18467
18468 last_die = part_die;
18469
18470 if (first_die == NULL)
18471 first_die = part_die;
18472
18473 /* Maybe add the DIE to the hash table. Not all DIEs that we
18474 find interesting need to be in the hash table, because we
18475 also have the parent/sibling/child chains; only those that we
18476 might refer to by offset later during partial symbol reading.
18477
18478 For now this means things that might have be the target of a
18479 DW_AT_specification, DW_AT_abstract_origin, or
18480 DW_AT_extension. DW_AT_extension will refer only to
18481 namespaces; DW_AT_abstract_origin refers to functions (and
18482 many things under the function DIE, but we do not recurse
18483 into function DIEs during partial symbol reading) and
18484 possibly variables as well; DW_AT_specification refers to
18485 declarations. Declarations ought to have the DW_AT_declaration
18486 flag. It happens that GCC forgets to put it in sometimes, but
18487 only for functions, not for types.
18488
18489 Adding more things than necessary to the hash table is harmless
18490 except for the performance cost. Adding too few will result in
18491 wasted time in find_partial_die, when we reread the compilation
18492 unit with load_all_dies set. */
18493
18494 if (load_all
18495 || abbrev->tag == DW_TAG_constant
18496 || abbrev->tag == DW_TAG_subprogram
18497 || abbrev->tag == DW_TAG_variable
18498 || abbrev->tag == DW_TAG_namespace
18499 || part_die->is_declaration)
18500 {
18501 void **slot;
18502
18503 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18504 to_underlying (part_die->sect_off),
18505 INSERT);
18506 *slot = part_die;
18507 }
18508
18509 /* For some DIEs we want to follow their children (if any). For C
18510 we have no reason to follow the children of structures; for other
18511 languages we have to, so that we can get at method physnames
18512 to infer fully qualified class names, for DW_AT_specification,
18513 and for C++ template arguments. For C++, we also look one level
18514 inside functions to find template arguments (if the name of the
18515 function does not already contain the template arguments).
18516
18517 For Ada, we need to scan the children of subprograms and lexical
18518 blocks as well because Ada allows the definition of nested
18519 entities that could be interesting for the debugger, such as
18520 nested subprograms for instance. */
18521 if (last_die->has_children
18522 && (load_all
18523 || last_die->tag == DW_TAG_namespace
18524 || last_die->tag == DW_TAG_module
18525 || last_die->tag == DW_TAG_enumeration_type
18526 || (cu->language == language_cplus
18527 && last_die->tag == DW_TAG_subprogram
18528 && (last_die->name == NULL
18529 || strchr (last_die->name, '<') == NULL))
18530 || (cu->language != language_c
18531 && (last_die->tag == DW_TAG_class_type
18532 || last_die->tag == DW_TAG_interface_type
18533 || last_die->tag == DW_TAG_structure_type
18534 || last_die->tag == DW_TAG_union_type))
18535 || (cu->language == language_ada
18536 && (last_die->tag == DW_TAG_subprogram
18537 || last_die->tag == DW_TAG_lexical_block))))
18538 {
18539 nesting_level++;
18540 parent_die = last_die;
18541 continue;
18542 }
18543
18544 /* Otherwise we skip to the next sibling, if any. */
18545 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18546
18547 /* Back to the top, do it again. */
18548 }
18549 }
18550
18551 partial_die_info::partial_die_info (sect_offset sect_off_,
18552 struct abbrev_info *abbrev)
18553 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18554 {
18555 }
18556
18557 /* Read a minimal amount of information into the minimal die structure.
18558 INFO_PTR should point just after the initial uleb128 of a DIE. */
18559
18560 const gdb_byte *
18561 partial_die_info::read (const struct die_reader_specs *reader,
18562 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18563 {
18564 struct dwarf2_cu *cu = reader->cu;
18565 struct dwarf2_per_objfile *dwarf2_per_objfile
18566 = cu->per_cu->dwarf2_per_objfile;
18567 unsigned int i;
18568 int has_low_pc_attr = 0;
18569 int has_high_pc_attr = 0;
18570 int high_pc_relative = 0;
18571
18572 for (i = 0; i < abbrev.num_attrs; ++i)
18573 {
18574 struct attribute attr;
18575
18576 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18577
18578 /* Store the data if it is of an attribute we want to keep in a
18579 partial symbol table. */
18580 switch (attr.name)
18581 {
18582 case DW_AT_name:
18583 switch (tag)
18584 {
18585 case DW_TAG_compile_unit:
18586 case DW_TAG_partial_unit:
18587 case DW_TAG_type_unit:
18588 /* Compilation units have a DW_AT_name that is a filename, not
18589 a source language identifier. */
18590 case DW_TAG_enumeration_type:
18591 case DW_TAG_enumerator:
18592 /* These tags always have simple identifiers already; no need
18593 to canonicalize them. */
18594 name = DW_STRING (&attr);
18595 break;
18596 default:
18597 {
18598 struct objfile *objfile = dwarf2_per_objfile->objfile;
18599
18600 name
18601 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18602 &objfile->per_bfd->storage_obstack);
18603 }
18604 break;
18605 }
18606 break;
18607 case DW_AT_linkage_name:
18608 case DW_AT_MIPS_linkage_name:
18609 /* Note that both forms of linkage name might appear. We
18610 assume they will be the same, and we only store the last
18611 one we see. */
18612 if (cu->language == language_ada)
18613 name = DW_STRING (&attr);
18614 linkage_name = DW_STRING (&attr);
18615 break;
18616 case DW_AT_low_pc:
18617 has_low_pc_attr = 1;
18618 lowpc = attr_value_as_address (&attr);
18619 break;
18620 case DW_AT_high_pc:
18621 has_high_pc_attr = 1;
18622 highpc = attr_value_as_address (&attr);
18623 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18624 high_pc_relative = 1;
18625 break;
18626 case DW_AT_location:
18627 /* Support the .debug_loc offsets. */
18628 if (attr_form_is_block (&attr))
18629 {
18630 d.locdesc = DW_BLOCK (&attr);
18631 }
18632 else if (attr_form_is_section_offset (&attr))
18633 {
18634 dwarf2_complex_location_expr_complaint ();
18635 }
18636 else
18637 {
18638 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18639 "partial symbol information");
18640 }
18641 break;
18642 case DW_AT_external:
18643 is_external = DW_UNSND (&attr);
18644 break;
18645 case DW_AT_declaration:
18646 is_declaration = DW_UNSND (&attr);
18647 break;
18648 case DW_AT_type:
18649 has_type = 1;
18650 break;
18651 case DW_AT_abstract_origin:
18652 case DW_AT_specification:
18653 case DW_AT_extension:
18654 has_specification = 1;
18655 spec_offset = dwarf2_get_ref_die_offset (&attr);
18656 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18657 || cu->per_cu->is_dwz);
18658 break;
18659 case DW_AT_sibling:
18660 /* Ignore absolute siblings, they might point outside of
18661 the current compile unit. */
18662 if (attr.form == DW_FORM_ref_addr)
18663 complaint (_("ignoring absolute DW_AT_sibling"));
18664 else
18665 {
18666 const gdb_byte *buffer = reader->buffer;
18667 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18668 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18669
18670 if (sibling_ptr < info_ptr)
18671 complaint (_("DW_AT_sibling points backwards"));
18672 else if (sibling_ptr > reader->buffer_end)
18673 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18674 else
18675 sibling = sibling_ptr;
18676 }
18677 break;
18678 case DW_AT_byte_size:
18679 has_byte_size = 1;
18680 break;
18681 case DW_AT_const_value:
18682 has_const_value = 1;
18683 break;
18684 case DW_AT_calling_convention:
18685 /* DWARF doesn't provide a way to identify a program's source-level
18686 entry point. DW_AT_calling_convention attributes are only meant
18687 to describe functions' calling conventions.
18688
18689 However, because it's a necessary piece of information in
18690 Fortran, and before DWARF 4 DW_CC_program was the only
18691 piece of debugging information whose definition refers to
18692 a 'main program' at all, several compilers marked Fortran
18693 main programs with DW_CC_program --- even when those
18694 functions use the standard calling conventions.
18695
18696 Although DWARF now specifies a way to provide this
18697 information, we support this practice for backward
18698 compatibility. */
18699 if (DW_UNSND (&attr) == DW_CC_program
18700 && cu->language == language_fortran)
18701 main_subprogram = 1;
18702 break;
18703 case DW_AT_inline:
18704 if (DW_UNSND (&attr) == DW_INL_inlined
18705 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18706 may_be_inlined = 1;
18707 break;
18708
18709 case DW_AT_import:
18710 if (tag == DW_TAG_imported_unit)
18711 {
18712 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18713 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18714 || cu->per_cu->is_dwz);
18715 }
18716 break;
18717
18718 case DW_AT_main_subprogram:
18719 main_subprogram = DW_UNSND (&attr);
18720 break;
18721
18722 default:
18723 break;
18724 }
18725 }
18726
18727 if (high_pc_relative)
18728 highpc += lowpc;
18729
18730 if (has_low_pc_attr && has_high_pc_attr)
18731 {
18732 /* When using the GNU linker, .gnu.linkonce. sections are used to
18733 eliminate duplicate copies of functions and vtables and such.
18734 The linker will arbitrarily choose one and discard the others.
18735 The AT_*_pc values for such functions refer to local labels in
18736 these sections. If the section from that file was discarded, the
18737 labels are not in the output, so the relocs get a value of 0.
18738 If this is a discarded function, mark the pc bounds as invalid,
18739 so that GDB will ignore it. */
18740 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18741 {
18742 struct objfile *objfile = dwarf2_per_objfile->objfile;
18743 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18744
18745 complaint (_("DW_AT_low_pc %s is zero "
18746 "for DIE at %s [in module %s]"),
18747 paddress (gdbarch, lowpc),
18748 sect_offset_str (sect_off),
18749 objfile_name (objfile));
18750 }
18751 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18752 else if (lowpc >= highpc)
18753 {
18754 struct objfile *objfile = dwarf2_per_objfile->objfile;
18755 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18756
18757 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18758 "for DIE at %s [in module %s]"),
18759 paddress (gdbarch, lowpc),
18760 paddress (gdbarch, highpc),
18761 sect_offset_str (sect_off),
18762 objfile_name (objfile));
18763 }
18764 else
18765 has_pc_info = 1;
18766 }
18767
18768 return info_ptr;
18769 }
18770
18771 /* Find a cached partial DIE at OFFSET in CU. */
18772
18773 struct partial_die_info *
18774 dwarf2_cu::find_partial_die (sect_offset sect_off)
18775 {
18776 struct partial_die_info *lookup_die = NULL;
18777 struct partial_die_info part_die (sect_off);
18778
18779 lookup_die = ((struct partial_die_info *)
18780 htab_find_with_hash (partial_dies, &part_die,
18781 to_underlying (sect_off)));
18782
18783 return lookup_die;
18784 }
18785
18786 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18787 except in the case of .debug_types DIEs which do not reference
18788 outside their CU (they do however referencing other types via
18789 DW_FORM_ref_sig8). */
18790
18791 static struct partial_die_info *
18792 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18793 {
18794 struct dwarf2_per_objfile *dwarf2_per_objfile
18795 = cu->per_cu->dwarf2_per_objfile;
18796 struct objfile *objfile = dwarf2_per_objfile->objfile;
18797 struct dwarf2_per_cu_data *per_cu = NULL;
18798 struct partial_die_info *pd = NULL;
18799
18800 if (offset_in_dwz == cu->per_cu->is_dwz
18801 && offset_in_cu_p (&cu->header, sect_off))
18802 {
18803 pd = cu->find_partial_die (sect_off);
18804 if (pd != NULL)
18805 return pd;
18806 /* We missed recording what we needed.
18807 Load all dies and try again. */
18808 per_cu = cu->per_cu;
18809 }
18810 else
18811 {
18812 /* TUs don't reference other CUs/TUs (except via type signatures). */
18813 if (cu->per_cu->is_debug_types)
18814 {
18815 error (_("Dwarf Error: Type Unit at offset %s contains"
18816 " external reference to offset %s [in module %s].\n"),
18817 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18818 bfd_get_filename (objfile->obfd));
18819 }
18820 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18821 dwarf2_per_objfile);
18822
18823 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18824 load_partial_comp_unit (per_cu);
18825
18826 per_cu->cu->last_used = 0;
18827 pd = per_cu->cu->find_partial_die (sect_off);
18828 }
18829
18830 /* If we didn't find it, and not all dies have been loaded,
18831 load them all and try again. */
18832
18833 if (pd == NULL && per_cu->load_all_dies == 0)
18834 {
18835 per_cu->load_all_dies = 1;
18836
18837 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18838 THIS_CU->cu may already be in use. So we can't just free it and
18839 replace its DIEs with the ones we read in. Instead, we leave those
18840 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18841 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18842 set. */
18843 load_partial_comp_unit (per_cu);
18844
18845 pd = per_cu->cu->find_partial_die (sect_off);
18846 }
18847
18848 if (pd == NULL)
18849 internal_error (__FILE__, __LINE__,
18850 _("could not find partial DIE %s "
18851 "in cache [from module %s]\n"),
18852 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18853 return pd;
18854 }
18855
18856 /* See if we can figure out if the class lives in a namespace. We do
18857 this by looking for a member function; its demangled name will
18858 contain namespace info, if there is any. */
18859
18860 static void
18861 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18862 struct dwarf2_cu *cu)
18863 {
18864 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18865 what template types look like, because the demangler
18866 frequently doesn't give the same name as the debug info. We
18867 could fix this by only using the demangled name to get the
18868 prefix (but see comment in read_structure_type). */
18869
18870 struct partial_die_info *real_pdi;
18871 struct partial_die_info *child_pdi;
18872
18873 /* If this DIE (this DIE's specification, if any) has a parent, then
18874 we should not do this. We'll prepend the parent's fully qualified
18875 name when we create the partial symbol. */
18876
18877 real_pdi = struct_pdi;
18878 while (real_pdi->has_specification)
18879 real_pdi = find_partial_die (real_pdi->spec_offset,
18880 real_pdi->spec_is_dwz, cu);
18881
18882 if (real_pdi->die_parent != NULL)
18883 return;
18884
18885 for (child_pdi = struct_pdi->die_child;
18886 child_pdi != NULL;
18887 child_pdi = child_pdi->die_sibling)
18888 {
18889 if (child_pdi->tag == DW_TAG_subprogram
18890 && child_pdi->linkage_name != NULL)
18891 {
18892 char *actual_class_name
18893 = language_class_name_from_physname (cu->language_defn,
18894 child_pdi->linkage_name);
18895 if (actual_class_name != NULL)
18896 {
18897 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18898 struct_pdi->name
18899 = ((const char *)
18900 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18901 actual_class_name,
18902 strlen (actual_class_name)));
18903 xfree (actual_class_name);
18904 }
18905 break;
18906 }
18907 }
18908 }
18909
18910 void
18911 partial_die_info::fixup (struct dwarf2_cu *cu)
18912 {
18913 /* Once we've fixed up a die, there's no point in doing so again.
18914 This also avoids a memory leak if we were to call
18915 guess_partial_die_structure_name multiple times. */
18916 if (fixup_called)
18917 return;
18918
18919 /* If we found a reference attribute and the DIE has no name, try
18920 to find a name in the referred to DIE. */
18921
18922 if (name == NULL && has_specification)
18923 {
18924 struct partial_die_info *spec_die;
18925
18926 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18927
18928 spec_die->fixup (cu);
18929
18930 if (spec_die->name)
18931 {
18932 name = spec_die->name;
18933
18934 /* Copy DW_AT_external attribute if it is set. */
18935 if (spec_die->is_external)
18936 is_external = spec_die->is_external;
18937 }
18938 }
18939
18940 /* Set default names for some unnamed DIEs. */
18941
18942 if (name == NULL && tag == DW_TAG_namespace)
18943 name = CP_ANONYMOUS_NAMESPACE_STR;
18944
18945 /* If there is no parent die to provide a namespace, and there are
18946 children, see if we can determine the namespace from their linkage
18947 name. */
18948 if (cu->language == language_cplus
18949 && !VEC_empty (dwarf2_section_info_def,
18950 cu->per_cu->dwarf2_per_objfile->types)
18951 && die_parent == NULL
18952 && has_children
18953 && (tag == DW_TAG_class_type
18954 || tag == DW_TAG_structure_type
18955 || tag == DW_TAG_union_type))
18956 guess_partial_die_structure_name (this, cu);
18957
18958 /* GCC might emit a nameless struct or union that has a linkage
18959 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18960 if (name == NULL
18961 && (tag == DW_TAG_class_type
18962 || tag == DW_TAG_interface_type
18963 || tag == DW_TAG_structure_type
18964 || tag == DW_TAG_union_type)
18965 && linkage_name != NULL)
18966 {
18967 char *demangled;
18968
18969 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18970 if (demangled)
18971 {
18972 const char *base;
18973
18974 /* Strip any leading namespaces/classes, keep only the base name.
18975 DW_AT_name for named DIEs does not contain the prefixes. */
18976 base = strrchr (demangled, ':');
18977 if (base && base > demangled && base[-1] == ':')
18978 base++;
18979 else
18980 base = demangled;
18981
18982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18983 name
18984 = ((const char *)
18985 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18986 base, strlen (base)));
18987 xfree (demangled);
18988 }
18989 }
18990
18991 fixup_called = 1;
18992 }
18993
18994 /* Read an attribute value described by an attribute form. */
18995
18996 static const gdb_byte *
18997 read_attribute_value (const struct die_reader_specs *reader,
18998 struct attribute *attr, unsigned form,
18999 LONGEST implicit_const, const gdb_byte *info_ptr)
19000 {
19001 struct dwarf2_cu *cu = reader->cu;
19002 struct dwarf2_per_objfile *dwarf2_per_objfile
19003 = cu->per_cu->dwarf2_per_objfile;
19004 struct objfile *objfile = dwarf2_per_objfile->objfile;
19005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19006 bfd *abfd = reader->abfd;
19007 struct comp_unit_head *cu_header = &cu->header;
19008 unsigned int bytes_read;
19009 struct dwarf_block *blk;
19010
19011 attr->form = (enum dwarf_form) form;
19012 switch (form)
19013 {
19014 case DW_FORM_ref_addr:
19015 if (cu->header.version == 2)
19016 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19017 else
19018 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19019 &cu->header, &bytes_read);
19020 info_ptr += bytes_read;
19021 break;
19022 case DW_FORM_GNU_ref_alt:
19023 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19024 info_ptr += bytes_read;
19025 break;
19026 case DW_FORM_addr:
19027 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19028 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19029 info_ptr += bytes_read;
19030 break;
19031 case DW_FORM_block2:
19032 blk = dwarf_alloc_block (cu);
19033 blk->size = read_2_bytes (abfd, info_ptr);
19034 info_ptr += 2;
19035 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19036 info_ptr += blk->size;
19037 DW_BLOCK (attr) = blk;
19038 break;
19039 case DW_FORM_block4:
19040 blk = dwarf_alloc_block (cu);
19041 blk->size = read_4_bytes (abfd, info_ptr);
19042 info_ptr += 4;
19043 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19044 info_ptr += blk->size;
19045 DW_BLOCK (attr) = blk;
19046 break;
19047 case DW_FORM_data2:
19048 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19049 info_ptr += 2;
19050 break;
19051 case DW_FORM_data4:
19052 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19053 info_ptr += 4;
19054 break;
19055 case DW_FORM_data8:
19056 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19057 info_ptr += 8;
19058 break;
19059 case DW_FORM_data16:
19060 blk = dwarf_alloc_block (cu);
19061 blk->size = 16;
19062 blk->data = read_n_bytes (abfd, info_ptr, 16);
19063 info_ptr += 16;
19064 DW_BLOCK (attr) = blk;
19065 break;
19066 case DW_FORM_sec_offset:
19067 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19068 info_ptr += bytes_read;
19069 break;
19070 case DW_FORM_string:
19071 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19072 DW_STRING_IS_CANONICAL (attr) = 0;
19073 info_ptr += bytes_read;
19074 break;
19075 case DW_FORM_strp:
19076 if (!cu->per_cu->is_dwz)
19077 {
19078 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19079 abfd, info_ptr, cu_header,
19080 &bytes_read);
19081 DW_STRING_IS_CANONICAL (attr) = 0;
19082 info_ptr += bytes_read;
19083 break;
19084 }
19085 /* FALLTHROUGH */
19086 case DW_FORM_line_strp:
19087 if (!cu->per_cu->is_dwz)
19088 {
19089 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19090 abfd, info_ptr,
19091 cu_header, &bytes_read);
19092 DW_STRING_IS_CANONICAL (attr) = 0;
19093 info_ptr += bytes_read;
19094 break;
19095 }
19096 /* FALLTHROUGH */
19097 case DW_FORM_GNU_strp_alt:
19098 {
19099 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19100 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19101 &bytes_read);
19102
19103 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19104 dwz, str_offset);
19105 DW_STRING_IS_CANONICAL (attr) = 0;
19106 info_ptr += bytes_read;
19107 }
19108 break;
19109 case DW_FORM_exprloc:
19110 case DW_FORM_block:
19111 blk = dwarf_alloc_block (cu);
19112 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19113 info_ptr += bytes_read;
19114 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19115 info_ptr += blk->size;
19116 DW_BLOCK (attr) = blk;
19117 break;
19118 case DW_FORM_block1:
19119 blk = dwarf_alloc_block (cu);
19120 blk->size = read_1_byte (abfd, info_ptr);
19121 info_ptr += 1;
19122 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19123 info_ptr += blk->size;
19124 DW_BLOCK (attr) = blk;
19125 break;
19126 case DW_FORM_data1:
19127 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19128 info_ptr += 1;
19129 break;
19130 case DW_FORM_flag:
19131 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19132 info_ptr += 1;
19133 break;
19134 case DW_FORM_flag_present:
19135 DW_UNSND (attr) = 1;
19136 break;
19137 case DW_FORM_sdata:
19138 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19139 info_ptr += bytes_read;
19140 break;
19141 case DW_FORM_udata:
19142 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19143 info_ptr += bytes_read;
19144 break;
19145 case DW_FORM_ref1:
19146 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19147 + read_1_byte (abfd, info_ptr));
19148 info_ptr += 1;
19149 break;
19150 case DW_FORM_ref2:
19151 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19152 + read_2_bytes (abfd, info_ptr));
19153 info_ptr += 2;
19154 break;
19155 case DW_FORM_ref4:
19156 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19157 + read_4_bytes (abfd, info_ptr));
19158 info_ptr += 4;
19159 break;
19160 case DW_FORM_ref8:
19161 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19162 + read_8_bytes (abfd, info_ptr));
19163 info_ptr += 8;
19164 break;
19165 case DW_FORM_ref_sig8:
19166 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19167 info_ptr += 8;
19168 break;
19169 case DW_FORM_ref_udata:
19170 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19171 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19172 info_ptr += bytes_read;
19173 break;
19174 case DW_FORM_indirect:
19175 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19176 info_ptr += bytes_read;
19177 if (form == DW_FORM_implicit_const)
19178 {
19179 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19180 info_ptr += bytes_read;
19181 }
19182 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19183 info_ptr);
19184 break;
19185 case DW_FORM_implicit_const:
19186 DW_SND (attr) = implicit_const;
19187 break;
19188 case DW_FORM_GNU_addr_index:
19189 if (reader->dwo_file == NULL)
19190 {
19191 /* For now flag a hard error.
19192 Later we can turn this into a complaint. */
19193 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19194 dwarf_form_name (form),
19195 bfd_get_filename (abfd));
19196 }
19197 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19198 info_ptr += bytes_read;
19199 break;
19200 case DW_FORM_GNU_str_index:
19201 if (reader->dwo_file == NULL)
19202 {
19203 /* For now flag a hard error.
19204 Later we can turn this into a complaint if warranted. */
19205 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19206 dwarf_form_name (form),
19207 bfd_get_filename (abfd));
19208 }
19209 {
19210 ULONGEST str_index =
19211 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19212
19213 DW_STRING (attr) = read_str_index (reader, str_index);
19214 DW_STRING_IS_CANONICAL (attr) = 0;
19215 info_ptr += bytes_read;
19216 }
19217 break;
19218 default:
19219 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19220 dwarf_form_name (form),
19221 bfd_get_filename (abfd));
19222 }
19223
19224 /* Super hack. */
19225 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19226 attr->form = DW_FORM_GNU_ref_alt;
19227
19228 /* We have seen instances where the compiler tried to emit a byte
19229 size attribute of -1 which ended up being encoded as an unsigned
19230 0xffffffff. Although 0xffffffff is technically a valid size value,
19231 an object of this size seems pretty unlikely so we can relatively
19232 safely treat these cases as if the size attribute was invalid and
19233 treat them as zero by default. */
19234 if (attr->name == DW_AT_byte_size
19235 && form == DW_FORM_data4
19236 && DW_UNSND (attr) >= 0xffffffff)
19237 {
19238 complaint
19239 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19240 hex_string (DW_UNSND (attr)));
19241 DW_UNSND (attr) = 0;
19242 }
19243
19244 return info_ptr;
19245 }
19246
19247 /* Read an attribute described by an abbreviated attribute. */
19248
19249 static const gdb_byte *
19250 read_attribute (const struct die_reader_specs *reader,
19251 struct attribute *attr, struct attr_abbrev *abbrev,
19252 const gdb_byte *info_ptr)
19253 {
19254 attr->name = abbrev->name;
19255 return read_attribute_value (reader, attr, abbrev->form,
19256 abbrev->implicit_const, info_ptr);
19257 }
19258
19259 /* Read dwarf information from a buffer. */
19260
19261 static unsigned int
19262 read_1_byte (bfd *abfd, const gdb_byte *buf)
19263 {
19264 return bfd_get_8 (abfd, buf);
19265 }
19266
19267 static int
19268 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19269 {
19270 return bfd_get_signed_8 (abfd, buf);
19271 }
19272
19273 static unsigned int
19274 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19275 {
19276 return bfd_get_16 (abfd, buf);
19277 }
19278
19279 static int
19280 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19281 {
19282 return bfd_get_signed_16 (abfd, buf);
19283 }
19284
19285 static unsigned int
19286 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19287 {
19288 return bfd_get_32 (abfd, buf);
19289 }
19290
19291 static int
19292 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19293 {
19294 return bfd_get_signed_32 (abfd, buf);
19295 }
19296
19297 static ULONGEST
19298 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19299 {
19300 return bfd_get_64 (abfd, buf);
19301 }
19302
19303 static CORE_ADDR
19304 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19305 unsigned int *bytes_read)
19306 {
19307 struct comp_unit_head *cu_header = &cu->header;
19308 CORE_ADDR retval = 0;
19309
19310 if (cu_header->signed_addr_p)
19311 {
19312 switch (cu_header->addr_size)
19313 {
19314 case 2:
19315 retval = bfd_get_signed_16 (abfd, buf);
19316 break;
19317 case 4:
19318 retval = bfd_get_signed_32 (abfd, buf);
19319 break;
19320 case 8:
19321 retval = bfd_get_signed_64 (abfd, buf);
19322 break;
19323 default:
19324 internal_error (__FILE__, __LINE__,
19325 _("read_address: bad switch, signed [in module %s]"),
19326 bfd_get_filename (abfd));
19327 }
19328 }
19329 else
19330 {
19331 switch (cu_header->addr_size)
19332 {
19333 case 2:
19334 retval = bfd_get_16 (abfd, buf);
19335 break;
19336 case 4:
19337 retval = bfd_get_32 (abfd, buf);
19338 break;
19339 case 8:
19340 retval = bfd_get_64 (abfd, buf);
19341 break;
19342 default:
19343 internal_error (__FILE__, __LINE__,
19344 _("read_address: bad switch, "
19345 "unsigned [in module %s]"),
19346 bfd_get_filename (abfd));
19347 }
19348 }
19349
19350 *bytes_read = cu_header->addr_size;
19351 return retval;
19352 }
19353
19354 /* Read the initial length from a section. The (draft) DWARF 3
19355 specification allows the initial length to take up either 4 bytes
19356 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19357 bytes describe the length and all offsets will be 8 bytes in length
19358 instead of 4.
19359
19360 An older, non-standard 64-bit format is also handled by this
19361 function. The older format in question stores the initial length
19362 as an 8-byte quantity without an escape value. Lengths greater
19363 than 2^32 aren't very common which means that the initial 4 bytes
19364 is almost always zero. Since a length value of zero doesn't make
19365 sense for the 32-bit format, this initial zero can be considered to
19366 be an escape value which indicates the presence of the older 64-bit
19367 format. As written, the code can't detect (old format) lengths
19368 greater than 4GB. If it becomes necessary to handle lengths
19369 somewhat larger than 4GB, we could allow other small values (such
19370 as the non-sensical values of 1, 2, and 3) to also be used as
19371 escape values indicating the presence of the old format.
19372
19373 The value returned via bytes_read should be used to increment the
19374 relevant pointer after calling read_initial_length().
19375
19376 [ Note: read_initial_length() and read_offset() are based on the
19377 document entitled "DWARF Debugging Information Format", revision
19378 3, draft 8, dated November 19, 2001. This document was obtained
19379 from:
19380
19381 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19382
19383 This document is only a draft and is subject to change. (So beware.)
19384
19385 Details regarding the older, non-standard 64-bit format were
19386 determined empirically by examining 64-bit ELF files produced by
19387 the SGI toolchain on an IRIX 6.5 machine.
19388
19389 - Kevin, July 16, 2002
19390 ] */
19391
19392 static LONGEST
19393 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19394 {
19395 LONGEST length = bfd_get_32 (abfd, buf);
19396
19397 if (length == 0xffffffff)
19398 {
19399 length = bfd_get_64 (abfd, buf + 4);
19400 *bytes_read = 12;
19401 }
19402 else if (length == 0)
19403 {
19404 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19405 length = bfd_get_64 (abfd, buf);
19406 *bytes_read = 8;
19407 }
19408 else
19409 {
19410 *bytes_read = 4;
19411 }
19412
19413 return length;
19414 }
19415
19416 /* Cover function for read_initial_length.
19417 Returns the length of the object at BUF, and stores the size of the
19418 initial length in *BYTES_READ and stores the size that offsets will be in
19419 *OFFSET_SIZE.
19420 If the initial length size is not equivalent to that specified in
19421 CU_HEADER then issue a complaint.
19422 This is useful when reading non-comp-unit headers. */
19423
19424 static LONGEST
19425 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19426 const struct comp_unit_head *cu_header,
19427 unsigned int *bytes_read,
19428 unsigned int *offset_size)
19429 {
19430 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19431
19432 gdb_assert (cu_header->initial_length_size == 4
19433 || cu_header->initial_length_size == 8
19434 || cu_header->initial_length_size == 12);
19435
19436 if (cu_header->initial_length_size != *bytes_read)
19437 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19438
19439 *offset_size = (*bytes_read == 4) ? 4 : 8;
19440 return length;
19441 }
19442
19443 /* Read an offset from the data stream. The size of the offset is
19444 given by cu_header->offset_size. */
19445
19446 static LONGEST
19447 read_offset (bfd *abfd, const gdb_byte *buf,
19448 const struct comp_unit_head *cu_header,
19449 unsigned int *bytes_read)
19450 {
19451 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19452
19453 *bytes_read = cu_header->offset_size;
19454 return offset;
19455 }
19456
19457 /* Read an offset from the data stream. */
19458
19459 static LONGEST
19460 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19461 {
19462 LONGEST retval = 0;
19463
19464 switch (offset_size)
19465 {
19466 case 4:
19467 retval = bfd_get_32 (abfd, buf);
19468 break;
19469 case 8:
19470 retval = bfd_get_64 (abfd, buf);
19471 break;
19472 default:
19473 internal_error (__FILE__, __LINE__,
19474 _("read_offset_1: bad switch [in module %s]"),
19475 bfd_get_filename (abfd));
19476 }
19477
19478 return retval;
19479 }
19480
19481 static const gdb_byte *
19482 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19483 {
19484 /* If the size of a host char is 8 bits, we can return a pointer
19485 to the buffer, otherwise we have to copy the data to a buffer
19486 allocated on the temporary obstack. */
19487 gdb_assert (HOST_CHAR_BIT == 8);
19488 return buf;
19489 }
19490
19491 static const char *
19492 read_direct_string (bfd *abfd, const gdb_byte *buf,
19493 unsigned int *bytes_read_ptr)
19494 {
19495 /* If the size of a host char is 8 bits, we can return a pointer
19496 to the string, otherwise we have to copy the string to a buffer
19497 allocated on the temporary obstack. */
19498 gdb_assert (HOST_CHAR_BIT == 8);
19499 if (*buf == '\0')
19500 {
19501 *bytes_read_ptr = 1;
19502 return NULL;
19503 }
19504 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19505 return (const char *) buf;
19506 }
19507
19508 /* Return pointer to string at section SECT offset STR_OFFSET with error
19509 reporting strings FORM_NAME and SECT_NAME. */
19510
19511 static const char *
19512 read_indirect_string_at_offset_from (struct objfile *objfile,
19513 bfd *abfd, LONGEST str_offset,
19514 struct dwarf2_section_info *sect,
19515 const char *form_name,
19516 const char *sect_name)
19517 {
19518 dwarf2_read_section (objfile, sect);
19519 if (sect->buffer == NULL)
19520 error (_("%s used without %s section [in module %s]"),
19521 form_name, sect_name, bfd_get_filename (abfd));
19522 if (str_offset >= sect->size)
19523 error (_("%s pointing outside of %s section [in module %s]"),
19524 form_name, sect_name, bfd_get_filename (abfd));
19525 gdb_assert (HOST_CHAR_BIT == 8);
19526 if (sect->buffer[str_offset] == '\0')
19527 return NULL;
19528 return (const char *) (sect->buffer + str_offset);
19529 }
19530
19531 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19532
19533 static const char *
19534 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19535 bfd *abfd, LONGEST str_offset)
19536 {
19537 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19538 abfd, str_offset,
19539 &dwarf2_per_objfile->str,
19540 "DW_FORM_strp", ".debug_str");
19541 }
19542
19543 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19544
19545 static const char *
19546 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19547 bfd *abfd, LONGEST str_offset)
19548 {
19549 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19550 abfd, str_offset,
19551 &dwarf2_per_objfile->line_str,
19552 "DW_FORM_line_strp",
19553 ".debug_line_str");
19554 }
19555
19556 /* Read a string at offset STR_OFFSET in the .debug_str section from
19557 the .dwz file DWZ. Throw an error if the offset is too large. If
19558 the string consists of a single NUL byte, return NULL; otherwise
19559 return a pointer to the string. */
19560
19561 static const char *
19562 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19563 LONGEST str_offset)
19564 {
19565 dwarf2_read_section (objfile, &dwz->str);
19566
19567 if (dwz->str.buffer == NULL)
19568 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19569 "section [in module %s]"),
19570 bfd_get_filename (dwz->dwz_bfd));
19571 if (str_offset >= dwz->str.size)
19572 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19573 ".debug_str section [in module %s]"),
19574 bfd_get_filename (dwz->dwz_bfd));
19575 gdb_assert (HOST_CHAR_BIT == 8);
19576 if (dwz->str.buffer[str_offset] == '\0')
19577 return NULL;
19578 return (const char *) (dwz->str.buffer + str_offset);
19579 }
19580
19581 /* Return pointer to string at .debug_str offset as read from BUF.
19582 BUF is assumed to be in a compilation unit described by CU_HEADER.
19583 Return *BYTES_READ_PTR count of bytes read from BUF. */
19584
19585 static const char *
19586 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19587 const gdb_byte *buf,
19588 const struct comp_unit_head *cu_header,
19589 unsigned int *bytes_read_ptr)
19590 {
19591 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19592
19593 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19594 }
19595
19596 /* Return pointer to string at .debug_line_str offset as read from BUF.
19597 BUF is assumed to be in a compilation unit described by CU_HEADER.
19598 Return *BYTES_READ_PTR count of bytes read from BUF. */
19599
19600 static const char *
19601 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19602 bfd *abfd, const gdb_byte *buf,
19603 const struct comp_unit_head *cu_header,
19604 unsigned int *bytes_read_ptr)
19605 {
19606 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19607
19608 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19609 str_offset);
19610 }
19611
19612 ULONGEST
19613 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19614 unsigned int *bytes_read_ptr)
19615 {
19616 ULONGEST result;
19617 unsigned int num_read;
19618 int shift;
19619 unsigned char byte;
19620
19621 result = 0;
19622 shift = 0;
19623 num_read = 0;
19624 while (1)
19625 {
19626 byte = bfd_get_8 (abfd, buf);
19627 buf++;
19628 num_read++;
19629 result |= ((ULONGEST) (byte & 127) << shift);
19630 if ((byte & 128) == 0)
19631 {
19632 break;
19633 }
19634 shift += 7;
19635 }
19636 *bytes_read_ptr = num_read;
19637 return result;
19638 }
19639
19640 static LONGEST
19641 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19642 unsigned int *bytes_read_ptr)
19643 {
19644 ULONGEST result;
19645 int shift, num_read;
19646 unsigned char byte;
19647
19648 result = 0;
19649 shift = 0;
19650 num_read = 0;
19651 while (1)
19652 {
19653 byte = bfd_get_8 (abfd, buf);
19654 buf++;
19655 num_read++;
19656 result |= ((ULONGEST) (byte & 127) << shift);
19657 shift += 7;
19658 if ((byte & 128) == 0)
19659 {
19660 break;
19661 }
19662 }
19663 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19664 result |= -(((ULONGEST) 1) << shift);
19665 *bytes_read_ptr = num_read;
19666 return result;
19667 }
19668
19669 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19670 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19671 ADDR_SIZE is the size of addresses from the CU header. */
19672
19673 static CORE_ADDR
19674 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19675 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19676 {
19677 struct objfile *objfile = dwarf2_per_objfile->objfile;
19678 bfd *abfd = objfile->obfd;
19679 const gdb_byte *info_ptr;
19680
19681 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19682 if (dwarf2_per_objfile->addr.buffer == NULL)
19683 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19684 objfile_name (objfile));
19685 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19686 error (_("DW_FORM_addr_index pointing outside of "
19687 ".debug_addr section [in module %s]"),
19688 objfile_name (objfile));
19689 info_ptr = (dwarf2_per_objfile->addr.buffer
19690 + addr_base + addr_index * addr_size);
19691 if (addr_size == 4)
19692 return bfd_get_32 (abfd, info_ptr);
19693 else
19694 return bfd_get_64 (abfd, info_ptr);
19695 }
19696
19697 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19698
19699 static CORE_ADDR
19700 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19701 {
19702 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19703 cu->addr_base, cu->header.addr_size);
19704 }
19705
19706 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19707
19708 static CORE_ADDR
19709 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19710 unsigned int *bytes_read)
19711 {
19712 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19713 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19714
19715 return read_addr_index (cu, addr_index);
19716 }
19717
19718 /* Data structure to pass results from dwarf2_read_addr_index_reader
19719 back to dwarf2_read_addr_index. */
19720
19721 struct dwarf2_read_addr_index_data
19722 {
19723 ULONGEST addr_base;
19724 int addr_size;
19725 };
19726
19727 /* die_reader_func for dwarf2_read_addr_index. */
19728
19729 static void
19730 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19731 const gdb_byte *info_ptr,
19732 struct die_info *comp_unit_die,
19733 int has_children,
19734 void *data)
19735 {
19736 struct dwarf2_cu *cu = reader->cu;
19737 struct dwarf2_read_addr_index_data *aidata =
19738 (struct dwarf2_read_addr_index_data *) data;
19739
19740 aidata->addr_base = cu->addr_base;
19741 aidata->addr_size = cu->header.addr_size;
19742 }
19743
19744 /* Given an index in .debug_addr, fetch the value.
19745 NOTE: This can be called during dwarf expression evaluation,
19746 long after the debug information has been read, and thus per_cu->cu
19747 may no longer exist. */
19748
19749 CORE_ADDR
19750 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19751 unsigned int addr_index)
19752 {
19753 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19754 struct dwarf2_cu *cu = per_cu->cu;
19755 ULONGEST addr_base;
19756 int addr_size;
19757
19758 /* We need addr_base and addr_size.
19759 If we don't have PER_CU->cu, we have to get it.
19760 Nasty, but the alternative is storing the needed info in PER_CU,
19761 which at this point doesn't seem justified: it's not clear how frequently
19762 it would get used and it would increase the size of every PER_CU.
19763 Entry points like dwarf2_per_cu_addr_size do a similar thing
19764 so we're not in uncharted territory here.
19765 Alas we need to be a bit more complicated as addr_base is contained
19766 in the DIE.
19767
19768 We don't need to read the entire CU(/TU).
19769 We just need the header and top level die.
19770
19771 IWBN to use the aging mechanism to let us lazily later discard the CU.
19772 For now we skip this optimization. */
19773
19774 if (cu != NULL)
19775 {
19776 addr_base = cu->addr_base;
19777 addr_size = cu->header.addr_size;
19778 }
19779 else
19780 {
19781 struct dwarf2_read_addr_index_data aidata;
19782
19783 /* Note: We can't use init_cutu_and_read_dies_simple here,
19784 we need addr_base. */
19785 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19786 dwarf2_read_addr_index_reader, &aidata);
19787 addr_base = aidata.addr_base;
19788 addr_size = aidata.addr_size;
19789 }
19790
19791 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19792 addr_size);
19793 }
19794
19795 /* Given a DW_FORM_GNU_str_index, fetch the string.
19796 This is only used by the Fission support. */
19797
19798 static const char *
19799 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19800 {
19801 struct dwarf2_cu *cu = reader->cu;
19802 struct dwarf2_per_objfile *dwarf2_per_objfile
19803 = cu->per_cu->dwarf2_per_objfile;
19804 struct objfile *objfile = dwarf2_per_objfile->objfile;
19805 const char *objf_name = objfile_name (objfile);
19806 bfd *abfd = objfile->obfd;
19807 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19808 struct dwarf2_section_info *str_offsets_section =
19809 &reader->dwo_file->sections.str_offsets;
19810 const gdb_byte *info_ptr;
19811 ULONGEST str_offset;
19812 static const char form_name[] = "DW_FORM_GNU_str_index";
19813
19814 dwarf2_read_section (objfile, str_section);
19815 dwarf2_read_section (objfile, str_offsets_section);
19816 if (str_section->buffer == NULL)
19817 error (_("%s used without .debug_str.dwo section"
19818 " in CU at offset %s [in module %s]"),
19819 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19820 if (str_offsets_section->buffer == NULL)
19821 error (_("%s used without .debug_str_offsets.dwo section"
19822 " in CU at offset %s [in module %s]"),
19823 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19824 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19825 error (_("%s pointing outside of .debug_str_offsets.dwo"
19826 " section in CU at offset %s [in module %s]"),
19827 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19828 info_ptr = (str_offsets_section->buffer
19829 + str_index * cu->header.offset_size);
19830 if (cu->header.offset_size == 4)
19831 str_offset = bfd_get_32 (abfd, info_ptr);
19832 else
19833 str_offset = bfd_get_64 (abfd, info_ptr);
19834 if (str_offset >= str_section->size)
19835 error (_("Offset from %s pointing outside of"
19836 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19837 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19838 return (const char *) (str_section->buffer + str_offset);
19839 }
19840
19841 /* Return the length of an LEB128 number in BUF. */
19842
19843 static int
19844 leb128_size (const gdb_byte *buf)
19845 {
19846 const gdb_byte *begin = buf;
19847 gdb_byte byte;
19848
19849 while (1)
19850 {
19851 byte = *buf++;
19852 if ((byte & 128) == 0)
19853 return buf - begin;
19854 }
19855 }
19856
19857 static void
19858 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19859 {
19860 switch (lang)
19861 {
19862 case DW_LANG_C89:
19863 case DW_LANG_C99:
19864 case DW_LANG_C11:
19865 case DW_LANG_C:
19866 case DW_LANG_UPC:
19867 cu->language = language_c;
19868 break;
19869 case DW_LANG_Java:
19870 case DW_LANG_C_plus_plus:
19871 case DW_LANG_C_plus_plus_11:
19872 case DW_LANG_C_plus_plus_14:
19873 cu->language = language_cplus;
19874 break;
19875 case DW_LANG_D:
19876 cu->language = language_d;
19877 break;
19878 case DW_LANG_Fortran77:
19879 case DW_LANG_Fortran90:
19880 case DW_LANG_Fortran95:
19881 case DW_LANG_Fortran03:
19882 case DW_LANG_Fortran08:
19883 cu->language = language_fortran;
19884 break;
19885 case DW_LANG_Go:
19886 cu->language = language_go;
19887 break;
19888 case DW_LANG_Mips_Assembler:
19889 cu->language = language_asm;
19890 break;
19891 case DW_LANG_Ada83:
19892 case DW_LANG_Ada95:
19893 cu->language = language_ada;
19894 break;
19895 case DW_LANG_Modula2:
19896 cu->language = language_m2;
19897 break;
19898 case DW_LANG_Pascal83:
19899 cu->language = language_pascal;
19900 break;
19901 case DW_LANG_ObjC:
19902 cu->language = language_objc;
19903 break;
19904 case DW_LANG_Rust:
19905 case DW_LANG_Rust_old:
19906 cu->language = language_rust;
19907 break;
19908 case DW_LANG_Cobol74:
19909 case DW_LANG_Cobol85:
19910 default:
19911 cu->language = language_minimal;
19912 break;
19913 }
19914 cu->language_defn = language_def (cu->language);
19915 }
19916
19917 /* Return the named attribute or NULL if not there. */
19918
19919 static struct attribute *
19920 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19921 {
19922 for (;;)
19923 {
19924 unsigned int i;
19925 struct attribute *spec = NULL;
19926
19927 for (i = 0; i < die->num_attrs; ++i)
19928 {
19929 if (die->attrs[i].name == name)
19930 return &die->attrs[i];
19931 if (die->attrs[i].name == DW_AT_specification
19932 || die->attrs[i].name == DW_AT_abstract_origin)
19933 spec = &die->attrs[i];
19934 }
19935
19936 if (!spec)
19937 break;
19938
19939 die = follow_die_ref (die, spec, &cu);
19940 }
19941
19942 return NULL;
19943 }
19944
19945 /* Return the named attribute or NULL if not there,
19946 but do not follow DW_AT_specification, etc.
19947 This is for use in contexts where we're reading .debug_types dies.
19948 Following DW_AT_specification, DW_AT_abstract_origin will take us
19949 back up the chain, and we want to go down. */
19950
19951 static struct attribute *
19952 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19953 {
19954 unsigned int i;
19955
19956 for (i = 0; i < die->num_attrs; ++i)
19957 if (die->attrs[i].name == name)
19958 return &die->attrs[i];
19959
19960 return NULL;
19961 }
19962
19963 /* Return the string associated with a string-typed attribute, or NULL if it
19964 is either not found or is of an incorrect type. */
19965
19966 static const char *
19967 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19968 {
19969 struct attribute *attr;
19970 const char *str = NULL;
19971
19972 attr = dwarf2_attr (die, name, cu);
19973
19974 if (attr != NULL)
19975 {
19976 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19977 || attr->form == DW_FORM_string
19978 || attr->form == DW_FORM_GNU_str_index
19979 || attr->form == DW_FORM_GNU_strp_alt)
19980 str = DW_STRING (attr);
19981 else
19982 complaint (_("string type expected for attribute %s for "
19983 "DIE at %s in module %s"),
19984 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19985 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19986 }
19987
19988 return str;
19989 }
19990
19991 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19992 and holds a non-zero value. This function should only be used for
19993 DW_FORM_flag or DW_FORM_flag_present attributes. */
19994
19995 static int
19996 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19997 {
19998 struct attribute *attr = dwarf2_attr (die, name, cu);
19999
20000 return (attr && DW_UNSND (attr));
20001 }
20002
20003 static int
20004 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20005 {
20006 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20007 which value is non-zero. However, we have to be careful with
20008 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20009 (via dwarf2_flag_true_p) follows this attribute. So we may
20010 end up accidently finding a declaration attribute that belongs
20011 to a different DIE referenced by the specification attribute,
20012 even though the given DIE does not have a declaration attribute. */
20013 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20014 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20015 }
20016
20017 /* Return the die giving the specification for DIE, if there is
20018 one. *SPEC_CU is the CU containing DIE on input, and the CU
20019 containing the return value on output. If there is no
20020 specification, but there is an abstract origin, that is
20021 returned. */
20022
20023 static struct die_info *
20024 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20025 {
20026 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20027 *spec_cu);
20028
20029 if (spec_attr == NULL)
20030 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20031
20032 if (spec_attr == NULL)
20033 return NULL;
20034 else
20035 return follow_die_ref (die, spec_attr, spec_cu);
20036 }
20037
20038 /* Stub for free_line_header to match void * callback types. */
20039
20040 static void
20041 free_line_header_voidp (void *arg)
20042 {
20043 struct line_header *lh = (struct line_header *) arg;
20044
20045 delete lh;
20046 }
20047
20048 void
20049 line_header::add_include_dir (const char *include_dir)
20050 {
20051 if (dwarf_line_debug >= 2)
20052 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20053 include_dirs.size () + 1, include_dir);
20054
20055 include_dirs.push_back (include_dir);
20056 }
20057
20058 void
20059 line_header::add_file_name (const char *name,
20060 dir_index d_index,
20061 unsigned int mod_time,
20062 unsigned int length)
20063 {
20064 if (dwarf_line_debug >= 2)
20065 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20066 (unsigned) file_names.size () + 1, name);
20067
20068 file_names.emplace_back (name, d_index, mod_time, length);
20069 }
20070
20071 /* A convenience function to find the proper .debug_line section for a CU. */
20072
20073 static struct dwarf2_section_info *
20074 get_debug_line_section (struct dwarf2_cu *cu)
20075 {
20076 struct dwarf2_section_info *section;
20077 struct dwarf2_per_objfile *dwarf2_per_objfile
20078 = cu->per_cu->dwarf2_per_objfile;
20079
20080 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20081 DWO file. */
20082 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20083 section = &cu->dwo_unit->dwo_file->sections.line;
20084 else if (cu->per_cu->is_dwz)
20085 {
20086 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20087
20088 section = &dwz->line;
20089 }
20090 else
20091 section = &dwarf2_per_objfile->line;
20092
20093 return section;
20094 }
20095
20096 /* Read directory or file name entry format, starting with byte of
20097 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20098 entries count and the entries themselves in the described entry
20099 format. */
20100
20101 static void
20102 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20103 bfd *abfd, const gdb_byte **bufp,
20104 struct line_header *lh,
20105 const struct comp_unit_head *cu_header,
20106 void (*callback) (struct line_header *lh,
20107 const char *name,
20108 dir_index d_index,
20109 unsigned int mod_time,
20110 unsigned int length))
20111 {
20112 gdb_byte format_count, formati;
20113 ULONGEST data_count, datai;
20114 const gdb_byte *buf = *bufp;
20115 const gdb_byte *format_header_data;
20116 unsigned int bytes_read;
20117
20118 format_count = read_1_byte (abfd, buf);
20119 buf += 1;
20120 format_header_data = buf;
20121 for (formati = 0; formati < format_count; formati++)
20122 {
20123 read_unsigned_leb128 (abfd, buf, &bytes_read);
20124 buf += bytes_read;
20125 read_unsigned_leb128 (abfd, buf, &bytes_read);
20126 buf += bytes_read;
20127 }
20128
20129 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20130 buf += bytes_read;
20131 for (datai = 0; datai < data_count; datai++)
20132 {
20133 const gdb_byte *format = format_header_data;
20134 struct file_entry fe;
20135
20136 for (formati = 0; formati < format_count; formati++)
20137 {
20138 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20139 format += bytes_read;
20140
20141 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20142 format += bytes_read;
20143
20144 gdb::optional<const char *> string;
20145 gdb::optional<unsigned int> uint;
20146
20147 switch (form)
20148 {
20149 case DW_FORM_string:
20150 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20151 buf += bytes_read;
20152 break;
20153
20154 case DW_FORM_line_strp:
20155 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20156 abfd, buf,
20157 cu_header,
20158 &bytes_read));
20159 buf += bytes_read;
20160 break;
20161
20162 case DW_FORM_data1:
20163 uint.emplace (read_1_byte (abfd, buf));
20164 buf += 1;
20165 break;
20166
20167 case DW_FORM_data2:
20168 uint.emplace (read_2_bytes (abfd, buf));
20169 buf += 2;
20170 break;
20171
20172 case DW_FORM_data4:
20173 uint.emplace (read_4_bytes (abfd, buf));
20174 buf += 4;
20175 break;
20176
20177 case DW_FORM_data8:
20178 uint.emplace (read_8_bytes (abfd, buf));
20179 buf += 8;
20180 break;
20181
20182 case DW_FORM_udata:
20183 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20184 buf += bytes_read;
20185 break;
20186
20187 case DW_FORM_block:
20188 /* It is valid only for DW_LNCT_timestamp which is ignored by
20189 current GDB. */
20190 break;
20191 }
20192
20193 switch (content_type)
20194 {
20195 case DW_LNCT_path:
20196 if (string.has_value ())
20197 fe.name = *string;
20198 break;
20199 case DW_LNCT_directory_index:
20200 if (uint.has_value ())
20201 fe.d_index = (dir_index) *uint;
20202 break;
20203 case DW_LNCT_timestamp:
20204 if (uint.has_value ())
20205 fe.mod_time = *uint;
20206 break;
20207 case DW_LNCT_size:
20208 if (uint.has_value ())
20209 fe.length = *uint;
20210 break;
20211 case DW_LNCT_MD5:
20212 break;
20213 default:
20214 complaint (_("Unknown format content type %s"),
20215 pulongest (content_type));
20216 }
20217 }
20218
20219 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20220 }
20221
20222 *bufp = buf;
20223 }
20224
20225 /* Read the statement program header starting at OFFSET in
20226 .debug_line, or .debug_line.dwo. Return a pointer
20227 to a struct line_header, allocated using xmalloc.
20228 Returns NULL if there is a problem reading the header, e.g., if it
20229 has a version we don't understand.
20230
20231 NOTE: the strings in the include directory and file name tables of
20232 the returned object point into the dwarf line section buffer,
20233 and must not be freed. */
20234
20235 static line_header_up
20236 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20237 {
20238 const gdb_byte *line_ptr;
20239 unsigned int bytes_read, offset_size;
20240 int i;
20241 const char *cur_dir, *cur_file;
20242 struct dwarf2_section_info *section;
20243 bfd *abfd;
20244 struct dwarf2_per_objfile *dwarf2_per_objfile
20245 = cu->per_cu->dwarf2_per_objfile;
20246
20247 section = get_debug_line_section (cu);
20248 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20249 if (section->buffer == NULL)
20250 {
20251 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20252 complaint (_("missing .debug_line.dwo section"));
20253 else
20254 complaint (_("missing .debug_line section"));
20255 return 0;
20256 }
20257
20258 /* We can't do this until we know the section is non-empty.
20259 Only then do we know we have such a section. */
20260 abfd = get_section_bfd_owner (section);
20261
20262 /* Make sure that at least there's room for the total_length field.
20263 That could be 12 bytes long, but we're just going to fudge that. */
20264 if (to_underlying (sect_off) + 4 >= section->size)
20265 {
20266 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20267 return 0;
20268 }
20269
20270 line_header_up lh (new line_header ());
20271
20272 lh->sect_off = sect_off;
20273 lh->offset_in_dwz = cu->per_cu->is_dwz;
20274
20275 line_ptr = section->buffer + to_underlying (sect_off);
20276
20277 /* Read in the header. */
20278 lh->total_length =
20279 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20280 &bytes_read, &offset_size);
20281 line_ptr += bytes_read;
20282 if (line_ptr + lh->total_length > (section->buffer + section->size))
20283 {
20284 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20285 return 0;
20286 }
20287 lh->statement_program_end = line_ptr + lh->total_length;
20288 lh->version = read_2_bytes (abfd, line_ptr);
20289 line_ptr += 2;
20290 if (lh->version > 5)
20291 {
20292 /* This is a version we don't understand. The format could have
20293 changed in ways we don't handle properly so just punt. */
20294 complaint (_("unsupported version in .debug_line section"));
20295 return NULL;
20296 }
20297 if (lh->version >= 5)
20298 {
20299 gdb_byte segment_selector_size;
20300
20301 /* Skip address size. */
20302 read_1_byte (abfd, line_ptr);
20303 line_ptr += 1;
20304
20305 segment_selector_size = read_1_byte (abfd, line_ptr);
20306 line_ptr += 1;
20307 if (segment_selector_size != 0)
20308 {
20309 complaint (_("unsupported segment selector size %u "
20310 "in .debug_line section"),
20311 segment_selector_size);
20312 return NULL;
20313 }
20314 }
20315 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20316 line_ptr += offset_size;
20317 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20318 line_ptr += 1;
20319 if (lh->version >= 4)
20320 {
20321 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20322 line_ptr += 1;
20323 }
20324 else
20325 lh->maximum_ops_per_instruction = 1;
20326
20327 if (lh->maximum_ops_per_instruction == 0)
20328 {
20329 lh->maximum_ops_per_instruction = 1;
20330 complaint (_("invalid maximum_ops_per_instruction "
20331 "in `.debug_line' section"));
20332 }
20333
20334 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20335 line_ptr += 1;
20336 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20337 line_ptr += 1;
20338 lh->line_range = read_1_byte (abfd, line_ptr);
20339 line_ptr += 1;
20340 lh->opcode_base = read_1_byte (abfd, line_ptr);
20341 line_ptr += 1;
20342 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20343
20344 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20345 for (i = 1; i < lh->opcode_base; ++i)
20346 {
20347 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20348 line_ptr += 1;
20349 }
20350
20351 if (lh->version >= 5)
20352 {
20353 /* Read directory table. */
20354 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20355 &cu->header,
20356 [] (struct line_header *header, const char *name,
20357 dir_index d_index, unsigned int mod_time,
20358 unsigned int length)
20359 {
20360 header->add_include_dir (name);
20361 });
20362
20363 /* Read file name table. */
20364 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20365 &cu->header,
20366 [] (struct line_header *header, const char *name,
20367 dir_index d_index, unsigned int mod_time,
20368 unsigned int length)
20369 {
20370 header->add_file_name (name, d_index, mod_time, length);
20371 });
20372 }
20373 else
20374 {
20375 /* Read directory table. */
20376 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20377 {
20378 line_ptr += bytes_read;
20379 lh->add_include_dir (cur_dir);
20380 }
20381 line_ptr += bytes_read;
20382
20383 /* Read file name table. */
20384 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20385 {
20386 unsigned int mod_time, length;
20387 dir_index d_index;
20388
20389 line_ptr += bytes_read;
20390 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20391 line_ptr += bytes_read;
20392 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20393 line_ptr += bytes_read;
20394 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20395 line_ptr += bytes_read;
20396
20397 lh->add_file_name (cur_file, d_index, mod_time, length);
20398 }
20399 line_ptr += bytes_read;
20400 }
20401 lh->statement_program_start = line_ptr;
20402
20403 if (line_ptr > (section->buffer + section->size))
20404 complaint (_("line number info header doesn't "
20405 "fit in `.debug_line' section"));
20406
20407 return lh;
20408 }
20409
20410 /* Subroutine of dwarf_decode_lines to simplify it.
20411 Return the file name of the psymtab for included file FILE_INDEX
20412 in line header LH of PST.
20413 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20414 If space for the result is malloc'd, *NAME_HOLDER will be set.
20415 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20416
20417 static const char *
20418 psymtab_include_file_name (const struct line_header *lh, int file_index,
20419 const struct partial_symtab *pst,
20420 const char *comp_dir,
20421 gdb::unique_xmalloc_ptr<char> *name_holder)
20422 {
20423 const file_entry &fe = lh->file_names[file_index];
20424 const char *include_name = fe.name;
20425 const char *include_name_to_compare = include_name;
20426 const char *pst_filename;
20427 int file_is_pst;
20428
20429 const char *dir_name = fe.include_dir (lh);
20430
20431 gdb::unique_xmalloc_ptr<char> hold_compare;
20432 if (!IS_ABSOLUTE_PATH (include_name)
20433 && (dir_name != NULL || comp_dir != NULL))
20434 {
20435 /* Avoid creating a duplicate psymtab for PST.
20436 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20437 Before we do the comparison, however, we need to account
20438 for DIR_NAME and COMP_DIR.
20439 First prepend dir_name (if non-NULL). If we still don't
20440 have an absolute path prepend comp_dir (if non-NULL).
20441 However, the directory we record in the include-file's
20442 psymtab does not contain COMP_DIR (to match the
20443 corresponding symtab(s)).
20444
20445 Example:
20446
20447 bash$ cd /tmp
20448 bash$ gcc -g ./hello.c
20449 include_name = "hello.c"
20450 dir_name = "."
20451 DW_AT_comp_dir = comp_dir = "/tmp"
20452 DW_AT_name = "./hello.c"
20453
20454 */
20455
20456 if (dir_name != NULL)
20457 {
20458 name_holder->reset (concat (dir_name, SLASH_STRING,
20459 include_name, (char *) NULL));
20460 include_name = name_holder->get ();
20461 include_name_to_compare = include_name;
20462 }
20463 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20464 {
20465 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20466 include_name, (char *) NULL));
20467 include_name_to_compare = hold_compare.get ();
20468 }
20469 }
20470
20471 pst_filename = pst->filename;
20472 gdb::unique_xmalloc_ptr<char> copied_name;
20473 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20474 {
20475 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20476 pst_filename, (char *) NULL));
20477 pst_filename = copied_name.get ();
20478 }
20479
20480 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20481
20482 if (file_is_pst)
20483 return NULL;
20484 return include_name;
20485 }
20486
20487 /* State machine to track the state of the line number program. */
20488
20489 class lnp_state_machine
20490 {
20491 public:
20492 /* Initialize a machine state for the start of a line number
20493 program. */
20494 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20495 bool record_lines_p);
20496
20497 file_entry *current_file ()
20498 {
20499 /* lh->file_names is 0-based, but the file name numbers in the
20500 statement program are 1-based. */
20501 return m_line_header->file_name_at (m_file);
20502 }
20503
20504 /* Record the line in the state machine. END_SEQUENCE is true if
20505 we're processing the end of a sequence. */
20506 void record_line (bool end_sequence);
20507
20508 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20509 nop-out rest of the lines in this sequence. */
20510 void check_line_address (struct dwarf2_cu *cu,
20511 const gdb_byte *line_ptr,
20512 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20513
20514 void handle_set_discriminator (unsigned int discriminator)
20515 {
20516 m_discriminator = discriminator;
20517 m_line_has_non_zero_discriminator |= discriminator != 0;
20518 }
20519
20520 /* Handle DW_LNE_set_address. */
20521 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20522 {
20523 m_op_index = 0;
20524 address += baseaddr;
20525 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20526 }
20527
20528 /* Handle DW_LNS_advance_pc. */
20529 void handle_advance_pc (CORE_ADDR adjust);
20530
20531 /* Handle a special opcode. */
20532 void handle_special_opcode (unsigned char op_code);
20533
20534 /* Handle DW_LNS_advance_line. */
20535 void handle_advance_line (int line_delta)
20536 {
20537 advance_line (line_delta);
20538 }
20539
20540 /* Handle DW_LNS_set_file. */
20541 void handle_set_file (file_name_index file);
20542
20543 /* Handle DW_LNS_negate_stmt. */
20544 void handle_negate_stmt ()
20545 {
20546 m_is_stmt = !m_is_stmt;
20547 }
20548
20549 /* Handle DW_LNS_const_add_pc. */
20550 void handle_const_add_pc ();
20551
20552 /* Handle DW_LNS_fixed_advance_pc. */
20553 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20554 {
20555 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20556 m_op_index = 0;
20557 }
20558
20559 /* Handle DW_LNS_copy. */
20560 void handle_copy ()
20561 {
20562 record_line (false);
20563 m_discriminator = 0;
20564 }
20565
20566 /* Handle DW_LNE_end_sequence. */
20567 void handle_end_sequence ()
20568 {
20569 m_currently_recording_lines = true;
20570 }
20571
20572 private:
20573 /* Advance the line by LINE_DELTA. */
20574 void advance_line (int line_delta)
20575 {
20576 m_line += line_delta;
20577
20578 if (line_delta != 0)
20579 m_line_has_non_zero_discriminator = m_discriminator != 0;
20580 }
20581
20582 struct dwarf2_cu *m_cu;
20583
20584 gdbarch *m_gdbarch;
20585
20586 /* True if we're recording lines.
20587 Otherwise we're building partial symtabs and are just interested in
20588 finding include files mentioned by the line number program. */
20589 bool m_record_lines_p;
20590
20591 /* The line number header. */
20592 line_header *m_line_header;
20593
20594 /* These are part of the standard DWARF line number state machine,
20595 and initialized according to the DWARF spec. */
20596
20597 unsigned char m_op_index = 0;
20598 /* The line table index (1-based) of the current file. */
20599 file_name_index m_file = (file_name_index) 1;
20600 unsigned int m_line = 1;
20601
20602 /* These are initialized in the constructor. */
20603
20604 CORE_ADDR m_address;
20605 bool m_is_stmt;
20606 unsigned int m_discriminator;
20607
20608 /* Additional bits of state we need to track. */
20609
20610 /* The last file that we called dwarf2_start_subfile for.
20611 This is only used for TLLs. */
20612 unsigned int m_last_file = 0;
20613 /* The last file a line number was recorded for. */
20614 struct subfile *m_last_subfile = NULL;
20615
20616 /* When true, record the lines we decode. */
20617 bool m_currently_recording_lines = false;
20618
20619 /* The last line number that was recorded, used to coalesce
20620 consecutive entries for the same line. This can happen, for
20621 example, when discriminators are present. PR 17276. */
20622 unsigned int m_last_line = 0;
20623 bool m_line_has_non_zero_discriminator = false;
20624 };
20625
20626 void
20627 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20628 {
20629 CORE_ADDR addr_adj = (((m_op_index + adjust)
20630 / m_line_header->maximum_ops_per_instruction)
20631 * m_line_header->minimum_instruction_length);
20632 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20633 m_op_index = ((m_op_index + adjust)
20634 % m_line_header->maximum_ops_per_instruction);
20635 }
20636
20637 void
20638 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20639 {
20640 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20641 CORE_ADDR addr_adj = (((m_op_index
20642 + (adj_opcode / m_line_header->line_range))
20643 / m_line_header->maximum_ops_per_instruction)
20644 * m_line_header->minimum_instruction_length);
20645 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20646 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20647 % m_line_header->maximum_ops_per_instruction);
20648
20649 int line_delta = (m_line_header->line_base
20650 + (adj_opcode % m_line_header->line_range));
20651 advance_line (line_delta);
20652 record_line (false);
20653 m_discriminator = 0;
20654 }
20655
20656 void
20657 lnp_state_machine::handle_set_file (file_name_index file)
20658 {
20659 m_file = file;
20660
20661 const file_entry *fe = current_file ();
20662 if (fe == NULL)
20663 dwarf2_debug_line_missing_file_complaint ();
20664 else if (m_record_lines_p)
20665 {
20666 const char *dir = fe->include_dir (m_line_header);
20667
20668 m_last_subfile = m_cu->builder->get_current_subfile ();
20669 m_line_has_non_zero_discriminator = m_discriminator != 0;
20670 dwarf2_start_subfile (m_cu, fe->name, dir);
20671 }
20672 }
20673
20674 void
20675 lnp_state_machine::handle_const_add_pc ()
20676 {
20677 CORE_ADDR adjust
20678 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20679
20680 CORE_ADDR addr_adj
20681 = (((m_op_index + adjust)
20682 / m_line_header->maximum_ops_per_instruction)
20683 * m_line_header->minimum_instruction_length);
20684
20685 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20686 m_op_index = ((m_op_index + adjust)
20687 % m_line_header->maximum_ops_per_instruction);
20688 }
20689
20690 /* Return non-zero if we should add LINE to the line number table.
20691 LINE is the line to add, LAST_LINE is the last line that was added,
20692 LAST_SUBFILE is the subfile for LAST_LINE.
20693 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20694 had a non-zero discriminator.
20695
20696 We have to be careful in the presence of discriminators.
20697 E.g., for this line:
20698
20699 for (i = 0; i < 100000; i++);
20700
20701 clang can emit four line number entries for that one line,
20702 each with a different discriminator.
20703 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20704
20705 However, we want gdb to coalesce all four entries into one.
20706 Otherwise the user could stepi into the middle of the line and
20707 gdb would get confused about whether the pc really was in the
20708 middle of the line.
20709
20710 Things are further complicated by the fact that two consecutive
20711 line number entries for the same line is a heuristic used by gcc
20712 to denote the end of the prologue. So we can't just discard duplicate
20713 entries, we have to be selective about it. The heuristic we use is
20714 that we only collapse consecutive entries for the same line if at least
20715 one of those entries has a non-zero discriminator. PR 17276.
20716
20717 Note: Addresses in the line number state machine can never go backwards
20718 within one sequence, thus this coalescing is ok. */
20719
20720 static int
20721 dwarf_record_line_p (struct dwarf2_cu *cu,
20722 unsigned int line, unsigned int last_line,
20723 int line_has_non_zero_discriminator,
20724 struct subfile *last_subfile)
20725 {
20726 if (cu->builder->get_current_subfile () != last_subfile)
20727 return 1;
20728 if (line != last_line)
20729 return 1;
20730 /* Same line for the same file that we've seen already.
20731 As a last check, for pr 17276, only record the line if the line
20732 has never had a non-zero discriminator. */
20733 if (!line_has_non_zero_discriminator)
20734 return 1;
20735 return 0;
20736 }
20737
20738 /* Use the CU's builder to record line number LINE beginning at
20739 address ADDRESS in the line table of subfile SUBFILE. */
20740
20741 static void
20742 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20743 unsigned int line, CORE_ADDR address,
20744 struct dwarf2_cu *cu)
20745 {
20746 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20747
20748 if (dwarf_line_debug)
20749 {
20750 fprintf_unfiltered (gdb_stdlog,
20751 "Recording line %u, file %s, address %s\n",
20752 line, lbasename (subfile->name),
20753 paddress (gdbarch, address));
20754 }
20755
20756 if (cu != nullptr)
20757 cu->builder->record_line (subfile, line, addr);
20758 }
20759
20760 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20761 Mark the end of a set of line number records.
20762 The arguments are the same as for dwarf_record_line_1.
20763 If SUBFILE is NULL the request is ignored. */
20764
20765 static void
20766 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20767 CORE_ADDR address, struct dwarf2_cu *cu)
20768 {
20769 if (subfile == NULL)
20770 return;
20771
20772 if (dwarf_line_debug)
20773 {
20774 fprintf_unfiltered (gdb_stdlog,
20775 "Finishing current line, file %s, address %s\n",
20776 lbasename (subfile->name),
20777 paddress (gdbarch, address));
20778 }
20779
20780 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20781 }
20782
20783 void
20784 lnp_state_machine::record_line (bool end_sequence)
20785 {
20786 if (dwarf_line_debug)
20787 {
20788 fprintf_unfiltered (gdb_stdlog,
20789 "Processing actual line %u: file %u,"
20790 " address %s, is_stmt %u, discrim %u\n",
20791 m_line, to_underlying (m_file),
20792 paddress (m_gdbarch, m_address),
20793 m_is_stmt, m_discriminator);
20794 }
20795
20796 file_entry *fe = current_file ();
20797
20798 if (fe == NULL)
20799 dwarf2_debug_line_missing_file_complaint ();
20800 /* For now we ignore lines not starting on an instruction boundary.
20801 But not when processing end_sequence for compatibility with the
20802 previous version of the code. */
20803 else if (m_op_index == 0 || end_sequence)
20804 {
20805 fe->included_p = 1;
20806 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20807 {
20808 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20809 || end_sequence)
20810 {
20811 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20812 m_currently_recording_lines ? m_cu : nullptr);
20813 }
20814
20815 if (!end_sequence)
20816 {
20817 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20818 m_line_has_non_zero_discriminator,
20819 m_last_subfile))
20820 {
20821 dwarf_record_line_1 (m_gdbarch,
20822 m_cu->builder->get_current_subfile (),
20823 m_line, m_address,
20824 m_currently_recording_lines ? m_cu : nullptr);
20825 }
20826 m_last_subfile = m_cu->builder->get_current_subfile ();
20827 m_last_line = m_line;
20828 }
20829 }
20830 }
20831 }
20832
20833 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20834 line_header *lh, bool record_lines_p)
20835 {
20836 m_cu = cu;
20837 m_gdbarch = arch;
20838 m_record_lines_p = record_lines_p;
20839 m_line_header = lh;
20840
20841 m_currently_recording_lines = true;
20842
20843 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20844 was a line entry for it so that the backend has a chance to adjust it
20845 and also record it in case it needs it. This is currently used by MIPS
20846 code, cf. `mips_adjust_dwarf2_line'. */
20847 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20848 m_is_stmt = lh->default_is_stmt;
20849 m_discriminator = 0;
20850 }
20851
20852 void
20853 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20854 const gdb_byte *line_ptr,
20855 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20856 {
20857 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20858 the pc range of the CU. However, we restrict the test to only ADDRESS
20859 values of zero to preserve GDB's previous behaviour which is to handle
20860 the specific case of a function being GC'd by the linker. */
20861
20862 if (address == 0 && address < unrelocated_lowpc)
20863 {
20864 /* This line table is for a function which has been
20865 GCd by the linker. Ignore it. PR gdb/12528 */
20866
20867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20868 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20869
20870 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20871 line_offset, objfile_name (objfile));
20872 m_currently_recording_lines = false;
20873 /* Note: m_currently_recording_lines is left as false until we see
20874 DW_LNE_end_sequence. */
20875 }
20876 }
20877
20878 /* Subroutine of dwarf_decode_lines to simplify it.
20879 Process the line number information in LH.
20880 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20881 program in order to set included_p for every referenced header. */
20882
20883 static void
20884 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20885 const int decode_for_pst_p, CORE_ADDR lowpc)
20886 {
20887 const gdb_byte *line_ptr, *extended_end;
20888 const gdb_byte *line_end;
20889 unsigned int bytes_read, extended_len;
20890 unsigned char op_code, extended_op;
20891 CORE_ADDR baseaddr;
20892 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20893 bfd *abfd = objfile->obfd;
20894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20895 /* True if we're recording line info (as opposed to building partial
20896 symtabs and just interested in finding include files mentioned by
20897 the line number program). */
20898 bool record_lines_p = !decode_for_pst_p;
20899
20900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20901
20902 line_ptr = lh->statement_program_start;
20903 line_end = lh->statement_program_end;
20904
20905 /* Read the statement sequences until there's nothing left. */
20906 while (line_ptr < line_end)
20907 {
20908 /* The DWARF line number program state machine. Reset the state
20909 machine at the start of each sequence. */
20910 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20911 bool end_sequence = false;
20912
20913 if (record_lines_p)
20914 {
20915 /* Start a subfile for the current file of the state
20916 machine. */
20917 const file_entry *fe = state_machine.current_file ();
20918
20919 if (fe != NULL)
20920 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20921 }
20922
20923 /* Decode the table. */
20924 while (line_ptr < line_end && !end_sequence)
20925 {
20926 op_code = read_1_byte (abfd, line_ptr);
20927 line_ptr += 1;
20928
20929 if (op_code >= lh->opcode_base)
20930 {
20931 /* Special opcode. */
20932 state_machine.handle_special_opcode (op_code);
20933 }
20934 else switch (op_code)
20935 {
20936 case DW_LNS_extended_op:
20937 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20938 &bytes_read);
20939 line_ptr += bytes_read;
20940 extended_end = line_ptr + extended_len;
20941 extended_op = read_1_byte (abfd, line_ptr);
20942 line_ptr += 1;
20943 switch (extended_op)
20944 {
20945 case DW_LNE_end_sequence:
20946 state_machine.handle_end_sequence ();
20947 end_sequence = true;
20948 break;
20949 case DW_LNE_set_address:
20950 {
20951 CORE_ADDR address
20952 = read_address (abfd, line_ptr, cu, &bytes_read);
20953 line_ptr += bytes_read;
20954
20955 state_machine.check_line_address (cu, line_ptr,
20956 lowpc - baseaddr, address);
20957 state_machine.handle_set_address (baseaddr, address);
20958 }
20959 break;
20960 case DW_LNE_define_file:
20961 {
20962 const char *cur_file;
20963 unsigned int mod_time, length;
20964 dir_index dindex;
20965
20966 cur_file = read_direct_string (abfd, line_ptr,
20967 &bytes_read);
20968 line_ptr += bytes_read;
20969 dindex = (dir_index)
20970 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20971 line_ptr += bytes_read;
20972 mod_time =
20973 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20974 line_ptr += bytes_read;
20975 length =
20976 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20977 line_ptr += bytes_read;
20978 lh->add_file_name (cur_file, dindex, mod_time, length);
20979 }
20980 break;
20981 case DW_LNE_set_discriminator:
20982 {
20983 /* The discriminator is not interesting to the
20984 debugger; just ignore it. We still need to
20985 check its value though:
20986 if there are consecutive entries for the same
20987 (non-prologue) line we want to coalesce them.
20988 PR 17276. */
20989 unsigned int discr
20990 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20991 line_ptr += bytes_read;
20992
20993 state_machine.handle_set_discriminator (discr);
20994 }
20995 break;
20996 default:
20997 complaint (_("mangled .debug_line section"));
20998 return;
20999 }
21000 /* Make sure that we parsed the extended op correctly. If e.g.
21001 we expected a different address size than the producer used,
21002 we may have read the wrong number of bytes. */
21003 if (line_ptr != extended_end)
21004 {
21005 complaint (_("mangled .debug_line section"));
21006 return;
21007 }
21008 break;
21009 case DW_LNS_copy:
21010 state_machine.handle_copy ();
21011 break;
21012 case DW_LNS_advance_pc:
21013 {
21014 CORE_ADDR adjust
21015 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21016 line_ptr += bytes_read;
21017
21018 state_machine.handle_advance_pc (adjust);
21019 }
21020 break;
21021 case DW_LNS_advance_line:
21022 {
21023 int line_delta
21024 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21025 line_ptr += bytes_read;
21026
21027 state_machine.handle_advance_line (line_delta);
21028 }
21029 break;
21030 case DW_LNS_set_file:
21031 {
21032 file_name_index file
21033 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21034 &bytes_read);
21035 line_ptr += bytes_read;
21036
21037 state_machine.handle_set_file (file);
21038 }
21039 break;
21040 case DW_LNS_set_column:
21041 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21042 line_ptr += bytes_read;
21043 break;
21044 case DW_LNS_negate_stmt:
21045 state_machine.handle_negate_stmt ();
21046 break;
21047 case DW_LNS_set_basic_block:
21048 break;
21049 /* Add to the address register of the state machine the
21050 address increment value corresponding to special opcode
21051 255. I.e., this value is scaled by the minimum
21052 instruction length since special opcode 255 would have
21053 scaled the increment. */
21054 case DW_LNS_const_add_pc:
21055 state_machine.handle_const_add_pc ();
21056 break;
21057 case DW_LNS_fixed_advance_pc:
21058 {
21059 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21060 line_ptr += 2;
21061
21062 state_machine.handle_fixed_advance_pc (addr_adj);
21063 }
21064 break;
21065 default:
21066 {
21067 /* Unknown standard opcode, ignore it. */
21068 int i;
21069
21070 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21071 {
21072 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21073 line_ptr += bytes_read;
21074 }
21075 }
21076 }
21077 }
21078
21079 if (!end_sequence)
21080 dwarf2_debug_line_missing_end_sequence_complaint ();
21081
21082 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21083 in which case we still finish recording the last line). */
21084 state_machine.record_line (true);
21085 }
21086 }
21087
21088 /* Decode the Line Number Program (LNP) for the given line_header
21089 structure and CU. The actual information extracted and the type
21090 of structures created from the LNP depends on the value of PST.
21091
21092 1. If PST is NULL, then this procedure uses the data from the program
21093 to create all necessary symbol tables, and their linetables.
21094
21095 2. If PST is not NULL, this procedure reads the program to determine
21096 the list of files included by the unit represented by PST, and
21097 builds all the associated partial symbol tables.
21098
21099 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21100 It is used for relative paths in the line table.
21101 NOTE: When processing partial symtabs (pst != NULL),
21102 comp_dir == pst->dirname.
21103
21104 NOTE: It is important that psymtabs have the same file name (via strcmp)
21105 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21106 symtab we don't use it in the name of the psymtabs we create.
21107 E.g. expand_line_sal requires this when finding psymtabs to expand.
21108 A good testcase for this is mb-inline.exp.
21109
21110 LOWPC is the lowest address in CU (or 0 if not known).
21111
21112 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21113 for its PC<->lines mapping information. Otherwise only the filename
21114 table is read in. */
21115
21116 static void
21117 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21118 struct dwarf2_cu *cu, struct partial_symtab *pst,
21119 CORE_ADDR lowpc, int decode_mapping)
21120 {
21121 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21122 const int decode_for_pst_p = (pst != NULL);
21123
21124 if (decode_mapping)
21125 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21126
21127 if (decode_for_pst_p)
21128 {
21129 int file_index;
21130
21131 /* Now that we're done scanning the Line Header Program, we can
21132 create the psymtab of each included file. */
21133 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21134 if (lh->file_names[file_index].included_p == 1)
21135 {
21136 gdb::unique_xmalloc_ptr<char> name_holder;
21137 const char *include_name =
21138 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21139 &name_holder);
21140 if (include_name != NULL)
21141 dwarf2_create_include_psymtab (include_name, pst, objfile);
21142 }
21143 }
21144 else
21145 {
21146 /* Make sure a symtab is created for every file, even files
21147 which contain only variables (i.e. no code with associated
21148 line numbers). */
21149 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21150 int i;
21151
21152 for (i = 0; i < lh->file_names.size (); i++)
21153 {
21154 file_entry &fe = lh->file_names[i];
21155
21156 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21157
21158 if (cu->builder->get_current_subfile ()->symtab == NULL)
21159 {
21160 cu->builder->get_current_subfile ()->symtab
21161 = allocate_symtab (cust,
21162 cu->builder->get_current_subfile ()->name);
21163 }
21164 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21165 }
21166 }
21167 }
21168
21169 /* Start a subfile for DWARF. FILENAME is the name of the file and
21170 DIRNAME the name of the source directory which contains FILENAME
21171 or NULL if not known.
21172 This routine tries to keep line numbers from identical absolute and
21173 relative file names in a common subfile.
21174
21175 Using the `list' example from the GDB testsuite, which resides in
21176 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21177 of /srcdir/list0.c yields the following debugging information for list0.c:
21178
21179 DW_AT_name: /srcdir/list0.c
21180 DW_AT_comp_dir: /compdir
21181 files.files[0].name: list0.h
21182 files.files[0].dir: /srcdir
21183 files.files[1].name: list0.c
21184 files.files[1].dir: /srcdir
21185
21186 The line number information for list0.c has to end up in a single
21187 subfile, so that `break /srcdir/list0.c:1' works as expected.
21188 start_subfile will ensure that this happens provided that we pass the
21189 concatenation of files.files[1].dir and files.files[1].name as the
21190 subfile's name. */
21191
21192 static void
21193 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21194 const char *dirname)
21195 {
21196 char *copy = NULL;
21197
21198 /* In order not to lose the line information directory,
21199 we concatenate it to the filename when it makes sense.
21200 Note that the Dwarf3 standard says (speaking of filenames in line
21201 information): ``The directory index is ignored for file names
21202 that represent full path names''. Thus ignoring dirname in the
21203 `else' branch below isn't an issue. */
21204
21205 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21206 {
21207 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21208 filename = copy;
21209 }
21210
21211 cu->builder->start_subfile (filename);
21212
21213 if (copy != NULL)
21214 xfree (copy);
21215 }
21216
21217 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21218 buildsym_compunit constructor. */
21219
21220 static struct compunit_symtab *
21221 dwarf2_start_symtab (struct dwarf2_cu *cu,
21222 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21223 {
21224 gdb_assert (cu->builder == nullptr);
21225
21226 cu->builder.reset (new struct buildsym_compunit
21227 (cu->per_cu->dwarf2_per_objfile->objfile,
21228 name, comp_dir, cu->language, low_pc));
21229
21230 cu->list_in_scope = cu->builder->get_file_symbols ();
21231
21232 cu->builder->record_debugformat ("DWARF 2");
21233 cu->builder->record_producer (cu->producer);
21234
21235 cu->processing_has_namespace_info = 0;
21236
21237 return cu->builder->get_compunit_symtab ();
21238 }
21239
21240 static void
21241 var_decode_location (struct attribute *attr, struct symbol *sym,
21242 struct dwarf2_cu *cu)
21243 {
21244 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21245 struct comp_unit_head *cu_header = &cu->header;
21246
21247 /* NOTE drow/2003-01-30: There used to be a comment and some special
21248 code here to turn a symbol with DW_AT_external and a
21249 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21250 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21251 with some versions of binutils) where shared libraries could have
21252 relocations against symbols in their debug information - the
21253 minimal symbol would have the right address, but the debug info
21254 would not. It's no longer necessary, because we will explicitly
21255 apply relocations when we read in the debug information now. */
21256
21257 /* A DW_AT_location attribute with no contents indicates that a
21258 variable has been optimized away. */
21259 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21260 {
21261 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21262 return;
21263 }
21264
21265 /* Handle one degenerate form of location expression specially, to
21266 preserve GDB's previous behavior when section offsets are
21267 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21268 then mark this symbol as LOC_STATIC. */
21269
21270 if (attr_form_is_block (attr)
21271 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21272 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21273 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21274 && (DW_BLOCK (attr)->size
21275 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21276 {
21277 unsigned int dummy;
21278
21279 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21280 SYMBOL_VALUE_ADDRESS (sym) =
21281 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21282 else
21283 SYMBOL_VALUE_ADDRESS (sym) =
21284 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21285 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21286 fixup_symbol_section (sym, objfile);
21287 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21288 SYMBOL_SECTION (sym));
21289 return;
21290 }
21291
21292 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21293 expression evaluator, and use LOC_COMPUTED only when necessary
21294 (i.e. when the value of a register or memory location is
21295 referenced, or a thread-local block, etc.). Then again, it might
21296 not be worthwhile. I'm assuming that it isn't unless performance
21297 or memory numbers show me otherwise. */
21298
21299 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21300
21301 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21302 cu->has_loclist = 1;
21303 }
21304
21305 /* Given a pointer to a DWARF information entry, figure out if we need
21306 to make a symbol table entry for it, and if so, create a new entry
21307 and return a pointer to it.
21308 If TYPE is NULL, determine symbol type from the die, otherwise
21309 used the passed type.
21310 If SPACE is not NULL, use it to hold the new symbol. If it is
21311 NULL, allocate a new symbol on the objfile's obstack. */
21312
21313 static struct symbol *
21314 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21315 struct symbol *space)
21316 {
21317 struct dwarf2_per_objfile *dwarf2_per_objfile
21318 = cu->per_cu->dwarf2_per_objfile;
21319 struct objfile *objfile = dwarf2_per_objfile->objfile;
21320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21321 struct symbol *sym = NULL;
21322 const char *name;
21323 struct attribute *attr = NULL;
21324 struct attribute *attr2 = NULL;
21325 CORE_ADDR baseaddr;
21326 struct pending **list_to_add = NULL;
21327
21328 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21329
21330 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21331
21332 name = dwarf2_name (die, cu);
21333 if (name)
21334 {
21335 const char *linkagename;
21336 int suppress_add = 0;
21337
21338 if (space)
21339 sym = space;
21340 else
21341 sym = allocate_symbol (objfile);
21342 OBJSTAT (objfile, n_syms++);
21343
21344 /* Cache this symbol's name and the name's demangled form (if any). */
21345 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21346 linkagename = dwarf2_physname (name, die, cu);
21347 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21348
21349 /* Fortran does not have mangling standard and the mangling does differ
21350 between gfortran, iFort etc. */
21351 if (cu->language == language_fortran
21352 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21353 symbol_set_demangled_name (&(sym->ginfo),
21354 dwarf2_full_name (name, die, cu),
21355 NULL);
21356
21357 /* Default assumptions.
21358 Use the passed type or decode it from the die. */
21359 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21360 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21361 if (type != NULL)
21362 SYMBOL_TYPE (sym) = type;
21363 else
21364 SYMBOL_TYPE (sym) = die_type (die, cu);
21365 attr = dwarf2_attr (die,
21366 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21367 cu);
21368 if (attr)
21369 {
21370 SYMBOL_LINE (sym) = DW_UNSND (attr);
21371 }
21372
21373 attr = dwarf2_attr (die,
21374 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21375 cu);
21376 if (attr)
21377 {
21378 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21379 struct file_entry *fe;
21380
21381 if (cu->line_header != NULL)
21382 fe = cu->line_header->file_name_at (file_index);
21383 else
21384 fe = NULL;
21385
21386 if (fe == NULL)
21387 complaint (_("file index out of range"));
21388 else
21389 symbol_set_symtab (sym, fe->symtab);
21390 }
21391
21392 switch (die->tag)
21393 {
21394 case DW_TAG_label:
21395 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21396 if (attr)
21397 {
21398 CORE_ADDR addr;
21399
21400 addr = attr_value_as_address (attr);
21401 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21402 SYMBOL_VALUE_ADDRESS (sym) = addr;
21403 }
21404 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21405 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21406 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21407 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21408 break;
21409 case DW_TAG_subprogram:
21410 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21411 finish_block. */
21412 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21413 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21414 if ((attr2 && (DW_UNSND (attr2) != 0))
21415 || cu->language == language_ada)
21416 {
21417 /* Subprograms marked external are stored as a global symbol.
21418 Ada subprograms, whether marked external or not, are always
21419 stored as a global symbol, because we want to be able to
21420 access them globally. For instance, we want to be able
21421 to break on a nested subprogram without having to
21422 specify the context. */
21423 list_to_add = cu->builder->get_global_symbols ();
21424 }
21425 else
21426 {
21427 list_to_add = cu->list_in_scope;
21428 }
21429 break;
21430 case DW_TAG_inlined_subroutine:
21431 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21432 finish_block. */
21433 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21434 SYMBOL_INLINED (sym) = 1;
21435 list_to_add = cu->list_in_scope;
21436 break;
21437 case DW_TAG_template_value_param:
21438 suppress_add = 1;
21439 /* Fall through. */
21440 case DW_TAG_constant:
21441 case DW_TAG_variable:
21442 case DW_TAG_member:
21443 /* Compilation with minimal debug info may result in
21444 variables with missing type entries. Change the
21445 misleading `void' type to something sensible. */
21446 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21447 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21448
21449 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21450 /* In the case of DW_TAG_member, we should only be called for
21451 static const members. */
21452 if (die->tag == DW_TAG_member)
21453 {
21454 /* dwarf2_add_field uses die_is_declaration,
21455 so we do the same. */
21456 gdb_assert (die_is_declaration (die, cu));
21457 gdb_assert (attr);
21458 }
21459 if (attr)
21460 {
21461 dwarf2_const_value (attr, sym, cu);
21462 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21463 if (!suppress_add)
21464 {
21465 if (attr2 && (DW_UNSND (attr2) != 0))
21466 list_to_add = cu->builder->get_global_symbols ();
21467 else
21468 list_to_add = cu->list_in_scope;
21469 }
21470 break;
21471 }
21472 attr = dwarf2_attr (die, DW_AT_location, cu);
21473 if (attr)
21474 {
21475 var_decode_location (attr, sym, cu);
21476 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21477
21478 /* Fortran explicitly imports any global symbols to the local
21479 scope by DW_TAG_common_block. */
21480 if (cu->language == language_fortran && die->parent
21481 && die->parent->tag == DW_TAG_common_block)
21482 attr2 = NULL;
21483
21484 if (SYMBOL_CLASS (sym) == LOC_STATIC
21485 && SYMBOL_VALUE_ADDRESS (sym) == 0
21486 && !dwarf2_per_objfile->has_section_at_zero)
21487 {
21488 /* When a static variable is eliminated by the linker,
21489 the corresponding debug information is not stripped
21490 out, but the variable address is set to null;
21491 do not add such variables into symbol table. */
21492 }
21493 else if (attr2 && (DW_UNSND (attr2) != 0))
21494 {
21495 /* Workaround gfortran PR debug/40040 - it uses
21496 DW_AT_location for variables in -fPIC libraries which may
21497 get overriden by other libraries/executable and get
21498 a different address. Resolve it by the minimal symbol
21499 which may come from inferior's executable using copy
21500 relocation. Make this workaround only for gfortran as for
21501 other compilers GDB cannot guess the minimal symbol
21502 Fortran mangling kind. */
21503 if (cu->language == language_fortran && die->parent
21504 && die->parent->tag == DW_TAG_module
21505 && cu->producer
21506 && startswith (cu->producer, "GNU Fortran"))
21507 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21508
21509 /* A variable with DW_AT_external is never static,
21510 but it may be block-scoped. */
21511 list_to_add
21512 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21513 ? cu->builder->get_global_symbols ()
21514 : cu->list_in_scope);
21515 }
21516 else
21517 list_to_add = cu->list_in_scope;
21518 }
21519 else
21520 {
21521 /* We do not know the address of this symbol.
21522 If it is an external symbol and we have type information
21523 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21524 The address of the variable will then be determined from
21525 the minimal symbol table whenever the variable is
21526 referenced. */
21527 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21528
21529 /* Fortran explicitly imports any global symbols to the local
21530 scope by DW_TAG_common_block. */
21531 if (cu->language == language_fortran && die->parent
21532 && die->parent->tag == DW_TAG_common_block)
21533 {
21534 /* SYMBOL_CLASS doesn't matter here because
21535 read_common_block is going to reset it. */
21536 if (!suppress_add)
21537 list_to_add = cu->list_in_scope;
21538 }
21539 else if (attr2 && (DW_UNSND (attr2) != 0)
21540 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21541 {
21542 /* A variable with DW_AT_external is never static, but it
21543 may be block-scoped. */
21544 list_to_add
21545 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21546 ? cu->builder->get_global_symbols ()
21547 : cu->list_in_scope);
21548
21549 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21550 }
21551 else if (!die_is_declaration (die, cu))
21552 {
21553 /* Use the default LOC_OPTIMIZED_OUT class. */
21554 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21555 if (!suppress_add)
21556 list_to_add = cu->list_in_scope;
21557 }
21558 }
21559 break;
21560 case DW_TAG_formal_parameter:
21561 {
21562 /* If we are inside a function, mark this as an argument. If
21563 not, we might be looking at an argument to an inlined function
21564 when we do not have enough information to show inlined frames;
21565 pretend it's a local variable in that case so that the user can
21566 still see it. */
21567 struct context_stack *curr
21568 = cu->builder->get_current_context_stack ();
21569 if (curr != nullptr && curr->name != nullptr)
21570 SYMBOL_IS_ARGUMENT (sym) = 1;
21571 attr = dwarf2_attr (die, DW_AT_location, cu);
21572 if (attr)
21573 {
21574 var_decode_location (attr, sym, cu);
21575 }
21576 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21577 if (attr)
21578 {
21579 dwarf2_const_value (attr, sym, cu);
21580 }
21581
21582 list_to_add = cu->list_in_scope;
21583 }
21584 break;
21585 case DW_TAG_unspecified_parameters:
21586 /* From varargs functions; gdb doesn't seem to have any
21587 interest in this information, so just ignore it for now.
21588 (FIXME?) */
21589 break;
21590 case DW_TAG_template_type_param:
21591 suppress_add = 1;
21592 /* Fall through. */
21593 case DW_TAG_class_type:
21594 case DW_TAG_interface_type:
21595 case DW_TAG_structure_type:
21596 case DW_TAG_union_type:
21597 case DW_TAG_set_type:
21598 case DW_TAG_enumeration_type:
21599 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21600 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21601
21602 {
21603 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21604 really ever be static objects: otherwise, if you try
21605 to, say, break of a class's method and you're in a file
21606 which doesn't mention that class, it won't work unless
21607 the check for all static symbols in lookup_symbol_aux
21608 saves you. See the OtherFileClass tests in
21609 gdb.c++/namespace.exp. */
21610
21611 if (!suppress_add)
21612 {
21613 list_to_add
21614 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21615 && cu->language == language_cplus
21616 ? cu->builder->get_global_symbols ()
21617 : cu->list_in_scope);
21618
21619 /* The semantics of C++ state that "struct foo {
21620 ... }" also defines a typedef for "foo". */
21621 if (cu->language == language_cplus
21622 || cu->language == language_ada
21623 || cu->language == language_d
21624 || cu->language == language_rust)
21625 {
21626 /* The symbol's name is already allocated along
21627 with this objfile, so we don't need to
21628 duplicate it for the type. */
21629 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21630 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21631 }
21632 }
21633 }
21634 break;
21635 case DW_TAG_typedef:
21636 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21637 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21638 list_to_add = cu->list_in_scope;
21639 break;
21640 case DW_TAG_base_type:
21641 case DW_TAG_subrange_type:
21642 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21643 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21644 list_to_add = cu->list_in_scope;
21645 break;
21646 case DW_TAG_enumerator:
21647 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21648 if (attr)
21649 {
21650 dwarf2_const_value (attr, sym, cu);
21651 }
21652 {
21653 /* NOTE: carlton/2003-11-10: See comment above in the
21654 DW_TAG_class_type, etc. block. */
21655
21656 list_to_add
21657 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21658 && cu->language == language_cplus
21659 ? cu->builder->get_global_symbols ()
21660 : cu->list_in_scope);
21661 }
21662 break;
21663 case DW_TAG_imported_declaration:
21664 case DW_TAG_namespace:
21665 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21666 list_to_add = cu->builder->get_global_symbols ();
21667 break;
21668 case DW_TAG_module:
21669 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21670 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21671 list_to_add = cu->builder->get_global_symbols ();
21672 break;
21673 case DW_TAG_common_block:
21674 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21675 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21676 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21677 break;
21678 default:
21679 /* Not a tag we recognize. Hopefully we aren't processing
21680 trash data, but since we must specifically ignore things
21681 we don't recognize, there is nothing else we should do at
21682 this point. */
21683 complaint (_("unsupported tag: '%s'"),
21684 dwarf_tag_name (die->tag));
21685 break;
21686 }
21687
21688 if (suppress_add)
21689 {
21690 sym->hash_next = objfile->template_symbols;
21691 objfile->template_symbols = sym;
21692 list_to_add = NULL;
21693 }
21694
21695 if (list_to_add != NULL)
21696 dw2_add_symbol_to_list (sym, list_to_add);
21697
21698 /* For the benefit of old versions of GCC, check for anonymous
21699 namespaces based on the demangled name. */
21700 if (!cu->processing_has_namespace_info
21701 && cu->language == language_cplus)
21702 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21703 }
21704 return (sym);
21705 }
21706
21707 /* Given an attr with a DW_FORM_dataN value in host byte order,
21708 zero-extend it as appropriate for the symbol's type. The DWARF
21709 standard (v4) is not entirely clear about the meaning of using
21710 DW_FORM_dataN for a constant with a signed type, where the type is
21711 wider than the data. The conclusion of a discussion on the DWARF
21712 list was that this is unspecified. We choose to always zero-extend
21713 because that is the interpretation long in use by GCC. */
21714
21715 static gdb_byte *
21716 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21717 struct dwarf2_cu *cu, LONGEST *value, int bits)
21718 {
21719 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21720 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21721 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21722 LONGEST l = DW_UNSND (attr);
21723
21724 if (bits < sizeof (*value) * 8)
21725 {
21726 l &= ((LONGEST) 1 << bits) - 1;
21727 *value = l;
21728 }
21729 else if (bits == sizeof (*value) * 8)
21730 *value = l;
21731 else
21732 {
21733 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21734 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21735 return bytes;
21736 }
21737
21738 return NULL;
21739 }
21740
21741 /* Read a constant value from an attribute. Either set *VALUE, or if
21742 the value does not fit in *VALUE, set *BYTES - either already
21743 allocated on the objfile obstack, or newly allocated on OBSTACK,
21744 or, set *BATON, if we translated the constant to a location
21745 expression. */
21746
21747 static void
21748 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21749 const char *name, struct obstack *obstack,
21750 struct dwarf2_cu *cu,
21751 LONGEST *value, const gdb_byte **bytes,
21752 struct dwarf2_locexpr_baton **baton)
21753 {
21754 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21755 struct comp_unit_head *cu_header = &cu->header;
21756 struct dwarf_block *blk;
21757 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21758 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21759
21760 *value = 0;
21761 *bytes = NULL;
21762 *baton = NULL;
21763
21764 switch (attr->form)
21765 {
21766 case DW_FORM_addr:
21767 case DW_FORM_GNU_addr_index:
21768 {
21769 gdb_byte *data;
21770
21771 if (TYPE_LENGTH (type) != cu_header->addr_size)
21772 dwarf2_const_value_length_mismatch_complaint (name,
21773 cu_header->addr_size,
21774 TYPE_LENGTH (type));
21775 /* Symbols of this form are reasonably rare, so we just
21776 piggyback on the existing location code rather than writing
21777 a new implementation of symbol_computed_ops. */
21778 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21779 (*baton)->per_cu = cu->per_cu;
21780 gdb_assert ((*baton)->per_cu);
21781
21782 (*baton)->size = 2 + cu_header->addr_size;
21783 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21784 (*baton)->data = data;
21785
21786 data[0] = DW_OP_addr;
21787 store_unsigned_integer (&data[1], cu_header->addr_size,
21788 byte_order, DW_ADDR (attr));
21789 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21790 }
21791 break;
21792 case DW_FORM_string:
21793 case DW_FORM_strp:
21794 case DW_FORM_GNU_str_index:
21795 case DW_FORM_GNU_strp_alt:
21796 /* DW_STRING is already allocated on the objfile obstack, point
21797 directly to it. */
21798 *bytes = (const gdb_byte *) DW_STRING (attr);
21799 break;
21800 case DW_FORM_block1:
21801 case DW_FORM_block2:
21802 case DW_FORM_block4:
21803 case DW_FORM_block:
21804 case DW_FORM_exprloc:
21805 case DW_FORM_data16:
21806 blk = DW_BLOCK (attr);
21807 if (TYPE_LENGTH (type) != blk->size)
21808 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21809 TYPE_LENGTH (type));
21810 *bytes = blk->data;
21811 break;
21812
21813 /* The DW_AT_const_value attributes are supposed to carry the
21814 symbol's value "represented as it would be on the target
21815 architecture." By the time we get here, it's already been
21816 converted to host endianness, so we just need to sign- or
21817 zero-extend it as appropriate. */
21818 case DW_FORM_data1:
21819 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21820 break;
21821 case DW_FORM_data2:
21822 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21823 break;
21824 case DW_FORM_data4:
21825 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21826 break;
21827 case DW_FORM_data8:
21828 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21829 break;
21830
21831 case DW_FORM_sdata:
21832 case DW_FORM_implicit_const:
21833 *value = DW_SND (attr);
21834 break;
21835
21836 case DW_FORM_udata:
21837 *value = DW_UNSND (attr);
21838 break;
21839
21840 default:
21841 complaint (_("unsupported const value attribute form: '%s'"),
21842 dwarf_form_name (attr->form));
21843 *value = 0;
21844 break;
21845 }
21846 }
21847
21848
21849 /* Copy constant value from an attribute to a symbol. */
21850
21851 static void
21852 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21853 struct dwarf2_cu *cu)
21854 {
21855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21856 LONGEST value;
21857 const gdb_byte *bytes;
21858 struct dwarf2_locexpr_baton *baton;
21859
21860 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21861 SYMBOL_PRINT_NAME (sym),
21862 &objfile->objfile_obstack, cu,
21863 &value, &bytes, &baton);
21864
21865 if (baton != NULL)
21866 {
21867 SYMBOL_LOCATION_BATON (sym) = baton;
21868 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21869 }
21870 else if (bytes != NULL)
21871 {
21872 SYMBOL_VALUE_BYTES (sym) = bytes;
21873 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21874 }
21875 else
21876 {
21877 SYMBOL_VALUE (sym) = value;
21878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21879 }
21880 }
21881
21882 /* Return the type of the die in question using its DW_AT_type attribute. */
21883
21884 static struct type *
21885 die_type (struct die_info *die, struct dwarf2_cu *cu)
21886 {
21887 struct attribute *type_attr;
21888
21889 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21890 if (!type_attr)
21891 {
21892 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21893 /* A missing DW_AT_type represents a void type. */
21894 return objfile_type (objfile)->builtin_void;
21895 }
21896
21897 return lookup_die_type (die, type_attr, cu);
21898 }
21899
21900 /* True iff CU's producer generates GNAT Ada auxiliary information
21901 that allows to find parallel types through that information instead
21902 of having to do expensive parallel lookups by type name. */
21903
21904 static int
21905 need_gnat_info (struct dwarf2_cu *cu)
21906 {
21907 /* Assume that the Ada compiler was GNAT, which always produces
21908 the auxiliary information. */
21909 return (cu->language == language_ada);
21910 }
21911
21912 /* Return the auxiliary type of the die in question using its
21913 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21914 attribute is not present. */
21915
21916 static struct type *
21917 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21918 {
21919 struct attribute *type_attr;
21920
21921 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21922 if (!type_attr)
21923 return NULL;
21924
21925 return lookup_die_type (die, type_attr, cu);
21926 }
21927
21928 /* If DIE has a descriptive_type attribute, then set the TYPE's
21929 descriptive type accordingly. */
21930
21931 static void
21932 set_descriptive_type (struct type *type, struct die_info *die,
21933 struct dwarf2_cu *cu)
21934 {
21935 struct type *descriptive_type = die_descriptive_type (die, cu);
21936
21937 if (descriptive_type)
21938 {
21939 ALLOCATE_GNAT_AUX_TYPE (type);
21940 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21941 }
21942 }
21943
21944 /* Return the containing type of the die in question using its
21945 DW_AT_containing_type attribute. */
21946
21947 static struct type *
21948 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21949 {
21950 struct attribute *type_attr;
21951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21952
21953 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21954 if (!type_attr)
21955 error (_("Dwarf Error: Problem turning containing type into gdb type "
21956 "[in module %s]"), objfile_name (objfile));
21957
21958 return lookup_die_type (die, type_attr, cu);
21959 }
21960
21961 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21962
21963 static struct type *
21964 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21965 {
21966 struct dwarf2_per_objfile *dwarf2_per_objfile
21967 = cu->per_cu->dwarf2_per_objfile;
21968 struct objfile *objfile = dwarf2_per_objfile->objfile;
21969 char *saved;
21970
21971 std::string message
21972 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21973 objfile_name (objfile),
21974 sect_offset_str (cu->header.sect_off),
21975 sect_offset_str (die->sect_off));
21976 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21977 message.c_str (), message.length ());
21978
21979 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21980 }
21981
21982 /* Look up the type of DIE in CU using its type attribute ATTR.
21983 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21984 DW_AT_containing_type.
21985 If there is no type substitute an error marker. */
21986
21987 static struct type *
21988 lookup_die_type (struct die_info *die, const struct attribute *attr,
21989 struct dwarf2_cu *cu)
21990 {
21991 struct dwarf2_per_objfile *dwarf2_per_objfile
21992 = cu->per_cu->dwarf2_per_objfile;
21993 struct objfile *objfile = dwarf2_per_objfile->objfile;
21994 struct type *this_type;
21995
21996 gdb_assert (attr->name == DW_AT_type
21997 || attr->name == DW_AT_GNAT_descriptive_type
21998 || attr->name == DW_AT_containing_type);
21999
22000 /* First see if we have it cached. */
22001
22002 if (attr->form == DW_FORM_GNU_ref_alt)
22003 {
22004 struct dwarf2_per_cu_data *per_cu;
22005 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22006
22007 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22008 dwarf2_per_objfile);
22009 this_type = get_die_type_at_offset (sect_off, per_cu);
22010 }
22011 else if (attr_form_is_ref (attr))
22012 {
22013 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22014
22015 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22016 }
22017 else if (attr->form == DW_FORM_ref_sig8)
22018 {
22019 ULONGEST signature = DW_SIGNATURE (attr);
22020
22021 return get_signatured_type (die, signature, cu);
22022 }
22023 else
22024 {
22025 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22026 " at %s [in module %s]"),
22027 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22028 objfile_name (objfile));
22029 return build_error_marker_type (cu, die);
22030 }
22031
22032 /* If not cached we need to read it in. */
22033
22034 if (this_type == NULL)
22035 {
22036 struct die_info *type_die = NULL;
22037 struct dwarf2_cu *type_cu = cu;
22038
22039 if (attr_form_is_ref (attr))
22040 type_die = follow_die_ref (die, attr, &type_cu);
22041 if (type_die == NULL)
22042 return build_error_marker_type (cu, die);
22043 /* If we find the type now, it's probably because the type came
22044 from an inter-CU reference and the type's CU got expanded before
22045 ours. */
22046 this_type = read_type_die (type_die, type_cu);
22047 }
22048
22049 /* If we still don't have a type use an error marker. */
22050
22051 if (this_type == NULL)
22052 return build_error_marker_type (cu, die);
22053
22054 return this_type;
22055 }
22056
22057 /* Return the type in DIE, CU.
22058 Returns NULL for invalid types.
22059
22060 This first does a lookup in die_type_hash,
22061 and only reads the die in if necessary.
22062
22063 NOTE: This can be called when reading in partial or full symbols. */
22064
22065 static struct type *
22066 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22067 {
22068 struct type *this_type;
22069
22070 this_type = get_die_type (die, cu);
22071 if (this_type)
22072 return this_type;
22073
22074 return read_type_die_1 (die, cu);
22075 }
22076
22077 /* Read the type in DIE, CU.
22078 Returns NULL for invalid types. */
22079
22080 static struct type *
22081 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22082 {
22083 struct type *this_type = NULL;
22084
22085 switch (die->tag)
22086 {
22087 case DW_TAG_class_type:
22088 case DW_TAG_interface_type:
22089 case DW_TAG_structure_type:
22090 case DW_TAG_union_type:
22091 this_type = read_structure_type (die, cu);
22092 break;
22093 case DW_TAG_enumeration_type:
22094 this_type = read_enumeration_type (die, cu);
22095 break;
22096 case DW_TAG_subprogram:
22097 case DW_TAG_subroutine_type:
22098 case DW_TAG_inlined_subroutine:
22099 this_type = read_subroutine_type (die, cu);
22100 break;
22101 case DW_TAG_array_type:
22102 this_type = read_array_type (die, cu);
22103 break;
22104 case DW_TAG_set_type:
22105 this_type = read_set_type (die, cu);
22106 break;
22107 case DW_TAG_pointer_type:
22108 this_type = read_tag_pointer_type (die, cu);
22109 break;
22110 case DW_TAG_ptr_to_member_type:
22111 this_type = read_tag_ptr_to_member_type (die, cu);
22112 break;
22113 case DW_TAG_reference_type:
22114 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22115 break;
22116 case DW_TAG_rvalue_reference_type:
22117 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22118 break;
22119 case DW_TAG_const_type:
22120 this_type = read_tag_const_type (die, cu);
22121 break;
22122 case DW_TAG_volatile_type:
22123 this_type = read_tag_volatile_type (die, cu);
22124 break;
22125 case DW_TAG_restrict_type:
22126 this_type = read_tag_restrict_type (die, cu);
22127 break;
22128 case DW_TAG_string_type:
22129 this_type = read_tag_string_type (die, cu);
22130 break;
22131 case DW_TAG_typedef:
22132 this_type = read_typedef (die, cu);
22133 break;
22134 case DW_TAG_subrange_type:
22135 this_type = read_subrange_type (die, cu);
22136 break;
22137 case DW_TAG_base_type:
22138 this_type = read_base_type (die, cu);
22139 break;
22140 case DW_TAG_unspecified_type:
22141 this_type = read_unspecified_type (die, cu);
22142 break;
22143 case DW_TAG_namespace:
22144 this_type = read_namespace_type (die, cu);
22145 break;
22146 case DW_TAG_module:
22147 this_type = read_module_type (die, cu);
22148 break;
22149 case DW_TAG_atomic_type:
22150 this_type = read_tag_atomic_type (die, cu);
22151 break;
22152 default:
22153 complaint (_("unexpected tag in read_type_die: '%s'"),
22154 dwarf_tag_name (die->tag));
22155 break;
22156 }
22157
22158 return this_type;
22159 }
22160
22161 /* See if we can figure out if the class lives in a namespace. We do
22162 this by looking for a member function; its demangled name will
22163 contain namespace info, if there is any.
22164 Return the computed name or NULL.
22165 Space for the result is allocated on the objfile's obstack.
22166 This is the full-die version of guess_partial_die_structure_name.
22167 In this case we know DIE has no useful parent. */
22168
22169 static char *
22170 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22171 {
22172 struct die_info *spec_die;
22173 struct dwarf2_cu *spec_cu;
22174 struct die_info *child;
22175 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22176
22177 spec_cu = cu;
22178 spec_die = die_specification (die, &spec_cu);
22179 if (spec_die != NULL)
22180 {
22181 die = spec_die;
22182 cu = spec_cu;
22183 }
22184
22185 for (child = die->child;
22186 child != NULL;
22187 child = child->sibling)
22188 {
22189 if (child->tag == DW_TAG_subprogram)
22190 {
22191 const char *linkage_name = dw2_linkage_name (child, cu);
22192
22193 if (linkage_name != NULL)
22194 {
22195 char *actual_name
22196 = language_class_name_from_physname (cu->language_defn,
22197 linkage_name);
22198 char *name = NULL;
22199
22200 if (actual_name != NULL)
22201 {
22202 const char *die_name = dwarf2_name (die, cu);
22203
22204 if (die_name != NULL
22205 && strcmp (die_name, actual_name) != 0)
22206 {
22207 /* Strip off the class name from the full name.
22208 We want the prefix. */
22209 int die_name_len = strlen (die_name);
22210 int actual_name_len = strlen (actual_name);
22211
22212 /* Test for '::' as a sanity check. */
22213 if (actual_name_len > die_name_len + 2
22214 && actual_name[actual_name_len
22215 - die_name_len - 1] == ':')
22216 name = (char *) obstack_copy0 (
22217 &objfile->per_bfd->storage_obstack,
22218 actual_name, actual_name_len - die_name_len - 2);
22219 }
22220 }
22221 xfree (actual_name);
22222 return name;
22223 }
22224 }
22225 }
22226
22227 return NULL;
22228 }
22229
22230 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22231 prefix part in such case. See
22232 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22233
22234 static const char *
22235 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22236 {
22237 struct attribute *attr;
22238 const char *base;
22239
22240 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22241 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22242 return NULL;
22243
22244 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22245 return NULL;
22246
22247 attr = dw2_linkage_name_attr (die, cu);
22248 if (attr == NULL || DW_STRING (attr) == NULL)
22249 return NULL;
22250
22251 /* dwarf2_name had to be already called. */
22252 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22253
22254 /* Strip the base name, keep any leading namespaces/classes. */
22255 base = strrchr (DW_STRING (attr), ':');
22256 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22257 return "";
22258
22259 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22260 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22261 DW_STRING (attr),
22262 &base[-1] - DW_STRING (attr));
22263 }
22264
22265 /* Return the name of the namespace/class that DIE is defined within,
22266 or "" if we can't tell. The caller should not xfree the result.
22267
22268 For example, if we're within the method foo() in the following
22269 code:
22270
22271 namespace N {
22272 class C {
22273 void foo () {
22274 }
22275 };
22276 }
22277
22278 then determine_prefix on foo's die will return "N::C". */
22279
22280 static const char *
22281 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22282 {
22283 struct dwarf2_per_objfile *dwarf2_per_objfile
22284 = cu->per_cu->dwarf2_per_objfile;
22285 struct die_info *parent, *spec_die;
22286 struct dwarf2_cu *spec_cu;
22287 struct type *parent_type;
22288 const char *retval;
22289
22290 if (cu->language != language_cplus
22291 && cu->language != language_fortran && cu->language != language_d
22292 && cu->language != language_rust)
22293 return "";
22294
22295 retval = anonymous_struct_prefix (die, cu);
22296 if (retval)
22297 return retval;
22298
22299 /* We have to be careful in the presence of DW_AT_specification.
22300 For example, with GCC 3.4, given the code
22301
22302 namespace N {
22303 void foo() {
22304 // Definition of N::foo.
22305 }
22306 }
22307
22308 then we'll have a tree of DIEs like this:
22309
22310 1: DW_TAG_compile_unit
22311 2: DW_TAG_namespace // N
22312 3: DW_TAG_subprogram // declaration of N::foo
22313 4: DW_TAG_subprogram // definition of N::foo
22314 DW_AT_specification // refers to die #3
22315
22316 Thus, when processing die #4, we have to pretend that we're in
22317 the context of its DW_AT_specification, namely the contex of die
22318 #3. */
22319 spec_cu = cu;
22320 spec_die = die_specification (die, &spec_cu);
22321 if (spec_die == NULL)
22322 parent = die->parent;
22323 else
22324 {
22325 parent = spec_die->parent;
22326 cu = spec_cu;
22327 }
22328
22329 if (parent == NULL)
22330 return "";
22331 else if (parent->building_fullname)
22332 {
22333 const char *name;
22334 const char *parent_name;
22335
22336 /* It has been seen on RealView 2.2 built binaries,
22337 DW_TAG_template_type_param types actually _defined_ as
22338 children of the parent class:
22339
22340 enum E {};
22341 template class <class Enum> Class{};
22342 Class<enum E> class_e;
22343
22344 1: DW_TAG_class_type (Class)
22345 2: DW_TAG_enumeration_type (E)
22346 3: DW_TAG_enumerator (enum1:0)
22347 3: DW_TAG_enumerator (enum2:1)
22348 ...
22349 2: DW_TAG_template_type_param
22350 DW_AT_type DW_FORM_ref_udata (E)
22351
22352 Besides being broken debug info, it can put GDB into an
22353 infinite loop. Consider:
22354
22355 When we're building the full name for Class<E>, we'll start
22356 at Class, and go look over its template type parameters,
22357 finding E. We'll then try to build the full name of E, and
22358 reach here. We're now trying to build the full name of E,
22359 and look over the parent DIE for containing scope. In the
22360 broken case, if we followed the parent DIE of E, we'd again
22361 find Class, and once again go look at its template type
22362 arguments, etc., etc. Simply don't consider such parent die
22363 as source-level parent of this die (it can't be, the language
22364 doesn't allow it), and break the loop here. */
22365 name = dwarf2_name (die, cu);
22366 parent_name = dwarf2_name (parent, cu);
22367 complaint (_("template param type '%s' defined within parent '%s'"),
22368 name ? name : "<unknown>",
22369 parent_name ? parent_name : "<unknown>");
22370 return "";
22371 }
22372 else
22373 switch (parent->tag)
22374 {
22375 case DW_TAG_namespace:
22376 parent_type = read_type_die (parent, cu);
22377 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22378 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22379 Work around this problem here. */
22380 if (cu->language == language_cplus
22381 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22382 return "";
22383 /* We give a name to even anonymous namespaces. */
22384 return TYPE_NAME (parent_type);
22385 case DW_TAG_class_type:
22386 case DW_TAG_interface_type:
22387 case DW_TAG_structure_type:
22388 case DW_TAG_union_type:
22389 case DW_TAG_module:
22390 parent_type = read_type_die (parent, cu);
22391 if (TYPE_NAME (parent_type) != NULL)
22392 return TYPE_NAME (parent_type);
22393 else
22394 /* An anonymous structure is only allowed non-static data
22395 members; no typedefs, no member functions, et cetera.
22396 So it does not need a prefix. */
22397 return "";
22398 case DW_TAG_compile_unit:
22399 case DW_TAG_partial_unit:
22400 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22401 if (cu->language == language_cplus
22402 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22403 && die->child != NULL
22404 && (die->tag == DW_TAG_class_type
22405 || die->tag == DW_TAG_structure_type
22406 || die->tag == DW_TAG_union_type))
22407 {
22408 char *name = guess_full_die_structure_name (die, cu);
22409 if (name != NULL)
22410 return name;
22411 }
22412 return "";
22413 case DW_TAG_enumeration_type:
22414 parent_type = read_type_die (parent, cu);
22415 if (TYPE_DECLARED_CLASS (parent_type))
22416 {
22417 if (TYPE_NAME (parent_type) != NULL)
22418 return TYPE_NAME (parent_type);
22419 return "";
22420 }
22421 /* Fall through. */
22422 default:
22423 return determine_prefix (parent, cu);
22424 }
22425 }
22426
22427 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22428 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22429 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22430 an obconcat, otherwise allocate storage for the result. The CU argument is
22431 used to determine the language and hence, the appropriate separator. */
22432
22433 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22434
22435 static char *
22436 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22437 int physname, struct dwarf2_cu *cu)
22438 {
22439 const char *lead = "";
22440 const char *sep;
22441
22442 if (suffix == NULL || suffix[0] == '\0'
22443 || prefix == NULL || prefix[0] == '\0')
22444 sep = "";
22445 else if (cu->language == language_d)
22446 {
22447 /* For D, the 'main' function could be defined in any module, but it
22448 should never be prefixed. */
22449 if (strcmp (suffix, "D main") == 0)
22450 {
22451 prefix = "";
22452 sep = "";
22453 }
22454 else
22455 sep = ".";
22456 }
22457 else if (cu->language == language_fortran && physname)
22458 {
22459 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22460 DW_AT_MIPS_linkage_name is preferred and used instead. */
22461
22462 lead = "__";
22463 sep = "_MOD_";
22464 }
22465 else
22466 sep = "::";
22467
22468 if (prefix == NULL)
22469 prefix = "";
22470 if (suffix == NULL)
22471 suffix = "";
22472
22473 if (obs == NULL)
22474 {
22475 char *retval
22476 = ((char *)
22477 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22478
22479 strcpy (retval, lead);
22480 strcat (retval, prefix);
22481 strcat (retval, sep);
22482 strcat (retval, suffix);
22483 return retval;
22484 }
22485 else
22486 {
22487 /* We have an obstack. */
22488 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22489 }
22490 }
22491
22492 /* Return sibling of die, NULL if no sibling. */
22493
22494 static struct die_info *
22495 sibling_die (struct die_info *die)
22496 {
22497 return die->sibling;
22498 }
22499
22500 /* Get name of a die, return NULL if not found. */
22501
22502 static const char *
22503 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22504 struct obstack *obstack)
22505 {
22506 if (name && cu->language == language_cplus)
22507 {
22508 std::string canon_name = cp_canonicalize_string (name);
22509
22510 if (!canon_name.empty ())
22511 {
22512 if (canon_name != name)
22513 name = (const char *) obstack_copy0 (obstack,
22514 canon_name.c_str (),
22515 canon_name.length ());
22516 }
22517 }
22518
22519 return name;
22520 }
22521
22522 /* Get name of a die, return NULL if not found.
22523 Anonymous namespaces are converted to their magic string. */
22524
22525 static const char *
22526 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22527 {
22528 struct attribute *attr;
22529 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22530
22531 attr = dwarf2_attr (die, DW_AT_name, cu);
22532 if ((!attr || !DW_STRING (attr))
22533 && die->tag != DW_TAG_namespace
22534 && die->tag != DW_TAG_class_type
22535 && die->tag != DW_TAG_interface_type
22536 && die->tag != DW_TAG_structure_type
22537 && die->tag != DW_TAG_union_type)
22538 return NULL;
22539
22540 switch (die->tag)
22541 {
22542 case DW_TAG_compile_unit:
22543 case DW_TAG_partial_unit:
22544 /* Compilation units have a DW_AT_name that is a filename, not
22545 a source language identifier. */
22546 case DW_TAG_enumeration_type:
22547 case DW_TAG_enumerator:
22548 /* These tags always have simple identifiers already; no need
22549 to canonicalize them. */
22550 return DW_STRING (attr);
22551
22552 case DW_TAG_namespace:
22553 if (attr != NULL && DW_STRING (attr) != NULL)
22554 return DW_STRING (attr);
22555 return CP_ANONYMOUS_NAMESPACE_STR;
22556
22557 case DW_TAG_class_type:
22558 case DW_TAG_interface_type:
22559 case DW_TAG_structure_type:
22560 case DW_TAG_union_type:
22561 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22562 structures or unions. These were of the form "._%d" in GCC 4.1,
22563 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22564 and GCC 4.4. We work around this problem by ignoring these. */
22565 if (attr && DW_STRING (attr)
22566 && (startswith (DW_STRING (attr), "._")
22567 || startswith (DW_STRING (attr), "<anonymous")))
22568 return NULL;
22569
22570 /* GCC might emit a nameless typedef that has a linkage name. See
22571 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22572 if (!attr || DW_STRING (attr) == NULL)
22573 {
22574 char *demangled = NULL;
22575
22576 attr = dw2_linkage_name_attr (die, cu);
22577 if (attr == NULL || DW_STRING (attr) == NULL)
22578 return NULL;
22579
22580 /* Avoid demangling DW_STRING (attr) the second time on a second
22581 call for the same DIE. */
22582 if (!DW_STRING_IS_CANONICAL (attr))
22583 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22584
22585 if (demangled)
22586 {
22587 const char *base;
22588
22589 /* FIXME: we already did this for the partial symbol... */
22590 DW_STRING (attr)
22591 = ((const char *)
22592 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22593 demangled, strlen (demangled)));
22594 DW_STRING_IS_CANONICAL (attr) = 1;
22595 xfree (demangled);
22596
22597 /* Strip any leading namespaces/classes, keep only the base name.
22598 DW_AT_name for named DIEs does not contain the prefixes. */
22599 base = strrchr (DW_STRING (attr), ':');
22600 if (base && base > DW_STRING (attr) && base[-1] == ':')
22601 return &base[1];
22602 else
22603 return DW_STRING (attr);
22604 }
22605 }
22606 break;
22607
22608 default:
22609 break;
22610 }
22611
22612 if (!DW_STRING_IS_CANONICAL (attr))
22613 {
22614 DW_STRING (attr)
22615 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22616 &objfile->per_bfd->storage_obstack);
22617 DW_STRING_IS_CANONICAL (attr) = 1;
22618 }
22619 return DW_STRING (attr);
22620 }
22621
22622 /* Return the die that this die in an extension of, or NULL if there
22623 is none. *EXT_CU is the CU containing DIE on input, and the CU
22624 containing the return value on output. */
22625
22626 static struct die_info *
22627 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22628 {
22629 struct attribute *attr;
22630
22631 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22632 if (attr == NULL)
22633 return NULL;
22634
22635 return follow_die_ref (die, attr, ext_cu);
22636 }
22637
22638 /* Convert a DIE tag into its string name. */
22639
22640 static const char *
22641 dwarf_tag_name (unsigned tag)
22642 {
22643 const char *name = get_DW_TAG_name (tag);
22644
22645 if (name == NULL)
22646 return "DW_TAG_<unknown>";
22647
22648 return name;
22649 }
22650
22651 /* Convert a DWARF attribute code into its string name. */
22652
22653 static const char *
22654 dwarf_attr_name (unsigned attr)
22655 {
22656 const char *name;
22657
22658 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22659 if (attr == DW_AT_MIPS_fde)
22660 return "DW_AT_MIPS_fde";
22661 #else
22662 if (attr == DW_AT_HP_block_index)
22663 return "DW_AT_HP_block_index";
22664 #endif
22665
22666 name = get_DW_AT_name (attr);
22667
22668 if (name == NULL)
22669 return "DW_AT_<unknown>";
22670
22671 return name;
22672 }
22673
22674 /* Convert a DWARF value form code into its string name. */
22675
22676 static const char *
22677 dwarf_form_name (unsigned form)
22678 {
22679 const char *name = get_DW_FORM_name (form);
22680
22681 if (name == NULL)
22682 return "DW_FORM_<unknown>";
22683
22684 return name;
22685 }
22686
22687 static const char *
22688 dwarf_bool_name (unsigned mybool)
22689 {
22690 if (mybool)
22691 return "TRUE";
22692 else
22693 return "FALSE";
22694 }
22695
22696 /* Convert a DWARF type code into its string name. */
22697
22698 static const char *
22699 dwarf_type_encoding_name (unsigned enc)
22700 {
22701 const char *name = get_DW_ATE_name (enc);
22702
22703 if (name == NULL)
22704 return "DW_ATE_<unknown>";
22705
22706 return name;
22707 }
22708
22709 static void
22710 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22711 {
22712 unsigned int i;
22713
22714 print_spaces (indent, f);
22715 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22716 dwarf_tag_name (die->tag), die->abbrev,
22717 sect_offset_str (die->sect_off));
22718
22719 if (die->parent != NULL)
22720 {
22721 print_spaces (indent, f);
22722 fprintf_unfiltered (f, " parent at offset: %s\n",
22723 sect_offset_str (die->parent->sect_off));
22724 }
22725
22726 print_spaces (indent, f);
22727 fprintf_unfiltered (f, " has children: %s\n",
22728 dwarf_bool_name (die->child != NULL));
22729
22730 print_spaces (indent, f);
22731 fprintf_unfiltered (f, " attributes:\n");
22732
22733 for (i = 0; i < die->num_attrs; ++i)
22734 {
22735 print_spaces (indent, f);
22736 fprintf_unfiltered (f, " %s (%s) ",
22737 dwarf_attr_name (die->attrs[i].name),
22738 dwarf_form_name (die->attrs[i].form));
22739
22740 switch (die->attrs[i].form)
22741 {
22742 case DW_FORM_addr:
22743 case DW_FORM_GNU_addr_index:
22744 fprintf_unfiltered (f, "address: ");
22745 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22746 break;
22747 case DW_FORM_block2:
22748 case DW_FORM_block4:
22749 case DW_FORM_block:
22750 case DW_FORM_block1:
22751 fprintf_unfiltered (f, "block: size %s",
22752 pulongest (DW_BLOCK (&die->attrs[i])->size));
22753 break;
22754 case DW_FORM_exprloc:
22755 fprintf_unfiltered (f, "expression: size %s",
22756 pulongest (DW_BLOCK (&die->attrs[i])->size));
22757 break;
22758 case DW_FORM_data16:
22759 fprintf_unfiltered (f, "constant of 16 bytes");
22760 break;
22761 case DW_FORM_ref_addr:
22762 fprintf_unfiltered (f, "ref address: ");
22763 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22764 break;
22765 case DW_FORM_GNU_ref_alt:
22766 fprintf_unfiltered (f, "alt ref address: ");
22767 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22768 break;
22769 case DW_FORM_ref1:
22770 case DW_FORM_ref2:
22771 case DW_FORM_ref4:
22772 case DW_FORM_ref8:
22773 case DW_FORM_ref_udata:
22774 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22775 (long) (DW_UNSND (&die->attrs[i])));
22776 break;
22777 case DW_FORM_data1:
22778 case DW_FORM_data2:
22779 case DW_FORM_data4:
22780 case DW_FORM_data8:
22781 case DW_FORM_udata:
22782 case DW_FORM_sdata:
22783 fprintf_unfiltered (f, "constant: %s",
22784 pulongest (DW_UNSND (&die->attrs[i])));
22785 break;
22786 case DW_FORM_sec_offset:
22787 fprintf_unfiltered (f, "section offset: %s",
22788 pulongest (DW_UNSND (&die->attrs[i])));
22789 break;
22790 case DW_FORM_ref_sig8:
22791 fprintf_unfiltered (f, "signature: %s",
22792 hex_string (DW_SIGNATURE (&die->attrs[i])));
22793 break;
22794 case DW_FORM_string:
22795 case DW_FORM_strp:
22796 case DW_FORM_line_strp:
22797 case DW_FORM_GNU_str_index:
22798 case DW_FORM_GNU_strp_alt:
22799 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22800 DW_STRING (&die->attrs[i])
22801 ? DW_STRING (&die->attrs[i]) : "",
22802 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22803 break;
22804 case DW_FORM_flag:
22805 if (DW_UNSND (&die->attrs[i]))
22806 fprintf_unfiltered (f, "flag: TRUE");
22807 else
22808 fprintf_unfiltered (f, "flag: FALSE");
22809 break;
22810 case DW_FORM_flag_present:
22811 fprintf_unfiltered (f, "flag: TRUE");
22812 break;
22813 case DW_FORM_indirect:
22814 /* The reader will have reduced the indirect form to
22815 the "base form" so this form should not occur. */
22816 fprintf_unfiltered (f,
22817 "unexpected attribute form: DW_FORM_indirect");
22818 break;
22819 case DW_FORM_implicit_const:
22820 fprintf_unfiltered (f, "constant: %s",
22821 plongest (DW_SND (&die->attrs[i])));
22822 break;
22823 default:
22824 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22825 die->attrs[i].form);
22826 break;
22827 }
22828 fprintf_unfiltered (f, "\n");
22829 }
22830 }
22831
22832 static void
22833 dump_die_for_error (struct die_info *die)
22834 {
22835 dump_die_shallow (gdb_stderr, 0, die);
22836 }
22837
22838 static void
22839 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22840 {
22841 int indent = level * 4;
22842
22843 gdb_assert (die != NULL);
22844
22845 if (level >= max_level)
22846 return;
22847
22848 dump_die_shallow (f, indent, die);
22849
22850 if (die->child != NULL)
22851 {
22852 print_spaces (indent, f);
22853 fprintf_unfiltered (f, " Children:");
22854 if (level + 1 < max_level)
22855 {
22856 fprintf_unfiltered (f, "\n");
22857 dump_die_1 (f, level + 1, max_level, die->child);
22858 }
22859 else
22860 {
22861 fprintf_unfiltered (f,
22862 " [not printed, max nesting level reached]\n");
22863 }
22864 }
22865
22866 if (die->sibling != NULL && level > 0)
22867 {
22868 dump_die_1 (f, level, max_level, die->sibling);
22869 }
22870 }
22871
22872 /* This is called from the pdie macro in gdbinit.in.
22873 It's not static so gcc will keep a copy callable from gdb. */
22874
22875 void
22876 dump_die (struct die_info *die, int max_level)
22877 {
22878 dump_die_1 (gdb_stdlog, 0, max_level, die);
22879 }
22880
22881 static void
22882 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22883 {
22884 void **slot;
22885
22886 slot = htab_find_slot_with_hash (cu->die_hash, die,
22887 to_underlying (die->sect_off),
22888 INSERT);
22889
22890 *slot = die;
22891 }
22892
22893 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22894 required kind. */
22895
22896 static sect_offset
22897 dwarf2_get_ref_die_offset (const struct attribute *attr)
22898 {
22899 if (attr_form_is_ref (attr))
22900 return (sect_offset) DW_UNSND (attr);
22901
22902 complaint (_("unsupported die ref attribute form: '%s'"),
22903 dwarf_form_name (attr->form));
22904 return {};
22905 }
22906
22907 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22908 * the value held by the attribute is not constant. */
22909
22910 static LONGEST
22911 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22912 {
22913 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22914 return DW_SND (attr);
22915 else if (attr->form == DW_FORM_udata
22916 || attr->form == DW_FORM_data1
22917 || attr->form == DW_FORM_data2
22918 || attr->form == DW_FORM_data4
22919 || attr->form == DW_FORM_data8)
22920 return DW_UNSND (attr);
22921 else
22922 {
22923 /* For DW_FORM_data16 see attr_form_is_constant. */
22924 complaint (_("Attribute value is not a constant (%s)"),
22925 dwarf_form_name (attr->form));
22926 return default_value;
22927 }
22928 }
22929
22930 /* Follow reference or signature attribute ATTR of SRC_DIE.
22931 On entry *REF_CU is the CU of SRC_DIE.
22932 On exit *REF_CU is the CU of the result. */
22933
22934 static struct die_info *
22935 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22936 struct dwarf2_cu **ref_cu)
22937 {
22938 struct die_info *die;
22939
22940 if (attr_form_is_ref (attr))
22941 die = follow_die_ref (src_die, attr, ref_cu);
22942 else if (attr->form == DW_FORM_ref_sig8)
22943 die = follow_die_sig (src_die, attr, ref_cu);
22944 else
22945 {
22946 dump_die_for_error (src_die);
22947 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22948 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22949 }
22950
22951 return die;
22952 }
22953
22954 /* Follow reference OFFSET.
22955 On entry *REF_CU is the CU of the source die referencing OFFSET.
22956 On exit *REF_CU is the CU of the result.
22957 Returns NULL if OFFSET is invalid. */
22958
22959 static struct die_info *
22960 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22961 struct dwarf2_cu **ref_cu)
22962 {
22963 struct die_info temp_die;
22964 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22965 struct dwarf2_per_objfile *dwarf2_per_objfile
22966 = cu->per_cu->dwarf2_per_objfile;
22967
22968 gdb_assert (cu->per_cu != NULL);
22969
22970 target_cu = cu;
22971
22972 if (cu->per_cu->is_debug_types)
22973 {
22974 /* .debug_types CUs cannot reference anything outside their CU.
22975 If they need to, they have to reference a signatured type via
22976 DW_FORM_ref_sig8. */
22977 if (!offset_in_cu_p (&cu->header, sect_off))
22978 return NULL;
22979 }
22980 else if (offset_in_dwz != cu->per_cu->is_dwz
22981 || !offset_in_cu_p (&cu->header, sect_off))
22982 {
22983 struct dwarf2_per_cu_data *per_cu;
22984
22985 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22986 dwarf2_per_objfile);
22987
22988 /* If necessary, add it to the queue and load its DIEs. */
22989 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22990 load_full_comp_unit (per_cu, false, cu->language);
22991
22992 target_cu = per_cu->cu;
22993 }
22994 else if (cu->dies == NULL)
22995 {
22996 /* We're loading full DIEs during partial symbol reading. */
22997 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22998 load_full_comp_unit (cu->per_cu, false, language_minimal);
22999 }
23000
23001 *ref_cu = target_cu;
23002 temp_die.sect_off = sect_off;
23003 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23004 &temp_die,
23005 to_underlying (sect_off));
23006 }
23007
23008 /* Follow reference attribute ATTR of SRC_DIE.
23009 On entry *REF_CU is the CU of SRC_DIE.
23010 On exit *REF_CU is the CU of the result. */
23011
23012 static struct die_info *
23013 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23014 struct dwarf2_cu **ref_cu)
23015 {
23016 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23017 struct dwarf2_cu *cu = *ref_cu;
23018 struct die_info *die;
23019
23020 die = follow_die_offset (sect_off,
23021 (attr->form == DW_FORM_GNU_ref_alt
23022 || cu->per_cu->is_dwz),
23023 ref_cu);
23024 if (!die)
23025 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23026 "at %s [in module %s]"),
23027 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23028 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23029
23030 return die;
23031 }
23032
23033 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23034 Returned value is intended for DW_OP_call*. Returned
23035 dwarf2_locexpr_baton->data has lifetime of
23036 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23037
23038 struct dwarf2_locexpr_baton
23039 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23040 struct dwarf2_per_cu_data *per_cu,
23041 CORE_ADDR (*get_frame_pc) (void *baton),
23042 void *baton, bool resolve_abstract_p)
23043 {
23044 struct dwarf2_cu *cu;
23045 struct die_info *die;
23046 struct attribute *attr;
23047 struct dwarf2_locexpr_baton retval;
23048 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23049 struct objfile *objfile = dwarf2_per_objfile->objfile;
23050
23051 if (per_cu->cu == NULL)
23052 load_cu (per_cu, false);
23053 cu = per_cu->cu;
23054 if (cu == NULL)
23055 {
23056 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23057 Instead just throw an error, not much else we can do. */
23058 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23059 sect_offset_str (sect_off), objfile_name (objfile));
23060 }
23061
23062 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23063 if (!die)
23064 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23065 sect_offset_str (sect_off), objfile_name (objfile));
23066
23067 attr = dwarf2_attr (die, DW_AT_location, cu);
23068 if (!attr && resolve_abstract_p
23069 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23070 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23071 {
23072 CORE_ADDR pc = (*get_frame_pc) (baton);
23073
23074 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23075 {
23076 if (!cand->parent
23077 || cand->parent->tag != DW_TAG_subprogram)
23078 continue;
23079
23080 CORE_ADDR pc_low, pc_high;
23081 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23082 if (pc_low == ((CORE_ADDR) -1)
23083 || !(pc_low <= pc && pc < pc_high))
23084 continue;
23085
23086 die = cand;
23087 attr = dwarf2_attr (die, DW_AT_location, cu);
23088 break;
23089 }
23090 }
23091
23092 if (!attr)
23093 {
23094 /* DWARF: "If there is no such attribute, then there is no effect.".
23095 DATA is ignored if SIZE is 0. */
23096
23097 retval.data = NULL;
23098 retval.size = 0;
23099 }
23100 else if (attr_form_is_section_offset (attr))
23101 {
23102 struct dwarf2_loclist_baton loclist_baton;
23103 CORE_ADDR pc = (*get_frame_pc) (baton);
23104 size_t size;
23105
23106 fill_in_loclist_baton (cu, &loclist_baton, attr);
23107
23108 retval.data = dwarf2_find_location_expression (&loclist_baton,
23109 &size, pc);
23110 retval.size = size;
23111 }
23112 else
23113 {
23114 if (!attr_form_is_block (attr))
23115 error (_("Dwarf Error: DIE at %s referenced in module %s "
23116 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23117 sect_offset_str (sect_off), objfile_name (objfile));
23118
23119 retval.data = DW_BLOCK (attr)->data;
23120 retval.size = DW_BLOCK (attr)->size;
23121 }
23122 retval.per_cu = cu->per_cu;
23123
23124 age_cached_comp_units (dwarf2_per_objfile);
23125
23126 return retval;
23127 }
23128
23129 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23130 offset. */
23131
23132 struct dwarf2_locexpr_baton
23133 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23134 struct dwarf2_per_cu_data *per_cu,
23135 CORE_ADDR (*get_frame_pc) (void *baton),
23136 void *baton)
23137 {
23138 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23139
23140 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23141 }
23142
23143 /* Write a constant of a given type as target-ordered bytes into
23144 OBSTACK. */
23145
23146 static const gdb_byte *
23147 write_constant_as_bytes (struct obstack *obstack,
23148 enum bfd_endian byte_order,
23149 struct type *type,
23150 ULONGEST value,
23151 LONGEST *len)
23152 {
23153 gdb_byte *result;
23154
23155 *len = TYPE_LENGTH (type);
23156 result = (gdb_byte *) obstack_alloc (obstack, *len);
23157 store_unsigned_integer (result, *len, byte_order, value);
23158
23159 return result;
23160 }
23161
23162 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23163 pointer to the constant bytes and set LEN to the length of the
23164 data. If memory is needed, allocate it on OBSTACK. If the DIE
23165 does not have a DW_AT_const_value, return NULL. */
23166
23167 const gdb_byte *
23168 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23169 struct dwarf2_per_cu_data *per_cu,
23170 struct obstack *obstack,
23171 LONGEST *len)
23172 {
23173 struct dwarf2_cu *cu;
23174 struct die_info *die;
23175 struct attribute *attr;
23176 const gdb_byte *result = NULL;
23177 struct type *type;
23178 LONGEST value;
23179 enum bfd_endian byte_order;
23180 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23181
23182 if (per_cu->cu == NULL)
23183 load_cu (per_cu, false);
23184 cu = per_cu->cu;
23185 if (cu == NULL)
23186 {
23187 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23188 Instead just throw an error, not much else we can do. */
23189 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23190 sect_offset_str (sect_off), objfile_name (objfile));
23191 }
23192
23193 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23194 if (!die)
23195 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23196 sect_offset_str (sect_off), objfile_name (objfile));
23197
23198 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23199 if (attr == NULL)
23200 return NULL;
23201
23202 byte_order = (bfd_big_endian (objfile->obfd)
23203 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23204
23205 switch (attr->form)
23206 {
23207 case DW_FORM_addr:
23208 case DW_FORM_GNU_addr_index:
23209 {
23210 gdb_byte *tem;
23211
23212 *len = cu->header.addr_size;
23213 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23214 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23215 result = tem;
23216 }
23217 break;
23218 case DW_FORM_string:
23219 case DW_FORM_strp:
23220 case DW_FORM_GNU_str_index:
23221 case DW_FORM_GNU_strp_alt:
23222 /* DW_STRING is already allocated on the objfile obstack, point
23223 directly to it. */
23224 result = (const gdb_byte *) DW_STRING (attr);
23225 *len = strlen (DW_STRING (attr));
23226 break;
23227 case DW_FORM_block1:
23228 case DW_FORM_block2:
23229 case DW_FORM_block4:
23230 case DW_FORM_block:
23231 case DW_FORM_exprloc:
23232 case DW_FORM_data16:
23233 result = DW_BLOCK (attr)->data;
23234 *len = DW_BLOCK (attr)->size;
23235 break;
23236
23237 /* The DW_AT_const_value attributes are supposed to carry the
23238 symbol's value "represented as it would be on the target
23239 architecture." By the time we get here, it's already been
23240 converted to host endianness, so we just need to sign- or
23241 zero-extend it as appropriate. */
23242 case DW_FORM_data1:
23243 type = die_type (die, cu);
23244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23245 if (result == NULL)
23246 result = write_constant_as_bytes (obstack, byte_order,
23247 type, value, len);
23248 break;
23249 case DW_FORM_data2:
23250 type = die_type (die, cu);
23251 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23252 if (result == NULL)
23253 result = write_constant_as_bytes (obstack, byte_order,
23254 type, value, len);
23255 break;
23256 case DW_FORM_data4:
23257 type = die_type (die, cu);
23258 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23259 if (result == NULL)
23260 result = write_constant_as_bytes (obstack, byte_order,
23261 type, value, len);
23262 break;
23263 case DW_FORM_data8:
23264 type = die_type (die, cu);
23265 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23266 if (result == NULL)
23267 result = write_constant_as_bytes (obstack, byte_order,
23268 type, value, len);
23269 break;
23270
23271 case DW_FORM_sdata:
23272 case DW_FORM_implicit_const:
23273 type = die_type (die, cu);
23274 result = write_constant_as_bytes (obstack, byte_order,
23275 type, DW_SND (attr), len);
23276 break;
23277
23278 case DW_FORM_udata:
23279 type = die_type (die, cu);
23280 result = write_constant_as_bytes (obstack, byte_order,
23281 type, DW_UNSND (attr), len);
23282 break;
23283
23284 default:
23285 complaint (_("unsupported const value attribute form: '%s'"),
23286 dwarf_form_name (attr->form));
23287 break;
23288 }
23289
23290 return result;
23291 }
23292
23293 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23294 valid type for this die is found. */
23295
23296 struct type *
23297 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23298 struct dwarf2_per_cu_data *per_cu)
23299 {
23300 struct dwarf2_cu *cu;
23301 struct die_info *die;
23302
23303 if (per_cu->cu == NULL)
23304 load_cu (per_cu, false);
23305 cu = per_cu->cu;
23306 if (!cu)
23307 return NULL;
23308
23309 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23310 if (!die)
23311 return NULL;
23312
23313 return die_type (die, cu);
23314 }
23315
23316 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23317 PER_CU. */
23318
23319 struct type *
23320 dwarf2_get_die_type (cu_offset die_offset,
23321 struct dwarf2_per_cu_data *per_cu)
23322 {
23323 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23324 return get_die_type_at_offset (die_offset_sect, per_cu);
23325 }
23326
23327 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23328 On entry *REF_CU is the CU of SRC_DIE.
23329 On exit *REF_CU is the CU of the result.
23330 Returns NULL if the referenced DIE isn't found. */
23331
23332 static struct die_info *
23333 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23334 struct dwarf2_cu **ref_cu)
23335 {
23336 struct die_info temp_die;
23337 struct dwarf2_cu *sig_cu;
23338 struct die_info *die;
23339
23340 /* While it might be nice to assert sig_type->type == NULL here,
23341 we can get here for DW_AT_imported_declaration where we need
23342 the DIE not the type. */
23343
23344 /* If necessary, add it to the queue and load its DIEs. */
23345
23346 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23347 read_signatured_type (sig_type);
23348
23349 sig_cu = sig_type->per_cu.cu;
23350 gdb_assert (sig_cu != NULL);
23351 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23352 temp_die.sect_off = sig_type->type_offset_in_section;
23353 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23354 to_underlying (temp_die.sect_off));
23355 if (die)
23356 {
23357 struct dwarf2_per_objfile *dwarf2_per_objfile
23358 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23359
23360 /* For .gdb_index version 7 keep track of included TUs.
23361 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23362 if (dwarf2_per_objfile->index_table != NULL
23363 && dwarf2_per_objfile->index_table->version <= 7)
23364 {
23365 VEC_safe_push (dwarf2_per_cu_ptr,
23366 (*ref_cu)->per_cu->imported_symtabs,
23367 sig_cu->per_cu);
23368 }
23369
23370 *ref_cu = sig_cu;
23371 return die;
23372 }
23373
23374 return NULL;
23375 }
23376
23377 /* Follow signatured type referenced by ATTR in SRC_DIE.
23378 On entry *REF_CU is the CU of SRC_DIE.
23379 On exit *REF_CU is the CU of the result.
23380 The result is the DIE of the type.
23381 If the referenced type cannot be found an error is thrown. */
23382
23383 static struct die_info *
23384 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23385 struct dwarf2_cu **ref_cu)
23386 {
23387 ULONGEST signature = DW_SIGNATURE (attr);
23388 struct signatured_type *sig_type;
23389 struct die_info *die;
23390
23391 gdb_assert (attr->form == DW_FORM_ref_sig8);
23392
23393 sig_type = lookup_signatured_type (*ref_cu, signature);
23394 /* sig_type will be NULL if the signatured type is missing from
23395 the debug info. */
23396 if (sig_type == NULL)
23397 {
23398 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23399 " from DIE at %s [in module %s]"),
23400 hex_string (signature), sect_offset_str (src_die->sect_off),
23401 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23402 }
23403
23404 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23405 if (die == NULL)
23406 {
23407 dump_die_for_error (src_die);
23408 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23409 " from DIE at %s [in module %s]"),
23410 hex_string (signature), sect_offset_str (src_die->sect_off),
23411 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23412 }
23413
23414 return die;
23415 }
23416
23417 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23418 reading in and processing the type unit if necessary. */
23419
23420 static struct type *
23421 get_signatured_type (struct die_info *die, ULONGEST signature,
23422 struct dwarf2_cu *cu)
23423 {
23424 struct dwarf2_per_objfile *dwarf2_per_objfile
23425 = cu->per_cu->dwarf2_per_objfile;
23426 struct signatured_type *sig_type;
23427 struct dwarf2_cu *type_cu;
23428 struct die_info *type_die;
23429 struct type *type;
23430
23431 sig_type = lookup_signatured_type (cu, signature);
23432 /* sig_type will be NULL if the signatured type is missing from
23433 the debug info. */
23434 if (sig_type == NULL)
23435 {
23436 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23437 " from DIE at %s [in module %s]"),
23438 hex_string (signature), sect_offset_str (die->sect_off),
23439 objfile_name (dwarf2_per_objfile->objfile));
23440 return build_error_marker_type (cu, die);
23441 }
23442
23443 /* If we already know the type we're done. */
23444 if (sig_type->type != NULL)
23445 return sig_type->type;
23446
23447 type_cu = cu;
23448 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23449 if (type_die != NULL)
23450 {
23451 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23452 is created. This is important, for example, because for c++ classes
23453 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23454 type = read_type_die (type_die, type_cu);
23455 if (type == NULL)
23456 {
23457 complaint (_("Dwarf Error: Cannot build signatured type %s"
23458 " referenced from DIE at %s [in module %s]"),
23459 hex_string (signature), sect_offset_str (die->sect_off),
23460 objfile_name (dwarf2_per_objfile->objfile));
23461 type = build_error_marker_type (cu, die);
23462 }
23463 }
23464 else
23465 {
23466 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23467 " from DIE at %s [in module %s]"),
23468 hex_string (signature), sect_offset_str (die->sect_off),
23469 objfile_name (dwarf2_per_objfile->objfile));
23470 type = build_error_marker_type (cu, die);
23471 }
23472 sig_type->type = type;
23473
23474 return type;
23475 }
23476
23477 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23478 reading in and processing the type unit if necessary. */
23479
23480 static struct type *
23481 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23482 struct dwarf2_cu *cu) /* ARI: editCase function */
23483 {
23484 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23485 if (attr_form_is_ref (attr))
23486 {
23487 struct dwarf2_cu *type_cu = cu;
23488 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23489
23490 return read_type_die (type_die, type_cu);
23491 }
23492 else if (attr->form == DW_FORM_ref_sig8)
23493 {
23494 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23495 }
23496 else
23497 {
23498 struct dwarf2_per_objfile *dwarf2_per_objfile
23499 = cu->per_cu->dwarf2_per_objfile;
23500
23501 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23502 " at %s [in module %s]"),
23503 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23504 objfile_name (dwarf2_per_objfile->objfile));
23505 return build_error_marker_type (cu, die);
23506 }
23507 }
23508
23509 /* Load the DIEs associated with type unit PER_CU into memory. */
23510
23511 static void
23512 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23513 {
23514 struct signatured_type *sig_type;
23515
23516 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23517 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23518
23519 /* We have the per_cu, but we need the signatured_type.
23520 Fortunately this is an easy translation. */
23521 gdb_assert (per_cu->is_debug_types);
23522 sig_type = (struct signatured_type *) per_cu;
23523
23524 gdb_assert (per_cu->cu == NULL);
23525
23526 read_signatured_type (sig_type);
23527
23528 gdb_assert (per_cu->cu != NULL);
23529 }
23530
23531 /* die_reader_func for read_signatured_type.
23532 This is identical to load_full_comp_unit_reader,
23533 but is kept separate for now. */
23534
23535 static void
23536 read_signatured_type_reader (const struct die_reader_specs *reader,
23537 const gdb_byte *info_ptr,
23538 struct die_info *comp_unit_die,
23539 int has_children,
23540 void *data)
23541 {
23542 struct dwarf2_cu *cu = reader->cu;
23543
23544 gdb_assert (cu->die_hash == NULL);
23545 cu->die_hash =
23546 htab_create_alloc_ex (cu->header.length / 12,
23547 die_hash,
23548 die_eq,
23549 NULL,
23550 &cu->comp_unit_obstack,
23551 hashtab_obstack_allocate,
23552 dummy_obstack_deallocate);
23553
23554 if (has_children)
23555 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23556 &info_ptr, comp_unit_die);
23557 cu->dies = comp_unit_die;
23558 /* comp_unit_die is not stored in die_hash, no need. */
23559
23560 /* We try not to read any attributes in this function, because not
23561 all CUs needed for references have been loaded yet, and symbol
23562 table processing isn't initialized. But we have to set the CU language,
23563 or we won't be able to build types correctly.
23564 Similarly, if we do not read the producer, we can not apply
23565 producer-specific interpretation. */
23566 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23567 }
23568
23569 /* Read in a signatured type and build its CU and DIEs.
23570 If the type is a stub for the real type in a DWO file,
23571 read in the real type from the DWO file as well. */
23572
23573 static void
23574 read_signatured_type (struct signatured_type *sig_type)
23575 {
23576 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23577
23578 gdb_assert (per_cu->is_debug_types);
23579 gdb_assert (per_cu->cu == NULL);
23580
23581 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23582 read_signatured_type_reader, NULL);
23583 sig_type->per_cu.tu_read = 1;
23584 }
23585
23586 /* Decode simple location descriptions.
23587 Given a pointer to a dwarf block that defines a location, compute
23588 the location and return the value.
23589
23590 NOTE drow/2003-11-18: This function is called in two situations
23591 now: for the address of static or global variables (partial symbols
23592 only) and for offsets into structures which are expected to be
23593 (more or less) constant. The partial symbol case should go away,
23594 and only the constant case should remain. That will let this
23595 function complain more accurately. A few special modes are allowed
23596 without complaint for global variables (for instance, global
23597 register values and thread-local values).
23598
23599 A location description containing no operations indicates that the
23600 object is optimized out. The return value is 0 for that case.
23601 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23602 callers will only want a very basic result and this can become a
23603 complaint.
23604
23605 Note that stack[0] is unused except as a default error return. */
23606
23607 static CORE_ADDR
23608 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23609 {
23610 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23611 size_t i;
23612 size_t size = blk->size;
23613 const gdb_byte *data = blk->data;
23614 CORE_ADDR stack[64];
23615 int stacki;
23616 unsigned int bytes_read, unsnd;
23617 gdb_byte op;
23618
23619 i = 0;
23620 stacki = 0;
23621 stack[stacki] = 0;
23622 stack[++stacki] = 0;
23623
23624 while (i < size)
23625 {
23626 op = data[i++];
23627 switch (op)
23628 {
23629 case DW_OP_lit0:
23630 case DW_OP_lit1:
23631 case DW_OP_lit2:
23632 case DW_OP_lit3:
23633 case DW_OP_lit4:
23634 case DW_OP_lit5:
23635 case DW_OP_lit6:
23636 case DW_OP_lit7:
23637 case DW_OP_lit8:
23638 case DW_OP_lit9:
23639 case DW_OP_lit10:
23640 case DW_OP_lit11:
23641 case DW_OP_lit12:
23642 case DW_OP_lit13:
23643 case DW_OP_lit14:
23644 case DW_OP_lit15:
23645 case DW_OP_lit16:
23646 case DW_OP_lit17:
23647 case DW_OP_lit18:
23648 case DW_OP_lit19:
23649 case DW_OP_lit20:
23650 case DW_OP_lit21:
23651 case DW_OP_lit22:
23652 case DW_OP_lit23:
23653 case DW_OP_lit24:
23654 case DW_OP_lit25:
23655 case DW_OP_lit26:
23656 case DW_OP_lit27:
23657 case DW_OP_lit28:
23658 case DW_OP_lit29:
23659 case DW_OP_lit30:
23660 case DW_OP_lit31:
23661 stack[++stacki] = op - DW_OP_lit0;
23662 break;
23663
23664 case DW_OP_reg0:
23665 case DW_OP_reg1:
23666 case DW_OP_reg2:
23667 case DW_OP_reg3:
23668 case DW_OP_reg4:
23669 case DW_OP_reg5:
23670 case DW_OP_reg6:
23671 case DW_OP_reg7:
23672 case DW_OP_reg8:
23673 case DW_OP_reg9:
23674 case DW_OP_reg10:
23675 case DW_OP_reg11:
23676 case DW_OP_reg12:
23677 case DW_OP_reg13:
23678 case DW_OP_reg14:
23679 case DW_OP_reg15:
23680 case DW_OP_reg16:
23681 case DW_OP_reg17:
23682 case DW_OP_reg18:
23683 case DW_OP_reg19:
23684 case DW_OP_reg20:
23685 case DW_OP_reg21:
23686 case DW_OP_reg22:
23687 case DW_OP_reg23:
23688 case DW_OP_reg24:
23689 case DW_OP_reg25:
23690 case DW_OP_reg26:
23691 case DW_OP_reg27:
23692 case DW_OP_reg28:
23693 case DW_OP_reg29:
23694 case DW_OP_reg30:
23695 case DW_OP_reg31:
23696 stack[++stacki] = op - DW_OP_reg0;
23697 if (i < size)
23698 dwarf2_complex_location_expr_complaint ();
23699 break;
23700
23701 case DW_OP_regx:
23702 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23703 i += bytes_read;
23704 stack[++stacki] = unsnd;
23705 if (i < size)
23706 dwarf2_complex_location_expr_complaint ();
23707 break;
23708
23709 case DW_OP_addr:
23710 stack[++stacki] = read_address (objfile->obfd, &data[i],
23711 cu, &bytes_read);
23712 i += bytes_read;
23713 break;
23714
23715 case DW_OP_const1u:
23716 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23717 i += 1;
23718 break;
23719
23720 case DW_OP_const1s:
23721 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23722 i += 1;
23723 break;
23724
23725 case DW_OP_const2u:
23726 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23727 i += 2;
23728 break;
23729
23730 case DW_OP_const2s:
23731 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23732 i += 2;
23733 break;
23734
23735 case DW_OP_const4u:
23736 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23737 i += 4;
23738 break;
23739
23740 case DW_OP_const4s:
23741 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23742 i += 4;
23743 break;
23744
23745 case DW_OP_const8u:
23746 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23747 i += 8;
23748 break;
23749
23750 case DW_OP_constu:
23751 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23752 &bytes_read);
23753 i += bytes_read;
23754 break;
23755
23756 case DW_OP_consts:
23757 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23758 i += bytes_read;
23759 break;
23760
23761 case DW_OP_dup:
23762 stack[stacki + 1] = stack[stacki];
23763 stacki++;
23764 break;
23765
23766 case DW_OP_plus:
23767 stack[stacki - 1] += stack[stacki];
23768 stacki--;
23769 break;
23770
23771 case DW_OP_plus_uconst:
23772 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23773 &bytes_read);
23774 i += bytes_read;
23775 break;
23776
23777 case DW_OP_minus:
23778 stack[stacki - 1] -= stack[stacki];
23779 stacki--;
23780 break;
23781
23782 case DW_OP_deref:
23783 /* If we're not the last op, then we definitely can't encode
23784 this using GDB's address_class enum. This is valid for partial
23785 global symbols, although the variable's address will be bogus
23786 in the psymtab. */
23787 if (i < size)
23788 dwarf2_complex_location_expr_complaint ();
23789 break;
23790
23791 case DW_OP_GNU_push_tls_address:
23792 case DW_OP_form_tls_address:
23793 /* The top of the stack has the offset from the beginning
23794 of the thread control block at which the variable is located. */
23795 /* Nothing should follow this operator, so the top of stack would
23796 be returned. */
23797 /* This is valid for partial global symbols, but the variable's
23798 address will be bogus in the psymtab. Make it always at least
23799 non-zero to not look as a variable garbage collected by linker
23800 which have DW_OP_addr 0. */
23801 if (i < size)
23802 dwarf2_complex_location_expr_complaint ();
23803 stack[stacki]++;
23804 break;
23805
23806 case DW_OP_GNU_uninit:
23807 break;
23808
23809 case DW_OP_GNU_addr_index:
23810 case DW_OP_GNU_const_index:
23811 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23812 &bytes_read);
23813 i += bytes_read;
23814 break;
23815
23816 default:
23817 {
23818 const char *name = get_DW_OP_name (op);
23819
23820 if (name)
23821 complaint (_("unsupported stack op: '%s'"),
23822 name);
23823 else
23824 complaint (_("unsupported stack op: '%02x'"),
23825 op);
23826 }
23827
23828 return (stack[stacki]);
23829 }
23830
23831 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23832 outside of the allocated space. Also enforce minimum>0. */
23833 if (stacki >= ARRAY_SIZE (stack) - 1)
23834 {
23835 complaint (_("location description stack overflow"));
23836 return 0;
23837 }
23838
23839 if (stacki <= 0)
23840 {
23841 complaint (_("location description stack underflow"));
23842 return 0;
23843 }
23844 }
23845 return (stack[stacki]);
23846 }
23847
23848 /* memory allocation interface */
23849
23850 static struct dwarf_block *
23851 dwarf_alloc_block (struct dwarf2_cu *cu)
23852 {
23853 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23854 }
23855
23856 static struct die_info *
23857 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23858 {
23859 struct die_info *die;
23860 size_t size = sizeof (struct die_info);
23861
23862 if (num_attrs > 1)
23863 size += (num_attrs - 1) * sizeof (struct attribute);
23864
23865 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23866 memset (die, 0, sizeof (struct die_info));
23867 return (die);
23868 }
23869
23870 \f
23871 /* Macro support. */
23872
23873 /* Return file name relative to the compilation directory of file number I in
23874 *LH's file name table. The result is allocated using xmalloc; the caller is
23875 responsible for freeing it. */
23876
23877 static char *
23878 file_file_name (int file, struct line_header *lh)
23879 {
23880 /* Is the file number a valid index into the line header's file name
23881 table? Remember that file numbers start with one, not zero. */
23882 if (1 <= file && file <= lh->file_names.size ())
23883 {
23884 const file_entry &fe = lh->file_names[file - 1];
23885
23886 if (!IS_ABSOLUTE_PATH (fe.name))
23887 {
23888 const char *dir = fe.include_dir (lh);
23889 if (dir != NULL)
23890 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23891 }
23892 return xstrdup (fe.name);
23893 }
23894 else
23895 {
23896 /* The compiler produced a bogus file number. We can at least
23897 record the macro definitions made in the file, even if we
23898 won't be able to find the file by name. */
23899 char fake_name[80];
23900
23901 xsnprintf (fake_name, sizeof (fake_name),
23902 "<bad macro file number %d>", file);
23903
23904 complaint (_("bad file number in macro information (%d)"),
23905 file);
23906
23907 return xstrdup (fake_name);
23908 }
23909 }
23910
23911 /* Return the full name of file number I in *LH's file name table.
23912 Use COMP_DIR as the name of the current directory of the
23913 compilation. The result is allocated using xmalloc; the caller is
23914 responsible for freeing it. */
23915 static char *
23916 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23917 {
23918 /* Is the file number a valid index into the line header's file name
23919 table? Remember that file numbers start with one, not zero. */
23920 if (1 <= file && file <= lh->file_names.size ())
23921 {
23922 char *relative = file_file_name (file, lh);
23923
23924 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23925 return relative;
23926 return reconcat (relative, comp_dir, SLASH_STRING,
23927 relative, (char *) NULL);
23928 }
23929 else
23930 return file_file_name (file, lh);
23931 }
23932
23933
23934 static struct macro_source_file *
23935 macro_start_file (struct dwarf2_cu *cu,
23936 int file, int line,
23937 struct macro_source_file *current_file,
23938 struct line_header *lh)
23939 {
23940 /* File name relative to the compilation directory of this source file. */
23941 char *file_name = file_file_name (file, lh);
23942
23943 if (! current_file)
23944 {
23945 /* Note: We don't create a macro table for this compilation unit
23946 at all until we actually get a filename. */
23947 struct macro_table *macro_table = cu->builder->get_macro_table ();
23948
23949 /* If we have no current file, then this must be the start_file
23950 directive for the compilation unit's main source file. */
23951 current_file = macro_set_main (macro_table, file_name);
23952 macro_define_special (macro_table);
23953 }
23954 else
23955 current_file = macro_include (current_file, line, file_name);
23956
23957 xfree (file_name);
23958
23959 return current_file;
23960 }
23961
23962 static const char *
23963 consume_improper_spaces (const char *p, const char *body)
23964 {
23965 if (*p == ' ')
23966 {
23967 complaint (_("macro definition contains spaces "
23968 "in formal argument list:\n`%s'"),
23969 body);
23970
23971 while (*p == ' ')
23972 p++;
23973 }
23974
23975 return p;
23976 }
23977
23978
23979 static void
23980 parse_macro_definition (struct macro_source_file *file, int line,
23981 const char *body)
23982 {
23983 const char *p;
23984
23985 /* The body string takes one of two forms. For object-like macro
23986 definitions, it should be:
23987
23988 <macro name> " " <definition>
23989
23990 For function-like macro definitions, it should be:
23991
23992 <macro name> "() " <definition>
23993 or
23994 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23995
23996 Spaces may appear only where explicitly indicated, and in the
23997 <definition>.
23998
23999 The Dwarf 2 spec says that an object-like macro's name is always
24000 followed by a space, but versions of GCC around March 2002 omit
24001 the space when the macro's definition is the empty string.
24002
24003 The Dwarf 2 spec says that there should be no spaces between the
24004 formal arguments in a function-like macro's formal argument list,
24005 but versions of GCC around March 2002 include spaces after the
24006 commas. */
24007
24008
24009 /* Find the extent of the macro name. The macro name is terminated
24010 by either a space or null character (for an object-like macro) or
24011 an opening paren (for a function-like macro). */
24012 for (p = body; *p; p++)
24013 if (*p == ' ' || *p == '(')
24014 break;
24015
24016 if (*p == ' ' || *p == '\0')
24017 {
24018 /* It's an object-like macro. */
24019 int name_len = p - body;
24020 char *name = savestring (body, name_len);
24021 const char *replacement;
24022
24023 if (*p == ' ')
24024 replacement = body + name_len + 1;
24025 else
24026 {
24027 dwarf2_macro_malformed_definition_complaint (body);
24028 replacement = body + name_len;
24029 }
24030
24031 macro_define_object (file, line, name, replacement);
24032
24033 xfree (name);
24034 }
24035 else if (*p == '(')
24036 {
24037 /* It's a function-like macro. */
24038 char *name = savestring (body, p - body);
24039 int argc = 0;
24040 int argv_size = 1;
24041 char **argv = XNEWVEC (char *, argv_size);
24042
24043 p++;
24044
24045 p = consume_improper_spaces (p, body);
24046
24047 /* Parse the formal argument list. */
24048 while (*p && *p != ')')
24049 {
24050 /* Find the extent of the current argument name. */
24051 const char *arg_start = p;
24052
24053 while (*p && *p != ',' && *p != ')' && *p != ' ')
24054 p++;
24055
24056 if (! *p || p == arg_start)
24057 dwarf2_macro_malformed_definition_complaint (body);
24058 else
24059 {
24060 /* Make sure argv has room for the new argument. */
24061 if (argc >= argv_size)
24062 {
24063 argv_size *= 2;
24064 argv = XRESIZEVEC (char *, argv, argv_size);
24065 }
24066
24067 argv[argc++] = savestring (arg_start, p - arg_start);
24068 }
24069
24070 p = consume_improper_spaces (p, body);
24071
24072 /* Consume the comma, if present. */
24073 if (*p == ',')
24074 {
24075 p++;
24076
24077 p = consume_improper_spaces (p, body);
24078 }
24079 }
24080
24081 if (*p == ')')
24082 {
24083 p++;
24084
24085 if (*p == ' ')
24086 /* Perfectly formed definition, no complaints. */
24087 macro_define_function (file, line, name,
24088 argc, (const char **) argv,
24089 p + 1);
24090 else if (*p == '\0')
24091 {
24092 /* Complain, but do define it. */
24093 dwarf2_macro_malformed_definition_complaint (body);
24094 macro_define_function (file, line, name,
24095 argc, (const char **) argv,
24096 p);
24097 }
24098 else
24099 /* Just complain. */
24100 dwarf2_macro_malformed_definition_complaint (body);
24101 }
24102 else
24103 /* Just complain. */
24104 dwarf2_macro_malformed_definition_complaint (body);
24105
24106 xfree (name);
24107 {
24108 int i;
24109
24110 for (i = 0; i < argc; i++)
24111 xfree (argv[i]);
24112 }
24113 xfree (argv);
24114 }
24115 else
24116 dwarf2_macro_malformed_definition_complaint (body);
24117 }
24118
24119 /* Skip some bytes from BYTES according to the form given in FORM.
24120 Returns the new pointer. */
24121
24122 static const gdb_byte *
24123 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24124 enum dwarf_form form,
24125 unsigned int offset_size,
24126 struct dwarf2_section_info *section)
24127 {
24128 unsigned int bytes_read;
24129
24130 switch (form)
24131 {
24132 case DW_FORM_data1:
24133 case DW_FORM_flag:
24134 ++bytes;
24135 break;
24136
24137 case DW_FORM_data2:
24138 bytes += 2;
24139 break;
24140
24141 case DW_FORM_data4:
24142 bytes += 4;
24143 break;
24144
24145 case DW_FORM_data8:
24146 bytes += 8;
24147 break;
24148
24149 case DW_FORM_data16:
24150 bytes += 16;
24151 break;
24152
24153 case DW_FORM_string:
24154 read_direct_string (abfd, bytes, &bytes_read);
24155 bytes += bytes_read;
24156 break;
24157
24158 case DW_FORM_sec_offset:
24159 case DW_FORM_strp:
24160 case DW_FORM_GNU_strp_alt:
24161 bytes += offset_size;
24162 break;
24163
24164 case DW_FORM_block:
24165 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24166 bytes += bytes_read;
24167 break;
24168
24169 case DW_FORM_block1:
24170 bytes += 1 + read_1_byte (abfd, bytes);
24171 break;
24172 case DW_FORM_block2:
24173 bytes += 2 + read_2_bytes (abfd, bytes);
24174 break;
24175 case DW_FORM_block4:
24176 bytes += 4 + read_4_bytes (abfd, bytes);
24177 break;
24178
24179 case DW_FORM_sdata:
24180 case DW_FORM_udata:
24181 case DW_FORM_GNU_addr_index:
24182 case DW_FORM_GNU_str_index:
24183 bytes = gdb_skip_leb128 (bytes, buffer_end);
24184 if (bytes == NULL)
24185 {
24186 dwarf2_section_buffer_overflow_complaint (section);
24187 return NULL;
24188 }
24189 break;
24190
24191 case DW_FORM_implicit_const:
24192 break;
24193
24194 default:
24195 {
24196 complaint (_("invalid form 0x%x in `%s'"),
24197 form, get_section_name (section));
24198 return NULL;
24199 }
24200 }
24201
24202 return bytes;
24203 }
24204
24205 /* A helper for dwarf_decode_macros that handles skipping an unknown
24206 opcode. Returns an updated pointer to the macro data buffer; or,
24207 on error, issues a complaint and returns NULL. */
24208
24209 static const gdb_byte *
24210 skip_unknown_opcode (unsigned int opcode,
24211 const gdb_byte **opcode_definitions,
24212 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24213 bfd *abfd,
24214 unsigned int offset_size,
24215 struct dwarf2_section_info *section)
24216 {
24217 unsigned int bytes_read, i;
24218 unsigned long arg;
24219 const gdb_byte *defn;
24220
24221 if (opcode_definitions[opcode] == NULL)
24222 {
24223 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24224 opcode);
24225 return NULL;
24226 }
24227
24228 defn = opcode_definitions[opcode];
24229 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24230 defn += bytes_read;
24231
24232 for (i = 0; i < arg; ++i)
24233 {
24234 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24235 (enum dwarf_form) defn[i], offset_size,
24236 section);
24237 if (mac_ptr == NULL)
24238 {
24239 /* skip_form_bytes already issued the complaint. */
24240 return NULL;
24241 }
24242 }
24243
24244 return mac_ptr;
24245 }
24246
24247 /* A helper function which parses the header of a macro section.
24248 If the macro section is the extended (for now called "GNU") type,
24249 then this updates *OFFSET_SIZE. Returns a pointer to just after
24250 the header, or issues a complaint and returns NULL on error. */
24251
24252 static const gdb_byte *
24253 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24254 bfd *abfd,
24255 const gdb_byte *mac_ptr,
24256 unsigned int *offset_size,
24257 int section_is_gnu)
24258 {
24259 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24260
24261 if (section_is_gnu)
24262 {
24263 unsigned int version, flags;
24264
24265 version = read_2_bytes (abfd, mac_ptr);
24266 if (version != 4 && version != 5)
24267 {
24268 complaint (_("unrecognized version `%d' in .debug_macro section"),
24269 version);
24270 return NULL;
24271 }
24272 mac_ptr += 2;
24273
24274 flags = read_1_byte (abfd, mac_ptr);
24275 ++mac_ptr;
24276 *offset_size = (flags & 1) ? 8 : 4;
24277
24278 if ((flags & 2) != 0)
24279 /* We don't need the line table offset. */
24280 mac_ptr += *offset_size;
24281
24282 /* Vendor opcode descriptions. */
24283 if ((flags & 4) != 0)
24284 {
24285 unsigned int i, count;
24286
24287 count = read_1_byte (abfd, mac_ptr);
24288 ++mac_ptr;
24289 for (i = 0; i < count; ++i)
24290 {
24291 unsigned int opcode, bytes_read;
24292 unsigned long arg;
24293
24294 opcode = read_1_byte (abfd, mac_ptr);
24295 ++mac_ptr;
24296 opcode_definitions[opcode] = mac_ptr;
24297 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24298 mac_ptr += bytes_read;
24299 mac_ptr += arg;
24300 }
24301 }
24302 }
24303
24304 return mac_ptr;
24305 }
24306
24307 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24308 including DW_MACRO_import. */
24309
24310 static void
24311 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24312 bfd *abfd,
24313 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24314 struct macro_source_file *current_file,
24315 struct line_header *lh,
24316 struct dwarf2_section_info *section,
24317 int section_is_gnu, int section_is_dwz,
24318 unsigned int offset_size,
24319 htab_t include_hash)
24320 {
24321 struct dwarf2_per_objfile *dwarf2_per_objfile
24322 = cu->per_cu->dwarf2_per_objfile;
24323 struct objfile *objfile = dwarf2_per_objfile->objfile;
24324 enum dwarf_macro_record_type macinfo_type;
24325 int at_commandline;
24326 const gdb_byte *opcode_definitions[256];
24327
24328 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24329 &offset_size, section_is_gnu);
24330 if (mac_ptr == NULL)
24331 {
24332 /* We already issued a complaint. */
24333 return;
24334 }
24335
24336 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24337 GDB is still reading the definitions from command line. First
24338 DW_MACINFO_start_file will need to be ignored as it was already executed
24339 to create CURRENT_FILE for the main source holding also the command line
24340 definitions. On first met DW_MACINFO_start_file this flag is reset to
24341 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24342
24343 at_commandline = 1;
24344
24345 do
24346 {
24347 /* Do we at least have room for a macinfo type byte? */
24348 if (mac_ptr >= mac_end)
24349 {
24350 dwarf2_section_buffer_overflow_complaint (section);
24351 break;
24352 }
24353
24354 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24355 mac_ptr++;
24356
24357 /* Note that we rely on the fact that the corresponding GNU and
24358 DWARF constants are the same. */
24359 DIAGNOSTIC_PUSH
24360 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24361 switch (macinfo_type)
24362 {
24363 /* A zero macinfo type indicates the end of the macro
24364 information. */
24365 case 0:
24366 break;
24367
24368 case DW_MACRO_define:
24369 case DW_MACRO_undef:
24370 case DW_MACRO_define_strp:
24371 case DW_MACRO_undef_strp:
24372 case DW_MACRO_define_sup:
24373 case DW_MACRO_undef_sup:
24374 {
24375 unsigned int bytes_read;
24376 int line;
24377 const char *body;
24378 int is_define;
24379
24380 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24381 mac_ptr += bytes_read;
24382
24383 if (macinfo_type == DW_MACRO_define
24384 || macinfo_type == DW_MACRO_undef)
24385 {
24386 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24387 mac_ptr += bytes_read;
24388 }
24389 else
24390 {
24391 LONGEST str_offset;
24392
24393 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24394 mac_ptr += offset_size;
24395
24396 if (macinfo_type == DW_MACRO_define_sup
24397 || macinfo_type == DW_MACRO_undef_sup
24398 || section_is_dwz)
24399 {
24400 struct dwz_file *dwz
24401 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24402
24403 body = read_indirect_string_from_dwz (objfile,
24404 dwz, str_offset);
24405 }
24406 else
24407 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24408 abfd, str_offset);
24409 }
24410
24411 is_define = (macinfo_type == DW_MACRO_define
24412 || macinfo_type == DW_MACRO_define_strp
24413 || macinfo_type == DW_MACRO_define_sup);
24414 if (! current_file)
24415 {
24416 /* DWARF violation as no main source is present. */
24417 complaint (_("debug info with no main source gives macro %s "
24418 "on line %d: %s"),
24419 is_define ? _("definition") : _("undefinition"),
24420 line, body);
24421 break;
24422 }
24423 if ((line == 0 && !at_commandline)
24424 || (line != 0 && at_commandline))
24425 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24426 at_commandline ? _("command-line") : _("in-file"),
24427 is_define ? _("definition") : _("undefinition"),
24428 line == 0 ? _("zero") : _("non-zero"), line, body);
24429
24430 if (is_define)
24431 parse_macro_definition (current_file, line, body);
24432 else
24433 {
24434 gdb_assert (macinfo_type == DW_MACRO_undef
24435 || macinfo_type == DW_MACRO_undef_strp
24436 || macinfo_type == DW_MACRO_undef_sup);
24437 macro_undef (current_file, line, body);
24438 }
24439 }
24440 break;
24441
24442 case DW_MACRO_start_file:
24443 {
24444 unsigned int bytes_read;
24445 int line, file;
24446
24447 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24448 mac_ptr += bytes_read;
24449 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24450 mac_ptr += bytes_read;
24451
24452 if ((line == 0 && !at_commandline)
24453 || (line != 0 && at_commandline))
24454 complaint (_("debug info gives source %d included "
24455 "from %s at %s line %d"),
24456 file, at_commandline ? _("command-line") : _("file"),
24457 line == 0 ? _("zero") : _("non-zero"), line);
24458
24459 if (at_commandline)
24460 {
24461 /* This DW_MACRO_start_file was executed in the
24462 pass one. */
24463 at_commandline = 0;
24464 }
24465 else
24466 current_file = macro_start_file (cu, file, line, current_file,
24467 lh);
24468 }
24469 break;
24470
24471 case DW_MACRO_end_file:
24472 if (! current_file)
24473 complaint (_("macro debug info has an unmatched "
24474 "`close_file' directive"));
24475 else
24476 {
24477 current_file = current_file->included_by;
24478 if (! current_file)
24479 {
24480 enum dwarf_macro_record_type next_type;
24481
24482 /* GCC circa March 2002 doesn't produce the zero
24483 type byte marking the end of the compilation
24484 unit. Complain if it's not there, but exit no
24485 matter what. */
24486
24487 /* Do we at least have room for a macinfo type byte? */
24488 if (mac_ptr >= mac_end)
24489 {
24490 dwarf2_section_buffer_overflow_complaint (section);
24491 return;
24492 }
24493
24494 /* We don't increment mac_ptr here, so this is just
24495 a look-ahead. */
24496 next_type
24497 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24498 mac_ptr);
24499 if (next_type != 0)
24500 complaint (_("no terminating 0-type entry for "
24501 "macros in `.debug_macinfo' section"));
24502
24503 return;
24504 }
24505 }
24506 break;
24507
24508 case DW_MACRO_import:
24509 case DW_MACRO_import_sup:
24510 {
24511 LONGEST offset;
24512 void **slot;
24513 bfd *include_bfd = abfd;
24514 struct dwarf2_section_info *include_section = section;
24515 const gdb_byte *include_mac_end = mac_end;
24516 int is_dwz = section_is_dwz;
24517 const gdb_byte *new_mac_ptr;
24518
24519 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24520 mac_ptr += offset_size;
24521
24522 if (macinfo_type == DW_MACRO_import_sup)
24523 {
24524 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24525
24526 dwarf2_read_section (objfile, &dwz->macro);
24527
24528 include_section = &dwz->macro;
24529 include_bfd = get_section_bfd_owner (include_section);
24530 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24531 is_dwz = 1;
24532 }
24533
24534 new_mac_ptr = include_section->buffer + offset;
24535 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24536
24537 if (*slot != NULL)
24538 {
24539 /* This has actually happened; see
24540 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24541 complaint (_("recursive DW_MACRO_import in "
24542 ".debug_macro section"));
24543 }
24544 else
24545 {
24546 *slot = (void *) new_mac_ptr;
24547
24548 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24549 include_mac_end, current_file, lh,
24550 section, section_is_gnu, is_dwz,
24551 offset_size, include_hash);
24552
24553 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24554 }
24555 }
24556 break;
24557
24558 case DW_MACINFO_vendor_ext:
24559 if (!section_is_gnu)
24560 {
24561 unsigned int bytes_read;
24562
24563 /* This reads the constant, but since we don't recognize
24564 any vendor extensions, we ignore it. */
24565 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24566 mac_ptr += bytes_read;
24567 read_direct_string (abfd, mac_ptr, &bytes_read);
24568 mac_ptr += bytes_read;
24569
24570 /* We don't recognize any vendor extensions. */
24571 break;
24572 }
24573 /* FALLTHROUGH */
24574
24575 default:
24576 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24577 mac_ptr, mac_end, abfd, offset_size,
24578 section);
24579 if (mac_ptr == NULL)
24580 return;
24581 break;
24582 }
24583 DIAGNOSTIC_POP
24584 } while (macinfo_type != 0);
24585 }
24586
24587 static void
24588 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24589 int section_is_gnu)
24590 {
24591 struct dwarf2_per_objfile *dwarf2_per_objfile
24592 = cu->per_cu->dwarf2_per_objfile;
24593 struct objfile *objfile = dwarf2_per_objfile->objfile;
24594 struct line_header *lh = cu->line_header;
24595 bfd *abfd;
24596 const gdb_byte *mac_ptr, *mac_end;
24597 struct macro_source_file *current_file = 0;
24598 enum dwarf_macro_record_type macinfo_type;
24599 unsigned int offset_size = cu->header.offset_size;
24600 const gdb_byte *opcode_definitions[256];
24601 void **slot;
24602 struct dwarf2_section_info *section;
24603 const char *section_name;
24604
24605 if (cu->dwo_unit != NULL)
24606 {
24607 if (section_is_gnu)
24608 {
24609 section = &cu->dwo_unit->dwo_file->sections.macro;
24610 section_name = ".debug_macro.dwo";
24611 }
24612 else
24613 {
24614 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24615 section_name = ".debug_macinfo.dwo";
24616 }
24617 }
24618 else
24619 {
24620 if (section_is_gnu)
24621 {
24622 section = &dwarf2_per_objfile->macro;
24623 section_name = ".debug_macro";
24624 }
24625 else
24626 {
24627 section = &dwarf2_per_objfile->macinfo;
24628 section_name = ".debug_macinfo";
24629 }
24630 }
24631
24632 dwarf2_read_section (objfile, section);
24633 if (section->buffer == NULL)
24634 {
24635 complaint (_("missing %s section"), section_name);
24636 return;
24637 }
24638 abfd = get_section_bfd_owner (section);
24639
24640 /* First pass: Find the name of the base filename.
24641 This filename is needed in order to process all macros whose definition
24642 (or undefinition) comes from the command line. These macros are defined
24643 before the first DW_MACINFO_start_file entry, and yet still need to be
24644 associated to the base file.
24645
24646 To determine the base file name, we scan the macro definitions until we
24647 reach the first DW_MACINFO_start_file entry. We then initialize
24648 CURRENT_FILE accordingly so that any macro definition found before the
24649 first DW_MACINFO_start_file can still be associated to the base file. */
24650
24651 mac_ptr = section->buffer + offset;
24652 mac_end = section->buffer + section->size;
24653
24654 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24655 &offset_size, section_is_gnu);
24656 if (mac_ptr == NULL)
24657 {
24658 /* We already issued a complaint. */
24659 return;
24660 }
24661
24662 do
24663 {
24664 /* Do we at least have room for a macinfo type byte? */
24665 if (mac_ptr >= mac_end)
24666 {
24667 /* Complaint is printed during the second pass as GDB will probably
24668 stop the first pass earlier upon finding
24669 DW_MACINFO_start_file. */
24670 break;
24671 }
24672
24673 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24674 mac_ptr++;
24675
24676 /* Note that we rely on the fact that the corresponding GNU and
24677 DWARF constants are the same. */
24678 DIAGNOSTIC_PUSH
24679 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24680 switch (macinfo_type)
24681 {
24682 /* A zero macinfo type indicates the end of the macro
24683 information. */
24684 case 0:
24685 break;
24686
24687 case DW_MACRO_define:
24688 case DW_MACRO_undef:
24689 /* Only skip the data by MAC_PTR. */
24690 {
24691 unsigned int bytes_read;
24692
24693 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24694 mac_ptr += bytes_read;
24695 read_direct_string (abfd, mac_ptr, &bytes_read);
24696 mac_ptr += bytes_read;
24697 }
24698 break;
24699
24700 case DW_MACRO_start_file:
24701 {
24702 unsigned int bytes_read;
24703 int line, file;
24704
24705 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24706 mac_ptr += bytes_read;
24707 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24708 mac_ptr += bytes_read;
24709
24710 current_file = macro_start_file (cu, file, line, current_file, lh);
24711 }
24712 break;
24713
24714 case DW_MACRO_end_file:
24715 /* No data to skip by MAC_PTR. */
24716 break;
24717
24718 case DW_MACRO_define_strp:
24719 case DW_MACRO_undef_strp:
24720 case DW_MACRO_define_sup:
24721 case DW_MACRO_undef_sup:
24722 {
24723 unsigned int bytes_read;
24724
24725 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24726 mac_ptr += bytes_read;
24727 mac_ptr += offset_size;
24728 }
24729 break;
24730
24731 case DW_MACRO_import:
24732 case DW_MACRO_import_sup:
24733 /* Note that, according to the spec, a transparent include
24734 chain cannot call DW_MACRO_start_file. So, we can just
24735 skip this opcode. */
24736 mac_ptr += offset_size;
24737 break;
24738
24739 case DW_MACINFO_vendor_ext:
24740 /* Only skip the data by MAC_PTR. */
24741 if (!section_is_gnu)
24742 {
24743 unsigned int bytes_read;
24744
24745 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24746 mac_ptr += bytes_read;
24747 read_direct_string (abfd, mac_ptr, &bytes_read);
24748 mac_ptr += bytes_read;
24749 }
24750 /* FALLTHROUGH */
24751
24752 default:
24753 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24754 mac_ptr, mac_end, abfd, offset_size,
24755 section);
24756 if (mac_ptr == NULL)
24757 return;
24758 break;
24759 }
24760 DIAGNOSTIC_POP
24761 } while (macinfo_type != 0 && current_file == NULL);
24762
24763 /* Second pass: Process all entries.
24764
24765 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24766 command-line macro definitions/undefinitions. This flag is unset when we
24767 reach the first DW_MACINFO_start_file entry. */
24768
24769 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24770 htab_eq_pointer,
24771 NULL, xcalloc, xfree));
24772 mac_ptr = section->buffer + offset;
24773 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24774 *slot = (void *) mac_ptr;
24775 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24776 current_file, lh, section,
24777 section_is_gnu, 0, offset_size,
24778 include_hash.get ());
24779 }
24780
24781 /* Check if the attribute's form is a DW_FORM_block*
24782 if so return true else false. */
24783
24784 static int
24785 attr_form_is_block (const struct attribute *attr)
24786 {
24787 return (attr == NULL ? 0 :
24788 attr->form == DW_FORM_block1
24789 || attr->form == DW_FORM_block2
24790 || attr->form == DW_FORM_block4
24791 || attr->form == DW_FORM_block
24792 || attr->form == DW_FORM_exprloc);
24793 }
24794
24795 /* Return non-zero if ATTR's value is a section offset --- classes
24796 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24797 You may use DW_UNSND (attr) to retrieve such offsets.
24798
24799 Section 7.5.4, "Attribute Encodings", explains that no attribute
24800 may have a value that belongs to more than one of these classes; it
24801 would be ambiguous if we did, because we use the same forms for all
24802 of them. */
24803
24804 static int
24805 attr_form_is_section_offset (const struct attribute *attr)
24806 {
24807 return (attr->form == DW_FORM_data4
24808 || attr->form == DW_FORM_data8
24809 || attr->form == DW_FORM_sec_offset);
24810 }
24811
24812 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24813 zero otherwise. When this function returns true, you can apply
24814 dwarf2_get_attr_constant_value to it.
24815
24816 However, note that for some attributes you must check
24817 attr_form_is_section_offset before using this test. DW_FORM_data4
24818 and DW_FORM_data8 are members of both the constant class, and of
24819 the classes that contain offsets into other debug sections
24820 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24821 that, if an attribute's can be either a constant or one of the
24822 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24823 taken as section offsets, not constants.
24824
24825 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24826 cannot handle that. */
24827
24828 static int
24829 attr_form_is_constant (const struct attribute *attr)
24830 {
24831 switch (attr->form)
24832 {
24833 case DW_FORM_sdata:
24834 case DW_FORM_udata:
24835 case DW_FORM_data1:
24836 case DW_FORM_data2:
24837 case DW_FORM_data4:
24838 case DW_FORM_data8:
24839 case DW_FORM_implicit_const:
24840 return 1;
24841 default:
24842 return 0;
24843 }
24844 }
24845
24846
24847 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24848 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24849
24850 static int
24851 attr_form_is_ref (const struct attribute *attr)
24852 {
24853 switch (attr->form)
24854 {
24855 case DW_FORM_ref_addr:
24856 case DW_FORM_ref1:
24857 case DW_FORM_ref2:
24858 case DW_FORM_ref4:
24859 case DW_FORM_ref8:
24860 case DW_FORM_ref_udata:
24861 case DW_FORM_GNU_ref_alt:
24862 return 1;
24863 default:
24864 return 0;
24865 }
24866 }
24867
24868 /* Return the .debug_loc section to use for CU.
24869 For DWO files use .debug_loc.dwo. */
24870
24871 static struct dwarf2_section_info *
24872 cu_debug_loc_section (struct dwarf2_cu *cu)
24873 {
24874 struct dwarf2_per_objfile *dwarf2_per_objfile
24875 = cu->per_cu->dwarf2_per_objfile;
24876
24877 if (cu->dwo_unit)
24878 {
24879 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24880
24881 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24882 }
24883 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24884 : &dwarf2_per_objfile->loc);
24885 }
24886
24887 /* A helper function that fills in a dwarf2_loclist_baton. */
24888
24889 static void
24890 fill_in_loclist_baton (struct dwarf2_cu *cu,
24891 struct dwarf2_loclist_baton *baton,
24892 const struct attribute *attr)
24893 {
24894 struct dwarf2_per_objfile *dwarf2_per_objfile
24895 = cu->per_cu->dwarf2_per_objfile;
24896 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24897
24898 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24899
24900 baton->per_cu = cu->per_cu;
24901 gdb_assert (baton->per_cu);
24902 /* We don't know how long the location list is, but make sure we
24903 don't run off the edge of the section. */
24904 baton->size = section->size - DW_UNSND (attr);
24905 baton->data = section->buffer + DW_UNSND (attr);
24906 baton->base_address = cu->base_address;
24907 baton->from_dwo = cu->dwo_unit != NULL;
24908 }
24909
24910 static void
24911 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24912 struct dwarf2_cu *cu, int is_block)
24913 {
24914 struct dwarf2_per_objfile *dwarf2_per_objfile
24915 = cu->per_cu->dwarf2_per_objfile;
24916 struct objfile *objfile = dwarf2_per_objfile->objfile;
24917 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24918
24919 if (attr_form_is_section_offset (attr)
24920 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24921 the section. If so, fall through to the complaint in the
24922 other branch. */
24923 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24924 {
24925 struct dwarf2_loclist_baton *baton;
24926
24927 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24928
24929 fill_in_loclist_baton (cu, baton, attr);
24930
24931 if (cu->base_known == 0)
24932 complaint (_("Location list used without "
24933 "specifying the CU base address."));
24934
24935 SYMBOL_ACLASS_INDEX (sym) = (is_block
24936 ? dwarf2_loclist_block_index
24937 : dwarf2_loclist_index);
24938 SYMBOL_LOCATION_BATON (sym) = baton;
24939 }
24940 else
24941 {
24942 struct dwarf2_locexpr_baton *baton;
24943
24944 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24945 baton->per_cu = cu->per_cu;
24946 gdb_assert (baton->per_cu);
24947
24948 if (attr_form_is_block (attr))
24949 {
24950 /* Note that we're just copying the block's data pointer
24951 here, not the actual data. We're still pointing into the
24952 info_buffer for SYM's objfile; right now we never release
24953 that buffer, but when we do clean up properly this may
24954 need to change. */
24955 baton->size = DW_BLOCK (attr)->size;
24956 baton->data = DW_BLOCK (attr)->data;
24957 }
24958 else
24959 {
24960 dwarf2_invalid_attrib_class_complaint ("location description",
24961 SYMBOL_NATURAL_NAME (sym));
24962 baton->size = 0;
24963 }
24964
24965 SYMBOL_ACLASS_INDEX (sym) = (is_block
24966 ? dwarf2_locexpr_block_index
24967 : dwarf2_locexpr_index);
24968 SYMBOL_LOCATION_BATON (sym) = baton;
24969 }
24970 }
24971
24972 /* Return the OBJFILE associated with the compilation unit CU. If CU
24973 came from a separate debuginfo file, then the master objfile is
24974 returned. */
24975
24976 struct objfile *
24977 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24978 {
24979 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24980
24981 /* Return the master objfile, so that we can report and look up the
24982 correct file containing this variable. */
24983 if (objfile->separate_debug_objfile_backlink)
24984 objfile = objfile->separate_debug_objfile_backlink;
24985
24986 return objfile;
24987 }
24988
24989 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24990 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24991 CU_HEADERP first. */
24992
24993 static const struct comp_unit_head *
24994 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24995 struct dwarf2_per_cu_data *per_cu)
24996 {
24997 const gdb_byte *info_ptr;
24998
24999 if (per_cu->cu)
25000 return &per_cu->cu->header;
25001
25002 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25003
25004 memset (cu_headerp, 0, sizeof (*cu_headerp));
25005 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25006 rcuh_kind::COMPILE);
25007
25008 return cu_headerp;
25009 }
25010
25011 /* Return the address size given in the compilation unit header for CU. */
25012
25013 int
25014 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25015 {
25016 struct comp_unit_head cu_header_local;
25017 const struct comp_unit_head *cu_headerp;
25018
25019 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25020
25021 return cu_headerp->addr_size;
25022 }
25023
25024 /* Return the offset size given in the compilation unit header for CU. */
25025
25026 int
25027 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25028 {
25029 struct comp_unit_head cu_header_local;
25030 const struct comp_unit_head *cu_headerp;
25031
25032 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25033
25034 return cu_headerp->offset_size;
25035 }
25036
25037 /* See its dwarf2loc.h declaration. */
25038
25039 int
25040 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25041 {
25042 struct comp_unit_head cu_header_local;
25043 const struct comp_unit_head *cu_headerp;
25044
25045 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25046
25047 if (cu_headerp->version == 2)
25048 return cu_headerp->addr_size;
25049 else
25050 return cu_headerp->offset_size;
25051 }
25052
25053 /* Return the text offset of the CU. The returned offset comes from
25054 this CU's objfile. If this objfile came from a separate debuginfo
25055 file, then the offset may be different from the corresponding
25056 offset in the parent objfile. */
25057
25058 CORE_ADDR
25059 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25060 {
25061 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25062
25063 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25064 }
25065
25066 /* Return DWARF version number of PER_CU. */
25067
25068 short
25069 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25070 {
25071 return per_cu->dwarf_version;
25072 }
25073
25074 /* Locate the .debug_info compilation unit from CU's objfile which contains
25075 the DIE at OFFSET. Raises an error on failure. */
25076
25077 static struct dwarf2_per_cu_data *
25078 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25079 unsigned int offset_in_dwz,
25080 struct dwarf2_per_objfile *dwarf2_per_objfile)
25081 {
25082 struct dwarf2_per_cu_data *this_cu;
25083 int low, high;
25084 const sect_offset *cu_off;
25085
25086 low = 0;
25087 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25088 while (high > low)
25089 {
25090 struct dwarf2_per_cu_data *mid_cu;
25091 int mid = low + (high - low) / 2;
25092
25093 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25094 cu_off = &mid_cu->sect_off;
25095 if (mid_cu->is_dwz > offset_in_dwz
25096 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25097 high = mid;
25098 else
25099 low = mid + 1;
25100 }
25101 gdb_assert (low == high);
25102 this_cu = dwarf2_per_objfile->all_comp_units[low];
25103 cu_off = &this_cu->sect_off;
25104 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25105 {
25106 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25107 error (_("Dwarf Error: could not find partial DIE containing "
25108 "offset %s [in module %s]"),
25109 sect_offset_str (sect_off),
25110 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25111
25112 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25113 <= sect_off);
25114 return dwarf2_per_objfile->all_comp_units[low-1];
25115 }
25116 else
25117 {
25118 this_cu = dwarf2_per_objfile->all_comp_units[low];
25119 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25120 && sect_off >= this_cu->sect_off + this_cu->length)
25121 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25122 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25123 return this_cu;
25124 }
25125 }
25126
25127 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25128
25129 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25130 : per_cu (per_cu_),
25131 mark (0),
25132 has_loclist (0),
25133 checked_producer (0),
25134 producer_is_gxx_lt_4_6 (0),
25135 producer_is_gcc_lt_4_3 (0),
25136 producer_is_icc_lt_14 (0),
25137 producer_is_codewarrior (false),
25138 processing_has_namespace_info (0)
25139 {
25140 per_cu->cu = this;
25141 }
25142
25143 /* Destroy a dwarf2_cu. */
25144
25145 dwarf2_cu::~dwarf2_cu ()
25146 {
25147 per_cu->cu = NULL;
25148 }
25149
25150 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25151
25152 static void
25153 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25154 enum language pretend_language)
25155 {
25156 struct attribute *attr;
25157
25158 /* Set the language we're debugging. */
25159 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25160 if (attr)
25161 set_cu_language (DW_UNSND (attr), cu);
25162 else
25163 {
25164 cu->language = pretend_language;
25165 cu->language_defn = language_def (cu->language);
25166 }
25167
25168 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25169 }
25170
25171 /* Increase the age counter on each cached compilation unit, and free
25172 any that are too old. */
25173
25174 static void
25175 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25176 {
25177 struct dwarf2_per_cu_data *per_cu, **last_chain;
25178
25179 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25180 per_cu = dwarf2_per_objfile->read_in_chain;
25181 while (per_cu != NULL)
25182 {
25183 per_cu->cu->last_used ++;
25184 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25185 dwarf2_mark (per_cu->cu);
25186 per_cu = per_cu->cu->read_in_chain;
25187 }
25188
25189 per_cu = dwarf2_per_objfile->read_in_chain;
25190 last_chain = &dwarf2_per_objfile->read_in_chain;
25191 while (per_cu != NULL)
25192 {
25193 struct dwarf2_per_cu_data *next_cu;
25194
25195 next_cu = per_cu->cu->read_in_chain;
25196
25197 if (!per_cu->cu->mark)
25198 {
25199 delete per_cu->cu;
25200 *last_chain = next_cu;
25201 }
25202 else
25203 last_chain = &per_cu->cu->read_in_chain;
25204
25205 per_cu = next_cu;
25206 }
25207 }
25208
25209 /* Remove a single compilation unit from the cache. */
25210
25211 static void
25212 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25213 {
25214 struct dwarf2_per_cu_data *per_cu, **last_chain;
25215 struct dwarf2_per_objfile *dwarf2_per_objfile
25216 = target_per_cu->dwarf2_per_objfile;
25217
25218 per_cu = dwarf2_per_objfile->read_in_chain;
25219 last_chain = &dwarf2_per_objfile->read_in_chain;
25220 while (per_cu != NULL)
25221 {
25222 struct dwarf2_per_cu_data *next_cu;
25223
25224 next_cu = per_cu->cu->read_in_chain;
25225
25226 if (per_cu == target_per_cu)
25227 {
25228 delete per_cu->cu;
25229 per_cu->cu = NULL;
25230 *last_chain = next_cu;
25231 break;
25232 }
25233 else
25234 last_chain = &per_cu->cu->read_in_chain;
25235
25236 per_cu = next_cu;
25237 }
25238 }
25239
25240 /* Cleanup function for the dwarf2_per_objfile data. */
25241
25242 static void
25243 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25244 {
25245 struct dwarf2_per_objfile *dwarf2_per_objfile
25246 = static_cast<struct dwarf2_per_objfile *> (datum);
25247
25248 delete dwarf2_per_objfile;
25249 }
25250
25251 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25252 We store these in a hash table separate from the DIEs, and preserve them
25253 when the DIEs are flushed out of cache.
25254
25255 The CU "per_cu" pointer is needed because offset alone is not enough to
25256 uniquely identify the type. A file may have multiple .debug_types sections,
25257 or the type may come from a DWO file. Furthermore, while it's more logical
25258 to use per_cu->section+offset, with Fission the section with the data is in
25259 the DWO file but we don't know that section at the point we need it.
25260 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25261 because we can enter the lookup routine, get_die_type_at_offset, from
25262 outside this file, and thus won't necessarily have PER_CU->cu.
25263 Fortunately, PER_CU is stable for the life of the objfile. */
25264
25265 struct dwarf2_per_cu_offset_and_type
25266 {
25267 const struct dwarf2_per_cu_data *per_cu;
25268 sect_offset sect_off;
25269 struct type *type;
25270 };
25271
25272 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25273
25274 static hashval_t
25275 per_cu_offset_and_type_hash (const void *item)
25276 {
25277 const struct dwarf2_per_cu_offset_and_type *ofs
25278 = (const struct dwarf2_per_cu_offset_and_type *) item;
25279
25280 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25281 }
25282
25283 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25284
25285 static int
25286 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25287 {
25288 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25289 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25290 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25291 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25292
25293 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25294 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25295 }
25296
25297 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25298 table if necessary. For convenience, return TYPE.
25299
25300 The DIEs reading must have careful ordering to:
25301 * Not cause infite loops trying to read in DIEs as a prerequisite for
25302 reading current DIE.
25303 * Not trying to dereference contents of still incompletely read in types
25304 while reading in other DIEs.
25305 * Enable referencing still incompletely read in types just by a pointer to
25306 the type without accessing its fields.
25307
25308 Therefore caller should follow these rules:
25309 * Try to fetch any prerequisite types we may need to build this DIE type
25310 before building the type and calling set_die_type.
25311 * After building type call set_die_type for current DIE as soon as
25312 possible before fetching more types to complete the current type.
25313 * Make the type as complete as possible before fetching more types. */
25314
25315 static struct type *
25316 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25317 {
25318 struct dwarf2_per_objfile *dwarf2_per_objfile
25319 = cu->per_cu->dwarf2_per_objfile;
25320 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25321 struct objfile *objfile = dwarf2_per_objfile->objfile;
25322 struct attribute *attr;
25323 struct dynamic_prop prop;
25324
25325 /* For Ada types, make sure that the gnat-specific data is always
25326 initialized (if not already set). There are a few types where
25327 we should not be doing so, because the type-specific area is
25328 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25329 where the type-specific area is used to store the floatformat).
25330 But this is not a problem, because the gnat-specific information
25331 is actually not needed for these types. */
25332 if (need_gnat_info (cu)
25333 && TYPE_CODE (type) != TYPE_CODE_FUNC
25334 && TYPE_CODE (type) != TYPE_CODE_FLT
25335 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25336 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25337 && TYPE_CODE (type) != TYPE_CODE_METHOD
25338 && !HAVE_GNAT_AUX_INFO (type))
25339 INIT_GNAT_SPECIFIC (type);
25340
25341 /* Read DW_AT_allocated and set in type. */
25342 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25343 if (attr_form_is_block (attr))
25344 {
25345 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25346 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25347 }
25348 else if (attr != NULL)
25349 {
25350 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25351 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25352 sect_offset_str (die->sect_off));
25353 }
25354
25355 /* Read DW_AT_associated and set in type. */
25356 attr = dwarf2_attr (die, DW_AT_associated, cu);
25357 if (attr_form_is_block (attr))
25358 {
25359 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25360 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25361 }
25362 else if (attr != NULL)
25363 {
25364 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25365 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25366 sect_offset_str (die->sect_off));
25367 }
25368
25369 /* Read DW_AT_data_location and set in type. */
25370 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25371 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25372 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25373
25374 if (dwarf2_per_objfile->die_type_hash == NULL)
25375 {
25376 dwarf2_per_objfile->die_type_hash =
25377 htab_create_alloc_ex (127,
25378 per_cu_offset_and_type_hash,
25379 per_cu_offset_and_type_eq,
25380 NULL,
25381 &objfile->objfile_obstack,
25382 hashtab_obstack_allocate,
25383 dummy_obstack_deallocate);
25384 }
25385
25386 ofs.per_cu = cu->per_cu;
25387 ofs.sect_off = die->sect_off;
25388 ofs.type = type;
25389 slot = (struct dwarf2_per_cu_offset_and_type **)
25390 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25391 if (*slot)
25392 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25393 sect_offset_str (die->sect_off));
25394 *slot = XOBNEW (&objfile->objfile_obstack,
25395 struct dwarf2_per_cu_offset_and_type);
25396 **slot = ofs;
25397 return type;
25398 }
25399
25400 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25401 or return NULL if the die does not have a saved type. */
25402
25403 static struct type *
25404 get_die_type_at_offset (sect_offset sect_off,
25405 struct dwarf2_per_cu_data *per_cu)
25406 {
25407 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25408 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25409
25410 if (dwarf2_per_objfile->die_type_hash == NULL)
25411 return NULL;
25412
25413 ofs.per_cu = per_cu;
25414 ofs.sect_off = sect_off;
25415 slot = ((struct dwarf2_per_cu_offset_and_type *)
25416 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25417 if (slot)
25418 return slot->type;
25419 else
25420 return NULL;
25421 }
25422
25423 /* Look up the type for DIE in CU in die_type_hash,
25424 or return NULL if DIE does not have a saved type. */
25425
25426 static struct type *
25427 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25428 {
25429 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25430 }
25431
25432 /* Add a dependence relationship from CU to REF_PER_CU. */
25433
25434 static void
25435 dwarf2_add_dependence (struct dwarf2_cu *cu,
25436 struct dwarf2_per_cu_data *ref_per_cu)
25437 {
25438 void **slot;
25439
25440 if (cu->dependencies == NULL)
25441 cu->dependencies
25442 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25443 NULL, &cu->comp_unit_obstack,
25444 hashtab_obstack_allocate,
25445 dummy_obstack_deallocate);
25446
25447 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25448 if (*slot == NULL)
25449 *slot = ref_per_cu;
25450 }
25451
25452 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25453 Set the mark field in every compilation unit in the
25454 cache that we must keep because we are keeping CU. */
25455
25456 static int
25457 dwarf2_mark_helper (void **slot, void *data)
25458 {
25459 struct dwarf2_per_cu_data *per_cu;
25460
25461 per_cu = (struct dwarf2_per_cu_data *) *slot;
25462
25463 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25464 reading of the chain. As such dependencies remain valid it is not much
25465 useful to track and undo them during QUIT cleanups. */
25466 if (per_cu->cu == NULL)
25467 return 1;
25468
25469 if (per_cu->cu->mark)
25470 return 1;
25471 per_cu->cu->mark = 1;
25472
25473 if (per_cu->cu->dependencies != NULL)
25474 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25475
25476 return 1;
25477 }
25478
25479 /* Set the mark field in CU and in every other compilation unit in the
25480 cache that we must keep because we are keeping CU. */
25481
25482 static void
25483 dwarf2_mark (struct dwarf2_cu *cu)
25484 {
25485 if (cu->mark)
25486 return;
25487 cu->mark = 1;
25488 if (cu->dependencies != NULL)
25489 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25490 }
25491
25492 static void
25493 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25494 {
25495 while (per_cu)
25496 {
25497 per_cu->cu->mark = 0;
25498 per_cu = per_cu->cu->read_in_chain;
25499 }
25500 }
25501
25502 /* Trivial hash function for partial_die_info: the hash value of a DIE
25503 is its offset in .debug_info for this objfile. */
25504
25505 static hashval_t
25506 partial_die_hash (const void *item)
25507 {
25508 const struct partial_die_info *part_die
25509 = (const struct partial_die_info *) item;
25510
25511 return to_underlying (part_die->sect_off);
25512 }
25513
25514 /* Trivial comparison function for partial_die_info structures: two DIEs
25515 are equal if they have the same offset. */
25516
25517 static int
25518 partial_die_eq (const void *item_lhs, const void *item_rhs)
25519 {
25520 const struct partial_die_info *part_die_lhs
25521 = (const struct partial_die_info *) item_lhs;
25522 const struct partial_die_info *part_die_rhs
25523 = (const struct partial_die_info *) item_rhs;
25524
25525 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25526 }
25527
25528 struct cmd_list_element *set_dwarf_cmdlist;
25529 struct cmd_list_element *show_dwarf_cmdlist;
25530
25531 static void
25532 set_dwarf_cmd (const char *args, int from_tty)
25533 {
25534 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25535 gdb_stdout);
25536 }
25537
25538 static void
25539 show_dwarf_cmd (const char *args, int from_tty)
25540 {
25541 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25542 }
25543
25544 int dwarf_always_disassemble;
25545
25546 static void
25547 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25548 struct cmd_list_element *c, const char *value)
25549 {
25550 fprintf_filtered (file,
25551 _("Whether to always disassemble "
25552 "DWARF expressions is %s.\n"),
25553 value);
25554 }
25555
25556 static void
25557 show_check_physname (struct ui_file *file, int from_tty,
25558 struct cmd_list_element *c, const char *value)
25559 {
25560 fprintf_filtered (file,
25561 _("Whether to check \"physname\" is %s.\n"),
25562 value);
25563 }
25564
25565 void
25566 _initialize_dwarf2_read (void)
25567 {
25568 dwarf2_objfile_data_key
25569 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25570
25571 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25572 Set DWARF specific variables.\n\
25573 Configure DWARF variables such as the cache size"),
25574 &set_dwarf_cmdlist, "maintenance set dwarf ",
25575 0/*allow-unknown*/, &maintenance_set_cmdlist);
25576
25577 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25578 Show DWARF specific variables\n\
25579 Show DWARF variables such as the cache size"),
25580 &show_dwarf_cmdlist, "maintenance show dwarf ",
25581 0/*allow-unknown*/, &maintenance_show_cmdlist);
25582
25583 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25584 &dwarf_max_cache_age, _("\
25585 Set the upper bound on the age of cached DWARF compilation units."), _("\
25586 Show the upper bound on the age of cached DWARF compilation units."), _("\
25587 A higher limit means that cached compilation units will be stored\n\
25588 in memory longer, and more total memory will be used. Zero disables\n\
25589 caching, which can slow down startup."),
25590 NULL,
25591 show_dwarf_max_cache_age,
25592 &set_dwarf_cmdlist,
25593 &show_dwarf_cmdlist);
25594
25595 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25596 &dwarf_always_disassemble, _("\
25597 Set whether `info address' always disassembles DWARF expressions."), _("\
25598 Show whether `info address' always disassembles DWARF expressions."), _("\
25599 When enabled, DWARF expressions are always printed in an assembly-like\n\
25600 syntax. When disabled, expressions will be printed in a more\n\
25601 conversational style, when possible."),
25602 NULL,
25603 show_dwarf_always_disassemble,
25604 &set_dwarf_cmdlist,
25605 &show_dwarf_cmdlist);
25606
25607 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25608 Set debugging of the DWARF reader."), _("\
25609 Show debugging of the DWARF reader."), _("\
25610 When enabled (non-zero), debugging messages are printed during DWARF\n\
25611 reading and symtab expansion. A value of 1 (one) provides basic\n\
25612 information. A value greater than 1 provides more verbose information."),
25613 NULL,
25614 NULL,
25615 &setdebuglist, &showdebuglist);
25616
25617 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25618 Set debugging of the DWARF DIE reader."), _("\
25619 Show debugging of the DWARF DIE reader."), _("\
25620 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25621 The value is the maximum depth to print."),
25622 NULL,
25623 NULL,
25624 &setdebuglist, &showdebuglist);
25625
25626 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25627 Set debugging of the dwarf line reader."), _("\
25628 Show debugging of the dwarf line reader."), _("\
25629 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25630 A value of 1 (one) provides basic information.\n\
25631 A value greater than 1 provides more verbose information."),
25632 NULL,
25633 NULL,
25634 &setdebuglist, &showdebuglist);
25635
25636 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25637 Set cross-checking of \"physname\" code against demangler."), _("\
25638 Show cross-checking of \"physname\" code against demangler."), _("\
25639 When enabled, GDB's internal \"physname\" code is checked against\n\
25640 the demangler."),
25641 NULL, show_check_physname,
25642 &setdebuglist, &showdebuglist);
25643
25644 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25645 no_class, &use_deprecated_index_sections, _("\
25646 Set whether to use deprecated gdb_index sections."), _("\
25647 Show whether to use deprecated gdb_index sections."), _("\
25648 When enabled, deprecated .gdb_index sections are used anyway.\n\
25649 Normally they are ignored either because of a missing feature or\n\
25650 performance issue.\n\
25651 Warning: This option must be enabled before gdb reads the file."),
25652 NULL,
25653 NULL,
25654 &setlist, &showlist);
25655
25656 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25657 &dwarf2_locexpr_funcs);
25658 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25659 &dwarf2_loclist_funcs);
25660
25661 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25662 &dwarf2_block_frame_base_locexpr_funcs);
25663 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25664 &dwarf2_block_frame_base_loclist_funcs);
25665
25666 #if GDB_SELF_TEST
25667 selftests::register_test ("dw2_expand_symtabs_matching",
25668 selftests::dw2_expand_symtabs_matching::run_test);
25669 #endif
25670 }
This page took 0.586861 seconds and 4 git commands to generate.